
M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. IV, LNCS 5430, pp. 215–229, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Hardware Architecture for Integrated-Security
Services

Fábio Dacêncio Pereira1 and Edward David Moreno Ordonez1,2

1 University of São Paulo-USP, Polytechnic School, São Paulo, SP, Brazil
2 State University of Amazonas-UEA, Manaus, AM, Brazil

fabio.dacencio@poli.usp.br, edwdavid@gmail.com

Abstract. There are numerous techniques, methods and tools to promote the se-
curity of a digital system, however, each day the mechanisms of attack evolve
and are integrated, creating separate spheres of combined attacks. In this con-
text, this paper presents an embedded security system (into a SoC system) that
has as main goal an integration of the security services. It reaches an improved
performance and prevents malicious attacks on systems and networks. The SoC
prioritizes the implementation of dedicated functions in hardware as crypto-
graphic algorithms, communication interfaces, among others. In our prototype,
initially, the flow control functions and settings are running in software. This
article shows the architecture, functionality and performance of the system de-
veloped, and we discuss a real implementation in FPGA.

Keywords: Embedded System, Integrated Security Services, FPGA Perform-
ance and System-on-Chip.

1 Introduction

Researches on security systems have focused typically on creating new services or
improving the performance and reliability of a single technique, algorithm or mecha-
nism. The approaches that aim some integration among several security mechanisms
have focused usually on a specific strategic application, since the systematic approach
to integrate security systems requires an analysis of relations among the data.

In this context, we like to intend to describe not only an integration model for secu-
rity services, but also provide mechanisms to implement it in hardware and software,
and we will focus on requirements as transparency, performance and productivity.

The research on security systems integration (SSI) may be noted since 70'. The con-
cern in become a security technical set in a single integrated system is of paramount
importance, since the possible fragility of a security service may be offset by other.

Commercially, network devices and software of security have the challenge to cre-
ate this integration. The greatest difficulty is for establishing a common strategy for
innumerable devices, tools and techniques of information security.

The study of this integration is not new. The first research about this integration
appeared in 1975, and it was proposed by David Elliott Bell and Len LaPadula and it
is known as the Bell-LaPadula model [1]. This model was intended to create classes

216 F.D. Pereira and E.D.M. Ordonez

of access control for the DoD's systems. After this pioneer model, many techniques to
integrate security systems were developed [1-3].

The current models of SSI determine the relationship between a specific set of se-
curity mechanisms which exchange information for preventing or treat system's
anomaly.

The current models propose solutions under a specific set of services disregarding
the existence of other [4-8]. The most of those models has been used UML techniques
to represent the features, functionality and methodology.

So, this paper proposes a special architecture and describes the functionalities of an
Embedded System of SSI. It was implemented in FPGA of the Virtex kind. The differ-
ent modules dedicated to security as AES, RSA, HASH, among others, were imple-
mented. It is important note that the performance statistics (runtime related to circuit
delays) and physical area of implementation in hardware are presented and discussed.

This paper is organized in 10 sections. The description, methodology and objec-
tives of embedded system are in section 3, whereas section 2 is dedicated to related
works. In section 4 has a better description of our proposed system, while section 5
emphasizes at libraries dedicated to security services. The section 6 shows the de-
scription of the services layer, and Soc Configuration Interface appears in section 7.
Some results of implementation are provided in section 8 and section 9 ends with
some conclusions.

2 Related Works

The integration of security services is a necessity since the attacks techniques are
using the integration to increase the strength and efficiency of the attacks. Some
works have solutions to integrate a specific set for security services set and they are
bringing protection to the system.

The model proposed by Nimal Nissanke [8] focused on the protection of three pil-
lars: secret information, user identification and access control mechanisms. The cur-
rent models have mainly focused on services integration of access control and intru-
sion detection, they created a prevention system and dynamic protection.

Kim, in your work [25], affirms that Conventional security systems provide the
functions like intrusion detection, intrusion prevention and VPN individually, leading
to management inconvenience and high cost. To solve these problems, attention has
been paid on the integrated security engine integrating and providing intrusion detec-
tion, intrusion prevention and VPN. This work introduces a security framework that
allows secure networking by mounting integrated security engine to the network
nodes like router or switch. The solution was tested and validated in Cisco Router
2620 and 3620. The results were not discussed in paper.

