
An Integrated ECC-MAC Based on RS Code

Jaydeb Bhaumik and Dipanwita Roy Chowdhury

Indian Institute of Technology
Kharagpur-721302, India

Abstract. This paper presents a message authentication code (MAC)
with error-correcting capabilities which can be used for wireless trans-
mission. Also the paper introduces a new nonlinear mixing function
‘Nmix ’ which is cryptographically strong compared to other existing
method and secured against linear, differential and other conventional
cryptanalysis. This nonlinear function is used to compute proposed MAC
from check symbols of Reed-Solomon (RS) code. Our MAC is shown to
be secured even if a fixed pad is used in MAC generation.
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1 Introduction

A MAC is a symmetric-key method that is used to protect a message from unau-
thorized alteration. MAC is a function of the message and the secret key that
produces a fixed length value, which serves as the authenticator. It is a tag that
is appended to the message or encrypted message by the sender. At the receiver
the tag is recomputed from the received message and the secret key which is
known to both the sender and receiver. Message is accepted, when computed
MAC matches with the received one. If the received message is corrupted either
by random noise or by intentional forgeries, then the computed MAC does not
match the received one and the message is rejected.

For an unreliable and insecure communication channel between a sender and
receiver, Error Correcting Codes (ECC) are used to transmit a MAC by first com-
puting the MAC and then error correcting code is added for transmission. How-
ever, this increases overhead. An integrated scheme combining MAC and ECC can
be a better solution. This combined scheme is appealing, especially in applications
where latency is a concern or resources are limited. Thus, it is interesting to con-
struct MAC which can correct a few errors that may occur during transmission.

Applying error correcting codes to construct MAC was first exploited by
Krawczyk [6]. Lam et al. have proposed error correcting MAC based on BCH
and RS code in [12]. A noise tolerant MAC or NTMAC based on cyclic redun-
dancy check (CRC) called CRC-NTMAC has been proposed in [15]. But the tag
itself is not error tolerant. BCH-NTMAC for noisy message authentication has
been published in [16]. This MAC has much lower false acceptance probability
compared to CRC-NTMAC. Both BCH-NTMAC [16] and MAC proposed by
Lam et al. [12] are error tolerant. Moreover as Lam et al.’s MAC generation
scheme is a LFSR based, so it is easy to implement. However, Lam et al.’s
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scheme requires truly random pad of size equal to the size of the hash output
for each transmitted message. But in most practical applications, the successive
pad r is generated using a pseudorandom generator out of a secret seed shared
by the parties. In this case the security of the authentication scheme reduces to
the security of the pseudorandom generator.

In this paper, we proposed a new integrated scheme for message authentica-
tion and error correction using t-symbol error correcting RS code. Also a new
nonlinear mixing function called Nmix is proposed which is used to produce
MAC from check symbols of RS code. The proposed function reduces the bias of
linear approximations exponentially. Also differential property of the proposed
key mixing is better than other existing methods. The Nmix function improves
the security against linear, differential cryptanalysis and hence MAC is secured
even if, fixed pad with Nmix is used.

The rest of this paper is organized as follows. In the next section, a brief
overview of Lam et al.’s MAC generation scheme is given. Section 3 discusses the
proposed ECC-MAC scheme. The new non linear function Nmix which is used
to construct the proposed MAC is given in section 4. In section 5, security issues
are described. Section 6 describes the performance evaluation of the proposed
MAC and finally the paper is concluded in section 7.

2 Overview of Lam et al.’s Scheme

Lam et al. have proposed two schemes for error correcting MAC [12], one of which
is based on BCH code while the other is based on RS code. Both the schemes can
provide an integrity check for corrupted data and can correct few transmission
errors. They have shown that these MACs are secure. It is suggested that the
MAC can be applied to less information- sensitive wireless transmission such as
voice and image signals. In this section, the MAC generation scheme [12] based
on RS code is reproduced.

Authors have considered a typical communication scenario in which two par-
ties communicate over an unreliable channel with a malicious adversary in the
middle. The communicating parties share a secret key unknown to the adversary.
For simplicity at the beginning it is assumed that the parties exchange only one
message M of length m using that secret key. The secret key is used to draw a
hash function randomly from the Hm,l family of hash functions and a random
pad r of length l over Zl

2. The message M is a vector over Zm
2 and the hash

value is a vector over Zl
2. The message sender sends M together with a tag =

hg(M) + r, and is verified at the receiver by recalculating the tag. The hash
function hg is associated with the polynomial g of degree l. The Hm,l family of
hash functions are defined as

hg(M) = xlM(x) mod g(x)
Hm,l = {hg|∀ valid generator polynomial g} Therefore, the MAC of the message
M in polynomial form is

MAC(x) = xlM(x) mod g(x) + r(x) (1)
where g(x) is a generator polynomial of degree l and r(x) is the random pad
in polynomial form. It is assumed that the adversary knows the family of hash
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functions, but not the particular value of hg or the random pad r. In the typical
scenario where the parties exchange multiple messages, the hash function hg can
be reused for different messages but for each new message a different random pad
will be used for encryption of hash value. Next section introduces our integrated
ECC-MAC scheme based on RS code.

3 Proposed Integrated ECC-MAC

In this section, we describe our MAC generation scheme which is based on RS
code having t- symbol error correction capability. The message data string is
subjected to a padding process both in sender and receiver. The padded string
is a bit string of length an integer multiple of n-bit, where n is the length in
bits of a symbol of an RS code and the codeword length is 2n − 1. RS encoder
adds extra 2t-check symbol with a block of message symbols to correct t-error.
Therefore, maximum size of the message block is 2n−1−2t symbols. Our aim is
to develop an integrated scheme where this 2t-check symbol for error correction
can also be used to authenticate the message.

