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Abstract. New operators for Multi-Objective Evolutionary Algorithms
(MOEA’s) are presented here, including one archive-set reduction pro-
cedure and two mutation operators, one of them to be applied on the
population and the other one on the archive set. Such operators are based
on the assignment of “spheres” to the points in the objective space, with
the interpretation of a “representative region”. The main contribution of
this work is the employment of feedback control principles (PI control)
within the archive-set reduction procedure and the archive-set mutation
operator, in order to achieve a well-distributed Pareto-set solution sam-
ple. An example EMOA is presented, in order to illustrate the effect
of the proposed operators. The dynamic effect of the feedback control
scheme is shown to explain a high performance of this algorithm in the
task of Pareto-set covering.

1 Introduction

Two main concerns are involved in the task of designing of Multi-Objective
Evolutionary Algorithms (MOEA’s): (i) the “quality” of the Pareto-set estimates
that are generated, and (ii) the convergence velocity of the algorithm. The first
of such concerns is, in itself, multi-dimensional, and there are not, up to now,
any definitive standards for measuring such “quality” [1]. A high-quality solution
set, anyway, can be defined as a set of samples that [2]:

– Approach the exact Pareto-set (i.e., should be dominated by a subset of the
decision variable space that is as small as possible);

– Cover the whole extension of the Pareto-set (i.e., include samples which are
spread along the whole range of the Pareto-set, including the regions near
the extremes of such Pareto-set);

– Describe in detail the “body” of the Pareto-set (i.e., these samples are “reg-
ularly” spread along the Pareto-set).
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Notice that a MOEA can be built without a commitment with the search for a
Pareto-set estimate in its whole extension, i.e., without referring to such quality
measures, in the cases in which some a priori or on line decision information is
available, allowing the concentration of the search in some sub-regions that are
identified as being “of interest”.

This paper presents new operators that can be used for designing high-
performance MOEA’s (in the sense of MOEA’S that produce high-quality
Pareto-set estimates, as defined above): the Sphere-Control operators. Such op-
erators are based on the raw information about the distances between every pair
of solution samples in a set – this motivates the denomination of “sphere” oper-
ators. The key concept behind the proposed operators is the usage of a feedback-
control scheme for the purpose of establishing a dynamic equilibrium associated
to the high-quality description of the Pareto-set. This means that while such
high-quality description is not attained, there will be measured variables that
indicate this fact, carrying the information about what control action should be
taken in order to enhance such quality [3]. An instance of such feedback-control
scheme is represented in Figure 1. In this figure, the measured variable is the
error e = r − a, which feeds the Proportional-Integral (PI) controller, which in
turn determines the value of the control variable ρ. In the equilibrium, e = 0
(which means the desired result of a = r).
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+

Fig. 1. Diagram of PI feedback control loop for controlling the number of points in
the archive set. The variable ρ, the radius of the spheres associated to the points in
the archive file, plays the role of the control input variable, while the variable a, the
number of points in the archive file, plays the role of the controlled variable. The pre-
established reference number of points in the archive, denoted by r, will be attained in
the equilibrium, by virtue of the feedback mechanism.

As in other contexts of application of feedback-control techniques, the role of
the feedback control scheme is to induce an overall system behavior that presents
low sensitivity to variations in the initial conditions and in the algorithm param-
eter values, delivering rather “stable” results – meaning a high repeatability in
the reach of high-quality solution sets [3]. The error variables are defined such
that the feedback loop reaches an equilibrium only when a “good description”
of the Pareto-set is attained. An unbalanced spread of solutions causes the num-
ber of solutions to shrink (by eliminating the more redundant solutions), while
the existence of connected areas in the Pareto-set which are not well-covered
causes the number of solutions to grow, with the equilibrium being reached only
there are no more non-described regions, and the solutions are evenly distributed
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along the Pareto-set object. The equilibrium itself can be used as a criterion for
detecting the end of the task of Pareto-set description, serving as a stop criterion.

