
Antoine Joux (Ed.)

 123

LN
CS

 5
47

9

28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Cologne, Germany, April 2009, Proceedings

Advances in Cryptology –
EUROCRYPT 2009

Lecture Notes in Computer Science 5479
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Antoine Joux (Ed.)

Advances in Cryptology –
EUROCRYPT 2009

28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Cologne, Germany, April 26-30, 2009
Proceedings

13

Volume Editor

Antoine Joux
DGA and University of Versailles Saint-Quentin-en-Yvelines
45, avenue des Etats-Unis, 78035 Versailles Cedex, France
E-mail: antoine.joux@m4x.org

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-01000-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01000-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12648559 06/3180 5 4 3 2 1 0

© Springer-Verlag Berlin Heidelberg 2009

DOI:

The original version of the book was revised:
The copyright line was incorrect. The Erratum
to the book is available at

10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Preface

You are holding the proceedings of Eurocrypt 2009, the 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
This conference was organized by the International Association for Cryptologic
Research in cooperation with the Horst Görtz Institute for IT-Security at the
Ruhr-Universität Bochum. The local organization received additional support
from several sponsors: Horst Görtz Stiftung, Deutsche Forschungsgemeinschaft,
Bochum 2015, Secunet, NXP, IET, Taylor & Francis, AuthentiDate. The con-
ference was held in Cologne, Germany.

The Eurocrypt 2009 Program Committee (PC) consisted of 29 members,
listed on the next page. There were 148 submissions and 33 were selected to ap-
pear in this volume. Each submission was assigned to at least three PC members
and reviewed anonymously. During the review process, the PC members were
assisted by 131 external reviewers. Once the reviews were available, the commit-
tee discussed the papers in depth using the EasyChair conference management
system. The authors of accepted papers were given five weeks to prepare the fi-
nal versions included in these proceedings. The revised papers were not reviewed
again and their authors bear the responsibility for their content.

In addition to the papers included in this volume, the conference also featured
a Poster and a Rump session. The list of presented posters appears in this volume
before the table of contents. Dan Bernstein served as the Chair of the Rump
session. The conference also had the pleasure of hearing invited talks by Shafi
Goldwasser and Phillip Rogaway.

The PC decided to give the Best Paper Award to Dennis Hofheinz and Eike
Kiltz for their paper “Practical Chosen Ciphertext Secure Encryption from Fac-
toring.” In addition, the PC selected two other papers for invitation to the Jour-
nal of Cryptology: “On Randomizing Some Hash Functions to Strengthen the
Security of Digital Signatures” by Praveen Gauravaram and Lars Knudsen, and
“Possibility and Impossibility Results for Encryption and Commitment Secure
Under Selective Opening” by Mihir Bellare, Dennis Hofheinz and Scott Yilek.

I wish to thank all the people who contributed to this conference. First, all
the authors who submitted their work. The PC members and their external
reviewers for the thorough job they did while reading and commenting on the
submissions. Without them, selecting the papers for this conference would have
been an impossible task. I thank Andrei Voronkov for his review system Easy-
Chair, I was especially impressed by the tools that helped me while assembling
this volume. I am grateful to Arjen Lenstra for the help and advice he gave as
representative of the IACR Board. I also would like to thank the General Chair
Alexander May and his Co-chairs for making this conference possible.

Being the Program Chair for Eurocrypt 2009 was a great honor and I may
only hope that the readers of these proceedings will find them as interesting as
I found the task of selecting their content.

February 2009 Antoine Joux

Organization

General Chair

Alexander May Ruhr-Universität Bochum, Germany

Co-chairs
Roberto Avanzi Christof Paar Ahmad Sadeghi
Jörg Schwenk Christopher Wolf

Program Chair

Antoine Joux DGA and Université de Versailles
Saint-Quentin-en-Yvelines, France

Program Committee

Paulo Barreto University of São Paulo, Brazil
Alexandra Boldyreva Georgia Institute of Technology, USA
Colin Boyd Queensland University of Technology,

Australia
Xavier Boyen Stanford University, USA
Mike Burmester Florida State University, USA
Serge Fehr CWI Amsterdam, The Netherlands
Marc Fischlin TU Darmstadt, Germany
Pierre-Alain Fouque École Normale Supérieure, Paris, France
Craig Gentry Stanford University, USA
Henri Gilbert Orange Labs, France (Eurocrypt 2010 Chair)
Helena Handschuh Spansion, France
Nick Howgrave-Graham NTRU Cryptosystems, USA
Thomas Johansson Lund University, Sweden
Jonathan Katz University of Maryland and IBM Research,

USA
John Kelsey National Institute of Standards and

Technology, USA
Kwangjo Kim Information and Communications University,

Korea
Kaoru Kurosawa Ibaraki University, Japan
Reynald Lercier DGA/CELAR and Université de Rennes,

France
Anna Lysyanskaya Brown University, USA
Rafail Ostrovsky University of California, Los Angeles, USA

Pascal Paillier Gemalto Security Labs/Crytography &
Innovation, France

Duong Hieu Phan Université de Paris 8, France
Christian Rechberger IAIK, Graz University of Technology, Austria
Werner Schindler Bundesamt für Sicherheit in der

Informationstechnik, Germany
Thomas Shrimpton Portland State University and University of

Lugano, USA and Italy
Nigel Smart University of Bristol, UK (Eurocrypt 2008

Chair)
Rainer Steinwandt Florida Atlantic University, USA
Christine Swart University of Cape Town, South Africa
Christopher Wolf Ruhr University Bochum, Germany

External Reviewers

Abdalla, Michel
Abe, Masayuki
Andreeva, Elena
Armknecht, Frederik
Bangerter, Endre
Bellare, Mihir
Benaloh, Josh
Bernstein, Daniel J.
Billet, Olivier
Bouillaguet, Charles
Broker, Reinier
Brown, Dan
Cash, David
Chandran, Nishanth
Chen, Lidong
Chevallier-Mames, Benôıt
Clavier, Christophe
Cochran, Martin
Coron, Jean-Sébastien
Dent, Alex
Dodis, Yevgeniy
Duc, Dang Nguyen
Fiore, Dario
Fischer, Jan
Furukawa, Jun
Galbraith, Steven D.
Garay, Juan
Gazzoni Filho, Décio Luiz
Gebhardt, Max

Gennaro, Rosario
Gonzalez, Juan
Goubin, Louis
Gouget, Aline
Goyal, Vipul
van de Graaf, Jeroen
Halevi, Shai
Hanaoka, Goichiro
Hemenway, Brett
Heng, Swee Huay
Herbst, Christoph
Herranz, Javier
Hisil, Huseyin
Hoeper, Katrin
Hofheinz, Dennis
Holz, Thorsten
Hutter, Michael
Iorga, Michaela
Ishai, Yuval
Iwata, Tetsu
Jacobson, Michael
Jain, Abhishek
Kiltz, Eike
Koshiba, Takeshi
Krawczyk, Hugo
Kursawe, Klaus
Lamberger, Mario
Lange, Tanja
Lee, Younho

OrganizationX

Lehmann, Anja
Lenstra, Arjen
Lindell, Yehuda
Lochter, Manfred
Lu, Steve
Lucks, Stefan
Lyubashevsky, Vadim
Margraf, Marian
Maximov, Alexander
Mendel, Florian
Montenegro, Jose
Moran, Tal
Morrissey, Paul
Moss, Andrew
Naccache, David
Nad, Tomislav
Naehrig, Michael
Namprempre, Chanathip
Neven, Gregory
Nguyen, Phong
Niedermeyer, Frank
Noack, Andreas
O’Neill, Adam
Ogata, Wakaha
Ohkubo, Miyako
Oliveira, Leonardo
Oswald, Elisabeth
Page, Dan
Pandey, Omkant
Paul, Souradyuti
Peikert, Chris
Perlner, Ray
Persiano, Giuseppe
Pietrzak, Krzysztof
Pointcheval, David
Poschmann, Axel
Preneel, Bart
Priemuth-Schmid, Deike

Quisquater, Jean-Jacques
Ramzan, Zulfikar
Rappe, Dörte
Regenscheid, Andrew
Rezaeian Farashahi, Reza
Ristenpart, Thomas
Rose, Greg
Sakane, Hirofumi
Schläffer, Martin
Schmidt, Jörn-Marc
Schoenmakers, Berry
Schröder, Dominique
Schulte-Geers, Ernst
Segev, Gil
Shacham, Hovav
Shparlinski, Igor
Spitz, Stefan
Stam, Martijn
Stein, Oliver
Steinberger, John
Szekely, Alexander
Tillich, Stefan
Toft, Tomas
Tuengerthal, Max
Tunstall, Michael
Van Assche, Gilles
Vercauteren, Frederik
Vergnaud, Damien
Visconti, Ivan
Warinschi, Bogdan
Waters, Brent
Wee, Hoeteck
Wolf, Stefan
Wyseur, Brecht
Yerukhimovich, Arkady
Zenner, Erik
Zimmer, Sébastien

Organization IX

List of Presented Posters

Physically Unclonable Pseudorandom Functions
Frederik Armknecht, Ahmad-Reza Sadeghi, Pim Tuyls,
Roel Maes and Berk Sunar

Automatic Generation of sound Zero-Knowledge Protocols
Endre Bangerter, Jan Camenisch, Stephan Krenn,
Ahmad-Reza Sadeghi and Thomas Schneider

On the Data Complexity of Statistical Attacks Against Block Ciphers
Céline Blondeau and Benôıt Gérard

Anonymity from Asymmetry: New Constructions for Anonymous HIBE
Dan Boneh and Léo Ducas

Pairing with Supersingular Trace Zero Varieties Revisited
Emanuele Cesena

Odd-Char Multivariate Hidden Field Equations
Ming-Shing Chen, Jintai Ding, Chia-Hsin Owen Chen,
Fabian Werner and Bo-Yin Yang

Finding Good Linear Approximations of Block Ciphers and its
Application to Cryptanalysis of Reduced Round DES
Rafaël Fourquet, Pierre Loidreau and Cédric Tavernier

Techniques for Public Key Cryptographic Acceleration on Graphics Processors
Owen Harrison and John Waldron

Statistical Tests for Key Recovery Using Multidimensional Extension
of Matsui’s Algorithm 1
Miia Hermelin, Joo Yeon Cho and Kaisa Nyberg

The Key-Dependent Attack on Block Ciphers
Xiaorui Sun and Xuejia Lai

On Privacy Losses in the Trusted Agent Model
Paulo Mateus and Serge Vaudenay

Solving Low-Complexity Ciphers with Optimized SAT Solvers
Karsten Nohl and Mate Soos

A Geometric Approach on Pairings and Hierarchical Predicate Encryption.
Tatsuaki Okamoto and Katsuyuki Takashima

XIV List of Presented Posters

Generic Attacks on Feistel Networks with Internal Permutations
Jacques Patarin and Joana Treger

A Formal Treatment of Range Test of a Discrete Logarithm through Revealing
of a Monotone Function — Conditions, Limitations and Misuse
Kun Peng and Bao Feng

Could The 1-MSB Input Difference Be The Fastest Collision Attack For MD5?
Tao Xie, Dengguo Feng and Fanbao Liu

Table of Contents

Security, Proofs and Models (1)

Possibility and Impossibility Results for Encryption and Commitment
Secure under Selective Opening . 1

Mihir Bellare, Dennis Hofheinz, and Scott Yilek

Breaking RSA Generically Is Equivalent to Factoring 36
Divesh Aggarwal and Ueli Maurer

Resettably Secure Computation . 54
Vipul Goyal and Amit Sahai

On the Security Loss in Cryptographic Reductions 72
Chi-Jen Lu

Hash Cryptanalysis

On Randomizing Hash Functions to Strengthen the Security of Digital
Signatures . 88

Praveen Gauravaram and Lars R. Knudsen

Cryptanalysis of MDC-2 . 106
Lars R. Knudsen, Florian Mendel, Christian Rechberger, and
Søren S. Thomsen

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 121
Xiaoyun Wang, Hongbo Yu, Wei Wang, Haina Zhang, and Tao Zhan

Finding Preimages in Full MD5 Faster Than Exhaustive Search 134
Yu Sasaki and Kazumaro Aoki

Group and Broadcast Encryption

Asymmetric Group Key Agreement . 153
Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin, and
Josep Domingo-Ferrer

Adaptive Security in Broadcast Encryption Systems (with Short
Ciphertexts) . 171

Craig Gentry and Brent Waters

Traitors Collaborating in Public: Pirates 2.0 . 189
Olivier Billet and Duong Hieu Phan

XVI Table of Contents

Cryptosystems (1)

Key Agreement from Close Secrets over Unsecured Channels 206
Bhavana Kanukurthi and Leonid Reyzin

Order-Preserving Symmetric Encryption . 224
Alexandra Boldyreva, Nathan Chenette, Younho Lee, and
Adam O’Neill

A Double-Piped Mode of Operation for MACs, PRFs and PROs:
Security beyond the Birthday Barrier . 242

Kan Yasuda

Cryptanalysis

On the Security of Cryptosystems with Quadratic Decryption: The
Nicest Cryptanalysis . 260

Guilhem Castagnos and Fabien Laguillaumie

Cube Attacks on Tweakable Black Box Polynomials 278
Itai Dinur and Adi Shamir

Smashing SQUASH-0 . 300
Khaled Ouafi and Serge Vaudenay

Cryptosystems (2)

Practical Chosen Ciphertext Secure Encryption from Factoring 313
Dennis Hofheinz and Eike Kiltz

Realizing Hash-and-Sign Signatures under Standard Assumptions 333
Susan Hohenberger and Brent Waters

A Public Key Encryption Scheme Secure against Key Dependent
Chosen Plaintext and Adaptive Chosen Ciphertext Attacks 351

Jan Camenisch, Nishanth Chandran, and Victor Shoup

Invited Talk

Cryptography without (Hardly Any) Secrets ? . 369
Shafi Goldwasser

Security, Proofs and Models (2)

Salvaging Merkle-Damg̊ard for Practical Applications 371
Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton

Table of Contents XVII

On the Security of Padding-Based Encryption Schemes - or – Why We
Cannot Prove OAEP Secure in the Standard Model 389

Eike Kiltz and Krzysztof Pietrzak

Simulation without the Artificial Abort: Simplified Proof and Improved
Concrete Security for Waters’ IBE Scheme . 407

Mihir Bellare and Thomas Ristenpart

On the Portability of Generalized Schnorr Proofs . 425
Jan Camenisch, Aggelos Kiayias, and Moti Yung

Side Channels

A Unified Framework for the Analysis of Side-Channel Key Recovery
Attacks . 443

François-Xavier Standaert, Tal G. Malkin, and Moti Yung

A Leakage-Resilient Mode of Operation . 462
Krzysztof Pietrzak

Curves

ECM on Graphics Cards . 483
Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng,
Tanja Lange, and Bo-Yin Yang

Double-Base Number System for Multi-scalar Multiplications 502
Christophe Doche, David R. Kohel, and Francesco Sica

Endomorphisms for Faster Elliptic Curve Cryptography on a Large
Class of Curves . 518

Steven D. Galbraith, Xibin Lin, and Michael Scott

Generating Genus Two Hyperelliptic Curves over Large Characteristic
Finite Fields . 536

Takakazu Satoh

Randomness
Verifiable Random Functions from Identity-Based Key Encapsulation . . . 554

Michel Abdalla, Dario Catalano, and Dario Fiore

Optimal Randomness Extraction from a Diffie-Hellman Element 572
Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and
Sébastien Zimmer

A New Randomness Extraction Paradigm for Hybrid Encryption 590
Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung

Author Index . 611

Erratum to: Advances in Cryptology EUROCRYPT 2009 E1
Antoine Joux

–

II

Possibility and Impossibility Results for
Encryption and Commitment Secure under

Selective Opening

Mihir Bellare1, Dennis Hofheinz2, and Scott Yilek1

1 Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

{mihir,syilek}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,syilek}

2 CWI, Amsterdam
Dennis.Hofheinz@cwi.nl

http://www.cwi.nl/~hofheinz

Abstract. The existence of encryption and commitment schemes secure
under selective opening attack (SOA) has remained open despite consid-
erable interest and attention. We provide the first public key encryption
schemes secure against sender corruptions in this setting. The underly-
ing tool is lossy encryption. We then show that no non-interactive or
perfectly binding commitment schemes can be proven secure with black-
box reductions to standard computational assumptions, but any statis-
tically hiding commitment scheme is secure. Our work thus shows that
the situation for encryption schemes is very different from the one for
commitment schemes.

1 Introduction

IND-CPA and IND-CCA are generally viewed as strong notions of encryption se-
curity that suffice for applications. However, there is an important setting where
these standard notions do not in fact imply security and the search for solutions
continues, namely, in the presence of selective-opening attack (SOA) [22, 13, 38,
18, 16, 14]. Let us provide some background on SOA and then discuss our results
for encryption and commitment.

1.1 Background

The problem. Suppose a receiver with public encryption key pk receives a
vector c = (c[1], . . . , c[n]) of ciphertexts, where sender i created ciphertext
c[i] = E(pk ,m[i]; r[i]) by encrypting a message m[i] under pk and coins r[i]
(1 ≤ i ≤ n). It is important here that the messages m[1], . . . ,m[n] might be
related, but the coins r[1], . . . , r[n] are random and independent. Now, the ad-
versary, given c, is allowed to corrupt some size t subset I ⊆ {1, . . . , n} of senders
(say t = n/2), obtaining not only their messages but also their coins, so that

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 1–35, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

2 M. Bellare, D. Hofheinz, and S. Yilek

it has m[i], r[i] for all i ∈ I. This is called a selective opening attack (SOA).
The security requirement is that the privacy of the unopened messages, namely
m[i1], . . . ,m[in−t] where {i1, . . . , in−t} = {1, . . . , n} \ I, is preserved. (Mean-
ing the adversary learns nothing more about the unopened messages than it
could predict given the opened messages and knowledge of the message distri-
bution. Formal definitions to capture this will be discussed later.) The question
is whether SOA-secure encryption schemes exist.

Status and motivation. One’s first impression would be that a simple hybrid
argument would show that any IND-CPA scheme is SOA-secure. Nobody has yet
been able to push such an argument through. (And, today, regardingwhether IND-
CPA implies SOA-security we have neither a proof nor a counterexample.) Next
one might think that IND-CCA, at least, would suffice, but even this is not known.
The difficulty of the problem is well understood and documented [22, 13, 16, 38,
18, 14], and whether or not SOA-secure schemes exist remains open.

Very roughly, the difficulties come from a combination of two factors. The first
is that it is the random coins underlying the encryption, not just the messages,
that are revealed. The second is that the messages can be related.

We clarify that the problem becomes moot if senders can erase their randomness
after encryption, but it is well understood that true and reliable erasure is difficult
on a real system. We will only be interested in solutions that avoid erasures.

The problem first arose in the context of multiparty computation, where it is
standard to assume secure communication channels between parties [8, 17]. But,
how are these to be implemented? Presumably, via encryption. But due to the
fact that parties can be corrupted, the encryption would need to be SOA-secure.
We contend, however, that there are important practical motivations as well. For
example, suppose a server has SSL connections with a large number of clients.
Suppose a virus corrupts some fraction of the clients, thereby exposing the ran-
domness underlying their encryptions. Are the encryptions of the uncorrupted
clients secure?

Commitment. Notice that possession of the coins allows the adversary to verify
that the opening is correct, since it can compute E(pk ,m[i]; r[i]) and check that
this equals c[i] for all i ∈ I. This apparent commitment property has been viewed
as the core technical difficulty in obtaining a proof. The view that commitment
is in this way at the heart of the problem has led researchers to formulate and
focus on the problem of commitment secure against SOA [22]. Here, think of the
algorithm E in our description above as the commitment algorithm of a commit-
ment scheme, with the public key being the empty string. The question is then
exactly the same. More generally the commitment scheme could be interactive
or have a setup phase.

Independently of the encryption setting, selective openings of commitments
commonly arise in zero-knowledge proofs. Namely, often an honest verifier may
request that the prover opens a subset of a number of previously made commit-
ments. Thus, SOA-security naturally becomes an issue here, particularly when
considering the concurrent composition of zero-knowledge proofs (since then,

Possibility and Impossibility Results for Encryption and Commitment 3

overall more openings from a larger set of commitments may be requested). The
security of the unopened commitments is crucial for the zero-knowledge property
of such a protocol, and this is exactly what SOA-security of the commitments
would guarantee.

Definitions. Previous work [22] has introduced and used a semantic-style se-
curity formalization of security under SOA. A contribution of our paper is to
provide an alternative indistinguishability-based formalization that we denote
IND-SO-ENC for encryption and IND-SO-COM for commitment. We will also
refer to semantic security formalizations SEM-SO-ENC and SEM-SO-COM.

1.2 Results for Encryption

We provide the first public-key encryption schemes provably secure against
selective-opening attack. The schemes have short keys. (Public and secret keys
of a fixed length suffice for encrypting an arbitrary number of messages.) The
schemes are stateless and noninteractive, and security does not rely on erasures.
The schemes are without random oracles, proven secure under standard assump-
tions, and even efficient. We are able to meet both the indistinguishability (IND-
SO-ENC) and the semantic security (SEM-SO-ENC) definitions, although under
different assumptions.

Closer look. The main tool (that we define and employ) is lossy encryption,
an encryption analogue of lossy trapdoor functions [40] that is closely related to
meaningful-meaningless encryption [34] and dual-mode encryption [41]. We pro-
vide an efficient implementation of lossy encryption based on DDH. We also show
that any (sufficiently) lossy trapdoor function yields lossy encryption, thereby
obtaining several other lossy encryption schemes via the lossy trapdoor construc-
tions of [40, 10, 45].

We then show that any lossy encryption scheme is IND-SO-ENC secure, thereby
obtaining numerous IND-SO-ENC secure schemes. If the lossy encryption scheme
has an additional property that we call efficient openability, we show that it is also
SEM-SO-ENC secure. We observe that the classical quadratic residuosity-based
encryption scheme of Goldwasser and Micali [27] is lossy with efficient openability,
thereby obtaining SEM-SO-ENC secure encryption. It is interesting in this regard
that the solution to a long-standing open problem is a scheme that has been known
for 25 years. (Only the proof was missing until now.)

Previous work. In the version of the problem that we consider, there is one
receiver and many senders. Senders may be corrupted, with the corruption ex-
posing their randomness and message. An alternative version of the problem
considers a single sender and many receivers, each receiver having its own public
and secret key. Receivers may be corrupted, with corruption exposing their se-
cret key. Previous work has mostly focused on the receiver corruption version of
the problem. Canetti, Feige, Goldreich and Naor [13] introduce and implement
non-committing encryption, which yields SOA-secure encryption in the receiver
corruption setting. However, their scheme does not have short keys. (Both the

4 M. Bellare, D. Hofheinz, and S. Yilek

public and the secret key in their scheme are as long as the total number of
message bits ever encrypted.) Furthermore, Nielsen [38] shows that this is nec-
essary. Canetti, Halevi and Katz [16] provide SOA-secure encryption schemes
for the receiver corruption setting with short public keys, but they make use of
(limited) erasures. (They use a key-evolving system where, at the end of every
day, the receiver’s key is updated and the previous version of the key is securely
erased.) In the symmetric setting, Panjwani [39] proves SOA-security against a
limited class of attacks.

Our schemes do not suffer from any of the restrictions of previous ones. We
have short public and secret keys, do not rely on erasures, and achieve strong
notions of security.

A natural question is why our results do not contradict Nielsen’s negative
result saying that no noninteractive public key encryption scheme with short
and fixed keys is SOA-secure without erasures for an unbounded number of
messages [38]. The reason is that we consider sender corruptions as opposed to
receiver corruptions.

Discussion. It has generally been thought that the two versions of the prob-
lem (sender or receiver corruptions) are of equal difficulty. The reason is that
corruptions, in either case, allow the adversary to verify an opening and appear
to create a commitment. (Either the randomness or the decryption key suffices
to verify an opening.) Our work refutes this impression and shows that sender
corruptions are easier to handle than receiver ones. Indeed, we can fully resolve
the problem in the former case, while the latter case remains open. (Achiev-
ing a simulation-based notion for receiver corruptions is ruled out by [38] but
achieving an indistinguishability-based notion may still be possible.)