The generator polynomial of a t-error correcting RS code [2] is

gk(x) = (x + αi)(x + αi+1)(x + αi+2)...(x + αi+2t−1)

where α is a primitive element of GF (2n). The generator polynomial depends
on primitive element α and the parameter i. In this scheme, both α and i are
selected by the secret key k. In GF(2n), the number of primitive elements is
p = Φ(2n − 1), where φ is Euler’s totient function. The number of possible
generator polynomials that can be formed using a single primitive element for
a t-symbol error-correcting code is q = 2n − 1 [4]. Therefore, total number
of possible generator polynomials that can be constructed using all primitive
elements is given by

N = q × p = (2n − 1) × Φ(2n − 1) (2)
For n = 40 and t = 4, the number of possible generator polynomials is given by
N ≈ 279.

In our scheme, any one of the N generator polynomials is selected by the
key to provide security and error correction capability. But the generator poly-
nomial is fixed and known to everybody for a system where RS code is used
only for error correction. The selected generator polynomial is used to calculate
2t-check symbols. Since RS code is linear, the computed bare check symbols are
vulnerable to several attacks when it is also used to provide security. Therefore,
a sequence is mixed with the check symbols using a non-linear operator. In the
proposed algorithm, the secret key of length is four times symbol length. Out
of the 4n bits, 1st, 2nd n-bit values are used to select primitive element α, the
index i respectively and last 2n bits are used as an initial seed of the pseudo
random sequence generator. In the following subsection, our integrated scheme
for message authentication and error correction is described.

3.1 Algorithm

The algorithm of t-symbol error correcting MAC is as follows.
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MACGEN: MAC GENeration Algorithm

1. pad the message to make its length equal to an integer multiple of n bits.
2. partition the padded message into symbols of n-bit each.
3. Select a generator polynomial gk(x)
4. Select rk ∈ Z2

2t.n ; sequence of dimension 2t.n over GF (2) , the sequence is
a function of secret key.

5. Compute the Check symbols using P (x) = x2tM(x) mod gk(x)
6. Compute MAC using c = F (P, rk), where F is the nonlinear function.
7. Send Message MAC pair (M, c)

MACVEC: MAC Verification and Error Correction Algorithm
Suppose the received message MAC pair is ( M ′, c′).

1. Compute rk ∈ Z2
2t.n ; same sequence of dimension 2t.n over GF (2).

2. Compute Check symbols using P ′ = G(c′, rk), where G is the nonlinear
function.

3. Compute Syndromes from padded M ′ and P ′.
4. Verify if all syndromes are zero or not. If all are zero, go to step 7.
5. For non-zero syndromes, verify whether the number of errors that have oc-

curred is greater than the error correction capability of the code or not. If
yes, reject the message and go to step 8.

6. Correct the errors.
7. Accept the message.
8. Stop.

Next subsection explains the operation of sender and receiver with the help of
suitable block diagrams. It also compares the overhead needed for error correct-
ing code (ECC) embedded into the MAC and first MAC then ECC scheme.

3.2 Sender and Receiver

As depicted in Fig.1, sender block diagram consists of an RS encoder, a sequence
generator, a nonlinear mixer and an appending block. On the other hand, Fig. 3
shows that the receiver consists of a nonlinear mixer, a sequence generator and an
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Table 1. Comparison of Overhead

# of symbol Overhead in Bits
errors to be First MAC then ECC Integrated ECC-MAC
corrected For MAC For ECC Total Total

1 320 80 400 320

2 320 160 480 320

3 320 240 560 320

4 320 320 640 320
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RS decoder. Here j is the number of symbol errors occurred and t is the number
of correctable symbol errors. Figure 2 shows that the conventional (first MAC
then ECC) scheme needs more over head compared with integrated scheme. A
comparison of overhead between the proposed scheme and first MAC then ECC
scheme (It is assumed that MAC value computation and error correcting check
symbol computation is done in same layer although MAC computation is done
in higher layer) is given in Table 1. Here we have considered a MAC length of 320
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bits, RS code of symbol length is 40 bits. Table shows that overhead is double for
first MAC then ECC scheme compared to integrated ECC-MAC scheme for 4-
symbol error correction. Next section introduces new non-linear mixing function
Nmix which is used to compute the proposed MAC.

4 Nonlinear Mixing Function: Nmix

In this section, a new nonlinear mixing function called ‘Nmix ’ and inverse mixing
function ‘I-Nmix ’ is introduced.

Sequence Mixing (Nmix): Assume X = (xn−1 xn−2 ... x0) be an n−bit data,
R = (rn−1 rn−2 ... r0) be an n−bit sequence and Y = (yn−1 yn−2 ... y0) be the
n−bit output after mixing X with R. Then each output bit is related to the
input bits by the following relationship

yi = xi ⊕ ri ⊕ ci−1 ; ci =
i⊕

j=0

xj · rj ⊕ xi−1xi ⊕ ri−1ri (3)

where 0 ≤ i < n, c−1 = 0, x−1 = 0, r−1 = 0 and ci is the carry term propagating
from ith bit position to (i+1)th bit position. The end carry cn−1 is neglected. We
use the notation Y = (X†R) mod 2n = F (X, R), where † is the Nmix operator.
Each yi is balanced function for all i (0 ≤ i < n).

Inverse Sequence Mixing (I-Nmix): In inverse sequence mixing, the mixer
takes an n-bit data Y = (yn−1 yn−2 . . . y0) and an n−bit sequence R =
(rn−1 rn−2 . . . r0) as inputs and produces an n−bit output X = (xn−1 xn−2

. . . x0). Inverse sequence mixing operation can be defined as

xi = yi ⊕ ri ⊕ di−1 ; di =
i⊕

j=0

xj · rj ⊕ xi−1xi ⊕ ri−1ri (4)

where 0 ≤ i < n, d−1 = 0, x−1 = 0, r−1 = 0, and di is the carry term propagating
from ith bit position to (i + 1)th bit position. The end carry dn−1 is neglected.
Here we use the notation X = (Y ∗R) mod 2n = G(Y, R), where ∗ is the I-Nmix
operator. Each xi is balanced function for all i (0 ≤ i < n). Next, we summarize
the results related to properties of Nmix function. The proof of the theorems
are given in appendix A.

