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Preface

Multi-criterion optimization refers to optimization problems with two or more ob-
jectives expressing conflicting goals that are formulated within a mathematical
programming framework. The problems addressed may involve linear or nonlin-
ear objective functions and/or constraints, continuous or discrete variables, and
may or may not be affected by uncertainty in the data. This branch of multiple
criteria decision making (MCDM) finds application in numerous domains: engi-
neering design, health, transportation, telecommunications, bioinformatics, etc.

The concept of a unique optimal solution does not apply as soon as multiple
objectives are optimized simultaneously. The models and methods introduced
in multi-criterion optimization deal with the concept of a set of efficient (also
called Pareto optimal) solutions. Efficient solutions imply trade-offs between the
different criteria. The computation of the efficient solution set may be hard when
the size of the problem is large, when the problem is computationally complex,
when the data are not crisp. It is then often impossible to guarantee the compu-
tation of exact solutions. In that case, approximate solutions, i.e., sub-optimal
solutions computed with limited and controlled resources, such as available time,
are of interest. This is the domain of multi-objective metaheuristics, of which
evolutionary multi-criterion optimization (EMO) is definitely the most promi-
nent representative. The success of EMO is due to the simplicity of its concepts
and the generality of its methods, and is clearly expressed by the many impres-
sive success stories reported in the literature.

Research activities in EMO have boomed since the mid-1990s. Three gen-
erations of work are identifiable throughout the years. In the first generation,
research focused on the design of efficient algorithmic methods for the approx-
imation of efficient solutions. The second generation dealt with the problem of
measuring the quality of the approximations generated by the algorithms. The
current generation stresses the hybridization with other currents of optimization.
“Hot” questions concern the integration of a decision maker (interactivity, pref-
erences), the robustness of the generated solutions, and the coupling with other
optimization approaches (operations research, constraint programming, other
metaheuristics). Research in the area of EMO is evolving very fast, and con-
tinuously investigates new challenging open questions in order to enlarge and
refine its position of useful technology for multi-criterion optimization. Today
EMO algorithms are recognized as being among the most valuable and promising
methods for tackling complex and diverse multi-criterion optimization problems.

To capitalize on, and promote exchanges within, the growing community
of researchers involved in evolutionary multi-criterion optimization, an interna-
tional conference series devoted to EMO was launched in 2001. This confer-
ence brings together researchers and practitioners from different disciplines of
computer science, operations research, engineering optimization, mathematical
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programming and multi-criteria analysis. Theoretical results and algorithmic de-
velopments in the field of EMO are covered, including practice and applications
of EMO in real-life situations. After Zürich (Switzerland) in 2001, Faro (Portu-
gal) in 2003, Guanajuato (Mexico) in 2005 and Matsushima-Sendai (Japan) in
2007, Nantes (France) hosted the 5th International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2009). The conference took place at the
Faculty of Science of the University of Nantes during April 7-10, 2009.

To emphasize the current generation of EMO research, the subtitle of the
conference was “Where Optimization Technologies Meet Evolutionary Multi-
Criterion Optimization”. The conference was structured around invited speakers
(tutorial sessions, keynote sessions, industrial session) and selected presentations
(oral sessions and poster session). The EMO 2009 scientific program included
five invited talks given by Denis Bouyssou (France) on “Choice and Preferences,”
Kathrin Klamroth (Germany) on “Discrete Multiobjective Optimization,” Man-
ual Laguna (USA) on “Scatter Search and Path-Relinking,” Thomas Stützle
(Belgium) on “Ant Colony Optimization,” and Pascal Van Hentenryck (USA)
on “Constraint Programming.” The selection of contributed papers was based on
full-paper submissions, rigorously refereed by at least three members of the Inter-
national Program Committee. The EMO 2009 International Program Commit-
tee was composed of 118 international well-known researchers from 25 countries.
This volume includes the 39 research papers that were selected for presentation
at the conference, from the 72 submissions received. The papers published in the
volume represent the most recent developments on evolutionary multi-criterion
optimization, and cover a large spectrum of current research topics: applications,
algorithm development, theoretical analysis, performance analysis and compar-
ison, alternative methods, MCDM, many objectives, uncertainty and noise, and
the interface between EMO and MCDA.

We would like to express our appreciation to the keynote, tutorial and indus-
trial speakers for accepting our invitation. We also thank all the authors who
submitted their work to EMO 2009. Our sincerest gratitude goes to the members
of the International Program Committee for the considerable work they have in-
vested in the reviewing process and for their contribution to making this volume
an up-to-date reference in the field of evolutionary multi-criterion optimization.
The organizers are especially grateful to all the sponsors for financial support,
and to the members of the Local Organizing Committee for their investment in
the preparation of the conference, in particular, Valérie Coutand, the conference
secretary.

April 2009 Matthias Ehrgott
Carlos M. Fonseca
Xavier Gandibleux

Jin-Kao Hao
Marc Sevaux
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Program Committee

H. Abbass (Australia)
H.E. Aguirre (Japan)
R.T.F. Ah King

(Mauritius)
E. Alba (Spain)
S. Azarm (USA)
V. Barichard (France)
M. Basseur (France)
V. Belton (UK)
N. Beume (Germany)
J. Branke (Germany)
C.A. Brizuela (Mexico)
R. Caballero (Spain)
C.A. Coello Coello

(Mexico)
D.W. Corne (UK)
L. Costa (Portugal)
K. Deb (India)
X. Delorme (France)
P. Dépincé (France)
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Jesús E. Uŕıas Barrientos

Adaptation of Scalarizing Functions in MOEA/D: An Adaptive
Scalarizing Function-Based Multiobjective Evolutionary Algorithm . . . . . 438

Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and
Yusuke Nojima

Combining Aggregation with Pareto Optimization: A Case Study in
Evolutionary Molecular Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Johannes W. Kruisselbrink, Michael T.M. Emmerich, Thomas Bäck,
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Scatter Search and Path Relinking 

Manuel Laguna 

Leeds School of Business 
University of Colorada 

Boulder, CO 80309-0419 – USA 
laguna@colorado.edu 

This presentation explores the evolutionary approach called scatter search, which 
originated from strategies for creating composite decision rules and surrogate con-
straints. Recent studies have demonstrated the practical advantages of this approach 
for solving a diverse collection of optimization problems from both classical and real 
world settings. Scatter search contrasts with other evolutionary procedures, such as 
genetic algorithms, by providing unifying principles for joining solutions based on 
generalized path constructions in Euclidean space and by utilizing strategic designs 
where other approaches resort to randomization. Additional advantages are provided 
by intensification and diversification mechanisms that exploit adaptive memory, 
drawing on foundations that link scatter search to tabu search. 

We also address the scatter search generalization called path relinking. Features 
that have been added to scatter search by extension of its basic philosophy, are cap-
tured in the path relinking framework.  From a spatial orientation, the process of gen-
erating linear combinations of a set of reference solutions (as typically done in scatter 
search) may be characterized as generating paths between and beyond these solutions, 
where solutions on such paths also serve as sources for generating additional paths. 
This leads to a broader conception of the meaning of creating combinations of solu-
tions.  By natural extension, such combinations may be conceived to arise by generat-
ing paths between and beyond selected solutions in neighborhood space, rather than in 
Euclidean space.  

The presentation also includes applications of scatter search/path relinking to 
multi-objective optimization and directions for future research. 
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Ant Colony Optimization (ACO) is a stochastic local search method that has
been inspired by the pheromone trail laying and following behavior of some ant
species [1]. Artificial ants in ACO essentially are randomized construction proce-
dures that generate solutions based on (artificial) pheromone trails and heuristic
information that are associated to solution components. Since the first ACO al-
gorithm has been proposed in 1991, this algorithmic method has attracted a
large number of researchers and in the meantime it has reached a significant
level of maturity. In fact, ACO is now a well-established search technique for
tackling a wide variety of computationally hard problems.

The vast majority of the available ACO applications concern NP-hard com-
binatorial optimization problems and, among these, mainly those with only one
single objective. However, many realistic problems involve two or more, typically
competing objective. Therefore, it is not surprising that several researches have
investigated the extension of ACO algorithm to handle multiple objective func-
tions. These approaches range from applications to problems with lexicographi-
cically ordered objectives to problems that are tackled in the Pareto sense.

In this tutorial we will first give an overview of ACO, highlighting its inspiring
source, the main algorithmic variants, and the main application areas. The core
part of this tutorial then reviews ways of how ACO algorithms can be used to
tackle multiobjective combinatorial optimization problems (MCOPs). We will
review the main approaches that have been proposed so far with a special em-
phasis on the application to MCOPs that are tackled in the Pareto sense. In fact,
there exists a large number of degrees of freedom for the algorithm designer when
applying ACO algorithms to MCOPs. These range from the use of one or several
pheromone matrices, the usage of one or several ant colonies, variations on the
pheromone update schemes, the usage or not of local search procedures and so
on. We will support our discussion with results obtained from some experimental
analyses for conceptually simple multiobjective problems such as the multiob-
jective quadratic assignment problem and the multiobjective traveling salesman
problem.

Reference

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, USA (2004)
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Constraint programming is a remarkable success story. It quickly moved from
research laboratories to industrial applications in the late 1980s and is in daily
use to solve complex optimization throughout the world. At the same time,
constraint programming has continued to evolve, addressing new needs and op-
portunities. This talk reviews some recent progress in constraint programming.
The first part of the talk starts with its fundamental contribution, the ability to
express and exploit combinatorial substructures to prune infeasible solutions and
find feasible solutions. It also reviews some of the benefits of its architecture on
a variety of applications in scheduling, rostering, and combinatorial matching,
emphasizing the underlying modeling and computation techniques. The second
part of the talk argues that constraint programming is an integration technol-
ogy and reviews some hybridizations of constraint programming, including local
search, mathematical programming, and global optimization. The final part of
the talk gives a brief overview of some promising, novel applications of constraint
programming.

Acknowledgments. This work was supported in part by the U.S. Department
of Homeland Security’s National Infrastructure Analysis and Simulation Center
(NISAC)Program,byNSFawardDMI-0600384,andONRAwardN000140610607.
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1 Problems and Applications

Multipleobjectivecombinatorialoptimization(MOCO)hasbecomeaquicklygrow-
ingfield inmultipleobjectiveoptimization,andhas recentlyattracted the attention
of researchers both from the fields of multiple objective optimization and from sin-
gle objective integer programming. Typical examples of MOCO problems include
multiple objective knapsack problems with applications, among others, in capital
budgeting, multiple objective assignment problems, the multiple objective travel-
ingsalesmanproblem,andothernetworkproblems likemultipleobjectiveminimum
spanning tree, shortest path, and minimum costflow problems. Formally, a general
MOCO problem can be stated as min{f(x) = (f1(x), . . . , fp(x))T : x ∈ X}, where
the decision spaceX is a given discrete feasible set that usually has some additional
combinatorial structure.

Since the set of feasible solutions of a MOCO problem is discrete and usually
finite, it can at least theoretically be enumerated to identify all Pareto opti-
mal solutions. This is, however, generally impractical due to the exponentially
growing number of feasible (and sometimes also Pareto optimal) solutions.

2 Neighborhood Search and Connectedness

Structural properties of the efficient set of MOCO problems play a crucial role
for the development of efficient solution methods. A central question in the
context of metaheuristics relates to the connectedness of the efficient set with
respect to combinatorially or topologically motivated neighborhood structures.
A positive answer to this question would provide a theoretical justification for
the application of fast neighborhood search techniques, not only for multiple
objective but also for appropriate formulations of single objective problems.

Unfortunately, most of the classical MOCO problems do in general not pos-
sess a connectedness property with respect to reasonable neighborhoods. This
includes, among others, knapsack problems (and even several special cases of
knapsack problems) and linear assignment problems, shortest path problems as
well as spanning tree and minimum cost flow problems. Numerical tests per-
formed for different variants of the knapsack problem suggest, however, that
the likelihood with which non-connected adjacency graphs occur in randomly
generated problem instances is very small.
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Abstract. This purpose of this talk is to offer a nontechnical intro-
duction to the main preference models used in multiple criteria decision
making. The emphasis is on the, central, additive value function model.
We outline its axiomatic foundations and present various possible as-
sessment techniques to implement it. Some extensions of this model,
e.g., nonadditive models or models tolerating intransitive preferences are
then briefly reviewed.
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Approximating the Least Hypervolume
Contributor: NP-Hard in General,

But Fast in Practice
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Abstract. The hypervolume indicator is an increasingly popular set
measure to compare the quality of two Pareto sets. The basic ingredient
of most hypervolume indicator based optimization algorithms is the cal-
culation of the hypervolume contribution of single solutions regarding a
Pareto set. We show that exact calculation of the hypervolume contri-
bution is #P-hard while its approximation is NP-hard. The same holds
for the calculation of the minimal contribution. We also prove that it is
NP-hard to decide whether a solution has the least hypervolume contri-
bution. Even deciding whether the contribution of a solution is at most
(1+ε) times the minimal contribution is NP-hard. This implies that it is
neither possible to efficiently find the least contributing solution (unless
P = NP) nor to approximate it (unless NP = BPP).

Nevertheless, in the second part of the paper we present a very fast
approximation algorithm for this problem. We prove that for arbitrarily
given ε, δ > 0 it calculates a solution with contribution at most (1 + ε)
times the minimal contribution with probability at least (1−δ). Though it
cannot run in polynomial time for all instances, it performs extremely fast
on various benchmark datasets. The algorithm solves very large problem
instances which are intractable for exact algorithms (e.g., 10000 solutions
in 100 dimensions) within a few seconds.

1 Introduction

Multi-objective optimization deals with the task of optimizing several objective
functions at the same time. As these functions are often conflicting, we cannot
aim for a single optimal solution but for a set of Pareto optimal solutions. Un-
fortunately, the Pareto set frequently grows exponentially in the problem size.
In this case, it is not possible to compute the whole front efficiently and the goal
is to compute a good approximation of the Pareto front.

There are many indicators to measure the quality of a Pareto set, but there
is only one widely used that is strictly Pareto compliant [22], namely the hyper-
volume indicator. Strictly Pareto compliant means that given two Pareto sets
A and B the indicator values A higher than B if the Pareto set A dominates
the Pareto set B. The hypervolume (HYP) measures the volume of the dom-
inated portion of the objective space. It was first proposed and employed for
multi-objective optimization by Zitzler and Thiele [20].

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 6–20, 2009.
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It has become very popular recently and several algorithms have been de-
veloped to calculate it. The first one was the Hypervolume by Slicing Objec-
tives (HSO) algorithm which was suggested independently by Zitzler [19] and
Knowles [9]. To improve its runtime on practical instances, various speed up
heuristics of HSO have been suggested [16, 18]. The currently best asymptotic
runtime of O(n log n+nd/2) is obtained by Beume and Rudolph [2] by an adap-
tion of Overmars and Yap’s algorithm [11] for Klee’s Measure Problem [8].

From a geometric perspective, the hypervolume indicator is just measuring
the volume of the union of a certain kind of boxes in Rd

≥0, namely of boxes which
share the reference point1 as a common point. We will use the terms point and
box interchangeably for solutions as the dominated volume of a point defines a
box and vice versa. Given a set M of n points in Rd, we define the hypervolume
of M to be

HYP(M) := vol

( ⋃
(x1,...,xd)∈M

[0, x1] × . . . × [0, xd]

)

In [4] the authors have proven that it is #P-hard2 in the number of dimension
to calculate HYP precisely. Therefore, all hypervolume algorithms must have an
exponential runtime in the number of objectives (unless P = NP). Without the
widely accepted assumption P �= NP, the only known lower bound for any d
is Ω(n log n) [3]. Note that the worst-case combinatorial complexity (i.e., the
number of faces of all dimensions on the boundary of the union) of Θ(nd) does
not imply any bounds on the computational complexity.

Though the #P-hardness of HYP dashes the hope for an exact subexponen-
tial algorithm, there are a few estimation algorithms [1, 4] for approximating the
hypervolume based on Monte Carlo sampling. However, the only approximation
algorithm with proven bounds is presented in [4]. There, the authors describe
an FPRAS for HYP which gives an ε-approximation of the hypervolume with
probability (1 − δ) in time O(log(1/δ)nd/ε2).

New Complexity Results
We will now describe a few problems related to the calculation of the hyper-
volume indicator and state our results. For this, observe that calculating the
hypervolume itself is actually not necessary in a hypervolume-based evolution-
ary multi-objective optimizer as the algorithm actually only has to find a box
with the minimal contribution to the hypervolume.

The contribution of a box x ∈M to the hypervolume of a set M of boxes is the
volume dominated by x and no other element of M . We define the contribution
CON(M,x) of x to be

CON(M,x) := HYP(M) − HYP(M \ x).
1 Without loss of generality we assume the reference point to be 0d.
2 #P is the analog of NP for counting problems. For details see either the original

paper by Valiant [15] or the standard textbook on computational complexity by
Papadimitriou [12].
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In Section 2 we show that this problem is #P-hard to solve exactly. Furthermore,
approximating CON by a factor of 2d1−ε

is NP-hard for any ε > 0. Hence, CON
is not approximable. Note that this is no contradiction to the above-mentioned
FPRAS for HYPas an approximation of HYP yields no approximation of CON.

As a hypervolume-based optimizer is only interested in the box with the min-
imal contribution, we also consider the following problem. Given a set M of n
boxes in Rd, find the least contribution of any box in M , that is,

MINCON(M) := min
x∈M

CON(M,x).

The reduction in Section 2 shows that MINCON is #P-hard and not approx-
imable, even if we know the box which is the least contributor.

Both mentioned problems can be used to find the box contributing the least
hypervolume, but their hardness does not imply hardness of the problem itself,
which we are trying to solve, namely calculating which box has the least contri-
bution. Therefore we also examine the following problem. Given a set M of n
boxes in Rd, we want to find a box with the least contribution in M , that is,

LC(M) := argmin
x∈M

CON(M,x).

If there are multiple boxes with the same (minimal) contribution, we are, of
course, satisfied with any of them. In Section 2 we prove that this problem is
NP-hard to decide.

However, for practical purposes it most often suffices to solve a relaxed version
of the above problem. That is, we just need to find a box which contributes not
much more than the minimal contribution, meaning that is is only a (1 + ε)
factor away. If we then throw out such a box, we have an error of at most ε. We
will call this ε-LC(M) as it is an “approximation” of the problem LC. Given a
set M of n boxes in Rd and ε > 0, we want to find a box with contribution at
most (1 + ε) times the minimal contribution of any box in M , that is,

CON(M, ε-LC(M)) ≤ (1 + ε)MINCON(M).

The final result of Section 2 is the NP-hardness of ε-LC. This shows, that there
is no way of computing the least contributor efficiently, and even no way to
approximate it.

New Approximation Algorithm

In Section 3 we will give a “practical” algorithm for determining a small contrib-
utor. Technically speaking, it solves the following problem we call ε-δ-LC(M):
Given a set M of n boxes in Rd, ε > 0 and δ > 0, with probability at least 1− δ
find a box with contribution at most (1 + ε)MINCON(M).

Pr[CON(M, ε-δ-LC(M)) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ.

As we will be able to choose δ arbitrarily, solving this problem is of high prac-
tical interest. By the NP-hardness of ε-LC there is no way of solving ε-δ-LC
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efficiently, unless NP = BPP. This means, our algorithm cannot run in poly-
nomial time for all instances. Its runtime depends on some hardness measure H
(cf. Section 3.2), which is an intrinsic property of the given input, but generally
unbounded, i.e., not bounded by some function in n and d.

However, in Section 4 we show that our algorithm is practically very fast
on various benchmark datasets, even for dimensions completely intractable for
exact algorithms like d = 100 for which we can solve instances with n = 10000
points within seconds. This implies a huge shift in the practical usability of the
hypervolume indicator.

2 Hardness of Approximation

In this section we first show hardness of approximating MINCON, which we will
use afterwards to show hardness of LC and ε-LC. We will reduce #MON-CNF
to MINCON, which is the problem of counting the number of satisfying assign-
ments of a Boolean formula in conjunctive normal form in which all variables
are unnegated. While the problem of deciding satisfiability of such formula is
trivial, counting the number of satisfying assignments is #P-hard and even ap-
proximating it by a factor of 2d1−ε

for any ε > 0 is NP-hard, where d is the
number of variables (see Roth [14] for a proof).

Theorem 1. MINCON is #P-hard and approximating it by a factor of 2d1−ε

is NP-hard for any ε > 0.

Proof. To show the theorem, we reduce #MON-CNF to MINCON. Let
�(a1, . . . , ad) denote a box [0, a1] × . . . × [0, ad]. Let f =

∧n
k=1
∨

i∈Ck
xi be

a monotone Boolean formula given in CNF with Ck ⊆ [d] := {1, . . . , d}, for
k ∈ [n], d the number of variables, n the number of clauses. First, we construct
a box Ak = �(ak

1 , . . . , a
k
d, 2

d + 2) ⊆ Rd+1 for each clause Ck with one vertex at
the origin and the opposite vertex at (ak

1 , . . . , a
k
d, 2

d + 2), where we set

ak
i =

{
1, if i ∈ Ck

2, otherwise
, i ∈ [d].

Additionally, we need a box B = �(2, . . . , 2, 1) ⊆ Rd+1 and set M =
{A1, . . . , An, B}. Since we can assume without loss of generality that no clause is
dominated by another, meaning Ci �⊆ Cj for every i �= j, every box Ak uniquely
overlaps a region [x1, x1+1]×. . .×[xd, xd+1]×[1, 2d+2] with xi ∈ {0, 1}, i ∈ [d],
so that the contribution of every box Ak is greater than 2d and the contribution
of B is at most 2d, so that B is indeed the least contributor.

Observe that the contribution of B to HYP(M) can be written as a union
of boxes of the form Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] × [0, 1] with
xi ∈ {0, 1}, i ∈ [d]. Moreover, Bx1,...,xd

is not a subset of the contribution of
B to HYP(M) iff it is a subset of

⋃n
k=1 Ak iff it is a subset of some Ak iff we

have ak
i ≥ xi + 1 for i ∈ [d] iff ak

i = 2 for all i with xi = 1 iff i /∈ Ck for
all i with xi = 1 iff (x1, . . . , xd) satisfies

∧
i∈Ck

¬xi for some k iff (x1, . . . , xd)
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satisfies the negated formula f̄ =
∨n

k=1
∧

i∈Ck
¬xi. This implies that Bx1,...,xd

is a subset of the contribution of B iff (x1, . . . , xd) satisfies f . Hence, since
vol(Bx1,...,xd

) = 1, we have MINCON(M) = CON(M,B) = |{(x1, . . . , xd) ∈
{0, 1}d | (x1, . . . , xd) satisfies f}|. Thus a polynomial time algorithm solving
MINCON(M) would result in a polynomial time algorithm for #MON-CNF,
which proves the claim.

Note that the reduction from above implies that MINCON is #P-hard and
NP-hard to approximate even if the least contributor is known. Moreover, since
we constructed boxes with integer coordinates in [0, 2d + 2] a number of b =
O(d2n) bits suffices to represent all d + 1 coordinates of the n + 1 constructed
points. Hence, MINCON is hard even if all coordinates are integral. We define
as input size b + n+ d, where b is the number of bits in the input. We will use
this result in the next proof. Also note that the same hardness for CON follows
immediately, as it is hard to compute CON(M,B) as constructed above.

By reducing MINCON to LC, one can now show NP-hardness of LC. We
skip this proof and directly prove NP-hardness of ε-LC by using the hardness
of approximating MINCON in the following theorem.

Theorem 2. ε-LC is NP-hard for any constant ε. More precisely, it is
NP-hard for (1 + ε) bounded from above by 2d1−c−1 for some c > 0.

Proof. We reduce MINCON to ε-LC. Let M be a set of n boxes in Rd, i.e., a
problem instance of MINCON represented by a number of b bits, so that the
input size is b+ n+ d.

As discussed above, we can assume that the coordinates are integral. We
can further assume that d ≥ 2 as MINCON is trivial for d = 1. The minimal
contribution of M might be 0, but this occurs if and only if one box in M
dominates another. As the latter can be checked in polynomial time, we can
without loss of generality also assume that MINCON(M) > 0.

Now, let V be the volume of the bounding box of all the boxes in M , i.e., the
product of all maximal coordinates in the d dimensions. We know that V is an
integer with 1 ≤ V ≤ 2b, as there are only b bits in the input.

We now define a slightly modified set of boxes:

A = {�(a1 + 2V, a2, . . . , ad) | �(a1, . . . , ad) ∈M},
B = �(2V, . . . , 2V ),
Cλ = �(1, . . . , 1, 2V + λ),
Mλ = A ∪ {B} ∪ {Cλ}.

The boxes in A are the boxes ofM , but shifted along the x1-axis. By definition,
ai ≤ V , i ∈ [d] for all �(a1, . . . , ad) ∈ M . The contribution to HYP(Mλ) of a
box in A is the same as the contribution to HYP(M) of the corresponding box
in M as the additional part is overlapped by the “blocking” box B. Also note
that the contribution of a box in A is less or equal than V .

The box B uniquely overlaps at least the space [V, 2V ] × . . . × [V, 2V ] (as
every coordinate of a point in M is less than equal to V ) which has volume at
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least V . Hence, B is never the least contributor of Mλ. The box Cλ then has a
contribution of vol([0, 1] × . . . × [0, 1]× [2V, 2V + λ]) = λ, so that Cλ is a least
contributor iff λ is less than or equal to the minimal contribution of any box in
A to HYP(Mλ) which holds iff we have λ ≤ MINCON(M).

Since we can decide, whether Cλ is the least contributor, by one call to
LC(Mλ), we can do kind of a binary search on λ. As we are interested in a
multiplicative approximation, we search for κ := log2(λ) to be the largest value
less than equal to log2(MINCON(M)), where κ now is an integer in the range
[0, b]. As we can only answer ε-LC-queries we cannot do exact binary search.
But we can still follow its lines, recurring on the left half of the current interval,
if for the median value κm we get ε-LC(Mλm) = Cλm , where λm = 2κm , and on
the right half, if we get any other result.

The incorrectness of ε-LC may misguide our search, but since we have
CON(M, ε-LC(M)) ≤ (1 + ε)MINCON(M) it can give a wrong answer (i.e.,
not the least contributor) only if we have (1 + ε)−1MINCON(M) ≤ 2κ ≤
(1 + ε)MINCON(M). Outside of this interval our search goes perfectly well.
Thus, after the binary search, i.e, after at most �log2(b)	 many calls to ε-LC, we
end up at a value κ which is either inside the above interval (in which case we
are satisfied) or the largest integer smaller than log2((1 + ε)−1MINCON(M))
or the smallest integer greater than log2((1+ε)MINCON(M)). Hence, we have
κ ≤ log2((1 + ε)MINCON(M)) + 1 implying λ = 2κ ≤ 2(1 + ε)MINCON(M).
Analogously, we get λ = 2κ ≥ MINCON(M)/(2(1 + ε)). Therefore after
O(log(b)) many calls to ε-LC we get a 2 (1+ε) approximation of MINCON(M).
Since this is NP-hard for 2 (1+ ε) bounded from above by 2d1−c

for some c > 0,
we showed NP-hardness of ε-LC in this case. Note that this includes any con-
stant ε.

The NP-hardness of ε-LC not only implies NP-hardness of LC, but also the
non-existence of an efficient algorithm for ε-δ-LC unless NP = BPP. The
above proof also gives a very good intuition about the problem ε-LC: As we can
approximate the minimal contribution by a small number of calls to ε-LC, there
cannot be a much faster way to solve ε-LC but to approximate the contributions
– approximating at least the least contribution can be only a factor of O(log(b))
slower than solving ε-LC. This motivates the algorithm we present in the next
section, which tries to approximate the contributions of the various boxes.

3 Practical Approximation Algorithm

The last section ruled out the possibility of a worst case efficient algorithm for
computing or approximating the least contributor. Nevertheless, we are now
presenting an algorithm A that is “safe” and has a good practical runtime, but
no polynomial worst case runtime (as this is not possible). By “safe” we mean
that it provably solves ε-δ-LC, i.e., it holds that

Pr[CON(M,A(M, ε, δ)) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ.
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As the algorithm is going to approximate the contributions, we cannot avoid
ε and solve LC directly, as with no (1+Δ)-approximation, for any Δ > 0 we can
decide whether two contributions are equal or just nearly equal (and in the latter
case which one is greater). We consider an ε around 10−2 or 10−3 as sufficient
for typical instances. This implies for most instances that we return the correct
result as there are no two small contributions which are only a (1 + ε)-factor
apart. For the remaining cases we return at least a box which has contribution
at most (1+ε) times the minimal contribution, which means we make an “error”
of ε.

Additionally, the algorithm is going to be a randomized Monte Carlo algo-
rithm, which is why we need the δ and do not always return the correct result.
However, we will be able to set δ = 10−6 or even δ = 10−12 without increas-
ing the runtime overly. In the following we will describe algorithm A, prove its
correctness and describe its runtime.

3.1 The Algorithm A

Our algorithm works as follows. For each boxA it determines the minimal bound-
ing box of the space that is uniquely overlapped by the box. To do so we start
with the box A itself. Then we iterate over all other boxes B. If B dominates A in
all but one dimension, then we can cut the bounding box in the non-dominated
dimension. This can be realized in O(dn2).

Having the bounding box BBA of the contribution of A we start to sample
randomly in it. For each random point we determine if it is uniquely dominated
by A. If we checked noSamples(A) random points and noSuccSamples(A)
of them were uniquely dominated by A, then the contribution of A is about
ṼA := noSuccSamples(A)

noSamples(A) vol(BBA), where vol(BBA) denotes the volume of
the bounding box of the contribution of A. Additionally, we can give an es-
timate of the deviation of ṼA from VA, the correct contribution of A (i.e.,
VA = CON(M,A)): Using Chernoff’s inequality we get that for

Δ(A) :=

√
log(2n/δ)

2noSamples(A)
vol(BBA) (1)

the probability that VA deviates from ṼA by more than Δ(A) is small enough.
We would like to sample in the bounding boxes in parallel such that every ṼA

deviates about the same Δ. We do this by initializing Δ arbitrarily (e.g., Δ = 1)
and then in every iteration decrease Δ by some factor (e.g., 1

2 ) and sample in
each bounding box until we have Δ(A) ≤ Δ. If we then have at any point two
boxes A and B with

ṼA −Δ(A) > ṼB +Δ(B) (2)

we can with good probability assume that A is not a least contributor as we
would need to have ṼA − VA > Δ(A) or VB − ṼB > Δ(B) for A having a
less contribution than B (which is necessary for A being the least contributor).
Hence, whenever such a situation occurs we can delete A from our race, meaning
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that we do not have to sample in its bounding box anymore. Note that we never
have to compare two arbitrary boxes, but only a box A to the currently smallest
box L̃C, i.e., the box with Ṽ

L̃C
minimal.

We can run this race, deleting boxes if their contribution is clearly too much
by the above selection equation until either there is just one box left, in which
case we have found the least contributor, or until we have reached a point where
we have approximated all contributions well enough. Given an abortion crite-
rion ε we can just return L̃C (the box with currently smallest approximated
contribution) when we have

0 <
Ṽ

L̃C
+Δ(L̃C)

ṼA −Δ(A)
≤ 1 + ε,

for any box A �= L̃C still in the race. If this equation holds, then we can be quite
sure that any box has contribution at least 1

1+εVL̃C
, and, similarly, all other

boxes that are still in the race, too. So, after all, we have solved ε-δ-LC.
Due to space limitations, the proof that the described algorithm is indeed

correct has been removed. It can be found in Section 3.3 of [5].

3.2 Runtime

As discussed above, our algorithm needs a runtime of at least Ω(dn2). This seems
to be the true runtime on many practical instances (cf. Section 4). However, by
Theorem 2 we cannot hope for a matching upper bound. In this section we
present an upper bound on the runtime depending on some characteristics of
the input.

For an upper bound, observe that we have to approximate each box A up to
Δ = (VA − MINCON(M))/4 to be able to delete it with high probability: At
this point, ṼA ≥ VA −Δ and ṼB ≤ VB + Δ, for B a least contributor, so that
ṼA − ṼB ≥ 2Δ with probability at least 1 − δ/n. Similarly, we can show that
the expected value of Δ where we delete box A is Ω(VA − MINCON(M)). By
equation (1) we observe that we need a number of

log(2n/δ)vol(BBA)2

2Ω(VA − MINCON(M))2
= O

(
log(n/δ)vol(BBA)2

(VA − MINCON(M))2

)
samples to delete box A on average. For the least contributor LC, we need
O
(

log(n/δ)vol(BBLC)2

(sec-min(V )−MINCON(M))2

)
many samples until we have finally deleted all other

boxes, where sec-min(V ) denotes the second smallest contribution of any box in
M . Since each sample takes runtime O(dn) and everything besides the sampling
takes much less runtime, we get an overall runtime of O(dn (n + log(n/δ)H)),
where

H =
vol(BBLC)2

(sec-min(V ) − MINCON(M))2
+

∑
LC �=A∈S

vol(BBA)2

(VA − MINCON(M))2
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Algorithm 1. A(M, ε, δ) solves ε-δ-LC(M) for a set M of n boxes in Rd

and ε, δ > 0, i.e., it determines a box x ∈ M s.t. Pr[CON(M,x) ≤ (1 +
ε)MINCON(M)] ≥ 1 − δ.

determine the bounding boxes BBA for all A ∈ M
initialize noSamples(A) = noSuccSamples(A) = 0 for all A ∈ M
initialize Δ
set S := M
repeat

set Δ := Δ/2
for all A ∈ S do

repeat
sample a random point in BBA

increase noSamples(A) and possibly noSuccSamples(A)
update ṼA and Δ(A)

until Δ(A) ≤ Δ
od
set L̃C := argmin{ṼA | A ∈ S}
for all A ∈ S do

if ṼA − Δ(A) > Ṽ
L̃C

+ Δ(L̃C) then
S := S\{A}

od
od

until |S| = 1 or 0 <
Ṽ

L̃C
+Δ(L̃C)

ṼA−Δ(A)
≤ 1 + ε for any L̃C �= A ∈ S

return L̃C

is a certain measure of hardness of the input. This value is unbounded and
can even be undefined if there is no unique least contributor. In this case our
abortion criterion comes into play: With probability (1− δ) after approximating
every contribution up to Δ = ε

4+2εMINCON(M) we have ṼLC ≤ VLC +Δ, thus
Ṽ

L̃C
≤ VLC +Δ, and ṼA ≥ VLC −Δ for every other box A still in the race. Then

we conclude

Ṽ
L̃C

+Δ(L̃C)

ṼA −Δ(A)
≤ VLC + 2Δ
VLC − 2Δ

=
1 + 2 ε

4+2ε

1 − 2 ε
4+2ε

= 1 + ε

for every box L̃C �= A ∈ S. Hence, the above defined value for Δ suffices to
enforce abortion. Since we get this Δ after noSamples(A) = log(2n/δ)vol(BBA)2

2( ε
4+2ε MINCON(M))2

samples, this yields another upper bound for the overall number of samples, a
still unbounded but always finite value:

O
(

log(n/δ)
ε2MINCON(M)2

∑
A∈M

vol(BBA)2
)

However, for the random testcases that we consider in Section 4 the above
defined hardness H is a more realistic measure of runtime as there are never two
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identical contributions and not too many equally small contributions. There one
observes values for H that roughly lie in the interval [n, 10n].

4 Experimental Analysis

To demonstrate the performance of the described approximation algorithm for
the hypervolume contribution, we have implemented it and measured its perfor-
mance on different datasets. To yield a practically relevant algorithm, we have
implemented several heuristical improvements which are described in detail in
Section 3.4 of [5]. The most important for the correct interpretation of the ex-
periments is that we use a classical exact algorithm for small n and d. We now
first describe the used benchmark datasets and then our results.

4.1 Datasets

We used five different fronts similar to the DTLZ test suite [7]. As we do not
want to compare the hypervolume algorithms for point distributions specific to
different optimizers like NSGA-II [6] or SPEA2 [21], we have sampled the points
from different surfaces randomly. This allows full scalability of the datasets in
the number of points and the number of dimensions.

To define the datasets, we use random variables with two different distribu-
tions. Simple uniformly distributed random variables are provided by the build-
in random number generator rand() of C++. To get random variables with a
Gaussian distribution, we used the polar form of the Box-Muller transformation
as described in [13].

Linear Dataset: The first dataset consists of points (x1, x2, . . . , xd) ∈ [0, 1]d

with
∑d

i=1 xi = 1. They are obtained by generating d Gaussian random variables
y1, y2, ..., yd and then using the normalized points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)

|y1| + |y2| + . . . + |yd|
.

Spherical Dataset: To obtain uniformly distributed points (x1, x2, . . . , xd) ∈
[0, 1]d with

∑d
i=1 x

2
i = 1 we follow the method of Muller [10]. That is, we generate

d Gaussian random variables y1, y2, ..., yd and take the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)√
y2
1 + y2

2 + . . . + y2
d

.

Concave Dataset: Analogously to the spherical dataset we choose points
(x1, x2, . . . , xd) ∈ [0, 1]d with

∑d
i=1

√
xi = 1. For this, we generate again d Gaus-

sian random variables y1, y2, ..., yd and use the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)

(
√

|y1| +
√
|y2| + . . . +

√
|yd|)2

.
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(a) Spherical dataset (b) Linear dataset (c) Concave dataset

Fig. 1. Visualization of the first three datasets

(a) Spherical dataset (b) Linear dataset (c) Concave dataset

Fig. 2. Experimental results for d = 3

(a) Spherical dataset (b) Linear dataset (c) Concave dataset

Fig. 3. Experimental results for d = 10

(a) Spherical dataset (b) Linear dataset (c) Concave dataset

Fig. 4. Experimental results for d = 100
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(a) Random dataset 1 (b) Random dataset 2

Fig. 5. Experimental results for random datasets with d = 5

(a) Random dataset 1 (b) Random dataset 2

Fig. 6. Experimental results for random datasets with d = 100

For d = 3, the surface of the dataset is shown in Figure 1. Additionally to
random points lying on a lower-dimensional surface, we have also examined the
following two datasets with points sampled from the actual space similar to the
random dataset examined by While et al. [17].

Random Dataset 1: We first draw n uniformly distributed points from [0, 1]d

and then replace all dominated points by new random points until we have a set
of n nondominated points.

Random Dataset 2: Very similar to the previous dataset, we choose random
points until there are no dominated points. The only difference is that this
time the points are not drawn uniformly, but Gaussian distributed in Rd with
mean 1.

Note that the last two datasets are far from being uniformly distributed. The
points of the first set all have at least one coordinate very close to 1 while the
points of the second set all have at least one coordinate which is significantly
above the mean value. This makes their computation for many points (e.g.,
n ≥ 100) in small dimensions (e.g., d ≤ 5) computationally very expensive as it
becomes more and more unlikely to sample a nondominated point.
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4.2 Comparison

We have implemented our algorithm in C++ and compared it with the available
implementations of HSO by Eckart Zitzler [19] and BR by Nicola Beume [2].
We did not add any further heuristics to both exact algorithms as all published
heuristics do not improve the asymptotic runtime and even a speedup of a few
magnitudes does not change the picture significantly.

It would be better to compare our approximation algorithm with other ap-
proximation algorithms instead of exact algorithms. However, the only other
published approximation algorithm seems to be [1], which is not publicly avail-
able yet. Another reason is that all available optimization algorithms based on
the hypervolume indicator use exact calculations and hence our speedup is car-
ried over to them.

All experiments were run on a cluster of 100 machines with two 2.4 GHz
AMD Opteron processors, operating in 32-bit mode, running Linux. For our
approximation algorithm we used the parameters δ = 10−6 and ε = 10−2. The
code used is available upon request and will be distributed from the homepage
of the second author.

Figure 2-6 show double-logarithmic plots of the runtime for different datasets
and number of dimensions. The shown values are the median of 100 runs each. To
illustrate the occurring deviations below and above the median, we also plotted
all measured runtimes as ligther single points in the back. As both axes are scaled
logarithmically, also the examined problem sizes are distributed logarithmically.
That is, we only calculated Pareto sets of size n if n ∈ {�exp(k/100)� | k ∈ N}.
We examined dimensions d = 3, 10, 100 for the first three datasets and d = 5, 100
for the last two datasets.

Independent of the number of solutions and dimension, we always observed
that, unless n ≤ 10, our algorithm outperformed HSO and BR substantially. On
the used machines this means that only if the calculation time was insignificant
(say, below 10−4 seconds), the exact algorithm could compete. On the other
hand, the much lower median of our algorithm also comes with a much higher
empirical standard deviation and interquartile range. In fact, we observed that
the upper quartile can be up to five times slower than the median (for the
especially degenerated random dataset 1). The highest ratio observed between
the maximum runtime and the average runtime is 66 (again for the random
dataset 1). This behavior is represented in the plots by the spread of lighter
datapoints in the back of the median. However, there are not too many outliers
and even their runtime outperforms HSO and BR. The non-monotonicity of
our algorithm around n = 10 for d = 10 is caused by the approximate for the
runtimes of the exact algorithms.

For larger dimensions the advantage of our approximation algorithm becomes
tremendous. For d = 100 we observed that within 100 seconds our algorithm
could solve all problems with less than 6000 solutions while HSO an BR could
not solve any problem for a population of 6 solutions in the same time. For
example for 7 solutions on the 100-dimensional linear front, HSO needed 13
minutes, BR 7 hours while our algorithm terminated within 0.5 milliseconds.
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5 Conclusions

We have proven that most natural questions about the hypervolume contribution
which are relevant for evolutionary multi-objective optimizers are not only com-
putationally hard to decide, but also hard to approximate. On the other hand, we
have presented a new approximation algorithm which works extremely fast for
all tested practical instances. It can solve efficiently large high-dimensional in-
stances (d ≥ 10, n ≥ 100) which are intractable for all previous exact algorithms
and heuristics.

It would be very interesting to compare the algorithms on further datasets.
We believe that only when two solutions have contributions of very close value,
our algorithm slows down. For practical instances this should not matter as it
simply occurs too rarely – but this conjecture should be substantiated by some
broader experimental study in the future.
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Abstract. Evolutionary multi-objective algorithms (EMOA) using per-
formance indicators for the selection of individuals have turned out to be
a successful technique for multi-objective problems. Especially, the selec-
tion based on the S-metric, as implemented in the SMS-EMOA, seems
to be effective. A special feature of this EMOA is the greedy (μ + 1) se-
lection. Based on a pathological example for a population of size two and
a discrete Pareto front it has been proven that a (μ + 1)- (or 1-greedy)
EMOA may fail in finding a population maximizing the S-metric. This
work investigates the performance of (μ+1)-EMOA with small fixed-size
populations on Pareto fronts of innumerable size. We prove that an opti-
mal distribution of points can always be achieved on linear Pareto fronts.
Empirical studies support the conjecture that this also holds for convex
and concave Pareto fronts, but not for continuous shapes in general.
Furthermore, the pathological example is generalized to a continuous
objective space and it is demonstrated that also (μ + k)-EMOA are not
able to robustly detect the globally optimal distribution.

1 Introduction

The main question addressed in this work is concerned with the general suitabil-
ity of a 1-greedy evolutionary multi-objective algorithm (EMOA) for the approx-
imation of continuous Pareto fronts, which consist of an innumerable number of
Pareto optimal solutions. As a 1-greedy EMOA, we denote a steady-state (μ+1)-
EMOA that replaces only one individual by greedily selecting the μ best ones
according to a preference relation (in the style of the definitions of k-greediness
by Zitzler et al. [ZTB08]). The question is of special interest, since—for some
time now—we advocate the use of an EMOA that adheres to the 1-greedy scheme
using the S-metric or dominated hypervolume as preference relation, namely the
SMS-EMOA [BNE07]. In contrast to other EMOA (e.g. NSGA-II [DPAM02]),
it accepts only one new individual per generation in order to monotonically im-
prove the quality of the Pareto front approximation. Naturally, one can ask if
exchanging only one individual at a time is sufficient to avoid getting stuck in
non-optimal configurations. However, past experience with the SMS-EMOA has

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 21–35, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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nourished the belief that this algorithm is capable of coping with all practically
relevant situations, although a general proof in either direction is missing. This
kind of general proof, even if restricted to continuous Pareto fronts, is sophisti-
cated, unless impossible. Thus, the aim of this paper is to gradually phase this
task using both case-related formal proofs and empirical studies.

Recently, a simple discrete counter-example has been provided, which proved
that the 1-greedy scheme based on the dominated hypervolume can fail [ZTB08]
(cf. Sec. 2.3). However, the example is extreme in many aspects: It employs
a population of only two individuals on a Pareto front of four points. Thus,
we would like to know to what extend this phenomenon occurs in more realis-
tic scenarios. We are interested in continuous Pareto fronts and show that the
discrete counter example can easily be extended into the (piecewise) continu-
ous domain, with the essential property still holding: For most initializations,
a 1-greedy EMOA will fail to obtain the optimal distribution of points on that
Pareto front. To further investigate the cause of failure, we optimize the S-metric
value of the population directly using a (1, 5)- and a (5, 10)-CMA-ES (Covari-
ance Matrix Adaptation Evolution Strategy [HO01]). Our results show that not
only 1-greedy EMOA, but also non-elitist EMOA with λ > μ can fail with high
probability. This indicates that the problem is indeed very hard since the local
optimum is a strong attractor for any kind of optimizer. Studying the structure
of the problem, we give generalizing conjectures on the interrelationship of the
Pareto front and greediness.

Given the successful applications and assuming that the failure on the men-
tioned counter examples stem from the extreme constitution of the Pareto front,
we investigate the properties on connected simpler shapes. For linear Pareto
fronts, it is proved that a 1-greedy hypervolume selection scheme is sufficient to
reach the optimal distribution of points with respect to the dominated hypervol-
ume. Regarding convex Pareto fronts, we show that the problem of maximizing
the hypervolume with a given number of points is not concave, otherwise the
1-greediness would hold directly (cf. Sec. 4.1). However, the concavity is not a
necessary condition for 1-greediness. We perform empirical studies on Pareto
fronts of different curvature, which demonstrate that even a simplified SMS-
EMOA reaches the global optimum showing that the problem is solvable by a
1-greedy EMOA. Furthermore, these studies give counter-intuitive insights on
the optimal distributions of the points and their corresponding hypervolume
contributions, i.e., the amount that is disjointly dominated by a point and is
lost when the point is removed [BNE07].

The paper is structured as follows. In section 2 the basic definitions, which
are used in this paper, are provided and the discrete pathological example for
1-greedy indicator-based EMOA is recapitulated. The continuous variant of the
example is derived and, together with another problem with disconnected fronts,
empirically studied in section 3. Afterwards, we focus on continuous Pareto fronts
by analyzing and empirically studying connected fronts of different curvature in
section 4. For simple cases, also formal proofs are provided. Finally, the paper
is summarized and the important results are concluded in section 5.
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2 Hypervolume Selection and Greediness

2.1 Definitions of Greediness

Zitzler et al. [ZTB08] denote a preference relation as k-greedy if

1. for any given set, there exists a finite number of iterations resulting in the
optimal set regarding the preference relation, and

2. there is a sequence of improving populations per iteration when exchanging
k elements of a population at most.

We denote an EMOA as greedy if the selection is performed greedily accord-
ing to a preference relation, i.e., the best population regarding the preference is
selected. Greediness implies elitist selection and k is related to the number of off-
spring, i.e., the number of possible changes in the population per iteration. Thus,
a k-greedy EMOA performs a (μ + k) selection scheme regarding a pre-defined
preference relation. The problem of finding a population for a given optimization
problem which is optimally composed regarding the indicator of the preference
relation is termed k-greedy solvable if from any initial population there exists an
improving path to the optimum which can be traversed by changing at most k
element of the population per iteration. Note that the selection allows that any
problem is μ-greedy solvable for a (μ+ k)-EMOA with k ≥ μ assuming that all
search points are sampled with positive probability. A problem is local k-greedy
solvable if the optimum can be obtained by exchanging only with neighboring
solutions in the objective space. If a problem is local k-greedy solvable, this im-
plies that it also is k-greedy solvable. We concentrate on 1-greediness regarding
the hypervolume indicator thus study if the population which achieves the high-
est possible hypervolume value given a fixed population size and a reference of
the S-metric is reachable by replacing at most one individual per generation by
selecting the subset of size μ which obtains the highest S-metric value among
all those μ+ 1 subsets.

2.2 Considered Test Functions

For the experimental investigation of greedy EMOA, a set of academic minimiza-
tion problems is considered. This set contains the simple test functions T1-T4,
which have a continuous concave or convex Pareto front, where the sign of the
second derivative with respect to the first objective does not change. Test func-
tion T5 changes its curvature from concave to convex, while still being connected
and continuously differentiable. Note that T1 and T4 describe the same Pareto
front. The decision variable x ∈ [0, 1] is bounded to an interval, in which f1(x)
increases and f2(x) decreases in order to allow only non-dominated individuals.

T1: f1(x) = x2, f2 = (1 − x)2 Schaffer [Sch85], convex
T2: f1(x) = x, f2 = 1 − x DTLZ1 [DTLZ02], convex
T3: f1(x) = sin((π/2)x), f2 = cos((π/2)x) DTLZ2 [DTLZ02], concave
T4: f1(x) = x, f2(x) = (1 − x1/α)α, α = 2 convex
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T5: f1(x) = x, f2(x) = (1 − x1/α)α, α = 3x/2 + 1/2 concave-convex

T6: f1(x) = x, f2(x) =
{
−(1/8)x+ 6.125 x < 5

−x+ 8 x ≥ 5
T7: f1(x) = x, f2(x) = 1 −

√
x− x · sin(10πx) ZDT3 [ZT98]

For the experiments on T1-T4, the reference point applied in the selection of the
EMOA is fixed to R = (2, 2)T (superscript T denotes transposition). The two
test functions T6 and T7 are multi-modal with respect to the hypervolume of
the population. T6 is the continuous conversion of a pathological example given
by Zitzler et al. [ZTB08] (cf. Sec. 2.3). Its decision variable x ∈ [1, 7] is bounded
and R = (10, 7)T is used. T7 is defined in the domain of x ∈ [0, 1] being the
only function, for which not all x are Pareto optimal leading to a disconnected
Pareto front of five convex parts.

2.3 Pathological Example for a Finite Pareto Front

Zitzler et al. [ZTB08] proved that, in general, a 1-greedy EMOA is not able to
obtain the set which covers the maximal dominated hypervolume. They showed
this by a counter example in a two-dimensional objective space with a Pareto
front consisting of four points as reproduced in Fig. 1, where the algorithm shall
optimize the distribution of a population of two individuals. When the popula-
tion is initialized with the two points a and b, the global optimum formed by
the points c and d is unreachable for a 1-greedy EMOA. Any combination of
either a or b with a different point leads to a worse hypervolume value and is
therefore not accepted. Thus, the set {a, b} is a local optimum of the hyper-
volume maximization. The example can easily be extended to a higher number
of objectives by choosing all additional coordinates as 1, since multiplying by 1
does not change the hypervolume values.

Note which aspects are necessary to make the problem hard: The reference
point is chosen such that the objective values are weighted asymmetrically. Thus,
the points on the right have a high hypervolume contribution though being
quite close to each other. Furthermore, the second coordinate of the point a is

Fig. 1. Pathological example for 1-greedy EMOA with hypervolume-based selection.
Points c and d are optimal but the population is initialized with a and b which form a
local optimum.
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positioned close enough to the reference point to avoid an optimal distribution
which includes this point.

3 Pathological Examples with Innumerable Pareto Fronts

The discrete example of section 2.3 may easily be extended to the (piecewise)
continuous case by connecting the points of the original configuration by two line
segments as shown in Fig. 2 (cf. T6 in Sec. 2.2). The slope of the right segment
results in m2 = −1 and for the left one m1 = −1/8 is chosen, to correctly
transfer the situation of the discrete case in terms of the optimality properties
of the different point distributions. For m1 < −0.2, point a is no longer part of a
local optimum and the basin of attraction is shifted to the right. For reasons of
simplification, we further on discuss the problem as a two-dimensional parameter
optimization problem, whose parameters are the two x-coordinates of the two
search points on the Pareto front.

Fig. 2. Left: Conversion of the discrete pathological example for 1-greedy EMOA to
the continuous space with a disconnected Pareto front of two linear segments (T6).
Still the points c and d are optimal, whereas a and b form a local optimum. Right:
Dissection of the hypervolume for one point fixed at a and one moving on either the
left (hl,l) or right (hl,r) line (cf. Sec. 3.1 for details).

In the sense of parameter optimization, one may speak of multi-modality, and
the property of 1-greediness translates to the possibility to execute a successful
line search parallel to the coordinate axes. Thus, we can have multi-modality
while still being able to do a successful step out of a local optimum by moving in
parallel to one of the coordinate axes towards a better point. This especially is
the case for multi-modal but separable hypervolume landscapes, such as shown
for the problem T7 in the right plot of Fig. 3, where it is often necessary to cross
large areas of worse values, so that the function is not local 1-greedy solvable.

The hypervolume landscape of problem T6 is depicted in the left plot of Fig. 3.
The contour lines indicate that a 1-greedy EMOA is not able to leave the local
optimum. A μ-greedy scheme would not encounter this principal difficulty as it
allows for steps in any direction. However, it also faces the problem of locating



26 N. Beume et al.

Fig. 3. Hypervolume landscapes for two individuals on the disconnected test functions
T6 (left, R = (10, 7)T ) and T7 (right, R = (2, 2)T )

a good area, which may be also difficult. The analysis of both 1-greedy and
μ-greedy approaches on T6 is performed in the next subsections.

3.1 Proof: T6 Is Not 1-Greedy Solvable Regarding the S-Metric

In the following, we denote the two points of our population by their x-coordinates
so that a population is x = (x1, x2). It can be shown that for T6, the global op-
timum at x = (5, 7) can indeed not be reached by doing only 1-greedy steps from
the starting point x = (1, 6). To accomplish this, we have to look at the different
cases resulting from fixing one point and moving the other over the allowed inter-
val. In each case, the resulting hypervolume shall not exceed 25, which is the value
for x = (1, 6). Otherwise, a 1-greedy successful step would be possible.

Let the population start with x1 = 1 and x2 = 6, thus the locations a and b.
If x1 stays at x1 = 1 then x2 can either move on the right or the left line. We can
always compute the total hypervolume as sum of the volume beyond dominated
by (x1 = 1, 6) (hu = 9, cf. Fig. 2, left), and the contribution of the point at x2.
For x2 moving on the right line, the contribution hl,r(x2) is:

hl,r(x2) = (10 − x2) (6 − (−x2 + 8)) = −x2
2 + 12x2 − 20. (1)

The maximum of this upside-down parabola obtained by standard calculus is
at x2 = 6. That is, for moving on the right line, there is no better point than
x2 = 6, which leads to a total hypervolume of 25. If x2 moves on the left line
segment, its contribution hl,l(x2) is:

hl,l(x2) = (10 − x2)
(

6 −
(
−x2

8
+

6
8

))
(2)

This negative parabola has its optimum at x2 = 11
2 , which is unreachable in our

scenario as the largest x2 value is still below 5. The resulting total hypervolume
for this case is, thus, smaller than 13. When fixing x2 = 6, and moving x1, we
can either situate it on the left or the right line segment. For the former, the
whole hypervolume evaluates to:
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hl(x1) = (10−x1)
(

7 −
(
−x1

8
+

6
8

))
+4
(

6
8

)
− x1

8
−2 = −x

2
1

8
− x1

8
+

25
4

(3)

This parabola has its maximum at x1 = − 1
2 , the best allowed point is x1 = 1,

for which the hypervolume is 25. The latter case considers x1 moving one the
right line segment. Here, we define a helper function hr,r(y, z), which computes
the hypervolume of any two points on that line, using the fact that the slope is
m2 = −1 so that the desired value is the difference of a large rectangle through
both points and the reference point and a small rectangle with both points as
diagonal corners:

hr,r(y, z) = (10− y) (7 − (z + 8))− (z− y)2 = −y2− z2 + yz+ y+10z−10. (4)

For x1 < 6 (hr,r(x1, 6)) or respectively x1 > 6 (hr,r(6, x1)) this leads to

hr,r(x1, 6) = −x2
1 + 7 x1 + 14 and hr,r(6, x1) = −x2

1 + 16 x1 − 40 (5)

with the maximum values at

arg max
x1

(hr,r(x1, 6)) =
3
2

and arg max
x1

(hr,r(6, x1)) = 8

with corresponding largest attainable values hr,r(5, 6) = 24 and hr,r(6, 7) = 23.
Consequently, there is no 1-greedy move from x = (1, 6)T resulting in at least
the same hypervolume value of 25. �

3.2 Experiment: How μ-Greedy Solvable Is T6?

Pre-experimental planning: We consider a 1-greedy and a μ-greedy single-objec-
tive evolutionary algorithm (EA) moving on the Pareto front only (resembling,
e.g., SMS-EMOA and NSGA-II). So, the search space is the Pareto set and
the EA directly maximize the S-metric value of the population. A (1, 5)- and a
(5, 10)-CMA-ES are added to the set of algorithms. These do not have existing
EMOA counterparts, but shall be tested to see if moving with even more degrees
of freedom (non-elitist selection and a surplus of offspring) pays off. In our first
runs, we observed that the standard set of termination criteria as well as standard
boundary treatment (by quadratic penalties) deteriorate the performance of the
CMA-ES. The termination criteria make it stop too early, when there is still
a good chance to obtain the optimal solution of x = (5, 7), and the boundary
treatment hinders coming near to it. Both have been switched off hereafter.

Task: We expect that the μ-greedy EA performs significantly better than the
1-greedy EA in terms of success rates.

Setup: All four algorithms are run 100 times per mutation step size (0.1 and
0.5) allowing up to 5000 evaluations and a minimum hypervolume value of 25.9
is regarded as success. The start points are scattered uniformly at random over
the allowed domain (1 to 7).
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Table 1. Success rates (100 repeats) of different algorithm types for detecting the
globally optimal distribution of two individuals on the T6 Pareto front. The initial
mutation step size as the only free parameter is tested at 0.1 and 0.5. Only the CMA-
ES variants adapt it through the run.

Mutation step size 1-greedy EA μ-greedy EA (1, 5)-CMA-ES (5, 10)-CMA-ES
0.1 12% 15% 55% 100%
0.5 15% 13% 61% 100%

Results/Visualization: The results are given in Table 1 by means of success rates.

Observations: Table 1 documents that the 1-greedy EA indeed fails, but so also
does the μ-greedy EA. The CMA-ES solves the problem in more than half of the
runs. The effective run length (until stagnation) is very short for the 1-greedy
and μ-greedy EA, usually below 1000 evaluations. The CMA-ES often takes
much longer. At the same time, it can be observed that it pushes the internally
adapted mutation step sizes to very high values.

Discussion: The most surprising fact is surely that also the μ-greedy EA fails.
It seems that the small basin of the global optimum is hard to find, even if it
is possible to move there. A larger mutation step size could help in jumping
out of the vicinity of the local optimum, but it also scatters search steps over a
larger area. Furthermore, the attractor at (1, 6) is much stronger than expected.
Most runs end here, even if started at far distant points. The CMA-ES uses a
very interesting strategy by enlarging the mutation rates. It is finally able to
generate offspring over the whole domain of the problem, thereby degenerating
(by learning) to a random search. Presumably, this is necessary to hinder prema-
ture convergence to the point x2 = 6. Eventually, some points are placed in the
vicinity of the global optimum. Therefore, increasing the number of evaluations
most likely leads to higher success rates.

From the in-run distribution of the individuals, it is clear that the (5, 10)-
CMA-ES manages to place some of the 5 individuals in each basin of attraction
after some generations. Thus, it approximates the global optimum quite well.
However, a population of more than one parent would translate back to a multi-
population EMOA.

Summarizing, it shall be stated that although the function is of course μ-
greedy solvable, μ-greedy EA without additional features like step-size adapta-
tion have roughly the same chance of getting to the global optimum like 1-greedy
EA. Note that the same applies to the original discrete example presented by
Zitzler et al. [ZTB08], where, however, a much lower number of points to jump
to exists. This means that, where the discrete example does not pose a problem
to a μ-greedy scheme, the continuous one does.

3.3 More Points and a Strong Geometrical Argument

The provided example of a non 1-greedy function is fragile: Moving the ref-
erence point from R = (10, 7)T towards symmetry makes it 1-greedy solvable
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again. Also note that the whole construction breaks down when going to a three-
dimensional problem. Empirical tests with EMOA using a population with size
μ = 3 show that the optimal distribution x = (1, 5, 7) will always be obtained,
regardless of the chosen method (1-greedy or μ-greedy).

Continuing this line of thought, it is of course possible to build a problem
that is also misleading for 1-greedy algorithms with population sizes of three. In
fact, reducing the sizes of the basins of attraction in the hypervolume landscape
would be a move towards this goal (see Fig. 3). However, such a problem will
also become increasingly difficult for a μ-greedy algorithm, as empirically shown
in section 3.2.

Conjecture 1. Continuously defined functions, which are not 1-greedy solvable
for large population sizes (μ  3) are not generally considerably easier for μ-
greedy algorithms.

One may however pose the question if these non 1-greedy solvable functions have
to be defined piecewise. From Fig. 3, we may deduct that piecewise definition
here is just a matter of construction and not a necessary condition. There is
no reason withstanding creation of a continuous and even continuously differ-
entiable non 1-greedy solvable function (so that the boundaries between pieces
become flat) except that its analytical formulation may be much more compli-
cated. Remember that, for non 1-greedy solvability, we only have to establish
that from one point, line searches in all dimensions fail. This leads us to the
following conjecture:

Conjecture 2. Non 1-greedy solvable, continuously differentiable functions can
be constructed for any finite population size.

4 S-Metric Properties on Continuously Differentiable
Pareto Fronts

This section analyzes the convergence of 1-greedy EMOA to the distribution max-
imizing the S-metric for two special cases in the first part. Afterwards, the proper-
ties of 1-greedy EMOA on differently shaped Pareto fronts are empirically studied.

4.1 Theoretical Analysis on Linear and Convex Pareto Fronts

Let f : IR2 → IR2 be a bi-objective function to be minimized. We assume that
the Pareto front f(X∗) associated with the Pareto set X∗ ⊂ IR2 is a Jordan arc
with parametric representation

f(X∗) =
{(

s
γ(s)

)
: s ∈ [ 0, 1 ] ⊂ IR

}
, (6)

where γ : [ 0, 1 ] → IR is twice continuously differentiable. Let
y(1), . . . , y(μ) ∈ f(X∗) be distinct objective vectors on the Pareto front. Ac-
cording to (6), we have y(i) = (si, γ(si))T for i = 1, . . . , μ. As a consequence, the
S-metric or dominated hypervolume of the points y(1), . . . , y(μ) is given by
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H(s) = (r1 − s1) [ r2 − γ(s1) ] +
μ∑

i=2

(r1 − si) [ γ(si−1) − γ(si) ] (7)

with reference point R = (r1, r2)T , 0 ≤ s1 < s2 < · · · < sμ ≤ 1 ≤ r1 and
r2 ≥ γ(0).

Whenever the S-metric is concave, the 1-greedy selection scheme of the SMS-
EMOA with fixed reference point and a population of μ individuals on a contin-
uous front will not get stuck prematurely since it is sufficient to move a single
variable si at each iteration towards ascending values of the S-metric in order
to reach its maximum. Furthermore, we are going to use the result that a twice
differentiable function is concave if and only if its Hessian matrix is negatively
semidefinite. Partial differentiation of (7) leads to

∂H(s)
∂s1

= γ(s1) − r2 + (s1 − s2) γ′(s1) (8)

∂H(s)
∂si

= γ(si) − γ(si−1) + (si − si+1) γ′(si) (i = 2, . . . , μ− 1) (9)

∂H(s)
∂sμ

= γ(sμ) − γ(sμ−1) + (r1 − sμ) γ′(sμ) (10)

and finally to

∂2H(s)
∂si∂si−1

= −γ′(si−1) (i = 1, . . . , μ− 1) (11)

∂2H(s)
∂si∂si

= 2 γ′(si) + (si − si+1) γ′′(si) (i = 1, . . . , μ) (12)

∂2H(s)
∂si∂si+1

= −γ′(si) (i = 2, . . . , μ) (13)

with sμ+1 := r1. Other second partial derivatives are zero. Thus, the Hessian
matrix ∇2H(s) of the S-metric as given in (7) is a tridiagonal matrix.

Linear Pareto Front. Suppose that γ(s) = ms+ b is a linear function. Then,
γ(·) is strongly monotone decreasing with γ′(s) = m < 0 and γ′′(s) = 0 for all
s ∈ (0, 1). In this case, the Hessian matrix reduces to a tridiagonal matrix with
identical diagonal entries 2m < 0 and identical off-diagonal entries −m > 0.
Recall that a square matrix A is weakly diagonal dominant if |aii| ≥

∑
j �=i |aij |

for all i and that a weakly diagonal dominant matrix is negatively definite if all
diagonal entries are negative. It is easily seen that these conditions are fulfilled.
As a result, we have proven:

Theorem 1. If the Pareto front of a bi-objective minimization problem is linear,
then the S-metric or dominated hypervolume of μ distinct points on the Pareto
front is a strictly concave function. �
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From this result, we can deduce that it is sufficient to move a single point at
a time for reaching the maximal S-metric value in the limit. Next, we try to
generalize this result.

Convex Pareto Front. Suppose that γ(·) is a convex function. Then, γ(·)
is strongly monotone decreasing with γ′(s) < 0 and γ′′(s) > 0 for all s ∈
(0, 1). Again, the Hessian matrix is tridiagonal, but the criterion of diagonal
dominance of the Hessian does not always hold. Actually, the Hessian is not
negatively semidefinite in general. This is easily seen from a counter-example: Let
γ(s) = (1−√

s)2 (T4, α = 2) with γ′(s) = 1− 1/
√
s < 0 and γ′′(s) = 1

2 s
− 3

2 > 0
for s ∈ (0, 1) and reference point R = (1, 1)T . Consider three points on the
Pareto front with s1 = ( 1

10 )2, s2 = (19
20 )2, s3 = (20

21 )2 leading to the Hessian
matrix

∇2H(s) =

⎛⎜⎜⎜⎜⎝
− 1857

4 9 0

9 − 326392
3024819

1
19

0 1
19 − 2461

16000

⎞⎟⎟⎟⎟⎠ ,

whose leading principal minors are Δ1 < 0, Δ2 < 0 and Δ3 > 0 indicating that
the Hessian matrix with this particular choice of points s1, s2, s3 is not negatively
semidefinite. On the other hand, if s = ( 1

100 ,
1
4 ,

4
9 )T , it is easily verified that

Δ1 < 0, Δ2 > 0 and Δ3 < 0 indicating that the Hessian matrix is negatively
definite in this particular case. In summary, the Hessian matrix is indefinite and
we have proven:

Theorem 2. If the Pareto front of a bi-objective minimization problem is con-
vex, then the S-metric or dominated hypervolume of μ distinct points on the
Pareto front is not a concave function in general. �

However, this result does imply neither that there are no convex fronts with
concave S-metric nor that the 1-greedy selection scheme of the SMS-EMOA
gets necessarily stuck on convex fronts.

4.2 Empirical Results of SMS-EMOA on Connected Pareto Fronts

In this section, it is empirically analyzed whether the 1-greedy SMS-EMOA can
robustly obtain the S-metric-optimal distribution of points for the approxima-
tion of piecewise continuous Pareto fronts with different curvature (convex to
concave). It is assumed that the population has already arrived on the Pareto
front and performs only local refinements. Thereby, the local 1-greediness as
defined in section 2.1 of the considered test functions is empirically analyzed.
Recall that a local 1-greedy solvable problem is also 1-greedy solvable. To ac-
complish this, a comprehensive study on the set of simple test functions T1-T5 is
conducted (cf. Sec. 2.2). Due to the results in section 3.3, we restrict our analyses
on small populations.
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Pre-experimental planning: The SMS-EMOA selection operator discards the in-
dividual with the lowest hypervolume contribution, i.e., the amount that gets
lost when the individual is removed since the hypervolume part is disjointly
dominated by that individual. In order to provide a deeper understanding of
this selection, the areas of individuals, which enter the population, are visual-
ized in Fig. 5 for a given approximation using exemplarily the one-dimensional
test function T1 defined in Sec. 2.2. It can be seen that the areas of success are
directly adjacent to the solutions of the current approximation, which would be
discarded instead. They therefore indicate the direction in which this solution
should be shifted. Fig. 5 has been created based on T1, but the same fact holds
for T2-T5. Intuitively, one may assume that the hypervolume contributions of in-
dividuals tend to equal values for all points of an optimally distributed set since,
otherwise, a solution can move closer to the point with a higher contribution.

In order to investigate this conjecture, we compute these hypervolume con-
tributions for the analytically determined optimal distributions of populations
of five individuals, which are shown in Fig. 4 (left). For computing these dis-
tributions, test function T4 is considered with α ∈ {1/3, 1/2, 1, 2, 3} resulting
in two concave fronts for α < 1, convex fronts for α > 1, and a linear front
for α = 1. Furthermore, a reference point R = (1.0, 1.0)T positioned exactly at
the boundaries of the Pareto front is used. Due to the construction of T4, the
distribution is symmetrical to the bisecting line. Thus, the central point of the
population lies exactly on this line. Since the hypervolume of the population of
SMS-EMOA monotonically increases, the population will tend to these optimal
distributions in case of a successful optimization.

The right part of Fig. 4 shows the corresponding hypervolume contributions
sorted with respect to the first objective. The contribution values are symmet-
rical to the point in the middle. It can be observed that the contribution values
tend to grow with increasing α, when α < 3. On the concave Pareto front, the
point in the middle (in the knee region) has the highest contribution and the
contribution values are decreasing when going to the boundaries. On the convex
Pareto front, the values decrease from the boundaries to the middle, so the point
in the knee region has the lowest contribution. On linear fronts, the distribution
obtaining the maximal hypervolume value is the set of equally spaced points as
proved by Beume et al. [BFLI+07]. Only in this case, the contributions of all
points are equal. Therefore, our first intuition was misleading.

To further investigate the effect of single local refinements, a local search SMS-
EMOA, which uses only Gaussian mutations of single individuals of the current
population with small stepsize σ = 0.01 to generate new candidates for selection,
has been implemented. Fig. 5 plots the run of the decision space variables of this
local search (5+1)-SMS-EMOA on T4 with α = 1/3, when a fixed reference point
R′ = (2, 2)T is chosen. As starting positions, the optimal distributions for the
closer reference point R = (1.0, 1.0)T are used. It can be seen that the algorithm
is able to guide the solutions from the old to the new optimal positions. A closer
look on the resulting population yields that the contribution of the points at the
boundaries depends on the choice of the reference point. For the new reference
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Fig. 4. Optimal positions of points on Pareto fronts of different curvature (left) and
the corresponding hypervolume contributions of the points (right). The reference point
R = (1.0, 1.0) is chosen.

Fig. 5. Left: Acceptance of solutions depending on the decision space variable x for
test function T1 and a randomly initialized population. The decision space variables
of this population are indicated by black dots. Right: The run of the sorted decision
space variables, which result in the population, over the generations of the local search
(5 + 1)-SMS-EMOA on the concave test function T4 with α = 1/3, when a fixed
reference point R′ = (2, 2)T is chosen.

point R′, which is situated at a greater distance to the Pareto front, the optimal
points move closer to the boundaries and the contributions near the boundaries
grow1. As a consequence, the other points follow these extremal solutions to
cover the resulting distance. The optimal distribution does emerge.

The following experiment is conducted to empirically support the arising
assumption that even a local search-based (μ+1) SMS-EMOA is able to ap-
proximate a set of optimally distributed Pareto-optimal points for continuous
problems with convex and concave shaped Pareto fronts.

Task: Check the hypothesis that the local search SMS-EMOA is able to approxi-
mate the optimally distributed subset of the Pareto front of the given continuous

1 For R′ the sorted contributions are (0.61, 0.015, 0.016, 0.015, 0.61).
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test problems T1-T5 for fixed population sizes μ ∈ {1, . . . , 6} with an accuracy
limited by the step size σ = 0.01.

Setup: For each test function T1-T5 and population sizes μ ∈ {1, . . . , 6}, ap-
proximations for the S-metric-optimal distribution are globally calculated by
the MATLAB implementation of the (5,10)-CMA-ES [HO01], where no limit on
the function evaluations, but a lower limit on σi (i = 1, . . . , μ) of 10−12 is spec-
ified. The successful application of this algorithm for the calculation of optimal
distributions, even for multi-modal hypervolume landscapes, has already been
shown in section 3.2. For each configuration 10, 000 runs of the local search SMS-
EMOA are performed using different random initializations and the results after
μ · 1, 000 generations are compared to the approximations found by the global
optimization of the CMA-ES. A run is denoted as failed when the hypervolume
of the found approximation is below 99% of the approximated optimal one.

Observations: The local search SMS-EMOA detects the optimal distribution
in all runs for the convex and concave test function T1-T5 except for 10% of
the initializations on the concave-convex Pareto front T5 for μ = 1. When the
initial solution is situated close to the left border (x < 0.1), the local search SMS-
EMOA converges to the left border, which indicates the optimum for the concave
part of the Pareto front, instead of detecting the globally optimal position in the
inflection point.

Discussion: Based on thorough experimentation, it can be assumed that even
a local search SMS-EMOA robustly detects the globally optimal distribution in
cases where the sign of the second derivative with respect to the first objective
does not change. However, due to emerging effects of the local refinements and
their interaction, for higher population sizes, this result seems to hold also for
concave-convex Pareto fronts.

5 Conclusions

In this paper, we have investigated how a 1-greedy EMOA performs on different
kinds of continuous Pareto fronts using both formal proofs and empirical anal-
yses. So far, only an artificial discrete problem existed to show that a 1-greedy
EMOA with hypervolume selection is not able to obtain the set covering the
maximal hypervolume. We have shown that this problem can be converted to
the continuous space while preserving its important properties. Thereby, it has
been demonstrated that the local optimum is not only a singularity, but has an
actual attractor, which makes the problem also hard for μ-greedy EMOA.

Furthermore, it has been shown that even a local-search-based 1-greedy EMOA
successfully detects the globally optimal distribution for most connected continu-
ous Pareto front types. Failures have only been observed for very small population
sizes and we therefore think that the risk of not being 1-greedy decreases with in-
creasing population size. First hints on possible explanations have been provided.
Additionally, we have proven that the hypervolume is 1-greedy on linear Pareto
fronts and formalize the necessary condition of 1-greediness in general.
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In this work, we only consider situations, in which the points are located ex-
actly on the Pareto front, which is not realistic for continuous spaces. We claim
that the risk of getting stuck in a local optimum decreases when the popula-
tion is not close to the Pareto front since there are more improving directions.
Future work shall further investigate the influence of the reference point on the
properties of the distribution of points and the convergence to the distribution
obtaining the optimal S-metric value.
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Abstract. We consider methods for noisy multiobjective optimization, specifi-
cally methods for approximating a true underlying Pareto front when function
evaluations are corrupted by Gaussian measurement noise on the objective func-
tion values. We focus on the scenario of a limited budget of function evalua-
tions (100 and 250), where previously it was found that an iterative optimization
method — ParEGO — based on surrogate modeling of the multiobjective fit-
ness landscape was very effective in the non-noisy case. Our investigation here
measures how ParEGO degrades with increasing noise levels. Meanwhile we
introduce a new method that we propose for limited-budget and noisy scenar-
ios: TOMO, deriving from the single-objective PB1 algorithm, which iteratively
seeks the basins of optima using nonparametric statistical testing over previously
visited points. We find ParEGO tends to outperform TOMO, and both (but es-
pecially ParEGO), are quite robust to noise. TOMO is comparable and perhaps
edges ParEGO in the case of budgets of 100 evaluations with low noise. Both
usually beat our suite of five baseline comparisons.

1 Introduction

Real-world optimization problems often involve solutions that are expensive to evalu-
ate, either financially or in time, thus imposing a budget on the number of evaluations
that can be done during an optimization procedure. Sometimes, the expense is so acute
that only a ‘handful’ of evaluations is feasible, so that using a latin hypercube design,
other experimental designs (DoE approaches), or even a random search may yield better
results than iterative approaches, particularly on multiobjective problems. When thou-
sands or more evaluations may be done, however, we would expect iterative sampling
methods such as evolutionary algorithms (EAs) to generally outperform random search
and/or DoE. But between these two regimes there may lie a third where EAs are inef-
fective, yet there is the potential to outperform static ‘designs’ or random search.

There is evidence of this regime in the work done on EAs combined with surrogate
modeling, and in the statistics/DoE, direct search and machine learning (ML) litera-
ture. Although DoE traditionally concerns itself with static designs, modern techniques
also include iterative approaches that augment an initial design, based on the values ob-
served. The EGO method [19] is such a technique: starting from an initial latin hyper-
cube design, it proceeds point by point, always using all previous points to (fit a model
and) estimate the point of maximum expected improvement. A similar iterative method
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(PB1 [1]) was also proposed for optimization on a very limited evaluation budget, and
seems fairly robust to noise — a very common phenomenon in real-world applications.

Here we investigate optimization given the combined difficulties of a very limited
evaluations budget and the existence of noise. We aim towards an understanding where
MOEAs, random search, DoE and advanced iterative approaches might stand relative
to one another, under these conditions. We continue in Section 2 with an account of
prior and related research. Then in Section 3 we introduce TOMO in some detail, and
briefly outline our set of comparison and baseline methods: ParEGO, DoE, random
search, a simple multiple trajectory hillclimber, what we call a ‘simple Gaussian model
learner’, and PESA-II. Section 4 describes our experimental setup, results are presented
in Section 5, and Section 6 discusses the results and concludes.

2 Background

Expensive optimization problems are now rather common. Optimizing structural form,
guided by the use of accurate simulators, is perhaps the most familiar domain in which
such problems arise (e.g. [16,17]), while they also occur in biochemistry and materials
science [6,12], robotics (e.g. [14]), and instrument configuration (e.g. [10]).

Typically, expensive fitness functions involve computational fluid dynamics (CFD)
or similar simulations or finite element grids. E.g. [16] uses CFD in evaluating candidate
shapes for the combustion chamber of a diesel engine, aiming to minimize Nitrous
Oxide emissions. Often, real-world testing rather than simulation is involved. E.g. an
instrumentation setup problem ([10]) which formed the motivation for ParEGO [22],
concerns the efficiency of instruments used to test and monitor biological samples; [10]
reports that it took several days to perform 180 evaluations, each of which required
manual configuration and testing of an instrument. Similar time may be needed for
evolving locomotion controllers for robot gaits, in which physical setup and testing of a
configuration is preferable to simulation [14]. In [14], they observed the (very common)
complication of noise: some configurations may score well, but be non-robust to slight
changes in the evaluation regime.

The effects of noise and ways to deal with it in evolutionary computation have been
analysed much (e.g. [2,3]). Unfortunately no comfort is yet to be found in this for those
with a very limited evaluations budget. It turns out that effects of noise are highly prob-
lem dependent, while the key questions relate to whether increasing exploration (e.g.
larger population sizes) or increased resampling (multiple evaluations to better charac-
terize individual solutions) are best. Either way, there is little help here for practitioners
on a very limited evaluation budget.

Even ignoring noise, it seems that, particularly in the context of multiobjective op-
timization, the published work relevant to limited evaluation budgets is sparse. One
approach is to attempt to learn a model of the search landscape with neural networks
[26,13], enabling predicted fitnesses to replace the need for evaluation in specific phases
of an overall control algorithm. The simplest approach to ‘guessing’ fitness is actually
fitness inheritance, first proposed for multiobjective optimization in [4] and later tested
by [9]. Meanwhile, the research literature in general is becoming richer in suggestions
of modelling techniques to underpin these guesses and consequently provide guidance
towards the most promising next point to evaluate, and in multiobjective optimization
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specifically, this work (some of which is reviewed in [23]) has included the use of
Bayesian model-building (e.g. [24,33]), support vector regression [27]) and the use of
and the adoption of a Gaussian process model in ParEGO [22], by Emmerich and co-
authors [11], and also in EGOMOP [16].

Such models, which attempt to learn to predict fitness via neural networks, Gaus-
sian processes, or otherwise, are generally known as ‘meta-models’. Detailed reviews
of meta-model based evolutionary algorithms include [30,18]. It seems intuitively right
that, when the evaluation budget is limited, algorithms that incorporate sophisticated
meta-models should be promising. This is borne out in published work so far. It seems
clear that ParEGO’s employment of a metamodel leads to significantly better perfor-
mance in this context than traditional MOEAs, random search, and a few additional alter-
natives (using less sophisticated models) against which it has so far been tested [21,22].

3 Optimization Methods

3.1 The Tau-Oriented Multiobjective Optimizer (TOMO)

TOMO is based closely on the principles and some of the procedures used in the single-
objective optimizer, PB1.

Principles of PB1. This method [1] is based on the assumption that near an optimum of
a function there should be a negative correlation between the (single-objective) fitness
of points and their distance from the optimum. This leads to a basic procedure for
estimating the location of an optimum: given a cloud of previously evaluated points,
search for a ‘test point’ where the correlation reaches its maximum absolute value. PB1
iterates this, as illustrated in Fig. 1a. NB: throughout the paper fitnesses are actually
costs, i.e. we assume minimization.

On non-convex problems as well as functions with plateaus or ridges, the correlation
between fitness and distance from the optimum may only hold locally. To account for
this, PB1 attempts to identify a subset of the points previously evaluated, forming a
convex region in decision space, for which the correlation is observed to occur (see
below for details). It is this subset of points which is subsequently used to estimate a new
test point. Correlations in PB1 are measured using Kendall’s Tau (τ ), a nonparametric
method based on the ranks of the distances and fitnesses.

Empirical tests of PB1 [1] indicate that it can successfully optimize low-dimensional
functions in a small number of steps, including multimodal, ridge and plateau func-
tions, and it is relatively robust to noise. On the one hand, PB1’s ability to aggressively
search a space can be attributed to the fact that it exploits information on the topology
of the search landscape gleaned from all previous points. In this regard, PB1 works
similarly to EGO (see ParEGO, below). On the other hand, its robustness to noise can
be attributed to the fact that the test it uses to ‘reason’ about the topology is quite weak:
a nonparametric correlation value is not disturbed much when noise is added to the
points. See Fig. 1 to see how this contrasts with EGO.

Adapting PB1 to the Multiobjective Case. There are two main hurdles to making
an effective multiobjective algorithm based on PB1 and its use of Kendall’s correlation
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Algorithm 1. High-level Algorithm Pseudocode for TOMO and ParEGO
input: a multiobjective optimization problem with k objectives
require: a sequence of scalarizing weight vectors 〈λ〉
distribute initial E points in a latin hypercube design; evaluate each one
while evaluation limit not reached do

draw the next scalarizing weight vector and use it to scalarize all previously evaluated
points

construct a model of the scalarized search landscape based on a subset of (or all) previous
points

search the model iteratively to find a single new candidate point; evaluate this point on the
real multiobjective function

end while
output: all visited solutions

measure to orient search. The first concerns how to convert the basic principle of us-
ing fitness-distance correlations to work in the multiobjective case. This, we achieve
by taking a simple scalarizing approach, very similar to that used in ParEGO, where at
each step of the algorithm the next weight vector from a sequence is used to scalarize
the fitnesses of all points for that step (see Algorithm 1). The second hurdle derives
from the fact that although PB1 can cope with some multimodality it is not designed
to find multiple optima. Our initial testing of PB1 showed that it strongly favours one
optimum in a multimodal function, and has limited ability to escape local optima. To
overcome this, TOMO was equipped with a parameter-space niching method and inter-
mittent generation of explorative (random) search points.

Latin hypercube initialization. The initial solutions are generated in a space-filling de-
sign using a latin hypercube routine following a description in [31]. The number of
initial solutions is set to E = 11d − 1, where d is the parameter space dimension of
the function to be optimized, as suggested in [19]. This procedure in TOMO is adopted
directly from ParEGO.

The scalarizing weight vectors. TOMO begins by normalizing the k cost functions with
respect to the known (or estimated) limits of the cost space, so that each cost function
lies in the range [0, 1]. Then, at each iteration of the algorithm, a weight vector λ is
drawn from the set of evenly distributed vectors defined by:

Λ =
{
λ = (λ1, λ2, . . . , λk) |

∑k
j=1λj = 1 ∧ ∀j, λj = l/s, l ∈ {0, . . . , s}

}
, (1)

with |Λ| =
(
s+k−1

k−1

)
(so that the choice of the parameter s determines how many vectors

there are in total). The scalar cost of a solution is then computed using the augmented
Tchebycheff function (see [25] pp. 100–102) :

fλ(x) =
k

max
j=1

(λj .fj(x)) + ρ

k∑
j=1

λj .fj(x), (2)

where ρ is a small positive value which we set to 0.05. The weight vectors are arranged
in a sequence using a Gray coding. To select the ‘next’ vector, an index into this se-
quence is incremented mod |Λ| so that the sequence wraps around.
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Fig. 1. Schematic illustrating the principles of (a) TOMO and (b) ParEGO on a 1-parameter 1-
objective cost function. The upper and lower plots indicate different noisy measurements of the
same points. (a) TOMO identifies a region (dashed rectangle) where a statistically significant
negative correlation seems to occur between fitness difference and parameter-space distance from
a ‘test’ point (the vertical line). This region and the test point are little changed as a result of
noise (compare top and bottom). (b) ParEGO fits a model which interpolates the set of previous
points. The model may move significantly under different noisy instances of the same set of
measurements (compare top and bottom). The minimum of the (mean) model is shown by the
vertical line, however ParEGO does not necessarily move to this minimum, but rather to a point of
maximum expected improvement, which accounts also for the variance in the model (not shown).

Using niching and random explorative moves. In the original PB1, each main iteration
begins by finding a subset of the previously evaluated points possessing a high τ value.
This is done by starting with the set of all the points and iteratively removing points
on the exterior of the convex hull in decision space, one by one. More precisely, the
exterior point furthest from the centroid of the current point cloud is removed in each
of these mini-steps. For each subset visited along the way, τ is calculated, using the
current centroid as the point to compute τ from, and these values are stored. The subset
with the smallest number of points that has a statistically significant τ is then selected
for subsequent use. This ensures that τ is calculated over a region from within which
no points have been removed, and over which the required fitness-distance correlation
holds. To generate a new point for real evaluation, PB1 then searches over a region
defined by this subset (specifically, the union of Voronoi regions pertaining to these
points) for a point yielding a strong fitness-distance correlation.

We replace PB1’s method of obtaining a subset by an approach less likely to converge
on a local optimum. Instead of using the centroid of the point cloud during this whittling
down process, we use either (i) tournament selection, based on parameter-space niched
fitness [7]; or (ii) a randomly generated point. An exploitation (i) step is used with
probability ν and a random explore (ii) step with probability 1 − ν. We tuned this
on a single-objective test function with two local optima (see Fig. 2), which easily
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Fig. 2. A single objective two-peak noisy function used to test and tune TOMO. Twenty-one
initial points are shown, followed by the nineteen next points TOMO visits. The true objective
value of points are indicated by the surface.

misleads the original PB1. The parameters we found to give both rapid convergence
and the ability to escape the local optimum were: tournament size 10, Niche radius set
according to [7] assuming 10 peaks, and rate of exploitation ν = 0.8. The remaining
procedures and parameters of TOMO follow the detailed specification of PB1 in [1].

3.2 ParEGO

The ParEGO (Pareto EGO) algorithm used here is identical to that described in [22],
which is essentially a multiobjective translation of EGO [19], making use of scalariz-
ing weight vectors at each step. The high-level pseudocode is given in Algorithm 1.
ParEGO works by fitting a Gaussian process stochastic model called DACE [32], to the
previously evaluated points, and using this to estimate interesting new points to visit
subsequently. The mean of the DACE model interpolates the points, which might make
it sensitive to noise, as shown in Fig. 1b. However, because ParEGO uses expected
improvement, defined as

E[I(x)] ≡ E{max(y∗ − Yp(x), 0)},
where y∗ is the best cost sampled so far, and Yp(x) is a Gaussian distributed random
variable representing the model through the point x, — a calculation that is based on
the variance of the model as well as its expected value, this may counteract the problem
of interpolating evaluated points to some degree.

3.3 Latin Hypercube and Random Search

As our first two baseline algorithms for comparison, we consider (i) random search (RS)
and (ii) the latin hypercube [31] (LH) method used, for initialization, in both TOMO
and ParEGO. In the case of random search, a single ‘run’ corresponds to generating
and evaluating numevals random points in the parameter space, where numevals is the
maximum number of fitness evaluations allowed in the experiment (i.e. either 100 or
250). Each solution is independently generated in the standard fashion, by choosing a
uniform random value from the range of each parameter. In the case of LH, a single
run simply applies one iteration of the method of [31] to generate either 100 or 250
solutions.
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3.4 Simple Multiple Trajectory Hillclimber

We also considered baselines that allow us to test alternative yet simple strategies.
The first of these attempts a multiobjective search by spreading the evaluation bud-
get (almost) equally among k + 1 hillclimbers, where k is the number of objectives.
Each objective is assigned to one hillclimber, whose fitness is that objective alone; the
k + 1th hillclimber uses an equally weighted sum of objectives as its fitness function.
A hillclimber maintains a ‘current’ solution c initialized uniformly at random, and then
iterates the following: generate mutant m by copying c and then choosing a random
parameter and applying a Gaussian perturbation to it with standard deviation s. If m is
no worse than c, then c becomes m.

When the overall evaluations budget is n, the k hillclimbers each have a budget of
n/(k + 1), maintaining whole numbers by allowing the sum-of-objectives hillclimber
to use the surfeit after division by k+ 1. The result of SMH is then taken to be the non-
dominated set of all solutions visited. We test three parameterizations of SMH, namely
with s = 0.1, 0.3, 1.0.

3.5 Simple Gaussian Model Learner

Our second alternative yet simple baseline is best described as a type of estimation
of distribution algorithm for real-valued parameters, although it can equally well be de-
scribed as a standard type of evolution strategy with multi-parent uniform crossover and
a Pareto-oriented truncation selection scheme. Its inspiration comes originally from the
considerably growing body of work that finds combinations of learning and exploration
to be highly valuable in accelerating progress per evaluation, even when the learning
mechanism or model is very simple.

The simple Gaussian model learner (SGM) operates as follows, with a population
size P and a standard deviation s. The key part of the algorithm is the way a new
point is generated from the current nondominated set of points visited, S. Given S, we
generate a new point by doing the following for each parameter j of the new point:
choose a member c of S uniformly at random; let parameter j of c be c[j]; let parameter
j of the new point be drawn from a Gaussian distribution with mean c[j] and standard
deviation s. After initializing the population uniformly at random, we evaluate these
P points and find their Pareto Set S; then we continue as follows until our evaluation
budget is used up. (i) generate and evaluate a new population of P points using the
procedure above; (ii) update the Pareto Set S, and return to (i).

So, in SGM, a simple probabilistic model is learned, based on the current approxi-
mation to the Pareto Front. Considering only the PF points, each parameter is modelled
independently as an equally weighted mixture of Gaussians each with standard devia-
tion s, with one Gaussian per point in the current Pareto Set approximation, centred on
that point’s value for the parameter in question. In our experiments we set P = 10 and
use s = 0.1, 0.3, 1.0 as for SMH.

3.6 PESA-II

The Pareto Envelope based Selection Algorithm (PESA-II) [5] is one of the several
multiobjective evolutionary algorithms that emerged in the resurgence of interest in this
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field in the late 90s. PESA-II attempts to find good approximations to the Pareto front
by maintaining a datastructure that keeps track of the density of solutions across its
current Pareto front approximation. The objective space is divided into ‘hyperboxes’,
and selection of points for further exploration is guided by the relative crowding of
hyperboxes, preferring to explore (i.e. use as parents for crossover or mutation) areas
that currently have low density. We use it here as a convenient example of one of the
several MOEAs that, in noise-free unlimited-evaluations budget scenarios at least, is
quite proficient. [5] explains PESA-II in detail. We set the key parameters of PESA-II
in our experiments as follows: population size IP = 10; archive size EP = 100, 250;
number of hyperboxes=10k, where k is number of objectives; binary representation
of parameters (30 bits per parameter); 1/L bit-flip mutation rate, where L is bitstring
length; uniform crossover applied at a rate of 0.2.

4 Testing Regime and Procedures

Our testing regime and procedures are informed by both real-world problems/
applications of interest to us, and what is available and best practice in the MOEA lit-
erature. The numbers of function evaluations available, the number of real-valued vari-
ables that we consider (less than 9) and the noise levels are all typical of real problems
in mass-spectrometer optimization (e.g. [28]) as well as the optimization of chemical
mixtures [6,12] and process optimization problems such as the one used in [1].

Test Functions. Originally from four sources, our test functions are those used and
described fully in [22]1. They range in dimension from 2 to 8 decision variables, and
are all 2- or 3-objective problems. Note that the DTLZa functions we use are derived
from the popular DTLZ ones, but we have reduced the number of parameters commen-
surate with the limited number of evaluations we are using, and also further reduced the
difficulty of DTLZ1 by lessening the ruggedness of the function. (This lessening of the
dimension/difficulty of the functions was done entirely independently and before any
optimization was begun.)

Noise Model. We apply additive Gaussian noise to the objective function values be-
fore passing the values to the optimization algorithm. Repeated evaluation of the same
point would therefore yield different results. We test three noise levels, 0%, 10% and
30%. 10% noise, for example, indicates that the objective value is perturbed by a Gaus-
sian with mean zero and standard deviation of 10% of the cost function’s range. When
the output of the optimization algorithm is measured and compared, we use the true
underlying (noiseless) objective values. This makes sense in the case that the noise rep-
resents just (unbiased) measurement error, but that underlying differences are important
or, equally, the case that the noise represents natural variation in the measured objective,
but we are interested in the expected value of this, e.g. the average yield that a chemical
process would give over the long term, given some setting (see [3], section 3.1 Type C
uncertainty).

1 We consider here 8 of the 9, having dropped VLMOP2, due only to space limitations.
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KNO1 [22] Features: Two decision variables; two objectives; Fifteen locally optimal
Pareto fronts.

OKA1 [29] Features: Two decision variables; two objectives; Pareto optima lie on curve;
density of solutions low at PF.

OKA2 [29] Features: Three decision variables; two objectives; Pareto optima lie on
spiral-shaped curve; density of solutions very low at PF.

VLMOP3 [34] Features: Two decision variables; three objectives; disconnected Pareto
optimal set and PF is a curve ‘following a convoluted path through objective space’.

DTLZ1a, adapted from [8] Features: Six decision variables; two objectives; local op-
tima on the way to the PF.

DTLZ2a and DTLZ4a, adapted from [8] Features: Eight decision variables; three ob-
jectives; DTLZ4a biases the density distribution of solutions toward the f3 − f1 and
f2 − f1 planes.

DTLZ7a, adapted from [8] Features: Eight decision variables, three objectives; four dis-
connected regions in the Pareto front (in objective space).

Fig. 3. Summary of the eight test functions

Performance Assessment. Performance assessment of multiobjective optimizers is
well known to be a nontrivial task [20,35] owing largely to the fact that the result of an
optimization is a set of points, defining an approximation to a Pareto surface, and pairs
of such surfaces (e.g. from the results of different algorithms) are commonly incom-
parable. Following the analysis in [20], we use Jaszkiewicz and Hansen’s R metrics,
which tend to dominate alternatives in terms of their profile of desirable properties.
They tend to avoid being biased in favour of a particular property of a Pareto set ap-
proximation, (such as cardinality or uniformity), they do not rely on knowledge of the
true Pareto front, and they are relatively scalable to many-objectives. They require us-
ing, however, a (relatively arbitrary) reference set of nondominated points for any given
problem. Given the reference set and a set of points S output from an optimization run,
an R metric provides a single scalar value that estimates the ‘utility’ of S. We mainly
use R3, but resort to R2 in two cases where the R3 measure led to excessive standard
deviations, arising from vagaries of the relationship between certain result sets and the
chosen reference sets.

5 Results

We compared ParEGO, TOMO, SGM, SMH, PESA-II, LH and RS, with budgets of
100 and 250 evaluations. All parameters of the algorithms have been given in Section 3,
but recall SGM and SMH are each tried with three values of their standard deviation
parameter: 0.1, 0.3 and 1.0; the other algorithms have no free parameters.

For every (algorithm, test-function, max-evals, noise-level) tuple, 21 independent
runs were done. The use of an odd number of runs allows for plots of median attainment
surfaces, although space precludes that here. Results tables show the mean and standard
deviation of theR3 metric values for each tuple. Our reference sets2 andR-metric code
are available from the first author’s web space, so the tabulated values allow others to
directly compare their algorithms with those tested here.

2 Reference sets were generated using PESA-II runs of 50,000 evaluations.
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Table 1. Results for function DTLZ1a, DTLZ2a, DTLZ4a and DTLZ7a - each entry provides
mean and standard deviation of Hansen’s R3 metric (R2 for DTLZ1a) based on 21 runs per
algorithm

100 evals 250 evals 100 evals 250 evals 100 evals 250 evals
10% noise 10% noise 30% noise 30% noise

Function DTLZ1a

RS 0.033 (0.01) 0.024 (0.01) 0.033 (0.01) 0.024 (0.01) 0.033 (0.01) 0.024 (0.01)
LH 0.030 (0.01) 0.024 (0.01) 0.030 (0.01) 0.024 (0.01) 0.030 (0.01) 0.024 (0.01)
SMH-0.1 0.013 (0.01) 0.006 (0.00) 0.035 (0.02) 0.021 (0.01) 0.050 (0.02) 0.040 (0.02)
SGM-0.1 0.008 (0.00) 0.003 (0.00) 0.036 (0.02) 0.024 (0.02) 0.071 (0.05) 0.063 (0.04)
PESA2 0.010 (0.01) 0.000 (0.00) 0.050 (0.02) 0.045 (0.02) 0.112 (0.05) 0.101 (0.06)
ParEGO 0.001 (0.00) 0.004 (0.00) 0.002 (0.01) 0.012 (0.05) 0.006 (0.00) 0.006 (0.00)
TOMO 0.011 (0.00) 0.001 (0.00) 0.022 (0.01) 0.012 (0.01) 0.026 (0.01) 0.017 (0.01)

ParEGO vs TOMO 100/0, 100/30, 250/30 ParEGO wins 99.95; 250/0 TOMO wins 99.95
SGM-0.1 vs SMH-0.1 100/0, 250/0 SGM wins 97.5; 100/30, 250/30 SMH wins 99.75

Function DTLZ2a
RS 0.367 (0.21) 0.157 (0.33) 0.367 (0.21) 0.157 (0.33) 0.367 (0.21) 0.157 (0.33)
LH 0.232 (0.01) 0.227 (0.11) 0.232 (0.01) 0.227 (0.11) 0.232 (0.01) 0.227 (0.11)
SMH-0.3 0.305 (0.06) 0.254 (0.04) 0.297 (0.07) 0.294 (0.20) 0.295 (0.07) 0.235 (0.10)
SGM-0.3 0.317 (0.63) 0.057 (0.10) 0.282 (0.09) 0.298 (0.38) 0.443 (0.31) 0.309 (0.05)
PESA2 0.547 (0.53) 0.509 (0.68) 0.535 (0.52) 0.468 (0.67) 0.683 (0.36) 0.646 (0.40)
ParEGO 0.511 (1.14) -0.032 (0.02) 0.317 (0.63) 0.057 (0.10) 0.290 (0.26) 0.195 (0.10)
TOMO 0.182 (0.46) -0.137 (1.26) 0.141 (0.73) 0.289 (0.62) 0.352 (0.32) 0.136 (0.43)

ParEGO vs TOMO 250/10 ParEGO wins 90
SGM vs SMH 100/0, 250/0 SGM wins 99.95 ; 100/30, 250/30 SMH wins 99.95

Function DTLZ4a

RS 0.524 (0.08) 0.574 (0.50) 0.524 (0.08) 0.574 (0.50) 0.524 (0.08) 0.574 (0.50)
LH 0.534 (0.11) 0.438 (0.12) 0.534 (0.11) 0.438 (0.12) 0.534 (0.11) 0.438 (0.12)
SMH-0.3 0.264 (0.06) 0.212 (0.04) 0.257 (0.04) 0.221 (0.03) 0.265 (0.04) 0.245 (0.05)
SGM-0.3 0.259 (0.07) 0.201 (0.02) 0.235 (0.04) 0.211 (0.03) 0.311 (0.09) 0.255 (0.05)
PESA2 0.659 (0.37) 0.549 (0.10) 0.582 (0.10) 0.564 (0.10) 0.598 (0.11) 0.594 (0.04)
ParEGO 0.508 (0.20) 0.148 (0.13) 0.557 (0.05) 0.223 (0.11) 0.445 (0.13) 0.201 (0.28)
TOMO 0.616 (0.44) 0.423 (0.25) 0.529 (0.10) 0.529 (0.07) 0.677 (0.43) 0.428 (0.22)

ParEGO vs TOMO 100/30, 250/0, 250/10, 250/30 ParEGO wins 99.5
SGM-0.3 vs SMH-0.3 100/10 SGM wins 95 ; 100/30 SMH wins 97.5

Function DTLZ7a

RS 2.480 (8.83) 1.940 (9.20) 2.480 (8.83) 1.940 (9.20) 2.480 (8.83) 1.940 (9.20)
LH 0.58 (0.05) 0.489 (0.17) 0.58 (0.05) 0.489 (0.17) 0.58 (0.05) 0.489 (0.17)
SMH-1.0 0.553 (0.09) 0.490 (0.05) 0.613 (0.13) 0.510 (0.19) 0.616 (0.08) 0.508 (0.10)
SGM-1.0 0.538 (0.06) 0.545 (1.12) 0.622 (0.07) 0.580 (0.07) 0.656 (0.08) 0.633 (0.08)
PESA2 0.517 (0.16) 0.212 (0.63) 0.650 (0.32) 0.570 (0.22) 0.681 (0.09) 0.332 (0.19)
ParEGO 0.573 (0.04) 0.232 (0.07) 0.535 (0.13) 0.307 (0.42) 0.561 (0.05) 0.403 (0.15)
TOMO 0.501 (0.11) -0.442 (2.71) 0.497 (0.27) 0.136 (0.53) 0.451 (0.87) 0.323 (1.23)

ParEGO vs TOMO 100/0 TOMO wins 99
SGM-1.0 vs SMH-1.0 100/30, 250/10, 250/30 SMH wins 90

We compare ParEGO and TOMO directly, using t-tests (assuming unequal variances)
on the R values. Similarly, we compare a selected pair of parameter variants of SGM
and SHM per test function (we choose those that performed best with noise). Further
statistical comparisons (e.g. ParEGO vs LH) without generating further independent
sets of results would amount to multiple testing and be statistically invalid (we could
additionally compare LH and RS, but we omit that for reasons of space and salience).
Instead, we calculate ‘naive’ rank orderings of the algorithms for each (test-function,
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Table 2. Results for functions VLMOP3, KNO1, OKA1 and OKA2 - each table entry provides
mean and standard deviation of Hansen’s R3 metric based on 21 runs per algorithm

100 evals 250 evals 100 evals 250 evals 100 evals 250 evals
10% noise 10% noise 30% noise 30% noise

Function VLMOP3

RS 0.290 (0.15) 0.132 (0.07) 0.290 (0.15) 0.132 (0.07) 0.290 (0.15) 0.132 (0.07)
LH 0.213 (0.137) 0.146 (0.08) 0.213 (0.137) 0.146 (0.08) 0.213 (0.137) 0.146 (0.08)
SMH-0.3 0.269 (0.15) 0.133 (0.08) 0.238 (0.18) 0.173 (0.12) 0.271 (0.17) 0.158 (0.07)
SGM-0.1 0.095 (0.08) 0.042 (0.05) 0.157 (0.11) 0.101 (0.24) 0.277 (0.22) 0.164 (0.16)
PESA2 0.169 (0.22) 0.086 (0.17) 0.260 (0.24) 0.156 (0.22) 0.256 (0.25) 0.181 (0.22)
ParEGO 0.019 (0.01) 0.013 (0.00) 0.058 (0.05) 0.029 (0.01) 0.080 (0.08) 0.033 (0.01)
TOMO 0.024 (0.01) 0.026 (0.03) 0.031 (0.01) 0.017 (0.00) 0.078 (0.09) 0.034 (0.05)

ParEGO vs TOMO 100/0, 250/0 ParEGO wins 90; 100/10, 250/10 TOMO wins 99
SGM-0.1 vs SMH-0.3 100/0, 100/10 250/0 SGM wins 90

Function KNO1

RS 0.012 (0.08) -0.126 (0.07) 0.012 (0.08) -0.126 (0.07) 0.012 (0.08) -0.126 (0.07)
LH -0.033 (0.1) -0.142 (0.08) -0.033 (0.01) -0.142 (0.08) -0.033 (0.1) -0.142 (0.08)
SMH-0.3 -0.107 (0.10) -0.282 (0.08) -0.130 (0.09) -0.258 (0.09) -0.117 (0.11) -0.268 (0.09)
SGM-0.3 -0.106 (0.13) -0.224 (0.09) -0.001 (0.14) -0.096 (0.12) 0.189 (0.18) 0.107 (0.16)
PESA2 0.112 (0.14) 0.085 (0.16) 0.177 (0.13) 0.138 (0.15) 0.299 (0.11) 0.272 (0.14)
ParEGO -0.049 (0.10) -0.137 (0.11) -0.128 (0.11) -0.290 (0.07) -0.120 (0.11) -0.265 (0.07)
TOMO -0.127 (0.12) -0.191 (0.14) -0.129 (0.11) -0.216 (0.12) -0.074 (0.10) -0.196 (0.12)

ParEGO vs TOMO 100/0, 250/0 TOMO wins 90 ; 100/30, 250/10, 250/30 ParEGO wins 90
SGM-0.3 vs SMH-0.3 100/10, 100/30, 250/0, 250/10, 250/30 SMH wins 97.5

Function OKA1

RS 0.376 (0.04) 0.310 (0.04) 0.376 (0.04) 0.310 (0.04) 0.376 (0.04) 0.310 (0.04)
LH 0.380 (0.03) 0.302 (0.38) 0.380 (0.02) 0.302 (0.38) 0.380 (0.03) 0.302 (0.38)
SMH-0.3 0.339 (0.04) 0.289 (0.03) 0.348 (0.06) 0.302 (0.05) 0.380 (0.06) 0.301 (0.06)
SGM-1.0 0.351 (0.03) 0.321 (0.02) 0.396 (0.05) 0.375 (0.05) 0.440 (0.06) 0.437 (0.05)
PESA2 0.354 (0.07) 0.266 (0.05) 0.447 (0.07) 0.417 (0.08) 0.562 (0.08) 0.540 (0.08)
ParEGO 0.071 (0.03) 0.071 (0.03) 0.211 (0.09) 0.086 (0.03) 0.302 (0.04) 0.195 (0.04)
TOMO 0.273 (0.05) 0.219 (0.06) 0.303 (0.04) 0.198 (0.06) 0.330 (0.12) 0.296 (0.06)

ParEGO vs TOMO 100/0, 100/10, 250/0, 250/10, 250/30 ParEGO wins 99.95
SGM-1.0 vs SMH-0.3 100/10, 100/30, 250/0, 250/10, 250/30 SMH wins 99.5

Function OKA2

RS 0.458 (0.03) 0.410 (0.03) 0.458 (0.03) 0.410 (0.03) 0.458 (0.03) 0.410 (0.03)
LH 0.440 (0.04) 0.411 (0.03) 0.440 (0.04) 0.411 (0.03) 0.440 (0.04) 0.411 (0.03)
SMH-1.0 0.303 (0.04) 0.241 (0.04) 0.304 (0.06) 0.248 (0.06) 0.316 (0.05) 0.263 (0.06)
SGM-1.0 0.271 (0.05) 0.237 (0.05) 0.335 (0.08) 0.285 (0.07) 0.410 (0.08) 0.382 (0.05)
PESA2 0.364 (0.09) 0.251 (0.10) 0.488 (0.06) 0.456 (0.07) 0.590 (0.13) 0.555 (0.14)
ParEGO 0.146 (0.05) 0.058 (0.04) 0.245 (0.06) 0.070 (0.04) 0.330 (0.07) 0.251 (0.06)
TOMO 0.354 (0.07) 0.307 (0.07) 0.414 (0.04) 0.331 (0.03) 0.444 (0.04) 0.391 (0.04)

ParEGO vs TOMO 100/0, 100/10, 250/0, 250/10, 250/30 ParEGO wins 99.95
SGM-1.0 vs SMH-1.0 100/0, SGM wins 97.5 ; 100/10, 100/30, 250/10, 250/30 SMH wins 90

max-evals, noise-level) triple, based only on mean R values, and we build a summary
table of mean ranks for each algorithm in different scenarios. This leads to a series of
overall indicative observations, and which we feel provide valuable insight and pointers
to further work.

Tables 1 and 2 present summary results on each of the test functions. In each case,
Random Search (RS) results for the noise cases are shown for convenience, though
they are necessarily identical to the non-noise cases. To save space, only the ‘best’ of the
three variants each of SGM and SMH are shown in the tables. To support
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Table 3. A broad summary of the effects of number of evaluations and of levels of noise on an
algorithm’s mean naive rank over the test functions studied

mean rank RS LH SGM SMH PESA2 ParEGO TOMO

overall 5.4 4.6 3.8 3.4 6.0 2.1 2.6
100 evals / no noise 6.1 5.3 2.4 3.5 5.4 2.6 2.8
100 evals / 10% noise 5.5 4.1 3.4 3.4 6.7 2.8 2.1
100 evals / 30% noise 5.4 3.6 4.9 2.6 6.6 1.8 3.1
250 evals / no noise 6.3 6.0 3.0 3.5 4.5 2.3 2.5
250 evals / 10% noise 4.6 4.5 3.9 3.9 6.6 1.5 2.9
250 evals / 30% noise 4.6 4.1 5.3 3.5 6.4 1.6 2.4

understanding the tables, we interpret parts of Table 1 as follows: On DTLZ1a, we
see that SGM, with standard deviation 0.1, achieved a meanR2 value of 0.063, (withR
values, lower is always better) with a standard deviation of 0.04, in the 250-evaluations
limit case with 30% noise. When we compare ParEGO and TOMO on DTLZ1a, we
find the following scenarios in which ParEGO outperformed TOMO with statistical
confidence at least 90%: 100 evals at no noise and 30% noise, and 250 evaluations
at 30% noise - among these cases, the lowest level of confidence was 99.95%. Mean-
while TOMO outperforms ParEGO in the 250-evaluations no-noise case, with confi-
dence 99.95%; in the cases not mentioned (100/10, 250/10) the comparisons were not
significant with ≥ 90% confidence.

Table 3 provides a broad summary of the observations that we can make on the
basis of the naive rank orderings of the algorithms for each (test-function, max-evals,
noise-level) scenario. Naive rank orderings are based only on meanR value; in general,
they either have no statistical significance, or have significance but at a low confidence
level. For a given scenario (e.g. 100 evals, no noise) we rank algorithms from 1 to 7,
considering, for any particular problem, only the best of the three SGM variants, and
the best of the three SMH variants for that problem. Hence, for example, in the 250-
evaluations 30%-noise case on problem OKA1 (table 2), ParEGO is best with rank 1,
TOMO has rank 2, SMH has rank 3, and so on, until PESA-II has rank 7. The table
indicates the mean ranks for each scenario over the eight test problems.

Running Times. It is worth noting that both TOMO and ParEGO do consume sig-
nificant resources to compute each solution to evaluate next, and that this time grows
with each iteration. On a single-core Pentium III 2.8GHz desktop machine, they require
of the order of 10s per evaluation at the end of a 250 evaluation run. Although lim-
ited budgets tend to arise when the time to evaluate a solution is considerably larger
than this, one can certainly envisage some budget-constrained scenarios where such a
lag would be unacceptable. For this reason, the performance of the baselines, which
all have negligible runtimes in comparison to TOMO and ParEGO, are of more than
incidental interest.

6 Concluding Discussion

As we suggested towards the end of Section 2, it is not surprising that a metamodel-
based technique should do well in the limited-evaluations regime. However, the



48 J. Knowles, D. Corne, and A. Reynolds

question of performance in the presence of noise is rather less clear a priori. Metamod-
els repeatedly rely on the positions and fitnesses of samples previously visited (each
evaluated only once) in order to build a picture that guides choice of the next sample
point. Noise can be expected to mislead this model, and with few evaluations available
there is little opportunity for recovery from this. ParEGO / EGO is no exception to this,
as it does not explicitly account for uncertainty in evaluated points [15], indeed using
a model that interpolates between these points and a sampling method which ensures
they will never be re-evaluated.

As it turns out, however, ParEGO stands up to noise much more successfully than
the other techniques tested; from the indications in Table 3, especially so when given at
least the luxury of 250 evaluations, and especially at the higher noise levels. In contrast,
SGM and PESA-II get very confused by noise. Both may have done a little better using a
larger population size (and hence fewer generations) in the noise cases, but it seems that
the strategies inherent in both of these techniques place undue trust in the accuracy of
points visited so far. TOMO is clearly the second-best technique tested overall, regularly
outperformed by ParEGO, although TOMO seems to have the edge over ParEGO at 100
evaluations and 10% noise. This suggests various ways forward for coping with such
severely-limited budgets, such as tweaking the EGO model to account for noisy eval-
uations (as in [15] for single-objective optimization), or basing sampling decisions on
evidence obtained from both ParEGO’s and TOMO’s strategies, weighting them appro-
priately given the number of evaluations so far. Meanwhile, many further parametric and
design variants of TOMO can be explored, perhaps most pressingly an evaluation of the
many ways scalarization could be done more adaptively, e.g. using goal programming.

As for SGM and SMH, herein they have fulfilled a need to provide further alternative
strategies, continuing to investigate whether the sophistication inherent in ParEGO (and
TOMO) can be undermined by a simpler (and possibly faster) alternative. As it turns
out, it seems that the SGM approach appears quite useful when noise is absent, at least
in the 100-evaluations regime. Parameter dependence limits this observation, however
it could be suggested that an adaptive version of SGM may extend its niche of good
performance toward 250 evaluations.

Finally, we note that PESA-II’s performance seems generally awful; this adds weight
to findings elsewhere (e.g. with NSGA-II in [22]) that standard modern MOEAs, de-
signed with perhaps ’0,000s or ’000,000s of evaluations in mind, are simply inapplica-
ble when much more limited evaluation numbers are available. However, it must be said
that PESA-II’s parameterization was not optimized here and the use of a binary repre-
sentation is almost certainly unfair. We mention in passing that a fitness-inheritance
based version of PESA-II was tested in preliminary work, and found to work fine when
many ’000s of evaluations were available, however the beneficial effect of fitness inher-
itance simply failed to be present below ∼ 1,000 evaluations.
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Abstract. In this article we present a methodological framework
entitled ‘Analysis of Uncertainty and Robustness in Evolutionary Op-
timization’ or AUREO for short. This methodology was developed as
a diagnosis tool to analyze the characteristics of the decision-making
problems to be solved with Multi-Objective Evolutionary Algorithms
(MOEA) in order to: 1) determine the mathematical program that rep-
resents best the current problem in terms of the available information,
and 2) to help the design or adaptation of the MOEA meant to solve the
mathematical program. Regarding the first point, the different versions
of decision-making problems in the presence of uncertainty are reduced
to a few classes, while for the second point possible configurations of
MOEA are suggested in terms of the type of uncertainty and the theory
used to represent it. Finally, the AUREO has been introduced and tested
successfully in different applications in [1].

1 Introduction

In this article we are concerned about the use Multiple Objective Evolutionary
Algorithms (MOEA)1 in Multiple-Criterion Decision-Making (MCDM) under
uncertainty.

By MCDM we mean the process of selecting a final alternative from a group
of more than one solving actions to a problematic (e.g. choice, sorting, ranking)
within a common quality framework made up of various figures of merit called
criteria, established by an entity called decision maker (DM). No matter what the
problematic is, a rational DM is expected to maximize its level of satisfaction by
choosing the alternative that scores best in terms of the criteria. Mathematically,
we model it as a program of the form2:

x∗ = arg maxx

(
F (x) = (f1(x), f2(x), . . . , fk(x))t

)
s.t.: x ∈ Ω

Ω = {x ∈ X : G(x) ≤ 0 , H(x) = 0}
(1)

1 Acronyms for singular and plural forms are spelled the same hereafter.
2 With no loss of generality, optimality is expressed in terms of maximization hereafter.
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where F : X → Y is a vector of criteria fi : Rn → R that map a vector of
n decision variables x = (x1, x2, . . . , xn)t (called also decision vector or simply
alternative) from the decision space X, into a k-dimensional objective vector
y = (y1, y2, . . . , yk)t in the objective space Y ⊆ Rk, k ∈ N. Additionally, the
feasible space Ω is defined by two vectors G(x) and H(x) of inequality and
equality constraints respectively.

Such a kind of problems are characterized by some conflict amongst the crite-
ria, so that the set of alternatives cannot be arranged as a total order regarding
their quality. Consequently, eq. 1 is not satisfied by a unique alternative but a
subset of them called efficient or non-dominated. Typically the relation used for
classifying the alternatives is the Pareto dominance, viz.:

Definition 1 (Pareto Dominance). x1 dominates x2, denoted x1 � x2 , iff
fi(x1) ≥ fi(x2) ∧ F (x1) �= F (x2); i ∈ {1, 2, . . . , k}. If there is no solution
dominating x1, then x1 is called non-dominated.

In order to solve MCDM problems, MOEA are often used to approximate the set
of non-dominated solutions. As a subclass of Evolutionary Algorithms, MOEA
are searching methods based upon a population sequential sampling process
ruled by heuristics. Such heuristics can be implemented in any fashion but in
general they find inspiration in some natural processes (like mating and sur-
vival -Genetic Algorithms-, foraging -Ant colonies-, flocking -PSO) as well as
mathematic (Differential Evolution) and thermodynamic (Simulated Annealing)
principles.

Regardless of the final form given to their instances, all of the MOEA share a
common principle of evolving towards a higher level of global fitness as iterations
go on. In general MOEA associate fitness with Pareto optimality and approxi-
mation sets with spatial even distributions. In practice it is possible by defining
a ranking procedure concerned by optimality and density built upon some fitness
expression which turns out to be function of the mathematical model of eq. 1.
Needless to say that, if F (x) cannot be properly assessed as it happens in the
presence of uncertainty, the very foundation of the operation of MOEA could be
seriously compromised.

As we shall see later on, several algorithms have been proposed to operate
under uncertainty. Regardless the computational efficiency of such existing ap-
proaches or any other one to come, the variety of sources, types and targets of
uncertainty as well as the current theoretical frameworks to represent it, hinders
the ability of MOEA designers to develop approaches valid for a wide range of
situations. In response, we propose an analytical methodology called Analysis
of Uncertainty and Robustness in Evolutionary Optimization or AUREO that
allows one to study how to use MOEA in MCDM problems under uncertainty
from a broad view. First the effort is oriented towards finding the mathematical
formulation that suits best the decision-making problem regarding the charac-
teristics of the uncertainty involved, while later on the analysis focuses on the
structure of the MOEA propounded as solving technique, according to the char-
acteristics of the problem formulated beforehand and on its efficiency. The benefit
of doing so is double. On the one hand, having uncertainty in MCDM problems
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does not necessarily imply that the MOEA have to cope with uncertainty. We
argue that the definitive element to decide whether the MOEA actually have
to is the available information. On the other hand, in the case of dealing with
uncertainty, to make a device of the structural requirements of the MOEA in
terms of uncertainty handling helps one select amongst the existing instances or
design new ones.

The remainder of the article is organized as follows: the next section introduces
some problems raised by uncertainty and the possible reasonings available to deal
with it. Section 3 brings the methodology proposed with some examples while
section 4 gives some concluding remarks.

2 Accounting for Uncertainty in Decision-Making

In this section we give a glance at the notion of uncertainty, its relation with the
decision-making and the existing views and reasonings about it.

The term uncertainty is understood in different ways, all of them related to de-
fects of knowledge and information (for further insight see [2]). We adopt the full
identification of uncertainty with imperfection of information, data or evidence
herein. When the lack of information is originated by the inherent variability of
physical systems and thus it cannot be reduced by further empirical efforts we
say the uncertainty is aleatory. By contrast when the actual state of uncertainty
is reducible by additional information of the system or its environment we call it
epistemic uncertainty. A mixed aleatory-epistemic uncertainty is also possible.

To account for the effect of uncertainty in decision-making, consider the differ-
ent scenarios depicted in fig. 1. The first target of our uncertainty analysis is the
domain. This one can be subject to aleatory (case 1), epistemic (case 3) or mixed
uncertainty (not depicted). In all of these cases the uncertainty associated to x
should be propagated through F (x) onto space Y. If F (x) is free of uncertainty,
the propagation of epistemic uncertainty will yield epistemic objective vectors
y (trajectory 1-3-5). In this case both the decision and objective vectors will
be characterized by bounding sets (usually an interval) enclosing the true but
unknown values. Likewise the propagation of aleatory decision vectors through a
function free of uncertainty will yield objective vectors that actually are random
variables (trajectory 3-6-9). On the other hand, the second target of the uncer-
tainty analysis is the function. Indeed, F (x) can be intrinsically uncertain (e.g.
noisy or dynamic functions) or the way we assess it can be subject of aleatory
(e.g. Monte Carlo simulation) or epistemic uncertainty (e.g. interval approxi-
mation), although the functional expression is deterministic. In such a case the
result will be uncertain no matter if the input is (trajectories {1,3},5,{7,8,9}) or
not (trajectories 2,5,{7,9}) uncertain. Notice that we can have objective vectors
y subject to mixed uncertainty, i.e. the result is a set of possible sets of outcomes.

As we just have seen, whether it is epistemic, aleatory or mixed, the presence of
uncertainty always entails comparing sets of objective instead of precise vectors.
Consequently, one of the challenges risen to decision-making is how to compare
and classify alternatives in terms of sets comparisons. We shall consider next the
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Fig. 1. Effect of Uncertainty in Decision-Making: labels (a,b) indicate the index a and
the type of uncertainty b of each element. Uncertainty types are denoted by N (none),
A (aleatory), E (epistemic) and M (mixed). Possible scenarios are denoted by different
arrow types.

different theoretical frameworks for representing uncertainty and how they can
influence decision-making and MOEA design.

2.1 Reasoning about Uncertainty

Theories about uncertainty provide us with logical frameworks to make state-
ments about uncertain quantities. The basic principle that underpins the reason-
ing about uncertainty is that there is a set called universe of discourse denoted
by X herein, that contains all the possible and pertinent states that an un-
certain quantity can adopt. For instance, when we define x with an interval,
we intrinsically state that, in principle, the evidence shows that all the values
contained by the latter might be adopted by the former. Axioms and logic deriva-
tions formulated afterwards about the universe of discourse define the theoretical
frameworks.

If X is continuous we can define it as an interval. Now if our uncertain decision
vectors can be treated as intervals, we can use Interval Arithmetic to propagate
x though F (x) to assess y. Regardless the nature of the uncertainty, the resulting
interval is expected to bound the true value(s) of x. On the other hand, if one
has more information about the nature of the uncertainty at her disposal, one
should use it.
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Fig. 2. Elements of the main theories for represetning uncertainty

Fig. 2 sketches some relevant elements of the main theories about uncer-
tainty. In classical probability theory every element of the universe of discourse
is assigned a probability. The relation between discrete domains and probabil-
ities are captured by probability mass functions while the probability density
function (PDF) are used with continuous domains. In both cases, it is possible
characterize tendencies of variation within the universe of discourse by some
symmetry axis of such variation (expected value) or its size (variance) amongst
other things. It is also possible to assess the probability of the uncertain quantity
adopting values within a set (like P (X ≤ x)): this is expressed as a cumulative
probability distribution (CFD).

Sometimes X is roughly or ill defined, as when one says ‘it’s cold ’ and we know
that ‘cold’ has different meanings according to the person who says it. This
kind of uncertainty appears in natural language or when one handles blurred
concepts (e.g. when defining the DM’s preferences). In this case X is described
by a membership functions that assigns numbers in [0,1] where 0 means the
argument is not contained in the set and 1 the opposite. For insight into fuzzy
logic see [3].

We can also extend the previous concept to talk about ‘the possibility’ of an
event, using a bivalent logic (it is or not possible) or a graded logic captured
by possibility distributions, which are in deep connection with the notion of
probability, although saying that something is possible is different than saying it
is probable. Possibility Theory provides therefore a non-probabilistic framework
to represent epistemic uncertainty.

One of the shortcomings of classical probability is that it is not suitable for
representing epistemic or mixed uncertainty. For instance, having limited evi-
dence, an agent could make imprecise statements like ‘the probability of x is in
[0.3, 0.5]’ or ‘vector x follows a normal PDF with mean in [3.26, 4.5] and variance
in [0.82, 0.97]. Statements of the such can be captured by p-boxes e.g. saying that
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every CDF within the p-box is a possible representation for the actual aleatory
uncertainty, whereas the epistemic uncertainty is captured by the fact that we
don’t actually know the true PDF. Dempster-Shafer Theory [4], Walley’s Theory
[5] or p-boxes [4] support theoretically this kind of approaches.

Table 1 summarizes the main elements of such approaches. From a practical
viewpoint the relevant issue is that the theoretical frameworks mentioned previ-
ously are best used in certain situations as they cover distinct types and sources
of uncertainty. Besides, all of them prescribe propagation methods, which means
that in the plausible case of having uncertain domains represented by one of the
theories mentioned so far, the outputs and therefore the ranking of alternatives
within the MOEA will also be related to such theory.

Table 1. Some relevant elements of theories about uncertainty

Theory Accounts for Especially
suitable for

Propagation
method

Notable elements

Fuzzy logic Graded membership of
elements to sets

Linguistic epistemic
uncertainty

Extension principle Membership functions, core
and support sets

Possibility Binary or graded
membership of elements
to sets

Epistemic uncertainty Choquet integrals and
extension principle

Possibility distributions,
possibility and necessity
measures

Classical
Probability

Likelihood of events Aleatory uncertainty Convolution and Monte
Carlo simulation

PDF, percentiles, mean,
variance and higher
moments

Imprecise
Probability

Imprecise probabilities
and subjective
judgements on sets

Epistemic and aleatory
uncertainty

Convolution and Monte
Carlo simulation

Belief and plausibility
measures. Intervals for
distributions and moments

3 Analysis of Uncertain and Robustness in Evolutionary
Optimization (AUREO)

In this section we describe a two-stage methodology for the ‘Analysis of Un-
certain and Robustness in Evolutionary Optimization’ (AUREO). The basic
premise of this framework is that the analysis of the available information about
a problem subject to uncertainty (fig. 3) determines the solving program (stage
1) and the MOEA structure (stage 2).

Consider a refined mathematical program based on eq. 1. Let F (x,p) repre-
sents the DM’s criteria in a free-of-uncertainty scenario in terms of the objective
vector x and a vector of environmental parameters p. As discussed in sec. 2
uncertainty may come up as lack of information about the variables x and p.
Besides the environmental parameters in p are often subject to change in real
world. The assessment of F (·) might be a source of uncertainty as well. The
first stage of AUREO, summarized in fig. 3, focuses therefore on the form of the
MCDM problem considering the existing uncertainties.

If the model is accepted to be adequate the attention centres on the input
vectors x and p. If such vectors are free of uncertainty, no action is required,
otherwise the analyst should ask about the type of such uncertainty and further
investigate the best theory to represent it. Immediately the attention focuses on
the outcomes of F (x,p) to find out if the fi(x,p) are dynamic functions or if
they will be assessed through surrogate or approximate models.
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1. Analyze the model:

�p ∈ P

�x ∈ X

X ⊆ R
n

�y ∈ Y

Y ⊆ R
k

F (x, p)

1.1. Check for model adequacy.
1.2. Consider characteristics of the domain and objective functions.

2. Check for uncertain objective functions:

�
p

�x �y

U(y)
F (x, p)

2.1. Do many evaluations of the same argument produce different outcomes?
2.2. Is F (x, p) a dynamic or stochastic function?
2.3. How is F (x, p) to be evaluated (surrogate model, approximation, simulation)?
2.4. Is the cardinality of Y ⊆ Y reducible to the unit?

3. Check for input uncertainties:

�U(p)

�U(x) �y ∈ Y
F (x, p)

3.1. Is x subject to uncertainty (U(x))? If so, what type?
3.2. Are the environmental parameters p subject to change (U(p))?
3.3. Is the objective function sensitive to uncertain inputs (U(y))?

Fig. 3. AUREO Stage 1: Analysis of interactions between model and uncertainties

Once this analysis is ready, the original MCDM problem can be transformed
into a new one based on new criteria defined in terms of the -possibly uncertain-
input (x,p), the original criteria F (x,p), the uncertain outcome y and the the-
ory employed to represent the uncertainty. For the sake of generality, let x be
a nominal vector denoting a precise alternative and let U(x) denotes the uncer-
tainty associated to x, i.e. the universe of discourse and other particular elements
related to the uncertainty representation (see sec. 2.1). The same notation stands
for the uncertainty of p and y.

Now, in the most general way, the new MCDM problem can be expressed
through the following:

Definition 2 (Uncertainty-handling program). Let F (·) be a measure of
performance of a system determined by the decisional vector x and influenced by
a vector of environmental parameters p, each of which is subject to uncertainties
U(x) and U(p) respectively. Let C(·) be a vector of constraints defined regarding
the original constraints for the optimization of F (·). Finally let I(·) be a vector of
requirements imposed upon the performance. The resulting uncertainty-handling
formulation consists in solving the following program
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max R (F (x,p),x,p,U(x),U(p))
s.t.:

x ∈ X , p ∈ P
C(x,p,U(x),U(p)) ≤ 0

I(F (x,p),x,p,U(x),U(p)) ≤ 0

(2)

The new function denoted R(·) is typically an expression of risk, reliability or
robustness. For example, in the case of pure uncertain functions, R(·) can be for-
mulated as the original F (·) plus a measure of uncertainty to be minimized. R(·)
can also account for reliability or robustness when the input is uncertain, result-
ing in a robustness-seeking program. Vector I(·) on the other hand, accounts for
requirements formulated by the DM as additional performance constraints due to
uncertainty (e.g. acceptance thresholds for variance or interquartile distances).
From the previous program derive two classes of definitions of robustness with
well defined solving procedures and a third mixed class that combines the rea-
soning of the preceding classes in order to solve problems with the least amount
of information. Table 2 shows what class is applicable regarding the amount of
information available.

Table 2. AUREO Stage 1: Classes of uncertainty-handling formulations according to
the available information

Input: x,U(x),p,U(p) Output: y,U(y)
U(x) U(p) I(·) definable I(·) undefinable
None None Pure uncertain functions ≡ Class 1

None Definable Class 1 Class 1

None Undefinable Class 2 Class 3

Definable None Class 1 Class 1

Definable Definable Class 1 Class 1

Definable Undefinable Class 2 Class 3

Undefinable None Class 2 Class 3

Undefinable Definable Class 2 Class 3

Undefinable Undefinable Class 2 Class 3

Class 1: Uncertainty Propagating Programs. This class is characterized
by a suitable description of U(x) and U(p) in such a way that the uncertainty
can be propagated through F (·). If the uncertainty is aleatory, U(x) and U(p)
have associated PDF. For instance, U(x) could be a normally distributed number
N(x, σ). On the contrary, if the uncertainty is epistemic, U(x) might be a crisp
or a fuzzy interval, a p-box or something of the like.

Once this program has been identified, the second stage of AUREO consists
in defining how the optimality and the density are to be assessed within the
MOEA as well as in addressing efficiency issues. As shown in fig. 1 whenever the
uncertainty is propagated the outcomes become sets. Thus, the first problem
risen is how to decide about optimality using sets. Consider fig. 4: according
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Fig. 4. Spatial dominance relationships regarding y in (panel a) the absence and (panel
b) in the presence of uncertainty. The interval representing y in panel b can be con-
structed for discrete sets using the extreme (dark) points (panel c).

to the Pareto optimality (def. 1) in the absence of uncertainty every solution in
region I (panel a) dominates y, in region II is dominated by y and in region III is
non-dominated regarding y. In the presence of uncertainty (panel b) there is an
additional (colored cross) region such that any set intersecting that area cannot
be classified in terms of dominance without an additional criterion. In such a
case the comparison of sets is often reduced to a comparison of representative
points, but can also be settle using the whole sets. Density can also be assessed
using the approaches just mentioned.

Working with representative points: If we can define a few crisp points
representing the main features of the uncertain outcomes, we can solve the
uncertainty-handling program with a regular application of existing MOEA.
Defining such points, however, can be very tricky and computational cumber-
some in practice. For representing a set, the extreme points, some symmetry
axis and some size measures are commonly used. Let us consider some examples
regarding the different theories to represent uncertainty.

Best and worst case are risk criteria that corresponds to extreme points of
crisp and fuzzy intervals. Uniform distributions also exhibit finite extreme points,
but in general such points are infinite in probability distributions. Nevertheless,
extreme quantiles can be used to implement best and worst cases. With imprecise
probabilities there are intervals of quantiles so one can use the best of the bests
and the worst of the worst of the cases.

The mean value is commonly used as symmetry axis although the median
can be used as well. A common approach is to optimize the mean value of the
sets, minimizing sometimes its size simultaneously. This is the typical way to
implement robustness (see robust optimization in tab. 3). In classical probabilis-
tic contexts the size is measured as variance in R(·) although the interquartile
range is another possibility. As one only have estimations of means and vari-
ances instead of the true statistics most of the time, it is more than desirable to
have proper statistical tests supporting MOEA the ranking procedure. On the
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Table 3. Some state of the art MOEA for optimization under uncertainty

Realm of study Authors and works

Probabilistic Dominance:

Optimization with interval fitness value Teich [12]

Optimization with noisy fitness function Hughes [13], Fieldsen et al. [14]

Quality Indicator-Based Procedures:

Indicator-based optimization Basseur and Zitzler [15]

Robust Optimization:

Optimization with uncertainty propagation Sörensen [16], Ray [17], Deb and Gupta [18],
Barrico et al. [19]

Info-gap based robust design Lim et al. [20]

Reliability-based optimization Deb et al. [21]

Non-Probabilistic Procedures:

Optimization with epistemic uncertainty Limbourg [22] and Salazar A. [23]

other hand, in the case of handling alternative uncertainty theories, the inter-
ested reader might also define ranking procedure based on fuzzy and possibilistic
means and variances [6,7,8,9] or mean values for imprecise probabilities [10,11].

Working with the whole sets: Treating the whole set instead of a few points
is also possible. For probabilistic contexts the concept of probabilistic dominance
provides a way of doing this. The basic idea is to assess the probability of one
whole outcome dominating another one and to accept dominance if such prob-
ability surpass an acceptance threshold. Formulae exist for assessing dominance
in classical [24] and imprecise probabilities [25]. The main drawback in practice
is that there is no easy way to estimate the probability of dominance if the PDF
of the concerned outcomes are not available.

There are also methods for assessing dominance in fuzzy and possibilistic
contexts [26]. Such methods solve the problem of optimality but left the density
control unattended. One possibility is to resort to representative points like the
mean value to assess density, or to maximize the minimal distance between two
neighbours.

Table 3 lists some of the existing MOEA that can be used in Class 1 problems.
Chronologically speaking, the first attempts implemented probabilistic domi-
nance. These approaches rely upon the assumption that the PDF of all the
outcomes are known and share the same shape. In some real problems such
an assumption stands but in general it constitutes a limitation. Current robust
optimization approaches, on the other hand, do not make a sharp distinction
between aleatory and epistemic uncertainty in their proposals. The user may
be aware of this to avoid careless uncertainty handling. Other approaches make
use of indicator quality measures to handle density assessment [23] or optimal-
ity and density as well [15]. Regarding the two referred here, the former were
developed to work with intervals and seems suitable for epistemic uncertainty
although the optimality is settle by rules that could not be universally accepted.
By contrast, the latter approach relies on the assumption of probabilistic out-
comes so it seems suitable for aleatory uncertainty albeit the algorithm makes no
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statistical treatment of the outcomes. A first conclusions is that making better
and careful treatments of uncertainty taking into account the theoretical frame-
works for reasoning about it is still a challenge for the design of MOEA.

Class 2: Robust Domain-Seeking Programs. Some situations may keep the
uncertainty associated with the input variables from being propagated through
F (·) and therefore handled as a Class 1 robustness problem. Whether the un-
certainty is purely epistemic or mixed in nature, any additional assertion about
U(x) or U(p) to transform the problem into one of Class 1, entails making some
assumptions that could be wrong, leading to identify inadequate alternatives in
Y as optimal solutions.

For example, if the DM knows that the real value of the nominal vector x is
susceptible to vary but ignore the range of such variation, to assume the set of
values that x can take or their likelihood may underestimate the uncertainty.
The DM is therefore compelled to maximize the range of ‘acceptable’ realizations
of x in order to hedge against regrettable consequences. In that sense, robustness
is sought by widen the range of possible inputs, or in other words, by maximizing
the cardinality of the U(x).

The Class 2 is therefore characterized by the existence of a constraints vector
I(F (·)) ≤ 0 that constitute desired performance levels of attainment (quality re-
quirements), and a robustness function R(·) that aims at maximizing the range of
variation of the input variables that conform with I(·). The robust design prob-
lems is a good example of this class. For instance, [27] brings an application where
the reliability Rs of a system is a function of the reliability Ri of its components.
Since Ri may change, one is interested in knowing the effect of such variations
over Rs although the U(Ri) are unknown. Instead of making assumptions about
the U(Ri), the DM is asked about the desired performance requirements of Ri.
This way the DM defines the restriction I(Rs) = 0.90 ≤ Rs ≤ 0.99 and the
Class 2 program takes the form of find {[Ri, Ri]} = argmaxi

∏
i(Ri − Ri) s.t.

Ri ∈ [0.8, 1] and I(Rs). The second objective is the minimization of the maxi-
mal cost that one can incur when selecting components within the range defined
by the objective R(·). Notice that such a problem can be handled by a regular
MOEA simply using interval arithmetic to check I(Rs). For details about the
formulation and the efficiency issues see [27].

Class 3: Mixed Robust-Seeking Procedure. To close this section, let us
consider again the general robustness-seeking program formulated in def. 2. If
the DM and the analyst are unable to characterize the input uncertainty nor
the desired performance levels of attaintment, or alluding def. 2, if they cannot
set U(x), U(p) nor I(·), the actual definition of the robustness function R(·) is
not possible. It is therefore mandatory to generate information to help the DM
to make their minds about U(x), U(p) or about I(·), in such a way that the
problem collapses into a Class 1 or Class 2 program. The first case could be
possible by means of further elicitation of uncertainty, while the second requires
initial assumptions about U(x) and U(p) to roughly approximate the frontier,
allowing to set I(·) and to solve the corresponding Class 2 program afterwards.
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Fig. 5. Scheduling problem in a waste treatment plant: Machines Mm performs the
unloading while the mixer Mx performs the waste processing [28]

Fig. 6. Robust schedules that satisfy I(·) and maximizes the allowed variations in
arrival times (objectives in minutes) [28]

This procedure is explored in [28]. The original problem consists in minimizing
the makespan and the total waiting time of a waste treatment plant. The waste
is carried by trucks that arrive at scheduled times and the operations are the
unloading of the trucks into silos and the transference of the silos’ content into a
critical machine (see fig. 5). Assuming that the processing times do not change
and the sequence of operations cannot be rescheduled on line, the new problem
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arises when considering uncertain arrival times for the trucks. The goal is to
identify the more robust sequence of tasks given that no information about the
possible variations of arrival times nor about I(·) were available a priori.

In order to solve this problem as one of the Class 2, a first assumption was
made about the arrival time, accepting a uniform variation of ±10′ around the
expected timing. Criteria were assessed using Monte Carlo simulation. The re-
sults obtained using MOSA [29] with this assumption showed that it is possible
to absorb variations of 10’ without deviations from the deterministic results
greater than 1’. Constraint I(·) was set to allow at most deviations of 2’ from
the known deterministic optima. With this in mind the new goal is to find a
sequence conforming I(·) that accepts the greater range of variations above 10’
in the arrival time. The results are shown in fig. 6.