The main concept discussed by Zilys [5] in your paper involves representation
through objects graphs that represent security services. From this concept may be a
link among security events. The concept, which is formulated, enables strategic con-
trol of integrated security systems (ISS) considering from the influence-reaction pa-
rameter point. Reaction strategy algorithm selection allows minimizing reaction time
to danger influence and maximizing efficiency of security system. The author does
not explore the different possibilities of constructing security objects. The paper pre-
sents only a basic form that could be further explored.

 A Hardware Architecture for Integrated-Security Services 217

Jonsson [7] proposed a model defines security and dependability characteristics in
terms of a system's interaction with its environment via the system boundaries and
attempts to clarify the relation between malicious environmental influence, e.g. at-
tacks, and the service delivered by the system. The model is intended to help reason-
ing about security and dependability and to provide an overall means for finding and
applying fundamental defense mechanisms. Since the model is high-level and concep-
tual it must be interpreted into each specific sub-area of security/dependability to be
practically useful.

The model propose by Jonsson is a suggested an integrated conceptual model of
security and dependability. The model is aimed at improving the understanding of the
basic concepts and their interrelation.

The model categorizes system attributes into input, internal and output attributes,
whether from the traditional security domain or the traditional dependability domain.
It should be helpful for reasoning about security, so that effective defence methods
can be developed and tangible results with respect to security/dependability perform-
ance can result. Furthermore, the model is intended for use for the development of
security metrics. Did not find this model applied in a case study specific.

One more recent proposal of Hassan Rasheed [18] proved the integration of ser-
vices as, intrusion detection, access control and the author specifies how to respond to
intrusion detection. Along this same line other researchers have proposed similar
works. Security devices, as the CISCO ASA family also demonstrated the integration
of these services.

The differential of our proposed system with those related works is that our ap-
proach tries to explore a universe of greater security services and the union of features
and functionality in an integration layer.

The main contribution of this work when compared with other listed earlier is that
in addition to presenting a model different are also described mechanisms and an
architecture capable of linking various security services into a single structure.

3 Embedded Security Services

This section shows descriptions and our methodology and main objectives related to
our embedded system which should contain security services.

The embedded system of SSI proposed can be divided into cores in hardware and
software libraries that collaborate among themselves for supporting the specifications
of an integrated security system.

The proposed system use security services as asymmetric and symmetric encryp-
tion, hash functions, IDS, firewall and audit aspects. These services can do tasks for
cooperating among them through a Security Services Integrated Layer (SSIL).

The main function of the SSIL is unifying the security services so that an applica-
tion would have access to them through a common database and a specific set of
methods. The advantages can be summarized mainly by transparency access to secu-
rity data, productivity, and robustness and achieved performance.

The technology and methodology adopted in developing this project have direct
impact on the viability, power consumption, area, complexity, flexibility and other
factors related to the final application. In this context, we have studied three models:
dedicated hardware, embedded software and a hybrid model:

218 F.D. Pereira and E.D.M. Ordonez

• Dedicated Hardware: Initially was adopted that all modules and functionality
would be described and implemented in hardware. The modules for processing and
control should be able to run operations with a high level of abstraction and com-
plexity. This proposal was discarded because it would lead to creation of hardware
with a high power and area consumption. Besides it is being unwieldy and difficult
to do updates.

• Embedded Software: This proposal adds flexibility to the system for allowing the
creation of specific security libraries and implementation of robust operations. The
use of embedded software allows the creation of interface functions as USB,
RS232, Ethernet, SVGA, graphics displays, among others. The disadvantages of
this model are in low performance in complex functions implementation as encryp-
tion and data compression when compared with hardware solutions.

• Hybrid Architecture: This model supports the integration into a single system,
hardware and embedded software. So, by using an interface for communication
could be made that hardware and software have interactions, extracting the benefits
offered by both.

To classify the services that would be implemented in hardware and software we
have adopted the following methodology. In first version, the system was described in
embedded software and it is executed by the PowerPC which is embedded in a FPGA
Virtex.