Theorem 1. The function G is the inverse function of F .

Fact 1. For an n-bit Number X , F (X, X) �= 0.

Fact 2. The function F is commutative, i.e. F (X, R) = F (R, X), where X and
R are two n-bit numbers.

Theorem 2. The function F does not hold associative law, i.e. F (F (X, Y ), Z) �=
F (X, F (Y, Z)), where X , Y and Z are three n-bit numbers.

Theorem 3. Output difference (XOR) of the function F is not equal to input
difference (XOR) when single input changes, i.e. F (X, R) ⊕ F (Y, R) �= X ⊕ Y .
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Theorem 4. If X , Y and R are the three n-bit numbers then
F (F (X, R), F (Y, R)) �= F (X, Y ).

Theorem 5. Keeping one input fixed of the two input function F , modulo-2
addition of three outputs for three different inputs is not equal to output of the
function F when input is modulo-2 addition of three individual inputs.

i.e. F (X, R) ⊕ F (Y, R) ⊕ F (Z, R) �= F ((X ⊕ Y ⊕ Z), R).

Theorem 6. If X , Y , Z and R are the four n-bit numbers then

F (F (F (X, R), F (Y, R)), F (Z, R)) �= F (F (F (X, Y ), Z), R)

Next we discuss the hardware requirements for implementing a n-bit key mixer
based Nmix operator. The logic diagram of Nmix and I-Nmix are given in ap-
pendix B.

4.1 Hardware Requirement

Table 2 shows the gate counts for nonlinear functions addition modulo 2n, Slash
modulo 2n [19] and Nmix modulo 2n for forward as well as reverse transfor-
mation. As the linear XOR is mostly used key mixing function, so the Table 2
includes XOR also. It is observed that Nmix requires more hardware but provides
more security which is discussed in section 5.

Table 2. Comparison of Gate Counts

Transformation Mixing Function Number of Logic Gates
XOR OR AND NOT

Bit wise XOR n
Forward Addition modulo2n 2n + 1 n − 2 2(n − 2)

Slash modulo2n 3(n − 1) n − 1
Nmix modulo 2n 5n − 7 3n − 5

Bit wise XOR n
Reverse Subtraction modulo2n 2n + 1 n − 2 2(n − 2) n − 2

Reverse Slash modulo2n 3(n − 1) 2n − 3 2(n − 1)
I-Nmix modulo 2n 5n − 7 3n − 5

4.2 Logic for Using Nmix

In this section, we explain the logic for using Nmix instead of XOR. In [12],
different random pads are used to compute MAC from check symbols of different
messages. But random pad is not practical for real life applications and, on the
other hand fixed pads are not secured. So, our aim is to use one nonlinear
function in addition with fixed pad to make it secure. It can be shown that
if a fixed generator polynomial and fixed pad is used for MAC generation for
many messages with XOR as mixing function then the scheme is vulnerable to
following two attacks.

Attack-1: Generator Polynomial Recovery
In this attack, it is shown that computation of generator polynomial is possible
from few correctly received message-MAC pairs. The generator polynomial gk(x)
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and the pad rk(x) are fixed for a sender and receiver pair because the secret key
(k) is fixed. Assume M1(x) be one message polynomial. Then the corresponding
check symbol polynomial P1(x) for a t-symbol error correcting RS code is given by

P1(x) = x2tM1(x) mod gk(x) (5)

If the code polynomial is d1(x) then

d1(x) = x2tM1(x) + P1(x) = q1(x) gk(x) (6)

where d1(x) is the code polynomial which is multiple of generator polynomial
and q1(x) is a quotient polynomial. The corresponding message-MAC polynomial
C1(x) is as follows

C1(x) = d1(x) + rk(x) = q1(x) gk(x) + rk(x) (7)

Assume M2(x) be another message polynomial and corresponding message-MAC
polynomial C2(x) is given by

C2(x) = q2(x) gk(x) + rk(x) (8)

From equations (7) & (8) we get

C1(x) + C2(x) = [q1(x) + q2(x)] gk(x) (9)

So attacker can form few equations like equation (9). Then by taking the GCD
of few such newly formed equations attacker can determine the generator poly-
nomial.

Attack-2: MAC Forgery
It can be shown that an attacker can calculate the MAC of a message which is
combination of three or more odd number of correctly received messages. This at-
tack is possible only when all messages are of equal length. Assume M1(x), M2(x)
and M3(x) be the three message polynomials and the corresponding MAC poly-
nomials are MAC1(x), MAC2(x) and MAC3(x) then

MAC1(x) = x2tM1(x) mod gk(x) + rk(x) (10)

MAC2(x) = x2tM2(x) mod gk(x) + rk(x) (11)

MAC3(x) = x2tM3(x) mod gk(x) + rk(x) (12)

From (10),(11) and (12) we get

MAC(x) = x2t[M(x)] mod gk(x) + rk(x) (13)

where M1(x)+M2(x)+M3(x) = M(x) and MAC1(x)+MAC2(x)+MAC3(x) =
MAC(x). So an attacker can produce the MAC of a message (M) which is com-
bination of three messages M1, M2 and M3, provided the original messages are
of equal length. This is also valid for more than three odd numbers of messages.
But the generated message M may not be a meaningful message always. If it is
a garbage message then there is no risk for the sender and receiver. Only ad-
versary can take up the channel by sending such garbage message with a valid
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MAC and consumes the computational resources of other node. For preventing
these attacks, we proposed a scheme which employs the function Nmix. Next we
show how it is possible to thwart the above two attacks using Nmix.