1.3 Results for Commitment

Previous work. In the zero-knowledge (ZK) setting, Gennaro and Micali [24]
notice a selective opening attack and circumvent it by adapting the distribution
of the messages committed to. Similarly, a number of works (e.g.,Dolev et al.
[21], Prabhakaran et al.[42] in the ZK context) use “cut-and-choose” techniques
on committed values, which is a specific form of selective opening. These works
can prove security by using specific properties of the distributions of the commit-
ted values (e.g., the fact that the unopened values, conditioned on the opened
values, are still uniformly distributed). The first explicit treatment of SOA-secure
commitment is by Dwork, Naor, Reingold, and Stockmeyer [22]. They formal-
ized the problem and defined SEM-SO-COM. On the negative side, they showed
that the existence of a one-shot (this means non-interactive and without setup
assumptions) SEM-SO-COM-secure commitment scheme implied solutions to
other well-known cryptographic problems, namely, three-round ZK and “magic
functions.” This is evidence that simulation-based one-shot SOA-secure commit-
ment is difficult to achieve. In particular, from Goldreich and Krawczyk [26], it
is known that three-round black-box zero-knowledge proof systems exist only for

Possibility and Impossibility Results for Encryption and Commitment 5

languages in BPP.1 On the positive side Dwork et al. showed that any statisti-
cally hiding chameleon commitment scheme is SOA-secure. (This scheme would
not be one-shot, which is why this does not contradict their negative results.)

Results for SEM-SO-COM. On the negative side, we show that no one-
shot or perfectly binding commitment scheme can be shown SEM-SO-COM-
secure using black-box reductions to standard assumptions. Here, by a standard
assumption, we mean any assumption that can be captured by a game between a
challenger and an adversary. (A more formal definition will be given later.) Most
(but not all) assumptions are of this form. On the positive side, we show, via
non-black-box techniques, that there exists an interactive SEM-SO-COM-secure
commitment scheme under the assumption that one-way permutations exist.

Results for IND-SO-COM. On the negative side, we show that no perfectly
hiding commitment scheme (whether interactive or not) can be shown IND-
SO-COM secure using black-box reductions to standard assumptions. On the
positive side, we show that any statistically hiding commitment scheme is IND-
SO-COM secure. (We note that a special case of this result was already implicit
in the work of Bellare and Rogaway [6].)

Closer look. Technically, we derive black-box impossibility results in the style
of Impagliazzo and Rudich [32], but we can derive stronger claims, similar to
Dodis et al. [20]. (Dodis et al. [20] show that the security of full-domain hash
signatures [4] cannot be proved using a black-box reduction to any hardness
assumption that is satisfied by a random permutation.) Concretely, we prove
impossibility of ∀∃semi-black-box proofs from any computational assumption
that can be formalized as an oracle X and a corresponding security property
P (i.e., a game between a challenger and an adversary) which the oracle satis-
fies. For instance, to model one-way permutations, X could be a truly random
permutation and P could be the one-way game in which a PPT adversary tries
to invert a random image. We emphasize that, somewhat surprisingly, our im-
possibility claim holds even if P models SOA-security. In that case, however,
a reduction will necessarily be non-black-box, see Section 9 for a discussion.
Concurrently to and independently from our work, Haitner and Holenstein [28]
developed a framework to prove impossibility of black-box reductions from any
computational assumption. While their formalism is very similar to ours (e.g.,
their definition of a “cryptographic game” matches our definition of a “prop-
erty”), they apply it to an entirely different problem, namely, encryption scheme
security in the presence of key-dependent messages.
1 “Black-box” means here that the ZK simulator uses only the (adverserial) verifier’s

next-message function in a black-box way to simulate an authentic interaction. Jump-
ing ahead, we will show that in many cases SOA-secure commitment cannot be
proved using a black-box reduction to a standard computational assumption. Both
statements are negative, but orthogonal. Indeed, it is conceivable that a security re-
duction uses specific, non-black-box properties of the adversary (e.g., it is common in
reductions to explicitly make use of the adversary’s complexity bounds), but neither
scheme nor reduction use specifics (like the code) of the underlying primitive.

6 M. Bellare, D. Hofheinz, and S. Yilek

Relation to the encryption results.An obvious question is why our re-
sults for encryption and commitment are not contradictive. The answer is that
our SOA-secure encryption scheme does not give rise to a commitment scheme.
Our commitment results do show that the SOA-security of an encryption scheme
cannot be proved using a black-box reduction, but only if encryption constitutes a
commitment. Because we consider SOA-security under sender corruptions in the
encryption setting, this is not the case. (Recall that with sender corruptions, an
encryption opening does not reveal the secret key, so the information-theoretic ar-
gument of Nielsen [38] that any encryption scheme is committing does not apply.)

1.4 History

This paper was formed by merging two Eurocrypt 2009 submissions which were
accepted by the PC under the condition that they merge. One, by Bellare and
Yilek, contained the results on encryption. (Sections 1.1,3,4,5.) The other, by
Hofheinz, contained the results on commitment. (Sections 1.2,6,7,8,9.) Both pa-
pers had independently introduced the indistinguishability definition of SOA-
security, the first for encryption and the second for commitment. Full versions
of both papers are available as [7, 31].

2 Notation

For any integer n, let 1n be its unary representation and let [n] denote the set
{1, . . . , n}. We let a← b denote assignment to a the result of evaluating b. If b is
simply a tuple of values of size m, we will write (b1, . . . , bm)← b when we mean
that b is parsed into b1 to bm. We let a←$ b denote choosing a value uniformly
at random from random variable b and assigning it to a.

We say a function μ(n) is negligible if μ ∈ o(n−ω(1)). We let neg(n) denote
an arbitrary negligible function. If we say some p(n) = poly(n), we mean that
there is some polynomial q such that for all sufficiently large n, p(n) ≤ q(n). The
statistical distance between two random variable X and Y over common domain
D is Δ(X,Y) = 1

2

∑
z∈D |Pr[X = z]− Pr[Y = z]| and we say that two random

variables X and Y are δ-close if their statistical distance is at most δ and if δ is
negligible, we might say X ≡s Y .

We denote by ε the empty string. For any stringsm0 andm1, letm0⊕m1 denote
the bitwise xor of the two strings. We use boldface letters for vectors, and for any
vector m of nmessages and i ∈ [n], let m[i] denote the ith message in m. For a set
I ⊆ [n] of indices i1 < i2 < . . . < il, let m[I] = (m[i1],m[i2], . . . ,m[il]). For any
set I (resp. any vector m)(resp. any stringm), let |I| (resp. |m|) (resp. |m|) denote
the size of the set (resp. length of the vector) (resp. length of the string).

All algorithms in this paper are randomized, unless otherwise specified as be-
ing deterministic. For any algorithm A, let CoinsA(x1, x2, . . .) denote the set of
possible coins A uses when run on inputs x1, x2, Let A(x1, x2, . . . ; r) denote
running algorithm A on inputs x1, x2, . . . and with coins r ∈ CoinsA(x1, x2, . . .).
Then A(x1, x2, . . .) denotes the random variable A(x1, x2, . . . ; r) with r chosen

Possibility and Impossibility Results for Encryption and Commitment 7

uniformly at random from CoinsA(x1, x2, . . .). When we say an algorithm is effi-
cient, we mean that it runs in polynomial time in its first input; if the algorithm
is randomized we might also say it runs in probabilistic polynomial time (PPT).
An unbounded algorithm does not necessarily run in polynomial time.

3 Encryption Related Definitions

3.1 Encryption Schemes

A public-key encryption scheme AE = (K, E ,D) is a triple of PT algorithms. The
(randomized) key generation algorithm K takes as input a security parameter 1λ

and outputs a public key/secret key pair (pk , sk). The (randomized) encryption
algorithm E takes as input a public key pk and a message m and outputs a
ciphertext c. The decryption algorithm takes as input a secret key sk and a
ciphertext C and outputs either the decryptionm of c, or ⊥, denoting failure. We
require the correctness condition that for all (pk , sk) generated by K, and for all
messagesm,D(sk, E(pk ,m)) = m. The standard notion of security for public-key
encryption scheme is indistinguishability under chosen-plaintext attack (ind-cpa).

3.2 Encryption Security under Selective Opening

We consider both indistinguishability-based and simulation-based definitions of
security for encryption under selective opening which we call ind-so-enc and
sem-so-enc, respectively.

Indistinguishability-based. For any public-key encryption scheme AE =
(K, E ,D), any message sampler M, and any adversary A = (A1, A2), we say
the ind-so-enc-advantage of A with respect to M is

Advind-so-enc
A,AE,M,n,t(λ) = 2 · Pr[Expind-so-enc

A,AE,M,n,t(λ)] − 1,

where the ind-so-enc security experiment is defined in Figure 1, and M|I,m0[I]
returns a random n-vector m1 according to M, subject to m1[I] = m0[I]. In
other words,M|I,m0[I] denotes conditionally resampling from the message space
subject to the constraint that the messages corresponding to indices in I are
equal to m0[I].

We say that a public-key encryption scheme AE is ind-so-enc-secure if for any
efficient message sampler M that supports efficient conditional resampling and
for all efficient adversaries A, the ind-so-enc-advantage of A with respect to M
is negligible in the security parameter.

In words, the experiment proceeds as follows. The adversary is given a pub-
lic key pk and n ciphertexts c encrypted under public key pk . The messages
corresponding to the n ciphertexts come from the joint distribution M. The
adversary then specifies a set I of t ciphertexts and receives the randomness r[I]
used to generate those ciphertexts in addition to a message vector mb such that
mb[I] were the actual messages encrypted using r[I] and the rest of mb depends

8 M. Bellare, D. Hofheinz, and S. Yilek

Experiment Expind-so-enc
A,AE,M,n,t(λ)

m0 ←$ M(1λ); b ←$ {0, 1}; (pk , sk) ←$ K(1λ)
For i = 1, . . . , n(λ) do

r[i] ←$ CoinsE(pk ,m0[i])
c[i] ← E(pk , m0[i]; r[i])

(I, st) ←$ A1(1λ, pk , c)
m1 ←$ M|I,m0[I]

b′ ←$ A2(st, r[I], mb)
Return (b = b′)

Fig. 1. The IND-SO-ENC security experiment

on the bit b. If b, which the experiment chooses randomly, is 0, the rest of the
messages in the vector are the actual messages used to create the ciphertexts c
that were given to the adversary. If b = 1, the rest of the messages are instead
resampled from M, conditioned on I and mb[I]. The adversary must then try
to guess the bit b.

The definition is a natural extension of ind-cpa to the selective decryption set-
ting. Intuitively, the definition means that an adversary, after adaptively choos-
ing to open some ciphertexts, cannot distinguish between the actual unopened
messages and another set of messages that are equally likely given the opened
messages that the adversary has seen.

Simulation-based. For any public-key encryption scheme AE = (K, E ,D), any
message sampler M, any relation R, any adversary A = (A1, A2), and any sim-
ulator S = (S1, S2), we say the sem-so-enc-advantage of A with respect to M,
R, and S is

Advind-so-enc
A,S,AE,M,R,n,t(λ) =Pr[Expsem-so-enc-real

A,AE,M,R,n,t(λ) = 1]

− Pr[Expsem-so-enc-ideal
S,AE,M,R,n,t (λ) = 1]

where the sem-so-enc security experiments are defined in Figure 2.
We say that a public-key encryption scheme AE is sem-so-enc-secure if for any

efficient message sampler M, any efficiently computable relation R, and any effi-
cient adversary A, there exists an efficient simulator S such that the sem-so-enc-
advantage ofAwith respect toM, R, and S is negligible in the security parameter.

Experiment Expsem-so-enc-real
A,AE,M,R,n,t(λ)

m ←$ M(1λ); (pk , sk) ←$ K(1λ)
For i = 1, . . . , n(λ) do

r[i] ←$ CoinsE(pk ,m[i])
c[i] ← E(pk ,m[i]; r[i])

(I, st) ←$ A1(1λ, pk , c)
w ←$ A2(st, r[I], m[I])
Return R(m, w)

Experiment Expsem-so-enc-ideal
S,AE,M,R,n,t (λ)

m ←$ M(1λ)
(I, st) ←$ S1(1λ)
w ←$ S2(st,m[I])
Return R(m, w)

Fig. 2. The two security experiments for SEM-SO-ENC

Possibility and Impossibility Results for Encryption and Commitment 9

In words, the experiments proceed as follows. In the sem-so-enc-real experi-
ment, the adversary A is given a public key pk and n ciphertexts c encrypted
under public key pk . The messages corresponding to the n ciphertexts come
from the joint distribution M. The adversary then specifies a set I of t cipher-
texts and receives the messages m[I] and randomness r[I] used to generate those
ciphertexts. The adversary then outputs a string w and the output of the ex-
periment is R(m, w), the relation applied to the message vector and adversary’s
output. In the sem-so-enc-ideal experiment, a vector m of messages is chosen and
the simulator, given only the security parameter, chooses a set I. The simulator
is then given m[I], the messages corresponding to the index set I. Finally, the
simulator outputs a string w and the output of the experiment is R(m, w).

4 Lossy Encryption

The main tool we use in our results is what we call a Lossy Encryption Scheme.
Informally, a lossy encryption scheme is a public-key encryption scheme with a
standard key generation algorithm (which produces ‘real’ keys) and a lossy key
generation algorithm (which produces ‘lossy’ keys), such that encryptions with
real keys are committing, while encryptions with lossy keys are not committing.
Peikert, Vaikuntanathan, and Waters [41] called such lossy keys “messy keys”,
for message lossy, while defining a related notion called Dual-Mode Encryp-
tion. The notion of Lossy Encryption is also similar to Meaningful/Meaningless
Encryption [34], formalized by Kol and Naor.

More formally, a lossy public-key encryption scheme AE = (K,Kloss, E ,D) is a
tuple of PT algorithms defined as follows. The key generation algorithm K takes
as input the security parameter 1λ and outputs a keypair (pk , sk); we call public
keys generated by K real public keys. The lossy key generation algorithm Kloss

takes as input the security parameter and outputs a keypair (pk , sk); we call
such pk lossy public keys. The encryption algorithm E takes as input a public
key pk (either from K or Kloss) and a message m and outputs a ciphertext c.
The decryption algorithm takes as input a secret key sk and a ciphertext c and
outputs either a message m, or ⊥ in the case of failure. We require the following
properties from AE :

1. Correctness on real keys. For all (pk , sk)←$K it must be the case that
D(sk , E(pk ,m)) = m. In other words, when the real key generation algorithm
is used, the standard public-key encryption correctness condition must hold.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adver-
sary can distinguish between the first outputs of K and Kloss. We call the
advantage of an adversary A distinguishing between the two the lossy-key-
advantage of A and take it to mean the obvious thing, i.e., the probability
that A outputs 1 when given the first output of K is about the same as the
probability it outputs 1 when given the first output of Kloss.

3. Lossiness of encryption with lossy keys. For any (pk , sk) ← Kloss and two
distinct messages m0,m1, it must be the case that E(pk ,m0) ≡s E(pk ,m1).
We say the advantage of an adversary A in distinguishing between the two

10 M. Bellare, D. Hofheinz, and S. Yilek

is the lossy-ind advantage of A and take it to mean the advantage of A in the
standard ind-cpa game when the public key pk in the ind-cpa game is lossy.
Notice that because the ciphertexts are statistically close, even an unbounded
distinguisher will have low advantage. We sometimes call ciphertexts created
with lossy public keys lossy ciphertexts.

4. Possible to claim any plaintext. There exists a (possibly unbounded) al-
gorithm Opener that, given a lossy public key pk loss, message m, and ci-
phertext c = E(pk loss,m), will output r′ ∈R CoinsE(pk loss,m) such that
E(pk loss,m; r′) = c. In other words, Opener will find correctly distributed
randomness to open a lossy ciphertext to the plaintext it encrypts. It then
directly follows from the lossiness of encryption that with high probability
the opener algorithm can successfully open any ciphertext to any plaintext.

We note that the fourth property is already implied by the first three properties;
the canonical (inefficient) Opener algorithm will, given pk loss,m, and c, simply try
all possible coins to find the set of all r such that E(pk loss,m; r) = c and output
a random element of that set. Nevertheless, we explicitly include the property
because it is convenient in the proofs, and later we will consider variations of
the definition which consider other (more efficient) opener algorithms.

We also note that the definition of lossy encryption already implies ind-cpa
security. We next provide two instantiations of lossy public-key encryption, one
from DDH and one from lossy trapdoor functions.

4.1 Instantiation from DDH

We now describe a lossy public-key encryption scheme based on the DDH assump-
tion. Recall that the DDH assumption for cyclic group G of order prime p says that
for random generator g ∈ G∗ (we use G∗ to denote the generators of G), the tu-
ples (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable, where
a, b, c←$ Zp.

The scheme we describe below is originally from [36], yet some of our notation
is taken from the similar dual-mode encryption scheme of [41]. The scheme has
structure similar to ElGamal.

Let G be a prime order group of order prime p. The scheme AEddh =
(K,Kloss, E ,D) is a tuple of polynomial-time algorithms defined as follows:

Algorithm K(1λ)
g←$ G∗; x, r←$ Zp

pk ← (g, gr, gx, grx)
sk ← x
Return (pk , sk)

Algorithm E(pk ,m)
(g, h, g′, h′)← pk
(u, v)←$ Rand(g, h, g′, h′)
Return (u, v ·m)

Algorithm D(sk, c)
(c0, c1)← c
Return c1/csk

0

Algorithm Kloss(1λ)
g←$ G∗; r, x �= y←$ Zp

pk ← (g, gr, gx, gry)
sk ← ⊥
Return (pk , sk)

Subroutine Rand(g, h, g′, h′)
s, t←$ Zp

u← gsht; v ← (g′)s(h′)t

Return (u, v)

Possibility and Impossibility Results for Encryption and Commitment 11

We show that AEddh satisfies the four properties of lossy encryption schemes.

1. Correctness on real keys. To see the correctness property is satisfied, consider
a (real) public key pk = (g, gr, gx, grx) and corresponding secret key sk = x.
Then, for some message m ∈ G

D(sk , E(pk ,m)) = D(sk , (gs+rt, gxs+rxt ·m))
= (gxs+rxt ·m)/(gs+rt)x

= m

2. Indistinguishability of real keys from lossy keys. This follows from the as-
sumption that DDH is hard in the groups we are using, since the first output
of K is (g, gr, gx, grx) and the first output of Kloss is (g, gr, gx, gry) for y �= x.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy
public key pk generated by Kloss, and any messages m0 �= m1 ∈ G, it is the
case that E(pk ,m0) ≡s E(pk ,m1). The results of Peikert, Vaikuntanathan,
and Waters can be applied here (specifically Lemma 4 from their paper [41]).
We repeat their lemma for completeness.

Lemma 1 (Lemma 4 from [41]). Let G be an arbitrary multiplicative
group of prime order p. For each x ∈ Zp, define DLOGG(x) = {(g, gx) : g ∈
G}. There is a probabilistic algorithm Rand that takes generators g, h ∈ G
and elements g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:
– If (g, g′), (h, h′) ∈ DLOGG(x) for some x, then (u, v) is uniformly random

in DLOGG(x).
– If (g, g′) ∈ DLOGG(x) and (h, h′) ∈ DLOGG(y) for x �= y, then (u, v) is

uniformly random in G2.

The Rand procedure mentioned in the lemma is exactly our Rand procedure
defined above. As [41] proves, this lemma shows that encryptions under
a lossy key are statistically close, since such encryptions are just pairs of
uniformly random group elements.

4. Possible to claim any plaintext. The unbounded algorithm Opener is simply
the canonical opener mentioned above. Specifically, on input lossy public key
pk = (g, h, g′, h′), message m ∈ G, and ciphertext (c1, c2) ∈ G2, it computes
the set of all s, t ∈ Zp such that Rand(g, h, g′, h′; s, t) outputs (c1, c2/m). It
then outputs a random element of this set.

4.2 Instantiation from Lossy TDFs

Before giving our scheme we will recall a few definitions.

Definition 1 (Pairwise Independent Function Family). A family of func-
tions Hn,m from {0, 1}n to {0, 1}m is pairwise-independent if for any distinct
x, x′ ∈ {0, 1}n and any y, y ∈ {0, 1}m,

Pr
h ←$ Hn,m

[h(x) = y ∧ h(x′) = y′] =
1

22m
.

12 M. Bellare, D. Hofheinz, and S. Yilek

For our results, we make use of lossy trapdoor functions, a primitive recently
introduced by Peikert and Waters [40]. Informally, a lossy trapdoor function is
similar to a traditional injective trapdoor function, but with the extra property
that the trapdoor function is indistinguishable from another function that loses
information about its input. We recall the definition from Peikert and Waters
(with minor notational changes):

Definition 2 (Collection of (n, k) Lossy Trapdoor Functions). Let λ be a
security parameter, n = n(λ) = poly(λ), and k = k(λ) ≤ n. A collection of (n, k)-
lossy trapdoor functions Ln,k = (Stdf , Sloss, Ftdf , F

−1
tdf) is a tuple of algorithms

with the following properties:

1. Easy to sample, compute, and invert given a trapdoor, an injective trapdoor
function. The sampler Stdf , on input 1λ outputs (s, t), algorithm Ftdf , on
input index s and some point x ∈ {0, 1}n, outputs fs(x), and algorithm
F−1

tdf , on input t and y outputs f−1
s (y).

2. Easy to sample and compute lossy functions. Algorithm Sloss, on input 1λ,
outputs (s,⊥), and algorithm Ftdf , on input index s and some point x ∈
{0, 1}n, outputs fs(x), and the image size of fs is at most 2r = 2n−k.

3. Difficult to distinguish between injective and lossy. The function indices out-
putted by the sampling algorithms Stdf and Sloss should be computationally
indistinguishable. We say the advantage of distinguishing between the indices
is the ltdf-advantage.

We now describe an instantiation of lossy encryption based on lossy trapdoor
functions.

Let λ be a security parameter and let (Stdf , Sloss, Ftdf , F
−1
tdf) define a col-

lection of (n, k)-lossy trapdoor functions. Also let H be a collection of pair-
wise independent hash functions from n bits to � bits; the message space of
the cryptosystem will then be {0, 1}�. The parameter � should be such that
� ≤ k − 2 log(1/δ), where δ is a negligible function in the security parameter λ.
The scheme AE loss = (K,Kloss, E ,D) is then defined as follows:

Algorithm K(1λ)
(s, t)←$ Stdf(1λ)
h←$H
pk ← (s, h); sk ← (t, h)
Return (pk , sk)

Algorithm E(pk ,m)
(s, h)← pk
x←$ {0, 1}n

c1 ← Ftdf(s, x)
c2 ← m⊕ h(x)
Return (c1, c2)

Algorithm D(sk , c)
(t, h)← sk
(c1, c2)← c
x← F−1

tdf (t, c1)
Return h(x) ⊕ c2

The Kloss algorithm is simply the same as K, but using Sloss instead of Stdf .
(In this case, the trapdoor t will be ⊥.)

WenowshowthatAE loss satisfies the four properties of lossy encryption schemes.

1. Correctness on real keys. This follows since when pk = (s, h) was generated
by K, s is such that (s, t)←$ Stdf(1λ) and h←$H so that

D(sk, E(pk ,m)) = h(F−1
tdf (t, Ftdf(s, x)))⊕ (m⊕ h(x))

= h(x) ⊕m⊕ h(x)
= m

Possibility and Impossibility Results for Encryption and Commitment 13

2. Indistinguishability of real keys from lossy keys. We need to show that any
efficient adversary has low lossy-key advantage in distinguishing between a
real public key (s, h) and a lossy key (s′, h′), where (s, h)←$K(1λ) and
(s′, h′)←$Kloss(1λ). Since s is the first output of Stdf and s′ is the first output
of Sloss, we use the third property of lossy trapdoor functions, specifically
that the function indices outputted by Stdf and Sloss are computationally
indistinguishable.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy
public key pk generated by Kloss, and any messages m0 �= m1 ∈ {0, 1}�,
it is the case that E(pk ,m0) ≡s E(pk ,m1). As Peikert and Waters show
in [40], this is true because of the lossiness of fs (where s is part of pk ,
generated by Sloss). Specifically, they show that the average min-entropy
H̃∞(x|(c1, pk)) of the random variable x, given fs(x) and pk is at least k,
and since � ≤ k − 2 log(1/δ), it follows that h(x) will be δ-close to uniform
and mb ⊕ h(x) will also be δ-close to uniform for either bit b.