After, we have created some libraries with the function of time calculation and in-
structions counting (timer.h and InstC.h). These were used to detect code sentence
and instructions sets that consume high processing time.

Based on these results optimizations were performed at the level of software, but
the main contribution was the competence for detecting the system functions that
could be implemented in hardware. The result of this technique can be seen in section
8 on the final performance of our system. In the sequence we present the organization
in layers of our embedded system.

The final architecture is composed of dedicated cores and embedded software that
implements the system's control. The software runs under the Linux operating system
version 2.6.0, and this distribution was dedicated and compiled for the PowerPC
processor 405.

Using a Linux distribution allows the embedded software makes use of the advan-
tages of an OS as described in [14]: scheduling process, semaphores, file system,
memory access control, among others. These characteristics make this architecture a
good choice for our project. Fig. 1 describes the organization of our embedded system.

As can be seen in Fig. 1, the system's features are divided into two categories: (i)
high performance functions which are implemented in dedicated hardware (cores) and
(ii) control functions, data structures and flow process, that are implemented in em-
bedded software. In this case the C language was adopted as the best performance to
native applications.

The PowerPC physically present into the FPGA Virtex [15] is responsible for run-
ning the embedded software including the security functions, flow control and operat-
ing system installed, which were also implemented in this project.

At the highest level of abstraction is the Security Services Integrated Layer (SSIL).
The main function of this layer is ignore the existence of different security services,
and spread the use of the system's features.

 A Hardware Architecture for Integrated-Security Services 219

Fig. 1. Organization of embedded system in SoC

4 Top-Level Architecture

The project's architecture is composed of dedicated cores that communicate among
them with the PowerPC processor through controlled buses (PLB). Fig. 2 shows how
the embedded system proposed is organized, highlighting the main cores and software
stored in memory of 512 Mbytes RAM.

We have projected a preliminary version of this system by using the XUPV2P plat-
form which consists of a FPGA Virtex 2 Pro (XCV2P30) and peripherals of Input and
Output, where there are the interfaces used as Ethernet, memory SRAM, RS232, Leds
and Switches. In the sequence has the description of the cores use.

Xilinx PLB EMAC 10/100
This cores defines the Ethernet protocol layers, where can set a MAC address, allow-
ing the communication through a conventional network. Thus, the embedded security
system presents as a device to network.

Xilinx MCMP
To control the access was necessary to include the module MCMP (Multi-Controle
Memory Port) which is the interface between the SRAM memory of 512 Mbytes and
the PowerPC processor.

Xilinx IntC
IntC (Xilinx Interrupt Control) is responsible by interruptions control allowing differ-
ent modules can interrupt the flow of the main program (PowerPC Processor), for

220 F.D. Pereira and E.D.M. Ordonez

Fig. 2. Top-level architecture

treatment of an event. Currently the timer module and EMAC generate interruptions
that are treated as dedicated routines for PowerPC.

Xilinx Timer
Timer used by cores and PowerPC to create and define time scales.

Xilinx PLB
The integration of the PowerPC with dedicated cores is achieved through a common
bus, called the PLB (Processor Local Bus). To control the access to bus there is an
access arbiter, avoiding conflicts and information collisions.

Debug Interface
Primitive interfaces of the debugging and configuration are used only at the develop-
ment stage, validation and prototyping processes.

• 4 DIP Swtiches
• 4 Leds
• 1 RS232 serial interface (integration with the PC): transfer rate 9,600 bps, without

parity control.

The system debugging is important, especially at the development stage and vali-
dation to reduce the design time and minimize the occurrence of errors not foreseen
during the project specification.

 A Hardware Architecture for Integrated-Security Services 221

Symmetric Encryption
Dedicated component that has exclusive function of cipher and decipher the informa-
tion by using symmetric encryption algorithm, AES (Advanced Encryption Standard).
In our project, the AES module can be configured to blocks from 128, 192 and 256
bits. It is important to note that the operation modes, the generation of cryptographic
keys and padding control are implemented by software.

Asymmetric Encryption
The module of asymmetric cryptography uses the RSA algorithm that is prepared to
encrypt information using keys of 512 and 1024 bits. Later will be implemented a
version of 2048 bits. Again the control of vector of clear text and encrypted, keys
generation and padding control are implemented in embedded software.