Nonlinearity has been introduced in our proposed scheme to compute MAC
which makes over all scheme nonlinear. So we can not write the message-MAC
polynomial as in equation (7). Let C′

1(x) be the message-MAC polynomial in
the proposed scheme then

C′
1(x) = x2tM1(x) + F (P1(x), rk(x)) (14)

or C′
1(x) �= q′1(x) gk(x) + rk(x) (15)

Also from Theorem 3 of the nonlinear function F (X, R) ⊕ F (Y, R) �= X ⊕ Y ,
where X , Y , and R are three n-bit numbers. Therefore, addition of two message-
MAC polynomial is not a multiple of generator polynomial. So, attacker can not
find out the generator polynomial by taking GCD.
The new MAC can also resist the attack 2. In our proposed scheme, let any
message-MAC polynomial be C′

1(x) then

C′
1(x) �= q′1(x) gk(x) + rk(x) (16)

Theorem 5 says that F (X, R)⊕F (Y, R)⊕F (Z, R) �= F (X⊕Y ⊕Z, R), where X ,
Y , Z and R are four n−bit numbers. Since MAC generation scheme is non-linear,
so we can conclude using theorem 5 that modulo-2 addition of three correctly
received MACs is not equal to the MAC of the message which is modulo-2
addition of these three messages. Therefore an attacker can not produce the
MAC of a message which is combination of three messages M1, M2 and M3.

The proposed non-linear function increases the over all nonlinearity of the
scheme without affecting the error correcting performance of the integrated
scheme. In key mixing by XOR, single bit error in a MAC affects only single
bit in the check symbol after inverse operation at the receiver. But in nonlinear
mixing error may propagate from LSB to MSB i.e. single bit error in MAC may
produce multiple bit errors in the check symbol. In our proposed scheme each
check symbol is processed separately i.e. there is no carry propagation from one
symbol to the next adjacent symbol. Since RS code can correct symbol errors,
so error correcting performance will not be affected by nonlinear mixing.

5 Security Analysis

In this section, we establish that our proposed scheme is secure against some
conventional attacks and robustness of the proposed scheme.

Brute force attack: In brute force attack, the level of effort require to attack on
a MAC algorithm can be expressed as min(2k, 2l), where k is the key length and
l is the MAC length. In our proposed scheme, MAC length is 320 bits and key
length is 160 bits. So the level of effort required is 2160, which is computationally
infeasible.

Birthday Attack: Our proposed scheme produces 320 bits MAC output, so the
effort required for birthday attack is 2160, which is computationally infeasible.
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MAC guessing: The attacker selects a message and simply guess the correct
MAC value. The probability that the guess will be correct is 2−l, where l is the
number of bits in the MAC. In our proposed scheme, the probability that the
guess will be correct is 2−320.

Divide and Conquer Attack: In our proposed scheme, we used 80-bit secret
information to select a particular g(x) from the set of all possible generator poly-
nomials and another 80-bit as the seed of the sequence generator. So this type
of attack is not possible.

Extension Attack: From the definition of F , it can be shown that F (X, R) ⊕
Y �= F ((X ⊕ Y ), R) and F (F (X, R), Y ) �= F ((X ⊕ Y ), R). So we may infer that
the proposed construction is robust against extension attack.

Linear Cryptanalysis of Nmix : Linear cryptanalysis (LC) tries to take ad-
vantage of high probability of occurrences of linear expressions involving message
bits, key bits and MAC bits. The approach in LC is to determine linear expres-
sions of the form which have a low or high probability of occurrence. Since the
coding scheme is linear, therefore a nonlinear sequence mixing is introduced to
resist LC. In this section, we derive the probability that each MAC bit can be ex-
pressed linearly in terms of check bits and sequence bits. Assuming that two n-bit
inputs are X , R and the corresponding n-bit output is Y , where Y = F (X, R).
The following result shows that Nmix is a good nonlinear mixing function.

Theorem 7. The bias of best linear approximation of Nmix is 2−i, where
2 ≤ i < n

Proof: If two n−bit numbers X = (xn−1 . . . x0) and R = (rn−1 . . . r0) generate
an n-bit number Y = (yn−1 . . . y0) such that Y = F (X, R), then one need to
prove that the bias of best linear approximation of yi is 2−i, where 2 ≤ i < n.
From the definition of F , it is evident that in the output yi = xi ⊕ ri ⊕ ci−1,
where ci−1 is the carry input into the ith bit position and is the only nonlinear
term of the equation. Therefore, nonlinearity of yi is same as that of nonlinearity
of ci−1, which can be expressed as

ci−1 = x0r0 ⊕ . . . ⊕ xi−1ri−1 ⊕ ri−1ri−2 ⊕ xi−1xi−2 (17)

If we assume that pj = xj⊕rj+1 and qj = rj⊕xj+1 then ci−1 can be expressed as

ci−1 = x0r0 ⊕ . . . ⊕ xi−3ri−3 ⊕ pi−2qi−2 (18)

where pj and qj are statistically independent if xj and rj are statistically inde-
pendent and uniformly chosen. Expression of ci−1 shows that it is a function of
2(i−1) variables and it is in the form of bent function. Therefore, non-linearity of
ci−1 is 22i−3−2i−2, where 2 ≤ i < n. So, number of matches in the best linear ap-
proximation is 22i−2 − 22i−3 + 2i−2 and hence probability of matches is 1

2 + 2−i.
Therefore, bias of best linear approximation is 2−i, where 2 ≤ i < n. Since,
y0 = x0 ⊕ r0, so bias of best linear approximation is 1

2 . For y1 = x1 ⊕ r1 ⊕ x0r0,
the bias is 1

4 . Therefore, except the first two bits Nmix posses high nonlinearity
at all other bits.
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Table 3. Comparison of Linear Probability Bias