4 Final Remarks

In this article we offered an analysis of the interaction between MCDM and
MOEA, emphasizing the importance of considering the different forms for rep-
resenting uncertainty. The possible instances of MCDM problems under uncer-
tainty were classified into three classes according to the elements concerned by
uncertainty. In the Class 1 it is necessary to deal with uncertain outcomes so the
MOEA designed to work with this group of problem have to implement mecha-
nisms to propagate uncertainty and to rank the solutions in terms of optimality
and density. Most of the existing approaches lie within this class, but there is
still room for more research on the integration of MOEA and uncertainty the-
ories to better treat aleatory and epistemic uncertainty and to cover scenarios
not considered yet.

In Class 2 the problem does not require the MOEA to handle uncertain out-
comes. Readers interested in this approach are referred to [1,27] for further de-
tails. Finally in Class 3 the decision-making problem requires additional efforts
to generate information and to reduce it to a Class 1 or Class 2. We briefly ex-
emplified the application of MOEA to solve a real Class 3 problem. For further
details see [28].
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Abstract. New operators for Multi-Objective Evolutionary Algorithms
(MOEA’s) are presented here, including one archive-set reduction pro-
cedure and two mutation operators, one of them to be applied on the
population and the other one on the archive set. Such operators are based
on the assignment of “spheres” to the points in the objective space, with
the interpretation of a “representative region”. The main contribution of
this work is the employment of feedback control principles (PI control)
within the archive-set reduction procedure and the archive-set mutation
operator, in order to achieve a well-distributed Pareto-set solution sam-
ple. An example EMOA is presented, in order to illustrate the effect
of the proposed operators. The dynamic effect of the feedback control
scheme is shown to explain a high performance of this algorithm in the
task of Pareto-set covering.

1 Introduction

Two main concerns are involved in the task of designing of Multi-Objective
Evolutionary Algorithms (MOEA’s): (i) the “quality” of the Pareto-set estimates
that are generated, and (ii) the convergence velocity of the algorithm. The first
of such concerns is, in itself, multi-dimensional, and there are not, up to now,
any definitive standards for measuring such “quality” [1]. A high-quality solution
set, anyway, can be defined as a set of samples that [2]:

– Approach the exact Pareto-set (i.e., should be dominated by a subset of the
decision variable space that is as small as possible);

– Cover the whole extension of the Pareto-set (i.e., include samples which are
spread along the whole range of the Pareto-set, including the regions near
the extremes of such Pareto-set);

– Describe in detail the “body” of the Pareto-set (i.e., these samples are “reg-
ularly” spread along the Pareto-set).
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Notice that a MOEA can be built without a commitment with the search for a
Pareto-set estimate in its whole extension, i.e., without referring to such quality
measures, in the cases in which some a priori or on line decision information is
available, allowing the concentration of the search in some sub-regions that are
identified as being “of interest”.

This paper presents new operators that can be used for designing high-
performance MOEA’s (in the sense of MOEA’S that produce high-quality
Pareto-set estimates, as defined above): the Sphere-Control operators. Such op-
erators are based on the raw information about the distances between every pair
of solution samples in a set – this motivates the denomination of “sphere” oper-
ators. The key concept behind the proposed operators is the usage of a feedback-
control scheme for the purpose of establishing a dynamic equilibrium associated
to the high-quality description of the Pareto-set. This means that while such
high-quality description is not attained, there will be measured variables that
indicate this fact, carrying the information about what control action should be
taken in order to enhance such quality [3]. An instance of such feedback-control
scheme is represented in Figure 1. In this figure, the measured variable is the
error e = r − a, which feeds the Proportional-Integral (PI) controller, which in
turn determines the value of the control variable ρ. In the equilibrium, e = 0
(which means the desired result of a = r).

r ae
PI

ρ
Ay−

+

Fig. 1. Diagram of PI feedback control loop for controlling the number of points in
the archive set. The variable ρ, the radius of the spheres associated to the points in
the archive file, plays the role of the control input variable, while the variable a, the
number of points in the archive file, plays the role of the controlled variable. The pre-
established reference number of points in the archive, denoted by r, will be attained in
the equilibrium, by virtue of the feedback mechanism.

As in other contexts of application of feedback-control techniques, the role of
the feedback control scheme is to induce an overall system behavior that presents
low sensitivity to variations in the initial conditions and in the algorithm param-
eter values, delivering rather “stable” results – meaning a high repeatability in
the reach of high-quality solution sets [3]. The error variables are defined such
that the feedback loop reaches an equilibrium only when a “good description”
of the Pareto-set is attained. An unbalanced spread of solutions causes the num-
ber of solutions to shrink (by eliminating the more redundant solutions), while
the existence of connected areas in the Pareto-set which are not well-covered
causes the number of solutions to grow, with the equilibrium being reached only
there are no more non-described regions, and the solutions are evenly distributed
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along the Pareto-set object. The equilibrium itself can be used as a criterion for
detecting the end of the task of Pareto-set description, serving as a stop criterion.

Specifically, two sphere-control operators are proposed here: a mutation op-
erator that is applied in the archive set, in order to fill eventual gaps in its
Pareto-set description – which is called here the surface-filling mutation, and
an archive-set reduction operator which controls the number of non-dominated
solutions that are stored. Feedback control mechanisms, based on a switched
controller and on a Proportional-Integral (PI) controller, are employed in the
surface-filling mutation and in the archive-set reduction operator, in order to en-
hance the distribution of solutions along the Pareto surface. This motivates the
denomination of “sphere-control” operators. These operators are to be employed
together, since their effects are complementary, and their dynamic interaction is
necessary in order to achieve the desired behavior. Another mutation operator
is also defined here, still employing the “sphere” concept, but not employing
the feedback-control scheme. This operator is applied in the current population,
and resembles the “hypermutation” operation employed in the Artificial Immune
System proposed in [4].

The ideas presented here have connection with the ones presented in [5,2]
which employ “sphere” operations which are similar to the archive-set reduction
operator presented here, yet without any feedback adaptation scheme. The basic
idea, both in that references and here, is that a “sphere” means roughly a do-
main in which the information gained by a solution point in its center would be
representative – with no need of further function evaluations inside such sphere.
The references [6,7] also employ the concept of “spheres” for construction of an
EMOA, with a dual meaning: in that cases, the “sphere” is the domain in which
a local search is conducted, with sub-populations assigned to perform searches
inside each sphere.

In the specific formulation that is presented here, the proposed operators are
structured for continuous-variable spaces. However, the adaptation for discrete-
variable problems can be performed directly, provided that some distance metric
becomes defined in the discrete-variable space.

An algorithm that instantiates the application of such operators is constructed:
the SCMGA (Sphere-Control Multiobjective Genetic Algorithm). Such algorithm
is compared with an NSGA-based algorithm and with an SPEA-based algorithm,
in order to illustrate the enhancements of the Pareto-set estimates that can be
obtained via the proposed approach. The role of the feedback control operators
is analyzed, and the results suggest that such operators interact in order to in-
creasingly enhance the description of the Pareto set. In particular, the gaps in the
Pareto surface are systematically filled by the proposed operators – leading to sur-
face descriptions of high definition.

2 Multiobjective Genetic Algorithms

Consider f(·) : Rn �→ Rm a vector-valued real function. Let fi(·) denote the
i-th coordinate of the function in the image space. The multiobjective problems
appear from the partial ordering induced by the relation of dominance:
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u ≺ v ⇔

⎧⎨⎩
fi(u) ≤ fi(v) ∀ i = 1, . . . ,m
and

∃ i ∈ {1, . . . ,m} such that fi(u) < fi(v)
(1)

Consider the Pareto-set P defined by:

P � {x∗ ∈ Ω | � ∃ x ∈ Ω such that x ≺ x∗} (2)

in which x ∈ Rn is the decision variable vector, and Ω ⊆ Rn is the feasible set. A
multiobjective optimization problem is defined as the task of generating samples
of the set P .

A Multiobjective Genetic Algorithm (MGA) is a genetic algorithm which is
intended to produce a set of samples of P . These algorithms can be stated, in
general, as:

Algorithm 1. Pseudocode for generic MGA
k ← 0
Pk ← initial population
Ek ← evaluate function(Pk)
Ak ← ∅ % the archive set
Mk ← ∅ % the set of points resulting from mutation
Ck ← ∅ % the set of points resulting from crossover
while not stop criterion do

Ak+1 ← update archive(Ak, Pk, Ek)
Fk ← fitness assignment(Pk, Mk, Ck, Ek)
Pk+1 ← new population(Ak, Pk, Mk, Ck, Fk)
Mk+1 ← mutation(Pk+1)
Ck+1 ← crossover(Pk+1)
Ek+1 ← join( evaluate function(Mk+1, Ck+1), Ek)

end while

In addition to this “basic” structure, other operators can be added within the
main loop. A very common kind of additional operator performs a local search
[8]. The algorithm that is to be tested here and the algorithms that are adopted
for comparison follow this basic structure. At the end of the execution, the
“archive set” Ak contains the algorithm outcome, which constitutes an estimate
of the Pareto-set P .

3 The Sphere Operators

Consider the sets A and P , respectively meaning the archive and the current
population:

A � {x̃1, . . . , x̃a}

P � {x1, . . . , xp}
(3)

with |A| = a and |P | = p. The images of such sets in the objective space are
denoted by:
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Ay = {ỹ1, . . . , ỹa} � {f(x̃1), . . . , f(x̃a)}

Py = {y1, . . . , yp} � {f(x1), . . . , f(xp)}
(4)

The remainder of this paper considers that both sets Ay and Py are normalized
according to the extreme values of set Ay, such that the minimal value in any
dimension receives the value 0, and the maximal value receives the value 1. This
means that some values in Py can fall outside the range [0, 1]. A re-normalization
is performed in both sets every time the set Ay is updated.

The main idea behind the “sphere operators” is that if the solution samples
regularly cover the set P , they should be located in relation to their nearest
neighbors such that the distances to them become of the same order of magni-
tude. Therefore, a parameter ρ, which has the meaning of a reference domain
radius for each point, must be defined. This parameter is employed in order to
guide the algorithm operations, with the intent to generate points which approx-
imately “represent” the region inside the sphere of such radius centered in that
point. Any two neighbors should be separated, therefore, by at least 2ρ. The
parameter ρ is dynamically adjusted during the algorithm execution, in order
to reach a good dispersion of the sample points along the Pareto-set estimate,
considering a reference value of the number of sample points that is to be found.

3.1 Archive-Set Reduction

Consider the set A = {x1, x2, . . . , xm, xm+1, . . . , xa} in which the individual
minima of the m objective functions have been put in the first m positions, and
the remainder a−m points have been ordered randomly. The set Ay is ordered
correspondingly. The archive set is reduced by the Algorithm 2.

Algorithm 2. Pseudocode for Archive-Set Reduction
1: i ← 1
2: while |A| > i do
3: A ← A − {xj | ‖yi − yj‖ < 2ρ , i �= j}
4: Ay ← Ay − {yj | ‖yi − yj‖ < 2ρ , i �= j}
5: i ← i + 1
6: end while

After this operation, there will be no two points in Ay with pairwise distances
smaller than 2ρ. This controls the size of the archive set, ensuring that the
points will be distributed smoothly. Notice that this operation can be performed
directly even in the case of discrete-variable problems, since all information is
processed with reference to the objective space.

If this operation was executed with a pre-defined value of ρ, this could cause
the size a of set A to become too large or too small, since the exact extension of
the set P is not known a priori. This leads to the need of a dynamic adjustment
of this parameter.
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3.2 Controlling ρ

The adjustment of parameter ρ takes into account a reference number of points
that should be stored in the archive set A. Let such reference number be denoted
by r, and let the actual number of points in A be denoted by a. The adjustment
procedure is described in Algorithm 3. The initial value of ρ is defined such
that r spheres of dimension (m − 1) occupy a volume equivalent to the unitary
simplex of dimension (m− 1).

Algorithm 3. Pseudocode for ρ Control
1: if a > r then
2: e ← (a − r)/r
3: if e > s then
4: Δ ← s
5: else
6: Δ ← Kp × e
7: end if
8: ρ ← (1 + Δ) × ρ
9: else

10: ρ ← Kn × ρ
11: end if

Default values can be indicated for the control parameters: Kp = 0.6, s = 0.1,
Kn = 0.9. This algorithm resembles the PI (proportional-integral) controllers
with control signal saturation, which are employed in industrial control systems.
A relative error e is calculated in each step. An incremental control action is
calculated on the basis of such error. A diagram of such closed-loop feedback
control scheme is presented in Figure 1.

For negative errors (the number of archive points is smaller than the reference
one), the size of the reference domain radius, ρ, must be reduced, in order to allow
that more spheres become defined in the next step. In this case, ρ is multiplied
by the parameter Kn which must be chosen such that 0 < Kn < 1. This tends
to be the case when the algorithm is starting: there are few points in the archive
set, and the radius is continuously reduced.

In the case of positive errors (the number of archive points becomes greater than
the reference one), the size of ρmust be increased, in order to eliminate more points
in the operation of archive reduction (which is equivalent to make any point to
“represent” a larger sphere around itself). In this case, the incrementΔ is propor-
tional to the error, in the case of small errors, and fixed, in the case of large errors,
in order to avoid rapid increments of ρ. The need for such saturation is due to sta-
bility considerations, in the same sense that appears in the context of industrial
control – in this way avoiding the excessive oscillation of the control variable ρ.

It should be noticed that, as the control action over variable ρ is incremental,
the net effect has the form of an integral control. This integral term in the PI
controller is necessary in order to induce an error-less steady behavior in the
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closed-loop system. Indeed, if a simple P (proportional only) controller were
adopted, the steady state value of the controlled variable a would not become
equal to the reference value r. This, of course, would lead to the need of ad-hoc
parameter adjustments in order to obtain a solution set with a pre-established
size. In this way, the PI controller structure is the simplest one that fulfills the
requirements which are needed here. (Most textbooks on classic control theory,
for instance [3], will present a detailed discussion about such effects).

The adoption of such closed-loop control scheme makes the size of ρ to reach
an equilibrium point by itself, avoiding the need of an a priori knowledge about
such parameter, and rendering the multiobjective genetic algorithm robust in
relation to this parameter.

Notice that even in the degenerate case of the Pareto-set surface being of
dimension less than m− 1 (one or more objectives being redundant), the algo-
rithm still works as expected, forming an archive set of Pareto estimates which
will have still r elements. The only exception would be in the case of a single
non-redundant objective, in which the control variable ρ would shrink up to
very small values without obtaining the effect of forming an archive set with r
elements. Rigorously, an algorithm should have a stop condition related to the
detection of such situation.

3.3 Surface-Filling Mutation

Define the function v(·) as

v(yi) = | {yj | ‖yi − yj‖ < 3ρ} |

which means the cardinality of the set of points from the archive set Ay which
are inside a ball of radius 3ρ around the function argument yj . Without loss of
generality, consider that the set Ay is ordered in increasing order of v(yi):

Ay = {yi | v(yi) ≤ v(yi+1)}

The set A receives the corresponding ordering. The surface-filling mutation op-
erator is defined by Algorithm 4 (notice that |A| = a).

In Algorithm 4, the matrix Γ performs the tasks of adjusting the mutation
to different ranges of the decision variables and introducing correlation between
the mutation in different variables, if necessary (in ordinary cases, it can be set
as the identity matrix). An important notice about this mutation operator is: it
is performed over the archive set, instead of being performed over the current
population set. This operator is followed by a controlled adaptation of mutation
radius β, as shown in Algorithm 5.

The idea of the surface-filling mutation is to generate mutations in the indi-
viduals that have less neighbors in the objective space (i.e., less other points at
a distance smaller than 3ρ). These individuals are subject to mutations that are
intended either to provide local enhancements or to generate new neighbors that
fill the gaps in the description of the Pareto surface by the archive set. However,
the radius β that should be employed for the Gaussian mutation is not known a
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Algorithm 4. Pseudocode for Surface-Filling Mutation
1: k1 ← k2 ← k3 ← k4 ← 0
2: for i = 1 to a/3 do
3: Generate ω ∈ Rn with Gaussian distribution (0,1)
4: x̂i ← βΓω + xi

5: ŷi ← f(x̂i)
6: if ŷi ≺ yi then
7: xi ← x̂i

8: yi ← ŷi

9: k1 ← k1 + 1
10: else if yi ≺ ŷi then
11: k2 ← k2 + 1
12: else
13: k3 ← k3 + 1
14: if ‖yi − ŷi‖ > ρ then
15: A ← A + x̂i

16: Ay ← Ay + ŷi

17: k4 ← k4 + 1
18: end if
19: end if
20: end for

Algorithm 5. Pseudocode for Mutation-Radius Control
1: if k3 > 0 then
2: α = k4/k3

3: if α > 0.8 then
4: β ← 0.9 × β
5: else if α < 0.4 then
6: β ← 1.1 × β
7: end if
8: end if

priori, because the distances that define “neighbors” are measured in the objec-
tive space, while the mutation must be performed in the decision variable space.
Therefore, a dynamic adaptation is necessary.

A too small β would cause the mutated individuals to become near the original
ones, leading to distances (in the objective space) smaller than ρ. The dynamic
control of β is built in order to produce a reference proportion of new non-
dominated individuals outside the sphere of radius ρ around the original ones.
In the instance case shown above, if less than 40% of the new non-dominated
individuals are outside such sphere, the mutation radius β is increased by 10%.
On the other hand, if more than 80% of such individuals become outside such
sphere, the radius is reduced to 90% of its value; this is performed in order to
guarantee the local search nature of the surface filling mutation operator.

Once more, the adaptation of parameter β employs a feedback control scheme.
In this case, a switched control action is performed over variable β.
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This mechanism gives rise to a local search procedure that performs perturba-
tion steps that are both local and not too small, leading to an enhanced efficiency
in the search.

3.4 Inverse-Fitness Mutation

Another mutation operator, to be applied over the current population set, is also
defined: the inverse-fitness mutation. This is a simple Gaussian mutation:

x̂← x+ ηΓω

in which ω ∈ Rn is obtained from a Gaussian distribution (0,1). The radius η
is variable: each individual has its own radius, that depends on its fitness value.
The idea is to rank the fitness of all individuals in the population, and assign
an η to each individual as a linear function of its position in the ranking, with
the worst individual receiving an η = σ, where σ is the search radius employed
in the generation of the initial population. After this, the values of η that are
smaller than 2% of σ are changed to that value. Such mutation is similar to the
one proposed in [4], in the context of Artificial Immunological Algorithms.

4 An Instance of EMOA: The SCMGA

In order to evaluate the sphere-control operators, an instance of multiobjective
genetic algorithm is proposed here, using such operators along with some other
well-known operators. This algorithm instance is called here the SCMGA, stand-
ing for Sphere-Control Multiobjective Genetic Algorithm.

The additional operators that are needed are defined as:

– Initial population: generated from a Gaussian distribution, with a given
search radius σ, around a given center x0;

– Crossover: the real-biased scheme presented in [9] is employed here1;
– Pareto-ranking fitness assignment: the scheme employed by MOGA [10,11]

is employed here;
– Selection: a binary tournament is employed, over a set of individuals com-

posed by the old population plus the individuals generated via the mutation
and crossover operations;

1 The real-biased crossover scheme is stated as follows: (i) Consider the parent individ-
uals A and B. Without loss of generality, consider that the fitness of individual A is
better than the fitness of individual B (the operator is to be applied after the selec-
tion, when the fitness values of all individuals are known). (ii) Take a parametrized
line segment that passes over A and B, such that A is parametrized by 0.1 and B is
parametrized by 0.9. (iii) Generate two random numbers φ1 and φ2, both from an
uniform distribution in the interval [0, 1]. (iv) Take φ3 = φ1 × φ2. Clearly, φ3 has
a quadratic distribution over the same interval, with greater density values near 0,
and smaller density values near 1. (v) One offspring individual is taken as the point
parametrized by φ3 (which means that this point has a greater probability of being
near A, the best parent, than of being near B). (vi) The other offspring is obtained
as an uniform-distribution sample of the same segment.
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This algorithm, featuring also all sphere-control operators, is employed here
with the purpose of performing some preliminary tests on the proposed new
operators.

5 Results

5.1 Establishing the SCMGA

A preliminary test is conducted for the purpose of verifying if the proposed
algorithm gives Pareto-set estimates that are compatible with the currently em-
ployed reference algorithms. For this purpose, algorithms and benchmark func-
tions which are available at the PISA platform2 are employed here. The functions
to be employed are the Kursawe function with 3 and with 8 variables (denoted
respectively by Kur-3 and Kur-8), and the Quagliarella & Vicini function with
3 variables (denoted by QV-3), all described in [12]. These particular functions
have been chosen because they are the only options in PISA which comply with
the requirements of (i) being of continuous-variables, and (ii) not depending
strongly on the definition of “bounding boxes” for the decision variables (this
last requirement is due to the particularly simple implementation of SCMGA
used here, which has not been constructed for dealing with such bounding box
constraints).

The reference algorithms are the Nondominated Sorting GA II (NSGA-II)
presented in [13], the Strength Pareto Evolutionary Algorithm 2 (SPEA-2) pre-
sented in [12], the Indicator-Based Evolutionary Algorithm (IBEA) presented in
[14] and the Hypervolume Estimation Algorithm for Multiobjective Optimiza-
tion (HypE) presented in [15]. All those algorithms have been run as available
from PISA.

All algorithms, for all test functions, have been executed with population
size of 300 individuals, number of parent individuals and number of offspring
individuals per generation both equal to 150, and other specific parameters of
each algorithm as defined by default in PISA. The SCMGA has been run with
population of 150 individuals and the reference size of the archive set equal to
300. The algorithms have been assigned 30000 function evaluations in all cases.

The comparisons have been performed in the following way. Each algorithm
is executed once over each problem. For each problem, the 300 solutions of the
five algorithms, are pooled in a single set (the combined Pareto-set estimate),
and a non-dominance algorithm is executed over this pool set. After that, the
number of solutions coming from each algorithm in the pool are counted, and
the results are presented in Table 1.

A visual comparison, which cannot be shown here due to space limitation,
also indicates that SCMGA produces solution sets that are well-distributed. As
long as such results are “typical” (they are similar in several executions), it
seems reasonable to conduct further studies about the SCMGA. We advise the
reader that due to the limited number of tests that has been performed so far,
2 http://www.tik.ee.ethz.ch/pisa/
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Table 1. Results of different algorithms on benchmark problems, in a single execution

pool size NSGA-II SPEA-2 IBEA HypE SCMGA
Kur-3 376 22 17 27 24 286
Kur-8 288 0 0 0 0 288
QV-3 1049 171 178 184 228 288

the only conclusion that can be drawn is that SCMGA produces results that
are compatible with the ones produced by other standard algorithms. Further
conclusions with the meaning of a comparison will need much more tests.

5.2 The Structure of Control Action

An experiment has been conducted with the SCMGA, with the same parameters
above, in the 3D Kur problem, allowing 160000 function evaluations (which
have been performed in 498 generations). Figure 2 presents the evolution of the
number of points in the archive set, |A|, along with the evolution of the size
of the sphere radius ρ which controls such set size. The reference adopted for
|A| is 300 points (i.e., the control subroutine will try to reach this reference and
stay on it). Interesting observations can be drawn from Figure 2. It should be
noticed that the number of points grows in the first phase of the algorithm time
evolution. As long as the number of points is smaller than the reference in this
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Fig. 2. The evolution of the size of the sphere radius, ρ (upper figure); and of the
number of points in the archive set A, denoted by |A| (lower figure), with the number
of SCMGA generations
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first phase, the control action results in a continuous decreasing of the radius ρ.
At the generation 21, the number of points becomes greater than the reference
value; the control variable ρ begins to grow. However, as its value has possibly
been set to a value smaller than the “equilibrium” one, the controlled variable
|A| continues to grow, giving rise to an “overshoot” effect. Further increments
in ρ lead the controlled variable |A| to track the reference value nearly at the
generation 30. In all generations after that one, |A| presents a small oscillation
around the reference. It is important to notice the behavior of the control variable
ρ after the moment that |A| reaches the reference value: although |A| becomes
nearly constant up to the end of algorithm execution, ρ presents a trend of slow
growth from generation 30 up to generation 150. This is related to an adjustment
of the samples yi in Ay, which become increasingly more well-distributed along
the Pareto-set of the problem. This leads to a greater “smallest” distance among
any two points in Ay. After generation 150, up to the end, the value of control
variable ρ becomes approximately constant, with a small oscillation around this
“equilibrium”.

Figure 3 presents the evolution of the size of the surface-filling mutation ra-
dius, β, along with the evolution of the proportion of successful (not too close
to the original point) attempts of mutation. The control variable β is switched
in order to keep the value of the controlled variable k4/k3 between the values
0.4 and 0.8. It can be seen that, at the beginning of algorithm execution, most
of successful mutations occur at large distances (the proportion k4/k3 is nearly
equal to 1). In order to guarantee that the mutation operator performs a local
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Fig. 3. The size of the mutation radius, β (upper figure); and the proportion k4/k3 of
successful (not too close) attempts of mutation (lower figure)
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Fig. 4. Evolution of the archive-set image Ay. Top-left: 5 generations. Top-right: 15
generations. Middle-left: 25 generations. Middle-right: 50 generations. Bottom-left: 100
generations. Bottom-right: 495 generations.

search, the mutation radius β is reduced: this causes the controlled variable k4/k3
to reduce. Both the control variable β and the controlled variable k4/k3 reach
an equilibrium from the generation 50 up to the end of algorithm execution. It
should be noticed that the controlled variable reaches a fast oscillatory motion
around the value 0.6, which is the center of the reference band.

The gradual evolution of the archive set image Ay is depicted in the sequence
of frames in Figure 4.
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It can be seen that, in the first 5 generations, very few archive points have
been generated. A delineation of an estimation of the Pareto-front starts to
appear near generation 15. The lower portion of the Pareto-front becomes well-
delineated nearly at generation 25, and becomes “completed” nearly at genera-
tion 50. The upper portion of the front, however, becomes completed only nearby
generation 100. From generation 100 to generation 495, there is no visually per-
ceptible enhancement in the front.

These observations should be compared with the former analysis, which indi-
cated roughly that the variables |A| and β become stable before generation 50,
the variable k4/k3 reaches equilibrium after generation 50 and before generation
100, and variable ρ becomes in equilibrium nearby generation 100. A very inter-
esting conjecture to be launched is: the equilibrium of such variables seems to
be related to the completion of Pareto-set description.

6 Conclusion

The algorithm SCMGA, constructed with the proposed sphere-control operators,
has shown effectiveness in finding a well-defined and stable Pareto-set estimate.
The algorithm seems to be endowed with a capability of guiding the search to-
ward the “less-defined” regions of the current estimate, until producing a com-
plete estimate. The dynamic interaction between the algorithm internal variables
that is induced by a feedback-control scheme seems to play an essential role in
constituting such property.

Beyond the specific operators and the algorithm instance that have been pre-
sented here, the authors believe that the main contribution of this paper is to
introduce the idea of using feedback-control principles for the design of evolu-
tionary computation algorithms. The main concern in using such principles is to
define, in a meaningful way, the control variables and the controlled variables of
the feedback scheme.
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Abstract. The proximity of an approximation set to the Pareto-optimal front of 
a multiobjective optimisation problem and the diversity of the solutions within 
the approximation set are two essential requirements in evolutionary multiob-
jective optimisation. These two requirements may be found to be in conflict 
with each other in many-objective optimisation scenarios deploying Pareto-
dominance selection alongside active diversity promotion mechanisms. This 
conflict is hindering the optimisation process of some of the most established 
MOEAs and introducing problems such as the problem of dominance resistance 
and speciation. In this study, a diversity management operator (DMO) for con-
trolling and promoting the diversity requirement in many-objective optimisation 
scenarios is introduced and tested on a set of test functions with increasing 
numbers (6 to 12) of objectives. The results achieved by the proposed strategy 
outperform results achieved by a reputed and representative MOEA in terms of 
both criteria: convergence and diversity. 

Keywords: Evolutionary Multiobjective optimisation, Diversity requirement. 

1   Introduction 

Finding a “good” set of solutions to a multiobjective optimisation problem (MOP) 
consisting of m objectives can be more accurately thought of as an optimisation sce-
nario with m+2 objectives. These m+2 objectives are divided into m tangible and 
application-specific objectives and an additional two general objectives. The latter 
two objectives are the required convergence of the solutions to a MOP towards the 
Pareto front and their diversity across the trade-off surface in the objective space. 
When solving MOPs, the existence of objective preferences and priorities, and their 
incorporation in the search process is an optional and application-dependent scenario. 
Nevertheless, one thing is common: the convergence criterion is usually prioritised 
over the diversity criterion. As a result, diversity promotion is usually deployed as a 
secondary consideration to proximity promotion in most MOEAs. This is well justi-
fied since, as stated by Bosman and Thierens (2003) [1]: 
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... the goal is to preserve diversity along an approximation set that is as close as pos-
sible to the Pareto optimal front, rather than to preserve diversity in general; the 
exploitation of diversity should not precede the exploitation of proximity. 

The diversity requirement is mainly sought in multiobjective optimisation scenar-
ios with competing objectives where no single optimal solution can be found. In such 
scenarios, diversity is required to provide the decision maker (DM) with a diversified 
set of solutions across the objectives. This prioritisation of the convergence require-
ment over the diversity requirement can be observed in the “selection for variation” 
and the “selection for survival” procedures of most MOEAs. In NSGA-II [2], for 
example, when selecting solutions for inclusion in the mating pool, two solutions are 
first chosen randomly from the population and compared primarily in terms of their 
non-dominated ranks. The solution with the higher (Pareto-dominance based) rank is 
selected for inclusion in the mating pool. In the case where the two selected solutions 
share the same rank, the secondary criterion for the “selection for variation” consists 
of their crowding measure and, therefore, the diversity requirement. The solution 
situated in the less dense area of the space would be selected for inclusion in the mat-
ing pool, thus promoting diversity.  

Similarly, the “selection for survival” process in NSGA-II uses the same hierarchy 
of selection criteria. Deploying a strategy that maintains a fixed size for the online 
archive, NSGA-II uses a “selection for survival” procedure that starts by filling the 
online archive with the highest ranked solutions following a non-dominated sorting 
strategy. Only in the case where filling the empty (remaining) slots of the archive 
necessitates the selection of a subset of solutions from a certain non-domination rank 
does the diversity requirement intervene as a selection criterion.  

In this paper the requirement for solution diversity in multiobjective optimisation 
with many (more than 3) conflicting objectives, is explored. In particular, the effect of 
the diversity extent, rather than uniformity, on many-objective optimisation is investi-
gated. In section 2, the motivation for promoting new methods for diversity promo-
tion and maintenance in evolutionary multiobjective optimization (EMO), especially 
as the number of conflicting objectives increases, is justified. In section 3, a new 
strategy for tackling the diversity requirement is introduced. In section 4, the test 
functions and the performance metrics used to assess the DMO are presented. In  
section 5, an analysis of the effect of diversity extent on multiobjective optimisation 
as the number of objectives increase is produced. Experimental results achieved by 
the introduced strategy for a set of MOPs with an increasing number of conflicting 
objectives are described. Performance evaluation and conclusions are based on an 
analytical comparison of the results produced by a well-established and representative 
MOEA and its coupled version with the suggested diversity management technique. 

2   Study Framework and Motivation 

The objective of this study is to investigate new strategies for promoting diversity in 
evolutionary many-objective optimisation. This is initially motivated by the outcome 
of the studies by Purshouse and Fleming [3], [4] which highlight the conflict between 
the primary MOP requirement for convergence towards the Pareto front, and the sec-
ondary requirement for maintaining diversity in the approximation set. This conflict 
between convergence and diversity requirements in multiobjective optimisation has a 
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detrimental impact on the optimisation process and is particularly aggravated in 
many-objective optimisation. This is due to the fact that the size of the feasible objec-
tive space for a certain MOP increases with the dimensionality of the optimisation 
problem (in terms of the number of objectives). Consequently, the probabilities for 
the candidate solutions to become non-dominated (in the Pareto sense) increase. In 
fact, no matter how far from the Pareto front, any solution excelling in one of the 
objectives will have a high probability of being preferred in terms of Pareto domi-
nance and the diversity criterion (as it will be an extreme solution) for “selection for 
variation” and survival. The increasing proportion of non-dominated solutions ex-
plored in many-objective hyperspaces leads to diversity promotion mechanisms be-
coming more emphasized and hence, diversity can gradually become the primary 
selection criterion. This tends to over-emphasize the diversification process at the 
expense of the convergence requirement. As a result, when performing “selection for 
variation”, solutions from various distant areas of the hyperspace will have greater 
chances for recombining and producing lower performance offspring known as le-
thals [5]. The superfluous production of lethals, known as dominance resistance [6], 
will consequently slow down convergence towards the Pareto front. 

Having explained the motivations for the study, a new approach for diversity pro-
motion in the many-objective optimisation frameworks is suggested, investigated and 
discussed in the next sections.  

3   The Proposed Diversity Management Operator  

In this study, the requirement for promoting diversity in MOEAs is envisaged as a 
local, adaptive and varying requirement rather than a necessity. A diversity manage-
ment operator (DMO) for controlling and promoting diversity in the many-objective 
optimisation framework is hence introduced and hybridized with NSGA-II. The DMO 
is an adaptive strategy that promotes the integration of effective diversity indicators, 
such as the maximum spread metric [7] to efficiently guide the search process of an 
MOEA towards the trade-off surface of a MOP while controlling the diversity re-
quirement. In this study, the DMO has integrated a particular, computationally effi-
cient, diversity metric which is based on the maximum spread indicator defined in 
Equation (1) below. 

In Equation (1), D represents the measure of the diagonal of the hypercube formed 
by the extreme objective values attained in a certain approximation set ZA, M denotes 
the number of objectives and zA is a candidate objective vector solution which belongs 
to the approximation set ZA: 
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In order to track the diversity quality of the manipulated set of solutions, the value 
of the spread indicator presented in Equation (1) is normalised with respect to an 
optimal spread value suggested by the DM. Such optimal spread can correspond to 
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the spread of the set of solutions, Z*, representing the Pareto or a targeted front of a 
certain MOP. It is only by knowing the desired conditions, that the undesirable condi-
tions, such as the dispersal of solutions in suboptimal regions of the objective space or 
alternatively the convergence to Pareto-optimal solutions outside the region of inter-
est, can be defined and avoided. In other words, an application-dependent scale defin-
ing the approximate notion of a low, ideal, and average quality of diversity is required 
to overcome the clash of the requirements (convergence and diversity), which is espe-
cially evident in high-dimensional problems (in terms of objective dimensionality).  

In the context of the suggested DMO, the DM, usually and preferably an applica-
tion domain expert, is only required to suggest an approximate estimate of the defin-
ing extremities of the desired trade-off surface. These extremities will then serve as 
the vertices of a hypercube containing the ideally sought Pareto front. In an optimisa-
tion problem consisting of two objectives, these extremities correspond to the best and 
the worst approximate values for each of the two objectives. Equation (1) will then be 
normalised with respect to the length of the diagonal of such a hypercube and the 
normalised diversity indicator will be defined by Equation (2). 
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The spread indicator, IS, can take any positive real value. Ideally, an indicator value 
close to unity (IS = 1) is sought. Indicator values smaller than one (IS < 1) point to a 
lack of diversity among the derived solutions compared with the desired spread of 
solutions. This is most likely due to convergence towards an area - potentially a 
Pareto-optimal sub region - of the solution space outside the region of interest. On the 
other hand, indicator values larger than one (IS > 1) highlight an excessive dispersal of 
the solutions in the objective space. This kind of excessive dispersal in the hyperspace 
most likely causes the divergence of the solutions away from the Pareto-optimal front 
and frustrates the optimisation process by forcing the MOEA to repeatedly explore 
previously visited regions of the space [3],[6]. For example, when attempting to 
downscale the size of a MOEA’s active archive to its pre-determined size, good lo-
cally non-dominated solutions, in terms of proximity towards the Pareto front, might 
be filtered out at the expense of keeping good solutions in terms of diversity, although 
they may be distant from the Pareto front. However, as the evolutionary search pro-
gresses, the MOEA might rediscover this part of the solution space and accept solu-
tions at later iterations that are similar to those previously filtered out. 

A pseudocode description of the DMO is presented in Figure 1. 

 - Calculate the spread indicator Is for the current approximation set at generation i 
 - If Is < 1-ε  

Activate the diversity promotion mechanism in the “selection for variation” and 
the “selection for survival” process 

 - Else If Is ≥ 1-ε 
Deactivate the diversity promotion mechanism in the “selection for variation” and 
the “selection for survival” process 

Fig. 1. NSGA-II with the addition of the DMO 
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Fig. 2. NSGA-II with the addition of the DMO 

The DMO begins by calculating the spread indicator defined in Equation (2) for 
the local front of non-dominated solutions. The calculation of the spread indicator 
occurs at every generation of the optimisation process prior to the execution of the 

No 

DMO: 
Calculate the Spread Indicator and Activate or De-

activate Diversity as a Selection Criterion in the 
“Selection for Variation” and the “Selection for 

Survival” Processes 

Start

Gen = 0

Recombination 

Gen = Gen + 1

Assign Non-Dominated Ranks 

Calculate Objective Function 
for Offspring Solutions 

“Selection for Survival” 

Select Pairs of Individuals 

Create Initial Random Population & Cal-
culate Objective Function 

Retrieve Results

Yes

Gen ≤ MaxGen 

Calculate Crowding Measure

Mutation 



86 S.F. Adra and P.J. Fleming 

genetic operators (“selection for variation” and “selection for survival”). The DMO 
then adjusts and controls the global search processes of the MOEA in an informed 
way based on the local level of spread optimality. In other words, if the spread indica-
tor reports an excessive dispersal of the local front of solutions in the objective space 
(i.e. Is ≥ 1-ε, ε being an optional, application-dependent tolerance value defined by the 
DM), the DMO switches off the diversification mechanisms within the subsequent 
“selection for variation” and “selection for survival” procedures. The goal is to main-
tain the optimal trade-off between convergence and diversity requirements.  

For example, in the context of NSGA-II, at the “selection for variation” stage, de-
ploying the binary tournament selection procedure, two candidate solutions are picked 
randomly and compared in terms of their Pareto dominance rank. The solution with 
the highest Pareto dominance rank is inserted in the mating pool. In the case where 
the two solutions share the same Pareto dominance rank, one of the two solutions is 
chosen at random and included in the mating pool, disregarding the NSGA-II crowd-
ing measure which usually constitutes the secondary criterion for “selection for varia-
tion”. The “selection for variation” process continues until the mating pool is filled. 
At the “selection for survival” stage, the diversity measure is again eliminated as a 
discriminatory criterion for selection. In the situation where the number of locally 
non-dominated solutions exceeds the prefixed size of the active archive, the solutions 
are selected randomly for survival and propagation to the succeeding generation of 
the optimisation process. 

On the other hand, when required (i.e. Is < 1-ε), the diversity promotion mecha-
nisms are automatically activated in the “selection for variation” and the “selection 
for survival” procedures based on the diversity indicator monitoring the diversity of 
the locally non-dominated solutions. A schematic presentation of the diversity man-
agement operator (DMO) is illustrated in Figure 2 within the context of NSGA-II. 

4   Test Functions, Configurations and Performance Metrics 

Similar to the study by Purshouse and Fleming [3], this investigative study experi-
ments with different versions of the scalable DTLZ2 test function introduced by Deb 
et al [8] and described in Equation (3). In Equation (3), M represents the number of 
objectives, n = M +K−1 is the number of decision variables, and K is a “difficulty 
parameter” (K = 10 in this study). DTLZ2 (M) denotes an M-objective instance of 
DTLZ2. DTLZ2 possesses a continuous and non-convex global Pareto front and com-
prises two types of decision variables responsible for controlling the solution’s con-
vergence towards the global Pareto front and the solution’s distribution in objective 
space respectively. The first (m-1) decision variables (x1…xm-1) control the proximity 
of the solutions to the true Pareto front via a k-dimensional quadratic bowl, g, with 
global minimum xm,… n = 0.5. The decision variables (xm,…xn) are responsible for 
controlling the diversity of the solutions and their location on the positive quadrant of 
the unit sphere. The different versions of DTLZ2 deployed to test the performance of 
the DMO vary in terms of the number of competing objectives to be optimised. 
DTLZ2, with its well-defined Pareto fronts, is a suitable test function for the analysis 
and the examination of the performance of new optimisation strategies. 
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The DMO is incorporated into NSGA-II. The resulting optimisation strategy will 
be referred to as NSGA-II/DMO. Three different versions of the scalable DTLZ2 test 
function, featuring 6, 8, and 12 objective optimisation problems, are used to assess the 
performance of NSGA-II/DMO. These three instances of DTLZ2 will be referred to 
as DTLZ2 (6), DTLZ2 (8), and DTLZ2 (12) respectively.  

The simulated binary crossover (SBX) [9], a two-parent crossover operator that 
produces two new solutions, is used in this study. Similar to the study by Purshouse 
and Fleming [3], in this work, each decision variable x is independently considered 
for undertaking the variation operator. The probability of uniformly applying the 
variation operator on a certain decision variable is commonly set to a value of 0.5 
alongside a distribution parameter value ηc = 15 [8],[10] and a probability of applying 
variation to a certain pair of solutions pc = 1.  

The polynomial mutation operator [11] was also used and configured with the stan-
dard parameters for each of the DTLZ2 functions. The configuration of NSGA-II and 
NSGA-II/DMO is presented in Table 1 below.  

Table 1. NSGA-II and NSGA-II/DMO Configurations 

Size of Population 100 
Crossover operator SBX 

Mutation Operator 
Polynomial Mutation  

(probability: 1/(number of decision  
variables) 

Number of generations 200 
Number of Runs 10 

 
The performance of NSGA-II/DMO is assessed by comparing its results with those 

obtained by NSGA-II for each of the three versions of DTLZ2 deployed. In order to 
make a rigorous comparison of the two optimisers, NSGA-II/DMO and NSGA-II 
were each executed 10 times and their results were compared for each execution. The 
dominated distance metric (DD-Metric) [7] is one of two binary performance metrics 
used to assess the quality of the approximation sets achieved by NSGA-II/DMO and 
NSGA-II. The DD-metric calculates the difference of dominated distances between 
two approximation sets ‘A’ and ‘B’ produced by two MOEAs ‘A1’ and ‘A2’, for 
example, in the objective space. The dominated distance between an approximation 
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set ‘A’ and an approximation set ‘B’ (ddAB) is the sum of Euclidean distances be-
tween each solution Ai in ‘A’ and the closest solution Bi which belongs to the subset 
of ‘B’ that dominates Ai. The dominated distances ddAB and ddBA are calculated re-
spectively, and their difference forms the value of DD-Metric (A, B). 

The other binary metric deployed is the coverage metric (C-metric) [7], which cal-
culates the percentage of solutions in a certain approximation set that are dominated 
or equal to any solution in another competing approximation set.  

Moreover, the proximity of the solutions achieved by NSGA-II and NSGA-
II/DMO towards the Pareto front and their diversity across the region of interest (in 
this study the region of interest is the whole Pareto front) are assessed. The normal-
ised maximum spread metric (Equation 2) was used to measure the performance of 
the two optimisers in terms of the diversity quality of their produced results. The ideal 
diversity measure sought was Is =1 and represents an intermediate spread measure 
between the two extreme situations:  

1. Dispersal of solutions in sub-optimal regions of the objective space, and  
2. An approximation set confined to a specific region of the Pareto front. 

The convergence quality of the achieved approximation sets is assessed in terms 
of their proximity to the well-defined Pareto fronts (k-dimensional quadratic bowl in 
the positive quadrant of the unit sphere) of the DTLZ2 test function. A specialised 
proximity metric for DTLZ2 is used to measure the median proximity of the achieved 
approximation sets (ZA) to the Pareto fronts of each of the DTLZ2 versions investi-
gated. The proximity metric, presented in Equation (4), is the generational distance 
(GD) metric [12] for the case of a continuous Pareto optimal reference set Z*.  
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Finally, in order to illustrate the performance of the two optimisers in terms of the 
desired requirements, the Non-Dominated Evaluation metric [13] was used to simul-
taneously visualise the performance of the optimisers in terms of proximity to the 
Pareto front and in terms of diversity. The spread metric and the generational distance 
metric were posed as two objective functions evaluating two competing objectives: 
Objective 1: Convergence and Objective 2: Diversity. The problem can then be for-
mulated as a two-objective optimisation scenario optimising (minimising) these two 
objectives. As a result, the performance of an optimiser A would be confidently 
deemed superior to the performance of another optimiser B if its approximation set to 
the posed bi-objective optimisation problem dominates the approximation set 
achieved by B.  

The Non-dominated evaluation metric is illustrated in Figure 3 where it can be in-
ferred that optimiser A outperforms optimiser B in terms of convergence and diversity 
but it cannot be concluded that A outperforms C.  

In the following section, the results achieved by NSGA-II/DMO are illustrated  
and compared with the results achieved by NSGA-II for each of the test functions 
investigated.  
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Fig. 3. The Non-Dominated Evaluation Metric 

5   Results 

The final approximation sets achieved by NSGA-II/DMO and NSGA-II for each of 
the DTLZ2 test functions after 200 generations are contrasted. Each optimiser was 
executed 10 times in order to assess the significance of the observed results and to 
make sure that the observations have not arisen by chance. Table 2 contains the DD-
metric results and the C-metric results achieved by NSGA-II/DMO and NSGA-II for 
DTLZ2 (6). The two optimisers were similarly configured with the standard SBX and 
polynomial mutation parameters often used in the EMO community. The C-metric is 
not a symmetric indicator, and therefore in order to have a full appreciation of the 
relative quality of the two approximation sets, the metric had to be executed twice, 
switching the order of its input.  

Table 2. DD-metric and C-metric results for DTLZ2 (6) 

 DTLZ2 (6) 
A = NSGA-II/DMO AND B = NSGA-II 

Execution 
Number: 

C-Metric  
(A, B) 

C-Metric (B, 
A) 

DD-Metric 
(A, B) 

1 34% 0% -0.65711 
2 35% 0% -0.58455 
3 50% 0% -0.85758 
4 66% 0% -1.3793 
5 54% 0% -1.017 
6 47% 0% -0.73012 
7 44% 0% -0.70773 
8 46% 0% -0.88246 
9 47% 0% -0.88319 

10 51% 0% -0.81869 
Mean 

Value: 
47% 0% -0.8518 

A 

B 

C 

Spread 
Metric 

Convergence 
Metric 
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Form Table 2, it can deduced that the approximation sets achieved by NSGA-
II/DMO cover an average of 47% of the solutions achieved by NSGA-II over the 10 
runs. On the other hand, NSGA-II was repeatedly achieving nil coverage of the solu-
tions achieved by its DMO hybridized counterpart. 

The dominated distance metric uniformly produced results that highlight the supe-
rior quality of the approximation sets achieved by NSGA-II/DMO. A negative DD-
metric value denotes that the first input of the metric (e.g. Algorithm A in DD-Metric 
(A, B)) produced an approximation set which is overall better than and dominates 
most of the approximation set produced by its second input (Algorithm B). 

In Figure 4, the black circles, whose (x, y) coordinates are the values of the GD-
metric and the maximum spread indicator respectively, represent the values of the 
non-dominated evaluation metric achieved by NSGA-II/DMO at each of the 10 exe-
cutions of the optimiser solving DTLZ2 (6). The values of the non-dominated evalua-
tion metric achieved by NSGA-II for the same optimisation scenario are represented 
by the black squares. The values of the GD metric achieved by NSGA-II/DMO over 
the 10 runs are consistently lower than 0.1 and are accompanied by spread measures 
with an approximate ceiling value of 2. 
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Fig. 4. Comparing NSGA-II/DMO with NSGA-II when optimising DTLZ2 (6) 

The observed results highlight good proximity to the Pareto front alongside a si-
multaneous near-optimal diversity (the optimal value for the diversity is 1 and corre-
sponds to the diversity value of the true Pareto front). On the other hand, the GD 
values achieved by NSGA-II over the 10 runs consistently exceed the value 0.2 
alongside an average diversity measure of 6. From the results illustrated in Figure 4, it 
is clear that the performance of NSGA-II/DMO is superior to the performance of 
NSGA-II in terms of both requirements (convergence to the Pareto front and desired 
diversity). The results achieved by NSGA-II are much more diverse in terms of  
 

DMO 
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Table 3. DD-metric and C-metric results for DTLZ2 (8) 

 DTLZ2 (8) 
A = NSGA-II/DMO AND B = NSGA-II 

Execution 
Number: 

C-Metric 
(A, B) 

C-Metric 
(B, A) 

DD-Metric 
(A, B) 

1 45% 0% -1.028 
2 25% 0% -0.55142 
3 57% 0% -1.3388 
4 59% 0% -1.3333 
5 31% 0% -0.70815 
6 35% 0% -0.77246 
7 40% 0% -0.84258 
8 37% 0% -0.76733 
9 42% 0% -0.90902 

10 19% 0% -0.42073 
Mean Value: 39% 0% -0.8672 
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Fig. 5. Comparing NSGA-II/DMO with NSGA-II when optimising DTLZ2 (8) 

dispersal in the 6-dimensional objective space. Nevertheless, absolute diversity, 
which can be achieved using a completely random search process, is undesirable in 
many-objective optimisation scenarios and once again led to the deterioration of the 
convergence of the search process towards the optimal regions of the space. 

Similar to the results achieved for DTLZ2 (6), the results achieved for DTLZ2 (8) 
highlight a significantly superior performance of NSGA-II/DMO when compared 
with the performance of NSGA-II. The values of the C-metric and the DD-metric 
achieved by NSGA-II/DMO and NSGA-II, each optimising DTLZ2 (8), are illus-
trated in Table 3. The same observations highlight the superior performance of 
NSGA-II/DMO (higher coverage and lower dominated distances) may be made.  

Figure 5 again demonstrates the superiority of NSGA-II/DMO over NSGA-II 
when a fine-grained analysis of the convergence and the diversity requirements is 

DMO 
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performed simultaneously. The results achieved by NSGA-II/DMO are significantly 
better than the results achieved by NSGA-II for the 8-objective optimisation problem, 
highlighting the beneficial impact and utility of the DMO. 

In Table 4, the values of the C-metric and the DD-metric achieved at each execu-
tion of A and B are respectively presented. This time the optimisers are solving a 12-
objective version of the DTLZ2 test function. The same conclusions drawn from the 
6- and 8-objective scenarios are achieved for the 12-objective scenario. The results of 
the non-dominated evaluation metric for the 12-objective scenarios are presented in 
Figure 6. The significantly superior performance of the NSGA-II/DMO in terms of 
convergence and diversity is again apparent.   

Table 4. DD-metric and C-metric results for DTLZ2 (12) 

 
DTLZ2 (12) 

A = NSGA-II/DMO and B = NSGA-II 
Execution 
Number: 

C-Metric  
(A, B) 

C-Metric 
(B, A) 

DD-Metric 
(A, B) 

1 8% 0% -0.18421 
2 17% 0% -0.42636 
3 7% 0% -0.17411 
4 20% 0% -0.4973 
5 3% 0% -0.070199 
6 6% 0% -0.15524 
7 12% 0% -0.3052 
8 19% 0% -0.4975 
9 17% 0% -0.44757 

10 12% 0% -0.29128 
Mean Value: 12% 0% -0.3049 
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Fig. 6. Comparing NSGA-II/DMO with NSGA-II when optimising DTLZ2 (12) 
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NSGA-II/DMO significantly out-performs NSGA-II by producing overall better 
quality approximation sets in terms of convergence and ‘good’ desired diversity for 
DTLZ2 (3), (8) and (12).  

6   Conclusions 

From the set of experiments presented in this study, the success of the diversity man-
agement operator was established on a set of many-objective optimisation problems. 
The DMO is a beneficial strategy that addresses the conflict between the EMO re-
quirement for good proximity towards the Pareto front and the requirement for main-
taining a diverse set of solutions. Additionally, the DMO was demonstrated to be 
highly beneficial for controlling the diversity requirement which usually hampers the 
search process and, therefore, the convergence of the manipulated solutions to the 
Pareto front of a MOP with many conflicting objectives.  

NSGA-II/DMO significantly and repeatedly outperformed NSGA-II by producing 
solutions closer to the Pareto front and maintaining a near-optimal and desired diver-
sity among the solutions, for a set of many-objective optimisation problems (6 to 12 
objectives). DMO was exercised on a set of test functions with well-defined Pareto 
fronts. Nevertheless, the strategy can be used to solve any multiobjective optimisation 
problem which is tackled by a MOEA. The DMO is a simple and efficient strategy 
with minimal computational overhead. The decision maker is only required to provide 
an approximate, targeted or desired, value for the extreme solutions (in terms of each 
objective) in the objective space.  These solutions will serve to define an approxima-
tion to the vertices of the hypercube which contains the desired region of interest, and 
therefore define the notion of a ‘good’ diversity. Note that these suggested vertices 
will solely play a role defining the notion of a desired diversity measure in order to 
efficiently control the diversity promotion mechanisms in a MOEA and guide the 
search towards the Pareto-optimal front. If necessary, the notion of a ‘desired’ or 
‘good’ diversity can then be progressively and appropriately modified using a pro-
gressive preference articulation technique such as the technique by Fonseca and Flem-
ing [14] or Branke and Deb [15]. Future work will include assessing the performance 
of the DMO in MOEAs with more elaborate diversity promotion mechanisms such as 
the Genetic Diversity Evolutionary Algorithm (GDEA) [16] and SPEA2 [17]. Alter-
natives to the maximum spread metric used in this paper will also be investigated and 
used within the DMO to control the diversity extent and uniformity. 
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Abstract. In multi-criterion optimization, Pareto-optimal solutions
that appear very similar in the objective space may have very differ-
ent pre-images. In many practical applications the decision makers, who
select a solution or preferred region on the Pareto-front, may want to
know different pre-images of the selected solutions. Especially, this will
be the case when they would like to present alternative design candidates
in later stages of a multidisciplinary design process.

In this paper we extend an existing CMA-ES niching framework,
which has been previously applied successfully to multi-modal optimiza-
tion, to the multi-criterion domain for boosting decision space diversity.
At the same time, we introduce the concept of space aggregation for
diversity maintenance in the aggregated spaces, i.e. search/decision and
objective space. Empirical results on synthetic multi-modal bi-criteria
test problems with known efficient sets and Pareto-fronts demonstrate
that the diversity in the decision space can be significantly enhanced
without hampering the convergence to a precise and diverse Pareto front
approximation in the objective space of the original algorithm.

1 Introduction

Pareto-optimization aims at solving optimization problems with multiple, pos-
sibly conflicting, objective functions [1]. The general approach is to find non-
dominated solution sets and, especially in continuous spaces, approximate true
Pareto-fronts of the problem. It is important in the context of this paper to
distinguish between the Pareto-front and the efficient set. While the former de-
notes the set of non-dominated points in the objective space, the latter refers to
the set of vectors in the search space that are pre-images of the points in the
Pareto-front under the mapping of the vector-valued objective function. At the
same time, multiple points in the efficient set may be projected onto the same
point on the Pareto-front. Moreover, unless certain continuity assumptions on
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c© Springer-Verlag Berlin Heidelberg 2009



96 O.M. Shir et al.

the objective functions hold, there is no evidence that neighboring points on the
Pareto-front stem from the same region of the decision space. This scenario is
illustrated in Figure 1. Therefore, attaining a set of solutions that covers the
entire Pareto-front does not necessarily guarantee obtaining a set that yields a
good coverage of the decision set. Moreover, diversity of an approximation set
to the Pareto front in the objective space does not necessarily imply diversity
of solutions in its corresponding efficient set approximation, though the latter is
desirable.

Decision Space Objective Space

Fig. 1. Diversity for decision making : Illustrative example for a scenario where two
adjacent points on the Pareto front are mapped onto two points in two completely
different regions in the decision space. Units and scales are arbitrary.

1.1 Motivation

Indeed, it has been pointed out recently that not only high diversity of solutions
in the objective space but also high diversity of solutions in the efficient set can
be of interest for decision makers [2,3]. We choose to furthermore motivate this
idea with the following two examples:

– Firstly, let us consider the problem of finding molecules with certain prop-
erties that can serve as drug candidates in a de novo drug discovery process
[4,5]. Clearly, the approximation of different target properties can be formu-
lated as a multi-objective optimization task. However, once a set of molecules
has been found that has a good spread over the Pareto front, there may still
be molecules that violate some constraints that had not been considered by
the expert. In such cases, alternative solutions with similar properties, would
be of interest.

– A second example is multidisciplinary optimization processes in the auto-
motive or aerospace industries [6,7], that follow a restricted design process
workflow. Here, different development teams focus on different aspects of a
design and come up with a set of solutions that are favorable from the point
of view of their discipline to discuss these solutions with experts from other
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disciplines until a consensus design is found. Also in this case it would be
desirable for the decision maker to identify different possible solutions that
map to the preferred region on the Pareto front, as the objectives of the
other disciplines cannot be evaluated a priori.

1.2 Background

Up to date, there has been very few work that addressed search space diversity
in Evolutionary Multiobjective Optimization (see, e.g., [2,6,8,9]). Apart from
this, current benchmarks do not consider this issue in the way performance is
evaluated. This paper presents a wholehearted attempt to increase decision space
diversity in existing state-of-the-art Evolutionary Multiobjective Optimization
Algorithms (EMOA).

Based on related studies in multi-modal optimization, the modification of the
selection criteria alone is not sufficient to boost diversity in the decision space.
This is due to the fact that Evolutionary Algorithms (EAs) tend to lose their
population diversity for several reasons, such as genetic drift, fast takeover, and
disruptive recombination [10]. This problem is typically addressed by Niching
methods, an extension of EAs to multi-modal optimization [11,12]. These meth-
ods allow for parallel convergence into multiple good solutions. Niching has been
traditionally investigated within Genetic Algorithms (GAs) [11], but recently
there were several studies of niching in Evolution Strategies (ES), especially as
combined with the Covariance Matrix Adaptation ES (CMA-ES; See, e.g., [13]).
The obtained ES-based niching techniques proved to be robust and efficient
strategies for identifying multiple global optima in degenerate landscapes, and
were successfully applied to synthetic as well as to real-world high-dimensional
problems [14].

1.3 Overview

The new approach reported in this paper introduces two conceptual changes to
the selection strategy of EMOA: The first is the employment of an aggregated
diversity measure that takes into account the local density of solutions in the
decision space with the local density in the objective space. However, aggrega-
tion alone would not be sufficient to prevent fast takeover and drift effects from
occurring. These effects are already known to cause a rapid loss of diversity in
ordinary EA/EMOA in early stages of the evolution, where Pareto domination
rather than contribution to diversity is still the governing criterion for selection.
Therefore, we consider the introduction of dynamic niching using resource shar-
ing, also referred to as the dynamic niching framework, as the second element,
due to counteract the aforementioned effects.

As a proof of concept for the new approach, we shall present in this paper
empirical results on synthetic multi-modal bi-criteria test problems with known
efficient sets and Pareto-fronts. We will demonstrate that diversity in the decision
space can be significantly enhanced without hampering the convergence to a di-
verse Pareto front approximation in the objective space of the original algorithm.
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As reference methods, we will report on the performance of the multi-criterion
version of the CMA-ES (referred to in our notation as CMA-MO) [15], as well
as the NSGA-II and its derived variants [16,2] on the same test problems.

The paper is organized as follows: In section 2 we discuss related work. The
algorithmic approach is outlined in section 3. Then, in section 4, the proposed
scheme is evaluated on test problems. Finally, in section 5 we summarize our
findings and suggest directions for future research.

2 Related Work

We review here several related studies to our work. Due to the crossing-branches
nature of our work, these treat the topics of niching and multi-objective opti-
mization.

Niching techniques have been already used in the multi-objective optimization
arena, earlier. Horn et al. introduced a niching technique for multi-objective
optimization, known as the niched-Pareto GA (NPGA) [17]. The algorithm was
a variant of the fitness sharing niching method, whereas the niching distance
metric was set to consider the objective space only. Selection was based on so-
called Pareto domination tournaments or on the minimal niche count, otherwise.
The NPGA was a classical example of using an existing single-objective niching
technique, in a straightforward manner, for multi-objective optimization – only
by redefining the niching distance metric and the selection mechanism. However,
its kernel was the simple GA and it lacked any self-adaptation mechanism.

A multi-objective approach aiming for a good diversity in decision as well
as in objective space was the GDEA, as introduced by Toffolo and Benini [9].
GDEA invoked two selection criteria, non-dominated sorting as the primary one
and a metric for decision space diversity as the secondary one.

Another approach, the so-called Omni-Optimizer [2], extended the classical
NSGA-II [16] by considering the diversity in the decision space additionally. Its
selection is performed with a changing secondary selection criterion, targeting
either the decision or the objective space diversity in each generation.

An EMOA approach designed for maintaining diversity in both spaces is the
KP1, as proposed by Chan and Ray [8]. Here, two criteria to measure the di-
versity of solutions in the corresponding spaces are defined and applied in each
generation. These are the dominated hypervolume of each individual for the
objective space and a neighborhood counting approach for the decision space.

A more structural analysis of the correlation between decision and objective
space in multi-objective optimization has been introduced lately [3,18], while fo-
cusing on defining different test functions and analyzing the algorithmic behavior
on them.

3 The Algorithmic Approach

Before introducing the new framework we would like to review some of its compo-
nents, and in particular the extension of the CMA-ES into multi-modal domains
by means of a specific niching technique.
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The CMA-ES (see, e.g., [13]), is a derandomized ES variant that has been
successful in treating correlations among object variables by efficiently learn-
ing matching mutation distributions. Explicitly, in generation g, λ offspring are
generated by means of Gaussian sampling:

x
(g)
k ∼ N

(
〈x〉(g−1)

W , σ(g−1)2C(g−1)
)

k = 1, . . . , λ (1)

The best μ search points out of these λ offspring undergo weighted recombi-
nation and become the parent of the following generation, denoted by 〈x〉(g)

W .
The covariance matrix C(g) is initialized as the unity matrix and is learned dur-
ing the course of evolution, based on cumulative information of successful past
mutations (the so-called evolution path). The global step-size, σ(g), is updated
based on information extracted from principal component analysis of C(g) (the
so-called conjugate evolution path). For more details we refer the reader to [13].

A niching framework for
(
1 +, λ

)
derandomized-ES kernels subject to a fixed

niche radius has been introduced recently (see, e.g., [14]). This framework con-
siders q search points, which carry their defining strategy parameters (referred
to as CMA-Sets or D-Sets), and correspond to sub-populations operating in dif-
ferent parts of the search space (niches). The niches and their representatives
are re-formed in each generation using the dynamic peak identification (DPI)
routine [14]. It takes into account both the ranked fitness of the individuals as
well as the spatial distance between them; For the spatial selection, a niche ra-
dius must be defined a priori [14]. Individuals that belong to the same niche are
located in a hyper-sphere, defined by that radius, around the central individ-
ual, namely the peak individual. Unlike previous CMA-Niching ES, this study
will introduce multiple parents in each niche, subject to (μW , λ) selection with
weighted recombination according to the standard formulas [19]. Sizing the niche
population is done with λ = 4 + �3 · ln (n)�, μ = �λ

2 �, with n as the search space
dimensionality, following the recommendation in [19] (for further argumentation
see also [13]). To this end, we choose to define the additional selected offspring
as the set of at most �λ

2 � − 1 individuals that are within niche radius from the
peak individual and share its same parent. This way, it is guaranteed that the
ES mutation distribution evolves continuously. Since the value of μ may vary
over time, other auxiliary coefficients must be updated accordingly, such as the
recombination weights. Algorithm 1 summarizes the Niching-CMA routine.

The proposed multi-objective routine uses the Niching-CMA scheme as it is,
with the following modifications:

– ranking of individuals is based upon non-dominated sorting.
– distance between niches is calculated in the aggregated space.
– the estimation of the niche radius is adjusted.

Given the n-dimensional decision vector of individual k, xk = (xk,1, ..., xk,n),
with its assigned objective d-dimensional vector, fk = (fk,1, ..., fk,d), and given
the equivalent decision and objective vectors of individual l, (xl, f l), the dis-
tance between individuals k, l is defined as follows:



100 O.M. Shir et al.

Algorithm 1. (μw, λ)-CMA-ES Niching with Fixed Niche Radius
1: for i = 1, . . . , q search points do
2: Generate λ samples based on the CMA-Set of individual i
3: end for
4: Evaluate fitness of the population
5: Compute the Dynamic Peak Set (DPS) with the DPI Routine
6: for j = 1..q elements of DPS do
7: Identify at most μ = �λ

2
� fittest individuals of niche j with Parent(peak(j))

8: Apply weighted recombination on xw and zw w.r.t. those individuals
9: Inherit the CMA-Set of peak(j) and update it w.r.t. the variations carried out

10: end for
11: if Ndps=size of DPS < q then
12: Generate q − Ndps new search points, reset CMA-Sets
13: end if

dk,l =

√√√√ 1
n

n∑
i=1

(xk,i − xl,i)2 +
1
d

d∑
j=1

(fk,j − fl,j)2 (2)

It is implicitly assumed that decision parameters and objective function values
are scaled within a common order of magnitude. In order to select individuals
based on multiple objectives, the selection mechanism was modified. As outlined
before, the niches are identified based on their ranked quality, which is imple-
mented here by means of non-dominated sorting [16]. Following this, the routine
will proceed as usual: Starting with rank 0, a greedy identification of the niches
will be carried out, considering the distance with respect to the aggregated ob-
jective and decision spaces. If not all q niches are populated, the routine will
proceed to rank 1, and so on.

Comparison. The uniqueness of the proposed approach with respect to the
mainstream EMOA lies in two main aspects: Firstly, the employment of a single
selection phase, rather than two, and secondly, the consideration of space aggre-
gation for the sake of diversity measurement. Moreover, this method differs from
the CMA-MO algorithm in its ES mechanism: Unlike the elitist single-parent
(1 + λ)-kernel of the CMA-MO, the proposed scheme employs a comma multi-
parent (μW , λ)-kernel, which may be advantageous in certain environments.

Setting a Default Value for the Niche Radius. Since our method aims to
approximate the Pareto front by populating it with a uniform distribution of q
niches, we can estimate the niche radius, whenever the aim is to distribute the
niches evenly across the search space. The following derivations are valid for 2D
objective spaces, but we believe that they could be generalized to d-dimensional
spaces. Consider a connected Pareto front, and assume that we can define its
length, denoted by lFRONT . Also, let the diameter of the Pareto set be denoted
by lSET . Upon demanding a uniform distribution of niches, one may write:

2 · ρ · q =
√
l2FRONT + l2SET (3)
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Simplified Model. One can consider a simplified model for providing an upper
and a lower bounds for ρ, by taking into account only the objective space. For
this purpose let us consider the Nadir objective vector, denoted here as ζ(N ) =
(f1,N , f2,N )T . In the general d-dimensional objective space, the Nadir objective
vector is defined as the vector with the worst objective values of all Pareto
optimal solutions (as opposed to the worst objective values of the entire space):

ζ
(N )
i = max

{
fi

∣∣∣(f1, . . . , fi, . . . , fd)
T ∈ FN

}
. (4)

The Nadir objective vector can be computed for d = 2 by employing single-
objective optimization. For d > 2, heuristics are available, but the problem is
considered to be computationally hard [20].

Without loss of generality, assume that the objectives {f1, f2} are assigned
with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respectively. The
length of the assumably-connected Pareto front has the following lower and
upper bounds:

lFRONT,min =
√(

(f1,N − f1,min)2 + (f2,N − f2,min)2
)

lFRONT,max = |f1,N − f1,min| + |f2,N − f2,min|
(5)

Hence, upon assuming a uniformly spaced population of the q niches along the
front, one can derive√(

(f1,N − f1,min)2 + (f2,N − f2,min)2
)

2 · q ≤ ρ ≤ |f1,N − f1,min| + |f2,N − f2,min|
2 · q (6)

The General Case. For the general case, we choose to define the default values
as the diameters of the decision or the objective spaces, respectively:

rSET =

√√√√ n∑
i=1

(xi,max − xi,min)2 rFRONT =

√√√√ d∑
j=1

(fj,max − fj,min)2 (7)

and thus

ρ =

√∑n
i=1 (xi,max − xi,min)2 +

∑d
j=1 (fj,max − fj,min)2

2 · q (8)

The niche radius is essentially a crucial parameter of this method, and its esti-
mation or tuning is critical for the algorithmic success.

4 Experimental Analysis

Our aim is to provide a proof of concept for the proposed aggregation approach:
Concerning the achieved decision space diversity of the generated results, an
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originally single-objective method enhanced by the aggregation scheme shall
generally be competitive to any multi-objective algorithm designed for that pur-
pose, and superior to any standard multi-objective algorithm. We therefore focus
our experimental procedure on landscapes with interesting decision space char-
acteristics, that is, functions with several pre-images for certain points in the
efficient set (non-injective functions).

4.1 Test Functions: Non-injective Artificial Landscapes

The following set of bi-objective functions is considered in order to test the al-
gorithmic performance. Not many more test problems with these characteristics
are known to us, however the chosen four still have very different properties.

1. Omni-Test by Deb. Deb et al. constructed a bi-criteria multi-global land-
scape for testing their Omni-Optimizer [2]. Explicitly, it reads:

f1(x) =
n∑

i=1

sin (πxi) −→ min, f2(x) =
n∑

i=1

cos (πxi) −→ min (9)

where ∀i xi ∈ [0, 6]. We consider n = 5.
2. EBN. The EBN family of functions [21] introduced a very basic set of test-

problems for multi-objective algorithms. Explicitly, it reads:

f
(γ)
1 (x) =

(
n∑

i=1

|xi|
)γ

·n−γ → min, f
(γ)
2 (x) =

(
n∑

i=1

|xi − 1|
)γ

·n−γ → min

(10)
The EBN problems are attractive in the context of efficient set approxima-
tion, as the pre-images of points in the objective space are not single points,
but rather line segments on the diagonals of [0, 1]n, excepting the extremal
points (0, 1)T and (1, 0)T [22]. Each point in [0, 1]n is efficient. In our study
we consider the case of a linear Pareto front, γ = 1, with n = 10.

3. “Two-on-One”. This test-case was originally introduced in an interesting
study of the Pareto-optimal set [18], large parts of which have two pre-
images. It is a two-dimensional function, with a 4th-degree polynomial with
two minima as f1 versus the sphere function as f2:

f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − gx1x2 + hx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min
(11)

We consider the asymmetric case, with g = 10, h = 0.25, k = 0, and l = 0
(case number 3 as reported in [18]).

4. Lamé Superspheres. We consider a multi-global instantiation of a family
of test problems introduced by Emmerich and Deutz [23], the Pareto fronts of
which have a spherical or super-spherical geometry. In contrast to the EBN
problem, the set of pre-images of a point on the Pareto front for this instance
is finite, and solutions are placed on equidistant parallel line-segments, with
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Table 1. Hypervolume of the resulting Pareto fronts of the 5 different algorithms on
the 4 test-cases: average and standard-deviation over 30 runs

Hypervolume Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Omni-Test 30.27 ± 0.05 30.43 ± 0.002 30.17 ± 0.034 29.81 ± 0.2 29.72 ± 0.20
EBN 3.295 ± 0.038 3.489 ± 0.001 3.30 ± 0.082 2.848 ± 0.173 2.058 ± 0.064

Two-on-One 173.44 ± 0.14 174.52 ± 0.005 172.59 ± 1.53 171.58 ± 2.1 168.24 ± 7.72
Superspheres 3.172 ± 0.037 3.205 ± 0.007 3.203 ± 0.001 3.109 ± 0.108 2.481 ± 0.375

Table 2. Decision-space diversity, as defined in Eq. 13, of the 5 different algorithms
on the 4 test-cases: average and standard-deviation over 30 runs. See also Figure 2.

Diversity Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Omni-Test 0.247 ± 0.061 0.042 ± 0.028 0.191 ± 0.085 0.207 ± 0.065 0.0301 ± 0.002
EBN 0.484 ± 0.007 0.424 ± 0.010 0.412 ± 0.023 0.357 ± 0.027 0.012 ± 0.010

Two-on-One 0.296 ± 0.012 0.113 ± 0.002 0.183 ± 0.102 0.162 ± 0.088 0.093 ± 0.032
Superspheres 0.412 ± 0.022 0.115 ± 0.019 0.224 ± 0.046 0.307 ± 0.049 0.0729 ± 0.060

integer distances to each other, each of them being a pre-image of a local
Pareto front. Let ξ = 1

n−1

∑n
i=2 xi, and r = sin2(π · ξ),

f1 = (1 + r) · cos(x1) −→ min f2 = (1 + r) · sin(x1) −→ min (12)

with x1 ∈
[
0, π

2

]
, and xi ∈ [1, 5] for i = 2 . . .n. We consider here n = 4.

4.2 Experiment

For presentation of the experimental results, we adhere to the structured report-
ing scheme suggested in [24], starting with the scientific question to answer.

Research Question. Does aggregation-niching boost decision space diversity?

Pre-Experimental Planning. Within first test runs, we found that a Pareto
front of size 50 provides a meaningful compromise between speed and solution
quality, especially for the purpose of visually examining the resulting solution
sets. Most of the considered algorithms ran into stagnation after less than 50.000
evaluations, so that we chose this limit for the following experiment.

In order to assess the diversity in decision space, we set up and tested a
corresponding quantifier. Given a population of size μN , we define the population
diversity of the Pareto set as the mean value of the μN (μN−1)

2 Euclidean distances
between all individuals, normalized by the diameter R of the decision space:

D =
2

R · μN (μN − 1)
·
∑
A �=B

‖xA − xB‖ (13)
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Table 3. Calculation of the U-Test for the 4 landscapes for the 5 different algorithms.
The tables contain calculations for both performance criteria: p-values for the diversity
measure are presented in the upper-right part of the table; p-values for the hypervolume
measure are presented in the lower-left part. Highlighted values indicate where the null
hypothesis cannot be rejected at the 5% significance level (no difference).

Omni-Test
p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 5.49e-11 0.0117 0.0199 3e-11
CMA-MO 3.02e-11 5.19e-07 5.07e-10 0.0138
NSGA-II 6.01e-08 3.02e-11 0.684 7.66e-08

NSGA-II-Agg. 3.02e-11 3.02e-11 3.02e-11 1.94e-10
Omni-Opt. 3e-11 3e-11 3e-11 3e-11

EBN
p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 3.02e-11 3.02e-11 3e-11
CMA-MO 3.02e-11 0.017 3.69e-11 3e-11
NSGA-II 0.971 3.02e-11 2.23e-09 3e-11

NSGA-II-Agg. 3.02e-11 3.02e-11 3.02e-11 3e-11
Omni-Opt. 3e-11 3e-11 3e-11 3e-11

Two-on-One
p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 6.36e-05 5.46e-09 3.02e-11
CMA-MO 3.02e-11 0.00868 0.865 0.0701

NSGA-II 0.000377 9.51e-06 0.122 4.94e-05
NSGA-II-Agg. 0.000141 8.48e-09 0.0451 0.00907

Omni-Opt. 3.02e-11 3.02e-11 3.02e-11 3.02e-11
Super-Spheres

p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 3.02e-11 2.37e-10 3.02e-11
CMA-MO 6.72e-10 9.91e-11 3.02e-11 5.86e-06
NSGA-II 1.61e-06 8.48e-09 2.19e-07 2.22e-09

NSGA-II-Agg. 0.00152 8.99e-11 3.02e-11 4.97e-11
Omni-Opt. 3.02e-11 3.02e-11 3.02e-11 3.02e-11

Task. We demand that the aggregation enhanced algorithms perform better
than their non-aggregating counterparts in terms of diversity. Statistically, they
should be better in at least 3 of 4 cases (U-test 5% level). Furthermore, they
should perform as well as multi-objective algorithms specifically designed for
keeping decision space diversity high (not worse at 5%) while keeping the hy-
pervolume metric performance at a competitive level (this task is secondary and
therefore not specified in detail).

Setup. We ran the proposed aggregation-enhanced niching method (Niching-
CMA) against four reference methods: The CMA-MO [15], the NSGA-II [16], the
Omni-Optimizer [2], and a variant of the NSGA-II which considers an aggregated
space in the crowding calculations (referred to as NSGA-II-Agg). The latter
routine is created from the standard NSGA-II in order to assess the importance
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Fig. 2. Measured diversities in 30 runs of each of the 5 algorithms on Omni-test (upper
left), EBN (upper right), the Two-on-one (lower left), and Super-Spheres (lower right)
test problems

of the aggregation concept for attaining decision space diversity. All 5 methods
are run on all 4 test problems of section 4.1 with 30 repeats each. We are aware
that the enforced small populations may not be optimal for all algorithms; the
Omni-Optimizer, for instance, was reported in [2] to employ a population of
1, 000 individuals. However, apart from these settings, we rely on default values.

Experimentation/Visualization. Figures 3 and 4 show typical outcomes of
the resulting approximated Pareto-sets and Pareto-fronts. Note that the decision
space is represented by plotting x1 versus x2, except for the Superspheres test-
case where x1 is plotted versus 1

(n−1) ·
∑n

i=2 xi.
Table 1 provides the S-metric results, following 2D hypervolume calculations

for test-cases 1-4 with reference points {(1, 1), (2, 2), (35, 7), (2, 2)}, respectively;
Table 2 presents the calculations of the decision space diversity as defined in Eq.
13. Figure 2 contains the box-plots for the latter table. Furthermore, Table 3
presents the p-values for Mann-Whitney U-Tests for both the hypervolume as
well as the diversity criterion, between all 5 algorithms on all 4 test problems.

Observations. In the Omni-Test landscape, Niching-CMA performed very well,
while typically obtaining 4 Pareto subsets, in comparison to one or two subsets
for each of the other routines. In the EBN landscape, Niching-CMA attained
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Fig. 3. Final populations of the 5 algorithms in the decision spaces of the 4 different
landscapes. Note that the decision space is represented by plotting x1 versus x2, except
for the Superspheres test-case where x1 is plotted versus 1

(n−1)
·∑n

i=2 xi. Columns,
from left to right, present the algorithms in the following order: Niching-CMA, CMA-
MO, NSGA-II, NSGA-II-Agg, Omni-Opt. First row presents the Omni-Test problem,
followed by the EBN, 2-on-1, and Superspheres.

a quasi-uniform distribution in the decision space. In the ”Two-on-One” land-
scape, the proposed algorithm managed to explore both branches of the so-called
propeller-shaped Pareto-set (for more details see [18]), while the other algorithms
typically explored either one of the two branches. In the Super-Spheres land-
scape, Niching-CMA performed extremely well, while obtaining a good distri-
bution of typically 3 Pareto subsets. The other methods, nevertheless, usually
obtained a single Pareto subset. This is clearly observed in the fourth row of Fig-
ure 3, where the final population of the these algorithms is mostly concentrated
along a single line, corresponding to a single Pareto subset.

Discussion. Generally speaking, the proposed algorithm performs in a satis-
fying manner, obtaining good Pareto-sets with high diversity in the decision
space, which are mapped onto well-approximated Pareto-fronts. In terms of
the performance criterion in the objective space, the S-metric (hypervolume),
CMA-MO did best on all test problems, whereas Niching-CMA and NSGA-II
performed slightly worst and equally well, and NSGA-II with aggregation and
Omni-Optimizer showed slightly worse performance. Regarding the diversity in
the decision space, the proposed algorithm accomplished its goal: It attained
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Fig. 4. Final populations of the 5 algorithms in the objective spaces of the 4 different
landscapes, f1 plotted versus f2. Columns, from left to right, present the algorithms
in the following order: Niching-CMA, CMA-MO, NSGA-II, NSGA-II-Agg, Omni-Opt.
Rows from top to bottom: Omni-Test problem, EBN, 2-on-1, and Superspheres.

higher decision space diversity in comparison to the other methods on all land-
scapes. The CMA-MO, the S-metric winner, did not attain high decision space
diversity; This is not a surprising result, as it is not meant to target this goal.

It should be noted that introducing the aggregation component into the
NSGA-II did improve the attained decision space diversity to some extent on
two landscapes, but did not have a considerable contribution. We may conclude
that considering the aggregated space by itself does not seem to be sufficient for
attaining high diversity in the decision space. We rather consider it as a bridge
for niching to multi-objective domains. The Omni-Optimizer performed compa-
rably poor in terms of the attained decision space diversity, and it is likely due
to being hampered by the small population size.

5 Summary and Outlook

This paper addressed the topic of decision space diversity in the framework of
Evolutionary Multi-Objective Algorithms. After providing the reader with the
motivation for this study, and reviewing the existing work done on this topic,
we outlined a new approach which aims at tackling multi-criterion problems
while boosting diversity in the efficient set. The proposed algorithm relied on an
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existing CMA-based niching technique, which required adjustments in the selec-
tion scheme and the diversity measure. Due to the fact that it is a niche-radius
based method, we proposed a way to choose a default value for this parame-
ter. The algorithm was applied to a test-bed of non-injective artificial bi-criteria
landscapes of various dimensions, and compared to the multi-objective CMA as
well as to the classical GA-based EMOA: NSGA-II and its variants. The ob-
served numerical results were satisfying, and provided us with the desired proof
of concept for the proposed method. Furthermore, we concluded that employing
space aggregation solely does not seem to be sufficient for attaining decision
space diversity, and that niching could be the required bridging mechanism for
multi-objective optimization. It should be noted that the GA-based methods
performed poorly, likely due to the small population sizes that are typically
employed by ES-based algorithmic kernels. Future research will be needed to
test the approach on higher dimensional objective spaces and to explore various
possibilities for parametrization and instantiation of the proposed approach.
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Abstract. Bilevel optimization problems require every feasible upper-
level solution to satisfy optimality of a lower-level optimization
problem. These problems commonly appear in many practical prob-
lem solving tasks including optimal control, process optimization, game-
playing strategy development, transportation problems, and others. In
the context of a bilevel single objective problem, there exists a number
of theoretical, numerical, and evolutionary optimization results. How-
ever, there does not exist too many studies in the context of having
multiple objectives in each level of a bilevel optimization problem. In
this paper, we address bilevel multi-objective optimization issues and
propose a viable algorithm based on evolutionary multi-objective opti-
mization (EMO) principles. Proof-of-principle simulation results bring
out the challenges in solving such problems and demonstrate the via-
bility of the proposed EMO technique for solving such problems. This
paper scratches the surface of EMO-based solution methodologies for
bilevel multi-objective optimization problems and should motivate other
EMO researchers to engage more into this important optimization task
of practical importance.

1 Introduction

In evolutionary optimization, a few studies have considered solving bilevel pro-
gramming problems in which an upper level solution is feasible only if it is
one of the optimum of a lower level optimization problem. Such problems are
found abundantly in practice, particularly in optimal control, process optimiza-
tion, transportation problems, game playing strategies, reliability based design
optimization, and others. In such problems, the lower level optimization task
ensures a certain quality or certain physical properties which make a solution
acceptable. Often, such requirements come up as equilibrium conditions, stabil-
ity conditions, mass/energy balance conditions, which are mandatory for any
solution to be feasible. For example. in reliability based design optimization, a
feasible design must correspond to a certain specified reliability against failures.
� Also Department of Mechanical Engineering, Indian Institute of Technology Kanpur,

PIN 208016, India (deb@iitk.ac.in).

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 110–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Solving Bilevel Multi-Objective Optimization Problems 111

Solutions satisfying such conditions or requirements are not intuitive to obtain,
rather they often demand an optimization problem to be solved. These essen-
tial tasks are posed as lower level optimization tasks in a bilevel optimization
framework. The upper level optimization then must search among such reliable,
equilibrium or stable solutions to find an optimal solution corresponding to one
or more different (higher level) objectives.

Despite the importance of such problems in practice, the difficulty of search-
ing and defining optimal solutions for bilevel optimization problems [7] exists.
Despite the lack of theoretical results, there exists a plethora of studies related
to bilevel single-objective optimization problems [1,3,12,15] in which both up-
per and the lower level optimization tasks involve exactly one objective each.
Despite having a single objective in the lower level task, usually in such prob-
lems the lower level optimization problem has more than one optimum. The goal
of a bilevel optimization technique is then to first find the lower level optimal
solutions and then search for the optimal solution for the upper level optimiza-
tion task. In the context of bilevel multi-objective optimization studies, however,
there does not exist too many studies using classical methods [8] and none to
our knowledge using evolutionary methods, probably because of the added com-
plexities associated with solving each level. In such problems, every lower level
optimization problem has a number of trade-off optimal solutions and the task of
the upper level optimization algorithm is to focus its search on multiple trade-off
solutions which are members of optimal trade-off solutions of lower level opti-
mization problems.

In this paper, we suggest a viable evolutionary multi-objective optimization
(EMO) algorithm for solving bilevel problems. We simulate the proposed algo-
rithm on five different test problems, including a bilevel single-objective optimiza-
tion problem. This proof-of-principle study shows viability of EMO for solving
bilevel optimization problems and should encourage other EMO researchers to pay
attention to this important class of practical optimization problems.

2 Description of Bilevel Multi-Objective Optimization
Problem

A bilevel multi-objective optimization problem has two levels of multi-objective
optimization problems such that the optimal solution of the lower level problem
determines the feasible space of the upper level optimization problem. In general,
the lower level problem is associated with a variable vector xl and a fixed vector
xu. However, the upper level problem usually involves all variables x = (xu,xl),
but we refer here xu exclusively as the upper level variable vector. A general
bilevel multi-objective optimization problem can be described as follows:

minimize(xu,xl) F(x) = (F1(x), . . . , FM (x)) ,
subject to xl ∈ argmin(xl)

{
f(x) = (f1(x), . . . , fm(x))

∣∣g(x) ≥ 0,h(x) = 0
}

,

G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)
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In the above formulation, F1(x), . . . , FM (x) are the upper level objective func-
tions, and G(x) and H(x) are upper level inequality and equality constraints,
respectively. The objectives f1(x), . . . , fm(x) are the lower level objective func-
tions, and functions g(x) and h(x) are lower level inequality and equality con-
straints, respectively. Equality constraints are not considered here in both levels,
for simplicity. It should be noted that the lower level optimization problem is
optimized only with respect to the variables xl and the variable vector xu is
kept fixed. The Pareto-optimal solutions of a lower level optimization problem
become feasible solutions to the upper level problem. The Pareto-optimal solu-
tions of the upper level problem are determined by objectives F and constraints
G, and restricting the search among the lower level Pareto-optimal solutions.

3 Classical Approaches

Several studies exist in determining the optimality conditions for a Pareto-
optimal solution to the upper level problem. The difficulty arises due to the
existence of the lower level optimization problems. Usually the KKT conditions
of the lower level optimization problems are used as constraints in formulating
the KKT conditions of the upper level problem. As discussed in [7], although
KKT optimality conditions can be written mathematically, the presence of many
lower level Lagrange multipliers and an abstract term involving coderivatives
makes the procedure difficult to be applied in practice.

Fliege and Vicente [9] suggested a mapping concept in which a bilevel single-
objective optimization problem can be converted to an equivalent four-objective
optimization problem with a special cone dominance concept. Although the idea
can be, in principle, extended for bilevel multi-objective optimization problems,
the number of objectives to be considered is large and moreover handling con-
straints seems to introduce additional difficulties in obtaining resulting objec-
tives. However, such an idea is interesting and can be pursued in the future.

In the context of bilevel single-objective optimization problems, there exists a
number of studies, including some useful reviews [3,13], test problem generators
[1], and even some evolutionary algorithm (EA) studies [12,11,15,10,14]. However,
there does not seem to be too many studies on bilevel multi-objective optimization.

A recent study by Eichfelder [8] suggested a refinement based strategy in which
the algorithm starts with a uniformly distributed set of points on xu. Thereafter,
for each xu vector, the lower level Pareto-optimal solutions are found using a clas-
sical generating based optimization method. The set of such points obtained are
said to be an approximation of the induced set. Non-dominated points with re-
spect to the upper level problem are chosen from this set and they provide an ap-
proximate idea of the desired upper level Pareto-optimal front. Now, the chosen xu

vectors are refined in their vicinities and the lower level optimizations are repeated
till a good approximation of the Pareto-optimal front is obtained. The difficulty
with such a technique is that if the dimension of xu is high, generating a uniformly
spread xu vectors and refining the resulting xu vector will be computationally ex-
pensive. Definitely, an optimization algorithm for simultaneous selection ofxu and
corresponding optimal xl vectors will be more effective.
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The greatest challenge in handling bilevel optimization problems seems to lie
in the fact that unless a solution is optimal for the lower level problem, it cannot
be feasible for the overall problem. This requirement, in some sense disallow any
approximate optimization algorithm (including an EA or an EMO) to be used
for solving the lower level task. But from all practical point of view near-optimal
or near-Pareto-optimal solutions are often acceptable and it is in this spirit for
which EA and EMO may have a great potential for solving bilevel optimization
problems. EA or EMO has another advantage. Unlike the classical point-by-point
approach, EA/EMO uses a population of points in their operation. By keeping
two interacting populations, a coevolutionary algorithm can be developed so
that instead of a serial and complete optimization of lower level problem for
every upper level solution, both upper and lower level optimization tasks can
be pursued simultaneously through iterations. In the following, we suggest one
such procedure.

4 Proposed Procedure (BLEMO)

The proposed method uses the elitist non-dominated sorting GA or NSGA-II [6],
however any other EMO procedures can also be used instead. The upper level
population (of size Nu) uses NSGA-II operations for Tu generations with upper
level objectives (F) and constraints (G) in determining non-dominated rank and
crowding distance values of each population member. However, the evaluation of
a population member calls a lower level NSGA-II simulation with a population
size ofNl for Tl generations. The upper level population has a special feature. The
population has ns = Nu/Nl subpopulations of size Nl each. Each subpopulation
has the same xu variable vector. To start the proposed BLEMO, we create
all solutions at random, but maintain the above structure. From thereon, the
proposed operations ensure that the above-mentioned structure is maintained
from one generation to another. In the following, we describe one iteration of the
proposed BLEMO procedure. At the start of the upper level NSGA-II generation
t, we have a population Pt of size Nu. Every population member has the following
quantities computed from the previous iteration: (i) a non-dominated rank NDu

corresponding to F and G, (ii) a crowding distance value CDu corresponding
to F, (iii) a non-dominated rank NDl corresponding to f and g, and (iv) a
crowding distance value CDl using f . For every subpopulation in the upper level
population, members having the best non-domination rank (NDu) are saved as
an ‘elite set’ which will be used in the recombination operator in the lower level
optimization task of the same subpopulation.

Step 1: Apply a pair of binary tournament selections on members (x = (xu,xl))
of Pt using NDu and CDu lexicographically. The upper level variable vectors
xu of two selected parents are then recombined using the SBX operator [5]
to obtain two new vectors of which one is chosen at random. The chosen
solution is mutated by the polynomial mutation operator [4] to obtain a
child vector (say, x(1)

u ). We then create Nl new lower level variable vectors
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x(i)
l by applying selection-recombination-mutation operations on entire Pt.

Thereafter, Nl child solutions are created by concatenating upper and lower
level variable vectors together, as follows: ci = (x(1)

u ,x(i)
l ) for i = 1, . . . , Nl.

Thus, for every new upper level variable vector, a subpopulation of Nl lower
level variable vectors are created by genetic operations from Pt. The above
procedure is repeated for a total of ns new upper level variable vectors.

Step 2: For each subpopulation of size Nl, we now perform a NSGA-II proce-
dure using lower level objectives (f) and constraints (g) for Tl generations.
It is interesting to note that in each lower level NSGA-II, the upper level
variable vector xu is not changed. For every mating, one solution is chosen
as usual using the binary tournament selection using a lexicographic use of
NDl and CDl, but the second solution is always chosen randomly from the
‘elite set’. The mutation is performed as usual. After the lower level NSGA-
II simulation is performed for a subpopulation, the resulting solutions are
marked with their non-dominated rank (NDl) and crowding distance value
(CDl). All Nl members from each subpopulation are then combined together
in one population (the child population, Qt). It is interesting to note that in
Qt, there are at least ns members having NDl = 1 (at least one coming from
each subpopulation). Also, in Qt, there are exactly ns different xu variable
vectors.

Step 3: Each member of Qt is now evaluated with F and G. Populations Pt and
Qt are combined together to form Rt. The combined population Rt is then
ranked according to non-domination and members within an identical non-
dominated rank are assigned a crowding distance computed in the F space.
Thus, each member of Qt gets a upper level non-dominated rank NDu and
a crowding distance value CDu.

Step 4: From the combined population Rt of size 2Nu, half of its members are
chosen in this step. First, the members of rank NDu = 1 are considered.
From them, solutions having NDl = 1 are noted one by one in the order
of reducing crowding distance CDu, for each such solution the entire Nl

subpopulation from its source population (either Pt or Qt) is copied in an
intermediate population St. If a subpopulation is already copied in St and a
future solution from the same subpopulation is found to haveNDu = NDl =
1, the subpopulation is not copied again. When all members of NDu = 1
are considered, a similar consideration is continued with NDu = 2 and so
on till exactly ns subpopulations are copied in St.

Step 5: Each subpopulation of St is now modified using the lower level NSGA-
II procedure applied with f and g for Tl generations. This step helps progress
each lower level populations towards their individual Pareto-optimal fron-
tiers.

Step 6: Finally, all subpopulations obtained after the lower level NSGA-II sim-
ulations are combined together to form the next generation population Pt+1.

The evaluation of the initial population is similar to the above. First, members
of P0 are created at random with ns subpopulations, each having an identical
xu vector for all its subpopulation members. Thereafter, each subpopulation is
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sent for an update of xl vectors to the lower level NSGA-II (with f and g) for
Tl generations. Every member is assigned corresponding NDl and CDl values.
The resulting subpopulations (from NSGA-II) are combined into one population
(renamed as P0) and evaluated using F and G. Every member is then assigned
a non-dominated rank NDu and a crowding distance value CDu.

The good solutions of every generation are saved in an archive (At). Initially,
the archive A0 is an empty set. Thereafter, at the end of every upper level
generation, solutions having both NDu = 1 and NDl = 1 from Pt is saved in
the archive At. The non-dominated solutions (with F and G) of the archive are
kept in At and rest members are deleted from the archive.

In the above BLEMO, we have used a simple termination rule based on speci-
fied number of generations for both lower and upper level tasks. Every lower level
task for each subpopulation requires Nl(Tl + 1) solution evaluations and since
there are ns subpopulations in every generation, this requires nsNl(Tl + 1) or
Nu(Tl + 1) solution evaluations in Step 2. In the initial population evaluation, a
final upper level objective and constraint evaluation of Nu is required, but since
a solution evaluation refers to both upper and lower level evaluations, this Nu

is not extra. For any other generation, Step 5 above requires another Nu(Tl +1)
solution evaluations, thereby totaling 2Nu(Tl + 1) solution evaluations. Thus,
considering evaluations involved in all generations from t = 0 till t = Tu, total
solution evaluations needed are Nu(2Tu + 1)(Tl + 1).

5 Test Problems and Pareto-Optimal Solutions

In the context of bilevel single-objective optimization, there exists some studies
[3,1] which suggest linear, quadratic and transport related problems. However,
to our knowledge, there does not exist any systematic study suggesting test
problems for bilevel multi-objective optimization. In this study, we borrow a
couple of problems used in [8] and suggest a small and a large-dimensional version
of a new test problem.

5.1 Problem 1

Problem 1 has a total of three variables with x1, x2 belonging to xl and y be-
longing to xu and is taken from [8]:

minimize F(x) =
{
x1 − y
x2

}
,

subject to (x1, x2) ∈ argmin(x1,x2)

{
f (x) =

(
x1
x2

) ∣∣∣∣g1(x) = y2 − x2
1 − x2

2 ≥ 0
}
,

G1(x) = 1 + x1 + x2 ≥ 0,
−1 ≤ x1, x2 ≤ 1, 0 ≤ y ≤ 1.

(2)
Both the lower and the upper level optimization tasks have two objectives each.
A little consideration will reveal that for a fixed y value, the feasible region of the
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lower-level problem is the area inside a circle with center at origin (x1 = x2 = 0)
and radius equal to y. The Pareto-optimal set for the lower-level optimization
task for a fixed y is the bottom-left quarter of the circle:

{(x1, x2) ∈ R2 | x2
1 + x2

2 = y2, x1 ≤ 0, x2 ≤ 0}.

The linear constraint in the upper level optimization task does not allow the
entire quarter circle to be feasible for some y. Thus, at most a couple of points
from the quarter circle belongs to the Pareto-optimal set of the overall problem.
Eichfelder [8] reported the following Pareto-optimal solutions for this problem:

x∗ =
{

(x1, x2, y) ∈ R3
∣∣ x1 = −1 − x2, x2 = −1

2
± 1

4

√
8y2 − 4, y ∈

[
1√
2
, 1
]}

.

(3)
The Pareto-optimal front in F1-F2 space is given in parametric form, as follows:

{
(F1, F2) ∈ R2 ∣∣ F1 = −1 − F2 − t, F2 = −1

2
± 1

4

√
8t2 − 4, t ∈

[
1√
2
, 1
]}

.

(4)

A

PO front
Upper level

PO fronts
Lower level

B

C

0.9 0.8

y=1

0.50.60.7071

−1 −0.8 −0.6

F2

F1

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

−2 −1.8 −1.6−1.8 −1.2 −1 −0.8 −0.6

F2

F1
−2

 0.4

 0.2

 0

−0.2

−0.4

−0.6

−0.8

−1
−1.4−1.6 −1.4 −1.2

Fig. 1. Pareto-optimal fronts of upper level (com-
plete problem) and some representative lower level
optimization tasks are shown for problem 1

Figure 1 shows the Pareto-
optimal front of problem 1.
Lower level Pareto-optimal
fronts of some representative
y values are also shown on
the figure, indicating that at
most two such Pareto-optimal
solutions (such as points B
and C for y = 0.9) of a
lower level optimization prob-
lem becomes the candidate
Pareto-optimal solutions of
the upper level problem. It
is interesting to note that in
this problem there exists a
number of lower level Pareto-
optimal solutions (such as
solution A marked in the fig-
ure) which are infeasible to
the upper level task. Thus, if
the lower level optimization is
unable to find critical Pareto-
optimal solutions (such as B or C) which correspond to the upper level Pareto-
optimal solutions, but finds solutions like A in most occasions, the lower level
task becomes useless. This makes the bilevel optimization task challenging and
difficult.
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5.2 Problem 2

This problem is also taken from [8]:

minimize F(x) =
{

x1 + x2
2 + y + sin2(x1 + y)

cos(x2)(0.1 + y)(exp(− x1
0.1+x2

)

}
,

subject to

(x1, x2) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

argmin(x1,x2)f(x) =

(
(x1−2)2+(x2−1)2

4
+ x2y+(5−y1)2

16
+ sin(x2

10
)

x2
1+(x2−6)4−2x1y1−(5−y1)2

80

) ∣∣∣∣
g1(x) = x2 − x2

1 ≥ 0,
g2(x) = 10 − 5x2

1 − x2 ≥ 0,
g3(x) = 5 − y

6
− x2 ≥ 0,

g4(x) = x1 ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

G1(x) ≡ 16 − (x1 − 0.5)2 − (x2 − 5)2 − (y − 5)2 ≥ 0,
0 ≤ x1, x2, y ≤ 10.

(5)
For this problem, the exact Pareto-optimal front of the lower or the upper level
optimization problem is difficult to derive mathematically. The previous study [8]
did not report the true Pareto-optimal front, instead presented a front through
their obtained results.

5.3 Problem 3

Next, we create a simplistic bilevel two-objective optimization problem, having
xl = (x1, x2) and xu = (y):

minimize F(x) =
{

(x1 − 1)2 + x2
2 + y2

(x1 − 1)2 + x2
2 + (y − 1)2

}
,

subject to (x1, x2) ∈ argmin(x1,x2)

{
f(x) =

(
x2

1 + x2
2

(x1 − y)2 + x2
2

)}
,

−1 ≤ x1, x2, y ≤ 2.

(6)

For a fixed value of y, the Pareto-optimal solutions of the lower level opti-
mization problem are given as follows: {(x1, x2) ∈ R2∣∣x1 ∈ [0, y], x2 = 0}. For
example, for y = 0.75, Figure 2 shows these solutions (points A through B) in
the F1-F2 space. The points lie on a straight line and are not conflicting to each
other. Thus, only one point (point A with x1 = y = 0.75 and x2 = 0) is a feasible
solution to the upper level optimization task for a fixed y = 0.75. Interestingly,
for a fixed y, the bottom-left boundary of the F1-F2 space corresponds to the
upper bound of x1 or x1 = 1. However, solutions having x1 = 1 till x1 = y
are not Pareto-optimal for the overall problem. For y = 0.75, solutions on line
CA (excluding A) are not Pareto-optimal to both lower and upper level prob-
lems. Similarly solutions from B upwards on the ‘y = 0.75’ line are also not
Pareto-optimal for both levels.

When we plot all solutions for which x1 = y and x2 = 0, we obtain the dotted
line marked with ‘x1 = y’ in the figure. Different lower level Pareto-optimal
fronts (for different y values) are shown in the figure with dashed straight lines.
It is interesting to note that all solutions on this ‘x1 = y’ curve are not Pareto-
optimal to the overall problem. By investigating the figure, we observe that the
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Fig. 2. Pareto-optimal fronts of upper level (com-
plete problem) and some representative lower level
optimization tasks are shown for problem 3

Pareto-optimal solutions to
the upper-level problem cor-
responds to following solu-
tions: {(x1, x2, y) ∈ R3∣∣x1 =
y, x2 = 0, y ∈ [0.5, 1.0]}. This
problem does not have any
constraint in its lower or up-
per level. If an algorithm fails
to find true Pareto-optimal
solutions of a lower level prob-
lem and ends up finding a
solution below the ‘x1 = y’
curve, such as solution C,
it can potentially dominate
a true Pareto-optimal point
(such as point A) thereby
making the task of finding
true Pareto-optimal solutions
difficult.

5.4 Problem 4

In this problem, we increase the dimension of the variable vector of problem 3
by adding more variables like x2:

minimize F(x) =
{

(x1 − 1)2 +
∑K

i=1 x2
i+1 + y2

(x1 − 1)2 +
∑K

i=1 x2
i+1 + (y − 1)2

}
,

subject to

(x1, x2, . . . , xK+1) ∈ argmin(x1,x2,...,xK+1)

{
f(x) =

(
x2

1 +
∑K

i=1 x2
i+1

(x1 − y)2 +
∑K

i=1 x2
i+1

)}
,

−1 ≤ x1, x2, . . . , xK+1, y ≤ 2.
(7)

This problem has an identical Pareto-optimal front as in problem 3 with xi = 0
for i = 2, . . . , (K + 1), x1 = y and y ∈ [0.5, 1]. In our simulation here, we use
K = 13, so that total number of variables is 15.

5.5 Problem 5

To test the proposed BLEMO procedure for bilevel single objective optimiza-
tion problems, we include one problem from the literature [2] having xl =
(x1, x2, x3, x4)T and xu = (y1, y2, y3, y4)T :
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minimize F (x) = −(200 − x1 − x2)(x1 + x3) − (160 − x2 − x4)(x2 + x4),
subject to

xl ∈ argmin(xl)

{
f(x) = (x1 − 4)2 + (x2 − 13)2 + (x3 − 35)2 + (x4 − 2)2

∣∣
g1(x) = 0.4x1 + 0.7x2 ≤ y1, g2(x) = 0.6x1 + 0.3x2 ≤ y2,
g3(x) = 0.4x3 + 0.7x4 ≤ y3, g4(x) = 0.6x3 + 0.3x4 ≤ y4} ,

G(x) = y1 + y2 + y3 + y4 ≤ 40,
0 ≤ y1 ≤ 10, 0 ≤ y2 ≤ 5, 0 ≤ y3 ≤ 15, 0 ≤ y4 ≤ 20,
0 ≤ x1 ≤ 20, 0 ≤ x2 ≤ 20, 0 ≤ x3 ≤ 40, 0 ≤ x4 ≤ 40.

(8)
The reported solution to this problem [2] is x∗

u = (7.36, 3.55, 11.64, 17.45)T and
x∗

l = (0.91, 10, 29.09, 0)T with F (x∗) = −6600.0 and f(x∗) = 57.48.

6 Proof-of-Principle Results

We use the following parameter settings: Nu = 400, Tu = 200, Nl = 40, and
Tl = 40. Since lower level search is made interacting with the upper level search,
we have run lower level optimization algorithm for a fewer generations and run
the upper level simulations longer. The other NSGA-II parameters are set as
follows: for SBX crossover, pc = 0.9, ηc = 15 [5] and for polynomial mutation
operator, pm = 0.1, and ηm = 20 [4].

6.1 Problem 1

Figure 3 shows the obtained solutions using proposed BLEMO. It is clear that
the obtained solutions are very close to the theoretical Pareto-optimal solutions
of this problem. The lower boundary of the objective space is also shown to
indicate that although solutions could have been found lying between the theo-
retical front and the boundary and dominate the Pareto-optimal points, BLEMO
is able to avoid such solutions and find solutions very close to the Pareto-optimal
solutions. Also, BLEMO is able to find a good spread of solutions on the entire
range of true Pareto-optimal front. Figure 4 shows the variation of x for these
solutions. It is clear that all solutions are close to being on the upper level con-
straint G(x) boundary (x1 +x2 = −1) and they follow the relationship depicted
in equation 3.

6.2 Balancing Computations between Lower and Upper Levels

For a fixed overall population size Nu, the number of solution evaluations de-
pends on the product (2Tu + 1)(Tl + 1). Thus, a balance between Tu and Tl

is needed for the overall BLEMO to work well. A too large Tl will ensure near
Pareto-optimality of lower level solutions (thereby satisfying the upper level
constraint better), but this will be achieved only at the expense of not hav-
ing adequate upper level generations. On the other hand, a too small value of Tl

means inadequate generations for the lower level task for getting close to Pareto-
optimal fronts. To understand the effect of this balance between lower level and
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Fig. 3. BLEMO Results for problem 1
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Fig. 4. Variable values of obtained solu-
tions for problem 1. BLEMO solutions are
close to theoretical results.

upper level computational efforts, we perform a number of simulations of our
algorithm for different Tu-Tl combinations by keeping the overall solution eval-
uation constant. Table 1 shows the hypervolume values computed for four other
Tu-Tl combinations. To not consider the effect of any non-Pareto-optimal solu-
tions, we eliminate all solutions which lie below the theoretical Pareto-optimal
curve before we compute the hypervolume. The reference point used in calculat-
ing the hypervolume is (−1, 0)T . The combination Tl = 40 and Tu = 200 seems
to perform the best. It is clear that hypervolume degrades with an increase in
Tl from 40. To keep the solution evaluations the same as before, Tu must be re-
duced for an increase in Tl. The use of smaller number of upper level generations
is detrimental to the overall algorithm. On the other hand, when a smaller Tl

(=20) is used, the performance degrades marginally, due to reduced number of
lower level generations which did not allow lower level solutions to reach close
to their Pareto-optimal sets.

Table 1. Hypervolume values obtained
by different Tu-Tl combinations on
problem 1

Tl Tu Hypervolume
20 391 0.29851
40 200 0.30268

100 81 0.29716
200 41 0.28358
400 20 0.23796

Table 2. Hypervolume values obtained
by different Tu-Tl combinations on
problem 2

Tl Tu Hypervolume
20 391 0.45034
40 200 0.49256

100 81 0.47164
200 41 0.46157
400 20 0.43145
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Fig. 5. Results obtained using BLEMO
for problem 2
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Fig. 6. Results for different Tu-Tl combi-
nations for problem 2

6.3 Problem 2

This problem is more complex than the problem 1 involving non-linearities and
periodic functions. We use Nu = 600 and Nl = 60 for this problem, but use
identical termination conditions on generations as before. The number of sub-
population is also the same as in problem 1 and is equal to 600/60 or 10. Figure 5
shows the obtained non-dominated points. For this problem, the exact Pareto-
optimal front is not known, but our front is similar to that reported in the
previous study [8]. We have also plotted the solutions found by a simulation of
the proposed algorithm which is run for an exorbitantly long number of gen-
erations (Nu = 2, 000, Tu = 400, Nl = 100, Tl = 100). Although, our limited
generation results are not exactly the same as this ‘long run’, the solutions are
close.

Table 2 tabulates the hypervolumes obtained using different Tu-Tl combina-
tions. In this case also, we remove all the points which are below the F1-F2 points
found by the ‘long run’. Again, our setting of Tu = 200 and Tl = 40 is found
to perform the best in terms of the hypervolume measure. Figure 6 shows the
obtained solutions of different Tu-Tl combinations with respect to the ‘long run’
(shown in a solid line). In each case, the lower level non-Pareto-optimal solutions
which are below the ‘long run’ front are deleted from the final front owing to
being non-Pareto-optimal in the lower level. The distribution and convergence
get worse with an increasing Tl value. For Tl = 20, there were too many solu-
tions which were below the ‘long run’, simply because these solutions were not
close to Pareto-optimal front of the corresponding lower level problem. However,
40 generations for the lower level search seems adequate with Tu = 200 in this
problem as well.

6.4 Problem 3

Figure 7 shows the obtained BLEMO points on problem 3. Although solutions
in between this front and the feasible boundary of objective space could have
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been found for an apparently better non-dominated front, these solutions would
be non-Pareto-optimal with respect to the lower level problems and our algo-
rithm has succeeded in eliminating them to appear on the final front. The figure
shows that BLEMO is able to find a good distribution of solutions on the entire
range of the true Pareto-optimal front. Figure 8 shows that for obtained optimal
solutions, the relationship y = x1 in the range x1 ∈ [0.5, 1] holds. Additionally,
we observed that x2 = 0 for all obtained solutions. These observations match
with the theoretical Pareto-optimal solutions on this problem discussed in the
previous section.

front
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Boundary
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Fig. 7. Results obtained using BLEMO
for problem 3
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Fig. 8. Variable values of obtained solu-
tions for problem 3

6.5 Problem 4

In this problem, we have 15 variables. Figure 9 shows the obtained BLEMO
solutions. An identical Pareto-optimal front to that in problem 3 is obtained
here. For all solutions, we observed that xi = 0 for i = 2, . . . , 14. Again, y = x1
in the range x1 ∈ [0.5, 1] relationship is obtained for BLEMO solutions.

6.6 Problem 5

For this problem, we have chosen the following parameter setting: Nu = 400,
Tu = 40, Nl = 40 and Tl = 40. The obtained solution has F ∗ = −6599.996 and
f∗ = 57.441 with variable vectors x∗

l = (0.9125, 9.9996, 29.0918, 0.0002)T and
x∗

u = (7.3601, 3.5516, 11.6400, 17.4520)T . With two decimal places of accuracy,
this solution is identical to that in [2]. Figure 10 shows the best and average
F (x) value with the generation counter. This problem shows that the proposed
BLEMO is able to degenerate its multi-objective operations to suit the solution
of a bilevel single objective optimization problem.
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7 Conclusions

In this paper, we have proposed and simulated a bilevel evolutionary multi-
objective optimization (BLEMO) algorithm based on NSGA-II applied to both
levels. To coordinate the processing of populations between upper and lower
levels we have maintained subpopulations having identical upper level variable
values. Although any feasible solution on the upper level must correspond to the
Pareto-optimal solutions of the corresponding lower level optimization problem,
through simulation studies on a number of problems we have shown that the
proposed iterative upper and lower level population processing strategy is able
to steer the search close to the correct Pareto-optimal set of the overall problem.
In this direction, we have argued and shown through a systematic parametric
simulation study that a proper balance between the extent of lower and upper
level generations is an important matter for an efficient use of the proposed
procedure. Interestingly, we have also shown that the proposed multi-objective
algorithm is also able to solve bilevel single-objective optimization problems.

This study has shown one viable way of using an existing EMO methodology
for handling bilevel optimization problems. Many other ideas are certainly possi-
ble. Hopefully, this study will spur the interest in handling bilevel multi-objective
optimization problems more to other interested researchers and practitioners.
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Abstract. When training Support Vector Machine (SVM), selection of
a training data set becomes an important issue, since the problem of
overfitting exists with a large number of training data. A user must
decide how much training data to use in the training, and then select
the data to be used from a given data set. We considered to handle this
SVM training data selection as a multi-objective optimization problem
and applied our proposed MOGA search strategy to it. It is essential
for a broad set of Pareto solutions to be obtained for the purpose of
understanding the characteristics of the problem, and we considered the
proposed search strategy to be suitable. The results of the experiment
indicated that selection of the training data set by MOGA is effective
for SVM training.

1 Introduction

Support Vector Machine (SVM) is a pattern classification technique introduced
by V. Vapnik et al. [1]. The basic idea of SVM is to map an input vector x into
a high dimensional feature space H by Φ and construct an optimal separating
hyperplane in this space [2]. SVM has been applied to various pattern recognition
cases, such as digit recognition [1], text categorization [3], and face detection [4].

The goal of SVM is to achieve the best generalization performance by learning
on a given training data set. For this purpose, it is important for the problem of
overfitting [5] to be considered in the training of SVM. Generally, all examples
in the training data set are treated equally and used in the training process of
SVM, however there are examples with more information or those that can be
misleading. Therefore, there are existing researches on data categorization to
group examples based on their usefulness [6].

With this background, we considered to handle the selection of training data
set for SVM as a multi-objective optimization problem, and solve it by applying
multi-objective genetic algorithms (MOGAs). There are researches on applica-
tion of multi-objective optimization to SVM in forms of evolutionary SVM [5].

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 125–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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As these researches focus on the learning mechanism of SVM, our approach is
to optimize the training data set using MOGAs.

There are two objectives to this training data selection problem, which are
training error and the confidence margin [6]. Training error is to be minimized,
and confidence margin is to be maximized in this case. Minimization of the
training error is likely to result in overfitting, whereas maximizing the confidence
margin prevents overfitting, and a trade-off relationship is expected between
these two objectives. One characteristic of this training data selection problem
is the importance of the optimal solution of each objective. In order to provide
a decision maker with good understanding of the trade-off relationship between
two objectives, extreme solutions must be included in the final Pareto solutions.

There are many multi-objective genetic algorithms (MOGAs) developed to
date [7, 8, 9, 10, 11] with the purpose to find Pareto optimal solutions. In multi-
objective optimization, it is desirable for the obtained solutions to be high quality
regarding accuracy, uniform distribution, and broadness. Accuracy is how close
the obtained solutions are to the true Pareto front, and uniform distribution
is how evenly located the solutions are without concentrating in certain areas.
Broadness is how widespread the solutions are and is decided by the optimal
solutions of each objective located at the edge of the Pareto front.

Many MOGAs have mechanisms to improve accuracy and uniform distribu-
tion of the solutions. However, not many mechanisms are available to improve
broadness of the solutions. NSGA-II [10] and SPEA2 [11] are two well-known
MOGAs today, but both algorithms only have mechanisms included to preserve
the obtained broadness of the solutions. Same can be said about other algorithms
as well, and few are capable of improving broadness of the solutions.

As formerly mentioned, it is important for broad solutions to be obtained
when understanding characteristics of the optimization problem. For this reason,
Okuda et al. proposed the Distributed Cooperation Scheme [12], which utilizes
single-objective GA (SOGA) along with MOGA. SOGA is utilized to search for
the optimal solutions of each objective, which leads to improvement of broadness.
It was confirmed that the Distributed Cooperation Scheme is capable of deriving
broader solutions than conventional MOGAs. However, preliminary experiments
have also indicated that the convergence speed is reduced because the solutions
are broadened from the beginning of the search.

Because it is difficult to simultaneously improve convergence and broadness
of the solutions, we consider dividing the search into two phases in our proposed
search strategy. The first phase in the proposed search strategy is to improve
convergence of the solutions, and the second is to improve the broadness of the
solutions. This search strategy is capable of deriving broader solutions compared
to conventional MOGAs without deterioration of accuracy. Therefore, we con-
sider applying this search strategy to the selection of SVM training data.

In this paper, we first introduce our proposed search strategy consisting of
two search phases. The search strategy is tested on test problems to verify its
performance compared to conventional MOGAs. Then we adapted this search
strategy to SVM training data selection problem.
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2 Search Strategy for Multi-objective Genetic Algorithm
with Consideration of Accuracy and Broadness

2.1 Importance of Broadness

The search strategy we propose considers accuracy and broadness of the so-
lutions. Although, conventional MOGAs attempt to derive Pareto optimal so-
lutions, there are not many mechanisms to improve broadness of the solutions.
Lack of broadness becomes a problem especially in real-world optimization prob-
lems where a decision maker selects a solution based upon the given solutions.
It is important to understand the possible range of solutions for the problem,
and deriving solutions in a limited portion of the Pareto front is not enough.
Obtained solutions cannot be considered to be as broad as possible without a
mechanism to actively improve broadness. Therefore, it is essential for a broad-
ness improving mechanism to be included in the search strategy.

The proposed search strategy consists of two search phases as shown in Fig. 1.
The first phase is a search to improve convergence, and the second is for broad-
ness. The search phases are in this order, as the final solutions obtained must
be comparable to conventional MOGAs regarding accuracy and also be broad.
Especially, in cases where the search time is limited, it becomes important to
ensure the accuracy of the solutions first.

f1(x)

f 2
(x

)

1st Phase: Convergence Search 2nd Phase: Broadening Search

f1(x)

f 2
(x

)

Switch Search 
Phase

Fig. 1. Concept of the Proposed Search Strategy

2.2 1st Phase: Convergence Search

In the convergence search, preference of a decision maker is adopted in form of
a reference point [13]. This reference point can be located in both feasible and
infeasible regions. Conventional MOGAs base their search on the dominance
relationship of the solutions, but the proposed search method bases its search
on the distance information. That is, solutions closer to the reference point are
prioritized in the search, which leads to convergence of the solutions around the
reference point. The concept of this search is illustrated in Fig. 2.

The proposed search strategy is based on conventional MOGAs, and the dis-
tance information is utilized in the selection criterion of the mating selection.
The mating selection method is described below, and the archive size here is N .
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Step 1: Sort archive solutions in ascending order of the Euclidean distance from
the reference point.

Step 2: Add top N
2 solutions to the search population.

Step 3: Select remaining solutions by tournament selection based on their rank.
If multiple solutions with same rank exist, select the solution with the small-
est Euclidean distance.

f 2
(x

)

f1(x)
f 2

(x
)

f1(x)

Reference Point

(a) Rank-based (b) Reference Point-based

Fig. 2. Concept of the Reference Point-based Search

N
2 closest solutions to the reference point are copied to the search popula-

tion in Step 2, because these solutions are not guaranteed to be selected using
methods such as tournament selection. Copying these solutions to the search
population should result in improvement of convergence. In addition, both rank
and Euclidean distance are considered in the tournament selection at Step 3,
which allows selection of non-dominated solutions close to the reference point,
and the search is directed towards the reference point while preserving diversity.

2.3 2nd Phase: Broadening Search

The Distributed Cooperation Scheme of Okuda et al. [12] is adopted in the broad-
ening search. The search population is divided into subpopulations that search
using MOGA and SOGA in this scheme. Henceforth, subpopulations that search
with MOGA and SOGA are called MOGA population and SOGA population,
respectively. When there are k objectives, the search population is divided into
k + 1 subpopulations: one MOGA population and k SOGA populations. The
concept of this scheme is illustrated in Fig. 3. As this is a scheme, any MOGA
or SOGA methodology can be adopted. In this study, NSGA-II [10] and SPEA2
[11] are each adopted as the MOGA population, and DGA [14] as the SOGA
population.

MOGA and SOGA populations search in a parallel manner in the Distributed
Cooperation Scheme, and the best solutions from each population are exchanged
every interval generations, which was set to 25 generations in this study. The best
solution of the fi SOGA population is the solution with the best fi objective
value. On the other hand, best solutions of the MOGA population are non-
dominated solutions with best fi objective value, and k solutions exist in a
k-objective problem. Migration of solutions in a two-objective problem is shown
in Fig. 4.
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The algorithm of the Distributed Cooperation Scheme with population size
of N in the k-objective problem is shown below.

Step 1: Randomly generate N individuals.
Step 2: Divide the individuals into MOGA and k SOGA populations with 2N

k+2
individuals in MOGA population and N

k+2 individuals in SOGA population.
Step 3: Search for non-dominated solutions in the MOGA population and op-

timal solutions of each objective in the SOGA populations.
Step 4: Collect solutions from all populations and update archive.
Step 5: Exchange best solutions between MOGA and SOGA populations every

interval generations.
Step 6: End if terminate criterion is met; else go back to Step 3.

2.4 Search Strategy

In the proposed search strategy, the convergence search described in section 2.2 is
conducted, followed by the broadening search described in section 2.3. When to
switch the search phase becomes important in this case. It is preferable that the
search be switched when the solutions have converged. We consider the following
two cases of convergence:

– Advancement of the search towards the Pareto optimal front is little.
– Newly derived non-dominated solutions contribute little to accuracy.

Therefore, we adopt two convergence indicators in switching the search phase.
The first indicator is the one utilized in MRMOGA [15]. It is an average ratio
of non-dominated solutions in the archive that are dominated by the derived
solutions over several generations. This ratio will be high when the search is
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advancing and low when converged. In detail, when non-dominated solution set
of the archive at the ith generation is PFknown(i), the ratio of PFknown(i) that
is dominated (dominatedi) can be calculated. Based on the average ratio over g
generations, it can be determined that the search has converged if criterion (1)
is met.

g∑
i=1

dominatedi

g
≤ ε (1)

With MRMOGA, the value of ε = 0.05 is used and we used this in our
research for two-objective problems as well. ε = 0.025 is used for three-objective
problem, because it becomes more difficult to dominate other solutions with
increasing number of objectives. Moreover, the period of g generations is set to
be the same as the migration interval in section 2.3, which was 25 generations.

The second convergence indicator is the average number of archived non-
dominated solutions that are dominated by each newly generated non-dominated
solution. This indicator will cover the problem of MRMOGA’s indicator that the
number of newly derived non-dominated solutions is not considered. For exam-
ple, average value of 1 means that each new non-dominated solution dominates
1 archived non-dominated solution. This indicator shows the effectiveness of the
newly generated solutions for advancing the search. Lower average value means
that the search is shifting to improvement of diversity instead of accuracy. There-
fore, the search can be determined as converged if this indicator value is low.

We take average value of this indicator over g generations and determine
that the search has converged if criterion (2) is met. Here, μi is the average
number of archived non-dominated solutions that are dominated by each new
non-dominated solution at ith generation, and we used g = 25.

g∑
i=1

μi

g
≤ α (2)

We used α = 0.5 for two-objective and α = 0.25 for three-objective problems
as the criterion in our research, since it showed good results in the preliminary
experiments. Using the two indicators mentioned above, we switch the search
phase when either criterion is met. The process of the search strategy for a
k-objective problem is shown below.

Step 1: Initialize the archive.
Step 2: Conduct convergence search as described in section 2.2.
Step 3: Check criterion (1) and (2) every g generations. Go to Step 4 if either

criterion is met, else go back to Step 2.
Step 4: Divide solutions stored in archive into k + 1 populations.
Step 5: Conduct broadening search as described in section 2.3.
Step 6: End if terminate criterion is met; else go to Step 5.

3 Verification of Search Strategy’s Performance

A numerical experiment was performed to verify the effectiveness of the pro-
posed search strategy by comparison with NSGA-II and SPEA2. The MOGA
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methodology of the proposed search strategy is NSGA-II and SPEA2, and DGA
was adopted as the SOGA population. The test problems used in this experiment
were KUR [16] and multi-objective knapsack problems. KUR is a two-objective
continuous problem with 100 design variables [16]. KP500-2 (i.e., 2 objectives,
500 items), KP750-2, and KP750-3 [9] were selected as multi-objective knapsack
problems.

We adopted inverted generational distance (IGD) [17], hypervolume (HV) [18],
and spread [19] as the metrics in this experiment: IGD is the average distance
from each solution of the Pareto optimal front to the closest obtained solution,
and is a metric of accuracy and broadness; HV is a metric of overall perfor-
mance; and spread, calculated as the sum of differences between maximum and
minimum values of each objective within the obtained Pareto front, is a metric
of broadness. The Pareto optimal front must be known to calculate IGD, but
is unknown for KUR, KP750-2, and KP750-3 problems. Therefore, we obtained
near Pareto optimal solutions beforehand using a much greater population size
and generations, and used them for IGD calculation.

For both the proposed search strategy and conventional MOGAs, population
size is set to 120 for problems other than KP750-3, and 150 for KP750-3. The
maximum generation is 1000, and the number of evaluations is the same for
all methods. In addition, 2-point crossover is utilized with crossover rate of 1.0,
and the mutation rate is 1/Chromosome Length. The parameters specific to the
DGA used in the proposed search strategy are as follows: sub population size
is 10, tournament selection with tournament size of 4, migration rate is 0.5,
and migration interval is 5. The topology of migration is random ring. In the
proposed search strategy, a reference point must be set for each problem. Several
locations of reference points are tested for each problem.

3.1 Results

50% attainment surfaces of KUR, KP500-2,and KP750-2 by the proposed search
strategy, NSGA-II, and SPEA2 in 30 trials are shown in Figs. 5 to 7. In these
figures, the reference points of the search strategy are set as (-1000, -400), (21000,
21000), and (30000, 30000) for KUR, KP500-2, and KP750-2, respectively.

The search results in Figs. 5 to 7 indicate that the search strategy obtained
broader solutions than NSGA-II or SPEA2. Broader solutions provide more in-
formation of the Pareto front, which is important especially in problems such as
KUR and KP750-2 where the optimal front is unknown.

In addition, transitions of the 50% attainment surfaces of KP750-2 by the
search strategy with three different reference points are shown in Fig. 8. NSGA-
II is utilized in the search strategy, and the search was switched from the first
phase to the second phase at the average of 600th or 575th generation depending
on the reference point used.

As shown in Fig. 8, solutions converge to different regions depending on the
location of the reference point. The resulting 50% attainment surfaces are biased
toward the edge of the Pareto front in Fig. 8 (b) and (c), but still broader
solutions are obtained compared to NSGA-II shown in Fig. 8 (d). Moreover, it
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Fig. 5. 50% attainment surfaces of KUR (30 Trials)
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Fig. 6. 50% attainment surfaces of KP500-2 (30 Trials)
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Fig. 7. 50% attainment surfaces of KP750-2 (30 Trials)

can be seen that the broadness of the solutions improve greatly after the search
phase is switched. Similar results were seen in other test problems as well, and
these results indicate that the proposed search strategy is successful in first
converging and then broadening solutions.

Next, the mean values and the standard deviation of IGD, spread, and HV are
shown in Tables 1 to 3. For IGD in Table 1, the obtained solutions are closer to
the Pareto optimal front when the value is close to 0. On the other hand, solutions
with greater values of spread and HV are better. For the search strategy, reference
points are set at (-1000, -750), (21000, 21000), (30000, 30000), and (30000, 30000,
30000) for KUR, KP500-2, KP750-2, and KP750-3, respectively.

The mean values of IGD in Table 1 indicate that both implementation of the
search strategy is performing equivalent to or better than NSGA-II or SPEA2.
Therefore, the search strategy is comparable to both NSGA-II and SPEA2 with
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Table 1. Inverted Generational Distance

KUR KP500-2 KP750-2 KP750-3
Search Strategy (NSGA-II): mean 0.04088 0.01311 0.01548 0.06773

SD 0.00868 0.00112 0.00130 0.00270
NSGA-II: mean 0.08846 0.02862 0.02853 0.07602

SD 0.01061 0.00220 0.00167 0.00314
Search Strategy (SPEA2): mean 0.04271 0.01322 0.01726 0.06567

SD 0.00731 0.00099 0.00189 0.00233
SPEA2: mean 0.10841 0.02478 0.02574 0.06655

SD 0.01358 0.00176 0.00158 0.00210

Table 2. Spread

KUR KP500-2 KP750-2 KP750-3
Search Strategy (NSGA-II): mean 682.04 6401.10 9134.77 14579.27

SD 15.30 356.46 489.59 1520.48
NSGA-II: mean 321.02 2497.23 3130.30 7845.73

SD 23.06 226.85 236.35 448.87
Search Strategy (SPEA2): mean 677.28 6568.13 9650.20 13789.67

SD 15.90 338.40 577.90 2263.41
SPEA2: mean 263.42 3000.57 3771.07 5176.10

SD 25.39 200.25 316.30 412.81

regard to accuracy. IGD also describes how close the obtained solutions are to
the optimal front regarding broadness. Consequently, the solutions obtained by
NSGA-II and SPEA2 are not sufficiently broad.



134 T. Hiroyasu et al.

Table 3. Hypervolume

KUR KP500-2 KP750-2 KP750-3
Search Strategy (NSGA-II): mean 2.86E+05 3.95E+08 8.47E+08 2.41E+13

SD 7.81E+03 1.23E+06 3.22E+06 2.89E+11
NSGA-II: mean 2.41E+05 3.79E+08 8.06E+08 2.19E+13

SD 6.53E+03 1.36E+06 2.79E+06 1.60E+11
Search Strategy (SPEA2): mean 2.84E+05 3.95E+08 8.49E+08 2.40E+13

SD 7.42E+03 1.54E+06 3.84E+06 5.45E+11
SPEA2: mean 2.35E+05 3.81E+08 8.10E+08 2.16E+13

SD 7.57E+03 1.47E+06 2.99E+06 1.22E+11

The spread values shown in Table 2 also indicate that the search strategy ob-
tained broader solutions. From this, it can be said that the approach to broaden
solutions after converging them is successful in obtaining broad solutions. Mean
HV values shown in Table 3 also show better results for the search strategy. These
results indicate that the proposed search strategy is effective for maintaining ac-
curacy comparable to conventional MOGAs and deriving broader solutions.

4 Application to SVM Training Data Set Selection
Problem

When training SVM, it is recommended to select the examples to include in
the training data set, because some examples are more useful than others. Data
categorization is used for this purpose [6]. In this section, the proposed search
strategy is applied to the optimization of training data set selection for SVM.
There are two objectives to be optimized in this problem, and they are:

– Minimize training error (f1)
– Maximize minimum confidence margin (f2)

Training error is measured with the trained SVM on the entire data set, and
is to be minimized. The confidence margin for an example (xi, yi) is measured by
yig̃(xi), where g̃(x) is the SVM decision function [6]. We calculate the confidence
margin for all examples of the data set, and considered to maximize its minimum
value. Examples with negative confidence margins are excluded here, because
they are mislabeled. It is expected for a trade-off to exist between these two
objectives, because improvement of training error can result in overfitting, which
leads to smaller confidence margin.

We applied this SVM training data selection on three data sets from the UCI
machine learning repository [20]. The data sets used in this experiment are shown
in Table 4. All features of the data sets are scaled to the range of [-1, 1]. For
the purpose of examining the generalization performance of the trained SVM,
we randomly sampled 20% of the given data set as the hold-out test set. This
test set is not used in the training of SVM, therefore the number of examples
available for training is 80% of the entire data set. C-SVM with RBF kernel is
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Table 4. The data sets used in the experiment. n is the number of data and m is the
number of features.

Data set n m classes C γ

diabetes 768 8 2 32.0 0.03125
heart 270 13 2 2048.0 0.00049
liver-disorders 345 6 2 512.0 0.03125

used, and the parameters C and γ are decided in advance using cross validation
by parallel grid search [21].

This problem is designed in a similar manner to multi-objective knapsack
problems, and each example from a data set is represented by 0/1 bit. The
example is included in the training data set if the bit value is 1, and not if the
bit value is 0. Therefore the length of a chromosome in MOGA is the same as
the number of examples in the data set. By this implementation, the number of
examples in the training data set and the examples included are decided at the
same time.

Population size of 120 and maximum generation of 250 are used in this ex-
periment, and the other basic parameters of the proposed search strategy are
the same as the previous experiment. Individuals are initialized randomly, and
the number of examples in a training data set range from 0 to the entire data
set. Moreover, the reference point is set at (0, 1) in this experiment, because an
example with a confidence margin of less than 1 is considered to be a support
vector [6].

4.1 Results

10 trials were conducted on each data set, and Figs. 9 to 11 show the 50%
attainment surface of diabetes, heart, and liver-disorders data sets, respectively.
Trade-off relationship is confirmed between the two objectives in all cases.

From the attainment surfaces shown in Figs. 9 to 11, it was confirmed that
the improvement of training error results in smaller confidence margin, and vice
versa. The Pareto fronts obtained for the diabetes and liver-disorders data sets
were sparse in this experiment, which resulted in the nonsmooth front.

Next, we examined the generalization performance of the trained SVMs using
the hold-out test set. Figs. 12 and 13 show the solutions for the diabetes and
liver-disorders data set obtained in a single run. In both figures, the left figure
shows the obtained Pareto solutions, and the right figure shows the generalization
performance of the solutions from the left figure. The x-axis in both left and right
plots show the training error, so the solutions in both plots correspond to each
other on the x-axis. In addition, the solutions shown here are grouped according
to the number of examples included in their training data set. The result of the
SVM trained with the entire data set is plotted for comparison as well.

Figs. 12(a) and 13(a) show that selecting the training data set, rather than
using the entire data set can obtain SVMs with better training error and the
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confidence margin. The same can be said about the generalization performance
shown in Figs. 12(b) and 13(b) as well, because there are SVM models with
better test errors. The confidence margin value of the SVM model trained with
the entire data set is small compared to other SVM models, and it is likely to
be overfit. Therefore, we can understand that the selection of the training data
set is beneficial.

If we compare the distribution of the solutions for diabetes data set in Fig.
12, we can see that the best SVM model regarding the training error does not
perform best with the test data, which may be caused by overfitting. On the other
hand, SVM models with large confidence margins showed very poor performance
regarding both the training error and test error. Similar results were observed
with the results of liver-disorder data set shown in Figs 13 as well. It is important
for the extreme solutions to be obtained in such a case, because they provide the
information on the possible range for the SVM’s performance. For this reason, we
consider the multi-objective approach combined with the hold-out test data to
be effective for reducing the possibility of overfitting when selecting the training
data set.

Another point we focused on is the number of training data used in each SVM
model. Comparing the distribution of the solutions grouped according to the
number of training data in Figs. 12 and 13, we observed that the training error
is generally low when many examples are used in the SVM training, and high
when less examples are used. Although these results show that the increasing
number of training data leads to improvement of training error in general, further
research is still needed. We assume that cases exist where the SVM parameters
of C and γ used in this experiment are not proper for that particular training
data set. Therefore, we will consider including C and γ as design variables of
MOGA and optimize them for each training data set in the future research.

5 Conclusions

In this paper, we handled the selection of training data set for SVM as a multi-
objective optimization problem, and applied MOGA search strategy to it. The
proposed search strategy consists of two search phases to separately improve
convergence and broadness of the solutions. The first phase improves the con-
vergence of the solutions, and a reference point specified by a decision maker
is adopted for this purpose. In the second phase, the solutions are broadened
using the Distributed Cooperation Scheme. Through a numerical experiment,
we confirmed that the proposed search strategy is capable of deriving broader
solutions compared to conventional MOGAs without deterioration of accuracy.

The search strategy was applied to the SVM training data selection problem,
and the results showed that there exists trade-off relationship between training
error and the confidence margin. SVM models trained with selected training
data showed better performance compared to the model trained with the entire
data set. From this result, we confirmed the importance of selecting the training
data set when training SVM. In future research, we will consider to optimize the
SVM parameters along with the selection of the training data set.
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Abstract. Most existing evolutionary approaches to multiobjective op-
timization aim at finding an appropriate set of compromise solutions,
ideally a subset of the Pareto-optimal set. That means they are solving a
set problem where the search space consists of all possible solution sets.
Taking this perspective, multiobjective evolutionary algorithms can be
regarded as hill-climbers on solution sets: the population is one element
of the set search space and selection as well as variation implement a
specific type of set mutation operator. Therefore, one may ask whether
a ‘real’ evolutionary algorithm on solution sets can have advantages over
the classical single-population approach. This paper investigates this is-
sue; it presents a multi-population multiobjective optimization frame-
work and demonstrates its usefulness on several test problems and a
sensor network application.

1 Motivation

Most multiobjective evolutionary algorithms (MOEAs) proposed in the litera-
ture are designed towards approximating the set of Pareto-optimal solutions [7].
In contrast to single-objective optimizers that look for a single optimal solution,
these algorithms aim at identifying a set of optimal compromise solutions, i.e.,
they actually operate on a set problem. With such a set problem, the search
space consists of all solution sets and often a set quality measure like the hy-
pervolume indicator [20] is used as a corresponding objective function on sets.
From this perspective, current MOEAs can be regarded as hill climbers or (1, 1)-
strategies on solution sets, cf. [21]. The population represents a solution set and
as such one element of the set search space. The usual sequence of operations,
i.e., mating selection, variation including mutation and recombination, and envi-
ronmental selection, serves the purpose of generating a new set; therefore, it can
be considered as a (complex) set mutation operator. Since the newly generated
population usually replaces the old population without a direct comparison and
check, one can speak of a (1, 1)-strategy in this context.

The above observation leads to the question of whether the use of an evo-
lutionary algorithm on sets may be beneficial in this multiobjective setting. In
other words: can maintaining a population of solution sets in combination with
appropriate set selection and set variation operators have advantages over using
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a single solution set only? If we consider classical MOEAs as (1, 1)-strategies on
the corresponding set problem, then we are here interested in extending them
to (μ, λ)- or (μ + λ)-strategies. To our best knowledge, this issue has not been
addressed so far, although there is an interesting close link to parallel MOEAs.
Some types of parallel MOEAs, in particular those based on island models,
make use of multiple populations that evolve simultaneously and from time to
time exchange individuals [15,13,1,16,4,14,5,18]. However, these approaches can
in general not be regarded as full evolutionary algorithms on solution sets, as
they usually implement only some aspects of set-based fitness, set-based varia-
tion, and set-based selection. The considerations presented in the following are
independent of the type of implementation, be it sequential or parallel.

This paper investigates the issue of whether a multiobjective optimizer can
benefit from utilizing a population of solution sets instead of relying on a single
population of solutions—mainly in terms of the quality of the generated Pareto
set approximation, but also with respect to the computing time. As a basis,
we consider the optimization scenario where a set with N solutions is sought
that maximizes the hypervolume of the dominated objective space. The specific
contributions are:

– A general framework for a population-based evolutionary algorithm operat-
ing on solution sets; the framework resembles the island model known for
parallel evolutionary algorithms.

– The design of a new recombination operator on solution sets which is tailored
to the hypervolume indicator, but the principle of which can be generalized
to other unary indicator functions.

– A systematic comparison of the classical MOEA scheme and the multi-
population scheme on several test problems with up to four objectives.

The following section provides a brief survey of set-based multiobjective opti-
mization, in particular of hypervolume-based multiobjective search, and a back-
ground of related work in the area of parallel evolutionary algorithms. Section 3
introduces our general framework of a multi-population MOEA including the
new recombination operator. Section 4 presents and discusses the experimental
results, and Sec. 5 contains conclusions and future research directions.

2 Background

2.1 Set-Based Multiobjective Optimization

Given an optimization scenario where: X is the decision space; x ∈ X denotes
a solution or decision vector; k objective functions f = (f1, . . . , fk) are to be
minimized; x � y denotes weak dominance of y by x and x ≺ y denotes strict
dominance1, the goal is usually to find a set A which represents a good approx-
imation of the Pareto-optimal set. Many ways to assess the quality of a Pareto
1 A solution x is said to weakly dominate a solution y (x 	 y) if it is at least as good

as y in all objectives, i.e., ∀1 ≤ i ≤ k : fi(x) ≤ fi(y). If additionally there exists an
objective function fj with fj(x) < fj(y) then x is strictly dominating y (x ≺ y).
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set approximation A exist. One is to consider the space that is weakly dominated
by the objective vectors f(A) and bounded by a user defined reference set R:

H(A,R) := {h | ∃a ∈ A∃r ∈ R : f(a) ≤ h ≤ r} (1)

Let the corresponding hypervolume indicator be the hypervolume of this space
IH(A,R) := λ

(
H(A,R)

)
, where λ denotes the Lebesgue measure. Of all the

numerous measures, the hypervolume indicator or S-metric [3] is one of the
most popular; mainly because it is the only known indicator that reflects Pareto
dominance, i.e., if a solution set dominates another, the hypervolume indicator
of the former is greater than the one of the latter. The goal of hypervolume
indicator-based MOEAs can be formalized as finding the solution set A∗ that
maximizes the indicator value, usually imposing a maximum cardinality of |A∗| ≤
μ. By the nature of IH , the set maximizing IH is a subset of the Pareto set.