Hash Functions
The hash function initially implemented in system uses the MD5 and SHA-2 algo-
rithms. Even knowing the fragility of the MD5 algorithm compared to the number of
collisions detected [19], many applications have adopted. So was implemented and
inserted in this project. The flow control is done by software.

Binary Compression
The compression algorithms are used in system as a complement of the embedded
application. We adopted the algorithms Shannon-Fano and Huffman [12]. They have
a good compression rate to generic applications. There are some algorithms for spe-
cific applications as audio and video that can achieve higher compression rates for
these specific cases.

In the proposed architecture are implemented in hardware the specific modules for
security, compression and the communication interface. The control flow of the data
capture to the hard core drive was implemented in software and runned by the
PowerPC embedded, this feature adds greater flexibility for security system. The PLB
Bus facilitates the addition of new security services. Thus the system can be adapted
and updated for different needs.

5 Dedicated Security Libraries

The libraries in software are of critical importance to the viability of the project, since
they make use of cores of interface and security for running the functions that require
performance. Next, we present a brief feature's description of the main libraries created:

• crypto.h: invokes the functions and parameters for the encryption algorithms based
initially in AES and RSA, where can generate key, Subkey, set the mode of opera-
tion, encrypt, decipher, among others.

• firewall.h: functions and parameters to insert, delete, alter, and select information
in rules table.

• ids.h: allows operations to insert, delete, alter, select anomaly patterns in specific
table.

• hash.h: implements operations related to hash functions MD5, SHA-1 and SHA-2.

222 F.D. Pereira and E.D.M. Ordonez

• audit.h: functions of creation of logs and failures debugging.
• zip.h: data compression (huffman and shannon fano)
• hashtable.h: allocates structure in memory and implements manipulation functions

and selection. This is used by other libraries to create customized tables.
• xml.h: contains a parser to that the information generated by the security system

can be accessed by other systems through the XML format.
• ciss.h: describes functions for creating of the SSIL, described in the next section.
• http.h: implements the HTTP protocol for access to Soc Configuration Interface.
• server.h: primitive of a web server for access to Soc Configuration Interface.

These libraries are used by embedded application and SSIL to create an environment
of personal security.

6 Security Services Integration Layer (SSIL)

The Security Services Integration Layer (SSIL) describes a mechanism to store in-
formation on security system, in pursuit of different devices, techniques and tools
share relevant information.

The SSIL will attend a universe of devices, tools and algorithms that exist and that
still will be created. This is possible only if have a dynamic structure that allows cus-
tomize their characteristics, maintaining the information integrity.

All information relating to system security or network that can be considered vital
can be stored locally for each security service, and this can generate an event and
register in SSIL frame. The storage structure (frame) is shown in Fig. 3 and is
described in the sequence:

• Package ID: identifies a single package; field with auto-increment.
• Application ID (2 bytes): This field stores the application ID that generated the

notification.
• Service Type (1 byte): classifies the security service type that detected the anomaly.
• Anomaly Level: quantifies and specifies the depth of anomaly.
• Reference ID: reporting reference number (more details on anomaly identified).
• Register Number (1 byte): sequential number indicating the number of notifica-

tions made by a particular application on an anomaly identified.
• IP / MAC (10 bytes): register the IP number and MAC address of the creator of

notification
• Permission (4 bits): Set the access level
• Remote access (4 bits): allows or not remote access to notification.
• Data (100 bytes): information on notification.

All and any anomaly of system identified by some of security services must be
formatted according as structure shown in Fig. 3. This structure contains sufficient
information to a security policy adopted a decision consistent in regarding indications
of possibles anomalys.

 A Hardware Architecture for Integrated-Security Services 223

The Decision-making after the identification of an anomaly is the responsibility of
the application that uses the SSIL. For the initial tests was adopted a simplified model
of integrated services based on the security structure published in 2007 by NIS-
SANKE [8].

Fig. 3. SSIL Frame

This structure aims to prioritize the network access control. That is, the sum of de-
ficiencies identified by the system can lead to blockage of access. Thus, devices of a
network that make anomalies will be blocked.
The system will be able to deny access to network without necessarily knowing where
or what security services identified the anomaly.