Mixing Bias of best linear Approx. of
by y0 y1 y2 y3 y4 y5

Addition modulo 2n 0.50 0.25 0.25 0.25 0.25 0.25

Slash modulo 2n 0.50 0.25 0.125 0.0625 0.0313 0.0156

Nmix modulo 2n 0.50 0.25 0.25 0.125 0.0625 0.0313

Table 4. Comparison of Bias of Best Linear Approximation of yi ⊕ yi+1

Mixing Bias of best linear Approx. for
by y0 ⊕ y1 y1 ⊕ y2 y2 ⊕ y3 y3 ⊕ y4 y4 ⊕ y5

Addition modulo2n 0.25 0.25 0.25 0.25 0.25

Slash modulo 2n 0.25 0.25 0.25 0.25 0.25

Nmix modulo 2n 0.25 0.125 0.0625 0.0625 0.0625

Table 3 shows the comparison of bias for best linear approximation for few
terms. It is observed that the bias of best linear approximation of yi decreases ex-
ponentially with i. Next we compute the bias value of best linear approximation
for yi ⊕ yi+1.

It is observed that nonlinearity of yi ⊕yi+1 depends solely on the nonlinearity
of ci ⊕ ci−1. From the definition, ci ⊕ ci−1 can be expressed as

ci ⊕ ci−1 = xiri ⊕ xi−1(xi ⊕ xi−2) ⊕ ri−1(ri ⊕ ri−2) (19)

where 2 ≤ i < n. If we assume ai = xi ⊕ xi−2 and bi = ri ⊕ ri−2, then
ci⊕ci−1 = xiri⊕xi−1ai⊕ri−1bi. Therefore, ci⊕ci−1 is a function of six variables
and it is in the form of bent function. So, nonlinearity is 28 and bias of best linear
approximation is 0.0625, where 2 ≤ i < n. Since y0⊕y1 = x0⊕x1⊕r0⊕r1⊕x0r0,
so nonlinearity is 1 and bias is 0.25. The nonlinearity of y1 ⊕ y2 is 6 and bias is
0.125. Table 4 shows that bias of the linear approximation of yi⊕yi+1 has signifi-
cant value 0.25 for addition modulo 2n and Slash modulo 2n but bias is negligible
0.0625 in Nmix modulo 2n. Therefore, Nmix is cryptographically stronger than
addition modulo 2n. Recently, Slash [19] function is used to prevent crossword
puzzle attack [18] on stream cipher NLS [14]. The function modular Slash is
nonlinear, reversible and has a strong resistance against linear cryptanalysis.
However the Boolean functions like modular addition, Slash have the demerit
that the bias of XOR of consecutive bit positions in the output is held constant
at 1

4 . The proposed function Nmix eliminates above disadvantage.

Differential Cryptanalysis of Nmix : In our proposed scheme, sequence mix-
ing method using nonlinear function offers differential resistance. But the se-
quence mixing which is done by XOR operator, does not provide any differen-
tial resistance as always Δy = Δx, which is independent of the sequence. In
the proposed scheme nonlinearity exists only in the sequence mixing so differ-
ential resistance of the scheme is same as that of mixing part. Next we cal-
culate the bias of linear approximation of the difference term. Assuming that



128 J. Bhaumik and D.R. Chowdhury

Table 5. Comparison of Bias of Best Linear Approximation of Δyi

Mixing Bias of best linear Approx. of
by Δy0 Δy1 Δy2 Δy3 Δy4

Addition modulo2n 0.5 0.25 0.1875 0.1719 0.1680

Slash modulo2n 0.5 0.25 0.125 0.0625 0.0313

Nmix modulo 2n 0.5 0.25 0.125 0.0625 0.0313

Y = (yn−1 yn−2...y0) is an n-bit MAC, R = (rn−1 rn−2...r0) is the key de-
pendent sequence inputs to the non linear operator, X = (xn−1 xn−2...x0) is
the another n-bit input such that Y = F (X, R) and ci represents the carry
from the ith level. If Y ′ = (y′

n−1 y′
n−2 . . . y′

0) be the another n-bit MAC,
R = (rn−1 rn−2 ...r0) be the key dependent sequence inputs to the nonlinear op-
erator, X ′ = (x′

n−1 x′
n−2 . . . x′

0) be the other input such that Y ′ = F (X ′, R) and
c′i represents the carry from the ith level. Then Δyi = (yi ⊕ y′

i) = Δxi ⊕Δci−1,
where Δxi = xi ⊕ x′

i and Δci−1 = ci−1 ⊕ c′i−1 Therefore sequence mixing using
nonlinear operator offers differential resistance as the probability distribution of
Δyi for given Δxi is identical to the probability distribution of Δci−1. From
equation (2) it can be shown that

Δci−1 = xi−2xi−1 ⊕ x′
i−2x

′
i−1

i−1⊕

j=0

rj(xj ⊕ x′
j) (20)

It is found from Table 5 that bias of best linear approximation of Δyi is also
decreases exponentially. But in case of addition modulo 2n, rate of decrease of
bias relatively flat compared to Nmix modulo 2n. From (20), it can be shown
that Δyi = Δxi ⊕ xi−2xi−1 ⊕ x′

i−2x
′
i−1

⊕i−1
j=0 rjΔxj , where Δyi = yi ⊕ y′

i and
Δxi = xi ⊕ x′

i, X , X ′ are the two different inputs to the function and corre-
sponding outputs are Y , Y ′ for a fixed R and 0 ≤ i < n. So it is observed that
the probability of a particular output difference ΔY occurs given a particular
input difference ΔX is function of all xi and x′

i for a fixed R. The probabil-
ity Pr(ΔY |ΔX) is always much less than 1. Therefore the proposed function
provides differential resistance.