The classical view of MOEAs is illustrated in the upper left corner of Fig. 1.
Mating selection, mutation, crossover, and environmental selection operate on
single solutions and thereby generate a new—hopefully better—set of solutions.
Summarized, one can state that classical MOEAs operate on elements of X and
deliver an element of P(X), where P(X) denotes the power set of X .

Definition 1. We refer to an optimizer that operates on elements of the decision
space U and returns an element of V as a U/V -optimizer.

Hence, MOEAs are, from a classical EA perspective, X/P(X) optimizer. On the
other hand, multiobjective algorithms using aggregation are considered as X/X-
optimizers. However, the individual steps (fitness assignment, mating selection,
mutation/crossover, and environmental selection) of the MOEA, that lead to a
modified set, can be abstracted as a set mutation, see the upper right corner of
Fig. 1—they are in fact P(X)/P(X)-hillclimbers [21].

In the following, we propose a general P(X)/P(X) evolutionary algorithm as
depicted in the lower half of Fig. 1. The question arises, how the corresponding
operators (set mutation, set crossover, set mating and set environmental selec-
tion) can be created and if they are beneficial for search. To this end, we propose
set operators based on the hypervolume indicator. There are already many al-
gorithms using this indicator (e.g., [3,12]), but they are all X/P(X)-optimizers.

To our knowledge, no study has used the set perspective on evolutionary
algorithms explicitly, but parallel evolutionary algorithms can be considered as
optimizers operating on sets, as demonstrated in the following subsection.

2.2 Parallel Evolutionary Algorithms

The increasing complexity of large scale problems and the availability of large
computer clusters and multiprocessor systems were the first incitement to paralle

The master-slave approach uses a master processor that performs all opera-
tions on one global population except for fitness evaluations which are delegated
to different slave processors [17]. Since this parallelization does not change the
algorithm itself, master-slave MOEAs can be either seen as X/P(X)-optimizers
or interpreted as P(X)/P(X)-hillclimbers, see Fig. 1.
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Fig. 1. Illustration of different types of MOEAs: (top left) usual view of a MOEA where
the operators work on solutions; (top right) a set-based view of the same algorithm;
(bottom) an evolutionary algorithm working on sets, i.e., a P(X)/P(X)-optimizer

The second major category of parallel MOEAs—the island model—however,
can be seen as P(X)/P(X)-optimizer that use more than one set. An island
model MOEA divides the overall population into different islands or indepen-
dent solution sets. Hence, when abstracting away from parallelization, the island
model can be interpreted as an algorithm operating on a population of sets. Each
of these sets represents one island which is optimized by a separate EA. This
enables running different islands on several computers at the same time.

An island model without any exchange of individuals between islands corre-
sponds to a multi-start approach, where each island represents one run, using
different seeds or even different optimization strategies [14]. Such an algorithm
mainly benefits from increased robustness of obtained solutions and corresponds
to a P(X)/P(X)-optimizer (see Fig. 1) where each set is mutated and no re-
combination and environmental selection takes place.

Most island models, however, use a cooperative approach. Although the sub-
populations evolve independently most of the time, solutions are exchanged once
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in a while between islands by migration. A well designed migration lets infor-
mation of good individuals pass among islands and at the same time helps to
preserve diversity by isolation of the islands. In contrast to the approaches men-
tioned above, this paradigm also uses recombination of sets (by migration) and
can therefore be advantageous not only in terms of runtime and robustness, but
also in terms of quality of the obtained Pareto-optimal solutions [5].

There exist many aspects of migration strategy. (a) The way islands are se-
lected for migration (the set mating selection from a set based perspective) is
often done deterministically according to the way islands are arranged [16], where
the topology is an important parameter which has to be adapted to the prob-
lem structure [15]. (b) The way the population is divided into subpopulations.
Often each island corresponds to a different region of the objective space deter-
mined manually, e.g., by using cones [4] or by assigning each island to a different
subproblem [13]. Instead of explicitly, the division of the objective space into
different regions can also happen implicitly, e.g., when distributing the best in-
dividuals according to one objective function to different islands [10]. (c) Islands
are optimized either by the very same optimizer or by using different parameters.
For more details, we refer to [5] and [18].

All island models presented so far do not use the concept of a set-based
fitness measure and operators. One exception is the algorithm presented in [1],
where islands are randomly selected and both mutation and recombination are
applied to subpopulations rather than to single solutions. The quality of the
newly generated subpopulations as well as their parents is then assessed by a
fitness value and the better sets are kept (set environmental selection). However,
the environmental selection only operates locally and the fitness assignment is
not a true set fitness since it corresponds to the sum of single fitness values that
are determined on basis of a global population.

In this paper, we give first insights on how to use the set-based view on
island models to propose a general P(X)/P(X) MOEA. In the next section,
we systematically investigate which extensions are needed and propose a novel
recombination scheme on sets using the hypervolume indicator.

3 A General Framework for a Set-Based Evolutionary
Algorithm

In this section, we propose a general framework of a P(X)/P(X)-optimizer for
multiobjective optimization the basis of which is a population-based evolution-
ary algorithm. In contrast to most island-based MOEAs, this new optimizer uses
all known operators—mating selection, recombination, mutation, and environ-
mental selection—of a usual evolutionary algorithm, working on sets of solutions.
How these operators on sets of solutions can look like is the main focus of this
section. In the following, we first describe the general framework and later on
present different operators on solution sets.
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Algorithm 1. A P(X)/P(X)-optimizer with (μ +, λ)-selection
Require: number of solution sets in population μ, number of solutions in each solution

set N , number of offspring λ, maximum number of generations gmax

Init: choose population S uniformly at random as μ sets of N solutions from X each

i ← 1 {set generation counter}
while i ≤ gmax do

M ← ∅
for all A ∈ S do

M ← M∪ {setMutate(A)}
end for
M′ ← setMatingSelection(M, λ)
M′′ ← ∅
for all (Ap, Aq) ∈ M′ do

M′′ ← M′′ ∪ {setRecombine(Ap, Aq)}
end for
S ← setEnvironmentalSelection(S ,M′′)
i ← i + 1

end while

3.1 A (μ +, λ)-EA as a P(X)/P(X)-Optimizer

Algorithm 1 shows a general P(X)/P(X)-optimizer that mainly follows the
scheme of Fig. 1. The algorithm resembles an island-based MOEA as discussed
in Sec. 2.2 with additional mating and environmental selection. Mutation, re-
combination, and selection on single solutions are considered as mutations on
solution sets and the migration operator is regarded as recombination operator
on sets.

The algorithm starts by choosing the first population S of μ sets (of N solu-
tions each) uniformly at random. Then, the optimization loop produces new sets
until a certain number gmax of generations are performed. To this end, every set
A in the population S is mutated to a new set by the operator setMutate(A) and
λ pairs of sets are selected in the set mating selection step to form the parents
of λ recombination operations. Note that the operator “∪” is the union between
two multisets; since the population of evolutionary algorithms usually contains
duplicate solutions, we also do not restrict the population of Algorithm 1 to sets.
In the environmental selection step, the new population is formed by selecting
μ sets from the union of the previous population and the varied solution sets.
Figure 1 illustrates the steps performed in one generation graphically.

3.2 Mutation of Solution Sets

As mutation operator on solution sets, we propose to use a simple X/P(X)-
optimizer with (N + N)-selection on single solutions that aims at optimizing
the hypervolume indicator of the final solution set directly. This corresponds
to a run of a normal hypervolume-based MOEA, as for example [3] or [12], for
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G generations. The used X/P(X)-optimizer starts with a set of N solutions
that is obtained from the overall P(X)/P(X)-optimizer’s population. For G
generations,N solutions of the current set are selected in a mating selection step,
these solutions undergo SBX crossover and polynomial mutation as described in
[8] and in the environmental selection step, the best solutions from the previous
population and the new solutions are selected to form the new population.

The fitness of a solution in the selection steps is a generalization of the hyper-
volume loss as proposed in [2]. Instead of using the hypervolume that is solely
dominated by a single solution as fitness value as it is done in many hypervolume-
based MOEAs, e.g., [3,12], the fitness I l

h(a,A,R) of a solution a ∈ A is computed
as the expected hypervolume loss if the solution itself and l−1 randomly selected
other solutions in the population are removed.

Definition 2. Let A be a solution set, R ⊂ Z the reference set of the hyper-
volume indicator, and l ∈ {0, 1, . . . , |A|} the number of solutions that are to be
removed from A. Let Hi(a,A,R), in addition, be the portion of the objective
space that is dominated by a ∈ A and exactly i− 1 other solutions in A and that
itself dominates the reference set R. Then the function

I l
h(a,A,R) :=

l∑
i=1

αi

i
λ(Hi(a,A,R)) where αi :=

i−1∏
j=1

l − j

|A| − j
(2)

gives the fitness of a solution a ∈ A.

In the mating selection step, we choose I |A|
h (a,A,R) as the fitness in a binary

tournament selection whereas in the environmental selection step, we choose
l = N since N solutions in the (N +N)-selection have to be removed to build
the new population. For environmental selection, non-dominated sorting on the
set of N + N solutions is performed. Then, non-dominated fronts are added
completely to the new population according to their rank until the population
size is reached. If the number of selected solutions exceeds N , the solutions with
worst fitness are iteratively removed until the population size N is reached again.
For a motivation of this new fitness assignment scheme and an evaluation of its
usefulness, we refer to [2].

3.3 Recombination of Solution Sets

Since we aim at maximizing the hypervolume indicator in multiobjective search,
a recombination operator on sets should also aim at producing offspring with
large hypervolume. Therefore, we propose a new recombination operator on so-
lution sets A and B that is targeted at maximizing the hypervolume of the
offspring C, see Fig. 2 for an illustrative example. The idea behind the operator
is to iteratively delete the worst solution in the first parent and add the best in-
dividual from the second parent until no hypervolume improvement is possible.
In more detail, the process runs as follows.

In a first step, all solutions in the first set A = {a1, . . . , a|A|} are ranked
according to their fitness I l

h(a,A,R) in Eq. 2 with l = 1 (upper left figure in
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Fig. 2. Illustration of the hypervolume-based recombination operator on solution sets:
two exemplary sets A and B with four solutions each are recombined to a set C. First,
the solutions in A are ranked according to their hypervolume losses. Then, iteratively,
the solution in A with smallest loss is deleted (middle row) and the solution in B that
maximizes the hypervolume indicator is added to A (last row) until no hypervolume
improvement is possible. For each step, the changes in hypervolume are annotated in
the top right corner of the corresponding figure.

Fig. 2). In this case, the fitness of a solution corresponds to the hypervolume
that is solely dominated by this solution, in other words, its hypervolume loss.
Then, the new set C results from A by iteratively removing the solution ai with
smallest fitness that is not yet removed (ties are resolved randomly, see middle
row in Fig. 2) and adding the solution b ∈ B that maximizes the hypervolume
indicator of the new set (last row in Fig. 2). The replacement of solutions stops
before the next exchange would decrease the hypervolume of the new set.

Since the fitness values of the solutions in A are only calculated once in the
beginning, at most |A|·|B|+1 hypervolume indicator values of |A| points have to
be computed in each recombination. Note that the recombination operator can
also be seen as a hypervolume-based migration strategy for island model based
MOEAs where each island obtains solutions from a neighboring island as long as
its hypervolume increases. Another important aspect, we would like to mention
is the asymmetry of the recombination operator, i.e., setRecombine(Ap, Aq) �=
setRecombine(Aq , Ap). This asymmetry is the reason for selecting ordered pairs
in the set mating selection step of Alg. 1.

3.4 Mating and Environmental Selection

In the following, we present four different variants of mating and environmental
selection combinations. Two variants choose sets for recombination directly from
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the mutated sets (we call them A-variants) whereas the other two variants choose
one mutated set as the first parent and the set containing all solutions of all other
sets as the second parent for recombination (called B-variants):

Variant A1. randomly selects μ pairs of sets in the mating selection step and
uses (μ, μ)-selection in its environmental selection step.

Variant A2. selects all possible μ · (μ− 1) pairs of sets in mating selection and
selects the best μ out of the μ · (μ− 1) new sets in the environmental selection.

Variant B1. selects one pair of sets only, where the first set A1 ∈M is selected
uniformly at random and the second set A2 is chosen as union of all A ∈ M
except A1 itself. In the environmental selection step, variant B1 copies the only
new set μ times to create the new population of μ identical sets.

Variant B2. selects μ pairs of sets by choosing every set of M once as the first
set A1 of a parent pair and the second set A2 of the pair is chosen as union of all
a ∈M except A1 itself as in variant B1. The environmental selection of variant
B2 chooses all μ newly generated sets to create the new population.

Note that all variants perform the mating selection independent of the hyper-
volume indicator the consideration of which may improve the optimizer further.
Note also that parallel MOEAs, when interpreted as P(X)/P(X)-optimizers,
usually do not perform environmental selection and select the individuals for
mating according to a fixed scheme given by the neighborhood of the islands.

4 Experiments

The experiments described in this section serve three main goals. First, we exten-
sively compare four P(X)/P(X)-optimizer variants with a standard MOEA on
various test problems. Then, we study the set mutation operator, in particular,
the length G of a set mutation step. Third, we apply the P(X)/P(X)-optimizer
to a sensor network application and compare it with the standard MOEA.

4.1 Experimental Setup

As the baseline standard MOEA, we use the algorithm described in Sec. 3.2
and [2]. Single solutions are mutated by polynomial mutation and recombined
via SBX crossover [7]. In addition, we consider four P(X)/P(X)-optimizer vari-
ants A1, A2, B1, and B2 named after the used selection scheme as described
in Sec. 3.4. The set mutation and set recombination operators are the same in
all variants and implemented as described in Sec. 3. For a fair comparison, the
standard MOEA is also used as set mutation operator in all four P(X)/P(X)-
optimizer variants. Note that the implementation of the set mutation step is
parallelized, i.e., the μ set mutation operations can be performed in parallel as
μ independent runs of the standard MOEA if the algorithm is run on a machine
with more than one core. Unless otherwise stated, we always use the same pa-
rameters for all algorithms. The hypervolume indicator is computed exactly for
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all bi-objective problems; otherwise, 10, 000 samples are used to approximate it;
the reference point is chosen as 40k such that all solutions of the considered prob-
lems have a positive hypervolume contribution. For comparing the algorithms,
the standard MOEA runs for 500 generations with a population size of 200—
the P(X)/P(X)-optimizer variants use the same number of function evaluations
within gmax = 25 generations where the μ = 10 sets of N = 20 solutions each
are mutated for G = 20 generations of the standard MOEA.

4.2 Comparison between Four P(X)/P(X)-Optimizer Variants and
a Standard MOEA

To compare the four P(X)/P(X)-optimizer variants of Sec. 3 and the standard
MOEA with the parameters described above, 30 runs are performed for each
of the test problems DTLZ2, DTLZ5, DTLZ7 [9], WFG3, WFG6, and WFG9
[11] with 2, 3, and 4 objectives. Figure 3 shows the boxplots of the normalized
hypervolume in the last generation, i.e., the hypervolume indicator of the set
containing all single solutions in the last population. In addition, Fig. 5 shows
the running times of the different algorithms on a 64bit AMD linux machine
with 4 cores (2.6GHz) averaged over all 6 test problems.

There are two main observations: On the one hand, the P(X)/P(X)-optimizer
variants are faster than the standard MOEA. On the other hand, the quality of
the solution sets obtained by the P(X)/P(X)-optimizer variants are, in part,
better than the standard MOEA in terms of hypervolume indicator values.

As to the running time, a speed-up is not surprising due to the parallel im-
plementation of the P(X)/P(X)-optimizer variants. However, the speed-ups are
higher than the number of cores except for the A2 variant which indicates that
there will be a speed-up even on a single processor. The reason is mainly the
faster hypervolume computation. To substantiate the statement that the speed-
up is not only caused by the parallelization, we compare the hypervolume indica-
tor improvements of the A1 variant and the standard MOEA over the performed
function evaluations. Figure 4 shows the overall hypervolume of all solutions and
the hypervolume of a randomly selected set of variant A1 together with the hy-
pervolume of the standard MOEA averaged over 30 runs. After a certain number
of function evaluations, the A1 variant outperforms the standard MOEA even
for the same number of function evaluations which indicates that also a non-
parallelized P(X)/P(X)-optimizer variant A1 outperforms the standard MOEA.
This result is even more surprising since the standard MOEA operates on a set
of 200 solutions whereas the P(X)/P(X)-optimizer operates on much smaller
sets of 20 solutions only. In the latter case, the diversity between the sets of so-
lutions is not guaranteed; in the former case, the hypervolume indicator ensures
a good spread of all 200 solutions which explains the higher hypervolume in the
beginning of the optimization.

As to the solution quality, we can make two observations, that are both sup-
ported by statistical tests2. The B1 and B2 variants obtain, statistically signifi-
2 We used the non-parametric Kruskal-Wallis test followed by the Conover-Inman

procedure with a p-value of 0.01 as described in [6] on p. 288ff.
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Fig. 3. Box plots of the normalized hypervolume indicator values for the four
P(X)/P(X)-optimizer variants and the standard MOEA (STD) for six test problems
with 2 (left), 3 (middle), and 4 (right) objectives. Higher values are better.
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parison to the standard MOEA averaged over 30 runs over time. For the A1 variant,
both the overall hypervolume of all solutions and the indicator value of one randomly
picked set are shown. The insert shows a detailed view of the last time period.

cantly, better hypervolume values than the standard MOEA on all DTLZ2 and
DTLZ5 instances. No general conclusion over all problems can be made for the
A2, B1, and B2 variants. The A1 variant, however, yields for 16 of the 18 prob-
lems better results than the standard MOEA (except for 4-objective DTLZ5 and
2-objective DTLZ7). Hence, the A1 variant is used in all further investigations.

The huge differences between the DTLZ and the WFG problems for the dif-
ferent P(X)/P(X)-optimizer variants may be caused by the different character-
istics of elitism: a good solution is more likely to be contained in all solution sets
after recombination within the variants A2, B1, and B2 in comparison to the
A1 variant, i.e., the diversity is lower. In addition, the diversity of solutions is
also higher in the A1 variant because of its random mating selection. This low
diversity between single solutions might be the reason why the three variants
A2, B1, and B2 are not performing as good as the A1 variant on the WFG
problems. For the DTLZ problems, however, the small diversity seems to cause
no problems for the search due to the structure of the problems.

4.3 Comparing Different Mutations on Sets

In order to study the influence of the parameter G, i.e., the length of a muta-
tion step, we run the P(X)/P(X)-optimizer variant A1 with different values for
G—all other parameters are kept the same except the number of generations
which is changed to keep the overall number of objective function evaluations
the same. Figure 6 shows the normalized hypervolume values averaged over 30
runs together with the standard deviation. Although the influence of G is small
compared to the hypervolume of the standard MOEA, we observe a tendency
towards better results if the mutation length is smaller. This gives evidence that
the used set recombination is a powerful operator. However, using the set re-
combination more frequently results in a higher running time. Although further
investigations on the choice of G are needed, our choice makes a first compromise
between running time and solution quality.
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4.4 Application to Wireless Sensor Networks Deployment

Woehrle et al. [19] tackled the problem of placing wireless sensor nodes to mon-
itor certain regions of interest by using a MOEA based on a new mutation
operator. This problem of finding a sensor network deployment with a mini-
mal number of nodes that minimizes the transmission error probability while
the constraint of covering a certain region of interest is fulfilled, here, serves as
an example application. Compared to the test problems investigated above, the
evaluation time of a single solution is long: one evaluation takes up to several
seconds per solution in comparison to milliseconds for the test problems.

When comparing the P(X)/P(X)-optimizer variant A13 and the standard
MOEA with the same number of 2, 000 function evaluations exemplary for
one run4, it turns out that A1 outperforms the standard MOEA in terms of

3 As parameter values, G = 2, μ = 4, N = 10, and gmax = 50 are used. Furthermore,
the mutation and recombination operators on single solutions within the set mutation
as well as the objective functions are implemented as described in [19].

4 We are aware of the small significance of one run, but know that changing random
seeds or problem instances does not change the results qualitatively—presenting
results for more runs would, however, lengthen the paper beyond the page limit.
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hypervolume. The indicator value of the union of all solutions sets in the last
population equals 28.376 for the A1 variant compared to 26.595 for the standard
MOEA (reference point at (50, 1.1)). Also the plot of all achieved non-dominated
solutions in objective space (Fig. 7) indicates that the solutions found are of
higher quality for a decision maker. With respect to the running time, the A1
variant reaches a speed-up of about 3 on a 2-processor machine with 4 cores.

5 Conclusions

This paper has demonstrated that maintaining a population of solution sets
in combination with appropriate set variation and selection operators can have
advantages over classical MOEAs—in a setting where the hypervolume is the
set measure to be optimized. The experimental results not only show that the
quality of the generated Pareto set approximations can be largely improved, but
that also the overall computation time can be reduced. As to the former, set
recombination seems to play a major role, while the latter is mainly because the
hypervolume indicator is faster to compute for small solution sets.

The present study represents just a first step towards evolutionary algorithms
for sets and there are different promising directions for future research. In par-
ticular, the choice of the parameters (solution set size, population size, etc.) and
the effects of different set operators need to be investigated. Moreover, it would
be worthwhile to see whether similar results can be observed for other types of
set optimization criteria.
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Abstract. The multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES) is a variable-metric algorithm for real-valued
vector optimization. It maintains a parent population of candidate solu-
tions, which are varied by additive, zero-mean Gaussian mutations. Each
individual learns its own covariance matrix for the mutation distribution
considering only its parent and offspring. However, the optimal mutation
distribution of individuals that are close in decision space are likely to
be similar if we presume some notion of continuity of the optimization
problem. Therefore, we propose a lateral (inter-individual) transfer of in-
formation in the MO-CMA-ES considering also successful mutations of
neighboring individuals for the covariance matrix adaptation. We evalu-
ate this idea on common bi-criteria objective functions. The preliminary
results show that the new adaptation rule significantly improves the per-
formance of the MO-CMA-ES.

1 Introduction

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-
ES) recently presented in [1,2,3] extends the single-objective CMA-ES [4,5,6]
to real-valued vector optimization. The algorithm in [2] considers a population
of individuals subject to multi-objective, indicator-based selection. Each of the
individuals adapts its own variable-metric for generating offspring. Up until now,
the update of the strategy parameters, that is, the covariance matrix and a global
step-size parameter, considers only information within the genealogical tree of
each individual. This work presents a new covariance matrix update procedure
that incorporates information from multiple genealogies. The performance of
the modified MO-CMA-ES with the enhanced adaptation scheme is empirically
evaluated and compared to the performance of the original MO-CMA-ES.

The remainder of this work is organized as follows. Section two briefly de-
scribes the original MO-CMA-ES. In Section three, the new covariance matrix

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 155–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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adaptation procdure is presented. The empirical evaluation is summarized in sec-
tion four. We close with the final conclusions and suggestions for future research
directions.

2 The MO-CMA-ES

In the following, we briefly outline the MO-CMA-ES according to [1,2]. For a
detailed description and a performance evaluation on bi-objective benchmark
functions we refer to [1] (see also [2,3]).

The MO-CMA-ES relies on the non-dominated sorting selection scheme [7]. As
in the SMS-EMOA [8], the hypervolume-indicator serves as second-level sorting
criterion to rank individuals at the same level of non-dominance. In the following,
we first describe the general ranking procedure and then summarize the other
parts of the MO-CMA-ES.

Let A be a population, and let a, a′ be two individuals in A. Let the non-
dominated solutions in A be denoted by ndom(A) = {a ∈ A

∣∣�a′ ∈ A : a′ ≺ a},
where ≺ denotes the Pareto-dominance relation. The elements in ndom(A) are
assigned a level of non-dominance of 1. The other ranks of non-dominance are
defined recursively by considering the set A without the solutions with lower
ranks [7]. Formally, let dom0(A) = A, doml(A) = doml−1(A) \ ndoml(A), and
ndoml(A) = ndom(doml−1(A)) for l ≥ 1. For a ∈ A we define the level of
non-dominance rank(a,A) to be i iff a ∈ ndomi(A).

The hypervolume measure or S-metric was introduced in [9] in the domain
of evolutionary MOO. It can be defined as the Lebesgue measure Λ (i.e., the
volume) of the union of hypercuboids in the objective space [10]:

Saref (A
′) = Λ

( ⋃
a∈ndom(A′)

{(f1(a′), . . . , fM (a′)) | a ≺ a′ ≺ aref}
)
, (1)

where aref is an appropriately chosen reference point. The contributing hyper-
volume of a point a ∈ A′ = ndom(A) is given by

ΔS(a,A′) = Saref (A
′) − Saref (A

′ \ {a}) . (2)

Now we define the contribution rank cont(a,A′) of a. This is again done recur-
sively. The element, say a, with the largest contributing hypervolume is assigned
contribution rank 1. The next rank is assigned by considering A′ \{a} etc. More
precisely, let c1(A′) = argmaxa∈A′ ΔS(a,A′) and

ci(A′) = c1

⎛⎝A′ \
i−1⋃
j=1

{cj(A′)}

⎞⎠ (3)

for i > 1. For a ∈ A′ we define the contribution rank cont(a,A′) to be i iff
a = ci(A′). In the ranking procedure ties are broken at random.
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Finally, the following relation between individuals a, a′ ∈ A is defined:

a ≺A a′ ⇔ rank(a,A) < rank(a′, A)∨[
rank(a,A) = rank(a′, A) ∧ cont(a, ndom(A)) < cont(a′, ndom(A))

]
(4)

In the μMO×(1+1)-MO-CMA-ES, a candidate solution a
(g)
i , i ∈ {1, . . . , μMO},

in generation g is a tuple
[
x(g)

i , p̄
(g)
succ,i, σ

(g)
i ,p(g)

i,c ,C
(g)
i

]
, where

x(g)
i is the current search point,
p̄
(g)
succ,i is the smoothed success probability,

σ
(g)
i is the global step-size,

p(g)
i,c is the cumulative evolution path,

C(g)
i is the covariance matrix of the search distribution.

The standard version of the μMO× (1+1)-MO-CMA-ES is given in Algo-
rithm 1. The indicator function I(·) evaluates to one if its argument is true and
to zero otherwise.

Algorithm 1. μMO×(1+1)-MO-CMA-ES

g ← 0, initialize a
(g)
k for k ∈ {1, . . . , μMO}1

repeat2

for k = 1, . . . , μMO do3

a′(g+1)
k ← a

(g)
k4

x′(g+1)
k ∼ x

(g)
k + σ

(g)
k N

(
0,C

(g)
k

)
5

Q(g) ←
{

a′(g+1)
k , a

(g)
k

}
6

for k = 1, . . . , μMO do7

σ-update
(
a′(g+1)

k , I
(
x′(g+1)

k ≺Q(g) x
(g)
k

))
8

rank-one-update

(
a′(g+1)

k ,
x′(g+1)

k
−x

(g)
k

σ
(g)
k

)
9

σ-update
(
a
(g)
k , I

(
x′(g+1)

k ≺Q(g) x
(g)
k

))
10

for i ∈ {1, . . . , μMO} do11

a
(g+1)
i ← Q

(g)
≺:i12

until stopping criterion is met13

For each of the μMO individuals, one offspring is sampled (lines 3–5). The
decision whether a new candidate solution is better than its parent is made in
the context of the population Q(g) of parent and offspring individuals due to the
indicator-based selection strategy implemented in the algorithm. The covariance
matrix of each offspring is adapted (line 9, see the procedure rank-one-update).
Subsequently, the step-sizes σ(g)

k and σ′(g+1)
k of parent and offspring individuals
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a
(g)
k and a(g+1)

k are updated (line 8 and 10, see the procedure σ-update). Finally,
the new parent population is selected from the set of parent and offspring in-
dividuals according to the indicator-based selection scheme (lines 11–12). Here,
Q

(g)
≺:i denotes the ith best individual in Q(g) ranked by non-dominated sorting

and the contributing hypervolume according to (4) (see also [1]).

Procedure σ-update( a = [x, p̄succ, σ,pc,C], psucc)

p̄succ ← (1 − cp)p̄succ + cpp̄succ1

σ ← σ exp
(

1
d

p̄succ−ptarget
succ

1−p
target
succ

)
2

The (external) strategy parameters are the population size, initial global step
size, target success probability ptarget

succ , step-size damping d, success rate averaging
parameter cp, cumulation time horizon parameter cc, and covariance matrix
learning rate ccov. Default values as given in [1] and used in this paper are:
d = 1 + n/2, ptarget

succ = (5 +
√

1/2)−1, cp = ptarget
succ /(2 + ptarget

succ ), cc = 2/(n+ 2),
ccov = 2/(n2 + 6) and pthresh = 0.44. The initial global step sizes σ(0)

i are set
dependent on the problem (e.g., in the case of box constraints, see below, with
xu

i − xl
i = xu

j − xl
j for 1 ≤ i, j ≤ n to 0.6 · (xu

1 − xl
1)).

Procedure rank-one-update(a = [x, p̄succ, σ,pc,C], z ∈ Rn)

if p̄succ < pthresh then1

pc ← (1 − cc)pc +
√

cc(2 − cc)z2

C ← (1 − ccov)C + ccovpcpc
T3

else4

pc ← (1 − cc)pc5

C ← (1 − ccov)C + ccov

(
pcpc

T + cc (2 − cc)C
)

6

When in this study the MO-CMA-ES is applied to a benchmark problem f
with box constraints, we consider a penalized fitness function

fpenalty(x) = f(feasible(x)) + α‖x− feasible(x))‖2
2 (5)

in the search process, where

feasible(x) = (min(max(x1, x
l
1), x

u
1 ), . . . ,min(max(xn, x

l
n), xu

n))T (6)

and xl
i and xu

i are the lower and upper bound of the ith component of the search
space. We set ad-hoc α = 10−6.

3 A New Covariance Matrix Update

The recombination of information provided by candidate solutions is a powerful
variation operator that is present in most current single- and multi-objective
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evolutionary algorithms. Currently, the MO-CMA-ES as proposed in [1] lacks
this feature. This section introduces a method for recombining neighbouring
individuals to further speed up the strategy parameter adaptation in the MO-
CMA-ES.

3.1 Incorporation of Information from Successful Offspring

The basic idea is that appropriate covariancematrices (i.e., appropriate coordinate
systems) are similar for individuals that are in the same region of the decision space
if we presume some notion of continuity of the objective function (more precisely,
we presume that the principle of strong causality [11] is not too often violated).
Thus, combining information about the topology of the search space gathered by
neighbouring individuals is expected to speed up the learning of the covariance
matrix. In the following, we realize this idea in the MO-CMA-ES.

Consider the set of parent individuals P (g) and the set of newly generated
candidate solutions Q(g) in generation g. Let Q′(g) ⊆ Q(g) be the set of successful
offspring (i.e., Q′(g) ⊆ P (g+1)). The covariance matrix of each individual in Q′(g)

is updated. The standard μMO × (1 + 1)-MO-CMA-ES relies on the “isolated”
rank-one-update with cumulative evolution path that solely exploits the step
from the parent to its offspring.

Let a(g)
i and a′(g+1)

i be an individual and its offspring, respectively. Let us
assume that a′(g+1)

i is successful and therefore a′(g+1)
i ∈ Q′(g). The rank-one-

update of the covariance matrix of a′(g+1)
i is given by

C′(g+1)
i = (1 − ccov)C

(g)
i + ccovp′(g+1)

i

(
p′(g+1)

i

)T
, (7)

where p′(g+1)
i is the updated cumulative evolution path of a′(g+1)

i . Our modifi-
cation of the adaptation method reads:

C′(g+1)
i = (1 − ccov)

[(
1 −

μMO∑
j=1

w
(g+1)
ij

)
C(g)

i

+
μMO∑
j=1

w
(g+1)
ij

x′(g+1)
j − x(g)

j

σ
(g)
j

(
x′(g+1)

j − x(g)
j

σ
(g)
j

)T

︸ ︷︷ ︸
=Z(g+1)

]
+ ccovp′(g+1)

i p′(g+1)
i

T︸ ︷︷ ︸
rank-one-update

,

(8)

Here w(g+1)
ij is a weighting coefficient assigned to the j-th offspring individual

a′(g+1)
j . The weight is calculated anew in each generation. It is different for each

individual in the offspring population. If the individual is not selected for the
next parent generation, it is assigned a weight w(g+1)

ij = 0.
The matrix Z(g+1) aggregates information from the selected new candidate

solutions and is of rank min{μMO,succ, n} with probability one, where μMO,succ
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denotes the number of successful offspring. Thus, the new adaptation method is
referred to as rank-μMO,succ-update.

In contrast to the combination of the rank-μ- and rank-one-update in the
non-elitist CMA-ES (see [4]), no constant μcov is used to balance the impact of
the two different update rules. The blending of old information C(g) and new
information Z(g+1) is controlled by considering the sum of weighting coefficients.

3.2 Weighting of Neighbouring Individuals

The following assumptions underlie the calculation of the weighting coefficients:

– Non-successful offspring individuals do not represent promising sampling
directions and are assigned a weight of zero.

– Information contributed by individuals that are closer to the individual to
be updated is more important, as the chance for a similar topology of the
search space is higher for individuals nearby.

– Distances between individuals should be measured in terms of the metric
learnt by the individual to be updated.

Now we take the point of view of an offspring individual a′(g+1)
i , i∈{1, . . . , μMO},

whose covariance matrix C′(g+1)
i needs to be updated. A weighting coefficient

w
(g+1)
ij for each offspring a′(g+1)

j , j ∈ {1, . . . , μMO} is determined. The weight

reflects the relevance of a′(g+1)
j for the covariance matrix update of a′(g+1)

i . The

importance of a′(g+1)
j depends on its distance to a′(g+1)

i . The closer a′(g+1)
j is

situated to a′(g+1)
i , the higher the weight it is assigned. An individual a′(g+1)

j

is considered near in the search space if a′(g+1)
i can reach a′(g+1)

j by a small

number of mutative steps. That is, the individual a′(g+1)
j is close to a′(g+1)

i if

the probability to sample a point close to a′(g+1)
j is high according to the search

distribution

N
(
x′(g+1)

i , σ′(g+1)
i

2
C′(g+1)

i

)
, (9)

of the individual a′(g+1)
i .

Accordingly, the distance calculation is carried out w.r.t. the shape of the
search distribution and the step-size of a′(g+1)

i using the Mahalanobis distance
based on the covariance matrix of the individual to be updated (9):

dM

(
a′(g+1)

i , a′(g+1)
j

)
=

√(
x′(g+1)

i − x′(g+1)
j

)T

C′(g+1)
i

−1
(
x′(g+1)

i − x′(g+1)
j

)
σ′(g+1)

i

(10)

Note that dM

(
a′(g+1)

i , a′(g+1)
j

)
is not symmetric as the difference vector x′(g+1)

i −

x′(g+1)
j is transformed into the coordinate system of a′(g+1)

i by multiplying with

the inverse of σ′(g+1)
i

2
C′(g+1)

i .
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The (MO-)CMA-ES explores the search space by means of mutative steps.
Therefore, we normalize the distance w.r.t. this “unit of measurement”. The
scaling of the Euclidean norm of an N (0, I)-distributed random vector with the
dimension of the search space needs to be addressed to render the distance cal-
culation independent of the search space dimension n. To this end, the expected
length of an N (0, I)-distributed is approximated by

E (||N (0, I)||2) =
√
n+ O(1/n) ≈

√
n . (11)

Thus, the comparison of the distance dM

(
a′(g+1)

i , a′(g+1)
j

)
with the expected

length E (||N (0, I)||2) corresponds approximately to a division by
√
n. This can

be viewed as a normalization by the unit of measurement “reachable in one
mutative step”. Now this normalization is extended to dsteps mutative steps. Ba-

sically, the distance dM

(
a′(g+1)

i , a′(g+1)
j

)
is compared to the expected length of a

random vector x =
∑dsteps

k=1 xk, where x1, . . . ,xdsteps are independently N (0, I)-
distributed. The variance of x is equal to the sum of variances of the independent
steps xk, k ∈ {1, . . . , dsteps},

x =
dsteps∑
k=1

xk ∼ N (0, dsteps I) ∼
√
dsteps N (0, I) (12)

and therefore the expected length of x distributed according to N (0, dsteps I) is

E
(
||N (0, dsteps I)||2

)
=
√
dsteps E (||N (0, I)||2) ≈

√
dsteps n . (13)

We determine the weights based on this distance measure. A weight w(g+1)
ij is

computed by

w
(g+1)
ij = w′

ij
(g+1) min

{
1,

2μMO,eff − 1
(n+ 2)2 + μMO,eff

}
(14)

using the intermediate weights

w′′
ij

(g+1) =

{
h
(
dM

(
a′(g+1)

i , a′(g+1)
j

)
/
√
dstepsn

)
if a′(g+1)

j ≺Q(g) a
(g+1)
j

0 otherwise
(15)

w′
ij

(g+1) =
w′′

ij
(g+1)

μMO − μMO,succ +
∑μMO

k=1 w
′′
ik

(g+1) . (16)

Only successful offspring individuals shall be considered in the update, and there-
fore an intermediate weight of zero is assigned to non-successful offspring. For
the others, the intermediate weight w′′

ij
(g+1) is calculated by applying a mono-

tonically decreasing distance weighting function h : R≥0 → R to the distance
dM

(
a′(g+1)

i , a′(g+1)
j

)
/
√
dstepsn. Here, h(·) has been chosen as

h : R≥0 → R, x �→ e−x . (17)



162 T. Voß, N. Hansen, and C. Igel

Thus, the neighbourhood of a′(g+1)
i that is considered important for the covari-

ance matrix update depends “smoothly” on the distance measured by dM. Our
goal is to fuse the information encoded in the covariance matrix C′(g+1)

i and in
the matrix Z(g+1), which contains information about successful steps:

Z(g+1) =
μMO∑
j=1

w′
ij

(g+1) x
′(g+1)
j − x(g)

j

σ
(g)
j

(
x′(g+1)

j − x(g)
j

σ
(g)
j

)T

(18)

The sum of all final weights determines how much emphasis we put on Z(g+1)

in the covariance matrix update (8). The “more information” is contained in
Z(g+1) the larger the sum of the final weights can be. To account for that, we
first normalize the intermediate weights w′′

ij
(g+1) by the number of successful

offspring individuals μMO,succ according to Eq. (16).
Consider the case of all offspring individuals being selected for the next gen-

eration. Then the sum
∑μMO

j=1 w′
ij

(g+1) evaluates to one. If these weights were

used in Eq. (8), the covariance matrix C′(g+1)
i would be replaced by the newly

estimated covariance matrix Z(g+1). This shows that we have to be careful not
to put too much emphasis on Z(g+1). The matrix Z(g+1) has a rank of at most
μMO,succ, which is likely to be less than n, and therefore just considering Z(g+1)

would lead to a degenerate covariance matrix.
The amount of “information” contained in Z(g+1) clearly depends on the num-

ber of successful offspring μMO,succ. But due to the weighting, one can observe a
“loss of variance” in Z(g+1) we want to account for. To this end, we rely on the
variance effective selection mass

μMO,eff =

(∑μMO
j=1 w′

ij
(g+1)

)2

∑μMO
j=1

(
w′

ij
(g+1)

)2 (19)

as a measure for the “amount of information” contained in Z(g+1) [6]. The de-
pendence of μMO,eff on i is not indicated to keep the notation uncluttered.

To get an idea of this measure, let us assume that successful steps are dis-
tributed independently according to N (0, I). Then the weighted sum of success-
ful steps is distributed according to

μMO∑
j=1

w′
ij

(g+1)N (0, I) , (20)

with variance
∑μMO

j=1

(
w′

ij
(g+1)

)2
. As

∑μMO
j=1

(
w′

ij
(g+1)

)2
≤
(∑μMO

j=1 w
′
ij

(g+1)
)2

we in general loose variance due to the weighting, and this is captured by μMO,eff.
The value of μMO,eff is always greater than one and less than or equal to μMO,succ.
It is equal to μMO for w′

i1 = · · · = w′
iμMO

= 1/μMO and goes to one if all but one
weights go to zero.

Finally, the relation between the information contributed by all selected steps
and the information required to prevent from a degenerated covariance matrix is
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evaluated. A covariance matrix is a symmetric matrix with n(n+1)/2 degrees of
freedom. With μMO,eff providing a measure of information within the offspring
population, the term

μMO,eff

n(n+ 1)/2
=

2μMO,eff

n(n+ 1)
, (21)

gives an estimate of the relation between “contributed” and “required” knowl-
edge. For constant n and μMO,eff large enough, the term evaluates to a value
greater than one, thus indicating that a re-estimate of the covariance matrix
based on the offspring population is possible without degenerating. If the value
is less than one, the newly generated offspring do not exhibit enough informa-
tion. In [4] a slightly different expression based on the same idea has been found
and validated empirically. It reads

2μMO,eff − 1
(n+ 2)2 + μMO,eff

. (22)

The calculation of the weights is now completed by incorporating this “estimate
of information”. It is given by:

w
(g+1)
ij = w′

ij
(g+1) min

{
1,

2μMO,eff − 1
(n+ 2)2 + μMO,eff

}
. (23)

The weight w′
ij

(g+1) is rescaled if the information contained within the successful
offspring is not sufficient to prevent the covariance matrix from degenerating.1

If none of the offspring individuals is successful, all weights are equal to zero
and no rank-μMO,succ-update of the covariance matrix is carried out. If all in-
dividuals of the offspring population are successful and enough information is
provided by the selected steps, the old covariance matrix is discarded and re-
estimated from scratch. The standard rank-one-update is always applied, see
Eq. (8).

Now we have all ingredients for the modified MO-CMA-ES with “recombi-
nation” (in the sense that information from several offspring are combined) for
learning strategy parameters. It is referred to as (μMO+μMO)-MO-CMA-ES.
Only a small modification of the original μMO×(1+1)-MO-CMA-ES (see Algo-
rithm 1) is necessary. Before the rank-one-update is carried out (Algorithm 1,
line 9), the covariance matrices of the individuals are updated according to the
Procedure rank-μMO,succ-update.

Choosing the right neighbourhood size by setting the parameter dsteps is cru-
cial for the performance of the (μMO+μMO)-MO-CMA-ES. A value that works
reliably across different fitness functions is desired, but there is no obvious heuris-
tic for the selection of dsteps. For this reason, an empirical investigation of the
performance of the (μMO+μMO)-MO-CMA-ES with different values for dsteps has
been conducted in the context of this study. The bi-criteria benchmark function

1 The expression min
{
1,

2μMO,eff−1

(n+2)2+μMO,eff

}
evaluates to one only if μMO,eff, which is

bounded from above by μMO, is larger than n2 + 4n + 5.
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Procedure rank-μMO,succ-update(a = [x, psucc, σ,pc,C], Q(g))

μMO,succ ← 01

for k ← 1, . . . , μMO do2

dk ←

∣∣∣∣∣∣∣∣[x′(g+1)
k − x

]T
C−1

[
x′(g+1)

k − x
]∣∣∣∣∣∣∣∣

2

σ3

wi ← I
(
a′(g+1)

k ≺Q(g) a
(g)
k

)
h

(
dk√

n dsteps

)
4

μMO,succ ← μMO,succ + I
(
a′(g+1)

k ≺Q(g) a
(g)
k

)
5

μMO,eff ←
(∑μMO

i=1 wi

)2∑μMO
i wi

26

for k ← 1, . . . , μMO do7

wk ← wk

μMO − μMO,succ +
∑μMO

i=1 wi
min

{
1,

2μMO,eff − 1
(n + 2)2 + μMO,eff

}
8

C ←
(

1 −
μMO∑
i=1

wi

)
C +

μMO∑
k=1

wk
x′(g+1)

k − x
(g)
k

σ

(
x′(g+1)

k − x
(g)
k

σ

)T

9

ELLI1, CIGTAB1, ELLI2, CIGTAB2 [1] and different search space dimensions
n have been considered. Based on the results we derived the preliminary rule
dsteps = n+ 3.

4 Empirical Evaluation

This section presents a performance evaluation of the new (μMO+μMO)-MO-
CMA-ES on a set of common multi-objective benchmark functions. Our goal
is to answer the question whether the “recombination” of strategy parameters
improves the performance of the MO-CMA-ES on a broad range of bi-objective
fitness functions. Therefore we compare the (μMO+μMO)-MO-CMA-ES to the
results of the original μMO×(1+1)-MO-CMA-ES. For comparisons of this base-
line algorithm with alternative multi-objective optimization methods we refer to
previous studies [1,2,3]. The experiments have been conducted using the Shark
machine learning library [12].

4.1 Experimental Setup

We compare the (μMO+μMO)- and the original μMO×(1+1)-MO-CMA-ES pre-
sented in [1] on three classes of two-objective benchmark functions. Both algo-
rithms rely on the hypervolume-indicator as second-level sorting criterion. The
constrained benchmark functions ZDT1, ZDT2, ZDT3 and ZDT6 (see [13]) and
their rotated variants IHR1, IHR2, IHR3 and IHR6 (see [1]) have been chosen
for the performance evaluation. Moreover, the set of test problems has been aug-
mented by the unconstrained and rotated functions ELLI1, ELLI2, CIGTAB1
and CIGTAB2 (see [1]), with the distance of the optima of the single objectives
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Table 1. Results of the performance comparison of the (μMO+μMO)-MO-CMA-ES
and the original μMO×(1+1)-MO-CMA-ES, respectively. The table shows the median
of 50 trials after 250 and 500 generations, respectively, of the hypervolume-indicator
(the lower the better). The better value in each row is printed in bold. The superscripts
indicate whether the (μMO+μMO)-MO-CMA-ESn+3 performs significantly better than
the μMO×(1+1)-MO-CMA-ES, respectively (two-sided Wilcoxon rank sum test, **
indicates a significance level of 0.001 and * a significance level of 0.01). It is important
to note that different reference sets were used for computing the values after 250 and
500 generations, respectively, and that therefore the absolute values after 250 and 500
generations can not be compared directly.

(μMO+μMO)-MO-CMA-ESn+3 μMO×(1+1)-MO-CMA-ES

250 Generations

ZDT1 0.000564∗∗ 0.000592
ZDT2 0.000304∗∗ 0.000462
ZDT3 0.000279∗∗ 0.000621
ZDT6 0.000006∗ 0.000017
IHR1 0.000242∗ 0.000443
IHR2 0.000783∗∗ 0.000922
IHR3 0.000047∗∗ 0.000066
IHR6 0.000009∗∗ 0.000045
ELLI1 0.017792∗ 0.018896
ELLI2 0.007773∗ 0.008844
CIGTAB1 0.006947∗∗ 0.007956
CIGTAB2 0.000549∗∗ 0.000599

500 Generations

ZDT1 0.000134∗∗ 0.000201
ZDT2 0.000314∗ 0.000429
ZDT3 0.000025∗∗ 0.000172
ZDT6 0.000379∗ 0.000421
IHR1 0.000006∗∗ 0.000023
IHR2 0.005776∗ 0.005111
IHR3 0.000067∗∗ 0.000193
IHR6 0.000572∗∗ 0.000977
ELLI1 0.000791∗ 0.000844
ELLI2 0.004592∗∗ 0.006392
CIGTAB1 0.000253∗∗ 0.000542
CIGTAB2 0.003194∗ 0.003978

set to the default value two. The default search space dimension for constrained
and non-rotated benchmark functions has been chosen to be 30. In case of rotated
benchmark functions, the search space dimensions has been chosen to be 10.

The value of the parameter dsteps of the (μMO+μMO)-MO-CMA-ES has been
set to the empirically validated choice of n + 3. The number of parent and
offspring individuals has been set μMO = 100. We conducted 50 independent
trials and evaluated the algorithms after 250 and 500 generations.
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Table 2. Results of the performance comparison of the (μMO+μMO)-MO-CMA-ES and
the original μMO×(1+1)-MO-CMA-ES. The table shows the median of 50 trials after
250 and 500 generations of the ε+-indicator (the lower the better). The superscripts
indicate whether the (μMO+μMO)-MO-CMA-ESn+3 performs significantly better than
the μMO×(1+1)-MO-CMA-ES, respectively (two-sided Wilcoxon rank sum test, ** in-
dicates a significance level of 0.001 and * a significance level of 0.01). Different reference
sets were used for computing the values after 250 and 500 generations, respectively,
and therefore the absolute values after 250 and 500 generations can not be compared
directly.

(μMO+μMO)-MO-CMA-ESn+3 μMO×(1+1)-MO-CMA-ES

250 Generations

ZDT1 0.013756∗∗ 0.015349
ZDT2 0.222876∗ 0.400001
ZDT3 0.076653∗ 0.199655
ZDT6 0.000112∗∗ 0.000231
IHR1 0.004432∗∗ 0.005654
IHR2 0.002005∗∗ 0.010001
IHR3 0.000003∗ 0.000339
IHR6 0.002134∗∗ 0.002667
ELLI1 0.027492∗ 0.039816
ELLI2 0.000573∗∗ 0.000742
CIGTAB1 0.001947∗∗ 0.004753
CIGTAB2 0.002239∗∗ 0.003333

500 Generations

ZDT1 0.013756∗∗ 0.015349
ZDT2 0.222876∗ 0.400001
ZDT3 0.076653∗ 0.199655
ZDT6 0.000112∗∗ 0.000231
IHR1 0.004432∗∗ 0.005654
IHR2 0.002005∗∗ 0.010001
IHR3 0.000003∗ 0.000339
IHR6 0.002134∗∗ 0.002667
ELLI1 0.027492∗ 0.039816
ELLI2 0.000573∗∗ 0.000742
CIGTAB1 0.001947∗ 0.004753
CIGTAB2 0.002239∗ 0.003333

The evaluation procedure adheres to the suggestions given in [14]. We briefly
outline the process and refer to [9,15] for a detailed description of the meth-
ods. We consider the unary hypervolume-indicator and the unary additive ε+-
indicator as performance measures. Before indicator values are computed, the
data are normalized. We want to compare k = 2 algorithms on a particular
optimization problem f after g fitness evaluations and we assume that we have
conducted t trials. We consider the non-dominated individuals of the union of all
k · t populations after g evaluations. These individuals make up the reference set
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R. Their objective vectors are normalized by an affine linear transformation such
that for every objective the smallest and largest objective function values are
mapped to 1 and 2, respectively. The value for the unary hypervolume-indicator
is compared to the hypervolume of the reference set R, which is also used to
compute the ε+-indicator value. Therefore lower indicator values indicate better
performance.

We used different reference sets for the evaluation after 250 and 500 genera-
tions. Therefore, the absolute values of the results of these two lines of experi-
ments can not be compared.

4.2 Results

The results of the performance evaluation after 25,000 and 50,000 evaluations
are presented in Tables 1 and 2. Although only small differences between the two
algorithms can be observed, the (μMO+μMO)-MO-CMA-ES performed statisti-
cally significantly better than the μMO×(1+1)-MO-CMA-ES in all our experi-
ments. This shows that the strategy parameter adaptation of the MO-CMA-ES
is clearly improved by considering the information contributed by selected off-
spring individuals. The results suggest that the choice of the parameter dsteps
linearly dependent on the search space dimension n indeed results in a robust
behaviour of the (μMO+μMO)-MO-CMA-ES across different classes and types of
benchmark problems.

5 Conclusions and Future Work

We presented a new, more elaborate covariance matrix update scheme for the
multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES).
The difference from the original update method is that each individual addi-
tionally considers successful mutations of neighboring individuals. Such a lateral
information transfer was not considered in the MO-CMA-ES so far, and it allows
for faster adaptation of the covariance matrix. Our preliminary empirical eval-
uation on common bi-criteria benchmark functions shows that the new update
scheme significantly improves the performance in all cases.

There is the need for further investigation and room for improvements of the
proposed algorithm. For example, the choice of the parameter dsteps should be
studied in more detail and different choices for the distance weighting function
h(·), see Eq. (17), could be considered. The empirical evaluation should include
additional benchmark functions, for instance, with a larger number of objec-
tives. In particular, we are searching for functions where the covariance matrix
update scheme presented here is outperformed by the original rank-one-update
procedure.

The evaluation of the algorithms after a fixed number of evaluations – al-
though standard in the empirical analysis of evolutionary multi-objective algo-
rithms – may be misleading. In future work we will study the evolution of the
absolute hypervolume over the whole optimization process.
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Abstract. In this paper, a symbolic algorithm for solving constrained multi-
objective optimisation problems is proposed. It is used to get the Pareto optimal 
solutions as functions of KKT multipliers λ

r
 for multi-objective problems with 

continuous, differentiable, and convex/pseudo-convex functions. The algorithm 
is able to detect the relationship between the decision variables that form the 
exact curve/hyper-surface of the Pareto front. This algorithm enables to formu-
late an analytical form for the true Pareto front which is necessary in absolute 
performance measurement of evolutionary computing techniques. Here the pro-
posed technique is tested on some test problems which have been chosen from a 
number of significant past studies. The results show that the proposed symbolic 
algorithm is robust to find the analytical formula of the exact Pareto front. 

Keywords: Multi-objective optimisation, Evolutionary algorithms, Symbolic 
algorithm, Pareto front. 

1   Introduction 

Due to the importance of multi-objective optimisation problems (MOOP) for scien-
tists and engineering designers several mathematical approaches and evolutionary 
algorithms (EA) have been proposed. In mathematics, the Karush-Kuhn-Tucker con-
ditions (also known as the Kuhn-Tucker or the KKT conditions) are necessary for a 
solution in MOOP to be optimal. Many valuable theoretical results have been gained 
and have drawn much attention over the past several years since Kuhn and Tucker 
published their paper [1] in 1950. 

Optimisation algorithms such as evolutionary or particle swarm algorithms are heu-
ristic techniques that have been recently used to deal with multi-objective optimisa-
tion problems [2]. They have adequately demonstrated their usefulness in finding a 
well-converged and a well-distributed set of near Pareto-optimal solutions [3] and  
[4]. Because of the extensive studies and the available source codes both commer-
cially and freely of these algorithms, they have been popularly applied in various 
                                                           
* Corresponding author. 
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problem-solving tasks and have received great attention [5]. However recent studies 
[6] have shown that multi-objective optimisation with fitness assignment based on 
Pareto-domination leads to long processing times for large population sizes.  This has 
motivated a considerable amount of research and a wide variety of approaches have 
been suggested in the last few years [6]. Deb et al. have suggested a verification pro-
cedure based on KKT conditions to build confidence about the near-optimality of 
solutions obtained using an evolutionary optimisation procedure [11]. 

The aim of this paper is to present a proposed symbolic algorithm which is able to 
solve constrained multi-objective optimisation analytically. This new algorithm can 
be used to get an analytical form of the curve/hyper-surface of the Pareto front for a 
certain class of multi-objective problems. This class involves the set of continuous, 
differentiable, and convex/pseudo-convex objective functions. Moreover, for this 
class of functions the algorithm guides to the relationship between the decision vari-
ables which describes the Pareto front surface exactly. It is not clear from the mathe-
matical description of the multi-objective optimisation problem (1) what would be the 
analytical relationship between the decision variables for the solutions to be on the 
true Pareto front. There is no doubt that such relationship between the decision vari-
ables need careful analysis so that one can guarantee that the solutions provided by 
them are Pareto optimal solutions. The observations emanated from such relationship 
would be very important for a designer. With such observations, the designer may be 
able to switch from one optimal solution to another by simple changes in the design, 
achieving different trade-off requirements of the objectives. This information is not 
only important for operational purposes; it could also provide vital insight into the 
problem at hand and may guide evolutionary computing techniques to finding stop-
ping criteria and reduce the time consumption for converging to the true Pareto front. 
Both the analytical formula of the exact Pareto front and the relationship between the 
decision variables responsible for constructing this analytical formula are not pro-
vided by the state-of-the-art evolutionary algorithm, NSGA-II. The central part of the 
algorithm is the Karush-Kuhn-Tucker (KKT) theorem [1] which can handle high 
dimensionality. With this symbolic algorithm one can apply several metrics which 
need an analytical formula for the exact Pareto front to be known so that one can 
measure the performance of Evolutionary algorithms.    

The layout of the paper is as follows: in section 2 some basic concepts required 
throughout the paper are presented. A description of the proposed symbolic algorithm 
is given in section 3. In section 4 some test problems to be solved using the proposed 
algorithm are described and the results which obtained in the experiments that per-
formed using the algorithm are presented and discussed as well. Section 5 shows 
NSGA-II performance using the generational distance metric and the analytical for-
mula of the exact Pareto front provided by the symbolic algorithm. Finally, in section 
6 some conclusions are presented.  

2   Preliminaries 

This section highlights some definitions and notations that will be used throughout the 

paper. The n-dimensional Euclidean space is denoted by nR . The constrained multi-
objective optimisation problem to be handled here in this paper takes the following 
form [12]: 
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min    ( )T
m xfxfxfxf )(...,,)(,)()( 21=  

s.t.      ( ) 0)(,...,)(,)()( 21 ≤= T
p xgxgxgxg  

}n,...,,{k,xxx,RXx )U(
k

)L(n 21=≤≤⊆∈                        (1) 

where, },...,2,1{,: mMRXf M =→ and }p,...,,{j,RX:g j 21=→ . In this formu-

lation, )(xf
i

r
denotes the thi objective function, )( xg

j

r
denotes inequality type of con-

straints. The ultimate goal is simultaneous minimisation or maximisation of all given 
objective functions. When the objective functions conflict each other there may be a 
set of many alternative solutions. This family of possible solutions cannot improve all 
the objective functions concurrently. This is called Pareto optimality [12] and the 
definition is given below. Note that any maximisation objective function can be con-
verted into a minimisation objective by changing its sign. 

Definition 2.1. A point Xx ∈ˆ is said to be a Pareto optimal solution (or non-inferior 
or efficient) to the problem (1) if and only if there is no Xx ∈ such that )ˆ()( xfxf ≤ .   

Definition 2.2. A point Xx ∈ˆ is said to be a weak Pareto optimal solution to the 
problem (1) if and only if there is no Xx ∈ such that )x̂(f)x(f < .   

Roughly speaking, a point Xx ∈ˆ is Pareto optimal to problem (1) if and only if one 
can improve (in the sense of minimisation) the value of one of the objective functions 
only at the cost of making at least one of the remaining objective function(s) worse; it 
is weak Pareto optimal if and only if one can not improve all of the objective func-
tions simultaneously.     

Definition 2.3. For any T
nxxxx ),...,,( 21= and nT

n Ryyyy ∈= ),...,,( 21 , one can 

define the following [13]: 

(i) yx = if and only if ii yx = for all ni ,...,2,1= ; 

(ii) yx ≤ if and only if ii yx ≤ for all ni ,...,2,1= ; 

(iii) yx < if and only if ii yx < for all ni ,...,2,1=  

Definition 2.4. A subset nRX ⊆ is said to be a convex set if for any two points 

Xyx ∈, the segment Xyx ∈−+ )1( αα and ]1,0[∈α . 

Definition 2.5. A function RRXf n →⊆:  is convex if for all Xyx ∈, is valid that 

)()1()())1(( yfxfyxf αααα −+≤−+ for all ]1,0[∈α . 

Definition 2.6. A function RRXf n →⊆:  is differentiable at Xx ∈ˆ  if 

),ˆ()ˆ()ˆ()ˆ( dxddxfxfdxf T ε+∇=−+ , where )ˆ(xf∇  is the gradient of 

f at x̂  and 0),ˆ( →dxε as 0→d .  
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Definition 2.7. Let the function RRXf n →⊆:  be differentiable at every Xx ∈ . 

Then it is pseudo-convex function if for all Xyx ∈, such that 0)()( ≥−∇ xyxf T , we 

have )()( xfyf ≥ . 

Theorem 2.1. Suppose )( xf
r

 has continuous second-order partial derivatives at 

Cx ∈v on some open convex set C  in nR . If the Hessian H of )( xf
r

is positive 

semi-definite ( 0≥H ) on C , then )( xf
r

is convex on C  (for a proof one can see [7]). 

Theorem 2.2. Let the objective and the constraint functions of problem (1) be convex 
and continuously differentiable at a decision vector Xx ∈ˆ . A sufficient condition for 

x̂  to be Pareto optimal is that there exist multipliers mR∈< λ0 and pR∈≤ μ0 such 

that 

⎪
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,...,2,1,0)ˆ(

0)ˆ()ˆ(
1 1

μ

μλ
                                        (2) 

Proof. See [8].  

3   The Algorithm 

The following steps of the algorithm are directly motivated by the KKT theorem. 
They have been automated and coded in Mathematica® Symbolic Toolbox and run 
step by step [10]. Later the algorithm is applied to some test problems to illustrate its 
performance. After that the same problems are solved using the state-of-the-art sto-
chastic algorithm NSGA-II to validate the symbolic algorithm. Below are the steps of 
the symbolic algorithm:   

Step 1. Define the objective functions
i

f , Mi ,...,2,1=  to be minimised.   

Step 2. Calculate the Hessian Matrix )if(H  for each function separately.  

             If 0≥H then go to step 4, otherwise go to step 3.  
Step 3. Check if the condition )](,)([max))1(( yfxfyxf ≤−+ αα or 

0)()( ≤−∇ xyxf T  for an arbitrary y in the feasible space is satisfied. If yes 

go to step 4, otherwise terminate. 

Step 4. Solve the system 0)ˆ()ˆ(
1 1

=∇+∇∑ ∑
= =

m

i

p

j
jjii xgxf μλ  to get ),( μλxx = . 

Step 5. Use the system pjxg jj ,...,2,1,0)ˆ( ==μ to get pjj ,...,2,1, =μ  as a func-

tion of mii ,...,2,1, =λ and substitute in step 4. 

Step 6. Substitute the result from step 5 in step 4 to obtain )(λxx = . 

Step 7. Construct the analytical formula between mifi ,...,2,1, = using )(λxx = . 

Step 8. End. 
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Fig. 1. A flow chart of the proposed symbolic algorithm 

4   Test Problems and Results 

For the validity of the new symbolic algorithm, some test problems that have been 
solved using the stat-of-the-art stochastic algorithms were selected from the literature 
to be solved by the symbolic algorithm. A complete description of these problems is 
shown below first and after that come a complete discussion for the results provided 
for each test problem separately: 

Problem Formulation 4.1: (Fonseca and Fleming [3]) 
This problem is a typical multi-objective evolutionary algorithm (MOEA) benchmark 
problem. It consists of two objective functions and n decision variables as follows: 
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Restrictions: nx ,...,2,1,44 =≤≤− l
l
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Problem Formulation 4.2: (Deb [4]) 
This problem is a two-variable problem. It consists of two objective functions which 
have the following form: 
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where q defines the number of lags in the interval ]1,0[ and 2=α  is a typical choice. 

Restrictions: 1,0 ≤≤ yx  

Problem Formulation 4.3: (Viennet [3]) 
This problem is a two-variable problem. It consists of three objective functions that 
have the following form: 
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                                     (5) 

Restrictions: 2,2 ≤≤− yx  

Problem Formulation 4.4: (Constrained problem [4]) 
This problem is a two-variable problem. It consists of two objective functions and two 
inequality constraints. It has the following form: 
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Restrictions: 11.0
1

≤≤ x and 50 2 ≤≤ x  

After executing the symbolic algorithm, the following results and observations are 
obtained: 

Problem Analysis 4.1: For this problem at 2=n the analytical formula of the exact 
Pareto front is: 
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Although both the objective functions are convex functions, the exact Pareto front 
is non-convex curve as can be seen in Figure 2 (black bold curve). This curve is con-
structed by the linearity relationship between the decision variables, 

21
xx = in the 

interval ]..,.[ 707043891−  As can be shown from Figure 3, not all the linearity rela-

tionships between the decision variables are used to construct the exact Pareto front. 
This interesting observation will help the designer to switch from one optimal solu-
tion to another. In addition, this linear relationship can be written as functions of KKT 
multipliers as follows: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==
+

−

+

−

)

22

)

22

21

21

2
21

21

1 (2
,

(2 λλ
λλ

λλ
λλ

xx
 

This problem has been solved using – a state of the art evolutionary technique – 
NSGA-II [5] with population size 100 and 100 generations using standard parameters. 
The result is plotted in Figure 2 (Red squares). It is shown that the robust of  
NSGA-II in finding uniform solutions on the exact curve of the Pareto front. Here 
raises the robust of the symbolic algorithm in providing a connected curve of the 
Pareto front. Furthermore, the symbolic algorithm is guided to the relationship be-
tween the decision variables responsible for constructing that curve. In addition, this 
problem has been solved using the symbolic algorithm at 3=n and it yielded the 
following: 
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Fig. 2. Objective space of problem 4.1  Fig. 3. Decision space of problem 4.1 
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This means that the dimension has no impact on the shape of the Pareto front; only 
the constraint imposed on

1
f changed. The algorithm shows also that the Pareto opti-

mal solutions for this problem satisfy at
321

xxx == . Again the linearity between the 

decision variables is the responsible for constructing the analytical formula of the 
exact Pareto front.  

Problem Analysis 4.2: For this problem at 12=q  the symbolic algorithm yielded the 

following results: 

Case 1. )9091.10,1(1 =⇒== fyx
r

, This is local Pareto front point. 

Case 2. )1,1(0 =⇒== fyx
r

, This is local Pareto front point. 

Case 3. 0=y and x satisfies the equation, 
2

1)24cos(24)24sin(2
λ
λ

πππ =++ xxxx . 

In this case the analytical formula that involves the exact Pareto front takes the form: 

)24sin(1 11
2

12 ffff π−−=  and 10 1 << f                                (9) 

This formula is plotted in Figure 4 (Black bold curve). As can be seen from Figure 4 
it is a disconnected Pareto front. Cases 1 and 2 are dominated by points on this curve. 
This problem has been solved using NSGA-II with population size 100 and 100 gen-
erations using standard parameters. The result is plotted in Figure 4 (Red circles) and 
same observations found like the previous problem.  

 

Fig. 4. Exact and approximated Pareto front to problem 4.2 

Problem Analysis 4.3: For this problem the equation of the hyper-surface involved 
the exact Pareto front is: 
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and 140,130 21 ≤≤≤≤ ff  
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Fig. 5. Exact and approximated Pareto front 

The eq. 10 is plotted in Figure 5 (the coloured hyper-surface). This equation is con-
structed by the following relationship between the decision variable: 

xy
3

21

λ
λλ −

=  

This problem has been solved using NSGA-II with population size 100 and 100 gen-
erations using standard parameters. The result is plotted in Figure 5 (Black crosses) 
and same observations found like the two previous problems.  

Problem Analysis 4.4: For this problem step 4 of the symbolic algorithm yielded:  
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with 19 cases for 54321
,,,, μμμμμ and

6
μ have been obtained by step 5. Eight cases 

are accepted as they make Eq. 11 within its range. The other cases are rejected as they 
make the decision variables out of their ranges and give complex values for

1
x and

2
x . In 

addition, these rejected cases make the constraints unsatisfied. The accepted cases are: 

Case 1. .0,
7

18

18
,

18 6543

21

2

1

1
====−== μμμμ

λλ
μ

λ
μ  

This case yields the point )5.2,3889.0( on the border of the feasible decision space 

(Bold line, Figure 6). It satisfies the inequality constraints imposed on the problem. 
The corresponding point in the feasible objective space is )9997.8,3889.0( on the 

region A (Bold curve, Figure 7).  
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Case 2 

.75.1111111.0,0,25.0111111.0 2156432211
λλμμμμμλλμ +=====−=  

This case yields the point )44.0,8.0( in the feasible decision space (Bold point, 

Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )8.1,8.0( (Bold point, Figure 7). This 

point is better than points on region C and is dominated by points from regions A  
and B.  

Case 3. .0,
7 65432

21
1

====== μμμμμ
λλ

μ  

This case yields:
1

2
1

7

λ
λ

=x , 12 96 xx −= and 6667.03889.0 1 ≤≤ x . This relation-

ship between 1x  and 2x  represents the bold line A in the decision space (Figure 6). 

All the points satisfying this line A are used to construct the formula, 

6667.03889.0,9
7

1
1

2 ≤≤−= f
f

f . This formula is the first part of the exact Pareto 

front (Bold curve A, Figure 7)  

Case 4. .21,0
564321

λλμμμμμμ ======  

This case yields:
1

2
1 λ

λ
=x , 02 =x  and 16667.0 1 ≤≤ x . This relationships for 1x  

and 2x  represent the bold line B in the decision space (Figure 6). All the points satis-

fying this line B are used to construct the formula, 16667.0,
1

1
1

2 ≤≤= f
f

f . This 

formula is the second part of the exact Pareto front (Bold curve B, Figure 7)  

Case 5. .111111.0,0111111.0,0 165432121
,5.1 λλλ μμμμμμ −====== −  

This case yields the point )5,6667.0( in the feasible decision space (Bold point on the 

bold line C, Figure 6). It satisfies the inequality constraints imposed on the problem. 
The corresponding point in the feasible objective space is )9996.8,6667.0( (Bold 

point on the curve C, Figure 7). This point is dominated by points on the curve A.  

Case 6. .
6

,0 21

654321

λλ
μμμμμμ −======  

This case yields:
1

2
1

6

λ
λ

=x , 52 =x  and 16667.0 1 ≤≤ x . This relationships for 1x  

and 2x  represent the bold line C in the decision space (Figure 6). All the points satis-

fying this line C are used to construct the formula, 16667.0,
6

1
1

2 ≤≤= f
f

f . This 
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formula creates the part C (Red curve in Figure 7). It is a local Pareto front and is 
dominated by both curves A and B.  

Case 7. .0,,,0
625214321

==+−==== μλμλλμμμμ  

This case yields the point )0,1( on the border of the feasible decision space (Bold line 

B, Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )1,1( on the border of the region B 

(Bold curve, Figure 7).  

Case 8. .,0,6,0
265214321

λμμλλμμμμ −==+−====  

This case yields the point )5,1( on the border of the feasible decision space (Bold line 

C, Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )6,1( on the border of the region C 

(Red bold curve, Figure 7). This point is dominated by the point )1,1( .  

 

Fig. 6. Feasible search region for problem 1 in the decision variable space  

 

Fig. 7. The exact and local Pareto front for problem 1 using the proposed symbolic algorithm 
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Fig. 8. The approximated Pareto front for problem 1 using NSGA-II algorithm 

This problem has been solved using NSGA-II with population size 500 and 500 
generations using standard parameters. The result is plotted in Figure 8 and same 
observations found like the three previous problems.  

5   NSGA-II Absolute Performance Measurement  

The term performance is always involved when comparing different optimisation 
techniques experimentally. In the case of multi-objective optimisation, the definition 
of quality is substantially complex because the optimisation goal itself consists of 
multiple objectives [9]:  

• The distance of the resulting non-dominated set to the Pareto front should be 
minimised. 

• A good (in most cases) uniform distribution of the solutions found is desirable. The 
assessment of this criterion might be based on a certain distance metric. 

• The extent of the obtained non-dominated front should be maximized, i.e., for each 
objective, a wide range of values should be covered by the non-dominated solutions. 

In the literature, some attempts can be found to formalize the above definition (or 
parts of it) by means of quantitative metrics [2]. Within this paper the generational 
distance (GD) metric is used. This metric is the average distance from the obtained 
Pareto front (

known
FP ) to the true Pareto front (

true
FP ) and is defined as follows [2]: 
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where n is the number of vectors in 
known

FP , 2=p  and 
i

d is the Euclidean distance 

(in objective space) between each vector and the nearest vector of 
true

FP . The result 

0=DG  indicates 
trueknown

FPFP = ; any other value indicates 
known

FP  deviates from 

true
FP . 
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Fig. 9. The residual plot between the approximated Pareto front and the exact Pareto front for 
problem 4.1 

The performance of NSGA-II is shown in Figure 9. This figure illustrates the re-
siduals between the approximated Pareto front and the true Pareto front. As expected 
for a stochastic technique NSGA-II is able to find some points but not all the points 
on the true Pareto front in the final generation. There are also some minor deviations 
from the true Pareto front as shown in the left part of Figure 9.  

The NSGA-II with 100 generations and 100 individuals in each generation has 
been executed 10 times on Fonseca and Fleming problem. By choosing 100 values on 
the true Pareto front provided by the paper’s algorithm near to the 100 individuals 
obtained by NSGA-II, the generational distance metric has been calculated in each 
experiment separately using eq. 12.  

The experiments show that with a minimum GD = 0.000829839 the NSGA-II can 
approximate the Pareto front in some runs quite well. However, in other runs the 
approximated Pareto front obtained by NSGA-II is not perfect since maximum GD = 
0.001065864. The mean and standard deviation of all the 10 experiments are  
μ= 0.982912E-3 and σ = 7.23078E-5, respectively. The small standard deviation 
shows that the GD values after 100 generations of the NSGA-II are already quite 
close to the mean. However, a GD different from zero indicated an ongoing approxi-
mation process. 

The proposed KKT-based algorithm providing a closed formula for the Pareto 
front curve allows for a very precise statistical analysis of the performance of stochas-
tic multi-objective optimisation techniques such as NSGA-II using an absolute per-
formance measure such as the GD. 

6   Conclusions 

A symbolic algorithm for multi-objective optimisation problems was proposed. It has 
been applied on some test problems. Exact solutions for these problems have been 
found by this algorithm. The analytical form of the exact Pareto front has been formu-
lated using the algorithm for these problems as well. Furthermore, a linear relationship 
between the decision variables has been formulated as a function of KKT multipliers. 
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This relationship itself is responsible for constructing the true Pareto front. As has been 
mentioned within this paper, this relationship has a significant contribution in innova-
tion. It guides the designer to switch from one optimal solution to other. Furthermore, 
it helps to measure the performance of evolutionary algorithms. In addition, it might be 
used to form the stopping criteria for evolutionary algorithms. The generational dis-
tance metric was used to evaluate the performance of the NSGA-II algorithm using the 
analytical formula of the exact Pareto front found by the proposed algorithm.     
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Abstract. Genetic Algorithms (GAs) have been widely used in single-
objective as well as in multi-objective optimization for solving complex
optimization problems. Two different models of GAs can be considered
according to their selection scheme: generational and steady-state. Al-
though most of the state-of-the-art multi-objective GAs (MOGAs) use a
generational scheme, in the last few years many proposals using a steady-
state scheme have been developed. However, the influence of using those
selection strategies in MOGAs has not been studied in detail. In this pa-
per we deal with this gap. We have implemented steady-state versions of
the NSGA-II and SPEA2 algorithms, and we have compared them to the
generational ones according to three criteria: the quality of the resulting
approximation sets to the Pareto front, the convergence speed of the al-
gorithm, and the computing time. The results show that multi-objective
GAs can profit from the steady-state model in many scenarios.

Keywords: Genetic Algorithms, Comparative Study, Generational and
Steady-State Selection Scheme.

1 Introduction

Genetic Algorithms (GAs) have been widely applied for solving optimization
problems in many areas. Since the appearance of the first multi-objective genetic
algorithm (MOGA), the Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms (VEGA) [16], until today, there has been a growing interest
in these kinds of algorithms for problems with two or more objectives. GAs are
very popular in multi-objective optimization in part because they can obtain a
front of solutions in one single run. Thus, the most well-known algorithms in
this area are GAs: NSGA-II [5] and SPEA2 [20].

Based on the selection scheme, there exist two main models of GAs: gen-
erational and steady-state. In the generational model, the algorithm creates a
population of individuals from an old population using the typical genetic op-
erators (selection, crossover, and mutation); this new population becomes the
population of the next generation. On the other hand, a steady-state GA creates
typically only one new member which is tested to be inserted in the population
at each step of the algorithm.

In this paper we study the aforementioned selection schema and their effect in
MOGAs. In order to investigate this issue, we have used steady-state versions of

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 183–197, 2009.
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NSGA-II and SPEA2 and we have compared them to the original generational
ones. For making a broad comparison of these algorithms, we have evaluated
them by using test functions belonging to three different benchmarks (ZDT [19],
DTLZ [6], and WFG [11]) and we have considered three different criteria. First,
we have assessed the quality of the Pareto fronts obtained by those algorithms
applying the additive unary epsilon (I1

ε +) [13], spread (Δ) [5], and hypervolume
(HV ) [21] quality indicators. Second, we have studied the convergence speed
of them, i.e., the number of functions evaluations required by the algorithms
to converge towards the optimal Pareto front. Finally, we have measured the
computing time they require for solving the considered problems.

The remainder of this paper is structured as follows. The next section presents
some previous implementations of steady-state multi-objective algorithms in the
literature. Section 3 describes the steady-state versions of NSGA-II and SPEA2.
In Section 4, we detail the experimentation we have carried out, while Section
5 is devoted to showing and discussing the obtained results. Finally, Section 6
draws the main conclusions and future lines of work.

2 Related Work

In this section we analyze previous works which have made use of a steady-
state scheme in MOGAs. Many algorithms based on such a scheme have been
proposed in the last few years; we focus here on some representative proposals.

One of the first steady-state MOGAs described in the literature was the Pareto
Converging Genetic Algorithm (PCGA) [14]. PCGA used a (μ+ 2) scheme and
a novel mechanism based on histograms of ranks for assessing convergence to
the Pareto front. It was found to produce diverse sampling of the Pareto front
without niching and with significantly less computing effort than NSGA, the
previous version of NSGA-II. Nevertheless, the algorithms were evaluated using
only three test problems and no comparisons with PCGA using a generational
scheme were reported.

The Simple Evolutionary Algorithm for Multi-Objective Optimization
(SEAMO) was proposed in [18]. It was a simple steady-state approach following
a (μ + 1) scheme that used only one population and depended entirely on the
replacement policy used: no rankings, subpopulations, niches or auxiliary ap-
proach were required. Due to that a generational version of SEAMO makes no
sense, it was only compared with NSGA-II and SPEA2 using as benchmark the
multiple knapsack problem.

Deb et al. proposed in [4] an ε-Domination Based Steady State MOEA, which
was also evaluated in [3]. This algorithm used a (μ+ 1) scheme and it was com-
posed of a population and an archive, which used an ε-Domination mechanism.
In each generation, one parent from the population and one from the archive
were selected to create new offsprings, which were tested to be inserted in both
the population and the archive using different strategies. It was compared with
several state-of-the-art multi-objective algorithms using both bi-objective and
three-objective optimization problems. No comparisons with the same algorithm
using a generational scheme were reported.
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Two steady-state MOGAs were presented in [1]: the Objective Exchanging
Genetic Algorithm for Design Optimization (OEGADO), and the Objective
Switching Genetic Algorithm for Design Optimization (OSGADO). The for-
mer proposal consisted of several steady-state single-objective optimization GAs
which periodically exchanged information about the objectives; the second algo-
rithm was also composed of multiple single objective optimization algorithms,
but in this case these algorithms periodically switched the objective they opti-
mized. Both algorithms were compared to NSGA-II using a benchmark composed
of four academic problems, and two engineering problems. In this work, nei-
ther OSGADO nor OEGADO were evaluated using generational single-objective
GAs.

Emmerich et al. presented in [10] the so-called S metric selection EMOA
(SMS-EMOA), which was a hypervolume based steady-state GA. It had also a
(μ+1) scheme. The paper included a theoretical analysis in which the advantages
of using a steady-state scheme in terms of the complexity of this kind of algo-
rithms were proved. The algorithm was evaluated using the ZDT benchmark,
and it was compared to NSGA-II, SPEA2, and the above described ε-MOEA. As
with the above described proposals, no comparisons using a generational scheme
were reported.

Srinivasan et al. proposed in [17] a new version of the NSGA-II algorithm. This
algorithm used a (μ+λ) scheme, like the original NSGA-II. The main difference
was that once all the individuals have been generated, they were considered to
update the population in a steady-state model. The new proposal was evaluated
using a benchmark composed of 9 problems and compared to the original NSGA-
II algorithm.

Igel et al. studied in [12] the effect of two different steady-state schemes,
(μ+1) and (μ<+1), for the Multi-objective covariance matrix adaption evolution
strategy (MO-CMA-ES). The latter steady-state scheme did not consider all the
population for selecting the parents. These different approaches were compared
to a generational scheme, NSGA-II and SPEA2, using a benchmark composed
of constrained and unconstrained test functions.

Durillo et al. proposed in [8] a steady-state version of the NSGA-II algorithm
with a (μ + 1) scheme and they compared it to the original one. The reported
results showed that, by using such scheme, the algorithm was able to outperform
the original one in terms of convergence towards the optimal Pareto front and
spread of the resulting fronts of solutions.

Summarizing this section, many of the works in the literature present new
steady-state algorithms and compare them against the state-of-the-art MOGAs;
comparisons with the same algorithm using a generational scheme are scarce.
Furthermore, many of these proposals are only evaluated using a benchmark
composed of a small number of problems, and they take into account only the
quality of the final front obtained, paying no attention to other issues such as
the convergence speed of the algorithms.
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Fig. 1. The NSGA-IIss procedure. Only one offspring is generated and tested to be
inserted at each step.

3 Steady State Versions

In this section we present the steady-state versions of NSGA-II and SPEA2.
We describe briefly the original (generational) algorithms, and we will only go
deeply into details related to the steady-state proposals.

The NSGA-II algorithm was proposed by Deb et al. [5]. It is based on a current
population that is used to create an auxiliary one (the offpring population); after
that, both populations are combined to obtain the new current population. The
procedure is as follows: the two populations are sorted according to their rank,
and the best solutions are chosen to create a new population. In the case of
having to select some individuals with the same rank, a density estimation based
on measuring the crowding distance to the surrounding individuals belonging to
the same rank is used to get the most promising solutions. Typically, both the
current and the auxiliary populations have the same size.

A steady-state version of NSGA-II can be easily implemented by using an
offspring population of size 1. In this way, the new individual is immediately in-
corporated into the evolutionary cycle. However, this also means that the ranking
and crowding procedures have to be applied each time a new individual is cre-
ated, so the time required by the algorithm will increase notably. The procedure
of this version is shown in Fig. 1. In the rest of this work we will refer to the
steady-state version as NSGA-IIss, and to the original one as NSGA-IIgen.

SPEA2 was proposed by Zitzler et al. in [20]. This algorithm uses a population
and an archive. It assigns to each individual a fitness value that is the sum of
its strength raw fitness plus a density estimation. In each generation the non-
dominated individuals of both the original population and the archive are used
to update the archive; if the number of non-dominated individuals is greater than
the population size, a truncation operator based on calculating the distances to
the k-th nearest neighbor is used. This way, the individuals having the minimum
distance to any other individual are chosen. All this procedure is known as
Environmental Selection. Then, the algorithm applies the selection, crossover,
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Generate a New 
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Fig. 2. The SPEA2ss procedure. Only one individual is tested to be inserted in the
archive at each step.

and mutation operators to members of the archive in order to create a new
population of offsprings which becomes the population of the next generation.

As in the previous case, the steady-state version of SPEA2 can be defined by
using a population of size 1; only the initial population must be of the same size
as the archive, because in the first generation the archive is filled by all the mem-
bers belonging to the population. Thus, each time a new individual is created,
the environmental selection takes place, and the individual is tested to update
the archive for the next generation. Figure 2 shows the steady-state SPEA2 pro-
cedure. Since the environmental selection is time consuming, this procedure also
increases notably the computing time of the algorithm. The steady-state and
generational versions of SPEA2 will be referred to as SPEA2ss and SPEA2gen,
respectively, in the rest of the paper.

4 Experimentation

In this section we describe the experiments we have carried out. First, we start by
presenting the problems families that we have considered. Then, we describe the
quality indicators we have chosen for assessing the performance of the algorithms.
After that, we introduce the convergence criterion we have used for measuring the
convergence speed of the algorithms. Later, we present the parameterization and
the stopping criteria used in the experiments. Finally, we describe the statistical
tests we have performed to provide the results with statistical confidence.

4.1 Test Problems

The problems we have used are those belonging to three well-known benchmarks:
the Zitzler-Deb-Thiele (ZDT) problem family [19], the Deb-Thiele-Laumanns-
Zitzler (DTLZ) group of problems [6], and the Walking-Fish-Group (WFG)
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benchmark. We have considered the bi-objective formulation in the case of the
DTLZ and WFG families. All the problems have been configured as in the papers
they are described in.

4.2 Quality Indicators

For assessing the performance of the algorithms, we have considered three qual-
ity indicators: additive unary epsilon indicator (I1

ε+) [13], spread (Δ) [5], and
hypervolume (HV ) [21]. The first two indicators measure, respectively, the con-
vergence and the diversity of the resulting approximation sets, while the last one
measures both convergence and diversity.

4.3 Convergence Speed Criterion

Since one of our main interests is to analyze the convergence speed of the studied
MOGAs, it is important to define first what we mean by convergence in this case,
and to ensure that such a definition allows us to measure it in a quantitative
and meaningful way. We have studied and defined in [15] a stopping condition
based on the high quality of the approximation of the Pareto front found. We
have used the HV quality indicator for that purpose. In Fig. 3 we show dif-
ferent approximations to the Pareto front for the problem ZDT1 with different
percentages of HV . We can observe that a front with a hypervolume of 98.26%
represents a reasonable approximation to the optimal Pareto front in terms of
convergence and diversity of solutions. So, we have taken 98% of the hypervol-
ume of the optimal Pareto front as a criterion to consider that a problem has
been successfully solved. In this way, we mean by convergence speed the number
of functions evaluations to achieve this termination condition. Those algorithms
requiring fewer function evaluations to achieve this termination condition can
be considered to be more efficient or faster.
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Fig. 3. Fronts with different HV values obtained for problem ZDT1
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4.4 Implementation and Parameterization

All the algorithms have been implemented using jMetal [9], a Java-based frame-
work aimed at the development, experimentation, and study of metaheuristics
for solving multi-objective optimization problems.

The parameter settings used are the following: the population size is 100
individuals in all the algorithms except in SPEA2ss, where the population size
is 1. The archives of SPEA2gen and SPEA2ss also have a maximum size of 100
individuals. We have used SBX and polynomial mutation [2] as operators for
crossover and mutation operations, respectively, and the distribution indices for
both operators are ηc = 20 and ηm = 20, respectively. The crossover probability
is pc = 0.9 and the mutation probability is pm = 1/L, where L is the number of
decision variables.

The stopping criterion is to reach 25, 000 function evaluations in the experi-
ments performed for assessing the quality of the obtained solution sets. The qual-
ity indicators are calculated after the algorithms have finished their executions.

In the experiments carried out to study the convergence speed, the stopping
criterion is to reach 10, 000, 000 of function evaluations or a front with 98% of
the HV of the optimal Pareto front. If an algorithm stops according to the first
condition, we consider that it has failed when solving the problem. In these ex-
periments, the HV is measured at every 100 evaluations. Therefore, we have
considered the nondominated solutions at each generation in the original algo-
rithms, and each 100 generations in the steady-state versions.

For measuring the computing time of the algorithms we have performed
25, 000 evaluations of each algorithm for solving each problem. The experiments
have been executed on a PC equipped with an Intel Core 2 Duo 3GHz processor,
running Debian 4.0, and using Java JDK 1.6 update 5.

4.5 Statistical Tests

Since we are dealing with stochastic algorithms and we want to provide the
results with confidence, we have made 100 independent runs of each experi-
ment, and we show the median, x̃, and interquartile range, IQR, as measures
of location (or central tendency) and statistical dispersion, respectively. The fol-
lowing statistical analysis has been performed throughout this work [7]. Firstly,
a Kolmogorov-Smirnov test was performed in order to check whether the values
of the results follow a normal (gaussian) distribution or not. If the distribution is
normal, the Levene test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is done; otherwise
a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. Figure 4
summarizes the statistical analysis.

We always consider in this work a confidence level of 95% (i.e., significance
level of 5% or p-value under 0.05) in the statistical tests, which means that the
differences are unlikely to have occurred by chance with a probability of 95%.
Successful tests are marked with ‘+’ symbols in the last column in all the tables
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Fig. 4. Statistical analysis performed in this work

containing the results; conversely, ‘-’ means that no statistical confidence was
found (p-value > 0.05). For the sake of a better understanding, the best result
for each problem has a gray colored background.

5 Results

This section is devoted to evaluating and analyzing the result of the experiments.
We first consider the quality of the obtained results through the value of the I1

ε+,
Δ, and HV quality indicators. After that, we pay attention to the convergence
speed, and finally, to the computing time of the algorithms.

5.1 Quality Assessment

We start by analyzing the results of the I1
ε+ indicator obtained by the two ver-

sions of NSGA-II (Table 1). We can see that NSGA-IIss has obtained better
(lower) values than its generational counterpart in 18 out of the 21 problems
evaluated according to this indicator. Furthermore, the statistical tests have in-
dicated that the differences are significant in all the problems but in four cases
(DTLZ3, WFG1, WFG2, WFG8). It is worth mentioning that these four cases
include the three problems in which NSGA-IIgen obtained lower I1

ε+ values than
NSGA-IIss. Attending to SPEA2 (Table 2), the steady-state version outper-
formed the generational one in 17 out of the 21 evaluated problems. The same
comments about the statistical test on the results obtained by NSGA-II for this
indicator hold for SPEA2: the four problems for which SPEA2gen has produce
better values than SPEA2ss are included in those cases in which no statistical
differences can be assured by the tests at 95% of confidence level.

The values of the Δ indicator are included in Tables 3 and 4. Proceeding as
before, we start by analyzing NSGA-II (Table 3). According to this indicator,
NSGA-IIss has outperformed NSGA-IIgen in all the solved problems. The statis-
tical tests have confirmed that in all the problems the differences are significant,
but in DTLZ3. Something similar has happened with SPEA2 (Table 4). The
steady-state version (SPEA2ss) has got the best (lowest) values of this indicator
in all the problems but WFG1. In this case, statistical confidence has been found
in 18 out of the 21 evaluated problems.
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Table 1. Median and interquartile range
of the I1

ε+ quality indicator for NSGA-
IIgen and NSGA-IIss

NSGA-IIgen NSGA-IIss

Problem x̄IQR x̄IQR

ZDT1 1.37e − 23.0e−3 5.81e − 36.3e−4 +
ZDT2 1.28e − 22.3e−3 5.79e − 35.5e−4 +
ZDT3 8.13e − 31.9e−3 5.24e − 35.4e−4 +
ZDT4 1.49e − 23.0e−3 9.78e − 32.6e−3 +
ZDT6 1.47e − 22.8e−3 7.02e − 37.6e−4 +
DTLZ1 7.13e − 31.6e−3 4.62e − 31.9e−3 +
DTLZ2 1.11e − 22.7e−3 5.13e − 33.6e−4 +
DTLZ3 1.04e + 01.2e+0 9.63e − 11.4e+0 -
DTLZ4 1.13e − 29.9e−1 5.24e − 39.9e−1 +
DTLZ5 1.05e − 22.5e−3 5.14e − 33.4e−4 +
DTLZ6 4.39e − 23.4e−2 3.07e − 22.5e−2 +
DTLZ7 1.04e − 22.8e−3 5.13e − 34.1e−4 +
WFG1 3.52e − 14.6e−1 4.98e − 15.3e−1 -
WFG2 7.10e − 17.0e−1 7.10e − 17.0e−1 -
WFG3 2.00e + 05.8e−4 2.00e + 04.3e−4 +
WFG4 3.26e − 26.7e−3 1.52e − 21.5e−3 +
WFG5 8.41e − 28.3e−3 6.41e − 21.5e−3 +
WFG6 4.14e − 21.6e−2 2.50e − 22.8e−2 +
WFG7 3.47e − 28.1e−3 1.51e − 21.5e−3 +
WFG8 3.38e − 12.3e−1 5.08e − 12.2e−1 -
WFG9 3.73e − 27.5e−3 1.80e − 23.7e−3 +

Table 2. Median and interquartile range
of the I1

ε+ quality indicator for SPEA2gen

and SPEA2ss

SPEA2gen SPEA2ss

Problem x̄IQR x̄IQR

ZDT1 8.69e − 31.1e−3 6.30e − 34.5e−4 +
ZDT2 8.73e − 31.4e−3 6.45e − 37.5e−4 +
ZDT3 9.72e − 31.9e−3 8.79e − 31.5e−3 +
ZDT4 3.42e − 27.9e−2 4.31e − 29.4e−2 -
ZDT6 2.42e − 25.2e−3 1.01e − 21.9e−3 +
DTLZ1 5.89e − 32.8e−3 4.88e − 31.7e−3 +
DTLZ2 7.34e − 31.1e−3 5.33e − 34.8e−4 +
DTLZ3 2.28e + 01.9e+0 1.63e + 01.7e+0 +
DTLZ4 7.66e − 39.9e−1 5.48e − 39.9e−1 +
DTLZ5 7.47e − 31.2e−3 5.32e − 36.6e−4 +
DTLZ6 3.03e − 15.3e−2 2.79e − 22.1e−2 +
DTLZ7 9.09e − 31.4e−3 7.85e − 31.1e−3 +
WFG1 9.92e − 12.1e−1 1.04e + 02.4e−1 -
WFG2 7.10e − 16.9e−1 7.10e − 16.9e−1 -
WFG3 2.00e + 01.1e−3 2.00e + 08.7e−4 -
WFG4 2.52e − 24.0e−3 1.75e − 21.3e−3 +
WFG5 7.27e − 22.9e−3 6.59e − 29.5e−4 +
WFG6 3.11e − 21.4e−2 3.07e − 22.6e−2 -
WFG7 2.54e − 23.0e−3 1.76e − 21.7e−3 +
WFG8 5.11e − 11.9e−1 5.17e − 11.5e−1 -
WFG9 2.92e − 25.9e−3 2.20e − 26.4e−3 +

Table 3. Median and interquartile range
of the Δ quality indicator for NSGA-
IIgen and NSGA-IIss

NSGA-IIgen NSGA-IIss

Problem x̄IQR x̄IQR

ZDT1 3.70e − 14.2e−2 7.52e − 21.5e−2 +
ZDT2 3.81e − 14.7e−2 7.80e − 21.3e−2 +
ZDT3 7.47e − 11.8e−2 7.03e − 13.5e−3 +
ZDT4 4.02e − 15.8e−2 1.27e − 12.9e−2 +
ZDT6 3.56e − 13.6e−2 1.05e − 11.5e−2 +
DTLZ1 4.03e − 16.1e−2 1.18e − 14.0e−2 +
DTLZ2 3.84e − 13.8e−2 1.10e − 11.6e−2 +
DTLZ3 9.53e − 11.6e−1 9.52e − 13.4e−1 -
DTLZ4 3.95e − 16.4e−1 1.13e − 19.0e−1 +
DTLZ5 3.79e − 14.0e−2 1.11e − 11.6e−2 +
DTLZ6 8.64e − 13.0e−1 1.81e − 15.3e−2 +
DTLZ7 6.23e − 12.5e−2 5.19e − 11.9e−3 +
WFG1 7.18e − 15.4e−2 5.81e − 15.8e−2 +
WFG2 7.93e − 11.7e−2 7.47e − 11.0e−2 +
WFG3 6.12e − 13.6e−2 3.71e − 17.2e−3 +
WFG4 3.79e − 13.9e−2 1.40e − 12.0e−2 +
WFG5 4.13e − 15.1e−2 1.38e − 11.5e−2 +
WFG6 3.90e − 14.2e−2 1.23e − 13.2e−2 +
WFG7 3.79e − 14.6e−2 1.11e − 11.9e−2 +
WFG8 6.45e − 15.5e−2 5.63e − 15.7e−2 +
WFG9 3.96e − 14.1e−2 1.52e − 12.1e−2 +

Table 4. Median and interquartile range
of the Δ quality indicator for SPEA2gen

and SPEA2ss

SPEA2gen SPEA2ss

Problem x̄IQR x̄IQR

ZDT1 1.52e − 12.2e−2 7.26e − 21.7e−2 +
ZDT2 1.55e − 12.7e−2 9.51e − 21.9e−2 +
ZDT3 7.10e − 17.5e−3 7.07e − 15.1e−3 +
ZDT4 2.72e − 11.6e−1 2.48e − 11.7e−1 -
ZDT6 2.28e − 12.5e−2 1.50e − 12.0e−2 +
DTLZ1 1.81e − 19.8e−2 1.45e − 16.5e−2 +
DTLZ2 1.48e − 11.6e−2 8.57e − 21.8e−2 +
DTLZ3 1.07e + 01.6e−1 1.05e + 01.5e−1 -
DTLZ4 1.48e − 18.6e−1 8.96e − 29.2e−1 +
DTLZ5 1.50e − 11.9e−2 8.65e − 22.1e−2 +
DTLZ6 8.25e − 19.3e−2 3.93e − 14.0e−1 +
DTLZ7 5.44e − 11.3e−2 5.34e − 17.7e−3 +
WFG1 6.51e − 14.8e−2 6.68e − 17.7e−2 +
WFG2 7.53e − 11.3e−2 7.51e − 11.2e−2 -
WFG3 4.39e − 11.2e−2 3.72e − 11.2e−2 +
WFG4 2.72e − 12.5e−2 2.16e − 12.7e−2 +
WFG5 2.79e − 12.3e−2 2.13e − 12.3e−2 +
WFG6 2.49e − 13.1e−2 2.01e − 12.9e−2 +
WFG7 2.47e − 11.8e−2 1.89e − 12.0e−2 +
WFG8 6.17e − 18.1e−2 5.98e − 16.3e−2 +
WFG9 2.92e − 12.0e−2 2.41e − 12.1e−2 +

The results of the HV indicator (Tables 5 and 6) have confirmed those ob-
tained by the previous indicators. In these tables, a “-” symbol means that the
HV in this problem has a value of 0, meaning that the solution sets obtained by
the algorithms are outside the limits of the Pareto front. The original versions of
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Table 5. Median and interquartile range
of the HV quality indicator for NSGA-
IIgen and NSGA-IIss

NSGA-IIgen NSGA-IIss

Problem x̄IQR x̄IQR

ZDT1 6.59e − 14.4e−4 6.62e − 11.4e−4 +
ZDT2 3.26e − 14.3e−4 3.28e − 11.6e−4 +
ZDT3 5.15e − 12.3e−4 5.16e − 18.0e−5 +
ZDT4 6.56e − 14.5e−3 6.57e − 14.0e−3 +
ZDT6 3.88e − 12.3e−3 3.96e − 11.1e−3 +
DTLZ1 4.88e − 15.5e−3 4.89e − 16.5e−3 -
DTLZ2 2.11e − 13.1e−4 2.12e − 14.3e−5 +
DTLZ3 - - +
DTLZ4 2.09e − 12.1e−1 2.11e − 12.1e−1 +
DTLZ5 2.11e − 13.5e−4 2.12e − 13.7e−5 +
DTLZ6 1.75e − 13.6e−2 1.73e − 12.8e−2 -
DTLZ7 3.33e − 12.1e−4 3.34e − 13.9e−5 +
WFG1 5.23e − 11.3e−1 4.90e − 11.9e−1 +
WFG2 5.61e − 12.8e−3 5.62e − 12.6e−3 +
WFG3 4.41e − 13.2e−4 4.42e − 11.8e−4 +
WFG4 2.17e − 14.9e−4 2.19e − 12.4e−4 +
WFG5 1.95e − 13.6e−4 1.96e − 16.7e−5 +
WFG6 2.03e − 19.0e−3 2.03e − 11.9e−2 -
WFG7 2.09e − 13.3e−4 2.11e − 11.4e−4 +
WFG8 1.47e − 12.1e−3 1.48e − 11.6e−3 +
WFG9 2.37e − 11.7e−3 2.40e − 11.9e−3 +

Table 6. Median and interquartile
range of the HV quality indicator for
SPEA2gen and SPEA2ss

SPEA2gen SPEA2ss

Problem x̄IQR x̄IQR

ZDT1 6.60e − 13.9e−4 6.61e − 11.8e−4 +
ZDT2 3.26e − 18.1e−4 3.28e − 13.8e−4 +
ZDT3 5.14e − 13.6e−4 5.15e − 12.3e−4 +
ZDT4 6.51e − 11.2e−2 6.52e − 11.1e−2 -
ZDT6 3.79e − 13.6e−3 3.92e − 11.5e−3 +
DTLZ1 4.89e − 16.2e−3 4.89e − 15.7e−3 -
DTLZ2 2.12e − 11.7e−4 2.12e − 15.6e−5 +
DTLZ3 - - -
DTLZ4 2.10e − 12.1e−1 2.11e − 12.1e−1 +
DTLZ5 2.12e − 11.7e−4 2.12e − 16.1e−5 +
DTLZ6 9.02e − 31.4e−2 1.83e − 12.8e−2 +
DTLZ7 3.34e − 12.2e−4 3.34e − 17.9e−5 +
WFG1 3.85e − 11.1e−1 3.58e − 11.2e−1 +
WFG2 5.62e − 12.8e−3 5.62e − 12.8e−3 -
WFG3 4.42e − 12.0e−4 4.42e − 12.1e−4 +
WFG4 2.18e − 13.0e−4 2.19e − 11.8e−4 +
WFG5 1.96e − 11.8e−4 1.96e − 17.3e−5 +
WFG6 2.04e − 18.6e−3 2.01e − 11.6e−2 +
WFG7 2.10e − 12.4e−4 2.10e − 11.4e−4 +
WFG8 1.47e − 12.2e−3 1.47e − 12.3e−3 -
WFG9 2.39e − 12.3e−3 2.39e − 12.1e−3 -

Table 7. Median and interquartile of
the number of evaluations computed by
NSGA-IIgen and NSGA-IIss

NSGA-IIgen NSGA-IIss

Problem x̄IQR x̄IQR

ZDT1 1.43e + 48.0e+2 1.16e + 49.0e+2 +
ZDT2 2.46e + 41.6e+3 1.77e + 41.3e+3 +
ZDT3 1.28e + 48.5e+2 1.09e + 41.0e+3 +
ZDT4 2.24e + 45.9e+3 1.98e + 45.4e+3 +
ZDT6 2.93e + 41.4e+3 2.28e + 41.2e+3 +
DTLZ1 2.49e + 48.4e+3 2.22e + 48.6e+3 +
DTLZ2 8.15e + 31.2e+3 5.30e + 37.0e+2 +
DTLZ3 1.12e + 55.3e+4 8.27e + 43.5e+4 +
DTLZ4 8.65e + 31.3e+3 5.50e + 37.0e+2 +
DTLZ5 8.30e + 31.4e+3 5.15e + 36.0e+2 +
DTLZ6 - - -
DTLZ7 1.36e + 49.0e+2 1.06e + 49.0e+2 +
WFG1 4.31e + 45.4e+4 3.71e + 41.5e+4 +
WFG2 1.70e + 34.0e+2 1.40e + 35.0e+2 +
WFG3 - - -
WFG4 2.05e + 48.8e+3 8.20e + 32.9e+3 +
WFG5 - - -
WFG6 7.72e + 68.7e+6 1.46e + 61.0e+7 +
WFG7 1.68e + 52.5e+5 1.03e + 42.6e+3 +
WFG8 - 1.00e + 79.0e+6 +
WFG9 - 1.00e + 79.9e+6 +

Table 8. Median and interquartile range
of the number of evaluations computed
by SPEA2gen and SPEA2ss

SPEA2gen SPEA2ss

Problem x̄IQR x̄IQR

ZDT1 1.60e + 41.1e+3 1.26e + 49.3e+2 +
ZDT2 2.48e + 41.9e+3 1.91e + 42.0e+3 +
ZDT3 1.52e + 41.0e+3 1.21e + 41.1e+3 +
ZDT4 2.52e + 46.0e+3 2.48e + 46.5e+3 -
ZDT6 3.33e + 41.0e+3 2.65e + 41.2e+3 +
DTLZ1 2.40e + 47.5e+3 2.26e + 46.4e+3 +
DTLZ2 7.40e + 38.0e+2 5.72e + 36.3e+2 +
DTLZ3 1.00e + 53.0e+4 9.22e + 43.1e+4 +
DTLZ4 7.80e + 35.0e+6 6.15e + 31.0e+7 +
DTLZ5 7.50e + 37.0e+2 5.66e + 35.7e+2 +
DTLZ6 - - -
DTLZ7 1.58e + 41.1e+3 1.23e + 48.7e+2 +
WFG1 1.09e + 57.7e+5 2.51e + 54.8e+6 +
WFG2 2.00e + 37.0e+2 1.54e + 35.8e+2 +
WFG3 - - -
WFG4 1.28e + 44.6e+3 9.08e + 33.1e+3 +
WFG5 - - -
WFG6 8.10e + 69.0e+6 9.23e + 69.1e+6 -
WFG7 1.77e + 45.4e+3 1.17e + 44.0e+3 +
WFG8 - - -
WFG9 1.00e + 73.9e+6 1.00e + 79.8e+6 -

the algorithms, NSGA-IIgen and SPEA2ss, have only yielded the best (highest)
values in two and three out of the 21 problems, respectively. The statistical tests
have also shown confidence in most of the cases for this indicator.
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Fig. 5. Evolution of the HV indicator in SPEA2gen and SPEA2ss in problems ZDT2
(top) and ZDT4 (bottom)

5.2 Convergence Speed

The previous section has shown that the steady-state versions of both NSGA-
II and SPEA2 have performed better than the original algorithms on most of
the problems considered. In this section we discuss the results obtained when
measuring the convergence speed.

Tables 7 and 8 contain the evaluations required by the two versions of NSGA-
II and SPEA2, respectively, to reach a Pareto front with 98% of the HV of the
optimal Pareto front. There are cases in which a “-” is reported in the tables
when the algorithm have required more than 10, 000, 000 function evaluations.

In the case of NSGA-II, its steady-state version has been faster (lower number
of evaluations) than the original one in all the problems in which the two ap-
proaches have reached the convergence criterion of the stopping condition. These
results have been supported by statistical confidence.

Considering SPEA2, we can see that SPEA2ss has outperformed the original
one in 14 out of the 21 problems evaluated, while SPEA2gen has been faster only
in three out of those 21 problems. There are also four problems in which the two
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Table 9. Computing time of NSGA-IIgen

and NSGA-IIss. Time is given in ms.

Problem NSGA-IIgen NSGA-IIss

ZDT1 1227 13155
ZDT2 1227 12915
ZDT3 1297 12945
ZDT4 1219 13226
ZDT6 1151 12521
WFG1 1326 13259
WFG2 1203 12554
WFG3 1311 12355
WFG4 1201 12783
WFG5 1271 12076
WFG6 1259 13497
WFG7 1170 13220
WFG8 1369 12547
WFG9 1316 12752
DTLZ1 1191 12737
DTLZ2 1158 13274
DTLZ3 1210 16070
DTLZ4 1135 12963
DTLZ5 1206 12626
DTLZ6 1192 12621
DTLZ7 1212 12706

Table 10. Computing time of SPEA2gen

and SPEA2ss. Time is given in ms.

Problem SPEA2gen SPEA2ss

ZDT1 5204 73077
ZDT2 4537 68485
ZDT3 5065 71291
ZDT4 3907 62163
ZDT6 3926 65040
WFG1 4488 77184
WFG2 6108 82147
WFG3 7269 95962
WFG4 5621 82328
WFG5 6338 95223
WFG6 5476 79464
WFG7 6111 87409
WFG8 4478 63991
WFG9 5943 83399
DTLZ1 3982 61438
DTLZ2 5360 78446
DTLZ3 2899 59185
DTLZ4 5201 77541
DTLZ5 5160 78277
DTLZ6 3025 60424
DTLZ7 4957 71982

versions of the algorithm have not reached 98% of the HV of the optimal Pareto
front. As with NSGA-II, the results have been supported by statistical tests.

We analyze now two particular cases. Figure 5 shows how the HV value in
SPEA2gen and SPEA2ss has evolved over the different evaluations carried out
for problems ZDT2 (Fig. 5 (top)) and ZDT4 (Fig. 5 (bottom)). SPEA2ss has
reached the target value ofHV faster than SPEA2gen in both problems; however,
two different behaviors can been observed. On the one hand, we observe that the
HV value in ZDT4 has been better (higher) in the steady-state version since the
beginning of the search. On the other hand, in the case of problem ZDT2, we
observe that the original (SPEA2gen) has been better than SPEA2ss until 13, 000
evaluations have been computed. This way, if we define a less strong termination
condition (e.g., we could consider that a front with 95% of the HV of the optimal
Pareto front can represent an accurate approximation), the generational SPEA2
algorithm would be faster than the steady-state version for this problem. This
indicates that if we only report the number of evaluations to reach the stopping
condition we can lose valuable information about the behavior of the algorithms,
which suggests the need of further studies in this issue.

5.3 Computing Time

The complexity of the steady-state versions of the algorithms is higher than
that of the generational version. In this section we quantify the differences be-
tween them by solving all the problems using 25,000 function evaluations as the
stopping condition.

The execution times (in milliseconds) are included in Tables 9 and 10. We can
observe that NSGA-IIgen has been between 9.4 times (the worst case) and 11.4
times (the best case) faster than NSGA-IIss. Regarding the results of SPEA2,
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the original algorithm (SPEA2gen) has been between 13.2 times (the worst case)
and 20.4 times (the best case) faster than SPEA2ss.

We have used the profiling tool provided by the Java IDE Netbeans 6.1 to
analyze the execution of the algorithms when solving the ZDT1 problem. The
profiling report has shown that the computational time required to evaluate the
problem is less than the 1% of the total time. Then, the values which appear
in Tables 9 and 10 for this problem represent an accurate approximation of the
times required only to run the algorithm, because the function evaluation time
is negligible. To solve the benchmark problems used in this study, the steady-
state versions are not a sensible choice: it takes about 1.2 secs to solve ZDT1
with NSGAgen, while SPEA2ss requires more than 73 secs. However, in a real
scenario, where the computing of the objective functions can take minutes and
even hours, it is up to those responsible for optimizing the problem to choose
the more appropriate algorithm.

6 Conclusions and Future Work

We have presented a first study of the effect of applying a steady-state selection
scheme to two state-of-the-art multi-objective optimization algorithms, NSGA-II
and SPEA2. Both the original and the steady-state versions have been evaluated
using a benchmark composed of 21 bi-objective problems for comparing the
performance of the algorithms in terms of the quality of the obtained solutions
sets, their speed converging towards the optimal Pareto front, as well as the
running time they require.

The obtained results have shown that, in the context of the problems, the qual-
ity indicators, and the parameter settings used, the use of a steady-state scheme
has improved on the results obtained by the generational scheme in most of the
problems. Most of these results have been also supported by statistical confidence.
The main disadvantage of the evaluated steady-state algorithms is that they have
been between 10 and 20 times slower than their generational counterpart.

A line of future work is to deepen into the study and application of the steady-
state scheme to other algorithms, and also for solving benchmarks composed
of rotated problems and with more than two objectives. Another interesting
line of research lies in the study and development of theoretical models which
support the experimental results in order to help in the understanding of the
effect of applying the steady-state scheme in multi-objective optimization genetic
algorithms.
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Abstract. Over the last decades, evolutionary algorithms (EA) have
proven their applicability to hard and complex industrial optimization
problems in many cases. However, especially in cases with high computa-
tional demands for fitness evaluations (FE), the number of required FE is
often seen as a drawback of these techniques. This is partly due to lacking
robust and reliable methods to determine convergence, which would stop
the algorithm before useless evaluations are carried out. To overcome this
drawback, we define a method for online convergence detection (OCD)
based on statistical tests, which invokes a number of performance indi-
cators and which can be applied on a stand-alone basis (no predefined
Pareto fronts, ideal and reference points). Our experiments show the gen-
eral applicability of OCD by analyzing its performance for different algo-
rithmic setups and on different classes of test functions. Furthermore, we
show that the number of FE can be reduced considerably – compared to
common suggestions from literature – without significantly deteriorating
approximation accuracy.

1 Introduction

In real-world industrial problems and engineering applications, improvements,
e.g., in simulation techniques, machines, tools, and materials, constantly offer
increasing productivity. However, in order to completely exploit these poten-
tials, an appropriate setup of the inherent parameters is necessary. Due to the
numerous requirements of modern processes, these problems are mainly multi-
objective, which supports the application of evolutionary multi-objective algo-
rithms (EMOA). Nevertheless, their applicability is still put into question, even
though EMOA have already been successfully applied to these kinds of problems.

A possible reason, for instance when compared to mathematical programming
methods, may be the lack of convergence criteria for EMOA. More specific, the
performance of an a-posteriori multi-objective optimization algorithm can be
expressed in simple terms by two objectives:

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 198–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1. maximize the quality of the Pareto-front approximation and
2. minimize the number of function evaluations or computation time,

respectively.

In the last decade, many EMOAs have been introduced to achieve one or both
of the above objectives. For instance, the use of performance indicators [1,2,3],
which evaluate the quality of the current Pareto-front approximation, has turned
out to be successful in achieving the first objective [4]. The second objective
has recently been approached by integrating modeling methods into the EMOA
framework [5,6,7]. However, in the evaluation of all these methods, the num-
ber of allowed function evaluations (FE) is fixed at a predefined level, which is
high (30k-500k FE [8,9]) when the main objective is a good approximation and
low for model-assisted approaches (130-250 FE [6,7]). In order to perform the
optimization in an efficient manner, the EMOA should be stopped when

1. no improvement can be gained by further iterations or
2. the approximation quality has reached the desired level.

Right now, these stopping criteria are only applied for single-objective approaches.
Nevertheless, the detection of convergence is an equally important issue for EMOA
since further evaluations are a waste of computational resources and may lead to
a loss of diversity by means of genetic drift [10]. Multi-objective performance indi-
cators allow the reduction of a multi-objective optimization (MOO) problem to a
single-objective problem on sets [3]. Thereby, the above criteria can be transferred
to MOO. Furthermore, multiple indicators can be used to reliably detect different
kinds of improvement in the set.

In this paper, an approach for online convergence detection (OCD) is intro-
duced. Due to the stochastic nature of evolutionary algorithms, OCD is based on
systematic statistical testing. The number of parameters is low, it can be com-
bined with any set-based EMOA, and the selection of the considered preference
indicators is up to the user. Thus, OCD is an intuitive, yet flexible tool to guar-
antee an effective use of EMOA, which may promote the industrial application
of these methods.

In section 2, the state of the art in multi-objective convergence detection is
summarized. Afterwards, OCD is detailed, and the algorithmic steps are pre-
sented (section 3). The applicability of OCD is demonstrated by comprehensive
experiments, which are described and analyzed in section 4. Finally, conclusions
are drawn and the results are summarized in section 5.

2 State of the Art

For the application of EMOA on new industrial problems, where no sufficient
a-priori knowledge exists, it is generally hard to find a suitable termination cri-
terion. Therefore, the most frequently used limit is the maximum number of
generations or FE. Hybrid EMOA using quadratic programming methods have
been developed to guarantee (local) optimality of solutions [11,12]. These ap-
proaches are formally converged as soon as Karush-Kuhn-Tucker (KKT) points
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for a given set of aggregation or reference-point-based distance functions have
been identified, but can not guarantee the quality of the set of solutions, e.g., in
terms of diversity and spread. This is accomplished by recent approaches, which
compute the gradient of the hypervolume for a set of solutions [13]. Note that all
these approaches require sufficient accuracy in the approximation of the Hessian.

Deb and Jain [14] investigate so-called running performance metrics for con-
vergence and diversity of solutions to be monitored in the course of the algorithm.
Thereby, the algorithm may be stopped when convergence is observed. However,
therein the authors focus on performance evaluation and algorithm comparison.
An automated procedure for detecting convergence has not been proposed. For
this purpose, Rudenko and Schoenauer [15] survey possible online termination
criteria for elitist EMOA, such as the disappearance of all dominated individuals
or the deterioration of the number of newly produced non-dominated individuals.
Finally, they suggest a technique for determining stagnation based on stability of
the maximum crowding distance, which requires the determination of a thresh-
old, which depends on the scale of the objectives as well as the population size.
Furthermore, its application is only tested with NSGA2, which uses the crowd-
ing distance as selection criterion [16]. It is an open question whether a stability
of the maximum crowding distance can be observed in EMOA, which do not
directly use this measure in the selection process.

The basic idea of using dominance-related metrics to compare sets [17] has
recently been used to reduce the multi-objective to a single-objective problem
on sets [3]. This allows to use convergence criteria from single-objective theory.
Furthermore, a method for offline detection of the expected generation, in which
the EMOA converges, has been introduced [18]. This method is based on sta-
tistical testing of the similarity in the distribution of performance measures for
consecutive generations relying on multiple parallel runs of the EMOA. In this
paper, the main ideas of both contributions are transferred to online convergence
detection.

3 Online Convergence Detection

In the progression of OCD, two different analyses are carried out. It is sequen-
tially tested whether the variance of the performance indicator values decreases
below a predefined limit (V arLimit) or whether no significant trend of the per-
formance indicators can be detected over the last generations. The EMOA ter-
minates if at least one of these conditions is met.

All algorithmic steps of the proposed OCD approach and the required sub-
routines are given in Algorithms 1, 2, and 3. These steps are described in depth
to ensure a straightforward implementation of OCD. The required input pa-
rameters for Algorithm 1 can be set easily, even by inexperienced users. The
variance limit V arLimit corresponds to the desired approximation accuracy in
single-objective optimization, but does not require knowledge about the actual
minima of the objectives. The algorithm stops when the standard deviation of
the indicator values over the given time window of nPreGen generations is sig-
nificantly below

√
V arLimit. Thus, the user can exactly determine how many
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Algorithm 1. OCD: Algorithm for Online Convergence Detection
Require: V arLimit /* maximum variance limit */

nPreGen /* number of preceding generations for comparisons */
α /* significance level of the tests */
MaxGen /* maximum generation number */
(PI1, . . . , P In) /* vector of performance indicators, e.g., (HV, ε, R2) */

1. i = 0 /* initialize generation number */
2. for all i ∈ {1, . . . , nPreGen}, j ∈ {1, . . . , n} do
3. pChi2(j, i) = 1 /* initialize p-values of the χ2-variance Test */
4. pReg(i) = 0 /* initialize p-values of the t-Test on regression coefficient */
5. end for
6. lb = [] /* initialize lower bound vector */
7. ub = [] /* initialize upper bound vector */
8. repeat
9. i = i + 1

10. Compute d-objective Pareto front PFi of i-th EMOA generation
11. lb = min(lb ∪ PFi) /* update lower bound vector */
12. ub = max(ub ∪ PFi) /* update upper bound vector */
13. if (i > nPreGen) then
14. PFi = 1 + (PFi − lb)/(ub − lb) /* normalize PFi to [1, 2]d */
15. for all k ∈ {i − nPreGen, . . . , i − 1} do
16. Compute Pareto front PFk of k-th EMOA generation
17. PFk = 1 + (PFk − lb)/(ub − lb) /* normalize PFk to [1, 2]d */
18. end for
19. for all j ∈ {1, . . . , n} do
20. P Ij,i = (PIj(PFi−nPreGen, PFi,1,2.1), . . . , (PIj(PFi−1, PFi,1,2.1)))

/* compute PIj for PFi−nPreGen, . . . , PFi−1 using PFi as reference set,
1 as ideal, and 2.1 as reference point */

21. pChi2(j, i) = call Chi2(P I j,i, V arLimit) /* p-value of χ2 test */
22. end for
23. pReg(i) = call Reg(P I1,i, . . . , P In,i)

/* p-value of the t-Test on the generation’s effect on the P Ij,i */
24. end if
25. until ∀j ∈ {1, . . . , n} : (pChi2(j, i) ≤ α/n) ∧ (pChi2(j, i − 1) ≤ α/n)

∨ (pReg(i) > α) ∧ (pReg(i− 1) > α)
∨ i = MaxGen

26. Terminate EMOA
27. return {MaxGen, Chi2, Reg} /* criterion which terminates the EMOA */

i /* generation in which the criterion holds */

generations the EMOA is maximally allowed to compute with average changes
in the indicator values significantly below the specified limit. The user also has
to specify a significance level α for each statistical test procedure. Established
levels for α, such as 0.05 (standard) and 0.01 (conservative), exist. The max-
imum generation number MaxGen ensures that the resources required by the
algorithm cope with the restrictions of the individual application, especially in
the case where no convergence of the EMOA can be detected. However, the max-
imum number of function evaluations has to be specified for most known EMOA
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as well. The number and types of desired performance indicators (PI) have to be
selected in order to evaluate the solution quality at each generation with respect
to the requirements of the user, which allows him to express his own preferences
on the final Pareto-front approximation [3]. Users, who are not familiar with
multi-objective performance assessment, can resort to the standard set of PI as
defined by Knowles et al. [19], which comprises the hypervolume, the additive
ε-, and the R2 indicator. Only these indicators meet the requirement of strict
compliance with the Pareto dominance relation.

After the first nPreGen generations, convergence is checked after each gener-
ation i. The n indicator values of the vector PIj,i (j = 1, . . . , n) are computed
for the objective sets of generations i − nPreGen, . . . , i − 1 using the Pareto-
front approximation of generation i as reference set. Thus, no a-priori knowledge
about the true Pareto front is required, making the method applicable to practi-
cal problems. If a specific indicator PIj does not use a reference set and evaluates
each set separately (e.g., the hypervolume indicator), the difference between the
indicator value of the preceding and the current set is calculated and stored
in PIj,i.

The sets are normalized to the interval [1, 2]d = [1, 2]× . . .× [1, 2] ⊂ Rd as it is
also implemented in PISA [20], where d is the number of objective dimensions. This
is done in order to avoid problems within the indicator calculation based on ob-
jectives which are negative, equal to zero, or extremely large [19]. Since the actual
bounds of the non-normalized objectives are not a-priori known, they are updated
at each generation. The Pareto-front approximations of the nPreGen preceding
generations are also normalized based on the current objective-bound approxima-
tions. Due to the normalization, 1 = (1, . . . , 1) ∈ Rd and 2.1 = (2.1, . . . , 2.1) ∈
Rd can be used as ideal point and (anti-optimal) reference point for the PI calcu-
lation, respectively.

The resulting nPreGen vectors of n indicator values at each generation are
then – separately for each indicator – checked against the alternative hypothesis
that the variance of these values is lower than the predefined threshold V arLimit
using the χ2-variance test [21] (cf. Algorithm 2). This parametric test is used
being aware of its sensitivity to the normality assumption of the underlying
sample as no nonparametric test for this problem exists. Due to the multiple
testing, a Bonferroni correction on α is performed [22] resulting in an individual
significance level of α/n for each test. The α-correction ensures that at each
generation the global desired significance level is met. However, a correction with
respect to the sequential testing over all generations is impossible concerning a
reasonable applicability of OCD.

Additionally, a regression analysis is performed in order to check the signif-
icance of the descending linear trend (cf. Algorithm 3). Unfortunately, a test
for H0 : β �= 0 vs. H1 : β = 0 cannot be constructed. Thus, the test has to be
performed with interchanged hypotheses, and the generation, in which the null
hypothesis cannot be rejected anymore, has to be determined. Additionally, the
decreasing linear trend has been checked via the negative sign of the estimator β̂.
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Algorithm 2. Chi2: One-Sided χ2-variance test for

H0 : var(PI) ≥ V arLimit vs. H1 : var(PI) < V arLimit

Require: P I /* vector of performance indicator values */
V arLimit /* variance limit */

1. N = length(P I) − 1 /* determine degrees of freedom */
2. Chi = [var(P I) ∗ N ]/V arLimit /* compute test statistic */
3. p = χ2(Chi, N) /* look up χ2 distribution function with N degrees of freedom */
4. return p

Strictly speaking, the α-error for the desired decision cannot be controlled
by α, but equals 1 − power(t-test), where the power of a statistical test is the
probability that the test will reject a false null hypothesis. As a result, an overall
significance level at generation i cannot be maintained since the χ2-variance test
initiates the EMOA termination in the case of H0 being rejected whereas the
t-test initiates it in the opposite case. Thus, no combination of the α-levels can
be performed relating to multiple test theory [22] although both tests are simul-
taneously performed on the same data. However, the main focus when setting up
α is not on correctly controlling the α-error, but on finding reasonable critical
values for the test statistics in order to make OCD applicable and successful
within industrial applications.

Algorithm 3. Reg: Two-sided t-test on the significance of the linear trend

H0 : β = 0 vs. H1 : β �= 0

Require: P Ij , j = (1, . . . , n) /* vectors of performance indicator values */
1. N = n · length(P I∗) − 1 /* determine degrees of freedom */
2. for all j ∈ {1, . . . , n} do
3. P I∗

j = (P Ij − P I j)/σP Ij /* standardize */
4. end for
5. P I∗ := concatenate(P I∗

1, . . . , P I∗
n) /* row vector of all P Ij */

6. X = (1, . . . , length(P I∗), . . . , 1, . . . , length(P I∗))︸ ︷︷ ︸
n times

/* row vector of generations corresponding to P I∗ */
7. β̂ = (X ∗ XT )−1 ∗ X ∗ (P I∗)T /* linear regression without intercept */
8. ε = P I∗ − X ∗ β̂ /* compute residuals */
9. s2 = (ε ∗ εT )/N /* mean squared error of regression */

10. t = β̂√
s2(X∗XT )−1

/* compute test statistic */

11. p = 2 · min(tN (t), 1 − tN(t))
/* look up p-value from t distribution with N degrees of freedom */

12. return p

For performing the t-test, all indicator values PIj are standardized, i.e., lin-
early transformed to mean zero and standard deviation one. The standardization
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of PIj provides two benefits: the regression can be performed for all indicators
at once and no intercept (constant term) is required. The least squares estima-
tor β̂ of the actual slope β is determined in line 7 [23]. Afterwards, the fit is
calculated via the mean squared error of the linear model, and a standard error
of the estimator is computed [23]. Based on these measures, the t-statistic, i.e.,
the standardized regression coefficient, and the p-value can be computed using
a standard statistical library.

The algorithm stops if either the variance test or the regression analysis indi-
cates the convergence of the EMOA for generations i and (i− 1). OCD returns
the stopping generation i and the method that initiated the EMOA termination.
Thereby, the user is informed about the final state of the algorithm. In the case of
termination based on the maximum number of generations, the user knows that
the EMOA has not yet converged and further generations may further improve
the Pareto-front approximation.

Additional Runtime for OCD

The update, normalization, and standardization of the objective sets within
each iteration can be performed in O(N), where N denotes the population size.
The calculation of the Pareto front requires O(N logd−1N) [24], but is already
part of most known EMOA. Thus, the calculation of the indicator values is the
crucial part of OCD. Especially when the hypervolume is used, the runtime
is in O(Nd/2+1) for d > 3 [25]. For hypervolume-based algorithms, such as
SMSEMOA [2], this is not critical since the selection procedure is in the same
complexity as OCD. Also for expensive real-world problems, the time, which
can be saved by an appropriate termination, is considerably higher than the
additional runtime. Nevertheless, the approach can be efficiently used for time-
critical optimization as well by using performance measures in O(Nd), such as
the R2 indicator.

4 Experiments

The experiments are conducted to analyze the proposed OCD applied to mod-
ern EMOA. At present, online convergence detection can only be performed by
a human decision maker, who inspects the running metrics, i.e., the PI, and
terminates the algorithm when convergence is observed. For a successfully au-
tomatized application, the time when OCD indicates convergence has to be in
agreement with the intuitive understanding of the decision maker. Thus, the
first experiments focus on the correspondence of OCD and a human decision
maker. In order to analyze the applicability of the statistical tests separated from
the whole OCD framework, OCD is additionally computed using pre-calculated
Pareto front discretizations as well as the known ideal and anti-ideal points.
Apart from the OCD version in Algorithm 1, we will refer to the latter as OCD
with full information. Finally, the results received by standard OCD are com-
pared to the common termination criterion from EMOA literature, i.e., a fixed
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number of FE. Here, we focus on the reduction of the number of evaluations as
well as the loss of quality by stopping the evolution earlier.

Research Question. The main question of the analysis is whether or not the
proposed OCD algorithm helps to reduce FE without resulting in an uncontrol-
lable loss of quality. Therefore, we evaluate the results received regarding both
approximation quality and the required number of FE and compare them to
the ones we receive after applying the number of FE, which are originally pro-
posed in standard EMO literature. Moreover, we are interested in the criterion
which first indicates convergence and how this is motivated by the PIi,j char-
acteristics over time. In order to inspect the behavior of OCD more closely, it is
also analyzed whether OCD, with the reference set and the ideal and anti-ideal
point approximated on the fly, performs similar to the case of full information.
Last but not least, we want to demonstrate that the time, when OCD indicates
convergence, matches with an intuitive observation of the running metrics.

Pre-experimental planning. NSGA2 [16] and SMSEMOA [2] are considered
since NSGA2 is the industrially most popular EMOA and recent studies mo-
tivate the use of the hypervolume contribution during selection [4]. The test
functions are chosen to represent different kinds of problem characteristics, such
as dimension in decision and in objective space, the number of local optima, and
the shape of the Pareto front. The population sizes used on the problems vary
in order to allow for different problem characteristics and evaluate OCD for a
wider variety of algorithmic setups.

Initial preparative analyses of OCD indicate that the time window nPreGen
should span at least seven, but better ten, generations to permit an adequate
calculation of the p-values in the tests. In this context, it has to be considered
that the tests will not indicate convergence until the PIj,i stagnate over a large
span of this time window. Thus, when it is reviewed whether OCD’s indication
matches with the generation determined by a human decision maker, the delay
of nPreGen generations has to be accepted within the assessment.

Task. Check if OCD provides a robust and reliable termination of EMOA on
several test cases. Compare the results of OCD with an intuitive understanding
of termination and with the results provided in standard EMO literature. Fur-
thermore, systematical deviations between the proposed approach and the one
with full information are to be identified, which may occur due to a inaccurate
approximation of the true Pareto front.

Setup. NSGA2 and SMSEMOA are analyzed on the four bi-objective test func-
tions Fonseca [27], ZDT1, ZDT2, and ZDT4 [28] as well as on the three-objective
DTLZ2 [29] test function. Different population sizes μ ∈ {60 (Fonseca), 100
(ZDT1, ZDT2, DTLZ2), 200 (ZDT4)} and selection strategies – (μ + μ) in the
NSGA2 and (μ+1) in the SMSEMOA – are incorporated, where, for the sake of
comparability, a generation of SMSEMOA equals a sequence of μ FE. For each
combination of EMOA and test function, ten independent runs are performed.

The variance bound for the χ2-variance test is set to V arLimit = 0.0012, the
significance level for both tests is set to α = 0.05, and the time window is of size
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Table 1. Parameter settings within the experiments

test problem MaxGen MaxGen2
Fonseca 66 66
ZDT1, ZDT2 120 200
ZDT4 200 100
DTLZ2 300 300

algorithm implem. pc pm ηc ηm pswap

NSGA2 R [26]a 0.7 0.2 20 20 0
SMSEMOA PISA [20] 0.9 1/length(x) 15 20 0.5

a NSGA2 is taken from the package mco (http://
cran.r-project.org/web/packages/mco/index.html).

nPreGen = 10. The different numbers of FE allowed within our experiments
(MaxGen) and within the standard literature (MaxGen2) [8] as well as the
parameters used in the simulated binary crossover and polynomial mutation [30]
are displayed in Tab. 1. For measuring the performance of the algorithms, the
following PI have been invoked: hypervolume (HV) [31], additive ε (Eps) [17],
and R2 [32]. Recall that OCD as well as OCD with full information terminate
if and only if one of the tests (χ2-variance or t-test) simultaneously indicates
convergence with respect to all three metrics. The reference fronts used within
OCD with full information have been calculated via equidistant sampling of the
known Pareto fronts.

Experimentation/Visualization. Severalways of visualization are used to dem-
onstrate our findings. In the first plots, the PI behavior is inspected over the gen-
erations of the EMOA on the ZDT4 (cf. Fig. 1) and the DTLZ2 test function
(cf. Fig. 2), where the median run with respect to the difference between the full
information-based performance metrics and OCD is plotted semi-logarithmically.
The black and light-gray solid lines indicate the generation, in which either the χ2-
variance or the regression criterion detect convergence in case of the reference set
and objective bounds being approximated online. The black and light-gray dashed
lines indicate the generation, in which convergence is detected for the given com-
bination of EMOA and test problem within the full information approach.

The differences in performance are visualized using boxplots. The subsequent
figures present the differences between the PIj,i after the number of FE rec-
ommended in literature (i = MaxGen2) and after OCD indicated convergence.
One box is shown for each PIj and each considered test case, in Fig. 3 for the
NSGA2 and in Fig. 4 for the SMSEMOA. Due to different scales, the displayed
area had to be changed for some of the test cases, i.e., DTLZ2 for NSGA2 and
ZDT1 as well as ZDT2 for the SMSEMOA. For the combinations of EMOA and
test function, in which the variance criterion initiated termination for most of
the runs, the interval [−

√
V arLimit],

√
V arLimit] is highlighted in order to as-

sist inspecting the effect of V arLimit on the final approximation quality. Fig. 5
splits the runs for all test problems into two categories: runs being terminated
by the regression criterion and by the χ2-variance test. This analysis is done
separately for NSGA2 and SMSEMOA in order to show the two different types
of EMOA behavior and how OCD copes with these challenges.

Statistic details of the boxplots can be found in Tab. 2. Here, the median
differences are listed with respect to the corresponding algorithm/test case com-
bination. Note that all median differences are given multiplied by 10−3. Besides
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Fig. 1. The run of the metrics with respect to the reference set for NSGA2 and SM-
SEMOA on ZDT4. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines indi-
cate the generations, in which the different tests and variants of OCD would stop the
algorithm.

the results regarding the received quality, the additional rows within Tab. 2
indicate the number of generations OCD terminated the algorithm earlier in
contrast to the generation number suggested in the literature (MaxGen2) [8].
Furthermore, the number of saved function evaluations and their percentage of
MaxGen2 are calculated to emphasize what is saved by using OCD with only
the given median loss in quality.

In the line plots of Fig. 6 and Fig. 7, the values of each run with and without
full information are compared. By these means, systematic deviations can easily
be observed. Since OCD terminates the EMOA when the first of the tests indi-
cates convergence, it is also labeled which of the tests initiates the termination
of each run using different symbols. Fig. 6 shows the results for NSGA2 on each
test case whereas Fig. 7 provides these for SMSEMOA.

Observations. OCD efficiently copes with two different types of convergence.
In case the variance test terminates the EMOA (cf. Fig. 5, subfigures 1 and 3),
the standard deviation of all PIi,j is significantly below

√
V arLimit = 0.001.

Fig. 5 shows that the PIj,i differences between OCD Stop and MaxGen2 are
approximately in the range of [−0.001, 0.001] for the EMOA runs, which have
been terminated by the χ2-variance-test. Furthermore, big differences to the
runs, which are terminated by the regression criterion (cf. Fig. 5, subfigures 2
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Fig. 2. The run of the metric with respect to the reference set for NSGA2 and SMSE-
MOA on DTLZ2. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines indi-
cate the generations, in which the different tests and variants of OCD would stop the
algorithm.

and 4), can be observed. In these cases the differences between the approximation
quality of OCD Stop and MaxGen2 are much higher, strictly positive for the
SMSEMOA and balanced between positive and negative values for NSGA2.

The basic results from above can also be recognized in the boxplots for NSGA2
(cf. Fig. 3) and SMSEMOA (cf. Fig. 4). However, systematic differences between
the NSGA2 and the SMSEMOA results can be detected on ZDT4 and DTLZ2.
For NSGA2 on ZDT4, the variance criterion indicates convergence much earlier
than the regression criterion. This is different from the findings for SMSEMOA,
where the regression criterion terminates the algorithm earlier. The progressions
of PIj,i on DTLZ2 are strongly distorted for NSGA2 with alternating phases
of convergence and divergence. The ones of SMSEMOA are much smoother. In
both cases, the regression criterion is able to identify convergence very early in
the run, but due to the rough structure, the variance test is not able to do so for
NSGA2, while for SMSEMOA the variance criterion terminates the optimization
about 25 to 30 generations later than the regression criterion.

The differences in generations between the ones proposed by OCD and
MaxGen2 range from rather small (18 for NSGA2 on ZDT4) to very large (287
for NSGA2 on DTLZ2). In the latter case, only less than 5% of the evaluations
are needed to find better solutions compared to the ones found after the com-
plete optimization run with the termination criterion proposed in the literature.
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In most cases, slightly more than 50% of the generations can be saved. This re-
sults in over 10,000 unnecessary evaluations for the high-dimensional problems.
Even in the worst case, more than 2,900 evaluations can be saved.

The coincidence of both tested OCD variants are indicated in the line plots
in Fig. 6 for NSGA2 and Fig. 7 for SMSEMOA. The differences between OCD
and its full-information variant are strongly depending on the EMOA in use. For
SMSEMOA the results with full information and approximated reference sets are
well-correlated and no general trend can be observed. The median differences be-
tween the indications of convergence in both situations are within one to five gener-
ations (cf. Fig. 7). This is different to NSGA2, which shows a trend to overestimate
the stop generation for the high-dimensional problems. Furthermore, some outliers
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Fig. 6. In the line plots, the generations of NSGA2, in which the OCD stopping crite-
rion is first met (left), are connected to the corresponding generations of OCD with full
information (right). Furthermore, the test, which initiates the termination, is indicated
by a specific symbol.
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Fig. 7. In the line plots, the generations of SMSEMOA, in which the OCD stopping
criterion is first met (left), are connected to the corresponding generations of OCD
with full information (right). Furthermore, the test, which initiates the termination, is
indicated by a specific symbol.

with extreme differences can be detected (cf. Fig. 6). Nevertheless, the generations
proposed by OCD are matching the subjective localization of the termination gen-
eration with an accuracy of approximately nPreGen = 10 generations.

Discussion. The χ2-variance test as well as the test on the regression coefficient
are necessary to successfully detect convergence of EMOA. While the former in-
dicates a low level of improvement in cases of successful optimization, e.g., on
ZDT1 and ZDT2, the latter is extremely important when the high variance in
the indicator values does not provide further improvements due to cyclic deterio-
ration effects. These effects can be observed for NSGA2 on DTLZ2 and Fonseca.
In contrast, on ZDT4 phases of temporary stagnation lead to the termination of
the SMSEMOA based on the regression criterion. Due to a lower selection pres-
sure, NSGA2 can avoid these phases and is therefore stopped by the variance
criterion after global convergence.

Another important observation is that, in cases, in which OCD terminates the
EMOA based on the χ2-variance test, the value of

√
V arLimit = 0.001 is close to

the differences in approximation quality compared to the one after the commonly
proposedMaxGen2 FE. Thus, the user can approximately adjust the desired level
of approximation accuracy ε by choosing V arLimit = ε2. However, the figures
show that the value V arLimit = 0.0012 is suitable for the considered test cases.
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Table 2. Summary of P I i,j and generation differences at the stop generation of OCD
denoted as OCDStop and MaxGen2, where PIDiff = P Ij,OCDStop−P Ij,MaxGen2 and
GenDiff = MaxGen2−OCDStop (j = {HV, EPS, R2}). Additionally, the number of
saved function evaluations and their percentage of MaxGen2 are calculated.

NSGA2 SMSEMOA
problem PI med(PIDiff) med(GenDiff) med(PIDiff) med(GenDiff)
ZDT1 HV 2.07e-03 124 0.96e-03 112

Eps 2.08e-03 12400 FE 1.31e-03 11200 FE
R2 0.93e-03 62% 0.38e-03 56%

ZDT2 HV 2.56e-03 104 1.01e-03 101
Eps 3.13e-03 10400 FE 0.91e-03 10100 FE
R2 1.46e-03 52% 0.63e-03 51%

ZDT4 HV 0.26e-03 18 21.72e-03 63
Eps 0.28e-03 3600 FE 19.75e-03 12600 FE
R2 0.06e-03 18% 9.07e-03 63%

DTLZ2 HV -0.39e-03 287 0.72e-03 256
Eps -14.76e-03 28700 FE 3.37e-03 25600 FE
R2 0.06e-03 96% 0.02e-03 85%

Fonseca HV 0.97e-03 50 2.49e-03 49
Eps -0.51e-03 3000 FE 5.14e-03 2940 FE
R2 0.14e-03 76% 0.21e-03 74%

The experiments document the general ability of the statistical tests within
OCD to detect convergence based on performance indicator values. The delayed
detection of convergence on the Fonseca problem is due to the time window of
preceding generations and the very fast convergence of the EMOA. For a faster
detection of stagnation, nPreGen has to be decreased. However, the time of con-
vergence as indicated by OCD can be accounted as premature for SMSEMOA
on ZDT4 and DTLZ2 regarding the run of the metrics in further generations.
In such situations, a larger time window allows longer phases of stagnation and
provides the EMOA with the possibility to escape from local optima. In sum-
mary, a conflict between a fast detection of convergence and robustness with
respect to short phases of stagnation exists. Therefore, the specification of the
length of the time windows nPreGen allows the user of OCD to express his own
preferences based on the expected kind of problem.