Specific information about any anomaly may be necessary for the decision. This
information can be accessed through the Reference ID that has the function to point
the index or code to locate the anomaly generated by a specific security service.

Our security model is simplified and implements the decision based on IP field and
anomaly level. The level is defined with the values of 1 to 5 for gravity anomaly identi-
fied. In this case, we decided that an accumulation of 12 points on the same network
device leads a blockage of service. The appropriate decision about these values deserves
more attention and research, but it is not the focus on this phase of our project. Thus,
regardless of who generated the notifications, the device network will be blocked.

It is important to note that more sophisticated and specific rules can be created eas-
ily if supported the structure (frame) of SSIL, as shown in Fig. 3.

7 SoC Configuration Interface

The SoC Configuration Interface is important to system, because through a friendly
interface the user can configure the main modules of the system as the dedicated cores
and routines of the overall functioning of the system.

The Interface, implemented in HTML + Javascript, allows the access by a conven-
tional network computers, only the IP mapping pre-defined (198.162.0.l: 8008) in a
browser. Fig. 4 shows the Soc Configuration Interface version 1.3. The Interface is
not the focus of this article and will not be explored in detail.

224 F.D. Pereira and E.D.M. Ordonez

Fig. 4. SSIL Configuration Interface

8 Statistics of Occupation and Performance

The performance and occupation are important factors to evaluate the proposed sys-
tem. The performance of the embedded system varies depending of the application
implemented. In this section, we describe the fully implemented version in embedded
software and the hybrid version.

Initially, we present results of the fully software implementation for highlighting
the critical performance points (see table 1).

The times recorded were made after the execution of each service on a load of
1MB storing information in memory.

For a detailed review of performance results, in software, described in table 3, it is
evident the need to dedicated cores in hardware in pursuit of optimizing the overall
processing system.

In this context, the table 2 shows the modules implemented in hardware (VHDL de-
scription). The impact of this implementation can be viewed in the following sections.

Table 1. Runtime of some security services in software

Services Runtime(ms)
AES 753
RSA 8582

SHA-1 638
SHA-2 787
MD5 523

Huffman 1014
Shannon-Fano 938

 A Hardware Architecture for Integrated-Security Services 225

In this analysis was considered the total time of propagation of the system includ-
ing all modules described. Information on occupation were evaluated by the number
of slices and the total percentage in relation to selected FPGA (see table 2).

8.1 Analysis of Spatial Resources

The table 2 presents the results generated after synthesis and routing of the cores of
the system, We show the numbers of SLICES consumed by each module and of the
all system.

As can be seen between the security cores, the RSA algorithm consumed the larg-
est area (already expected) given its complexity and difficulty of implementation in
hardware [17].

Table 2. Occupancy Statistics in FPGA

 Core Slices Occupation
AES 810 3%

RSA1024 3929 13%
SHA-2 1974 6%
MD5 1225 4%

Shanon 2407 8%
Debug Interface 10765 35%

Total 25391 84%

The total area consumed can not be considered the sum of areas of each core since

the statistical data presented represent the occupation of each module specific (as data
generated by the synthesis process) and does not consider the logic consumed, for
example the integration / interconnection of them.

The total occupancy was 84% of the FPGA. Unable to enter simultaneously some
modules as RSA 512 and 1024 bits, well as the data compression algorithms, Shan-
non-Fano and Huffman.

Thus, at this stage of the project, the statistical data of total occupation FPGA are
only made in 1024-bit RSA algorithms and Shannon-Fano.

8.2 Analysis of Propagation Time

The performance analysis supports mainly in propoagation time of each module and
the system propagation time. Table 3 presents statistical data performance. The time
unit is the nanoseconds (ns).

When looking table 3 note that the propagation time of the complete system is ap-
proximately 8.4 ns, this indicates that the external clock can be a maximum value of
119 MHz.

Considering the device and system complexity the maximum frequency is satisfac-
tory. The propagation time of each module dedicated shows again that the RSA has
the largest delay. In this case, the RSA algorithm 1024 and the Shannon-Fano was
implemented in this full version of the system.