Specifically, two sphere-control operators are proposed here: a mutation op-
erator that is applied in the archive set, in order to fill eventual gaps in its
Pareto-set description – which is called here the surface-filling mutation, and
an archive-set reduction operator which controls the number of non-dominated
solutions that are stored. Feedback control mechanisms, based on a switched
controller and on a Proportional-Integral (PI) controller, are employed in the
surface-filling mutation and in the archive-set reduction operator, in order to en-
hance the distribution of solutions along the Pareto surface. This motivates the
denomination of “sphere-control” operators. These operators are to be employed
together, since their effects are complementary, and their dynamic interaction is
necessary in order to achieve the desired behavior. Another mutation operator
is also defined here, still employing the “sphere” concept, but not employing
the feedback-control scheme. This operator is applied in the current population,
and resembles the “hypermutation” operation employed in the Artificial Immune
System proposed in [4].

The ideas presented here have connection with the ones presented in [5,2]
which employ “sphere” operations which are similar to the archive-set reduction
operator presented here, yet without any feedback adaptation scheme. The basic
idea, both in that references and here, is that a “sphere” means roughly a do-
main in which the information gained by a solution point in its center would be
representative – with no need of further function evaluations inside such sphere.
The references [6,7] also employ the concept of “spheres” for construction of an
EMOA, with a dual meaning: in that cases, the “sphere” is the domain in which
a local search is conducted, with sub-populations assigned to perform searches
inside each sphere.

In the specific formulation that is presented here, the proposed operators are
structured for continuous-variable spaces. However, the adaptation for discrete-
variable problems can be performed directly, provided that some distance metric
becomes defined in the discrete-variable space.

An algorithm that instantiates the application of such operators is constructed:
the SCMGA (Sphere-Control Multiobjective Genetic Algorithm). Such algorithm
is compared with an NSGA-based algorithm and with an SPEA-based algorithm,
in order to illustrate the enhancements of the Pareto-set estimates that can be
obtained via the proposed approach. The role of the feedback control operators
is analyzed, and the results suggest that such operators interact in order to in-
creasingly enhance the description of the Pareto set. In particular, the gaps in the
Pareto surface are systematically filled by the proposed operators – leading to sur-
face descriptions of high definition.

2 Multiobjective Genetic Algorithms

Consider f(·) : R
n �→ R

m a vector-valued real function. Let fi(·) denote the
i-th coordinate of the function in the image space. The multiobjective problems
appear from the partial ordering induced by the relation of dominance:
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u ≺ v ⇔
⎧
⎨

⎩

fi(u) ≤ fi(v) ∀ i = 1, . . . , m
and
∃ i ∈ {1, . . . , m} such that fi(u) < fi(v)

(1)

Consider the Pareto-set P defined by:

P � {x∗ ∈ Ω | 
 ∃ x ∈ Ω such that x ≺ x∗} (2)

in which x ∈ R
n is the decision variable vector, and Ω ⊆ R

n is the feasible set. A
multiobjective optimization problem is defined as the task of generating samples
of the set P .

A Multiobjective Genetic Algorithm (MGA) is a genetic algorithm which is
intended to produce a set of samples of P . These algorithms can be stated, in
general, as:

Algorithm 1. Pseudocode for generic MGA
k← 0
Pk ← initial population
Ek ← evaluate function(Pk)
Ak ← ∅ % the archive set
Mk ← ∅ % the set of points resulting from mutation
Ck ← ∅ % the set of points resulting from crossover
while not stop criterion do

Ak+1 ← update archive(Ak, Pk, Ek)
Fk ← fitness assignment(Pk, Mk, Ck, Ek)
Pk+1 ← new population(Ak, Pk, Mk, Ck, Fk)
Mk+1 ← mutation(Pk+1)
Ck+1 ← crossover(Pk+1)
Ek+1 ← join( evaluate function(Mk+1, Ck+1), Ek)

end while

In addition to this “basic” structure, other operators can be added within the
main loop. A very common kind of additional operator performs a local search
[8]. The algorithm that is to be tested here and the algorithms that are adopted
for comparison follow this basic structure. At the end of the execution, the
“archive set” Ak contains the algorithm outcome, which constitutes an estimate
of the Pareto-set P .