The following section describes the performance of the proposed scheme as a
hashing algorithm.

6 Evaluation of the Proposed Scheme

In this section, we discuss the computational cost of the proposed scheme as
well as the conventional scheme (first MAC then ECC). The proposed MAC
algorithm is also evaluated against the metrics: (i) Bit-variance test and (ii)
Entropy test proposed in [10].

6.1 Computational Cost

In our MAC generation scheme, total computational cost is equal to the compu-
tation cost of a systematic RS encoder with programmable generator polynomial
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and Nmix function. The systematic RS encoder [2] requires 2tNm number of
GF (2n) multiplication and 2tNm number of GF (2n) addition, where Nm is the
total number of message symbols in the code word, t is the error correction ca-
pability of the code and n is the size of each symbol. From Table 2 it can be
shown that for Nmix, computational cost is 2t(5n − 7) number of XOR opera-
tion and 2t(3n− 5) number of AND operation. Computational cost of proposed
MAC verification scheme consists of computational cost of I-Nmix and a sys-
tematic RS decoder with programmable generator polynomial. Computational
cost of I-Nmix is same as that of Nmix and is equal to 2t(5n − 7) number of
XOR operation and 2t(3n − 5) number of AND operation. It has been shown
in [4] that for decoding RS code with programmable generator polynomial re-
quire extra four Galois field multipliers and two registers of size same as that of
symbol size. Therefore, computational cost of the stated RS decoder is equal to
computational cost of a non programmable RS decoder and 2(Nm +Nc) number
of GF (2n) multiplication, where Nm is the number of message symbols in the
code word and Nc is the code word length in symbols.

In case of conventional scheme, first MAC is computed then ECC is computed
over message and MAC. In sender, the total computational cost is equal to com-
putational cost of MAC generator and RS encoder. If any HMAC algorithm is
used to compute MAC then it mainly requires two hash operations. If SHA-1 is
used then for each 512-bit message block round operation is processed 80 times.
Each round operation performs four addition modulo 232, two circular right shift
and one logical operation. In the receiver, computational is sum of the computa-
tional cost due to RS decoder and MAC generator. Therefore, the computational
cost of the integrated ECC-MAC is much less than the computational cost of
conventional scheme.

6.2 Evaluation of Our Scheme as a Hash Function

1. Bit Variance Test: Bit variance test shows the impact on the MAC bits by
changing the input message bits. Bits of an input message are changed and the
corresponding MACs (for each changed input) are calculated for a fixed secret
key. Then the difference between the original MAC (corresponding to the original
message) and the changed MACs are calculated. Finally, the average probability
of 1 and 0 are calculated from all the differences of MACs. For this test, it is
difficult to check for all possible bit changes on the input message. Therefore,
only changes involving 1 bit and 2 bits have been considered.

Table 6. Result of Bit Variance Test

Probability of change for the variation of
One message bit Two message bits

Message and mixing by and mixing by
XOR Nmix XOR Nmix

p0 p1 p0 p1 p0 p1 p0 p1

M1 0.499 0.500 0.501 0.498 0.498 0.501 0.501 0.498

M2 0.499 0.500 0.503 0.496 0.498 0.501 0.499 0.500

M3 0.499 0.500 0.499 0.500 0.498 0.501 0.505 0.494
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Cellular Automata based RS encoder [20] with some modification in the algo-
rithm, is used for our experiment with symbol size 40 bits, message length 10000
bits, and generated MAC length 320 bits. The experiments were performed for
three different messages. Results are given in Table 6. It shows that for both the
mixing function XOR and Nmix the condition p0 ≈ p1 = 0.5 is satisfied, where
p0 and p1 are the average probability of 0 and 1.

2. Entropy Test: Entropy is a measure of uncertainty. The entropy is maxi-
mum when all the MACs are equally likely. Entropy test addresses the question
about the actual probability to find a message with given MAC or two messages
with the same MAC. Since, it is infeasible to calculate the probability of the
individual MACs , an approximate entropy assessment method is used.

Approximate Entropy: Approximate entropy is a measure of the logarithmic
frequency with which blocks of length i that are close together remain close to-
gether for blocks augmented by one position. By comparing the actual frequency
of groups of digits to their expected frequency, approximate entropy of the se-
quence is determined which is a measure of it’s randomness. A random sequence
should have equal number of all possible groups. A small value of approximate
entropy implies strong regularity. For this test, it is difficult to check for all pos-
sible groups. Therefore, only 2 bytes block has been considered.

Approximate Entropy Assessment Method: Assume the MAC is composed
of blocks where the length of each block is 1 byte. By taking all possible combi-
nations of byte pairs, a set of 16 bits numbers (0 − 65535) are obtained. For a
large number of MAC if the frequencies of these numbers (0− 65535) are equal,
then the approximate entropy of the 16 bit long sub sequence is maximum and
the value of this entropy is 16. For approximate entropy calculation we took
260796 samples from the produced MACs with each samples of length 2-byte.
The calculated approximate entropy for 16 bits subsequence is 15.8001, which is
slightly less than maximum entropy 16.

7 Conclusions

In this correspondence, we have proposed a MAC algorithm based on RS code
having t-symbol error correcting capability. In our proposed MAC generation
algorithm, we have used a function Nmix for mixing the sequence with the error
correcting check symbols. The proposed scheme is shown to be secure even if
same pad is used for more than one MAC generation. Also the proposed MAC
is found to be a good choice for Keyed-Hash technique and has been evaluated
successfully for Bit-Variance and Entropy test. The proposed function can be
used effectively as a key mixing function in hardware based block ciphers.
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Appendix

A. Proof of the Nmix Properties

Theorem 1. The function G is the inverse function of F .