The problem of the overestimation of the generation, in which stagnation oc-
curs, when OCD is applied within NSGA2 can be explained by the selection that
is implemented within this EMOA. Due to the high number of non-dominated
solutions in the already converged population, the individuals are mainly eval-
uated by means of the crowding distance [16]. Thus, in combination with the
(μ + μ) selection, the population is still in motion. Since the reference set it-
self is part of this motion, a high variance in the indicator values is likely to
appear. In contrast, SMSEMOA does only accept solutions, which increase the
hypervolume of the current population. Thereby, a monotonic improvement can
be expected, which also guarantees appropriate reference sets for OCD.
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5 Conclusion

In this paper, a robust and reliable method for convergence detection within
evolutionary multi-objective optimization algorithms has been introduced. This
method is based on two statistical tests, namely the t-test on the regression
coefficient and the χ2-variance test, which guarantee an accurate convergence
detection in all the considered examples. The proposed method is able to in-
voke different performance indicators, and it was investigated using the three
recommended metrics from the EMO field. This way, we have been able to save
half of the function evaluations for common test cases without having to accept
a considerable loss of quality. However, the application of OCD to optimiza-
tion scenarios, which include temporary phases of stagnation, such as in discrete
optimization, could result in a premature indication of convergence.

In addition, we tried OCD on an already solved practical example [33], which
is not shown due to a lack of space. This test indicated that the former analysis
wasted many computational resources. Processing this hint by means of compre-
hensive evaluations of OCD on real-world problems is a task for the near future.

Furthermore, the technique of OCD offers a way for algorithm comparison. For
this purpose, all EMOA parameters and operators have to be set to comparable
values, and a high number of parallel runs of each benchmarked EMOA has to be
performed. This way, a proper statistical analysis on the distributions of the stop
generations proposed by OCD combined with the internally used performance
indicators becomes possible. In this context, a comparison to an approach for
offline convergence detection, which has been recently proposed by one of the
authors [18], seems revealing.
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Abstract. Convergence, uniformity and spread are three basic issues in
comparing the performance of multi-objective evolutionary algorithms.
However, most of metrics pay more attention on former two performance
indices. In this paper, we introduce a metric for evaluating the spread of
non-dominated solutions. Unlike existed metrics only calculating the ex-
treme solutions in objective space, this metric defines boundary concept
of non-dominated set. And it evaluates the extent of boundary solutions
by projecting them on low-dimensional spaces. Moreover, the centroid of
solutions set is introduced to avoid the impact of different convergence
result of algorithms. From a comparative study on several test problems,
the metric is examined to assess spread of non-dominated solutions set
in objective space.

Keywords: Multi-objective optimization, Performance assessment, Hy-
pervolume, Spread, Boundary solution.

1 Introduction

There has been a growing interest in applying heuristic search techniques to
multi-objective optimization problem (MOP) and various efficient algorithms
have been proposed during the past couple years[1,2]. These algorithms usually
generate a set of solutions to approximate the Pareto front of a multi-objective
optimization problem. Naturally, performance assessment of these generated sets
gained much attention. One obvious way to compare algorithms is to simply vi-
sualize the final sets of solutions and rely on intuitive judgments to estimate
superiority of algorithms. However, this way is only possible for 2 and 3 ob-
jectives, and also as discussed by Van Veldhuizen and Lamont[3], intuitive and
visual assessment is not a reliable tool for comparison of different multi-objective
optimization algorithms.

Recently, several quality metrics have been emerging in the literature to eval-
uate the quality of observed solution sets[4,5,6]. They mainly assess three cri-
terions that the algorithms draw their strength to optimize: 1) The distance
of the obtained non-dominated set to the Pareto optimal front; 2) The uni-
formity of the obtained non-dominated set; 3) The distribution extent of the
obtained non-dominated set. In fact, researchers paid significant attention on
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the first and second criterions. For example, there are several metrics in the
literature that are claimed to assess “uniformity of solutions” in one way or an-
other, including “Spacing Metric[7]”, “Niche-based[8]”, “Grid[9]” and “Unifor-
mity Assessment[10]”. As the same time, “Generational Distance[11]”, “Seven
Points Average Distance[7]” and “Coverage of Two Sets[12]” are claimed to
assess “convergence of solutions”. However, relative to the former two criteri-
ons, the third one obtained less attention. One of the important reasons may
be the range of the objective function value is hard to measure, and different
functions have different shapes. More recently, some metrics has been proposed
to assess the comprehensive performance of the obtained non-dominated set.
Hypervolume[12] and Inverted Generational Distance[13] were proposed to as-
sess the convergence, uniformity and spread.Furthermore, Entropy Metric[14]
and another Spacing Metric proposed by Deb[1] appeared to evaluate both uni-
formity and spread. These methods will have a detailed discussion in Section 3.

In this paper, we present a metric to assess the spread of solutions set. This
metric defines boundary concept of obtained non-dominated set, and projects
this set on (M-1) dimensional spaces, then estimates the range of this set by
Hypervolume measure. The organization of the rest of paper is as follows. In
Section 2, relevant notations and definitions are reviewed. Section 3 presents
the existing metrics. Section 4 is dedicated to the spread measurement. Several
experiments and results are explained in Section 5 and Section 6 concludes the
paper with a summary.

2 Definition and Terminology

The multi-objective optimization problem may be stated as a minimization prob-
lem (without loss of generality) as follows:

The formulation of a typical multi-objective design optimization problem with
m objective functions is shown below in Eq. (1).

Minimize f(x)={f1(x), f2(x), · · · , fm(x)}
subject to : x ∈ D (1)
D={x ∈ �n : gk(x)≤0, k=1, · · · ,K; hl(x)=0, l=1, · · · ,L}

wherex isadesignvectorcontainingn componentsofdesignvariables,fi(x) isthe ith

objective function,gk(x) is thekth in equality constraint andhl(x) is the lth equality
constraint.Thesetof alldesignvectorswhichsatisfiesallconstrains isdenotedbyD.
Then-dimensional spacewherein its coordinate axes are designvariables is referred
to as the“variable space”.Them-dimensional spacewherein its coordinate axes are
design objective functions is referred to as the “objective space”.

Definition 1 (Pareto Dominance and Pareto Optimality set). The ob-
jective vector f(xa) is said to dominate the objective vector f(xb) , denoted
f(xa)≺f(xb), if fi(xa)≤fi(xb) for all i ∈ {1, 2, · · · ,m} and fj(xa)<fj(xb) for
some j∈{1, 2, · · · ,m}. A point x∗ is said to be Pareto optimal solution for the
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MOP if and only if there does not exist x∈D such that f(x)≺f(x∗). In other
words, a point x∗ is Pareto solution if there does not exist a point x in D that
would achieve a better value for one of the objectives without worsening at least
another. The solution set is termed as Pareto optimality set that is collective of
all Pareto solutions.

Definition 2 (Pareto Optimality Front). The Pareto optimal front (POF)
is the image of the Pareto optimal set. POF contains all those objective vectors
that are not dominated by any vector in the objective space.

Definition 3 (Solution Set and Non-dominated set). The set of solutions
found by an optimizer is known as Solution Set S. The solutions in S that are
not dominated by others in the set define the Non-dominated set (NDS). Since
in most cases, only non-dominated solutions will be generated, we will not dis-
tinguish S and NDS hereafter unless explicitly indicated.

Definition 4 (Non-dominated Extreme Solution). Non-dominated
Extreme solution (NDES) is the solution that has maximum value for one or
more objectives among NDS.

Note that the solution which has maximum value for one or more objectives
among NDS is called as boundary solution in some other papers. As boundary
solution has other definition in next section, we call it as Non-dominated Extreme
solution in this paper.

3 Some Existing Metrics

In this section, several quality metrics are introduced to assess the spread of
solutions. Now we consider some comprehensive metrics first.

3.1 Metrics for Convergence, Uniformity and Spread

Inverted Generational Distance (IGD)[13] and Hypervolume[12] are used to as-
sess comprehensive performance of convergence, uniformity and spread. Let P ∗

be a set of uniformly distributed points in the objective space along the POF,
the Inverted Generational Distance from P ∗ to NDS is defined as

IGD(P ∗, NDS) =

∑
v∈P∗

d(v,NDS)

|p∗| (2)

Where d(v,NDS ) is the minimum Euclidean distance between v and points in
NDS. Since P ∗ is enough to represent the POF well, IGD could measure the
convergence, uniformity and spread of NDS in a sense. To have a low value of
IGD, NDS must be close to the POF and have good range and uniformity. A
drawback of IGD is POF must be given, which may be trivial for some real
world applications.
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The Hypervolume measure was proposed by Zitzler and Thiele[12]. It calcu-
lates the hypervolume of the multi-dimensional region enclosed by NDS and a
“reference point”. The major shortcoming is that an accurate calculation of the
hypervolume requires a normalized and a careful choice of the reference point.
Knowles and Corne had a detailed analysis in[15]. Another problem is Hyper-
volume and IGD can not assess the spread of solutions alone, Figure 1 gives an
example of distribution.

Fig. 1. An example of distribution. Assume NDS1 and NDS2 are the obtained solu-
tion by two algorithms. Obviously, they have same uniformity and spread, while only
difference is NDS1 is closer to the POF. The results of Hypervolume and IGD are
that NDS1 has better value than NDS2. Naturally, the methods can not give accurate
assessment of spread for solutions.

3.2 Metrics for Uniformity and Spread

The metrics in this subsection include information about both uniformity and
spread. Deb et al.[1] proposed a metric to assess the diversity of solutions.

Δ =
df + dl +

∑|NDS|−1
i=1 |di − d|

df + dl + (|NDS| − 1)d
(3)

where df and dl are the Euclidian distances between the extreme solutions in
POF and NDS. d is the average of all distance di , i∈[1, |NDS|−1]. The drawback
of this metric is Δ works only for 2 objective problems.

Another diversity metric based on entropy has been proposed by Farhang
et al.[14] The basic idea is that each solution provides some information about
its neighborhood modeled by Gaussian distribution. A Density Function has also
been calculated by the sum of all Gaussian distribution form all solutions. The
peaks and valleys of density function correspond to the dense areas and the
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sparse areas respectively. Deb et al. gave a particular analysis and pointed out
four deficiencies in[9]. In addition, since distance between two solutions is influ-
enced by convergence more or less, these methods can not assess the situation
in Figure 1 accurately.

3.3 Metrics Only for Spread

In this subsection, we introduce the metrics only for spread of solutions. Maxi-
mum Spread proposed in[16] shows the distance between NDESs, a bigger value
indicates better spread of solutions.

D =

√√√√ M∑
m=1

(max |NDS|
i=1 f i

m − min |NDS|
i=1 f i

m)
2

(4)

A similar metric called Overall Pareto Spread (OS ) is adopted in[17]. Instead
of the diagonal line, OS calculated the size of the hyper-rectangle. Thus, only the
representative values are different. Indeed, these methods aren’t fit for the solu-
tions in Figure 1. The assessment result using these methods would mislead that
NDS2 has the better spread value than NDS1. Furthermore, another drawback of
the metrics is that they, only considering NDES, do not give enough information
to address the range of solutions, Figure 2 is an example of distribution range.

Fig. 2. An example of distribution. Shadow triangle is an ichnography of POF for a
3-objective function, and NDS1 and NDS2 are the obtained solution by two algorithms
for this function. Assume that they have same convergence. Considering the identity
of NDES in two sets, Maximum Spread or OS would have same assessment value.
However, the ranges of two sets are different. NDS1 spreads over a wider extent.

4 Proposed Metric for Spread

An observed solution set that spreads over a wider range of the objective function
values provides the designer with broader optimized design choices. A metric
criterion provided enough information of extent of solution set, yet general, would
be desirable. Bearing this idea in mind, we give some definitions of extent.

Definition 5 (Beyond). The vector f(xa) is said to beyond the vector f(xb)
in f1(x), f2(x), · · · , fm(x) space, denoted f(xa) � f(xb), if fi(xa) ≥ fi(xb) for all
i ∈ {1, 2, · · · ,m} and fi(xa) > fi(xb) for some j ∈ {1, 2, · · · ,m}.
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Note that the definition of beyond is equal to that of dominance in maximization
MOP. Here, beyond is introduced to address the concept of extent of NDS.

Definition 6 (Boundary Solution and Boundary Solution in fi(x) = 0
Space). A vector f(x) ∈ NDS is considered as Boundary Solution in fi(x) = 0
Space (called as BSi), if f(x) is not Beyond by any member of NDS for subsets
f1(x), · · · , fi−1(x), fi+1(x), · · · , fm(x) of the objectives. In other words, a vector
f(x) is Boundary Solution in fi(x) = 0 Space if and only if there does not exist
a vector f(x•) ∈ NDS that f(x•)�f(x) in f1(x), · · · , fi−1(x), fi+1(x), · · · , fm(x)
space. A vector f(x) is said to be Boundary Solution (BS) for NDS if it is one
of vector in BS1

⋃
BS2

⋃
· · ·
⋃
BSm−1

⋃
BSm.

Figure 3 and 4 illustrate the boundary solution for a set of points in a 3- and
4-objective space. It is clear that the extent of solutions set only depends on
boundary solutions. In addition, extreme solutions are included in boundary solu-
tions, e.g. extreme solution in f1 direction is boundary solution in BS2, BS3, · · · ,
BSm−1, BSm. Especially, for bi-objective problem, the extreme solutions are
equal to boundary solutions. Next, a main idea of our metric for evaluating
extent of boundary solution is given.

(a) (b) (c) (d)

Fig. 3. A 3-objective example of Boundary Solution for a set obtained by ε−MOEA[22]
on DTLZ1: (a) an obtained solutions set by ε − MOEA on DTLZ1; (b) a projection
of obtained solutions set on (f1, f2) objective space; (c) a projection of BS3 on (f1, f2)
objective space; (d) BS of obtained solutions set

The proposed metric quantifies how widely NDS spreads over the objective
space. The essential idea is that projecting NDS on (m−1) objective spaces and
calculating Lebesgue measure of BS on projected hyper-plane. Moreover, the
centroid is considered to avoid the impact of different convergence results of
algorithms. The algorithm procedure of metric is shown as following:

Step 1: Project the obtained NDS on m (m−1)-objective spaces, respectively
(called as NDSj for fj=0 objective space).

Step 2: For each (m−1)-objective space (here described as fj=0 objective
space), find projected BSj on fj=0 objective space.
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(a) (b)

Fig. 4. A 4-objective example of Boundary Solution for a set obtained by SPEA2 on
DTLZ2: (a) a projection of obtained solutions set on (f1, f2, f3) objective space; (b) a
projection of BS4 on (f1, f2, f3) objective space

Step 3: For each (m−1)-objective space, calculate the size of the space covered
of projected BSj by Lebesgue measure.

S(BSj) = Λ({
⋃
i

hji|bji ∈ BSj}) (5)

where hji is the union of hypercubes defined by projected boundary solution bji

and the reference point in Lebesgue measure is coordinate origin.

Step 4: For each (m − 1) -objective space ,calculate centroid c(w1, · · ·, wj−1,
wj+1, · · ·, wm, ) of NDSj , where Wi=

∑
k∈NDS

fi(xk)/N, i �= j, ,N is number of

NDS.

Step 5: For each (m−1)-objective space, the assessment value Vj on fj=0 ob-
jective space is calculated as follows:

Vj =
S(BSj)
m∏

i=1,i�=j

|wi|
(6)

Step 6: The total assessment result V for NDS can be expressed as:

V = m

√√√√ m∏
j=1

Vj (7)

The value of V shows the extent of obtained solutions set. When comparing
V of two sets, the designer prefers larger V with a wider spread. In Step 3 of this
algorithm, The Hypervolume measure is introduced to calculate the size of space
covered. Just as presented in 3.1 Section, it is an accurate metric to assess the
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volume enclosed by solutions. Recently, some researchers give deeper analysis
in[18,19,20,26]. The only difference is that coordinate origin instead of reference
point be chosen in objective space. In the algorithm, centroid is used to offset the
larger value of hypervolume when the solutions have worse convergence result.
Figure 5 illustrates intuitive explanation of the algorithm.

(a) (b)

Fig. 5. An example for calculating V of a set obtained by SPEA2 on DTLZ2: (a) an
illustration that 3-dimension NDS is projected on f3=0 2-dimension plane. Box points
are original NDS obtained in solid space. Solid points are the projected points in this
plane; (b) an illustration of calculating V3 on (f1, f2,) objective space. Black points are
corresponding to the points in (a). Triangle is the centroid of these black points. The
convex polytope is enclosed by BS3 and coordinate origin. The rectangle is enclosed
by centroid and coordinate origin. Therefore, V3 is the ratio of the convex polytope to
the rectangle.

5 Simulation Results

In this section, we apply the above metric on four different methods (NSGA-
II[21],ε-MOEA[22], SPEA2[23], PESA-II[24]), in view of the spread of these
methods is representational. All MOEAs are given real-valued decision variables.
A crossover probability of Pc=0.9 and a mutation probability Pm=1/n (where n
is the number of decision variables) are used. The operators for crossover and mu-
tation are simulated binary crossover (SBX)[1] and polynomial mutation, with
distribution indexes of ηc=11,and ηm=17, respectively.

Our metric is applied to results of different test problems with 2, 3 and 4
objectives. ZDT1 and ZDT2[16] are 2-objective test problems, and DTLZ1,
DTLZ2, DTLZ3, DTLZ5 and DTLZ7[25] with variable number of objectives.
In our experiment, the objective number is 3, 4 and 6. For PESA-II, we have set
32×32 hyper-boxed for 2-objective problems, 8×8×8 for 3-objective problems,
and 6×6×6×6 for 4-objective problems. Table 1 is some parameters of experi-
ments and Table 2 is the ε value of ε-MOEA . The setting of ε can make the
number of solutions accord with population size of other algorithms. Next, the
results of different test problems are analyzed separately.
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Table 1. The parameters of the experiments

Object number 2 3 4
Population size 100 200 300

Evaluation number 20000 100000 300000

(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 6. The NDS obtained by four MOEAs on DTLZ1. The dashed line is the boundary
of POF.

Table 2. The ε setting of ε-MOEA

Object number 2 3 4
ZDT1 0.0075 � �
ZDT2 0.0075 � �
DTLZ1 � 0.025 �
DTLZ2 � 0.042 0.115
DTLZ3 � 0.042 �
DTLZ5 � 0.0025 0.027
DTLZ7 � 0.033 0.076

Table 3. Spread measure of DTLZ1 and DTLZ3

Test problem NSGA-II ε-MOEA SPEA2 PESA-II
DTLZ1 3.97383 4.12704 4.24122 3.95855

0.07275 0.03121 0.05965 0.08205
DTLZ3 3.06745 2.82745 3.17421 2.96639

0.05035 0.01164 0.04724 0.04586
DTLZ3 3.06120 � � �

(Pm=0.005) 0.04877 � � �

5.1 DTLZ1 Test Problem

First, we consider the three-objective DTLZ1 test problem with n=7 variables.
The Pareto optimal solutions lie on a three-dimensional plane satisfying f1 +
f2 + f3 = 0.5. Figure 6 shows the results of methods. It can be observed that
SPEA2 has most wide distribution, and the BS usually is located in boundary
of POF. ε-MOEA takes the second place, the next is NSGA-II, and PESA-II
has the worst result that quite a part of BS is inside red line. The result of the
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(a) NSGA-II with Pm =
1/n

(b) NSGA-II with Pm =
0.005

(c) Composition graph of
(a) with (b)

Fig. 7. The NDS obtained by different mutation probability for NSGA-II on DTLZ3

proposed metric for DTLZ1 is recorded in Table 3. For each problem in result,
we have carried out 20 independent runs, these tables include the average and
standard deviation, and the upper values in each row of table are the average
values. The larger average values indicate a better distribution extent. Indeed
in table 3, it is observed that SPEA2 has the best spread metric value, and the
following are ε-MOEA, NSGA-II and PESA-II, which confirm the observations
from Figure 6.

5.2 DTLZ3 Test Problem

Here, we concentrate on the 12-variable 3-objective DTLZ3 test problem, which
has (312−1) local Pareto optimal fronts[25]. The POF satisfies the equation
f2
1 +f2

2 +f2
3=1. This problem is chosen to test the measure value impacted by dif-

ferent convergence result of algorithms. Figure 7 gives a result of NDS obtained
by different mutation probability for NSGA-II on DTLZ3. The NDS obtained
with mutation probability Pm=1/12 in Figure 7(a) has converged to POF. The
NDS obtained with mutation probability Pm=0.005 in Figure 7(b) can only
converge to local Pareto optimal front f2

1 +f2
2 +f2

3=22. But they have quite sim-
ilar shapes, uniformity and spread. The only difference is the convergence of
algorithms. The result of the proposed metric is recorded in Table 3. It is ob-
served that they have much similar results, which confirm the observations from
Figure 7. Figure 8 also shows the results of ε-MOEA and SPEA2. We observe
that the solutions obtained by SPEA2 have wider extent than those obtained by
ε-MOEA in Figure 8(c). Indeed, observing BS in f1=0 plane, blue points have
more extensive distribution than red points, which accord with the results in
Table 3.

5.3 Other Test Problems

Figure 9 and 10 show the NDS obtained by two 2-objective problems (ZDT1,
ZDT2), and assessment results can be observed in Table 4, NSGA-II and SPEA2
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(a) ε-MOEA (b) SPEA2 (c) Composition graph of
(a) with (b)

Fig. 8. The NDS obtained by ε-MOEA and SPEA2 on DTLZ3

(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 9. The NDS obtained by four MOEAs on ZDT1

Table 4. Spread measure of other test problems

Test problem NSGA-II ε-MOEA SPEA2 PESA-II
ZDT1 2.40015 2.33097 2.38568 2.36806

0.00927 0.00581 0.01181 0.02771
ZDT2 1.71481 1.69658 1.71548 1.69788

0.01121 0.00291 0.00445 0.00761
DTLZ2(3-obj) 3.06368 2.82859 3.17661 2.96993

0.03241 0.00650 0.01535 0.04397
DTLZ5(3-obj) 2.10775 1.95871 2.08195 2.02985

0.03018 0.00662 0.00906 0.04895
DTLZ7 (3-obj) 2.62506 2.72128 2.59497 2.61399

0.05869 0.016137 0.08814 0.10903
DTLZ2 (4-obj) 6.05588 5.78005 7.06089 5.50716

0.10151 0.02156 0.11098 0.13846
DTLZ5 (4-obj) 5.06555 4.30551 4.59924 4.25687

0.16895 0.08473 0.12963 0.23641
DTLZ7 (4-obj) 4.79397 4.31676 5.55387 4.71153

0.17115 0.06234 0.23839 0.17370

provide better spread compared to PESA-II and ε-MOEA.Furthermore, NSGA-
II has best value on ZDT1, and SPEA2 is predominated on ZDT2. In addition,
PESA-II has slightly better than ε-MOEA. The reason may be that ε-MOEA
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(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 10. The NDS obtained by four MOEAs on ZDT2

(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 11. The NDS obtained by four MOEAs on DTLZ2

(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 12. The NDS obtained by four MOEAs on DTLZ5

(a) NSGA-II (b) ε-MOEA (c) SPEA2 (d) PESA-II

Fig. 13. The NDS obtained by four MOEAs on DTLZ7

which preserves the closest solution to reference point can affect spread in a
certain extent. Figure 11-13 show the NDS obtained by three 3-objective prob-
lems (DLTZ2, DTLZ5, DTLZ7), and assessment results can be observed in
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Table 4. SPEA2 has the best result on DTLZ2 and NSGA-II provides the best
extent on DTLZ5. Unexpectedly,ε-MOEA which has worst values on DTLZ2
and DTLZ5 do provides better result than other three algorithms on DTLZ7.
Table 4 also shows the results for DTLZ2, DTLZ5, and DTLZ7 on 4-objective
problems. Likely 3-objective problems, SPEA2 and NSGA-II have best results
on DTLZ2 and DTLZ5 respectively. Interestingly, for DTLZ7, SPEA2 which has
worst result in 3-objective space holds best value in 4-objective space. In con-
clusion, by this study of different objective problems, SPEA2 and NSGA-II are
demonstrated that can exploit wider range of solutions in most problems.

6 Conclusion

Obtaining an extensively-distributed set of solutions is one of the goals of multi-
objective optimization. In this paper, we have introduced and studied a metric
for assessing the spread of a non-dominated solutions set. By defining bound-
ary concept of obtained non-dominated set, this metric can provide accurate
information of extent for it. Moreover, centroid is introduced into this method
to balance the impact that different convergence results of algorithms bring to
spread assessment. A test on several problems was done with this method, and
the results of four MOEAs (NSGA-II,ε-MOEA, SPEA2, and PESA-II) are com-
pared. The evaluations on DTLZ1 and DTLZ3 confirm the observations from
the illustration, and the evaluations on other 2-, 3- and 4-objective problems
show the capability of algorithms to win extensive distribution.

The proposed metric using Hypervolume to assess extent of solutions is de-
manding in terms of computational load. The advance of time efficiency for
estimating extent of solutions set will be a subject of future research.
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Abstract. This paper proposes an improved version of volume domi-
nance to assign fitness to solutions in Pareto-based multi-objective
optimisation. The impact of this revised volume dominance on the per-
formance of multi-objective evolutionary algorithms is investigated by
incorporating it into three approaches, namely SEAMO2, SPEA2 and
NSGA2 to solve instances of the 2-, 3- and 4- objective knapsack prob-
lem. The improved volume dominance is compared to its previous version
and also to the conventional Pareto dominance. It is shown that the pro-
posed improved volume dominance helps the three algorithms to obtain
better non-dominated fronts than those obtained when the two other
forms of dominance are used.

1 Introduction

The application of heuristic and evolutionary techniques to solve difficult real-
world multi-objective optimisation problems is a very active research area. In
Pareto-based multi-objective optimisation, a set of non-dominated solutions, also
known as Pareto front, is sought so that the decision-maker can select the most
appropriate one. Evolutionary algorithms and other population-based heuristics
seem well suited to deal with Pareto based multi-objective optimisation problems
because they can evolve a population of solutions towards the Pareto-optimal
front in a single run. A good multi-objective evolutionary algorithm (MOEA)
should be able to obtain Pareto fronts that are both well-distributed and well-
converged. When designing a MOEA an important issue is how to establish
superiority between solutions within the population. That is, how to compare
solution fitness in a multi-objective sense. Most modern MOEAs adopt the con-
ventional Pareto dominance relationship. There are few papers that propose dif-
ferent types of dominance relationship such as α-dominance, ε-dominance, fuzzy
dominance and volume dominance (these approaches are reviewed in Section 2).
These alternative forms of dominance aim to help finding solutions in difficult
areas (like the extremes of the tradeoff front) or attempt to combine conver-
gence and diversity in order to achieve better Pareto fronts in difficult problems.
It has been shown that these alternative forms of dominance can help to obtain
better quality Pareto fronts (e.g. [1,2,3]). In this paper, we present an improved
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version of the volume dominance proposed by Le and Landa-Silva [4]. This vol-
ume dominance compares two solutions with respect to the objective space vol-
ume that each of them dominates. The revised version takes into consideration
the current non-dominated front as the search progresses and incorporates a
crowding technique. We compare the performance of some well-known MOEAs
when using the revised volume dominance, the previous volume dominance and
the conventional Pareto dominance. Our experiments are conducted using the
multi-objective knapsack problem because benchmark results are available for
this problem. We also show that the proposed improved volume dominance could
be used within other MOEAs.

Section 2 presents a short literature review of Pareto dominance and alterna-
tive forms of dominance. Section 3 describes the new volume dominance which
is a modification of the one proposed earlier in [4]. Section 4 describes our ex-
periments to assess the impact on the performance of three MOEAs when in-
corporating the new volume dominance proposed here. We discuss our results in
Section 5 while Section 6 gives conclusions and proposes future work.

2 Dominance Relationship

In general, the multi-objective optimisation problem with m-objectives to be
maximised can be written as

maximise {f1(x), f2(x), . . . , fm(x)} (1)

subject to the decision vector x = (x1, x2, . . . , xn)T belonging to the feasible
region S. Then, the objective vector of x is

f(x) = (f1(x), f2(x), . . . , fm(x)) (2)

2.1 Pareto Dominance

Vilfredo Pareto proposed the concept of Pareto dominance (Pareto optimum)
in 1896 [5]. Since then, this concept has been extensively used to establish the
superiority between solutions in multi-objective optimisation. In Pareto domi-
nance, a solution x is considered to be better than a solution x∗ if and only if
the objective vector of x dominates the objective vector of x∗. More formally:

Pareto Dominance. A solution x ∈ S dominates a solution x∗ ∈ S (x � x∗) if
and only if x is not worse than x∗ in all objectives (fi(x) ≥ fi(x∗) ∀i = 1, . . . ,m)
and x is strictly better than x∗ in at least one objective (fi(x) > fi(x∗) for at
least one i = 1, . . . ,m).

We can also distinguish between weak dominance and strong dominance [3]
or loose dominance and strict dominance [6] respectively.

Weak dominance. This is often simply referred to as Pareto dominance. A so-
lution x weakly dominates a solution x∗ (x � x∗) if x is better than x∗ in at
least one objective and is as good as x∗ in all other objectives.
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Strong dominance. A solution x strongly dominates a solution x∗ (x � x∗) if x
is strictly better than x∗ in all objectives.

Non-dominance. If neither x dominates x∗ nor x∗ dominates x (weakly or
strongly), then both solutions are said to be incomparable or mutually non-
dominated. In this case, no solution is clearly preferred over the other.

Pareto-optimal front is the set F consisting of all non-dominated solutions x in
the whole search space. Hence, a solution x ∈ F if there is no solution x∗ ∈ S
that dominates x, i.e. if x is non-dominated with respect to S. A set of non-
dominated solutions that approximates the Pareto optimal front is usually called
current Pareto front or known Pareto front.

2.2 Alternative Forms of Dominance

Pareto dominance is widely adopted in multi-objective optimisation algorithms.
Several alternative forms of dominance have been proposed recently. It has been
shown that relaxing the conventional Pareto dominance can improve the perfor-
mance of multi-objective optimisation algorithms. Some of these relaxed forms
of Pareto dominance are more effective in finding solutions in the extremes of the
feasible region S and in tackling optimisation problems with irregular Pareto-
optimal fronts or problems for which it is difficult to generate feasible solutions.

In general, relaxed forms of Pareto dominance allow a solution x to domi-
nate another solution x∗ for which x does not Pareto-dominate x∗. Relaxed
forms of Pareto dominance include: structure domination [7], α-dominance [8],
ε-dominance [1], extended Pareto dominance [9], the fuzzification of Pareto
dominance [2,10] and contracting/expanding Pareto dominance [11]. Le and
Landa-Silva proposed a relaxed form of Pareto dominance, named volume domi-
nance [4]. This form of dominance is based on the volume of the objective space
that a solution dominates. This property makes volume dominance distinguis-
able from conventional Pareto dominance and other relaxed forms of dominance
which directly compare the objective vector of solutions in one way or another.

The volume dominance relationship between x and x∗ is based on comparing
their corresponding dominated volumes, V (x) and V (x∗) respectively, to a ref-
erence volume called shared dominated volume [4]. The dominated volume of x,
V (x), and the shared dominated volume of x and x∗, SV (x,x∗), are calculated
with respect to the reference point r = (r1, r2, . . . , rm) as follows:

V (x) =
m∏

i=1

(fi(x) − ri) (3)

SV (x,x∗) =
m∏

i=1

(min(fi(x), fi(x∗)) − ri) (4)

It is said that for a ratio rSV , x volume-dominates x∗ (x �V x∗) if either:

– V (x∗) = SV (x,x∗) and V (x) > SV (x,x∗) or
– V (x) > V (x∗) > SV (x,x∗) and V (x)−V (x∗)

SV (x,x∗) > rSV
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Le and Landa-Silva clearly identified the difference between the fundamen-
tal principles of volume dominance and the S metric proposed by Zitzler and
Thiele [12] which look very similar at first sight. They also proved that volume
dominance covers Pareto dominance. This could not be the case with some other
relaxed forms of Pareto dominance such as ε-dominance and extended Pareto
dominance. Another interesting property of volume dominance is that it is nor-
malised (see proof by Le and Landa-Silva [4]). That is, volume dominance is able
to prevent bias towards some directions in cases with non-commensurable objec-
tive functions. Another crucial difference between volume dominance and other
alternative forms of dominance in the literature is that volume dominance com-
bines all objectives into a single unit vector to establish the superiority between
solutions instead of directly comparing each objective in turn. This allows volume
dominance to evaluate the whole objective vector to compensate improvement
and detriment between objectives [4].

3 Volume Dominance

Volume dominance shows promising results when compared to the conventional
Pareto dominance. Volume dominance is able to obtain results driven by different
criteria such as better coverage, better size of space covered or better distribution
of the objective values. This can be done by adjusting the rSV ratio [4]. However,
the volume dominance presented earlier also has some drawbacks. It requires a
preset and fixed reference point r in order to calculate the dominated volume of a
solution. As the search progresses, the population moves away from the reference
point which could lead to a significant increase in the dominated volume of a
solution. Hence, volume dominance could be highly effective at the start of the
search but less and less influent as the search progresses. Therefore, we propose
to update the reference point to reflect the evolution of the population. In other
words, the reference point is defined based on some characteristics of the current
population.

Another issue of volume dominance is that it does not take into account the
current Pareto front. This issue is illustrated in Figure 1. For both cases 1(a)
and 1(b) in Figure 1, x �V x∗ for some ratio rSV by using the volume domi-
nance in [4]. However, one can easily point out that x �V x∗ should not be true
in 1(b) because both x and x∗ seem equally good (close to the Pareto front)
and should be regarded as non-volume-dominated solutions. In order to over-
come this issue, we modify volume dominance to consider the current Pareto
front when establishing superiority between two solutions. We propose a clus-
tering technique as an additional feature incorporated into volume dominance.

3.1 Dynamic Reference Point

Volume dominance requires a reference point r to calculate the dominated vol-
ume of a solution. Le and Landa-Silva [4] proposed a simple strategy to define
the reference point r as a fixed point, the origin of coordinates in the objective



An Improved Version of Volume Dominance 235

x*

x

f1

f2

r

(a) Concave

x*

x

f1

f2

r

(b) Convex

Fig. 1. Previous Version of Volume Dominance [4]

space. As mentioned above, this simple strategy has the drawback of degrad-
ing the effectiveness of volume dominance as the search progresses because the
dominated volume of solutions becomes larger and larger. We propose a more
elaborate, yet more effective, strategy to estimate the reference point r. The
strategy designates a reference point for each solution in the current population
P and it also defines two common reference points rinf and rsup for all individ-
uals in P . This strategy also considers the current state of P when determining
the reference point. The reference point rx = (rx

1 , r
x
2 , . . . , r

x
m) for solution x ∈ P

is as follows:

rx
i = fi(x) − (rsup

i − rinf
i ) (5)

where ∀i = 1, 2, . . . ,m

rinf
i = inf{fi(x∗) | x∗ ∈ P} (6)

rsup
i = sup{fi(x∗) | x∗ ∈ P} (7)

The estimation of rx = (rx
1 , r

x
2 , . . . , r

x
m) is illustrated in Figure 2.

3.2 Considering the Current Pareto Front

Without considering the current Pareto front during the search, Figure 1 illus-
trates the drawback of the previous version of volume dominance. While es-
tablishing superiority between solutions x and x∗, the strength of solution x is
defined as the ratio of the dominated volume of x (V (x)) to the shared dominated
volume of x and x∗ (SV (x,x∗)) with respect to the reference point r. Then,
the dominance of x over x∗ (or vice versa) is determined based on comparing
the difference between their strengths to a ratio rSV .

We propose a different approach in defining the strength of solution x. The
strength of x is the ratio between the dominated volume of x (V (x)) and the
volume that fairly represents the status of the current Pareto set. With respect
to x, this fair representation of the current Pareto set is the subset consisting
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of non-dominated solutions that Pareto-dominate x. However, determining the
dominated volume of a solution set could be computationally expensive. There-
fore, the dominated volume of this solution set is estimated as the dominated
volume of the solution that least Pareto-dominates that solution set. Let name
this estimated dominated volume (w.r.t x) as the reference volume of x, V ref(x).

V ref (x) =
m∏

i=1

(xref
i − ri) (8)

xref
i = inf{{fi(x)}

⋂
{fi(x∗) | x∗ � x ∧ x∗ ∈ ParetoFront}} (9)

The strength of x is then defined as follows:

Str(x) =
V (x)
V ref (x)

(10)

Therefore, x volume-dominates x∗ (x �V x∗) if and only if the following con-
dition holds for a positive ratio rStr:

Str(x) − Str(x∗) ≥ rStr (11)

Additionally, to ensure the improvement of the Pareto set, condition (11) is
relaxed whenever Str(x) = 1 and Str(x∗) < 1. In other words, if none of non-
dominated solutions dominates x, xref

i = fi(x) implying V ref (x) = V (x), and
it is not the case for x∗ then x �V x∗.

It is noted that the current Pareto front is required in order to apply volume
dominance. Therefore, one must use conventional Pareto dominance to obtain
the Pareto front as well as xref to estimate the reference volume of x, V ref(x).

3.3 Clustering Strategy

We also propose a clustering strategy as part of volume dominance to improve the
distribution of non-dominated solutions w.r.t the objective space. This strategy
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is only considered when two solutions x and x∗ are regarded as non-volume-
dominated. It means that both condition (11) and its relaxation do not hold for
solutions x and x∗. Solution x is said to dominate solution x∗ if x is in a less
crowded area when comparing to x∗. The degree of crowding of x is measured as
the number of neighbours of x which is the number of non-dominated solutions
in the current Pareto set that ε-dominate x. The ε-dominance deployed here
is slightly different from the one proposed by Laumanns et al. [1] and other
variants of ε-dominance in the literature. To the best of our knowledge, variants
of ε-dominance either use a dynamic adaptation of the ε value or use a different
εi value for each objective i. The variant of ε-dominance employed in this paper
takes the advantage of both approaches, a different dynamic adaptive εi value
for each objective. The εi value is estimated based on the current Pareto front
as follows:

εi = (rsup
i − rinf

i ) × μ (12)

where rinf
i , rsup

i were given in (6), (7) respectively and μ is a positive constant.
Within the context of volume dominance, it is said that x ε-dominates x∗ (x �εv

x∗) if and only if fi(x) ≥ fi(x∗) − εi ∀i = 1, . . . ,m and fi(x) > fi(x∗) − εi for
at least one i. Then, the number of neighbours of x is defined as follows:

N(x) = |{x∗ | x∗ �εv x ∧ x∗ ∈ CurrentParetoFront}| (13)

It is then said that if condition (11) and its relaxation do not hold for either
(x,x∗) or (x∗,x), then x volume-dominates x∗ (x �V x∗) for a positive con-
stant τ if and only if

N(x∗) −N(x) ≥ τ (14)

4 Experimental Design

Most alternative forms of dominance proposed in the literature attempt to search
and maintain extreme points in the objective space and/or points that are diffi-
cult to obtain and maintain with Pareto dominance. Few other forms of relaxed
dominance attempt to combine convergence and diversity into a single crite-
rion when distinguishing between solutions. These relaxed forms of dominance
have been proposed as an integral part of specific multi-objective optimisation
algorithms (see [1,2,3,7,8,10]) with the exception of the contracting/expanding
Pareto dominance of Sato et al. [11] which was tested on one existing approach,
namely NSGA2. To the best of our knowledge, none of these forms of relaxed
dominance has been tested on different multi-objective algorithms.

4.1 Brief Description of the MOEAs Considered

This paper presents experimental results showing that the proposed improved
volume dominance performs well on different multi-objective evolutionary algo-
rithms such as SEAMO2 [13], SPEA2 [14] and NSGA2 [15] when solving the
multi-objective knapsack problem instances proposed by Zitzler and Thiele [12].
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SEAMO2 uses a steady-state population and a simple elitist replacement strat-
egy. Each solution of the population, in turn, acts as the first parent once and
a second parent is chosen at random. Offspring is produced by applying cycle
crossover on the two parents followed by a single mutation. If the offspring’s ob-
jective vector improves on any best-so-far objective function, it replaces one of
the parents and the objective’s best-so-far is updated. Otherwise, if the offspring
dominates one of the parents, it replaces that parent (unless it is a duplicate,
then the offspring is deleted). If neither the offspring dominates the parents nor
the parents dominate the offspring, the offspring replaces a random solution in
the population that the offspring dominates. SPEA2 employs a fixed size archive
to store non-dominated solutions in addition to a population. SPEA2 deploys a
fine-grained fitness assignment strategy which for each individual p takes into
account the number of other individuals that dominate p and that are dominated
by p. A nearest neighbour density estimation for environmental selection is used
to deal with two situations: when either the archive is too small or too large.
The best dominated individuals in the previous archive and the population are
copied to the new archive in the first case. In the latter situation, non-dominated
individuals in the archive are iteratively removed until the archive’s size is not
exceeded. The removal of non-dominated individuals from the archive is carefully
managed by using an archive truncation method that guarantees the preserva-
tion of boundary solutions. NSGA2 uses a fast non-dominated sorting algorithm
to classify a population into different non-domination levels. NSGA2 also uses
a crowding technique based on the density of solutions surrounding a particular
solution to preserve the diversity of the population.

4.2 Enhancing MOEAs with Volume Dominance

All of these 3 algorithms, SEAMO2 [13], SPEA2 [14] and NSGA2 [15], were im-
plemented according to their original description. Parameter settings for tack-
ling the multi-objective knapsack problem with SPEA2 and NSGA2 were kindly
provided by Marco Laumanns by means of email-based discussions. Then, in
our experiments we replace the conventional Pareto dominance with the revised
volume dominance and analyse the impact on the performance of these three
algorithms. We aim to investigate the performance of the improved volume dom-
inance within the three evolutionary approaches with minimum alteration to the
original algorithms. The replacement of the conventional Pareto dominance with
the volume dominance in each algorithm is described below.

In SEAMO2, we replace Pareto dominance with improved volume dominance
to decide on the replacement of offspring by one of its parents or a random
solution. This is the only stage where solutions are compared for dominance re-
lationship in SEAMO2. However, this is not the case for SPEA2 and NSGA2.
In both SPEA2 and NSGA2, there are three possible stages in which the im-
proved volume dominance could be applied. These are: the fitness assignment
to individuals, the environmental selection and the mating selection stages. In
fact, Pareto dominance is only applied during the fitness assignment stage. The
environmental selection and the mating selection stages use computed individual



An Improved Version of Volume Dominance 239

fitnesses to compare solutions for superiority or dominance relationship. How-
ever, the individual fitness computed during the fitness assignment stage heavily
relies on Pareto dominance. Therefore, to some extent, the environmental selec-
tion and the mating selection stage in SPEA2 and NSGA2 also involve Pareto
dominance. We think that the fitness assignment strategy is an integral part
in these two algorithms, SPEA2 and NSGA2. It makes more sense that we do
not alter their fitness assignment strategy to preserve their main characteristics.
We also suggest that the mating selection stage is less significant than the envi-
ronmental selection stage. This is because the environmental selection strategy,
which uses an archive truncation operator in SPEA2 and front extraction in
NSGA2, decides the survival of individuals into the next generation whereas the
mating selection strategy choose random parents based on a binary tournament
selection operator to produce offspring. Therefore, for the preliminary investi-
gation in this paper, we apply the improved volume dominance to the mating
selection stage in SPEA2 and NSGA2. In other words, we replace the comparison
of individual fitnesses with the improved volume dominance in order to decide
on the superiority between individuals during the mating selection stage.

4.3 Benchmark Problems, Parameters Setting and Metrics

We use the instances with 750 items and 2, 3, and 4 objectives of the knapsack
problem proposed in [12]. We executed short and long runs using different values
of rSV to investigate the improved volume dominance. The population size used
for the 2-, 3-, and 4-objective instances are 250, 300 and 350 individuals respec-
tively. We use the same number of generations for a short run (500 generations)
and a long run (1920 generations) as used by Zitzler et al. [14], Deb et al. [15] and
Mumford [13]. For the improved volume dominance, we use 5 different values of
rSV = {0.025, 0.05, 0.075, 0.10, 0.15}, μ = 0.01 in equation (12) and τ = 5 in
inequality (14). We also replicated the results obtained by applying the previous
volume dominance proposed by Le and Landa-Silva [4] with 4 different values
of rSV = {0.10, 0.15, 0.20, 0.25}. We summarise and discuss the results from 30
independent runs. The results in Section 5 are based on rSV = 0.075 for the
new improved volume dominance proposed in this paper and rSV = 0.15 for the
previous approach proposed in [4].

We use four metrics to evaluate the non-dominated fronts produced. The
first metric is the S hypervolume proposed by Zitzler and Thiele [12] which
measures the overall size of the objective space covered by all the non-dominated
solutions. Here, S is scaled as the percentage of the volume created by the origin
and the reference point (39822, 41166), (41968, 41298, 41402), (41841, 40790,
39651, 41630) which is the sum profits of all items in each objective for 2-,
3- and 4-objective instance respectively. The boxplots in Figure 3 represent the
distribution of the complement of the S hypervolume metric (1−S). The vertical
axes of the boxplots measure the percentage of the non-dominated objective
space. The horizontal axes present Pareto Dominance (pd), the previous volume
dominance (vd1) and the improved volume dominance proposed here (vd2) when
applied to three different evolutionary algorithms SEAMO2 (se), SPEA2 (sp)
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and NSGA2 (ns). The second metric used is the cluster CLμ proposed by Wu and
Azarm [16]. The CLμ cluster metric measures the average number of indistinct
solutions in each small grid which size is specified by 1/μ. The ideal case is
when CLμ = 1 which means that every obtained Pareto solution is distinct. In
all other cases, CLμ is greater than 1. The higher the value of CLμ, the more
clustered the solution set is, and therefore, the less preferred the solution set.
We use μ = 0.01 or in other words, 1/μ = 100 units in the objective space. The
third metric used is the average distance from the obtained non-dominated front
to the approximation of the true Pareto front. The lower the value of this metric,
the closer the obtained non-dominated front is to the true Pareto front. Finally,
the size of the obtained non-dominated fronts is also computed. The higher the
value, the better as more non-dominated solutions have been found.
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Fig. 3. Distribution of the complement of the hypervolume S on knapsack problems
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Table 1. Average values (standard deviation) of the size of the non-dominated set

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2
2 500 59.37 (8.1) 59.53 (8.44) 82.9 (9)
2 1920 101.67 (11.37) 104.5 (8.87) 198.9 (16.51)
3 500 199 (19.04) 202.73 (16.29) 299.87 (0.57)
3 1920 244.7 (10.54) 244.87 (11.11) 300 (0)
4 500 284.5 (15.87) 286.77 (15.79) 350 (0)
4 1920 321.27 (8.45) 316.2 (10.24) 350 (0)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2
2 500 76.6 (8.81) 77.27 (8.28) 70.9 (8.94)
2 1920 134.63 (10.42) 131.9 (14.22) 126.1 (14.35)
3 500 300 (0) 300 (0) 300 (0)
3 1920 300 (0) 300 (0) 300 (0)
4 500 350 (0) 350 (0) 350 (0)
4 1920 350 (0) 350 (0) 350 (0)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2
2 500 66 (8.29) 66.1 (8.19) 62.27 (7.73)
2 1920 85.83 (12.5) 73.2 (21.44) 73.63 (16.96)
3 500 257.37 (9.92) 255.7 (12.55) 256.47 (8.17)
3 1920 272.07 (7.52) 269 (5.38) 266.87 (6.43)
4 500 335.7 (5.64) 335.8 (6.72) 334.37 (5.88)
4 1920 338.7 (3.19) 338.9 (2.45) 338.07 (4.81)

5 Results and Discussion

For the hypervolume S (Figure 3), the improved volume dominance incorporated
into SEAMO2 (se vd2) outperforms not only the Pareto dominance (se pd) but
also the previous volume dominance (se vd1) for all knapsack instances both in
the short and long runs. The improved volume dominance when incorporated
into NSGA2 (ns vd2) is slightly worst than ns pd and ns vd1 in 2-knapsack
instance but ns vd2 is able to compete against ns pd and ns vd1 in higher di-
mension knapsack instances (3 and 4 objectives). We observe a similar result in
SPEA2 as in NSAG2 when comparing se vd2 to se pd and se vd1.

We also traced the progress of S during the evolutionary search. Regarding
SPEA2 and NSGA2, vd2, vd1 and pd perform quite similar. However, vd2 in-
corporated into SEAMO2 is better than vd1 and pd for all 3 knapsack instances
from the early stage of the evolutionary search. We omit the graphs related to
this results due to space limitations in this paper. The complete results can be
obtained on request.

The performance of vd2 when incorporated in SPEA2 and NSGA2 is quite
similar to vd1 and pd with respect to the size of the non-dominated set
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(Table 1(b), 1(c)) and with respect to the cluster CLμ of the non-dominated
set (Table 2(b), 2(c)). However, for SEAMO2, vd2 is noticably better than vd1
and pd regarding both the size of the non-dominated set (Table 1(a)) and the
cluster CLμ of the non-dominated set (Table 2(a)) in almost all knapsack in-
stances for both short and long runs, except for the 2-knapsack instance when
vd2 is worse than vd1 and pd in term of the cluster CLμ of the non-dominated
set.

Table 2. Average values (standard deviation) of the cluster metrics CLμ

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2
2 500 5.78 (0.79) 5.69 (0.7) 6.1 (0.8)
2 1920 6.16 (1.05) 6.49 (0.94) 8.74 (0.74)
3 500 7.23 (1.08) 7.25 (0.82) 3.95 (0.38)
3 1920 6.6 (0.71) 6.29 (0.6) 3.31 (0.23)
4 500 5.8 (0.66) 6.1 (0.63) 3.06 (0.31)
4 1920 5.2 (0.35) 5.29 (0.43) 2.77 (0.16)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2
2 500 4.15 (0.45) 4.34 (0.52) 4.32 (0.54)
2 1920 6.17 (0.56) 6.16 (0.61) 6.34 (0.72)
3 500 2.09 (0.16) 2.14 (0.25) 2.16 (0.21)
3 1920 1.66 (0.09) 1.69 (0.08) 1.72 (0.09)
4 500 1.45 (0.06) 1.43 (0.06) 1.46 (0.06)
4 1920 1.36 (0.05) 1.38 (0.06) 1.35 (0.05)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2
2 500 4.52 (0.57) 4.52 (0.55) 4.48 (0.46)
2 1920 5.04 (0.69) 4.26 (1.02) 4.42 (0.89)
3 500 2.99 (0.25) 3 (0.3) 3.22 (0.36)
3 1920 1.6 (0.07) 1.58 (0.07) 1.6 (0.07)
4 500 1.97 (0.16) 1.9 (0.13) 1.99 (0.17)
4 1920 1.78 (0.14) 1.77 (0.13) 1.82 (0.12)

We should point out here that se vd2, comparing to se vd1 and se pd, is able
not only to find more non-dominated solutions but also to reduce the clustering
in the non-dominated set. In other words, se vd2 is able to obtain more diverse
solution sets and better extreme solutions. We believe that this promising result
is due to the clustering strategy deployed in the improved volume dominance
but further experimentation is required.

The average distance of the non-dominated set found by vd2 when incorpo-
rated into SEAMO2 is higher than when using vd1 and pd. We argue that this
is because se vd2 is able to find more extreme solutions than se vd1 and se pd.
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Finding more extreme solutions could be intepreted as obtaining more solutions
that are slightly away from the available approximated Pareto fronts. This is the
reason for se vd2 not being competitive with se vd1 and se pd with respect to the
average distance from the non-dominated set to the approximated Pareto front
(Table 3(a)). However, Table 3(b), 3(c) show that vd2 clearly outperforms vd1
and pd, when incorporated into SPEA2 and NSGA2 in all knapsack instances
for both short and long runs.

Table 3. Average values (standard deviation) of the distance from the non-dominated
set to the approximation of the true Pareto Front

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2
2 500 498.88 (51.62) 491.97 (40.5) 602.42 (70.93)
2 1920 389.18 (35.34) 387.93 (34.69) 432.57 (43.93)
3 500 1381.9 (58.15) 1392.34 (68.96) 1506.43 (72.99)
3 1920 1250.8 (41.71) 1269.06 (35.85) 1318.78 (50.35)
4 500 744.97 (51.94) 733.9 (50) 808.94 (48.64)
4 1920 677.02 (55.06) 668.83 (65.52) 695.78 (33.22)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2
2 500 701.4 (53.14) 676.4 (54.15) 638.26 (50.76)
2 1920 466.5 (43.39) 468.89 (53.54) 450.24 (43.8)
3 500 1985.72 (86.65) 1984.3 (68.79) 1960.08 (80.6)
3 1920 1682.92 (47.05) 1687.89 (34.42) 1692.77 (42.44)
4 500 1825.8 (100.38) 1761.69 (98.71) 1769.54 (115)
4 1920 1605.61 (55.04) 1567.62 (67.82) 1571.16 (70.83)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2
2 500 613.85 (39.39) 623.58 (43.67) 592.18 (54.07)
2 1920 429 (42.49) 454.39 (39.32) 429.03 (50.83)
3 500 2029.53 (80.73) 2026.49 (90.53) 1933.72 (99.73)
3 1920 1739.44 (74.74) 1729.7 (77.4) 1687.68 (69.35)
4 500 1681.5 (135.55) 1711.23 (143.16) 1640.75 (110.29)
4 1920 1316.23 (95.44) 1290.11 (89.45) 1285.49 (91.13)

Figure 4 shows the offline results for the 2-knapsack instance. They are the
combined non-dominated solutions from 30 runs. For better visualisation, we
show the non-dominated fronts in a lower density. See that vd2, vd1 and pd are
quite similar when incorporated into SPEA2 and NSGA2 (Figure 4(b), 4(c)) but
Figure 4(a) shows a better performance of vd2 over vd1 and pd.
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6 Final Remarks

This paper proposed an improved volume dominance to the one originally pro-
posed by Le and Landa-Silva [4]. We presented extensive experiments to compare
the preformances of this improved volume dominance approach, the previous one
and the conventional Pareto dominance using three MOEAs: SEAMO2, SPEA2
and NSGA2. The results show that in most of the cases, using 3 different knap-
sack instances using short and long runs, the new volume dominance approach
performs better than the Pareto dominance and the previous proposed volume
dominance. The improved volume dominance is more effective when incorpo-
rated into SEAMO2 than when incorporated into SPEA2 and NSGA2. This
could be due to the fact that SEAMO2 is a very simple strategy whereas SPEA2
and NSGA2 already deploy more elaborate mechanisms. We believe that this
revised volume dominance could be used as a new strategy to assign fitness to
solutions in multi-objective evolutionary algorithms.
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Abstract. The solution of bi-objective bin packing problems with many
constraints is of fundamental importance for a wide range of engineer-
ing applications such as wireless communication, logistics, or automo-
bile sheet metal forming processes. When the bi-objective bin packing
problem is single-constrained, state-of-the-art multi-objective genetic al-
gorithms such as NSGA-II combined with standard constraint handling
techniques can be used. In the case of many-constraint bin packing prob-
lems, problems with thousand of additional constraints, it is not easy to
solve this kind of problem accurately and fast with classical methods. Our
approach relies on two key ingredients, NSGA-II and a clustering algo-
rithm in order to generate always feasible solutions independent of the
number of constraints. The method allows to tackle bi-objective many-
constraint bin packing problems. We will present results for challenging
artificial bin packing problems which model typical bi-objective bin pack-
ing problems with many constraints arising in the automobile industry.

1 Introduction

Many-constraint bin packing problems occur in many real world applications as
for instance in automobile sheet metal forming processes. The task in the single-
objective single-constraint one-dimensional bin packing problem (SO1DBPP) is
to pack items with different weights in a minimum number of bins such that for
each bin the total capacity of items does not exceed its capacity. We deal with bi-
objective many-constraint one-dimensional bin packing problems (MO1DBPP)
where, in contrast to the SO1DBPP, conflicting objectives must be optimized
such that many constraint types have to be fulfilled. The challenging task is to
solve bi-objective problems with a huge number of constraints. We tackle the
many-constraint problem with a clustering procedure and establish the conver-
gence against the Pareto front with a state-of-the-art multi-objective genetic
algorithm.

Common constraint handling techniques based on evolutionary algorithms
[3, 14] can be classified into five categories:

1. Penalty functions
2. Special representations and operators

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 246–260, 2009.
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3. Repair algorithms
4. Separation of objectives and constraints
5. Hybrid Methods

In general, the most common constraint handling technique is based on penalty
functions. Penalty functions, which add a penalty term to the fitness function
value, are the simplest way to deal with constraints. The aim is to punish infeasi-
ble solutions as to favor feasible solutions for the selection and replacement pro-
cess. The main drawback of penalty functions is the determining of the penalty
factors due to the problem dependency of the approach.

A different method is to use multi-objective optimization concepts and to
transform a constrained single-objective problem into an unconstrained multi-
objective problem. The transformation can be mainly realized by two ways. The
first one summarizes the constraint violation as a second objective, the second
one adds an objective function per constraint. One challenge of existing con-
straint handling techniques is to deal with many constraints in multi-objective
combinatorial problems.

We present a novel algorithm which combines an agglomerative hierarchical
clustering strategy [8] with the well-known NSGA-II [5] to treat many-constraint
grouping problems. An agglomerative hierarchical clustering algorithm can be
characterized by the following procedure: start with n items in n singletons
(bins), calculate pairwise distances between items, merge items with the shortest
distance until all items are clustered into a group. In order to solve bi-objective
problems the NSGA-II establishes the convergence towards the Pareto front.
The main advantage of the clustering NSGA-II is the capability to deal with a
huge number of constraints, and to generate always feasible solutions.

We embed a representation form and clustering strategy in the NSGA-II which
is dedicated to many-constraint grouping problems. The basic idea of the method
is to provide a new constraint handling technique which is easy to understand,
aims at solving many-constraint grouping problems, and performs well with stan-
dard genetic algorithm operators.

The genetic algorithm incorporates a pairwise list of all feasible item com-
binations as the representation. The list with pairs of items will be processed
from left to right, starting at the first position until each possible pair has been
checked for the clustering process. At the end we obtain a feasible bin packing.

We validate our clustering NSGA-II with an artificial test problem which
models a grouping process in automobile sheet metal forming processes. The
main assignment in the real world application is to build a specific part from
a blank sheet on a press line. As a preprocessing step several items such as
holes or plungings can be grouped into a single unit so that the new group can
be processed in one press step. In order to generate the group of items, many
constraint types have to be fulfilled. This grouping problem can be modeled
as a MO1DBPP. The challenging task is to solve the many-constraint NP-hard
problem with two conflicting objectives: minimum costs and minimum number
of groups.
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2 Related Work

The literature in the field of multi-objective bin packing problems is scarce [13,
10]. The idea to reformulate a clustering problem in a binary mathematical
programming is treated by e.g. [12]. Useful modeling tips are given by [20].

In general, solving packing and cutting problems is very difficult. Nevertheless,
there are common exact approaches to explore the decision space and to try to
obtain an optimal solution for the bin packing problem [19].

An additional approach is to use approximation algorithms [7] such as first fit
decreasing [4] or metaheuristics [2] such as evolutionary algorithms [9, 16, 18] in
the solution process of the bin packing problem.

For information about theoretical work in multi-objective evolutionary com-
binatorial optimization see [15] and the references therein.

Common constraint handling techniques used in evolutionary algorithms are
discussed in [3, 14].

Solving bin packing problems with a general cost structure will be presented
in [1]. However, in our case, items are cost dependent on other items in the same
bin and the total costs can not be easily calculated.

3 Real World Many-Constraint One-Dimensional Bin
Packing Problem

We are motivated by the fact that automobile sheet metal forming processes
can be formalized as a many-constrained bin packing problem. The task in the
SO1DBPP is to pack items I = {1, . . . , n} with different weights wi in a mini-
mum number of bins J = {1, . . . ,m} such that for each bin the total capacity of
items does not exceed its capacity W .

3.1 Single-Objective Single-Constraint One-Dimensional Bin
Packing Problem

In general, the classical SO1DBPP can be formulated as

min
m∑

j=1

yj , (1)

s.t.
m∑

j=1

xijyj = 1, i ∈ I (Singularity) (2)

n∑
i=1

wixij ≤Wyj , j ∈ J (Weight Capacity) (3)

xij , yj ∈ {0, 1}, i ∈ I, j ∈ J (4)

where

xij =

{
1 if item i is packed into bin j,
0 otherwise.
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and

yj =

{
1 if bin j is used,
0 otherwise.

The objective function (see Eq. 1) minimizes the number of used bins j. The
singularity constraints (see Eq. 2) ensure that each item i is assigned to exactly
one bin j. Each bin j has a weight capacity restriction W . The sum over the
weights wi of items i in a bin should be smaller than the capacity W of each bin
(see Eq. 3). The decision variables are restricted to be binary-valued.

3.2 Bi-objective Many-Constraint One-Dimensional Bin Packing
Problem in Automobile Sheet Metal Forming Processes

In the mathematical model of automobile sheet metal forming processes we
change equation 3, add many constraint types to the original SO1DBPP, and
introduce a second objective function.

The main assignment in the real world application is to build a specific part
from a blank sheet on a press line with minimized costs. A blank sheet will
be processed over a fixed number of stages of a press line until a formed and
manufactured part is obtained. Each press has a special die type installed, which
processes the items of a sheet. In a simulation tool, a geometry analyzer examines
the well-formed part to detect several items such as holes, openings and plungings
(see Fig. 1). Each item has to be processed by different processing sequences, such
as punching with a cam and subsequent reforming. Each processing sequence
consists of a fixed number and type of processing units. For instance, the item
plunging with the processing sequence mentioned before, includes the following
procedure: first, punch a hole with a cam and then reform the area around the
hole. Each group of similar items can be considered as a cluster.

Each processing unit of the item consists of component types to manufacture
the item. For each component type, different specific components are available,
depending on the installation space and the item size, respectively. Manufactur-
ing each component results in labor and machine costs as well as material costs.
Some components can be shared between items in certain circumstances, so that
costs for a shared component will only occur once.

Fig. 1. Automobile sheet metal forming part with several items. Left: Manufactured
and processed part at the end of a press line. Right: A geometry analyzer detects several
items of a designed part.
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Each item within the blank sheet is specified by a 3D position, i.e. x, y, z ∈
IR. The sheet can change the position at a press stage, so that the processing
direction of an item will also change. In general, the sheet is non-planar, thus,
items can be at different levels of the sheet. For instance, an item can be found
at the bottom of a sheet whereas another item will be found at the top of a
sheet.

The goal is to find a clustering of items, such that components at a processing
unit can be shared, and thus save material costs and time. When building a
group of holes, called a cluster, components can be shared between them, if and
only if certain constraints are fulfilled. In the following, we will describe several
constraint types in a mathematical form and explain the relevance to the real
world application. In the following the term distance dik is defined as

dik = d(i, k) = ‖
(
(xi, yi, zi)T − (xk, yk, zk)T

)
‖

where ‖ · ‖ is an arbitrary norm.

Note 1. In order to avoid calculating distances between items i and k twice, we
consider the case i < k. Hence, the distance between two items is symmetric and
reflexive.

On the one hand, the distance between two items should not be too small as
the installed dies cover some space to manufacture one item. Any overlap of non
sharing dies is prohibited to avoid crashing dies (see Eq. 5).

|dik(xij +xkj −1)|+ |Djmin(xij +xkj −2)| ≥ Djminyj i, k ∈ I and j ∈ J. (5)

Note 2. The term xij + xkj − 1 is the linearization of xij · xkj .

On the other hand, the distance between two items should be smaller than a
certain maximum value because dies have a limited length (see Eq. 6).

dik(xij + xkj − 1) ≤ Djmaxyj i, k ∈ I and j ∈ J. (6)

An item should also not be located too far away from the next item according
to the sharing properties of dies (see Eq. 7).

∃k : dik(xij + xkj − 1) ≤ Djnextyj i ∈ I and j ∈ J. (7)

If the difference in the height is too much, dies are not able to process both items
at the same time (see Eq. 8).

dz(xij + xkj − 1) ≤ Djheightyj i, k ∈ I and j ∈ J (8)

where dz measures the distance from the z coordinates of the two items. The last
limitation factor is the processing direction of an item. The angle between the
processing directions of the two items should be smaller than a certain degree,
otherwise dies cannot be shared between items (see Eq. 9).

�ij(xij + xkj − 1) ≤ Pjyj i, k ∈ I and j ∈ J (9)

where �ij calculates the angle between items i and j.
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The sharing option is modeled by the dependency of items in the same bin
(see Eqs. 10 - 15). The user can save money by making use of the ability to
share some components among items. However, the sharing property can result
in increasing costs if the item is not properly located in respect to others. This
fact is modeled by the positive or negative dependency matrix entry.

Our modeling approach calculates the final dependency value of an item by
a two step procedure. First, the values of the dependency matrix of items in
the associated bin has to be summed up. Then, the obtained value must be
multiplied with a factor which scales the dependency matrix value of items. The
scaling factor will be 1 if all items are in the same bin. If an item is not clustered
with any other item in a bin, then the full costs of the item will be integrated
in the total costs. The cost dependency of item i in bin j is represented by

δ(i, j) =

(
n∑

k=1

xkjφ(i, k)

)
xij i ∈ I and j ∈ J (10)

where φ : I × I −→ [−1, 1] and δ : I × J −→ IR.
φ(·, ·) represents the symmetric dependency matrix of every two items and

δ(·, ·) the dependency value of an item in a bin. The case φ(·, ·) = 0 indicates
the fact that items are independent of each other. If the entry has a negative
value, then items have a negative influence on each other, or otherwise a positive
influence (see Eq. 10). The negative value indicates an increase of the costs for
the bin, a positive value indicates a decrease of the costs. The calculation has
to be done for each item i in the current bin j and will result in a final cost
dependency for each item i to the associated bin j.

All dependencies are summarized between an item and other items in the
same bin. The number of dependent items (φ(i, k) �= 0) is calculated by

zi = #{k : φ(i, k)(xij + xkj − 1) > 0} i ∈ I and j ∈ J. (11)

To obtain the final cost for item i in the current bin j a dependency factor γ(·)
(see Fig. 2) has to be assessed where γ : I −→ [0, 1] with

γ(i) = 1 − α−zi i ∈ I (12)

where α = 1001/|I| . α converges towards 0 if the number of items increases and
ensures that γ(·) will be bounded by 0 and 1. Now, the cost factor for item i in
bin j can be calculated by

εi = δ(i, j)xijγ(i) i ∈ I and j ∈ J. (13)

Finally, the costs per bin j can be assessed by

cj =
n∑

i=1

(ηi(1 − εi))xij j ∈ J (14)

where cj are the total costs of bin j, and ηi the original costs of item i.
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Table 1. Distinction of the cases for
εi, δ(i, j) and γ(i) and the effect on
the costs cj (see Eqs. 10 - 14)

εi δ(i, j) : γ(i) cj

εi > 1 ⇔ δ(i, j)γ(i) > 1 ⇒ cj ↓
εi = 1 ⇔ δ(i, j)γ(i) = 1 ⇒ cj = 0
εi = 0 ⇔ δ(i, j) = 0 ∨ γ(i) = 0 ⇒ c=

j

εi ∈ ]0, 1[⇔ 0 < δ(i, j)γ(i) < 1 ⇒ cj ∈ ]0, ηi[
εi < 0 ⇔ δ(i, j) < 0 ⇒ cj ↑

Fig. 2. Visualization of the dependency fac-
tor for 100 to 400 items. If the number of
dependent items increases, the cost value
will decrease accordingly.

The coherency between equations 10 - 14 can be described by a distinction of
the cases (see Table 1).

The objectives in the real world problem are to minimize the added costs over
all bins and the number of used bins, simultaneously (see Eq. 15).

min
m∑

j=1

cjyj and min
m∑

j=1

yj (15)

In summary, the real world problem can be briefly described by the following:
Each item i has its own representation form such as an oval or circle. Also, items
have 3D coordinates, i.e. x, y, z ∈ IR, which locate the center of gravity of the
item. The second attribute is the normal which is an orthographic vector at the
center of the items, i.e. x̃, ỹ, z̃ ∈ IR (see Fig. 3). Each item i produces costs ηi.
The summarized costs of two items i, k in the same bin can be positively or
negatively influenced by a dependency factor of the two items. Thus, the costs
of several items in a bin j can not be easily summarized to obtain the final cost
of the bin. The items are called cost dependent which will be briefly formalized
by ηi ∼ ηk. The properties of the bins are the maximum diameter and the cost
evaluation function fEVAL. In a bin, the maximum distance between two items
has to be smaller than the diameter. The cost evaluation function checks the
dependencies between items i and k and calculates the dependent costs (see
Fig. 4).

The constraints will be active if at least two items are assigned to the same bin.
Otherwise, there is only one item per bin and there is no decision to make. On
the one hand, the challenging task is to determine the cost optimal clustering
of items into bins, although items are cost dependent on each other. On the
other hand, the minimum number of used bins should be decreased as much as
possible.
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Fig. 3. Set of different sizes
of items to be clustered. Each
item has properties such as 3D
coordinates (x, y, z) and a nor-
mal which is a orthographic
vector of each item.

Fig. 4. Overview of the bin packing problem with
the properties of items and bins

3.3 Artificial Test Problem Class MOSCS-b

In order to reproduce the results of the clustering NSGA-II in the real world
application we introduce an artificial test problem, called MOSCS-b. MOSCS-b is
a slim and simplified version of the real world application but it will demonstrate
a basic scenario of the optimization problem. The test problem is based on
an undirected graph with n items and k edges without self-loops (see Fig. 5).
The cluster size b indicates the maximum size of the bin. The problem can
be scaled by two parameters: the number of items and the bin size. The goal
is to cluster all items in a minimum number of bins with the maximum bin
capacity b ∈ {1, . . . , n} and with minimum costs. The main advantage of the
graph representation is that you can easily determine the optimal number of bins
and test your algorithm regarding effectiveness and performance. The optimal
number of bins can be determined by �|I|/b	.

Algorithm 1 initializes the general distance matrix to generate a variable test
problem with the two input parameters: the maximal number of items in a
bin (nb) and the number of items (ni). For the MOSCS-b we perform the first
fit increasing algorithm combined with the clustering NSGA-II. The cost func-
tion (see Eqs. 12 - 15) and the minimum number of used bins are our fitness
functions which must be optimized, simultaneously. Therefore, we initialize the
dependency matrix as in algorithm 1, but the distance matrix entry value 1 is
substituted by 0.9 and entry value 2 by −0.9 in the dependency matrix, respec-
tively. The cost array entries for each item are initialized with 1 unit. Thus, we
would obtain that the global optimum cost value is far away from the minimum
number of bins. The active three constraint types are Dmax = 2, Dmin = 1 and
Dnext = 1. Thus, the distance values with an initial value of zero are violating
the two constraint types Dmin and Dnext, so that the related items cannot be
merged with each other.
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Fig. 5. MOSCS-3 test instance with 12
items and 15 weighted edges. The goal
is to find a clustering with a minimum
number of bins, here with b = 3.

Algorithm 1. initDistanceMatrix(ni, nb)
double [][] distanceMatrix;
k ← 1, shift ← 0;
for (i = 0 to (ni/nb) + shift) do

if (nb · k < ni) then
if ( i % nb �= 0 or i = 0) then

distanceMatrix[i][nb · k] ← 1;
k ← k + 1;

else
shift ← shift + 1;

end if
end if

end for
for (i = 0 to i < ni - 1) do

if (i % nb �= nb - 1) then
for (j = i + 1 to

(j < (i/nb+1)nb and j < ni)) do
distanceMatrix[i][j] ← 2;

end for
end if

end for

4 Solution Techniques

4.1 Agglomerative Hierarchical Clustering

In the modeling, the initial number of bins is not known before the optimization
process starts but it is limited by the number of items n. In realistic scenarios, the
numberm of bins is less than the number n of items. A specific clustering strategy
can be used to determine a good approximated starting solution which can be
described by the paradigm first fit increasing (see Alg. 2). The algorithm is very
similar to the first fit decreasing algorithm. The first fit decreasing approach
sort weights of items in a decreasing order and pack items from the heaviest
to the lightest subject to the bin capacity. We are sorting item pairs in an
increasing order, cluster them from the shortest to the longest distance subject
to various constraint types. Hence, in our problem the weights of the items
are interpreted as distances between items, and short distance values should be
preferred to longer ones. In the first fit increasing approach the distance values
indicate which pair of items should be the next attempt to cluster them. The
distances between each item to all other items are calculated and stored once,
i.e. the distance relation is reflexive and symmetric. All distances are sorted in
an increasing order so that the first entry has the smallest distance value in
the list. The distance list can be reduced by all pair combinations violating the
constraints (5) - (9). Additionally, the related items are stored in the list. The
idea of first fit increasing is to serve the pair of clustering candidates with the
smallest distance value at first which is locally the best choice. At the beginning,
each item represents one cluster. The items with the smallest distance value are
merged if the constraints are fulfilled and they have not been previously merged.
If any one constraint is violated, the current distance pair can be skipped. If the
item is moved into a group during a previous merge step, all items in the group
have to fulfill the restrictions. If the restrictions are not met, the two candidates
are skipped as long as there is a successor element in the list. Once all items
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Algorithm 2. First Fit Increasing Clustering Algorithm
Initialization: Data, Cluster C;
Assign each item fi to cluster Ci: C1 ← {f1}, . . . , Cn ← {fn};
Calculate upper distance matrix for all feasible item combinations:

d(fi, fk) ∀i, k with i < k and fi ∈ Ci and fk ∈ Ck;
Sort item pair combination in increasing order:

list ← sort.asc (minst( d(fs, ft)));
while list.next do

Determine indices p, q and relating cluster:
fp ∈ Ci and fq ∈ Ck;

if (i �= k) and (Constraints ((2), (5) - (9)) are true) then
Merge the cluster combination and delete cluster:
Ci ← {Ci ∪ Ck} and delete Ck;

end if
end while
return Clustering;

have been considered, the algorithm can stop and present the final clustering.
The final solution of the clustering algorithm may only be a local optimum of
the problem but nevertheless a good starting solution for the following genetic
algorithm.

4.2 Genetic Algorithms

Genetic algorithms [17] are random search heuristics to obtain a (near) opti-
mal solution for (combinatorial) optimization problems. In every evolutionary
algorithm, several operators (variation, selection), the fitness function, the rep-
resentation of the individuals, an appropriate population size, and the maximum
evaluation number have to be determined. Additionally, the constraint handling
by e.g. a penalty function or a repair operator [3, 14] is an issue. We will consider
each of these points and present our adjustments.

Representation and Clustering: An intuitive representation for the chro-
mosome of an individual is to use a row of integers. The position of the integer
represents the item, and the integer indicates the number of the bin where the
item is clustered, e.g. 1 2 1 1 2 means that items 1, 3, and 4 are in bin one and
others in bin two. However, there are several difficulties with the representation.
For instance, it can happen that possible bin assignments are ambiguous, e.g. 2
1 2 2 1 would generate the same bin assignment. One idea to avoid this prob-
lem is to add also the bin number to the representation and then create new
solutions [9].

We propose a representation based on an order of pairs of items where the
length of the representation is increased from O(n) to O(n2).

We represent our genotype as a list of all feasible item combinations (i, j)
generated from the upper distance matrix. The list with pairs of items will be
processed from left to right, starting at the first position until each possible pair
has been checked.
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The first pair (i1, j1) of the list is always clustered. The next pair (i2, j2) can be
clustered if each item of the pair has not been clustered before, i.e. i1 �= i2, j2 and
j1 �= i2, j2. Then we generate the two clusters (i1, j1) and (i2, j2). Otherwise, in
the case of i1 = i2, j2 or j1 = i2, j2, we have also to check the constraints between
the pairs (i1, j1) and (i2, j2).

If no constraint is violated, a new cluster with the items (i1, j1, i2, j2) is gen-
erated. Otherwise, we obtain the two clusters (i1, j1), and i2 or j2. Again, the
next pair has the two possibilities to cluster them if they are independent from
the already clustered items, or to check further constraints with other clusters.
This process terminates if all pairs in the list have been considered once. At the
end the clustering always results in a feasible bin packing.

For instance, in the case of three items we will get a list such as (1,2), (2,3),
(1,3) meaning that item 1 and item 2 could be clustered, followed by item 2
and 3 and last but not least items 1 and 3. If items 1 and 2 were clustered at
the beginning, item 3 from the next pair has also to check the constraints with
item 1, because items 1 and 2 are located in the same bin. The list has a size of
1
2n(n− 1) and stores all combinations of items to other items once.

For the sorting procedure (see Alg. 2), the corresponding distance value be-
tween the two items will be stored. The size of the list can be reduced by item
combinations violating a constraint. Thus, the algorithm can be applied to prob-
lems with a huge number of constraints. The goal is to find an order of the
genotype representation which optimizes the fitness functions.

Fitness Function: In many bin packing applications it is difficult to define an
appropriate fitness function. For the real world scenario we will use the minimum
number of bins and the cost function (see Eq. 15) as our conflicting fitness
functions.

Crossover, Mutation, and Selection: The crossover operator mixes two
individuals to generate two new ones. In the literature [11] there are several order-
based crossover available which can also perform on this kind of representation.
We received the best results with the uniform order preserving crossover (UOPX)
operator (pUOPX = 0.9) applied to the individuals. This operator maintains the
relative order of genes by the two parents. It works with a randomly generated
binary mask, that determines, which parent is used to fill a given position in the
chromosome of the offspring with an item pair.

Mutation operates just on one individual and in general, changes the genotype
of an individual with a small probability. We will consider a combination of swap
mutation with insertion mutation where swap mutation will be applied with a
probability pswap and insertion mutation with a probability (1 − pswap). Swap mu-
tation randomly exchanges two positions of a gene with each other. Insertion mu-
tation randomly draws two positions of a parent and inserts the item pair of the
first position into the second position. We received the best test results with a
value pswap = 0.9. Mutation and crossover change only the order of the pairs of
items in the representation of the offspring. Thus, the processing of the pair list
will again generate a feasible clustering. The selection operator is the well-known
binary tournament selection.
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Population Size and Maximal Evaluations: The population size and the
maximal evaluation number depend on the number of items of the bin packing
problem. For our problem type the population size is fixed at 100 individuals.
The evaluation number is determined by the user of the real world application,
because the user would like to obtain results very quickly and will only wait a
certain period of time. However, we will test our problem on higher evaluation
numbers to show the performance of the algorithm.

Constraint Handling: In evolutionary algorithms, the constraint handling is
a challenging task. Typically, combinatorial optimization problems have a lot of
constraints such as in our case O(n3) as a worst case.

Even a bin packing problem with 100 items results in an overall constraint
number of one million constraints, if every constraint is evaluated. However,
most of the constraints are not active, e.g. if the bin is not used or the items
are clustered into a different bin, so the number of constraints can be decreased.
Obviously, checking active constraints will be sufficient for the feasibility check of
the current clustering and additionally, if one constraint is violated, the current
pair can be skipped as in the algorithm 2. Thus, the complexity can be reduced
to the average case of O(n2).

4.3 Clustering NSGA-II

For the multi-objective optimization test problem (MOSCS-b) we combine the
clustering approach with the NSGA-II. The genetic algorithm is based on an
order-based vector with pairs of all item combinations. The clustering method
is applied to the genotype of the individuals and it guarantees to generate fea-
sible solutions. The non-dominated sorting procedure ensures the convergence
towards the approximated Pareto front. With the support of the first fit increas-
ing strategy, an individual will be generated with a good solution for at least
one fitness function – minimize the number of used bins. The rest of the pop-
ulation will be created randomly. Each individual obtains a permutation of the
pairwise vector of item combinations and the items are clustered according to
the order of the vector from the left hand side to the right hand side as in the
while loop of algorithm 2. After the non-dominance check, new individuals are
again generated and clustered. The algorithm stops if the maximum number of
evaluations has been reached. At the end we present few solutions to the user
who chooses the final solution according to his/her preference.

5 Results

We provide results to the problem class MOSCS-b, b = 3, to give an insight into
the new test problem class and the performance of the new clustering NSGA-II.
The results of our tests were obtained using an SMP machine powered by Intel
Xeon two quad-core CPUs running at 2.33 GHz. The implementation uses the
Java programming language and extends the current version 1.8 of the jMetal
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Fig. 6. Approximated Pareto fronts of the MOSCS-3 test problem with 100, 500, 1000,
and 3000 items

package [6]. We tested the algorithm with a maximum evaluation number of
20000 for the clustering NSGA-II and different number of items starting from 100
to 3000. We performed 10 iterations per item class. We present the approximated
Pareto fronts of the MOSCS-3 test problem for all iterations with 100, 500,
1000, and 3000 items (see Fig. 6). The required average time per evaluation is
of quadratic complexity.

At the original application the user obtained the approximated Pareto front
and can choose the most compromising solution. On average, the user can save
10 percent of the original costs with a maximum problem size of 150 items. In
the case of 100 items, the clustering NSGA-II can calculate the approximated
Pareto front very fast and obtains a good result. If the number of items increases,
the population of the clustering NSGA-II is concentrated on the upper part of
the approximated Pareto front. The spread of the population is an issue for this
kind of problem. Thus, the approximated Pareto front can not be easily assessed
with the given number of evaluations.
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6 Conclusion

Bi-objective bin packing problems with many constraints represent significant
challenging problems for standard genetic algorithms. Typically, only conver-
gence to non-feasible solutions is obtained due the high number of additional
constraints. In this paper we proposed to use the NSGA-II with standard ge-
netic algorithms operators to solve the bi-objective many-constraint bin packing
problem. In addition, a clustering algorithm is used to generate always feasi-
ble NSGA-II solutions independent of the number of constraints. The resulting
method is able to solve challenging bi-objective bin packing problems with thou-
sands of additional constraints. The new algorithm has been tested with an arti-
ficial many-constrained bin packing problem MOSCS-b. The problem MOSCS-b
is designed in such a way that it models typical many-constrained bin packing
problems arising in automobile sheet metal forming processes. The clustering
NSGA-II is able to recover the Pareto front for MOSCS-b accurately and with
a reasonable number of objective function evaluations.
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[19] Wäscher, G., Hauner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109–1130
(2007)

[20] Williams, H.P.: Model Building in Mathematical Programming. Wiley, Chichester
(1999)



M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 261–274, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Robust Design of Noise Attenuation Barriers with 
Evolutionary Multiobjective Algorithms and the 

Boundary Element Method  

David Greiner, Blas Galván, Juan J. Aznárez, Orlando Maeso, and Gabriel Winter 

Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI), 
35017, University of Las Palmas de Gran Canaria, Spain 

{dgreiner,jaznarez,omaeso}@iusiani.ulpgc.es,  
{bgalvan,gabw}@step.es  

Abstract. Multiobjective shape design of acoustic attenuation barriers is handled 
using a boundary element method modeling and evolutionary algorithms. Noise 
barriers are widely used for environmental protection near population nucleus in 
order to reduce the noise impact. The minimization of the acoustic pressure and 
the minimization of the cost of the barrier -considering its total length- are taken 
into account. First, a single receiver point is considered; then the case of multiple 
receiver locations is introduced, searching for a single robust shape design where 
the acoustic attenuation is minimized simultaneously in different locations using 
probabilistic dominance relation. The case of Y-shaped barriers with upper 
absorbing surface is presented here. Results include a comparative between the 
strategy of introducing a single objective optimum in the initial multiobjective 
population (seeded approach) and the standard approach. The methodology is 
capable to provide improved robust noise barrier designs successfully.  

Keywords: Engineering Design, Evolutionary Multiobjective Optimization, 
Noise Barriers, Acoustic Attenuation, Uncertainty, Computational Acoustics. 

1   Introduction 

Shape optimization has been performed in recent years applied to various fields of 
computational mechanics, such as aeronautics or solid mechanics using evolutionary 
algorithms [4,5]. Automatically generated optimum designs are possible by using 
coupled evolutionary computation with accurate numerical modeling.  

Noise barriers are widely used for environmental protection in the boundaries of 
high traffic roads, airports, etc, in the vicinity of population nucleus in order to reduce 
the noise impact. Here we perform shape optimum design of Y-shape noise barriers 
using the Boundary Element Method (BEM) [9] to model the sound propagation and 
NSGA-II [7] for optimization. The aim is to improve the design shape of noise 
barriers achieving simultaneously higher noise attenuation and also minimizing the 
cost. The barrier length is considered as representative of the raw material cost and its 
minimization also leads to limiting its environmental impact.  

The paper describes in the second section the acoustic attenuation modeling using 
BEM, following with the Y-shaped noise barrier optimum design methodology and  



262 D. Greiner et al. 

problem description, test case, results and discussion. Finally it ends with the 
conclusions and references. 

2   Noise Barriers Acoustic Attenuation Modelling 

Sound propagation calculation can be performed efficiently and successfully with the 
Boundary Element Method (BEM). The main advantages of BEM [9] over other 
methods based on a geometrical theory of diffraction approach are its flexibility 
(arbitrary shapes and surface acoustic properties can be accurately represented) and 
accuracy (a correct solution of the governing equations of acoustics to any required 
accuracy can be produced providing a boundary element size with small enough 
fraction of a wavelength). Nowadays, both BEM and the Finite Element Method are 
the most extended state of the art discretization methods in the computational 
acoustics field [26]. Concretely, to estimate the efficiency of noise barriers with 
complex shapes, the BEM has been used from the 80s [6,17,23] and it is still a field of 
research interest. In recent years, design of noise barriers has been taken into account 
using BEM, see e.g. [24].  

The integral equation for a boundary point i, to be solved numerically by BEM, can 
be written as: 

∫ Γ
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where: 

p: acoustic pressure field on the barrier surface (Γb) of generic admittance βb.  

p*: half-space fundamental solution. Acoustic pressure field due to a source at 
collocation point i over a plane with admittance βg (ground surface). This 
fundamental solution only requires the discretization of the barrier boundary (Γb). For 
perfectly reflecting surfaces (barrier or ground), β =0. If the surface is absorbent, the 
evaluation of β is obtained from the complex admittance of Delany and Bazley [8] 
knowing the covering material thickness and its air flow resistivity.  

ci: the local free term at collocation point i: ci = θ / 2π , where θ is the angle 
subtended by the tangents to the boundary at this point (rads). ci =0.5 for smooth 
boundaries. 

po
*: half-space fundamental solution at problem source due to collocation at point i. 

k = ω/c is the wave number (c: sound wave velocity, ω: angular frequency) and i the 
imaginary unit.  

The numerical solution of Eq. 1 is possible after a discretization process. A linear 
system of equations is obtained from this process and lead to values of acoustic 
pressure over the barrier boundary. The BEM code in this paper uses quadratic 
elements with three nodal points. For more details about the used model, see [21][22]. 
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3   Y-Noise Barriers Shape Design Optimization 

In recent years, noise barrier optimum design has been solved using evolutionary 
computation. Some works related with single objective optimization are [1,3,10,14]. 

The simultaneous minimization of two conflicting objectives corresponding to a 
noise barrier design is performed in this paper. First, a fitness function related with 
the increase of the acoustic attenuation of the barrier. Concretely, the first fitness 
function which has to be minimized is:  

( )∑ −=
NFreq

j

R
jj ILILF

2
1  (2) 

where: 

ILi : insertion loss in the third octave band centre frequency for the Y-barrier profile 
evaluated. Being the insertion loss (IL), defined as stated in Equation 3 (being dBA 
the units of IL): 
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and calculated at one-third octave band spectra, where PB and PS are the acoustic 
pressure at the receiver with and without the presence of the barrier respectively. This 
parameter is an accepted estimation of the acoustic efficiency of the analyzed profile. 

ILi
R: insertion loss reference curve in the third octave band centre frequency. When 

choosing a reference with high IL values, a high efficient attenuation barrier fitting is 
searched.   

The optimum monocriteria design using this first fitness function was previously 
described in Greiner et al. [14]. It solves an inverse problem, where the objective IL 
curve at certain frequencies is known (ILR) and it allows to search for the 
corresponding barrier design whose IL curve fits ILR. In [14] was shown the 
capability to increase a certain percentage the acoustic efficiency of a certain Y-shape 
barrier taken as original design.    

The second fitness function (F2) to be minimized is the noise barrier length, 
representative of the raw material cost. The higher its value, the easier the noise 
attenuation capacity of the barrier, and therefore, the easier to fit the searched 
reference curve. On the contrary, the lower its value, the lower the cost and better 
environmental impact produced by the barrier.  

Here, a multiobjective optimization noise barrier design with evolutionary 
algorithms is introduced. Concretely, the procedure searches for the barrier shape 
design which most fits ILR for each barrier length value. 

The modelling approach included in the paper follows the test case implementation 
of the previous related referenced works and is intentionally chosen because of the 
simultaneous capability to cover the design space and also to reduce the number of 
variables of the search optimization (could be interpreted as helping the search 
including engineering knowledge). The Y-barrier shape is modeled using the two 
extreme points of the arms and their join point. The x coordinate of the extreme points 
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is supposed fixed in the extremes of the barrier, where only y-coordinate varies. The 
join point has variable x- and y-coordinates. The evolutionary algorithm variables are 
set in a transformed space with perpendicular axis and square shape in contrast to the 
geometric trapezoidal shape limited by b and the sloped line (see Fig. 1). So, four 
design variables are required to define each shape (the x coordinate vary from -0.5 to 
+0.5 and the three y coordinates vary from 0 to 1 in the transformed space). For more 
details, see [14].  

With this geometry and for a given source position, the boundary element program 
calculates the acoustic pressure at the receiver position (r). A maximum element 
length not bigger than λ / 4 (being λ the wavelength) is necessary to obtain an 
appropriate accurate solution. With the acoustic pressure, the IL corresponding to 
each frequency is obtained. 

In case we want to consider not a single receiver location, but a certain zone where 
to minimize the acoustical impact, then various receiver locations are needed and a 
robust design is pretended, considering the minimization of function F1 at each 
receiver. Therefore we deal not with a single value, but with a set of F1 values (a 
distribution estimation). Uncertainty handling in evolutionary optimization has been 
covered in recent years as a growing field of interest, see e.g. [2, 11, 19]. We follow 
here the proposal of Teich [25], including the probabilistic dominance relation in the 
NSGA-II as shown in [20]. So, the F1 objective is not a number, but a random 
variable with values bounded by an interval evaluated as the average of the F1 values 
at the receiver points plus and minus their typical deviation.   

4   Test Case 

The parameters considered in the test case used in the following experiments are 
according to Fig. 1: b=1m. and d=10m. (noise source distance to the barrier base) We 
will compare the single-point and multi-point receiver cases. In case of a single receiver, 
r= 50m. In case of multiple receivers, three receiver positions are taken into account 
(r=25, 50 and 100m., respectively). The ILref curve is obtained from a straight barrier of 
4.5 m height with reflecting surfaces, versus the maximum effective height allowed of 
our Y-shaped designs of 3.0 m. We will consider only reflecting surfaces, with the 
exception of the upper boundary of the design (inner surfaces of the arms), which are  
 

 

Fig. 1. Problem topology representation 
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absorbing surfaces. A thickness of 10 cm and an air flow resistivity of 20000 are 
considered for the calculations described in section 2. A total of 13 frequencies at one-
third octave centre band spectra frequency are evaluated: 100, 125, 160, 200, 250, 315, 
400, 500, 630, 800, 1000, 1250 and 1600 Hz. The CPU time cost of one F1 fitness 
function evaluation is 12 seconds in one Pentium IV-3GHz processor. 

5   Results and Discussion 

Twelve independent runs of the evolutionary optimization design were executed in 
each case. A population size of 100 individuals and 3% mutation rate were used in a 
Gray coded [27] NSGA-II algorithm with uniform crossover and probabilistic 
dominance relation (α=0.5).  

Two cases are analyzed: 1. The single point receiver case. 2. The multi-point 
receiver case. Each one has been solved comparing two different initial population 
strategies: a) A seeded approach, where a solution of high quality is inserted into the 
initial population; e.g., see [15]. b) The standard no-seeded initial random population 
approach.  

5.1   About the Initial Population Strategy 

The inserted high-quality design is obtained performing a single-objective steady-
state evolutionary algorithm optimization on F1. Each of the twelve independent runs 
obtained the same final value, which will be considered as the optimum in terms of 
F1. The number of evaluations required to reach the optimum for each run is shown in 
Table 1. The average values in obtaining the optimum for the single-point and multi-
point receiver cases are 4346 and 4526 function evaluations. Since the average values 
computed are principally influenced by the greatest values of Table 1, if we delete the 
best and worst values, avoiding the excessive influence of extremes, then the average 
values are 4005 and 3053, respectively; showing in average that the multi-point 
receiver case needs less function evaluations.   

Table 1. Number of evaluations required to reach the optimum value in the single objective 
optimization (F1) and average (in italic type) 

3786  6050  3806  4164  2020  3212  Average Single-Point  
Receiver  4706 2904  10080 4240  3758  3428 4346 

2826  4606  3044  21844 2970  2344  Average Multi-Point 
Receiver  2044 3790  2392  1934 3760  2758  4526  

 
In contrast, the best values in terms of F1 obtained after 45000 fitness function 

evaluations with the multiobjective no-seeded search are shown in Table 3: Only one 
out of 24 runs were capable to achieve this F1 best solution design. 

To compare the outcome of the whole front, we will evaluate the S-metric 
(hypervolume, originally proposed by Zitzler [28]) of various attainment surfaces. 
Concretely, we use the S-metric proposal of Fonseca et al. [12]1. The attainment  
 

                                                           
1 Source code available at: http://sbe.napier.ac.uk/~manuel/hypervolume 
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Table 2. S-Metric (Hypervolume) Results, with Reference Point (2000, 9), including the 
attainment surfaces 1, 3, 5 and 7 over 12. The constrained space results consider only solutions 
with F2 values greater than 3.6 m. 

 S Metric 
(Unconstrained Space) 

S Metric 
(Constrained Space) 

Single Point 
Receiver 

Multi Point 
Receiver 

Single Point 
Receiver 

 

Multi Point 
Receiver 

 

Initial Population 
Strategy – 
Number of 
Evaluations Attainment 

Surface 1 
Attainment 
Surface 1 

Attainment 
Surface 1 

Attainment 
Surface 1 

Noseed - 15000 14420.7833 14412.6969 10790.7287 10789.0082 
Noseed - 30000 14425.8523 14421.1657 10790.9215 10789.1444 
Noseed - 45000 14428.0118 14423.7072 10790.3783 10790.4215 

Seed - 10000 14407.9250 14406.2951 10791.8617 10788.3595 
Seed - 25000 14417.2164 14420.7298 10792.5499 10788.7074 
Seed - 40000 14420.7381 14423.1665 10792.6384 10788.7788 

 Attainment 
Surface 3 

Attainment 
Surface 3 

Attainment 
Surface 3 

Attainment 
Surface 3 

Noseed - 15000 14394.8957 14392.7734 10790.3061 10788.6518 
Noseed - 30000 14402.1018 14397.0153 10790.6493 10788.9019 
Noseed - 45000 14407.4146 14400.8746 10790.2065 10790.2490 

Seed - 10000 14390.6412 14385.8869 10791.4474 10788.0735 
Seed - 25000 14398.1735 14396.3221 10792.2399 10788.4565 
Seed - 40000 14400.7514 14401.7005 10792.4660 10788.6195 

 Attainment 
Surface 5 

Attainment 
Surface 5 

Attainment 
Surface 5 

Attainment 
Surface 5 

Noseed - 15000 14382.4308 14381.0581 10789.5308 10788.2375 
Noseed - 30000 14387.7540 14385.4327 10790.4415 10788.7214 
Noseed - 45000 14391.4587 14387.9532 10790.0582 10790.0954 

Seed - 10000 14379.4652 14373.8816 10790.7003 10787.8379 
Seed - 25000 14386.4227 14382.8896 10792.0495 10788.2732 
Seed - 40000 14388.7318 14386.0760 10792.2480 10788.4440 

 Attainment 
Surface 7 

Attainment 
Surface 7 

Attainment 
Surface 7 

Attainment 
Surface 7 

Noseed - 15000 14371.1840 14370.0224 10788.7894 10787.9192 
Noseed - 30000 14376.9554 14375.0176 10790.2124 10788.5177 
Noseed - 45000 14379.5126 14376.3961 10789.8960 10789.8911 

Seed - 10000 14368.6691 14362.9460 10790.4835 10787.4946 
Seed - 25000 14374.9322 14372.3565 10791.9008 10788.0779 
Seed - 40000 14378.1628 14374.9925 10792.0855 10788.2863 

 
surface concept in multiobjective optimization was introduced in [13,16] and we use 
here the approach suggested in Knowles [18]2.  

We will consider four attainment surfaces, 1 (100%), 3 (83%), 5 (67%) and 7  
(50%) out of 12 (total number of independent runs per case), and evaluate its 
hypervolume after 15000, 30000 and 45000 fitness evaluations in case of no-seeded 
strategy and 10000, 25000 and 40000 fitness evaluations in case of seeded strategy  

                                                           
2 Source code available at: http://dbkgroup.org/knowles/plot_attainments 
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(a fair comparison to take into account the cost of the included solution). As reference 
point in S-metric calculation, a point sufficiently high has been selected, whose 
coordinate values of F1 and F2 are respectively, 2000 and 9. In the multi-point 
receiver case, the average of F1 has been considered for hypervolume calculation. 
Results are shown in table 2. In this problem the decision maker region of interest is 
located in the left part of the search space (low F1 values and high barrier length, 
being the higher F1 values not useful). So, we have also evaluated the S-metric in a 
constrained design space over a barrier length greater than 3.6 meters. The important 
information of Table 2 has been put in bold style. 

Table 3. Values of the best F1 solutions achieved each run in the standard no-seeded population 
strategy 

  Single Point Receiver Multi Point Receiver 
  Best F1  

value 
Corresponding  

F2 value 
Best F1  
value 

Corresponding  
F2 value 

Run Number 1 0.793816 5.11963 1.01041 5.16681 
Run Number 2 0.789535 5.12731 0.99224 5.14777 
Run Number 3 0.792179 5.13680 0.993157 5.15853 
Run Number 4 0.792731 5.13644 0.99390 5.15735 
Run Number 5 0.815023 5.16626 0.991989 5.14819 
Run Number 6 0.830437 5.13460 1.00177 5.15647 
Run Number 7 0.963581 5.18668 1.00676 5.17805 
Run Number 8 0.796091 5.15574 1.00847 5.17743 
Run Number 9 0.787557 5.11747 1.01499 5.15646 

Run Number 10 0.796999 5.16681 0.994803 5.13744 
Run Number 11 0.792993 5.09903 0.994803 5.13744 
Run Number 12 0.794859 5.14713 1.00739 5.11768 

Best Value 0.787557 5.11747 0.991989 5.14819 
Seeded Value 0.787300 5.11796 0.991989 5.14819 

 

Considering the unconstrained space S-metric results, in all cases minus one (3rd 
attainment surface of multi-point receiver case at 40000 evaluations: 14400.8746 < 
14401.7005), the no-seeded strategy achieves a better (higher) hypervolume. The 
introduced bias towards the optimum may be detrimental to the evolution. In the 
constrained space, there are manifested two opposite behaviors: in case of the single-
point receiver runs, the seeded approach is better in all circumstances over the no-
seeded strategy; but in the multi-point receiver case, the no-seeded approach is better 
in all circumstances over the seeded strategy. That is an indicator of how this multi-
point receiver problem has a different landscape than the single-point receiver one.  

5.2   Single-Point versus Multi-point Receiver Cases 

The accumulated optimum non-dominated solutions are represented in Figures 2 and 
3 in search space, showing independently the single-point (crosses) and multi-point 
(circles) receiver cases. We have focused on the left functional search space part, 
because it is the region of interest for the designer. In this multi-point receiver 
problem, only the average of F1 is plotted for clarity.  
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Table 4. Fitness functions and transformed coordinates values corresponding to the seven 
selected optimum designs of the single-point receiver case 

SinglePoint 
Receiver 
Design 

 
F1 

 
F2  

 
y-Coord1 

 
x-Coord2 

 
y-Coord2 

 
y-Coord3 

Design 1 0.7873 5.11796 0.972549 -0.04902 0.262745 1.0000 
Design 2 1.37468 4.93885 0.976471 0.013725 0.333333 1.0000 
Design 3 1.8395 4.71724 0.976471 0.045098 0.419608 1.0000 
Design 4 1.89081 4.09768 0.988235 -0.272549 0.737255 1.0000 
Design 5 2.551 3.95284 0.952941 -0.296078 0.733333 0.964706 
Design 6 5.24347 3.85126 0.94902 -0.272549 0.745098 0.937255 
Design 7 7.25369 3.73438 0.917647 -0.194118 0.72549 0.917647 

Table 5. Fitness functions and transformed coordinates values corresponding to the seven 
selected optimum designs of the multi-point receiver case 

MultiPoint 
Receiver 
Design 

 
F1 

Average 

 
F2  

 
y-Coord1 

 
x-Coord2 

 
y-Coord2 

 
y-Coord3 

Design 1’ 0.991989 5.14819 0.968627 -0.041176 0.247059 1.0000 
Design 2’ 1.88108 4.87903 0.976471 0.288235 0.380392 1.0000 
Design 3’ 2.54528 4.63693 0.968627 0.02549 0.439216 0.996078 
Design 4’ 2.60501 4.01638 0.952941 -0.272549 0.701961 0.972549 
Design 5’ 3.15836 3.94612 0.941176 -0.268627 0.717647 0.968627 
Design 6’ 5.99898 3.85323 0.94902 -0.3.0000 0.74902 0.933333 
Design 7’ 7.57026 3.7397 0.909804 -0.217647 0.721569 0.921569 

Table 6. Fitness function F1 value at each receiver of the seven selected designs, average and 
variance corresponding to both the single and multi-point receiver case (It is hignlighted in 
italic type the value used as search criterion in the optimization process) 

i: SinglePoint 
Rcptor Design 
i’: MultiPoint 
Rcptor Design 

 
F1 at 

Receiver 1 

 
F1 at 

Receiver 2  

 
F1 at 

Receiver 3 

 
F1 Average 

 
F1 Variance 

Design 1 1.061216         0.787300 1.260585 1.036367       0.037642 
Design 2 1.909043         1.374685 1.919018 1.734248       0.064660 
Design 3 2.163635        1.839499       2.304096 2.102410       0.037849 
Design 4 3.725551        1.890806       2.313488 2.643282       0.615430 
Design 5 5.594426        2.550998       3.511254 3.885559       1.613795 
Design 6 7.447395        5.243466       5.302573 5.997811       1.051228 
Design 7 7.952338        7.253690       8.081641 7.762557       0.132259 
Design 1’ 0.748688        0.847302       1.379976 0.991989       0.076888 
Design 2’ 2.074511        1.624732       1.943987  1.881077       0.035696 
Design 3’ 2.148006        2.402341       3.085492 2.545280       0.156696 
Design 4’ 3.007588        1.899501       2.907952 2.605014  0.250528 
Design 5’ 2.731014        2.577981       4.166087 3.158361       0.511659 
Design 6’ 7.334568        5.286570       5.375808 5.998982       0.893222 
Design 7’ 6.832536        7.135412       8.742823 7.570257       0.702745 
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Fig. 2. Non-Dominated final accumulated optimum front function evaluations, including both 
single-point (crosses) and multi-point (circles) receiver cases. The total front (2a, left) and 
zoomed left portion (2b, right) are shown. F1 in x-axis and F2 in y-axis. 

 

Fig. 3. Zoomed portions (3a, left) and (3b, right) of the non-dominated final accumulated 
optimum front function evaluations, including the numbering of seven selected designs for both 
single-point (crosses) and multi-point (circles) receiver cases. F1 in x-axis and F2 in y-axis. 

Seven designs (1 to 7 in the single-receiver and 1’ to 7’ in the case of the multi-
receiver) have been chosen along the decision-maker region of interest. They have 
been marked in the non-dominated front in Figure 3 and their shape designs are 
represented in Figure 4 (single-receiver) and Figure 5 (multi-receiver). The numerical 
values of their fitness functions and design variables are shown in Table 4 (single-
receiver) and Table 5 (multi-receiver). The single-point receiver front dominates the 
multi-point receiver front, as can be seen in Figure 3. The need of a robust behaviour 
when considering various receiver locations implies higher average values of the 
fitting of the ILref curve. In Table 6 the values of F1 corresponding to the three 
receiver points are represented for the fourteen designs. In Table 6, we observe in 
detail the best F1 solutions of both approaches: Design 1 (D1) and Design 1’ (D1’).  
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Fig. 4. Shapes of the 7 selected designs, from 1 (left) to 7 (right), single-point receiver case 

D1 has the best F1 value in receiver point 2 (distance to the barrier base = 50m.), but 
an F1 average of 1.036, which is worse than the best value of D1’ (0.991989). By the 
other hand, the value of F1 at receiver 2 of D1’ is worse (0.847302 > 0.78730) than 
the value of D1.  

In Figure 6 both the Reference IL curve (corresponding to a 4.5 straight barrier 
with reflecting surfaces) and the best fitted solutions D1 and D1’ are represented for 
each receiver point. In the x axis the third octave centre spectra frequency is  
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Fig. 5. Shapes of the 7 selected designs, from 1 (left) to 7 (right), multi-point receiver case 

represented in Hertz in logarithmic scale. In the y axis the IL is represented in dbA 
units. As can be seen in the figures, the obtained designs fit accurately the searched IL  
reference curve, and their differences are really low. Therefore, that means that the 
same acoustic attenuation efficiency of a 4.5 meters effective height straight barrier 
can be achieved with a 3.0 meters effective height Y-shaped barrier with absorbent 
treatment in the inner surface of its arms. The multiobjective approach allows also to 
locate for each barrier length the barrier that fits most precisely the former noise 
attenuation capability (the lower the length, the worse the IL curve fit). 



272 D. Greiner et al. 

 

 

Fig. 6. Insertion loss (IL) in the third octave band centre frequency of barrier design (square) 
and reference (crossed lines). From left to right and up to down, the first three graphics include 
the best single-point design and the last three graphics the best multi-point design in terms of 
F1, being the reference curves those corresponding to receiver points 1, 2 and 3 respectively in 
each case of the 4.5-height straight barrier. (Frequencies (Hz) in log-scale in x-axis and IL 
values (dbA) in y-axis) 
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6   Conclusions 

Concerning the problem of multiobjective optimum design of noise barriers, a 
methodology for considering various receiver points has been introduced in this paper 
successfully, allowing to obtain robust optimum shape designs that fit various IL 
reference curves (each receiver represent a IL reference) simultaneously.   

Related to the initial population strategy, it has been shown that in certain cases 
(here the single-point receiver case) the seeded approach introducing one high quality 
solution design into the initial population, can be useful to obtain improved final 
fronts. Nevertheless, the reasons that justify when this strategy is profitable or not, 
should be further investigated.  

Taking into account the obtained results in terms of qualitative design information, 
it is remarkable that introducing the robust design methodology does not lead to new 
shape designs, being only slight variations of coordinates along the non-dominated 
front respect the single-point receiver optimization designs. 
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Abstract. The Vehicle Routing Problem with Time Windows is a com-
plex combinatorial optimization problem which can be seen as a fusion
of two well known sub-problems: the Travelling Salesman Problem and
the Bin Packing Problem. Its main objective is to find the lowest-cost
set of routes to deliver demand, using identical vehicles with limited ca-
pacity, to customers with fixed service time windows. In this paper, we
consider the minimization of the number of routes and the total cost
simultaneously. Although previous evolutionary studies have considered
this problem, none of them has focused on the similarity of solutions in
the population. We propose a method to measure route similarity and
incorporate it into an evolutionary algorithm to solve the bi-objective
VRPTW. We have applied this algorithm to a publicly available set of
benchmark instances, resulting in solutions that are competitive or bet-
ter than others previously published.

Keywords: Vehicle routing problem, multi-objective optimization,
evolutionary algorithm, similarity of solutions.

1 Introduction

There are many theoretical combinatorial problems that can be directly applied
to real-life, one of them being the Vehicle Routing Problem (VRP) [19], which is
relevant to transportation logistics such as post, parcel and distribution services.

The VRP’s main objective is to obtain the lowest-cost set of routes to deliver
demand to customers, but we can also think about reducing the cardinality of the
set of routes. In addition, we can contemplate other objectives like the makespan,
workload balance, etc. [8]. This means that it is often useful to consider the VRP
as a multi-objective problem. Moreover, VRP has several important variants of
increased difficulty, in particular, the one with time windows (VRPTW) which
has time as well as capacity constraints, and is the main problem to be studied
in this paper.

Optimal solutions for small instances of VRPTW can be obtained using exact
methods, but the computation time required increases considerably for larger
instances [5]. This is why many published studies have made use of heuristic
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methods. The recent surveys by Bräysy and Gendreau [2,3] provides a complete
list of studies of VRPTW and a comparison of the results obtained.

Over the years, there have been several publications employing evolution-
ary algorithms to solve VRPTW as a single-objective optimization problem
[13,18,20,1]. Recently, Le Bouthillier and Crainic [9] presented a parallel coopera-
tive multi-search method for VRPTW, based on the solution warehouse strategy,
in which several search threads cooperate by asynchronously exchanging infor-
mation on the best solutions identified. Each of these search methods implements
a different meta-heuristic, an evolutionary algorithm or a tabu search procedure.
Homberger and Gehring [7] proposed a two-phase hybrid meta-heuristic to solve
VRPTW, where the first phase was aimed at the minimization of the number of
routes by means of a (μ,λ)-evolution strategy, whereas in the second phase the
total distance is minimized using a tabu search algorithm.

In the past few years, a couple of studies have been published that are of spe-
cial relevance to us because they considered VRPTW as a bi-objective optimiza-
tion problem, minimizing the number of vehicles and the total travel distance,
and used a genetic algorithm for solving it. The first is due to Tan et al. [17], who
used the dominance rank scheme to assign fitness to individuals. They designed
a crossover operator for the specific problem called route-exchange crossover and
used a multi-mode mutation which considered swapping, splitting and merging
of routes. They also used three local search heuristics which were applied ev-
ery 50 generations. The second is the study of Ombuki et al. [12]. They also
proposed the problem-specific genetic operators best cost route crossover and
constrained route reversal mutation, which is an adaptation of the widely used
inversion method. However, unlike the work we present later in this paper, nei-
ther of these two studies considered using a method to measure similarity of
solutions and hence preserve diversity.

It is also worth noting that many existing well known and successful multi-
objective evolutionary approaches, such as SPEA2 [21] and NSGA-II [4], are not
suitable here because they require the definition of niche spaces, which would
be problematic since most good solutions of the VRPTW reside in a very small
portion of the vehicle number dimension [12].

In our preliminary work [6], it became clear that the lack of population di-
versity was leading our algorithm to become stuck in suboptimal solutions, and
so we proposed a method to restrict the number of clones in the population.
This algorithm eventually forced the population to have no clones at all, but the
solutions were still not good enough. Consequently, in this paper, we look for a
mechanism to improve further both the quality and diversity of solutions.

The approach we shall follow will focus on the similarity of solutions, based in
the genotype space. Several methods for calculating the similarity between two
solutions using a permutation representation exist in the literature [14,10,15],
but, as we are not using a permutation encoding, we cannot apply any of them.
So, the need to find a suitable similarity measure arose.

The work presented in this paper is concerned with the solution of VRPTW as a
bi-objective problem using an evolutionary algorithm (BiEA), which incorporates
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a similarity measure applied in the genotype space, based on Jaccard’s similarity
coefficient, to select parents for the recombination process, leading to the finding of
good solutions to the problem. We have tested this algorithm on publicly available
benchmark instances, and when our results are compared with those from recent
publications, our algorithm appears very competitive.

The remainder of this paper is organized as follows. First, in Section 2, we
introduce VRPTW in more detail. In Section 3 we present our proposed similar-
ity measure for solutions to VRPTW. Our proposed BiEA for solving VRPTW
as a bi-objective problem is described in Section 4. In Section 5 we present the
results achieved by our algorithm, as well as the comparison with some others
already published. Finally, we give our conclusions in Section 6.

2 The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem (VRP) is a complex combinatorial optimization
problem, which can be seen as a fusion of two well-known problems: the Travel-
ling Salesman Problem (TSP) and the Bin Packing Problem (BPP). So, it is at
least as difficult as each of them. VRP has several variants of increased difficulty,
in particular, the one with time windows (VRPTW) which has both capacity
and time constraints.

Before defining VRPTW, we need to specify the information involved in an
instance of this problem. First of all, we have a set V = {v1, . . . , vn} of vertices,
called customers. We know that customer vi, ∀ i ∈ {1, . . . , n}, is geographically
located at position (xi, yi), has a demand of goods di > 0, has a time window
[bi, ei] during which it has to be supplied, and requires a service time si to unload
goods. There exists a special vertex v0, called the depot, located at (x0, y0),
with d0 = 0, and time window [0, e0 ≥ max {ei : i ∈ {1, . . . , n}}], from which
customers are serviced utilising a fleet of identical vehicles with capacity Q ≥
max {di : i ∈ {1, . . . , n}}.

The travel between vertices vi and vj has an associated symmetric cost cij =
cji, ∀ i, j ∈ {0, . . . , n}, which is usually considered to be the Euclidean distance.
In addition to distance, time also plays an important role, as it is not possible to
supply a customer before or after its time window. A vehicle could arrive early
at the customer location, but then it has to wait until the beginning of the time
window. Arriving late is not allowed. It is common to take the time tij to travel
between vertexes vi and vj to simply be tij = cij .

The problem consists of designing a minimum-cost set of routes, so that each
route begins and ends at the depot, and each customer is serviced by exactly one
vehicle. Thus, each vehicle is assigned a set of customers that it has to supply,
but the sum of their demands can not exceed the vehicle capacity Q.

Let us denote as rk = 〈uk
1 , . . . , u

k
nk
〉 the k-th designed route that supplies nk

customers, with uk
i the i-th vertex to visit in the route. Note that in this notation

we are omitting the depot, but we have to consider it before the first customer
and after the last customer. Then, the customers demand Dk associated with
route rk is given by
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Dk =
nk∑
i=1

duk
i
≤ Q . (1)

Likewise, we can define the cost Ck associated with route rk as

Ck = c0uk
1

+
nk−1∑
i=1

cuk
i uk

i+1
+ cuk

nk
0 . (2)

Once we have defined the problem, we can identify at least two objective func-
tions that could be minimized. If R = {r1, . . . , rm} is the set of designed routes,
we can consider minimizing the number of routes

f1(R) = |R| (3)

and the total cost

f2(R) =
|R|∑
k=1

Ck . (4)

It is these two objectives that we concentrate on in this paper

3 Measuring Similarity of Solutions to the VRPTW

Different solution representations require different distance measures. For ex-
ample, for binary representations, the Hamming distance is the most common
measure, for representations using a vector of real numbers, a variation of the
Minkowski-r-distance can be employed [15], and we can find in the literature
many methods for solutions represented as a permutation, like the exact match
distance and deviation distance [14], the R-type distance [10] and the edit dis-
tance [15]. Since we are not using any of these representations, and considering
distance in the phenotype space is likely to be misleading, we need to identify a
suitable new similarity measure.

Taking the above into consideration, we have designed a new similarity mea-
sure, based on Jaccard’s similarity coefficient. This is applied in the genotype
space, and consequently provides a more reliable diversity measure than a
phenotype-oriented method. Moreover, probably most interestingly and impor-
tantly, this new similarity measure is independent of the solution encoding.

The Jaccard’s similarity coefficient is a statistic used for comparing the sim-
ilarity of two sets. It is defined as the cardinality of the intersection of the sets
divided by the cardinality of the union of them, i.e.

J(A,B) =
|A ∩B|
|A ∪B| . (5)

It is easy to see that if sets A and B contain the same elements, A = B = A∩B =
A∪B, so Jaccard’s similarity coefficient J(A,B) = 1. On the other hand, if sets
A and B do not share any element at all, |A ∩B| = 0, so J(A,B) = 0.
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Now we can define the similarity between two solutions to VRPTW, according
to the Jaccard’s similarity coefficient, simply as the ratio of the number of shared
arcs to the number of total arcs used in both solutions.

Let yijk = 1 if arc (i, j) from vertex i to vertex j is used by any vehicle in
solution rk, and yijk = 0 otherwise. Then the similarity ςpq between solutions p
and q is

ςpq =

∑n
i=0
∑n

j=0 yijp · yijq∑n
i=0
∑n

j=0 sign (yijp + yijq)
, (6)

where yijp ·yijq = 1 iff arc (i, j) is used by both solutions, and sign (yijp+yijq) =
1 if any of the solutions use it. If solutions p and q are the same, the sum in
the numerator will equal the sum in the denominator, and therefore ςpq = 1.
On the other hand, if they are two completely different solutions with no arc in
common, the numerator will equal 0, and then ςpq = 0.

In the same manner, if we want to compute the similarity Sp of individual p
with the rest of the population P of size N − 1, we have to calculate the average
similarity of p with every other individual q ∈ P , that is

Sp =
1

N − 1

∑
q∈P

ςpq . (7)

4 Evolutionary Approach

We present in this section our proposed EA for solving VRPTW as a bi-objective
problem. We detail the encoding of the solutions, and the stages of processing
involved. We also describe our main contribution, which is the incorporation of
the similarity measure method presented above.

4.1 Solution Encoding

We are using a tree representation, in which each node has at most two children.
The left child represents the following customer to visit in a route. The right
child points to the next route in the solution. A solution to an example instance
and its representation are shown in Figure 1. The allocation of customers to
routes, and the sequence they will be serviced within each route, proceeds as
follows: customers 1, 2 and 3 to the first route, customers 4 and 5 to the second,
6, 7 and 8 to the third, and 9 and 10 to the fourth.

(a) Solution (b) Encoding

Fig. 1. Solution to an example instance of the VRPTW and its encoding
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4.2 Fitness Assignment

When solving a single-objective problem using an evolutionary algorithm, fitness
is assigned to an individual according to its objective function evaluation. In the
multi-objective case, this assignment cannot be done straightforwardly, due to
there being not only one objective function, but at least two of them. We have
used in this work the non-dominance sort criteria [4] to assign fitness to solutions,
where the population is divided into several non-dominated fronts and the depth
specifies the fitness of the individuals belonging to them. In this case, the lower
the front, the fitter the solution.

4.3 Evolutionary Process

Our algorithm starts with a set of feasible random solutions, each containing a set
of randomly generated routes. These routes are constructed using the following
process: First, a customer is selected and placed as the first location to visit
on that route. Then, a second customer is chosen and, if capacity and time
constraints are met, it is placed after the previous one. If any of the constraints
are not met, a new route is created and this customer will be the first location
to visit in the new route. This process is repeated until all customers have been
assigned to a route.

Then, the objective functions are evaluated for every solution in the popula-
tion and these are assigned a fitness value. Finally, the similarity of each solution
with respect to the rest of the collection is computed.

The evolution proceeds with the recombination of two parents that are se-
lected using a standard tournament method, but under different criteria: fitness
is used to select the first parent and similarity the second. The recombination of
two example parents is shown in Figure 2(a). Here, the algorithm aims at pre-
serving routes from both parents. First, a random number of routes are chosen
from the first parent and copied into the offspring. Next, all those routes from
the second parent which are not in conflict with the customers already copied
from the first, are replicated into the offspring. In this case, both routes on the
left from the first parent were selected to be copied into the offspring, and we
can only copy from the second parent the route on the right, as the other two

(a) Copying routes from parents (b) Offspring

Fig. 2. The recombination process
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contain customers already present in the offspring. If there remain unassigned
customers, these are allocated, in the order they appear in the second parent,
to the route where the lowest travel distance is achieved, like in the example
given in Figure 2(b). If a solution would become infeasible after inserting such a
customer, a new route is created. This means that there is no need for a repair
process to correct invalid individuals.

Once an offspring has been generated, it is submitted to the mutation pro-
cess. In our algorithm, we have five possible mutation operators, which can be
categorised as inter- and intra-route. In the former, the algorithm will perform
changes between two routes, thus modifying the assignment of customers to
routes, and in the latter, the changes will be done within a route, hence affecting
the travel sequence.

In the first category we can identify two viable processes which are: (i) re-
moving a sequence of customers from a route and inserting it into another, and
(ii) swapping two sequences of customers from different routes. In the case of
intra-route, we use three operations: (i) the inversion of the sequence of a sub-
route, (ii) the shift of one customer, and (iii) splitting a route. Examples of these
operations are shown graphically in Figure 3. The dotted lines in each figure rep-
resent the changes in the sequences. In Figure 3(b), customer 10 was removed
from the route on the left and has been inserted in the route on the right. Figure
3(c) shows the swap of customer 4 with customers 2 and 3. In Figure 3(d) we
have the inversion of the sequence of customers 7, 8 and 9. Figure 3(e) shows
how customer 9 has been shifted between customers 6 and 7. Finally, in Figure
3(f), the route on the right has been split between customers 7 and 8.

(a) Original offspring (b) Insertion (c) Swap

(d) Inversion (e) Shift (f) Split

Fig. 3. The mutation operators used in BiEA
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Fig. 4. The full mutation process

Not all of the mutation operators are applied each time an offspring is mu-
tated. First, the split operator is performed with a probability equal to the
inverse of the number of routes in the solution. Then the solution is submitted
to one of the inter-route operators. The decision of which to apply is random.
Finally, one of the intra-route operators is applied to the solution. The complete
mutation process is shown in Figure 4.

After this process, the algorithm evaluates the objective functions for each
solution in the offspring population and combines both parent and offspring pop-
ulations to assign fitness. Those solutions having the highest fitness are taken to
the next generation. If one front is in conflict with the population size, similarity
is computed for those solutions in that front, and the less common are consid-
ered for the next iteration. Similarity is computed again and the whole process
is repeated for maxGen generations.

5 Experimental Set-Up and Results

To test our new algorithm, we used the publicly available benchmark set due to
Solomon [16], which includes 56 instances of size n = 100. These instances are
categorised as Clustered (C1, C2), Random (R1, R2), and Mixed (RC1, RC2).
Solomon [16] provides a complete description of the test data, and the data-sets
themselves are publicly available from his web site1.

These data-sets have been previously studied in detail, and a recent analysis
by Tan et al. [17] suggests that categories C1 and C2 have positively correlating
objectives, which means that the travel cost of a solution increases with the
number of vehicles. However, many of the instances in categories R1, R2, RC1
and RC2 have conflicting objectives.

Following the discussion above, the analysis of our results has three objectives:
(i) to compare results from single- and bi-objective algorithms, (ii) to examine
1 http://w.cba.neu.edu/~msolomon/home.htm

http://w.cba.neu.edu/~msolomon/home.htm
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the difference between results from our algorithm with and without considering
the similarity measure, and (iii) to study the performance of our algorithm when
compared with others previously published.

We ran our algorithm 30 times for every instance and recorded the solutions
in the Pareto approximation each time. The parameters of our algorithm were
set to convenient round numbers that worked well as follows:

population size = 100 crossover rate = 0.9
number of generations = 500 mutation rate = 0.1
tournament size = 10

5.1 Single- and Bi-objective Optimization

In this section we compare the results from our algorithm with those from a
single-objective genetic algorithm (GA), namely the version of our BiEA which
only minimizes one of the two objective functions. For simplicity, the one that
minimizes the number of routes will be called GAR, and the one that minimizes
the total cost will be called GAC. Note that we are performing this compari-
son to first determine whether VRPTW really does behave as a multi-objective
problem, and then, if it does, to determine whether we can achieve better results
by considering it as a multi-objective problem.

In Table 1 is presented the average best results grouped by category set.
We have averaged the best results found over all iterations, and averaged these
over the set category. We show for each algorithm and instance set the average
number of routes (upper) and the average total cost (lower). The last column
presents the total accumulated sum, indicating the total number of routes and
the total cost for all 56 instances. In this table we are also showing the results
from the version of our algorithm that does not include the similarity measure
(BiEANS), but we will not analyse these until the following section.

We can see that the number of routes from GAR is lower than that from GAC
in four of the six categories, and only in two compared with BiEA. Our BiEA
algorithm achieved fewer routes in all cases compared with GAC. Comparing

Table 1. Comparison of the average best results, averaged by set category, from the
single- and bi-objective algorithms

Alg. C1 C2 R1 R2 RC1 RC2 Accum.

GAR 10.43 3.07 13.08 3.14 12.91 3.60 441.95
1685.22 898.33 1550.45 1448.03 1742.10 1769.78 84982.41

GAC 10.05 3.01 13.52 4.00 13.51 4.81 467.33
908.21 601.42 1273.83 954.24 1464.37 1111.69 59376.27

BiEA 10.00 3.00 12.96 3.79 12.65 4.53 448.70
842.29 597.52 1222.13 968.89 1378.40 1136.16 57800.63

BiEANS 10.03 3.00 13.26 3.63 13.26 4.28 453.52
918.86 604.23 1279.74 977.27 1471.58 1143.58 60131.52
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Fig. 5. Box-and-whisker plot for instances in category C2
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Fig. 6. Box-and-whisker plot for instances in category R2
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Fig. 7. Box-and-whisker plot for instances in category RC2

the total cost, GAR obtained the highest costs, while our algorithm surpassed
GAC in four of the six groups. The last column in the table shows the overall
accumulated results for both objectives. In this matter, GAR has the lowest
accumulated number of routes, and BiEA the lowest accumulated total cost,
reducing by 47% and 3% that achieved by GAR and GAC, respectively.

Given the narrow difference in the total cost from GAC and BiEA for sets
C2, R2 and RC2, we decided to analyze in more detail the performance of these
algorithms. In Figures 5 to 7 we present box-and-whisker plots for all instances in
these sets, with the total cost normalized to the median of the results from BiEA.
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For each instance there are two boxes, with the one on the left corresponding to
the results from GAC, and the one on the right to BiEA. The boxes have lines
at the lower quartile, median, and upper quartile values. Notches display the
variability of the median. The width of the notches are computed so that box
plots which notches do not overlap have different medians at the 5% significance
level [11].

In the case of the instances in category C2, depicted in Figure 5, there is not a
clear difference for instances C201, C202, C205 and C207 where the median and
its variability appears to be the same for both algorithms. For instances C206
and C208, despite notches that are overlapping, the variability of the median of
the results from GAC is larger than that of the results from BiEA. In the case
of instances C203 and C204, boxes from BiEA are lower and shorter that those
from GAC.

For instances in category R2, shown in Figure 6, we can observe that notches
from five out of 11 instances are overlapping (R204, R306, R207, R209 and
R210), where the variability of the median is pretty much similar. The median
of the results from GAC is lower in five of the six remaining instances and only
in one (R212) the median from BiEA is below that from GAC.

Finally, for instances in category RC2, in Figure 7, we can see overlapping
notches for half of the instances (RC203, RC204, RC206 and RC207), lower
boxes from GAC, consequently lower medians and their variability, for three of
the remaining instances, and only in one instance (RC208) results from BiEA
surpassed that from GAC.

5.2 Effect of the Similarity Measure

The same series of experiments was carried out using our algorithm but without
the similarity measure (BiEANS). In this case, the selection of parents for the
recombination process took only the fitness into account. The purpose of this
analysis was two-fold: to determine the performance of BiEA with and with-
out the similarity measure, and to determine whether the similarity measure is
accomplishing the goal of diversifying the population.

In Table 1, we can see that BiEANS, compared with BiEA, could find, on
average, solutions with a lower number of routes only for instances in category
R2 and RC2, and higher in all others. These solutions have a higher total cost
for all categories. The difference in these results is the effect of including the
similarity measure, as we are selecting one of the parents to be not so similar
to the rest of the population, and hence looking for solutions in other areas of
the search space. This selection could result, after recombination, in an offspring
with good quality and different from current individuals.

In Figure 8 we consider the solutions in the Pareto approximations, from
one of the repetitions. Because of the space limitations, only four instances are
shown, two in category R and two in category RC. In each case, the horizontal
axis shows the number of routes, and the vertical axis shows the total cost.
Values for the total cost are normalized to the minimum value across both sets.
It can be seen that solutions from BiEA are dispersed over at least two values
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Fig. 8. Solutions in the Pareto approximation for four instances. Solutions from BiEA
are represented with ‘+’, and solutions from BiEANS with ‘◦’.

in the number of routes, in contrast with the solutions found by BiEANS, which
are in two at most. We can also observe that, in three of the four instances, the
approximation set from BiEA completely cover that from BiEANS. Although we
are displaying the results for only four instances, nearly all of the 39 instances
in categories R and RC exhibit similar results. This characteristic is due to the
fact that BiEA searches over a wide range of values, no matter if the number of
vehicles is higher, as long as the similarity of solutions remains low.

5.3 Comparison with Recently Published Results

Unfortunately, other recent publications dealing with the same problem have not
presented Pareto approximations, even when their authors considered their ap-
proach to be multi-objective. Consequently, we cannot compare our results with
theirs from a proper multi-objective point of view. Instead, we have averaged
the best result in all iterations over the instances in each category set, as this
appears to be the most common way in the literature to present and compare
results. Our results are shown in Table 2, which has the same format as Table 1.
This table also includes the results from four recent studies that minimize both
objectives, the number of routes and the total cost, either one after another [7,9]
or simultaneously [17,12]. Additionally, in the last two rows, we show the per-
centage difference between our results and the lowest total cost (ΔL) and the
highest total cost (ΔH) for each instance set.

Analysing the results in Table 2, we can see that, for instance set C1, our
algorithm obtained, on average, the highest cost, but the gap between this and
the lowest result is very narrow, only 0.27%. On the other hand, for set RC1,
our algorithm managed to find the lowest costs, and the difference between ours
and the highest is 2.71%. For the other categories, although the results from
our algorithm are not the overall best, they do show considerable improvement
over some of the other algorithms. In fact, they occupy the second or third
place among the five. Moreover, in the case of the accumulated total cost, the
difference between our results and the lowest is 0.69%, second best, and the
difference with the highest is 2.29%, despite our algorithm using a larger number
of routes. Another interesting observation is that our results for sets R, RC, and
Accumulated confirm that VRPTW really is a multi-objective problem, in the
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Table 2. Comparison of the best results, averaged by set category, with others previ-
ously published

Author C1 C2 R1 R2 RC1 RC2 Accum.

[9] 10.00 3.00 12.08 2.73 11.50 3.25 407.00
828.38 589.86 1209.19 960.95 1386.38 1133.30 57412.37

[7] 10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.38 1212.73 955.03 1386.44 1108.52 57192.00

[17] 10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.74 590.69 1187.35 951.74 1355.37 1068.26 56290.48

[12] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

BiEA 10.00 3.00 12.50 3.18 12.38 4.00 430.00
830.64 589.86 1191.22 926.97 1349.81 1080.11 56125.35

ΔL 0.27 0.08 0.33 3.80 0.00 5.35 0.69
ΔH 0.00 0.14 1.81 3.67 2.71 4.92 2.29

sense that we obtained lower costs, compared with other the authors, despite
using more routes.

Finally, although we do not have room to show the details of our results in
this paper, we can note that our algorithm has found 11 new best solutions and
another 36 similar to the best published.

6 Conclusions

We have proposed in this paper an evolutionary algorithm for solving VRPTW
as a bi-objective problem, simultaneously minimizing the number of routes and
the total cost. Importantly, this EA includes a similarity measure, which is used
to select one of the two parents for the recombination process. As the other
parent is selected according to the quality of the solution, the resulting offspring
inherits the quality from this parent, while searching for solutions in a non-
common area of the search space. As a consequence, solutions in the resulting
population are diverse, covering more than one value in the number of routes
dimension.

We have compared the results from our algorithm with those from a single-
objective genetic algorithm, with those from our algorithm without the similarity
measure, and with algorithms from four recent publications by other authors.

In the first case, we showed that, because the single-objective GA focuses on
only one of the two objectives, they do not take into account the likely improve-
ment that could be achieved if the other objective would also be minimized, like
the bi-objective evolutionary algorithm does. For this reason, it is highly possible
that the single-objective algorithm gets stuck in a suboptimal solution.

In the second case, we have demonstrated the high importance that the simi-
larity measure has, in the sense that the exploration of the search space is wider.
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Moreover, the solutions from our algorithm are more dispersed, for example,
over two values in the number of routes, in contrast with those obtained without
considering similarity, which are concentrated in only one.

In the last case, we have shown that, when compared with other algorithms
from recent publications, although our results are not the overall best, they are
better than some, and, on average, competitive. Our algorithm also managed to
find solutions such that the accumulated travel distance is better than others,
despite the number of routes being larger, indicating the multi-objective nature
of VRPTW.

Given the promising performance of our algorithm, we are now looking at
further ways to exploit the similarity measure, further similarity measures, and
more rigorous comparisons of our results with other evolutionary multi-criterion
optimization methods using multi-objective performance metrics such as cover-
age and convergence. We are also exploring the extension of our approach to the
minimization of at least one more objective, which could be the makespan or the
waiting time. Finally, we are also planning to apply our BiEA to other variants
of the VRP, such as one with pick-ups and deliveries.
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Abstract. The article presents a solution approach for a curriculum-
based timetabling problem, a complex planning problem found in many
universities.

With regard to the true nature of the problem, we treat it as multi-
objective optimization problem, trying to balance several aspects that
simultaneous have to be taken into consideration. A solution framework
based on local search heuristics is presented, allowing the planner to iden-
tify compromise solutions. Two different aggregation techniques are used
and studied. First, a weighted sum aggregation, and second, a reference
point based approach.

Experimental investigations are carried out for benchmark instances
taken from track 3 of the International Timetabling Competition ITC
2007. After having been invited to the finals of the competition, held
in August 2008 in Montréal, and thus ranking among the best five ap-
proaches world-wide, we here extend our work towards the use of refer-
ence points.

Keywords: Multi-criteria timetabling, iterated local search, threshold
accepting, reference point approach.

1 Introduction

Timetabling describes a variety of notoriously difficult optimization problems
with a considerable practical impact. Important areas within this context include
employee timetabling, sports timetabling, flight scheduling, and timetabling in
universities and other institutions of (often higher) education [1].

Generally, timetabling is concerned with the assignment of activities to re-
sources. In more detail, these resources provide timeslots (time intervals) to
which the activities have to be assigned. In contrast to classical scheduling prob-
lems [2], the available time is therefore already discretized into these slots. The
result of timetabling is the construction of a timetable which defines for each
activity when it has to be executed using which resource.

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 290–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the case of educational timetabling problems, events are either lectures or
examinations, and resources are lecturers and rooms in which the classes are
held.

Obviously, the construction of such a timetable has to be done with respect
to problem-specific side constraints. Prominent examples comprise:

– All activities must be assigned to timeslots.
– A timeslot may be assigned to at most a single activity.
– Some resources may be unavailable during certain timeslots.
– Individual requirements of the certain activities: Not all resources may be

equally suitable for all events.

On the other hand, timetables must be designed such that they optimize
several, often conflicting criteria and address the requirements of different groups
of stakeholder. This means in case of educational timetabling problems, that
both the needs of the students as well as those of the members of staff should
be respected.

It is interesting to see that most scientific investigations of educational time-
tabling implicitly consider the problems to be of multi-objective nature [3, 4].
In contrast to the established terminology from multi-criteria decision making
however, desired properties of solutions usually are not expressed using criteria
nor measured involving a set of objective functions. In timetabling, the common
approach is to introduce so-called ‘soft constraints’, each of which computes a
score with respect to a particular aspect of the problem. While a violation of
these soft constraint is possible, it is penalized introducing a penalty (cost) func-
tion. The overall objective may then be derived by minimizing an aggregated
overall cost function.

Examples of criteria/ soft constraints include:

– As several lectures share students, they should not be assigned to timeslots
of the same period.

– Precedence relations between certain activities: Some activities should be
scheduled before or after others.

– Preference of lecturers for certain timeslots or rooms.
– As students have to commute from one room to the other, lectures sharing

some students should be placed in rooms which are close to each other.
– Consideration of (meal) breaks.
– Other patterns: In order to ensure a certain compactness of the timetables,

any lecture should be for any student adjacent to another lecture.

Most variants of timetabling problems unfortunately are NP-hard [5], and
moreover, most problem instances comprise a rather large number of decision
variables. Consequently, the application of exact optimization approaches is
problematic, given the fact that the solution has to be done within limited time.
While there are some exact optimization approaches on the basis of integer lin-
ear programming [6], the vast amount of problem solution techniques are based
on heuristics, and more recently, metaheuristics.
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Heuristic approaches can be categorized with respect to how the two classes of
side constraints, hard constraints and soft constraints, are treated. Three classes
are commonly considered [7]:

1. One-stage approaches.
One-stage approaches combine the penalty functions of hard and soft con-
straint violations into a single evaluation function. As generally the mini-
mization of hard constraints is considered to be more important in compar-
ison to the minimization of the violation of soft constraints, a considerable
higher weight is given to this aspect.

2. Two-stage approaches.
Contrary to one-stage approaches, two-stage algorithms divide the search
for an optimal solution into two disjunct phases. In a first step, a feasible
assignment of all events to timeslots is computed, and feasibility is here
understood with respect to the set of hard constraints only. The succeeding
phase of two-stage approaches is devoted to the minimization of the soft
constraint penalties while maintaining feasibility.

3. Relaxation-based approaches.
Feasibility of timetables in relaxation-based solution approaches is assured
by either relaxing certain side constraints such that all events may be as-
signed to timeslots, or by leaving some events unassigned. In this sense, the
obtained timetables are feasible not for the initial but with respect to some
modified side constraints. When optimizing the timetables for the soft con-
strain penalties, it is then tried to accommodate all initially defined hard
constraints into the solution with the ultimate goal of reaching feasibility.
Left aside events are put into the timetable, etc.

Independent from the implemented strategy, most modern approaches are
based on the principles of local search. The particular characteristics of time-
tabling problems imply that neighborhoods are generally composed of moves
that unassign and reassign some events, and thus relocate particular activities
in the current solution.

An extensive comparison of algorithms has been done in the first Inter-
national Timetabling Competition ITC 2002 (http://www.idsia.ch/Files/
ttcomp2002/). Metaheuristics that turned out to be especially effective for time-
tabling problems are Simulated Annealing, deterministic variants of Simulated
Annealing, and Tabu Search. As for most operations research problems, other
techniques have been used, too, including Evolutionary Algorithms, Ant Colony
Optimization, and Greedy Randomized Adaptive Search. For an extensive listing
of references we may refer to [7].

While previous research has primarily been considering an additive aggre-
gation of the penalty functions, our aim is to extend this work towards other
ideas from multi-criteria decision making. In detail, we study the influence of
the aggregation methodology on the performance and the outcomes of the solu-
tion approach. A solution framework (also) allowing the integration of reference
points is therefore presented in Section 3 and tested on benchmark data from
the ITC 2007.

http://www.idsia.ch/Files/ttcomp2002/
http://www.idsia.ch/Files/ttcomp2002/
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2 The Curriculum-Based Course Timetabling Problem

The curriculum-based course timetabling problem [8] is a particular variant of an
educational timetabling problem. It consists of constructing a weekly timetable
by assigning lectures for several university courses to a given number of rooms
and time periods. The sketched situation can be found in many universities,
where so-called curricula are used to describe sets of courses/ lectures that share
common students. The underlying logic is based on the assumption, that stu-
dents who are enrolled in the same program progress together through their
studies. Consequently, these students are supposed to attend a previously well-
defined set of lectures. This can be seen contrary to post-enrollment based course
timetabling problems, where students explicitly register for courses they wish to
attend. While in this setting, detailed information about any particular student
can be obtained, in curriculum-based course timetabling, registrations of stu-
dents for courses are not required. The available constraints are solely based on
the definition of the curricula.