3 The Sphere Operators

Consider the sets A and P , respectively meaning the archive and the current
population:

A � {x̃1, . . . , x̃a}

P � {x1, . . . , xp}
(3)

with |A| = a and |P | = p. The images of such sets in the objective space are
denoted by:
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Ay = {ỹ1, . . . , ỹa} � {f(x̃1), . . . , f(x̃a)}

Py = {y1, . . . , yp} � {f(x1), . . . , f(xp)}
(4)

The remainder of this paper considers that both sets Ay and Py are normalized
according to the extreme values of set Ay, such that the minimal value in any
dimension receives the value 0, and the maximal value receives the value 1. This
means that some values in Py can fall outside the range [0, 1]. A re-normalization
is performed in both sets every time the set Ay is updated.

The main idea behind the “sphere operators” is that if the solution samples
regularly cover the set P , they should be located in relation to their nearest
neighbors such that the distances to them become of the same order of magni-
tude. Therefore, a parameter ρ, which has the meaning of a reference domain
radius for each point, must be defined. This parameter is employed in order to
guide the algorithm operations, with the intent to generate points which approx-
imately “represent” the region inside the sphere of such radius centered in that
point. Any two neighbors should be separated, therefore, by at least 2ρ. The
parameter ρ is dynamically adjusted during the algorithm execution, in order
to reach a good dispersion of the sample points along the Pareto-set estimate,
considering a reference value of the number of sample points that is to be found.

3.1 Archive-Set Reduction

Consider the set A = {x1, x2, . . . , xm, xm+1, . . . , xa} in which the individual
minima of the m objective functions have been put in the first m positions, and
the remainder a−m points have been ordered randomly. The set Ay is ordered
correspondingly. The archive set is reduced by the Algorithm 2.

Algorithm 2. Pseudocode for Archive-Set Reduction
1: i← 1
2: while |A| > i do
3: A← A− {xj | ‖yi − yj‖ < 2ρ , i �= j}
4: Ay ← Ay − {yj | ‖yi − yj‖ < 2ρ , i �= j}
5: i← i + 1
6: end while

After this operation, there will be no two points in Ay with pairwise distances
smaller than 2ρ. This controls the size of the archive set, ensuring that the
points will be distributed smoothly. Notice that this operation can be performed
directly even in the case of discrete-variable problems, since all information is
processed with reference to the objective space.

If this operation was executed with a pre-defined value of ρ, this could cause
the size a of set A to become too large or too small, since the exact extension of
the set P is not known a priori. This leads to the need of a dynamic adjustment
of this parameter.
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3.2 Controlling ρ

The adjustment of parameter ρ takes into account a reference number of points
that should be stored in the archive set A. Let such reference number be denoted
by r, and let the actual number of points in A be denoted by a. The adjustment
procedure is described in Algorithm 3. The initial value of ρ is defined such
that r spheres of dimension (m − 1) occupy a volume equivalent to the unitary
simplex of dimension (m− 1).

Algorithm 3. Pseudocode for ρ Control
1: if a > r then
2: e← (a− r)/r
3: if e > s then
4: Δ← s
5: else
6: Δ← Kp × e
7: end if
8: ρ← (1 + Δ)× ρ
9: else

10: ρ← Kn × ρ
11: end if

Default values can be indicated for the control parameters: Kp = 0.6, s = 0.1,
Kn = 0.9. This algorithm resembles the PI (proportional-integral) controllers
with control signal saturation, which are employed in industrial control systems.
A relative error e is calculated in each step. An incremental control action is
calculated on the basis of such error. A diagram of such closed-loop feedback
control scheme is presented in Figure 1.

For negative errors (the number of archive points is smaller than the reference
one), the size of the reference domain radius, ρ, must be reduced, in order to allow
that more spheres become defined in the next step. In this case, ρ is multiplied
by the parameter Kn which must be chosen such that 0 < Kn < 1. This tends
to be the case when the algorithm is starting: there are few points in the archive
set, and the radius is continuously reduced.

In the case of positive errors (the number of archive points becomes greater than
the reference one), the size of ρ must be increased, in order to eliminate more points
in the operation of archive reduction (which is equivalent to make any point to
“represent” a larger sphere around itself). In this case, the increment Δ is propor-
tional to the error, in the case of small errors, and fixed, in the case of large errors,
in order to avoid rapid increments of ρ. The need for such saturation is due to sta-
bility considerations, in the same sense that appears in the context of industrial
control – in this way avoiding the excessive oscillation of the control variable ρ.