226 F.D. Pereira and E.D.M. Ordonez

Table 3. Performance Statistics

IP Core Propagation Time Frequency (Max.)
AES 8,8495 ns 113 MHz

RSA1024 9,3458 ns 47 MHz
SHA-2 6,3694 ns 157 MHz
MD5 7,4627 ns 134 MHz

Shanon 8,2645 ns 121 MHz
Debug Interface 8,6206 ns 116 MHz

Total 8,4033 ns 119 MHz

Fig. 5. Impact of the dedicates cores

The frequency for the PowerPC is 300MHz, so the performance implementation in
software is associated with this frequency. It is important to note that the Soc Con-
figuration Interface is described in software consuming part of DDR memory SRAM
(external) and processing time of the PowerPC.

8.3 The Impact of Adding Dedicated Cores

The performance difference between the version fully in software and the hybrid
version can be measured in Fig. 5.

As can be noticed the hybrid version promotes a more effective and efficient proc-
essing. The average optimization was of 12.3 times in performance of the proposed
system.

8.4 Comparison with Other Dedicated Cores

There are many cryptographic cores and compression of data. The table 4 presents
data from implementations works related. In a comparison would be ideal important
that all cores were implemented the same device and synthesized by the same soft-
ware. Even with these differences is possible compare the proposed project, based on
the number of Slices and Frequency Acquired.

 A Hardware Architecture for Integrated-Security Services 227

Table 4. Comparison with related works

Algorithm Version FPGA Device Occupation Frequency
SSIL VC2VP30 810 Slices 113 MHz AES
[22] XC2V4000 753 Slices 118 MHz
SSIL VC2VP30 3929 Slices 47 MHz

RSA
[20] XC40250XV 2902 Slices 31 MHz
SSIL VC2VP30 1974 Slices 157 MHz

SHA-2
[23] VC2VP30 1667 Slices 141 Mhz
SSIL VC2VP30 1225 Slices 134 MHz

MD5
[21] XC2V4000 1057 Slices 78 MHz
SSIL VC2VP30 2407 Slices 121 MHz

Huffman
[24] EP20k100E 4160 LEs 173 MHz

In reviewing the information you can see that the system developed a good track

record regarding occupation and performance. The focus of this project is not con-
ceive of color to compete with the best implementations, but providing an environ-
ment for testing of integrated services and security.

 The biggest difference was found on the RSA algorithm. This difference may be
explained by different techniques adopted in implementation. The version imple-
mented by Mazzeo [20] is based on the Montgomery algorithm, the version already
implemented this project uses conventional multiplier. Most of the slices are
consumed for the implementation of large multiplier justifying the difference more
pronounced.

9 Conclusions

This work presented a specialized embedded System of Integrated Security Services.
We propose and discuss the architecture, features and performance when it is pro-
jected in a FPGA Virtex.

The main objectives of the project have been achieved. The security services were
created and we have a prototype of the embedded platform which offers integration
among different security services. Our embedded system offers transparent and user-
friendly provided to the user, productivity and greater involvement of the security
mechanisms of the present system.

The robustness of the system generated a concern about the performance that it
could achieve. As the performance data and area may be noted that the system has
reached a good performance level.

The performance of dedicated security cores can be compared to the best published
implementations of algorithms AES [9], SHA [11], MD5 [10]. A new systematic
search is being conducted to find better solutions to implementation of algorithms
compression and RSA in hardware [13].

In the near future, it would be interesting work on the following issues: The pro-
posed system can be expanded with the addition of new modules for security, as new
encryption algorithms.

It is evident that the insertion of new services directly to performance and involve
mainly in the area occupied. As future work aims to study the possibility reconfigure

228 F.D. Pereira and E.D.M. Ordonez

the device to facilitate the customization for specific applications and verify the im-
pact of reconfiguration in security applications.

The system was developed on the platform XUPV2P by the availability, but it
would be very important test in the most robust platforms such as a FPGA Virtex 5.

Finally, it would be very important to create a Soc Configuration Interface with
greater resources and assessment.