4. Possible to claim any plaintext. Again, the opener is simply the canonical
opener that is guaranteed to be correct by the first three properties. Specifi-
cally, the (unbounded) algorithm Opener, on input a public key pk = (s, h),
messagem′ ∈ {0, 1}�, and ciphertext c = (c1, c2) = (fs(x), h(x)⊕m) for some
x ∈ {0, 1}n and m ∈ {0, 1}�, must output x′ ∈ {0, 1}n such that fs(x′) = c1
and h(x′)⊕m′ = c2. To do so, Opener enumerates over all {0, 1}n and creates
a set X = {x′ ∈ {0, 1}n : fs(x′) = c1 ∧ h(x′) = m′ ⊕ c2} before returning a
random x ∈ X .

4.3 An Extension: Efficient Opening

Recall that in the above definition of lossy encryption, the Opener algorithm
could be unbounded. We will now consider a refinement of the definition that
will be useful for achieving the simulation-based selective opening definition. We
say that a PKE scheme AE is a lossy encryption scheme with efficient opening
if it satisfies the following four properties:
1. Correctness on real keys. For all (pk , sk)←$K it must be the case that
D(sk , E(pk ,m)) = m.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adver-
sary can distinguish between the first outputs of K and Kloss.

3. Lossiness of encryption with lossy keys. For any (pk , sk) ← Kloss and two
distinct messages m0,m1, it must be the case that E(pk ,m0) ≡i E(pk ,m1).
Notice that we require ciphertexts to be identically distributed.

4. Possible to efficiently claim any plaintext. There exists an efficient algo-
rithm Opener that on input lossy keys sk loss and pk loss, message m′, and
ciphertext c = E(pk loss,m), outputs an r′ ∈R CoinsE(pk loss,m

′) such that
E(pk loss,m

′; r′) = c. In words, the algorithm Opener is able to open cipher-
texts to arbitrary plaintexts efficiently.

We emphasize that it is important for the opener algorithm to take as input
the lossy secret key. This may seem strange, since in the two schemes described
above the lossy secret key was simply ⊥, but this need not be the case.

14 M. Bellare, D. Hofheinz, and S. Yilek

4.4 The GM Probabilistic Encryption Scheme

The Goldwasser-Micali Probabilistic encryption scheme [27] is an example of a
lossy encryption scheme with efficient opening. We briefly recall the GM scheme.
Let Par be an algorithm that efficiently chooses two large random primes p and q
and outputs them along with their product N . Let Jp(x) denote the Jacobi
symbol of x modulo p. We denote by QRN the group of quadratic residues
modulo N and we denote by QNR+1

N the group of quadratic non-residues x
such that JN (x) = +1. Recall that the security of the GM scheme is based
on the Quadratic Residuosity Assumption, which states that it is difficult to
distinguish a random element of QRN from a random element of QNR+1

N . The
scheme AEGM = (K,Kloss, E ,D) is defined as follows.

Algorithm K(1λ)
(N, p, q)←$ Par(1λ)
x←$ QNR+1

N

pk ← (N, x)
sk ← (p, q)
Return (pk , sk)

Algorithm E(pk ,m)
(N, x) ← pk
For i = 1 to |m|
ri ←$ Z∗

N

c[i]← r2i ·xmi mod N
Return c

Algorithm D(sk , c)
(p, q)← sk
For i = 1 to |c|

If Jp(c[i])=Jq(c[i])=+1
mi ← 0

Else mi ← 1
Return m

The algorithm Kloss is the same as K except that x is chosen at random from
QRN instead of QNR+1

N ; in the lossy case the secret key is still the factorization
of N .

It is easy to see that the scheme AEGM meets the first three properties of
lossy PKE schemes with efficient opening: the correctness of the scheme under
real keys was shown in [27], the indistinguishability of real keys from lossy keys
follows directly from the Quadratic Residuosity Assumption, and encryptions
under lossy keys are lossy since in that case all ciphertexts are just sequences
of random quadratic residues. We claim that AEGM is also efficiently openable.
To see this consider the (efficient) algorithm Opener that takes as input secret
key sk = (p, q), public key pk = (N, x), plaintext m, and encryption c. For
simplicity, say m has length n bits. For each i ∈ [n], Opener uses p and q to
efficiently compute the four square roots of c[i]/xmi and lets r[i] be a randomly
chosen one of the four. The output of Opener is the sequence r, which is just a
sequence of random elements in Z∗

N .

5 SOA-Security from Lossy Encryption

We now state our main results for encryption: any lossy public-key encryption
scheme is ind-so-enc-secure, and any lossy public-key encryption scheme with
efficient opening is sem-so-enc-secure.

Theorem 1 (Lossy Encryption implies IND-SO-ENC security). Let λ
be a security parameter, AE = (K,Klossy , E ,D) be any lossy public-key encryp-
tion scheme, M any efficiently samplable distribution that supports efficient re-
sampling, and A be any polynomial-time adversary corrupting t = t(λ) parties.

Possibility and Impossibility Results for Encryption and Commitment 15

Then, there exists an unbounded lossy-ind adversary C and an efficient lossy-key
adversary B such that

Advind-so-enc
A,AE,M,n,t(λ) ≤ 2n ·Advlossy-ind

C,AE (λ) + 2 ·Advlossy-key
B,AE (λ).

Proof. We will prove the theorem using a sequence of game transitions. We start
with a game that is simply the ind-so-enc experiment run with A, and end with a
game in which A has no advantage, showing that each subsequent game is either
computationally or statistically indistinguishable from the previous game. Now,
we know that

Advind-so-enc
A,AE,M,n,t(λ) = 2 Pr[Expind-so-enc

A,AE,M,n,t(λ)]− 1

by the definition of ind-so-enc-security (see Section 3.2). We will now explain the
game transitions.

G0: The same as the ind-so-enc experiment.
G1: The only change is that the A1 is given a lossy public key and lossy

ciphertexts.
H0: Instead of opening the ciphertexts corresponding to index I (pro-

vided by A1) by revealing the actual coins used to generate the
ciphertexts, H0 runs the Opener algorithm on the actual messages
and ciphertexts and gives A2 the coins outputted. By the definition
of the Opener algorithm (see Section 4), the coins will be correctly
distributed and consistent with the ciphertexts.

Hj : We generalize H0 with a sequence of hybrid games. In the jth hybrid
game, the first j ciphertexts given to A1 are encryptions of dummy
messages instead of the first j messages outputted by M. Yet, the
game still opens the ciphertexts for A2 to the actual messages pro-
duced by M using the Opener algorithm.

Hn: In the last hybrid game, A1 is given encryptions of only the dummy
message, yet A2 receives openings of the ciphertexts to the actual
messages generated by M.

We first claim that there is an efficient adversary B such that

Pr[G0]− Pr[G1] = Advlossy-key
B,AE (λ). (1)

To see this consider a B that is given a challenge public key pk∗ and must
decide whether or not it is lossy. The adversary uses the ind-so-enc-adversary A
and executes exactly the same as G0 and G1, giving the adversary the challenge
key pk∗ and ciphertexts generated using pk∗. It is important for the conditional
resamplability of M to be efficient in order for adversary B to be efficient.

Next, we claim that
Pr[G1] = Pr[H0]. (2)

Recall that H0 opens ciphertexts c[i] = E(pk ,m0[i]) by using the Opener pro-
cedure. The key point is that in H0, c[i] is still opened to m0[i]. This ensures
us that Opener will always succeed in finding coins that open the ciphertext

16 M. Bellare, D. Hofheinz, and S. Yilek

correctly, and ensures us that the output of Opener is identically distributed to
the actual coins used to encrypt m. Thus, the claim follows.

We can now use a standard hybrid arguments to claim there is an unbounded
adversary C such that

Pr[H0]− Pr[Hn] = n ·Advlossy-ind
C,AE (λ). (3)

Adversary C, on input a lossy public key pk∗, will operate the same as Hj

(for some guess j) except that it will use the challenge key, and for the jth
ciphertext it will use the result of issuing an IND-CPA challenge consisting of
the dummy message mdum and the real message m0[j]. The adversaryC needs to
be unbounded because it runs the (possibly inefficient) procedure Opener. With
standard IND-CPA, the unbounded nature of C would be problematic. However,
in the case of lossy encryption, the encryptions of two distinct lossy ciphertexts
are statistically close instead of just computationally indistinguishable, so C will
still have only negligible advantage.

Finally, we claim that

Pr[Hn] = 1/2, (4)

which is true since in Hn the adversary A1 is given encryptions of dummy mes-
sages and has no information about the messages chosen from M. (In fact, we
could modify the games again and move the choice of the messages to after
receiving I from A1.)

Combining the above equations, we see that

Advind-sda
A,AE,M,n,t(λ) ≤ 2n ·Advlossy-ind

C,AE (λ) + 2 ·Advlossy-key
B,AE (λ),

which proves the theorem. �

Theorem 2 (Lossy Encryption with Efficient Opening implies SEM-
SO-ENC security). Let λ be a security parameter, AE = (K,Klossy , E ,D) be
any lossy public-key encryption scheme with efficient opening, M any efficiently
samplable distribution, R an efficiently computable relation, and A = (A1, A2)
be any polynomial-time adversary corrupting t = t(λ) parties. Then, there exists
an efficient simulator S = (S1, S2) and efficient lossy-key adversary B such that

Advsem-so-enc
A,S,AE,M,R,n,t(λ) ≤ Advlossy-key

B,AE (λ).

Proof (Sketch). The proof of Theorem 2 is very similar to the proof of Theorem 1,
so we will only sketch it here. For more details see [7]. We can modify the
sem-so-enc-real experiment step by step until we have a successful simulator in
the sem-so-enc-ideal experiment. Consider the following sequence of games:

Possibility and Impossibility Results for Encryption and Commitment 17

G0: The sem-so-enc-real experiment.
G1: Same as G0 except the adversary A1 is given a lossy public key.

The games are indistinguishable by the second property of efficiently
openable lossy encryption.

G2: Instead of giving A2 the actual randomness r[I], the experiment uses
the efficient Opener procedure.

G3: Adversary A1 is given encryptions of dummy messages, but A2 is
still given openings to the actual messages in m. To do this, the
efficient Opener algorithm is applied to the dummy ciphertexts.

We can then construct a simulator S = (S1, S2) that runs A exactly as its
run in G3. Specifically, S chooses a lossy keypair and runs A1 with a vector of
encryptions of dummy messages. When A1 outputs a set I, S asks for the same
set I and learns messages mI . The simulator then uses the efficient Opener algo-
rithm to open the dummy ciphertexts to the values mI and finally outputs the
same w as A2. Thus, the game G3 is identical to the sem-so-enc-ideal experiment
run with simulator S. Since all of the games are close, the theorem follows. �

6 Commitment Preliminaries and Definitions

Commitment schemes

Definition 3 (Commitment scheme). For a pair of PPT machines Com =
(S,R) and a machine A, consider the following experiments:

Experiment Expbinding
Com,A(λ)

run 〈R(recv), A(com)〉
m′

0 ←$ 〈R(open), A(open, 0)〉
rewind A and R back to after step 1
m′

1 ←$ 〈R(open), A(open, 1)〉
return 1 iff ⊥ �= m′

0 �= m′
1 �= ⊥

Experiment Exphiding-b
Com,A (λ)

(m0,m1)←$ A(choose)
return 〈A(recv), S(com,mb)〉

In this, 〈A, S〉 denotes the output of A after interacting with S, and 〈R, A〉 denotes
the output of R after interacting with A. We say that Com is a commitment
scheme iff the following holds:
Syntax. For any m ∈ {0, 1}λ, S(com,m) first interacts with R(recv). We call

this the commit phase. After that, S(open) interacts again with R(open),
and R finally outputs a value m′ ∈ {0, 1}λ ∪ {⊥}. We call this the opening
phase.

Correctness. We have m′ = m always and for all m.
Hiding. For a PPT machine A, let

Advhiding
Com,A(λ) := Pr

[
Exphiding-0

Com,A = 1
]
(λ)− Pr

[
Exphiding-1

Com,A = 1
]
(λ),

where Exphiding-b
Com,A is depicted below. For Com to be hiding, we demand that

Advhiding
Com,A is negligible for all PPT A that satisfy m0,m1 ∈ {0, 1}λ always.

18 M. Bellare, D. Hofheinz, and S. Yilek

Binding. For a machine A, consider the experiment Expbinding
Com,A below. For Com

to be binding, we require that Advbinding
Com,A(λ) = Pr

[
Expbinding

Com,A(λ) = 1
]

is neg-
ligible for all PPT A.

Further, we say that Com is perfectly binding iff Advbinding
Com,A = 0 for all A. We say

that Com is statistically hiding iff Advhiding
Com,A is negligible for all (not necessarily

PPT) A.

Definition 4 (Non-interactive commitment scheme). A non-interactive
commitment scheme is a commitment scheme Com = (S,R) in which both com-
mit and opening phase consist of only one message sent from S to R. We can
treat a non-interactive commitment scheme as a pair of algorithms rather than
machines. Namely, we write (com , dec)←$ S(m) shorthand for the commit mes-
sage com and opening message dec sent by S on input m. We also denote by
m′←$ R(com , dec) the final output of R upon receiving com in the commit phase
and dec in the opening phase.

Note that perfectly binding implies that any commitment can only be opened to
at most one value m. Perfectly binding (non-interactive) commitment schemes
can be achieved from any one-way permutation (e.g., Blum [9]). On the other
hand, statistically hiding implies that for any m0,m1 ∈ {0, 1}λ, the statistical
distance between the respective views of the receiver in the commit phase is
negligible. One-way functions suffice to implement statistically hiding (interac-
tive) commitment schemes (Haitner and Reingold [29]), but there are certain
lower bounds for the communication complexity of such constructions (Wee
[47], Haitner et al.[30]). However, if we assume the existence of (families of)
collision-resistant hash functions, then even constant-round statistically hiding
commitment schemes exist (Damgard et al. [19], Naor and Yung [37]).

Interactive argument systems and zero-knowledge. We recall some basic
definitions concerning interactive argument systems, mostly following Goldreich
[25].

Definition 5 (Interactive proof/argument system). An interactive proof
system for a language L with witness relation R is a pair of PPT machines
IP = (P,V) such that the following holds:
Completeness. For every family (xλ, wλ)λ∈� such that R(xλ, wλ) for all λ and

|xλ| is polynomial in λ, we have that the probability for V(xλ) to output 1
after interacting with P(xλ, wλ) is at least 2/3.

Soundness. For every machine P ∗ and every family (xλ, zλ)λ∈� such that
|xλ| = λ and xλ �∈ L for all λ, we have that the probability for V(xλ) to
output 1 after interacting with P ∗(xλ, zλ) is at most 1/3.

If the soundness condition holds for all PPT machines P ∗ (but not necessarily
for all unbounded P ∗), then IP is an interactive argument system. We say that IP
enjoys perfect completeness if V always outputs 1 in the completeness condition.

Possibility and Impossibility Results for Encryption and Commitment 19

Furthermore, IP has negligible soundness error if V outputs 1 only with negligible
probability in the soundness condition.

Definition 6 (Zero-knowledge). Let IP = (P,V) be an interactive proof or
argument system for language L with witness relation R. IP is zero-knowledge
if for every PPT machine V ∗, there exists a PPT machine S∗ such that for all
sequences (x,w) = (xλ, wλ)λ∈� with R(xλ, wλ) for all λ and |xλ| polynomial
in λ, for all PPT machines D, and all auxiliary inputs zV ∗

= (zV ∗
λ)λ∈� ∈

({0, 1}∗)� and zD = (zD
λ)λ∈� ∈ ({0, 1}∗)�, we have that

AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD (λ) := Pr

[
D(xλ, z

D
λ , 〈P(xλ, wλ), V ∗(xλ, z

V ∗
λ)〉) = 1

]
− Pr

[
D(xλ, z

D
λ , S

∗(xλ, z
V ∗
λ)) = 1

]
is negligible in λ. Here 〈P(xλ, wλ), V ∗(xλ, z

V ∗
λ)〉 denotes the transcript of the

interaction between the prover P and V ∗.

Most known interactive proof system achieve perfect completeness. Conversely,
most systems do not enjoy a negligible soundness error “by nature”; their sound-
ness has to be amplified via repetition, e.g., via sequential or concurrent com-
position. Thus, it is important to consider the concurrent composition of an
interactive argument system:

Definition 7 (Concurrent zero-knowledge). Let IP = (P,V) be an inter-
active proof or argument system for language L with witness relation R. IP is
zero-knowledge under concurrent composition iff for every polynomial n = n(λ)
and PPT machine V ∗, there exists a PPT machine S∗ such that for all sequences
(x,w) = (xi,λ, wi,λ)λ∈�,i∈[n] with R(xi,λ, wi,λ) for all i, λ and |xi,λ| polynomial
in λ, for all PPT machines D, and all auxiliary inputs zV ∗

= (zV ∗
λ)λ∈� ∈

({0, 1}∗)� and zD = (zD
λ)λ∈� ∈ ({0, 1}∗)�, we have that

AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD :=

Pr
[
D((xi,λ)i∈[n], z

D
λ , 〈P((xi,λ, wi,λ)i∈[n]), V ∗((xi,λ)i∈[n], z

V ∗
λ)〉) = 1

]
− Pr

[
D((xi,λ)i∈[n], z

D
λ , S

∗((xi,λ)i∈[n], z
V ∗
λ)) = 1

]
is negligible in λ. Here 〈P((xi,λ, wi,λ)i∈[n]), V ∗((xi,λ)i∈[n], z

V ∗
λ)〉 denotes the tran-

script of the interaction between n copies of the prover P (with the respective
inputs (xi,λ, wi,λ) for i = 1, . . . , n) on the one hand, and V ∗ on the other hand.

There exist interactive proof systems (with perfect completeness and negligible
soundness error) that achieve Definition 7 for arbitrary NP-languages if one-way
permutations exist (e.g., Richardson and Kilian [44]; see also [33, 15, 1, 23, 3]
for similar results in related settings). If we assume the existence of (families
of) collision-resistant hash functions, then there even exist constant-round in-
teractive proof systems that achieve a bounded version of Definition 7 in which

20 M. Bellare, D. Hofheinz, and S. Yilek

the number of concurrent instances is fixed in advance Barak [1], Barak and
Goldreich [2]).2

Black-box reductions. Reingold et al. [43] give an excellent overview and
classification of black-box reductions. We recall some of their definitions which
are important for our case. A primitive P = (FP, RP) is a set FP of functions
f : {0, 1}∗ → {0, 1}∗ along with a relation R over pairs (f,A), where f ∈ FP, and
A is a machine. We say that f is an implementation of P iff f ∈ FP. Furthermore,
f is an efficient implementation of P iff f ∈ FP and f can be computed by a
PPT machine. A machine A P-breaks f ∈ FP iff RP(f,A). A primitive P exists if
there is an efficient implementation f ∈ FP such that no PPT machine P-breaks
f . A primitive P exists relative to an oracle B iff there exists an implementation
f ∈ FP which is computable by a PPT machine with access to B, such that no
PPT machine with access to B P-breaks f .

Definition 8 (Relativizing reduction). There exists a relativizing reduction
from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) iff for every oracle
B, the following holds: if Q exists relative to B, then so does P.

Definition 9 (∀∃semi-black-box reduction). There exists a ∀∃semi-black-
box reduction from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) iff for
every implementation f ∈ FQ, there exists a PPT machine G such that Gf ∈ FP,
and the following holds: if there exists a PPT machine A such that Af P-breaks
Gf , then there exists a PPT machine S such that Sf Q-breaks f .

It can be seen that if a relativizing reduction exists, then so does a ∀∃semi-black-
box reduction. The converse is true when Q “allows embedding,” which essentially
means that additional oracles can be embedded into Q without destroying its
functionality (see Reingold et al. [43], Definition 3.4 and Theorem 3.5 and Simon
[46]). Below we will prove impossibility of relativizing reductions between certain
primitives, which also proves impossibility of ∀∃semi-black-box reductions, since
the corresponding primitives Q allow embedding.

7 Simulation-Based Commitment Security under
Selective Openings

Consider the following real security game: adversaryA gets, say, n commitments,
and then may ask for openings of some of them. The security notion of Dwork
et al. [22] requires that for any such A, there exists a simulator S that can
approximate A’s output. More concretely, for any relation R, we require that
R(m, outA) holds about as often as R(m, outS), where m = (m[i])i∈[n] are
the messages in the commitments, outA is A’s output, and outS is S’s output.
2 It is common to allow the simulator S∗ to be expected polynomial-time. In fact, the

positive results [44, 33] (but not [1]) construct an expected PPT S∗. We will neglect
this issue in the following, since our results do not depend the complexity of S∗ (as
long as S∗ is not able to break an underlying computational assumption).

Possibility and Impossibility Results for Encryption and Commitment 21

Formally, we get the following definition (where henceforth, I will denote the
set of “allowed” opening sets):

Definition 10 (SEM-SO-COM). Assume n = n(λ) > 0 is polynomially
bounded, and let I = (In)n be a family of sets such that each In is a set of
subsets of [n]. A commitment scheme Com = (S,R) is simulatable under se-
lective openings (short SEM-SO-COM secure) iff for every PPT n-message
distribution M, every PPT relation R, and every PPT machine A (the adver-
sary), there is a PPT machine S (the simulator), such that Advsem-so

Com,M,A,S,R is
negligible. Here

Advsem-so
Com,M,A,S,R(λ) := Pr

[
Expsem-so-real

Com,M,A,R = 1
]
(λ)−Pr

[
Expsem-so-ideal

M,S,R = 1
]
(λ),

where the experiments Expsem-so-real
Com,M,A,R and Expsem-so-ideal

M,S,R are defined as follows:

Experiment Expsem-so-real
Com,M,A,R(λ)

m = (m[i])i∈[n] ←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA ←$ 〈A(open), (Si(open))i∈I〉
return R(m, outA)

Experiment Expsem-so-ideal
M,S,R (λ)

m = (m[i])i∈[n] ←$M
I ←$ S(choose)
outS ←$ S((m[i])i∈I)
return R(m, outS)

In this, we require from A that I ∈ Iλ,3 and we denote by 〈A, (Si)i〉 the output
of A after interacting concurrently with instances Si of S.

Discussion of the definitional choices. While Definition 10 essentially is
the selective decommitment definition Dwork et al. [22], Definition 7.1, there
are a number of definitional choices we would like to highlight (the following
discussion applies equally to the upcoming Definition 13):
– Unlike [22, Definition 7.1], neither adversaryA nor relationR get an auxiliary

input. Such an auxiliary input is common in cryptographic definitions to
ensure some form of composability.

– We do not explicitly hand the chosen set I to the relation R. Handing I to
R potentially makes the definition more useful in larger contexts in which I
is public.

– One could think of letting R determine the message vector m.4 (Equivalently,
we can view M as part of R and letM forward its random coins—or a short
seed—to R in a message part m[i] which is guaranteed not to be opened,
e.g., when i �∈ I for all I ∈ In.)

– The order of quantifiers (∀M, R,A∃S) is the weakest one possible. In particu-
lar, we do not mandate that S is constructed from A in a black-box way.

3 that is, we actually only quantify over those A for which I ∈ Iλ.
4 This definition is closer to a universally composable definition (cf. Canetti [11]) in

the sense that R (almost) takes the role of a UC-environment: R selects all inputs
and reads the outputs (in particular the output of A). However, we stress that R may
not actively interfere in the commitment protocol. Note that we cannot hope for fully
UC-secure commitments for reasons not connected to the selective decommitment
problem, cf. Canetti and Fischlin [12].

22 M. Bellare, D. Hofheinz, and S. Yilek

In all of the cases, we chose the weaker definitional variant for simplicity, which
makes our negative results only stronger. We stress, however, that our positive
results (Theorem 4 and Theorem 6) hold also for all of the stronger definitional
variants.

7.1 Impossibility from Black-Box Reductions

Formalization of computational assumptions. Our first negative result
states that SEM-SO-COM security cannot be achieved via black-box reductions
from standard assumptions. We want to consider such standard assumptions in a
general way that allows to make statements even in the presence of “relativizing”
oracles. Thus we make the following definition, which is a special case of the
definition of a primitive from Reingold et al. [43] (cf. also Section 6).