It should be noticed that, as the control action over variable ρ is incremental,
the net effect has the form of an integral control. This integral term in the PI
controller is necessary in order to induce an error-less steady behavior in the
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closed-loop system. Indeed, if a simple P (proportional only) controller were
adopted, the steady state value of the controlled variable a would not become
equal to the reference value r. This, of course, would lead to the need of ad-hoc
parameter adjustments in order to obtain a solution set with a pre-established
size. In this way, the PI controller structure is the simplest one that fulfills the
requirements which are needed here. (Most textbooks on classic control theory,
for instance [3], will present a detailed discussion about such effects).

The adoption of such closed-loop control scheme makes the size of ρ to reach
an equilibrium point by itself, avoiding the need of an a priori knowledge about
such parameter, and rendering the multiobjective genetic algorithm robust in
relation to this parameter.

Notice that even in the degenerate case of the Pareto-set surface being of
dimension less than m− 1 (one or more objectives being redundant), the algo-
rithm still works as expected, forming an archive set of Pareto estimates which
will have still r elements. The only exception would be in the case of a single
non-redundant objective, in which the control variable ρ would shrink up to
very small values without obtaining the effect of forming an archive set with r
elements. Rigorously, an algorithm should have a stop condition related to the
detection of such situation.

3.3 Surface-Filling Mutation

Define the function v(·) as

v(yi) = | {yj | ‖yi − yj‖ < 3ρ} |
which means the cardinality of the set of points from the archive set Ay which
are inside a ball of radius 3ρ around the function argument yj . Without loss of
generality, consider that the set Ay is ordered in increasing order of v(yi):

Ay = {yi | v(yi) ≤ v(yi+1)}
The set A receives the corresponding ordering. The surface-filling mutation op-
erator is defined by Algorithm 4 (notice that |A| = a).

In Algorithm 4, the matrix Γ performs the tasks of adjusting the mutation
to different ranges of the decision variables and introducing correlation between
the mutation in different variables, if necessary (in ordinary cases, it can be set
as the identity matrix). An important notice about this mutation operator is: it
is performed over the archive set, instead of being performed over the current
population set. This operator is followed by a controlled adaptation of mutation
radius β, as shown in Algorithm 5.

The idea of the surface-filling mutation is to generate mutations in the indi-
viduals that have less neighbors in the objective space (i.e., less other points at
a distance smaller than 3ρ). These individuals are subject to mutations that are
intended either to provide local enhancements or to generate new neighbors that
fill the gaps in the description of the Pareto surface by the archive set. However,
the radius β that should be employed for the Gaussian mutation is not known a
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Algorithm 4. Pseudocode for Surface-Filling Mutation
1: k1 ← k2 ← k3 ← k4 ← 0
2: for i = 1 to a/3 do
3: Generate ω ∈ R

n with Gaussian distribution (0,1)
4: x̂i ← βΓω + xi

5: ŷi ← f(x̂i)
6: if ŷi ≺ yi then
7: xi ← x̂i

8: yi ← ŷi

9: k1 ← k1 + 1
10: else if yi ≺ ŷi then
11: k2 ← k2 + 1
12: else
13: k3 ← k3 + 1
14: if ‖yi − ŷi‖ > ρ then
15: A← A + x̂i

16: Ay ← Ay + ŷi

17: k4 ← k4 + 1
18: end if
19: end if
20: end for

Algorithm 5. Pseudocode for Mutation-Radius Control
1: if k3 > 0 then
2: α = k4/k3

3: if α > 0.8 then
4: β ← 0.9× β
5: else if α < 0.4 then
6: β ← 1.1× β
7: end if
8: end if

priori, because the distances that define “neighbors” are measured in the objec-
tive space, while the mutation must be performed in the decision variable space.
Therefore, a dynamic adaptation is necessary.

A too small β would cause the mutated individuals to become near the original
ones, leading to distances (in the objective space) smaller than ρ. The dynamic
control of β is built in order to produce a reference proportion of new non-
dominated individuals outside the sphere of radius ρ around the original ones.
In the instance case shown above, if less than 40% of the new non-dominated
individuals are outside such sphere, the mutation radius β is increased by 10%.
On the other hand, if more than 80% of such individuals become outside such
sphere, the radius is reduced to 90% of its value; this is performed in order to
guarantee the local search nature of the surface filling mutation operator.