Proof: If X, Y and R be three n-bit data such that Y = F (X, R) and function
G is defined as X = G(Y, R),then G is the inverse function of F . From the
definition of F , bitwise expressions of Y are as follows

y0 = x0 ⊕ r0

y1 = x1 ⊕ r1 ⊕ x0r0

y2 = x2 ⊕ r2 ⊕ x1r1 ⊕ x0r0 ⊕ x0x1 ⊕ r0r1

similarly it can be shown that

yn−1 = xn−1 ⊕ rn−1 ⊕ x0r0 ⊕ . . . ⊕ xn−3xn−2 ⊕ rn−3rn−2

Let P = G(Y, R), where P = (pn−1 . . . p0) is an n-bit number. From the
definition of G, the bitwise expressions of P after simplification are given below

p0 = y0 ⊕ r0 = x0 ⊕ r0 ⊕ r0 = x0

p1 = y1 ⊕ r1 ⊕ p0r0 = x1 ⊕ r1 ⊕ x0r0 ⊕ r1 ⊕ x0r0 = x1

p2 = y2 ⊕ r2 ⊕ p1r1 ⊕ p0r0 ⊕ p0p1 ⊕ r0r1 = x2

similarly it can be shown that

pn−1 = yn−1 ⊕ rn−1 ⊕ . . . ⊕ yn−3yn−2 ⊕ rn−3rn−2 = xn−1

Since, pi = xi for all 0 ≤ i ≤ n − 1 therefore G is the inverse function of F .

Theorem 2. The function F does not hold associative law, i.e. F (F (X, Y ), Z) �=
F (X, F (Y, Z)), where X , Y and Z are three n-bit numbers.

Proof: Let A and B be the two n-bit numbers such that A = F (F (X, Y ), Z)
and B = F (X, F (Y, Z)). From the definition of F , bitwise expressions of A are
as follows

a0 = x0 ⊕ y0 ⊕ z0

a1 = x1 ⊕ y1 ⊕ z1 ⊕ x0y0 ⊕ y0z0 ⊕ x0z0

a2 = x2⊕y2⊕z2⊕x1y1⊕y1z1⊕z1x1⊕x0y0⊕ . . . ⊕x0y1⊕x1y0⊕z1(x0y0⊕z0)

similarly it can be shown that

an−1 = xn−1 ⊕ yn−1 ⊕ zn−1 ⊕ . . . ⊕ zn−2(xn−3xn−4 ⊕ yn−3yn−4)
Similarly bitwise expression of B can be written as

b0 = x0 ⊕ y0 ⊕ z0

b1 = x1 ⊕ y1 ⊕ z1 ⊕ x0y0 ⊕ y0z0 ⊕ z0x0

b2 = x2⊕y2⊕z2⊕x1y1⊕y1z1⊕z1x1⊕x0y0⊕ . . . ⊕y0z1⊕y1z0⊕x1(y0z0⊕x0)

similarly it can be shown that

bn−1 = xn−1 ⊕ yn−1 ⊕ zn−1 ⊕ . . . ⊕ xn−2(yn−3yn−4 ⊕ zn−3zn−4)

From the bit level expressions of A and B, it is observed that a0 = b0, a1 = b1

but ai �= bi for all 2 ≤ i < n. Hence, F does not follow associative property.
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Theorem 3. Output difference (XOR) of the function F is not equal to input
difference (XOR) when single input changes, i.e. F (X, R) ⊕ F (Y, R) �= X ⊕ Y .

Proof: Assume X = (xn−1 xn−2 ... x0), Y = (yn−1 yn−2 ... y0), R =
(rn−1 rn−2 ... r0), U = (un−1 un−2 ... u0) and V = (vn−1 vn−2 ... v0) be
the five n−bit numbers, such that U = F (X, R) and V = F (Y, R), then one
need to prove U ⊕ V �= X ⊕ Y .

According to the definition of nonlinear function F , the bitwise expressions of
U ⊕ V are as follows

u0 ⊕ v0 = x0 ⊕ y0

u1 ⊕ v1 = (x1 ⊕ y1) ⊕ r0(x0 ⊕ y0)
u2 ⊕ v2 = (x2 ⊕ y2) ⊕ r1(x1 ⊕ y1) ⊕ r0(x0 ⊕ r0) ⊕ (x0x1 ⊕ y0y1)

Similarly it can be shown that

un−1 ⊕ vn−1 = xn−1 ⊕ yn−1 ⊕ ... ⊕ (xn−2xn−3 ⊕ yn−2yn−3)

Hence, it is proved that U ⊕ V �= X ⊕ Y .

Also it can be shown that

Theorem 4. If X , Y and R are the three n-bit numbers then

F (F (X, R), F (Y, R)) �= F (X, Y ).

Proof: Let X = (xn−1 xn−2 ... x0), Y = (yn−1 yn−2 ... y0), R =
(rn−1 rn−2 ... r0), U = (un−1 un−2 ... u0), V = (vn−1 vn−2 ... v0), W =
(wn−1 wn−2 ... w0) and P = (pn−1 pn−2 ... p0) be the seven n−bit numbers,
such that U = F (X, R), V = F (Y, R), P = F (U, V ) and Q = F (X, Y ), then it
is required to prove that P �= Q.