Definition 11 (Property of an oracle). Let X be an oracle. Then a property
P of X is a (not necessarily PPT) machine that, after interacting with X and
another machine A, finally outputs a bit b. For an adversary A (that may interact
with X and P), we define A’s advantage against P as

Advprop
P,X ,A := Pr[P outputs b = 1 after interacting with A and X]− 1/2.

Now X is said to satisfy property P iff for all PPT adversaries A, we have that
Advprop

P,X ,A is negligible.

In terms of Reingold et al. [43], the corresponding primitive is P = (FP, RP),
where FP = {X}, and RP(X , A) iff Advprop

P,X ,A is non-negligible. Our definition
is also similar in spirit to “hard games” as used by Dodis et al. [20], but more
general.

We emphasize that P can only interact with X and A, but not with possible
additional oracles. (See Section 9 for further discussion of properties of oracles, in
particular their role in our proofs.) Intuitively, P acts as a challenger in the sense
of a cryptographic security experiment. That is, P tests whether adversary A
can “break” X in the intended way. We give an example, where “breaking” means
“breaking X ’s one-way property”.

Example. If X is a random permutation of {0, 1}λ, then the following P models
X ’s one-way property: P acts as a challenger that challenges A to invert a
randomly chosen X -image. Concretely, P initially chooses a random Y ∈ {0, 1}λ

and sends Y to A. Upon receiving a guess X ∈ {0, 1}λ from A, P checks if
X (X) = Y . If yes, then P terminates with output b = 1. If X (X) �= Y , then P
tosses an unbiased coin b′ ∈ {0, 1} and terminates with output b = b′.

We stress that we only gain generality by demanding that Pr[P outputs 1] is close
to 1/2 (and not, say, negligible). In fact, this way indistinguishability-based games
(such as, e.g., the indistinguishability of ciphertexts of an ideal encryption scheme
X) can be formalized very conveniently. On the other hand, cryptographic games
like the one-way gameabove can be formulated in this framework as well, by letting
the challenger output b = 1 with probability 1/2 when A fails.

Possibility and Impossibility Results for Encryption and Commitment 23

On the role of property P. Our upcoming results state the impossibility of
(black-box) security reductions, from essentially any computational assumption
(i.e., property) P . The obvious question is: what if the assumption already is an
idealized commitment scheme secure under selective openings? The short answer
is: “then the security proof will not be black-box.” We give a detailed explanation
of what is going on in Section 9.

Stateless breaking oracles. In our impossibility results,we will describe a com-
putational world with a number of oracles. For instance, there will be a “breaking
oracle” B, such that B aids in breaking the SEM-SO-COM security of any given
commitment scheme, and in nothing more. To this end, B takes the role of the ad-
versary in the SEM-SO-COM experiment. Namely, B expects to receive a number
of commitments, then chooses a subset of these commitments, and then expects
openings of the commitments in this subset. This is an interactive process which
would usually require B to hold a state across invocations. However, stateful ora-
cles are not very useful for establishing black-box separations, so we will have to
give a stateless formulation of B. Concretely, suppose that the investigated com-
mitment scheme is non-interactive.ThenB answers deterministically upon queries
and expects each query to be prefixed with the history of that query. For instance,
B finally expects to receive openings dec = (dec[i])i∈I along with the correspond-
ing previous commitments com = (com [i])i∈[n] and previously selected set I. If I
is not the set that B would have selected when receiving com alone, then B ignores
the query. This way, B is stateless (but randomized, similarly to a random oracle).
Furthermore, for non-interactive commitment schemes, this makes sure that any
machine interactingwithB can open commitments toB only in one way.Hence this
formalization preserves the binding property of a commitment scheme, something
which we will need in our proofs.

We stress, however, that this method does not necessarily work for interactive
commitment schemes. Namely, any machine interacting with such a stateless
B can essentially “rewind” B during an interactive commitment phase, since B
formalizes a next-message function. Now if the commitment scheme is still bind-
ing if the receiver of the commitment can be rewound (e.g., this holds trivially
for non-interactive commitment schemes, and also for perfectly binding commit-
ment schemes), then our formalization of B preserves binding, and our upcoming
proof works. If, however, the commitment scheme loses its binding property if
the receiver can be rewound, then the following theorem cannot be applied.

We are now ready to state our result.

Theorem 3 (Black-box impossibility of non-interactive or perfectly
binding SEM-SO-COM, most general formulation). Let n = n(λ) = 2λ,
and let I = (In)n with In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized
subsets of [n].5 Let X be an oracle that satisfies property P. Then there is a
set of oracles relative to which X still satisfies property P, but there exists no

5 We stress that the proofs of Theorem 3 and Theorem 5 hold literally also for the
“cut-and-choose” In = {I ⊆ [n] | ∀i ∈ [λ] : either 2i − 1 ∈ I or 2i ∈ I}.

24 M. Bellare, D. Hofheinz, and S. Yilek

non-interactive or perfectly binding commitment scheme which is simulatable
under selective openings.

Proof strategy. We will use a random oracle RO that, for any given non-
interactive commitment scheme Com∗, induces a message distribution M∗ =
{(RO(Com∗, i,X∗))i∈[n]}X∗∈{0,1}λ/3 . Here, RO(Com∗) denotes the hash of the
description of Com∗, and X∗ is a short “seed” that ties the values RO(Com∗, i,
X∗) (with the same X∗ but different i) together. Furthermore, we will specify
an oracle B that will help to break Com∗ with respect to M∗. Concretely, B first
expects n Com∗-commitments, and then requests openings of a random subset
of them. If all openings are valid, B returns a value X∗ consistent (according to
M∗) with all opened messages (if such an X∗ exists). A suitable SEM-SO-COM
adversary A can use B simply by relaying its challenge to obtain X∗ and hence
the whole message vector in its SEM-SO-COM experiment.

However, we will prove that B is useless to any simulator S that gets only a
message subset m[I]: if S uses B before requesting its own message subset m[I],
then B’s answer will not be correlated with the SEM-SO-COM challenge message
vector m. (This also holds if S first sends commitments to B and immediately
afterwards requests m[I] from the SEM-SO-COM experiment; in that case, S
has to break the binding property of Com∗ to get an answer from B which is
correlated with m.) But if S uses B after obtaining m[I], then with very high
probability, S will have open at least one commitment to B whose message is not
contained in m[I]. By definition of M∗, this opening of S will not be consistent
with the other values of m[I] (except with small probability), and B’s answer
will again not be correlated with m.

Since S cannot efficiently extract the seed X∗ from its message subset m[I]
alone (that would require a brute-force search over exponentially many values),
this shows that Com∗ is not SEM-SO-COM secure. Consequently, because Com∗

was arbitrary (only the message distribution M∗ is specific to Com∗), there exist
no SEM-SO-COM secure commitment schemes relative to RO and B. Finally,
it is easy to see that relative to RO and B, primitive X still satisfies property
P . Concretely, observe that B does not break any commitment (note that B’s
answer depends only on the opened commitments), but only inverts a message
distribution (or, rather, RO). Hence, any adversary attacking property P of X
can use efficient internal simulations of RO and B instead of the original oracles.
Since X satisfies property P with respect to adversaries without (additional)
oracle access, the claim follows.

The following corollary provides an instantiation of Theorem 3 for a number
of standard cryptographic primitives.
Corollary 1 (Black-box impossibility of non-interactive or perfectly
binding SEM-SO-COM). Assume n and I as in Theorem 3. Then no non-
interactive or perfectly binding commitment scheme can be proved simulatable
under selective openings via a ∀∃semi-black-box reduction to one or more of the
following primitives: one-way functions, one-way permutations, trapdoor one-
way permutations, IND-CCA secure public key encryption, homomorphic public
key encryption.

Possibility and Impossibility Results for Encryption and Commitment 25

The corollary is a special case of Theorem 3. For instance, to show Corollary 1
for one-way permutations, one can use the example X and P from above: X is a
random permutation of {0, 1}λ, and P models the one-way experiment with X .
Clearly, X satisfies P , and so we can apply Corollary 1. This yields impossibility
of relativizing proofs for SEM-SO-COM security from one-way permutations. We
get impossibility for ∀∃semi-black-box reductions since one-way permutations al-
low embedding, cf. Simon [46],Reingold et al. [43]. The other cases are similar.
Note that while it is generally not easy to even give a candidate for a crypto-
graphic primitive in the standard model, it is easy to construct an idealized, say,
encryption scheme in oracle form.

We stress that Corollary 1 makes no assumptions about the nature of the
simulation (in the sense of Definition 10). In particular, the simulator may freely
use, e.g., the code of the adversary; the only restriction is black-box access to
the underlying primitive. As discussed in the introduction, this is quite different
from the result one gets upon combining Goldreich and Krawczyk [26] and Dwork
et al. [22]: essentially, combining [26, 22] shows impossibility of constructing S
in a black-box way from A (i.e., such that S only gets black-box access to A’s
next-message function).

Generalizations. First, Corollary 1 constitutes merely an example instantiation
of the much more general Theorem 3. Second, the proof also holds for a relaxation
of SEM-SO-COM security considered by Dwork et al. [22], Definition 7.3, where
adversary and simulator approximate a function of the message vector.

7.2 Possibility Using Non-black-box Techniques

Non-black-box techniques vs. interaction. Theorem 3 shows that SEM-
SO-COM security cannot be achieved unless one uses non-black-box techniques
or interaction. In this section, we will investigate the power of non-black-box
techniques to achieve SEM-SO-COM security. As it turns out, for our purposes
a concurrently composable zero-knowledge argument system is a suitable non-
black-box tool.6 We stress that the use of this zero-knowledge argument makes
our scheme necessarily interactive, and so actually circumvents Theorem 3 in
two ways: by non-black-box techniques and by interaction. However, from a
conceptual point of view, our scheme is “non-interactive up to the zero-knowledge
argument.” In particular, our proof does not use the fact that the zero-knowledge
argument is interactive. (That is, if we used a concurrently composable non-
interactive zero-knowledge argument in, say, the common reference string model,
our proof would still work.)

The scheme. For our non-black-box scheme, we need an interactive argument
system IP with perfect completeness and negligible soundness error, such that IP
is zero-knowledge under concurrent composition. We also need a perfectly bind-
ing non-interactive commitment scheme Comb. Both these ingredients can be
6 We require concurrent composability since the SEM-SO-COM definition considers

multiple, concurrent sessions of the commitment scheme.

26 M. Bellare, D. Hofheinz, and S. Yilek

constructed from one-way permutations. To ease presentation, we only describe
a bit commitment scheme, which is easily extended (along with the proof) to the
multi-bit case. In a nutshell, the sender SZK commits twice (using Comb) to the
the same bit and proves in zero-knowledge (using IP) that the committed bits are
the same.7 In the opening phase, the sender opens one (randomly selected) com-
mitment. Note that this overall commitment scheme is binding, since IP ensures
that both commitments contain the same bits, and the underlying commitment
Comb is binding. For a SEM-SO-COM simulation, we generate inconsistent over-
all commitments which can later be opened arbitrarily by choosing which indi-
vidual Comb-commitment is opened. We can use the simulator of IP to generate
fake consistency proofs for these inconsistent commitments. (Since we consider
many concurrent commitment instances in our SEM-SO-COM experiment, we
require concurrent composability from IP for that.)

Scheme 12 (Non-black-box commitment scheme ZKCom). Let Comb =
(Sb,Rb) be a perfectly binding non-interactive commitment scheme. Let IP =
(P,V) be an interactive argument system for NP which enjoys perfect complete-
ness, has negligible soundness error, and which is zero-knowledge under concur-
rent composition. Let ZKCom = (SZK,RZK) for the following SZK and RZK:
– Commitment to bit b:

1. SZK prepares (comj , decj)←$ Sb(b) for j ∈ {0, 1} and sends (com0, com1)
to RZK.

2. SZK uses IP to prove to RZK that com0 and com1 commit to the same
bit.8

– Opening:
1. SZK uniformly chooses j ∈ {0, 1} and sends (j, decj) to RZK.

The security of ZKCom. It is straightforward to prove that ZKCom is a hid-
ing and binding commitment scheme. (We stress, however, that Comb’s perfect
binding property is needed to prove that ZKCom is binding; otherwise, the zero-
knowledge argument may become meaningless.) More interestingly, we can also
show that ZKCom is SEM-SO-COM secure:

Theorem 4 (Non-black-box possibility of SEM-SO-COM). Fix n and I
as in Definition 10. Then ZKCom is simulatable under selective openings in the
sense of Definition 10.
7 We note that a FOCS referee, reviewing an earlier version of this paper without

ZKCom, also suggested to employ zero-knowledge to prove consistency of a given
commitment. This suggestion was independent of the eprint version of this paper
which at that time already contained our scheme ZKCom. A Eurocrypt referee, re-
viewing a version of the paper with ZKCom, remarked that alternative constructions
of a SEM-SO-COM secure commitment scheme are possible. A more generic con-
struction could be along the lines of “commit using a perfectly binding commitment,
then prove consistency of commitment or opening using concurrent zero-knowledge.”

8 Formally, the corresponding language L for IP consists of statements x = (com0,
com1) and witnesses w = (dec0, dec1) such that R(x, w) iff Rb(com0, dec0) =
Rb(com1, dec1) ∈ {0, 1}.

Possibility and Impossibility Results for Encryption and Commitment 27

Proof outline. We start with the real SEM-SO-COM experiment with an ar-
bitrary adversary A. As a first step, we substitute the proofs generated during
the commitments by simulated proofs. Concretely, we hand to A proofs for the
consistency of the commitments that are generated by a suitable simulator S∗.
By the concurrent zero-knowledge property of IP, such an S∗ exists and yields
indistinguishable experiment outputs. Note that S∗ does not need witnesses to
generate valid-looking proofs, but instead uses (possibly rewinding or even non-
black-box) access to A. Hence, we can substitute all ZKCom-commitments with
inconsistent commitments of the form (com0, com1), where com0 and com1 are
Comb-commitments to different bits. Such a ZKCom-commitment can later be
opened arbitrarily. By the computational hiding property of Comb (and since we
do not need witnesses to generate consistency proofs anymore), this step does
not change the output distribution of the experiment significantly. But note that
now, the initial generation of the commitments does not need knowledge of the
actual messages. In fact, only the messages m[I] of the actually opened com-
mitments need to be known at opening time. Hence, at this point, the modified
experiment is a valid simulator in the sense of the ideal SEM-SO-COM exper-
iment. Since the experiment output has only been changed negligibly by our
modifications, we have thus constructed a successful simulator in the sense of
Definition 10.

Where is the non-black-box component? Interestingly, the used argument
system IP itself can well be black-box zero-knowledge (where black-box zero-
knowledge means that the simulator S∗ from Definition 7 has only black-box
access to the next-message function of V ∗). The essential fact that allows us
to circumvent our negative result Theorem 3 is the way we employ IP. Namely,
ZKCom uses IP to prove a statement about two given commitments (com0, com1).
This proof (or, rather, argument) uses an explicit and non-black-box description
of the employed commitment scheme Comb. It is this argument that cannot even
be expressed when Comb makes use of, say, a one-way function given in oracle
form.

The role of the commitment randomness. Observe that the opening of a
ZKCom-commitment does not release all randomness used for constructing the
commitment. In fact, it is easy to see that our proof would not hold if SZK opened
both commitments com0 and com1 in the opening phase. Hence, ZKCom is not
suitable for settings in which an opening corresponds to a corruption of a party
(e.g., in a multi-party computation setting), and when one cannot assume no
trusted erasures.

Generalizations. First, ZKCom can be straightforwardly extended to a multi-
bit commitment scheme, e.g., by running several sessions of ZKCom in parallel.
Second, ZKCom is SEM-SO-COM secure also against adversaries with auxiliary
input z: our proof holds literally, where of course we also require security of
Comb against non-uniform adversaries.

28 M. Bellare, D. Hofheinz, and S. Yilek

8 Indistinguishability-Based Commitment Security under
Selective Openings

Motivated by the impossibility result from the previous section, we now relax
Definition 10 as follows:

Definition 13 (IND-SO-COM). Let n = n(λ) > 0 be polynomially bounded,
and let I = (In)n be a family of sets such that each In is a set of subsets of [n]. A
commitment scheme Com = (S,R) is indistinguishable under selective openings
(short IND-SO-COM secure) iff for every PPT n-message distribution M, and
every PPT adversary A, we have that Advind-so

Com,M,A is negligible. Here

Advind-so
Com,M,A(λ) := Pr

[
Expind-so-real

Com,M,A = 1
]
(λ)− Pr

[
Expind-so-ideal

Com,M,A = 1
]
(λ),

where the experiments Expind-so-real
Com,M,A and Expind-so-ideal

Com,M,A are defined as follows:

Experiment Expind-so-real
Com,M,A(λ)

m = (m[i])i∈[n] ←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA ←$ 〈A(open), (Si(open))i∈I〉

return A(guess,m)

Experiment Expind-so-ideal
Com,M,A (λ)

m = (m[i])i∈[n] ←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA ←$ 〈A(open), (Si(open))i∈I〉
m′←$M |m[I]
return A(guess,m′)

Again, we require from A that I ∈ Iλ, and we denote by 〈A, (Si)i〉 the output of
A after interacting concurrently with instances Si of S. Furthermore, M | m[I]
denotes the message distribution M conditioned on the values of m[I].

On the conditioned distribution M | m[I]. We stress that, depending on
M, it may be computationally hard to sample m′←$M | m[I], even if (the
unconditioned) M is PPT. This might seem strange at first and inconvenient
when applying the definition in some larger reduction proof. However, there
simply seems to be no other way to capture indistinguishability, since the set
of opened commitments depends on the commitments themselves. In particular,
in general we cannot predict which commitments the adversary wants opened,
and then, say, substitute the not-to-be-opened commitments with random com-
mitments. What we chose to do instead is to give the adversary either the full
message vector, or an independent message vector which “could be” the full mes-
sage vector, given the opened commitments. We believe that this is the canonical
way to capture secrecy of the unopened commitments under selective openings.

The relation between SEM-SO-COM and IND-SO-COM security. Un-
fortunately, we (currently) cannot prove that SEM-SO-COM security implies
IND-SO-COM security (although this seems plausible, since usually simulation-
based definitions imply their indistinguishability-based counterparts). Techni-
cally, the reason why we are unable to prove an implication is the conditioned
distribution M | m[I] in the ideal IND-SO-COM experiment, which cannot be
sampled from during an (efficient) reduction.

Possibility and Impossibility Results for Encryption and Commitment 29

A relaxation. Alternatively, we could let the adversary predict a predicate
π of the whole message vector, and consider him successful if Pr[b = π(m)]
and Pr[b = π(m′)] for the alternative message vector m′←$M | m[I] differ
non-negligibly. We stress that our upcoming negative result also applies to this
relaxed notion.

8.1 Impossibility from Black-Box Reductions

Theorem 5 (Black-box impossibility of perfectly binding IND-SO-
COM, most general formulation). Let n = n(λ) = 2λ, and let I = (In)n

with In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized subsets of [n]. Let
X be an oracle that satisfies a property P even in presence of an EXPSPACE-
oracle. We also assume that X is computable in EXPSPACE.9 Then, there exists
a set of oracles relative to which X still satisfies P, but no perfectly binding
commitment scheme is indistinguishable under selective openings.

Proof outline. Similarly to Theorem 3, we specify an oracleRO which induces
a message distribution M∗. This time, however, RO maps �n/2+1-elements to
message vectors in �n, where � = {0, 1}λ is the domain of each individual
message. Hence, n/2 messages usually do not fix the whole message vector, but
more messages do. Now fix any perfectly binding commitment scheme Com∗. We
define a breaking oracle B that, like the B from Theorem 3, asks for n Com∗-
commitments and subsequent openings of a random subset I ∈ In of these
commitments. If all openings are valid, B extracts the whole message vector
in the commitments (note that this is possible since Com∗ is perfectly binding),
and returns a “close” (with respect to Hamming distance) element in the message
distribution M∗ if there is a sufficiently close one.

It is easy to see that an adversary can use B to obtain the whole message
vector m in the real IND-SO-COM experiment. But a message vector freshly
sampled from M∗, conditioned on the opened messages m[I], will most likely
be different from m. Hence, our adversary easily distinguishes the real from the
ideal IND-SO-COM experiment.

The main part of the proof shows that oracle B is useless to an adversary
attacking X ’s property P . Assume first that the commitment scheme Com with
respect to which an adversary A on X queries B is perfectly binding. In that
case, a somewhat technical but straightforward combinatorial argument shows
that A’s successfully opened messages m[I], together with A’s queries to RO,
determine B’s answer (except with small probability). Hence A can use internal
simulations of B and RO instead of the original oracles, and hence property
P of X is not damaged by the presence of B. To ensure that B is only useful
for perfectly binding commitment schemes Com, we let B test whether Com is
perfectly binding. Since we demand that Com is perfectly binding, this test is
independent of the random coins used by X . Indeed, B needs to check that
for all syntactically possible commitments and decommitments, and all possible
9 Examples of such X are random oracles or ideal ciphers. It will become clearer how

we use the EXPSPACE requirement in the proof.

30 M. Bellare, D. Hofheinz, and S. Yilek

random coins used by X , the opened message is unique. Hence, by assumption
about X , this test can also be performed by A using an EXPSPACE-oracle, and
the above proof idea applies.

On the requirement on X . We stress that the requirement in Theorem 5 on
X is a rather mild one. For instance, random oracles are one-way even against
computationally unbounded adversaries, as long as the adversary makes only a
polynomial number of oracle queries. Hence, an EXPSPACE-oracle (which itself
does not perform oracle queries) is not helpful in breaking a random oracle. So
similarly to Corollary 1, we get for concrete choices of X and P :

Corollary 2 (Black-box impossibility of perfectly binding IND-SO-
COM). Let n and I as in Theorem 5. Then no perfectly binding commitment
scheme can be proved indistinguishable under selective openings via a ∀∃semi-
black-box reduction to one or more of the following primitives: one-way functions,
one-way permutations, trapdoor one-way permutations, IND-CCA secure public
key encryption, homomorphic public key encryption.

Generalizations. Again, Corollary 2 constitutes merely an example instantia-
tion of the much more general Theorem 5. We stress, however, that the proof for
Theorem 5 does not apply to “almost-perfectly binding” commitment schemes
such as the one from Naor [35]. (For instance, for such schemes, B’s check that
the supplied commitment scheme is binding might tell something about X .)

8.2 Statistically Hiding Schemes Are Secure

Fortunately, things look different for statistically hiding commitment schemes:

Theorem 6 (Statistically hiding schemes are IND-SO-COM secure).
Fix arbitrary n and I as in Definition 13, and let Com = (S,R) be a statisti-
cally hiding commitment scheme. Then Com is indistinguishable under selective
openings in the sense of Definition 13.

Proof outline. Intuitively, the claim holds since an adversary A’s views in the
real, resp. ideal IND-SO-COM experiment are statistically close (and hence so
must be A’s outputs). However, the fact that A’s views are indeed statistically
close is less obvious than it may seem at first glance. Our proof proceeds in
games and starts with the real IND-SO-COM experiment with A. As a first
modification, we change the opening phase of the experiment, so that the opening
of each selected commitment is produced solely from the commitment itself and
the “target message” m[i] to which it should be opened (but not from opening
information previously generated alongside the commitment). Note that this
change is merely conceptual and does not alter A’s view at all. This makes
the opening phase inefficient, but since we are dealing with statistically hiding
commitment schemes, we need not worry about that. Indeed, by the statistical
hiding property, we can now substitute all commitments (in a hybrid argument)
with commitments to a fixed value (say, 0λ) without affecting the experiment

Possibility and Impossibility Results for Encryption and Commitment 31

output. We can reduce this step to the hiding property of the commitment
scheme since the experiment only needs commitments as input, and produces all
openings on its own. At this point, all commitments that A gets are independent
of m, and so the whole view of A is independent of the unopened values m[[n]\I].
Hence A’s output is (almost) independent of m[[n] \ I] in the real IND-SO-
COM experiment and, with similar reasoning, also in the ideal IND-SO-COM
experiment. This shows the claim.