The data for the curriculum-based course timetabling problem is comparably
easy to obtain. Once the curricula are defined, they usually do not change very
often, and timetabling can consider to some extend last years plans. On the other
hand, students not following the definitions of their curricula may end up having
a problem, as several lectures will be scheduled in parallel. The application of
the curriculum-based course timetabling problem therefore requires the students
to follow the structure of their program.

Besides its practical relevance for many universities, the curriculum-based
course timetabling problem has been chosen as one of the competition tracks of
the ITC 2007 (http://www.cs.qub.ac.uk/itc2007/). The competition invited
researchers to propose and submit novel approaches for the solution of time-
tabling problems. Comparison of results is possible by means of a set of newly
released benchmark instances.

A technical description of the problem of the ITC 2007 is given in [8]. Impor-
tant hard constraints require that no lectures belonging to a common curriculum,
as well as lectures being taught by the same professor, are scheduled in parallel.
Also, a set of given unavailability constraints has to be respected. These con-
straints define times when teachers are unavailable. Another common constraint
requires that at most one lecture can be assigned to a single room at a time.

Besides these hard constraints, four soft constraints/ objectives sc1, sc2, sc3,
sc4 are relevant that measure desirable properties of the solutions.

1. Objective 1 (sc1): A room capacity soft constraint tries to ensure that the num-
ber of students attending a lecture does not exceed the room capacity. Assign-
ments of lectures to rooms of smaller capacity are penalized with the number
of students above the room capacity, multiplied with a penalty weight w1.

2. Objective 2 (sc2): The lectures of the courses must be spread into a minimum
number of days, penalizing timetables in which lectures appear on too few dis-
tinct days.Eachdaybelow the minimum is penalized withw2 points of penalty.

3. Objective 3 (sc3): The curricula should be compact, meaning that isolated
lectures, that is lectures without another adjacent lecture, should be avoided.

http://www.cs.qub.ac.uk/itc2007/
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For any given curriculum, the number of isolated lectures is computed. Each
isolated lecture in a curriculum is penalized with w3 points of penalty.

4. Objective 4 (sc4): All lectures of a course should be held in exactly one room.
Each distinct room used for the lectures of a course, but the first, counts as
w4 points of penalty.

The overall evaluation of a timetable is then based on some aggregate function
SC = f(sc1, sc2, sc3, sc4).

3 Proposition of a Solution Approach

Figure 1 illustrates the elements of the solution framework in which the following
entities play a role:

– A human decision maker communicates via a graphical user interface (GUI)
with the system. Communication includes the definition of decision variables,
constraints, objectives and preferences. Also, the penalization (weighting) of
particular timetabling patterns and the aggregation of the objective func-
tions are obtained in this process.

– The formal model of the current situation is formulated and stored in a
database.

– After a preprocessing stage, in which some problem-specific properties are
pre-computed and structured, two method bases are employed to construct
and improve timetables for the quantitative model:
1. A constructive approach is used to obtain a first feasible assignment of

all lectures. In this phase, the chosen objective functions are not yet con-
sidered, but the method focuses on the hard constraints of the problem.

human decision maker

GUI

constructive 
approach

iterative
approach

data

constraints

objectives

decision
variables

preferences

M
od
el

Methods

preprocessing

solution

Fig. 1. Elements of the solution concept and their interaction
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2. An iterative approach is then subsequently executed to improve the
timetable obtained from the constructive approach. During this phase,
reallocations of lectures are carried out with the final goal of identifying
an optimal timetable.

Constructive and iterative phases follow subsequently. In this sense, the so-
lution framework implements a two-phase-concept in which feasibility of the
timetable is first considered, and optimality following later.

3.1 Preprocessing

Prior to the computation of a first solution, some preprocessing is carried out. In
brief, some problem-specific characteristics are employed, adding some additional
structure to the problem.

For each given lecture Li, events Ei1, . . . , Eie are created which are later
assigned to timeslots. The number of events e is given in the problem instances.
Creating events for each lecture leads to a more general problem description, and
the solution approach only needs to concentrate on the assignment of all events,
one to a single timeslot, as opposed to keeping track of assigning a lecture to e
timeslots.

Second, we categorize for each lecture Li (and thus for each event belonging
to lecture Li) the available rooms in three disjunct classes Ri1,Ri2,Ri3.

Ri1 refers to the rooms in which the lecture fits best, that is the rooms Rk

with the minimum positive or zero value of ck − si, ck being the room capacity,
si the number of students of lecture Li. The class Ri2 stores the rooms in which
lecture Li fits, that is si < ck, but not best, and Ri3 contains the rooms in which
lecture Li does not fit. With respect to the given problem statement, events of
lectures may be assigned to timeslots of rooms in Ri3, this however results in a
penalty.

The underlying assumption of the classification of the rooms is that events
are preferably assigned to timeslots belonging to a room of class Ri1, followed by
Ri2 and Ri3. It has to be mentioned however, that this cannot be understood as
a binding, general rule but rather should be seen as a recommendation. A ran-
domized procedure is therefore going to be implemented when assigning events
to timeslots (see Section 3.3), allowing a certain deviation from the computed
room order.

3.2 Constructive Approach

Based on the results for the initial constructive approach, we propose a reactive
procedure that self-adapts to the set of unassigned events from previous runs.
The logic behind this approach is that the constructive procedure ‘discovers’
events that are difficult to assign, giving them priority in successive runs. To some
extend, we borrow ideas from the squeaky wheel optimization approach [9]. In
this concept, alternatives are repetitively constructed and analyzed. Unfavorable
aspects of the current solution are discovered in each analysis, which are then
resolved in the successive iteration. In this sense, the ‘squeaky wheel gets the
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grease’. Events that have not been assigned in previous construction runs are
here considered to be the unfavorable aspects of the current solution.

In the following, let Ep be the set of prioritized events, E¬p the set of non-
prioritized events, and Eu the set of events that have not been assigned during
the construction phase. It is required that Ep ⊆ E , E¬p ⊆ E , Ep ∩ E¬p = ∅, and
Ep ∪ E¬p = E .

Algorithm 1 describes the reactive construction procedure.

Algorithm 1. Reactive construction
Require: Maxloops
1: Set Ep = ∅, Eu = ∅, loops = 0
2: repeat
3: Ep ← Eu

4: Eu ← ∅
5: E¬p ← E\Ep

6: while Ep �= ∅ do
7: Select the most critical event E from Ep, that is the event with the smallest

number of available timeslots
8: if E can be assigned to at least one timeslot then
9: Select some available timeslot T for E

10: Assign E to the timeslot T
11: else
12: Eu ← Eu ∪ E
13: end if
14: Ep ← Ep\E
15: end while
16: while E¬p �= ∅ do
17: Select the most critical event E from E¬p, that is the event with the smallest

number of available timeslots
18: if E can be assigned to at least one timeslot then
19: Select some available timeslot T for E
20: Assign E to the timeslot T
21: else
22: Eu ← Eu ∪ E
23: end if
24: E¬p ← E¬p\E
25: end while
26: loops ← loops + 1
27: until Eu = ∅ or loops = Maxloops

As given in the pseudo-code, the construction of solutions is carried out in a
loop until either a feasible solution is identified or a maximum number of itera-
tions Maxloops is reached. When constructing a solution, a set of events Eu is
kept for which no timeslot has been found. When reconstructing a solution, these
events are prioritized over the others. In that sense, the constructive approach
is biased by its previous runs, identifying events that turn out to be difficult to
assign.
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After a maximum number of at most Maxloops iterations, the construction
procedure returns a solution that is either feasible (Eu = ∅) or not (Eu �= ∅).

It becomes clear that the reactive procedure is principally based on the previ-
ous simple greedy heuristic. The choice of the most critical event, as well as the
choice of the timeslot is left unchanged. Only the prioritization of the events by
dividing them into two disjunctive subsets is an additional feature of the revised
method.

3.3 Improvement Procedures

An iterative process continues with the alternative found in the constructive
approach, searching for an optimal solution with respect to the soft constraint
penalties.

In each step of the algorithm, a number of randomly chosen events is unas-
signed from the timetable and reinserted in the set Eu. A reassignment phase
follows. Contrary to the constructive approach, where events are selected based
on whether they are critical with respect to the available timeslots, events are
now randomly chosen from Eu, each event with equal probability. The choice of
the timeslot for the event is based on the logic described in the preprocessing
phase, prioritizing timeslots of particular room classes. We use two possible pref-
erence structures of rooms, Ri1 over Ri2 over Ri3, and Ri2 over Ri1 over Ri3.
Each of them is randomly chosen with probability 0.5.

The following different variants of local search have been implemented and
tested:

– Hillclimbing (HC).
In this local search variant, only improving reassignments of events are ac-
cepted. It can be expected that this strategy does not lead to the best results.
However, for comparison reasons, an application will be interesting, simply
because the effectiveness of alternative local search strategies can be studied
in contrast to this relatively simple algorithm.

– Iterated Local Search (ILS).
Iterated Local Search [10] is based on a hillclimbing algorithm, which is
first used to compute a locally optimal solution. Then, after converging to
this alternative, an escape mechanism is triggered, consisting of a worsening
perturbation move by means of some neighborhood. Search continues from
this perturbed alternative, again executing a hillclimbing run.

– Threshold Accepting (TA).
The idea of Threshold Accepting has been introduced in [11]. It describes
a deterministic variant of Simulated Annealing [12]. Worsening moves are
accepted up to a certain threshold, thus allowing an escape of the search
procedure from local optima. Throughout the execution of the local search
approach, the threshold is subsequently decreased, similar to what is referred
to as a ‘cooling schedule’ in Simulated Annealing.

As previous research has shown that simplifications of Simulated Anneal-
ing may be very effective for timetabling problems [13, 14], we suspect that
this approach turns out successful for the problem at hand.
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4 Experimental Investigation

4.1 Weighted Sum Aggregation

For the first part of our experimental investigation, we consider a weighted sum
aggregation of the objective functions sci as given in Expression (1). The values
of the weights wi have been chosen as proposed for the ITC 2007, thus w1 = 1,
w2 = 5, w3 = 2, w4 = 1.

SC =
4∑

i=1

wisci (1)

Different configurations of the algorithms have been tested on the benchmark
data from the ITC 2007. The running time of each test run has been chosen
in accordance with the regulations of the competition, allowing 375 seconds of
computing time on an Intel Q6600 processor. While experiments with signifi-
cantly longer running times are reported in [15], we here favor an experimental
setting in which only comparably little running time is permitted. This reflects
the practical circumstances of many real-world timetabling problems, in which
a planner expects results in comparably short time.

The number of reassigned events in each iteration has been set to five for all
variants of the improvement procedure. It should be noticed that other num-
bers from 1 to 10 have been tested, too. Based on some preliminary tests, in
which a reassignment set of five events gave reasonable results for all benchmark
instances, this number has been chosen and fixed in the following experiments.

Three configurations of the Iterated Local Search approach have been imple-
mented. The first variant, ILS-3k, starts perturbing after 3,000 non-improving
moves, the second, ILS-10k, after 10,000 moves, and the last one, ILS-25k, after
25,000 non-improving moves. Perturbations are done by a random reassignment
of five events. Contrary to the usual acceptance rule with respect to the cost
function SC, the perturbed alternative is accepted in any case, and search con-
tinues from this new solution.

Two different configurations of the Threshold Accepting algorithm have been
tested. First, an algorithm with a threshold of 1% of the overall evaluation of
the alternatives SC. Second, an algorithm using a threshold of 2% of SC. The
choice of a percentage of SC as a threshold has the advantage that the algo-
rithm performs an automated cooling when approaching small values of SC, yet
maintaining high thresholds for large values of SC. This idea stands somewhat
in contrast to other approaches, in which explicit cooling schedules are needed.
Nevertheless, an appropriate choice of the percentage has to be made.

Average results of the metaheuristics
The following Table 1 gives the average values of the soft constraint penalties
SC for the different local search strategies over ten independent test runs.

The hillclimbing algorithm never leads to best results, which already has been
suspected prior to the investigation. For all benchmark instances, either an Iter-
ated Local Search approach and/ or a Threshold Accepting algorithm leads to
better average results.
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Table 1. Average values for the weighted sum formulation

Instance HC ILS-3k ILS-10k ILS-25k TA 1% TA 2%

comp01 6.3 8.0 7.1 6.8 6.6 6.0
comp02 158.2 157.2 155.5 147.1 135.0 157.2
comp03 151.4 150.7 144.7 147.3 140.6 150.7
comp04 90.0 95.9 92.3 87.1 84.0 79.0
comp05 581.5 494.8 539.1 516.4 505.5 495.9
comp06 137.5 137.7 135.8 130.2 108.4 127.6
comp07 99.1 122.2 113.5 103.8 73.9 121.1
comp08 102.4 98.5 98.4 92.3 83.3 90.6
comp09 169.2 172.5 161.8 164.7 165.7 176.5
comp10 108.3 113.4 106.7 107.5 84.2 82.8
comp11 0.8 2.6 1.7 0.7 0.3 0.1
comp12 534.0 504.8 497.6 499.6 480.3 472.5
comp13 127.9 132.3 122.3 122.1 112.3 122.6
comp14 130.6 113.4 114.6 111.8 101.3 97.6

When analyzing and comparing the different Iterated Local Search approaches,
the variant with a rather high number of evaluations before perturbing the solu-
tions, ILS-25k, turns out to be superior to the other configurations. In nine of
the 14 data sets, best results are obtained by this approach. Despite the fact that
some counterexamples have been found, such as comp05, it is possible to conclude
that a sufficient number of evaluations is needed before applying perturbations.
In this context, 25,000 describes this ‘sufficiently large number’ better than 3,000
or 10,000.

Comparing the two Threshold Accepting algorithms, both TA 1% and TA 2%
lead to best average result in seven of the 14 data sets. Also it can be seen, that
some differences are rather small, such as in case of comp01 and comp11, while
others are considerable larger (comp06, comp07, comp08, comp13). On the basis
of this observation, we conclude that the comparably smaller threshold of 1%
leads to better results than the larger one of 2%.

For twelve out of 14 instances, Threshold Accepting proves to be superior to
Iterated Local Search. Some counterexamples exist, but the overall conclusions
are rather strong in favor of Threshold Accepting.

Best obtained results
Table 2 shows the best results of the Threshold Accepting algorithm with a
threshold of 1%. The results are based on 30 trials with different random seeds.

It can be seen that the TA 1% approach leads to competitive results. For some
instances, comp01 and comp11, particularly good solutions are identified. Others
such as comp05 and comp12 have best found alternatives with soft constraint
penalties that are still quite large. We suspect that some properties of the data
sets induce these results. Benchmark instance comp05 possesses a rather small
average teacher availability, and so does instance comp12 [8]. It is therefore fair
to assume that this property leads to the considerable differences in terms of
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Table 2. Best results (out of 30 trials)

Instance SC w1sc1 w2sc2 w3sc3 w4sc4 Instance SC w1sc1 w2sc2 w3sc3 w4sc4

comp01 5 4 0 0 1 comp08 75 0 5 56 14
comp02 108 0 5 92 11 comp09 153 0 35 92 26
comp03 115 0 35 68 12 comp10 66 0 0 40 26
comp04 67 0 5 48 14 comp11 0 0 0 0 0
comp05 408 0 175 218 15 comp12 430 2 205 196 27
comp06 94 0 10 58 26 comp13 101 0 25 62 14
comp07 56 0 5 18 33 comp14 88 0 15 60 13

the best found values of SC to the other data sets. Obviously, relatively difficult
side constraints complicate the identification of timetables with a small overall
evaluation.

Another aspect of the obtained results is the detailed component-wise analysis
of the individual objectives sci, i = 1, . . . , 4. Recalling that the assignment of
events to timeslots made use of a certain pre-computed order, we suspect that
this may influence the characteristics of the results. In particular sc1, which
measures the assignment of lectures to rooms of smaller capacity, should be
addressed rather well by this assignment logic.

A detailed overview of the best obtained results SC and the individual objec-
tive function values sci, i = 1, . . . , 4 is given in Table 2. With the only counterex-
amples of instances comp01 and comp11, sc1 turns out to be better addressed in
comparison to the other objectives. In particular for sc2 and sc3, the numbers
are rather relatively high. It also should be noticed, that the scoring for these
two objectives employed higher penalties wi as for the others. Nevertheless, and
although a weighted sum approach has been used, a considerable bias in terms
of a preference of sc1 over the other objectives becomes obvious.

4.2 Experiments Based on a Reference Point

As pointed out when analyzing the result in Section 4.1, the weighted sum aggre-
gation approach of the objective functions sci, i = 1, . . . , 4 leads to a situation in
which objective sc1 is significantly better addressed in comparison to the others.
It can be suspected that these results not always represent the individually de-
sired solutions. Often, the human decision maker requires a different methodology
for expressing his/ her preferences, for example by stating a reference point that
represents the desired outcomes for each objective function. The solution of the
problem then lies in the minimization of the distance of the solution to this point.

Expression (2) reformulates the aggregated evaluation of the timetables by
introducing a reference point R = (r1, r2, r3, r4). By minimizing SCref , we min-
imize the distance of the outcomes to the given reference values ri. Using this
approach, the decision maker may primarily guide the search towards a preferred
solution by stating desired values of ri.

SCref = max
i
wi (sci − ri) (2)
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The experiments as described in Section 4.1 have been repeated, now using
the revised formulation of the aggregated evaluation function. Again, a hillclimb-
ing algorithm, the three variants of the Iterated Local Search algorithm, and the
two Threshold Accepting algorithms have been tested. Experiments have been
conducted on the identical computer hardware, once more permitting a maxi-
mum running time of 375 seconds for each trial. The reference point has been
assumed with ri = 0, i = 1, . . . , 4 as we know that 0 is the smallest possible
outcome for each objective sci, i = 1, . . . , 4.

Average results of the metaheuristics
Average results for ten independent test runs are given in the following Table 3.

Table 3. Average results of SCref in the reference point based formulation

Instance HC ILS-3k ILS-10k ILS-25k TA 1% TA 2%

comp01 4.0 7.0 6.2 5.2 4.0 4.0
comp02 72.1 75.0 66.4 72.1 69.0 66.9
comp03 64.7 68.9 66.4 64.3 64.8 66.3
comp04 41.5 51.3 47.9 47.5 38.2 46.6
comp05 248.2 232.1 236.6 226.5 238.2 226.0
comp06 58.5 71.0 65.7 63.9 60.1 80.2
comp07 50.0 73.5 64.8 61.9 71.0 135.8
comp08 41.5 57.0 50.5 50.2 48.6 59.9
comp09 71.3 79.3 76.5 74.1 73.1 79.5
comp10 44.0 59.6 57.0 53.5 54.8 88.0
comp11 0.1 7.2 5.2 4.8 0.0 0.0
comp12 248.5 240.8 240.1 221.0 228.4 211.0
comp13 55.0 65.0 61.0 60.7 59.2 62.6
comp14 50.5 57.7 54.1 52.0 50.8 52.1

For the Iterated Local Search algorithm, we observe again that the variant
with the largest number of evaluations before perturbing the alternative, ILS-
25k, obtains better results than the two configurations with a faster perturbation.
Also, TA 1% leads in more instances to better results than the one with the
larger threshold. In addition to that, Threshold Accepting outperforms Iterated
Local Search in most instances. So far, the analysis is in line with the one of the
weighted sum approach.

What really is remarkable is the behavior of the hillclimbing approach. In
comparison to both the Iterated Local Search as well as the Threshold Accept-
ing algorithm, better results are obtained in many cases. This is counterintuitive,
especially as the algorithm does not possess any strategy of escaping local op-
tima while the others do. It appears as if the presence of local optima is less
problematic for the chosen evaluation function. In brief, and in contrast to the
experiments of Section 4.1 we are able to observe that not a single approach is
suitable for all possible data sets and variants of evaluation functions, as it has
been already pointed out in other contexts [16].
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Best obtained results
Another analysis is concerned with the best found solutions of the reference
point based evaluation SCref and the values of the objectives sci, i = 1, . . . , 4.
The best solutions are reported in the following Table 4.

Table 4. Best results of SCref and the values for each objective sci (out of 10 trials)

Instance SCref w1sc1 w2sc2 w3sc3 w4sc4 Instance SCref w1sc1 w2sc2 w3sc3 w4sc4

comp01 4 4 0 2 4 comp08 40 0 40 40 40
comp02 45 0 45 44 45 comp09 66 0 65 66 66
comp03 52 0 50 52 52 comp10 35 0 35 34 35
comp04 30 0 30 30 30 comp11 0 0 0 0 0
comp05 190 190 190 190 41 comp12 200 182 200 198 80
comp06 55 0 55 54 55 comp13 45 0 45 44 44
comp07 44 27 40 44 44 comp14 40 0 40 40 40

Obviously, the values are better balanced in comparison to the ones of the
weighted sum aggregation. While sc1 still often has the smallest value, it is
possible to see that for example for instance comp05, rather high values of sc1
are achieved in order to minimize the other objective functions further, and so to
minimize the aggregation. A similar observation can be made for the instances
comp07 and comp12.

The results indicate that the prioritization of the timeslots when assigning
events generally does favor objective sc1 to some extent. However, there are
cases in which the quality of timetables with respect to sc1 is sacrificed for an
improvement in the other objectives, and we may conclude that the solution
approach does not generally overfit the investigated problem.

5 Conclusions

The article presented an optimization approach for multi-criteria timetabling
problem with an application for curriculum-based course timetabling. On the ba-
sis of a general solution framework, a two-stage optimization approach has been
proposed that first constructs feasible alternatives and subsequently searches
for optimal solutions. For the latter purpose, different local search strategies
have been implemented, and experiments have been conducted for benchmark
instances taken from the literature.

By comparing a weighted sum and a reference point based approach, con-
siderable differences in the obtained results became obvious. For the weighted
sum aggregation, balancing the four objectives appears to be problematic. Even
when assigning higher weights on particular objectives, they do not turn out to
be better addressed than others. On the other hand, the reference point aggre-
gation led to significantly better balanced outcomes with respect to an equal
treatment of all four objectives.



Multi-criteria Curriculum-Based Course Timetabling 303

In brief the experiments indicate that an interaction with the presented system
employing reference points is more direct and overall preferable, a conclusion that
similarly has been derived in [17]. Also, the relative performance of the different
metaheuristics is affected by the chosen aggregation procedure. Although the
results are overall competitive, as we have been able to demonstrate in the finals
of the International Timetabling Competition ITC 2007, future research should
therefore be dedicated towards the proposition of more robust solvers.

Besides, a comparison to multi-objective optimization approaches that ap-
proximate the whole Pareto-front should be carried out as part of future research.
While the approach presented in this article aims to identify an alternative that
optimizes the aggregated function only, the entire Pareto-front could be obtained
for comparison reasons. Knowing that the weighted sum approach can be prob-
lematic, as it only allows the generation of supported efficient solutions, the effect
and relevance of this potential drawback could further be explored.

Also, alternative approaches of integrating the reference point should be ex-
plored, such as described in e. g. [18]. Such approaches would allow to ensure
the efficiency of the final solution, which is not necessarily the case in the im-
plemented min-max achievement function.
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Abstract. This work presents the application of a parallel coopera-
tive optimization approach to the broadcast operation in mobile ad-hoc
networks (manets). The optimization of the broadcast operation im-
plies satisfying several objectives simultaneously, so a multi-objective
approach has been designed. The optimization lies on searching the best
configurations of the dfcn broadcast protocol for a given manet sce-
nario. The cooperation of a team of multi-objective evolutionary al-
gorithms has been performed with a novel optimization model. Such
model is a hybrid parallel algorithm that combines a parallel island-
based scheme with a hyperheuristic approach. Results achieved by the
algorithms in different stages of the search process are analyzed in order
to grant more computational resources to the most suitable algorithms.
The obtained results for a manets scenario, representing a mall, demon-
strate the validity of the new proposed approach.

1 Introduction

Mobile ad-hoc networks (manets) [1] are fluctuating, self-configuring networks
of mobile hosts, called nodes or devices, connected by wireless links. This kind of
network has numerous applications because of its capacity of auto-configuration
and its possibilities of working autonomously or connected to a larger network.
No static network infrastructure is needed to support the communications be-
tween nodes, which are free to move arbitrarily. Devices in manets are usually
� This work has been supported by the ec (feder) and the Spanish Ministry of

Education and Science inside the ‘Plan Nacional de i+d+i’ (tin2005-08818-c04)
and (tin2008-06491-c04-02). The work of Gara Miranda has been developed under
grant fpu-ap2004-2290.

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 305–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



306 C. Segura et al.

laptops, pdas, or mobile phones, equipped with network cards featuring wireless
technologies. This implies that devices communicate within a limited range and
also that they can move while communicating.

Broadcasting is a common operation at the application level and also widely
used for solving many network layer problems. It is expected to be performed
very frequently, serving also as a last resort to provide multicast services. Hence,
having a well-tuned broadcast strategy results in a major impact in network per-
formance. The optimization implies satisfying several objectives simultaneously:
the number of reached devices (coverage) must be maximized, a minimum usage
of the network (bandwidth) is desirable, and the process must take a time as
short as possible (duration). These objectives are conflicting among them, so we
are dealing with a multi-objective optimization problem (mop).

Since exact approaches are practically unaffordable for real world mops, a
wide variety of approximated algorithms have been designed. Among them,
metaheuristics are a family of techniques which have become popular to solve
both single and multi-objective problems. They can be considered as high-level
strategies that guide a set of simpler heuristic techniques in the search of an opti-
mum [2]. Among these techniques, evolutionary algorithms for solving mops are
very popular [3] giving raise to a wide variety of algorithms, such as nsga-ii [4]
and spea2 [5]. Other family of metaheuristics widely applied in multi-objective
optimization is particle swarm optimization or pso [6].

This work presents an optimization of the broadcast operation for a real
manet instance. In order to provide an efficient, and robust approach, appli-
cable to a wide range of problem instances, a new parallel evolutionary model
has been applied1. The model is based on the hybridization of parallel island-
based evolutionary algorithms and hyperheuristics. In particular, eight different
multi-objective algorithms comprising genetic algorithms, differential evolution,
evolutionary strategies, and pso have been combined in the island scheme.

The remaining content is structured in the following way: Section 2 presents
the broadcast optimization problem in manets. The sequential approaches ap-
plied in this work are presented in section 3. The proposed parallel model for
multi-objective optimization is described in detail in section 4. The computa-
tional study is presented in section 5. Finally, the conclusions and some lines of
future work are given in section 6.

2 Broadcast Operation in MANETS

This work focuses on the study of the broadcast operation in a particular kind of
manets, the metropolitan manets. These manets have some specific features
that hinders the testing in real environments: the network density is heteroge-
neous and it is continuously changing because devices in a metropolitan area
move and/or appear/disappear from the environment. For this reason, many
simulation tools have been developed [7]. In this work the Madhoc simulator [8]
1 We will use the most familiar term evolutionary algorithm instead of metaheuristic

throughout the paper, although in the algorithms we study there is a pso.
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was the choice. This tool provides a simulation environment for several levels of
services based on different types of manets technologies and for a wide range
of manet real environments. It also provides implementations of several broad-
cast algorithms [9]. From the existing broadcast protocols, the Delayed Flooding
with Cumulative Neighbourhood (dfcn) [10] has been selected because it was
specifically designed to deal with metropolitan manets.

dfcn is a deterministic and totally localized algorithm. It uses heuristics
based on the information from one hop. Thus, it achieves a high scalability.
The behaviour of each device when using dfcn is driven by three events: the
reception of a message (reactive behaviour), the expiration of the random delay
for rebroadcasting (rad) of a message, and the arrival of a new neighbour to its
covered area (proactive behaviour). Although dfcn has shown good behaviour
with metropolitan manets, the task of configuring such parameters is not trivial,
and the proper operation of the protocol is sensitive to such configuration. The
set of parameters that must be configured is:

– minG: minimum gain for forwarding a message.
– [lowerRAD, upperRAD ]: range values for the rad.
– proD : maximum density for which it is still necessary to use proactive be-

haviour for complementing the reactive behaviour.
– safeDensity: maximum density below which dfcn always rebroadcasts.

Given the values for the five dfcn configuration parameters and a manet
scenario, the Madhoc tool does the corresponding simulation and provides an
estimate for the three objectives: duration, coverage, and bandwidth. One pos-
sibility to find the most suitable configuration is to systematically vary each of
the five dfcn parameters. However, the possible parameter combinations are
too large and evaluations in the simulator are computationally expensive. So,
such technique is unable to obtain good quality solutions in a reasonable time.
Other alternative relies on deeply analysing the problem to extract information
to define a heuristic strategy, but the complexity and stochastic behaviour of
the given problem hinders it. For these reasons, one usual way of affording this
problem is through evolutionary techniques [11].

3 Applied Sequential Approaches

The aim of this section is to present the sequential algorithms used in this work
for solving the proposed broadcast optimization problem. Algorithms previously
used in [12], as well as other new alternatives has been applied. In this work, all
these algorithms were also used in parallel, following some standard island-based
models and applying the method explained in section 4.

3.1 Non-dominated Sorting Genetic Algorithm II (nsga-ii)

nsga-ii [4] is a non-dominated sorting based multi-objective evolutionary algo-
rithm. Two of the most important characteristics which differentiates nsga-ii of
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nsga and other non-dominated sorting based approaches are the following. First,
a fast non-dominated sorting approach with reduced computational complexity
(O(mN2)). Second, a selection operator which combines previous populations
with new generated child populations, ensuring elitism in the approach.

The procedure is as follows: the two populations are sorted according to their
rank, and the best solutions are chosen to create a new population. In the case of
having to select some individuals with the same rank, a density estimation based
on measuring the crowding distance to the surrounding individuals belonging to
the same rank is used to get the most promising solutions.

Algorithm 1. nsga-ii Pseudocode
1: Initialization: Generate an initial population P0 with N individuals. Assign t = 0.
2: while (not stopping criterion) do
3: Fitness assignment: Calculate fitness values of individuals in Pt. Use the non-domination rank

in the first generation, and the crowded comparison operator in other generations.
4: Mating selection: Perform binary tournament selection on Pt in order to fill the mating pool.

5: Variation: Apply genetic operators to the mating pool to create a child population CP .
6: Combine Pt and CP selecting the best individuals using the crowding operator to constitute

Pt+1.
7: t = t + 1
8: end while

3.2 Evolution Strategy with NSGA-II (esn)

The esn algorithm is based on the hybridization of Evolution Strategies and
nsga-ii. The algorithm uses the standard Evolution Strategies’ steps [13], re-
placing the selection process by the nsga-ii [4] selection process. The main dif-
ference between Evolution Strategies and Genetic Algorithms is that crossover
operators are not used in ES, and each parent produces one offspring only by
mutation. The mutation process implemented was the standard (μ+ λ) process
explained in [14], although in our case, λ = μ.

Algorithm 2. esn Pseudocode
1: Initialize population P of μ individuals
2: Initialize variance σ for each individual I ∈ P
3: while (not stopping criterion) do
4: P ′ = ∅
5: for each I = (x1, ..., xn, σ) ∈ P do
6: σ′ = σeN(0,Δ)

7: Create I′ = (N(x1, σ′), N(x2, σ′), ..., N(xn, σ′), σ′)
8: P ′ = P ′ ∪ {I′}
9: end for
10: P = P ∪ P ′

11: Calculate front F1 as Non-dominated individuals of P
12: for i = 2 to n do
13: Generate fronts Fi as Non-dominated individuals of P \ (F1 ∪ ... ∪ Fi−1)
14: end for
15: Sort solutions in each Fi (i = 1, . . . , n) using the crowding distance
16: Delete the worst μ individuals in population P
17: end while
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3.3 Strength Pareto Evolutionary Algorithm 2 (spea2)

spea2 was proposed by Zitzler et al. [5]. This algorithm uses a population and an
archive. It assigns to each individual a fitness value that is the sum of its strength
raw fitness plus a density estimation. In each generation the non-dominated
individuals of both the original population and the archive are used to update
the archive; if the number of non-dominated individuals is greater than the
population size, a truncation operator based on calculating the distances to the
k-th nearest neighbor is used. All this procedure is known as Environmental
Selection. Then, the algorithm applies the selection, crossover, and mutation
operators to members of the archive in order to create a new population of
offsprings which becomes the population of the next generation.

Algorithm 3. spea2 Pseudocode
1: Initialization: Generate an initial population P0 and create the empty archive P 0.
2: while (not stopping criterion) do
3: Fitness assignment: Calculate fitness values of individuals in Pt and P t.
4: Environmental selection: Copy nondominated individuals in Pt and P t to P t+1. if |P t+1| > N

reduce P t+1; otherwise, fill P t+1 with dominated individuals in Pt and Pt+1.
5: Mating selection: Perform binary tournament selection on P t+1.
6: Variation: Apply crossover and mutation operators to the mating pool and set P t+1 to the

resulting population.
7: end while

3.4 Indicator-Based Evolutionary Algorithm (ibea)

The ibea algorithm [15] allows to define the optimization goal in terms of a per-
formance measure or quality indicator. This measure is used directly for fitness
calculation. The ibea algorithm allows the use of different binary quality indi-
cators. In this work the binary multiplicative ε-indicator [16] was used. There
exists two versions of ibea, the basic one and a more robust version known as
adaptive. In the adaptive version, objectives values are normalized, and the in-
dicator values are adaptively scaled. Both versions of the algorithm have been
implemented.

Algorithm 4. ibea Pseudocode (Adaptive Version)
1: Initialization: Generate an initial population P with N individuals.
2: while (not stopping criterion) do
3: Fitness assignment: calculate the fitness values using the quality indicator.

1. Calculate indicator values I(x1, x2) using the normalized objective values f ′
i and deter-

mine the maximum absolute indicator value c = maxx1,x2∈P |I(x1, x2)|.
2. ∀x1 ∈ P , F (x1) =

∑
x2∈P\{x1} −e−I({x2},{x1})/(c·k).

4: Enviromental selection: until the size of P does not exceed N , remove the individual with the
smallest fitness value, and recalculate the fitness value of the remaining individuals.

5: Mating selection: Perform binary tournament selection with replacement on P in order to fill
the temporary mating pool P ′.

6: Variation: Apply recombination and mutation operators to the mating pool P ′ and add the
resulting offspring to P .

7: end while
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3.5 Multiple Objective Particle Swarm Optimization (mopso)

mopso [17] is an adapted version of Particle Swarm Optimization (pso) to multi-
objective optimization problems. mopso combines pso [18] with the archiving
strategy of paes [19]. In this work, we use the version available in the emoo
repository [20].

The algorithm uses an external repository that stores non-dominated solu-
tions in the swarm. The velocity and position of particles are updated using the
standard equations of pso but using a leader particle selected from the reposi-
tory, instead of best neighbor as it is usual. The mechanism of leader selection
is as follows: the fitness space is divided in hypercubic sectors, and one of the
positions in the repository is randomly selected using a roulette algorithm that
favors the sectors that are less populated. Therefore, particles are attracted by
leaders located in the areas where fewer non-dominated positions have been
found. The mechanism for inclusion in the repository ensures that it only stores
non-dominated solutions. If the new solution dominates some of the solutions in
the repository, those solutions are removed. The maximum number of particles
in the repository is fixed, so when this limit is reached, before the insertion, a
particle from the most-populated sector of the repository is removed. Upon com-
pletion of the specified number of iterations, the set of solutions in the repository
is reported as the Pareto front.

Algorithm 5. mopso Pseudocode
1: Initialize the swarm
2: Calculate fitness for each particle, store fitness and position as PBestFitness and PBestPosition

3: Store the position and fitness of non-dominated particles in the Repository
4: while (not stopping criterion) do
5: for Particle do
6: Select Leader from the repository
7: Update NewVelocity using standard equations and Leader as neighbor.
8: Update NewPosition using standard equations of PSO
9: Calculate NewFitness
10: if NewFitness dominates PBestFitness then
11: PBestFitness ← NewFitness and PBestPosition ← NewPosition
12: if NewFitness is not dominated by solutions in the Repository then
13: if Repository is full then
14: Remove one solution
15: end if
16: Insert NewPosition and NewFitness in the Repository
17: Remove from the Repository solutions dominated by the one just inserted
18: end if
19: end if
20: end for
21: end while

3.6 Multi-Objective Cellular Genetic Algorithm (mocell)

mocell [21] is a cellular genetic algorithm (cga). As other multi-objective meta-
heuristics, it includes an external archive to store the non-dominated solutions
found so far. This archive is bounded and uses the crowding distance of nsga-ii
to keep diversity in the Pareto front.
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We have used here an asynchronous version of mocell, similar to the one called
amocell4 in [22], in which the cells are explored sequentially (asynchronously).
The selection is based on taking an individual from the neighborhood of the
current cell and another one chosen from the archive. After applying the genetic
crossover and mutation operators, the new offspring is compared with the current
one, replacing it if better; in the case of both solution be non-dominated, the
worst individual in the neighborhood is replaced by the current one. In this two
cases, the new individual is inserted into the archive.

Algorithm 6. mocell Pseudocode
1: population ← initialize()
2: archive ← NULL
3: while (not stopping criterion) do
4: for individual ← 1 to population.size() do
5: neighbours ←getNeighborhood(population, position(individual));
6: neighbours.add(position(individual));
7: parent1 ←selection(neighbours);
8: parent2 ←selection(archive);
9: offspring←recombination(Pc, parent1, parent2);
10: offspring←mutation(Pm, offspring);
11: evaluateFitness(offspring);
12: replacement(position(individual), offspring);
13: insertIntoArchive(offspring);
14: end for
15: end while

3.7 Non-dominated Sorting Differential Evolution (nsdemo)

Differential Evolution (de) [23,24,25] is an evolutionary algorithm introduced by
Storn and Price in 1995. de was designed to optimize (single-objective) problems
over continuous domains. In this paper, we extend de to solve multiobjective op-
timization problems. Like nsde [26], our approach is a multiobjective differential
evolution algorithm based on nsga-ii [4]. We call it nsdemo: Non-dominated
Sorting Differential Evolution for Multiobjective Optimization.

This algorithm replaces the crossover and mutation operators of the nsga-ii
with the de scheme. In particular, the de/rand/1/bin strategy has been applied.
The mutation is scaled using the factor f, while the crossover is controled with
the parameter cr.

Algorithm 7. nsdemo Pseudocode
1: initializeParameters
2: createPopulation
3: evaluate
4: assignRank
5: while (not stopping criterion) do
6: for i = 0 to PopulationSize − 1 do
7: selectThreeVectorsParents
8: mutationDE and crossoverDE
9: addChildToPopulation
10: evaluate
11: end for
12: assignRankCrowding
13: end while
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4 Proposed Parallel Approach

Multi-objective metaheuristic approaches in general, and evolutionary algorithms
(MOEAs) in particular [3] are proven to be effective when solving multi-objective
optimization problems, but they can be time and domain knowledge intensive
when applied to solve real world instances. Several studies have been performed
in order to reduce the resource expenditure when using moeas. These studies
naturally lead to considering the moeas parallelization. In the parallel moea
(pmoea) island-based model [27] the population is divided into a number of in-
dependent subpopulations. Each subpopulation is associated to an island and a
moea configuration is executed over each of them. Usually, each available pro-
cessor constitutes an island. Each island evolves in isolation, but occasionally
some solutions can be migrated between neighbour islands. Island-based models
have shown good performance and scalability in many areas. Four basic island
variants are seen to exist: all islands execute identical moeas/parameters (homo-
geneous), all islands execute different moeas/parameters (heterogeneous), each
island evaluates different objective functions subsets, or each island represents a
different region of the genotype/phenotype domains.

If we were able of finding a particular moea that clearly outperformed the
other ones in solving a given mop, the homogeneous island-based model using
such moea would be the choice to consider. However, it is difficult to know a
priori which moea is the most appropriate to solve a problem. If we consider
that, when dealing with a real world problem, its objective functions can require
a significant amount of computing time to be evaluated, it can be hard to choose
the moea to be the basis of the homogeneous approach. As an alternative, the
heterogeneous models allow to execute different moeas and/or parameters on
the islands. By using heterogeneous models, the user avoids the selection of a
specific moea to solve the problem. However, if some of the used moeas are not
suitable to optimize the problem, the consequence can be a waste of resources.

The existence of a wide variety of moeas in the literature and the dependence
on the problem domain and instance in the performance of the approaches hin-
ders the user decision about the algorithm to be applied. For this reason, a
promising approach appears in the application of hyperheuristics [28]. The un-
derlying principle in using a hyperheuristic approach is that different algorithms
have different strengths and weaknesses and it makes sense to combine them in
an intelligent manner. A hyperheuristic solves the problem indirectly by recom-
mending which solution method to apply at which stage of the solution process.
One of the motivations is that the same hyperheuristic method can be applied to
a wide range of problems. The goal is to raise the level of generality of decision
support methodology perhaps at the expense of reduced - but still acceptable -
solution quality when compared to tailor-made evolutionary approaches.

The proposed pmoea model [29,30] breaks from the island-based model adding
an adaptive property behaviour to it. Such property allows, by applying a hy-
perheuristic, to change in an automatic and dynamic way the moeas and/or
parameters that are used in the islands along the pmoea run. To the best of
our knowledge, the application of hyperheuristics into parallel schemes aimed
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at multi-objective optimization is a novelty. The architecture of the new hybrid
model is similar to the island-based model, i.e., it is constituted by a set of slave
islands that evolves in isolation by applying an evolutionary algorithm to a given
population. The number of islands and the different moeas to execute over the
local populations are defined by the user. Also, as in the island-based model, a
tunable migration scheme allows the exchange of solutions between neighbour
islands. However, a new special island, the master island, is introduced into the
scheme. It is in charge of maintaining the global solution achieved by the pmoea
and selecting the moea configurations that are executed on the slave islands.
The global solution is obtained by selecting the non-dominated solutions from
the ones locally achieved by the slave islands. Usually, it is not desirable to man-
age a global solution with unlimited size, so the nsga-ii crowding operator [4]
is proposed as the way to limit the size of the global solution set.

In standard island models, only a global stop criterion is defined. However, in
the proposed model, local stop criteria are also defined for the execution of the
moeas on the islands. When a local stop criterion is reached, the island execu-
tion is stopped and the local results are sent to the master island. The master
scores, according to a quality indicator, the different configurations defined by
the user taking into account their obtained results. A configuration is a moea
together with the set of parameters that define such moea, e.g. the mutation
and crossover rate, the population size, the archive size, etc. Based on such score,
the hyperheuristic is applied and the master selects the configuration that will
continue executing on the idle island. If the new selected configuration is the
same as the island current configuration, the local stop criterion is updated and
the execution continues. Otherwise, the configuration is changed and the new
selected moea begins its execution by randomly taking the initial population
individuals from the current global solution. Finally, when the global stop cri-
terion is reached, every island sends its local solution to the master and all the
local solution sets are considered to generate the global final solution.

One crucial point for the correct operation of the model is the selection process
performed by the hyperheuristic. Considering the results obtained through the
executions, it is beneficial to grant more opportunities to the configurations with
better expectations. The decision process must be light in order to avoid having
idle processes. One possibility to predict the behaviour of the configurations in
a fast way is to pay attention to the contribution [31] of every configuration to
the global solution. In this work, the score of each configuration is calculated
as the contribution metric of such configuration - considering the current global
solution as the reference front - divided by the number of evaluations that it has
performed. A probabilistic selection, based on the score of each configuration, is
used to decide the next configuration to execute. It is important to note that the
behaviour of the configurations can change along the execution. Moreover, the
stochastic behaviour of the evolutionary approaches may lead to variations in
the results achieved by each algorithm. Therefore, a non-promising configuration
must have a low probability of being selected, but not a zero probability. Prob-
abilistic selection methods are more conservative than elitist ones, tending to
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distribute the resources in a more uniform way. Probabilistic selection methods
reduce the negative impact that a not accurate scoring method can introduce in
the results. Even when the scoring method fails, some resources will be granted
to good-behaved configurations, speeding up the optimization process. On the
other hand, when the scoring method works correctly, some resources will be
granted to non-promising configurations, slowing down the optimization. Pre-
liminary studies shows that, in general, the usage of probabilistic methods is
more suitable than the usage of elitist methods.

5 Experimental Evaluation

Initial experiments showed an irregular behaviour of different moeas when deal-
ing with different manet scenarios. In order to avoid the testing of many algo-
rithms for solving each instance the adaptive model can been applied. Results
for a mall manet scenario demonstrate the validity of the approach. All the
moeas presented in section 3 have been used inside the model. Tests have been
run on a Debian gnu/Linux cluster of 8 Intel R© XeonTM 3.20 Ghz bi-processor
nodes with 1Gb ram. The interconnection network is a Gigabit Ethernet. The
compiler and mpi implementation used were gcc 3.3 and mpich 1.2.7.

The new model has been compared with sequential moeas and with
other standard pmoeas. For each implemented moea a homogeneous scheme is
considered: “homo-spea2”, “homo-nsga-ii”, “homo-ibea”, “homo-adap-ibea”,
“homo-esn”, “homo-mopso”, “homo-mocell”, and “homo-nsdemo”. Also, a
heterogeneous scheme constituted by the eight implemented moeas is consid-
ered: “heterogeneous”. The new proposal, labelled as “8-adaptive”, also uses the
eight different moeas but following the adaptive behaviour.

Each tested pmoea is constituted by eight slave islands. The subpopulation
size on each island has been fixed to 15 individuals, while the population size for
every sequential execution has been fixed to 100 individuals. The maximum size
of the external set for those algorithms maintaining an archive was fixed to 100
individuals in the sequential experiments and to 15 individuals in the parallel
ones. The remaining parameterization of each moea was as follows:
– spea2: pm = 0.2, pc = 0.9
– nsga-ii: pm = 0.2, pc = 0.9
– ibea, adaptive-ibea: pm = 0.2, pc = 0.9, k = 0.002
– esn: σ = 0.1
– mopso: pm = 0.2, divisions in archive = 30
– mocell: pm = 0.2, pc = 0.9
– nsdemo: F = 0.5, CR = 1.0

For every algorithm not doing special emphasis on the mutation or crossover
operators, a polynomial mutation [32] (ηm = 20) and a simulated binary crossover
(SBX) [33] (ηc = 20) were applied. In every execution the same migration scheme
is specified. It consists in an unrestricted topology where the migration is per-
formed from a slave to a randomly selected partner. The migration probability has
been fixed to 0.05 and the number of individuals to migrate was limited to 4 each
time. The global stopping criterion for every execution was 25000 evaluations. The
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Table 1. Average hypervolume achieved by the different pmoeas

Parallel Evaluations limit
Model 5000 10000 25000
8-adaptive 0.723 0.735 0.742
heterogeneous 0.711 0.721 0.729
homo-spea2 0.713 0.724 0.738
homo-nsga-ii 0.712 0.723 0.739
homo-ibea 0.715 0.724 0.733
homo-adap-ibea 0.716 0.725 0.733
homo-esn 0.707 0.718 0.726
homo-mopso 0.682 0.683 0.685
homo-mocell 0.690 0.702 0.712
homo-nsdemo 0.713 0.720 0.727

local stopping criterion in 8-adaptive executions was fixed to 15 generations. In all
cases, the final solution was limited to 100 elements.

The first experiment compares the different aforementioned pmoeas among
them. For each type of execution, 30 repetitions have been performed and av-
erage values considered. In order to detect differences between the algorithms
within short and long time ranges, three different number of individual evalua-
tion limits have been considered: 5000, 10000 and 25000 evaluations. The com-
puting time of a sequential execution with 25000 evaluations is approximately
50 hours. Table 1 shows the average hypervolume [34] achieved by each parallel
model at the given limits. The hypervolume indicator makes possible to combine
the quality information of convergence and diversity in a single value. The 8-
adaptive configuration achieves the best results in every case. The dynamic map-
ping of the moeas into the islands allows to give more computational resources
to the most suitable algorithms, thus improving the results of the heterogeneous
model. Moreover, the simultaneous usage of different evolutionary algorithms
makes possible to combine the benefits of each one, so that, the results of every
homogeneous island-based model is improved.

In order to provide the results with confidence, the following statistical analy-
sis has been performed [35,36]. First, a Kolmogorov-Smirnov test is performed in
order to check whether the results follow a normal (gaussian) distribution. Every
sample passes the normality test. The homogeneity of the variances for each pair
of samples is ensured through the Levene test. Finally, the anova test is passed
to check the confidence levels. As our interest is focused in the new model, it
has been statistically compared with the remaining pmoeas. Table 1 shows data
in bold when differences between such model and the new proposed model are
significant. The new model achieves a better hypervolume in every case. In the
case of 10000 evaluations, all differences are significant, except with homo-adap-
ibea, showing the good performance of the approach. Figure 1 presents, for each
model, the average hypervolume achieved along the executions.

The second experiment analyzes the run-time behaviour of the sequential and
adaptive models. The ideas presented in [37] were followed. Each moea, as well
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Table 2. Speedup of the proposed model and success ratio for sequential models

Sequential Models 8-adaptive Speedup Success Ratio

spea2 7.25 80
nsga-ii 8.8 86.6
ibea 5.57 100
adap-ibea 5.09 86.6
esn 9.75 83.3
mopso - 0
mocell - 0
nsdemo 11.59 36.6

as the new model, were executed using as finalization condition the achievement
of a certain level of hypervolume quality: the 95% of the average achieved by
the adaptive model in the first experiment. A second stopping criterion, consist-
ing in executing a maximum number of 25000 evaluations was also considered.
Figure 2 shows the run length distribution for the adaptive pmoea and for the
best behaved sequential moea (ibea). For the remaining models a summary of
the obtained information is presented in Table 2. For each sequential execution,
the table shows the average speedup of the new model when the required quality
is achieved, together with the success ratio, i.e. the probability of achieving the
required hypervolume value, considering a maximum of 25000 evaluations. The
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parallel model obtains an almost linear speedup even when compared with the
best moea, and a very high ratio of achieving the desired quality (96.6%).

Figure 3 shows, for the 30 executions of the 8-adaptive model, the average
number of evaluations executed by each configuration. By comparing it with
results in Table 2, it is clear that more computational resources are granted to
the algorithms with best behaviour. ibea and adap-ibea, the best-behaved se-
quential algorithms, are the most used configurations, while mopso and mocell,
the worst-behaved sequential algorithms, are the least used configurations.

6 Conclusions and Future Work

An optimization approach for the broadcast operation in manets based on the
dfcn protocol has been presented. In order to increase the level of generality of the
proposed solution - so it canbeapplied to anymanet scenario -anewhybridmodel,
whichaddsanadaptiveproperty to thewellknown island-basedmodelsbyapplying
the operationprinciples of the hyperheuristics, was applied. The adaptive property
allows to dynamically grant more computational resources to the most promising
algorithms. Results achieved for a mall manet scenario demonstrate the positive
effect introduced by the hybridization. The new model provides high-quality so-
lutions without forcing the user to have a prior knowledge about each moea be-
haviourwhenapplied to any consideredproblem instance.Thedfcn configurations
obtained by the new parallel model clearly improve the ones obtained sequentially.

Future work is related to two different fields: the improvement of the broad-
cast in manets and the improvement of the designed optimization model. Other
broadcast protocols can be considered to solve the same problem instances. In
relation to the hybrid model, other moeas and even other kind of multi-objective
optimization algorithms could be incorporated to the scheme. Some further stud-
ies concerning the model self-adaptation can be performed. In particular, other
ways to measure the algorithms quality can be tested.
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13. Bäck, T., Schwefel, H.: Evolutionary algorithms: Some very old strategies for op-
timization and adaptation. In: New Computing Techniques in Physics Research
II: Proceedings of the Second International Workshop on Software Engineering,
Artificial Intelligence, and Expert Systems for High Energy and Nuclear Physics,
pp. 247–254 (1992)
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Abstract. Allocating resources to hospital units is a major managerial
issue as the relationship between resources, utilization and patient flow
of different patient groups is complex. Furthermore, the problem is dy-
namic as patient arrival and treatment processes are stochastic. In this
paper we present a strategy optimization approach where the param-
eters of different strategies are optimized using a multiobjective EDA.
The strategies were designed such that they enable dynamic resource
allocation with an offline EDA. Also, the solutions are understandable
to health care professionals. We show that these techniques can be ap-
plied to this real-world problem. The results are compared to allocation
strategies used in hospital practice.

1 Introduction

Today, many hospitals face great demands to reduce costs and improve quality
of service, e.g. by reducing patient waiting times. In several European countries
this is due to the introduction of a free market health care system, like in the
Netherlands. In order to decrease costs, the occupancy rates of resources need to
be increased. Increasing resource utilization, however, may lead to bottlenecks
that cause the blocking of patient flows and thus increase patient waiting times.
Therefore, the efficient allocation of resources is an important issue.

Hospital resource management is concerned with the efficient and effective
deployment of resources, i.e. operating rooms and beds, when and where they
are needed. In many hospitals, this is a major managerial issue, especially due to
the complex relationship between resources, utilization and patient throughput
for different patient groups[1]. Moreover, the problem is stochastic as resource
usage at a hospital unit behaves like a stochastic process. Emergency patients
arrive in urgent need for care, complications require patient transfers and the pa-
tients’ length of stays are stochastic. Different patient treatment processes need
to be considered that typically involve several hospital units. Often, resources
(e.g. at the Intensive Care unit) are shared by multiple treatment processes.
Thus, hospital resource management is a complex and highly dynamic problem.
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For the optimization of resource management three outcome measures are
of interest to the hospital: patient throughput, i.e. the number of patients dis-
charged from the hospital after treatment, resource costs and back-up capacity
usage. In order to accommodate patients at the appropriate care level, a hospital
unit may open an extra bed or transfer a patient temporarily to another unit
until a bed becomes available. A well-designed hospital resource allocation fea-
tures high patient throughput at low resource costs and back-up capacity usage.
Previous work [2] showed that a trade-off is needed between these conflicting
objectives.

Due to the stochastic patient processes and the actual patient flow being the
result of resource availability, an analytical evaluation of a resource allocation
is not feasible. Furthermore, changing the structure of the patient pathways or
the underlying probability distributions is non-trivial in an analytical model.
Therefore, the simulation tool described in [2] is important to be used for the
evaluation of a resource allocation. Moreover, the decision space comprises al-
locations for each unit in a hospital. Due to the need of a complex simulation
tool for evaluation, the huge decision space and multiple conflicting objectives,
evolutionary algorithms (EAs) were chosen as solution technique, as they have
been shown to be very powerful for multi-objective (MO) optimization [3,4,5].

For optimizing hospital resource management, we apply strategy (or policy)
optimization, as advocated in [6]. Policies are parameterized functions that re-
turn an allocation decision for any given situation. The strategies’ parameters
are optimized using the EA. The advantage of using policies to solve stochastic
dynamic optimization problems is that only one strategy has to be optimized
that can be applied to a set of scenarios in the simulation. In cooperation with
domain experts from the Catharina Hospital Eindhoven (CHE), the Netherlands,
we designed strategies that enable dynamic resource allocations. The strategies
can be easily understood by health care professionals which is important for the
implementation and understanding in practice.

Thus, hospital resource management is a complex and dynamic problem that
requires state-of-the-art techniques from dynamic MO research. Specifically, we
combine strategy optimization with the SDR-AVS-MIDEA algorithm [7], an
Estimation-of-Distribution (EDA) algorithm. The algorithm uses mixture distri-
butions to stimulate the search for a broad Pareto-front and additionally contains
techniques to prevent premature convergence (SDR-AVS). We demonstrate the
applicability of these techniques to a real-world problem and their effectiveness.

Only few papers have addressed dynamic MO optimization, especially in
stochastic environments. The approach presented in [5] is developed for seldom
random changes of the environment and requires optimization from scratch if a
change in the environment is detected. Our approach uses strategy optimization
and therefore does not need to be re-optimized for each situation. Moreover, it
can handle also frequent changes of the environment because the strategies de-
scribe what to do in any situation. In [4] the performance of the Non-dominated
Sorting Genetic Algorithm version 2 (NSGA2) is evaluated for artificial objective
functions. In our work, we use objective functions for a real-world application.
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Work on hospital resource management can be found in the Operations Re-
search and Operations Management literature. The models mainly focus on ag-
gregated resource allocation policies, e.g. [1,8], or allocation policies for single
units, e.g. [9,10]. Our approach allows for an in-depth analysis of allocation
strategies also on the level of different hospital units. Furthermore, their work
solely addresses static allocations whereas we consider also the optimization of
dynamic resource allocation. The work in [11] provides theoretical results for hos-
pital bed utilization. Our approach is more flexible and can easily be adopted
to other settings. Moreover, earlier work considered hospital resource manage-
ment as a single-objective optimization problem. In [12], the MO optimization
problem is addressed. The model, however, is restricted to deterministic patient
treatment processes. In our approach, we incorporate stochastic treatment pro-
cesses that can be flexibly adjusted to other settings.

The remainder is organized as follows. First, we provide a model of the hospital
domain and a description of the resource allocation problem in Section 2. Next,
the allocation strategies and the algorithm used in our approach are presented in
sections 3 and 4. The experiments are reported in Section 5. Finally, in Section 6
we provide our conclusions and an outlook on future work.

2 Simulation Model and Optimization Problem

2.1 Simulation Model

The simulation tool for hospital resource allocation is based on a case study at
the CHE. The following features are included: patient characteristics influencing
the patients’ priority and pathway in the hospital and uncertainty related to the
pathways. The model is described below. For a more detailed description, the
reader is referred to [2].

Hospital care units. In general, a hospital can be divided into several, medi-
cally specialized, care units [13]. The units like nursing wards provide treatment
and monitoring and are typically dedicated to a medical specialty such as cardio-
thoracic surgery (CTS). The operating room (OR) is typically shared by different
specialties which are assigned time slots for performing surgical procedures (in-
dicated by a prefix). The intensive care unit (ICU) is often divided into several
subunits providing patient care and monitoring with different intensity. We dis-
tinguish between intensive care (IC), high care (HC) and medium care (MC).
The post anesthesia care unit (PACU) is dedicated to patients recovering from
anesthesia. The set of care units relevant for the simulation model is denoted by
U with U={CTS-OR, IC, IC-HC, MC, CTS-HC, CTS-PACU, CTS ward, o}. o
denotes the possible destinations of a patient’s discharge from the hospital which
are home or other care facilities, but also mortality.

Patient pathways and scheduling. We distinguish between scheduled pa-
tients (i.e. elective surgical patients from the waiting lists) and non-scheduled
patients (i.e. emergency patients in urgent need for surgical and/or intensive
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Fig. 1. Interference of CTS, other surgical and emergency patient pathways1

care). The set of patient groups is denoted by Θ. The Poisson arrival rate of pa-
tients is given as λg, g ∈ Θ. We define a patient pathway of group g ∈ Θ as the
sequence of actually required treatment operations and the respective length of
stay (LoS). The patient process represents all possible pathways of patient type
g ∈ Θ and is modeled by a probabilistic graph [14], Gg = (V g, Ag, P g), where
the set of nodes, V g ⊂ U , represents the involved hospital units and the set of
arcs, Ag, represents the possible adjacent treatment operations. The length of
stay of a patient of group g ∈ Θ at hospital unit u ∈ V g is modeled as a random
variable, LoSg

u, that follows a probability distribution PLoSg
u. P g is the set of

conditional probability distributions defined on Ag with

P g = {Pr(v|u, g, t)|u ∈ V g, (u, v) ∈ Ag, t ≥ 0} for g ∈ Θ. (1)

Pr(v|u, g, t) represents the probability that care provided at unit v is required
given that a patient of group g has been admitted to unit u for t time units.

Resources are required to perform treatment operations at a hospital unit.
Here, relevant resources are ORs and hospital beds. Often, hospital units operate
autonomously which means that schedules and resources are managed locally
by the units each applying their own (medical) priorities and preferences. The
simulation model reflects the distributed decision making by representing each
relevant unit by an agent. The policies for scheduling patient admissions and
transfers implemented in the agent-based simulation tool were derived from the
CHE case study. A detailed description is given in [2].

For the simulation we use four types of patient pathways (type I to IV) that
were identified in the CHE case study for the CTS. Type I and II patients are
CTS patients, for whom the immediate postoperative care is a priori indicated
as CTS-HC and CTS-PACU, respectively. The type III pathway corresponds to
the treatment process of emergency patients who arrive unexpectedly. The type
IV patient path represents the inflow of other surgical patients in the system.
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Figure 1 shows the four types of patient pathways1. The routing probabilities are
indicated on the arrows where differing from 100%. Type III and IV pathways
are restricted to their possible interference with type I and II patients at IC,
IC-HC, CTS-HC and MC. The preceding and successive treatment steps are not
considered because other dedicated resources are used.

2.2 Optimization Problem

In the following we consider a time horizon T with discrete time units t and
n equidistant decision moments denoted by ti ∈ T ′ ⊂ T with ti−1 < ti for
i = 1, . . . , n− 1. Typically, t would be in steps of hours and ti would be in steps
of days.

Decision variables & parameters. In the simulation model described above,
we consider the number of allocated resources as free decision variables (i.e.
control variables that impact the performance of the system). Formally, an allo-
cation policy, π(ti) = (πu(ti), u ∈ U), determines the number of resources, ru(t),
allocated to hospital unit u at time t ∈ T . Thus, we have that

ru(t) = πu(ti) ∀u ∈ U, ∀t ∈ T : t ∈ [ti, ti+1), ti ∈ T ′. (2)

The model parameters (i.e. the variables whose values characterize the problem
instance) are listed below:

P g: the conditional routing probability distribution of patient group g ∈ Θ
PLoSg

u: the length of stay probability distribution for type g ∈ Θ at unit u ∈ U
λg: the (daily) arrival rate of patients of type g ∈ Θ
rmin
u , rmax

u : the lower and upper bound for the resource capacity allocated to
unit u ∈ U ; the values are imposed by the layout of a hospital unit, the
available equipment, staff and funds

cu: the cost2 for a resource at hospital unit u ∈ U ; specifically, costs for the
OR are only accounted for if allocated OR capacity remains unused due to
cancelations of surgeries resulting from unavailable postoperative care beds3.

Performance evaluation of resource allocations. In order to optimize re-
source allocation in hospitals a trade-off is needed between conflicting objectives,
i.e. high patient throughput at low resource costs and back-up capacity usage.
The outcome resulting from running the simulation applying allocation policy π
is denoted by F = F (π) = (F0(π), F1(π), F2(π)) with
1 The actual patient routing may deviate from the medical indication depending on the

available beds at the respective hospital care units. Patients may only be transferred
to a higher care level than indicated. This gives more routing possibilities and thus
makes the patient flows in Figure 1 more complex. The procedure is described in
detail in [2].

2 Costs for hospital resources relate to the daily costs for staff and materials and are
expressed relative to the costs of a nursing ward bed.

3 We assume that all fixed and variable costs for an operating room are covered by
the surgical procedure that is to be performed. Therefore, only unused OR capacity
is accounted for in the resource costs for the OR.
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F0(π): the mean total throughput of patients under allocation π, defined as the
number of patients discharged from the hospital after treatment.

F1(π): the mean total resource costs given by

F1(π) =
∑

u∈U\{CTS−OR}

∑
ti∈T ′

cu · πu(ti) + cCTS−OR · ucCTS−OR(π),

where ucCTS−OR(π) denotes the unused CTS-OR capacity due to canceled
surgeries resulting from unavailable postoperative care beds given π.

F2(π): the mean total weighted back-up capacity usage under allocation π. The
weighting factors correspond to the cost weights cu, u ∈ U .

For optimizing resource management, F0(π) has to be maximized, while F1(π)
and F2(π) have to be minimized. In the following we use as objective function

F ′(π) = (−F0(π), F1(π), F2(π)).

Optimization problem. The MO problem can thus be formulated as

minF ′(π) (3)

where
∀u ∈ U ∀t ∈ T : ru(t) ∈ N ∩ [rmin

u , rmax
u ]. (4)

3 Strategies for Hospital Resource Management

As described in Section 2, hospital resource management is a highly stochastic
and dynamic problem. In our approach, we use strategy optimization as advo-
cated in [6]. Strategies are parameterized functions that return an allocation
decision given the current situation. We thus have to optimize only one strategy
that can be applied to a set of scenarios in the simulation because it describes
what to do in any given situation. The strategies described below were devel-
oped in cooperation with domain experts from CHE. Therefore, the strategies
can be easily understood by health care professionals which is important for the
implementation and understanding under practical conditions.

In the following, the allocation strategies used in this study are described.
Moreover, a mechanism for exchanging resources among units is described that
enables the implementation of dynamic resource allocation in practice.

3.1 Static Resource Allocation Policies

Static allocation policies allocate a fixed number of resources to the differ-
ent hospital units. We consider day-constant allocation policies, denoted by
πu(ti), u ∈ U , given by πu(ti) ≡ ru ∈ N for ti ∈ T ′. Day-constant policies
are typically employed by hospitals and are also current practice at the CHE.
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3.2 Dynamic Resource Allocation Strategy

A static allocation can do well in a relatively stable environment. This condition,
however, does not hold in hospitals due to the stochastic patient treatment
processes. Therefore, we consider dynamic strategies that return an allocation
for the units in the network, given the current state of the units. This allows the
resources (i.e. decision variables) to switch and track changes in the environment
(i.e. the optimization problem) dynamically. Below, the state representation, the
policy and its usage for dynamic resource allocation are described.

State description. The state at unit u at decision moment ti, su(ti), is deter-
mined by the resource utilization rate at u, i.e. the ratio between the utilized
capacity4 at the start of day ti and the resource capacity, ru(t−i ), just before the
adjustment at ti, denoted by t−i . Formally, we have su : T ′ → R+

0 , u ∈ U, with

su(ti) =
utilized capacity at unit u at start of day ti

ru(t−i )
. (5)

At the postoperative care units (CTS-PACU and CTS-HC) resources are avail-
able only for a couple of hours during the day. For these units the state at the
start of day ti defined in (5) may not be representative for the resource occu-
pancy during the remainder of ti, i.e. due to empty beds at the start of the day
and canceled surgeries during the day. For these units, the expected resource uti-
lization rate is used to determine su(ti). The expected utilized capacity for day
ti is calculated as the utilized capacity at time ti minus the expected patient
outflow plus the expected inflow (determined by the surgery scheme in the OR)
for day ti.

State-dependent allocation policy. A state-dependent allocation policy, de-
noted by (πu(ti, su), ti ∈ T ′, u ∈ U), is determined by five parameters: a base
resource allocation, rbase

u , two adjustments, rdecr
u and rincr

u , and two utilization
thresholds, UT decr

u ,UT incr
u with UT decr

u ≤ UT incr
u . We use an iterative step-

function π : T ′ × R+
0 → N|U| given as

πu(ti, su) =

⎧⎨⎩
max{rmin

u , ru(t−i ) − rdecr
u } , if su(ti) < UT decr

u

ru(t−i ) , if su(ti) ∈ [UT decr
u ,UT incr

u ]
min{rmax

u , ru(t−i ) + rincr
u } , otherwise

(6)

for t1, . . . , tn−1 and
πu(t0, su) = rbase

u , (7)

with πu(ti, su) ∈ [rmin
u , rmax

u ] ∀ti ∈ T ′, u ∈ U . In (6) the current resources
allocation, ru(t−i ), is decreased by rdecr

u if the resource utilization rate is below
the threshold UT decr

u . If the utilization rate is above UT incr
u , ru(t−i ) is increased

4 Note that due to the usage of back-up capacity the utilized capacity may exceed the
allocated resources, thus su may be greater than 1.
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by rincr
u . Otherwise, the current allocation remains unchanged. Note that the

policy specifies the allocation at the different units independently.
In the simulation the policy is applied at the start of every day after a

warming-up period. Warming-up is necessary to avoid early convergence to min-
imal allocations due to the empty hospital in the start of a simulation run.

For the dynamic resource allocation problem (4) is changed to

∀u ∈ U : rbase
u ∈ N ∩ [rmin

u , rmax
u ], (8)

∀u ∈ U ∀ti ∈ T ′ : su(ti) ∈ R+
0 , (9)

∀u ∈ U : rdecr
u , rincr

u ∈ [0, 5] (10)
∀u ∈ U : UT decr

u ∈ [0, 1], UT incr
u ∈ [UT decr

u ,UT decr
u + 1]. (11)

As large adjustments are not desirable for hospital management, a maximal
adjustment of 5 beds was chosen. Based on preliminary runs, a theoretical upper
bound of 2 for UT incr

u appeared to be more than sufficient.

3.3 Bed Exchange Mechanism for Dynamic Resource Allocation

In the state-dependent strategy described in Section 3.2, a large supply and stock
of beds is assumed which enables the concurrent in- and decrease in resource
capacity at the different units. In reality, however, bed availability is restricted
by the available staff, in particular the number of personnel needed to per bed
at a specific unit. Staff schedules need to be fixed at least several weeks in
advance. The use of stand-by personnel is not common in the hospital domain.
Therefore, a direct implementation of the policy described in Section 3.2 is often
not practically feasible. To enable dynamic resource allocation in hospitals, we
propose an exchange mechanism that is based on fixed personnel resources. The
resources are exchanged among the hospital units to meet the current local need.

Here, πu(ti, su) denotes the number of resources required by unit u at time ti,
determined by (6). The fixed personnel resources are determined by rbase

u , u ∈ U .
The actual resource allocation, ru(t), is set by the mechanism below and not by
(2).

We classify hospital units into three care levels, level 1 to level 3, based on
the intensity of care and monitoring and the skill level of the personnel. Here,
level 1 is the intensive care (IC), level 2 comprises the IC-HC, MC, CTS-HC and
the CTS-PACU unit. Level 3 is the CTS ward, or shortly referred to as ward.
From the application domain three rules arise for feasible bed exchanges:

R1: Due to staff training and physical requirements (i.e. access availability to
the isolated electric power system in the hospital), beds can only be ex-
changed within the same or between adjacent care levels.

R2: Due to the staff assigned to a bed, shifting one bed from level l to level
l + 1 yields two beds at l+ 1 for l = 1, 2.

R3: Due to the personnel required to operate a bed, only an even number of
beds can be shifted from level l to level l − 1 for l = 2, 3 (i.e. the reverse of
R2).
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For the sake of reproducibility the mechanism and the method shiftBeds are de-
scribed in detail in Algorithm 1. The number of resources available for exchange,
El, in care level l at time ti is determined by

El =
∑

u∈ level l

max{0, ru(t−i ) − πu(ti, su)}, l = 1, 2, 3. (12)

First, beds are shifted from level 1 to level 2. Then, level 2 beds are shifted to
level 1 if necessary. Subsequently, beds of level 2 are exchanged within level 2.
Finally, beds are exchanged between level 2 and 3. All exchanges are performed
only if additional resources are required. The order of the care levels is based on
the resource costs associated with the different units (given in Section 5.2). In
future work, also other orderings of care levels will be considered. The order of
units within a care level is determined randomly.

Through the mechanism, the implementation of (6) is extended with the above
adjustments at time ti ∈ T ′, depending on the interaction with other units. This
complex interaction mechanism answers to reality, however, it further compli-
cates the optimization of resource management. Therefore, a state-of-the-art
technique is needed for this optimization, which is described in Section 4.

4 EDA for Multi-objective Optimization

For the optimization of the dynamic and complex multi-objective resource allo-
cation problem, we apply the SDR-AVS-MIDEA algorithm [7]. The algorithm
was shown to be an efficient optimization technique for MO problems [7]. A brief
outline of SDR-AVS-MIDEA is given in Section 4.1.

We use a strategy optimization approach with the policies defined in Section 3.
The parameters of the strategies, specified in Section 5.1, are optimized using
SDR-AVS-MIDEA. The fitness is determined using the simulation tool described
in Section 2.1.

The optimization of the strategies is performed in an offline fashion. As the
strategies are used online in the simulation, the anticipation of time-dependency
effects [6], i.e. the impact of decisions taken now on the future, is implicitly in-
cluded in the optimization of the strategies’ parameters. Thus, MO techniques
can be applied in a straightforward fashion to solve this dynamic problem. Since
designing online MO appears to be rather hard, this approach yields an addi-
tional advantage. The policies proposed can be easily understood by health care
professionals, so this approach is also practically implementable.

4.1 Outline of SDR-AVS-MIDEA

In this section, a brief outline of the evolutionary algorithm is given. For a
detailed description the reader is referred to [7].

The algorithm divides the generated solutions into clusters of equal size that
are kept separated in the objective space throughout a run. The use of clus-
ters stimulates the search for a broad Pareto-front. New solutions are generated
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Algorithm 1. Pseudo-code description of the bed exchange mechanism
Input: Set of hospital units, U , πu(ti, su) ∀u ∈ U , determined by (6), and

El, l = 1, 2, 3, determined by (12)
Result: ru(ti)∀u ∈ U

for l = 1 to 3 do EXl ← El;
/*exchange from level 1 to level 2 applying rules R1 and R2; if the

exchange results in more beds at unit u than required, a bed is

shifted to another unit of level 2 in need of additional resource

capacity */

while EX1 > 0 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
if (πu(ti, su) − ru(t−i )) is an even number then

shiftBeds(1,2,IC,u,min{EX1, (πu(ti, su) − ru(t−i ))/2})
else

shiftBeds(1,2,IC,u,min{EX1, �(πu(ti, su) − ru(t−i ))/2�});
Find a v ∈ level 2, v �= u (if any) with πv(ti, sv) > rv(t−i ) and
shiftBeds(2,2,u,v,1);

/*exchange from level 2 to level 1 applying rules R1 and R3; if an

exchange from one unit is not feasible (R3), the exchange is

performed together with another unit of level 2 (if possible) */

while EX2 ≥ 2 and πIC(ti, sIC) > rIC(t−i ) do
Find v1 ∈ U with πv1(ti, svj ) < rv1(t

−
i );

if |πu(ti, su) − ru(t−i )| is an even number then
shiftBeds(2,1,v1,IC,min{|πv1(ti, sv1) − rv1(t−i )|/2, πIC(ti, sIC) −
rIC(t−i )});

else
Find v2 ∈ U, v2 �= v1, with πv2(ti, sv2) < rv2(t

−
i ) and

shiftBeds(2,2,v2,v1,1) and shiftBeds(2,1,v1,IC,min{�|πv1(ti, sv1) −
rv1(t−i )|/2�, πIC(ti, sIC) − rIC(t−i )});
if there is no such v2 then

shiftBeds(2,1,v1,IC,min{�|πv1 (ti, sv1) − rv1(t
−
i )|/2�, πIC(ti, sIC) −

rIC(t−i )});
/*exchange within level 2 applying rule R1 */

while EX2 > 0 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
Find a v ∈ level 2, v �= u, with πv(ti, sv) < rv(t−i ) and
shiftBeds(2,2,v,u,min{|πv(ti, sv) − rv(t−i )|, πu(ti, su) − ru(t−i )});

/*exchange from level 2 to level 3 applying rules R1 and R2 */

if EX2 > 0 and πward(ti, sward) > rward(t−i ) then
Find a v ∈ level 2, with πv(ti, sv) < rv(t−i ) and
shiftBeds(2,3,v,CTS ward,min{|πv(ti, sv) − rv(t−i )|, �(πward(ti, sward) −
rward(t−i ))/2�});

/*exchange from level 3 to level 2 applying rules R1 and R3 */

while EX3 ≥ 2 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
shiftBeds(3,2,CTS ward,u,min{�|πward(ti, sward) −
rward(t−i )|/2�, πu(ti, su) − ru(t−i )});

/*if no exchange is possible, the resource allocation remains

unchanged */

forall u ∈ U that were not yet considered do ru(ti) ← ru(t−i );
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Function. shiftBeds(int lfrom, int lto, unit ufrom, unit uto, int n)
k = 1;
if lfrom < lto then k = 2;
else if lfrom > lto then k = 0.5;
ruto(ti) ← ruto(ti)+k ·n, rufrom(ti) ← rufrom(ti)−n, EXlfrom ← EXlfrom −n;

according to the EDA principle. In each separate cluster a single normal distribu-
tion is used. The algorithm uses adaptive variance scaling (AVS) in combination
with standard-deviation ratio (SDR) triggers to prevent premature convergence.
This means that if the best fitness in a cluster is improved in one generation and
the average improvement is more than one standard deviation away from the es-
timated mean of the distribution, then the variance of the estimated distribution
is scaled up to increase the area of exploration. If, however, the improvements
are obtained near the mean of the predicted distribution, then the variance is
scaled down to allow for a faster convergence.

5 Experiments

5.1 Settings of SDR-AVS-MIDEA

The settings of the parameters in SDR-AVS-MIDEA are based on the guidelines
reported in [7,15] with the percentile for truncation selection set to 0.3, k = 4
clusters. The guideline in [15] is used and results in a population size per cluster
of 49 and 130 for the day-constant and the dynamic policies, respectively. The
variance multiplier decreaser of AVS equals 0.9 and the SDR threshold is set to
1.0. As in [7], an elitist archive is maintained. To this end, the objective space is
discretized in each objective with a discretization length of 10−3. This provides
sufficient granularity for the final Pareto-front approximations. We allowed 1600
generations for the different allocation policies.

In the EDA representation, the genes correspond to allocation policy pa-
rameters. For the day-constant policies described in Section 3.1, the genotype
comprises the values for ru, u ∈ U , with ru ∈ N ∩ [rmin

u , rmax
u ]. For the dynamic

policies described in Section 3.2 and Section 3.3, a genotype is composed of val-
ues rbase

u ∈ [rmin
u , rmax

u ], rdecr
u , rincr

u ∈ [0, 5], UT decr
u ∈ [0, 1], and Tu ∈ [0, 1] for

u ∈ U . The parameter Tu is used to determine UT incr
u by UT incr

u = UT decr
u +Tu.

The bounds, rmin
u and rmax

u , for the resource allocations were obtained from do-
main experts from CHE. These values are given in Table 1.

5.2 Settings of the Simulation Tool

Applying SDR-AVS-MIDEA to a real-world problem is associated with a large
number of potential solutions using a complex simulation model. We run 10
simulation runs of 20 weeks including 8 weeks of warming-up to evaluate the
allocation strategies. The warming-up period is not measured in the simulation
outcomes. This setting results in a runtime of about 6 seconds per evaluation.
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Table 1. Resource bounds, unit resource costs and benchmark day-constant policies
obtained from CHE case study

CTS-OR CTS-HC CTS-PACU IC IC-HC MC CTS ward

rmin
u 0 0 0 5 2 2 20

rmax
u 6 6 6 20 6 10 50

cu 0.09 2 2 4 2 2 1

πCHE
u 4 4 4 11 4 4 35

Table 2. Input parameters of patient pathways with LoS in hours (mean±stdev)

Type Unit LoS Pg Type Unit LoS Pg

I CTS-HC 15 ± 0 - II CTS-PACU 6 ± 0 -
IC 48.48 ± 54 0.15 IC 42 ± 57.12 0.05
MC 24.48 ± 38.52 0.15 MC 10.32±22.08 0.15
CTS ward 120 ± 22.08 0.7 CTS ward 120 ± 22.08 0.8

III IC 89.48±200.82 - IV IC-HC 34.94±68.51 -

In a sensitivity analysis, the mean and variance of the relevant outcome values
appear to be linear for increasing simulation run durations.

The settings for the patient pathways are based on the statistical data anal-
ysis conducted in the case study at the CHE. The relevant parameters of the
different patient pathways introduced in Section 2.1 are given in Table 2. We
use a Lognormal distribution for sampling patients’ LoS. Arrivals of type III
patients are Poisson with daily arrival rate λIII = 2. Patients of type IV arrive
daily in bulks between 2 and 4 patients. Costs for the different types of hospital
resources related to the daily costs for staff and materials and are expressed in
terms of relative costs of a nursing ward bed. The costs are given in Table 1. The
OR costs account for the unused OR capacity due to cancelations of surgeries
that result from unavailable postoperative care beds.

5.3 Results

One run of the EA takes approximately 10 hours for static strategy optimization
and 30 hours for dynamic strategy optimization on a high-performance com-
puter cluster. Specifically, we used 40 nodes running at speeds between 1.4Ghz
and 2.2Ghz. We have run the EA for each strategy three times, yielding very
comparable and stable results (within a strategy type).

In Figure 2 the results for the day-constant, the state-dependent strategies
and the exchange mechanism are presented. In the application domain, the exact
values for back-up capacity usage are of minor importance and a categorization
of minimal (corresponding to F2 ∈ [0, 50)), small (F2 ∈ [50, 100)), medium, etc. is
therefore sufficient for the representation of the optimization results. The results
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Fig. 2. Pareto-fronts for static and dynamic allocation policies including benchmarks
from CHE

are confined to F2-values below 500 as higher back-up capacity usage is not
desirable for many hospitals. We depict the Pareto-fronts with respect to F1 and
F0 for F2-values in the predefined intervals. This in addition allows us better
visibility of the results as opposed to 3D plots. To assess the performance of
the policies the currently used day-constant resource allocation at the CHE and
linearly scaled allocations are included as a benchmark for the relevant intervals.
The currently employed policy of the CHE is denoted by πCHE given in Table 1.
Also, benchmarks determined by linearly scaled allocations are considered that
are denoted by πCHE+i with πCHE+i = (�πCHE

u · (1 + i) + 0.5�, u ∈ U, i =
±10%,±20%,±30%).

The results in Figure 2 show that the benchmarks obtained from hospital prac-
tice are dominated by all policies proposed in this paper. Moreover, the dynamic
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resource allocation policies show higher performance compared to the static al-
location policies. For F2-values of above 300 and F1-values higher than 120, the
static and dynamic policies show similar performance. This can be explained by
the small extent and frequency of allocation adjustments of the dynamic policies
obtained for these F1 and F2 values. Since additional demand for care can be
met by using back-up capacity, less allocation adjustments are necessary in these
cases. The bed exchange policies show slightly lower performance compared to
the state-dependent policies. The difference can be attributed to the interaction
between the hospital units due to which required allocation adjustments cannot
always be fully undertaken.

6 Conclusions

In this paper, multiobjective optimization for dynamic hospital resource man-
agement using evolutionary algorithms was addressed. We use a strategy opti-
mization approach for which we designed policies that allow for the dynamic
allocation of resources in hospital practice. Due to the complexity of the alloca-
tion strategies and the dynamic application domain, we used a state-of-the-art
evolutionary MO technique, SDR-AVS-MIDEA. The fitness of the solutions was
determined using a simulation tool developed for this application domain. Our
results show that the benchmark allocations obtained from a case study could be
considerably improved using the optimized strategies. Furthermore, we showed
that policies that incorporate more dynamic resource allocations result in further
improvements. These improvements are made possible by the design of the policy.
SDR-AVS-MIDEA then is powerful enough to detect and exploit the additional
possibilities. We demonstrated that proper design in combination with state-of-
the-art EAs can make an important contribution and achieve an improvement
for complex real-world dynamic MO problems as in hospital logistics.

By using our strategy types, we can circumvent the online MO optimization
and use offline MO techniques to optimize the parameters of the strategies.
Furthermore, our approach is feasible for stochastic fitness functions obtained
from a simulation model.

In future work, we will develop allocation strategies that use more advanced
anticipation models of the time-dependency effects. Furthermore, we will con-
sider alternative orderings of care levels in the bed exchange mechanism. Also,
we will further explore the settings of SDR-AVS-MIDEA in relation to the above
extensions.
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Faculté Polytechnique de Mons, Laboratory of Mathematics & Operational Research
9, rue de Houdain, 7000 Mons, Belgium

thibaut.lust@fpms.ac.be

Abstract. We consider the following problem: to decompose a positive
integer matrix into a linear combination of binary matrices that respect
the consecutive ones property. The positive integer matrix corresponds to
fields giving the different radiation beams that a linear accelerator has
to send throughout the body of a patient. Due to the inhomogeneous
dose levels, leaves from a multi-leaf collimator are used between the ac-
celerator and the body of the patient to block the radiations. The leaves
positions can be represented by segments, that are binary matrices with
the consecutive ones property. The aim is to find a decomposition that
minimizes the irradiation time, and the setup-time to configure the multi-
leaf collimator at each step of the decomposition. We propose for this
NP-hard multiobjective problem a heuristic method, based on the Pareto
local search method. Experimentations are carried out on different size
instances and the results are reported. These first results are encouraging
and are a good basis for the design of more elaborated methods.

1 Introduction

In this paper, we consider a problem dealing with the planning of an intensity
modulated radiotherapy treatment (IRMT) to individual patients. The IRMT
is usually composed of three phases [5]: the selection of beam angles through
which radiation is delivered (geometry problem), the computation of an optimal
intensity map for each selected beam angle (intensity problem) and the deter-
mination of a sequence of configurations of a multi-leaf collimator (realization
problem). In this work, we only consider the realization problem, by taking into
account three different objective. We present below the mathematical model of
this problem.

Throughout we use the notation [n] := {1, 2, · · · , n} for positive integers n.
We consider a positive integer matrix A of size m×n: A = (ai,j) with i ∈ [m]

and j ∈ [n]. The matrix corresponds to fields giving the different radiation beams
that a linear accelerator has to send throughout the body of a patient. The value
ai,j of A gives the desired intensity that should be delivered to coordinate (i, j).

We have to decompose the matrix A into a set of segments. The segments
correspond to the shape of a multi-leaf collimator (MLC) which is a system con-
taining a collection of leaves that can be moved in parallel, in order to block the

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 335–349, 2009.
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radiations (inhomogeneous dose levels are administrated: certain cancer targets
receive a required amount of dose while functional organs are spared). Two types
of leaves are used: left leaves that move from the left to the right and right leaves
that move from the right to the left.

A segment can be represented by a special binary matrix of size m × n that
describes the leaves positions. These matrices have to respect the consecutive
ones property (C1), which means, in short, that the ones occur consecutively in
a single block in each row (since we can only block the radiations with a left or
a right leave).

A segment is noted S = (si,j) with i ∈ [m] and j ∈ [n]. An example of a
decomposition of a matrix A into segments is shown below.

A =

⎛⎝4 8 3
5 2 1
5 7 2

⎞⎠ = 4

⎛⎝1 1 0
1 0 0
1 1 0

⎞⎠+ 2

⎛⎝0 1 1
0 1 0
0 1 1

⎞⎠+ 1

⎛⎝0 1 1
1 0 0
1 1 0

⎞⎠+ 1

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠
The positions of the left and right leaves corresponding to a segment S are

given by the li and ri integers defined as follows:

0 ≤ li < ri ≤ n+ 1 (i ∈ [m])

si,j =
{

1 if li < j < ri (i ∈ [m], j ∈ [n])
0 otherwise.

We denote the set of segments by S.
For example, for the following segment:⎛⎝1 1 0

1 0 0
0 0 1

⎞⎠
we have: l1 = 0, r1 = 3; l2 = 0, r2 = 2 and l3 = 2, r3 = 4.

It should be noted that in this work, a line full of zero is always represented
by l = 0 and r = 1.

A feasible decomposition of A is a linear sum of segments and has the following
form:

A =
K∑

k=1

ukS
k with uk ∈ N0, S

k ∈ S ∀ k ∈ [K].

Two criteria are generally considered to evaluate the quality of a decomposi-
tion: the total irradiation time and the setup-time.

The total irradiation time, very important from a medical point of view, is
the time during which a patient is irradiated. This criterion is proportional to
the sum of the coefficients (decomposition time). The setup-time is the time to
configure the MLC. This criterion is proportional to the number of segments
(decomposition cardinality). It is important to minimize this criterion in order
to reduce the time of the session and so the comfort of the patient.
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We can formulate both objectives that is the decomposition time (DT) and
the decomposition cardinality (DC) as follows:

(DT) min

{
K∑

k=1

uk

∣∣ A =
K∑

k=1

ukS
k, uk ∈ N0, S

k ∈ S ∀ k ∈ [K]

}

(DC) min

{
K
∣∣ A =

K∑
k=1

ukS
k, uk ∈ N0, S

k ∈ S, ∀ k ∈ [K]

}
Polynomial algorithms are known for the DT minimization [3,13]. Many op-

timal solutions can be found for this single-objective problem.
On the other hand, the DC minimization has been proved to be NP-Hard [2,4].
Some authors [2,7,11] optimize the objectives lexicographically: by first min-

imizing DT and then trying to reduce the DC while keeping the minimal DT.
Taşkin et al. [14] and Wake et al. [15] recently considered both objectives at the
same time, but by simply doing a linear sum of the objectives.

To be more realistic, we do not only consider in this paper constant times
to move from one segment to the next. The variable setup-time is defined as
follows:

(SUvar ) min

{
K−1∑
k=1

μ(Sk, Sk+1) | A =
K∑

k=1

ukS
k, uk ∈ N0, S

k ∈ S, ∀ k ∈ [K]

}
where μ is proportional to the time necessary to change the setup of the MLC

from the configuration corresponding to Sk to the configuration corresponding
to Sk+1. This objective is also known under the name overall leaf travel time [11].

The value μ between two segments Sk and Sk+1 is computed as follows [13]:

μ
(
Sk, Sk+1) = max

1≤i≤m
max

{∣∣lk+1
i − lki

∣∣, ∣∣rk+1
i − rk

i

∣∣}
Once the segments are fixed, the minimization of the overall leaf travel time is

equivalent to a search for a Hamiltonian path of minimal weight on the complete
graph which has the segments as vertices and the weight function μ on the edges.
The weight function μ has the property to be a metric [11].

This problem can be transformed to a TSP problem (Hamiltonian cycle of
minimal weight) by adding a dummy vertex which has a distance of zero to all
other vertices. However, with this transformation, the triangular inequality in
Euclidean space no longer holds which makes the TSP problem a little bit harder
to solve.

Since there is a positive correlation between DC and SUvar, the few authors
that have considered SUvar tried to first minimize DC and then SUvar by gener-
ating the best sequence of segments. Kalinowski [11] uses a minimum spanning
tree approximation to find the best sequence of segments, but it also possible to
use an exact TSP algorithm, as done by Ehrgott et al. [6].

Siochi [13] considered both objectives at the same time, but through a linear
sum.
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In this paper, we will consider the three objectives (DT,DC,SUvar) simulta-
neously. The multiobjective formulation of the problem (P) considered is thus
as follows:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z1(x) =
K∑

k=1

uk (DT)

min z2(x) = K (DC)

min z3(x) =
K−1∑
k=1

max
1≤i≤m

max
{∣∣lk+1

i − lki
∣∣, ∣∣rk+1

i − rk
i

∣∣} (SUvar )

s.t A =
K∑

k=1

ukSk, uk ∈ N0, S
k ∈ S ,∀ k ∈ [K]

We denote by X the feasible set in the decision space, defined by X =
{
x ∈

{(uk ∈ N0, S
k ∈ S)}K |A =

∑K
k=1 ukS

k
}
. The feasible set in objective space is

called Z and is defined by Z = z(X) =
{
(z1(x), z2(x), z3(x)), ∀x ∈ X

}
⊂ Z3.

To our knowledge, nobody has tried to find the efficient solutions, or even a
good approximation of the efficient solutions of P. Our aim is to generate a good
approximation of a minimal complete set [8] of the efficient solutions of P.

2 Pareto Local Search

The Pareto local search (PLS) method [1,12] is one of the simplest method for
multiobjective optimization. This method is a purely local search algorithm, gen-
eralization in the multiobjective case of a basic metaheuristic: the hill-climbing
method. The method does not require any objectives aggregation nor any nu-
merical parameters, and is based on the notion of Pareto local optimum set [12].

The pseudo-code of the PLS method is given by the algorithm 1.
The method starts with a population P composed of potentially efficient so-

lutions given by the initial population P0, which is an input parameter of the
method. Then, all the neighbors p′ of each solution p of P are generated. If a
neighbor p′ is not weakly dominated by the current solution p, we try to add
the solution p′ to the approximation X̂E of the efficient set, which is updated
with the procedure AddSolution. This procedure is not described in this work
but simply consists of updating an approximation X̂E of the efficient set when
a new solution p is added to X̂E . This procedure has four parameters, the set
X̂E to actualize, the new solution p, its evaluation z(p) and an optional boolean
variable called Added that returns True if the new solution has been added and
False otherwise. If the solution p′ has been added to X̂E , the boolean variable
Added is true and the solution p′ is added to an auxiliary population Pa, which
is updated also with the procedure AddSolution. Once all the neighbors of each
solution of P have been generated, the algorithm starts again, with P equal to
Pa, until P = ∅. The auxiliary population is used such that the neighborhood
of each solution of the population P is explored, even if some solutions of P be-
come dominated following the addition of a new solution to P . Thus, sometimes,
neighbors are generated from a dominated solution.
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Algorithm 1. PLS
Parameters ↓: An initial population P0

Parameters ↑: An approximation X̂E of the efficient set

- -| Initialization of X̂E and a population P with the initial population P0

X̂E ← P0

P ← P0

- -| Initialization of an auxiliary population Pa

Pa ← ∅
while P �= ∅ do

- -| Generation of all the neighbors p′ of each solution p ∈ P
for all p ∈ P do

for all p′ ∈ N (p) do
if z(p) � z(p′) then

AddSolution(X̂E �, p′ ↓, z(p′) ↓, Added ↑)
if Added = true then

AddSolution(Pa �, p′ ↓, z(p′) ↓)
- -| P is composed of the new potentially efficient solutions
P ← Pa

- -| Reinitialization of Pa

Pa ← ∅

3 Adaptation of PLS to the Multiobjective Decomposition
Problem

3.1 Initial Population

Two initial solutions of good quality are generated and added to the initial
population. The first solution is a good approximation of lexmin(DT,DC,SUvar)
and the second one is a good approximation of lexmin(DT,SUvar ,DC). In both
cases, we first minimize DT since polynomial algorithms are known for this
problem. We can remark that a solution corresponding to lexmin(DT,SUvar)
is also a solution corresponding to lexmin(DT,SUvar ,DC), since once SUvar is
minimized, the DC value is set and can not be modified.

To approximate lexmin(DT,DC,SUvar), we first approximate lexmin(DT,DC)
with the heuristic of Engel [7] which is efficient for this problem. We then apply
a TSP heuristic to reduce the SUvar value of the solution. We use a very efficient
heuristic for the TSP: the Lin and Kernighan heuristic implemented by Helsgaun
(LKH) [10].

To approximate lexmin(DT,SUvar), we will adapt the heuristic of Engel since
SUvar is correlated to the DC objective. The algorithm developed by Engel is a
deterministic construction algorithm, that allows to find an optimal solution for
the DT objective with a low DC value. He tackles this problem as follows: he
removes different well-selected combinations of couples (uk, S

k) from the current
matrix until At+1 = 0, with At+1 = At − uS, where t represent the index of the
step of the construction algorithm. He starts the algorithm with A0 = A. A
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move consists thus of removing from the current matrix a segment multiplied by
a certain coefficient.

At each step of the construction heuristic, the maximum coefficient (umax)
that can be used while ensuring that the optimal objective DT can be achieved
is considered.

Engel has developed a theory to compute umax. The coefficient umax can be
easily obtained in O(mn2). Using umax allows to find very good results for the
lexicographic problem (DT,DC) [6,7,11].

But once umax has been defined, we also have to define which segment to use
among all the segments that respect umax. Kalinoswki [11] has developed a rule
which gives slightly better results that the initial rule of Engel. The rule is as
follows. If two zero columns are added to A, that is let:

ai,0 = ai,n+1 = 0 ∀ i ∈ [m]

we can associate to A its difference matrix D of dimension m× (n+ 1):

di,j = ai,j − ai,j−1 ∀ i ∈ [m], j ∈ [n+ 1]

Now, we put

q(A) =
∣∣{(i, j) ∈ [m] × [n] : di,j �= 0}

∣∣,
and in the method of Kalinowski, we choose a segment S so that q(A − uS) is
minimized.

This method gives very good results for lexmin(DT,DC), but there is no the-
oretical evidence for that.

For lexmin(DT,SUvar), we keep the principle of the construction algorithm
of Engel by removing well-selected combinations of couples (uk, S

k) from the
current matrix until A(t+ 1) = 0.

As in the Engel algorithm, it is worthwhile to take the maximal coefficient
that allows to keep the minimal DT value, since the SUvar objective is linked to
the DC objective. For the definition of the segment that corresponds to umax,
we try three new rules. These three new rules are presented below.

For each line of the new segment to define, we have to choose between different
intervals. If we sort out the intervals as follows: {(0, 1), (0, 2), · · · , (0, n + 1),
(1, 3), · · · , (1, n+ 1), · · · , (n− 2, n), (n− 2, n+ 1), (n− 1, n+ 1)}, the first rule is
to take the first feasible interval and the second rule is to take the last feasible
interval. For these two rules, we expect to always move the leaves from the left
to the right or to the right from the left to minimize the maximal distance
between two consecutive segments. The third rule is to take the first feasible
interval which is the closest to the preceding interval of the same line: the aim is
to minimize the maximal distance between two consecutive segments. The first
interval defined with this rule is the same than the one selected with the first
rule. The results of the comparison between the different rules will be given at
section 4.
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3.2 Neighborhood

The neighborhood is the most important element of the PLS method. On the
other hand, it is not trivial to produce neighbors from a feasible solution for
the problem P. Removing one segment of the current solution is not enough.
Removing two segments from the current solution requires to determine how to
select both segments and how to recombine these two segments to produce a
new feasible solution, ideally of better quality. Moreover, it will be difficult with
this kind of technique to find neighbors with different DC values. Modifying the
sequence of segments can improve the SUvar objective, but we can always apply
a TSP algorithm at the end of the decomposition to improve this objective.

The neighborhood developed in this work is thus a bit complex. It works as
follows:

1. Selection of a segment S that belongs to the current decomposition.
2. We modify a line i of S in the following way:

li = li + (−1 or 0 or 1)
ri = ri + (−1 or 0 or 1)

3. We put S at the first place of the new decomposition.
4. We eventually modify the coefficient of this segment.
5. We construct a neighbor by adding the segments in the order of the current

decomposition. If a segment is not feasible, we skip it. We adapt the coef-
ficient of the segments added, which is equal to the minimum between the
current coefficient of the segment and the maximal feasible coefficient.

6. The matrix that remains after adding all the possible segments is decom-
posed with the heuristic of Engel.

7. Once a decomposition is obtained, we optimize the SUvar objective by using
a simple and fast TSP heuristic: the first improvement local search based on
the 2-edges exchange moves [9].

This neighborhood requires the definition of many elements, but we will see
that it is possible to explore many possibilities.

To illustrate the neighborhood, we show its functioning on the following ex-
ample:

A =
(

8 5 6
5 3 6

)
Ehrgott et al. [6] showed that for this example, DT and SUvar are contradic-

tory, as well as DT and DC.
Let us consider that we start the neighborhood from the following solution,

which minimizes the DT objective:

A =
(

8 5 6
5 3 6

)
= 3
(

1 0 0
0 0 1

)
+ 1
(

0 0 1
0 1 1

)
+ 3
(

1 1 1
1 0 0

)
+ 2
(

1 1 1
1 1 1

)
The DT value of this solution is optimal and equal to 9, DC is equal to 4 and

the SUvar value is equal to (2+2+2)=6.
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We apply the neighborhood to this solution:

1. We select the first segment: (
1 0 0
0 0 1

)
2. We select the second line. For this line, l = 2 and r = 4. We modify this line

by putting l = 1, r = 3. We obtain this segment:(
1 0 0
0 1 0

)
3. We put this segment at the first place of the new decomposition.
4. The current coefficient of this segment is equal to 3. As for this segment,

the maximal feasible coefficient that we can put is 3, we keep the coefficient
equal to 3. The remaining matrix is:(

5 5 6
5 0 6

)
5. The first segment that we can consider is:(

0 0 1
0 1 1

)
but we can not add it.
The second segment is: (

1 1 1
1 0 0

)
We add it, with a coefficient equal to 3, that is its current coefficient. The
remaining matrix is: (

2 2 3
2 0 6

)
The last segment in the initial decomposition is:(

1 1 1
1 1 1

)
but we can not add it.

6. The decomposition of the remaining matrix with the heuristic of Engel gives:

5
(

0 0 0
0 0 1

)
+ 2
(

1 1 1
1 0 0

)
+ 1
(

0 0 1
0 0 1

)
The decomposition obtained is thus:

3
(

1 0 0
0 1 0

)
+ 3
(

1 1 1
1 0 0

)
+ 5
(

0 0 0
0 0 1

)
+ 2
(

1 1 1
1 0 0

)
+ 1
(

0 0 1
0 0 1

)
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But as we can see, it is possible to combine the second segment with the
fourth one, to obtain this decomposition:

3
(

1 0 0
0 1 0

)
+ 5
(

1 1 1
1 0 0

)
+ 5
(

0 0 0
0 0 1

)
+ 1
(

0 0 1
0 0 1

)
Therefore, each time we try to add a segment to a current decomposition,
we check if we can combine this segment with other segments of the decom-
position, in order to reduce the DC and SUvar values of the decomposition
(this algorithm is not described in this work because of limited space).

The DT value of this solution is equal to 14, DC is equal to 4 and SUvar

is equal to (2+3+1)=6.
7. The matrix of distances between the segments is as follows:⎡⎢⎢⎢⎢⎣

S1 S2 S3 S4
S1 0 2 1 2
S2 2 0 3 2
S3 1 3 0 3
S4 2 2 3 0

⎤⎥⎥⎥⎥⎦
We see that by doing a 2-edges exchange move (S3 + S1 + S2 + S4), we can
improve the SUvar objective by one unit. We obtain the following neighbor:

5
(

0 0 0
0 0 1

)
+ 3
(

1 0 0
0 1 0

)
+ 5
(

1 1 1
1 0 0

)
+ 1
(

0 0 1
0 0 1

)
The evaluation vector z of this solution is thus equal to (14,4,5).

We have thus obtained a new potentially efficient solution, and we can again
apply the neighborhood from this solution:

1. We select the third segment: (
1 1 1
1 0 0

)
2. We select the first line. For this line, l = 0 and r = 4. We modify this line

by putting r = 3. We obtain this segment:(
1 1 0
1 0 0

)
3. We put this segment at the first place of the new decomposition.
4. The current coefficient of this segment is equal to 5. As for this segment,

the maximal feasible coefficient that we can put is 5, we keep the coefficient
equal to 5. The remaining matrix is:(

3 0 6
0 3 6

)
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5. The first segment that we can consider is:(
0 0 0
0 0 1

)
We add it, with a coefficient equal to 5, that is its current coefficient. The
remaining matrix is: (

3 0 6
0 3 1

)
The second segment is: (

1 0 0
0 1 0

)
We add it, with a coefficient equal to 3, that is its current coefficient. The
remaining matrix is: (

0 0 6
0 0 1

)
The last segment in the initial decomposition is:(

0 0 1
0 0 1

)
We add it, with a coefficient equal to 1, that is its current coefficient.

6. The remaining matrix is: (
0 0 5
0 0 0

)
The decomposition of this matrix with the heuristic of Engel gives:

5
(

0 0 1
0 0 0

)
The decomposition obtained is thus:

5
(

1 1 0
1 0 0

)
+ 5
(

0 0 0
0 0 1

)
+ 3
(

1 0 0
0 1 0

)
+ 1
(

0 0 1
0 0 1

)
+ 5
(

0 0 1
0 0 0

)
But as we can see, it is possible to combine the second segment with the
last one, and then the result of this combination with the fourth segment to
obtain this decomposition:

5
(

1 1 0
1 0 0

)
+ 3
(

1 0 0
0 1 0

)
+ 6
(

0 0 1
0 0 1

)
with a SUvar value equal to (1+2)=3.
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7. The matrix of distances between the segments is as follows:⎡⎢⎢⎣
S1 S2 S3

S1 0 1 2
S2 1 0 2
S3 2 2 0

⎤⎥⎥⎦
We see that it is impossible to improve the SUvar objective by doing 2-edges
exchange moves.

The DT value of this solution is equal to 14, and the DC and SUvar values
are equal to 3 (which are the optimal values [6]).

Therefore, by applying two times the neighborhood from a solution that min-
imizes the DT objective, we have found a solution that minimizes the DC and
SUvar values.

It should be noted that we have found one more potential non-dominated
point for this problem: the point (10,4,4).

For this small problem, we have thus found three potential non-dominated
points: (9,4,6), (10,4,4) and (14,3,3).

3.3 Final Optimization Step

For each potentially efficient solution found at the end of the PLS method, we
apply the LKH heuristic, to eventually improve the SUvar value of the solutions.

4 Results

4.1 Rules for the Heuristic of Engel

We experiment here the different rules for the selection of the intervals in the
heuristic of Engel. The rule “Min” is to take the first feasible interval which is
the closest to the preceding interval, the rule “First” is to take the first feasible
interval, the rule “Last” is to take the last feasible interval and the rule “Kali”
is the rule developed by Kalinowski (see section 3.1).

To compare the four rules, we use the same instances of Engel, that is, matrix
15x15 with randomly generated elements (uniformly distributed) between zero
and the parameter L. For each value of L we make the average on 1000 different
matrices for three values: the DC objective, the SUvar objective and the SUvar

optimized objective which is the value of SUvar obtained after optimization of
the sequence of segments with the LKH heuristic.

The results are given at table 1, for L going from 3 to 16.
We remark that for the DC objective, the “Kali” rule is better than the others.

But if we want to minimize the SUvar objective, we remark that the “Last” rule
allows to obtain better results for the SUvar optimized objective. If we do not
consider the optimization step, the rule “First” is the best for L = 3 and L = 4,
the “Last” rule is the best for L going from 5 to 13 and the rule “Min” is the
best for L going from 14 to 16.
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Table 1. DC, SUvar, SUvar optimized values obtained by the different rules. A=15x15.

DC SUvar SUvar optimized
L Min First Last Kali Min First Last Kali Min First Last Kali
3 10.32 10.32 9.93 9.72 79.69 69.57 70.38 113.68 77.43 63.05 61.23 103.14
4 11.73 11.74 11.33 10.94 94.22 83.74 84.10 127.63 91.72 74.72 71.63 114.44
5 12.69 12.69 12.29 11.76 104.81 96.55 95.11 137.43 101.82 84.85 80.34 122.28
6 13.56 13.56 13.14 12.50 112.35 107.29 105.53 146.62 108.98 93.19 88.62 129.35
7 14.27 14.26 13.85 13.12 119.49 117.02 114.22 153.55 115.75 101.14 95.83 134.90
8 14.91 14.90 14.48 13.71 126.53 126.12 122.94 160.69 122.39 108.12 102.30 140.40
9 15.52 15.46 15.09 14.20 133.32 133.65 129.75 166.67 128.38 114.32 107.66 144.95
10 16.04 15.98 15.59 14.69 139.10 141.08 137.05 172.46 134.04 120.17 113.93 149.60
11 16.46 16.37 16.01 15.06 144.16 147.09 142.57 177.08 138.56 125.22 118.31 152.92
12 16.92 16.81 16.49 15.46 149.41 153.17 148.31 182.08 143.47 130.06 122.71 156.71
13 17.30 17.18 16.87 15.81 153.56 158.54 153.42 186.16 147.34 134.47 126.85 160.10
14 17.62 17.53 17.21 16.13 157.19 162.91 157.96 189.64 150.70 138.10 130.82 162.75
15 18.01 17.91 17.55 16.52 162.00 168.27 163.02 194.47 154.91 142.46 135.04 166.35
16 18.29 18.16 17.89 16.79 166.22 172.34 167.41 197.64 158.84 146.25 138.53 169.18

Therefore, the “Last” rule allows to considerably reduces the SUvar objective
comparing to the rule of Kalinowski, even if this rule gives higher DC value on
average. The running time of the heuristic of Engel with each of these rules is
negligible.

4.2 Pareto Local Search

The initial population of PLS is updated with two solutions: the first one is a
good approximation of lexmin(DT,DC,SUvar) (obtained with the “Kali” rule and
LKH) and the second one is a good approximation of lexmin(DT,SUvar ,DC) (ob-
tained with the “Last” rule and LKH). If there is one solution that dominates the
other, the population will be composed of only one solution: the non-dominated
one.

For the neighborhood, we adopt the following choices:

– We try all the possible segments for the segment that we put at the beginning
of the new decomposition.

– Either we do not modify the segment or we modify it by trying all the pos-
sibilities of modification. We modify each line of the segment separately, by
considering all the feasible possibilities for each line (equal to maximum 8).

– We try all the feasible coefficients for the segment that we put at the begin-
ning of the decomposition.

– The remaining matrix is decomposed with the heuristic of Engel (“Last”
rule).

If the number of segments of the current decomposition is equal to K and
the maximal value of the matrix equal to L, a crude bound for the number of
neighbors generated is equal to KL(8m+ 1).
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To experiment the method, we use the same instances than in section 4.1.
As no state-of-the-art results are known for this multiobjective problem, we use
very specific indicators to measure the quality of the approximations obtained.

At table 2, we report the number of potential non-dominated points found
(NNDP), the number of phases of the PLS method before convergence and the
running time in seconds (on a Intel Core 2 Duo T7500 2.2 GHz processor). We
indicate for each indicator the minimum, maximum and mean value found. For
each value of L we make the average on 20 different matrices.

Table 2. Indicators PLS(1)

NNDP Number of phases Time(s)
L Mean Min Max Mean Min Max Mean Min Max
3 1.35 1 2 3.55 1 8 1.39 0.28 3.78
4 1.80 1 3 5.35 2 9 3.79 0.84 7.90
5 1.80 1 3 5.50 2 11 5.43 1.14 13.00
6 2.00 1 3 5.40 2 10 7.34 1.51 17.36
7 2.15 1 4 6.10 1 11 10.10 1.22 24.49
8 2.45 1 4 6.55 1 12 12.85 1.26 29.28
9 2.60 1 6 5.90 2 10 15.45 2.95 35.48
10 3.15 2 5 6.35 2 11 18.60 5.02 49.82
11 2.75 1 5 6.30 2 11 21.42 4.29 46.24
12 2.95 1 5 5.95 2 11 22.40 4.34 49.20
13 2.95 1 6 5.75 1 11 28.63 2.42 93.13
14 2.95 1 5 6.10 2 14 30.28 4.60 72.08
15 3.50 1 10 6.95 2 18 40.77 5.82 98.94
16 2.75 1 5 5.20 2 12 28.08 5.56 83.57

We remark that:

– The number of potential non-dominated points is not high: between 1 and 10,
with a mean value between 1 and 4. The correlation between the objectives
seems thus high for these instances.

– The mean number of phases is included between 3 and 7, what means that
the neighborhood is efficient since at each phase improvements are realized.
Please remind that if there is no new potential efficient solution generated
during a phase, the PLS method stops since a Pareto local optimum set has
been found.

– The mean running time is acceptable, between 1 and 41 seconds. But for
some instances, the running time can be higher, until 99 seconds for an
instance with L = 15.

To evaluate the quality of the results, we evaluate the improvement of DC
by comparing the best value obtained with PLS to the value obtained by the
heuristic of Engel with the “Kali” rule. We evaluate the improvement of SUvar by
comparing the best SUvar value obtained with PLS to the SUvar value obtained
with the heuristic of Engel with the “Kali” rule and LKH and to the value
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Table 3. Indicators PLS(2)

DT optimal DT not necessary optimal
% DC % SUvar % DC % SUvar

L Kali Kali+LKH Last+LKH Kali Kali+LKH Last+LKH
3 0.00 44.35 12.49 0.45 44.52 12.77
4 0.42 40.11 8.12 0.42 40.11 8.12
5 0.83 37.90 12.20 0.83 37.90 12.20
6 0.38 33.93 7.98 0.38 33.93 7.98
7 0.00 31.18 7.74 0.00 31.24 7.83
8 0.33 33.32 7.79 0.33 33.32 7.79
9 0.00 31.06 7.97 0.00 31.23 8.17
10 0.33 28.68 6.75 0.33 28.98 7.12
11 0.31 26.11 5.61 0.31 26.47 6.06
12 0.00 25.30 6.81 0.00 25.30 6.81
13 0.31 25.36 6.11 0.31 26.25 7.19
14 0.29 24.69 5.70 0.29 24.78 5.81
15 0.29 24.44 6.90 0.29 25.76 8.53
16 0.00 22.59 6.65 0.00 22.89 7.00

obtained with the heuristic of Engel with the “Last” rule and LKH. Two cases
are distinguished: initially we evaluate the improvements made if we keep the
optimal value for DT, and secondly, we have no restrictions on the DT objective.

Results are shown at table 3 (mean values). We see that the improvements of
the DC value are very small. Indeed, the heuristic of Engel with the “Kali” rule is
known to give near-optimal results for lexmin(DT,DC) on random instances [11].
On the other hand, the improvements of the SUvar values are remarkable. Com-
paring to the values obtained by the heuristic of Engel with the “Kali” rule and
LKH, we obtain improvements from 22 % to 44 %. Comparing to the heuristic
of Engel with the “Last” rule and LKH (which is one of the initial solution of
PLS), we obtain improvements from 5 % to 12 %.

We also see that allowing to deteriorate the DT value is only interesting for
some instances. Both objectives DC and SUvar seem thus very correlated with
the DT objective.

5 Conclusion and Discussion

We have presented in this paper first results for the multiobjective decomposition
of positive integer matrices, within the framework of the radiotherapy treatment.

More experimentations on different types of instances (size and characteris-
tics) and on real instances will have to be carried out to obtain more information
about the correlation between the objectives, and to validate the approach.

But first results obtained with PLS are encouraging since the method allows
to improve state-of-the-art results. This method could be the basis for a more
elaborated method, like an evolutionary multiobjective algorithm where PLS
would be used as an intensification operator.
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Abstract. This paper describes applying a new EMO algorithm for a
real-world optimization problem arising from wastewater treatment. In
addition, the results are compared to the ones obtained by applying the
interactive multiobjective optimization tool IND-NIMBUS to the same
problem. How the comparison should be made is not self-evident but we
try to highlight the pros and cons of both the evolutionary multiobjec-
tive optimization and the multiple criteria decision making fields in the
context of the wastewater treatment plant design problem considered.

1 Introduction

Many real-world optimization problems are multiobjective by their nature. In
addition, sometimes the objective and the constraint function values originate
from some numerical simulation procedure which is implementd as a (black-
box) simulator. In that case, we can not usually make any assumptions of the
behaviour of the functions (e.g., convexity, differentiability) to be utilized in op-
timization. Further, the simulation itself can be time consuming which means
that obtaining the function values can take lots of time and it should be taken
into account in optimization. Multiple conflicting objective functions can lead
us to infinitely many optimal solutions called Pareto optimal solutions that are
mathematically equivalent. The ultimate goal is that at the end of the optimiza-
tion process, we need to have only one optimal solution which is best for the
problem considered and is to be implemented in practice. Therefore, we need to
have optimization tools that can handle multiple conlicting objectives, do not
utilize any specific properties of the functions in the optimization problem and
are able to produce the best solution for a decision maker (DM) to proceed with.

A traditional way to solve multiobjective optimization problems has been to
apply the methods of multiple criteria decision making (MCDM) [5,17,26,27]. Re-
cently, the evolutionary multiobjective optimization (EMO) approach [6,7,12,33]
has been gaining ground and challenged the classical MCDM methods, especially,
in solving engineering problems with multiple criteria. The methods of EMO are
well suited for problems where little or no assumptions can be made of the ob-
jective or constraint functions because, for example, they do not utilize gradient
information.

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 350–364, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The main difference between the MCDM and the EMO methods is that the
former work with only one solution at a time while the latter operates on a set
of solutions called a population. In other words, the MCDM methods produce
one Pareto optimal solution at a time by, for example, solving a scalarized single
objective problem that produces a Pareto optimal solution. On the other hand,
the EMO approach tries to evolve a set of solutions so that they finally cover
the whole Pareto front evenly and are as close as possible to the actual front.

The methods of multiobjective optimization can be classified, for example,
according to the role of the DM in the solution process (see, for example, [17]).
The classes are i) the methods that do not utilize any preference information,
ii) a priori methods, iii) a posteriori methods, and iv) interactive methods. The
methods in the first class do not utilize any preference information because, for
example, the DM might not be available. A priori methods ask the preferences
of the DM before the solution process, whereas a posteriori methods utilize the
DM after the Pareto optimal solutions are computed. The last class consists of
methods where the DM is able to input his/her preferences iteratively during
the solution process. Note that the EMO methods fall into the class of a poste-
riori methods according to this classification. Recently, there has been efforts to
combine the MCDM and the EMO approaches in order to utilize the strengths
of both approaches (see, for example, [3]).

In this paper, we consider a real-world optimization problem arising from
wastewater treatment plant (WWTP) design. The design problem has three
conflicting objectives, it is based on numerical simulation of the wastewater
treatment process and the objective function values come from a black-box pro-
cess simulator which means that we do not have any gradients available. Thus,
this problem is a typical real-world optimization problem. To solve the WWTP
design problem we utilize both an MCDM and an EMO approach. To be more
precise, we use an interactive multiobjective optimization tool IND-NIMBUS
[18] and a new EMO algorithm introduced in [1]. In addition, we make a com-
parison of the results obtained, although the approaches are quite different in
nature which makes the comparison difficult and it is not at all trivial how the
comparison should be made. The issue of comparing the results of the MCDM
and the EMO approaches is also very interesting in a more general setting but
that is out of the scope of this paper.

Optimization of WWTP design by modelling and simulation usually involves
comparisons of different process schemes or control strategies. The behaviour
of the considered solutions is simulated, and the results are then compared to
each other, usually in terms of investment or operational costs. The comparison
can be done either by engineering judgement, as is usually the case or using an
optimization algorithm (see e.g., [9,23]). However, using only one objective func-
tion instead of several individual criteria hides the interdependencies between
different criteria and, thus, makes it difficult for the DM, who might be, e.g., a
designer or a plant operator, to assess the true optimality of the solution. The
DM may also have non-quantifiable priorities, such as operational stability and
ease of operation, which may depend on many decision variables to be optimized.
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Therefore, for a truly optimal design, the procedure must present the DM with
solutions based on a multiobjective optimization approach, out of which (s)he
can choose the best ones to be elaborated further.

The WWTP design has been previously considered by optimizing only one
objective function, that in one way or another describes the costs of the process
to be minimized (see, for example, [9,23]). So far, we haven’t found any papers
that deal with simulation-based multiobjective WWTP design. As the first at-
tempt to tackle simulation-based multiobjective WWTP design, we solved the
problem considered here in [10] by utilizing IND-NIMBUS. The interactive so-
lution process of that study is briefly described in Section 3.3. In this paper, the
new EMO algorithm has been applied to the same WWTP design problem and
it is the first time it has been applied to any real-world optimization problem.

The rest of this paper is organized as follows. First in Section 2, we describe
both the EMO and the MCDM approaches and, especially, the representative
methods considered in this paper, namely the new EMO algorithm and IND-
NIMBUS. Section 3 is devoted to the real-world application related to wastew-
ater treatment plant design. We present solution processes and results for both
the new EMO algorithm and IND-NIMBUS and compare the results obtained.
Finally in Section 4, we make some conluding remarks about the study.

2 Possible Approaches

We consider multiobjective optimization problem of the form

minimize {f1(xxx), . . . , fk(xxx)}
subject to xxx ∈ S,

(1)

where k conflicting objective functions fi(xxx) are minimized simultaneously. The
objective vectors fff(xxx) = (f1(xxx), . . . , fk(xxx))T belong to the objective space. The
set S denotes the feasible region of the continuous decision (variable) vectors
xxx ∈ Rn. The optimal solutions of problem (1) are called Pareto optimal solutions.
A point xxx∗ ∈ S is called a Pareto optimal solution if there does not exist another
decision vector xxx ∈ S such that fi(xxx) ≤ fi(xxx∗) for all i = 1, . . . , k and fj(xxx) <
fj(xxx∗) for at least one j. The set of all Pareto optimal solutions is called the
Pareto optimal set or the Pareto front. Note that there usually exists infinitely
many Pareto optimal solutions that are all mathematically equivalent. Therefore,
the best Pareto optimal solution depends on the problem in question and to
select the best one, we need some additional information. The person who has
the knowledge about the problem in question and can provide the additional
information is the DM.

Next, we briefly introduce the methods used in this paper. In other words, we
describe the new EMO algorithm and the interactive multiobjective optimization
tool IND-NIMBUS.

2.1 EMO Approach

In this paper, we utilize a new, efficient EMO algorithm proposed in [1] for
the first time to solve a real-world simulation-based problem. In contrast to
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scalarization based approaches, in EMO approaches, an approximation of the
Pareto optimal set is created without any user intervention, which makes the
basic idea of such approaches rather appealing; the DM is involved in the solution
process only after the most time consuming computation is finished.

In [1], some difficulties of widely used dominance diversity preservation mech-
anism based EMO approaches were pointed out, such as convergence problems,
deterioration of the population, difficulty to choose the proper population size
and also problems with diversity maintenance. The algorithm presented in [1],
based essentially on unrestricted population size, and on the point generation
scheme of Differential Evolution [28], should overcome the previous issues, which
are discussed more in detail in the following paragraphs.

Several current EMO approaches (e.g., [7,12,33]) are based on the concept
of dominance, added with some mechanism to maintain a good diversity of the
solutions in the objective space. With this approach, the population is usually
ranked based on dominance, and naturally non-dominated solutions are consid-
ered better, and favored in reproduction. Further, if two solutions with the same
rank must be ordered (typically while selecting members for the next genera-
tion), it is usually done using some mechanism to select the one which is located
in a less crowded region of the objective space. In addition to the current popu-
lation, also some external archive of good solutions may be maintained and used
both for dominance and diversity assessment.

Convergence problems [11,16,25] of widely used EMO algorithms stem from
the concept of dominance, in conjunction with the diversity preservation mech-
anisms used. If there is excess of non-dominated solutions to fit into the popula-
tion, some of them must be pruned using a diversity preservation mechanism. In
this case, some non-dominated solution located very near the Pareto optimal set
may be replaced by some other non-dominated solution which improves diversity,
but is at the same time located much farther from the Pareto optimal set. This
behavior leads to oscillation in the solution quality, and prevents convergence to
the Pareto optimal set.

If the population is deteriorated, in the history of all evaluated points during
the optimization run, there exist solutions that dominate the ones in the current
population. This behavior is closely related to the aforementioned convergence
problems. When the population deteriorates, it is reasonable to say that some
number of objective function evaluations has been wasted, and the population
does not reflect the best possible solutions found during the optimization process.

Choosing the proper population size is not straightforward, because too few
points cannot represent the characteristics of the Pareto optimal set properly.
On the other hand, too many points may hinder the performance, because a
large portion of the population may consist of dominated solutions, especially
in the beginning of the optimization process when there are not enough non-
dominated solutions found to fill the population. The population size is also
related to the convergence problems, and deterioration. Obviously, the larger
the population, the closer to the Pareto optimal set the algorithm may converge
before the population starts to oscillate. This behavior was demonstrated in [1].
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Diversity maintenance may also be a problematic issue. For example, the
crowding distance of NSGA-II [7] (used also in other algorithms, e.g. [22,24]),
actually works only in two dimensions, and may fail also in this case [13]. In [14],
a viable way to implement the pruning needed in the diversity maintenance is
presented. A relatively high computational cost may be considered as a drawback
of this approach, but this in turn is probably not very significant if objective
functions are costly.

In the new EMO algorithm, the focal point is to give up the idea of a fixed
population size, and instead keep all the non-dominated solutions in the popu-
lation. In this way, all problems discussed above are overcome, at least to some
extent. The convergence to the Pareto optimal set is gained because the popula-
tion cannot oscillate. There is no need to select the population size, and because
of that in the beginning of the process the algorithm performs efficiently because
the population is not filled to some predetermined size with bad quality dom-
inated solutions. Also, the number of solutions in the population is increasing
over time, thus having a better capability to capture the characteristics of the
Pareto optimal set. The population of the proposed algorithm cannot deterio-
rate because it always contains all non-dominated solutions. Further, no explicit
diversity preservation mechanism is needed. This may seem counter-intuitive,
but it is essential to realize that neither NSGA-II nor DE-based EMO’s (see,
for example, [15,32]) strive to actively generate evenly spread solutions around
the Pareto optimal set, rather they just select solutions located in less crowded
regions to following populations. Thus, if all solutions are kept, also the diversity
is maintained at least as well as, for example, in NSGA-II.

With the new EMO algorithm, all data about the behavior of objective func-
tions gained during the optimization run is put in use, in contrast to several EMO
approaches which exploit only information contained in the current population,
and possibly in some rather small additional external archive. In other words,
no objective function evaluations are wasted. This is highly important in solving
real-world optimization problems that can be computationally demanding. Intu-
itively that approach feels advantageous, and numerical results presented in [1]
comparing the performance of NSGA-II and the proposed algorithm also support
this conception, as the proposed algorithm clearly outperformed the NSGA-II.

2.2 MCDM Approach

In this paper, our MCDM approach is based on the interactive multiobjective
optimization method NIMBUS [17,19]. The reason behind this choice is that in-
teractive methods have been found promising in solving real-world optimization
problems with more than two objectives because they enable the DM to adjust
his/her preferences while (s)he obtains new information during the interactive
solution process and they are computationally efficient because they only need to
generate few Pareto optimal solutions [17]. In addition, the WWTP design prob-
lem considered has already been solved with an implementation of the NIMBUS
method [10].
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The NIMBUS method is based on classification of the objective functions at
the current Pareto optimal solution. The idea is to start with the so-called neutral
compromise solution (NCS) that is a Pareto optimal solution approximately in
the middle of the Pareto optimal set [31] and to generate a series of Pareto
optimal solutions utilizing the preferences of the DM iteratively. The ultimate
goal is to find the Pareto optimal solution that best satisfies the hopes of the
DM (and to be implemented in practice).

In practice, the objective function values of the current Pareto optimal solu-
tion are shown to the DM and (s)he is asked to classify the objective functions
fi into the classes where the value of fi

– should be improved as much as possible (i ∈ Iimp),
– should be improved until some specified aspiration level z̄i (i ∈ Iasp),
– is satisfactory at the moment (i ∈ Isat),
– can impair till some specified bound εi (i ∈ Ibound) and
– can change freely (i ∈ Ifree).

According to the classification information provided by the DM, single objec-
tive subproblems are formed [19]. In other words, the multiobjective problem is
scalarized. One of the subproblems is the standard NIMBUS subproblem and
the other three subproblems are based on reference points [19]. The reference
point-based subproblems come from the satisficing trade-off [21] and the GUESS
[4] methods while one of them is based on achievement (scalarizing) functions
[30]. Formulations of the subproblems can be found in [19].

New Pareto optimal solutions are obtained by solving the subproblems with
a suitable single objective optimizer [19]. Note that the subproblems can be
nonconvex depending on the objective and constraint functions of the original
problem and, therefore, the solutions of the subproblems are Pareto optimal only
when their global optima have been obtained. The new solutions obtained are
shown to the DM and (s)he selects the best one to proceed with. The itera-
tive solution process continues until the DM is satisfied, that is, when the DM
want’s not to improve any objective function. The other possibility to produce
new Pareto optimal solutions in the NIMBUS method is to generate intermedi-
ate Pareto optimal solutions between any two Pareto optimal solutions already
computed. Further information about the NIMBUS method can be found in [19].

To solve practical multiobjective optimization problems, an implementation
of the NIMBUS method called IND-NIMBUS [18] has been developed (http://
ind-nimbus.it.jyu.fi). IND-NIMBUS offers a graphical user-interface for the
interaction between the DM and the NIMBUS method while it also provides
graphical classification of the objective functions and several different visual-
izations to compare and evaluate the Pareto optimal solutions obtained during
the interactive solution process. More information about IND-NIMBUS can be
found in [18]. In [10], the WWTP design problem was solved with IND-NIMBUS
as already mentioned.

http://ind-nimbus.it.jyu.fi
http://ind-nimbus.it.jyu.fi
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3 Numerical Results

Next, we present the WWTP design problem that we solved with both the new
EMO algorithm and IND-NIMBUS. In addition to presenting the results and
describing the solution processes, we compare the results obtained.

3.1 On Wastewater Treatment Plant Design

Operational requirements of wastewater treatment plants, notably the effluent
limits of nitrogen and phosphorus, are becoming more and more strict because
of increased emphasis on environmental values. Consequently, more complex
wastewater treatment processes are gaining ground. At the same time, the re-
quirements for economical efficiency (for example, minimizing plant footprint
and the consumption of chemicals and energy) as well as for operational relia-
bility are also tightening. This makes the design of a WWTP a complex process
involving trade-offs between a number of conflicting economical and operational
criteria. Therefore, a simplified approach where all the aspects are gathered to-
gether, usually as estimated total costs, and optimized is not adequate anymore.

Mathematical modelling of WWTPs began gaining ground in the 1990s when
experience on modelling solutions and computer power increased simultaneously.
The overwhelming majority of modelling considers the activated sludge process
(ASP), globally the most common method of wastewater treatment. Our ex-
ample problem is also based on ASP. In this process, biomass (which is called
activated sludge) suspended in the wastewater to be treated is cultivated and
maintained in an aerated bioreactor. The wastewater is purified, i.e. organic car-
bon, nitrogen and phosphorus are removed, during its retention in the bioreactor.
The bioreactor is followed by a clarifier basin, in which the biomass is separated
by gravitational settling and returned to the bioreactor, and the treated wastew-
ater is directed as overflow to futher treatment or to discharge. Excess activated
sludge is removed from the process and treated separately. The schematical flow
sheet of the process is presented in Figure 1.

The activated sludge models used are nonlinear differential equations, reflect-
ing the nonlinear nature of microbial growth and solids separation. The activated

Fig. 1. A flowchart of the activated sludge process considered



Comparison of MCDM and EMO Approaches in WWTP Design 357

sludge process was realized by using the commercial GPS-X process simulator
(http://www.hydromantis.com/software02.html) that is developed especially
for numerical simulation of wastewater treatment processes.

3.2 Problem Description

The process model used in this study describes a nitrifying activated-sludge pro-
cess and the wastewater treated by the process corresponds to typical Finnish
mechanically and chemically pre-treated municipal wastewater. The process per-
forms nitrification, i.e. oxidation of ammonium nitrogen to nitrate nitrogen by
autotrophic, slow-growing micro-organisms. The biochemical reactions involved
consume a lot of oxygen and alkalinity. Oxygen is supplied by aeration compres-
sors and alkalinity partly by influent wastewater, partly by adding chemicals,
e.g. Na2CO3. Aeration consumes energy and chemicals cost money, so minimiz-
ing the need for aeration and alkalinity addition is important for the operational
economy of the plant. Therefore, we consider the WWTP design problem with
respect to three objective functions, namely the residual ammonium nitrogen
concentration [gN/m3], the dose of alkalinity chemical [m3/d] and the consump-
tion of energy by aeration [kW ]. In what follows, we will denote them by N ,
A and E, respectively. The primary objective N is the most important one be-
cause it describes the quality of the treated wastewater and it should be kept at
a sufficiently low level. The other two objective functions should be minimized.

As decision variables affecting the objectives selected, we consider the biomass
concentration in the bioreactor (CMLSS) [kg/m3], alkalinity chemical dosign
rate [m3/d] and the O2-concentration in the last section of the reactor [g/m3].
CMLSS should be kept as low as possible so that the secondary settler would
not be overloaded in case of peak flows. The upper bounds used for the decision
variables are 6.0, 500 and 2.5, respectively, while the lower bound for each is
zero. Note that all these decision variables are continuous. As constraints of the
optimization problem, we set restrictions for alkalinity of treated wastewater,
that is, we require that the alkalinity remains between 1.5 and 2.0 moles/m3. To
summarize, we have three objective functions to be minimized, three continuous
decision variables and one inequality constraint with both a lower and an upper
bound. For a more detailed description of the process model, we refer to [10].
In order to get an idea of the simulation time, one simulation of the process
considered, that is, one evaluation of the objective and the constraint functions,
took about a couple of seconds with a standard PC. In other words, the problem
is clearly more time consuming than standard test problems but not especially
time consuming as a real-world optimization problem.

3.3 Solution Process with IND-NIMBUS

As already mentioned, this problem was solved with IND-NIMBUS in [10]. Next,
we briefly describe the interactive solution process and the results presented
there. The single objective subproblems produced by the NIMBUS method were

http://www.hydromantis.com/software02.html
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Table 1. Objective function values for the Pareto optimal solutions computed during
the interactive solution process as well as the actions of the DM

residual ammonium nitrogen alkalinity chemical aeration energy
concentration [gN/m3] dosing rate [m3/d] consumption [kW ]

best 0.03 0.45 308
worst 31.5 354 599
NCS 8.05 218 460

Iasp, z̄N = 1.0 Ibound, εA = 330 Isat

2 3.52 286 490
3 1.69 326 506
4 4.90 298 477

Iasp, z̄N = 0.5 Ifree Ibound, εE = 510
5 1.11 336 515
6 0.55 347 528

Ibound, εN = 1.0 Ifree Iimp

7 9.36 246 448
8 30.2 7.23 308
9 0.90 333 519

2 interm. solutions between 5 & 6
10 0.92 336 519
11 0.72 332 524

solved by using the global Controlled Random Search (CRS) algorithm [2] be-
cause we don’t know beforehand whether the problem is convex or not. In addi-
tion, CRS was given the maximum number of 400 objective function evaluations
for each subproblem in order to not keep the DM waiting for too long. The DM
involved in the solution process was an expert in the problem field in question.

At the beginning of the interactive solution process with IND-NIMBUS, ap-
proximations of the ideal (best) and the nadir (worst) objective vectors are
computed. These bounds help the DM in classification because (s)he gets some
idea of what kind of values are possible to achieve. In addition, the bounds are
used by the NIMBUS method for scaling purposes. The approximations in our
case were (0.03, 0.45, 308) and (31.5, 354, 599), respectively.

The solution process starts from the neutral compromise solution and it is
the first Pareto optimal solution shown to the DM. In our case, NCS had the
objective function values (8.05, 218, 460). The value of N was not tolerable and
indicated that, with these settings, the process would not work. Therefore, the
DM made the first classification to improve the value of N until 1, and al-
lowed the value of A to increase up to 330. The value of E was satisfactory
at the moment. The resulting Pareto optimal solutions were (3.52, 286, 490),
(1.69, 326, 506) and (4.90, 298, 477). As can be seen, it was not possible to fully
satisfy the classification specified.

Of the new solutions found, the second one seemed to be the most promising
for the DM to continue with. The rest of the interactive solution process can be
seen from Table 1 where the Pareto optimal solutions preferred in each step of
the algorithm are shown as bold face and the final solution selected is shown both



Comparison of MCDM and EMO Approaches in WWTP Design 359

in bold face and italics. In addition, the actions of the DM (that is, classification
or request for intermediate Pareto optimal solutions) are also shown.

At this point, the DM was satisfied and did not want to continue. As the final
solution to be implemented, the DM could consider any one of the solutions
5, 9, 10, and 11 because the desired level of the main criterion, concentration
of ammonium nitrogen in the effluent, is fulfilled. Since we must choose only
one of them, the DM preferred number 10 (N = 0.92gN/m3, A = 336m3/d,
E = 519kW ) because it had the smallest biomass concentration in the bioreactor
which makes it better for implementation.

3.4 Solution Process with the New EMO Algorithm

As already mentioned, here the new EMO algorithm is applied to a real-world
multiobjective optimization problem for the first time. We set a budget for 5000
objective function evaluations to the new EMO algorithm because we want to
compare the results to the ones obtained by IND-NIMBUS. Remember that with
IND-NIMBUS, there was a limit of 400 evaluations for CRS in solving the single
objective subproblems and there were altogether 14 such problems solved (ideal
value computation for each objective and 11 Pareto optimal solutions) which
equals to 5600 evaluations. That is the only termination criterion for the new
algorithm because it has a varying population size. In addition, the parameters
for DE-based point generation used were CR = 0.1 and F = 0.8.

As the WWTP design problem has one inequality constraint in addition to
box constraints, we further enhanced the new EMO algorithm to handle also
such constraints in this case. This was done simply by forbidding the solutions
violating the constraints to enter the population, prior to selection of points to
participate in the generation of the new trial point. Further, we concentrated
on the most interesting part of the Pareto front where the primary objective
function, the residual ammonium nitrogen concentration, obtains satisfying val-
ues (that is, values less than 2.0). The points with higher values of the primary
objective function were also excluded from the population in the same way.

Fig. 2. An approximation of the Pareto front generated by the new EMO algorithm
and Pareto optimal solutions produced by IND-NIMBUS
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The results obtained with the new EMO algorithm can be seen in Figure 2.
There the appromization of the Pareto front is illustrated as well as the six solu-
tions obtained with IND-NIMBUS whose residual ammonium nitrogen concen-
tration was less than 2.0. There are altogether 1271 points in the approximation
shown in Figure 2. In other words, that is the final population size and the num-
ber of non-dominated solutions. As can be seen from Figure 2, the Pareto front
for this problem seems to be more or less convex and well behaving. Further,
it seems by looking at the picture that the new EMO algorithm has obtained
as good solutions as IND-NIMBUS. Both the results of the new algorithm and
IND-NIMBUS are more thoroughly analyzed in the next section where the com-
parison of the results is performed.

3.5 Comparison of the Results

A comparison between the results with IND-NIMBUS and the new EMO algo-
rithm is not trivial. The former produced 14 Pareto optimal solutions of which
one was selected as the final solution while the latter produced an approximation
of the whole Pareto front but does not take into account the selection of the final
solution. The idea behind our comparison in this paper is the following: if you
have a fixed budget for function evaluations to be used in solving the WWTP
design problem described here, is it better to use the new EMO algorithm or
IND-NIMBUS? Note that in the case of two objective functions, it is usually
better to use some EMO method instead of any interactive method.

Because the Pareto front is only three dimensional and it seems to be well
behaving, it could be argued that the DM can choose the final solution by looking
at Figure 2. In the case of a more complex three dimensional Pareto front or
more than three objectives, the visualization is not reasonable, but some more
sophisticated method (e.g., [8,20,29]) needs to be used to explore the complex
or high dimensional approximated Pareto optimal set. In any case, the question
to be answered is ”are the solutions produced by different methods of equal
accuracy”? We studied this by applying a local optimizer starting from the
solutions produced by IND-NIMBUS. In addition, we selected solutions from
the approximation produced by the new EMO algorithm that are closest to the
ones produced by IND-NIMBUS and applied the same local optimizer starting
from them. Then, we computed how large was the relative improvement gained
with the local optimizer, in other words, how far from the actual Pareto front
the above-mentioned solutions were.

To be more precise, the local optimizer that we used was fminsearch of MAT-
LAB (with MaxFunEvals=1000 and TolFun=1.0e−8) which is an implementation
of the Nelder-Mead direct search algorithm. The nearest solutions from the ap-
proximation of the Pareto front were chosen so that for each solution ẑzz ∈ Rk

produced by IND-NIMBUS we calculated the value of the achievement function

max
i=1,...,k

[
fi(xxx)−ẑi

znad
i −zideal

i

]
(2)

for the whole final population and selected the one with the smallest value.
The vectors zzzideal and zzznad are the approximations of the ideal and the nadir
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objective vectors, respectively. The relative improvement was calculated with
respect to both the ideal and the nadir objective vectors. That is, we computed

Impideal :=
||fff(xxx) − fff(x̃xx)||

||zzzideal|| and Impnad :=
||fff(xxx) − fff(x̃xx)||

||zzznad|| , (3)

where xxx is the solution produced by IND-NIMBUS/the new EMO algorithm and
x̃xx is the solution found by fminsearch. To be more precise, x̃xx is obtained when
function (2) is minimized with respect to the decision variable vector xxx ∈ S. The
norm || · || is the normal euclidean norm.

First of all, we considered only those solutions found by IND-NIMBUS that
are in the interesting region of the Pareto optimal set, that is, the same region
where we restricted the solutions to be in the case of the new EMO algorithm.
There were six such solutions, numbered 3, 5, 6, 9, 10, and 11 in Table 1. Those
solutions and the closest ones in the approximation of the Pareto front are shown
in Table 2. It seems that the solutions are quite close to each other. Table 3
presents the relative improvements (3) computed for the solutions in Table 2.
It can be seen, that the local optimizer was not able to improve four of the six
solutions of the new EMO algorithm and the other two only very little which
is not significant. On the other hand, the solutions produced by IND-NIMBUS
could be improved a bit more, but also that improvement was not significant.
To summarize, in this WWTP design problem both methods could produce
solutions that are in practice in the true Pareto front.