Once more, the adaptation of parameter β employs a feedback control scheme.
In this case, a switched control action is performed over variable β.
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This mechanism gives rise to a local search procedure that performs perturba-
tion steps that are both local and not too small, leading to an enhanced efficiency
in the search.

3.4 Inverse-Fitness Mutation

Another mutation operator, to be applied over the current population set, is also
defined: the inverse-fitness mutation. This is a simple Gaussian mutation:

x̂← x + ηΓω

in which ω ∈ R
n is obtained from a Gaussian distribution (0,1). The radius η

is variable: each individual has its own radius, that depends on its fitness value.
The idea is to rank the fitness of all individuals in the population, and assign
an η to each individual as a linear function of its position in the ranking, with
the worst individual receiving an η = σ, where σ is the search radius employed
in the generation of the initial population. After this, the values of η that are
smaller than 2% of σ are changed to that value. Such mutation is similar to the
one proposed in [4], in the context of Artificial Immunological Algorithms.

4 An Instance of EMOA: The SCMGA

In order to evaluate the sphere-control operators, an instance of multiobjective
genetic algorithm is proposed here, using such operators along with some other
well-known operators. This algorithm instance is called here the SCMGA, stand-
ing for Sphere-Control Multiobjective Genetic Algorithm.

The additional operators that are needed are defined as:

– Initial population: generated from a Gaussian distribution, with a given
search radius σ, around a given center x0;

– Crossover: the real-biased scheme presented in [9] is employed here1;
– Pareto-ranking fitness assignment: the scheme employed by MOGA [10,11]

is employed here;
– Selection: a binary tournament is employed, over a set of individuals com-

posed by the old population plus the individuals generated via the mutation
and crossover operations;

1 The real-biased crossover scheme is stated as follows: (i) Consider the parent individ-
uals A and B. Without loss of generality, consider that the fitness of individual A is
better than the fitness of individual B (the operator is to be applied after the selec-
tion, when the fitness values of all individuals are known). (ii) Take a parametrized
line segment that passes over A and B, such that A is parametrized by 0.1 and B is
parametrized by 0.9. (iii) Generate two random numbers φ1 and φ2, both from an
uniform distribution in the interval [0, 1]. (iv) Take φ3 = φ1 × φ2. Clearly, φ3 has
a quadratic distribution over the same interval, with greater density values near 0,
and smaller density values near 1. (v) One offspring individual is taken as the point
parametrized by φ3 (which means that this point has a greater probability of being
near A, the best parent, than of being near B). (vi) The other offspring is obtained
as an uniform-distribution sample of the same segment.
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This algorithm, featuring also all sphere-control operators, is employed here
with the purpose of performing some preliminary tests on the proposed new
operators.

5 Results

5.1 Establishing the SCMGA

A preliminary test is conducted for the purpose of verifying if the proposed
algorithm gives Pareto-set estimates that are compatible with the currently em-
ployed reference algorithms. For this purpose, algorithms and benchmark func-
tions which are available at the PISA platform2 are employed here. The functions
to be employed are the Kursawe function with 3 and with 8 variables (denoted
respectively by Kur-3 and Kur-8), and the Quagliarella & Vicini function with
3 variables (denoted by QV-3), all described in [12]. These particular functions
have been chosen because they are the only options in PISA which comply with
the requirements of (i) being of continuous-variables, and (ii) not depending
strongly on the definition of “bounding boxes” for the decision variables (this
last requirement is due to the particularly simple implementation of SCMGA
used here, which has not been constructed for dealing with such bounding box
constraints).

The reference algorithms are the Nondominated Sorting GA II (NSGA-II)
presented in [13], the Strength Pareto Evolutionary Algorithm 2 (SPEA-2) pre-
sented in [12], the Indicator-Based Evolutionary Algorithm (IBEA) presented in
[14] and the Hypervolume Estimation Algorithm for Multiobjective Optimiza-
tion (HypE) presented in [15]. All those algorithms have been run as available
from PISA.