References

1. Bell, D.E., Lapadula L.: Secure Computer System: Unified Exposition and Multics Inter-
pretation. Technical Report MTR-2997 Rev. 1, MITRE Corporation, Bedford, MA (1975)

2. Baker, M.P.: Integrated security system. In: Proceedings International Carnahan Confer-
ence on Security Technology (1989)

3. Okamoto, E.: Proposal for integrated security systems. In: Proceedings of the Second In-
ternational Conference on Systems Integration ICSI 1992 (1992)

4. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST
standard for role-based access control. ACM Transactions on Information and System Se-
curity 4(3), 224–274 (2001)

5. Zilys, M., Valinevicius, A., Eidukas, D.: Optimizing strategic control of integrated security
systems. In: 26th International Conference on Information Technology Interfaces (2004)

6. Ghindici, D., Grimaud, G., Simplot-Ryl, I., Liu, Y., Traore, I.: Integrated Security Verifi-
cation and Validation: Case Study. In: IEEE Conference on Local Computer Networks
(2006)

7. Jonsson, E.: Towards an integrated conceptual model of security and dependability, Avail-
ability, Reliability and Security. In: ARES 2006 (2006)

8. Nissanke, N.: An Integrated Security Model for Component–Based Systems. In: IEEE
Conference Emerging Technologies & Factory Automation, ETFA (2007)

9. Zambreno, J., Nguyen, D., Choudhary, A.: Exploring Area/Delay Tradeoffs in an AES
FPGA Implementation, Department of Electrical and Computer Engineering Northwestern
University (2004)

10. Deepakumara, J., Heys, H.M., Venkatesan, R.: FPGA implementation of MD5 hash algo-
rithm. In: Emerging VLSI Technologies and Architectures. IEEE Computer Society, Los
Alamitos (2006)

11. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the SHA-2
family of hash functions on FPGAs. In: Emerging VLSI Technologies and Architectures.
IEEE Computer Society, Los Alamitos (2006)

12. Brian Connell, J.: A huffman-shannon-fano code. In: Proceedings of the IEEE, pp. 1046–
1047 (July 1973)

13. Michalski, A., Buell, D.: A Scalable Architecture for RSA Cryptography on Large FPGAs,
Field-Programmable Custom Computing Machines. In: FCCM 14th Annual IEEE Sympo-
sium (2006)

14. Monta Vista Embedded Linux Software, http://www.mvista.com/
15. Xilinx Document, PowerPC 405 Processor Block Reference Guide, Embedded Develop-

ment Kit, document: ug018 (2008)
16. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD-5. In: Helle-

seth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg
(1994)

 A Hardware Architecture for Integrated-Security Services 229

17. Fry, J., Langhammer, M.: RSA & Public Key Cryptography in FPGAs, Altera document
(2005)

18. Rasheed, H., Randy, Y.C., Chow: An Information Model for Security Integration. In: 11th
IEEE International Workshop on Future Trends of Distributed Computing Systems
(FTDCS 2007) (2007)

19. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 challenge and response:
Extension of APOP password recovery attack. In: Malkin, T.G. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

20. Mazzeo, A., Romano, L., Saggese, G.P.: FPGA-based Implementation of a serial RSA
processor. In: Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2003)

21. Järvinen, K., Tommiska, M., Skyttä, J.: Hardware Implementation Analysis of the MD5
Hash Algorithm. In: Proceedings of the 38th Hawaii International Conference on System
Sciences (2005)

22. Zambreno, J., Nguyen, D., Choudhary, A.: Exploring area/Delay tradeoffs in an AES
FPGA implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS,
vol. 3203, pp. 575–585. Springer, Heidelberg (2004)

23. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 Hardware Im-
plementations. LNCS. Springer, Heidelberg (2006)

24. Zeng, G., Ito, H.: Efficient Test Data Decompression for System-on-a-Chip Using an Em-
bedded FPGA Core. In: Proceedings of the 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT) (2003)

25. Kim, J.: Design and implementation of integrated security engine for secure networking.
In: IEEE Advanced Communication Technology (2004)

	A Hardware Architecture for Integrated-Security Services
	Introduction
	Related Works
	Embedded Security Services
	Top-Level Architecture
	Dedicated Security Libraries
	Security Services Integration Layer (SSIL)
	SoC Configuration Interface
	Statistics of Occupation and Performance
	Analysis of Spatial Resources
	Analysis of Propagation Time
	The Impact of Adding Dedicated Cores
	Comparison with Other Dedicated Cores

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