Representing P at bit level and after simplification we get

p0 = u0 ⊕ v0 = x0 ⊕ y0

p1 = u1 ⊕ v1 ⊕ u0v0 = x1 ⊕ y1 ⊕ x0y0 ⊕ r0

p2 = u2 ⊕ v2 ⊕ u1v1 ⊕ u0v0 ⊕ u1u0 ⊕ v1v0

or p2 = x2 ⊕ y2 ⊕ x1y1 ⊕ x0y0 ⊕ . . . ⊕ r0r1(x0 ⊕ y0)

similarly it can be shown that

pn−1 = xn−1 ⊕ yn−1 ⊕ . . . ⊕ rn−3rn−4(xn−3xn−4 ⊕ yn−3yn−4)

From the definition of F , bitwise expressions of Q are as follows

q0 = x0 ⊕ y0

q1 = x1 ⊕ y1 ⊕ x0y0

q2 = x2 ⊕ y2 ⊕ x1y1 ⊕ x0y0 ⊕ x0x1 ⊕ y0y1

similarly it can be shown that

qn−1 = xn−1 ⊕ yn−1 ⊕ . . . ⊕ xi−2xi−1 ⊕ yn−2yn−1

It is noted that p0 = q0 but pi �= qi, for all 1 ≤ i < n. Hence, it is proved that
F (F (X, R), F (Y, R)) �= F (X, Y )
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Theorem 5. Keeping one input fixed of the two input function F , modulo-2
addition of three outputs for three different inputs is not equal to output of the
function F when input is modulo-2 addition of three individual inputs.

i.e. F (X, R) ⊕ F (Y, R) ⊕ F (Z, R) �= F ((X ⊕ Y ⊕ Z), R).

Proof: Assume X = (xn−1 xn−2 ... x0), Y = (yn−1 yn−2 ... y0), Z =
(zn−1 zn−2 ... z0), R = (rn−1 rn−2 ... r0), U = (un−1 un−2 ... u0), V =
(vn−1 vn−2 ... v0) and W = (wn−1 wn−2 ... w0) be the seven n−bit num-
bers, such that U = F (X, R), V = F (Y, R), W = F (Z, R) then the theorem
says that F (X, R)⊕F (Y, R)⊕F (Z, R) �= F ((X ⊕ Y ⊕Z), R). Assuming that A
= U ⊕ V ⊕ W and B = F ((X ⊕ Y ⊕ Z), R), then the bitwise expressions of A
are as follows

a0 = (x0 ⊕ y0 ⊕ z0) ⊕ r0

a1 = (x1 ⊕ y1 ⊕ z1) ⊕ r1 ⊕ r0(x0 ⊕ y0 ⊕ z0)
a2 = (x2 ⊕ y2 ⊕ z2) ⊕ r2 ⊕ . . . ⊕ r0r1 ⊕ (x0x1 ⊕ y0y1 ⊕ z0z1)

Similarly it can be shown that

an−1 = xn−1⊕yn−1⊕zn−1⊕ ...⊕rn−2rn−3⊕(xn−2xn−3⊕yn−2yn−3⊕zn−2zn−3)

The bitwise expressions of B are given below

b0 = (x0 ⊕ y0 ⊕ z0) ⊕ r0

b1 = (x1 ⊕ y1 ⊕ z1) ⊕ r1 ⊕ r0(x0 ⊕ y0 ⊕ z0)
b2 = (x2 ⊕ y2 ⊕ z2) ⊕ r2 ⊕ . . . ⊕ r0r1 ⊕ (x0 ⊕ y0 ⊕ z0)(x1 ⊕ y1 ⊕ z1)

Similarly it can be shown that

bn−1 = xn−1 ⊕ yn−1 ⊕ zn−1 ⊕ ... ⊕ (xn−3 ⊕ yn−3 ⊕ zn−3)(xn−2 ⊕ yn−2 ⊕ zn−2)

From the bitwise expressions of A and B, it is observed that a0 = b0 and a1 = b1

but ai �= bi for 2 ≤ i < n. Hence it is proved that F (X, R)⊕F (Y, R)⊕F (Z, R) �=
F ((X ⊕ Y ⊕ Z), R). Also it can be shown that

Theorem 6. If X , Y , Z and R are the four n-bit numbers then
F (F (F (X, R), F (Y, R)), F (Z, R)) �= F (F (F (X, Y ), Z), R)

Proof: Let P = (pn−1 . . .p0) and Q = (qn−1 . . . q0) be the two n- bit numbers
such that P = F (F (F (X, R), F (Y, R)), F (Z, R)) and Q = F (F (F (X, Y ), Z), R).
From the definition of F , the bitwise expressions of P are given below

p0 = x0 ⊕ y0 ⊕ z0 ⊕ r0

p1 = x1 ⊕ y1 ⊕ z1 ⊕ r1 ⊕ r0(x0 ⊕ y0 ⊕ z0) ⊕ x0y0 ⊕ y0z0 ⊕ z0x0

p2 = x2 ⊕ y2 ⊕ z2 ⊕ . . . ⊕ r0(x1 ⊕ y1 ⊕ x1y0 ⊕ x0y1 ⊕ x0y0 ⊕ x1z0 ⊕ y1z0)

similarly it can be shown that

pn−1 = xn−1 ⊕ yn−1 ⊕ zn−1 ⊕ . . . ⊕ rn−3zn−3(xn−4xn−5 ⊕ yn−4yn−5)

Similarly bitwise expressions of Q are

q0 = x0 ⊕ y0 ⊕ z0 ⊕ k0

q1 = x1 ⊕ y1 ⊕ z1 ⊕ r1 ⊕ r0(x0 ⊕ y0 ⊕ z0) ⊕ x0y0 ⊕ y0z0 ⊕ z0x0

q2 = x2 ⊕ y2 ⊕ z2 ⊕ . . . ⊕ r0(x0 ⊕ y0 ⊕ z0)
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similarly it can be shown that

qn−1 = xn−1 ⊕ yn−1 ⊕ zn−1 ⊕ . . . ⊕ rn−2zn−3(xn−4xn−5 ⊕ yn−4yn−5)

From the bitwise expressions of P and Q, it is observed that p0 = q0,
p1 = q1 but pi = qi for all 2 ≤ i < n. Hence, it is proved that
F (F (F (X, R), F (Y, R)), F (Z, R)) �= F (F (F (X, Y ), Z), R).

B. Logic Diagram of Nmix and I-Nmix
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