9 On the Role of Property P
The intuitive contradiction. The formulations of Theorem 3 and Theorem 5
seem intuitively much too general: essentially they claim impossibility of black-
box proofs from any computational assumption which is formulated as a prop-
erty P of an oracle X . Why can’t we choose X to be an ideally secure commit-
ment scheme, and P a property that models precisely what we want to achieve,
e.g., Definition 13 (i.e., IND-SO-COM security)? After all, Definition 13 can be
rephrased as a property P by letting A choose a message distribution M and
send this distribution (as a description of a PPT algorithm M) to P . Then, P
could perform the Expind-so-real

Com,M,A or the Expind-so-ideal
Com,M,A experiment with A, depend-

ing on an internal coin toss (the output of P will then depend on A’s output
and on that coin toss). This P models Definition 13, in the sense that

Advind-so
Com,M,A = 2Advprop

P,X ,A.

Also, using a truly random permutation as a basis, it is natural to assume that we
can construct an ideal (i.e., as an oracle) perfectly binding commitment scheme
X that satisfies P . (Note that although X is perfectly binding, A’s view may still
be almost statistically independent of the unopened messages, since the scheme
X is given in oracle form.)

Hence, if the assumption essentially is already IND-SO-COM security, we can
certainly achieve IND-SO-COM security (in particular, using a trivial reduction),
and this seems to contradict Theorem 5. So where is the problem?

Resolving the situation. The problem in the above argument is that P-
security (our assumption) implies IND-SO-COM security (our goal) in a fun-
damentally non-black-box way. Namely, the proof converts an IND-SO-COM
adversary A and a message distribution M into a P-adversary A′ that sends a
description of M to P . This very step makes use of an explicit representation
of the message distribution M, and this is what makes the whole proof non-
black-box. In other words, this way of achieving IND-SO-COM security cannot
be black-box, and there is no contradiction to our results.

Viewed from a different angle, the essence of our impossibility proofs is: build
a very specific message distribution, based on oracles (RO, resp. C), such that
another “breaking oracle” B “breaks” this message distribution if and only if
the adversary can prove that he can open commitments. This step relies on
the fact that we can specify message distributions which depend on oracles.
Relative to such oracles, property P still holds (as we prove), but may not reflect

32 M. Bellare, D. Hofheinz, and S. Yilek

IND-SO-COM security anymore. Namely, since P itself cannot access additional
oracles10, P is also not able to sample a message space that depends on additional
(i.e., on top of X) oracles. So in our reduction, although A itself can, both in
the IND-SO-COM experiment and when interacting with P , access all oracles,
it will not be able to communicate a message distribution M that depends on
additional oracles (on top of X) to P . On the other hand, any PPT algorithm
M, as formalized in Definition 13, can access all available oracles.

So for the above modeling of IND-SO-COM as a property P in the sense of
Definition 11, our impossibility results still hold, but become meaningless (since
basically using property P makes the proof non-black-box). In a certain sense,
this comes from the fact that the modeling of IND-SO-COM as a property P is
inherently non-black-box. A similar argument holds for the message distribution
in the SEM-SO-COM experiment; there, however, we face the additional problem
of modeling the existence of a simulator in a property.

What computational assumptions can be formalized as properties in
a “black-box” way? Fortunately, most standard computational assumptions
can be modeled in a black-box way as a property P . Besides the mentioned
one-way property (and its variants), in particular, e.g., the IND-CCA security
game for encryption schemes can be modeled. Observe that in this game, we
can let the IND-CCA adversary himself sample challenge messages m0, m1 for
the IND-CCA experiment from his favorite distribution; no PPT algorithm has
to be transported to the security game. In fact, the only properties which do
not allow for black-box proofs are those that involve an explicit transmission
of code (i.e., a description of a circuit or a Turing machine). In that sense, the
formulation of Theorem 3 and Theorem 5 is very general and useful.

(Non-)programmable random oracles. We stress that the black-box re-
quirement for random oracles (when used in the role of X) corresponds to
“non-programmable random oracles” (as used by, e.g., Bellare and Rogaway [5])
as opposed to “programmable random oracles” (as used by, e.g., Nielsen [38]).
Roughly, a proof in the programmable random oracle model translates an attack
on a cryptographic scheme into an attack on a simulated random oracle (that
is, an oracle completely under control of simulator). Naturally, such a reduction
is not black-box. And indeed, with programmable random oracles, even non-
interactive SEM-SO-COM secure commitment schemes can be built relatively
painlessly. As an example, [38] proves a simple encryption scheme (which can
be interpreted as a non-interactive commitment scheme) secure under selective
openings.

Acknowledgements

Bellare and Yilek thank Saurabh Panjwani for participating in early stages of this
work, which involved the development of the indistinguishability-based definition
10 by Definition 11, P must be specified independently of additional oracles; if we did

allow P to access additional oracles, this would break our impossibility proofs

Possibility and Impossibility Results for Encryption and Commitment 33

IND-SO-ENC. Hofheinz would like to thank Enav Weinreb, Marc Stevens, Serge
Fehr, Krzysztof Pietrzak, and Ivan Damgård for many insightful discussions.

Mihir Bellare is supported by NSF grants CNS–0524765 and CNS–0627779
and a gift from Intel Corporation. Dennis Hofheinz is supported by NWO.
Scott Yilek is supported by NSF grants CNS–0430595 and CNS–0831536.

References

[1] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pp.
106–115. IEEE Computer Society, Los Alamitos (2001)

[2] Barak, B., Goldreich, O.: Universal arguments and their applications. In: 17th
Annual IEEE Conference on Computational Complexity, Proceedings of CoCo
2002, pp. 194–203. IEEE Computer Society, Los Alamitos (2002)

[3] Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero-knowledge.
In: 47th Annual Symposium on Foundations of Computer Science, Proceedings of
FOCS 2006, pp. 345–354. IEEE Computer Society, Los Alamitos (2006)

[4] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications
Security, Proceedings of CCS 1993, pp. 62–73. ACM Press, New York (1993)

[5] Bellare, M., Rogaway, P.: Optimal asymmetric encryption—how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

[6] Bellare, M., Rogaway, P.: Robust computational secrete sharing and a unified
account of classical secret-sharing goals. In: 14th ACM Conference on Computer
and Communications Security, Proceedings of CCS 2007, pp. 172–184. ACM Press,
New York (2007)

[7] Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
IACR ePrint Archive (2009)

[8] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th ACM Symposium on
Theory of Computing, Proceedings of STOC 1988, pp. 1–10. ACM, New York (1988)

[9] Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) Advances in Cryptology,
A report on CRYPTO 1981, number 82-04 in ECE Report, pp. 11–15. University
of California, Electrical and Computer Engineering (1982)

[10] Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

[11] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Pro-
ceedings of FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)

[12] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

[13] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: Twenty-Eighth Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1995, pp. 639–648. ACM Press, New York (1996)

[14] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

34 M. Bellare, D. Hofheinz, and S. Yilek

[15] Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Concurrent zero-knowledge requires
Ω̃(log n) rounds. In: 33rd Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 2001, pp. 570–579. ACM Press, New York (2001)

[16] Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005)

[17] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure proto-
cols. In: 20th ACM Symposium on Theory of Computing, Proceedings of STOC
1988, pp. 11–19. ACM Press, New York (1988)

[18] Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on general complexity assumptions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

[19] Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop sigantures. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer, Heidelberg (1994)

[20] Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

[21] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Twenty-Third
Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1991,
pp. 542–552. ACM Press, New York (1991) (Extended abstract)

[22] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. Journal of
the ACM 50(6), 852–921 (2003)

[23] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. Journal of the
ACM 51(6), 851–898 (2004)

[24] Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 34–45.
Springer, Heidelberg (2006)

[25] Goldreich, O.: Foundations of Cryptography (Basic Tools), vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

[26] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM Journal on Computing 25(1), 169–192 (1996)

[27] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28(2) (1984)

[28] Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009)

[29] Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In: 39th Annual ACM Symposium on Theory of Computing, Proceedings of
STOC 2007, pp. 1–10. ACM Press, New York (2007)

[30] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols – a tight lower bound on the round complexity of statistically-hiding com-
mitments. In: 48th Annual Symposium on Foundations of Computer Science, Pro-
ceedings of FOCS 2007, pp. 669–679. IEEE Computer Society, Los Alamitos (2007)

[31] Hofheinz, D.: Possibility and impossibility results for selective decommitments.
IACR ePrint Archive (April 2008)

[32] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Twenty-First Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1989, pp. 44–61. ACM Press, New York (1989) (Extended
abstract)

Possibility and Impossibility Results for Encryption and Commitment 35

[33] Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
logarithmic rounds. In: 33rd Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 2001, pp. 560–569. ACM Press, New York (2001)

[34] Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-
changing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

[35] Naor, M.: Bit commitment using pseudo-randomness. Journal of Cryptology 4(2),
151–158 (1991)

[36] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Twelfth Annual
Symposium on Discrete Algorithms, Proceedings of SODA 2001, pp. 448–457.
ACM/SIAM (2001)

[37] Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Twenty-First Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1989, pp. 33–43. ACM Press, New York (1989)

[38] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[39] Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007)

[40] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Foti-
eth Annual ACM Symposium on Theory of Computing, Proceedings of STOC
2008, pp. 187–196. ACM Press, New York (2008)

[41] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

[42] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round complexity. In: 43rd Annual Symposium on Foundations of Computer
Science, Proceedings of FOCS 2002, pp. 366–375. IEEE Computer Society Press,
Los Alamitos (2002)

[43] Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

[44] Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge
proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431.
Springer, Heidelberg (1999)

[45] Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite
residuosity assumption. IACR ePrint Archive (March 2008)

[46] Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

[47] Wee, H.M.: One-way permutations, interactive hashing and statistically hiding
commitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007)

Breaking RSA Generically Is Equivalent to
Factoring

Divesh Aggarwal and Ueli Maurer

Department of Computer Science
ETH Zurich

CH-8092 Zurich, Switzerland
{divesha,maurer}@inf.ethz.ch

Abstract. We show that a generic ring algorithm for breaking RSA in
ZN can be converted into an algorithm for factoring the corresponding
RSA-modulus N . Our results imply that any attempt at breaking RSA
without factoring N will be non-generic and hence will have to manipu-
late the particular bit-representation of the input in ZN . This provides
new evidence that breaking RSA may be equivalent to factoring the
modulus.

1 Introduction

Probably the two most fundamental reduction problems in number-theoretic
cryptography are to prove or disprove that breaking the RSA system [22] is as
hard as factoring integers and that breaking the Diffie-Hellman protocol [9] is
as hard as computing discrete logarithms. While the second problem has been
solved to a large extent [15,18,2], not much is known about the first for general
models of computation. In this paper, we show the equivalence of RSA and
factoring for the most general generic model of computation.

1.1 Breaking RSA vs. Factoring

The security of the well-known RSA public-key encryption and signature scheme
[22] relies on the assumption that computing eth roots modulo n, which is a
product of two primes, is hard. In order to formally state this assumption, we
define a pair of random variables, N and E, that are chosen according to a
certain joint probability distribution as follows: N is a product of two primes,
for example an element chosen uniformly at random from the set of products
of two k-bit primes satisfying certain conditions (e.g. [16]), and E is a positive
integer1 such that gcd(E, φ(N)) = 1. Note that the marginal distribution of
N over products of two primes is defined by the joint distribution of (N,E).
Throughout this paper, we will assume that the sum of the lengths of N and E
is bounded by the security parameter κ and the terms negligible, non-negligible,
and polynomial-time are with respect to κ. We state three assumptions below:

1 In principle E can be much larger than N .

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 36–53, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Breaking RSA Generically Is Equivalent to Factoring 37

Factoring Assumption: There exists no probabilistic polynomial-time algo-
rithm that, given N , finds a non-trivial factor of N with non-negligible2

probability.
RSA Assumption: There exists no probabilistic polynomial-time algorithm

that, given the pair (N,E) and an element a chosen uniformly at random
from Z∗

N , computes x ∈ Z∗
N such that xE ≡ a modulo N with non-negligible

probability.
Generic RSA Assumption: There exists no probabilistic polynomial-time

generic ring algorithm (a class of algorithms that we will introduce later)
that, given the pair (N,E) and an element a chosen uniformly at random
from Z∗

N , computes x ∈ Z∗
N such that xE ≡ a modulo N with non-negligible

probability.

It is easy to see that if the RSA assumption holds then the factoring assump-
tion holds. However it is a long-standing open problem whether the converse
is true. Since no progress has been made for general models of computation,
it is interesting to investigate reasonable restricted models of computation and
prove that in such a model factoring is equivalent to the RSA problem. In a
restricted model one assumes that only certain kinds of operations are allowed.
Shoup [23], based on the work of Nechaev [20], introduced the concept of generic
algorithms which are algorithms that do not exploit any property of the rep-
resentation of the elements. They proved lower bounds on the complexity of
computing discrete logarithms in cyclic groups in the context of generic algo-
rithms. Maurer [17] provided a simpler and more general model for analyzing
representation-independent algorithms.

1.2 The Generic Model of Computation

We give a brief description of the model of [17]. The model is characterized
by a black-box B which can store values from a certain set T in internal state
variables V0, V1, V2, · · · . The initial state (the input of the problem to be solved)
consists of the values of [V0, . . ., V�] for some positive integer �, which are set
according to some probability distribution (e.g. the uniform distribution).

The black box B allows two types of operations:

– Computation operations. For a set Π of operations of some arities on T , a
computation operation consists of selecting f ∈ Π (say t-ary) as well as the
indices i1, . . . , it+1 of t+1 state variables. B computes f(Vi1 , . . . , Vit) and
stores the result in Vit+1 .

– Relation Queries. For a set Σ of relations (of some arities) on T , a query
consists of selecting a relation ρ ∈ Σ (say t-ary) as well as the indices i1, . . . , it
of t state variables. The query is replied by the binary output ρ(Vi1 , . . . , Vit)
that takes the value 1 if the relation is satisfied, and 0 otherwise.

2 A function f(κ) is considered a non-negligible function in κ if there exists c > 0 and
k0 ∈ N such that for all κ > k0, |f(κ)| > 1

κc .

38 D. Aggarwal and U. Maurer

For this paper, we only consider the case t = 2 and the only relation queries we
consider are equality queries.

An algorithm in this model is characterized by its interactions with the black
box B. The algorithm inputs operations (computation operations and relation
queries) to the black box, and the replies to the relation queries are input to
the algorithm. The complexity of an algorithm for solving any problem can be
measured by the number of operations it performs on B.

For this paper, the set T is ZN . Also � = 1 and V0 is always set to be the unit
element 1 of ZN and V1 is the value a whoseEth root is to be computed. A generic
ring algorithm (GRA) is an algorithm that is just allowed to perform the ring
operations, i.e., addition and multiplication as well as the inverse ring operations
(subtraction and division), and to test for equality (i.e., make an equality query).
In this model, for example, GRAs on ZN correspond to Π = {+,−, ·, /} and Σ =
{=}. A straight-line program (SLP) on ZN , which is a deterministic algorithm
that is just allowed to perform ring operations, corresponds to the case where Σ
is the empty set, i.e., no equality tests are possible.

Many results in the literature are restricted in that they exclude the inverse
operations, but since these operations are easy3 to perform in ZN , they should
be included as otherwise the results are of relatively limited interest. Note that
division by non-invertible elements of ZN is not defined. This can be modeled in
the above generic model by having the black-box B send an “exception” bit b to
the algorithm and leaving the corresponding state variable undefined whenever
there is a division by a non-invertible element. In order to avoid having to handle
these exceptions, we instead describe a black-box B̃ that (we will show) is almost
as powerful as B, but easier to work with.

B̃ stores values from ZN × ZN . V0 and V1 are set to be (1, 1) and (x, 1)
respectively. The operations in {+,−, ·, /} are defined on ZN × ZN as follows
(for α, β, γ, δ ∈ ZN):

(α, β) ◦ (γ, δ) =

⎧⎪⎪⎨⎪⎪⎩
(αδ + βγ, βδ) if ◦ is +
(αδ − βγ, βδ) if ◦ is −
(αγ, βδ) if ◦ is ·
(αδ, βγ) if ◦ is /

If (α, β) and (γ, δ) are queried for equality, 1 is returned if αδ = βγ, and 0
otherwise.

The interpretation of B̃ is that if an internal state variable in B̃ takes a value
(α, β) then, on inputting the same sequence of operations to B, the corresponding
internal state variable in B takes the value α/β if there was no “exception”.
We will show in Section 2.2 that any GRA (for solving a certain computation
problem) interacting with B can be converted into a GRA interacting with B̃
such that both have essentially the same success probability and complexity of
the same order.

3 Division of an element a by b for a, b ∈ ZN can be performed easily by first computing
b−1 using Euclid’s algorithm and then computing a · b−1 in ZN .

Breaking RSA Generically Is Equivalent to Factoring 39

1.3 Related Work and Contributions of This Paper

Research on the relation between RSA and factoring comes in two flavours.
There have been results giving evidence against (e.g. [3,12]) and in favour of
(e.g. [4,13]) the assumption that breaking RSA is equivalent to factoring.

Boneh and Venkatesan [3] showed that any SLP that factors N by making at
most a logarithmic number of queries to an oracle solving the Low-Exponent
RSA (LE-RSA) problem (the RSA problem when the public exponent E is
small) can be converted into a real polynomial-time algorithm for factoring N .
This means that if factoring is hard, then there exists no straight-line reduction
from factoring to LE-RSA that makes a small number of queries to the LE-RSA
oracle. Joux et al [12] showed that computing e-th roots modulo N is easier than
factoring N with currently known methods, given sub-exponential access to an
oracle outputting the roots of numbers of the form xi + c.

Brown [4] showed that if factoring is hard then the LE-RSA problem is in-
tractable for SLPs with Π = {+,−, ·}. More precisely, he proved that an efficient
SLP for breaking LE-RSA can be transformed into an efficient factoring algo-
rithm. Leander and Rupp [13] generalized the result of [4] to GRAs which, as
explained above, can test the equality of elements. Again, division is excluded
(Π = {+,−, ·}).

Another theoretical result about the hardness of the RSA problem is due to
Damg̊ard and Koprowski [8]. They studied the problem of root extraction in
finite groups of unknown order and proved that the RSA problem is intractable
with respect to generic group algorithms. This corresponds to excluding addition,
subtraction and division from the set of operations (Π = {·}).

Our results generalize the previous results in several ways. (Actually, Theorem
1 appears to be the most general statement about the equivalence of factoring
and breaking RSA in a generic model.)

– First, compared to [4,13] we consider the full-fledged RSA problem (not only
LE-RSA) with exponent E of arbitrary size, even with bit-size much larger
than that of N .

– Second, we allow for randomized GRAs, an extension less trivial than it
might appear.

– Third, compared to [8,4,13] we consider the unrestricted set of ring oper-
ations, including division. This generalization is important since there are
problems that are easy to solve in our generic ring model but are provably
hard to solve using the model without division4.
Actually, as has been pointed out in [4], computing the multiplicative inverse
of a random element in ZN generically is hard if Π = {+,−, ·}.

– Fourth, compared to [13] we give an explicit algorithm that factors N given
a GRA computing Eth roots. In [13], the reduction from GRAs to SLPs is
only non-uniform.

4 In [4], the author has mentioned and given justification for the fact that most results
of his paper will extend to SLPs with division.

40 D. Aggarwal and U. Maurer

The problem we solve has been stated as an open problem in [8] and [4].
The rest of the paper is structured as follows: In Section 2, we introduce basic

definitions and notations and show a few preliminary results. In Section 3, we
prove our main result. Section 4 provides some conclusions and lists some open
problems.

2 Preliminaries

2.1 Straight-Line Programs

Straight-line programs for a ring are deterministic algorithms that perform a
sequence of ring operations. Thus an SLP corresponds to Π = {+,−, ·, /} and
Σ = {} in the model of [17]. More concretely:

Definition 1. An L-step straight-line program (SLP) S is a sequence of triples
(i2, j2, ◦2), . . . , (iL, jL, ◦L) such that 0 ≤ ik, jk < k and ◦k ∈ {+,−, ·, /}.
The interpretation for this is that if x is considered a variable, then the SLP
S computes a sequence of rational functions f2, . . . , fL(= fS), where, f0 = 1,
f1 = x and fk = fik

◦k fjk
for 2 ≤ k ≤ L. Thus, an SLP can be interpreted

as the evaluation of a rational function fS in x given by a pair of polynomials
(PS , QS) representing the numerator and the denominator of fS , respectively,
as follows.

1. Let PS
0 = 1, QS

0 = 1, PS
1 = x,QS

1 = 1.
2. For 2 ≤ k ≤ L, (PS

k , Q
S
k) = (PS

ik
, QS

ik
) ◦k (PS

jk
, QS

jk
) is given by:

(PS
k , Q

S
k) =

⎧⎪⎪⎨⎪⎪⎩
(PS

ik
·QS

jk
+ PS

jk
·QS

ik
, QS

ik
·QS

jk
) if ◦k is +

(PS
ik
·QS

jk
− PS

jk
·QS

ik
, QS

ik
·QS

jk
) if ◦k is −

(PS
ik
· PS

jk
, QS

ik
·QS

jk
) if ◦k is ·

(PS
ik
·QS

jk
, QS

ik
· PS

jk
) if ◦k is /

3. Output (PS , QS) = (PS
L , Q

S
L).

Therefore, from now on, we identify the SLP S with the pair of polynomials
(PS , QS).

Lemma 1. PS
k and QS

k are polynomials of degree at most 2k.

Proof. The proof is by induction on k. The claim is trivially true for k = 0. We
assume that PS

r and QS
r are polynomials of degree at most 2r for all r < k. So,

since ik, jk ≤ k − 1, deg(PS
ik

), deg(QS
ik

), deg(PS
jk

) and deg(QS
jk

) are all at most
2k−1. This implies, by the definition of (PS

k , Q
S
k), that the degree of PS

k and QS
k

is at most 2k−1 + 2k−1 = 2k. �
Next, we show that any SLP can be “converted” into an SLP that does not
require the division operation, i.e., for which Π = {+,−, ·}, without increasing
the complexity by more than a constant factor. A result similar to the following
but with a factor of 6 instead of 4 has been proven independently in [11].

Breaking RSA Generically Is Equivalent to Factoring 41

Lemma 2. For any L-step SLP S with Π = {+,−, ·, /} that computes the ratio-
nal function fS given by (PS , QS), there exists a 4L-step SLP with Π = {+,−, ·}
that computes PS and QS.

Proof. We prove this by induction on L. The result is trivial for L = 0. We
suppose it is true for L = L′. Therefore there exists an SLP S′ of length � ≤ 4L′

that uses only the operations {+,−, ·} and computes PS
k and QS

k for 1 ≤ k ≤ L′.
Let this program compute the polynomials Ri for 1 ≤ i ≤ �. Let L = L′ + 1.
Now consider the following cases:

– Case (i): ◦L is +.
Let R�+1 = PS

iL
· QS

jL
, R�+2 = PS

jL
· QS

iL
, R�+3 = R�+1 + R�+2 = PS

L and
R�+4 = QS

iL
·QS

jL
= QS

L.
– Case (ii): ◦L is −.

Let R�+1 = PS
iL
· QS

jL
, R�+2 = PS

jL
· QS

iL
, R�+3 = R�+1 − R�+2 = PS

L and
R�+4 = QS

iL
·QS

jL
= QS

L.
– Case (iii): ◦L is ·.

Let R� = PS
iL
· PS

jL
= PS

L and R�+2 = QS
iL
·QS

jL
= QS

L.
– Case (iv): ◦L is /.

Let R�+1 = PS
iL
·QS

jL
= PS

L and R�+2 = QS
iL
· PS

jL
= QS

L.

By induction hypothesis, SLP S′ computes PS
k and QS

k for 1 ≤ k ≤ L′. We can
extract from S′, the indices corresponding to each of PS

k and QS
k for 1 ≤ k ≤ L′.

Therefore, in each of the cases mentioned above, we get an SLP of length at
most �+ 4 ≤ 4(L′ + 1) = 4L that computes PS

k and QS
k for 1 ≤ k ≤ L′ + 1. �

Note that the SLP described in the above lemma does not compute the rational
function fS but only computes the two polynomials PS and QS . This, however,
is sufficient for our purpose.