All algorithms, for all test functions, have been executed with population
size of 300 individuals, number of parent individuals and number of offspring
individuals per generation both equal to 150, and other specific parameters of
each algorithm as defined by default in PISA. The SCMGA has been run with
population of 150 individuals and the reference size of the archive set equal to
300. The algorithms have been assigned 30000 function evaluations in all cases.

The comparisons have been performed in the following way. Each algorithm
is executed once over each problem. For each problem, the 300 solutions of the
five algorithms, are pooled in a single set (the combined Pareto-set estimate),
and a non-dominance algorithm is executed over this pool set. After that, the
number of solutions coming from each algorithm in the pool are counted, and
the results are presented in Table 1.

A visual comparison, which cannot be shown here due to space limitation,
also indicates that SCMGA produces solution sets that are well-distributed. As
long as such results are “typical” (they are similar in several executions), it
seems reasonable to conduct further studies about the SCMGA. We advise the
reader that due to the limited number of tests that has been performed so far,
2 http://www.tik.ee.ethz.ch/pisa/
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Table 1. Results of different algorithms on benchmark problems, in a single execution

pool size NSGA-II SPEA-2 IBEA HypE SCMGA

Kur-3 376 22 17 27 24 286

Kur-8 288 0 0 0 0 288

QV-3 1049 171 178 184 228 288

the only conclusion that can be drawn is that SCMGA produces results that
are compatible with the ones produced by other standard algorithms. Further
conclusions with the meaning of a comparison will need much more tests.

5.2 The Structure of Control Action

An experiment has been conducted with the SCMGA, with the same parameters
above, in the 3D Kur problem, allowing 160000 function evaluations (which
have been performed in 498 generations). Figure 2 presents the evolution of the
number of points in the archive set, |A|, along with the evolution of the size
of the sphere radius ρ which controls such set size. The reference adopted for
|A| is 300 points (i.e., the control subroutine will try to reach this reference and
stay on it). Interesting observations can be drawn from Figure 2. It should be
noticed that the number of points grows in the first phase of the algorithm time
evolution. As long as the number of points is smaller than the reference in this
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Fig. 2. The evolution of the size of the sphere radius, ρ (upper figure); and of the
number of points in the archive set A, denoted by |A| (lower figure), with the number
of SCMGA generations
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first phase, the control action results in a continuous decreasing of the radius ρ.
At the generation 21, the number of points becomes greater than the reference
value; the control variable ρ begins to grow. However, as its value has possibly
been set to a value smaller than the “equilibrium” one, the controlled variable
|A| continues to grow, giving rise to an “overshoot” effect. Further increments
in ρ lead the controlled variable |A| to track the reference value nearly at the
generation 30. In all generations after that one, |A| presents a small oscillation
around the reference. It is important to notice the behavior of the control variable
ρ after the moment that |A| reaches the reference value: although |A| becomes
nearly constant up to the end of algorithm execution, ρ presents a trend of slow
growth from generation 30 up to generation 150. This is related to an adjustment
of the samples yi in Ay, which become increasingly more well-distributed along
the Pareto-set of the problem. This leads to a greater “smallest” distance among
any two points in Ay. After generation 150, up to the end, the value of control
variable ρ becomes approximately constant, with a small oscillation around this
“equilibrium”.

Figure 3 presents the evolution of the size of the surface-filling mutation ra-
dius, β, along with the evolution of the proportion of successful (not too close
to the original point) attempts of mutation. The control variable β is switched
in order to keep the value of the controlled variable k4/k3 between the values
0.4 and 0.8. It can be seen that, at the beginning of algorithm execution, most
of successful mutations occur at large distances (the proportion k4/k3 is nearly
equal to 1). In order to guarantee that the mutation operator performs a local
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Fig. 3. The size of the mutation radius, β (upper figure); and the proportion k4/k3 of
successful (not too close) attempts of mutation (lower figure)
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Fig. 4. Evolution of the archive-set image Ay. Top-left: 5 generations. Top-right: 15
generations. Middle-left: 25 generations. Middle-right: 50 generations. Bottom-left: 100
generations. Bottom-right: 495 generations.

search, the mutation radius β is reduced: this causes the controlled variable k4/k3

to reduce. Both the control variable β and the controlled variable k4/k3 reach
an equilibrium from the generation 50 up to the end of algorithm execution. It
should be noticed that the controlled variable reaches a fast oscillatory motion
around the value 0.6, which is the center of the reference band.