Retrospectively, as the problem seems to be well behaving and almost convex
(at least at a macroscopic level), we may think that IND-NIMBUS could have
performed as well with less objective function evaluations using some local op-
timizer instead of CRS if this had been known beforehand. Unfortunately, with

Table 2. Corresponding solutions produced by IND-NIMBUS and the EMO algorithm

IND-NIMBUS N A E EMO N A E
3 1.690 325.7 506.1 1.762 322.2 505.9
5 1.105 336.0 514.6 1.101 332.0 515.0
6 0.549 346.9 527.7 0.544 346.6 527.9
9 0.899 333.0 519.2 0.934 328.6 518.9
10 0.917 335.5 519.1 0.934 328.6 518.9
11 0.720 332.0 523.9 0.731 329.5 523.6

Table 3. Relative improvements

IND-NIMBUS Impideal Impnad EMO Impideal Impnad

3 0.0093 0.0041 0.0 0.0
5 0.0060 0.0027 0.0 0.0
6 0.0007 0.0003 0.0 0.0
9 0.0011 0.0005 0.0001 4.5e-005
10 0.0006 0.0002 0.0001 4.5e-005
11 0.0007 0.0003 0.0 0.0
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simulation based optimization problems, the convexity assumption may poten-
tially be very dangerous to be made beforehand, without explicit understanding
about the problem behavior.

On the other hand, in four of the six cases, the local search could not im-
prove the results of the new EMO algorithm at all, suggesting that the EMO
algorithm has converged to the true Pareto front. What our current analysis
lacks, is the information about how early during the optimization run the EMO
approach actually had converged to the true Pareto front. It is possible that,
say, the last 3000 objective function evaluations have not improved the quality
of the approximation, and thus, significant amount of evaluations could have
been saved. Anyhow, it is worth to mention, that with the new EMO algorithm
further evaluations are not wasted, because as a product of them, the population
size grows bigger, and thus the approximation along the Pareto optimal set gets
all the time more dense.

4 Conclusions

We have solved a real-world wastewater treatment plant design problem by using
both an MCDM and an EMO approach. This was realized by using both an
interactive multiobjective tool IND-NIMBUS and a new EMO algorithm based
on the point generation scheme of differential evolution and an unrestricted
population size to solve the problem. An attempt to compare the results obtained
was also made. Comparing the results is not a trivial case because the MCDM
and the EMO approaches have quite different goals in solving multiobjective
optimization problems. The MCDM approach aims at producing one final Pareto
optimal solution while the EMO approach generates an approximation of the
whole Pareto front.

In the comparison, we proposed a question: if you have a fixed budget for
function evaluations to be used in solving the WWTP design problem described
here, is it better to use the new EMO algorithm or IND-NIMBUS? It seems that,
at least in this case, it could be argued that it is more convenient to use the new
EMO algorithm for the following reasons: the DM is involved in the solution
process only after the approximation of the Pareto optimal set is generated, the
solution quality of the EMO approach is in practice equal while achieved with
less objective function evaluations, and finally, with the new EMO approach the
DM gets more information, i.e., it is possible to gain understanding of the whole
Pareto optimal set, instead of only certain regions of it, as is the case with the
MCDM approach. However, with more complex and/or high dimensional Pareto
fronts this argument may not be valid without further study.
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Abstract. In this paper we introduce an approach for solving multiattribute 
decision-making problems in which there are several decision-makers who 
individually and independently elicit their preferences. The preferences of each 
decision-maker are imprecise and represented by an imprecise additive multi-
attribute utility function. We allow for incomplete information on the 
component utility functions and weights assessment, which leads to classes of 
utility functions and weight intervals, respectively. On the basis of this 
information, we introduce an approach for calculating the decision-maker group 
preferences using trapezoidal fuzzy numbers. The method consists of assigning 
trapezoidal fuzzy numbers to weights and component utilities and then, using 
an additive utility function to perform the evaluation process. The alternatives 
are then ranked by the trapezoidal fuzzy numbers representing them and the 
distances to some preset targets, i.e. the crisp maximum and minimum. 

Keywords: Multicriteria Decision Making, Imprecision, Group Decision Making, 
Fuzzy Numbers. 

1   Introduction 

We consider a group decision-making problem in which there are several decision-
makers (DMs) or groups of DMs located at different places that assess their 
preferences regarding a specified set of criteria and alternative performances. For 
reasons of time or space, these DMs may not have the chance to enter into a 
negotiation process in order to reach a consensus alternative. However, we assume 
that there is a desire to reach a consensus. 

For example, this situation could match up with some e-democracy problems. E-
democracy articulates political and democratic procedures involving citizens in societal 
decision making through the use of information and communication technologies, more 
recently focused on citizens’ participation in discussion and deliberation on public 
matters rather than on electronic voting. 

We assume that an objective hierarchy including all the relevant aspects related to the 
problem under consideration has been established, as has a set of n attributes associated 
with the lowest-level objectives, denoted by X1,…,Xn. Then, the performances of each 
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alternative decision Ai in A, where A = {A1,…,Am} is the available decision alternatives 
set, is defined by a vector (x1

i,…,xn
i), where xj

i is the performance for attribute Xj.  
We assume that there are d equally important DMs, whose preferences are assessed 

using a group decision support system, Generic Multi-Attribute Analysis System 
(GMAA)1 [1,2]. The GMAA is a user-friendly decision support system that admits 
incomplete information concerning the quantification of the DM's preferences. This 
leads to classes of utility functions for the different attributes and imprecise attribute 
weights, i.e. a class of utility functions, denoted as [ )(),( •• lU

i
lL
i uu ], and a weight 

interval [ lU
i

lL
i ww , ] are available for each DM l, l=1,…,d, and each attribute Xi, where 

L(U) means Lower (Upper). 
Assuming the additive independence condition or an approximation [3,4,5], we 

have a global utility function for the DM l of the form  

ul(Aj) = ( )∑
=

n

i

j
i

l
i

l
i xuw

1

, 

where ∈l
iw [ lU

i
lL
i ww , ] and ∈•)(l

iu [ )(),( •• lU
i

lL
i uu ] are the weight and utility 

intervals for attribute Xi, respectively.  
For just one DM, the vector optimization problem can be stated as follows 

(provided that all the component utility functions are increasing): 

             max     u(Aj) = ⎥
⎦

⎤
⎢
⎣

⎡ ∑∑
==

n

i

U
i

U
i

U
i

n

i

L
i

L
i

L
i xuwxuw

11

)(,)(   

                      s.t.                                                                           . 

                                    Aj∈A 

This problem is solved in [6,7]. However, we consider a more generic decision-
making situation involving d DMs whose preferences have to be aggregated.  

The methodology proposed in this paper computes trapezoidal fuzzy numbers 
representing group preferences from weight and component utilities intervals elicited 
from each DM regarding the considered attributes. [8] proposed an analogous method in 
the statistics field, using density functions rather than membership functions. Then, 
decision alternatives are evaluated by means of an additive multiattribute utility 
function. The result of adding and subtracting trapezoidal numbers is a trapezoidal fuzzy 
number, but the product, quotient and inverse need not be a trapezoidal fuzzy number. 
[9] proposed a new approach for assigning distance between fuzzy numbers. They 
described a pseudo-metric on the set of fuzzy numbers and a metric on the set of 
trapezoidal fuzzy numbers. They used regular reducing functions and the Hausdorf 
metric to define the metric. Using this metric, we can approximate an arbitrary 
generalized left right number as a trapezoidal number. The resulting trapezoidal fuzzy 
numbers (representing overall utilities) are ranked on the basis of the distances between 
them and two preset targets: a minimum and a maximum utility. This distance 
overcomes general shortcomings such as the indiscriminative and counterintuitive 

                                                           
1 http://www.dia.fi.upm.es/~ajimenez/GMAA 
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behaviour of several existing fuzzy rankings approaches, [10]. The above methodology 
is explained in detail in section 2.  

In section 3, we give an example to illustrate the proposed methodology. In this 
example, a manufacturing company is looking to select a suitable city to set up a new 
factory. The results match up with the outcomes presented in [11]. Finally, some 
conclusions are outlined in section 4. 

2   Methodology 

The methodology we propose can be divided into three phases. In the first phase, the 
DMs’ preferences are aggregated by means of trapezoidal fuzzy numbers. In the 
second phase, overall utilities for the alternatives under consideration are computed 
by means of a method that approximates the product of trapezoidal fuzzy numbers to 
a new trapezoidal fuzzy number. Finally, in the third phase, alternatives are ranked on 
the basis of the trapezoidal fuzzy numbers representing their overall utilities. 

As the methodology we propose is based on trapezoidal fuzzy numbers, we first 
define this concept. We can define a trapezoidal fuzzy number as Ã = (A1, A2, A3, A4). 
The membership function of this fuzzy number will be interpreted as follows: 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
−
−

≤≤

≤≤
−
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and the α-cut interval for this shape is written as αA
~ = [(A2-A1)α + A1, -(A4-A3)α + A4]    

(see Fig. 1). 

 

Fig. 1. Membership function and α-cut for a trapezoidal fuzzy number A
~

 

2.1   First Phase: Aggregation of the DMs’ Preferences 

Next, we show how to get a fuzzy number 
iw~ that represents group preferences from 

the respective weight intervals of each DM, [ lU
i

lL
i ww , ], l=1,…,d. The reasoning 

would be analogous for utility intervals.  
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Let us assume, without loss of generality, that dL
i

L
i

L
i www ≤≤≤ L21 . The 

algorithm is divided into 10 steps. In the first one (step 0), variables j and Nj are 
initialized to 1. j represents the index of the DM that has the lowest lower end point of 
the weight interval for the considered iteration, and Nj is the number of weight 
intervals of DMs j, j+1,…,d whose intersection with the weight interval of the DM j is 
not empty. For instance, if j=3 and N3 = 4, then the third DM is taken as the reference 
and the intersection among the weight intervals corresponding to the third, fourth, 
fifth and sixth DMs is not empty.  

In steps 1 to 4, Nj is computed for the d DMs under consideration. In actual fact, in 
step 1, k, the index of the DM that has the highest lower end point of the weight 
interval for the considered iteration is initialized to j+1. In other words, j and k 
represent the first and the last DM considered in each iteration. 

In step 2, the intersection of the weight intervals corresponding to DMs j, j+1,…,k, 
denoted by k

jI , is computed. In step 3, k
jI  is checked. If empty, then Nj is computed, 

and we either go back to step 1 to compute Nj+1 or go to step 4 (Nj has been assessed 
for the d DMs under consideration); else ( k

jI ≠ Ø), Nj is updated and k increased. In 

step 4, k is compared with the number of DMs: if it is lower than or equal to d, we go 
back to step 2, i.e. a cycle involving steps 2, 3 and 4 is formed until the above 
condition is satisfied; else (k > d) we go to step 5.  

In step 5, once Nj have been computed for the d DMs under consideration, the DM 
(or DMs) whose weight interval intersects (non-empty) with more weight intervals 
corresponding to the remaining DMs is identified. In step 6 the number of DMs 
satisfying the above property is checked and, accordingly, we go to step 7 (just one 
DM) or 8 (more than one DM). Here, interval Is (the interval whose values have 
possibility 1 of being selected as the weight of attribute i) is assessed. 

In step 7, Is is defined as the values of the intersection of weight intervals 
representing most DMs because these values are preferred by most DMs. In step 8, 
we denote the indexes corresponding to DMs with the same highest Nj by s1,…,sp (we 
can assume s1≤…≤sp). If 1...

1
===

pss NN  then Is is defined as those values that 

leave the same number of DMs to either side (these values can be considered as  
the median in statistics) because the median is a good statistic measure to define the 
group. However, if 1...

1
≠==

pss NN , then Is is defined as those values between the 

two most distant value intervals, which represent most DMs; ⎣ ⎦x denotes the integer 

side of the number x). 
Finally, in step 9 the trapezoidal fuzzy number that represents group preferences is 

assessed. 
 
Step 0. Let j = 1 and Nj = 1 

Step 1. k = j + 1 

Step 2. Compute ].,[],[ lU
i

lL
i

k

jl

kU
j

kL
j

k
j wwIII

=
∩==  
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Step 3. If k
jI = Ø, then Nj = k - j   

                     if j = j + 1 < d,  then go to step 1  
                      else  (j = j + 1 = d), k = d + 1 and go to step 4. 

               else ( k
jI  ≠ Ø), Nj = k – j + 1 and k = k + 1.  

Step 4. If k ≤ d, then go to step 2; else, go to step 5. 

Step 5. Calculate s given that Ns = max {Nj, j=1,2,...,d}. 

Step 6. If s is the only optimal solution in step 5, then go to step 7,  
            else (it is not the only optimal solution), i.e. there are s1,…,sp (we can assume 

s1≤…≤sp) optimal solutions with
pss NN == ...

1
, go to step 8. 

Step 7. Define ( ) ( ) ],[],[ 11 UNs
s

LNs
s

U
s

L
ss

ss IIIII −+−+==  and go to step 9. 

Step 8. If 1...
1

===
pss NN , then 

                       if d is even, then ( ) ( ) ],[],[ 12/2/ Ld
i

Ud
i

U
s

L
ss wwIII +== , 

                       else (d is odd), ⎣ ⎦( ) ⎣ ⎦( ) ],[],[ 12/12/ Ud
i

Ld
i

U
s

L
ss wwIII ++== . 

              else,  
( ) ( ) ],[],[ 11

11 LNs

i

UNs

i
U
s

L
ss

spps wwIII −+−+== . 

Step 9. Compute the trapezoidal fuzzy number that represents group preferences for 

the weight of attribute Xi, )max,,,(~ 1 lU
il

U
s

L
s

L
ii wIIww = . 

The approach for component utilities is analogous. Thus, the utility intervals for 
the different DMs )( j

i
l
i xu = [ )(),( j

i
lU
i

j
i

lL
i xuxu ], l=1,…,d, are aggregated as shown in 

the above algorithm for weights, leading to a trapezoidal fuzzy number )(~ j
ii xu . 

2.2   Second Phase: Fuzzy Arithmetic to Evaluate Decision Alternatives 

The evaluation of each alternative Aj will output the following fuzzy number 

∑= )(~~)(~ j
ii

j xuwAu  (1) 

because the set of fuzzy numbers is closed under all arithmetic operations, [12,13]. 
However, it is well-known that the result of adding and subtracting trapezoidal fuzzy 
numbers is another trapezoidal fuzzy number. However, this is not the case for the 
product, where the resulting fuzzy number may be not trapezoidal [9,11].  

Interval arithmetic is a popular way to do fuzzy arithmetic operations. This is 
possible because any α-cut of a fuzzy number is always an interval. Therefore, any 
fuzzy number can be represented as a series of intervals (one interval for each α -cut). 
The basics of interval arithmetic are given below. For any two intervals, [a, b] and [d, 
e], the arithmetic operations (we will only need addition and multiplication) are 
performed as follows: 
 

− Addition: [a, b] + [d, e] = [a+d, b+e]; 
− Product: [a, b] × [d, e] = [min {ad, ae, bd, be}, max{ ad, ae, bd, be }]. 
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Next, we give an example to illustrate the addition and multiplication of a 
trapezoidal fuzzy number: Let A

~
 = (1, 5, 6, 9) and B

~
= (2, 3, 5, 8), then  

 

BA
~~ +  = (1, 5, 6, 9) + (2, 3, 5, 8) = (1+2, 5+3, 6+5, 9+8) = (3, 8, 11, 17). 

 

The α-cuts of A
~

and B
~

 are αA
~ = [4α+1,-3α+9] and αB

~ = [α+2,-3α+8] respectively. 

Since, for all α in [0,1], each element for each interval is positive, the multiplication 
of the α-cut intervals will be  

αA
~ × αB

~
  = [(4α+1)(α+2), (-3α+9)(-3α+8)] = [4α2 + 9α + 2, 9α2 - 51α + 72] 

If α = 0, then 
0

~
A ×

0

~
B  = [2, 72] and if α = 1, then 

1

~
A ×

1

~
B   = [4+9+2, 9-51+72] = 

[15, 30]. The fuzzy number AC
~~ = × B

~
 is illustrated in Fig. 2. Fig. 2 shows that the 

resulting fuzzy number is not a trapezoidal fuzzy number. 
 

  

Fig. 2. Multiplication of trapezoidal fuzzy numbers BAC
~~~ ×=   

Decision alternatives will be ranked in the third phase of the methodology taking 
into account the above overall utilities expressed in terms of trapezoidal fuzzy 
numbers. The distance measures that will be used in this ranking process use any 
fuzzy numbers. From a computational point of view, though, it is recommendable to 
use trapezoidal fuzzy numbers. This is why we use an approximation of the product of 
two trapezoidal fuzzy numbers to a new trapezoidal fuzzy number. 

The product of two trapezoidal fuzzy numbers, ),,,(
~

4321
iiiii AAAAA = and =jA

~
 

),,,( 4321
jjjj AAAA  is approximated by the trapezoidal fuzzy number =ijA

~
,,( 21

ijij AA  

), 43
ijij AA , as proposed in [9], where  

( )( ) ( ) ( )[ ]
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=

=

−+−+−+−−=

 
(2) 

If we apply this method to the above example with A
~  = (1, 5, 6, 9) and B

~ = (2, 3, 
5, 8), then we have BAC