2.2 Generic Ring Algorithms

A deterministic generic ring algorithm can be seen as a generalized SLP that
also allows equality queries. More concretely:

Definition 2. An L-step deterministic generic ring algorithm (deterministic
GRA) G is an algorithm that, in the kth step, for 2 ≤ k ≤ L, outputs an
operation of the form (ik, jk, ◦k), where 0 ≤ ik, jk < k are some positive integers
and ◦k ∈ {+,−, ·, /, eq}. It takes as input an “exception” bit b which is 1 if the
operation is not defined, and 0 otherwise. If b is 0 and ◦k is eq, it takes another
input bit (as the result of the equality query).

The interpretation for this definition is that if x is considered a variable, then G
computes a sequence of rational functions f2, . . . , fL, where f0 = 1, f1 = x, and
fk = fik

◦k fjk
if ◦k ∈ {+,−, ·, /} and fk = fk−1 if ◦k is eq for 2 ≤ k ≤ L. Also,

fk = ⊥ if fjk
is not invertible and ◦k is / or one of fik

and fjk
is ⊥.

If G is to be executed on an input a ∈ ZN , this is modeled, as mentioned in
Section 1.2, by G interacting with the black-box B where an operation of the

42 D. Aggarwal and U. Maurer

form (i, j, eq) is an equality query on the ith and jth elements in B. We now
show that if a GRA G is successful in solving a certain computation problem
for B with probability γ, then the sum of the probabilities that there is a non-
trivial non-invertible element computed by G in B (in which case this element
can be used to factorize N) and that there is a GRA (of double the length of G)
that is successful in solving the same computational problem for B̃, where B̃ is
as defined in Section 1.2, is at least γ. Since our aim is to reduce the problem
of factoring N to computing the E-th roots modulo N in the generic model
of Section 1.2, it is therefore sufficient to prove the result in the generic model
replacing B by B̃.

Consider a black box B′ that behaves exactly like B except that it does not
output an exception bit. Any GRA G interacting with B can be converted into
a GRA G′ interacting with B′ as follows, such that B and B′ have identical be-
haviour internally. For each new value computed inside B′, G′ makes an equality
query of the computed value and 0 and stores the result internally. Also, it main-
tains internally a list of indices of state variables which are undefined. Then, G′

can internally simulate the exception bit that G receives from B by setting the
exception bit as 1 if and only if there is a division by 0 in B′ or an operation is
performed on two values, one of which is undefined. Thus G′ performs at most
twice the number of steps as G and gets the same input as G if there is no
division by a non-trivial non-invertible element in B.

By definition of the operations {+,−, ·, /, eq} in B̃, if a GRA performing a
sequence of operations computes a value α in B′ and the same sequence of
operations computes a pair (α1, α2) in B̃, then α = α1

α2
if α is not undefined.

Thus any GRA G that computes a certain value in B (without any division
by a non-trivial non-invertible element of ZN) can be converted into a GRA G′

that computes a pair of values such that if the first element of this pair is divided
by the second, we get the value computed in B (unless, this value is undefined).
Hence, from now on, we will consider only the black-box B̃ and therefore assume
that the corresponding GRA is never returned 1 as the “exception” bit. As a
result, we can ignore the “exception” bit.

Note that for a given sequence of bits input to it, a deterministic GRA G
behaves like an SLP (that performs a trivial operation of copying the previous
value whenever ◦k is eq). A deterministic GRA can be interpreted as a binary tree
TG with each vertex corresponding to an operation from the set {+,−, ·, /, eq}.
The vertices corresponding to an eq operation have two children and all other
vertices have one child. The edges between a vertex corresponding to an eq
operation and its left and right child are labeled 0 and 1, respectively, while
all the other edges do not have a label. An execution of G corresponds to a
path from the root to a leaf of TG. The choice of the subsequent vertex at each
vertex corresponding to an operation eq is made by choosing the edge that has as
label the bit input to G at the corresponding step. The sequence of operations
corresponding to vertices along each path from the root to a vertex of TG is
an SLP, and so we can associate a pair of polynomials (using the definition of

Breaking RSA Generically Is Equivalent to Factoring 43

SLP) with each vertex of TG. The pair of polynomials associated with vertex v
is denoted by (P v, Qv).

Definition 3. A randomized generic ring algorithm G is a GRA where the choice
of the operation at each step is randomized. A randomized GRA can be under-
stood as a random variable whose values are deterministic GRAs.

2.3 Mathematical Preliminaries

In this section we introduce some notations and prove some results about the
mathematical structures used in this paper.

For integers a, b, c, we denote by a ≡c b, that a is congruent to b modulo c.
For any event E, we denote the probability of E by P(E).

For the rest of the paper, we assume that the random variable N takes values
from some setN . Furthermore, (n, e), where n = pq, denotes a value taken by the
pair (N,E). By Zn[x], we denote the ring of polynomials in x with coefficients in
Zn and for h(x) ∈ Zn[x] by Zn[x]/h(x) quotient of the ring Zn[x] by a principal
ideal generated by an irreducible polynomial h(x). For P (x) ∈ Zn[x], we define
the following.

– Let νn(P) be the fraction of roots of P in Zn, i.e.,

νn(P) =
|{x ∈ Zn|P (x) ≡n 0}|

n
.

Similarly we define νp(P) and νq(P).
– The fraction of elements a in Zn such that P (a) has a non-trivial greatest

common divisor with n is defined as ηn(P),

ηn(P) =
|{x ∈ Zn|gcd(P (a), n) /∈ {1, n}}|

n
.

We prove three lemmas that we will need later. The reader may skip to Section
3 and return to the following lemmas when they are referenced.

Lemma 3. For any P (x) ∈ Zn[x], if νn(P) ∈ [δ, 1− δ], then ηn(P) ≥ δ
3
2 .

Proof. We denote νp(P) and νq(P) by νp and νq, respectively. By the Chinese
remainder theorem, νn(P) = νp · νq and ηn(P) = νp(1− νq) + νq(1− νp). Using
δ ≤ νp · νq ≤ 1− δ, we obtain

ηn(P) = νp(1− νq) + νq(1− νp) = νp + νq − 2νp · νq

= (
√
νp −√νq)2 + 2

√
νp · νq − 2νp · νq

≥ 2
√
νp · νq − 2νp · νq = 2

√
νp · νq(1 −√νp · νq)

≥ 2
√
δ(1−√1− δ)

≥ 2
√
δ(1− (1 − δ

2)) = δ
3
2 .

�

44 D. Aggarwal and U. Maurer

Lemma 4. Let p be a prime. A random monic polynomial f(x) ∈ Zp[x] of degree
d is irreducible in Zp[x] with probability at least 1

2d and has a root in Zp with
probability at least 1/2.

Proof. From the distribution theorem of monic polynomials (see, e.g., [14]) it
follows that the number of monic irreducible polynomials of degree d over Fp is
at least pd

2d . Therefore f(x) is an irreducible polynomial over Zp with probability
at least 1

2d .
The number of monic polynomials over Zp with at least one root is:

d∑
l=1

(−1)l−1
(
p

l

)
pd−l .

This can be seen by applying the principle of inclusion and exclusion. The terms
in this summation are in decreasing order of their absolute value. So, taking the
first two terms, this sum is greater than

(
p
1

)
pd−1− (

p
2

)
pd−2 which is greater than

pd

2 . Hence the probability that f(x) has a root in Zp is at least 1/2.5 �
Lemma 5. For any discrete random variable X that takes values in [0,1] and
for any τ > 0, P(X ≥ τ) ≥ E[X]− τ .
Proof.

E[X] =
∑
x≥τ

x · P(X = x) +
∑
x<τ

x · P(X = x)

≤
∑
x≥τ

P(X = x) +
∑
x<τ

τ · P(X = x)

≤ P(X ≥ τ) + τ ,

which implies the result. �

3 The Main Theorem

3.1 Statement of the Theorem

As mentioned earlier, in this paper we restrict our attention to the case where the
adversary is only allowed to use a GRA to solve the RSA problem. We refer to
the RSA assumption in this case as the generic RSA assumption for the random
variables (N,E) that was introduced in Section 1.1.

We state the main result of the paper.

5 Note that, by a careful analysis, it is possible to prove a better lower bound on the
probability that f(x) has a root in Zp but a lower bound of 1/2 is sufficient for our
purpose.

Breaking RSA Generically Is Equivalent to Factoring 45

Theorem 1. For any pair (N,E), the factoring assumption holds for N implies
that the generic RSA assumption holds for (N,E).

Remark: In the proof of this theorem, we give an algorithm that, for every
n ∈ N for which there is a GRA that computes the eth root of a uniformly
random element chosen from Zn, factors n with overwhelming probability. The
factoring assumption and the generic RSA assumption are, however, stated for
the random variable N and not for a fixed n, as the factoring problem would
otherwise not be defined reasonably, and also the terms polynomial-time and
non-negligible would not make sense for a fixed n. Hence, our proof actually
proves a stronger statement than Theorem 1.

3.2 Proof of the Theorem

3.2.1 Overview of the Proof
In Section 3.2.2, we show that an SLP that computes eth roots can be used to
factor n. Then, in Section 3.2.3, we show that from a deterministic GRA that
computes eth roots we can either obtain an SLP that computes eth roots or
a factor of n. In Section 3.2.4, we generalize the results of Section 3.2.3 from
deterministic GRAs to randomized GRAs. In Section 3.2.5, we combine the
results of Section 3.2.2 and 3.2.4 to show that a randomized GRA that computes
eth roots can be used to give an algorithm for factoring n.

3.2.2 The Proof for Straight-Line Programs
In this section we give an algorithm that, with non-negligible probability, factors
n given access to an SLP that, with non-negligible probability, computes the eth

root of an element chosen uniformly at random from Zn.
For polynomials b(x), c(x) ∈ Zn[x], let gcdp(b(x), c(x)) and gcdq(b(x), c(x))

be the greatest common divisor of the polynomials modulo p and q, respectively.
The following proposition is easy to see.

Proposition 1. Let b(x), c(x) ∈ Zn[x]. Then:

– If Euclid’s algorithm, when run on b(x) and c(x), fails6, some step of the
algorithm yields a non-trivial non-invertible element of Zn. We denote this
element as H(b(x), c(x)).

– If deg(gcdp(b(x), c(x))) �= deg(gcdq(b(x), c(x))), then Euclid’s algorithm,
when run on b(x) and c(x), fails.

Lemma 6. For all ε > 0, μ > 0, and L ∈ N, there exists an algorithm of time
complexity O(L3+log3(e)) that, for every SLP S such that νn((PS)e−x(QS)e) ≥
μ and QS(x) is not the zero polynomial, returns a factor of n with probability

μ
8(L+log(e)) .

6 Euclid’s Algorithm could fail since Zn[x] is not a Euclidean domain.

46 D. Aggarwal and U. Maurer

Proof. Let f(x) = PS(x)e−x ·QS(x)e. Then νn(f) ≥ μ. By Lemma 1, deg(f) ≤
2Le + 1. By Lemma 2, there is a 4L-step SLP that uses only the operations
{+,−, ·} and generates the polynomials PS(x) and QS(x). Given PS(x) and
QS(x), PS(x)e and QS(x)e can be computed in 2�log(e)� steps each. Therefore
there is an SLP S1 with at most 4L+4�log(e)�+2 steps that computes fS1(x) =
f(x). For the factoring algorithm, we use this SLP. Let d = L + �log(e)�. The
factoring algorithm proceeds as follows:

Algorithm 1. Factoring Algorithm
Input: n, SLP S1
Output: A factor of n
Choose a monic polynomial h(x) uniformly at random from all monic1

polynomials of degree d in Zn[x];
Compute h′(x), the derivative of h(x) in Zn[x];2

Choose a random element r(x) ∈ Zn[x]/h(x);3

Compute z(x) = f(r(x)) in Zn[x]/h(x) using SLP S1;4

Run Euclid’s algorithm in Zn[x] on h(x) and z(x). If this fails return5

gcd(n,H(h(x), z(x)));
Run Euclid’s algorithm in Zn[x] on h(x) and h′(x). If this fails return6

gcd(n,H(h(x), h′(x)));

By Proposition 1, if Euclid’s algorithm fails in step 5 or step 6, then we get a
factor of n.

Now we compute the success probability of the algorithm. By Lemma 4, the
probability that h(x) is irreducible modulo q and has a root modulo p is at least
1
2d · 1

2 = 1
4d . We assume that this is the case for the rest of the proof.

Let this root of h(x) modulo p be s. Therefore (x − s) | h(x) in Zp[x]. We
analyze two cases.

– CASE 1: (x− s)2 | h(x) in Zp[x].
This implies (x − s) | gcdp(h(x), h′(x)). However, since h(x) is irreducible
in Zq[x], gcdq(h(x), h′(x)) has degree 0. Therefore gcdp(h(x), h′(x)) and
gcdq(h(x), h′(x)) have different degree, which implies, by Proposition 1, that
Euclid’s algorithm on h(x) and h′(x) fails and hence step 6 yields a factor
of n.

– CASE 2: (x− s)2 � h(x) in Zp[x].
Let h(x) = h1(x) · (x − s) in Zp[x]. Then:

Zn[x]/h(x) ∼= Zp[x]/h(x)×Zq[x]/h(x) ∼= Zp[x]/(x−s)×Zp[x]/h1(x)×Fqd ,

because Zq[x]/h(x) ∼= Fqd (the finite field containing qd elements) as h(x) is
irreducible in Zq[x] by our assumption.
Under this isomorphism, let r(x) maps to the triple

(r(s) mod p, u(x), rq(x)) ,

and z(x) to the triple

Breaking RSA Generically Is Equivalent to Factoring 47

(z(s) mod p, v(x), zq(x)) ,

where rq(x) and zq(x) are the reductions of r(x) and z(x) modulo q. Since
r(x) is uniformly random in Zn[x]/h(x), r(s) is uniformly random in
Zp[x]/(x− s) ∼= Zp. This implies

P
(
z(s) ≡p 0

)
= P

(
f(r(s)) ≡p 0

) ≥ P
(
f(r(s)) ≡n 0

) ≥ μ .

Therefore, with probability at least μ, (x − s) divides z(x) in Zp[x], which
implies P((x− s) | gcdp(z(x), h(x))) ≥ μ. Since r(x) is uniformly random in
Zn[x]/h(x), rq(x) is uniformly random in Zq[x]/h(x) ∼= Fqd . A polynomial
over a finite field can have at most as many roots as the degree of the
polynomial. Therefore, for random x,

P
(
zq(x) = 0

)
= P

(
f(rq(x)) = 0

) ≤ deg(f)
qd

≤ 2Le+ 1
qd

≤ 1
2
,

using the fact that d = L+ �log(e)� and deg(f) ≤ 2Le+1. Hence, P(zq(x) �=
0) ≥ 1

2 . The condition zq(x) �= 0 implies that gcdq(z(x), h(x)) has degree 0
because h(x) is irreducible modulo q.

Therefore the probability that Euclid’s algorithm run on h(x) and z(x) fails
is at least 1

4d · μ · 1
2 = μ

8d .
Now we compute the time complexity of one run of the loop. Generating random

h(x) and r(x) and computing the derivative requires O(d) operations in Zn. Each
operation in Zn[x]/h(x) can be implemented by at most d2 operations in Zn. The
function f is computed in Zn using an at most (4L+ 4�log(e)�+ 2)-step SLP S1.
Therefore, f(r(x)) = z(x) can be computed in timeO(d2 ·L+d2 · log(e)) = O(d3).
Euclid’s algorithm on z(x) and h(x) and on h(x) and h′(x) can be performed by
O(d2) operations. Thus, the running time of the algorithm is O(d3). �

3.2.3 From Deterministic GRAs to SLPs
In this section we give an algorithm that, given access to a deterministic GRA
that computes eth roots in Zn, outputs either a factor of n or an SLP that
computes eth roots in Zn.

Definition 4. For a deterministic GRA G, let λn(G) denote the probability that
G, when run on an input a chosen uniformly at random from Zn, is successful
in computing the eth root of a.

Lemma 7. For all ε > 0 and L ∈ N, there exists an algorithm (Algorithm 2) of
time complexity O((L

ε)5/2 that, given access to an L-step deterministic GRA G,
with probability 1− ε, either outputs a factor of n or an L-step SLP S such that
νn((PS)e − x(QS)e) ≥ λn(G)− ε

2 .

48 D. Aggarwal and U. Maurer

Proof. Consider the tree TG(see Section 2.2). With each vertex v of TG, we
can associate an SLP, and hence a sequence (P v

1 , Q
v
1), . . . , (P

v
k , Q

v
k) given by the

sequence of operations along the path from the root of TG to that vertex.
Let δ = ε

2L . We classify the vertices corresponding to equality queries in
TG into two kinds of vertices-extreme and non-extreme vertices. For a vertex v
corresponding to an equality query (ik, jk, eq), if

νn(P v
ik
·Qv

jk
− P v

jk
·Qv

ik
) ∈ [δ, 1− δ] ,

then we call v a non-extreme vertex and otherwise we call v an extreme vertex.
Let TG

ex be the tree obtained from TG by truncating the sub-tree rooted at v
for all non-extreme vertices v. Therefore all non-extreme vertices present in TG

ex

are at the leaves. Also, we can assume, without loss of generality, that the last
step of G is not an equality query since that would be of no use. Hence there
cannot be an extreme vertex at a leaf vertex of TG

ex.
Let v	(TG

ex) be the unique leaf vertex of TG
ex reached by starting from the root

and inputting, for all extreme vertices v, the bit 1 to G if νn(P v
ik
·Qv

jk
−P v

jk
·Qv

ik
) ∈

[0, δ) and the bit 0 if νn(P v
ik
·Qv

jk
− P v

jk
· Qv

ik
) ∈ (1 − δ, 1]. Note that v	(TG

ex) is
either a non-extreme vertex or corresponds to a computation operation. We call
the path in TG

ex from the root to the vertex v	(TG
ex) the dominating path because

this is the path that is most likely to be taken if G is run on a random input
from Zn as we make the most likely choice at each equality test (assuming δ to
be small).

Let M = � L3/2

(ε/2)5/2 �. Consider algorithm 2, as given on the next page.
The intuition is that when executing the GRA for a random element a, either

all the equality test one encounters are irrelevant in the sense that the prob-
ability that the outcome depends on a is very small, and hence the execution
corresponds to an SLP, or the relevant equality test encountered during the
execution can be used to factor.

At each equality query, it tries to find a factor of n using the two pairs of
polynomials that are compared. If it fails, it outputs the SLP S as the sequence
of computation operations along one of the paths from the root to a leaf of TG.
This path corresponds to a unique path in TG

ex. This path is chosen by generating,
for each equality query, a uniformly random element in Zn and then testing the
equality of the two polynomials on this element, and choosing the subsequent
vertex based on the result of this equality test. Algorithm 2 is successful with
high probability (as shown below) if this path is the dominating path, i.e., if it
reaches the vertex v	(TG

ex).
Line 7 of the algorithm is a trivial operation and could be avoided but is there

so that we do not have to manipulate the indices of the straight line program
output by the algorithm.

The SLP S output by Algorithm 2 corresponds to one of the paths from the
root to a leaf of TG which defines a unique path from the root to a leaf of TG

ex.
Let the leaf vertex of TG

ex in which this path terminates be vS . Note that vS

might not be a leaf vertex of TG.

Breaking RSA Generically Is Equivalent to Factoring 49

Algorithm 2.
Input: GRA G, n
Output: A factor of n or an SLP S
Initialize S to be the empty sequence;1

for k ← 2 to L do2

Get the operation {ik, jk, ◦k} from G;3

if ◦k ∈ {+,−, ·, /} then4

Append {ik, jk, ◦k} to S;5

else /* Here, ◦k is eq */6

Append {k − 1, 0, ·} to S;7

for i← 1 to M do8

Generate a random element x ∈R Zn;9

Compute g = gcd
(
PS

ik
(x) ·QS

jk
(x) − PS

jk
(x) ·QS

ik
(x), n

)
;10

if g /∈ {1, n} then return g;11

end12

Generate a random element x′ ∈R Zn;13

if PS
ik

(x′) ·QS
jk

(x′)−PS
jk

(x′) ·QS
ik

(x′) = 0 then return the bit 0 to G14

else return the bit 1 to G;
end15

end16

Return S;17

If Algorithm 2 outputs S, then let (PS , QS) denote the pair of polynomials
corresponding to S.

Let E be the event that vS = v	(TG
ex), i.e., that the dominating path is found

by Algorithm 2. The event E does not occur if there exists an extreme vertex
v in the path from the root of TG

ex to vS corresponding to (ik, jk, eq) such that
Algorithm 2 inputs 0 to G and νn(P v

ik
·Qv

jk
− P v

jk
·Qv

ik
) ∈ [0, δ) or Algorithm 2

inputs 1 to G and νn(P v
ik
·Qv

jk
−P v

jk
·Qv

ik
) ∈ (1− δ, 1]. Note that this can happen

with probability at most δ at each extreme vertex v and there can be at most L
such extreme vertices in the path from the root of TG

ex to vS . Therefore,

P(E) = 1− P(E) ≥ 1− δ · L = 1− ε
2 .

Now we compute the success probability of the algorithm. There are two pos-
sible cases depending on whether v	(TG

ex) is a non-extreme vertex or corresponds
to a computation operation.

– CASE 1: v	(TG
ex) is a non-extreme vertex.

In this case we show that the factoring algorithm is successful with proba-
bility at least 1− ε.
Let F be the event that Algorithm 2 returns a factor of n. We compute P(F|E).
If E holds, then vS is a non-extreme vertex. Therefore, by Lemma 3, a factor
of n is returned in one test in Step 11 at the equality query corresponding

50 D. Aggarwal and U. Maurer

to vS with probability at least δ3/2. The total number of times step 11 is
repeated for this equality query is M . Therefore7,

P(F|E) ≥ 1− (1 − δ3/2)M ≥ 1− exp(−(δ3/2)M) = 1− exp(− 2
ε) ≥ 1− ε

2 .

This implies
P(F) ≥ P(F|E) · P(E) ≥ (1− ε

2)2 ≥ 1− ε .
– CASE 2: v	(TG

ex) corresponds to a computation operation.
In this case, we show that if the factoring algorithm is not successful, then,
with probability 1− ε

2 , we have νn((PS)e − x(QS)e) ≥ λn(G)− ε
2 .

The fraction of inputs a ∈ Zn such that when G is run on a, the correspond-
ing path taken on TG

ex does not terminate in v	(TG
ex) is at most δ · L = ε

2
(because the number of extreme vertices in any path from root to a leaf is
at most L). This implies,

Pa∈RZn

(
P v�(T G

ex)(a)e − a ·Qv�(T G
ex)(a)e ≡n 0

)
≥ λn(G)− ε

2 .

Therefore, if E occurs, then

νn((PS)e − x(QS)e) = Pa∈RZn

(
P v�(T G

ex)(a)e − a ·Qv�(T G
ex)(a)e ≡n 0

)
≥ λn(G) − ε

2 .

Hence,

P
(
νn((PS)e − x(QS)e) ≥ λn(G)− ε

2

) ≥ P(E) ≥ 1− ε
2 .

Now, we compute the time complexity of Algorithm 2. The loop in steps 8-12
of the algorithm and steps 5,13 and 14, which are the steps in which computa-
tion is being performed, are each executed at most L times. Therefore the time
complexity of the algorithm is O(L ·M) = O((L

ε)5/2). �

3.2.4 Handling Randomized GRAs
Here we state a lemma that shows that a result similar to Lemma 7 also holds for
randomized GRAs. Recall that a randomized GRA G is understood as a random
variable whose values are deterministic GRAs. Let PG denote the probability
distribution of G. λn(G) is a random variable. Hence, E[λn(G)] is the probability
of success of G in computing the eth root of an element chosen uniformly from
Zn. The proof of Lemma 8 is omitted due to space constraints and can be found
in the full version of the paper in the Cryptology ePrint Archive.

Lemma 8. For all ε′ > 0, μ > 0, and for every L-step randomized GRA G such
that E[λn(G)] ≥ μ, with probability μ

2 − ε′, Algorithm 2 from Lemma 7 either
outputs a factor of n or an L-step SLP S such that νn((PS)e − x(QS)e) ≥ μ

2 .

7 We use the notation exp(·) to denote exponentiation to the natural base in order to
avoid confusion with the public exponent e.