The gradual evolution of the archive set image Ay is depicted in the sequence
of frames in Figure 4.
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It can be seen that, in the first 5 generations, very few archive points have
been generated. A delineation of an estimation of the Pareto-front starts to
appear near generation 15. The lower portion of the Pareto-front becomes well-
delineated nearly at generation 25, and becomes “completed” nearly at genera-
tion 50. The upper portion of the front, however, becomes completed only nearby
generation 100. From generation 100 to generation 495, there is no visually per-
ceptible enhancement in the front.

These observations should be compared with the former analysis, which indi-
cated roughly that the variables |A| and β become stable before generation 50,
the variable k4/k3 reaches equilibrium after generation 50 and before generation
100, and variable ρ becomes in equilibrium nearby generation 100. A very inter-
esting conjecture to be launched is: the equilibrium of such variables seems to
be related to the completion of Pareto-set description.

6 Conclusion

The algorithm SCMGA, constructed with the proposed sphere-control operators,
has shown effectiveness in finding a well-defined and stable Pareto-set estimate.
The algorithm seems to be endowed with a capability of guiding the search to-
ward the “less-defined” regions of the current estimate, until producing a com-
plete estimate. The dynamic interaction between the algorithm internal variables
that is induced by a feedback-control scheme seems to play an essential role in
constituting such property.

Beyond the specific operators and the algorithm instance that have been pre-
sented here, the authors believe that the main contribution of this paper is to
introduce the idea of using feedback-control principles for the design of evolu-
tionary computation algorithms. The main concern in using such principles is to
define, in a meaningful way, the control variables and the controlled variables of
the feedback scheme.

References

1. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE
Trans. on Evolutionary Computation 7(2), 117–132 (2003)

2. Silva, V.L.S., Wanner, E.F., Cerqueira, S.A.A.G., Takahashi, R.H.C.: A new per-
formance metric for multiobjective optimization: The integrated sphere counting.
In: Proc. IEEE Congress on Evolutionary Computation, Singapore (2007)

3. Ogata, K.: Modern Control Engineering, 4th edn. Prentice-Hall, Englewood Cliffs
(2001)

4. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal func-
tion optimization. In: Proceedings of the 2002 IEEE Congress on Evolutionary
Computation, vol. 1, pp. 699–704 (2002)

5. Takahashi, R.H.C., Palhares, R.M., Dutra, D.A., Gonalves, L.P.S.: Estimation of
Pareto sets in the mix H2/Hinf control problem. International Journal of Systems
Science 35(1), 55–67 (2004)



80 R.H.C. Takahashi et al.

6. Bui, L.T., Deb, K., Abbass, H.A., Essam, D.: Interleaving guidance in evolutionary
multi-objective optimization. Journal of Computer Science and Technology 23(1),
44–63 (2008)

7. Bui, L.T., Abbass, H.A., Essam, D.: Local models – an approach to distributed
multi-objective optimization. In: Computational Optimization and Applications
(2007) (to appear, published online in 2007), doi:10.1007/s10589-007-9119-8

8. Wanner, E.F., Guimaraes, F.G., Takahashi, R.H.C., Fleming, P.J.: Local search
with quadratic approximations into memetic algorithms for optimization with mul-
tiple criteria. Evolutionary Computation 16(2), 185–224 (2008)

9. Takahashi, R.H.C., Vasconcellos, J.A., Ramirez, J.A., Krahenbuhl, L.: A multiob-
jective methodology for evaluation genetic operators. IEEE Trans. on Magnetics 39,
1321–1324 (2003)

10. Fonseca, C.M., Fleming, P.: Genetic algorithms for multiobjective optimization:
formulation, discussion and generalization. In: Proceedings of the 5th International
Conference: Genetic Algorithms, San Mateo, USA, pp. 416–427 (1993)

11. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-
jective optimization. Evolutionary Computation 7(3), 205–230 (1995)

12. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH) Zurich, Tech. Rep. 103 (2001)

13. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

14. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

15. Bader, J., Zitzler, E.: HypE: Fast Hypervolume-Based Multiobjective Search Using
Monte Carlo Sampling. Institut für Technische Informatik und Kommunikation-
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