~~~ ×= = (0, 15, 30, 67.5), as shown in Fig 3. 
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Fig. 3. Approximation of the multiplication of trapezoidal fuzzy numbers BAC
~~~ ×=   

In conclusion, an overall utility is computed for each decision alternative from 
expression (1) taking into account the above approximation for the product of 
trapezoidal fuzzy numbers. 

2.3   Third Phase: Fuzzy Set Ranking 

In this phase, we show how to rank the alternatives under consideration on the basis 
of the trapezoidal fuzzy numbers representing their overall utilities. Fuzzy set ranking 
methods can be divided into two classes, see [14]: 

 
1. Methods that convert a fuzzy number into a crisp number by applying a mapping 

function F. Fuzzy numbers are then sorted by ranking crisp numbers produced by 
the mapping. 

2. Methods that use fuzzy relations to compare pairs of fuzzy numbers, and then 
construct a relationship that gives the comparison a linguistic meaning. 
 

Each methodology has its advantages and drawbacks. With respect to the first class, 
it has been argued that "by reducing the whole of our analysis to a single (crisp) number, 
we are loosing much of the information that we have purposely been keeping 
throughout our calculations" [15]. This methodology, on the other hand, produces a 
consistent ranking of all fuzzy sets considered (i.e. if A

~
 is ranked greater than B

~ , and 
B
~  is ranked greater than C

~ , then A
~

 will always be much greater than C
~ ). Also, there 

will always be a fuzzy set that is ranked as "best", "second best", "third best", and so on. 
By keeping the comparison linguistic, the second class preserves the original fuzzy 

information of the problem. However, as [14] points out, "it may not always be 
possible to construct total ordering among all alternatives based on pairwise fuzzy 
preference relations". This means that even if A

~
 is better than B

~  and B
~  is better than 

C
~ , A

~
 is not necessarily always better than C

~ . 
Literature review reveals that there are very many fuzzy set ranking methods. 

[16,17,18] offer a comprehensive survey of the available methods. 
It is not the aim of this paper to prove which one is the best ranking method. 

Indeed, almost all the methods have pitfalls of some sort, such as being inconsistent 
with human intuition, indiscriminate and hard to interpret, [16,19,20]. However, the 
fuzzy ranking method suggested in [10] overcomes many of the problems intrinsic of 
the existing methods. Therefore, we use this method.  
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The distance measure between two interval numbers =A
~

[a1, a2] and =B
~

[b1, b2], 
[10] is  
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(3) 

The integral in (3) shows that this distance takes into account every point in both 
intervals when computing the distance between two interval numbers. It is different 
from most existing distance measures for interval numbers, which often use only the 
lower and upper bound values ([21,22,23,24]). 

[25] proposed a distance measure for intervals that also considers every point of 
the two intervals. Its general form, however, is too complicated, and the authors later 
restricted the measure to a particular case with a finite number of considered values 
for operational purposes. 

As is well-known, a trapezoidal fuzzy number is denoted as jA
~

= ( ,,, 321
jjj AAA  

jA4
), and its α-cut is 

])(,)([)](),([)(
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Using the distance measure for interval numbers defined in (3), a distance between 
two fuzzy numbers iA
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 and jA
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can be defined as 
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Here, f, which serves as a weighting function, is a continuous positive function 
defined on [0,1]. The distance is a weighted sum (integral) of the distances between 
two intervals at all α-cuts from 0 to 1. It is reasonable to choose f as an increasing 
function, which indicates that a greater weight is assigned to the distance between two 
intervals at a higher α level. For example, when the DM is risk-neutral,  f(α) = α 
seems to be reasonable. A risk-averse DM might want to put more weight on 
information at a higher α level by using other functions, such as f(α) = α2 or a higher 
power of α. A constant (f(α)=1), or even a decreasing function f, can be utilized for a 
risk-prone DM. 

The method for ranking fuzzy numbers suggested in [10] is based on comparing 
the distance from fuzzy numbers to some preset targets: the crisp maximum and the 
crisp minimum. The idea is that a fuzzy number is ranked first if its distance to the 
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crisp maximum is the smallest and its distance to the crisp minimum is the greatest. If 
only one of these conditions is satisfied, a fuzzy number might be outranked by the 
others depending upon the context of the problem (e.g., the attitude of the DM in a 
decision-making situation). If it is not known we propose ranking the alternatives 
according to the value of  

y

i

x

i
i

D

fyAD

D

fxAD
AR

),,
~

(),,
~

(
)

~
( −=  

where Dx = maxj {D( jA
~

, x, f)}, Dy = minj {D( jA
~

, y, f)},  x = min{ jA4 , j =1,…,m} 

and y = max{ jA1 , j=1,…,m}, where ( )jjjjj AAAAA 4321 ,,,
~ = . This ratio is always 

negative, and the smaller the distance between the fuzzy number ( iA
~

) and the 
minimum value (x) and the greater the distance to the maximum value (y) is, the more 
negative the ratio is. Thus, the alternatives ranking will be based on this ratio, and the 
more negative the ratio is, the worse their ranking will be. 

If the DM is risk-neutral (f(α)= α), then the distance between the fuzzy number iA
~

 
and x is 
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If the DM is risk-prone (f(α)=1), then the distance between the fuzzy number iA
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The assessment of the distance between the fuzzy number iA
~

and y is analogous, 
except that x is replaced by y in the above expressions.  

3   An Illustrative Example 

In this section we adapt the numerical example used in [11] to the group decision-
making situation and compare the solutions reached by Chou with the results by the 
proposed methodology. 
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A manufacturing company has to select a suitable city in which to set up a new 
factory. After preliminary screening, three candidate cities A1, A2 and A3

 are left for 
further evaluation. The company considers five attributes to select the best candidate: 
the investment conditions (X1), expansion possibility (X2), availability of required 
material (X3), human resources (X4), and weather conditions (X5), respectively. 

Imprecise attribute weights were elicited from three company partners (columns 2, 
3 and 4 in Table 1), and the aggregation process (second phase of the proposed 
methodology) was carried out leading to the company weights (column 5 in Table 1) 
in terms of trapezoidal fuzzy numbers as follows. 

Taking into account the weights intervals elicited from the three DMs for the ith 
attribute, we have three possibilities:  
 

1. The intersection of the three weight intervals is empty (disjoint intervals). 
2. Two weight intervals intersect and the third one is disjoint. 
3. The intersection of the three intervals is not empty.  

Table 1. Attribute weights for the three partners and aggregated preferences in terms of 
trapezoidal fuzzy numbers 

Attribute Partner 1 Partner 2 Partner 3 Company 
    X1 [0.4,0.6] [0.5,0.65] [0.5,0.7] (0.4,0.5,0.6,0.7) 
    X2 [0.6,0.8] [0.7,0.8] [0.85,0.9] (0.6,0.7,0.8,0.9) 
    X3 [0.4,0.45] [0.5,0.6] [0.5,0.7] (0.4,0.5,0.6,0.7) 
    X4 [0.4,0.45] [0.8,0.9] [0.95,1.0] (0.7,0.8,0.9,1.0) 
    X5 [0.0,0.1] [0.05,0.15] [0.05,0.1] (0.0,0.05,0.1,0.15) 

 
The membership functions for the trapezoidal fuzzy numbers output as a 

consequence of the aggregation process are computed in a different way depending on 
the considered case.  

Attribute X4 matches up with the first case, see Table 1, and the membership 
function is (see Fig. 4a): 
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The reasoning behind this fuzzy number is: partners 1 and 3 have extreme weights, 
but are known to be looking for a consensus. Therefore, it is reasonable to assume that 
they will agree on some of the weights between their respective intervals. But, we 
also know that the weights for partner 2 are in this region, and it is reasonable to 
assume that these will be highly possible weights. So, from these weights, there will 
be a linearly decreasing possibility down to the value zero at the lower and upper end 
points of the intervals provided by partners 1 and 3, 0.4 and 1.0, respectively. 

Attributes X2 and X3 match up with the second case, see Table 1. The membership 
function in attribute X2 is as follows (see Fig. 4b): 
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Weights for partners 1 and 2 intersect in the interval [0.7, 0.8], and both are 
disjoint with the third weight interval (partner 3). As partners 1 and 2 agree within an 
interval, it is logical to think that this interval represents what would be a consensus in 
a negotiation process. Also, as they constitute a majority, the greatest possibility 
(equal to 1) should be assigned to [0.7, 0.8]. From this interval, there will be a linearly 
decreasing possibility down to the value zero at the lower and upper end points of the 
intervals provided by partners 1 and 3, L

iw1 and U
iw3 , respectively. 

 

 

Fig. 4. Membership functions for the trapezoidal fuzzy numbers representing group preferences 
for attributes X1, X2, and X4 

Finally, attributes X1 and X5 match up with the third case, see Table 1. The 
membership function in attribute X1 is as follows (see Fig. 4c): 
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Now, the intersection of the three weight intervals is not empty. Consequently, the 
highest possibility (equal to 1) should be assigned to this intersection interval [0.5, 
0.6]. From this interval, there will be a linearly decreasing possibility down to the 
value zero at the lower and upper end points of the intervals provided by partners 1 
and 3, 0.4 and 0.7, respectively. 

The partners also assessed component utilities (preferences concerning city 
performances) in each attribute (columns 3, 4 and 5 in Table 2). They were then 
aggregated into trapezoidal fuzzy numbers (column 6 in Table 2) representing the 
company preferences. 

Table 2. Partner preferences concerning the city performances for the different attributes and 
aggregated preferences in terms of trapezoidal fuzzy numbers 

Attribute City Partner 1 Partner 2 Partner 3 Company 
    A1 [0.2,0.3] [0.25,0.0.3] [0.31,0.35] (0.2,0.25,0.3,0.35) 
    A2 [0.8,0.83] [0.84,0.9] [0.85,1.0] (0.8,0.85,0.9,1.0) 

  
    X1  

    A3 [0.75,0.85] [0.8,0.86] [0.88,0.9] (0.75,0.8,0.85,0.9) 
    A1 [0.75,0.78] [0.79,0.85] [0.8,0.9] (0.75,0.8,0.85,0.9) 
    A2 [0.8,0.9] [0.85,0.91] [0.95,1.0] (0.8,0.85,0.9,1.0) 

 
    X2 

    A3 [0.65,0.68] [0.7,0.75] [0.7,0.8] (0.65,0.7,0.75,0.8) 
    A1 [0.35,0.55] [0.4,0.6] [0.62,0.65] (0.35,0.45,0.55,0.65) 
    A2 [0.75,0.0.78] [0.8,0.85] [0.88,0.9] (0.75,0.8,0.85,0.9) 

 
    X3 

    A3 [0.65,0.67] [0.7,0.75] [0.77,0.8] (0.65,0.7,0.75,0.8) 
    A1 [0.8,0.9] [0.85,0.9] [0.95,1.0] (0.8,0.85,0.9,1.0) 
    A2 [0.75,0.77] [0.78,0.85] [0.8,0.9] (0.75,0.8,0.85,0.9) 

 
    X4 

    A3 [0.75,0.77] [0.78,0.85] [0.8,0.9] (0.75,0.8,0.85,0.9) 
    A1 [0.35,0.4] [0.45,0.55] [0.6,0.65] (0.35,0.45,0.55,0.65) 
    A2 [0.75,0.77] [0.78,0.85] [0.8,0.9] (0.75,0.8,0.85,0.9) 

 
    X5 

    A3 [0.75,0.77] [0.78,0.85] [0.8,0.9] (0.75,0.8,0.85,0.9) 

 
Overall utilities for each city are output using (1), taking into account the 

approximation of the product of two trapezoidal fuzzy numbers to a new trapezoidal 
fuzzy number, are shown in Table 3. 

Table 3. Overall utilities for the three candidade cities 

Overall utilities Trapezoidal fuzzy numbers 

u~ (A1) (1.2175,1.5275,1.875,2.295) 
u~ (A2) (1.61625,2.02,2.45,2.98125) 
u~ (A3) (1.46625,1.84,2.24,2.66625) 

 
Thus, the problem is now to rank the three trapezoidal fuzzy numbers using their 

distances to the minimum and maximum utility, x and y, see Table 4.  
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Table 4. Distances to the minimum and maximum utilities 

 f(α)= α f(α)= 1 

Utilities D(•, x, α) D(•, y, α) R(•)  D(•, x, 1) D(•, y, 1) R(•) 
u~ (A1) 0.55495 1.28362 -1.12510 0.32877 1.63615 -2.37808 
u~ (A2) 1.08021 0.78325 0 1.20823 0.63615 0 
u~ (A3) 0.87200 0.96990 -0.43013 0.78277 0.94592 -0.88430 

 
Looking at Table 4 we find that the rankings provided by D(•, x, α) and D(•, y, α) 

under a risk-neutral perspective (f(α)= α) match up. A2 is the best, whereas A1 is the 
worst alternative regarding the distance to the minimum utility (x). The same applies 
to the distances to the maximum utility (y), A2 is again the best and A1 the worst 
alternative. Thus, ratio R(•) for each alternative does not need to be used. On the other 
hand, the ranking output from a risk-prone perspective (f(α)= 1) matches up with the 
above, as shown in Table 4. In both cases, the ranking output on the basis of the ratio 
would be 

132 AAA ff  

as expected. Note that the results for this example match up with the outcomes presented 
in [11], where the same example was considered but a different methodology was 
applied. 

4   Conclusions 

In many real decision-making problems there is more than one DM, and the 
preferences for each one are modelled by an additive utility function. To make the job 
easier for DMs, they are allowed to provide ranges instead single values in response 
to the questions analysed in the methods for quantifying DM preferences. Thus, for 
each DM and attribute, we have a class of utility functions and a weight interval. 
However, for reasons of time or space, these DMs may not have the chance to enter 
into a negotiation process for the purpose of reaching a consensus alternative.  

In this paper, we have introduced a possibility for aggregating the individual 
preferences of several DMs to get group preferences, assuming that there is a desire to 
reach a consensus. Using logic reasoning, we show that group weights and utilities 
can be considered as trapezoidal fuzzy numbers. The result is that the overall group 
global utility for each alternative is a trapezoidal fuzzy number, calculated as a sum 
and product of trapezoidal fuzzy numbers. 

The problem then is to rank trapezoidal fuzzy numbers, for which purpose we have 
proposed using the distances between them and two preset targets, the minimum and 
the maximum utility. For this purpose, we have considered a notion of distance 
measure between two interval numbers based on an integral. This takes into account 
every point in both intervals, and α-cuts for the considered trapezoidal fuzzy numbers. 
This way, we can consider risk-prone, risk-neutral and risk-averse DMs. 

The proposed methodology has been illustrated using an example taken from the 
literature: the selection of a suitable city to set up a new factory We reached the same 
conclusions.  
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Abstract. In this paper we address the question of multicriteria rela-
tional clustering. We develop a method that builds clusters and relations
between these clusters on the basis of a binary outranking matrix. An
extension of the k-means algorithm is presented and tested on artificial
data sets. Finally, an example about the clustering of journals from the
field of “Operations Research and Management Science” is illustrated.

1 Introduction

In the field of multicriteria decision aid, one usually distinguishes three main
problems [4]. The first one can be formulated as identifying a subset of alter-
natives that are considered to be the best or the more interesting ones. This
is referred to as the choice problem. The second one is related to the ranking
of the actions from the best to the worst one. Finally, in sorting problems, the
decision maker focuses on the assignment of alternatives to pre-defined ordered
categories [3,5,6].

Recently some researchers have addressed the question of detecting clusters in
multicriteria contexts. In an earlier paper, De Smet et al. [2] have developed an
extension of the traditional k-means algorithm to tackle this problem. The main
contribution of their work relies on the definition of a distance measure that is
based on binary preference relations between the alternatives. Intuitively, two
actions will be considered as similar if they are indifferent, incomparable, being
preferred or preferred to the same alternatives. In this way, the intrinsic nature
of the multicriteria problem is taken into account in the k-means algorithm.

In this article, we present an extension of the aforementioned work. Our aim is
not only to detect clusters in a multicriteria context but also to identify relations
between these clusters. This last issue was not treated in [2]. Typically we are
looking for information such as “two clusters A and B are incomparable while
they are both preferred to a third cluster C”. As mentioned in Cailloux et al.
[1], this is referred to as relational multicriteria clustering.

The paper is organized in three main sections. Section 2 is dedicated to the
model and the algorithm. Tests are performed on artificial data sets in Section 3.
Finally an illustrative example is proposed in Section 4. The idea is to apply the
algorithm on a binary outranking matrix obtained from the comparison of 60
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journals from the “Operations Research & Management Science” category of the
2006 edition of the Thomson Scientific’s Journal Citation Report.

2 The Model

Let us consider a set of actions, noted A = {a1, a2, . . .an}, and a binary out-
ranking relation S defined on A. For any pair of actions ai, aj ∈ A, aiSaj

expresses that “ai is at least as good as aj” ([4]). This aggregated relation has
been built from the comparison of every couple of actions with respect to a set
G = {g1, g2, . . . , gm} ofm criteria using a given multicriteria outranking method.

The outranking relation S induces a preference structure (as defined in [4])
with the following relations: Preference (P ), Indifference (I), Incomparability
(J). Formally, we have: ⎧⎨⎩aiPaj ⇔ aiSaj, aj¬Sai

aiIaj ⇔ aiSaj, ajSai

aiJaj ⇔ ai¬Saj , aj¬Sai

The aim of the method is to aggregate the provided preference information
into a relational partition of A, noted (Pk, SPk

) and where

– Pk = {C1, C2, . . . , Ck} is a partition of A into k clusters
– SPk

⊂ Pk × Pk is an antisymmetric binary relation on Pk

Similarly CiSPk
Cj expresses that “cluster Ci is at least as good as cluster Cj”.

Naturally, we can assume that SPk
is antisymmetric.

Let us remark that the number of possible relational partitions (Pk, SPk
) is

given by the Sterling number of the second kind, multiplied by the number of
possible permutations inside the clusters relations, thus 3

k(k−1)
2 · S(n, k).

As already mentioned, our goal is to apply an extension of the widely used k-
means clustering method that integrates the multicriteria nature of the provided
input data. In order to achieve this, we will have to define:

– how to build the centroid of a cluster,
– a multicriteria distance between actions and cluster’s centroids, and
– a fitness measure that allows to quantitatively evaluate a given relational

partition

As the definition of the distance is a key element for applying an adapted k-means
clustering algorithm, we will use the distance defined in [2], which integrates this
information by using a particular representation for each action, whether real or
fictitious, called the profile. More formally,

Definition 1. [2] The profile Q(ai) of action ai ∈ A is defined as being a 4-uple
〈J(ai) , P+(ai) , P−(ai) , I(ai) 〉, where:⎧⎪⎪⎨⎪⎪⎩

J(ai) = {aj ∈ A | aiJaj} = Q1(ai)
P+(ai) = {aj ∈ A | aiPaj} = Q2(ai)
P−(ai) = {aj ∈ A | ajPai} = Q3(ai)
I(ai) = {aj ∈ A | aiIaj} = Q4(ai)
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In other words, we consider a profile of a given action ai as a partition of A into 4
subsets denoted by J(ai), P+(ai), P−(ai) and I(ai), each of which contains the
actions aj ∈ A satisfying respectively the relations aiJaj , aiPaj , ajPai, aiIaj .

In what follows we will consider that two actions will be similar if they are
indifferent, preferred or being preferred by the same actions. Put in another way,
“two actions will be as close as their profiles are alike”.

Definition 2. [2] Let Q(a) be the profile of a ∈ A, the distance between two
actions ai, aj ∈ A is defined as follows:

d (Q(ai), Q(aj)) = 1 − 1
n

4∑
l=1

|Ql(ai) ∩Ql(aj)| ,

where n = |A|. Considering a relational partition (Pk, SPk
), we would like to

characterize a representative element of each cluster that we will call a centroid.

Definition 3. Based on the relational partition (Pk, SPk
), let ci be the centroid

of cluster Ci ∈ Pk. The profile of ci is defined as follows:

Q(ci) =

〈 ⋃
j∈EJ (Ci)

Cj ,
⋃

j∈EP+ (Ci)

Cj ,
⋃

j∈EP− (Ci)

Cj ,
⋃

j∈EI (Ci)

Cj

〉

where the following subsets of cluster indices associated to a given cluster Ci

have been defined:⎧⎪⎪⎨⎪⎪⎩
EJ(Ci) = { j ∈ {1, .., k} | Cj ∈ Pk, Ci¬SPk

Cj , Cj¬SPk
Ci }

EP+(Ci) = { j ∈ {1, .., k} | Cj ∈ Pk, CiSPk
Cj , Cj¬SPk

Ci }
EP−(Ci) = { j ∈ {1, .., k} | Cj ∈ Pk, Ci¬SPk

Cj , CjSPk
Ci }

EI(Ci) = { j ∈ {1, .., k} | Cj ∈ Pk, CiSPk
Cj , CjSPk

Ci }

Let us stress that this definition differs from the one given in [2].
In order to evaluate the quality of a relational partition (Pk, SPk

), we compute
the average distance of all actions to the centroid of the cluster they are assigned
to. The fitness measure, denoted by f , will be the complementary value.

Definition 4. Let A be a set of actions, S be a binary outranking relation on A
and (Pk, SPk

) be a relational partition, the fitness f associated to that relational
partition in regard to A and S is defined as follows:

f (A,S, Pk, SPk
) = 1 − 1

n

k∑
r=1

∑
ai∈Cr

d (Q(ai), Q(cr)) ,

where n = |A|. Although this fitness measure only looks like an internal ho-
mogeneity indicator, as it tries to minimize the distance between all actions and
their associated centroid, it is not. Indeed, since the fitness is based on a distance
which, in turn, is calculated by using profiles, the relational connection between
the clusters are implicitly included in this measure (since they are used for the
definition of the centroid’s profiles).
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This can be shown in the following way, by explicitly introducing the definition
of the distance into the fitness definition:

f (A,S, Pk, SPk
) = 1 − 1

n

k∑
r=1

∑
ai∈Cr

[
1 − 1

n

4∑
l=1

|Ql(ai) ∩Ql(cr)|
]

= 1
n2

k∑
r=1

∑
ai∈Cr

4∑
l=1

|Ql(ai) ∩Ql(cr)|

In addition to this scalar fitness measure, a richer indicator can be defined in
order to obtain a fine grained evaluation.

Definition 5. Let A be a set of actions, S be a binary outranking relation on
A and (Pk, SPk

) be a relational partition. The matrix of fitness indices Φ of that
relational partition in regard to A and S is a k × k matrix, which elements ϕcr,
∀c, r ∈ {1, .., k} are defined by

ϕrq =
1

|Cr| · |Cq|
∑

ai∈Cr

∣∣∣Ql∗rq
(ai) ∩Cq

∣∣∣ .
where l∗rq is the index related to the existing relation between Cr and Cq.

Intuitively, ϕrq expresses the fitness at the relational level by providing a quan-
titative evaluation of what proportion of cluster r’s actions have the same rela-
tion to cluster q’s actions, as it is expressed by the calculated relation (denoted
l∗rq ∈ {1, .., 4}) between the clusters r and q. For instance let us assume that Cr

is incomparable to Cq. As a consequence l∗rq = 1, ϕrq will quantify in which way
the actions belonging to Cq are present or not in J (ai) for every ai of Cr.

We finally gathered all necessary tools to implement the adapted k-means
algorithm described below.

The Binary RMCC Clustering Algorithm

Inputs: A = {a1, a2, . . . , an} , S, k
∀ai ∈ A compute Q(ai)
Randomly initialize the relational partition (Pk, SPk

), such that
∀Ch ∈ Pk, |Ch| > 0
repeat

for each Cj ∈ Pk do
Compute Q(cj)

end for
for each ai ∈ A do

Assign ai to Cj such that
d (Q(ai), Q(cj)) ≤ d (Q(ai), Q(cm)) ∀Cj , Cm ∈ Pk

end for
Given Pk, determine SPk

in order to maximize f
until The relational partition no longer changes

If two or more centroids are at the same minimal distance from the considered
action, it is arbitrarily assigned to the cluster with the smallest index. Additionally
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at each step we ensure that at least one element belongs to every cluster. Without
this condition a cluster could possibly disappear during the execution.

Once a given partition Pk has been determined, the relation between each
pair of clusters (Ci, Cj) has to be calculated. We choose the relation so as to
maximize the fitness f of the relational partition.

S∗
Pk

= argmax
SPk

f (A,S, Pk, SPk
)

As a consequence, 3
k(k−1)

2 tests have to be performed each time a new par-
tition Pk is considered. Because this would rapidly become a bottleneck when
increasing the number of clusters (for k = 6 already ∼ 108), an equivalent voting
procedure has been adopted.

Proposition 1. For a given set (A,S, Pk), applying the hereafter described vot-
ing procedure to determine the cluster’s relations is equivalent to maximizing the
fitness function f(A,S, Pk, SPk

).
For each pair of clusters (Cr , Cq), their relation l∗rq ∈ {1, .., 4} will be deter-

mined such that

l∗rq =

⎧⎪⎨⎪⎩ argmax
lrq∈{1,..,3}

( ∑
ai∈Cr

∑
aj∈Cq

∣∣Qlrq(ai) ∩ aj

∣∣) , for r �= q

4 , for r = q

Proof. Intuitively, the voting procedure defined above will consist in comparing
the nr actions of cluster Cr with the nq actions of cluster Cq. The goal being to
show that the fitness is maximal with these calculated relations, we will create a
centroid profileQ(cr) for each cluster Cr ∈ Pk in the following way ∀r ∈ {1, .., k}:

Ql(cr) =
⋃

q∈Jl(cr)

Cq ,

where Jl(cr) =
{
q ∈ {1, .., k} | l∗rq = l

}
, ∀l ∈ {1, .., 4}.

Armed with these centroid’s profiles it can be shown that the given voting
procedure maximizes the fitness f . The proof is done by rewriting the definition
of the fitness:

f (A,S, Pk, SPk
) = 1 − 1

n

k∑
r=1

∑
ai∈Cr

d (Q(ai), Q(cr))

= 1
n2

k∑
r=1

∑
ai∈Cr

4∑
l=1

|Ql(ai) ∩Ql(cr)|

= 1
n2

k∑
r=1

∑
ai∈Cr

4∑
l=1

∣∣∣∣∣Ql(ai) ∩
( ⋃

q∈Jl(cr)
Cq

)∣∣∣∣∣
= 1

n2

k∑
r=1

∑
ai∈Cr

4∑
l=1

∣∣∣∣∣ ⋃
q∈Jl(cr)

[Ql(ai) ∩ Cq]

∣∣∣∣∣
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= 1
n2

k∑
r=1

∑
ai∈Cr

4∑
l=1

∑
Cq∈Pk

∑
aj∈Cq

δ[l=l∗rq ] |Ql(ai) ∩ aj |

= 1
n2

k∑
r=1

∑
ai∈Cr

k∑
q=1

∑
aj∈Cq

∣∣∣Ql∗rq
(ai) ∩ aj

∣∣∣
= 1

n2

k∑
r=1

k∑
q=1

[ ∑
ai∈Cr

∑
aj∈Cq

∣∣∣Ql∗rq
(ai) ∩ aj

∣∣∣]
The proposition naturally follows from the last expression and the definition of
l∗rq (i.e. the way a cluster relation is elected), since ∀r, q ∈ {1, .., k} , ∀l ∈ {1, .., 4}∑

ai∈Cr

∑
aj∈Cq

∣∣∣Ql∗rq
(ai) ∩ aj

∣∣∣ � ∑
ai∈Cr

∑
aj∈Cq

|Ql(ai) ∩ aj | .

3 Empirical Tests

Validation tests have been carried out on artificial data sets in order to analyze
the sensitivity of the adapted k-means algorithm with respect to several param-
eters. The generated data sets will be briefly described in the first part of this
section. We will thereafter focus on the actual results and the conclusions we
may draw from them.

Five relational models have been considered, each having distinctive features.
We briefly present them in Table 1.

We will now use our relational model S̃ as defined in Table 1 in order to
build a reference outranking matrix, denoted Σ̃, and whose actual form will also
depend on the number of actions nj , j ∈ {1, .., k} that will be assigned to each

cluster j. The number of actions of the artificial data set will be n =
k∑

j=1
nj .

The reference outranking matrix is computed by transforming each element s̃ij

of the relational matrix S̃ into a sub-matrix of dimension ni × nj, with all its
elements being set to the value of s̃ij . The assembly of all these sub-matrices
finally yields the reference outranking matrix.

For instance, for the case 1 and a set of cluster cardinals {n1, n2, n3} = {2, 3, 1},
the relation matrix S̃1 would extend to the 6 × 6 reference outranking matrix

Σ̃1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Σ̃ represents an ideal case, where the algorithm performs best. Unfortunately,
this is an utopian configuration. In order to represent more complex data struc-
tures, we will have to consider ways of applying perturbations. This will be done
in two ways, described hereafter.
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Table 1. Relational models used for validation

Ref Representation Relation matrix

1 S̃1 =

⎡⎣1 1 1
0 1 0
0 0 1

⎤⎦

2 S̃2 =

⎡⎣1 1 0
0 1 1
1 0 1

⎤⎦

3 S̃3 =

⎡⎢⎢⎣
1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦

4 S̃4 =

⎡⎢⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦

5 S̃5 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 1 1
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 1 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Examples of S̃T with respectively νperm =20%, 40% and 75% of relational
cluster-action perturbations applied on case 1

First, we introduce what we will call relational cluster-action perturbation.
This type of perturbation consists in randomly altering the relation between a
given action ai ∈ A and all actions of a given cluster Cj . The result of perform-
ing this perturbation with several magnitudes is shown on Figure 1, where the
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matrices have been represented by a two-color raster, the values 0 and 1 being
respectively shown as white and gray pixels. The parameter of this perturbation
is a normalized perturbation factor which is defined as νperm = nperm

k·n , where
nperm is the number of permutations that will be applied.

In addition to the relational cluster-action perturbation, we also artificially
introduce noise into the reference outranking matrix Σ̃. This is done by randomly
picking pairs of actions and randomly change their relation. Similarly to the
previous perturbation, a normalized noise factor νnoise = 2·nnoise

n·(n−1) (where nnoise

is the number of pairs of actions that alterations are applied to) is defined. The
application of noise on a reference outranking matrix is shown at Figure 2.

Fig. 2. Examples of S̃T with 20%, 40% and 75% of noise applied on case 1

Table 2 summarizes the different parameters that we will play with to generate
artificial data sets.

Table 2. Parameters for artificial data sets

Parameter Symbol
Number of actions per cluster n = {n1, . . . , nk}
Relational cluster-action perturbation νperm ∈ [0, 1]
Noise νnoise ∈ [0, 1]

As the k-means algorithm badly suffers from its dependency on random ini-
tialization, it has been repeated until no new improvements appeared during 10
consecutive executions. The best result is kept and returned as the result of the
algorithm.

Results
In the following, only the results obtained for the reference case 3 are presented
in some detail, because the results for all five studied cases (defined in Table 1)
have shown to be very similar.

The results presented in Table 3 are averaged outcomes of the algorithm
repeated 20 times. These results are graphically shown on Figure 3.
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Table 3. Results for reference case 3 (n = 50)

Noise\Pert 0,00 0,05 0,10 0,15 0,20 0,25
0,00 1,00 0,93 0,85 0,83 0,86 0,71
0,05 0,96 0,92 0,88 0,79 0,74 0,79
0,10 0,94 0,93 0,82 0,81 0,75 0,67
0,15 0,90 0,74 0,79 0,67 0,71 0,64
0,20 0,88 0,83 0,79 0,72 0,68 0,69
0,25 0,82 0,81 0,74 0,70 0,63 0,61

0
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Fig. 3. Fitness depending on applied perturbation and noise. Results for reference case
3 (n = 50).

When compared to the results for other reference cases, it is striking to notice
that it does not depend on the underlying relational structure nor the relative
weights of the different clusters. This behavior may be explained by the fact that
the fitness measure, directly depending on the average distance of all actions to
their respectively assigned cluster’s centroid, “only” counts the number of differ-
ences between each action’s profile and its cluster’s centroid profile, regardless
on the type of difference that arises.

A second type of tests that has been carried out on the above defined artificial
data sets is the alteration of the relative cluster sizes. As in the first series,
the clusters of all underlying data sets had the same number of elements, this
equilibrium has been modified in order to observe the influence of that parameter.
For each graph of Figure 4, the number of elements in each cluster is indicated
in the legend.

As can easily be retrieved from Figure 4, clusters of very different sizes are
handled in a satisfying way with respect to the fitness, presenting no noticeable
degradation of the result’s fitness.
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Fig. 4. Variation of the results under the influence of altered cluster size proportions
for the reference case 1

4 Illustrative Example

Let us now consider an application of the presented algorithm to the practical
case of scientific journal ranking. The data used for this example is taken from
the 2006 edition of Thomson Scientific’s Journal Citation Reports (JCR), from
which only journals gathered in the subject category of “Operations Research &
Management Science” have been extracted.

The goal is to partition the set of selected journals into a given number of
clusters and to elicit their relations in regard to different criteria. Amongst all
cited criteria leading to the JCR’s ranking of journals, we will select two, which
an outranking rule will be applied on, in order to obtain a pairwise outranking
relation on all selected journals. The number of considered criteria has been
limited to two in order to allow an easy representation of the journals in two
dimensions. Not too much emphasis will be put on the motivations for the choices
made, since their primary purpose is to furnish illustrative input data.

The used (and transformed) basic information for each journal are, for a given
JCR year y:

– The impact factor IFy, denoted as g1
– The total cites divided by the number of published articles TCy

Ay
, as the

second criterion g2

In order to derive the outranking matrix we will use an extension of the
dominance relation. More formally:

aSb⇔ ∀h ∈ {1, 2} , gh (a) ≥ gh (b) − σh ,

where σh is a threshold that is set to be a fifth of criterion’s h measured ampli-
tude.
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Results
Applying the algorithm to the data set in Table 4 and setting the number of
clusters to k = 5, yields the results presented in Figure 5. This relational partition
has a quite good fitness of f = 87, 5%. It is noticeable that 4 regular clusters
with perfect transitive outranking relations are obtained. A fifth, “pathological”
cluster, only holds two journals (i.e. “INFOR” and “INT J FLEX MANUF SYS”),
which are special because of the very low number Ay of published articles. Indeed,
a very small value of Ay makes the criteria g2 artificially explode, without having
any actual meaning. Although the relation to the worst of the regular cluster
may be questionable, this result allows to isolate and draw attention to these
two special journals.

Figure 5 also integrates the elicited outranking relations, represented as ar-
rows, between the clusters. The direction of these arrows express the preference

Table 4. The data set used for illustrating the proposed method

Journal TCy Ay
T Cy
Ay

IFy Journal TCy Ay
TCy
Ay

IFy

ANN OPER RES 1833 115 15.9 0.544 MANAGE SCI 12110 133 91.1 1.931

APPL STOCH MODEL BUS 161 34 4.7 0.342 MATH METHOD OPER RES 357 61 5.9 0.400

ASIA PAC J OPER RES 96 32 3.0 0.258 MATH OPER RES 1908 55 34.7 0.875

COMPUT OPER RES 2402 221 10.9 1.147 MATH PROGRAM 3644 52 70.1 1.475

COMPUT OPTIM APPL 641 57 11.2 0.851 MIL OPER RES 55 17 3.2 0.241

CONCURRENT ENG-RES A 233 25 9.3 0.482 NAV RES LOG 1511 73 20.7 0.548

DECIS SUPPORT SYST 1645 160 10.3 1.119 NETW SPAT ECON 126 20 6.3 0.514

DISCRETE EVENT DYN S 200 19 10.5 0.545 NETWORKS 1257 57 22.1 0.609

ENG OPTIMIZ 368 53 6.9 0.571 OMEGA-INT J MANAGE S 1124 62 18.1 1.327

EUR J OPER RES 11003 838 13.1 1.096 OPER RES 6135 82 74.8 1.467

EXPERT SYST APPL 1254 222 5.6 1.177 OPER RES LETT 1195 112 10.7 0.517

IIE TRANS 2146 85 25.2 0.797 OPTIM CONTR APPL MET 164 24 6.8 0.735

INFOR 283 3 94.3 0.275 OPTIM ENG 132 17 7.8 0.711

INFORMS J COMPUT 624 57 10.9 0.907 OPTIM METHOD SOFTW 427 57 7.5 0.554

INT J COMPUT INTEG M 290 64 4.5 0.297 OPTIMIZATION 470 45 10.4 0.408

INT J FLEX MANUF SYS 255 4 63.8 0.452 OR SPECTRUM 351 38 9.2 0.562

INT J INF TECH DECIS 145 40 3.6 0.718 PROBAB ENG INFORM SC 266 37 7.2 0.577

INT J PROD ECON 2601 212 12.3 0.995 PROD OPER MANAG 770 51 15.1 2.123

INT J PROD RES 4281 278 15.4 0.56 PROD PLAN CONTROL 689 59 11.7 0.561

INT J SYST SCI 954 85 11.2 0.492 QUAL RELIAB ENG INT 323 66 4.9 0.500

INT J TECHNOL MANAGE 531 87 6.1 0.356 QUEUEING SYST 894 54 16.6 0.851

INTERFACES 953 42 22.7 0.575 RAIRO-OPER RES 118 30 3.9 0.088

J GLOBAL OPTIM 1237 111 11.1 0.813 RELIAB ENG SYST SAFE 1774 159 11.2 1.004

J IND MANAG OPTIM 55 54 1.0 0.722 SAFETY SCI 629 54 11.6 0.427

J OPER MANAG 1971 82 24.0 1.851 SYST CONTROL LETT 3376 95 35.5 1.634

J OPER RES SOC 2873 159 18.1 0.784 TECHNOVATION 798 60 13.3 1.004

J OPER RES SOC JPN 190 34 5.6 0.200 TRANSPORT RES B-METH 1801 67 26.9 1.948

J OPTIMIZ THEORY APP 2655 135 19.7 0.688 TRANSPORT RES E-LOG 350 47 7.4 1.000

J QUAL TECHNOL 1432 26 55.1 1.184 TRANSPORT SCI 1613 35 46.1 1.427

J SCHEDULING 331 31 10.7 1.000
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Fig. 5. Computed clusters and their relations with the proposed algorithm
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Fig. 6. The classical k-means algorithm applied with an euclidean distance on the data
set (TCy/Ay , IFy)

between each pair of clusters. Additionally, the matrix of fitness indices is
given by

Φ =

⎡⎢⎢⎢⎢⎣
0,88 0,81 1,00 1,00 1,00

0,81 0,87 0,92 1,00 0,54

1,00 0,92 0,65 0,99 1,00

1,00 1,00 0,99 0,18 0,67

1,00 0,54 1,00 0,67 0,50

⎤⎥⎥⎥⎥⎦ .
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This result can be compared with the one obtained with the classical k-means
method when an euclidean metric is directly applied on the prepared data set
(TCy/Ay , IFy). See Figure 6. Our aim here is to stress that significant differences
might exist between the two outputs. Nevertheless, we acknowledge that we have
not refined the application of the k-means algorithm.

5 Conclusion

In this paper we have presented a model to build a relational partition on the
basis of a binary outranking matrix. To our knowledge no previous work has
addressed that kind of question and we hope that it will open many directions
for future research.

For the sake of simplicity we have applied a k-means algorithm to solve the
problem. Of course the use of refined meta-heuristics could improve the obtained
results. Up to now, the relational partition is only evaluated on the basis of a
unique fitness value which integrate the homogeneity of the groups and the
coherence of the clusters relations. Obviously the evaluation of such a partition
involves different conflicting criteria and give rise to multi-objective optimization
problems.

From a methodological point of view several extensions have to be considered.
Among them, the extension to valued outranking matrices or the development
of a weighted distance that will differentiate the four preference relations.
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Abstract. The very early detection of Alzheimer’s disease (AD) has
been deeply investigated in numerous studies in the past years. These
studies have demonstrated that the pathology usually arises decades be-
fore the clinical diagnosis is effectively made, and so a reliable identifica-
tion of AD in its earliest stages is one of the major challenges clinicians
and researchers face nowadays. In the present study, we introduce a new
approach developed upon a specific Multicriteria Decision Aid (MCDA)
classification method to assist in the early AD diagnosis process. The
MCDA method is centered on the concept of prototypes, that is, alter-
natives that serve as class representatives related to a given problem,
and has its performance index very dependent upon the choice of values
of some control parameters. In such regard, two techniques, one based
on ELECTRE IV methodology and the other on a customized genetic
algorithm, are employed in order to select the prototypes and calibrate
the control parameters automatically. Moreover, a new database has been
designed taking as reference both the functional and cognitive recommen-
dations of the Scientific Department of Cognitive Neurology and Aging
of the Brazilian Academy of Neurology and a neuropsychological battery
of exams made available by the well-known Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD). Various experiments have
been performed over this database in a manner as to either fine-tune the
components of the MCDA model or to compare its performance level
with that exhibited by other state-of-the-art classification algorithms.

1 Introduction

The Alzheimer’s disease (AD) is a progressive and degenerative disease of the
brain which causes a serious impairment over its two main activities: thinking
and memory. According to Celsis [5], AD is the most common form of dementia
among the elderly population, comprising up to 75% of all dementia cases. AD
causes a gradual loss of intellectual abilities with deterioration in cognition,
function, and behavior, affecting many aspects of an individual life.

This way, with the decline of the normal functioning over the nervous and
other bodily systems, and with the natural behavioral and personality changes,
the identification of what constitutes abnormal impairment becomes a hard task.
Davidoff [6] argues that the problem over the AD diagnosis is not only related to
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the current level of understanding of the disease, but also to the comprehension
of the normal process involving the patients age. For the author, there are yet no
consistent established set of values for what would be a normal level of impair-
ment in the elderly. To overcome these difficulties, some authors [2,9,17] have
demonstrated that the AD first symptoms appears relatively early in life, and it
evolves during lifetime. This fact raises the chances of identifying the pathology
decades before a clinical diagnosis of dementia can be made.

In the present study, a Multicriteria Decision Analysis (MCDA) classification
approach, which is developed upon the method recently proposed by Goletsis
et al. [14] (referred to hereafter as gMCDA classifier), is employed towards the
effective early diagnosis of Alzheimer’s disease. The gMCDA classifier makes use
of the concept of prototypes, that is, special alternatives representing the classes
of a problem, and has associated with itself some control parameters related to
the expert’s preference modeling process. As some of the experiments reported
here reveal, the appropriate selection of prototypes as well as the calibration
of control parameters are key issues to leverage the gMCDA classifier’s perfor-
mance. This way, our approach combines two complementary techniques, one
based on ELECTRE IV methodology [25] and the other on a customized genetic
algorithm [8], in order to select the best prototypes and effectively calibrate the
control parameters, respectively.

Trying to detect potential patients with AD as early as possible, many stud-
ies [3,4,20,22] have investigated potential tests and exams that, through a func-
tional and cognitive analysis, may help the early AD detection. In this context, to
evaluate the effectiveness of our MCDA classification approach in the early AD
detection, we have developed a special-purpose AD-related database by follow-
ing the recommendations of the Scientific Department of Cognitive Neurology
and Aging of the Brazilian Academy of Neurology [23] and by making use of
a neuropsychological battery of exams made available by the well-known Con-
sortium to Establish a Registry for Alzheimer’s Disease (CERAD) [12]. Various
experiments have been performed over this database in a manner as to either
fine-tune the components of the MCDA model or to compare its performance
level with that exhibited by other state-of-the-art classification algorithms.

The rest of the paper is organized as follows. The next section presents an
overview of some related work concerning the themes of AD and MCDA classifi-
cation. The third section outlines the main conceptual ingredients of the gMCDA
classifier and the methodologies that were employed to solve the prototype and
parameter selection tasks. The fourth section provide details of the database we
have designed while the fifth section is dedicated to discuss the AD classification
experiments we have conducted so far over the new database. Finally, the last
section concludes the paper and brings remarks on future work.

2 Related Work

A classification problem refers to the assignment of a group of alternatives to a
set of predefined classes, also known as categories. During the last decades these
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problems have been tackled using a high variety of statistical and machine learn-
ing techniques. Recently, the area of Multicriteria Decision Aid (MCDA) [10,25]
has also brought new methodologies and techniques to solve these problems.

The main difference between the MCDA classification methods and others
coming from related disciplines, as artificial neural networks (ANN), Bayesian
models, rule-based models, decision trees, etc. [29], lies in the way that the
MCDA methods incorporate the decision maker’s preferences into the catego-
rization process. In the ANN field, for instance, the work of French et al. [13]
performs a comparison between an ANN model and a linear discriminant analy-
sis (LDA) algorithm to classify and to stage the degree of dementia. The results
demonstrated that the ANN algorithm clearly outperformed the LDA one in
terms of classification accuracy, highlighting the utility of using ANN for group
classification of patients with AD and staging dementia severity using neuropsy-
chological data.

Figueiredo et al. [11] present an algorithm that classifies individuals into four
different groups (i.e., clinically diagnosed groups of elderly normal, demented,
AD, and vascular dementia subjects). The classification is performed after the
analysis of computer tomography image data from brain and using an optimal
interpolative neural network. Another classification work related to dementia
disorders among the elderly [30] uses a nave credal classifier to address two
different classification problems: discrimination between demented and control
patients, and the assignment from among the different types of dementia. The
dataset was developed from a set of measures collected among of a series of
computerized tests (tasks), which assess some cognitive faculties of the patient.

Sandip et al. [27] realize the AD classification based on a molecular test that
evaluates characteristic changes in the concentrations of signaling proteins in the
blood, generating a detectable disease-specific molecular phenotype. By this way,
through a molecular biomarker in blood plasma, the model classifies the patients
into AD or non-AD and identifies those presymptomatic individuals with mild
cognitive impairment which will eventually convert to Alzheimer’s disease.

In the MCDA field, a decision making model has been recently proposed by
Castro and Pinheiro [3,4] to assist the specialist in the early diagnosis of the
Alzheimer’s disease. Differently from our approach, this model uses the Mac-
beth software [7] to construct the judgement matrices and the value scales for
each fundamental point of view (FPV) already defined. Each patient’s informa-
tion is judged by the decision maker for each FPV; then the Macbeth software
generates the value scales that will be used in the final judgment of the patient’s
diagnosis. Instead of providing the classification itself, this sort of model gives
the possibilities of a patient acquiring or not a certain type of dementia in the
future.

3 Multicriteria Decision Analysis

Zopounidis and Doumpos [31] define that the decision making problems, accord-
ing to their nature, the policy of the decision maker, and the overall objective of
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the decision, may require the choice, ranking, or the assignment of the considered
alternatives into predefined classes.

The practical approach that concerns the classification problems motivated
researches in developing different methods and mathematical models to solve
these problems trying to achieve the highest classification rate. A substantial
overview on MCDA methods can be found in [1,19,21] where the authors address
the definitions and the problems that are involved in the decision making process.

These methods have been successfully applied to real world problems. The
major difficulty during their employment, however, is that, in order to produce
models that comply with the decision maker’s expectations, a set of control
parameters, such as threshold variables, weights, coefficients, etc., needs to be
properly set in advance, which turns out to be a hard task to be dealt with. Some
authors, like Belacel [1] and Jacquet-Lagréze & Siskos [16], have already provided
some alternatives to counter this sort of drawback, although their solutions seem
to be rather specific to the contexts that were investigated and yet no general
recipes are available to be deployed in all methods and circumstances.

As pointed out by Zopounidis and Doumpos [31], the great majority of works
conducted on the MCDA classification theme has focused on the development of
novel MCDA classification methods, not giving much emphasis on characterizing
and comparing their distinctive problems. Likewise, the authors also advocate
that future research on this field should consider a more deep investigation into
some important practical issues, such as the analysis of the interdependencies
of the control parameters of the algorithms, the statistical validation of the
generated models, the analysis of performance over large data sets, and the
establishment of links between MCDA classifier models and those coming from
related disciplines, such as Pattern Recognition, Machine Learning, and Data
Mining [29].

In this context, we have developed an approach developed upon a specific
MCDA classification model, which is also composed of two complementary tech-
niques: one responsible for eliciting the values of the classifier’s control param-
eters and the other in charge of selecting the best prototypes from the dataset
in accordance with the decision maker’s preferences. The gMCDA classifier and
the associated techniques are detailed in the sequel.

3.1 MCDA Classifier

The MCDA classification method that we have chosen to cope with the AD clas-
sification problem was proposed by Goletsis et al. [14]. Like PROAFTN [1], this
method makes use of the concept of prototypes, that is, special alternatives to
serve as references against which new alternatives are compared (matched) with.
One distinctive aspect of this scheme with respect to other MCDA-based ones is
that it presents less control parameters to be adjusted (only some thresholds and
criteria weights). In what follows, we provide further details of the formulation
behind the gMCDA classifier.

Analytically, the model can be defined as in the following way. Let A be
the finite set of alternatives; F the set of n features (in the nominal sorting
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problem, they are also known as criteria), with n ≥ 1; wj the weight of a specific
criterion, with

∑
j wj = 1; C the set of categories of a problem, where C =

{C1, C2, . . . , CK} and K > 1, and Bh = {bhp |1, . . . , Lh} and {h = 1, . . . ,K} the
set of prototypes of the category Ch, where bhp represents the pth prototype of the
category Ch and Lh the number of prototypes of this category. Each alternative
in A and B is characterized by a feature vector g containing its feature values
for all n criteria in the F set. Each alternative is compared with each prototype
bhp under each criterion j.

As described by Goletsis et al. [14], during this comparison, the first element
to be computed is the Similarity Index (SI), denoted as SIj(a, bhp). This index
is calculated for each criterion, and its purpose is to model the criteria into a
five-zone similarity index. In order to compute this index, two thresholds must
be specified.

The first threshold that needs to be specified is the similarity threshold, qj ,
which represents the maximum allowed criterion difference between the alterna-
tives and the prototypes, i.e. |gj(a)− gj(bhp)|. Using this, the alternatives can be
judged as similar under a specific criterion.

The second threshold used in the calculus of SIj is the dissimilarity threshold,
pj , representing the minimum allowed criterion difference between an alternative
a and prototype bhp . This threshold needs to be defined in order to consider the
alternatives totally dissimilar.

The similarity index SIj is computed as described below:

SIj(a, bhp) =

⎧⎪⎪⎨⎪⎪⎩
1, if |gj(a) − gj(bhp)| ≤ qj(

|gj(a)−gj(bh
p )|−pj

qj−pj

)
, if qj < |gj(a) − gj(bhp)| < pj

0, if |gj(a) − gj(bhp)| ≥ pj

(1)

After the computation of the similarity index, the next step is to compute the
Concordance Index (CI). This index indicates the overall similarity concordance
of an alternative a with a prototype bhp . This index is computed as follows:

CI(a, bhp) =
∑

j

wj SIj(a, bhp). (2)

Each alternative will have its CI computed for all prototypes of all classes.
The next step is the computation of the Membership Degree (MD) of an

alternative a to a category h. The membership degree applies the best CI among
the alternatives to the category h. MD is computed as follows:

MD(a, Ch) = arg max{CI(a, bh1 ), . . . , CI(a, bhLh)}. (3)

Finally, the last step is the assignment of the alternative a to a category C(a)
with the maximum MD calculated to all the groups of prototypes. The formula
is given below:

C(a) = arg maxhMD(a, Ch). (4)
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The gMCDA classifier, as presented above, was first applied in the ischemic
beat classification problem [14]. Aiming to overcome the necessity of manually
tuning the parameters, Goletsis et al. employed a genetic algorithm instance
devised for such a purpose. In this paper, we have followed the same strategy
while dealing with the classification of AD individuals (see Subsection 3.3). As
an improvement, our approach also stipulates that the prototypes should be
selected through a complementary MCDA technique, which is discussed in the
next subsection.

3.2 ELECTRE IV

One of the complementary techniques applied cojointly with the gMCDA clas-
sifier tackles the problem of prototype selection. This technique is also based
on the MCDA principles, but conversely is based on the concept of sorting of
alternatives and criteria.

According to Zopounidis and Doumpos [31], the indirect techniques are widely
used for developing sorting models that employ the outranking concept. To ap-
ply this technique, the decision analyst specifies the parameters based on an
interactive inquiry process with the decision maker. This process ensures that
the decision maker preferences will be correctly captured in the model.

Differently from other similar algorithms [18], the ELECTRE IV method [26]
does not require the specification of a weight value for each criterion. Conversely,
the decision analyst chooses the criterion that it wants to work with and then
ELECTRE IV combines them to give birth to the outranking relations. This
approach avoids the problem of trying to quantify how important a criterion
is. Each criterion can be either defined as a benefit or cost criterion. When
the decision analyst considers a cost criterion, the lower the criterion value, the
higher its merit; the converse is true for a benefit criterion.

To employ this method to rank the alternatives of a class, the decision analyst
should define only the preference and indifference thresholds for each criterion.
Specifically in our MCDA approach, the ELECTRE IV method will assume the
role of the indirect technique responsible for the prototype selection activity.

Basically, the ELECTRE IV method can be divided into five stages: 1) criteria
selection; 2) calculus of the relative thresholds; 3) construction of weak and
strong outranking relations; 4) construction of the downward and upward ranks;
and 5) elicitation of the final rank.

The first step to employ the ELECTRE IV algorithm is to select the criteria
that will be used during the ranking process. The second stage is the determina-
tion of the relative thresholds. This phase basically sets the relation of two alterna-
tives under some criterion. It can be defined that two alternatives are indifferent,
strictly preferred, or weakly preferred over a criterion k. After that, it is necessary
to construct the weak and strong outranking relations for every pair of alterna-
tives [28]. At this point, an alternative i will either strongly or weakly outrank an
alternative j based on several restrictions that compares the relative ranks and
the thresholds defined [28]. The next step determines the strengths, weaknesses
and the qualification of each alternative, and, based on these numbers, defines the
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downward and upward ranks. Finally, the final rank is set using the mean of the
upward and downward ranks.

3.3 Genetic Algorithm

Genetic algorithms (GAs) comprise the class of evolutionary algorithms that
uses a specific vocabulary borrowed from natural genetics [8]. The data struc-
tures representing the individuals (genotypes) of the population are often called
chromosomes; these are one-chromosome (haploid) individuals encoding poten-
tial solutions to a problem. In standard GAs, the individuals are represented as
strings of bits. Each unit of a chromosome is termed a gene, located in a certain
place in the chromosome called locus. The different values a gene can assume
are the alleles. The problem to be solved is captured in an objective (fitness)
function that allows evaluating the adequacy of any potential solution.

As each chromosome corresponds to the encoded value of a candidate solution,
it has to be decoded into an appropriate form for evaluation and is then assigned
a fitness value according to the objective. For each chromosome is assigned a
probability of reproduction, so that its likelihood of being selected is proportional
to its fitness relative to the other chromosomes in the population. If the fitness
of each chromosome is a strictly positive number to be maximized, selection is
traditionally performed via an algorithm called Roulette Wheel selection [8]. The
assigned probabilities of reproduction result in the generation of a population of
chromosomes probabilistically selected from the current population. The selected
chromosomes will generate offspring via the use of probabilistic genetic operators,
namely, crossover (recombination of gene blocks) and mutation (perturbation
through genetic variation) each one associated with a specific rate. Each new
generation contains a higher proportion of the characteristics of the previous
generation good members, providing a good possibility to converge to an optimal
solution of the problem.

According to [8], GAs have successfully been applied to a wide variety of
problems, including those which are hard to be solved by other methods. In the
MCDA field, their application primarily concerns the task of control parameter
optimization [15,14], the same investigated in this paper.

4 Diagnosis of Alzheimer’s Disease

The early diagnosis of Alzheimer’s disease can bring benefits to the patients and
their families. With the constant development of drug therapies and therapeutic
advances, an early treatment process can be highly advantageous. The families
can feel the benefits as they prepare for the patient management, raising their
quality of life.

According to Davidoff [6], the difficulty to assert if a patient has AD or any
senile dementia is not just related to the current level of the understanding of this
disease, but also to the relatively poorly comprehended aspects that concerns
the elderly. This difficulty is also attested in [24], wherein the authors highlight
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that, despite the high incidence of dementia in the elderly population, doctors
fail to detect them in 21 to 72% of the cases.

As mentioned before, this study seeks to assist the decision maker (clinician)
in the early AD diagnosis. To achieve this objective, we have manually designed
a specific dataset of cases taking as reference the neuropsychological battery of
CERAD standardized assessments and the Brazilian consensus of cognitive and
functional evaluation. These are discussed in the following two subsections.

4.1 CERAD

The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) was
founded in 1986 after the Health Research Extension Act of 1985 with a specific
focus on issues of diagnosis and diagnostic standardization [12]. At that time,
besides the fact that there had been an increasing interest over the illness, there
was no uniform guideline over some issues, like diagnostic criteria, testing meth-
ods, and classifications of the disease severity, that could be followed. CERAD
is a distinctive collaborative initiative to attend to this need.

CERAD has developed some standardized assessment instruments from differ-
ent manifestations of Alzheimer’s disease: clinical neuropsychology; neuropathol-
ogy; behavior rating scale for dementia; family history interviews; and assessment
of service needs. In this way, the CERAD battery improved the ability of spe-
cialists and researchers to describe and correlate clinical, neuropsychological, and
neuropathologic aspects of AD.

4.2 The Novel Dataset

In order to provide a way to detect the presence of AD as soon as possible, we
have followed the recommendations of the Scientific Department of Cognitive
Neurology and Aging of the Brazilian Academy of Neurology [23] while crafting
our dataset of cases. This consensus specifies the recommendations over the
clinical diagnosis of AD through a functional and cognitive perspective, and
therefore the database was designed by following the strategy of correlating
clinical and neuropsychological assessments of CERAD with recommendations
provided by the Brazilian consensus.

In particular, the language evaluation exams allow for both a quantitative and
qualitative diagnosis, showing the profile of the linguistic disorder [23]. For the
Brazilian consensus, the Boston Naming Test is one of the recommended tests
that can be applied to break down the language aspects of a patient. This way,
the first criterion (attribute) considered in the dataset relates to the amount of
right answers given by each patient.

According to [23], the dementia diagnosis should be established in a clinical
exam, documented as the Mini-Mental State Examination. To comply with the
consensus, we turned this assessment into the second criterion associated with
each case. This criterion reflects the sum of answers correctly assigned by each
patient.

The third AD cognitive criterion designates a set of cognitive skills related
to social relationships and that guarantee a proper, responsible, and effective
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conduct of the patient [23]. Among the tests available in CERAD battery, we
have used the Verbal Fluency exam. This test requests the patient to verbalize
the highest number of animals as possible during a certain period of time. The
criterion is defined by the number of items mentioned in a minute, excluding the
repeated ones.

One of the main characteristics of AD is the impairment of memory. The
Brazilian consensus stresses the importance of the memory evaluation and sug-
gests the memorization of lists of words as an exam that can be applied to detect
any sort of brain impairment during the early stages of the disease. This exam
asks the patient to remember a ten-word list after a short period of time to
evaluate the status of the short-term memory. The CERAD assessment applies
three lists of ten words, so the database criterion we have devised specifies the
overall number of words that were remembered by the patient.

The last criterion introduced relates to the concept of constructional ability.
This CERAD assessment provides a non-verbal measure of the patient’s mental
health through the manipulation of geometric figures. The criterion denotes the
number of elements correctly-assigned by the patient.

Besides the fact that the neuropsychological assessments available in the
CERAD battery of exams were applied to more than 5,000 patients, only 119
cases could be effectively used in our experiments. This number was achieved
after cross-correlating the neuropsychological and clinical assessments in order
to certify whether the patient had effectively developed AD or not. By these
means, the resulting dataset encompasses 5 criteria and 119 alternatives (cases).

5 Experiments

In this section, we provide details of the experiments we have conducted so far
over the database introduced previously. First, we concentrate on the prototype
selection and control parameter calibration tasks conducted, respectively, by the
ELECTRE IV and GA engines. Then, we report on the results we have achieved
while applying the overall MCDA approach over the AD database, presenting a
comparison with some state-of-the-art classifiers.

5.1 ELECTRE IV Engine

As already mentioned, the ELECTRE IV method [26] has been applied to assist
in the prototype selection task through an indirect perspective. In such case, the
decision analyst is responsible for providing the system with his/her preferences,
which are effectively captured through the preference and indifference param-
eters (thresholds) associated with ELECTRE IV, so that the method can sort
the alternatives.

Since the alternatives are ranked, the number of prototypes chosen while con-
ducting the experiments was 7% of the original dataset. From that number, the
prototypes were separated into their classes respecting their original distribution
in the dataset. It is interesting to note that the application of the ELECTRE IV
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Table 1. Criteria preference and indifference thresholds

Criteria Description +p +q -p -q
C1 Boston Naming Test 0.9 0.39 -0.9 -0.39
C2 Mini-Mental State Examination 0.9 0.39 -0.9 -0.39
C3 Verbal Fluency 1.1 0.45 -1.1 -0.45
C4 Word List 1.1 0.45 -1.1 -0.45
C5 Constructional Praxis 0.9 0.35 -0.9 -0.35

method can vary depending on the type of dataset that is under consideration.
In cases where the problem presents more than two classes, the ELECTRE IV
should be applied for each class separately, sorting the best alternatives of each
class. This occurs because the classification problems often present conflicting
criteria.

When applied to our AD dataset, as it only presents two categories,the ELEC-
TRE IV engine needs to be applied only once to sort the patients from the most
probable of not having Alzheimer to those most probable of manifesting the
disease. In our experiments, we have ranked the patients from the non-AD to
the AD category. For this purpose, we have established the same preference and
indifference thresholds for all criteria, as they are all benefit criteria and have the
same numerical ranges. For this dataset, all criteria were considered as relevant,
so we have avoided discarding any attribute. Table 1 shows the preference and
indifference values that were elicited for each criterion from the decision maker
(clinician).

5.2 The Genetic Algorithm Engine

According to our approach, after the best prototypes are selected by the ELEC-
TRE IV engine, a customized GA is then employed in order to automatically
estimate the gMCDA classifier’s control parameters (thresholds). The GA com-
ponents [8] have been configured as follows: a population of 50 individuals (which
initially is randomly generated) is evolved at each generation; the Roulette Wheel
operator is used to select individuals to reproduce; individuals are recombined
through a single-point crossover and the offspring is mutated according to a uni-
form distribution over the parameters’ ranges; the crossover and mutation rates
are 80% and 15%, respectively; and the stop criterion adopted is to go through
500 generations of evolution.

To experiment with the GA, we have randomly generated 10 pairs of stratified
training/test datasets from the originaldatabase, allocating 80%of the samples for
training and the remaining for test. After the training phase, the best chromosome
(configuration of thresholds) discovery is applied to the test data.

6 Classification Results

In order to assess the potentials of the whole MCDA approach, we have de-
cided to compare the gMCDA classifier assisted with the ELECTRE IV and GA
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Table 2. Accuracy over the Alzheimer test data of the gMCDA classifier acting alone
for randomly-chosen sets of prototypes and arbitrary parameter values

1 2 3 4 5 6 7 8 9 10
1 58.82% 56.3% 64.71% 58.82% 55.46% 58.82% 65.55% 68.07% 53.78% 63.87%
2 64.7% 60.5% 63.87% 71.43% 64.71% 62.19% 71.43% 65.55% 67.23% 68.07%
3 64.7% 60.5% 63.87% 71.43% 64.71% 62.19% 71.43% 65.55% 68.07% 68.07%
4 73.1% 64.7% 67.22% 74.79% 60.5% 72.27% 71.43% 71.43% 71.43% 77.31%
5 73.1% 64.7% 67.22% 75.63% 62.19% 72.27% 71.43% 70.59% 70.59% 77.31%
6 73.1% 64.7% 66.39% 74.79% 60.5% 72.27% 70.59% 70.59% 70.59% 77.31%
7 71.43% 64.7% 67.22% 74.79% 61.34% 72.27% 70.59% 70.59% 70.59% 76.47%
8 66.39% 62.19% 67.22% 73.95% 60.5% 68.07% 73.95% 66.39% 69.75% 72.27%
9 64.7% 64.7% 68.08% 79.83% 65.55% 72.27% 69.75% 70.59% 64.71% 68.91%
10 63.02% 60.5% 63.87% 71.43% 64.71% 62.19% 71.43% 64.71% 67.23% 68.07%

Table 3. Performance of the gMCDA classifier assisted with the ELECTRE IV and
GA engines applied to the 10 test sets

1 2 3 4 5 6 7 8 9 10 Mean S.D.
91.66% 84% 83.33% 95.83% 91.66% 95.83% 87.5% 95.83% 91.66% 85.71% 90.28% 4.88

Table 4. Performance measures for the AD diagnosis

Classification Algorithm Classification Rate (%)
J48 75.63%
NBTree 84.033%
OneR 82.352%
NaiveBayes 75.63%
MCDA Classification Model 90.28%

engines with the gMCDA classifier acting alone. For such a purpose, 10 different
groups of prototypes were randomly selected from the AD dataset and 10 dif-
ferent sets of control parameter values were arbitrarily chosen. In this respect,
Table 2 shows the performance levels produced by the simple gMCDA classifier
when varying both the sets of prototypes and parameters. It is easily noticeable
that the gMCDA classifier shows high sensitivity to the choice of both prototypes
and cut-off threshold values. As mentioned earlier, the choice of the prototypes
and control parameters seems indeed to be a key issue to be properly dealt with
in order to leverage the classifier’s performance.

Table 3 shows the accuracy rates achieved by the augmented gMCDA clas-
sifier over the same 10 test data partitions. By contrasting these results with
those shown in Table 2, it is possible to observe that, for some sets of threshold
values, the MCDA classification model could have its performance improved by
more than 20%, taking the mean results over the 10 sets of random prototypes.
Moreover, in some runs, the gMCDA classifier’s performance could increase for
as high as 33%.
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Finally, to provide a flavor of comparison with other classification algorithms,
we have resorted to some well-known classification models available in the WEKA
workbench [29]. Table 4 brings the average accuracy levels achieved with each con-
testant model over the 10 derived datasets. The performance level achieved by the
gMCDA classifier was superior to those achieved by the other models. It should
be emphasized that for each of the four additional classifiers we performed some
preliminary experiments in order to manually calibrate its associated control pa-
rameters. However, we can not guarantee that the sets of parameters effectively
obtained were in fact the optimal ones at all.

From the results discussed above, one can conclude that the ELECTRE IV
and GA engines have demonstrated good potential in solving the prototype and
parameter selection problems. After the decision analyst sets the preferential
information for the AD problem, the first engine selects the prototypes inde-
pendently of the classifier’s parameters. One relevant factor that relates to the
application of this engine is the fact that the decision analyst can, depending on
the problem, reduce the number of criteria used for the prototype selection and
classification purposes. We particulary feel that this strategy is interesting to be
employed in situations that the decision analyst has a vast knowledge over the
domain that is under consideration. After the application of the ELECTRE IV,
the prototypes are employed whenever the GA runs over the derived training
dataset. By this means, the control parameters of the gMCDA classifier could
have their values set in consonance with the prototypes already selected by the
ELECTRE IV engine, thus leveraging the overall classification rate.

7 Conclusion and Future Work

The continuous growth of the elderly population in the last years has led to
a high increase in the prevalence of different types of dementia. Among these,
the most frequently-diagnosed one is the Alzheimer’s disease [6]. For this reason,
and also due to the fact that the effectiveness of clinical treatments depends very
much on the current stage of the disease, the early diagnosis of AD has been a
goal recently pursued by several initiatives.

Different from other studies over the AD, in this paper, our purpose was to
assess the performance achieved by an extended version of a recently-proposed
MCDA classification model [14]. In this context, the employment of the ELEC-
TRE IV algorithm revealed that the prototype selection task really exerts an
important role over the MCDA classification process. Along with the ELEC-
TRE IV, a GA engine was deployed to assist the in the automatic calibration
of the control parameter values (weights and thresholds) associated with the
gMCDA classifier.

For this assessment, we have developed a new database of cases taking as ref-
erence the CERAD neuropsychological battery of assessments. This battery was
chosen because it complies with the recommendations of the Brazilian Academy
of Neurology and has been used by several other studies. Overall, the devised
MCDA approach could achieve satisfactory levels of accuracy while classifying
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the patients in the conducted experiments, leveraging the performance of the gM-
CDA classifier as proposed by Goletsis et al. [14]. The average performance level
achieved with the augmented classifier compares favorably with those achieved
with other well-known classifiers [29].

As future work, we feel that it is possible to elicit novel criteria through
the correlation of the Brazilian consensus with other batteries of assessments.
Likewise, the integration of the whole model developed here with other related
MCDA models, such as the one developed in [3,4], could be a promissing strategy
to pursue in order to better cope with the early AD diagnosis.
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nah, R.: Diagnóstico de doença de Alzheimer no Brasil: Avaliação cognitiva e fun-
cional. Arquivos de Neuro-Psiquiatria 63, 713–719 (2005)

24. Pinholt, E.M., Kroenke, K., Hanley, J.F., Kussman, M.J., Twyman, P.L., Carpen-
ter, J.L.: Functional assessment of the elderly: A comparison of standard instru-
ments with clinical judgment. Arch. Intern. Med. 147, 484–488 (1987)

25. Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Pub-
lishers, Dordrecht (1996)

26. Roy, B., Hugonard, B.: Ranking of suburban line extension projects on the paris
metro system by a multicriteria method. Transportation Research 16, 301–312
(1982)

27. Sandip, R., et al.: Classification and prediction of clinical alzheimer’s diagnosis
based on plasma signaling proteins. Nature Medicine 13, 1359–1362 (2007)

28. Ukkusuri, S.V., Karoonsoontawong, A., Kockelman, K.M.: Congestion Pric-
ing Technologies: A Comparative Evaluation in New Transportation Research
Progress. Nova Science Publishers (2007)

29. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

30. Zaffalon, M., Wesnes, K., Petrini, O.: Reliable diagnoses of dementia by the naive
credal classifier inferred from incomplete cognitive data. Artificial Intelligence in
Medicine 29, 61–79 (2003)

31. Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods:
A literature review. European Journal of Operational Research 138(2), 229–246
(2002)



Many-Objective Optimization by
Space Partitioning and Adaptive ε-Ranking on

MNK-Landscapes

Hernán Aguirre1,2 and Kiyoshi Tanaka2

1 Fiber-Nanotech Young Researcher Empowerment Program
2 Shinshu University, Faculty of Engineering,

4-17-1 Wakasato, Nagano, 380-8553 Japan
{ahernan,ktanaka}@shinshu-u.ac.jp

Abstract. This work proposes a method to search effectively on many-
objective problems by instantaneously partitioning the objective space
into subspaces and performing one generation of the evolutionary search
in each subspace. The proposed method uses a partition strategy to de-
fine a schedule of subspace sampling, so that different regions of objective
space could be emphasized at different generations. In addition, it uses
an adaptive ε-ranking procedure to re-rank solutions in each subspace,
giving selective advantage to some of the solutions initially ranked high-
est in the whole objective space. Adaptation works to keep the actual
number of highest ranked solutions in each subspace close to a desired
number. The performance of the proposed method is verified on MNK-
Landscapes. Experimental results show that convergence and diversity of
the solutions found can improve remarkably on 4 ≤ M ≤ 10 objectives.

1 Introduction

Multiobjective evolutionary algorithms (MOEAs) [1,2] optimize simultaneously
two or more objective functions, aiming to find a set of trade-off solutions in a
single run of the algorithm. Most state of the art MOEAs use Pareto dominance
within the selection procedure of the algorithm to rank solutions. Selection based
on Pareto dominance is thought to be effective for problems with convex and
non-convex fronts and has been successfully applied in two and three objectives
problems.

Recently, there is a growing interest on applying MOEAs to solve many-
objective optimization problems, i.e. problems with four or more objectives.
However, current research reveals that the number of Pareto non-dominated
solutions gets substantially larger as we increase the number of objectives of
the problem [3,4]. Hence, ranking by Pareto dominance becomes coarser and
too many solutions are assigned the same rank. This affects the effectiveness of
selection, severely deteriorating the performance of MOEAs [5,6,7].

In this work, we propose a method to search on many-objective problems by
instantaneously partitioning the objective space into subspaces and performing
one generation of the evolutionary search in each subspace. Partitioning of the
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objective space into subspaces aims to instantaneously emphasize the search
within smaller regions of objective space. The proposed method uses a parti-
tion strategy to define a schedule of subspace sampling, so that different regions
could be emphasized at different generations. In addition, it uses an adaptive
ε-ranking procedure to re-rank solutions in each subspace, giving selective ad-
vantage to some of the solutions initially ranked highest in the whole objective
space, so that selection can put more emphasizes in exploitation. Adaptation
in the re-ranking procedure works to keep the actual number of highest ranked
solutions in each subspace close to a desired number. The combination of space
partitioning, partitioning strategy, and adaptive ε-ranking allows to perform an
effective search aiming to improve convergence and diversity of solutions on
many-objective problems.

In this paper, we implement the proposed method using NSGA-II’s framework
[8]. We test the proposed method on MNK-Landscapes [3,4] with 4 ≤ M ≤ 10
objectives, N = 100 bits, and 0 ≤ K ≤ 50 epistatic interactions. Experimental
results show that convergence and diversity of the solutions found can improve
remarkably on 4 ≤M ≤ 10 objectives for all K.

2 Multiobjective Optimization Concepts and Definitions

Let us consider, without loss of generality, a maximization multiobjective prob-
lem with M objectives:

maximize f(x) = (f1(x), f2(x), · · · , fM (x)) (1)

where x ∈ X is a solution vector in the solution space X , and f1, f2, · · · , fM the
M objective functions to be optimized.

Definition 1 (Objective space φ). The objective space of the problem is de-
termined by the set φ = {f1, f2, · · · , fM} of the M objective functions to be
optimized.

One dimensional comparison and Pareto optimality are two popular methods
used to decide what solution to choose from a set of solutions. Yu [9] showed
that these two methods are extreme cases in the entire domain of domination
structures and that there are infinity valid methods lying between them, which
suitability depends on how much information is known on the decision maker’s
preferences. Within the EMO community, these other domination structures are
also known as relaxed forms of Pareto dominance and one method to implement
them is ε-dominance [10]. Pareto dominance and ε-dominance concepts are of
special relevance to this work and are defined as follows.

Definition 2 (Pareto dominance). A solution x is said to Pareto dominate
other solution y in the objective space φ if the two following conditions are
satisfied:

∀fm ∈ φ fm(x) ≥ fm(y) ∧
∃fm ∈ φ fm(x) > fm(y). (2)

Here, x dominates y is denoted by f(x) � f(y).
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Definition 3 (ε-dominance). A solution x is said to ε-dominate other solution
y in the objective space φ if the two following conditions are satisfied:

∀fm ∈ φ (1 + ε)fm(x) ≥ fm(y) ∧
∃fm ∈ φ (1 + ε)fm(x) > fm(y). (3)

where ε > 0.0. Here, x ε-dominates y is denoted by f(x) �ε f(y).

Other important concepts we use to describe our algorithm are defined as follows.

Definition 4 (Subspace ψ). A subspace ψ of φ is a lower dimension space
that includes some of the functions in φ, i.e. ψ ⊂ φ.

Definition 5 (Non-overlapping subspaces). Two subspaces ψ1 ⊂ φ and
ψ2 ⊂ φ are said to be non-overlapping if they have no common objectives, i.e.
ψ1 ∩ ψ2 = ∅.

Definition 6 (Space partition ΨNS). An space φ is said to be partitioned into
NS subspaces, denoted as ΨNS , if all subspaces are non-overlapping and no objec-
tive function in φ is left unassigned to a subspace, i.e. ΨNS = {ψ1, ψ2, · · · , ψNS |
ψ1 ∩ ψ2 · · · ∩ ψNS = ∅ ∧ ψ1 ∪ ψ2 · · · ∪ ψNS = φ}.

Definition 7 (Subspace ε-dominance). A solution x is said to ε-dominate
other solution y in the subspace ψ if:

∀fm ∈ ψ (1 + ε)fm(x) ≥ fm(y) ∧
∃fm ∈ ψ (1 + ε)fm(x) > fm(y). (4)

Here, x ε-dominates y in the subspace ψ is denoted by f(x) �ε
ψ f(y).

3 Method

3.1 Concept

In this section, we describe the proposed method to search on many-objective
problems by space partitioning and adaptive ε-ranking. In the following, we
call this method ε Ranking Multiobjective Optimizer (εR-EMO). The goal of
εR-EMO is to find a set of solutions with good properties of convergence and
diversity. To achieve its goal, εR-EMO first ranks solutions by Pareto dominance
calculated in the whole objective space. Then, it instantaneously partitions the
objective space into subspaces, re-ranks solutions for each subspace using an
adaptive subspace-ε-ranking procedure, and performs one generation of the evo-
lutionary search within each subspace. During the next cycle of the algorithm,
parents and offspring from all subspaces will be joined together so that they will
be ranked again in the whole objective space.



410 H. Aguirre and K. Tanaka

By partitioning the objective space into subspaces, we aim to instantaneously
emphasize the search within smaller regions of objective space. At each gener-
ation, we don’t search in all possible subspaces. Instead, we define a schedule
of subspace sampling by using a partition strategy. Re-ranking of solutions by
the adaptive subspace-ε-ranking aims to give selective advantage to some of the
usually too many solutions assigned highest rank in a many-objective subspace,
so that selection can put more emphasizes in exploitation. Adaptation in the re-
ranking procedure works to keep the actual number of highest ranked solutions
in each subspace close to a desired number. The combination of space partition-
ing, partitioning strategy, and adaptive subspace-ε-ranking, aims to effectively
search on many-objective problems.

In the following we first explain the general flow of the proposed method using
NSGA-II’s framework [8] and then explain in detail its distinctive features.

Procedure 1. εR-EMO
Input: NS , number of subspaces at each generation. α, desired number of solutions

with highest rank in each subspace (as a fraction of the entire parent population)
Output: F1, set of Pareto non-dominated solutions

1: P ← ∅, Q ← random // initialize parent P and offspring Q populations
2: ε1, ε2, · · · , εNS ← 0.0
3: repeat
4: evaluation(Q, φ) // φ = {f1, f2, · · · , fM}
5: F ← non-domination-sorting(P ∪Q) // F = {Fi} (i = 1, 2 · · · , NF )
6: crowding-distance(F)
7: ΨNS ← subspace-partition(φ, NS) // ΨNS = {ψ1, ψ2, · · · , ψNS}
8: P ← ∅, Q ← ∅
9: for s = 1 to NS do

10: Fεs ← subspace-ε-ranking (ψs, εs, F) // Fεs = {Fεs
j } (j = 1, 2 · · · , Nεs

F )
11: εs ← adaptation(εs, α, |Fεs

1 |) // adapt εs for the next generation
12: Ps ← truncation(Fεs) // |Ps| = |P|/NS , |Fεs | = |P| + |Q|
13: Qs ← recombination and mutation(Ps) // |Qs| = |Q|/NS

14: P ← P ∪ Ps, Q ← Q∪Qs

15: end for
16: until termination criterion is met
17: return F1

3.2 εR-EMO

εR-EMO implemented in NSGA-II’s framework [8] is illustrated in Procedure 1.
See that solutions are evaluated in all M objectives φ = {f1, f2, · · · , fM},
ranked based on Pareto dominance, and assigned a crowding measure using
non-domination sorting and crowding distance procedures [8], respectively (lines
4-6). After this initial ranking, solutions are classified in sets of non-dominated
solutions F = {Fi} (i = 1, 2, · · · , NF ). Next, the objective space φ is partitioned
into NS non-overlapping subspaces ΨNS = {ψ1, ψ2, · · · , ψNS} (line 7). Then, for
each subspace ψs, solutions F are re-ranked and re-classified in F εs = {F εs

j }
(i = 1, 2, · · · , N εs

F ) using a subspace-ε-ranking procedure, where N εs

F ≥ NF ,
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creating a finer grained ranking of solutions (line 10). Subspace-ε-ranking uses
parameter εs to control the number of highest ranked individuals |Fεs

1 |. Param-
eter εs is adapted every generation (line 11) to keep |Fεs

1 | close to a desired
number. The parent population in each subspace Ps is obtained by truncating
F εs based on rank and crowding distance (line 12). That is, groups of solutions
F εs

j are assigned iteratively to Ps by rank order, starting with Fεs
1 . If F εs

j over-
fills Ps, crowding distance calculated in the whole space φ is used to choose the
required number o solutions. Mating for recombination is carried out by binary
tournament, where winners are decided by rank in the subspace ψs breaking ties
by crowding distance in φ.

3.3 Subspace Partitioning

In our approach, we partition the M dimensional space φ = {f1, f2, · · · , fM} into
NS non-overlapping subspaces ΨNS = {ψ1, ψ2, · · · , ψNS}. All subspaces have
the same dimension MS = M/NS in case r = (M mod NS) is zero. Other-
wise, r of the NS subspaces have dimension MS = �M/NS� + 1 and the rest
MS = �M/NS�. The number of all possible ways to partition φ into subspaces
of dimension MS is very large. In our approach, we don’t explicitly search in
all possible subspaces at each generation. Instead, we set NS to a small value
and define a schedule of subspace sampling by using a partitioning strategy.
We investigate three strategies to partition φ. Namely, random, shift, and fixed
partition strategies.

Random strategy randomly assigns objectives fi ∈ φ to subspaces ψs ∈ ΨNS .
With this strategy, any possible MS dimensional subspace of φ could be formed.
However, it does not seek to correlate the s-th subspace ψs from generation t to
the next.

Shift strategy, at the first generation, assigns deterministically objectives fi ∈
φ to subspaces ψs ∈ ΨNS , so that objectives assigned to a given ψs are ordered by
objective index i. Then, in subsequent generations, the objective with highest
index in the s-th subspace is shifted to the ((s + 1) mod NS)-th subspace,
∀ψs ∈ ΨNS . This strategy correlates the s-th subspace from generation t to the
next. In fact, subspace ψs at generation t overlaps with ψs at generation t − 1
in all but one objective. However, not all possible MS dimensional subspaces of
φ could be formed.

Fixed strategy assigns deterministically objectives fi ∈ φ to subspaces ψs ∈
ΨNS and keep the same assignment throughout the generations. With this strat-
egy only NS subspaces of φ could be formed.

These strategies would allow us to verify the impact of subspace sampling on
the quality of solutions and the effect of subspace correlation from one generation
to the next on the adaptation of ε for subspace-ε-ranking.

3.4 Adaptation of ε

In our method, solutions are re-ranked in each subspace by using a subspace-
ε-ranking procedure in which the number of solutions assigned highest rank
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depends on the value set to ε (≥ 0) and on the instantaneous distribution of
solutions in objective space (see below). Although it is difficult to tell in advance
exactly how many solutions will be assigned highest rank for a given value of ε,
we know that larger values of ε decrease the number of highest ranked solutions
and vice versa. The algorithm takes advantage of this correlation to adapt ε at
each generation in order to keep the actual number of highest ranked solutions
close to a desired number [12]. The desired number of highest ranked solution
in each subspace is specified by α × |P|, where α is a parameter in the range
[0.0,1.0] set by the user and |P| is the size of the entire parent population.

In our method, instead of using one ε for all subspaces, we adapt one εs for
each one of the NS subspaces ψs. Note that the actual combination of objectives
that define ψs change with time, depending on the partition strategy. So, adap-
tation of εs reacts to the characteristics of the different instantaneous subspaces
(actual combinations of fi) assigned to ψs. Since the dimension of the subspace
is strongly correlated to the value of ε that renders the desired number of highest
ranked solutions α× |P |, when the space φ is partitioned we make sure that the
dimension of the subspace ψs remains the same throughout the generations.

3.5 Subspace-ε-Ranking

Subspace-ε-ranking fine grains ranking of solutions initially ranked by Pareto
dominance in the objective space φ, using a randomized ε-sampling procedure in
the subspace ψ ⊂ φ that favors a good distribution of solutions based on dom-
inance regions wider than conventional Pareto dominance. Subspace-ε-ranking
extends ε-ranking [13], where ε-sampling acts on φ instead of ψ. In the following,
we first explain ε-sampling and then subspace-ε-ranking.
ε-sampling assumes that there is a set of equally ranked solutions from which a

subset should be chosen to give them selective advantage in order to proceed fur-
ther with the evolutionary search. That is, ε-sampling acts as a decision making
procedure, not to find a final solution, but to help selection of the evolutionary
algorithm. Hence, the sampling heuristic must reflect criteria that favor an ef-
fective search. Here, the sample of solutions to be given selective advantage are
obtained with the following criteria,

– Extreme solutions are always part of the sample.
– Each (not extreme) sampled solution is the sole sampled representative of its

area of influence. The area of influence of the sampled solutions is determined
by a domination region wider than Pareto dominance, i.e. ε-dominance.

– Sampling of (not extreme) solutions follows a random schedule.

The first criterion tries to push the search towards the optimum values of
each fitness function, aiming to find non-dominated solutions in a wide area of
objective space. The second criterion assures that only one solution in a given
zone of objective space is given higher rank, trying to distribute the search effort
more or less uniformly among the different zones represented in the actual popu-
lation. The third criterion dynamically establishes the zones that are represented
in the sample. Also, in the case that there are several solutions within each zone,
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it increases the likelihood that the sampled solutions that will be given higher
rank are different from one generation to the next, increasing the possibility of
exploring wider areas of objective and variable space.

Procedure 2 illustrates ε-sampling algorithm. Let us denote A the set of so-
lutions that have been assigned the same rank based on conventional Pareto
dominance, for example by applying non-domination sorting [8]. ε-sampling re-
turns the sampled solutions S ⊂ A that will be given selective advantage as
well as the set of solutions Dε to be demoted. See that extreme solutions are
the first to be assigned to the sample S (lines 1,2). Then, one by one, solutions
are randomly chosen and included in S (lines 4-6), whereas solutions that lie
in the wider domination region of the randomly picked solution are assigned to
Dε (lines 7,8). Note that subspace ε-dominance f(z) �ε

ψ f (y) is used. Fig. 1
(a) illustrates the application of ε-sampling on the set of solutions A = F1. The
numbers close to the solutions represents the random schedule in which solutions
are sampled (0 means extreme solutions, which are all selected at once).

Procedure 2. ε-sampling (ψ, ε, A, S, Dε)
Input: Subspace ψ, ε-dominance factor ε and a set of solutions A
Output: S and Dε (S∪Dε = A). S contains the sample of solutions from A, whereas

Dε contains ε-dominated solutions in ψ

1: X ← {x ∈ A | fm(x) = max(fm(·)), ∀fm ∈ ψ}
2: S ← X , A ← A \ X , Dε ← ∅
3: while A �= ∅ do
4: r ← rand() // 1 ≤ r ≤ |A|
5: z ← r-th solution ∈ A
6: S ← S ∪ {z}
7: Y ← {y ∈ A | f (z) �ε

ψ f (y), z �= y}
8: Dε ← Dε ∪ Y
9: A ← A \ {{z} ∪ Y}

10: end while
11: return

The ε-sampling procedure works on a set of equally ranked solutions, however
within a population there could be several sets of such solutions (each set with a
different rank). Here, we explain subspace-ε-ranking to re-rank all possible sets
of equally ranked solutions using ε-sampling.

Subspace-ε-ranking is applied at each generation for each subspace after non-
domination sorting to reclassify the sets Fi (i = 1, · · · , NF ). Procedure 3 de-
scribes subspace-ε-ranking algorithm. See that the reclassified sets Fεs

j (j =
1, · · · , N εs

F ) now contains only the sample of solutions S ⊂ Fi found by ε-
sampling (lines 8,9). Also, see that solutions Dε, which are not part of the sample
(line 8) are demoted by joining them with solutions of a lower ranked set in the
next iteration of the loop (line 4). Thus, F εs

1 contains some of the solutions
initially ranked first, but F εs

j , j > 1, can contain solutions that initially were as-
signed to sets with different ranks. This gives chance to lateral diversity present
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Fig. 1. ε-sampling on (a) the set of solutions initially ranked first and (b) on the set
of solutions initially ranked second joined with solutions demoted from the first set

in the initial ranking of solutions and can punish highly crowded solutions even
if they are initially ranked first by conventional Pareto dominance.

Procedure 3. subspace-ε-ranking (ψs, εs, F , F εs)
Input: Subspace ψs, ε-dominance factor εs and solutions F classified in fronts Fi

(i = 1, · · · , NF ) by non-domination sorting
Output: Fεs , solutions re-classified in groups Fεs

j (j = 1, · · · , Nεs
F )

1: Dε ← ∅, i ← 1, j ← 1
2: repeat
3: if i ≤ NF then
4: A ← Fi ∪ Dε , i ← i + 1
5: else
6: A ← Dε

7: end if
8: ε-sampling(ψ, εs, A, S , Dε)
9: Fεs

j ← S , j ← j + 1
10: until Dε = ∅
11: return

Fig. 1 illustrates ε-ranking calling on ε-sampling to re-rank the set F1 of
solutions initially ranked first and the set F2 of solutions ranked second joined
with the demoted solutions Dε from F1. The example illustrates the application
of ε-sampling to a 2 dimensional objective space φ. When ε-sampling is applied to
a subspace ψ ⊂ φ, the non-dominated solutions in φ projected in the subspace ψ
(assuming a 2 dimensional subspace) would look similar to Fig. 1 (b). ε-sampling
will be applied to all projected solutions.

4 Test Problems, Performance Measures and Parameters

4.1 Multiobjective MNK-Landscapes

In this work we test the performance of the algorithms on multiobjective MNK-
Landscapes. A multiobjective MNK-Landscape [3,4] is defined as a vector func-
tion mapping binary strings into real numbers f (·) = (f1(·), f2(·), · · · , fM (·)) :
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BN → �M , where M is the number of objectives, fi(·) is the i-th objective
function, B = {0, 1}, and N is the bit string length. K = {K1, · · · , KM} is a
set of integers where Ki (i = 1, 2, · · · ,M) is the number of bits in the string
that epistatically interact with each bit in the i-th landscape. Each fi(·) can be
expressed as an average of N functions as follows

fi(x) =
1
N

N∑
j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (5)

where fi,j : BKi+1 → � gives the fitness contribution of bit xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are the Ki bits interacting with bit xj in the string x. The

fitness contribution fi,j of bit xj is a number between [0.0, 1.0] drawn from a
uniform distribution. Thus, each fi(·) is a non-linear function of x expressed by
a Kauffman’s NK-Landscape model of epistatic interactions [11]. In addition, it
is also possible to arrange the epistatic pattern between bit xj and the Ki other
interacting bits. That is, the distribution Di = {random, nearest neighbor} of
Ki bits among N . Thus, M , N , K = {K1,K2, · · · ,KM}, and D = {D1, D2, · · · ,
DM}, completely specify a multiobjective MNK-Landscape.

4.2 Performance Measures

In this work, we use the hypervolume H and coverage C measures [14] to evaluate
and compare the performance of the algorithms. The measure H calculates the
volume of the M -dimensional region in objective space enclosed by a set of
non-dominated solutions and a dominated reference point. Let A be a set of
non-dominated solutions. The hypervolume of A can be expressed as

H(A) = ∪|A|
i=1(Vi − ∩i−1

j=1ViVj) (6)

where Vi is the hypervolume rendered by the point xi ∈ A and the reference
point. In this work, the reference point is set to [0.0, · · · , 0.0]. Given two sets of
non-dominated solutions A and B, if H(A) > H(B) then set A can be consid-
ered better on convergence and/or diversity of solutions. To calculate H, we use
Fonseca et al. [15] algorithm, which significantly reduces computational time.

The coverage C measure [14] provides complementary information on conver-
gence. Let us denote A and B the sets of non-dominated solutions found by two
algorithms. C(A,B) gives the fraction of solutions in B that are dominated at
least by one solution in A. More formally,

C(A,B) =
| {b ∈ B|∃a ∈ A : f (a) � f(b)} |

| B | . (7)

C(A,B) = 1.0 indicates that all solutions in B are dominated by solutions in A,
whereas C(A,B) = 0.0 indicates that no solution in B is dominated by solutions
in A. Since usually C(A,B) + C(B,A) �= 1.0, both C(A,B) and C(B,A) are re-
quired to understand the degree to which solutions of one set dominate solutions
of the other set.
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4.3 Parameters

In this work, we test the performance of the algorithm on MNK-Landscapes
with 4 ≤ M ≤ 10 objectives, N = 100 bits, number of epistatic interactions
K = {0, 1, 3, 5, 10, 15, 25, 35, 50} (K1, · · · ,KM = K), and random epistatic pat-
terns among bits for all objectives (D1, · · · , DM = random). Results presented
below show the average performance of the algorithms on 50 different problems
randomly generated for each combination of M , N and K. In the plots, error
bars show 95% confidence intervals on the mean.

In the following sections we analyze results by εR-EMO, comparing them
with results by conventional NSGA-II. The algorithms use parent and offspring
populations of size |P| = |Q| = 100, two point crossover for recombination with
rate pc = 0.6, and bit flipping mutation with rate pm = 1/N per bit. The number
of evaluations is set to 3 × 105. We study the performance of εR-EMO setting
the number of subspaces to NS = {1, 2}, varying the parameter α. For NS = 1
(no subspace partitioning, ΨNS = {ψ1 = φ}), we set α = {1.0, 0.7, 0.5, 0.3} so
that the desired number of solutions with highest rank after subspace-ε-ranking
is α × |P| = {100, 70, 50, 30}, respectively. For NS = 2 subspaces (subspace
partition ΨNS = {ψ1, ψ2}), we set α = {0.5, 0.35, 0.25, 0.15} so that α × |P| =
{50, 35, 25, 15}, respectively, in each of the two subspaces.

5 Experimental Results and Discussion

5.1 Performance by εR-EMO with No Objective Space Partitioning

In this section, we discuss the performance of εR-EMO when no objective space
partitioning is considered (NS = 1), setting the fraction between desired num-
ber of highest ranked individuals and population size to α = α∗ that achieves
maximum hypervolume H. Fig. 2 (a) shows the average ratio H(E)

H(N) , where E
and N denote the set of solutions found by εR-EMO and conventional NSGA-II,
respectively. Thus, a ratio greater than 1.0 indicates better H by εR-EMO than
conventional NSGA-II. As a reference, we include a horizontal line to represent
the H(N) values normalized to 1.0. From this figure, we can see that εR-EMO
can significantly improve H on 4 ≤ M ≤ 10 objectives problems, for all values
of K (up to 27% improvement). Note that improvements on H become larger
as we increase the number of objectives M from 4 to 6, whereas improvements
on H are similarly high for 8 ≤ M ≤ 10. Due to space limitations, we include
results for M = {4, 6, 8, 10} only and not for M = {5, 7, 9}.

Improvements on H can be due to solutions with better convergence, better
diversity, or both. To complement the analyzes of results on H we also present
results using the C measure. Fig. 2 (b) shows the average C values between con-
ventional NSGA-II and εR-EMO set with α∗. From this figure, we can be see that
C(N,E) is close to 0.0 for most K and M . This indicates that there are almost
no solutions by conventional NSGA-II that dominate solutions by εR-EMO. On
the other hand, the values of C(E,N) are very high for 4 objectives (in the range
0.60-0.85) and reduce gradually as we increase M up to 10 objectives (in the
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Fig. 2. Normalized H and C between NSGA-II and εR-EMO when no objective space
division (S = 1) is considered. εR-EMO is set to α∗ that achieves maximum H(E).
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Fig. 3. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using random strategy and setting α∗ that achieves maximum H(E)

range 0.01-0.08). This suggests that a better convergence of solutions contributes
to the increases of H by εR-EMO on M = 4 problems. As we increase M , gains
on diversity gradually become more significant than gains on convergence as the
reason for the significant improvement of H on 6 ≤M ≤ 10.

5.2 Performance by εR-EMO with Objective Space Partitioning

In this section we analyze the performance of εR-EMO partitioning instanta-
neously the objective space into two subspaces using the random, shift, and fixed
partition strategies introduced in section 3.

First, we show results by the random partitioning strategy in Fig. 3. Looking
at Fig. 3 (a) and comparing with Fig. 2 (a), we can see that ranking on subspaces
using a random strategy leads to a remarkable improvement on H for all values
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Fig. 4. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using shift strategy and setting α∗ that achieves maximum H(E)

S=2 fixed, α
*

 : ε
*

    M 4
    M 6
    M 8
    M 10

H

K

 NSGA-II

0 10 20 30 40 50

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9 C(N, ES)        C(ES, N)     
M 4    M 4
M 6    M 6
M 8    M 8
M 10  M 10

C

K

S=2 fixed,
α
* : ε*

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a) Normalized H b) C measure

Fig. 5. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using fixed strategy and setting α∗ that achieves maximum H(E)

of M and K (up to 82.5% improvement). Note that the increase on H gets
bigger with the number of objectives M . Looking at at Fig. 3 (b) and comparing
with Fig. 2 (b), we can see that C(E,N) also increases for any value of K and
M , whereas C(N,E) remains close to zero. That is, convergence also improves
substantially.

Next, we discuss results by the shift partition strategy shown in Fig. 4 (a) and
(b). From these figures note that the shift strategy also leads to a remarkable
improvement on H and C. Comparing the shift and random strategies, the latter
leads to slightly better results than the former especially for M ≥ 8 and K ≤ 15.
As mentioned above, the random strategy can sample any possible subspace
of φ, whereas the shift strategy can sample most but not all subspaces of φ.
The number of subspaces unable to sample the fixed strategy increase with the
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dimension of the objective space, especially if we keep constant the number
of subspaces. Better results by the random strategy suggests that sampling all
possible subspaces becomes relevant as the number of objectives increase.

Results by the fixed partition strategy are shown in Fig. 5 (a) and (b). See
that the fixed strategy leads to smaller H and C(E,N) than the random and shift
partition strategies. Comparing to εR-EMO with no subspace partitioning, the
fixed strategy leads to higher H on all M but with smaller C(E,N) on M ≤ 6.
The fixed strategy only explores NS of all possible subspaces of φ and it is seems
not an appropriate strategy to achieve best performance on both convergence
and diversity of solutions.

Finally, note that as we increase K (non-linearity of the problem) improve-
ments on both H and C reduce regardless of the partition strategy. This suggests
that in addition to better ranking strategies, we should also look into ways to
improve recombination and mutation to achieve better performance on highly
non-linear problems.

5.3 Analysis of α

In this section we analyze the parameter α that determines the desired number
of highest ranked solution in each subspace. As an example, Fig. 6 shows H and
C results achieved by different settings of α on M = 8 objectives landscapes
partitioning the objective space in NS = 2 subspaces using shift strategy. From
this figure, see that α ≥ 0.25 (at least 50%of the parent population in each
subspace is given highest rank) leads to high performance, whereas results by α =
0.15 are clearly lower on M = 8 objectives landscapes. Analyzing performance
by α ≥ 0.25, see that setting α to 0.35 or 0.25 leads to best performance for
most K, both on H and C. However, see that setting α to 0.5 could give highest
performance especially on small K. Although there is not an absolute winner
among α ≥ 0.25 values, it is important to note that subspace partitioning’s
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Fig. 6. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using shift strategy and varying α on M = 8 objectives
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Fig. 7. Adaptation of ε in εR-EMO for α = 0.15 and α = 0.35 on M = 8 objectives
and K = 10 epistatic bits

lower bound performance (minH∧min C(E,N), ∀α ∈ {0.5, 0.35, 0.25}) is by far
better than the performance by no subspace partitioning (see Fig. 6 and compare
with Fig. 2). Analyzing our data for other values of M , in general, we see that
performance by α = 0.25 is better than 0.35 when the number of objectives
decrease to M = 6 and M = 4; whereas performance by 0.5 and 0.35 is better
than 0.25 when we increase M to 10 objectives. As a rule of thumb, when the
space is partitioned into 2 subspaces, α = 0.25 works well on M = 4 and M = 6,
α = 0.35 on M = 8, and α = 0.5 on M = 10.

Fig. 7 illustrates adaptation of εs for α = 0.15 and α = 0.35 for one of the two
subspaces (the adaptation trend in the other subspace is similar) in a M = 8
and K = 10 landscape. The horizontal dashed line at N = 100 indicates the
size of the overall parent population |P | and the horizontal dotted line the de-
sired number of individuals α × |P| with highest rank in the subspace. From
these figures note that the number of non-dominated individuals |F1| (consid-
ering all objectives) exceeds P since the initial generations. See also that the
adaptive mechanism appropriately varies εs throughout the generations so that
after subspace-ε-ranking the number of individuals |Fεs

1 | with highest rank in
the subspace is kept around the desired number α× |P|.

6 Conclusions

In this work, we have proposed a method to search on many-objective problems
by instantaneously partitioning the objective space into subspaces and perform-
ing one generation of the evolutionary search in each subspace. The proposed
method uses a partition strategy to define the schedule of subspace sampling
and an adaptive re-ranking method that uses a randomized sampling procedure
to increase selection probabilities of some of the too many solutions assigned
highest rank in a many-objective subspace. We tested the performance of the
proposed method on MNK-Landscapes with 4 ≤ M ≤ 10 objectives, N = 100
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bits and 0 ≤ K ≤ 50 epistatic interactions, showing that both convergence and
diversity of the obtained solutions can improve remarkably on problems with
4 ≤M ≤ 10 objectives for any level of epistatic interactions K. We also showed
that uniformly sampling all possible subspaces throughout the generations leads
to better performance.

As future works, we would like to study the effects of larger population sizes
and more than two subspaces. Also, we should compare the proposed method
with other approaches for many-objective optimization.
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Abstract. In this paper, we propose and analyze two schemes to inte-
grate an objective reduction technique into a multi-objective evolution-
ary algorithm (moea) in order to cope with many-objective problems.
One scheme reduces periodically the number objectives during the search
until the required objective subset size has been reached and, towards
the end of the search, the original objective set is used again. The second
approach is a more conservative scheme that alternately uses the reduced
and the entire set of objectives to carry out the search. Besides improving
computational efficiency by removing some objectives, the experimental
results showed that both objective reduction schemes also considerably
improve the convergence of a moea in many-objective problems.

Keywords: Many-objective optimization, dimensionality reduction, ob-
jective reduction.

1 Introduction

Since the first implementation of a Multi-objective Evolutionary Algorithm
(moea) in the mid 1980s [1], a wide variety of new moeas have been proposed,
gradually improving in both their effectiveness and efficiency to solve multi-
objective problems (mops) [2]. However, most of these algorithms have been
evaluated and applied to problems with only two or three objectives, in spite of
the fact that many real-world problems have more than three objectives [3,4].

Recent experimental [5,6,7] and analytical [8,9] studies have shown that
moeas based on Pareto optimality [10] scale poorly in mops with a high num-
ber of objectives (4 or more). Although this limitation seems to affect only to
Pareto-based moeas, optimization problems with a large number of objectives
(also known as many-objective problems) introduce some difficulties common to
any other multi-objective optimizer. Three of the most serious difficulties due to
high dimensionality are the following:
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1. Deterioration of the Search Ability. One of the reasons for this problem is that
the proportion of nondominated solutions (i.e., equally good solutions) in a
population increases rapidly with the number of objectives [11]. According
to Bentley et al. [12] the number of nondominated k-dimensional vectors
on a set of size n is O(lnk−1 n). As a consequence, in a many-objective
problem, the selection of solutions is carried out almost at random or guided
by diversity criteria. In fact, Mostaghim and Schmeck [13] have shown that
a random search optimizer achieves better results than the nsga-ii [14] in a
problem with 10 objectives.

2. Dimensionality of the Pareto front. Due to the ‘curse of dimensionality’, the
number of points required to represent accurately a Pareto front increases
exponentially with the number of objectives. Formally, the number of points
necessary to represent a Pareto front with k objectives and resolution r is
given by krk−1 (e.g., see [15]). This poses a challenge both to the data struc-
tures to efficiently manage that number of points and to the density estima-
tors to achieve an even distribution of the solutions along the Pareto front.

3. Visualization of the Pareto front. Clearly, with more than three objectives is
not possible to plot the Pareto front as usual. This is a serious problem since
visualization plays a key role for a proper decision making. Parallel coordi-
nates [16] and self-organizing maps [17] are some of the methods proposed
to ease the decision making in high dimensional problems. However, more
research in this field is required.

Currently, there are mainly two approaches to solve many-objective problems,
namely:

1. Adopt or propose an optimality relation that yields a solution ordering finer
than that yielded by Pareto optimality. Among these alternative relations
we can find k-optimality [11], preference order ranking [18], and a method
that controls the dominance area [19].

2. Reduce the number of objectives of the problem during the search process or,
a posteriori, during the decision making process [20,21,22]. The main goal of
this kind of reduction techniques is to identify the redundant objectives (or
redundant to some degree) in order to discard them. A redundant objective is
one that can be removed without changing the dominance relation1 induced
by the original objective set.

In the current paper we propose to incorporate an objective reduction method
into a Pareto-based moea in order to cope with many-objective problems. By
selecting a computationally efficient objective reduction method we can expect
that the resulting moea improves its efficiency, since a smaller number of ob-
jective functions are evaluated. While this may be true, the omission of some
objective implies some loss of information that could be important to converge to
the real Pareto front. On the other hand, this omission can be useful to cope with

1 The dominance relation induced by a given set F of objectives is defined by
	F = {(x, y)|∀fi ∈ F : fi(x) ≤ fi(y)}.
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the deterioration of the search ability of Pareto-based moeas in many-objective
problems. With this in mind we propose two schemes to integrate an efficient re-
duction method into a moea in such a way that the resulting moea can be useful
even in problems with inexpensive objective functions. Additionally, one of the
goals of this work is to investigate if an objective reduction method represents
a benefit or a damage to the search ability. The results show that the proposed
schemes improve the computational efficiency of a common moea even in prob-
lems with low computational-cost functions. More important, the experiments
show that the reduction techniques employed also improve the search ability of
the moea. Therefore, the benefit of reducing the objective set is greater than the
negative effect caused by the loss of information. In [23] is also incorporated an
objective reduction method into a moea, however the objective in that work is
to improve the efficiency of hypervolume-based moeas which have exponential
complexity in the number of objectives.

The remainder of this paper has the following structure. Section 2 presents
the objective reduction technique selected to be incorporated into a moea. In
Section 3 we describe two schemes to incorporate the reduction method during
the search. The assessment of the proposed reduction schemes is presented in
Section 4. Finally, in Section 5 we draw some conclusions about the proposed
reduction schemes, as well as some possible paths for future research.

2 An Objective Reduction Technique Based On
Correlation

The success of an objective reduction method during the search mainly depends
on the balance between the overhead incurred by the reduction method itself,
and the time saved by omitting some objective function evaluations. For this
reason, an efficient reduction method is more likely beneficial in a wide variety of
problems. In the following, we shortly describe three objective reduction methods
recently proposed in the specialized literature.

Saxena and Deb [20] proposed a method for reducing the number of objectives
based on principal component analysis. This method consists of an iterative
scheme where the nondominated set obtained by the nsga-ii [14] is analyzed in
order to gradually obtain a smaller objective set. The time complexity of each
iteration2 of this algorithm is O(ms2 + s3) + O(gm2s), where the second term
corresponds to nsga-ii’s complexity, s is the number of objectives,m is the size of
the nondominated set, and g the number of generations for each run of nsga-ii.

Brockhoff and Zitzler [21] proposed two greedy algorithms to reduce the num-
ber of objectives. One of them finds a minimum objective subset that yields a
given error δ (degree of change of the dominance relation). The other algorithm
finds a k-sized objective subset with the minimum possible error. Both algo-
rithms use the ε-dominance relation to measure the change of the dominance

2 The total number of iterations depends on a threshold cut parameter and on the
particular nondominated sets generated by the nsga-ii.



426 A. López Jaimes, C.A. Coello Coello, and J.E. Uŕıas Barrientos

relation when objectives are discarded. The time complexity for these algorithms
is O(min{m2s3,m4s2}) and O(m2s3), respectively.

Similar to Brockhoff and Zitzler, López Jaimes et al. [22] proposed two schemes
to reduce the number of objectives. The first algorithm is intended to determine
a minimum subset of objectives that yields the minimum possible error, while the
second one finds a subset of objectives of a given size that yields the minimum
error. These algorithms are based on a feature selection technique which uses
correlation between nondominated vectors to estimate the conflict between each
pair of objectives. The complexity of both algorithms is O(ms2).

Since López Jaimes et al.’s algorithms have a lower time complexity, they are
suitable to be integrated into a moea since the chances that their computational
time savings overcome their overhead are larger than those of the other methods
described here. However, in this study we have only chosen the algorithm that
finds a subset of objectives of a given size.

2.1 Details of the Selected Objective Reductions Method

The algorithm that finds a k-sized objective subset (kossa) uses a correlation
matrix to estimate the conflict between each pair of objectives. This matrix is
computed using the nondominated set generated by some moea. A negative
correlation between a pair of objectives means that one objective increases while
the other decreases and vice versa. This way, we could interpret that the more
negative the correlation between two objectives, the more conflict between them.

Since the interest is in the negative correlation, we use 1 − ρ(f1, f2) ∈ [0, 2]
to measure the degree of negative correlation (where ρ(f1, f2) is the correlation
between objectives f1 and f2). Thus, a value of 2 indicates that objectives f1
and f2 are completely negatively correlated (totally in conflict) and a result of
zero indicates that the objectives are completely positively correlated (without
any conflict).

The central part of the objective reduction algorithm is divided in three steps:

1. Divide the objective set into homogeneous neighborhoods of size q around
each objective. The conflict between objectives takes the role of the distance.
That is, the more conflict between two objectives, the more distant they
are in the “conflict” space. Figure 1(a) shows only two neighborhoods of a
hypothetical situation with eight objectives and q = 2.

2. Select the most compact neighborhood. That is, the neighborhood with the
minimum distance to its q-th nearest-neighbor. Figure 1(b) shows the far-
thest neighbor for each of the two neighborhoods. In the example, the neigh-
borhood on the left is the most compact one.

3. Retain the center of that neighborhood and discard its q neighbors. In this
process, the distance to the q-th neighbor can be thought of as the error
committed by removing the q objectives (see Figure 1(c)).

The pseudocode of the reduction algorithm, kossa, is presented in Figure 2. In
this pseudocode each entry, ri,j , of the correlation matrix represents the conflict
between objective fi and fj. In particular, ri,q denotes the conflict between
objective fi and its q-th nearest-neighbor.
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(a) Divide the objective
set into neighbor-
hoods around each
objective.

(b) Select the most com-
pact neighborhood.

(c) Retain the center
and remove the
neighbors.

Fig. 1. Basic strategy of the objective reduction method employed

Input: Nondominated set A.
Initial objective set F = {fi, i = 1, ..., s}.
Number of neighbors q ≤ |F | − k.
Size of the desired objective subset, k.

Step 0: Compute the correlation matrix using A.
Step 1: F ′ ← F .
Step 2: Find objective fmin

i which corresponds to
rmin

i,q ← minfi∈F ′ {ri,q}.
Step 3: Retain fmin

i and discard its q neighbors from F ′.
Let error ← rmin

i,q .
Step 4: If q > |F ′| − k then q ← |F ′| − k.
Step 5: If |F ′| = k then go to Step 8 to stop.

Compute again rmin
i,q ← minfi∈F ′ {ri,q}.

Step 6: While rmin
i,q > error and q > 1 do:

q ← q − 1.
rmin

i,q ← minfi∈F ′ {ri,q}.
Step 7: Go to Step 2.
Step 8: Return set F ′ as the reduced objective set.

Fig. 2. Pseudocode of the objective reduction algorithm kossa

3 Integration Schemes of the Objective Reduction
Method into a MOEA

When some objectives are discarded from the original problem some information
is being lost. The magnitude of this loss depends on the degree of redundancy
among the objectives.

In any case, we have to balance the benefit of discarding some objectives along
with the computational cost of the reduction algorithm. Two benefits are clear
from removing some objectives, namely: i) the avoidance of the computation of
some possible computational expensive objective functions, and ii) the speedup
in execution of the moea, specially if its complexity time largely depends on the
number of objectives.

Next, we will describe two schmes to incorporate the kossa method into a
moea. First, we propose a simple scheme where the objective set is reduced
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successively during most of the search and only towards the end of the search
all the objectives are integrated. This scheme is divided in three stages:

1. In the first stage the moea is executed for a number of generations using
all the objectives. The moea obtains an initial approximation of the Pareto
front which will be the first input of the objective reduction method, kossa.

2. The second stage is the main stage of the scheme where the objective set is
gradually reduced through several generations. In this stage, every certain
number of generations kossa is executed to reduce the objective set and
then the execution of the moea is resumed. This process is repeated until
the desired objective set size has been reached.

3. In the last stage all the objectives are taken up again to obtain the final
approximation of the Pareto front.

The detailed scheme with successive reductions is described in Algorithm 1,
where P denotes the best population obtained so far by the moea.

Algorithm 1. Pseudocode of the successive reduction scheme.
Input:

R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
Gpost: Generations after the reduction stage.

1: G ← Gpre; F ′ ← F
2: k′ ← �(|F | − k)/R� � Number of objectives discarded per reduction.
3: for r ← 1 until R + 2 do
4: for g ← 1 until G do
5: moea(P , F ′)
6: if r �= R + 2 then

� Reduce the current objective set F ′.
7: if r ≤ R then
8: F ′ ← kossa(P, F ′, |F ′| − k′)
9: G ← (Gmax − Gpre − Gpost)/R

10: else
� Integrate all the objectives at the end of the search.

11: F ′ ← F
12: G ← Gpost

In the current implementation of this scheme we decided to schedule the re-
duction phases equally distributed during the reduction stage. However, other
schedules are possible, for instance the number of generations for the next re-
duction can be shortened each time, since the population converges faster after
each reduction. A similar decision can be made with regard to the number of
objectives discarded on each reduction. Currently, the same number of objec-
tives is removed at each reduction as it can be seen in the third statement of
Algorithm 1.
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Although this scheme has the advantage (computationally speaking) of omit-
ting the evaluation of many objectives during most of the search, it is possible
that the loss of information diminishes the moea’s convergence ability. There-
fore, we also proposed a less aggressive scheme which integrates the entire objec-
tive set periodically during the search to counterbalance the loss of information.
As in the scheme described previously, this mixed scheme starts the search using
the whole objective set for some generations. However, it alternates the reduc-
tion process with the integration of the original objectives during the remainder
of the search. Algorithm 2 presents the details of the mixed scheme.

Algorithm 2. Pseudocode of the mixed reduction scheme.
Input:

R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
pred: Percentage of generations using the reduced objective set.

pint ← 1 − pred.
Gred ← pred × (Gmax − Gpre)/R
Gint ← pint × (Gmax − Gpre)/R
G ← Gpre

F ′ ← F
k′ ← �(|F | − k)/R� � Number of objectives discarded per reduction.

for r ← 1 until 2R + 1 do
for g ← 1 until G do

moea(P , F ′)

if r �= 2R + 1 then
� Reduce the current objective set F ′.
if r mod 2 = 1 then

F ′ ← kossa(P, F ′, |F ′| − k′)
G ← Gred

else
� Integrate all the objectives for the next generations.
F ′ ← F
G ← Gint

4 Assessment of the Objective Reduction Schemes
Coupled with a MOEA

In order to evaluate the performance of the schemes presented in the previous
section we chose the nsga-ii as a testbed. As we mention in previous sections,
the worth of using an objective reduction method depends on its computational
cost, the time complexity of the moea (specially if it depends on the number of
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objectives), the computational cost of the objective functions, and on the effect
caused by the removal of objectives.

In order to investigate the effect of these factors, we carried out two types
of experiments. The first group of experiments attempts to provide an overall
assessment of all those factors in order to determine if the reduction method is
advantageous. To do so, instead of using the number of evaluations as a stop-
ping criterion, we use the real computational time instead. By doing so, we can
decide if the overall benefits of the reduction method are greater than its pos-
sible damages. In the second group of experiments we want to investigate if a
reduction method increases or decreases the number of generations required to
reach a certain quality of the approximation set produced.

In both types of experiments we compare the nsga-ii equipped with the
reduction method (redga) against the original nsga-ii. The following problems
were adopted in all the experiments: the 0/1 multi-objective knapsack problem
with 200 items, and a variation, proposed in [24], of the well-known problem
dtlz2 (denoted here by dtlz2BZ) with 30 variables. All the runs were executed
in a single-core computer with a 2.13 ghz cpu.

In the first group of experiments the results were evaluated using the additive
ε-Indicator [25], which is defined as

Iε+(A,B) = inf
ε∈R

{∀z2 ∈ B ∃z1 ∈ A : z1 �ε+ z2}

for two nondominated sets A and B, where z1 �ε+ z2 iff ∀i : z1
i ≤ ε + z2

i , for
a given ε. In other words, Iε+(A,B) is the minimum value such that aggregated
to any objective vector in B, then A � B. In general, Iε+(A,B) �= Iε+(B,A) so
we have to compute both values. The smaller Iε+(A,B) and larger Iε+(B,A),
the better A over B.

4.1 Overall Assessment of the Reduction Schemes

In these experiments we used four instances for each of the two test problems
employed with 4, 6, 8 and 10 objectives. For each number of objectives we fixed
the following time windows: 2, 4, 6 and 10 seconds. For all the 30 runs and
problems we used a population of 300 individuals. For nsga-ii we employed a
crossover probability of 0.9 and a mutation probability of 1/N (N is the number
of variables). In the knapsack problem we used a binary representation with a
mutation probability of 1/n (n is the length of the chromosome).

In order to study the successive reduction scheme we reduced in all cases
the objective set until a size of k = 3 and the percentage of generations before
and after the reduction stage was fixed to 20% and 5%, respectively. Here, we
studied two scenarios: one that reduces all the required objectives in one re-
duction (redga-s-1), while the other one uses, among all possible number of
reductions, an intermediate number of reductions considering a final set of size
k = 3 (redga-s-m). That is, for 6, 8 and 10 objectives were used 2, 3, and 4
reductions, respectively. In the mixed reduction scheme we only used an inter-
mediate number of reductions for every number of objectives (redga-x-m), and
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Table 1. Results of the reduction schemes with respect to the ε-Indicator in the
dtlz2BZ problem using a fixed-time stopping criterion

DTLZ2BZ with 4 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - - - 0.04450 0.04450

REDGA-S-m - - - -
REDGA-X-m - - - -
NSGA-II 0.06469 - - - 0.06469
Average 0.06469 0.04450

DTLZ2BZ with 6 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 0.05961 0.05723 0.06019 0.05901
REDGA-S-m 0.05259 - 0.05085 0.05849 0.05398

REDGA-X-m 0.05850 0.05614 - 0.05421 0.05628
NSGA-II 0.07447 0.07711 0.07972 - 0.07710
Average 0.06185 0.06429 0.06260 0.05763

DTLZ2BZ with 8 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 0.08583 0.07711 0.07179 0.07824
REDGA-S-m 0.06905 - 0.08195 0.06341 0.07147

REDGA-X-m 0.07386 0.08171 - 0.06944 0.07500
NSGA-II 0.09882 0.10616 0.11782 - 0.10760
Average 0.08058 0.09123 0.09229 0.06821

DTLZ2BZ with 10 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 0.09108 0.09182 0.08316 0.08869
REDGA-S-m 0.06916 - 0.07072 0.07926 0.07305

REDGA-X-m 0.07998 0.08554 - 0.06840 0.07797
NSGA-II 0.11608 0.12159 0.11480 - 0.11749
Average 0.08841 0.09940 0.09245 0.07694

the other parameters were k = 3, pred = 0.85 and 20% of the total generations
were accomplished before the reduction stage. The results of the ε-Indicator for
these scenarios on problem dtlz2BZ are presented in Table 1. Since for four ob-
jectives redga-s-m and redga-x-m are equivalent to the redga-s-1 scheme,
we only show the results of this scheme against nsga-ii.

As we can clearly see in Table 1, all the reduction schemes perform better than
nsga-ii for every number of objectives. Besides, the advantage of the reduction
schemes over the nsga-ii increases with the number of objectives. On the other
hand, except for 8 objectives, the scheme redga-s-m achieved better results
than the redga-x-m which is the second best in this comparison. This means
that the strategy of integrating all the objectives periodically did not improve
the performance of the reduction scheme. As somewhat expected, the redga-
s-1 scheme did not obtain results as good as the other reduction schemes. A
possible explanation is that, in spite of the fact that redga-s-1 carries out
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Table 2. Results of the reduction schemes with respect to the ε-indicator in the 0/1
Knapsack problem using a fixed-time stopping criterion

Knapsack with 4 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - - - 205 205

REDGA-S-m - - - -
REDGA-X-m - - - -
NSGA-II 241 - - - 241
Average 241 205

Knapsack with 6 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 408 264 318 330.0

REDGA-S-m 371 - 269 352 330.7
REDGA-X-m 372 403 - 306 360.3
NSGA-II 448 414 378 - 413.3
Average 397.0 408.3 303.7 325.3

Knapsack with 8 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 646 478 505 543.0
REDGA-S-m 457 - 323 290 356.7

REDGA-X-m 441 465 - 345 417.0
NSGA-II 564 472 438 - 491.3
Average 487.3 527.7 413.0 380.0

Knapsack with 10 objectives

Iε+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average
REDGA-S-1 - 455 424 423 434.0
REDGA-S-m 503 - 411 376 430.0

REDGA-X-m 760 667 - 493 640.0
NSGA-II 533 455 522 - 503.3
Average 598.7 525.7 452.3 430.7

more evaluations than the other schemes in the given time, this advantage is not
enough to counteract the negative effect caused by the loss of information. In this
sense, the redga-s-m scenario represents a better tradeoff between these factors.

As in the previous problem, nsga-ii was the worst algorithm in the 0/1 knap-
sack problem regarding the ε-Indicator (see Table 2). Nonetheless, the redga-s-1
scheme presented a better performance than in dtlz2BZ, i.e., with 4 objectives
it was the second best and with 10 it was the best scheme. The reason is that
knapsack’s objective functions are more computationally expensive than those of
the problem dtlz2BZ. This allowed that redga-s-1 could perform many more
generations than any other scheme. This is a clear example that the balance
between the computational cost of the objective functions and the overhead of
the reduction scheme plays an important role on the success of the reduction
scheme. Furthermore, it acts as a guide to decide what type of reduction scheme
to choose. If the objective functions are expensive then it may be convenient to
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use an aggressive scheme such as redga-s-1; otherwise, the redga-s-m could
be more appropriate.

4.2 Effect of the Reduction Schemes on MOEA’s Search Ability

In order to investigate how a reduction scheme affects the moea’s convergence
ability we compare the reduction schemes using the number of generations as the
stopping criterion. In these experiments we used a population of 300 individuals
for every number of objectives, and all the algorithms were executed for 200
generations (60 000 evaluations). In this experiment we adopt only dtlz2BZ

since convergence can be easily measured given that the nondominated vectors of
its true Pareto front have the property D =

∑s
i=1 f

2
i = 1, where s is the number

of objectives. The distribution of the values of D for each algorithm are shown in
Figure 3. The horizontal axis represents the D values obtained by each algorithm
and the vertical axis denotes the frequency of a given D value. As well as in other
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Fig. 3. D distribution on the problem dtlz2BZ for different number of objectives.
D = 1 corresponds to the true Pareto front.
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Table 3. Results of the reduction schemes with respect to the value D in the dtlz2BZ

problem using a fixed-generations stopping criterion

Obj REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II

4 Average 1.0305 - - 1.0488
Std. Dev. 0.0289 - - 0.0266

6
Average 1.0672 1.0358 1.0649 1.1445
Std. Dev. 0.0609 0.0334 0.0496 0.0799

8 Average 1.1276 1.0607 1.1040 1.2863
Std. Dev. 0.1113 0.0561 0.0805 0.1559

10
Average 1.1402 1.0501 1.0786 1.3787
Std. Dev. 0.1234 0.0487 0.0690 0.2218

studies [13,6], Figure 3 shows that the performance of nsga-ii decays as the
number of objectives increases. In addition, all the reduction schemes perform
better than nsga-ii in all cases. This means that the reduction schemes, besides
reducing execution time also help Pareto-based moeas to recover the search
ability deteriorated by the inability of Pareto optimality to discriminate solutions
in many-objective problems. In concordance with the fixed-time experiments, the
redga-s-m achieves the best convergence with respect to the average D value
presented in Table 3. Like all the algorithms, its convergence decreases with the
number of objectives. However redga-s-m is the scheme less affected by the
number of objectives.

5 Conclusions and Future Work

In this paper, we have presented two schemes to integrate an objective reduction
method into a moea. One of these schemes reduces successively the number of
objectives until the required size has been reached and only at the final gener-
ations the original objective set is used again (redga-s). The second scheme
is intended to counterbalance the negative effect of the loss of information by
omitting some objectives (redga-x). This scheme uses alternately the reduced
and the entire set of objectives to carry out the search.

The first group of experiments based on a fixed-time stopping criterion showed
that the reduction of objectives during the search is beneficial in spite of the loss
of information since it also saves computational time. This means that the over-
head introduced by the objective reduction method was small enough to speed
up the execution of the moea even with the inexpensive objective functions used
in the study. Although in all the cases studied in the first group of experiments
the moea coupled with the reduction scheme achieved better results than the
moea alone, we have to carefully select the parameters of the reduction scheme.
There is an equilibrium point in the number of objectives that need to be re-
moved in order to achieve the best tradeoff possible between the benefits and
damages obtained by the reduction scheme. To illustrate this, it is sufficient to
consider that, although the redga-s scheme with only one reduction is the one
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that saves more time per generation, it did not present as good performance as a
less aggressive configuration such as the redga-s-m. On the other hand, the pe-
riodic incorporation of the entire objective set did not improve the performance
of the successive reduction scheme, which is simpler.

One important finding is that a reduction scheme besides reducing the execu-
tion time of a moea also helps to remedy the limitation of Pareto optimality for
dealing with problems having a large number of objectives. The results showed
that all the reduction schemes studied outperformed the original moea even
when a stopping criterion based on a fixed number of generations was used. This
shreds light into the usefulness of objective reduction schemes since they bring
advantages both in efficiency and effectiveness.

As part of our future work, we want to study the performance of the objective
reduction methods in problems with less conflict among their objectives. We
would expect that in those problems the benefit of using a reduction method
would be greater since the loss of information is smaller than in many-objective
conflicting problems. Given their encouraging results, it would be interesting to
compare the reduction schemes proposed against methods that have shown good
performance in many-objective problems.
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Abstract. It is well-known that multiobjective problems with many objectives 
are difficult for Pareto dominance-based algorithms such as NSGA-II and 
SPEA. This is because almost all individuals in a population are non-dominated 
with each other in the presence of many objectives. In such a population, the 
Pareto dominance relation can generate no strong selection pressure toward the 
Pareto front. This leads to poor search ability of Pareto dominance-based algo-
rithms for many-objective problems. Recently it has been reported that better 
results can be obtained for many-objective problems by the use of scalarizing 
functions. The weighted sum usually works well in scalarizing function-based 
algorithms when the Pareto front is convex. However, we need other functions 
such as the weighted Tchebycheff when the Pareto front is non-convex. In this 
paper, we propose an idea of automatically choosing between the weighted sum 
and the weighted Tchebycheff for each individual in each generation. The char-
acteristic feature of the proposed idea is to use the weighted Tchebycheff only 
when it is needed for individuals along non-convex regions of the Pareto front. 
The weighted sum is used for the other individuals in each generation. The  
proposed idea is combined with a high-performance scalarizing function-based 
algorithm called MOEA/D (multiobjective evolutionary algorithm based on de-
composition) of Zhang and Li (2007). Effectiveness of the proposed idea is 
demonstrated through computational experiments on modified multiobjective 
knapsack problems with non-convex Pareto fronts. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) has been and will continue to be one 
of the most active research areas in the field of evolutionary computation. EMO algo-
rithms have been successfully applied to various multiobjective optimization prob-
lems [3], [4]. Almost all well-known EMO algorithms such as NSGA-II [5] and 
SPEA [26] use the Pareto dominance relation together with a crowding measure for 
the fitness evaluation of each individual. In this sense, we call them Pareto domi-
nance-based algorithms. Pareto dominance-based algorithms usually work very well 
for finding Pareto-optimal or near Pareto-optimal solutions along the Pareto front of 
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an optimization problem with two or three objectives. The search ability of those 
algorithms is, however, severely deteriorated by the increase in the number of objec-
tives as pointed out in the literature (See [18], [22] for early studies, and [12], [13] for 
a short review on evolutionary many-objective optimization studies). This is because 
almost all individuals in a population become non-dominated with each other under 
many objectives. When all individuals in a population are non-dominated, the Pareto 
dominance relation cannot generate any selection pressure toward the Pareto front. In 
this case, the fitness evaluation of each individual is based on only a crowding meas-
ure in each Pareto dominance-based algorithm. Thus their search ability is severely 
deteriorated by the increase in the number of objectives. It has been demonstrated in 
the literature [7]-[10], [16], [17] that better results can be obtained by the use of sca-
larizing functions for many-objective problems with more than three objectives. 

Whereas Pareto dominance-based algorithms usually work well on two-objective 
and three-objective problems, it is not always the case in their applications to combi-
natorial optimization problems [6]. For example, it has been demonstrated in some 
studies [16], [17], [23] that Pareto dominance-based algorithms are not good at find-
ing Pareto-optimal or near Pareto-optimal solutions around the edges of the Pareto 
front of a two-objective knapsack problem. A possible reason for this observation is 
that the Pareto dominance relation has a too large effect on the fitness evaluation for 
the two-objective knapsack problem especially in the early stage of evolution. This 
means that a crowding measure does not have a sufficient effect on the fitness evalua-
tion for increasing the diversity of solutions. As a result, good solutions are obtained 
in a small region around the center of the Pareto front. It has been reported in the 
above-mentioned studies [16], [17] that much better results in terms of the diversity of 
solutions are obtained by scalarizing function-based algorithms. 

As we have already explained, scalarizing function-based algorithms have several 
advantages such as the scalability to many-objective problems and high search ability 
for combinatorial optimization problems. Moreover, scalarizing function-based fitness 
evaluation needs much less computation load than Pareto dominance-based one espe-
cially for many-objective problems. That is, computational efficiency is another ad-
vantage of scalarizing function-based algorithms.  

One promising approach for improving the search ability of EMO algorithms is the 
hybridization with local search [11], [14]-[17], [24]. Local search in such a hybrid 
EMO algorithm usually uses a scalarizing function (e.g., the weighted sum in mul-
tiobjective genetic local search [11] and an augmented achievement scalarizing func-
tion in a recent hybrid EMO algorithm [24]). It is easy to incorporate local search into 
scalarizing function-based algorithms whereas the implementation of local search in 
Pareto dominance-based algorithms is not always easy. High compatibility with local 
search is also another advantage of scalarizing function-based algorithms. 

One important issue in the implementation of scalarizing function-based algo-
rithms is the choice of an appropriate scalarizing function. For example, both the 
weighted sum and the weighted Tchebycheff were implemented and compared in a 
scalarizing function-based algorithm called MOEA/D (multiobjective evolutionary 
algorithm based on decomposition [25]). It is well-known that the weighted sum can-
not appropriately handle multiobjective problems with non-convex Pareto fronts 
whereas the weighted Tchebycheff can handle them. Moreover, the weighted Tcheby-
cheff has nice theoretical properties [20]. Thus the weighted Tchebycheff seems to be 
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a better choice in scalarizing function-based algorithms than the weighted sum. It 
was, however, clearly demonstrated in [25] that better results were obtained from the 
weighted sum than the weighted Tchebycheff in the application of MOEA/D to mul-
tiobjective knapsack problems. This observation may suggest the use of the weighted 
sum for multiobjective problems with convex Pareto fronts whereas its use is not 
appropriate for other problems with non-convex Pareto fronts. 

From these discussions, the shape of the Pareto front seems to be a good indicator 
for choosing an appropriate scalarizing function. One difficulty in using this indicator 
is that the shape of the Pareto front is often unknown before we find a large number of 
Pareto-optimal solutions. Another possible difficulty is related to the use of the same 
scalarizing function for all individuals in every generation.  

When the current population is far from the Pareto front, we can use the weighted 
sum even if its shape is non-convex. This situation is illustrated by a population of 
small squares in the bottom-left area of each plot in Fig. 1. This figure shows experi-
mental results of MOEA/D with the weighted Tchebycheff on modified two-objective 
500-item knapsack problems with non-convex Pareto fronts. In each plot, three popu-
lations at the first, 20th and 500th generations are shown by squares, triangles and 
circles, respectively. We can see that the population at the first generation is far from 
the Pareto front. Thus the weighted sum can be used in the early stage of evolution 
(e.g., in the first 20 generations). When the current population is close to the non-
convex Pareto front (e.g., after the 20th generation), the use of the weighted Tcheby-
cheff seems to be appropriate for all solutions in Fig. 1 (a). On the other hand, we 
need the weighted Tchebycheff only for solutions around the non-convex region (A) 
of the Pareto front in Fig. 1 (b). The weighted sum can be used throughout the execu-
tion of MOEA/D for the other solutions around the two convex regions (B and C) of 
the Pareto front in Fig. 1 (b). Motivated by these discussions, we propose an idea of 
automatically choosing between the weighted sum and the weighted Tchebycheff. 
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               (a) A non-convex Pareto front.                     (b) A partially non-convex Pareto front. 

Fig. 1. Experimental results of MOEA/D [25] with the weighted Tchebycheff on modified two-
objective 500-item knapsack problems with non-convex Pareto fronts 
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This paper is organized as follows. In Section 2, we explain the two scalarizing 
functions (i.e., the weighted sum and the weighted Tchebycheff) used in MOEA/D. In 
Section 3, we explain MOEA/D. After that, we compare the two scalarizing functions 
with each other in Section 4 through computational experiments on multiobjective 
500-item knapsack problems with two, four and six objectives. In Section 5, we ex-
plain how we can generate multiobjective knapsack problems with non-convex Pareto 
fronts by modifying the original ones in Zitzler and Thiele [26]. For example, we can 
generate the two knapsack problems in Fig. 1. In Section 6, we explain our idea for 
automatically choosing between the weighted sum and the weighted Tchebycheff for 
the use in MOEA/D. We examine the effectiveness of the proposed idea through 
computational experiments on modified multiobjective knapsack problems with non-
convex Pareto fronts in Section 7. Finally we conclude this paper in Section 8. 

2   Scalarizing Functions 

Let us consider the following m-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf mfff= , (1) 

where f (x) is the m-dimensional objective vector, fi (x) is the i-th objective to be max-
imized, and x is the decision vector. Since we use multiobjective knapsack problems 
in our computational experiments, we explain our idea for the multiobjective maximi-
zation problem in (1).  

One of well-known and frequently-used scalarizing functions is the weighted sum 
with a non-negative weight vector λ = (λ1 , λ2 , ..., λm): 

)(...)()()|( 2211 xxxλx mm
WS fffg ⋅++⋅+⋅= λλλ , (2) 

where λi  is a non-negative weight for the i-th objective fi (x). We assume that the 
weight vector λ satisfies λ1+λ2+ ... +λm  = 1 and λi ≥ 0 for i = 1, 2, ..., m. 

Another well-known scalarizing function is the weighted Tchebycheff. Let Ω be a 

set of solutions. A reference point )...,,,( ****
21 mzzz=z  in the objective space can be 

specified by the best objective value of each objective in Ω as 

mifz ii ...,,2,1},|)(max{* =Ω∈= xx . (3) 

When Ω is the set of all feasible solutions, z* is called the ideal vector.  
The weighted Tchebycheff measures the distance from the reference point z* to a 

solution x in the objective space as follows: 
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As in Zhang and Li [25], we specified the reference point z* for each generation in 
our computational experiments as follows: 

mitfz ii ...,,2,1)},(|)(max{1.1* =Ω∈⋅= xx , (5) 

where Ω(t) is the secondary population at the t-th generation of MOEA/D [25]. The 
reference point z* is updated whenever the best value in (5) is updated. 

3   MOEA/D of Zhang and Li (2007) 

MOEA/D (multiobjective evolutionary algorithm based on decomposition) was pro-
posed by Zhang and Li [25] as a high-performance scalarizing function-based algo-
rithm. We use MOEA/D because it is a simple but very powerful EMO algorithm. 
MOEA/D has a number of advantages over Pareto dominance-based algorithms such 
as the scalability to many-objective problems, high performance for combinatorial 
optimization problems, computational efficiency of fitness evaluation, and high com-
patibility with local search. 

The main characteristic of MOEA/D is that a multiobjective problem is handled as 
a collection of a large number of single-objective problems. Each single-objective 
problem has a scalarizing function with a different weight vector. Each weight vector 
has a single individual in each population. This idea is similar to a cellular EMO algo-
rithm of Murata et al. [21] where a different weight vector was assigned to each cell. 
In both algorithms, each individual in the current population was governed by a sca-
larizing function with a different weight vector. The decomposition of an original 
multiobjective problem into a number of multiobjective problems was also discussed 
in other studies (e.g., cone separation by Branke et al. [1]). High performance of 
MOEA/D has already been demonstrated for well-known test problems such as the 
ZDT and DTLZ series and knapsack problems in [25], flowshop scheduling problems 
in [2], and some difficult problems with complicated Pareto fronts [19]. 

MOEA/D uses a prespecified number of uniformly distributed weight vectors satis-
fying the following two conditions: 

1...21 =+++ mλλλ , (6) 

mi
H

H

HHi ...,,2,1,...,,
2

,
1

,0 =
⎭
⎬
⎫

⎩
⎨
⎧∈λ , (7) 

where H is a user-definable positive integer. The number of weight vectors is calcu-
lated as N = H+ m −1Cm −1 [25]. For example, we have 101 weight vectors by specifying 
H as H =100 for a two-objective problem: λ  = (0, 1), (0.01, 0.99), ..., (1, 0). 

Let us denote the generated N weight vectors as {λ1, λ2, ..., λN}. Each weight vec-
tor λk has the nearest T weight vectors (including λk itself) as its neighbors where T is 
a user-definable positive integer. We denote the T neighbors of λk by B(λk), which can  
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be viewed as the neighborhood of size T for the weight vector λk. The distance be-
tween two weight vectors is measured by the standard Euclidean distance. 

The same neighborhood structure is used for individuals since each weight vector 
has a single individual. Let us denote the individual associated with the weight vector 
λk by xk. Then we denote the T individuals associated with the T weight vectors in 
B(λk) by B(xk), which is referred to as the neighborhood of xk. We also call the T 
individuals in B(xk) as the neighbors of xk. In MOEA/D, genetic operations for each 
individual are locally performed among its neighbors as in cellular algorithms. 

Now we have N weight vectors. We also have the T neighbors in B(λk) for each 
weight vector λk, k =1,2, ..., N. As in standard evolutionary algorithms, the first step 
of MOEA/D is to generate an initial population. It should be noted that the population 
size is the same as the number of the weight vectors (i.e., N). We randomly generate 
an initial individual for each weight vector. Next we generate an offspring for each 
weight vector by selection, crossover and mutation. When an offspring is to be gener-
ated for the weight vector λk, a couple of parents are randomly selected among the T 
neighbors of xk in B(xk). Then an offspring is generated by crossover and mutation. 
Let us denote the generated offspring by yk. If the offspring yk is better than the cur-
rent individual xk, xk is replaced with yk. The two individuals xk and yk are compared 
with each other by the scalarizing function with the weight vector λk (i.e., the 
weighted sum or the weighted Tchebycheff). The newly generated offspring yk is also 
compared with all neighbors in B(xk). This comparison is performed using the weight 
vector of each neighbor. If yk is better than some neighbors, they are replaced with yk. 
The genetic operations (i.e., selection, crossover, mutation) and the comparison of the 
newly generated offspring with all neighbors in B(xk) are performed for each individ-
ual xk (i.e., k =1,2, ..., N) in the current population. We used the total number of ex-
amined solutions as the stopping condition in our computational experiments. 

MOEA/D has a secondary population (i.e., an archive population) for storing non-
dominated solutions. The secondary population is updated by newly generated off-
spring throughout the execution of MOEA/D. The secondary population is used just 
for storing non-dominated solutions. That is, no individual in the secondary popula-
tion is used in the genetic operations for generating new offspring. This means that 
the secondary population has no effect on the search behavior of MOEA/D. The use 
of non-dominated solutions in the secondary population usually significantly im-
proves the search ability of EMO algorithms (e.g., [11], [26]). In MOEA/D, the “re-
place-if-better” strategy is used for all individuals. This replacement strategy can be 
viewed as a kind of elitism. Thus MOEA/D has high search ability without utilizing 
non-dominated solutions in the secondary population as parents in the genetic opera-
tions for generating new offspring.  

4   Comparison of the Two Scalarizing Functions in MOEA/D 

In this section, we compare the weighted sum and the weighted Tchebycheff with each 
other through computational experiments. We used the two-objective and four-objective 
knapsack problems in Zitzler and Thiele [26]. We also generated a six-objective  
500-item knapsack problem. We denote these test problems by the number of objectives 
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and the number of items as the 2-500, 4-500 and 6-500 problems. In our computational 
experiments, we used the following parameter specifications: 

Population size (which is the same as the number of weight vectors): 
       200 (2-500), 220 (4-500), and 252 (6-500), 
Parameter H for generating weight vectors: 
       199 (2-500), 9 (4-500), and 5 (6-500), 
Stopping condition (i.e., the total number of examined solutions): 
       100,000 (2-500), 150,000 (4-500), and 200,000 (6-500), 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Neighborhood size T (i.e., the number of neighbors): 10. 

Our computational experiments were performed in the same manner as in Zhang 
and Li [25]. For example, we used the same greedy repair method as in [25]. We 
show experimental results of a single run of MOEA/D with the weighted sum in Fig. 
2 (a) and the weighted Tchebycheff in Fig. 2 (b). In each plot, we show all individuals 
in the current and secondary populations at each generation.  
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                      (a) The weighted sum.                                  (b) The weighted Tchebycheff. 

Fig. 2. Experimental results of a single run of MOEA/D with the weighted sum and the 
weighted Tchebycheff on the 2-500 knapsack problem of Zitzler and Thiele [26] 

In Fig. 2, we cannot observe any clear difference in the final results at the 500th 
generation between Fig. 2 (a) with the weighted sum and Fig. 2 (b) with the weighted 
Tchebycheff. There exists, however, a clear difference in the intermediate results at 
the 20th generation between the two plots in Fig. 2. That is, we can see that the faster 
convergence speed was achieved by the weighted sum in Fig. 2 (a) than the weighted 
Tchebycheff in Fig. 2 (b) in the application of MOEA/D to the 2-500 test problem. 

In Figs. 3-5, we compare the two scalarizing functions with each other using the hy-
pervolume measure. Each figure shows the histogram of the values of the hypervolume 
measure obtained by 100 runs of MOEA/D with each scalarizing function. Whereas  
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there is no clear difference between the two scalarizing functions for the 2-500 problem 
in Fig. 3 (also see Fig. 2), much better results were obtained by the weighted sum for the 
4-500 problem in Fig. 4 and for the 6-500 problem in Fig. 5. 

Hypervolume value

N
um

be
r o

f 
ru

ns

Tchebycheff

Weighted Sum

4.
04

8 
4.

04
9 

4.
05

0 
4.

05
1 

4.
05

2
4.

05
3 

4.
05

4 
4.

05
5 

4.
05

6 
4.

05
7 

4.
05

8 
4.

05
9 

4.
06

0 
4.

06
1 

4.
06

2 
4.

06
3 

4.
06

4 
4.

06
5 

4.
06

6 
4.

06
7 

20
18
16
14
12
10
8
6
4
2
0 )10( 8×

 
Fig. 3. Distribution of 100 values of the hypervolume measure (2-500 problem) 
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Fig. 4. Distribution of 100 values of the hypervolume measure (4-500 problem) 
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Fig. 5. Distribution of 100 values of the hypervolume measure (6-500 problem) 
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The deterioration in the performance of the weighted Tchebycheff by the increase 
in the number of objectives can be explained by the shape of contour lines of each 
scalarizing function. In the case of the weighted sum, a contour line is a line, plane or 
hyper-plane (see Fig. 6 (a) where the weight vector is assumed to be (0.7, 0.3)). The 
objective space is divided into two subspaces by a contour line. One subspace is a 
better region than the contour line while the other is a worse region. If a current solu-
tion is on the contour line, it is replaced with a newly generated offspring only when  
the offspring is in the better region. Roughly speaking, the size of the better region 
can be viewed as being 1/2 of the objective space independent of the number of objec-
tives. On the other hand, the size of the better region is (1/2)m of the m-dimensional 
objective space in the case of the weighted Tchebycheff (see Fig. 6 (b)). This means 
that the probability of the replacement of a current individual with a newly generated 
offspring exponentially decreases with the number of objectives. As a result, the 
search ability of MOEA/D with the weighted Tchebycheff function was deteriorated 
by the increase in the number of objectives in Figs. 3-5. 
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                     (a) The weighted sum.                                   (b) The weighted Tchebycheff. 

Fig. 6. Contour lines of each scalarizing function 

5   Test Problems with Non-convex Pareto Fronts 

As shown in the previous section, better results are often obtained by the weighted 
sum especially for many-objective problems with convex Pareto fronts than the 
weighted Tchebycheff. The weighted sum, however, cannot appropriately handle 
multiobjective problems with non-convex Pareto fronts. In order to further examine 
the behavior of MOEA/D with each scalarizing function, we generated test problems 
with non-convex Pareto fronts from the three knapsack problems in the previous sec-
tion. Our idea is to pull the convex Pareto front toward the inside of the feasible re-
gion so that its shape becomes non-convex.  



 Adaptation of Scalarizing Functions in MOEA/D 447 

Let G be a point in the feasible region of the objective space (see Fig. 7). We de-
note the location of the point G in the objective space by (g1, g2, ..., gm). Using this 
point, the value of each objective is modified for each individual x as 

)}},)(({min,0{min)(:)(
...,,2,1

jj
mj

ii gfff −⋅−=
=

xxx α  i = 1, 2, ..., m, (8) 

where α is a user-definable positive parameter. By the modification in (8), all indi-
viduals dominating the point G are pulled toward the inside of the feasible region (i.e., 
toward the point G). Other individuals are not modified. The parameter α specifies the 
amount of the modification. In Fig. 7, the value of α is specified as α = 0.6.  

One important issue in (8) is the specification of the point G. We generated two 
types of test problems: Type C and Type D. In Type C, the point G is specified so that 
G is completely dominated by the Pareto front (see Fig. 7 (a)). As a result, the entire 
Pareto front becomes non-convex. On the other hand, the point G is specified so that 
G is dominated by a half of the Pareto front (see Fig. 7 (b)) in Type D. As a result, 
only the center region of the Pareto front becomes non-convex.  

When the Pareto front of an original multiobjective problem is unknown, we can 
roughly estimate its range by applying an EMO algorithm to the problem and/or inde-
pendently optimizing each objective. Then we can specify the point G based on the 
estimation of the range of the Pareto front. Due to the page limitation, we only report 
experimental results on the two test problems in Fig. 7 while we generated other test 
problems with non-convex Pareto fronts from the 4-500 and 6-500 problems. 
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(a) A newly generated test problem 2-500C.         (b) A newly generated test problem 2-500D. 

Fig. 7. Two test problems generated from the 2-500 knapsack problem (α=0.6) 

In the same manner as in the previous section, we applied MOEA/D to the 2-500C 
problem in Fig. 7 (a). Experimental results are shown in Fig. 8. Fig. 8 (a) clearly dem-
onstrates that the weighted sum cannot appropriately handle non-convex Pareto  
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                      (a) The weighted sum.                                   (b) The weighted Tchebycheff. 

Fig. 8. Experimental results of MOEA/D on the 2-500C test problem 
 

fronts. All individuals in the main population converged to the two edges of the 
Pareto front whereas some other solutions were stored in the secondary population. 

6   Our Idea for Automatically Choosing a Scalarizing Function 

Our experimental results on many-objective problems with convex Pareto fronts in 
Fig. 4 and Fig. 5 clearly demonstrated the high search ability of MOEA/D with the 
weighted sum. On the other hand, experimental results in Fig. 8 on the two-objective 
problem with the non-convex Pareto front showed the advantage of the weighted 
Tchebycheff. These observations motivated us to devise a mechanism for automati-
cally choosing between the weighted sum and the weighted Tchebycheff. Our idea is 
to use the weighted Tchebycheff only for individuals along non-convex regions of the 
Pareto front. In order to implement this idea, we have to detect non-convex regions of 
the Pareto front during the execution of MOEA/D.  

Since the weighted sum cannot find any Pareto-optimal solutions along non-
convex regions of the Pareto front, different weight vectors may have the same indi-
vidual. In other words, a single individual can be the best solution with respect to the 
weighted sum with different weight vectors near a non-convex region of the Pareto 
front. Based on these discussions, we propose the following mechanism for automati-
cally choosing between the weighted sum and the weighted Tchebycheff. 

Proposed Idea: If a current individual xk and at least K neighbors in its neighborhood 
B(xk) have the same objective vector, we use the weighted Tchebycheff together with 
the weight vector λk. Otherwise we use the weighted sum together with λk .  

In the proposed idea, K is a user-definable integer. In an extreme case of K = 0, the 
weighted Tchebycheff is always used. In the other extreme case with an infinitely 
large value of K, the weighted sum is always used.  
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7   Effectiveness of Our Idea 

We applied MOEA/D with the proposed idea to the test problems in Fig. 7. We used 
four values 1, 2, 4, 9 as the threshold parameter K. In Fig. 9 and Fig. 10, we show 
experimental results on the 2-500C problem in Fig. 7 (a) and the 2-500D problem in 
Fig. 7 (b), respectively. We can see from Fig. 9 and Fig. 10 that the proposed idea 
works well for finding Pareto-optimal or near Pareto-optimal solutions along the non-
convex regions of the Pareto fronts. The effect of the specification of the threshold 
parameter K is also clearly demonstrated in Fig. 9 and Fig. 10. 

We also examined the performance of the proposed idea for the 2-500, 4-500, 6-
500 and their C versions using the hypervolume measure as in Fig. 5. The weighted 
sum and the weighted Tchebycheff worked well for many objectives and non-convex 
Pareto fronts, respectively. Intermediate results between these two scalarizing func-
tions were almost always obtained from the proposed idea. 
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                                 (a) K = 1.                                                           (b) K = 2. 
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                              (c) K = 4.                                                           (d) K = 9. 

Fig. 9. Experimental results of MOEA/D with the proposed idea on the 2-500C test problem 
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                                (c) K = 4.                                                           (d) K = 9. 

Fig. 10. Experimental results of MOEA/D with the proposed idea on the 2-500D test problem 

8   Conclusions 

We proposed an idea of automatically choosing between the weighted sum and the 
weighted Tchebycheff in a scalarizing function-based EMO algorithm MOEA/D [25]. 
To explain the motivation behind the proposal, we demonstrated that the search abil-
ity of MOEA/D with the weighted Tchebycheff is severely deteriorated by the in-
crease in the number of objectives. We also visually demonstrated that the weighted 
sum cannot appropriately handle non-convex Pareto fronts. Then we explained how 
we can decide whether the weighted Tchebycheff is needed or not. This decision is 
based on the detection of non-convex regions of the Pareto front. In the proposed 
idea, the use of the weighted Tchebycheff is recommended when a single individual 
has the best weighted sum value among its neighbors for multiple weight vectors. The 
effectiveness of this idea was demonstrated through computational experiments. 

We presented our idea in a very simple form. So it has a number of issues to be 
further discussed in future studies. One issue is the location of the reference point z* 
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for the weighted Tchebycheff (we specified it by (5) in this paper). When only a part 
of the Pareto front is non-convex as in the 2-500D problem in Fig. 7 (b), it may be a 
good idea to locate the reference point z* close to the non-convex region in order to 
concentrate the multiobjective search by the weighted Tchebycheff on the non-convex 
region. Another issue is the frequency of the change between the weighted sum and 
the weighted Tchebycheff. It seems that too frequent changes may have a negative 
effect on the search of MOEA/D. One critical issue is the possibility that the two 
scalarizing functions drive the current individual to totally different areas in the objec-
tive space even when they have the same weight vector. In this case, frequent changes 
may severely deteriorate the search ability of MOEA/D with our idea.  

One possible remedy for such a negative effect of changing between the two sca-
larizing functions is to calibrate them so that they drive the current individual to the 
same area when they have the same weight vector. Another possible remedy is to use 
both the weighted sum and the weighted Tchebycheff as an integrated function. Actu-
ally we examined the use of the augmented weighted Tchebycheff in MOEA/D in our 
preliminary computational experiments. We observed high sensitivity of the search 
ability of MOEA/D with the augmented weighted Tchebycheff to the specification of 
the weight value for the augmented term. Different problems needed different specifi-
cations of the weight value. The point is how to adjust the weight for each problem. 
The proposed idea for detecting non-convex regions can be used in such an adjust-
ment mechanism. The proposed idea can be also used for automatically specifying an 
appropriate objective function for each solution during the execution of local search 
in hybrid EMO algorithms (i.e., multiobjective memetic algorithms: MOMAs). 

This work was partially supported by Grant-in-Aid for Scientific Research for Sci-
entific Research (B) (20300084). 
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Abstract. This paper is motivated by problem scenarios in automated
drug design. It discusses a modeling approach for design optimization
problems with many criteria that can be partitioned into objectives and
fuzzy constraints. The purpose of this remodeling is to transform the
original criteria such that, when using them in an evolutionary search
method, a good view on the trade-off between the different objectives
and the satisfaction of constraints is obtained.

Instead of reducing a many objective problem to a single-objective
problem, it is proposed to reduce it to a multi-objective optimization
problem with a low number of objectives, for which the visualization of
the Pareto front is still possible and the size of a high-resolution ap-
proximation set is affordable. For design problems where it is reasonable
to combine certain objectives and/or constraints into logical groups by
means of desirability indexes, this method will yield good trade-off re-
sults with reduced computational effort. The proposed methodology is
evaluated in a case-study on automated drug design where we aim to find
molecular structures that could serve as estrogen receptor antagonists.

1 Introduction

Using Pareto optimization for multi-objective optimization problems becomes
problematic when the number of objectives increases. There are at least two
reasons for this. Firstly, for dimensions higher than three or four the visualization
of the Pareto front, and thus of the trade-off between attainable non-dominated
solutions, becomes increasingly difficult. Secondly, the memory space needed for
maintaining a high resolution approximation set of the Pareto front can grow
exponentially with the number of objectives.

One possibility in such cases is to retreat to an aggregation approach and
thereby to renounce the advantages of Pareto front visualization and exploration,
such as getting intuition about the nature of the trade-offs and conflicts and the
possibility to generate a diverse set of alternatives that can then be discussed
by the design experts on the basis of more subjective criteria.

This paper suggests a middle ground between Pareto optimization with many
objectives and aggregation to a single objective problem. The idea is to ap-
ply partial aggregation of the objectives in order to recast a many objectives

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 453–467, 2009.
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optimization problem into an optimization problem with a moderate number
of objectives. This approach is suitable for cases where the objectives can be
grouped into different categories and aggregates can be build for each category.
In particular we are interested in problems for which a large number of objectives
relate to so-called fuzzy constraints.

Fuzzy constraints arise in decision models where the constraint boundary is
not defined in a precise way. However, there is often a region where a constraint
is fully satisfied and a region where a constraint is strictly violated. In the latter
case, a solution will be clearly inferior to any solution with non-violated con-
straints, regardless of its objective function values. In the ’gray area’, where the
violation of a constraint is debatable, the degree of violation can serve as an
objective to be minimized.

In order to normalize the objective space, both objectives and fuzzy con-
straints can be transformed into desirability functions ([6,5,17]). They are an
intuitive way for the decision maker for indicating how desirable certain objec-
tive values are, using the same scale for each objective. Moreover, they can be
used, as we will discuss later, to model fuzzy constraints. Several desirability
functions can be aggregated by their product. Desirability has been considered
earlier in the context of evolutionary multi-objective optimization by Trautmann
and Mehnen in a theoretical study [14] and industrial application [15]. They are
used to integrate a-priori preferences of the decision maker, allowing to focus on
interesting parts of the Pareto front. In that respect they are closely related to
Guided Dominance methods by Branke and Deb [2].

In contrast to the previous mentioned approaches, we propose the use of
desirability functions to model fuzzy constraints and reduce the number of ob-
jectives in many-objective optimization problems. For this, we group objectives
and constraints in logically separable groups, among which the set of fuzzy con-
straints forms one group, using desirability indexes. Then we perform Pareto
optimization on the lower dimensional, normalized objective space the aggre-
gated desirability indexes give rise to. Using the proposed remodeling method
in a multi-objective evolutionary search scheme will reduce the computational
effort that is due to maintaining the non-dominated solution set and it will yield
a good view on the trade-offs.

In a case study, an automated drug design problem, the aim is to find estrogen
receptor antagonists using three activity prediction models. This problem has a
large number of criteria which can be partitioned into fuzzy or soft constraints,
such as the solubility of a candidate molecule, and typically a small set of objec-
tives which in our case are the maximization of predicted activities on certain
targeted cells. This study extends the work presented in [8,13].

The paper starts with a short definition of the general form of the multi-
objective optimization problems that we consider in this paper in Section 2. In
Section 3 the concept of desirability indexes and related work is reviewed. Sec-
tion 4 discusses ways to combine desirability indexes with Pareto optimization.
Section 5 provides preliminaries for the case study. Then, in Section 6 we present
the results of the proposed approaches on the drug design problem. The article
ends with a summary and outlook in Section 7.
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2 Problem Class Description

We consider multi-objective design optimization problems consisting of a small
number of objectives and a number of fuzzy or soft constraints:

min fi(x), i = 1, . . . , N
s.t. gj(x) � 0, j = 1, . . .M (1)

Here, x can be of any domain D and � is a fuzzified version of ≥. It has the
linguistic interpretation gj(x) is essentially bigger than 0 (see [7]). To express
this linguistic variable we have to define a membership function, which in the
setting of the constraints of (1) will be a one-sided desirability function for
maximization. We postpone the discussion of details to section 3.

The aim is not only to provide one optimal solution but rather to provide
a broad variety of solutions as design options which are both different in the
search space as well as representing different trade-offs in the objective space.
Moreover, we do not necessarily want to reject solutions that do not strictly
violate constraints, but rather give insight in the trade-off between the objectives
and the degree of constraint satisfaction.

For many design optimization problems, the aim as we have stated here is
more realistic than those usually considered in optimization approaches. Diver-
sity is a necessary criterion because for most design optimization problems, the
mathematical methods of expressing fitness functions are limited, and having a
high fitness score does not necessarily guarantee high performance. It is therefore
desirable to provide a diverse set of possible candidate solutions.

The desire also to show solutions that are very good with respect to the objec-
tive functions but which do not satisfy the constraints occurs because in design
problems one should be aware of the fact that there is a designer involved who
will evaluate these results. In many cases, a designer is also interested in these
high quality solutions, although they do not comply to (all of) the constraints.
This can happen, for example, when the designer might think he/she will be
able to fix such constraint violations or when the performance gain outweighs
the constraint violations (soft constraints). This work emphasizes on the second
case, where the boundary between constraint violation and satisfaction is fluent.

3 Multiobjective Optimization and Desirability Functions

This section will review two general solution concepts for the discussed class of
multiobjective optimization (that we will combine later): Pareto optimization
and desirability functions.

3.1 Pareto Optimization

A common way to solve problems with multiple conflicting objectives is to search
for the set of all non-dominated solutions, also called the Pareto front. In cases
where the full Pareto front cannot be obtained, an approximation set of it can
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be computed, which ideally should consist only of non-dominated solutions and
should cover the entire Pareto front with a high resolution.

This Pareto front (approximation) can be used by the decision maker or sys-
tems designer to get an intuition about the nature of the conflict and the trade-
off between various objectives. Based on this he/she can come to an informed
decision on what good compromise solutions could be.

However, for optimization techniques like evolutionary algorithms, this ap-
proach is considered to be limited to a small number of objectives, as the number
of solutions needed to approximate the Pareto front with a high resolution can
grow exponentially with the number of objectives. For example, given a contin-
uous problem with m objectives, in the non-degenerate case the Pareto front
is a m − 1 dimensional manifold and we need

∏m−1
i=1 (wi/ε) points to capture a

Pareto front [9]. Here we assume that the ith objective has a range of wi and ε is
the desired maximal distance between points in the Pareto front approximation
which determines the resolution. In addition, for a high number of objectives it
is difficult to get a visual impression of the Pareto front shape which limits the
benefit of the approach as a way to guide the intuition of the decision maker.

In conclusion; a full spread Pareto front approximation is useful, but in many
cases only feasible for less than 5 objectives.

3.2 Desirability Indexes

The concept of desirability was first introduced by Harrington [6] in the scope
of industrial quality management. Harrington considered the optimization of a
process or a product with respect to a set of design variables X = x1, . . . , xn.
The behavior of the process or product was assumed to be mapped to a number
of quality criteria Y = y1, . . . , ym with yi = fi(X) which denote its qualitative
properties. The goal was to reach certain levels of quality, which could either be
to minimize or maximize the performance level or to reach a specified target.

In order to allow for a better comparison between the differently scaled quality
criteria with respect to their desired levels Harrington proposed to map the qual-
ity criteria to the open unit interval (0; 1), where a value close to zero stands for
’poor quality’ whereas a value close to 1 stands for ’high quality’. This mapping
was based on target values (desired values) for the non-normalized quality levels,
and the functions yielding such a mapping were named desirability functions.
Desirability functions of the Harrington type have a signature:

di(yi) : R → (0, 1) , i = 1, . . . ,m (2)

Harrington distinguished between one-sided desirability functions and two-sided
desirability functions. The former are used to model objectives to be maximized
or minimized and are represented by monotonuous functions. The two-sided
desirability functions reflect the cases where a target value for the quality levels
has to be approached as close as possible. The general form of the desirability
functions of Harrington is that of an exponential function. We refer to [6] for
the mathematical description of this mapping for both the one-sided and the
two-sided quality criteria.



Combining Aggregation with Pareto Optimization 457

An extension to the work of Harrington was later proposed by Derringer [5].
Derringer proposed to allow to express also for which values an objective is fully
satisfactory (setting the value of the desirability to its maximum) or when a
fuzzy constraint is strictly violated (setting the value of the desirability index to
0). This idea is sketched in Fig. 1.

Fig. 1. Derringer desirability functions

A useful property of desirability functions is that they can easily be aggregated
into one single quality value, named a desirability index, which can be used
directly for optimization. Harrington used the geometric mean for aggregation:

max
x1,...,xn

D(xi, . . . , xn) = m

√√√√ m∏
i=1

di(fi(x1, . . . , xn)) (3)

For multi-objective optimization, this yields an easy aggregation of all objectives
into one objective function. For the two-sided desirability functions, optimal
solutions are also Pareto optimal with respect to the original problem [17].

Aggregation is not a new concept in multi-objective optimization and dates
back to [12]. However the proposed desirability indexes allow for a more con-
trolled way of aggregating different objective functions than, for instance, the
weighted sum approach. As opposed to the latter it is also possible to obtain
points in concave parts of the Pareto front and because of the product used in
the aggregation it tends to focus more on the central part of a Pareto front where
good compromises are located. Some of the classical utility function classes also
use product forms, but they lack normalization and the flexibility in using one-
and two-sided functions that will be essential in the methods we will propose.

Also it is much more efficient for convergence to a single non-dominated solu-
tion as the linear order allows for a more focused search. However, the downside
of using a desirability index is that it yields a much smaller spread of the so-
lutions with respect to the Pareto front than would be obtained by applying
Pareto optimization with e.g. an ε-archive.
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In conclusion; aggregating the objectives into one objective function by means
of desirability functions and a desirability index is a good way of reducing the
number of objectives and is especially useful when many objectives make Pareto
optimization impossible. However, it may focus too much on particular areas of
the Pareto front.

As a compromise between scalarization and many-objective optimization we
will propose to remodel the many-objective optimization problem to a multi-
objective problem with a low number of objectives.

4 Incorporating Desirability Functions in Fuzzy
Constrained Multi-Objective Optimization

In this section we turn back to the problem class description in section 2 and
we will propose two approaches which will remodel the objectives and fuzzy
constraints into desirability functions and combine Pareto optimization with
desirability indexes. By combining Pareto optimization with desirability indexes,
a method will be created which can visualize the trade-off between the different
objectives very well without requiring large population sizes.

4.1 Remodeling the Objectives and Fuzzy Constraints

For both approaches, we first remodel the original problem to a normalized prob-
lem by mapping the objective functions and the constraints to [0, 1] desirability
intervals which need to be maximized. When we consider to have objective func-
tions that need to be minimized, this yields a transformation for the objective
functions fi, i = 1, . . . ,M that looks like this:

f̂i(x) = exp (di · (f∗
i − fi(x))) → max , i = 1, . . . ,M (4)

Here, f∗ denotes the fitness value of the global minimum or an estimation of
it which should be smaller than the real global minimum. The parameter di

can be used for scaling purposes. Note that also a different mapping might be
used, but this mapping has all the desired properies: It increases monotonously
as fi approaches the minimum, it obtains values in the [0, 1]-interval, and its
smoothness can be easily controlled by means of the parameter di.

The constraints that are usually considered are of (or can be reduced to) one
of these forms:

Aj � gj(x) or gj(x) � Bj or Aj � gj(x) � Bj (5)

As noted, the relation A � B reads A is essentially smaller than B (fuzzy con-
straints). Similar to the flexible programming approach suggested by Inuiguchi
et al. [7] in the context of mathematical programming, we will remodel the con-
straints of (5) to become more of a quality score function (an objective or, in
the terminology of flexible progamming a fuzzy goal). Instead of fuzzy member-
ship functions [7], we make use of Derringer and Suich’s [5] type of desirability
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functions, often simply referred to as Derringer desirability functions. We split
up the constraints into three types of regions: rejection regions, gray areas, and
acceptance regions.

Using this principle, we model the constraints with Derringer desirability func-
tions which map each constraints to an interval [0, 1]. Doing so will yield 0 for
strictly violated constraints, 1 for fully satisfied constraints, and the gray area
yielding values between 0 and 1 indicating a degree of satisfaction on a linear
scale. The leftmost case in (5) translates to:

dj(x) =

⎧⎪⎪⎨⎪⎪⎩
0 , gj < LBj(

gj(x)−LBj

Aj−LBj

)lj
,LBj <= gj(x) < Aj

1 , gj(x) >= Aj

(6)

Here, LBj denotes the absolute lower rejection bound determining the rejection
region, the area between LBj and Aj denotes the gray area, and everything
beyond Aj is accepted. The parameter lj is used to control the shape of the
curve that maps the gray region to the interval [0, 1]. Having lj = 1 yields a
linear curve, lj > 1 generates a convex curve that will be relatively mild on the
solutions in the gray area, and lj < 1 yields a convex shape which will be more
strict on the solutions in the gray area.

Using the same principles we obtain for the second case of (5):

dj(x) =

⎧⎪⎪⎨⎪⎪⎩
1 , gj(x) <= Bj(

gj(x)−UBj

Bj−UBj

)uj

, Bj < gj(x) <= UBj

0 , gj(X) > UBj

(7)

Here UBj is the upper rejection bound beyond which everything is rejected, and
uj is the minimization counterpart of lj .

For the third case we use a slight adaptation of the two-sided Derringer de-
sirability functions in order to map values that are in the acceptance region to
a value of 1. This yields the following two sided desirability function:

dj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , gj < LBj(
gj(x)−LBj

Aj−LBj

)lj
,LBj <= gj(x) < Aj

1 , Aj <= gj(x) <= Bj(
gj(x)−UBj

Bj−UBj

)uj

, Bj < gj(x) <= UBj

0 , gj(X) > UBj

(8)

Figure 1 illustrates the mapping of the original constraint function gj(x) to a
Deringer desirability function.

Having mapped all objectives and constraints to desirability functions, they
can now be combined in any logical kind of way into desirability indexes. More-
over, where we want a more specific view on the trade-off between different
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groups of objectives and/or constraints, we can choose to keep them separate
and perform Pareto optimization on those groups as separate groups. Of the
multiple schemes that can be thought of we will propose two methods for do-
ing so.

4.2 Approach 1

Every objective function fi is mapped to a function f̂i using (4) and all objective
functions are combined into one objective function by taking the product:

fobjectives = f̂1 · f̂2 · . . . · f̂N (9)

The constraints are modeled by desirability functions (we suggest to take uj =
lj = 1

2 in order to be mild on the constraints) aggregated in a second objective
function:

fconstraints = ĝ1 · ĝ2 · . . . · ĝM (10)

This yields a two objective optimization problem instead of the original M ×N
objectives (we also count the converted fuzzy constraints) while still preserving
the possibility to get a view on a part of the trade-offs of the multi-objective
optimization problem.

4.3 Approach 2

The objectives are kept separate and only the constraints are combined using
desirability indexes as in approach 1. This yields an N + 1 Pareto optimization
problem. It will allow for getting a better view on the trade-offs between the
different objectives, but will also be computationally more challenging and is
only possible when at least the number of objectives is low (between 2 and 4).
Color can be used to visualize the value of the fourth dimension (fconstraints).

5 Evolutionary Algorithms in Molecular Design

This research is based on a problem that originates from the application of evo-
lutionary algorithms for automated drug design. In this section we will briefly
describe the problem that will be used as a case study for the proposed ap-
proaches; the search for Estrogen Receptor Antagonists.

Evolutionary Algorithms for automated drug design are increasingly gaining
on practical applicability. This can be attributed to an increasing quality of
methods to predict the biological and pharmacological properties of molecules,
as well as increased knowledge in the evolutionary algorithms field on how to
deal with the complex search spaces induced by the graph-like structures of
molecules. Successful recent approaches are described in [19,8,16,13].

Although the use of computational techniques is taking over in all parts of
the drug design process, in the end it is the intuitive knowledge of the medic-
inal chemist that is necessary in order to distinguish the promising candidate
molecules from the ’obviously’ bad solutions. For the medicinal chemist, such a
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distinction is very easily made, but based on intuition and heuristics which are
very difficult to capture in any kind of objective function.

For automated drug design methods it is very important to realize this as it
changes the objective of the search. The objective should not be to obtain only a
single, optimal solution, corresponding to a narrowly defined class of molecular
structures, but rather to provide a broad set of solutions which can be used
as lead components in the experimental follow-up. In practice, it is well-known
that drugs often fail during research and development stages. Providing multiple
different starting points increases the chance of finding a class of compounds that
will succeed into more advanced drug development stages.

5.1 Test Case: Search for Estrogen Antagonists

As test case we consider the search for estrogen receptor antagonists. As objec-
tive functions we use three different activity prediction models (support vector
machine models) which predict the quality of molecules with respect to being
an antagonist for the estrogen receptor, based on molecular similarity [1] to a
set of steroidal as well as non-steroidal reference compounds:

– f1: activity prediction of an SVM based on ECFP6 fingerprints [18]
– f2: activity prediction of an SVM based on AlogP2 Estate Counts [18]
– f3: activity prediction of an SVM based on MDL [18]

As the output values of the activity models are values between 0 and 1 (1 =
active), we are lucky that the objective functions do not have to mapped to the
interval [0, 1] in order to be merge-able into a desirability index.

5.2 Constraints: Drug-Likeness and the Lipinski Rules

Besides the fact that molecules should be active against a certain target, very
important boundary conditions are that they should have reasonable structures
and they should be usable as drugs (drug-like [10]). When applying evolution-
ary search for automated molecular design a major problem is that there is a
tendency to generate molecular structures that look very weird and very wrong
to the medicinal chemist. In order to limit the search only to solutions that can
be considered as feasible drug molecules, a number of constraints can be used
which can indicate the feasibility of a candidate molecule.

There are many possible ways that can be used to get an indication of the
feasibility of candidate molecular structures. The way that we have adopted in
our approach is to use fuzzy bounds for a number of relatively easy calculatable
properties together with boundary values which are chemically reasonable (based
on the drug-likeness properties suggested by Lipinski [11]):

Descriptor LB A B UB Descriptor LB A B UB
Num H-acceptors 0 1 6 10 Num H-donors 0 1 3 5
Molecular solubility -6 -4 ∞ ∞ Molecular weight 150 250 450 600
ALogP 0 1 4 5 Minimized energy 0 0 80 150
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6 Experiments, Results and Discussion

The two proposed approaches are tested together with one other approach (that
will be referred to as approach 3) which is the aggregation of all objectives and
constraints into one desirability index as objective function that we will use for
benchmarking:

f = f̂1 · f̂2 · . . . · f̂N · ĝ1 · ĝ2 · . . . · ĝM (11)

The experimental setup is as follows: The three approaches will be used in an
adapted version of the evolutionary algorithm that was presented in [13]. The
modifications are that for approach 1 and approach 2, a NSGA-II [4] selection
scheme is used, and approach 3 implements a single objective selection mech-
anism. The genetic operators for the graph-like structures of the molecules are
the same as used in [13]. Furthermore, the following parameter settings are
adopted: parent population size: 80, number of offspring: 120, number of gen-
erations: 1000 (in compliance with previous studies). For each approach we run
the algorithm for 4 runs.

6.1 Results and Discussion

The most illustrative results can be found in the 4D plots of Fig. 2, which
visualize the obtained Pareto front approximations of the three approaches.

Approach 1 yields a very broad range of different design options, approach 2
shows a slightly less broad Pareto front approximation, and approach 3 yields
solutions that lie very close together in the objective space. Although this is
something that is to be expected, the difference between the single objective
aggregation and the combination of aggregation and Pareto optimization can be
noted as remarkable. Also, the difference between approach 1 and approach 2
seems much smaller than the difference between approach 2 and approach 3.

Hence, it can be argued that the gain in diversity (seen from the objectives) is
much higher going from one to two objectives than when going from two to four
objectives. These results support the main argument of this paper that Pareto
optimization is good, but with a further increasing number of objectives, the
upkeep becomes more difficult while the gain in diversity is only marginal.

Another noteworthy observation is that in all four runs, approach three con-
verged to solutions that scored very high on the constraints (almost all solutions
in the final set had a constraint value of 1 or close to 1). From the search space,
this can be explained by the fact that many molecular structures can be con-
structed which comply to the constraint and that the constraint scores are much
easier to optimize than the other objectives. This results in a rapid convergence
to feasible solutions which closes down the road to less feasible solutions that
have better objective function values.

This is opposed to approach 1 and 2, where a broad set of trade-off solutions
is provided. Moreover, when looking at run three of approach 2, solutions were
found that were very good on the objectives but which did not perform well on
the constraints. Interestingly, when we look at the cluster of solutions in Fig. 3,
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Fig. 2. Resulting Pareto front approximations after 1000 generations of runs of the
three methods. The left column shows the runs of approach 1, the middle column show
the runs of approach 2, and the right column shows the runs of approach 3. The three
objective functions (f1, f2, and f3) are plotted on the x, y and z axis. The fourth
dimension, the constraint scores computed with (10), is visualized by the grayscale
(scaling from white = strictly violated to black = accepted).

we recognize the first solution of this subset to be the well known and marketed
drug Tamoxifen which is an Estrogen Receptor Antagonist used against breast
cancer. This is one of those molecules that we surely want to find, but which
would not have been found with the single objective aggregation because it
simply does not comply to the (heuristic based) constraints. Especially in the
field of molecular design, there is no clear way to distinguish good molecules
from bad molecules, and we should account for these cases were high quality
solutions that do not comply to the usual heuristics can still be very promising.
We state that this also holds for many other design optimization problems.
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Fig. 3. A high quality subset of the solutions found by approach 2 in run 3 with in the
upper left the very succesful drug known as Tamoxifen

As another way to compare the three approaches we compute Monte-Carlo ap-
proximations for the dominated hypervolume of the Pareto front approximations
that were obtained. The dominated hypervolume measure is a quality indicator
for a Pareto front approximation that measures the size of the subspace domi-
nated by it with respect to a reference point. A nice result of the rescaling of the
objectives and constraints to the interval [0, 1] that is the hyperspace of possible
solutions is now encapsulated in the domain [0, 1]d (with in our case d = 4)
which provides us with a natural choice for a reference point in the lower left
corner of that cube, and with an integration region [0, 1]4 for Monte Carlo inte-
gration of the hypervolume. The latter was computed with a uniform sampling
of N = 10000 sample points q1, . . . ,qN ∈ [0, 1]4 using:

H(P ) =
1
N

N∑
i=1

I(qi) , I(q) =

{
1, if q is dominated by P
0, otherwise

(12)

Using this approximation of the dominated hypervolume on the results of the
three approaches yields the results as shown in Table 1. We obtain that the mean
values of approach 1 and 2 are better than the one of approach 3. Moreover
approach 2 outperforms approach 3. However, a significant result (p=0.06, two-
sided t-test) was only obtained when comparing approach 2 to approach 3, in
favor of approach 2. For stronger claims, more test runs are needed.
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Table 1. The dominated Hypervolume approximations

Approach 1 Approach 2 Approach 3
Run 1 0.3975 0.3343 0.2088
Run 2 0.3271 0.3505 0.3155
Run 3 0.3223 0.5365 0.2855
Run 4 0.3004 0.5225 0.3560
Mean 0.3368 0.4360 0.29145
Variance 0.0018 0.0117 0.00387

Fig. 4. Random subsets (size 4) from Pareto fronts obtained in run 1 of each approach

Finally, to get an impression about the obtained diversity in the search space,
Fig. 4 shows 5 random solutions from the first run of each of the approaches.
From this we can conclude, similarly to what is observed in the objective space,
that approach 1 yields the most diverse solutions, and that the diversity decreases
when reducing the number of objectives. However, the diversity in the search
space is much less notable than it is in the objective space. Even with the results
of approach 1, the solutions still seem to look very similar. This argues for a
more active control of diversity (by means of niching techniques), which is not
only focusing on maintaining diversity in the objective space, but also controls
diversity in the search space.

7 Summary and Outlook

We have presented a method of converting a multi-objective optimization prob-
lem with fuzzy constraints into a many objective optimization problem and
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proposed two approaches to aggregate the many objectives into an optimiza-
tion problem with only few objectives. The transformation of fuzzy constraints
to desirability functions which can be treated as objectives is a straightforward
and simple way of implementing fuzzy constraints, but it generates a many ob-
jective optimization problem. Combining the different objectives into logically
seperable groups by means of desirability indexes is thereafter a good way to
reduce the number of objectives. A nice side-effect of this rescaling is that the
objective space is mapped to a hypercube bounded on the interval [0, 1]d. In or-
der to still obtain relatively good approximations of the Pareto front, the number
of objectives should not be reduced to one, but it pays off to reduce the many
objectives to two or four objectives.

This approach is designed for design optimization problems where fuzzy con-
straints are very common and where high quality solutions that do not comply
to the constraints can still be interesting. Although the approach was motivated
by the application in molecular design, we believe that this problem scenario can
be found in other problem domains, such as design problems in automotive and
civil engineering, too.

For evolutionary molecular design we find the proposed way of dealing with
multi-objective optimization problems with fuzzy constraints very promising,
and we will also test it on other drug design tasks. As the shape of desirability
indexes does not allow to model all kinds of preferences, for the future it will be
worthwhile to evaluate also alternative modeling and aggregation approaches,
such as those given in [3].
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Abstract. In this paper, we examine the effectiveness of an EMO (Evolutionary 
Multi-criterion Optimization) algorithm using a correlation based weighted sum 
for many objective optimization problems. Recently many EMO algorithms are 
proposed for various multi-objective problems. However, it is known that the 
convergence performance to the Pareto-frontier becomes weak in approaches 
using archives for non-dominated solutions since the size of archives becomes 
large as the number of objectives becomes large. In this paper, we show the 
effectiveness of using a correlation information between objectives to construct 
groups of objectives. Our simulation results show that while an archive-based 
approach, such as NSGA-II, produces a set of non-dominated solutions with 
better objective values in each objective, the correlation-based weighted sum 
approach can produce better compromise solutions that has averagely better 
objective values in every objective. 

Keywords: Many objective optimization, problem correlation, weighted sum 
approach, archive-based approach. 

1   Introduction 

In this decade, researches in EMO (Evolutionary Multi-criterion Optimization) 
algorithms have mainly focused on multi-objective optimization problems with a few 
number of objectives. The better performance of an archive-based (or Pareto-based) 
approach1 such as NSGA-II [1] or SPEA [2] are reported in those problems. Recently 
it is reported that the performance of the archive-based approach is degraded when the 
number of objectives increases [3-5]. This is because that the performance of 
converging to the Pareto front becomes weak in those archive based approach when 
they are applied to many objective optimization problems. Wagner et al. [5] showed 
that MSOPS [6] and SMS-EMOA [7] are better than NSGA-II or SPEA2. 
                                                           
1  The term “archive-based approach” is used for the approaches that keep non-dominated 

solutions obtained during their search to produce following generations. The definition of 
“Pareto” is given in Section 2. 
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In this paper, we combine a weighted-sum approach 2  with an archive-based 
approach in order to compensate the archive-based approach for the weakness in their 
searching pressure toward Pareto optimal solutions of many-objective optimization 
problems. By aggregating several objectives into an objective using weight values, we 
reduce the number of objectives for the archive-based approach. Correlations between 
two objectives are used to aggregate some objectives into an objective. We examine 
the influence of correlations among objectives to aggregate objectives into one 
objective. 

Our simulation results show that while an archive-based approach, such as NSGA-
II, produces non-dominated solutions that have better objective values in some 
objectives, our proposed approach can produce better compromise solutions that has 
averagely better objective values in every objective. 

The following section reveals challenges that arise in many objective optimization 
problems. Then Section 3 shows our proposed approach that employs the correlation 
information between objectives. Simulation results are provided to compare our 
proposed approach with NSGA-II. Finally Section 4 summarizes this paper and show 
some further challenges in the proposed algorithm. 

2   Challenge in Many Objective Optimization 

In general, a k-objective maximization problem is written as follows: 
 

Maximize ))(...,),(),(()( 21 xxxxf kfff= ,         (1) 

subject to Xx ∈ ,           (2) 
 

where )(xf  is the k-dimensional objective vector that consists of k objectives to be 
maximized, and x  is the decision vector in the feasible region of the decision space X. 

One aim in multi-objective optimization problems is to search for the set of Pareto 
optimal solutions. The Pareto optimality can be explained using two feasible solutions 

Xy ∈  and Xz ∈  of the k-objective maximization problem in (1) and (2). If the 
following conditions are satisfied, z is said to dominate y: 
 

Maximize )()(, zy ii ffi ≤∀  and )()(, zy ii ffi <∃ .       (3) 
 

That is, at least one among k objectives, z is superior to y. 
When y is not dominated by any other feasible solutions in X, the solution y can be 

referred to as a Pareto-optimal solution of the k-objective maximization problem in 
(1) and (2). The set of all Pareto optimal solutions forms the tradeoff surface in the 
objective space. EMO algorithms are designed to search for a set of well-distributed 
non-dominated solutions that approximates the entire set of Pareto optimal solutions. 
They are expected to converge to the set of Pareto optimal solutions as soon as 
possible, and simultaneously keep well-distributed solutions on the set. 

 
                                                           
2 The term “weighted-sum approach” is used for the approaches that uses the aggregated sum of 

objective values using weight values for the fitness function. 
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Currently NSGA-II [1] and SPEA [2] are well-known EMO algorithms that are 
frequently used for various multi-objective optimization problems. They have common 
features: fitness evaluation based on Pareto-dominance, diversity maintenance, and the 
utilization of non-dominated solutions as elite individuals. EMO algorithms usually 
work very well on two- or three-objective problems. However, their search ability 
becomes worse when the number of objectives increases. We show a reason why the 
search ability of the archive-based approach using knapsack problems. The purpose of 
multi-objective knapsack problems in Zitzler and Thiele [2] is to maximize values of 
multiple knapsacks under their weight limitation. 

As Ishibuchi et al. [8] examined to see the performance of an archive-based 
approach, NSGA-II, we also employ NSGA-II and apply it to multi-objective 500-item 
knapsack problems with two and four-objectives. Our two-objective and four-objective 
problems are the same ones in [2]. We also generated a ten-objective problem in the 
same manner as in [2]. In our experiments we used the following parameter settings: 
 
Population size: 100, 
Archive size: 100, 
Crossover probability: 1.0 (uniform crossover), 
Mutation probability: 0.1 (for each individual), 
Stopping conditions: 10 000 generations. 
 
In NSGA-II, we employed )( λμ + -ES generation update. We specified μ  and λ  as 

100== λμ . That is, the best 100 individuals are selected from the current and 
offspring populations with 200 individuals in total. 

Fig. 1 shows the average number of non-dominated solutions among the 200 
individuals in the current and offspring populations in each generation over 10 runs. 
2-500, 4-500 and 10-500 show the results obtained for two-objective 500-item 
knapsack problem, four-objective 500-item, and ten-objective 500-item, respectively. 
Similar figures were also depicted in the literatures (e.g., [8,9]). 

In Fig. 1, we can see that the number of non-dominated solutions increases 
through the running of NSGA-II. We can also see that the number of non-dominated 
solutions increases as we increase the number of objectives from two to ten. 
Although it is obvious that the number of non-dominated solutions increases when 
the number of objectives increases, archive-based approaches may have a difficulty 
in their generation update. Since we employed )( λμ + -ES generation update in 
NSGA-II, when the number of the non-dominated solutions exceeds 100, the best 
100 individuals are selected only from those non-dominated solutions using the 
secondary criterion (i.e., crowding distance). As a result, the generation update is 
done with respect to the secondary criterion. This means that NSGA-II mainly tries 
to increase the diversity of individuals rather than the convergence to the set of 
Pareto optimum solutions. As we can see for the ten-objective knapsack problem, the 
number of non-dominated solutions exceeds 100 in early stages of NSGA-II’s 
search. This means that the search in the ten-objective problem is mainly done to 
increase the diversity. 
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Fig. 1. Average number of non-dominated solutions among the 200 individuals in the current 
and offspring population in each generation of NSGA-II 

In order to see more detail solution updates in NSGA-II, we examined the sum of all 
objectives and the sum of the range of objective values over all objectives in the current 
population that are shown in [8]. The sum of all objectives is described as follows: 
 

∑
=

=
k

1i

)()sum( xx if .          (4) 

 
This index can be regarded as a measure of the convergence to the set of Pareto 
solutions. Since the knapsack problems are maximization problems, the larger, the 
better. The maximum value of the sum of all objectives was calculated over all 
individuals in the current population in each generation during the execution of 
NSGA-II. 
 

)(summax)Sum( x
x Ψ∈

=Ψ ,        (5) 
 
where Ψ  denotes the current population. 

The other measure is the sum of the range of objective values over all objectives in 
the current population: 
 

∑
=

Ψ∈Ψ∈
−=Ψ

k

i
ii ff

1

)](min)(max[)Range( xx
xx

.        (6) 

 
Since )(Range Ψ  indicates the difference between the maximum and the minimum for 
each objectives in the current population, the larger value means the large variety (or 
gap) in the population. Since an aim of EMO algorithms is to show non-dominated 
solutions as many as possible, the larger variety is better. However, the larger range 
does not directly mean the large variety because the range becomes larger when the 
EMO algorithm finds several solutions that optimize only one objective with the 
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sacrifice of the other objectives. The score of the range should be examined with the 
score of the sum. 

For the same experimental results in Fig. 1, the sum of all objectives in (5) and the 
range in (6) are shown in Figs. 2 and 3, respectively. The experimental results shown 
in Figs. 2 and 3 are normalized by the average value of each measure at the first 
generation over 10 runs. Thus, the value of each measure is always 100 at the initial 
generation. 
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Fig. 2. Sum of all objectives. Experimental results are normalized using the result at the first 
generation for each knapsack problem. 
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Fig. 3. Range of objective values. Experimental results are normalized as in Fig. 2. 
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From Fig. 2, the sum of all objectives was first increased through multi-objective 
optimization by NSGA-II. However, it started to stagnate after a certain number of 
generations. On the other hand, Fig. 3 shows that the range was not increased in the 
early stage, but started to increase in the latter stage. 

When comparing Fig. 3 with Fig. 1, we can see that the range measure in Fig. 3 
started to increase after the number of non-dominated solutions exceeded 100 in Fig. 
1. This is because that after the number of non-dominated solutions was larger than 
100, the secondary criterion (i.e., crowding distance) had a large effect on the fitness 
evaluation in NSGA-II. On the other hand, the sum of all objectives could increase 
while the number of non-dominated solutions is smaller than 100. This is because that 
the primary criterion had a dominant effect to approach the set of Pareto optimum 
solutions. Through these experiments, we can see the weakness of archive-based 
approach when the number of objectives increases. 

3   Correlation-Based Weighted Sum Approach 

In this paper, we combine a correlation-based weighted sum approach with an 
archive-based approach in order to cope with the challenges of many objective 
optimization problems. As we see in the previous section, archive-based approaches 
have difficulties when the number of objectives is many (more than three). In this 
paper, we propose a method to reduce the number of objectives using weighted 
values. 

Weighted sum approaches was firstly introduced to EMO algorithms by Murata 
and Ishibuchi [10,11] for multi-objective flowshop scheduling problems. They 
randomly generate weight vectors for selecting parent individuals from a population. 
In order to have weight vectors proportionally for the object space, they proposed a 
weight vector generation method in a cellular genetic algorithm [12]. Although the 
weighted sum approach is known to have a convergence problem in multiobjective 
optimization problems with a concave set of Pareto solutions, this approach attracts 
attentions again among researchers in EMO community who tackle many objective 
problems. Recently Hughes [6,13] proposed a multiple single objective pareto 
sampling method (MSOPS) where multiple weight vectors are generated according to 
an utopia point that is defined as the minimum achieved objective value in each 
objective dimension. 

Although the above mentioned weighted sum approaches employ various weight 
vectors to evaluate each individual in a population, the correlation between objectives 
are not considered. In this paper, we try to employ the correlation information 
between objectives to combine several correlated objectives into one group. However, 
it should be noted that the generation update is done in the manner of an archive-
based approach, that is NSGA-II in this paper. The correlation information is 
employed to merge several objectives into one group. The aim of aggregating several 
objectives is to reduce the number of objectives in the archive-based approach that 
does not work when the number of objectives becomes large. We describe the 
procedure of the proposed algorithm in the following subsection, and show 
experimental results on a ten-objective knapsack problem and a forty-objective 
problem. 



474 T. Murata and A. Taki 

3.1   Correlation-Based Weighted Sum Approach 

As we see from the computational experiments in Section 2, the archive-based 
approach such as NSGA-II has its advantage in finding a set of non-dominated 
solutions with the wide range. Each solution in the set of non-dominated solutions 
obtained by the archive-based approach may have a good performance in one or a few 
objectives. Therefore we combine several objectives that correlate each other, then 
make several groups of objectives. We propose the following method to combine 
objectives. 
 

Step 1: Determine the number of groups, K, and the number of generations when the 
combination of objectives is held. 

Step 2: Execute an EMO algorithm until the generation specified in Step 1. 

Step 3: Using the solutions that are archived during the execution of the EMO 
 algorithm, calculate correlation between each of two objectives. 

Step 4: Find the combination of objectives that maximize the average value of the 
following measure: 

 

1||

),(

)(
,

−Ω
=Ω
∑

Ω∈

k

ji
ji

k
k

ffcorr

eperformanc , Kk ...,,2,1= , if 2|| ≥Ωk ,       (7) 

1)( =Ωkeperformanc , Kk ...,,2,1= , if 1|| =Ωk ,         (8) 
 

where ),( ji ffcorr  is the correlation between the objectives if  and jf , kΩ  is 

a set of objectives of k-th group, || kΩ  is the cardinality of the set kΩ . Then, 

calculate the average of )( keperformanc Ω  over K groups. It is noted that the 

correlation ),( ji ffcorr  is calculated by the non-dominated solutions that are 

registered in the archives until the prespecified generation. 
 

Step 4.1:  Generate a specified number of groups by selecting objectives 
randomly. 

Step 4.2: Calculate the average of )( keperformanc Ω  over K groups. 

Step 4.3: Modify objectives in the groups by exchanging one objective in a 
group to another randomly selected group. 

Step 4.4: Calculate the average of )( keperformanc Ω  over K groups. If the 

calculated average becomes better than that of the previous 
groups, accept the modification of groups in Step 4.3. Then go to 
Step 4.3. If it becomes worse, go back to the previous combination 
of groups. Then go to Step 4.3. Repeat Steps 4.3 and 4.4 until no 
further improvement is found. 

Step 4.5: Move to Step 4.1 until the prespecified stopping condition is 
satisfied, terminate the procedure. 

Step 5: Using the groups determined in Step 4, merge objectives with a weight 
vector as follows: 
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where )(x
k

fΩ  is the fitness value of the solution x for the group kΩ , )(xi
k

fΩ  

( ||...,,2,1 ki Ω= ) is the objective value of x for the i-th objective in the group 

kΩ . 

Step 6: With K merged objective functions )(x
k

fΩ  ( Kk ...,,2,1= ), execute the EMO 

algorithm to search for a set of non-dominated solutions. 
 

It is noted that K, the number of groups, is better to be smaller than four or three, 
because the larger number of K is not suitable for the archive-based approach. 

3.2   10-Objective Knapsack Problem 

We applied the proposed algorithm in Subsection 3.1 to a 10-objective knapsack 
problem. The problem is basically generated in the same manner as in [2]. After 
generating the problem, we slightly modify the problem in order to give a positive 
correlation among some objectives. Our 10-objective knapsack problem is to 
maximize the value of 10 knapsacks. When certain items have larger values in some 
knapsacks, those items should be selected for those knapsacks. We add a value α  to 
items 1 through 250 of Knapsacks 1 through 5, and a value α  to items 251 through 
500 of Knapsacks 6 through 10. In this way, the problem has the positive correlation 
among first five knapsacks, and among the latter five knapsacks. We defined 5=α  to 
generate the problem. The other parameter values in the proposed algorithm are 
follows: 
 
The number of groups: 2=K , 
Sampling non-dominated solutions for calculating the correlation: every 5 generation, 
The number of generation when the correlations are calculated: 500th generation, 
Stopping condition for determining the groups in Step 4.5: 100, 
Stopping condition for EMO algorithm: 2 000 generations. 
 

Figs. 4 and 5 show each of the non-dominated solutions found by the original 
NSGA-II and the NSGA-II with the proposed correlation-based weighted sum 
approach. The horizontal axis shows the ID numbers of ten knapsacks, and the 
vertical axis shows the values of knapsacks. Each line in these figure describes each 
obtained non-dominated solution with the value in each knapsack. 

When we merge several objectives at the 500th generation using correlation 
information, Knapsacks 1 through 5, and Knapsacks 6 through 10 are accurately 
divided into two groups. That is, the proposed correlation method could find the 
appropriate set of knapsacks that have the same modified items. From Fig. 4, we can 
see that the original NSGA-II could find the non-dominated solutions in a wide range. 
On the other hand, the NSGA-II with the proposed method in Fig. 5 could find the 
narrow width with respect to the range, however, the obtained non-dominated 
solutions locates in the better region of the solutions obtained by the original NSGA-
II. That is, the solutions obtained by the NSGA-II have high values in some 
knapsacks but they have low values in the other knapsacks. However, the solutions 
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obtained by the NSGA-II with the proposed method can keep the better value in every 
knapsack. 

As we discussed in Section 2, the NSGA-II tried to maximize the variety in non-
dominated solutions after the number of solutions becomes larger than its population. 
Therefore the solution obtained by the NSGA-II has a tendency to maximize a few 
objectives with the sacrifice of maximizing the other objectives. On the other hand, 
the NSGA-II with the proposed approach tries to maximize two combined objectives 
after aggregating objectives using weight values.  
 

 

Fig. 4. Values of knapsacks of each non-dominated solutions obtained by the original NSGA-II 

 

 

Fig. 5. Values of knapsacks of each non-dominated solutions obtained by the NSGA-II with the 
proposed correlation-based weighted sum approach 
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Fig. 6. Normalized sum obtained by NSGA-II with the proposed method to compare with the 
original NSGA-II 
 

0

20

40

60

80

100

120

140

160

180

1 10 100 1000 10000

Number of Generations

N
or

m
al

iz
ed

 R
an

ge

2-500 4-500 10-500 4-500 (2G) 10-500 (2G)

 
Fig. 7. Normalized range obtained by NSGA-II with the proposed method to compare with the 
original NSGA-II 

 
The characteristics of the NSGA-II with the proposed method can be seen in  

Figs. 6 and 7. These figures show the average sum of all objectives and the average 
range of objective values over ten trials as in Figs. 2 and 3 in Section 2. We applied 
the NSGA-II with the proposed method to the same problem in Figs. 2 and 3. We 
merge objectives in NSGA-II at the 250th generation. In Fig. 6, the notation (2G)  
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shows the scores obtained by NSGA-II with the proposed method. 2-500, 4-500, and 
10-500 are the same scores in Fig. 2. Fig. 6 clearly shows that the proposed method 
can improve the normalized sum after 250th generation. 

Fig. 7 shows that the range of the solutions obtained by NSGA-II with the 
proposed method becomes small although the range of the original NSGA-II becomes 
large. Although the larger range is better in the sense of the variety in non-dominated 
solutions, the smaller sum means that the obtained solutions tends to maximize a few 
objectives with the sacrifice of the others. From Figs. 6 and 7, we can see that the 
NSGA-II with the proposed method can find the better set of solutions although its 
range becomes smaller. 

3.3   40-Objective Knapsack Problem 

We generated a 1000-item problem with 40 objectives in the same manner as in [2]. 
We did not give any bias to the problem in this problem as we did it to a 10-objective 
problem in Subsection 3.2. As was in Figs. 4 and 5, Figs. 8 and 9 show that each of 
non-dominated solutions obtained by the original NSGA-II and the NSGA-II with the 
proposed method. From these figures, we can also see in Fig. 8 that the original 
NSGA-II could find the set of non-dominated solutions with a wide range and 
solutions that have a good value in only some objectives. On the other hand, as we 
can see from Fig. 9, the NSGA-II with the proposed method found the set of solutions 
with a better value almost in every objective. As we can see from the results on the 
ten-objective problem, we can also observe that the NSGA-II with the proposed 