Breaking RSA Generically Is Equivalent to Factoring 51

3.2.5 Putting Things Together
In this section, we complete the proof of Theorem 1.

Proof. Suppose there exists a randomized GRA G that succeeds in breaking RSA
with probability μn on Zn for some e > 1. Then, by Lemma 8, with probability
μn − ε′, Algorithm 2 either returns a factor of n or an SLP S that succeeds
in breaking RSA with probability at least μn

2 , which can be converted into an
algorithm that factors n (Algorithm 1) with probability μn

16(L+log(e)) .
Since the result is true for all ε′ > 0, let ε′ = μn

2 . Thus, one execution of
Algorithm 2 followed by Algorithm 1 (if needed, i.e., if Algorithm 2 does not
return a factor of n) runs in time O(L3 + log3(e)+ (L

μn
)5/2) and returns a factor

of n with probability at least μ2
n

32(L+log(e)) . Therefore, the expected number of
times the two algorithms need to be repeated in order to get a factor of n is
32(L+log(e))

μ2
n

. Hence the expected time complexity of the factoring algorithm is

O((L3 + log3(e)+ (L
μn

)5/2) · (L+log(e)
μ2

n
)) which is polynomial in L, log(e) and 1

μn
.

If, for a random N , G succeeds in breaking RSA with probability μ on ZN

(i.e., if E[μN] = μ), then by Lemma 5, P(μn ≥ μ
2) ≥ μ− μ

2 = μ
2 . For all n such

that μn ≥ μ
2 , our factoring algorithm runs in time polynomial in L, log(e) and

1
μ , which is polynomial if μ is non-negligible. Therefore the factoring algorithm
is a probabilistic polynomial time algorithm that succeeds in factoring N with
non-negligible probability. �

4 Conclusions and Open Problems

In this paper we showed that if factoring is hard, then no generic ring algorithm
can solve the RSA problem efficiently. Also, if there exists an efficient algorithm
that can factorN , then we can compute d such that e·d ≡φ(N) 1, and then the eth

root can be computed by computing the dth power, i.e., generically in O(log(d))
steps. Thus, this proves, in the generic model, the equivalence of factoring and
breaking RSA.

It is interesting to note that all arguments in the paper work not just for the
RSA equation xe = a but for any non-trivial polynomial equation in x and a.
More concretely, this means the following. We say that a polynomial M(x, a) is
trivial if there exists a rational function g such that M(g(a), a) ≡ 0 in Z[a]. Then,
if there exists a GRA that, given any non-trivial polynomial M(x, a), computes,
with non-negligible probability, an x such that M(x, a) ≡N 0 for a chosen uni-
formly at random from ZN , then there exists an algorithm for factoringN .

There are other problems that can be looked at in this model. For instance,
the Cramer-Shoup cryptosystem and signature scheme relies on the “Strong RSA
Assumption” [10,1], which allows the adversary to himself choose an exponent
e > 1. A natural question would be whether factoring is equivalent to solving
strong RSA using a GRA. It is not clear whether this statement is true. The proof
of Lemma 6, however, does not work for this case because here e will depend on
the input a. As a result, in the proof of Lemma 6, f(a) is not a polynomial in a
(because the exponent is not independent of a).

52 D. Aggarwal and U. Maurer

References

1. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

2. Boneh, D., Lipton, R.: Black box fields and their application to cryptography. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidel-
berg (1996)

3. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

4. Brown, D.R.L.: Breaking RSA may be as difficult as factoring. In: Cryptology
ePrint Archive, Report 205/380 (2006)

5. Childs, L.: A concrete introduction to higher algebra. Springer, New York (1992)
6. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

7. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: 6th ACM Conference on Computer and Communications Security, pp. 46–52
(1999)

8. Damg̊ard, I.B., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002)

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

10. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

11. Jager, T.: Generic group algorithms. Master’s thesis, Ruhr Universität Bochum
(2007)

12. Joux, A., Naccache, D., Thomé, E.: When e-th roots become easier than factoring.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 13–28. Springer,
Heidelberg (2007)

13. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic
ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 241–251. Springer, Heidelberg (2006)

14. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge University Press, Cambridge (1994)

15. Maurer, U.: Towards the equivalence of breaking the diffie-hellman protocol and
computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 271–281. Springer, Heidelberg (1994)

16. Maurer, U.: Fast generation of prime numbers and secure public-key cryptographic
parameters. Journal of Cryptology 8(3), 123–155 (1995)

17. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005)

18. Maurer, U., Wolf, S.: The relationship between breaking the Diffie-Hellman proto-
col and computing discrete logarithms. SIAM Journal of Computing 28(5), 1689–
1721 (1999)

Breaking RSA Generically Is Equivalent to Factoring 53

19. Micciancio, D.: The RSA group is pseudo-free. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 387–403. Springer, Heidelberg (2005)

20. Nechaev, V.I.: Complexity of a deterministic algorithm for the discrete logarithm.
Mathematical Notes 55(2), 91–101 (1994)

21. Rivest, R.L.: On the notion of pseudo-free groups. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)

22. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM 21, 120–126 (1978)

23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Resettably Secure Computation

Vipul Goyal	 and Amit Sahai		

Department of Computer Science, UCLA

Abstract. The notion of resettable zero-knowledge (rZK) was intro-
duced by Canetti, Goldreich, Goldwasser and Micali (FOCS’01) as a
strengthening of the classical notion of zero-knowledge. A rZK protocol
remains zero-knowledge even if the verifier can reset the prover back to
its initial state anytime during the protocol execution and force it to
use the same random tape again and again. Following this work, vari-
ous extensions of this notion were considered for the zero-knowledge and
witness indistinguishability functionalities.

In this paper, we initiate the study of resettability for more general
functionalities. We first consider the setting of resettable two-party com-
putation where a party (called the user) can reset the other party (called
the smartcard) anytime during the protocol execution. After being reset,
the smartcard comes back to its original state and thus the user has the
opportunity to start interacting with it again (knowing that the smart-
card will use the same set of random coins). In this setting, we show
that it is possible to secure realize all PPT computable functionalities
under the most natural (simulation based) definition. Thus our results
show that in cryptographic protocols, the reliance on randomness and
the ability to keep state can be made significantly weaker. Our simu-
lator for the aforementioned resettable two-party computation protocol
(inherently) makes use of non-black box techniques. Second, we provide
a construction of simultaneous resettable multi-party computation with
an honest majority (where the adversary not only controls a minority of
parties but is also allowed to reset any number of parties at any point).
Interestingly, all our results are in the plain model.

1 Introduction

The notion of resettable zero-knowledge (rZK) was introduced by Canetti et
al [CGGM00] with a motivation towards obtaining zero-knowledge protocols for
highly adversarial environments. In rZK, the verifier is given the additional power
that anytime during the protocol execution, it can “reset” the prover back to
its initial state thus restarting the prover with the same configuration and coin

� Research supported in part from Amit Sahai’s grants and a Microsoft Graduate
Research Fellowship.

�� Research supported in part from NSF grants 0627781, 0716389, 0456717, and
0205594, a subgrant from SRI as part of the Army Cyber-TA program, an equip-
ment grant from Intel, an Alfred P. Sloan Foundation Fellowship, and an Okawa
Foundation Research Grant.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 54–71, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Resettably Secure Computation 55

tosses. This notion is motivated by several natural questions. Firstly, it address
the question: “is zero-knowledge possible when the prover uses the same random
coins in more than one execution?” and (surprisingly) gives a positive answer to
it. Secondly, it shows that zero-knowledge protocols can be securely implemented
by devices which can neither reliably keep state nor toss coins online. An example
of such a device might be a resettable stateless “smartcard” with secure hardware
(which can be reset, e.g., by switching off its power) [CGGM00]. Thus, rZK
can be viewed as “zero-knowledge protocols for stateless devices”. Canetti et
al [CGGM00] provide rZK proof system (for NP) with non-constant number
of rounds and resettable witness indistinguishable (rWI) proof system with a
constant number of rounds.

Canetti et al [CGGM00] observed that since the prover can be reset, an adver-
sarial verifier can actually achieve the effect of interacting with the prover con-
currently in several sessions, thus in particular implying concurrent zero knowl-
edge [DNS98]. In more detail, the verifier can start a session with the prover and
while the interaction is still in progress, can reset the prover to start another
interaction. It could reset the prover again in the middle to that interaction and
come back to the previous interaction by just running the protocol identically up
to the point where it reset the prover before. Thus, the verifier gets the flexibility
of choosing its messages in one interaction based on the messages of the prover
in some other interaction. In other words, the verifier can essentially interact
with the prover in various sessions and can interleave these sessions as it pleases.
Thus, a rZK protocol is a concurrent ZK protocol as well [CGGM00]. Following
this work, research on improving the round complexity of concurrent ZK also
led to rZK with improved round complexity [KP01, PRS02].

Subsequent to the introduction of this notion, various extensions were con-
sidered. Barak, Goldreich, Goldwasser and Lindell [BGGL01] studied resettably-
sound ZK (rsZK) where it is the verifier that can be reset by the prover. The
main challenge is to design a ZK protocol which retains its soundness even when
verifier uses the same random coins in multiple executions. Relying the non
black-box techniques of Barak [Bar01], Barak et al were able to construct con-
stant round rsZK arguments. These rsZK arguments were also used to construct
resettable zero-knowledge arguments of knowledge [BGGL01]. An open ques-
tion raised by [BGGL01] is: do there exist ZK protocols where both the prover
and the verifier are resettable by each other? While this still remains an open
problem, partial progress was made in [DL07]. The notion of resettability was
also studied extensively in the bare public key model introduced by [CGGM00]
with a goal of obtaining more efficient protocols (see [YZ07] and the references
therein).

Going Beyond ZK – Our Contributions. Common to all the prior work
on the notion of resettability is that they consider only the zero-knowledge (or
closely related) functionality. This raises the following natural question:

“Do there exist other classes of functionalities for which resettably secure
protocols can be obtained?”

56 V. Goyal and A. Sahai

In other words, do there exist protocols for other tasks such that the “security”
is retained even if one of parties participating in the protocol can be reset by the
other one? We initiate the study of general resettable computation and answer
the above question in the affirmative.

–Resettable Two-Party Computation. We prove a general completeness
theorem for resettable computation showing that it is possible to construct a
protocol to securely realize any PPT computable functionality. Our results are
for the setting where one party (called the user) can reset the other party (called
the smartcard) during the protocol execution. We first formalize this notion of
resettable two-party computation and give a natural simulation based security
definition for it. We then construct a general two-party computation protocol
under standard (polynomial time) cryptographic assumption. We in fact give
a “resettability compiler” which can compile any semi-honest secure (in the
standalone setting) protocol into one that is resettably secure. The simulator
for our resettable two-party computation protocol makes use of non-black box
techniques. We note that non-black box simulation is inherent since Barak et al
[BGGL01] show that it is impossible to obtain rsZK arguments (for languages
outside BPP) using black-box simulation and rsZK arguments for NP is only a
special case of a two-party functionality.

–Resettable Multi-Party Computation. Given the above results, two nat-
ural questions that arise then are: (a) Do there exists general secure resettable
multi-party computation protocols (where one or more of the parties are reset-
table)?, and, (b) Can the construction be extended to handle cases where both
parties can potentially reset each other? Towards that end, we first observe that
the our construction for resettable two-party computation can be extended using
standard techniques to show the existence of resettable multi-party computation
(where only one of the parties can be reset) with dishonest majority. Next, we
offer a construction of simultaneous resettable multi-party computation (where
all the parties are resettable) assuming a majority of the parties behave honestly.
That is, the adversary not only controls a minority of parties but is also allowed
to reset any number of honest parties at any point in the protocol execution.
At the core of our construction is a new construction of families of multi-party
1-round (and thus automatically resettable) zero-knowledge arguments of knowl-
edge which are simulation sound [Sah99].

Our results show that in cryptographic protocols, the reliance on randomness
and the ability to keep state can be made significantly weaker. We in fact show a
simple transformation from any resettably secure protocol (as per our definitions)
to a fully stateless one. By this we mean that the party which was resettable
in the original protocol need not maintain any state at all in the transformed
protocol.

Concurrency vs Resettability. As discussed earlier, if a party can be reset,
the other party can actually achieve the effect of interacting with it concurrently
in several sessions. This fact is the reason for the folklore that a resettably secure
protocol should also be concurrently secure (i.e., concurrently self-composable).

Resettably Secure Computation 57

However far reaching impossibility results have been proven showing that a large
class of functionalities cannot be securely realized [Lin03, Lin04] (even in the
fixed roles setting) in the plain model. This stands in sharp contrast to our
general positive results for resettable two-party computation.

In resettable two-party computation, an adversarial user already has the power
to reset the smartcard and interact with it as many times as it likes. This fact
that the number of interactions cannot be controlled is precisely what makes re-
settable two-party computation possible. In the formulation of our ideal model
for defining security, we give the adversarial user the power to interact with the
smartcard as many times it likes. Given that an adversarial user is allowed to
reset the smartcard in the real model (thus creating new problems), emulating
the view of such an adversary in the ideal world is only possible if several in-
teractions with the smartcard are allowed. In other words, we are only allowing
the user to do in the ideal world what he is already allowed to do in reality. By
giving our ideal adversary such extra power, we are able to construct protocols
satisfying our definition in the plain model. In our construction, the number of
times the simulator sends the reset request in the ideal world is polynomially
related to the number of times the real world adversary sends the reset request.
An open problem raised by the current work is to design a construction having
a precise simulation [MP06] with respect to the number of outputs.

Combining our results with the impossibility results of Lindell [Lin03, Lin04],
we get a first separation between the notions of resetability and concurrency.
That is, a resettably secure protocol (as per our definitions) is not always a
concurrently secure protocol (even for fixed roles) and vice versa (this direction
is implicit in [CGGM00]). In fact there exists a large class of functionalities for
which concurrently self-composable protocols do not exist but resettably secure
protocols do (as we show that they exist for every two-party functionality).

Meaningful Resettable Functionalities. We stress that while the resettable
setting is unsuitable for several traditional functionalities, such as Yao’s Million-
aire function, it remains meaningful and highly non-trivial for a large class of
functions. For instance, consider the problem of “conditional blind signatures”,
where one is willing to sign unknown messages as long as they satisfy some
property P . If a resettable device were to use a traditional two-party computa-
tion protocol to do this, it might leak full knowledge of the secret signing key;
our protocols would ensure that only the power to sign messages satisfying P is
given to the holder of the device. In general, functionalities where the output is
“cryptographic” in nature, and where the input of the device is a cryptographic
key, will be meaningful for resettable devices in a variety of settings. Techniques
from the area of privacy-preserving data analysis (see [Dwo08] and the references
therein) may also be useful in designing other classes of functions suitable for
computation by resettable devices.

Stateless vs Stateful Devices. Our results have interesting implications about
the power of stateless devices. Consider a stateless device (holding an input, pos-
sibly unable to toss coins online) trying to run a protocol for secure computation
of some functionality with a user. Our results show that stateless devices can run

58 V. Goyal and A. Sahai

secure computation protocols for every task. Of course, stateless devices can only
be used when one does not want to limit the number of protocol executions that
the device carries out (with a particular input).

What if one does want to limit the number of interactions that the device
carries out? We remark that it is also possible to obtain the following “best of
both worlds” protocol in such a case. In case the adversary is not able to reset
the device during the protocol interaction, the protocol provides a traditional
security guarantee (i.e., security as per the ideal/real world simulation paradigm,
see Canetti [Can00]). However if it turns out that the adversary was successfully
able to reset the device, the maximum the adversary can do is to achieve the
effect of running the protocol several times with the device (possibly choosing
different input each time).

While “protocols for stateless devices” are naturally useful for weak and in-
expensive devices (e.g., smartcard), other applications of such protocols could
include making a powerful server (providing services to many clients) stateless
to prevent denial of service attacks.

Universally Composable Multi-Party Computation using Tamper
Proof Hardware. To show one example of the power of our results, we consider
the recent work on obtaining universally composable multi-party computation
using tamper proof hardware tokens [Kat07]. As noted before, broad impossibil-
ity results have been proven showing that a large class of functionalities cannot
be UC securely realized in the plain model [CF01, CKL06]. These severe impos-
sibility results motivated the study of other models involving some sort of trusted
setup assumptions (assuming a trusted third party), where general positive re-
sults can be obtained. To avoid these trust assumptions (while still maintaining
feasibility of protocols), Katz recently proposed using a physical setup. In his
model, the physical setup phase includes the parties exchanging tamper proof
hardware tokens implementing some functionality.

The security of the construction in [Kat07] relies on the ability of the tamper-
resistant hardware to maintain state (even when, for example, the power supply
is cut off). In particular, the parties need to execute a four-round coin flipping
protocol with the tamper-resistant hardware. Using our techniques, one can im-
mediately relax this requirement and make the token completely stateless. In
particular, we can apply our compiler to the coin flipping protocol in [Kat07]
and obtain a new construction where the token, when fed with an input x, only
outputs f(x) for a fixed f and halts. A construction having such a property was
first obtained recently by Chandran et al [CGS08] by relying on techniques that
are very specific to the setting of UC secure computation with tamper proof
hardware. However our construction has an added advantage that a possibly
adversarial token does not learn any information about the input of the honest
party using it (and hence the security is retained even when the adversarial cre-
ator of the token “recaptures” it at a later point of time). This is leads to the first
construction of UC secure computation with stateless and recapturable tokens.
On the downside, as opposed to [CGS08], the security of this construction would

Resettably Secure Computation 59

rely on the adversary “knowing” the code of the tokens which it distributes to
the honest parties (see [CGS08] for more details).

Open Problems. The main question left open by the current work is: “Do
there exist two-party and multi-party computation protocols in the dishonest
majority setting where more than one party is resettable?”. Eventually, one
would like to construct simultaneous resettable multi-party computation where
the adversary can control any number of parties and can reset any number
of honest parties at any point (or show that such protocols cannot exist). The
apparent obstacle to making any progress towards answering the above questions
is the long-standing problem of constructing a simultaneous resettable zero-
knowledge argument (first mentioned as an open problem in the work of Barak
et al [BGGL01]). We recently settled this conjecture affirmatively in [GS08].

2 The Resettable Ideal Model

2.1 Resettable Two-Party Computation

Informally speaking, our model for resettable two-party computation is as fol-
lows. We consider a smartcard S holding several inputs x1

1, . . . , x
num
1 and random

tapes ω1
1 , . . . , ω

num
1 . We denote by X1 the full input and randomness vector (i.e.,

the concatenation of all the inputs and random tapes) held by S. The ith incar-
nation of the smartcard S is a deterministic strategy defined by the pair (xi

1, ω
i
1)

as in [CGGM00]. We stress that while each incarnation has its own random tape,
as in [CGGM00], when a particular incarnation is reset, it starts over with the
same random tape. Thus, we model different smartcards as the different incar-
nations. We consider a user U holding an input x2 interested in interacting with
the ith incarnation of the smartcard S. The user activates the ith incarnation of
the smartcard and runs a protocol with it to securely compute a function f(., .).
We do not explicitly define a way of activating the ith incarnation; it could ei-
ther be through physical means or by sending an initial message to S specifying
the incarnation U would like to interact with. At any point during the protocol
execution, the user U can reset the smartcard S to its initial state, thus, having
a chance to start interaction again with any incarnation with a fresh input. At
the end of the protocol, both the parties get the output f(x1, x2), x1 = xi

1 where
i and x2 are the incarnation and the inputs which were most recently selected
by the user U. We remark that we only consider one side resettability, that is,
the smartcard S is not allowed to reset the user U.

To formalize the above requirement and define security, we extend the stan-
dard paradigm for defining secure computation. We define an ideal model of
computation and a real model of computation, and require that any adversary
in the real model can be emulated (in the specific sense described below) by an
adversary in the ideal model. In a given execution of the protocol we assume that
all inputs have length κ, the security parameter. We consider a static adversary
which chooses whom to corrupt before execution of the protocol. In our model,
both the parties get the same output (the case where parties should get different

60 V. Goyal and A. Sahai

outputs can be easily handled using standard techniques). Finally, we consider
computational security only and therefore restrict our attention to adversaries
running in probabilistic polynomial time.

Ideal model. In the ideal model there is a trusted party which computes the
desired functionality based on the inputs handed to it by the players. Then an
execution in the ideal model proceeds as follows:

Select incarnation. The user U sends an incarnation index i to the trusted
party which then passes it on to the smartcard S.

Inputs. The smartcard S has input x1 while the user U has input x2.
Send inputs to trusted party. Both S and U send their inputs to the trusted

party. An honest party always sends its real inputs to the trusted party. A
corrupted party, on the other hand, may decide to send modified value to
the trusted party.

Trusted party computes the result. The trusted party sets the result to be
f(x1, x2). It generates and uses uniform random coin if required for the
computation of f .

Trusted party sends results to adversary. The trusted party sends the re-
sult f(x1, x2) to either S or U depending upon whoever is the adversary.

Trusted party sends results to honest players. The adversary, depending
on its view up to this point, does the following. It either sends the abort
signal in which case the trusted party sends ⊥ to the honest party. Or it
could signal the trusted party to continue in which case the trusted party
sends the result f(x1, x2) to the honest party.

Reset ideal world at any point. In case the user U is the adversary, during
the execution of any of the above steps, it can send the signal reset to the
trusted party. In that case, the trusted party sends reset to the smartcard S
and the ideal world comes back to the select incarnation stage.

Outputs. An honest party always outputs the response it received from the
trusted party. The adversary outputs an arbitrary function of its entire view
throughout the execution of the protocol.

For a given adversary A, the execution of f in the ideal model on X1, x2 is
defined as the output of the honest parties along with the output of the adversary
resulting from the process above. It is denoted by idealf,A(X1, x2).

Real model. An honest party follows all instructions of the prescribed protocol,
while a adversarial party may behave arbitrarily. If the user U is the adversarial
party, it can reset the smartcard S at any point during the protocol execution.
After getting reset, S comes back to its original state which it was in when
starting the protocol execution thus allowing U to choose a fresh input and start
interaction again with any incarnation of the smartcard S. At the conclusion of
the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view of the execution of the protocol.

For a given adversary B and protocol Σ for resettably computing f , the exe-
cution of Σ in the real model on X1, x2 (denoted realΣ,B(X1, x2)) is defined as

Resettably Secure Computation 61

the output of the honest parties along with the output of the adversary resulting
from the above process.

Having defined these models, we now define what is meant by a resettable two-
party computation protocol. By probabilistic polynomial time (ppt), we mean
a probabilistic Turing machine with non-uniform advice whose running time is
bounded by a polynomial in the security parameter κ. By expected probabilistic
polynomial time (eppt), we mean a Turing machine whose expected running
time is bounded by some polynomial, for all inputs.

Definition 1. Let f and Σ be as above. Protocol Σ is a secure protocol for
computing f if for every ppt adversary A corrupting either of the two players
in the real model, there exists an eppt adversary S corrupting that player in the
ideal model, such that:

{idealf,S(X1, x2)}(X1,x2)∈({0,1}∗)2
c≡ {realΣ,A(X1, x2)}(X1,x2)∈({0,1}∗)2 .

Our real model translates to the so called multiple incarnation non-interleaving
setting in the terminology of [CGGM00]. This setting was shown to be equivalent
to the multiple incarnation interleaving setting for the case of zero-knowledge
and their proof can be extended to the general case as well. In other words, a
protocol Σ which is secure when the user U is allowed only to interact with one
incarnation at a time remain secure even if U is allowed to concurrently interact
with any number of incarnation simultaneously. For simplicity of exposition, we
only consider the setting when the inputs of smartcard S are all fixed in advance
(while S is acting as honest party in the protocol). However we remark that our
protocols also work for the more general case when the inputs of S are adaptively
chosen possibly based on the outputs in the previous protocol executions. More
details regarding these issues will be provided in the full version.

2.2 Simultaneous Resettable Multi-party Computation

For lack of space, we defer the model for this case to the full version of this paper.
The main changes from the two-party case is that we consider an adversary who
controls a minority of the parties and can reset any number of honest parties at
any point during the protocol.

2.3 Extensions

In this section, we informally describe two extensions which can be applied to
our constructions proven secure as per our definitions. More formal details will
be provided in the full version.