method can find better non-dominated solutions than the original NSGA-II. 

4   Conclusion and Further Challenges 

In this paper, we proposed a correlation-based weighted sum approach in order to 
cope with the challenges of many objective optimization problems. As we see through 
computational experiments, EMO algorithms that keep non-dominated solutions in its 
archive would have problems since the number of non-dominated solutions easily 
exceeds the size of the archive. After exceeding the archive, EMO algorithms may 
lost the selection pressure toward the Pareto solutions, but improve the variety of the 
set of non-dominated solutions. One way to avoid this tendency in archive-based 
approaches is to increase the size of archive, though, it may be difficult to have 
enough size of archive when the number of objectives increases more. 

The proposed algorithm tries to reduce the number of objectives using weighted 
sum approach. Although the variety of a set of non-dominated solutions may be lost 
in the EMO algorithm that employs our proposed method, the better set of solutions. 
The simulation results for a 40-objective problem clearly show that the original 
NSGA-II produces many extreme solutions that have better performance, however, 
only in one or a few objectives. Those solutions have worse performance in the other 
objectives. The extreme solutions could be found by sacrificing the other objectives. 
On the other hand, the EMO algorithm with the proposed method could find better 
solutions that do not compensate other objectives. 
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Although the proposed method can improve the performance of NSGA-II, still 
there are challenges in the method. Since several parameters are introduced to the 
algorithm, that is, the number of groups, and the timing for making groups, they 
should be determined in advance. In order to apply the proposed method to EMO 
algorithms with less efforts, these parameters should be automatically determined. We 
should improve the method in these points. 
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Abstract. We propose an elitist Greedy Randomized Adaptive Search
Procedure (GRASP) metaheuristic algorithm, called mGRASP/MH, for
approximating the Pareto-optimal front in the multi-objective quadratic
assignment problem (mQAP). The proposed algorithm is characterized by
three features: elite greedy randomized construction, adaptation of search
directions and cooperation between solutions. The approach builds start-
ing solutions in a greedy fashion by using problem-specific information and
elite solutions found previously. Also, mGRASP/MH maintains a popula-
tion of solutions, each associated with a search direction (i.e. weight vec-
tor). These search directions are adaptively changed during the search.
Moreover, a cooperation mechanism is also implemented between the so-
lutions found by different local search procedures in mGRASP/MH. Our
experiments show that mGRASP/MH performs better or similarly to sev-
eral other state-of-the-art multi-objective metaheuristic algorithms when
solving benchmark mQAP instances.

1 Introduction

The quadratic assignment problem (QAP) models many real-world optimization
problems in diverse areas such as operations research, economics, etc. One of its
major applications is facility location, where a set of facilities should be assigned
to different locations. The objective is to find an assignment of all facilities to
all locations, such that the total cost is minimized. The QAP is a NP-hard
combinatorial optimization problem [1]. So, there is no known exact algorithm
for solving the QAP in polynomial time. Recently, the multi-objective QAP
(mQAP) has been investigated by researchers in the multi-objective optimization
community [2,3]. Unlike the single-objective QAP, the mQAP involves multiple
types of flows between any two facilities.

Over the last decades, research on multi-objective metaheuristics, such as
evolutionary algorithms, simulated annealing, and tabu search, has attracted a
lot of attention from the scientific community. A majority of these algorithms
use either Pareto dominance or weighting method for fitness assignment. For
example, two representative Pareto-based evolutionary multi-objective (EMO)
algorithms - NSGA2 [4] and SPEA2 [5] rank the members of the population by
comparing them in terms of Pareto domination while MOEA/D [6] defines the

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 481–494, 2009.
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fitness of individuals by using weighted functions. To find a well-distributed set
of solutions, some strategies, such as estimating the density of non-dominated
solutions and maintaining a set of uniform weights, have been used to maintain
the diversity of population in these algorithms.

It is well-known that well-designed genetic operators play an important role in
improving the performance of evolutionary algorithms. The proximate optimality
principle (POP) [7] assumes that good solutions share some similarities in the
decision space. This principle holds for many real-world problems. Based on this
principle, Zhang and Sun [8] proposed a genetic operator, called guided mutation,
to sample solutions in promising areas of the search space. This is achieved by
modifying the elite solutions found previously and then using global information
from a probabilistic model. The combination of guided mutation with iterated
local search produced competitive results for solving the QAP in [8].

GRASP [9] is one of the most successful metaheuristics for combinatorial op-
timization. It is a multi-start local search approach. In each iteration of GRASP,
two procedures are involved: greedy randomized construction of starting solu-
tions and a local search procedure. A multi-objective version of GRASP was
proposed in [10] to handle multi-objective knapsack problem. In that algorithm,
each solution is improved along a certain direction by local search. However,
the local optima obtained in different iterations do not interact with each other.
As shown in [6] and [11], cooperation between solutions with similar search
directions and the adaptive change of these search directions is beneficial. In
this paper, we propose an elitist multi-objective GRASP metaheuristic called
mGRASP/MH. We assess the performance of mGRASP/MH by applying it to a
number of benchmark mQAP instances and comparing its performance to that
of some existing multi-objective algorithms.

The remainder of this paper is organized as follows. Section 2 formulates the
mQAP and discusses fast local search for this problem. Section 3 discusses some
important issues of the basic GRASP algorithm for single objective optimization.
Section 4 presents the proposed mGRASP/MH for the mQAP. Experimental
results are presented and discussed in Section 5 while Section 6 concludes the
paper.

2 The Multi-objective Quadratic Assignment Problem

2.1 Mathematical Formulation

Given a location matrix A = {aij}n×n and flow matrices Bk = {bkrs}n×n×m, k =
1, . . . ,m, the mQAP is to minimize the following objective functions simultane-
ously:

C(π) = {C1(π), . . . , Cm(π)}, π ∈ Ω (1)

with

Ck(π) =
n∑

i=1

n∑
j=1

aijb
k
πiπj

, k = 1, . . . ,m (2)
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where

– n is the number of locations/facilities, m is the number of objectives (i.e.
types of flows), π = (π1, . . . , πn) is a permutation of L = {1, . . . , n}, Ω
is the set of all permutations, C(π) is a vector of m objective functions
Ck(π), i = 1, . . . ,m.

– aij is the distance between locations i and j, and bkπiπj
is the k-th flow

between facilities πi and πj .

In the case of conflicting objectives, there is no solution π∗ which is optimal
for all objective functions Ck(π), k = 1, . . . ,m. Instead, the optimal solution π∗

to the mQAP in (1) is often defined as the trade-off solution in terms of Pareto
optimality. Assume u and v are objective vectors, u is said to dominate v if and
only if uk ≤ vk for all k = 1, . . . ,m, and ∃s ∈ {1, . . . ,m}, us < vs. A solution
π∗ is said to be Pareto-optimal to (1) if C(π∗) is not dominated by C(π) for
any π ∈ Ω. The Pareto-optimal front (POF) is the set of objective vectors of all
Pareto-optimal solutions.

In the mathematical programming community, multi-objective optimization
problems are often tackled using some form of weighted sum method that com-
bines multiple objective functions into a single scalar function as follows:

f(π|λ) =
m∑

k=1

λk · Ck(π) (3)

where λ = (λ1, . . . , λm)T is the weight vector with λk ≥ 0, k = 1, . . . ,m and∑m
k=1 λk = 1. Each component of λ can be regarded as the preference w.r.t each

objective. The global minima of f(π) in (3) is also Pareto-optimal to the mQAP
in (1). By minimizing the scalar functions (3) with appropriate weight vectors, a
good approximation of the POF is likely to be obtained. However, the weighted
sum method cannot solve the multi-objective optimization problems with non-
convex POF. Despite this, the weighed sum method has been successfully applied
to solve many multi-objective combinatorial optimization problems.

2.2 Fast Local Search

Local search based on 2-opt operator has been widely used to tackle some
permutation-based combinatorial optimization problems. In the QAP, the neigh-
borhood of the current solution consists of all solutions obtained by exchanging
the positions of two elements in its permutation [12] (i.e., 2-opt swap). Since
all elements in the new solution, except the exchanged ones, remain the same,
the computation of the objective function value for neighboring solutions can be
done quickly by considering only those exchanged elements. In the case of the
mQAP, the computation of the function values of neighboring solutions is very
similar. Assume that i and j are two positions exchanged in permutation π, the
difference Δ(π, k, i, j) of function values regarding the k-th flow before and after
exchanging elements i and j can be stated as:
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Δ(π, k, i, j) = (ajj − aii)(bkπiπi
− bkπjπj

) +

(aji − aij)(bkπiπj
− bkπjπi

) +∑n
s=1,s�=i,j((asj − asi)(bkπsπi

− bkπsπj
) +

(ajs − ais)(bkπiπs
− bkπjπs

)) (4)

When A and Bk, k = 1, . . . ,m, are symmetric,

Δ(π, k, i, j) = 2
n∑

s=1,s�=i,j

(asj − asi)(bkπsπi
− bkπsπj

) (5)

Then, the function value of the neighboring solution π̄ after swapping the ele-
ments i and j is

Ck(π̄) = Ck(π) +Δ(π, k, i, j), k = 1, . . . ,m. (6)

The computational complexity in (6) is only O(n), which is much less than
the complexity of evaluating C(π̄) in (1) (i.e. O(n2)).

3 Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start metaheuristic algorithm, which repeatedly improves
starting solutions by local search. At each iteration of GRASP, a greedy ran-
domized constructive procedure and a local search procedure are involved. The
best local optimum collected over all local searches is retained and returned as
the final solution of GRASP.

3.1 Greedy Randomized Construction

A greedy randomized construction procedure for building starting solutions is
shown in Fig. 1. Initially, a partial solution S is set as an empty set. Then, the
greedy function values of all unselected components in E are evaluated. To make
better contribution to the partial solution S, a restricted candidate list (RCL)
is formed by the components with low g values in E. One of the commonly-used
strategies to determine RCL is to select the elements with g values between

[gmin, gmin + α× (gmax − gmin)],

where gmin = min{g(e)|e ∈ E} and gmax = max{g(e)|e ∈ E}. Here, α ∈ [0, 1] is
a parameter to balance the greediness and randomness of the partial solution S.
When α = 0, only the component with the minimal g value will be selected. This
component should make the biggest contribution to the partial solution. On the
contrary, when α = 1, all candidate components in E have equal chance to be
selected. That is, the construction procedure will pick unselected components
randomly. In practice, α is set to be either fixed or adaptive.
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Fig. 1. Greedy Randomized Constructive Procedure of GRASP

3.2 Local Search Procedure

Following the construction step, local search is applied to improve starting solu-
tions. Two basic strategies - first improvement and best improvement, are often
considered to accept local search moves. In first improvement, the first neighbor
with better objective function value examined is accepted as the new current
solution. In contrast, best improvement examines all neighbors and accepts the
best one as the new current solution. More sophisticated local search methods
with good global search ability, such as simulated annealing and tabu search,
have also been suggested to improve the starting solutions in GRASP [13].

4 The Proposed mGRASP/MH Algorithm

4.1 Motivation

In [10], a GRASP algorithm, denoted mGRASP here, was developed to tackle
the multi-objective knapsack problem. Like single-objective GRASP algorithms,
mGRASP uses a greedy randomized construction step and a local search step.
At each iteration, a weighted sum function is defined as the utility function for
selecting greedy elements in the construction step and accepting better neighbors
in the local search step.

To find a diverse set of Pareto-optimal solutions, mGRASP uses multiple
distinct weight vectors evenly spread. According to the experimental setting
reported in [10], up to one thousand weight vectors are used in one thousand
iterations of mGRASP. Note that each iteration of mGRASP is independent
from the other iterations. As shown in [6,11], the adaptation of finite weight
vectors and the cooperation between solutions with similar weight vectors could
benefit the diversity and convergence in multi-objective search. These strategies
can be easily used in mGRASP.

Inspired by the POP principle, the guided mutation operator generates so-
lution in a different way to greedy randomized construction [8]. This operator
uses the global information in a probabilistic model to disturb the elite solutions
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Fig. 2. Framework of mGRASP/MH

found during the search. This idea has not yet been used in multi-objective
algorithms. Then, we improve the performance of mGRASP by constructing
promising starting solutions based on elite solutions.

4.2 mGRASP/MH for the QAP

We propose an elitist multi-objective GRASP metaheuristic in this paper, called
mGRASP/MH. At each iteration, a population P = {π(1), . . . , π(N)} of solutions
and a set of corresponding weight vectors W = {λ(1), . . . , λ(N)} are maintained.
The framework of mGRASP/MH is shown in Fig. 2. The four main steps in
lines 6-9 are involved in the main loop of mGRASP/MH. In the following, each
of these steps is detailed.

Step 1: Elitist-based Greedy Construction. Unlike the greedy randomized
construction algorithm in Fig. 1, the construction algorithm shown in Fig. 3
uses not only problem-specific greedy information but also the elite solution π(i)

found in the previous local search. Parameter α is used to balance the greediness
and the randomness of the partial solution. The parameter β ∈ [0, 1] is used to
control the proportion of components copied from the elite solution π(i). n0 is
the number of elements copied from π(i). φ is a random order of locations. L′

denotes the set of locations assigned. In lines 4-6, n0 components in π(i) are
directly copied into a new solution π. Line 7 calculates the cost of the partial
solution containing the components only from elite solutions. LOC and FAC in
line 8 are the set of locations and facilities unassigned.

The ground set E is composed of all unassigned (location, facility) pairs. For
each pair, the growth in cost is computed in lines 11-13. The associated g value
is obtained in line 14. In line 16, RCL is formed by selecting a set of (location,
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Fig. 3. Elitist-based Greedy Construction Procedure for the mQAP

facility) pairs with the g values between [gmin, gmin + α(gmax − gmin)], where
gmin = min{g(lc, fc)|(lc, fc) ∈ M} and gmax = max{g(lc, fc)|(lc, fc) ∈ M}.
One pair (lc′, fc′) of (location, facility) is randomly selected from RCL and
updates the partial solution in line 17. In line 18, the total cost of partial solution
with the pair selected in the previous step is computed. Line 19 removes lc′

and fc′ from the sets of unassigned locations and facilities respectively. This
procedure is repeated until the set FAC is empty. Finally, a complete solution
is returned.

Step 2: Local Search. After constructing an elite greedy solution, a local
search procedure is triggered and guided by the weighted sum function with λ(i)

in (3). In mGRASP/MH, 2-opt local search with first improvement is used for
the mQAP. Each local search procedure is terminated if there is no solution in
its neighborhood with better fitness. Since all members of the population have
different weight vectors (i.e. search directions), the set of all local optima found
for all search directions is likely to cover the POF reasonably well. The set NDS
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is updated when a successful local move is made. On the one hand, the current
solution is added to NDS if it is not dominated by any member of NDS. On
the other hand, any members of NDS dominated by the current solution are
removed from this set.

Step 3: Selection. As discussed in [11,6], optimal solutions obtained with
similar weight vectors should be similar in the objective space and decision
space. Cooperation between solutions with similar weighted sum functions can
be very helpful for finding good approximations to the POF. Therefore, the local
optima obtained in Step 2 is very likely to be better than the solutions in the
population with similar weight vectors. In this paper, we compare π with all
π(i) ∈ P, i = 1, . . . , N . If f(π|λ(i)) < f(π(i)|λ(i)), then set π(i) = π. In mGRASP,
solutions found in different iterations do not interact.

Step 4: Modification of Search Direction. Ideally, finding the optimal so-
lutions of all weighted sum functions leads to a good approximation of the POF.
However, this is impossible in mGRASP/MH since a population of fixed size
is used. In [11], we have suggested an adaptive mechanism to tune the weight
vector of each solution according to the locations of some solutions previously
examined. In this mechanism, the non-dominated neighboring solution π′ that
is nearest to π(i) is identified. For each objective k, if Ck(π′) < Ck(π(i)), then
decrease λ(i)

k by δ (> 0); otherwise, increase by δ. If λ(i)
k exceeds the bounds,

then use the nearest bound to replace it. As a result, the optimal solution of the
weighted sun function with the modified weight vector should be moved away
from π′ in the objective space. In such a way, the sparse part of POF can be
explored more intelligently and efficiently. In this paper, we use this strategy in
a slightly different manner. Each search direction is modified with a probability.

5 Computational Experiments

5.1 Performance Assessment

To quantitatively evaluate the non-dominated solutions found by each algo-
rithm, we use both the generational distance (GD) metric and the inverted
generational distance (IGD) metric. Assume S is the final set of non-dominated
solutions found by multi-objective algorithm and S∗ is a set of reference so-
lutions, either the true POF or a very good approximation. The GD metric
measures the average distance from S to S∗, while the IGD metric measures
the average distance from S∗ to S [14]. These two metrics can be formulated
as follows: GD(S, S∗) = 1

|S|
∑

u∈S min{dist(u, v)|v ∈ S∗} and IGD(S∗, S) =
1

|S∗|
∑

u∈S∗ min{dist(u, v)|v ∈ S}, where dist(u, v) is the Euclidean distance
between two objective vectors. The smaller the GD or IGD values, the better
quality of the set S. In this paper, the reference set for each instance is formed
by collecting all non-dominated solutions found by five algorithms in 20 runs.
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5.2 Experimental Settings

We used a set of 18 benchmark mQAP instances to test the performance of
mGRASP/MH. These test instances were generated by Knowles [15] and are
available at http:// dbkgroup.org/ knowles/mQAP/ . The correlation values
between flow matrices of these test instances are shown in Table 1.

Table 1. Correlations between the flows of the 18 benchmark mQAP test instances

Instance c(B1, B2) Instance c(B1, B2) Instance c(B1, B2),c(B1, B3)
KC10-2fl-1uni 0 KC20-2fl-1uni 0 KC30-3fl-1uni (0, 0)
KC10-2fl-2uni 0.8 KC20-2fl-2uni 0.7 KC30-3fl-2uni (0.4,0.4)
KC10-2fl-3uni -0.8 KC20-2fl-3uni -0.7 KC30-3fl-3uni (-0.4, -0.4)
KC10-2fl-1rl 0 KC20-2fl-1rl 0 KC30-3fl-1rl (0.4, 0)
KC10-2fl-2rl 0.7 KC20-2fl-2rl 0.4 KC30-3fl-2rl (0.7, -0.5)
KC10-2fl-3rl -0.7 KC20-2fl-3rl -0.4 KC30-3fl-3rl (-0.4, -0.4)

We compared mGRASP/MH to mGRASP and to three state-of-the-art EMO
algorithms - MOEA/D, NSGA2, and SPEA2. In MOEA/D, the mQAP is con-
verted into a number of single objective subproblems. These subproblems are
optimized by an evolutionary algorithm simultaneously. The best solutions to
all subproblems found so far are retained in its population. The distribution of
these solutions is controlled by the diversity of weight vectors. Each offspring
solution in MOEA/D is improved by local search. In both NSGA2 and SPEA2,
the non-dominated solutions found so far have priority to survive in the popula-
tion. The diversity of these non-dominated solutions is maintained by estimating
their density. In this paper, we use cycle crossover [16] and mutation based on
the 2-opt swap for the MOEA/D, NSGA2, and SPEA2 algorithms.

In both mGRASP and mGRASP/MH, α is set to 0.1. Parameter β is set to 0.5.
That is, half of the components in elite solutions are copied to the construction
procedure of mGRASP/MH. The population size (N) in mGRASP/MH is 50
for all instances. The δ value for changing weight is 0.01. The population size in
NSGA2, SPEA2, and MOEA/D is 100. In MOEA/D, the neighborhood size of
each subproblem is 20 for all test instances.

We run each algorithm on each instance 20 times. All algorithms are coded in
C++ and executed on a PC with CPU (Intel (R) Core (TM) 2, 1.86GHZ) and
RAM (2GB). Every algorithm uses the same computational time for the same
test instance. The computational times used for the instances with 10, 20, and
30 locations are set to 10, 20, and 30 seconds, respectively.

5.3 Discussions of Results

The mean GD and IGD values found by the five algorithms are summarized in
Table 2 and Table 3. It is evident that mGRASP/MH and MOEA/D clearly
outperform the other three algorithms on all test instances. Among the five
algorithms, NSGA2 and SPEA2 show the worst performance with respect to

http://dbkgroup.org/knowles/mQAP/
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Table 2. The mean GD values of non-dominated solutions found in 20 runs

Instance mGRASP/MH mGRASP MOEA/D NSGA2 SPEA2
KC10-2fl-1uni 0 592 1730 4462 6152
KC10-2fl-2uni 5305 0 5490 11800 13845
KC10-2fl-3uni 0 1 111 1357 2893
KC10-2fl-1rl 0 1129 22132 236966 321468
KC10-2fl-2rl 22086 16300 34471 157128 151661
KC10-2fl-3rl 0 1129 14979 244293 285310

KC20-2fl-1uni 9225 21758 11269 48813 53635
KC20-2fl-2uni 9138 58660 16364 65180 61904
KC20-2fl-3uni 3758 6966 4934 22133 29537
KC20-2fl-1rl 580688 2069384 509229 2996725 2565999
KC20-2fl-2rl 205812 1124948 155082 1372892 1117776
KC20-2fl-3rl 168651 476440 145244 1194632 1251489

KC30-3fl-1uni 41072 55178 18945 132735 163554
KC30-3fl-2uni 64156 111067 26085 153182 156566
KC30-3fl-3uni 30308 36855 14684 94685 123557
KC30-3fl-1rl 1302906 2491688 302268 3264761 3667731
KC30-3fl-2rl 877695 1931606 297531 3038431 3281139
KC30-3fl-3rl 917218 1427153 313038 3450839 3880325

Table 3. The mean IGD values of non-dominated solutions found in 20 runs

Instance mGRASP/MH mGRASP MOEA/D NSGA2 SPEA2
KC10-2fl-1uni 7 460 2211 6590 7795
KC10-2fl-2uni 4715 0 4915 11284 13196
KC10-2fl-3uni 0 6 147 2393 4387
KC10-2fl-1rl 266 3555 45512 318513 382993
KC10-2fl-2rl 8414 10460 128988 212026 226922
KC10-2fl-3rl 14 2403 37239 300822 357818

KC20-2fl-1uni 8509 21360 12058 53492 58575
KC20-2fl-2uni 10500 58830 16987 66425 64604
KC20-2fl-3uni 3526 6677 4878 35764 44289
KC20-2fl-1rl 467232 1980738 433020 2914559 2623621
KC20-2fl-2rl 280650 1259521 192956 1895681 1520627
KC20-2fl-3rl 205030 653760 153859 1594337 1534329

KC30-3fl-1uni 38396 54552 20578 141325 167422
KC30-3fl-2uni 63583 110308 26415 161061 163284
KC30-3fl-3uni 29342 36927 16133 127932 154106
KC30-3fl-1rl 1519861 3350333 474028 5962007 7018525
KC30-3fl-2rl 1062987 2837723 421962 4538068 4986717
KC30-3fl-3rl 974208 1658247 395310 4072323 4503648

minimizing the GD and IGD values. The main reason for this might be that no
local search is used to improve offspring solutions in these two approaches.

The non-dominated solutions found by all five algorithms after 20 runs on
the four 2-objective instances with zero correlation between flow matrices are
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Fig. 4. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
NSGA2, and SPEA2 on KC10-2fl-1uni in 20 runs
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Fig. 5. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
NSGA2, and SPEA2 on KC10-2fl-1rl in 20 runs

plotted in Figs. 4-7. It can be observed from Fig. 4 that all five algorithms find
almost the same set of non-dominated solutions on instance KC10-2fl-1uni. The
results in Fig. 6 and Fig. 7 show that both mGRASP/MH and MOEA/D clearly
perform better than mGRASP on KC20-2fl-1uni and KC20-2fl-1rl. Figs. 5-7
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Fig. 6. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
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Fig. 7. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
NSGA2, and SPEA2 on KC20-2fl-1rl in 20 runs

show that three local search-based metaheuristics - mGRASP/MH, mGRASP,
and MOEA/D, find better solutions than two Pareto-based EMO algorithms -
NSGA2 and SPEA2 on three instances - KC10-2fl-1rl, KC20-2fl-1uni, and KC20-
2fl-1rl.
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Results in Table 2 and Table 3 on six 3-objective test instances show that both
mGRASP/MH and MOEA/D perform better than the other three algorithms in
terms of the GD and IGD metrics. It can also be seen that mGRASP/MH finds
the worse GD and IGD values than MOEA/D on these instances. It is easy to un-
derstand the reason behind the worse performance of mGRASP/MH. The greedy
randomized construction procedure in mGRASP/MH has higher computational
complexity than the crossover and mutation operators used in MOEA/D. Within
the restricted computational time, MOEA/D could improve more new solutions
by local search. This is also part of the reason that mGRASP/MH performs
better than mGRASP. The former only builds half of the starting solution by
greedy randomized construction procedure. Therefore, mGRASP/MH needs less
time in the construction of a starting solution.

6 Conclusions

We proposed an elitist GRASP metaheuristic algorithm called mGRASP/MH to
tackle the mQAP (multi-objective quadratic assignment problem). In the pro-
posed approach, elitist-based greedy randomized construction, cooperation be-
tween solutions, and weight-vector adaptations are used to accelerate convergence
and diversify the search. Our experimental results show that mGRASP/MH is
competitive with MOEA/D and outperforms mGRASP and two Pareto-based
EMO algorithms - NSGA2 and SPEA2 on the benchmark problem instances con-
sidered here. It has also been shown that the multi-objective metaheuristic algo-
rithms using local search perform better than those without local search for the
mQAP.

In this paper, the construction of starting solutions copies parts or compo-
nents from elite solutions. Under the framework of mGRASP/MH, it is very
easy to use other advanced techniques, such as guided mutation [8], cooperative
strategy [17,18] and path relinking [19]. Complex memory structure for stor-
ing historical information from the search, probability distributions in guided
mutation, all these should benefit the global search ability of mGRASP/MH.
The cooperation between solutions obtained by different local search procedures
can be implemented by considering path relinking [19] or tabu mechanisms [18].
These are some of our future research directions.
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EP/E019781/1. The authors would like to thank anonymous reviewers for their
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Abstract. Particle Swarm Optimization (PSO) has received increasing
attention in the optimization research community since its first appear-
ance in the mid-1990s. Regarding multi-objective optimization, a consid-
erable number of algorithms based on Multi-Objective Particle Swarm
Optimizers (MOPSOs) can be found in the specialized literature. Un-
fortunately, no experimental comparisons have been made in order to
clarify which MOPSO version shows the best performance. In this pa-
per, we use a benchmark composed of three well-known problem families
(ZDT, DTLZ, and WFG) with the aim of analyzing the search capa-
bilities of six representative state-of-the-art MOPSOs, namely, NSPSO,
SigmaMOPSO, OMOPSO, AMOPSO, MOPSOpd, and CLMOPSO. We
additionally propose a new MOPSO algorithm, called SMPSO, charac-
terized by including a velocity constraint mechanism, obtaining promis-
ing results where the rest perform inadequately.

Keywords: Particle Swarm Optimization, Multi-Objective Optimiza-
tion, Comparative Study.

1 Introduction

The relative simplicity and competitive performance of the Particle Swam Op-
timization (PSO) [11] algorithm as a single-objective optimizer have favored
the use of this bio-inspired technique when dealing with many real-word opti-
mization problems [17]. A considerable number of these optimization problems
require the optimization of more than one objective at the same time which
are in conflict with respect to each other. These properties, along with the fact
that PSO is a population-based metaheuristic, have made it a natural candi-
date to be extended for multi-objective optimization. Since the first proposed
Multi-Objective Particle Swarm Optimizer (MOPSO) developed by Moore and
Chapman in 1999 [15], more than thirty different MOPSOs have been reported
in the specialized literature. Reyes and Coello [17] carried out a survey of the
existing MOPSOs, providing a complete taxonomy of such algorithms. In that
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work, the authors considered as the main features of all existing MOPSOs the fol-
lowing ones: the existence of an external archive of non-dominated solutions, the
selection strategy of non-dominated solutions as leaders for guiding the swarm,
the neighborhood topology, and the existence or not of a mutation operator.

In this work, we are interested in analyzing six representative state-of-the-
art MOPSOs in order to provide hints about their search capabilities. Five of
them were selected from Reyes and Coello’s survey, namely: NSPSO [14], Sig-
maMOPSO [16], OMOPSO [18], AMOPSO [19], and MOPSOpd [1]. An ap-
proach not covered in the survey is also compared: MOCLPSO [9].

With the aim of assessing the performance of these algorithms, we have used
three benchmarks of multi-objective functions covering a broad range of prob-
lems with different features (concave, convex, disconnected, deceptive, etc.).
These benchmarks include the test suites Zitzler-Deb-Thiele (ZDT) [20], the
Deb-Thiele-Laumanns-Zitzler (DTLZ) problem family [5], and the Walking-Fish-
Group (WFG) test problems [10]. The experimental methodology we have fol-
lowed consists of computing a pre-fixed number of function evaluations and then
comparing the obtained results by considering three different quality indicators:
additive unary epsilon [13], spread [4], and hypervolume [21]. The results of our
study reveal that many MOPSOs have difficulties when facing some multi frontal
problems. We analyze this issue and propose a new algorithm, called SMPSO,
which incorporates a velocity constraint mechanism. We find that SMPSO shows
a promising behavior on those problems where the other algorithms fail.

The remainder of this paper is organized as follows. Section 2 includes basic
background about PSO and MOPSO algorithms. In Section 3, we briefly review
the studied approaches focusing on their main features. Section 4 is devoted
to the experimentation, including the parameter settings and the methodology
adopted in the statistical tests. In Section 5, we analyze the obtained results
regarding the three quality indicators mentioned before. The results are discussed
in Section 6, where a new MOPSO based on a constraint velocity mechanism is
introduced. Finally, Section 7 contains the conclusions and some possible paths
for future work.

2 PSO Background

PSO is a population-based metaheuristic inspired on the social behavior of birds
within a flock. In a PSO algorithm each potential solution to the problem is
called a particle and the population of solutions is called a swarm. The way in
which PSO updates the particle xi at the generation t is through the formula:

xi(t) = xi(t− 1) + vi(t) (1)

where the factor vi(t) is known as velocity and it is given by

vi(t) = w ∗ vi(t− 1) + C1 ∗ r1 ∗ (xpbesti − xi) + C2 ∗ r2 ∗ (xgbesti − xi) (2)

In this formula, xpbesti is the best solution that xi has viewed, xgbesti is the
best particle (also known as the leader) that the entire swarm has viewed, w is
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Algorithm 1. Pseudocode of a general PSO algorithm.
1: initializeSwarm()
2: locateLeader()
3: generation = 0
4: while generation < maxGenerations do
5: for each particle do
6: updatePosition() // flight (Formulas 1 and 2)
7: evaluation()
8: updatePbest()
9: end for
10: updateLeader()
11: generation ++
12: end while

the inertia weight of the particle and controls the trade-off between global and
local experience, r1 and r2 are two uniformly distributed random numbers in
the range [0, 1], and C1 and C2 are specific parameters which control the effect
of the personal and global best particles.

Algorithm 1 describes the pseudo-code of a general single-objective PSO. The
algorithm starts by initializing the swarm (Line 1), which includes both the
positions and velocities of the particles. The corresponding pbest of each particle
is initialized, as well as the leader (Line 2). Then, during a maximum number
of iterations, each particle flies through the search space updating its position
(Line 6), it is evaluated (Line 7), and its pbest is also calculated (Lines 6-8).
At the end of each iteration, the leader is updated. As commented before, the
leader can be the gbest particle in the swarm. However, it can be a different
particle depending on the social structure of the swarm (i.e., the topology of the
neighborhood of each particle) [12].

To apply a PSO algorithm in multi-objective optimization the previous scheme
has to be modified to cope with the fact that the solution of a problem with
multiple objectives is not a single one but a set of non-dominated solutions.
Issues that have to be considered are [17]:

1. How to select the set of particles to be used as leaders?
2. How to retain the non-dominated solutions found during the search?
3. How to maintain diversity in the swarm in order to avoid convergence to a

single solution?

The pseudo-code of a general MOPSO is included in Algorithm 2. After ini-
tializing the swarm (Line 1), the typical approach is to use an external archive
to store the leaders, which are taken from the non-dominated particles in the
swarm. After initializating the leaders archive (Line 2), some quality measure
has to be calculated (Line 3) for all the leaders to select usually one leader for
each particle of the swarm. In the main loop of the algorithm, the flight of each
particle is performed after a leader has been selected (Lines 7-8) and, optionally,
a mutation or turbulence operator can be applied (Line 9); then, the particle is
evaluated and its corresponding pbest is updated (Lines 10-11). After each iter-
ation, the set of leaders is updated and the quality measure is calculated again
(Lines 13-14). After the termination condition, the archive is returned as the
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Algorithm 2. Pseudocode of a general MOPSO algorithm.
1: initializeSwarm()
2: initializeLeadersArchive()
3: determineLeadersQuality()
4: generation = 0
5: while generation < maxGenerations do
6: for each particle do
7: selectLeader()
8: updatePosition() // flight (Formulas. 1 and 2)
9: mutation()
10: evaluation()
11: updatePbest()
12: end for
13: updateLeadersArchive()
14: determineLeadersQuality()
15: generation ++
16: end while
17: returnArchive()

result of the search. For further details about the operations contained in the
MOPSO pseudocode, please refer to [17].

3 Studied Approaches

The studied approaches we have considered in this work can be classified as
Pareto-based MOPSOs [17]. The basic idea, commonly found in all these algo-
rithms, is to select as leaders the particles that are non-dominated with respect
to the swarm. However, this leader selection scheme can be slightly different
depending on the additional information each algorithm includes on its own
mechanism (e.g., information provided by a density estimator). We summarize
next the main features of the considered MOPSOs:

– Non-dominated Sorting PSO: NSPSO [14] incorporates the main mech-
anisms of NSGA-II [4] to a PSO algorithm. In this approach, once a particle
has updated its position, instead of comparing the new position only against
the pbest position of the particle, all the pbest positions of the swarm and
all the new positions recently obtained are combined in just one set (given
a total of 2N solutions, where N is the size of the swarm). Then, NSPSO
selects the best solutions among them to conform the next swarm (by means
of a non-dominated sorting). This approach also selects the leaders randomly
from the leaders set (stored in an external archive) among the best of them,
based on two different mechanisms: a niche count and a nearest neighbor
density estimator. This approach uses a mutation operator that is applied
at each iteration step only to the particle with the smallest density estimator
value.

– SigmaMOPSO: In SigmaMOPSO [16], a sigma value is assigned to each
particle of the swarm and of an external archive. Then, a given particle of
the swarm selects as its leader to the particle of the external archive with the
closest sigma value. The use of the sigma values makes the selection pressure
of PSO even higher, which may cause premature convergence in some cases.
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To avoid this, a turbulence operator is used, which is applied on the decision
variable space.

– Optimized MOPSO: The main features of OMOPSO [18] include the use
of the crowding distance of NSGA-II to filter out leader solutions and the
combination of two mutation operators to accelerate the convergence of the
swarm. The original OMOPSO algorithm makes use of the concept of ε-
dominance to limit the number of solutions produced by the algorithm. We
consider here a variant discarding the use of ε-dominance, being the leaders
archive the result of the execution of the technique.

– Another MOPSO: AMOPSO [19] uses the concept of Pareto dominance
to determine the flight direction of a particle. The authors adopt clustering
techniques to divide the population of particles into several swarms. This
aims at providing a better distribution of solutions in the decision variable
space. Each sub-swarm has its own set of leaders (non-dominated particles).
In each sub-swarm, a PSO algorithm is executed (leaders are randomly cho-
sen) and, at some point, the different sub-swarms exchange information: the
leaders of each swarm are migrated to a different swarm in order to variate
the selection pressure. Also, this approach does not use an external archive
since elitism in this case is an emergent process derived from the migration
of leaders.

– Pareto Dominance MOPSO: in MOPSOpd [1], the authors propose
methods based exclusively on Pareto dominance for selecting leaders from
a non-dominated external archive. Three different selection techniques are
presented: one technique that explicitly promotes diversity (called Rounds
by the authors), one technique that explicitly promotes convergence (called
Random), and finally one technique that is a weighted probabilistic method
(called Prob) reaching a compromise between Random and Rounds. Addi-
tionally, MOPSOpd uses a turbulence factor that is added to the position
of the particles with certain probability; we have used the same operator
applied in SigmaMOPSO.

– Comprehensive Learning MOPSO: MOCLPSO [9] incorporates a
Pareto dominance mechanism to the CLPSO algorithm for selecting leaders
from non-dominated external archive. In this approach, a crowding distance
method is used to estimate the density of the solutions once the external
archive reaches its maximum allowable size. The distance values of all the
archive members are calculated and sorted from large to small. The first
Nmax (maximum size of archive) members are kept whereas the remaining
ones are deleted from the archive. The leaders are randomly chosen from this
external archive of non-dominated solutions. In MOCLPSO, no perturbation
methods are applied to keep the diversity through the evolution steps.

4 Experimentation

In this section, we detail the parameter settings we have used, as well as the
methodology followed in the experiments.
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The benchmarking MOPs chosen to evaluate the six MOPSOs have been the
aforementioned ZDT [20], DTLZ [5], and WFG [10] test suites, leading to a total
number of 21 problems. The two latter families of MOPs have been used with
their bi-objective formulation. For assessing the performance of the algorithms,
we have considered three quality indicators: additive unary epsilon indicator
(I1

ε+) [13], spread (Δ) [4], and hypervolume (HV ) [21]. The two first indicators
measure, respectively, the convergence and the diversity of the resulting Pareto
fronts, while the last one measures both convergence and diversity.

All the algorithms have been implemented using jMetal [7], a Java-based
framework for developing metaheuristics for solving multi-objective optimization
problems.

4.1 Parameterization

We have chosen a common subset of parameter settings which are the same to
all the algorithms. Thus, the size of the swarm and the leader archive, when
applicable, is fixed to 100 particles, and the stopping condition is always to
perform 250 iterations (yielding a total of 25,000 function evaluations). If we
consider NSPSO, for example, the swarm size and the number of iterations used
in [14] is 200 and 100, respectively. Our approach has been to establish common
settings in order to make a fair comparison, keeping the rest of the parameters
according to the papers where the algorithms were originally described.

The parameter settings are summarized in Table 1. For those particular pa-
rameters that have not been explained, please see the references for further
details.

4.2 Methodology

To assess the search capabilities of the algorithms, we have made 100 independent
runs of each experiment, and we have obtained the median, x̃, and interquar-
tile range, IQR, as measures of location (or central tendency) and statistical
dispersion, respectively. Since we are dealing with stochastic algorithms and we
want to provide the results with statistical confidence, the following statistical
analysis has been performed in all this work [6]. Firstly, a Kolmogorov-Smirnov
test is applied in order to check whether the values of the results follow a nor-
mal (Gaussian) distribution or not. If the distribution is normal, the Levene test
checks for the homogeneity of the variances. If samples have equal variance (pos-
itive Levene test), an ANOVA test is done; otherwise a Welch test is performed.
For non-Gaussian distributions, the non-parametric Kruskal-Wallis test is used
to compare the medians of the algorithms. We always consider a confidence level
of 95% (i.e., significance level of 5% or p-value below 0.05) in the statistical
tests. Successful tests are marked with ‘+’ symbols in the last column in all the
tables containing the results; conversely, ‘-’ means that no statistical confidence
was found (p-value > 0.05). The best result for each problem has a gray colored
background. For the sake of a better understanding of the results, we have also
used a clearer grey background to indicate the second best result.
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Table 1. Parameterization

Common parameters
Swarm size 100 Particles
Iterations 250

NSPSO [14]
Variant CD (Crowding distance)
C1, C2 2.0
w Decreased from 1.0 to 0.4

SigmaMOPSO [16]
Archive size 100
C1, C2 2.0
w 0.4
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05

OMOPSO [18]
Archive size 100
C1, C2 rand(1.5, 2.0)
w rand(0.1, 0.5)
Mutation uniform + non-uniform + no mutation
Mutation probability Each mutation is applied to 1/3 of the swarm

AMOPSO [19]
Number of subswarms 5
C1, C2 2.0
w 0.4

MOPSOpd [1]
Archive Size 100
C1, C2 1.0
w 0.5
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05
Selection method Rounds

MOCLPSO [9]
Archive Size 100
C1, C2 N/A
w 0.9 to 0.2

To further analyze the results statistically, we have also included a post-hoc
testing phase which allows for a multiple comparison of samples [8]. We have
used the multcompare function provided by Matlab c© for that purpose.

5 Computational Results

This section is devoted to evaluating and analyzing the results of the experi-
ments. We start by discussing the values obtained after applying the I1

ε+ quality
indicator, which are contained in Table 2. We can observe that OMOPSO clearly
outperforms the rest of MOPSOs according to this indicator, achieving the low-
est (best) values in 13 out of the 21 problems composing the benchmark. It
also obtains six second best values. The next best performing algorithms are
SigmaMOPSO, MOPSOpd, and AMOPSO, which get similar numbers of best
and second best results. Thus, we can claim that OMOPSO produces solution
sets having better convergence to the Pareto fronts in most of the benchmark
problems considered in our study. All the results have statistical significance, as
it can be seen in the last column, where only ‘+ ’ symbols are found.

The values obtained after applying the Δ quality indicator are included in
Table 3. We can observe again that OMOPSO is clearly the best performing
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Table 2. Median and interquartile range of the I1
ε+ quality indicator

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 4.57e − 13.7e−1 3.07e − 22.6e−2 6.36e − 35.1e−4 2.41e − 18.0e−2 6.75e − 21.6e−2 3.74e − 18.8e−2 +
ZDT2 1.54e + 08.5e−1 1.00e + 00.0e+0 6.19e − 35.4e−4 6.33e − 18.3e−1 1.00e + 08.9e−1 6.45e − 11.4e−1 +
ZDT3 9.14e − 14.1e−1 9.75e − 18.3e−1 1.32e − 27.7e−3 7.30e − 13.5e−1 1.66e − 11.1e−1 5.97e − 12.0e−1 +
ZDT4 4.14e + 11.6e+1 8.30e + 06.8e+0 5.79e + 04.3e+0 1.21e + 17.6e+0 4.23e + 02.1e+0 1.71e + 11.3e+1 +
ZDT6 1.81e − 13.2e−1 5.91e − 31.1e−3 4.65e − 34.2e−4 1.69e − 16.0e−2 1.21e − 17.0e−2 3.38e + 03.8e−1 +
DTLZ1 2.30e + 18.0e+0 2.54e + 11.3e+1 1.92e + 11.1e+1 8.46e + 01.9e+1 1.72e + 11.1e+1 2.12e + 18.0e+0 +
DTLZ2 4.41e − 26.5e−2 1.13e − 19.1e−2 6.72e − 39.1e−4 1.25e − 13.9e−2 9.26e − 25.1e−2 3.95e − 23.8e−2 +
DTLZ3 1.04e + 26.2e+1 1.79e + 27.5e+1 8.86e + 19.5e+1 4.41e + 19.0e+1 1.23e + 26.5e+1 2.37e + 25.7e+1 +
DTLZ4 8.91e − 25.9e−2 3.00e − 14.5e−2 3.18e − 21.0e−2 2.20e − 11.1e−1 6.33e − 23.0e−2 2.56e − 28.6e−3 +
DTLZ5 3.92e − 23.6e−2 1.11e − 19.8e−2 6.62e − 38.9e−4 1.22e − 14.3e−2 9.10e − 24.0e−2 3.31e − 23.0e−2 +
DTLZ6 1.47e + 07.9e−1 1.00e + 02.9e−1 5.36e − 34.8e−4 1.75e − 19.1e−1 1.57e + 01.3e+0 4.77e + 03.2e−1 +
DTLZ7 1.33e + 01.4e+0 1.27e + 02.7e−2 7.13e − 36.8e−4 3.00e − 11.9e−1 1.65e − 11.1e−1 4.94e − 11.0e−1 +
WFG1 1.36e + 07.7e−2 1.00e + 09.3e−2 1.35e + 04.9e−2 1.53e + 03.0e−2 1.10e + 02.0e−1 1.31e + 05.1e−2 +
WFG2 1.67e − 25.5e−3 4.87e − 23.6e−2 1.04e − 21.7e−3 3.57e − 11.8e−1 7.24e − 22.1e−2 5.96e − 23.7e−2 +
WFG3 2.00e + 05.3e−4 2.00e + 04.2e−3 2.00e + 01.6e−5 2.10e + 01.2e−1 2.00e + 04.5e−5 2.12e + 02.0e−1 +
WFG4 1.09e − 11.8e−2 6.06e − 22.7e−2 5.98e − 21.5e−2 3.21e − 18.1e−2 5.57e − 21.8e−2 8.04e − 22.4e−2 +
WFG5 8.34e − 22.0e−2 6.36e − 21.2e−3 6.37e − 29.0e−4 6.24e − 13.3e−1 3.24e − 13.5e−1 2.57e − 12.2e−1 +
WFG6 1.04e − 16.6e−2 5.60e − 13.8e−1 1.79e − 22.5e−3 4.63e − 11.3e−1 3.30e − 12.6e−1 2.40e − 12.3e−1 +
WFG7 4.05e + 26.1e+3 5.75e + 21.8e+2 1.94e + 21.7e+3 3.77e + 11.5e+1 6.16e + 11.1e+1 2.44e + 13.4e+1 +
WFG8 5.24e − 19.2e−2 5.66e − 11.9e−1 5.06e − 13.4e−2 8.30e − 11.2e−1 5.39e − 12.3e−2 7.70e − 16.0e−2 +
WFG9 6.38e − 22.0e−2 2.89e − 21.7e−3 2.95e − 22.5e−3 3.25e − 12.5e−1 1.11e − 14.6e−2 1.49e − 12.1e−1 +

algorithm, yielding the lowest (best) values in 16 out of the 21 problems. Con-
sidering the next algorithms according to the best and second best indicator
values, we find SigmaMOPSO, NSPSO, and MOCLPSO. AMOPSO is the worst
performer according to the Δ indicator, not achieving any best nor second best
result.

Table 3. Median and interquartile range of the Δ quality indicator

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 7.19e − 11.0e−1 4.11e − 13.9e−1 1.00e − 11.4e−2 9.57e − 11.6e−1 6.03e − 11.1e−1 7.70e − 16.4e−2 +
ZDT2 9.82e − 19.4e−2 1.00e + 00.0e+0 9.45e − 21.8e−2 1.00e + 06.0e−2 1.00e + 02.8e−1 8.03e − 17.4e−2 +
ZDT3 8.17e − 19.7e−2 1.09e + 03.6e−1 7.35e − 15.2e−2 9.00e − 11.5e−1 8.59e − 16.7e−2 8.85e − 15.7e−2 +
ZDT4 9.53e − 18.0e−2 1.00e + 03.3e−3 8.78e − 15.2e−2 1.03e + 02.5e−2 1.00e + 02.4e−2 9.32e − 18.2e−2 +
ZDT6 1.39e + 06.6e−2 2.89e − 13.6e−1 8.78e − 21.2e+0 1.12e + 01.5e−1 1.20e + 02.7e−1 9.67e − 14.1e−2 +
DTLZ1 8.38e − 11.2e−1 1.14e + 01.7e−1 7.77e − 11.1e−1 1.13e + 02.6e−1 8.72e − 12.0e−1 7.90e − 17.2e−2 +
DTLZ2 6.02e − 11.5e−1 1.01e + 01.4e−1 1.81e − 12.3e−2 1.15e + 01.8e−1 1.21e + 08.6e−2 7.92e − 18.7e−2 +
DTLZ3 9.31e − 12.0e−1 1.23e + 01.6e−1 7.90e − 11.1e−1 1.09e + 04.3e−1 8.55e − 11.3e−1 7.69e − 18.5e−2 +
DTLZ4 7.17e − 11.7e−1 1.41e + 08.0e−1 6.77e − 17.9e−2 1.46e + 02.7e−1 1.10e + 09.2e−2 7.33e − 15.3e−2 +
DTLZ5 5.99e − 19.3e−2 1.00e + 01.7e−1 1.77e − 12.6e−2 1.16e + 01.9e−1 1.21e + 09.3e−2 7.89e − 18.9e−2 +
DTLZ6 8.18e − 14.0e−1 1.28e + 01.0e+0 1.18e − 11.7e−2 1.23e + 04.4e−1 8.35e − 11.5e−1 8.04e − 17.2e−2 +
DTLZ7 9.08e − 11.6e−1 7.96e − 12.4e−1 5.21e − 16.8e−3 1.02e + 02.4e−1 7.95e − 11.3e−1 8.51e − 17.0e−2 +
WFG1 1.14e + 05.5e−2 7.50e − 11.2e−1 1.17e + 06.0e−2 1.30e + 03.9e−2 1.16e + 07.8e−2 1.12e + 04.2e−2 +
WFG2 8.65e − 19.0e−2 9.61e − 18.5e−2 7.64e − 15.5e−3 9.94e − 11.9e−1 1.22e + 07.0e−2 1.11e + 05.8e−2 +
WFG3 5.00e − 12.6e−2 4.96e − 12.5e−2 3.78e − 18.7e−3 1.20e + 08.7e−2 1.19e + 01.3e−1 9.04e − 16.2e−2 +
WFG4 6.25e − 15.0e−2 5.01e − 17.7e−2 5.06e − 16.3e−2 1.14e + 01.3e−1 4.83e − 14.4e−2 6.18e − 14.9e−2 +
WFG5 3.59e − 14.5e−2 1.44e − 12.0e−2 1.44e − 12.0e−2 1.03e + 01.7e−1 1.13e + 02.3e−1 8.06e − 19.7e−2 +
WFG6 5.98e − 18.1e−2 6.34e − 12.1e−1 1.63e − 12.5e−2 1.09e + 01.7e−1 1.23e + 07.0e−2 8.32e − 17.6e−2 +
WFG7 3.71e + 15.8e+2 4.07e + 15.5e+2 1.59e + 12.1e+2 1.13e + 01.3e+1 1.31e + 07.1e+2 9.13e + 18.7e+2 +
WFG8 7.19e − 18.4e−2 9.08e − 11.7e−1 7.93e − 18.8e−2 1.02e + 01.4e−1 8.68e − 16.6e−2 7.88e − 15.3e−2 +
WFG9 5.07e − 11.3e−1 2.22e − 12.6e−2 2.24e − 12.7e−2 1.19e + 01.5e−1 7.54e − 15.2e−2 7.29e − 16.3e−2 +

After applying a quality indicator that measures convergence and another one
that measures diversity, the HV indicator should confirm the previous results.
The HV values, included in Table 4, show that OMOPSO generates solution
sets with the highest (best) values in 15 out of the 21 problems. Thus, we can
state that according to the parameterization, quality indicators, and benchmark
problems considered in this work, OMOPSO is clearly the most salient technique
among the six considered in our study.
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Table 4. Median and interquartile range of the HV quality indicator

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 1.54e − 12.4e−1 6.54e − 18.3e−3 6.61e − 11.5e−4 3.81e − 19.3e−2 5.94e − 11.7e−2 3.28e − 14.6e−2 +
ZDT2 – – 3.28e − 12.5e−4 4.10e − 21.9e−1 0.00e + 02.6e−1 6.54e − 23.7e−2 +
ZDT3 1.12e − 11.2e−1 3.21e − 12.3e−1 5.10e − 13.8e−3 2.45e − 11.1e−1 4.38e − 17.2e−2 2.55e − 13.2e−2 +
ZDT4 – – – – – – -
ZDT6 3.09e − 11.3e−1 4.01e − 13.1e−4 4.01e − 11.5e−4 2.31e − 14.1e−2 3.50e − 15.7e−2 – +
DTLZ1 – – – – – – –
DTLZ2 1.64e − 15.9e−2 1.64e − 12.1e−2 2.10e − 14.5e−4 1.23e − 12.4e−2 1.78e − 12.5e−2 2.01e − 12.3e−3 +
DTLZ3 – – – – – – -
DTLZ4 1.37e − 15.1e−2 – 1.96e − 16.1e−3 7.62e − 29.8e−2 1.90e − 19.8e−3 1.96e − 14.0e−3 +
DTLZ5 1.71e − 13.5e−2 1.65e − 12.3e−2 2.11e − 15.4e−4 1.22e − 12.9e−2 1.77e − 12.0e−2 2.01e − 12.1e−3 +
DTLZ6 – – 2.12e − 14.4e−5 8.77e − 21.5e−1 – – +
DTLZ7 1.59e − 29.7e−2 2.18e − 11.7e−2 3.34e − 13.2e−4 2.00e − 17.1e−2 2.53e − 15.5e−2 1.01e − 11.3e−2 +
WFG1 8.98e − 28.3e−3 1.21e − 12.2e−3 1.04e − 11.0e−2 6.22e − 27.4e−3 1.69e − 17.2e−2 1.01e − 15.1e−3 +
WFG2 5.61e − 12.5e−3 5.60e − 11.7e−3 5.64e − 11.0e−4 4.68e − 13.9e−2 5.57e − 13.6e−3 5.60e − 11.8e−3 +
WFG3 4.40e − 13.3e−4 4.38e − 18.0e−4 4.42e − 15.4e−5 4.04e − 11.2e−2 4.27e − 11.8e−2 4.30e − 11.3e−2 +
WFG4 1.78e − 17.0e−3 2.00e − 11.6e−3 2.02e − 11.6e−3 1.27e − 11.2e−2 2.07e − 11.3e−3 2.00e − 12.3e−3 +
WFG5 1.96e − 12.8e−4 1.96e − 18.8e−5 1.96e − 16.3e−5 1.60e − 11.7e−2 1.68e − 15.9e−2 1.90e − 11.9e−3 +
WFG6 1.75e − 12.6e−2 1.90e − 11.9e−2 2.09e − 13.5e−4 9.88e − 22.8e−2 1.60e − 14.7e−2 2.01e − 11.9e−3 +
WFG7 2.03e + 12.7e+3 2.02e + 11.1e+3 2.09e + 11.7e+4 1.14e + 11.4e+2 9.49e + 24.2e+2 2.01e + 12.7e+3 +
WFG8 1.07e − 18.7e−3 1.33e − 14.2e−3 1.26e − 13.0e−3 6.08e − 21.9e−2 1.41e − 13.0e−3 1.33e − 11.9e−3 +
WFG9 2.24e − 16.1e−3 2.34e − 14.1e−4 2.34e − 16.6e−4 1.87e − 11.1e−2 2.29e − 14.7e−3 2.30e − 11.1e−3 +

The results corresponding to problems ZDT4, DTLZ1, and DTLZ3 deserve
additional comments. We have used the ‘–’ symbol in Table 4 to indicate those
experiments in which the HV value is equal to 0, meaning that the solution
sets obtained by the algorithms are outside the limits of the Pareto front; when
applying the HV indicator these solutions are not taken into account, because
otherwise the obtained results would be unreliable. In the case of the three afore-
mentioned problems, none of the six algorithms is able to achieve a HV greater
than 0 over the 100 independent runs. We can also see that other problems
are difficult to solve by some techniques, e.g., ZDT2 and DTLZ6. The statisti-
cal tests indicate that the results of the Δ and HV indicators have statistical
confidence. To provide further statistical information, we show in Table 5 those
problems for which no statistical differences appear between OMOPSO and the
rest of algorithms considering the three quality indicators. It can be observed
that statistical differences exist for most of the pair-wise comparisons.

Table 5. Non-successful statistical tests between OMOPSO and the rest of the
algorithms

I1
ε+ Δ HV

- - -
AMOPSO DTLZ3 - -

- - -
- ZDT6 -

MOCLPSO DTLZ1, DTLZ4 DTLZ1, DTLZ3 DTLZ4
- WFG8 WFG1, WFG4
ZDT4 - -

MOPSOpd DTLZ1, DTLZ3 - -
WFG3, WFG4 WFG1, WFG4 -
- - -

NSPSO DTLZ3 DTLZ4 -
WFG1, WFG8 - -
- ZDT6 -

SigmaMOPSO - - -
WFG4, WFG5, WFG9 WFG4, WFG5, WFG9 WFG5, WFG9
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Fig. 1. Tracing the velocity of the second variable of OMOPSO when solving ZDT4

6 Discussion

The conclusion drawn from the analysis of the results in the previous section
is that OMOPSO performs the best in our study. In this section, we carry out
the same experiments but using OMOPSO and NSGA-II in order to put the
results of the first one in context. Such a comparison will allow us to know how
competitive OMOPSO is. Before that, we investigate why OMOPSO (as well as
the rest of MOPSOs) is unable to solve the ZDT4, DTLZ1, and DTLZ3 problems.
If we consider ZDT4, it is a well-known problem characterized by having many
local optima (it is a multifrontal problem). We have traced the velocity of the
second variable in the first particle in OMOPSO when facing the solution of
ZDT4 (the second variable takes values in the interval [−5,+5], which provides
a better illustration of the following analysis than using the first variable, which
ranges in [0, 1]). The obtained values after the 250 iterations are depicted in
Fig. 1. We can observe that the velocity values suffer a kind of erratic behavior
in some points of the execution, alternating very high with very low values. Let
us note that the limits of the second variable in ZDT4 are [−5,+5], and the
velocity takes values higher than ±20. The consequence is that this particle is
moving to its extreme values continuously, so it is not contributing to guide the
search.

To find out whether this is one of the reasons making OMOPSO unable to
solve multi frontal MOPs, we have modified it by including a velocity constraint
mechanism, similar to the one proposed in [2]. In addition, the accumulated
velocity of each variable j (in each particle) is also bounded by means of the
following equation:

vi,j(t) =

⎧⎪⎨⎪⎩
deltaj if vi,j(t) > deltaj

−deltaj if vi,j(t) ≤ −deltaj

vi,j(t) otherwise
(3)



MOPSOs: An Experimental Comparison 505

S
pe

ed

Number of iterations

ZDT4

Fig. 2. Tracing the velocity of the second variable of SMPSO when solving ZDT4

where

deltaj =
(upper limitj − lower limitj)

2
(4)

This way, we can ensure an effective new position calculation. We have called
the resulting algorithm SMPSO (Speed-constrained Multi-objective PSO). In
Fig. 2 we show again the velocity of the particle representing the second pa-
rameter of ZDT4. We can observe that the erratic movements of the velocity
have vanished, so the particle is taking values inside the bounds of the variable
and thus it is moving along different regions of the search space. To evaluate
the effect of the changes in SMPSO, we have included this algorithm in the
comparison between OMOPSO and NSGA-II. We have solved all the problems
again, following the same methodology. The parameter settings of NSGA-II are:
the population size is 100 individuals, we have used SBX and polynomial muta-
tion [3] as operators for crossover and mutation operators, respectively, and the
distribution indexes for both operators are ηc = 20 and ηm = 20, respectively.
The crossover probability is pc = 0.9 and the mutation probability is pm = 1/L,
where L is the number of decision variables.

In Table 6, we include the median and interquartile range of NSGA-II, O-
MOPSO, and SMPSO corresponding to the I1

ε+ quality indicator. We observe
that SMPSO yields the best values in 11 out of the 12 problems comprising
the ZDT and DTLZ benchmarks. If we focus on the WFG problems, the lowest
(best) metric values are shared between OMOPSO (six problems) and NSGA-II
(three problems), while SMPSO obtains the second lowest values in 8 out of the 9
WFG problems. These results indicate first, that OMOPSO is competitive when
compared against NSGA-II concerning convergence and, second, that the veloc-
ity constraint mechanism included in SMPSO improves globally the behavior of
OMOPSO considering all the benchmark problems.
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Table 6. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the
I1

ε+ quality indicator

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 1.37e − 23.0e−3 6.36e − 35.1e−4 5.78e − 33.8e−4 +
ZDT2 1.28e − 22.3e−3 6.19e − 35.4e−4 5.66e − 33.0e−4 +
ZDT3 8.13e − 31.9e−3 1.32e − 27.7e−3 6.09e − 31.3e−3 +
ZDT4 1.49e − 23.0e−3 5.79e + 04.3e+0 7.93e − 31.4e−3 +
ZDT6 1.47e − 22.8e−3 4.65e − 34.2e−4 4.87e − 34.8e−4 +
DTLZ1 7.13e − 31.6e−3 1.92e + 11.1e+1 3.73e − 35.4e−4 +
DTLZ2 1.11e − 22.7e−3 6.72e − 39.1e−4 5.81e − 36.0e−4 +
DTLZ3 1.04e + 01.2e+0 8.86e + 19.5e+1 6.57e − 31.0e−2 +
DTLZ4 1.13e − 29.9e−1 3.18e − 21.0e−2 6.54e − 38.8e−4 +
DTLZ5 1.05e − 22.5e−3 6.62e − 38.9e−4 5.77e − 36.1e−4 +
DTLZ6 4.39e − 23.4e−2 5.36e − 34.8e−4 5.22e − 34.4e−4 +
DTLZ7 1.04e − 22.8e−3 7.13e − 36.8e−4 5.46e − 34.3e−4 +
WFG1 3.52e − 14.6e−1 1.35e + 04.9e−2 1.34e + 04.6e−2 +
WFG2 7.10e − 17.0e−1 1.04e − 21.7e−3 1.40e − 23.4e−3 +
WFG3 2.00e + 05.8e−4 2.00e + 01.6e−5 2.00e + 03.9e−4 +
WFG4 3.26e − 26.7e−3 5.98e − 21.5e−2 6.46e − 26.0e−3 +
WFG5 8.41e − 28.3e−3 6.37e − 29.0e−4 6.40e − 22.0e−3 +
WFG6 4.14e − 21.6e−2 1.79e − 22.5e−3 2.56e − 23.8e−3 +
WFG7 3.47e + 28.1e+3 1.94e + 21.7e+3 2.67e + 23.8e+3 +
WFG8 3.38e − 12.3e−1 5.06e − 13.4e−2 4.32e − 17.8e−2 +
WFG9 3.73e − 27.5e−3 2.95e − 22.5e−3 3.15e − 23.3e−3 +

Table 7. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the Δ
quality indicator

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 3.70e − 14.2e−2 1.00e − 11.4e−2 8.66e − 21.6e−2 +
ZDT2 3.81e − 14.7e−2 9.45e − 21.8e−2 7.46e − 21.5e−2 +
ZDT3 7.47e − 11.8e−2 7.35e − 15.2e−2 7.17e − 11.7e−2 +
ZDT4 4.02e − 15.8e−2 8.78e − 15.2e−2 1.53e − 12.2e−2 +
ZDT6 3.56e − 13.6e−2 8.78e − 21.2e+0 7.28e − 11.2e+0 +
DTLZ1 4.03e − 16.1e−2 7.77e − 11.1e−1 1.14e − 11.8e−2 +
DTLZ2 3.84e − 13.8e−2 1.81e − 12.3e−2 1.59e − 12.3e−2 +
DTLZ3 9.53e − 11.6e−1 7.90e − 11.1e−1 1.98e − 13.3e−1 +
DTLZ4 3.95e − 16.4e−1 6.77e − 17.9e−2 1.70e − 12.5e−2 +
DTLZ5 3.79e − 14.0e−2 1.77e − 12.6e−2 1.58e − 12.2e−2 +
DTLZ6 8.64e − 13.0e−1 1.18e − 11.7e−2 1.14e − 12.1e−2 +
DTLZ7 6.23e − 12.5e−2 5.21e − 16.8e−3 5.20e − 12.0e−3 +
WFG1 7.18e − 15.4e−2 1.17e + 06.0e−2 1.12e + 05.0e−2 +
WFG2 7.93e − 11.7e−2 7.64e − 15.5e−3 8.26e − 13.5e−2 +
WFG3 6.12e − 13.6e−2 3.78e − 18.7e−3 3.84e − 16.4e−3 +
WFG4 3.79e − 13.9e−2 5.06e − 16.3e−2 5.51e − 17.0e−2 +
WFG5 4.13e − 15.1e−2 1.44e − 12.0e−2 1.50e − 12.8e−2 +
WFG7 3.79e + 14.6e+2 1.59e + 12.1e+2 2.44e + 13.1e+2 +
WFG6 3.90e − 14.2e−2 1.63e − 12.5e−2 2.47e − 14.1e−2 +
WFG8 6.45e − 15.5e−2 7.93e − 18.8e−2 8.08e − 15.4e−2 +
WFG9 3.96e − 14.1e−2 2.24e − 12.7e−2 2.46e − 12.8e−2 +

The values obtained when applying the Δ and HV indicators are included in
Tables 7 and 8, respectively. We can observe that we can practically draw the
same conclusions obtained from the I1

ε+ indicator, i.e., the algorithms obtain the
lowest values in the same problems according to the convergence and diversity
indicators. In all the experiments included in this section all the statistical tests
are significant, which actually grounds our claims. If we focus in the HV and in
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those problems in which OMOPSO obtained a value of 0 (ZDT4, DTLZ1, and
DTLZ3), we see that the velocity constraint mechanism added to SMPSO allows
it to successfully solve them. NSGA-II also outperforms OMOPSO in this sense,
only presenting difficulties in DTLZ3.

Table 8. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the
HV quality indicator

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 6.59e − 14.4e−4 6.61e − 11.5e−4 6.62e − 11.5e−4 +
ZDT2 3.26e − 14.3e−4 3.28e − 12.5e−4 3.28e − 11.1e−4 +
ZDT3 5.15e − 12.3e−4 5.10e − 13.8e−3 5.15e − 15.1e−4 +
ZDT4 6.56e − 14.5e−3 – 6.61e − 13.8e−4 +
ZDT6 3.88e − 12.3e−3 4.01e − 11.5e−4 4.01e − 11.0e−4 +
DTLZ1 4.88e − 15.5e−3 – 4.94e − 13.4e−4 +
DTLZ2 2.11e − 13.1e−4 2.10e − 14.5e−4 2.12e − 12.3e−4 +
DTLZ3 – – 2.12e − 12.8e−3 +
DTLZ4 2.09e − 12.1e−1 1.96e − 16.1e−3 2.09e − 13.3e−4 +
DTLZ5 2.11e − 13.5e−4 2.11e − 15.4e−4 2.12e − 12.1e−4 +
DTLZ6 1.75e − 13.6e−2 2.12e − 14.4e−5 2.12e − 14.8e−5 +
DTLZ7 3.33e − 12.1e−4 3.34e − 13.2e−4 3.34e − 17.3e−5 +
WFG1 5.23e − 11.3e−1 1.04e − 11.0e−2 9.70e − 25.3e−3 +
WFG2 5.61e − 12.8e−3 5.64e − 11.0e−4 5.62e − 15.7e−4 +
WFG3 4.41e − 13.2e−4 4.42e − 15.4e−5 4.41e − 11.1e−4 +
WFG4 2.17e − 14.9e−4 2.02e − 11.6e−3 1.96e − 12.0e−3 +
WFG5 1.95e − 13.6e−4 1.96e − 16.3e−5 1.96e − 15.8e−5 +
WFG6 2.03e − 19.0e−3 2.09e − 13.5e−4 2.05e − 11.1e−3 +
WFG7 2.09e + 13.3e+4 2.09e + 11.7e+4 2.06e + 18.2e+4 +
WFG8 1.47e − 12.1e−3 1.26e − 13.0e−3 1.40e − 11.9e−3 +
WFG9 2.37e − 11.7e−3 2.34e − 16.6e−4 2.33e − 14.1e−4 +

Table 9 contains those problems for which no statistical confidence exist con-
sidering the three algorithms and the three quality indicators. The results of
OMOPSO against NSGA-II are significant in all the problems but DTLZ3 with
respect to the Δ indicator. Concerning SMPSO, there a few cases where the
results are not significant, but they do not alter the analysis carried out.

Table 9. Non-successful statistical tests among NSGA-II, OMOPSO, and SMPSO

I1
ε+ OMOPSO SMPSO

NSGA-II WFG3, WFG8
OMOPSO N/A ZDT6, DTLZ6, WFG1, WFG4

Δ OMOPSO SMPSO
NSGA-II DTLZ3 WFG2
OMOPSO N/A ZDT6, DTLZ6

HV OMOPSO SMPSO
NSGA-II ZDT6
OMOPSO N/A DTLZ6, DTLZ7, WFG8

We can summarize this section by stating that OMOPSO, the most salient of
the six MOPSOs studied in this work, is a competitive algorithm when compared
with NSGA-II, and we have shown that its search capabilities can be improved by
including a velocity constraint mechanism. However, although SMPSO outper-
forms both NSGA-II and OMOPSO in the ZDT and DTLZ problems, it does not
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achieve the best result in the WFG benchmark. This indicates that more research
has to be done. It is also necessary to consider a broader set of problems as well
as studying in more depth the effect of modulating the speed in a MOPSO.

7 Conclusions and Further Work

We have evaluated six MOPSO algorithms over a set of three well-known bench-
mark problems by using three different quality indicators. For each experiment,
100 independent runs have been carried out, and statistical tests have been ap-
plied to know more about the confidence of the obtained results. In the context
of the problems analyzed, the experimentation methodology, and the parameter
settings used, we can state that OMOPSO is clearly the most salient of the six
compared algorithms. The results have also shown that all the algorithms are
unable to find accurate Pareto fronts for three multi frontal problems. We have
studied this issue and we have proposed the use of a velocity constraint mech-
anism to enhance the search capability in order to solve these problems. The
resulting algorithm, SMPSO, shows significant improvements when compared
with respect to OMOPSO and NSGA-II. As part of our future work, we plan
to study the convergence speed of MOPSO algorithms in order to determine
whether they are faster than other multi-objective evolutionary algorithms in
reaching the Pareto front of a problem.
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TIC-03044 DIRICOM project, http://diricom.lcc.uma.es. Juan J. Durillo
is supported by grant AP-2006-03349 from the Spanish Ministry of Education
and Science. Francisco Luna acknowledges support from the Spanish Ministry of
Education and Science and FEDER under contract TIN2005-08818-C04-01 (the
OPLINK project).

References
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Abstract. Traditionally, Predator-Prey Models—although providing a
more nature-oriented approach to multi-objective optimization than
many other standard Evolutionary Multi-Objective Algorithms—suffer
from inherent diversity loss for non-convex problems. Still, the approach
to peg single objectives to a predator allows a very simple algorith-
mic design. The building-block configuration of the predators offers po-
tent means for fine-tuning and tackling multi-objective problems in a
problem-specific way. In the work at hand, we propose the integra-
tion of local search heuristics into the classic model approach in order
to overcome the unsatisfactory behavior for the aforementioned prob-
lem class. Our results show that, introducing a gradient-based local
search mechanism to the system, deficiencies with respect to diversity
loss can be highly ameliorated while keeping the beneficial properties of
the Predator-Prey Model.

Keywords. Predator-Prey Model, Evolutionary Multi-Objective Algo-
rithm, Local Search.

1 Introduction

Over the last years, the original Predator-Prey Model (PPM) by Laumanns [1]
has been repeatedly revisited as an alternative approach to multi-objective op-
timization. In contrast to established and well working algorithms like NSGA-
II [2], SMS-EMOA [3], or SPEA [4], which mainly rely on a dominance based
selection operator, the PPM approach mimics aspects of the natural interplay
of predators and prey. In this process, each predator targets a single objective,
and it is expected that the joint influence of all predating individuals affects the
prey population in such a way that good trade-off solutions survive.

Studies have shown, however, that the traditional PPM does not behave ide-
ally in all cases [5]: although the strong influence of single-objective selection
guarantees the convergence towards the feasible region of the search space, it
often leads to a loss of locally1 optimal or intermediate, but Pareto-optimal
solutions.

1 In the sense of single-objective optimization.

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 510–524, 2009.
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A promising direction of research towards the improvement of this model is
the building block-wise design of variation operators. Grimme and Lepping [6]
have proposed a framework to create problem-specific composite operators by
coupling a single operator to a predator individual. With this approach, the
emergence induced by each predator’s influence on the prey leads to an ad-
justable common influence of all operators. This principle was successfully used
to solve simple test problems and even a multi-objective scheduling problem [7].

Still, the combination of predator-bound variation operators—although work-
ing well for convex problems—does not prevent the model-inherent diversity loss
in the non-convex case. We therefore propose the integration of a local search
mechanism into the until now passive prey individuals in order to tackle this im-
portant issue of the PPM. This inclusion induces more independence and, to a
certain extent, makes the prey immune to the effect of predator action. In order
to direct the individuals to a feasible region in search space, we apply a gradient-
based single-step local search process to each prey, assuming good-natured test
problems and approximated gradients2.

The paper is organized as follows: Section 2 gives a very brief introduction to
the PPM and critically reviews some problems. Next, the local search mechanism
is described in Section 3 and the integration of local search into the PPM is
explained in Section 4. In Section 5 the proposed extension is evaluated on the
basis of common test problems and performance measures. Eventually, Section 6
summarizes the results and points out directions for future research.

2 The Predator-Prey Model

The interplay of predators and prey is a well known paradigm from biology
and has first been applied to multi-objective optimization by Laumanns and
colleagues [1]. The basic idea is to expose spatially distributed prey, which rep-
resent solutions for a multi-objective problem, to the evolutionary influence of
predators that pursue only a single objective. In that process, the emergence
of all predators is expected to force the prey population towards good trade-off
solutions.

2.1 Abstract View

We assume a modified [6] version of Laumanns’ early approach, where predators
are constructed according to a building block model in order to fulfill specific
tasks, each of which proportionally adjustable, on the spatially distributed prey
population which is located on a toroidal grid3.

Predator building blocks are basically the movement (mostly random walk)
behavior, selection (a single objective), and reproduction (a variation operator).
2 This is the case for most real-world applications.
3 Note that the distribution on the toroidal grid does not necessarily map to the

individuals distribution in search space. In fact, in most realizations the initialization
of prey is random in search space, while their distribution on the toroidal grid is
independently random.
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Fig. 1. Schematic depiction of the Predator-Prey Model. The passive prey represent
solutions for a given multi-objective optimization problem and are spatially distributed.
The predators roam over the population and hunt concerning a single objective.

The combination of these blocks defines a single predator individual. In this way,
it is possible to construct predators with specific characteristics, that tackle a
certain aspect of the whole considered multi-objective problem. While the move-
ment building block causes change in the area of influence of a single predator,
the evolutionary process of the prey population can be steered regarding the
predator’s objective using individual reproduction methods (e.g. a predator can
be configured to select regarding a first objective, move always 5 steps, and use
simple Gaussian mutation as variation operator for a steady-state reproduction
mechanism).

This approach simplifies the construction of a fine-tuned algorithm which al-
lows the integration of expert knowledge via the variation operators (see
Figure 1). The general PPM algorithm consists of the following consecutive steps:

Movement. A predator performs a movement from its current position on the
toroidal grid. This is usually done randomly in order to visit each location
equally often on the long term. The movement is often limited to a small
number of steps to locally and temporally restrict a predator’s influence on
the prey.

Selection. A predator spans—according to a given neighborhood function—a
selection neighborhood as subpopulation of the spatially distributed indi-
viduals and evaluates the contained prey individuals regarding its objective.
Eventually, following an elitist scheme, the worst prey is eliminated from the
selection neighborhood.

Reproduction. A predator applies its reproduction building block on the re-
maining prey from the previous step and repopulates the empty location
with newly created individuals (in the simple reproduction scheme, only one
descendant is created and inserted into the population). Common variation
operators in this context are Gaussian mutation or Simplex recombination,
but—depending on the considered problem—specially tailored variation op-
erators could also be applied, see Grimme et al. [7].
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The here applied PPM instance is detailed in Section 5.1, while a detailed
description of the general PPM concept is given by Grimme et al. [5]. This
work also provides comprehensive insight into the effects of building blocks and
resulting population dynamics.

2.2 Criticism

Although previous works [6,5,7] generally confirm the applicability of the modu-
lar PPM, the test problems that this approach has been applied to are of simple
nature and defined by convex functions. For more complex test problems, es-
pecially those basing on non-convex functions, the PPM fails to approximate
diverse Pareto sets.

Considering the results of these studies, deficiencies in performance stem from
the strong single-objective selection mechanism that leaves almost no room for
the survival of Pareto-optimal solutions: Such individuals are typically subopti-
mal with respect to a single objective. This leads—under the influence of muta-
tion only—to relatively stable prey subpopulations, each of which representing
the extremal solution of one objective. The additional application of recombi-
nation operators can ameliorate this tendency of ’extremal drift’ and produce
solutions within the convex hull, but does not address other problem classes.

A usual criticism to the PPM is the amount of function evaluations needed
to evolve the prey population to a good solution. This amount often strongly
exceeds the standard value of 30, 000 function evaluations which is set as bound
for state-of-the-art approaches. This behavior is due to the mainly used steady-
state reproduction mechanisms as well as a slow emergence of the predators
influence in the beginning of the evolutionary process for an analysis [5].

Summarizing, this analysis shows that, in order to foster the improvement
of the PPM, besides the traditional mechanisms such as predator behavior and
variation operators, other mechanisms within the model have to be considered
as extension points.

3 A Simple Gradient-Based Local Search Mechanism

The inclusion of gradient-based, deterministic local search mechanisms into
multi-objective optimization tasks has a long tradition which is rooted in an
important inherent property of multi-objective problems: near the Pareto-set
the gradients of a solution are almost contradictory. Ester and colleagues [8,9],
for example, used this property for their deterministic and stochastic global
multi-objective optimization methods back in the 1980ies. In EMO research, the
potential of considering gradient information for local search also has been dis-
covered: Brown and Smith [10] review the basic theoretical principles of gradient-
directed multi-objective search while Bosman and de Jong [11] already try to
efficiently combine several local search techniques inside a MOEA. Experiments
towards the hybridization of globally good performing evolutionary approaches
for multi-objective optimization and local search are also conducted by Harada
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and colleagues [12], who propose a Pareto-descent method, extend it for con-
straint handling, and compare it to other gradient methods. Shukla [13] focuses
on the efficiency of such methods for unconstrained test problems and their effect
on the computational complexity of the host algorithm. Recently, Schuetze and
colleagues [14] proposed a so-called ’hill-climber with sidestep’ that also relies
on gradient information and successfully integrated it into NSGA-II.

In this paper, we propose and evaluate the integration of such techniques into
the PPM by allowing prey individuals to conduct a local search themselves, using
online approximated gradient-related information for determining the descent
direction for the point in search space they represent.

Preliminaries. For the local optimization task we consider a single point x ∈
S ⊆ Rn in decision space. Further, we consider M objectives that define the
objective space O ⊆ RM .

Fig. 2. Sketch of the simple sampling mechanism used to approximate gradient direc-
tions for all objectives: Random points on a hypersphere surface are used to select the
direction with maximum negative slope. If no point with negative slope is detected,
use the counter direction of maximum positive slope.

3.1 Approximation of Gradients

The finite difference method yields approximative information on the slope di-
rections for a given point x within its nearest environment. In order to find a
good approximation, several probes have to be taken around x. Generally, with a
given sampling radius r ∈ R (usually 0 < r # 1), a point q = (q1, . . . , qi, . . . , qn)
for probing is located on the surface of an n-dimensional hypersphere and can
be determined uniformly distributed using Equation 1.

qi = xi + r · sin(λi) ·
n∏

j=i

cosλj (1)

with λ1 =
π

2
, λ2 = U(0, 2π), and λi = U(−π

2
,
π

2
), i = 1, . . . , n

Figure 2 shows the sampling with four randomly distributed points on the
surface of a two-dimensional hypersphere (circle). Using the sampled points,
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the direction of maximum negative slope is selected as gradient approximation.
If the sampled points do not yield any negative slope, the inverse direction of
maximum positive slope is used. For a sufficiently small sampling radius r, this
direction yields a descent direction with increasing probability.

3.2 Determining the Pareto-Descent Direction

With the approximated gradient for each objective at hand, three cone types
can be constructed:

Descent cones, which promise a benefit for all objectives and thus are prefer-
able in order to reach the Pareto set;

Contradictory cones, which favor some objectives over others; and
Ascent cones, which lead to a deterioration of all objectives.

Depending on the position of the point x relative to the Pareto set, the cones
are of different size, see Figure 3: If x is far from the Pareto set, the descent cone
is large. Otherwise, the descent cone is rather small while the contradictory cone
is large. Altogether with the gradient information, these properties are used to
perform a local search step.

Fig. 3. Depiction of the applied local search based on approximated gradient directions
for all objectives (here with two dimensions): if descent gradients point approximately
to the same direction, the solution is far from the (local) Pareto set and the area of
overall beneficial descent is large. Otherwise, the solution is close to the (local) Pareto-
set and the beneficial area is small.

The search step length and direction is determined by combining the normal-
ized gradient vectors as shown in Equation 2.

x′ = x + z, z =
1√
M

M∑
i=1

ωi · gi (2)

with z, gi ∈ Rn and ωi = U(1,M),
M∑
i=1

ωi = M

After combining the gradient vectors, the resulting step is normalized with
respect to the dimensions to avoid large steps for M > 2 objectives. Simulta-
neously, each gradient vector is weighted with a uniformly distributed value to
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increase or reduce its influence in the heading direction. If point x is far from the
Pareto set, the resulting direction z will not leave the descent cone. Close to the
Pareto set, however, the weights will more frequently result in a step direction
towards the contradictory cone. This is beneficial in order to favor diversity for
solutions close to the Pareto set. Obviously, a parameter for switching between
descent and diversity steps is not necessary: The local search mechanism au-
tomatically adjusts to the situation using gradient information inherent to the
population.

4 Hybridizing the Predator Prey Model

Following the building block approach, the natural way of integrating local search
to the Predator-Prey Model is the prey itself, as it represents the only other
entity in the PPM which is generally enabled to act. Until now, all other PPM
models assume a completely passive prey individual, having the only purpose of
representing a solution of the evaluated problem. As such, it is a sensible choice
to let the prey to optimize itself within its habitat. This also reflects natural
evolution and allows for self-immunization against the effects of the environment
to a certain extent.

Overall, it is expected that the integration of local search mechanisms into
the prey leads to the following benefits for the model dynamics by exploiting its
inherent properties:

1. It stabilizes the population in terms of preserving and advancing locally
optimal solutions by seeking solutions that are globally superior. This is
achieved without strong selection pressure of a single-objective selection as
normally induced by predator individuals.

2. It allows for improvements on a very fine-grained level, not only with respect
to convergence towards locally optimal solutions, but also from the diversity
point of view when having reached those: Due to the large area covered by
the contradictory cone, individuals tend to move along the local Pareto front,
inducing a diverse set of solutions, see Section 3.

3. It exploits the inherent parallelism of the PPM by enabling fully paralleliz-
able local optimization without disturbing or impairing the global algorithm
execution.

The predators, in turn, ensure that the prey individuals overall converge into the
direction of globally optimal solutions. This is achieved by the pressure which is
induced by the interplay of selection and variation: while the selection operator
provides a global comparison of local solutions and only keeps a certain variety
alive within the population, the variation operator4 incorporates innovation and
exploration effects into the population.

4 Which is still coupled to the predator individual, as suggested in the standard model.
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5 Evaluation

In order to assess the performance of the local search-extended PPM, we con-
ducted a comparative evaluation between the classic PPM and our new proposal.
Our main focus therefore lies on the effect of integrating support mechanisms
into the traditional model in order to show the expected influence on the sys-
tem’s dynamics. As such, a comparison with other EMOAs is beyond the scope
of this work and not intended by giving comparison results.

5.1 Setup

For both, the traditional model (PPM-T) and the local-search-enhanced model
(PPM-L) we consider the same basic parameter settings. Generally we assume
a toroidal grid as population structure as graph G = (V,E), where v ∈ V are
vertices and e ∈ E are edges along which predators can move. The movement
of a predator is set as uniform random walk given by Equation 3. Starting at
vertex v a neighboring target vertex vt is reached with the same probability.

walk(v)(vt) =
{ 1

d(v) if (v, vt) ∈ E

0 otherwise.
(3)

A neighborhood N(v, rad) can be generally described by Equation 4 with a
starting point N(v, rad = 0) = v and neighborhood radius rad.

N(v, rad) =
⋃

(v,ν)∈E

N(ν, rad− 1) (4)

The here applied selection and reproduction neighborhood is constructed ac-
cording to the neighborhood function given in Equation 5. In this simple case
we always consider a von-Neumann neighborhood with rad = 1 as also depicted
in Figure 1.

nbh(vt, v) =

{
1 if v ∈ N(vt, 1),
0 otherwise.

(5)

For PPM-T we applied Gaussian mutation with fixed mutation step size and
Simplex recombination as variation operators. We manually fine-tuned the pa-
rameters to achieve good results for a fair comparison. Moreover, we varied the
population size between 900 and 1600 individuals5. For PPM-L we used Gaus-
sian mutation as the only predator-based variation operator. In addition to this,
we enabled parametrized local search using a sampling radius 0.1 ≤ r ≤ 0.2
and varied the number of sample points between 3 and 5. As population size,
we always used 225 individuals on a 15 × 15 toroidal grid. For both setups, we
limited the number of function evaluations to a maximum of 200, 000, which is
a standard value for the predator prey approach.

5 Derived from a 30 × 30 and 40 × 40 torus grid size, respectively.
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Table 1. Test problems used for the comparison of the traditional PPM and the
extended model with local search

Name Test Problem Initialization Constraints

Multisphere [1]
f1(x) = x2

1 + x2
2 x ∈ [−10, 10]2 none

f2(x) = (x1 − 2)2 + x2
2

Kursawe [15]
f1(x) =

∑n−1
i=1 −10 · exp(−0.2 ·

√
x2

i + x2
i+1) x ∈ [2, 4]2 none

f2(x) =
∑n

i=1 |xi|0.8 + 5 · sin3(xi)

ZDT3 [16]

f1(x) = x1 x1 ∈ [0.1, 1] x1 ∈ [0.1, 1]

f2(x) = g(x) · h(x) xi ∈ [0, 1] xi ∈ [0, 1]

g(x) = 1 + 9
n−1

·∑n
i=2 x2

i i = 2 . . . 10 i = 2 . . . 10

h(x) =
[
2 −
√

x1
g(x)

− x1
g(x)

· sin(10 · πx1)
]

Viennet [17]

f1(x) = 0.5 · (x2
1 + x2

2) + sin(x2
1 + x2

2) x ∈ [−3, 3]2 none

f2(x) = (3x1−2x2+4)2

8
− (x1−x2+1)2

27
+ 15

f3(x) = 1
x2
1+x2

2+1
− 1.1 · exp(−x2

1 − x2
2)

As a benchmark for the performance of both PPM variants, we used a selection
of multicriteria test problems as listed in Table 1. Our test suite consists of two-
and three-objective test problems with different properties that pose varying
challenges to EMOAs. There, we feature two—one convex, one non-convex—
problems with a single Pareto front, one problem with multiple disconnected
local Pareto fronts, and one problem with three objectives. Reference figures of
the test problems’ true Pareto-front are given in the Appendix.

For assessing the quality of the gained results, we applied two standard mea-
sures for quantifying convergence and diversity, namely the Generational Dis-
tance (GD) [18] and the normalized Hypervolume (HV) [19]. Equation 6 ex-
plains the calculation of the Generational Distance which the mean distance
of an approximated solution from true Pareto-front Ptrue. Basically, the mini-
mum euclidean distance for all approximated solution points to the true front is
considered and normalized by the number of exact solutions.

GD =
∑n

i=1 di

|Ptrue|
(6)

The Hypervolume metric denotes the volume enclosed by a reference point pr ∈
RM and the approximated non-dominated solutions L = {" ∈ RM}. Let Q�,pr be
the Hypervolume enclosed by a solution " with pr perpendicular to the coordinate
axes. The complete Hypervolume is then given by: HV :=

⋃
�∈LQ�,pr .

5.2 Discussion of Results

Following, we analyze the behavior of both models and discuss their impact on
the results of the test problems. Although each MOO-problem was tested in 30
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(a) Multisphere with PPM-T
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(b) Multisphere with PPM-L

Fig. 4. Depiction of exemplary results for both approaches on the Multisphere test
problem

10.5 10 9.5 9 8.5 8 7.5 7 6.5 6
8

7

6

5

4

3

2

1

0

1

objective 1

ob
je

ct
iv

e 
2

(a) Kursawe with PPM-T
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(b) Kursawe with PPM-L

Fig. 5. Depiction of exemplary results for both approaches on the Kursawe test
problem

experiments, the displayed Pareto-fronts are exemplary depictions of a single
trail. Intentionally, we did not apply a Pareto filter for the values shown in the
figures, as to allow a broader interpretation of the algorithms’ performance.

On the very simple Multisphere test problem, the PPM-T is known to perform
well, due to the specifically adapted Simplex recombination operator which fos-
ters convergence to the true Pareto front. This fact is also reflected by Figure 4,
where a very diverse Pareto front can be seen. On the other hand, although
reaching the best HV value, the obtained solutions are not very stable (see
Table 2). The PPM-L, in turn, reaches almost competitive, however far more
stable results for HV.
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Our second test problem, Kursawe, poses a much higher challenge for PPM-
T, as the Pareto front dissolves into convex and concave parts, see Figure 5(a).
Especially, the concave part of the Pareto front is poorly approximated. With
the integration of local search, PPM-L offers a much better approximation for
both parts of the Pareto front, see Figure 5(b), which is also reflected by the
mean HV and GD values as shown in Table 2.
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(b) ZDT3 with PPM-L

Fig. 6. Depiction of exemplary results for both approaches on the ZDT3 test problem

For ZDT3, the PPM-T shows a stagnation at the local Pareto fronts, see
Figure 6(a). This effect probably originates from the fixed step length of the
Gaussian mutation. Due to the properties of the test problem, the approxima-
tion of the global Pareto fronts is increasingly improbable and degenerates to
a random search. The local search in PPM-L, in turn, is able to stabilize the
solutions near to the local Pareto fronts and actively supports the convergence
towards them, see Figure 6(b). The global influence of the predators through
their mutation building block still introduces enough innovation to ensure global
convergence. These observations are also supported by the GD and HV results
in Table 2.

Finally, the Viennet test problem shows that the local search mechanism is
successfully transferable to problems with more than two objectives: Here again,
the diversity of the solutions gained from PPM-L is comparable with PPM-T, as
shown by HV and GD results, see Table 2. However, as shown in Figure 7, PPM-L
is able to approximate the solution set parts more complete than PPM-T.

Overall, the extension of PPM with local search is advantageous for all eval-
uated test problems with respect to diversity and stability of their respective
solution: The HV measure shows constantly better performance for PPM-L,
while the standard deviation of the results is very small. In addition to that,
problems with multiple local Pareto fronts, as exemplarily shown with ZDT3,
seem to benefit from PPM-L with respect to convergence; this is backed by the
GD measure. For a detailed list of results, see Table 2.
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(a) Viennet with PPM-T
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(b) Viennet with PPM-L

Fig. 7. Depiction of exemplary results for both approaches on the Viennet test
problem

Table 2. Numerical results for PPM-T and PPM-L on the four considered test prob-
lems. For performance evaluation the Hypervolume (HV) and Generational Distance
(GD) measures were applied (statistical values from 30 experiments).

HV GD

PPM-T PPM-L PPM-T PPM-L

Multisphere
best 0.831197 0.829462 1.59898e-4 3.49630e-4

mean 0.726294 0.828406 2.10974e-4 3.77680e-4

std 0.076993 1.32709e-4 1.27843e-5 2.96064e-6

Kursawe
best 0.764955 0.769532 5.65940e-5 1.27920e-4

mean 0.761400 0.767443 4.76703e-4 2.00163e-4

std 0.001330 2.48120e-4 6.81601e-5 1.00732e-5

ZDT3
best 0.435715 0.492830 0.007884 0.81808e-4

mean 0.401769 0.486205 0.013962 0.001481

std 0.008062 9.64324e-4 0.002432 9.37421e-5

Viennet
best 0.821630 0.831471 0.002081 0.001900

mean 0.800788 0.819030 0.004751 0.004607

std 0.004586 0.001931 0.000823 9.07811e-4

6 Conclusion and Future Work

In the presented work, the traditional Predator-Prey Model has been extended
with a local search mechanism in order to stabilize the system’s dynamics and
to foster diversity and convergence towards the global Pareto front. To this
end, the gradient-based search was integrated into the hitherto passive prey as
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an additional building block. This mechanism enables the prey to reach good
solutions by walking along a cooperative descent cone as long as it is far from the
local Pareto front, while favoring contradictory directions around local solutions.
Herewith, a better preservation of diversity is achieved.

Both the traditional and the new PPM have been compared using four well
known test problems to demonstrate the benefits of local search integration. We
were able to show that the expected stabilizing effect to the system dynamics
could be achieved. Moreover, the results show that the integration yields sig-
nificant advantages regarding diversity. For test problems with multiple local
Pareto fronts convergence was also improved; this illustrates the utility gained
by blending local search and global optimization.

A comparison of PPM with local search to other well known EMOAs was not
part of this work, but is to be conducted in future research. Obviously, there are
many function evaluations necessary to reach a good solution set. Although the
population size for the new variant of the PPM has been reduced significantly
(from 1600 prey individuals to only 225 individuals), emergence effects still seem
to take a long time to show effect in the whole population. This aspect of model
dynamics has to be investigated further.

Another area that leaves room for further improvement is the optimization of
the local search mechanism: Although it can be externalized due to the parallel
nature of the PPM, its performance depends strongly on the approximation ac-
curacy of the gradients used for cooperative descent. Here, advanced mechanisms
are to be developed, too.
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Abstract. Traditionally, Multiobjective Evolutionary Algorithms
(MOEAs) aim at approximating the entire true pareto-front of their
input problems. However, the actual number of solutions with differ-
ent trade-offs between objectives in a resulting pareto-front is often too
large to be applicable in practice. The new field Multiobjective Distinct
Candidates Optimization (MODCO) research is concerned with the opti-
mization of a low and user-defined number of clearly distinct candidates.
This dramatically decreases the amount of post-processing needed in
the decision making process of which solution to actually implement,
as described in our related technical repport ”Multiobjective Distinct
Candidates Optimization (MODCO): A new Branch of Multiobjective
Optimization Research” [9].

In this paper, we introduce the first algorithm designed for the chal-
lenges of MODCO; providing a given number of distinct solutions as close
as possible to the true pareto-front. The algorithm is using subpopula-
tions to enforce clusters of solutions, in such a way that the number of
clusters formed can be set directly. The algorithm is based on the Dif-
ferential Evolution for Multiobjective Optimization (DEMO) algorithm
versions, but is exchanging the crowding/density measure with two al-
ternating secondary fitness measures. Applying these measures ensures
that subpopulations are attracted towards knee regions while also mak-
ing them repel each other if they get too close to one another. This
way subpopulations traverse different parts of the objective space while
forming clusters each returning a single distinct solution.

Keywords: Multiobjective Optimization, Evolutionary Algorithms, Dif-
ferential Evolution, Distinct Candidates, Subpopulations, Clustering,
NSGA-II, SPEA2, DEMO, MODCO.

1 Introduction

Multiobjective optimization (MO) is the discipline of finding the optimal set of
solutions of problems having several, usually conflicting objectives. In traditional

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 525–539, 2009.
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algorithmic research on MO, algorithms are evaluated on the following three goals:
The algorithm’s ability to (1) find a set of solutions as close to the true pareto-front
as possible, (2) ensure an even distribution of solutions on the pareto-front, and
(3) have a high spread of solutions, i.e., to find extreme solutions for each of the
involved objectives. In short, closeness, distribution, and spread. Although these
goals are desirable from a theoretical point-of-view, they are not from a practical
point-of-view. Post-processing several hundred alternative solutions returned by
traditional MO algorithms is often impossible because time and money may dis-
allow further analysis of many solutions using advanced simulations or physical
prototypes.

To address this issue and a number of other practically motivated challenges,
we introduce Multiobjective Distinct Candidates Optimization (MODCO) as a
new branch of MO research. In short, MODCO defines three alternative goals to
MO research. The ideal MODCO algorithm aims at (1) closeness to true pareto
front, (2) return a user-defined number of distinct solutions, and (3) return so-
lutions in knee regions. In short, (1) closeness, (2) global distinctiveness, and (3)
local multiobjective optimality. Whereas this paper introduces the first MODCO
algorithm, a more elaborate argumentation for the soundness of MODCO and
why this should be considered a new branch of MO research is given in our
related technical repport [9].

In this paper, we propose the Cluster-Forming Differential Evolution algo-
rithm (CFDE), using subpopulations subject to Differential Evolution (DE).
It features a user-defined number of candidate solutions (KNC), a user-defined
performance distinctiveness (KPD), and the ability to converge to knee regions,
see [9] for further details. Hence, this first MODCO algorithm does not allow
user-defined design distinctiveness (KDD) or incorporation of simulator accu-
racy (KSA). In short, performance distinctiveness (KPD), design distinctiveness
(KDD) and category distinctiveness (KCD) allow the user to set how similar
or different the few returned solutions should be wrt. performance (objective
space), design (search space), and the MODCO problem’s category functions
(see [9]).

2 Cluster-Forming Differential Evolution

Differential Evolution (DE) was suggested by Price and Storn [4], and was ini-
tially designed for single-objective optimization. However, with the growing in-
terest in solving multiobjective problems, it has been successfully adopted in
multiobjective evolutionary algorithms. Recently, Robič and Filipič combined
both NSGA-II and SPEA2 selection with the Differential Evolution scheme for
solution reproduction. These alternate versions were named DEMONSII and
DEMOSP2 and have been shown to outperform the more classic multiobjective
genetic algorithms NSGA-II and SPEA2 [1,2,3,5,6]. The Cluster-Forming Dif-
ferential Evolution (CFDE) algorithm is based on the DEMO-scheme, but is
modified for cluster forming using subpopulations and two specialized secondary
fitness measures.
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2.1 Data Structures and Notation

The population in the CFDE algorithm is stored in a vector of vectors, with
each entry in the vector defining a subpopulation. For the rest of this article,
we assume without loss of generality that the user-defined number of distinct
candidates KNC divides the population size N , i.e. that N mod KNC == 0. We
further use a centroid vector of M -dimensional points, and a temporary offspring
vector for migration.

In pseudocode, we let Pi refer to subpopulation i of the full population P ,
whereas xi,j refers to the individual at the j’th position in subpopulation i. For
global ranking and truncation, we denote the current generation population Pt,
and subpopulations Pi,t.

We access cluster centroids using Ci to denote the M -dimensional point in
objective space corresponding to the centroid of subpopulation i, and Ci,m to
access the m’th entry in this. Lastly, we let f(x) denote the objective vector of
individual x, and fm(x) to denote the m’th entry of this.

2.2 Main Algorithm

Pseudocode of the main algorithm can be seen in Algorithm 1, where we let
minDist(Ci) denote the function returning the minimum distance from cen-
troid Ci to the nearest other centroid. Further, the calculation of σ is problem-
dependent, as explained in [9], and further demonstrated later in this paper.

First, the CFDE algorithm performs global mating with replacement, as in
usual DE. However, it stores the incomparable offspring in a temporary offspring

Algorithm 1. Cluster-Forming Differential Evolution
Require: Population size N , KNC , KPD

Ensure: KNC different non-dominated individuals.
1: Initialize KNC subpopulations with N/KNC random individuals in each
2: while Halting criterion has not been met do
3: Perform global DE-based mating - store incomparable offspring
4: Calculate subpopulation centroids Ci

5: Migrate incomparable offspring to nearest subpopulation wrt. centroid
6: for All Pi ∈ P do
7: if minDist(Ci) < σ then
8: Assign nearest other centroid distance to each individual xi,j ∈ Pi

9: else
10: Assign knee utility function value to each individual xi,j ∈ Pi

11: end if
12: end for
13: Assign final fitness wrt. global pareto rank, then secondary fitness
14: Truncate subpopulations wrt. final fitness
15: end while
16: Return KNC solutions, by returning the non-dominated solution closest to the

subpopulation centroid from each subpopulation.
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vector, until it can be determined, which subpopulation they should belong to.
From the parent part (see figure 1) of the subpopulations, a centroid for each is
then calculated. Following this, the incomparable offspring are migrated to the
subpopulations with the nearest centroid.

At this point, the CFDE algorithm determines which of the two secondary
fitness measures to use for each subpopulation. The secondary fitness measure
is each individual’s distance to the nearest other centroid, if the subpopulations
centroid is too close to its nearest neighboring centroid. In case the centroid
of the subpopulation is sufficiently far away from its neighbours, the secondary
fitness measure is Branke et al.’s utility function, favoring individuals in knee
regions [8].

Still, CFDE maintain focus on convergence towards the true pareto-front, so
it then assigns to each individual a global pareto rank using the NSGA-II non-
dominated sorting. This is used for assigning each individual a final fitness, such
that the final fitness incorporates both rank and secondary fitness measure in a
total order.

Finally each subpopulation is truncated to the original size of N/KNC us-
ing the truncation mechanism of NSGA-II. Here, the main differences are, that
truncation is done locally in subpopulations, and that the subpopulations are
truncated using one of the two secondary fitness measures, which is incorpo-
rated in the final fitness. Hence, some subpopulations may be truncated using
distance, and others using the knee utility function. This way subpopulations
may be attracted to different knee regions, while forming clusters during the
evolutionary process. As we return only one solution from each subpopulation,
we get the wanted number of distinct solutions returned.

2.3 Subpopulation Based Differential Evolution

For subpopulation based DE, we will use the DE scheme with replacement, such
that parents are replaced if they are dominated by their offspring, and offspring
are discarded if they are dominated by their parents. However, the subpopulation
approach makes it necessary to determine which subpopulation a newly created
offspring should belong to, in case the offspring is incomparable, such that it
neither dominates or is dominated by its parent.

In case an offspring is incomparable to its parent, it is stored in a tempo-
rary vector in order to enable migration after we have calculated subpopulation
centroids. This ensures that incomparable offspring will always belong to the
subpopulation they are closest to, and that the parent part of the subpopulation
remains fixed. This is illustrated in figure 1, which shows the population after
migration. Note that we denote the parent part as the N/KNC first entries in
the subpopulation vector, even though some of these entries may have been over-
written by dominating offspring candidates. This is natural, as these offspring
contribute to mating as soon as they have replaced their parents.

The subpopulation based Differential Evolution algorithm is based on the
rand/1/bin standard DE scheme, and is depicted in Algorithm 2. As usual, we
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Algorithm 2. Subpopulation based Differential Evolution
Require: Parent xi,j , crossover factor CF , scaling factor F .
Ensure: Candidate ci,j .
1: Randomly select three individuals xi1,j1 , xi2,j2 , xi3,j3 from P , where xi,j , xi1,j1 ,

xi2,j2 and xi3,j3 are pairwise different.
2: Calculate candidate ci,j as c = xi1,j1 + F · (xi2,j2 − xi3,j3).
3: Modify candidate ci,j by binary crossover with the parent xi,j using CF .

N /

O f f s p r i n g  p a r t

P a r e n t  p a r t

K
N C

K
N C

N / K
N C

Fig. 1. Population after migration

perform the algorithm for all individuals1 xi,j ∈ P , creating one offspring per
parent, which is treated according to the cases described above.

2.4 Calculating Subpopulation Centroids

The simple subpopulation centroid calculation is a measure of the center of the
current elite part of the subpopulation, namely the parent part, as depicted in
figure 1 and described above. This part consists of the elite from the previous
generation, mixed with the offspring, which replaced their parents. These indi-
viduals are the current best, and therefore we can use this fixed size part of
the subpopulation to define a centroid. For each subpopulation Pi, we calculate
the centroid Ci = [Ci,1, Ci,2...Ci,M ] as the average point of the elite in objective
space:

1 Which at this point is only the parent part, see figure 1.
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Ci,m =

∑N/KNC

j=1 fm(xi,j)
N/KNC

,m = 1..M. (1)

2.5 Migration

All incomparable offspring are at this point in a temporary offspring vector.
To migrate these offspring, the algorithm iterates through the offspring vector,
and move each individual to the subpopulation, whose centroid is the closest
to the individual in objective space. More formally, this is done by appending
the individual to the subpopulation, while removing it from the offspring vector.
Note, that we do not allow duplicates within subpopulations.

After this migration, the full population is present, which is depicted in fig-
ure 1, but it may be noted that some subpopulations may increase their offspring
part size beyond N/KNC . This, however, is a theoretical possibility, and most
often subpopulation sizes will vary from N/KNC to 2N/KNC.

2.6 Secondary Fitness Assignment

Having calculated the subpopulation centroids, we can now use this to assign a
secondary fitness to individuals, depending on whether subpopulations are too
close to each other or not, wrt σ. So we may assign different secondary measures
to subpopulations. However, this is no problem with regard to truncation, which
also happens within subpopulations, so if two individuals are not judged by the
same secondary measure, they will not be compared during truncation.

Incomparable offspring are at this point distributed to subpopulations, as
seen in figure 1. Therefore we can go through the full subpopulations, and assign
to each individual a secondary fitness. The measures proposed are the utility-
function proposed by Branke et al. [8], which focus search on knee regions, and
a new centroid distance measure, which makes subpopulations repel each other.

Using Utility Function. The utility function proposed in [8], is intended to
discover knee regions by calculating an average fitness value for a large number of
randomly sampled weight vectors. If this average fitness is good, the individual
is more likely to reside in a knee-region. Knee-regions are characterized by the
fact that a small improvement in one objective, will result in large deterioration
in another objective.

The utility function takes only one argument, precision, denoting the number
of sample weight vectors to apply. Let λ denote the weight vector of dimension
M , with

∑
m λm = 1. Then we calculate the secondary fitness SF with precision

precision of each individual x ∈ Pi as:

SF (x) =

∑precision
p=1 λp · f(x)
precision

(2)
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Using Centroid Distance. The centroid distance is the distance in objective
space, from the individual to the nearest other subpopulation centroid. Now, let
dist(x, y) denote the distance in objective space between point x and point y,
each of dimension M . Further, let min(S) denote the minimal element of the
set S. For the subpopulation Pi, we may then assign to each individual x ∈ Pi

a secondary fitness SF as:

SF (x) = min({dist(f(x), Cj), j = 1..KNC , j �= i}) (3)

2.7 Assigning Global Pareto Rank

The global pareto rank is intended to guide the search towards the best individu-
als wrt. dominance. Two very popular ways of assigning a pareto rank are based
on the non-dominated sorting from NSGA-II or the strength pareto approach of
SPEA2. These ranks can be viewed as a raw fitness, and are traditionally com-
plemented by a crowding/density measure. Therefore, it is straight forward to
exchange the original measures with the secondary fitnesses introduced above.
We show how to do this using the approach of NSGA-II, but it is also possible
to use the SPEA2 scheme for ranking and truncating.

The elitism mechanism in NSGA-II is based on non-dominated sorting of the
current population Pt. For each individual ∈ Pt, non-dominated sorting assigns
a non-dominated rank equal to the non-dominated front label, which is used to
group the individuals into fronts. Here, the first front2 consists of the populations
non-dominated solutions, the next front consists of solutions dominated only by
the first front and so on. Different ways of performing non-dominated sorting
are described in [2].

NSGA-II further uses a crowding measure intended to be maximized, such
that the higher the value, the better the individual. Assuming a maximization
problem, we are also interested in maximizing our secondary fitness, such that we
may directly replace the crowding measure with our assigned secondary fitness.
This way we can utilize the truncation mechanism from NSGA-II directly, since
we now have the two values needed for sorting, namely a rank to be minimized
and a secondary fitness to be maximized. Note that for minimization objectives,
we need to multiply the corresponding weights of Branke’s knee utility function
with -1, whereas the centroid distance always is to be maximized.

2.8 Truncation

We can now easily apply the truncation mechanism of NSGA-II, with the major
difference being that the procedure is now performed on each subpopulation
Pi,t ∈ Pt in generation t instead of on the full population. Truncation ensures
that the size of Pi,t+1 is exactly N/KNC .

After ranking, as many fronts as possible are accommodated in the next gener-
ation subpopulation Pi,t+1, where we include the lowest ranked fronts first. The

2 Where all individuals are assigned rank 1.
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last front to be inserted is sorted wrt. the secondary fitness measure, and only the
best individuals wrt. this are chosen for inclusion. This truncation mechanism
favors rank first, and a good secondary fitness value next.

3 Experimental Setup and Results

In this section, we demonstrate the CFDE algorithm on 3 kinds of problems;
the 2D ZDT problems [2,1], the knee problems of Branke et al. [8], and all non-
constrained 3D DTLZ problems [7], all with problem settings as suggested in
the respective papers. We do this with respect to the MODCO goals:

– Convergence performance (MODCO goal 1)
– Global distinctiveness (MODCO goal 2)
– User-defined performance distinctiveness (MODCO goal 2)
– Local multiobjective optimality (MODCO goal 3)

Using this taxonomy, we address the different issues of CFDE usage according
to the MODCO goals. First, we check CFDE convergence against the DEMO
versions, which have demonstrated good performance on many problems [5,6].
Next, we want to demonstrate convergence to KNC clusters, how we may change
solution diversity by setting KPD, and finally that CFDE are able to locate
knees.

For reference, we here provide an overview of the parameters used for the
experiments. For all experiments performed with the DEMO algorithm versions,
we have used a population size N = 100, and a DE setting with F = 0.5 and
CF = 0.3, as used in [5,6]. Number of generations used by DEMO for the test
problems is listed in Table 1.

Table 1. Settings for DEMONSII and DEMOSP2

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DO2DK DEB2DK DEB3DK
Generations 250 250 250 500 500 200 200 200

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
Generations 300 300 500 500 200 500 200

In table 2 we see the settings for the CFDE runs. As we will see, even with a
lower number of generations, CFDE is very competitive to the DEMO versions
on almost the entire test suite. For all runs except one, we have used N = 100,
and the same DE settings as for DEMO; F = 0.5 and CF = 0.3. The exception
is DTLZ3, were we have used a population size of 160 individuals, to match
KNC = 8. This way, we use approximately as many evaluations on this problem
as DEMO, as we perform 300 generations for CFDE3. We demonstrate the use
of KPD only on knee problems, as this is only relevant for such problems. For
ZDT and DTLZ problems, we therefore always set σ = ∞, effectively disabling
knee search. For DTLZ problems, we have used a higher KNC to ensure that we
find both extreme and intermediate trade-offs.
3 160 individuals · 300 iterations = 48000 evaluations for CFDE vs. 50000 for DEMO.
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Table 2. Settings for CFDE

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DO2DK DEB2DK DEB3DK
Generations 100 100 100 500 500 200 200 200

KNC 5 5 5 5 5 5 4 5
Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Generations 300 300 300 200 200 500 200
KNC 10 10 8 10 10 10 4

3.1 Convergence Performance

To deal with the different cardinality of more standard MOEAs and the CFDE
algorithm, we use the universal notion of dominance. Here, we compare the
CFDE algorithm against DEMONSII and DEMOSP2. One algorithmic argument
for MODCO is that the low number of returned solutions allows a more focused
search because MODCO does not aim at an even distribution, see [9] for details.
Consequently, a MODCO algorithm should be able to return solutions closer to
the true pareto front.

We wish to investigate in which extent the returned solutions from the CFDE
algorithm dominate the most similar solutions from the returned population of
the competing MOEAs, where similarity is measured as distance in objective
space. This way we see if the CFDE approach is competitive to simply picking
KNC solutions from the resulting populations of the DEMO versions.

For all results below, these are generated using the NSGA-II version of global
ranking and truncation in the CFDE algorithm. We have used 20 runs for both
the DEMO versions and for CFDE on each problem. For each generated popu-
lation of CFDE, we have compared each resulting individual to its most similar
counterpart from each of the DEMO populations. This gives a percentage of the
amount of dominating, dominated and incomparable individuals CFDE was able
to produce and is independent of KNC and KPD. Using KNC = 5 we thereby
get 5 · 20 · 20 = 2000 comparisons for the problem, while KNC = 10 yields 4000
comparisons.

As can be seen from Table 3, CFDE is performing extremely well on the 2D
ZDT problems and on the more simple knee problems. It is clear, that the

Table 3. CFDE versus DEMONSII and DEMOSP2

CFDE vs. DEMO(NSII) ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DO2DK DEB2DK DEB3DK
Dominates 0 0 0.0995 0.7700 0 0.4680 0.8718 0.4455
Dominated 0 0 0 0 0 0 0 0

Incomparable 1 1 0.9005 0.2300 1 0.5320 0.1282 0.5545
CFDE vs. DEMO(SP2)

Dominates 0 0 0.0810 0.6800 0.0100 0.2265 0.9081 0.3710
Dominated 0 0 0.0005 0 0.0400 0.0030 0 0

Incomparable 1 1 0.9185 0.3200 0.9500 0.7705 0.0919 0.6290
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compared DEMO individuals almost never dominate the CFDE individuals,
while CFDE often produce individuals dominating their DEMO counterpart.
For the more simple problems ZDT1 and ZDT2, all algorithms find optimal so-
lutions and are therefore incomparable. For ZDT3, CFDE seems to outperform
both DEMO versions, even with only 100 iterations. This may be caused by the
more focused search around subpopulation centroids performed by CFDE during
the run. Even for the much more difficult problem ZDT4 with many local fronts,
CFDE seems to dominate again maybe caused by the more focused search not
spending effort on equally distributing individuals. However, for ZDT6 with a
low density of solutions near the true pareto-front, DEMO shows equal perfor-
mance to CFDE.

Table 4. CFDE versus DEMONSII and DEMOSP2

CFDE vs. DEMO(NSII) DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
Dominates 0.1432 0.3085 0.3112 0.3210 0.3580 0 0.0493
Dominated 0 0 0 0 0 0.2000 0

Incomparable 0.8568 0.6915 0.6888 0.6790 0.6420 0.8000 0.9507
CFDE vs. DEMO(SP2)

Dominates 0.1740 0.1600 0.2960 0.3765 0.3255 0.0000 0.0781
Dominated 0 0 0.0300 0 0 0.1750 0

Incomparable 0.8260 0.8400 0.6740 0.6235 0.6745 0.8250 0.9219

In Table 4, it is clear that on DTLZ1 and DTLZ2, CFDE outperforms both
DEMO version with an equal number of evaluations. This is however more
clear for DEMONSII than for DEMOSP2. For DTLZ3, CFDE outperforms both
DEMO versions, using a higher populations size, but with a lower number of
iterations resulting in a similar number of evaluations as noted before. For this
problem, CFDE needed a higher diversity than normal to perform well due to the
heavy complexity of the problem. On DTLZ4, CFDE outperforms DEMO with
less than half the number of iterations, most likely due to the optimal front being
a flat curve easy to attain. This also goes for DTLZ5, but with an equal number
of evaluations performed. Only on DTLZ6, the harder version of DTLZ5, DEMO
outperforms CFDE. This problem is also hard for more traditional MOEAs as
noted in [7]. For DTLZ7, we have used KNC = 4, as there are 4 optimal planes,
which are all being attained by CFDE which on this problem demonstrates only
a slightly superior performance.

Overall, CFDE outperforms or has same performance as the two DEMO ver-
sions on all test problems except DTLZ6. So CFDE appears competitive to the
DEMO versions, even if we have only compared the most similar solutions. More
elaborate measures for MOEAs with different result cardinality is future works.

3.2 Global Distinctiveness

Global distinctiveness is achieved by the CFDE algorithm using the centroid
distance to repel subpopulations. Figure 2 and 3 displays the returned results
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of 20 runs of the CFDE algorithm on ZDT1 and ZDT3, using KNC = 5 and
KNC = 10. As mentioned above, we here set σ = ∞. Similar robust convergence
is seen for the other test problems, i.e., CFDE found roughly the same set of
distinct candidates in repeated runs.
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As can be seen in figure 2, all of the 20 runs of CFDE returned similar distinct
solutions. In figure 3, we see that using KNC = 5 ensures a result returned from
each of the 5 patches of the true pareto-front and again we see only a small
variation. However, using KNC = 10 makes the returned results be much more
spread in the 20 runs, since there are now more clusters to be formed than there
are discontinuous patches. As can be observed from the density, solutions will
here most often seek the most outer part of the patches making the returned
solutions as distinct as possible.

3.3 User-Defined Performance Distinctiveness

The MODCO parameter KPD ∈ [0, 1] allows the DM to set how distinct the
returned solutions should be. A low value corresponds to a low distinctiveness
and a high value to a high distinctiveness. See [9] for further information.

To demonstrate the effects of changing KPD, we have chosen DEB3DK as
an illustrative example. DEB3DK is interesting with its 3 objectives and single
knee, since this allow us to visualize the effect of altering the balance between
knee search and subpopulation repelling in 3D. We have used DEB3DK with
only one knee, i.e. K = 1.

We first demonstrate the calculation of σ used in the CFDE algorithm. First,
we will assume settings KPD = 1 and KNC = 5. For DEB3DK, we may use
reference points z∗∗ = (0, 0, 0) and zI = (8, 8, 8), which span the interesting part
of the objective space. Then we can calculate:

σ = KPD/KNC · ||z∗∗ − zI || = 1/5 ·
√

192 ≈ 2.77 (4)

In this setting, subpopulations will repel each other if they get within a dis-
tance of 2.77 of each other’s centroids. Setting KPD = 1 should ensure maximum
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global distinctiveness, such that we get clusters uniformly spread across the ob-
jective space spanned by the reference points. Contrary, setting KPD close to
zero4 enables clusters to get closer to each other while searching for knees.

Figure 4 illustrates the results of setting KPD to 0.2, 0.5 and 1.0. For KPD =
1, the 5 clusters are equidistant around the single knee, where one cluster is
placed. The four clusters not in the knee are repelled from each other as they
reach a distance of 2.77 between centroids, as was demonstrated in the example
calculation above. Interestingly, the four clusters not in the knee are located in
the partial knees on the lines forming a cross. For KPD = 0.5, we always hit
the knee with one cluster. Further, it can be seen that some solutions has found
other knee regions, crawling towards the one in the middle, but these are still not
allowed to get too close to each other. Setting KPD = 0.2 results in all clusters
getting very close to the single knee region. Overall, it is clear that increasing
KPD indeed makes clusters repel each other more.

3.4 Local Multiobjective Optimality

Figure 4 and 5 illustrates the knee problems DO2DK and DEB2DK, with the
resulting CFDE individuals of 20 runs. In the DO2DK problem, we set K = 4
and s = 1.0, such that we have exactly the same settings as has been used for
creating the results illustrated in figure 4 in [8]. For the 20 runs depicted in figure
4, it may be noticed, that the density of solutions near knee regions is very high.
When using KNC = 5, CFDE finds the 4 knee regions very precisely, while one
cluster typically hits an outer solution, or is caught in-between knee regions. For
DO2DK, we have used KPD = 0.75 corresponding to σ = 1.5. This way we keep
clusters separated, while still allowing for knees to be found.

4 Note that setting KPD = 0 allows for subpopulations to overlap.
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For the DEB2DK problem, we have used K = 4 to replicate the results
illustrated in figure 5 in [8]. In figure 5, we again see that for the 20 runs the
density of solutions near knees are very high. Here, we have to set KNC to be
equal to the number of knees, and it is clear that all knees are discovered in all
runs. Here, we have used KPD = 0.2 corresponding to σ = 0.5. This is low, so
the centroid distance assignment is rarely used. Hence, subpopulations converge
to knees, and as long as σ > 0, the clusters formed will not overlap.
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From the figures above, and further figure 4, it is clear, that CFDE is indeed
able to locate knee regions. Further, it has been demonstrated how to balance
the search using KPD resulting in different σ values.

3.5 Further Aspects

In this section we discuss two further aspects of the CFDE algorithm, namely
initialization in two dimensions, and an approach for constrained problems.

Initialization. When initializing the first population, it is possible to make an
easy initial clustering for problems with 2 objectives. We simply sort the initial
random population based on the individuals first objective, before these are
inserted into subpopulations. This way, less effort is spend on forming clusters
during start of the run, enhancing efficiency. The approach has been used in
all tests on 2D problems. The approach is only applicable for 2-dimensional
problems, as for M > 2, there can be established no total order of individuals
based on their objective vector.

Constrained Problems. Constrained problems require further comparison
when applying selection. We recommend the GDE3 approach for such problems
[10], such that individuals with no constraint violation will always be preferred
over individuals who do violate constraints. If two individuals both violate con-
straints, the most dominant one in constraint space is favoured. This will guide
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the search towards non-violated individuals, not loosing the property of being
able to guide the search across constrained areas in objective space.

4 Conclusion

In this paper, we introduce the first MODCO algorithm called CFDE. Using
subpopulation based Differential Evolution, the proposed CFDE algorithm al-
lows the DM to specify the number of solutions returned, and how distinct they
should be. The algorithm forms the desired number of clusters during the run
using using two alternating secondary fitness measures assigned locally. These
guides the search according to the goals of MODCO [9].

To conclude on this paper, we will again use the taxonomy presented in the
start of the results section, Section 3, according to the MODCO goals:

Convergence. CFDE clearly outperforms DEMONSII and DEMOSP2 when
comparing distinct individuals on a broad test suite with ZDT, DTLZ and knee
based problems. The reason for this is most likely the more focused search giving
better convergence by allowing individuals to get very close within subpopula-
tions. We give this as the most likely reason, as the approach resembles lo-
cal search based exploitation having previously demonstrated good results e.g.
in [11].

Global Distinctiveness. Regarding global distinctiveness, CFDE shows ro-
bust behavior by converging to the same set of distinct candidates on many
independent runs. On test problems with no knees it was shown, that returned
results of CFDE do try to achieve maximum global distinctiveness, but that this
is naturally also depending on the number of subpopulations in use.

User-Defined Distinctiveness. Further, our parameter investigations onKPD

shows that different settings ofKPD allows a user-controlled performance distinc-
tiveness. Here in the form of distance-based performance distinctiveness [9].

Local Multiobjective Optimality. As for local multiobjective optimality, our
experiments have shown that the CFDE algorithm is able to locate knees even
for changing parameter settings. This is important because we typically have no
a priori knowledge on the structure of the problem’s objective space.

Overall, the CFDE algorithm seems to comply very well with the goals of
MODCO, and seems to be a very good alternative to post processing the re-
sults of more traditional MOEAs in order to decrease cardinality.
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Abstract. In this paper we propose an evolutionary algorithm to estimate the 
minimum (nadir) objective values over the efficient set in multiple objective lin-
ear programming problems (MOLP). Nadir values provide valuable information 
for characterizing the ranges of the objective function values over the efficient 
set. However, they are very hard to compute in the general case. The proposed 
algorithm uses a population of weight vectors with particular characteristics, 
which are then used as parameters in the optimization of weighted-sums of the 
objective functions. The population evolves through a process of selection, re-
combination and mutation. The algorithm has been tested on a number of ran-
dom MOLP problems for which the nadir point is known. A result comparison 
with an exact method is shown and discussed. 

Keywords: Evolutionary multi-objective optimization, nadir point, multi-
objective linear programming. 

1   Introduction 

Consider the multiple objective linear programming (MOLP) problem with k objec-
tive functions (criteria), n decision variables and m constraints: 

 max  z1(x) = c1x 
 max  z2(x) = c2x 
 … 
 max zk(x) = ckx 
 s.t.  x ∈ S = {x∈ ℜn | Ax ≤ b, x ≥ 0} 

(1) 

where A is a m×n matrix, b∈ ℜm  and ci ∈ ℜn (i=1,…,k). Assume that S is non-empty 
and bounded. 

Let E denote the set of all efficient (nondominated or Pareto optimal) solutions of 
the MOLP problem. Further, let z* be the ideal point whose components *

iz , i=1,…,k, 

are the maximum objective values over the efficient set E, and let nad
iz , i=1,…,k, be 

the minimum objective values over E, which form the so-called nadir point znad. Be-
low we denote by nadz~  an estimate of znad. 



 An Evolutionary Algorithm to Estimate the Nadir Point in MOLP 541 

The ideal and the nadir values together provide valuable information for character-
izing the ranges of the objective values over the efficient set. While the ideal values 
are easy to obtain by maximizing each objective function individually in the feasible 
region S, the nadir values are very hard to determine in the general case (except in the 
bi-objective case) because the efficient set is not known explicitly and it is non-
convex, even in MOLP. Due to these difficulties, the minimum column values of the 
payoff table have been often considered as estimates of the nadir values. In a payoff 
table the ith row is an objective vector resulting from maximizing the ith objective in-
dividually, and we assume that all row vectors are nondominated. Thus, the minimum 
objective values in the payoff table do not underestimate, but may overestimate, the 
nadir values. Computational experiments have demonstrated that the discrepancies 
between the minima in the payoff table and the minima over the efficient set can be 
very large ([1], [2]). 

Research on computing the nadir point has not been vast. Authors have recognized 
that computing the nadir objective values is an important but difficult task. A few 
dedicated approaches have been proposed, which either aim at finding the exact nadir 
values ([1], [2], [3]) or to approximate them using heuristic algorithms ([4], [5], [6]). 
Finding each component of the nadir point is a particular instance of the problem of 
optimizing a function over the efficient solution set, which has been addressed by 
several authors. An overview of existing algorithms for this global optimization prob-
lem is reported in [7]. Although these approaches are theoretically able to compute 
the nadir values, they present rather complex algorithms.  

Among the more recent algorithms, there are the evolutionary approaches proposed 
by Deb et al. [6] to estimate the nadir point for linear and nonlinear multi-objective 
problems. The authors propose some modifications on the evolutionary multi-
objective optimization procedure NSGA-II [8] to focus its search on extreme solu-
tions of the nondominated solution set.  

Also, an exact method for computing the nadir values in MOLP has been recently 
developed by the authors of this paper [2]. This method was applied to a set of MOLP 
problems whose results are used to test the performance of the evolutionary algorithm 
we propose herein.  

In this paper we propose a new evolutionary algorithm for MOLP problems which 
aims at estimating all the components of the nadir point in one run. It uses a popula-
tion of weight vectors with particular characteristics having the purpose of finding 
good estimates of the nadir objective values. The weight vectors are in turn used as 
parameters in the optimization of weighted-sums of the objective functions, so the 
computed solutions to the MOLP problem (1) are guaranteed to be efficient. Repro-
duction and mutation are applied to the individuals (weight vectors) and a particular 
fitness function and a selection procedure are employed to update the population for 
the next generation. This evolutionary algorithm is described in Section 2. Section 3 
reports the computational experience, firstly considering a three-objective linear prob-
lem addressed in [6] and then a set of 60 problems with 3 to 6 objective functions 
used in [2]. A result comparison with the exact method [2] is provided. The paper fin-
ishes with some concluding remarks in Section 4. 
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2   The Evolutionary Algorithm 

It is known that the nadir objective values of a MOLP problem can be found among 
its basic efficient solutions. Moreover, the nadir value of the objective zi is provided 
by an efficient solution of the sub-problem with (k-1) objectives obtained by dropping 
zi(x) from the MOLP problem (1) (see [3]). Consequently, the ith component of the 
nadir point can be found among the efficient solutions of (1) that optimize the 
weighted-sum program (2) with weight vectors w ≥ 0 such that wi = 0 (or nearly zero). 

Sx

xzw
k

j

jj

∈

∑
=

s.t.

)(max
1  (2) 

The weights used in (2) must be strictly positive to ensure that only efficient solutions 
are computed. So, zero components of w are replaced with ε, a very small positive 
scalar but computationally significant (e.g. 0.0001). Below, a component of w equal 
to ε is referred to as a zero-component. 

The basic principle of the proposed algorithm is to use weight vectors with at least 
one zero-component to constitute the populations of the evolutionary process. The in-
dividuals are of type w=(w1, w2, …,wk) with wj ∈ [ε, 1] for all j=1,…,k and wi =ε for at 
least one i. They are coded as real vectors. 

2.1   Initial Population 

Define N as the population size, which is considered to be a multiple of k. To form the 
initial population P0, the first k individuals are defined deterministically while a ran-
domized scheme is used to generate the other (N-k) individuals. 

The first k individuals are extreme weight vectors, which lead to efficient solutions 
that optimize individually each objective function. They are: w(1) =(1, ε, ε,…,ε), 
w(2) = (ε, 1, ε,…,ε), w(3) =(ε, ε, 1,…,ε), …, w(k) =(ε, ε, ε,…,1). The remaining indi-
viduals are generated as follows. Create (N-k) vectors w in which each wj is a random 
number between ε and 1. Then, split this set of vectors into k equal-sized groups and 
set w1=ε in the vectors from the first group, w2=ε in the vectors from the second 
group, and so on. Hence, the initial population has a configuration like the one shown 
in figure 1, where grey cells represent zero-components and empty cells represent 
randomly generated values. 

For each w∈ P0 the weighted-sum (2) is optimized, producing a set of efficient so-
lutions to the MOLP problem. Let E0 designate the set of objective vectors z =z(x) of 
the efficient solutions obtained in this step. These vectors are used to initialize the es-
timate of the nadir point. So, { }0

' '|min~ Ezzz i
nad
i ∈= , i = 1,…,k. 

As E0 includes the nondominated vectors that maximize each objective function 
individually (generated by the first k individuals of the population), then the initial 
approximation for the nadir point is at least as good as the one obtained from the pay-
off table. 
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Fig. 1. Configuration of the initial population 

2.2   Recombination and Mutation 

A random mate selection is employed, in which N pairs of individuals are randomly 
chosen from the current population Pt (where t denotes the generation index). 

For each pair wp1 and wp2 of parents selected for reproduction a number r from 0 to 
1 is drawn at random. The child wc of wp1 and wp2 is generated as follows. First, set wc 

to be the convex combination of wp1 and wp2 defined by r, i.e., 21 )1( p
j

p
j

c
j wrrww −+=  

for all j =1,…,k. Then, assign the zero-component(s) in the following way: for each 

i∈{1,…,k} such that 1p
iw = ε or 2p

iw = ε draw at random ai ∈]0,1]; if (ai ≤ r and 
1p

iw = ε) or (ai > r and 2p
iw = ε) then set c

iw = ε. As a result of this process, a zero-

component common to both parents is always inherited by the child. 
The mutation operator is next applied to the offspring considering a probability pm 

(typically, 0.01) of mutating each gene. Mutation of a gene consists of replacing that 
gene with a random number between ε and 1. 

After recombination and mutation, a set of N offspring weight vectors is obtained. 
However, some of them may be considered non-eligible for integrating the offspring 
population. A wc is discarded when  

(a) it has no zero-component,  
(b) it has k or (k-1) zero-components, or  
(c) it results from a pure convex combination of parents that correspond to the 

same efficient solution of the MOLP problem.  

Weight vectors with none or all components equal to ε are not considered for natu-
ral reasons. In addition, a vector with all components but one equal to ε would act (in 
principle) like one of the first k individuals from the initial population, leading to a 
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nondominated objective vector in the payoff table. Finally, an offspring weight vector 
whose parents correspond to the same efficient solution and is a pure convex combi-
nation of their parents (i.e, it only inherited the zero-components common to both 
parents and did not suffer mutation) is discarded because it leads to the same efficient 
solution. Actually, the region of weight vectors associated with one efficient solution 
is convex. 

The remaining children constitute the offspring population Pc with Nc ≤ N indi-
viduals. For each wc∈ Pc the weighted-sum program (2) is optimized, yielding an effi-
cient solution xc whose objective vector is zc = z(xc). Then, nad

iz~  is updated with c
iz  

for all i ∈{1,…,k} such that c
iz < nad

iz~ . 

2.3   Fitness and the Selection Procedure 

The offspring population Pc is joined with the parent population Pt in an auxiliary 
pool Paux (of size Nc +N) and a fitness value is assigned to each individual in this pool. 
A selection procedure is then carried out on Paux in order to choose the individuals 
that constitute the population for the next generation.  

The fitness assignment to an individual w both incorporates a quality measure, 
which results from the differences between the values of nadz~  and of the nondomi-
nated objective values corresponding to w, and incorporates density information in 
order to preserve diversity. The latter aims at ensuring that the algorithm searches for 
good approximation values in all the dimensions i =1,…,k of the nadir point, not giv-
ing privilege to some i in relation to others.  

Consider a weight vector aw ∈ Paux and let az  be the corresponding nondominated 
objective vector obtained from the optimization step. Then, its quality measure aθ  is 
defined as: 
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Since nadz~  has been updated for all nondominated solutions already computed, then 
0~ ≤− a

i
nad

i zz for every az  and every i. For a given az , picking the maximum differ-

ence for i=1,…,k means evaluating the solution by the objective function that is closer 
to the respective component of the nadir approximation vector. The denominator is in-
tended to normalize the ranges. Hence, a solution with the current minimum value in 
any objective is assigned the maximum value of the quality measure, that is aθ =0, 
whereas the others are assigned negative values. The measure aθ  (and then the fitness 
value) is to be maximized. 

Although the quality measure provides a rank of the individuals, this rank does not 
take into account that there may be many solutions close to the nadir point in the same 
component(s), while only a few solutions are close to the nadir point in other compo-
nents. This fact could lead to a low rate of survival of individuals associated with the 
latter solutions in relation to the former ones. The evolutionary process could thus fa-
vour some objective functions (in the sense of obtaining a good approximation of the 
corresponding nadir values) over the others. Therefore, additional information is in-
corporated to define the fitness of aw . 
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Let ia ∈ {1,…,k} be the/a max-ratio index in (3) for the individual aw , that is, ia is 
the/a component index such that )~()~(θ * nad

ii
a
i

nad
i

a
aaaa zzzz −−= . Further let COUNT (ia) 

be the number of individuals in Paux for which the max-ratio index is equal to ia, i.e., 
COUNT (ia) = |{ 'w ∈ Paux : 'i =ia}|, where | . | denotes the cardinality of a set. An indi-
vidual will become less powerful with the increase of the cardinality of its subset. 

Since aθ ≤ 0 and it is to be maximized, in the following expression of F( aw ) that 
defines the fitness value of aw , the COUNT(ia) factor weakens aθ  (except when aθ =0 
which is only attained by the best individuals). 

F( aw ) = aθ × COUNT (ia) (4) 

Then, the environmental selection procedure chooses N elements of Paux to consti-
tute the population of the next generation, Pt+1, in the following way: 

First, k individuals are chosen according to an elitist selection mechanism. These 
are individuals that have yielded the current estimate of the nadir point, one individual 
for each component i=1,…k of the nadir point. Hence, for each i=1,…k, the first indi-
vidual aw  such that F( aw )=0 and ia = i is selected. Next, N-k binary tournaments are 
performed in Paux to select the other individuals that form Pt+1. In each binary tourna-
ment, the individual with higher fitness is chosen. During the whole selection proce-
dure, once an individual is copied to Pt+1 it is also deleted from Paux. 

2.4   Steps of the Algorithm 

The complete algorithm can be synthesized as follows: 

Input: N (population size) 
 T (maximum number of generations) 
 pm (probability of mutation) 

Output: nadz~  (estimate of the nadir point) 

Step 1. Initialization: Generate an initial population P0 of weight vectors kw +ℜ∈  

such that the first k vectors are extreme weight vectors (which enable to 
compute the payoff table) and the other N-k vectors are randomly generated 
with at least one zero-component. For each w∈ P0 optimize the weighted-
sum program (2), and then initialize nadz~ . Set t =0. 

Step 2. Offspring generation: Randomly select N pairs of individuals from Pt for re-
production. Apply recombination to each pair to generate an offspring and then 
apply the mutation operator with probability pm. Discard offspring that do not 
meet some criteria (cf. Section 2.2) forming an offspring population Pc with Nc 
≤ N elements. Optimize the program (2) for each wc∈ Pc and update nadz~ . 

Step 3. Fitness assignment and environment selection: Calculate the fitness value for 
all individuals in Pt and Pc (cf. Section 2.3) and join these individuals in an 
auxiliary pool Paux. Elitism: select k best individuals of Paux with respect to 
each component of the nadir point to introduce into the next population Pt+1. 
Then, perform N-k binary tournaments in Paux to fill up Pt+1. Each selected 
individual is copied to Pt+1 and deleted from Paux.  

Increment the generation counter, t = t+1. If t = T then stop, else go to 
Step 2. 
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3   Computational Experience 

The algorithm was implemented in Delphi 2007 for Windows and tested in a com-
puter CPU T9500, 2.6 GHz with 4 GB of RAM. In this section we report the results 
of two experiments. The first experiment concerns a 3-objective linear problem tested 
in [6] (this is the only linear problem addressed in [6] as the proposed approaches are 
devoted to general multi-objective programming problems, linear and non-linear). In 
the second experiment, we applied the algorithm to 60 MOLP problems with 3 to 6 
objective functions for which the true nadir points are known because these problems 
have already been analysed with the exact method in [2]. We have chosen this set of 
problems because the quality of the results returned by the evolutionary algorithm can 
be better evaluated by comparing them with the true nadir values (which are available 
in the URL referenced in [2]). We have also run the exact method on the computer re-
ferred to above in order to compare computing times. Therefore, all the times pre-
sented herein were recorded in the same machine. 

3.1   A Three-Objective Linear Problem 

Consider the following three-objective linear problem, which was used by Deb et al. 
[6] and had been previously described in [5]. The nadir point of this problem is znad 
= (0, 0, 0) and none of the nadir values is in the payoff table [5]. 
 

max z1 = 11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7 
max z2 = 11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7 

max z3 = 11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7 

 s.t. 1
7

1
=∑ =i ix ,       xi ≥ 0,   i = 1, 2,…,7 

(5) 

 

Deb et al. [6] applied three NSGA-II approaches (NSGA-II, extremized crowded 
NSGA-II and worst crowded NSGA-II) to this problem considering a standard pa-
rameter setting, in which the population size was set to 100. A repair mechanism was 
used to make every solution a feasible one. The authors notice that the extremized 
crowded NSGA-II is able to find both minimum and maximum objective values cor-
responding to the efficient solutions. That approach is able to provide a stable and 
correct estimate of the nadir point. On the other hand, the worst crowded NSGA-II is 
unable to estimate the nadir point reliably.  

We applied our evolutionary algorithm to this problem, setting pm=0.01 and con-
sidering two population sizes, 10 and 18. Note that, while NSGA-II approaches work 
with feasible solutions to the MOLP problem, the algorithm proposed herein works 
with efficient solutions, which justifies setting the population size to a much smaller 
number. We have analysed the quality of the nadir point estimate with the generation 
number in 30 runs of the algorithm. Since the algorithm provides very often the true 
nadir point to this problem, we report in figure 2 the number of completely successful 
runs out of the 30 runs, i.e. the percentage of runs in which all the nadir components 
were correctly estimated. For N=10, one out of the 30 runs was not able to reach all 
the nadir components until the 20th generation (it failed to reach one nadir value). For 
N=18, all the 30 runs reached all the nadir components in 5 or less generations.  
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Fig. 2. Percentage of the 30 runs that yielded the true nadir point in problem (5) 

It should be noticed that, although the algorithm can find the nadir point without 
difficulty, this is not an efficient algorithm to solve this so small problem. In fact, we 
present it only for illustration purposes, because the nadir point of this problem can be 
computed very easily and quickly by an exact method such as [2]. 

3.2   Test Problems  

The problem set used in this experiment to test the evolutionary algorithm consists of 
MOLP problems randomly generated with k = 3, 4, 5 and 6 objective functions and 
the following numbers of decision variables (n) × constraints (m): 60×30, 80×40 and 
100×50. For each combination of k with (n×m), five instances (with indexes a, b, c, d 
and e) were generated, in a total of 60 test problems. The coefficients of the objective 
functions (cij, i = 1,…k, j = 1,…,n), the technical coefficients (aij, i = 1,…m, 
j = 1,…,n) and the right-hand sides of the constraints (bi, i = 1,…m) are integer num-
bers randomly generated in the following ranges (where p means probability): . 
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These problems are available at http://www4.fe.uc.pt/mjalves . 
We have first conducted some preliminary tests in order to set the parameter values 

of the evolutionary algorithm: N (population size), T (number of generations) and pm 
(probability of mutation). It has sounded satisfactory to consider pm=0.01 and define 
N and T as linear functions of k for this problem set. Accordingly, the parameters 
were defined as N=6k and T =10k. We suppose, however, that these parameter values 
may not suffice for large values of k and perhaps a quadratic function of k could be 
more adequate for those cases. 

For each problem, 30 runs of the evolutionary algorithm with different random 
seeds were carried out. Below we report on results of two studies. 

The first study is designed to analyse the effect on the performance of the evolu-
tionary algorithm of increasing the number of objective functions or the size of the 
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problem (n×m). For this study we only use the instances with index a. The problems 
a_3_60×30, a_4_60×30, a_5_60×30, a_6_60×30 and further a_7_60×30 aim to ana-
lyse the effect of incrementing k keeping equal the numbers of variables and con-
straints (the last problem was added specifically for this study as it does not belong to 
the original set). Next, fixing k=5 and varying (n×m) we consider the sequence 
a_5_60×30, a_5_80×40, a_5_100×50 in order to analyse the effect of increasing the 
size of the problem keeping equal the number of objective functions. The results of 
these problems are shown in Table 1, which includes a column for each objective 
function presenting the minimum value in the payoff table, the true nadir value and 
the best, worst and median estimate values obtained from the 30-runs experiment.  

The computing time required by the evolutionary algorithm to estimate the nadir 
point in this series of problems varies from 0.5 seconds (in a_3_60×30) to 3.7 seconds 
(in a_7_60×30), increasing by about 1 second for each objective function that is 
added to the problem and keeping equal the other dimensions of the problem. On the 
other side, the computing time with the exact method is initially low (0.2 seconds in 
a_3_60×30) but increases very quickly: for a given k it can be ten times higher than 
for k-1. Its maximum is about 1600 seconds in a_7_60×30. In case that k is fixed to 5 
and n×m is increased the differences between the computing times with the evolution-
ary algorithm and the times with the exact method are not so significant. It is worth-
while to note that a relevant conclusion from the previous experience with the exact 
method states that the computational effort increases significantly with the number of 
objectives, rather than with the number of variables and constraints [2]. 

Concerning the quality of the solution, we observed that the true nadir point of the 
instance a_3_60×30 was obtained in 28 out of the 30 runs of the algorithm. However, 
one run takes more time than executing the exact method. In the instance with 4 objec-
tive functions, all the true nadir values were also found several times. In the other in-
stances with k = 5 to 7, the number of true nadir values found by the algorithm at least 
once varied from 3 to 5. For all instances used in this experiment only one nadir value 
is in the payoff table, so the other 34 nadir values are lower than the corresponding 
payoff minima. Note that we consider payoff tables constructed with nondominated 
vectors, so they do not underestimate the nadir values. The worst estimate produced for 
each value in this 30-runs experiment improved the payoff minimum for 30 out of 
these 34 values. One of the remaining 4 values is also the median estimate (for z4 in 
a_5_60×30), while the other three worst values were produced in only 1 or 2 runs. 

The second study considers all the 60 test problems. We first consider the perform-
ance measure proposed in [6] for cases in which the nadir point is known. This  
measure consists of computing the normalized Euclidean distance (D) between the 
true nadir point and the estimated nadir point. 
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For each instance we calculate the measure D by averaging the Ds values obtained 
from the 30 runs of the algorithm. The same rule is applied to calculate the computing 
time spent by the evolutionary algorithm in each instance. Further, Avg D and Avg 
time are computed for each group k_n×m. They are given by the average values of D 
and time, respectively, of the five instances a to e from each group. 
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Graphs of Figure 3 display the Avg D values. As can be seen in this figure, the av-
erage normalized Euclidean distance between the true nadir point and the estimated 
nadir point increases with k (which in part is explained by the mathematical formula 
of D) but is small in all cases: it range from 0.007 (in group 3_60×30) to 0.179 (in 
group 6_100×50). 

Table 1. Results of the instances a_k_60×30 with k=3,...,7,  a_5_80×40 and a_5_100×50 

   z1 z2 z3 z4 z5 z6 z7 
 Min payoff 59.93 434.66 103.81     

 True nadir -162.79 321.21 64.68     

a_3_60×30 Best estimate -162.79 321.21 64.68     

 Worst estimate -34.31   384.79 64.68     

 Median estimate -162.79 321.21 64.68     

 Min payoff 59.93 303.21 103.81 226.04    

 True nadir -162.79 277.89 64.68 226.04    

a_4_60×30 Best estimate -162.79 277.89 64.68 226.04    

 Worst estimate 59.93 303.21 94.47 226.04    

 Median estimate -162.79 297.60 64.68 226.04    

 Min payoff 59.93 303.21 103.81 226.04 188.51   

 True nadir -359.98 227.19 64.68 -39.78 -59.36   

a_5_60×30 Best estimate -359.98 227.19 64.68 75.01 -59.36   

 Worst estimate -162.79 297.60 94.47 226.04 -51.44   

 Median estimate -332.83 283.05 78.97 226.04 -59.36   

 Min payoff 59.93 303.21 53.46 226.04 188.51 435.26  

 True nadir -359.98 192.75 30.22 -49.17 -59.36 3.50  

a_6_60×30 Best estimate -359.98 192.75 30.22 -49.17 -59.36 90.27  

 Worst estimate -57.94 203.71 40.24 193.82 175.81 211.84  

 Median estimate -250.48 200.07 30.22 -49.17 -55.40 107.60  

 Min payoff 59.93 303.21 53.46 226.04 188.51 -208.34 467.77 

 True nadir -515.47 192.75 30.22 -135.54 -59.36 -546.68 -26.25 

a_7_60×30 Best estimate -515.47 200.07 30.22 -49.17 -59.36 -538.54 1.72 

 Worst estimate -369.02 278.65 53.46 87.16 41.01 -468.82 72.12 

 Median estimate -507.82 200.07 30.22 66.06 -59.36 -538.54 1.72 

 Min payoff -187.37 154.09 -546.20 14.69 5.21   

 True nadir -430.86 -161.40 -623.38 -140.72 -59.79   

a_5_80×40 Best estimate -428.53 -161.40 -623.38 -140.72 -24.30   

 Worst estimate -330.14 16.57 -623.38 -68.46 1.06   

 Median estimate -383.62 -159.50 -623.38 -140.72 -24.30   

 Min payoff 939.16 164.93 184.17 1906.06 319.05   

 True nadir -495.68 -374.06 -16.25 574.26 -90.83   

a_5_100×50 Best estimate -493.10 374.06 -16.25 574.26 -90.83   

 Worst estimate -394.56 -237.90 101.03 1126.06 101.17   

 Median estimate -470.49 -297.97 33.32 1037.10 -90.83   
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Figure 4 shows the average computational times (Avg time) spent by the evolution-
ary algorithm and by the exact method. A logarithmic scale is used to display the 
times (in seconds) due to the large differences between the exact method times and 
the evolutionary algorithm times in problems with 5 and 6 objective functions. Ob-
serving this figure we can realize that for problems with 3 objective functions and up 
to 100 variables and 50 constraints the exact method proposed in [2] is faster than the 
evolutionary algorithm, besides ensuring that the true nadir point is yielded. On the 
other side, for problems with 5 and 6 objective functions the differences in times are 
very significant. An estimate of the nadir point for a problem with 6 objective func-
tions, 100 variables and 50 constraints can be obtained in about 1% of the time taken 
by the exact method. 
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Fig. 3. Average measure D for each group 

Although the results presented seem to indicate that the evolutionary algorithm can 
produce good estimates for this set of problems, we believe that, besides D, there are 
other performance measures that can be useful to assess the quality of an estimated 
nadir point.  

First of all, note that the normalization factors may be critical because large ranges 

of nad
ii zz −*  may lead to a low discrimination of ( ) ( )nad
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i zzzz −− *~  and give an 

incorrect perception of the quality of the estimate. So, we propose to first compute, 
for each component, a normalized difference (di) between the estimate and the nadir 
value, which uses the minimum of the payoff table instead of the ideal value to define 
the normalization factor: 
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where payoff
iz  is the minimum of the objective i in the payoff table. 
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Fig. 4. Average computing times (in a logarithmic scale) for each group 

The di values can range from 0 to 1, where 1 is the worst possible value which is at-
tained when the estimate is equal to the payoff minimum and this is not the true nadir 
value. We now consider two performance measures based on di. The first one, in (8), 
computes the average normalized difference di for i=1,…,k. The second one, in (9), evalu-
ates a point estimate by its worst component by computing the maximum difference di. 
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As before, the average values of d  and maxd  for each group of equal sized prob-
lems (k_n×m) have been computed. These values are shown in tables 2 and 3 and are 
plotted in graphs of figure 5. As can be seen, apart from the problems with 3 objective 
functions and the group 4_60×30 the values of these performance measures do not 
show a sharp tendency of increasing with the size of the problem or the number of ob-

jective functions. Values of d  indicate that on average an estimate value differs from 
the true nadir value about 20% of the range from the nadir value to the minimum in 

the payoff table; the maxd measure indicates that the worst component-wise estimate 
may be in the middle of the range or closer to the minimum in the payoff table (when 

maxd >0.5). We should however note that, while the normalization factors that use the 
ideal values ( nad

ii zz −* ) may lead to a low discrimination of the ratios used in D, the 

normalization factors used herein ( nad
i

payoff
i zz − ) may produce the opposite effect 

when there is a small difference between a nadir value and the corresponding mini-

mum in the payoff table. This can lead to a large di (and, consequently, large maxd  or 

d ) even when the estimate is, in absolute value, close to the true nadir value. 
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Table 2. Average values of d  for each group k_n×m 

  n×m 
  60x30 80x40 100x50 

3 0.02 0.07 0.10 

4 0.11 0.20 0.17 

5 0.18 0.20 0.22 
k 

6 0.16 0.23 0.20 

Table 3. Average values of maxd  for each group k_n×m 

  n×m 
  60x30 80x40 100x50 

3 0.07 0.20 0.24 

4 0.36 0.57 0.45 

5 0.51 0.58 0.58 
k 

6 0.56 0.71 0.52 

 

Fig. 5. Average values of d  and maxd  for each group 

At last, we have analysed the number of true nadir values found in at least one run 
of this 30-runs experiment, disregarding the cases where the nadir values are certainly 
found because they are in the payoff table. In this set of problems, the total number of 
nadir objective values is 270 (45, 60, 75 and 90 respectively for problems with 3, 4, 5 
and 6 objective functions) and 237 of them are not in the payoff table (i.e., 26, 51, 70 
and 90 respectively for 3 to 6-objective problems). The algorithm was able to find 
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76% of the hidden nadir values (180 out of the 237 exact values) at least once. The 
disaggregated percentages are 100%, 88%, 76% and 62%, respectively for the prob-
lems with 3, 4, 5 and 6 objectives.  

4   Concluding Remarks 

In this paper we have presented an evolutionary algorithm for estimating the nadir 
point in MOLP problems. This algorithm has been compared with an exact method 
that we have previously developed. A computational experiment was conducted using 
60 MOLP problems with 3 to 6 objective functions, 60, 80 and 100 variables, and 30, 
40 and 50 constraints. 

The evolutionary algorithm sounds to be efficient in problems with 4 or more ob-
jective functions as it was able to find a good approximation of the nadir point in a 
short time. In problems with 3 objective functions and up to 100 variables and 50 
constraints the exact method was faster, besides ensuring that the true nadir point is 
computed. We have computed three performance measures. The first one was pro-
posed by Deb. et al. [6] and the other two are new metrics that use the minima of the 
payoff table instead of the ideal values to define normalization factors. All of them as-
sume that the true nadir values are known, and present advantages and disadvantages. 

The evolutionary algorithm seems promising but further tests must be carried out 
using larger problems with more objective functions. Clearly, other performance 
measures must be studied for the cases where the true nadir point is not known. 
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Abstract. This paper proposes the Necessary-preference-enhanced
Evolutionary Multiobjective Optimizer (NEMO), a combination of an
evolutionary multiobjective optimization method, NSGA-II, and an in-
teractive multiobjective optimization method, GRIP. In the course of
NEMO, the decision maker is able to introduce preference information
in a holistic way, by simply comparing some pairs of solutions and speci-
fying which solution is preferred, or comparing intensities of preferences
between pairs of solutions. From this information, the set of all com-
patible value functions is derived using GRIP, and a properly modified
version of NSGA-II is then used to search for a representative set of all
Pareto-optimal solutions compatible with this set of derived value func-
tions. As we show, this allows to focus the search on the region most
preferred by the decision maker, and thereby speeds up convergence.

1 Introduction

Most of past research on evolutionary multiobjective optimization (EMO) at-
tempts to approximate the complete Pareto-optimal front by a set of
well-distributed representatives of Pareto-optimal solutions. The underlying rea-
soning is that in the absence of any preference information, all Pareto-optimal
solutions have to be considered equivalent.

On the other hand, in most practical applications, the decision maker (DM)
is eventually interested in only a small subset of good solutions, or even a single
most preferred solution. In order to come up with such a result, it is necessary
to involve the DM. This is the underlying idea of another multiobjective opti-
mization paradigm: interactive multiobjective optimization (IMO). IMO deals
with the identification of the most preferred solution by means of a systematic
dialogue with the DM. Only recently, the scientific community has discovered
the great potential of combining the two paradigms (for a recent survey, see

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 554–568, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Interactive Evolutionary Multiobjective Optimization 555

[14]). From the point of view of EMO, involving the DM in an interactive pro-
cedure will allow to focus the search on the area of the Pareto front which is
most relevant to the DM. This, in turn, may allow to find preferred solutions
faster. In particular, in the case of many objectives, EMO has difficulties, because
the number of Pareto-optimal solutions becomes huge, and Pareto-optimality is
not sufficiently discriminative to guide the search into better regions. Integrat-
ing user’s preferences promises to alleviate these problems, allowing to converge
faster to the preferred region of the Pareto-optimal front.

This paper combines NSGA-II [3], a widely used EMO technique, with an
IMO methodology from multiple criteria decision aiding (MCDA), originally
conceived to deal with a limited number of alternatives. This methodology relies
on the Robust Ordinal Regression approach recently implemented in the two
methods, UTAGMS [10] and GRIP [7]. In these methods, the user is presented
with a small set of alternatives and can state his/her preferences by specifying
a holistic preference of one alternative over another, or comparing intensities of
preferences between pairs of alternatives. The user can also compare intensities
of preferences with respect to single criteria. Robust ordinal regression then
identifies the whole set of additive value functions (also called utility functions)
compatible with the preference information given by the user. This permits to
compare any pair of alternatives x and y in a simple and intuitive way, as follows:

– x is necessarily at least as good as y, if this is true for all compatible value
functions,

– x is possibly at least as good as y, if this is true for at least one compatible
value function.

The interactive EMO method we are proposing, called NEMO (Necessary-
preference-enhanced Evolutionary Multiobjective Optimization), takes the infor-
mation about necessary preferences into account during optimization, focusing
search on the most promising parts of the Pareto-optimal front. More specifically,
robust ordinal regression based on information obtained through interaction with
the user determines the set of all compatible value functions, and an EMO pro-
cedure searches for all non-dominated solutions with respect to all compatible
value functions in parallel. In the context of EMO, the alternatives considered
in GRIP are solutions of a current population.

We believe that the integration of GRIP into EMO is particularly promising
for two reasons:

1. The preference information required by GRIP is very basic and easy to
provide by the DM. All that is asked for is to compare two solutions, and
to reveal whether one is preferred over the other. Additionally, the DM can
compare the intensity of preference between pairs of solutions.

2. The resulting set of compatible value functions implicitly reveals also an
appropriate scaling of the criteria, an issue that is largely ignored by the
EMO community so far.

The paper is organized as follows. The next section provides a brief overview
of existing EMO/IMO hybrids. Section 3 describes the basic concepts of robust
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ordinal regression, presenting UTAGMS and GRIP. Then, Section 4 presents the
basic ideas of our method, NEMO. Preliminary empirical results are reported
in Section 5. The paper concludes with a summary and some ideas for future
research.

2 Interactive Evolutionary Multiobjective Optimization

There are various ways in which user preferences can be incorporated into EMO.
Furthermore, there are many IMO techniques, and most of them are suitable for
combination with EMO.

A form of preference information often used is a reference point, and various
ways to guide the search towards a user-specified reference point have been
proposed. Perhaps the earliest such approach has been presented in [8], which
gives a higher priority to objectives in which the goal is not fulfilled. [5] suggests
to use the distance from the reference point as a secondary criterion following
the Pareto ranking. [22] uses an indicator-based evolutionary algorithm, and an
achievement scalarizing function to modify the indicator and force the algorithm
to focus on the more interesting part of the Pareto front.

In the guided MOEA proposed in [2], the user is allowed to specify preferences
in the form of maximally acceptable trade-offs like “one unit improvement in
objective i is worth at most aji units in objective j”. The basic idea is to modify
the dominance criterion accordingly, so that it reflects the specified maximally
acceptable trade-offs.

[4] proposes an interactive decision support system called I-MODE that im-
plements an interactive procedure built over a number of existing EMO and
classical decision making methods. The main idea of the interactive procedure is
to allow the DM to interactively focus on interesting region(s) of the Pareto front.
The DM has options to use several tools for generation of potentially Pareto-
optimal solutions concentrated in the desired regions. For example, he/she may
use weighted sum approach, utility function based approach, Tchebycheff func-
tion approach or trade-off information. The preference information is then used
by an EMO to generate new solutions in the most interesting regions.

There are several additional papers that integrate EMO and IMO, but due
to space constraints, we refer the interested reader to two recent reviews [14,1].
Instead, in the following, we shall restrict our attention to three papers that
perhaps come closest to what we propose in this paper, namely [11], [19], and
[13].

[11] suggests a procedure which asks the user to rank a few alternatives, and
from this derives constraints for linear weighting of the objectives consistent with
the given ordering. Then, these are used within an EMO to check whether there
is a feasible linear weighting such that solution x is preferable to solution y. If
this is not the case, it is clear that y is preferred to x. The approach differs from
ours in two important aspects: first, the interaction with the user is only prior to
EMO, while our approach interacts with the user during optimization. Second,
the utility function model is only a linear weighting of the objectives, while we
consider general additive value functions.



Interactive Evolutionary Multiobjective Optimization 557

The interactive evolutionary algorithm proposed by [19] allows the user to
provide preference information about pairs of solutions during the run. Based
on this information, the authors compute the “most compatible” weighted sum
of objectives (i.e., a linear achievement scalarizing function) by means of linear
programming, and use this as single substitute objective for some generations
of the evolutionary algorithm. This concept presented in this paper is truly in-
teractive, as preference information is collected during the run. However, as it
reduces the preference information to a single linear weighting of the objectives,
the power of EMO, which is capable of simultaneously searching for multiple so-
lutions with different trade-offs, is not exploited. Furthermore, since only partial
preference information is available, there is no guarantee that the weight vector
obtained by solving the linear programming model defines the DM’s value func-
tion, even if the value function has the form of a weighted sum (naturally, the
bias may become even more significant when the DM’s preferences cannot be
modeled with a linear function).

The method of [13] is based on the Pareto memetic algorithm (PMA). The
original PMA samples the set of scalarizing functions drawing a random weight
vector for each single iteration and using this for selection and local search. In the
proposed interactive version, preference information from pairwise comparisons
of solutions is used to reduce the set of possible weight vectors. While this
approach is more flexible in terms of the considered value function model, and
changes the value function from generation to generation, it still does not make
explicit use of the EMO’s capability to search for multiple solutions in parallel.

Furthermore, all of the methods discussed above require a pre-defined scaling
of the objectives, while we propose a new way that allows to automatically
and continuously adjust the scaling of the objectives to the most likely user
preferences given the information gathered so far.

3 Robust Ordinal Regression

In MCDA, the preference information may be either direct or indirect, depend-
ing whether it specifies directly values of some parameters used in the preference
model (e.g., trade-off weights, aspiration levels, discrimination thresholds, etc.)
or whether it specifies some examples of holistic judgments from which com-
patible values of the preference model parameters are induced. Eliciting direct
preference information from the DM can be counterproductive in real-world de-
cision making situations because of a high cognitive effort required. Eliciting
indirect preferences is less demanding in terms of cognitive effort. Indirect pref-
erence information is mainly used in the ordinal regression paradigm. According
to this paradigm, a holistic preference information on a subset of some reference
or training solutions is known first and then a preference model compatible with
the information is built and applied to the whole set of solutions in order to rank
them.

The ordinal regression paradigm emphasizes the discovery of intentions as an
interpretation of actions rather than as a priori position, which was called by
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March the posterior rationality [16]. It has been known for at least fifty years in
the field of multidimensional analysis. It is also concordant with the induction
principle used in machine learning. This paradigm has been applied within the
two main MCDA approaches: those using a value function as preference model
[21,18,12,20], and those using an outranking relation as preference model [15,17].
This paradigm has also been used since mid nineties’ in MCDA methods involv-
ing a new, third family of preference models - a set of dominance decision rules
induced from rough approximations of holistic preference relations [9].

Recently, the ordinal regression paradigm has been revisited with the aim of
considering the whole set of value functions compatible with the preference infor-
mation provided by the DM, instead of a single compatible value function used
in UTA-like methods [12,20]. This extension, called robust ordinal regression, has
been implemented in a method called UTAGMS [10], and further generalized in
another method called GRIP [7]. UTAGMS and GRIP are not revealing to the
DM one compatible value function, but they are using the whole set of com-
patible (general, not piecewise-linear only) additive value functions to set up a
necessary weak preference relation and a possible weak preference relation in the
whole set of considered solutions.

3.1 Concepts: Definitions and Notation

We are considering a multiple criteria decision problem where a finite set of
solutions A = {x, . . . , y, . . . w, . . .} is evaluated on a family F = {g1, g2, . . . , gn}
of n criteria. Let I = {1, 2, . . . , n} denote the set of criteria indices. We assume,
without loss of generality, that the smaller gi(x), the better solution x on criterion
gi, for all i ∈ I, x ∈ A. A DM is willing to rank the solutions of A from the best
to the worst, according to his/her preferences. The ranking can be complete or
partial, depending on the preference information provided by the DM and on
the way of exploiting this information.

Such a decision-making problem statement is called multiple criteria ranking
problem. It is known that the only information coming out from the formulation
of this problem is the dominance ranking. For any pair of solutions x, y ∈ A,
one of the four situations may arise in the dominance ranking: x is preferred to
y (x dominates y but y does not dominate x), y is preferred to x (y dominates
x but x does not dominate y), x is indifferent to y (x and y dominate each
other), or x is incomparable to y (neither x dominates y nor y dominates x).
Usually, the dominance ranking is very poor, i.e., the most frequent situation is
x incomparable to y, in particular if the number of objectives is high.

In order to enrich the dominance ranking, the DM has to provide preference
information which is used to construct an aggregation model making the solu-
tions more comparable. Such an aggregation model is called preference model.
It induces a preference structure on set A, whose proper exploitation permits to
work out a ranking proposed to the DM.

In what follows, the evaluation of each solution x ∈ A on each criterion gi ∈ F
will be denoted by gi(x).
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Let Gi denote the value set (scale) of criterion gi, i ∈ I. Consequently,

G = G1 ×G2 × . . . ×Gn

represents the evaluation space. From a pragmatic point of view, it is reasonable
to assume that Gi ⊆ R, for i = 1, . . . ,m. More specifically, we will assume that
the value space on each criterion gi is bounded, such that Gi = [αi, βi], where
αi, βi, αi < βi are the worst and the best (finite) evaluations, respectively.
Thus, gi : A → Gi, i ∈ I. Therefore, each solution x ∈ A is associated
with an evaluation solution denoted by g(x) = (g1(x), g2(x), . . . , gn(x)) ∈ G.
For notational simplicity, we will also write xi instead of gi(x) , so g(x) =
(x1, x2, . . . , xn) ∈ G.

We consider a weak preference relation � on A which means, for each pair of
solutions x, y ∈ A,

x � y ⇔ “x is at least as good as y”.

This weak preference relation can be decomposed into its asymmetric and sym-
metric parts, as follows,

1) x � y ≡ [x � y and not(y � x)] ⇔ “x is preferred to y”, and
2) x ∼ y ≡ [x � y and y � x] ⇔ “x is indifferent to y”.

3.2 The Ordinal Regression Method for Learning the Whole Set of
Compatible Value Functions

The additive value function considered in ordinal regression is defined on A such
that for each g(x) ∈ G,

U(g(x)) =
n∑

i=1

ui(gi(xi)), (1)

where, ui are non-increasing marginal value functions, ui : Gi → R, i ∈ I. For
the sake of simplicity, we shall write (1) as follows,

U(x) =
n∑

i=1

ui(x). (2)

Recently, two new methods, UTAGMS [10] and GRIP [7], have generalized the
classical ordinal regression approach of the UTA method [12] in several aspects:

– taking into account all additive value functions (1) compatible with the pref-
erence information, while UTA is using only one such function,

– considering marginal value functions of (1) as general non-decreasing func-
tions, and not piecewise-linear, as in UTA,

– asking the DM for a ranking of reference solutions which is not necessarily
complete (just pairwise comparisons),
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– taking into account additional preference information about intensity of
preference, expressed both comprehensively and with respect to a single
criterion,

– avoiding the use of the exogenous, and not neutral for the result, parameter
ε in the modeling of strict preference between solutions.

UTAGMS produces two rankings on the set of solutions A, such that for any
pair of solutions a, b ∈ A:

– in the necessary ranking, a is ranked at least as good as b if and only if,
U(a) ≥ U(b) for all value functions compatible with the preference informa-
tion,

– in the possible ranking, a is ranked at least as good as b if and only if,
U(a) ≥ U(b) for at least one value function compatible with the preference
information.

GRIP produces four more necessary and possible rankings on the set of solu-
tions A, and on the set of pairs of solutions, A×A.

The necessary ranking can be considered as robust with respect to the pref-
erence information. Such robustness of the necessary ranking refers to the fact
that any pair of solutions is ranked in the same way whatever the additive value
function compatible with the preference information. Indeed, when no preference
information is given, the necessary ranking boils down to the weak dominance
relation (i.e., a is necessarily at least as good as b, if gi(a) ≤ gi(b) for all gi ∈ F ),
and the possible ranking is a complete relation. Every new pairwise comparison
of reference solutions, for which the dominance relation does not hold, is enrich-
ing the necessary ranking and it is impoverishing the possible ranking, so that
they converge with the growth of the preference information.

Moreover, such an approach has another feature which is very appealing in
the context of MOO. It stems from the fact that it gives space for interactivity
with the DM. Presentation of the necessary ranking, resulting from a preference
information provided by the DM, is a good support for generating reactions from
the DM. Namely, he/she could wish to enrich the ranking or to contradict a part
of it. Such a reaction can be integrated in the preference information considered
in the next calculation stage.

The idea of considering the whole set of compatible value functions was origi-
nally introduced in UTAGMS. GRIP (Generalized Regression with Intensities of
Preference) can be seen as an extension of UTAGMS permitting to take into ac-
count additional preference information in form of comparisons of intensities of
preference between some pairs of reference solutions. For solutions x, y, w, z ∈ A,
these comparisons are expressed in two possible ways (not exclusive): (i) com-
prehensively, on all criteria, like “x is preferred to y at least as much as w is
preferred to z”; and, (ii) partially, on each criterion, like “x is preferred to y at
least as much as w is preferred to z, on criterion gi ∈ F ”. In the following, we
shall use GRIP.
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3.3 The Preference Information Provided by the Decision Maker

The DM is expected to provide the following preference information in the dia-
logue stage of the procedure:

– A partial preorder � on AR whose meaning is: for some x, y ∈ AR

x � y ⇔ “x is at least as good as y”.

Moreover, � (preference) is the asymmetric part of �, and ∼ (indiffer-
ence) is its symmetric part.

– A partial preorder �∗ on AR × AR, whose meaning is: for some x, y, w, z ∈
AR,

(x, y)�∗(w, z)⇔“x is preferred to y at least as much as w is preferred to z”.

Also in this case, �∗ is the asymmetric part of �∗, and ∼∗ is its symmetric
part.

– A partial preorder �∗
i on AR × AR, whose meaning is: for some x, y, w, z ∈

AR, (x, y) �∗
i (w, z) ⇔ “x is preferred to y at least as much as w is preferred

to z” on criterion gi, i ∈ I.

In the following, we also consider the weak preference relation �i being a
complete preorder whose meaning is: for all x, y ∈ A,

x �i y ⇔ “x is at least as good as y” on criterion gi, i ∈ I.

Weak preference relations �i, i ∈ I, are not provided by the DM, but they are
obtained directly from the evaluation of solutions x and y on criteria gi, i.e.,
x �i y ⇔ gi(x) ≤ gi(y), i ∈ I.

3.4 Linear Programming Constraints

In this subsection, we present a set of constraints that interprets the preference
information in terms of conditions on the compatible value functions.

To be compatible with the provided preference information, the value function
U : A→ [0, 1] should satisfy the following constraints corresponding to the DM’s
preference information:

a) U(w) > U(z) if w � z
b) U(w) = U(z) if w ∼ z
c) U(w) − U(z) > U(x) − U(y) if (w, z) �∗ (x, y)
d) U(w) − U(z) = U(x) − U(y) if (w, z) ∼∗ (x, y)
e) ui(w) ≥ ui(z) if w �i z, i ∈ I
f) ui(w) − ui(z) > ui(x) − ui(y) if (w, z) �∗

i (x, y), i ∈ I
g) ui(w) − ui(z) = ui(x) − ui(y) if (w, z) ∼∗

i (x, y), i ∈ I

Moreover, the following normalization constraints should also be taken into
account:

h) ui(x∗i ) = 0, where x∗i is such that x∗i = max{gi(x) : x ∈ A};
i)
∑

i∈I ui(y∗i ) = 1, where y∗i is such that y∗i = min{gi(x) : x ∈ A}.

For computational details, the reader is referred to [7].
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3.5 The Most Representative Value Function

The robust ordinal regression builds a set of additive value functions compatible
with preference information provided by the DM and results in two rankings,
necessary and possible. Such rankings answer to robustness concerns, since they
provide, in general, “more robust” conclusions than a ranking made by an ar-
bitrarily chosen compatible value function. However, in some decision-making
situations, it may be desirable to give a score to different solutions, and de-
spite the interest of the rankings provided, some users would like to see, and
they indeed need, to know the “most representative” value function among all
the compatible ones This allows assigning a score to each solution. Recently, a
methodology to identify the “most representative” function in GRIP without
losing the advantage of taking into account all compatible value functions has
been proposed in [6]. The idea is to select among all compatible value functions
the most discriminant value function for consecutive solutions in the necessary
ranking, i.e., that value function which maximizes the difference of scores be-
tween solutions related by preference in the necessary ranking. To break ties,
one can wish to minimize the difference of scores between solutions not related
by preference in the necessary ranking. This can be achieved using the following
procedure:

1. Determine the necessary preference relations in the considered set of solu-
tions.

2. For all pairs of solutions (a, b), such that a is necessarily preferred to b, add
the following constraints to the linear programming constraints of GRIP:
U(a) ≥ U(b) + ε.

3. Maximize the objective function ε.
4. Add the constraint ε = ε∗, with ε∗ being the resulting maximal ε from point

3), to the linear programming constraints of point 2).
5. For all pairs of solutions (a, b), such that neither a is necessarily preferred

to b nor b is necessarily preferred to a, add the following constraints to the
linear programming constraints of GRIP and to the constraints considered
in above point 4): U(a) − U(b) ≤ δ and U(b) − U(a) ≤ δ.

6. Minimize δ.

This procedure maximizes the minimal difference between values of solutions
for which the necessary preference holds. If there is more than one such value
function, the above procedure selects the most representative compatible value
function giving the largest minimal difference between values of solutions for
which the necessary preference holds, and the smallest maximal difference be-
tween values of solutions for which the possible preference holds.

Notice that the concept of the “most representative” value function thus de-
fined is still based on the necessary and possible preference relations, which
remain crucial for GRIP. In a sense, it gives the most faithful representation
of these necessary and possible preference relations. Notice also that the above
procedure can be simplified by joint maximization of Mε− δ where M is a “big
value”.



Interactive Evolutionary Multiobjective Optimization 563

In the following, we will use the most representative value function for con-
tinuously adapting the scaling of the objectives in a non-linear way.

4 Necessary-Preference-Enhanced Evolutionary
Multiobjective Optimization – NEMO

Our main idea is to integrate the concept of GRIP into an EMO approach, in
particular NSGA-II [3]. NSGA-II is one of today’s most prominent and most
successful EMO algorithms. It ranks individuals according to two criteria.

The primary criterion is the so-called dominance-based ranking. This method
ranks individuals by iteratively determining the non-dominated solutions in the
population (non-dominated front), assigning those individuals the next best rank
and removing them from the population. The result is a partial ordering, favoring
individuals closer to the Pareto-optimal front.

As secondary criterion, individuals which have the same dominance-rank (pri-
mary criterion) are sorted according to crowding distance, which is defined as the
sum of distances between a solution’s neighbors on either side in each dimension
of the objective space. Individuals with a large crowding distance are preferred,
as they are in a less crowded region of the objective space, and favoring them
aims at preserving diversity in the population.

In our approach, we will

1. Replace the dominance-based ranking by the necessary ranking. The neces-
sary ranking is calculated analogously to the dominance-based ranking, but
taking into account the preference information by the user through the nec-
essary preference relations. More specifically, first put in the best rank those
solutions which have no competitor which would be necessarily preferred,
remove them from the population, etc.

2. Replace the crowding-distance by a distance calculated taking into account
the multidimensional scaling given by the “most representative value func-
tion” among the whole set of compatible value functions (see sub-section 3.5).
While in NSGA-II the crowding distance is calculated in the space of ob-
jective functions, in NEMO it is calculated in the space of marginal value
functions which are components of the ”most representative” value func-
tion. Given a solution x, its crowding distance is calculated according to the
following formula:

Crowding distance(x) =
n∑

i=1

∣∣ui(yi) − ui(zi)
∣∣− ∣∣∣∣∣

n∑
i=1

[
U(yi) − U(zi)

]∣∣∣∣∣ ,
where U is the “most representative value function”, ui are its marginal
value functions, and yi and zi are left and right neighbors of x in dimension
of marginal value ui. Remark that for a given n, we can have up to 2n
different neighbors of x in all dimensions, due to non-univocal selection of
solutions with equal marginal values. In fact, we select the neighbors such
as to diversify them as much as possible.
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Algorithm 1. Basic NEMO
Generate initial solutions randomly
Elicit user preferences {Present to user a pair of solutions and ask for a preference
information}
Determine necessary ranking {Will replace dominance ranking in NSGA-II}
Determine secondary ranking {Order solutions within a front, based on crowding
distance measured in terms of the “most representative value function”}
repeat

Mating selection and offspring generation
if Time to ask DM then

Elicit user preferences
end if
Determine necessary ranking
Determine secondary ranking
Environmental selection

until Stopping criterion met
Return all preferred solutions according to necessary ranking

Preferences are elicited by asking the DM to compare some pairs of solutions,
and specify a preference relation between them. This is done during the run of
the NSGA-II.

The overall algorithm is outlined in Algorithm 1. Although the general proce-
dure is rather straightforward, there are several issues that need to be considered:

1. How many pairs of solutions are shown to the DM, and when? Here, we
decide to ask for one preference relation every k generations, i.e., every x
generations, NSGA-II is stopped, and the user is asked to provide preference
information about one given pair of individuals.

2. Which pairs of solutions shall be shown to the DM for comparison? Here,
we randomly pick a small set of non-dominated solutions (according to the
necessary ranking). This also prevents the user from specifying inconsistent
information.

5 Experimental Results

An empirical evaluation of interactive EMO methods is difficult, because the
test environment has to include a model of the user behavior. For testing, we
use the simple 30-dimensional ZDT1 test function. We assume that our arti-
ficial user makes decisions with respect to a simple predefined value function
U(x) = −(0.6f1(x) + 0.4f2(x)). This function is unknown to NEMO, but is
used to simulate user’s comparisons of solutions when preferences are elicited.
In every k-th generation, NEMO randomly selects two individuals from the non-
dominated solutions according to the necessary ranking, and receives as feedback
the solution preferred by the DM according to the predefined value function. In
particular, only pairwise comparisons of solutions are considered here, while in-
tensities of preferences between pairs of solutions are not (yet) considered. The
population size has been set to 32.
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Fig. 1. Results of NEMO and NSGA-II on ZDT1 after 50, 100 and 200 generations,
with preference elicitation every 20 generations. The dashed line indicates the artificial
user’s value function.
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Figure 1 shows results of NEMO and NSGA-II after 50, 100 and 200 gen-
erations, when the preference information concerning one pairwise comparison
is gathered every 20 generations. As can be seen, NEMO converges faster than
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NSGA-II. After 50 generations, the solutions obtained by NEMO are as good as
the solutions obtained by NSGA-II after 100 generations. Moreover, in the course
of generations, the population of solutions obtained by NEMO is narrowed to
a smaller part of the Pareto front than the population of solutions obtained by
NSGA-II. This is because NEMO concentrates on on the user-preferred solutions
on the Pareto front, while NSGA-II attempts to approximate the whole front.

The tendency observed in Figure 1 is reinforced when the preferences are
gathered more often. Figure 2 shows results of NEMO and NSGA-II after 50, 100
and 200 generations, when the preference information concerning one pairwise
comparison is gathered in every generation. After 100 generations NEMO is
reaching equally good solutions as NSGA-II after 200 generations. Moreover,
due to the richer preference information than in the previous case, the solutions
obtained by NEMO are focused on a smaller part of the Pareto front.

Figure 3 shows the evolution of the value of the artificial user’s value function
for the most preferred solution in successive generations. It permits to observe
the convergence speed of NEMO and NSGA-II. “NEMO 20” corresponds to the
case presented in Figure 1, and “NEMO 1” to the case presented in Figure 2.

6 Conclusion

We presented an interactive EMO method called NEMO. It combines the advan-
tages of the well known EMO method NSGA-II with an MCDA method GRIP
enabling the user interaction based on robust ordinal regression. The main ad-
vantages of the proposed methodology are the following:
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1. It models the user’s preferences in terms of very general value functions,
2. It requires a preference information expressed in a simple and intuitive way

(comparisons of solutions or comparisons of intensities of preferences),
3. It considers all value functions compatible with the user’s preferences, with

the goal to generate a representative approximation of all Pareto-optimal
solutions compatible with any of these value functions,

4. With respect to crowding distance, it permits to calculate distances in utility
space, rather than objective space, thereby alleviating the need of scaling the
objectives.

Preliminary empirical results show that the proposed NEMO method works
as expected and is able to converge faster to the user-preferred solutions than
NSGA-II without taking user preferences into account.

Clearly, a more thorough empirical analysis on a variety of test functions and
value functions is necessary. Also, we are currently elaborating and extending
the approach in various directions. In particular, we are implementing improved
interaction mechanisms, with adaptive methods to determine when a DM should
be asked for preference information, and what individuals to present for compar-
ison. We will also extend the current interaction to allow additional preference
information to be incorporated. Apart from the above mentioned intensities of
preferences, we plan to integrate into GRIP maximum/minimum trade-off in-
formation, e.g., one unit improvement in objective f1 is worth at most w units
worsening in objective f2.

Finally, we plan to elaborate a slightly different approach: instead of calcu-
lating the necessary preference relation in the population of solutions, we could
look for solutions that are the best for at least one compatible value function.
The expected advantages of this new approach are speeding up of calculations
and of the convergence to the most interesting part of the Pareto front.
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7. Figueira, J., Greco, S., S�lowiński, R.: Building a set of additive value functions
representing a reference preorder and intensities of preference: GRIP method. Eu-
ropean Journal of Operational Research 195(2), 460–486 (2009)

8. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion, and generalization. In: Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, pp. 416–423 (1993)
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Abstract. A nadir point is constructed by the worst objective values of
the solutions of the entire Pareto-optimal set. Along with the ideal point,
the nadir point provides the range of objective values within which all
Pareto-optimal solutions must lie. Thus, a nadir point is an important
point to researchers and practitioners interested in multi-objective opti-
mization. Besides, if the nadir point can be computed relatively quickly,
it can be used to normalize objectives in many multi-criterion decision
making tasks. Importantly, estimating the nadir point is a challenging
and unsolved computing problem in case of more than two objectives.
In this paper, we revise a previously proposed serial application of an
EMO and a local search method and suggest an integrated approach for
finding the nadir point. A local search procedure based on the solution of
a bi-level achievement scalarizing function is employed to extreme solu-
tions in stabilized populations in an EMO procedure. Simulation results
on a number of problems demonstrate the viability and working of the
proposed procedure.

1 Introduction

A nadir point signifies, in principle, opposite to that meant by an ideal point, in
the context of multi-objective optimization. An ideal point is an M -dimensional
objective vector (where M is the number of objectives) constructed with best
feasible objective values and is a comparatively easy to compute. For minimiza-
tion problems, in principle, this calls for solving M single-objective minimization
problems and collecting each optimal objective values to form the ideal point. On
the other hand, a nadir point is constructed with the worst objective values of
Pareto-optimal solutions. In minimization problems, this task is different from
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simply maximizing M objective functions one at a time. This is because the
search of the worst value of an objective must be restricted within the Pareto-
optimal solutions. This is the reason why the estimation of nadir point has been
found to be a complex task [13,11] and there does not exist any provable algo-
rithm for the task, even for linear multi-objective optimization problems having
three or more objectives.

With the advent of efficient evolutionary optimization procedures for multi-
objective optimization, some attention has been made in the recent past in devel-
oping procedures for estimating the nadir point. Simplistic ideas, such as finding
a set of Pareto-optimal solutions by an EMO procedure and then choosing the
extreme solutions for estimating the nadir point, to more sophisticated ideas,
such as replacing the focus of EMO to find a wide-spreaded set of solutions on
the entire Pareto-optimal front to find only the critical extreme Pareto-optimal
points [4,17], are suggested. Most of these EMO methodologies have shown to
find an approximation of the nadir point, rather than to estimate the exact nadir
point. Recent studies [6,5] suggested a two-step serial procedure of employing a
modified NSGA-II procedure to identify extreme near Pareto-optimal solutions
and then a local search procedure to converge to the true extreme Pareto-optimal
points.

In this study, we suggest and simulate a hybrid integrated approach in which a
local search procedure is used within the modified NSGA-II algorithm sparingly
to achieve the nadir point estimation task. We restrict our discussions for real-
parameter optimization problems, but the concept can very well be used for other
types of optimization problems. The suggested local search procedure is based
on utilizing a reference point based approach, a so-called achievement scalarizing
function [18] which is widely used in the MCDM field. Using this scalarized func-
tion, any point in the objective space can be projected on the Pareto optimal
front and the scalarizing function does not need any artificial information like
weights [15]. In the procedure proposed, the achievement scalarizing function
is used in a bi-level manner to guarantee getting reliable enough information
about extreme values in the Pareto optimal front for estimating the nadir point.
Based on a statistical analysis of the performance of the NSGA-II procedure,
the execution of the local search event is decided dynamically at every genera-
tion. Both NSGA-II and local search procedures are terminated using statistical
performance criteria. Simulation results on a number of test problems and three
engineering problems are presented to demonstrate the efficacy of the proposed
procedure.

2 Nadir Objective Vector

We consider multi-objective optimization problems involving M conflicting ob-
jectives (fi : S → R) as functions of decision variables x:

minimize {f1(x), f2(x), . . . , fM (x)} ,
subject to x ∈ S, (1)
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where S ⊂ Rn denotes the set of feasible solutions. Problem (1) gives rise to a set
of Pareto-optimal solutions or a Pareto-optimal front (P ∗), providing a trade-off
among the objectives. In the sense of minimization of objectives, Pareto-optimal
solutions can be defined as follows [15]:

Definition 1. A decision vector x∗ ∈ S and the corresponding objective vector
f(x∗) are Pareto-optimal if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x∗) for all i = 1, 2, . . . ,M and fj(x) < fj(x∗) for at least
one index j.

In what follows, we assume that the Pareto-optimal front is bounded. We now
define a nadir objective vector, that is, a nadir point, as follows.

Definition 2. An objective vector znad = (znad
1 , . . . , znad

M )T constructed using
the worst values of objective functions in the complete Pareto-optimal front P ∗

is called a nadir objective vector.

Hence, for minimization problems we have znad
j = maxx∈P∗ fj(x). Estimation

of the nadir objective vector is, in general, a difficult task. Unlike the ideal
objective vector z∗ = (z∗1 , . . . , z

∗
M )T , which can be found by minimizing each

objective individually over the feasible set S (or, z∗j = minx∈S fj(x)), the nadir
point cannot be formed by maximizing objectives individually over S. To find the
nadir point, Pareto-optimality of solutions used for constructing the nadir point
must be first established. This makes the task of finding the nadir point a difficult
one. To illustrate this aspect, let us consider a bi-objective minimization problem
shown in Figure 1. If we maximize f1 and f2 individually, we obtain points A
and B, respectively. These two points can be used to construct the so-called
worst objective vector, zw. In many problems (even in bi-objective optimization
problems), the nadir objective vector and the worst objective vector are not the
same point, which can also be seen in Figure 1.
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Fig. 1. The nadir and worst objective
vectors

Znad

Z’

B

Ideal
point
Z*

A

B’

C

A’

C’

G’

F’

E’

D’
 1

 0.8
 0.6

 0.4

 0.2

 0.4

 0.6

 0.8

 1

 0 0
 0.2

 1.2
 1.4

 1.6  0.2  0.4  0.6  0.8  1  1.2  1.4

 0

f1

f2

 1.2

 1.4

f3

Fig. 2. Payoff table may not produce the
true nadir point



572 K. Deb, K. Miettinen, and D. Sharma

3 Existing Methods

3.1 Payoff Table Method

Benayoun et al. [1] introduced the first interactive multi-objective optimization
method for estimating the nadir point by using a payoff table. To be more spe-
cific, each objective function is first minimized individually and then a table is
constructed where the i-th row of the table represents values of all objective
functions calculated at the point where the i-th objective obtained its minimum
value. Thereafter, the maximum value of the j-th column can be considered as
an estimate of the upper bound of the j-th objective in the Pareto-optimal front
and these maximum values together may be used to construct an approximation
of the nadir objective vector. The main difficulty of such an approach is that
solutions are not necessarily unique and thus corresponding to the minimum
solution of an objective there may exist more than one solutions having differ-
ent values of other objectives, in problems having more than two objectives. In
these problems, the payoff table method may not result in an accurate estimation
of the nadir objective vector. To illustrate, consider a three-objective problem
shown in Figure 2. Minimization of the first objective will result in any solution
on the trapezium CBB′F′C′C. If the point marked in a small circle on line CB
is obtained by an optimization algorithm and similarly other two circles on lines
CA and AB are obtained for minimizations of f2 and f3, respectively, a wrong
estimate (z′) of the nadir point (znad) will be made.

3.2 Evolutionary Approaches

The nadir point is associated with Pareto-optimal solutions and, thus, deter-
mining a set of Pareto-optimal solutions will facilitate the estimation of the
nadir point. Since an EMO algorithm is aimed at finding a set of Pareto-optimal
solutions, it may be an ideal way to find the nadir objective vector. Several
approaches are proposed recently.

In the naive approach, first a well-distributed set of Pareto-optimal solutions
can be attempted to find by an EMO [4]. Thereafter, an estimate of the nadir
objective vector can be made by picking the worst values of each objective [17].
In the context of the problem depicted in Figure 2, this means first finding
a well-represented set of solutions on the plane ABC and then estimating the
nadir point from them. Since EMO algorithms are not found to converge well
and maintain a well-diverse set of solutions for more than three objectives [7], the
accuracy of the estimated nadir point using the naive approach is questionable.

Szczepanski and Wierzbicki [17] have simulated the idea of solving multiple
bi-objective optimization problems suggested in [8] using an EMO approach
and construct the nadir point by accumulating all bi-objective Pareto-optimal
fronts together. As discussed in our earlier study [5], such a technique is not
generic and requires additional objective and variable-space niching techniques
to correctly estimate the nadir point. Moreover, the procedure requires

(
M
2

)
bi-objective optimizations, making it a daunting task particularly for problems
having more than three objectives.
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However, the idea of concentrating on a preferred region on the Pareto-optimal
front, instead of finding the entire Pareto-optimal front, can be pushed further.
An emphasis can be placed in an EMO approach to find only the critical ex-
treme points of the Pareto-optimal front. Our earlier study [4] suggested two
approaches in the crowding distance operator of the NSGA-II procedure and con-
cluded in favor of the extremized crowding distance approach. In the extremized-
crowded NSGA-II approach [4], we emphasized in concentrating on the best and
worst solutions of each objective. In this approach, solutions on a particular
non-dominated front are first sorted from minimum (with rank R

(m)
i = 1) to

maximum (with rank = Nf ) based on each objective. The rank of solution i for
the m-th objective R(m)

i is assigned as max{R(m)
i , Nf −R(m)

i +1}. Two extreme
solutions for every objective get a rank equal to Nf (number of solutions in the
non-dominated front), the solutions next to these extreme solutions get a rank
(Nf − 1), and so on. After a rank is assigned to a solution by each objective, the
maximum value of the assigned ranks is declared as the crowding distance.

Like other evolutionary optimization studies, the proposed extremized
crowded NSGA-II approach did not ensure converging to the true extreme so-
lutions exactly, as evolutionary algorithms are expected to find a near-optimal
solution, rather than a true optimal solution in a finite number of solution eval-
uations. However, in the pursuit of estimating the nadir point for the purpose
of normalizing objectives for executing different multi-objective optimization al-
gorithms or for knowing the true range of Pareto-optimal solutions for decision-
making, it is important to find the true extreme Pareto-optimal points, so that
the nadir point can be estimated accurately.

In a recent study [6], the extremized crowded NSGA-II approach is ended with
a bi-level local search operation on all extreme solutions to take them arbitrary
closer to the true extreme solutions, so that the nadir point can be estimated
more accurately. In this paper, we re-address the issue of the serial application
of NSGA-II and the local search procedure and suggest a hybrid integrated
approach for an accurate estimation of the nadir point.

4 Proposed Integrated Approach

Instead of applying the local search on the extreme solutions obtained by the ex-
tremized crowded hybrid NSGA-II procedure, we propose an integrated NSGA-II
approach in which at certain generations the extreme solutions of the best non-
dominated front are modified by the local search procedure to push them towards
their true values. With such an integrated procedure, the attained accuracy is
likely to be better and it would have a smaller chance of getting stuck to inter-
mediate solutions, thereby leading to an accurate estimation of the nadir point.
In the following, we outline an iteration of the proposed integrated NSGA-II
procedure in which the population Pt is the current parent population of size
N . Every member (i) of Pt is already ranked based on its non-domination level
(NDi) and its crowding distance (CDi) within the population members of its
own non-domination level.
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Step 1: Population Pt is used to create an offspring population Qt by using
binary tournament selection, recombination and mutation operators. Two
solutions are chosen at random from Pt and a hierarchical selection based
on ND followed by CD is used to complete the tournament selection op-
eration. Thereafter, two such selected solutions are recombined using the
simulated binary crossover operator [3,2] to create two offspring solutions,
each of which is then mutated by using the polynomial mutation operator [2].
These operators involve the following parameters: recombination probability
pc, SBX index ηc, mutation probability pm, and mutation index ηm.

Step 2: Populations Pt and Qt are combined together and ranked into differ-
ent levels of non-domination: Pt ∪ Qt = {F1,F2, . . .}. The set F1 contains
non-dominated solutions of level one, and so on. Thereafter, the best N
population members are chosen from the combined 2N population based on
ranking and crowding distance criteria.

Step 3: Depending on a check on whether to perform the local search or not
(which we describe a little later), in the set F1, we identify the worst solution
(x(j)) with respect to each objective j, and modify it by using a local search
procedure. The modified solution (y(j)) replaces the worst population mem-
ber. For M objectives, there are M such local search operations performed
in each iteration of the proposed procedure. The estimated nadir point (zest)
at generation t is then formed from the extreme solutions obtained by the
local searches. Non-domination ranking and crowding distance computations
are redone on the modified population, which we refer to as Pt+1.

This procedure is similar to the original NSGA-II procedure, except that the
crowding distance computation is different suiting the need for emphasizing ex-
treme solutions for the task of estimating the nadir point and that a local search
procedure is used to update the extreme objective-wise solutions to make sure
that the nadir point can be estimated with a desired accuracy.

We now describe the local search procedure here. The best (fmin
j ) and worst

(fmax
j ) values of each objective j of the set F1 are first noted. We apply a bi-

level local search procedure from each worst solution (solution x(j) for which
the j-th objective has the worst value in F1) to find the corresponding optimal
solution y(j) using the following bi-level optimization procedure. The upper-level
optimization (described in (2)) uses an objective vector (z, referred here as a
reference point) as a variable vector and maximizes the j-th objective value of the
optimal solution obtained by solving the corresponding augmented achievement
scalarizing problem [15] (we refer to this task as the lower-level optimization
task, described in (3)):

maximize(z) f
∗
j (z),

subject to zi ≥ f
(j)
i EA − 0.5(fmax

i − fmin
i ), i = 1, 2, . . . ,M,

zi ≤ f
(j)
i EA + 1.5(fmax

i − fmin
i ), i = 1, 2, . . . ,M.

(2)

The term f∗
j (z) is the optimal value of the j-th objective function of the optimal

solution to the following lower-level optimization problem for which z is kept
fixed [18]:
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minimize(y) maxM
i=1

(
fi(y)−zi

fmax
i −fmin

i

)
+ ρ
∑M

k=1

(
fk(y)−zk

fmax
k −fmin

k

)
,

subject to y ∈ S,
(3)
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Fig. 3. Each arrow corresponds to a lower-level
search for a specified reference point (C, A’ or B’).
The upper-level search finds a reference point having
optimal worst objective (such as A’ or B’).

Figure 3 illustrates this lo-
cal search procedure. In the
lower-level optimization prob-
lem, the search is performed
on the original decision vari-
able space. The solution
y∗(j)(z) to this lower-level
optimization problem deter-
mines the optimal objective
vector f∗ from which we ex-
tract the j-th component and
use it in the upper-level op-
timization problem. Thus, for
every reference point z (a
solution for the upper-level
problem), the corresponding
optimal augmented achieve-
ment scalarizing function is
found in the lower-level loop.
The upper-level optimization
is initialized with the NSGA-II solution z(0) = f (x(j)) and the lower-level opti-
mization is initialized with the NSGA-II solution y(0) = x(j).

We now discuss the termination criterion of each optimization procedure. For
terminating the overall NSGA-II procedure, we compute a normalized distance
(ND) metric as follows:

D =

√√√√ 1
M

M∑
i=1

(
zest

i − z∗i
zw

i − z∗i

)2

. (4)

Here, the vectors z∗ and zw are the ideal and worst objective vectors of the op-
timization problem, respectively. These quantities can be computed once before
the NSGA-II procedure by solving 2M different single-objective optimizations
of minimizing and maximizing each objective at a time.

Since the exact final value of the D metric is not known a priori on an arbitrary
problem, we record the change in D for the past τ (= 50 used here) generations.
Say, Dmax, Dmin, and Davg, are the maximum, minimum, and average D values
for the past consecutive τ generations. If the change ΔD = (Dmax −Dmin)/Davg
is smaller than a threshold Δ (= 1(10−4) is used here), the NSGA-II procedure
is terminated.

We use the same normalized distance metric to decide whether the local search
needs to be performed in a particular generation of NSGA-II. At a generation, the
change ΔlD in normalized distance over the past τl (= 20 used here) generations
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is recorded. If ΔlD ≤ δ (= 0.005 used here), the local search is performed. This
reduces the number of local searches performed from not so good solutions. When
the best non-dominated front has stabilized somewhat, the extreme solutions of
the set are modified using the local search procedure.

Both upper and lower-level optimization tasks in the local search operation
uses a point-by-point search approach which is terminated based on the chosen
optimization algorithm and code used for the purpose. In all our simulations,
we have used KNITRO (auto option) for the lower-level optimization task in
which we have set a termination condition on the KKT error value (≤ 10−6)
or a maximum of 100 iterations whichever happens first. For the upper-level
optimization task, we have used CFSQP solver [14]. The upper-level task is
terminated if the norm of the Newton’s direction is less than of equal to 10−8 or
a maximum iteration of 100 is elapsed.

After the NSGA-II run is terminated, we construct the nadir point from the
worst objective values of the final non-dominated set F1.

5 Simulation Results

In this section, we present simulation results on eight problems having three or
more objectives. In most of these problems, the nadir point was difficult to obtain
using the pay-off table. In all problems, we use a population of size max(60, 20n)
(n is the number of variables), crossover and mutation probabilities of 0.9 and
1/n , crossover and mutation indices of 10 and 50, respectively, and ρ = 10−4.
In each case, we make 10 different runs from different initial populations, but
every time the procedure is found to converge near a particular set of extreme
points, thereby leading to finding a similar nadir point every time.

5.1 Problem KM

The first problem KM, adapted from [12], is the following:

minimize

⎧⎨⎩−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)

⎫⎬⎭ ,

subject to 3x1 + x2 − 12 ≤ 0, 2x1 + x2 − 9 ≤ 0, x1 + 2x2 − 12 ≤ 0,
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

(5)

The true nadir point of this problem is reported to be znad = (5, 4.6,−14.25)T

[9]. Table 1 shows the three extreme solutions (x∗) found by our proposed ap-
proach. It is clear that when the worst objective values are collected together,
we obtain an identical point (up to two decimal points) as that in the true
nadir point. Figure 4 shows that the normalized distance value gets stabilized at
around 40 generation and since ΔD = 50 is used, it took another 50 generations
to terminate the hybrid procedure. Interestingly, the D value reaches the final
stabilized value very quickly, thereby indicating the efficiency of the proposed
procedure.
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Table 1. Extreme points found by the pro-
posed approach on problem KM

x∗ Estimated znad

0.000 0.000 5.000 2.200 -55.000
0.000 6.000 -1.000 4.600 -25.001
3.500 1.501 0.000 -3.100 -14.251

Terminated at gen. 87

D stabilized for 50 gen.
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5.2 Problem SW1

The second problem SW1 is as follows [17]:

minimize

⎧⎨⎩
f1(x) = −(100 − 7x1 − 20x2 − 9x3)
f2(x) = −(4x1 + 5x2 + 3x3)
f3(x) = −x3

⎫⎬⎭ ,

subject to 1 1
2x1 + x2 + 1 3

5x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(6)

Theprevious study [17] reported the truenadir point tobe znad = (−3.6364, 0, 0)T .
Table 2 shows two extreme solutions (x∗) (hence, the true nadir point) found by our
proposed approach. Figure 5 shows the progress of the proposed approach.

5.3 Problem SW2

The third problem SW2 originates from [17]:

minimize

⎧⎪⎪⎨⎪⎪⎩
9x1 + 19.5x2 + 7.5x3
7x1 + 20x2 + 9x3
−(4x1 + 5x2 + 3x3)
−(x3)

⎫⎪⎪⎬⎪⎪⎭ ,

subject to 1.5x1 − x2 + 1.6x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(7)

The true nadir point for this problem is reported to be znad = (94.5, 96.3636, 0, 0)T

[17]. The original study [17] found a close point (94.4998, 95.8747, 0, 0)T using mul-
tiple, bi-objective optimization simulation using an EMO procedure. The outcome
is not identical to the true nadir point. Table 3 shows the three extreme solutions
foundbyourproposedapproach.Weobtain the truenadir point.Due to an identical
behavior of D variation with generation number on this and subsequent problems,
we do not show the figures here.
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Table 2. Extreme points found by the proposed
approach on problem SW1

x∗ Estimated znad

0.0000 3.1818 3.6364 -3.6364 -26.8182 -3.6364
0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000

Stabilized for 50 gen.

Terminated at gen. 87
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Table 3. Extreme points found by the proposed approach on problem SW2

x∗ Estimated znad

4.0000 3.0000 0.0000 94.5000 88.0000 -31.0000 0.0000
0.0000 3.1818 3.6363 89.3182 96.3636 -26.8182 -3.6363
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.4 Problem KSS1

The linear KSS1 problem [13] was found to be difficult for estimating the nadir
point:

maximize

⎧⎨⎩11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7
11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7
11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7

⎫⎬⎭ ,

subject to
∑7

i=1 xi = 1,
xi ≥ 0, i = 1, 2, . . . , 7.

(8)

The true nadir point is reported to be znadir = (0, 0, 0)T [13]. Table 4 shows the
three extreme solutions found by our proposed approach. Our approach finds a
near nadir point with a slight error in the second objective value (as shown in
Figure 6 the error is not visually detectable). This problem is a difficult one to
solve for estimating the exact nadir point, because of the slow slope leading to
each of the three extreme points, as shown by a set of representative solutions
obtained through a clustered NSGA-II, in which NSGA-II’s crowding distance
method is replaced by the k-mean clustering method [2]. In this problem, it is
easy to get stuck to a non-dominated point close to one or more extreme points.
Our approach seems to have found the exact extreme values for first and third

Table 4. Extreme points found by the proposed approach on problem KSS1

x∗ Estimated znad

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.000 11.000
0.000 0.994 0.000 0.000 0.000 0.001 0.004 10.910 -0.026 11.006
0.000 0.000 1.000 0.000 0.000 0.000 0.000 11.000 11.000 0.000
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Fig. 7. Pareto-optimal front and two ob-
tained points for problem WELD

objectives and managed to get to a near-by point around the extreme of the
second objective.

5.5 Problem KSS2

Next, we consider another linear problem KSS2 [13]:

maximize (x1, x2, x3),
subject to x1 + 2x2 + 2x3 ≤ 8, 2x1 + 2x2 + x3 ≤ 8, 3x1 − 2x2 + 4x3 ≤ 12,

xi ≥ 0, i = 1, 2, 3.
(9)

The nadir point is reported to be znad = (0, 0, 0)T . Table 5 presents the ex-
treme solutions obtained by our approach. The true nadir point is found by our
approach in this problem.

Table 5. Extreme points found by the proposed approach on problem KSS2

x∗ Estimated znad

0.000 3.818 0.166 0.000 3.818 0.166
3.344 0.000 0.432 3.344 0.000 0.433
3.253 0.628 0.000 3.253 0.628 0.000

Now we consider three more problems, borrowed from engineering fields. On
each of these problems, the exact nadir point is not known, but wherever possible
we explain the accuracy of the nadir point obtained by our approach.

5.6 Problem WELD

The WELD problem has four variables and three objectives, and is formulated
in [6]. Our previous study [6] introduced the WELD problem which has four
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Table 6. Extreme points found by the proposed approach on problem WELD

x∗ Estimated znad

1.7356 0.4788 10.0000 5.0000 36.4221 0.000439 1008.0000
0.2444 6.2175 8.2915 0.2444 2.3810 0.015759 30000.1284

variables and three objectives. The nadir point was estimated to be znad =
(36.4209, 0.0158, 30000)T . Table 6 presents two extreme points found by our
proposed approach of this paper. The extreme points for the second and third
objectives are found to be identical in this problem, indicating that although
the problem has three objective functions, the Pareto-optimal front is two-
dimensional, as is also confirmed by the original NSGA-II points in Figure 7. The
nadir point estimated by our approach is (36.4221, 0.0158, 30000.1284)T, which
is close to that obtained by the earlier study [6].

5.7 Problem CAR

The seven-variable, three-objective CAR problem is described in [10]. No pre-
vious study exists on this problem for finding the nadir point. In Table 7, we
present two extreme points obtained by our procedure. Thus, the nadir point
estimated by our approach for this problem is znad = (42.767, 4.000, 12.521)T .
Figure 8 shows the complete Pareto-optimal front with a set of representative
clustered NSGA-II solutions. It is clear from the plot that the above two extreme
points are adequate to cover the extreme objective values of the Pareto-optimal
front and is able to locate the nadir point of the problem.

5.8 Problem WATER

Finally, we consider the WATER problem [16], which is also described in [2].
For this problem, the exact nadir point is not known. However, since there are

points
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Fig. 8. Extreme objective vectors covers the entire Pareto-optimal front for problem
CAR
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Table 7. Extreme points found by the proposed approach on problem CAR

x∗ Estimated znad

1.500 1.350 1.500 1.500 2.625 1.200 1.200 42.767 3.585 10.611
0.500 1.226 0.500 1.208 0.875 0.884 0.400 23.589 4.000 12.521

Table 8. Extreme points found by the proposed approach on problem WATER

x∗ Estimated znad

0.010 0.100 0.100 1.038 0.020 0.949 0.075 5.649
0.450 0.098 0.010 0.916 0.900 0.936 0.033 0.002
0.114 0.100 0.010 0.918 0.228 0.951 0.031 0.285
0.098 0.010 0.100 0.918 0.197 0.095 2.671 5.713

three variables and five objectives, some redundancy in the objectives is expected
for the Pareto-optimal solutions. An application of NSGA-II to this problem [2]
(page 388) was found to indicate some correlations among the obtained represen-
tative solutions. Table 8 presents the extreme points obtained for this problem
by our approach. We observe that the extreme points for objectives f4 and f5
come from an identical solution. The estimated nadir point using our procedure
is znad = (1.038, 0.900, 0.951, 2.671, 5.713)T .

6 Conclusions

In this paper, we have extended our previous study on a serial implementation of
an EMO procedure followed by an MCDM based local search approach to find
extreme points accurately for estimating the nadir point of a multi-objective
optimization problem. The nadir point in multi-objective optimization is used
in normalizing objectives which is necessary for different multi-criterion opti-
mization algorithms. Besides, the task of estimating the nadir point for three or
more objectives is a open research task in multi-criterion optimization literature.
Nadir points can only be estimated accurately if (i) objective-wise extremes and
(ii) Pareto-optimal solutions are found. Due to this two-pronged requirements,
we have suggested a bi-level local search task. The local search is employed
with extreme non-dominated solutions only when the best non-dominated front
has stabilized somewhat, thereby making the overall method computationally
tractable. On a set of five test problems and three engineering design problems,
the proposed integrated procedure has able to find the exact nadir point quite
accurately.

This work is also important from another point of view. This work demon-
strates how a local search approach can be integrated with an evolutionary
population-based approach adaptively and used sparingly for a complex opti-
mization to ensure accurate convergence.
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Bäck, Thomas 453
Bader, Johannes 140
Bender, Andreas 453
Beume, Nicola 21
Bosman, Peter A.N. 320
Bouyssou, Denis 5
Branke, Jürgen 554
Brasil Filho, Amaury T. 393
Bringmann, Karl 6
Brockhoff, Dimo 140
Bullinaria, John A. 275
Burkhart, Helmar 246

Carrano, Eduardo G. 66
Cervantes, Alejandro 305
Coelho, André L.V. 393
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