Going from Resettable to Stateless.Any protocol which is resettably secure
can be transformed to a stateless protocol using relatively standard techniques.
In other words, the parties which were allowed to be resettable in the original
protocol need not maintain any state at all in the transformed protocol. By a

62 V. Goyal and A. Sahai

stateless device we mean that the device only supports a “request-reply” inter-
action (i.e., the device just outputs f(x) when fed with x for some fixed f).
We describe the case of two party first assuming both the parties are resettable
(the case where one party is resettable is only simpler). Let we have parties
P1 and P2 participating in the original resettably secure protocol Σ. Now we
define a protocol Σ′ having parties P ′

1 and P ′
2. Each of these parties will have

a secret key of a CCA-2 secure encryption scheme and a secret MAC key. The
party P ′

1 computes the first message to be sent in the protocol Σ′ by running
P1 internally. However it then sends to P ′

2 not only the computed message but
also an encryption of the current state of P1 and a MAC on it. Party P ′

2 sim-
ilarly computes the reply by feeding the received message to P2 and sends to
P ′

1 not only the computed reply but also (a) the received encrypted state of P1
and the MAC, and, (b) an encryption of the current state of P2 and a MAC
on it using its own keys. Thus for the next round, P ′

1 can decrypt, verify and
load the received state into P1, feed it the incoming reply and then compute
the next outgoing message. P2 can similarly continue with the protocol. The
case of multi-party protocols can also be handled by first transforming the given
protocol into one where only one party sends a message in any given round and
then applying ideas similar to the one for the two party case to this resulting
protocol.

Getting the Best of Both Worlds. One might ask the question: is it possible
to have a single protocol such that in case the adversary is not able to reset the
device, the protocol provides a traditional security guarantee (i.e., security as
per the ideal/real world simulation paradigm, see Canetti [Can00]). However if
it turns out that the adversary is successfully able to reset the device, the proto-
col still provides security as per the resettable ideal model definition presented
above. We remark that it is easy to transform both our constructions into ones
which provide such a best of both worlds guarantee (however we do not know if
our transformation works for all constructions). We build a counter into the de-
vice which gets incremented with every protocol execution (whether successfully
completed or not). The randomness used by the device for a protocol execution
comes from the application of a PRF to the current counter value. This guar-
antees that in case the device is able to keep such a counter successfully, the
randomness used in each execution is fresh and independent of others. Thus, it is
easy to show that one can use a significantly simpler simulator (which can only
handle standalone executions) to prove security of our constructions in such a
setting.

3 Building Blocks

Our protocols make use of the following building blocks: a commitment
scheme COM based on one way permutations, computational zero-knowledge
proofs and proofs of knowledge, zaps [DN00], resettable sound zero-knowledge
arguments [BGGL01] and the PRS concurrent zero-knowledge preamble
[PRS02].

Resettably Secure Computation 63

4 Resettable Two-Party Computation

4.1 The Construction

We now describe how to transform any given two party protocolΠ (which is only
semi-honest secure) into a resettably secure protocol Σ. Prior to the beginning
of the protocol, we assume that the smartcard S and the user U have agreed
upon the incarnation of S for the protocol. Each incarnation of the smartcard
S has its own independent random tape. We assume that the private inputs
to S and U in the protocol Π are x1 and x2 respectively. The smartcard S
denotes the party which can be reset by the other party U in the protocol Σ.
We view the random tape of the smartcard as a tuple (G,Rrs). Here G denotes
the description of a function G : {0, 1}≤poly(κ) → {0, 1}poly(κ) taken from an
ensemble of pseudorandom functions and Rrs denotes a random string which S
will use while acting as a verifier of a resettable sound zero-knowledge argument.
Let R denote the uniform distribution. The protocol proceeds as follows.

PRS Preamble Phase

1. U → S: Generate r2
$← R and let β = (x2, r2). Here r2 is the randomness

to be used (after coin flipping with S) by the user U at various stages of the
protocol Σ (including to carry out the protocol Π) as explained later on.
We assume that r2 is of sufficient size to allow U to execute all such stages.
Generate random shares {β0

i,�}k
i,�=1, {β1

i,�}k
i,�=1 such that β0

i,� ⊕ β1
i,� = β for

every i, �. Using the commitment scheme COM, commit to all these shares.
Denote these commitments by {B0

i,�}k
i,�=1, {B1

i,�}k
i,�=1.

Let msg be the concatenation of all these commitment strings, i.e., msg =
B0

1,1|| . . . ||B0
k,k ||B1

1,1|| . . . ||B1
k,k. We call msg to be the determining message

of this session (since it commits the user U to its input and randomness).
The random tape used by the smartcard S to carry out rest of the protocol
Σ (except when acting as a verifier of a resettable sound ZK argument) will
be determined by the application of the pseudorandom function G to the
determining message msg. Again, we assume that G(msg) is of sufficient
size to allow the execution of all the steps.

2. U ↔ S: The user U and the smartcard S will now use a resettable-sound zero-
knowledge argument system (rsP, rsV) (relying a non-black box simulator
[BGGL01]). U emulates the prover rsP and proves the following statement
to the resettable verifier rsV (emulated by S): the above PRS commit phase
is a valid commit phase In other words, there exist values β̂, {β̂0

i,�}k
i,�=1,

{β̂1
i,�}k

i,�=1 such that (a) β̂0
i,� ⊕ β̂1

i,� = β̂ for every i, �, and, (b) Commitments
{B0

i,�}k
i,�=1, {B1

i,�}k
i,�=1 can be decommitted to {β̂0

i,�}k
i,�=1, {β̂1

i,�}k
i,�=1.

The user U uses a fresh (uncommitted) random tape for emulation of the
prover rsP . The random tape used by S to emulate the resettable verifier rsV
comes from Rrs. Going forward, this will be the case with all the resettable
sound zero-knowledge arguments in our protocol Σ.

64 V. Goyal and A. Sahai

3. For � = 1, . . . k:
(a) S → U: Send challenge bits b1,�, . . . , bk,�

$← {0, 1}k.
(b) U → S: Decommit to Bb1,�

1,� , . . . , B
bk,�

k,� .
The random tape required by S to generate the above challenge bits comes
from G(msg).

4. S → U: Since the underlying protocol Π is secure only against semi-honest
adversaries, the random coins used by each party are required to be unbiased.
Hence S generates r′2

$← R (using the random tape from G(msg)) and sends
it to U. Define r′′2 = r2 ⊕ r′2. Now r′′2 is the randomness which will be used
by U for carrying out the protocol Π (among other things).

Smartcard Input Commitment Phase

1. S → U: Generate a string r1
$← R and let α = (x1, r1). Commit to α using

the commitment scheme COM and denote the commitment string by A.
The random tape required to generate the string r1 and to compute the
commitment A comes from G(msg).

2. S ↔ U: Now S has to give a proof of knowledge of the opening of the commit-
ment A to U. In other words, S has to prove that it knows a value α̂ = (x̂1, r̂1)
such that the commitment A can be decommitted to α̂. This proof is given
as follows. S and U use an ordinary computational zero-knowledge proof
of knowledge system (Ppok, Vpok) where S and U emulates the prover Ppok

(proving the above statement) and the verifier Vpok respectively. However
the random tape used by U to emulate the verifier Vpok is required to come
from r′′2 . To achieve this, the interaction proceeds as follows. Let t′pok be the
number of rounds in (Ppok, Vpok) where a round is defined to have a message
from Ppok to Vpok followed by a reply from Vpok to Ppok. For j = 1, . . . t′pok:
– S → U: S sends the next prover message computed as per the system

(Ppok, Vpok). The random tape used by S to emulate Ppok comes from
G(msg).

– U → S: U sends the next verifier message computed as per the system
(Ppok, Vpok) using randomness r′′2 .

– U ↔ S: U and S now execute a resettable-sound zero-knowledge argu-
ment where U emulates the prover rsP and proves the following state-
ment to rsV emulated by S: the PRS commit phase has a major decom-
mitment β̂ = (x̂2, r̂2) such that the sent verifier message is consistent
with the randomness r̂2 ⊕ r′2 (where r′2 was as sent by S in the PRS
preamble phase).

The above system can be seen as a resettable zero-knowledge argument of
knowledge system [BGGL01]. However when used in our context as above,
the simulator of this system will be straightline.

3. U → S: U generates r′1
$← R using the random tape r′′2 and sends it to S.

Define r′′1 = r1 ⊕ r′1. Now r′′1 is the randomness which will be used by S for
carrying out the protocol Π .

Resettably Secure Computation 65

4. U ↔ S: U and S now execute a resettable-sound zero-knowledge argument. U
emulates the prover rsP and proves the following statement to rsV emulated
by S: the PRS commit phase has a major decommitment β̂ = (x̂2, r̂2) such
that message r′1 is consistent with the randomness r̂2 ⊕ r′2.

Secure Computation Phase

Let the underlying protocol Π have t rounds1 where one round is defined
to have a message from S to U followed by a reply from U to S. Let transcript
T j

1 (resp. T j
2) be defined to contain all the messages exchanged between S and

U before the point party S (resp. U) is supposed to send a message in round j.
Now, each message sent by either party in the protocol Π is compiled into a
message block in Σ. For j = 1, . . . t:

1. S → U: S sends the next message mj
1 (= Π(T j

1 , x1, r
′′
1)) as per the protocol

Π . Now S has to prove to U that the sent message mj
1 was honestly gen-

erated using input x1 and randomness r′′1 . In other words, S has to prove
the following statement: there exist a value α̂ = (x̂1, r̂1) such that: (a) the
message mj

1 is consistent with the input x̂1 and the randomness r̂1⊕ r′1 (i.e.,
mj

1 = Π(T j
1 , x̂, r̂1 ⊕ r′1)), and, (b) commitment A can be decommitted to α̂.

This proof is given as follows. S and U use an ordinary computational zero-
knowledge proof system (P, V) where S and U emulates the prover P (proving
the above statement) and the verifier V respectively. However the random
tape used by U to emulate the verifier V is required to come from r′′2 . To
achieve this, the interaction proceeds as follows. Let t′ be the number of
rounds in (P, V) where a round is defined to have a message from P to V
followed by a reply from V to P . For j′ = 1, . . . t′:
– S → U: S sends the next prover message computed as per the system

(P, V). The random tape used by S to emulate P comes from G(msg).
– U → S: U sends the next verifier message computed as per the system

(P, V) using randomness r′′2 .
– U ↔ S: U and S now execute a resettable-sound zero-knowledge argu-

ment where U emulates the prover rsP and proves the following state-
ment to rsV emulated by S: the PRS commit phase has a major decom-
mitment β̂ = (x̂2, r̂2) such that the sent verifier message is consistent
with the randomness r̂2 ⊕ r′2.

To summarize, the random tape used by U to emulate the verifier V is re-
quired to be committed in advance. However S is free to use any random tape
while emulating the prover P (although in the interest of its own security, S
is instructed to use randomness from G(msg).

2. U sends the next message mj
2 (= Π(T j

2 , x2, r
′′
2)) as per the protocol Π . U

and S now execute a resettable-sound zero-knowledge argument where U

1 This assumption is only made for simplicity of exposition. It is easy to extend our
construction to handle protocols whose round complexity is not upper bounded by
a fixed polynomial.

66 V. Goyal and A. Sahai

emulates the prover rsP and proves to S that mj
2 was honestly generated

using input x2 and randomness r′′2 . More precisely, U proves the following
statement: the PRS commit phase has a major decommitment β̂ = (x̂2, r̂2)
such that mj

2 is consistent with the input x̂2 and the randomness r̂2 ⊕ r′2.

This completes the description of the protocol Σ. The usage of randomness
in the above protocol can be summarized as follows. After sending the very
first message (i.e., the determining message msg), the only fresh randomness
that can be used by the user U is while emulating the prover rsP of resettable
sound zero-knowledge arguments. The smartcard S is essentially “free” to use
any randomness it wants (except while computing messages of the underlying
protocol Π). An honest S always sets its random tape to G(msg) to carry out
the protocol Σ .

At the end of above protocol Σ, both the parties will hold the desired output.
We stress that we require only standard (standalone) semi-honest security from
the underlying protocol Π . Thus, when we set the underlying protocol Π to be
the constant round two-party computation protocol of Yao [Yao86], the result-
ing protocol Σ has k (= ω(log κ)) rounds. To obtain a constant round protocol,
the first step would be the construction of a concurrent zero-knowledge argu-
ment system in a constant number of rounds. We also remark that the above
resettable two-party computation also implies (under standard assumptions) re-
settable multi-party computation (where only one of the parties can be reset)
with dishonest majority. The construction for resettable multi-party computa-
tion can be obtained using standard techniques from the two-party one (i.e.,
the n − 1 “non-resettable” parties will use a regular multi-party computation
protocol [GMW87] among them to emulate a single party holding n− 1 inputs).

We prove that the protocol Σ is a resettable two-party computation protocol
by proving the following two theorems; the proofs are deferred to the full version
of this paper.

Theorem 1 (Security Against a Malicious U∗). The compiled protocol Σ
is secure against a malicious U∗.

Theorem 2 (Security Against a Malicious S∗). The compiled protocol Σ
is secure against a malicious S∗.

5 Simultaneous Resettable Multi-party Computation
with Honest Majority

5.1 The Construction

We now describe how to transform any given protocol Π (which is only semi-
honest secure) into a simultaneous resettably secure protocol Σ with honest
majority. We assume n parties P1, . . . , Pn where a majority of the parties behave
honestly. All the parties are “resettable”, or in other words, the adversarial
parties can reset any number of honest parties at any time during the protocol

Resettably Secure Computation 67

execution. We assume that before the protocol starts, the parties have agreed
upon which incarnation will be used by which party. The private inputs of parties
P1, . . . , Pn are denoted by x1, . . . , xn respectively. Let R denote the uniform
distribution. The protocol Σ proceeds as follows.

Input Commitment Phase

Each party Pi does the following computations. Any randomness required for
these computations comes from the random tape of (appropriate incarnation of)
Pi which is potentially reusable in other sessions.

– Generate a function Gi : {0, 1}≤poly(κ) → {0, 1}poly(κ) randomly from an
ensemble of pseudorandom functions and let αi = (xi, Gi). Compute a com-
mitment to αi using the commitment scheme COM and denote it by Ai.

– Generate the first verifier message Zi ← fzaps(κ) of a zap system.
– Generate a pair (PKi, SKi) of public and secret keys using the key genera-

tion algorithm of a semantically secure public key encryption system having
perfect completeness.

– Generate n strings a1
i , . . . , a

n
i from the domain of a one way function F . For

all j, compute bji = F (aj
i).

Additionally, we assume that a party Pi has a random tape Ri,zkv which it
uses for the verification of messages of a 1 round ZKAOK system as we explain
later on. Pi now broadcasts the values Ai, Zi, PKi, b

1
i , . . . , b

n
i . Let the string

broadcast (i.e., Ai||Zi||PKi|| b1i || . . . ||bni) be denoted by msgi. The string msgi

is called the determining message of party Pi for this session. Note that since a
party Pi may have to reuse its random tape, the determining message msgi may
be identical across various protocol executions.

The random tape used by Pi to carry out rest of the protocol Σ (ex-
cept for the verification of the messages of the 1 round ZKAOK system) will
be determined by the application of the pseudorandom function Gi to the
(concatenation of) determining messages of all other parties. That is, denote
Ri = Gi(msg1|| . . . ||msgi−1||msgi+1|| . . . ||msgn). Now Ri serves as the random
tape of Pi for the rest of the protocol. We assume that Ri is of sufficient size to
allow the execution of all the steps.

Construction of a 1-round zero-knowledge argument of knowledge. We
now describe the construction of a family of 1-round zero-knowledge argument of
knowledge (ZKAOK) systems. The (i, j)th argument system is used by party Pi

to prove statements to party Pj . Additionally, the argument systems (i, j) and
(k, �), where i �= k, are simulation sound w.r.t. each other. To prove a statement
x ∈ L to party Pj , a party Pi holding the witness w (for the given witness
relation) proceeds as follows:

– Pi breaks the witness w into n shares w1, . . . , wn using the Shamir threshold
secret sharing scheme [Sha79] such that a majority of the shares are sufficient
to reconstruct the witness w. For all k, Pi encrypts wk under the public key
PKk. Let the ciphertext be denoted by Ck. Pi now broadcasts all the n
ciphertexts so generated.

68 V. Goyal and A. Sahai

– Pi finally generates and sends the prover message of the zap system (acting
on the verifier message Zj) proving that one of the following statements is
true:
1. The ciphertexts C1, . . . , Cn represent the encryption of shares of a valid

witness. More precisely, there exists strings ŵ1, . . . , ŵn such that: (a) for
all k, Ck is a valid encryption of ŵk, and, (b) ŵ1, . . . , ŵn are valid shares
of a single string ŵ as per the Shamir secret sharing scheme, and, (c) ŵ
is a valid witness for the witness relation (i.e., x ∈ L).

2. The ciphertexts C1, . . . , Cn represent the encryption of shares of a ma-
jority of preimages of the strings bi1, . . . , b

i
n under the one way func-

tion F . More precisely, there exists strings ŝ1, . . . , ŝn such that: (a)
for all k, Ck is a valid encryption of ŝk, and, (b) ŝ1, . . . , ŝn are valid
shares of a single string ŝ as per the Shamir secret sharing scheme, and,
(c) ŝ = (â1

i, . . . , ân
i) and there exists a set Smaj of indices such that

|Smaj | > n/2 and for all � ∈ Smaj , bi� = F (â�
i).

Thus, we have a trapdoor condition which allows a party Pi to give a simulated
argument using the preimages of bi1, . . . , bin. Note that the “trapdoor” for each
party is “independent”. That is, informally speaking, even given the preimages
of strings bi1, . . . , b

i
n, a party Pj with j �= i will be unable to give a simulated

argument.

Coin Flipping Phase

Since the underlying protocol Π is secure only against semi-honest adversaries,
the random coins used by each party in Π are required to be unbiased. Hence
the parties run a 2 round coin flipping phase to generate a long unbiased public
random string as given below. As noted before, the random tape that a party
Pi uses to execute this stage (i.e., generate of random strings, commitment and
messages of the 1-round ZKAOK system) comes from Ri. However the random
tape (if needed) used by Pi to verify the messages of the ZKAOK system comes
from Ri,zkv .

– In the first round, each party Pi generates R′
i

$← R and broadcasts a commit-
mentBi to R′

i using the commitment scheme COM. For all j �= i, party Pi ad-
ditionally broadcasts a ZKAOK (using the (i, j)th 1-round ZKAOK system)
proving that the commitment Bi was correctly computed using randomness
Ri. More precisely, Pi proves that there exists a string α̂i = (x̂i, Ĝi) such
that: (a) the commitment Ai can be decommitted to α̂i, and, (b) the com-
mitment Bi to a random string (and the random string itself) was computed
using randomness Ĝi(msg1|| . . . ||msgi−1||msgi+1|| . . . ||msgn). Note that this
ZKAOK is given for a specific witness relation such that the witness allows
extraction of such a α̂i.

– In the second round, each party Pi broadcasts the committed string R′
i

(without providing any decommitment information). For all j �= i, party
Pi additionally broadcasts a ZKAOK (using the (i, j)th 1-round ZKAOK
system) proving that the commitment Bi can be decommitted to the string

Resettably Secure Computation 69

R′
i. Denote r′1|| . . . ||r′n = R′

1 ⊕ · · · ⊕R′
n. At this point, the strings r′1, . . . , r

′
n

are all guaranteed to be random.

Each Pi further privately generates a random ri. Define r′′i = ri ⊕ r′i. Now
r′′i is the randomness that will be used by party Pi to carry out the underlying
protocol Π in the next stage.

Secure Computation Phase

Let the underlying protocol Π have t rounds2 where any number of parties can
send a message in any given round. Let transcript T j be defined to contain all
the messages broadcast before the round j. Now, for j = 1, . . . t:

1. Pi sends the next message mj
i (= Π(T j, xi, r

′′
i)) as per the protocol Π . Note

that mj
i could potentially be ⊥.

2. For all k �= i, party Pi additionally broadcasts a ZKAOK (using the (i, k)th
1-round ZKAOK system) proving that the sent message mj

i was honestly
generated using input xi and randomness r′′i . In other words, Pi proves the
following statement: there exist a value α̂i = (x̂i, Ĝi) such that: (a) the
message mj

i is consistent with the input x̂i and the randomness r̂i ⊕ r′i (i.e.,
mj

i = Π(T j, x̂i, r̂i⊕r′i)) where r̂i is generated from Ĝi, and, (b) commitment
Ai can be decommitted to α̂i. As before, the random tape used by Pi for
generation and verification of the messages of ZKAOK system comes from
Ri and Ri,zkv respectively.

This completes the description of the protocol Σ. The usage of randomness
in the above protocol can be summarized as follows. After sending the very first
message (i.e., the determining message msgi), the only fresh and uncommitted
random tape that can potentially be used by a malicious party Pi is for the gen-
eration and verification of the 1-round ZKAOK messages (although the honest
parties are instructed to use the committed random tape for the generation of
1-round ZKAOK messages).

Applying the above transformation to the constant round protocol of Beaver
et al [BMR90], we obtain a constant round protocol Σ (secure against a minority
of malicious parties). Our protocol is based on computational assumptions; the
existence of NIZK (or equivalently, two round zaps [DN00]) to be precise. We
note that it is easy to rule out information theoretically secure protocols in
our setting very similar to how Barak et al [BGGL01] ruled out resettably-
sound zero-knowledge proofs. The basic idea is that since an honest party has
only a bounded size secret information (i.e., the input and the random tape), an
unbounded dishonest party can interact with it several times (by resetting it each
time) so as to “almost” learn its input/output behavior (and hence an honest
party input “consistent” with that behavior). More details will be provided in
the full version.

2 As before, this assumption is only made for simplicity of exposition.

70 V. Goyal and A. Sahai

Let M be the list of malicious parties. Denote the list of honest parties H =
{P1, . . . , Pn} −M. We defer the proof the following theorem to the full version
of this paper for lack of space.

Theorem 3 (Security Against a Minority of Malicious Parties). The
compiled protocol Σ is secure as per definition 2.2 against the coalition of mali-
cious parties represented by M as long as |M| < n/2.

References

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: STOC, pp. 503–513. ACM, New York (1990)

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology: the journal of the International Association
for Cryptologic Research 13(1), 143–202 (2000)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Hei-
delberg (2001)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: STOC, pp. 235–244 (2000)

[CGS08] Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure
computation using tamper-proof hardware. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

[CKL06] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of univer-
sally composable two-party computation without set-up assumptions. J.
Cryptology 19(2), 135–167 (2006)

[DL07] Deng, Y., Lin, D.: Instance-dependent verifiable random functions and
their application to simultaneous resettability. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 148–168. Springer, Heidelberg (2007)

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293
(2000)

[DNS98] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC,
pp. 409–418 (1998)

[Dwo08] Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du,
D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19.
Springer, Heidelberg (2008)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:
STOC 1987: Proceedings of the 19th annual ACM conference on Theory
of computing, pp. 218–229. ACM Press, New York (1987)

[GS08] Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. Cryptology ePrint Archive,
Report 2008/545 (2008), http://eprint.iacr.org/

[Kat07] Katz, J.: Universally composable multi-party computation using tamper-
proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 115–128. Springer, Heidelberg (2007)

Resettably Secure Computation 71

[KP01] Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560–569 (2001)

[Lin03] Lindell, Y.: Bounded-concurrent secure two-party computation without
setup assumptions. In: STOC, pp. 683–692. ACM Press, New York (2003)

[Lin04] Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg
(2004)

[MP06] Micali, S., Pass, R.: Local zero knowledge. In: Kleinberg, J.M. (ed.) STOC,
pp. 306–315. ACM, New York (2006)

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).

In: FOCS, pp. 162–167. IEEE, Los Alamitos (1986)
[YZ07] Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in

the bare public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 129–147. Springer, Heidelberg (2007)

On the Security Loss in Cryptographic
Reductions�

Chi-Jen Lu

Institute of Information Science, Academia Sinica, Taipei, Taiwan
cjlu@iis.sinica.edu.tw

Abstract. Almost all the important cryptographic protocols we have
today base their security on unproven assumptions, which all imply
NP �= P, and thus having unconditional proofs of their security seems
far beyond our reach. One research effort then is to identify more ba-
sic primitives and prove the security of these protocols by reductions to
the security of these primitives. However, in doing so, one often observes
some security loss in the form that the security of the protocols is mea-
sured against weaker adversaries, e.g., adversaries with a smaller running
time. Is such a security loss avoidable? We study two of the most basic
cryptographic reductions: hardness amplification of one-way functions
and constructing pseudorandom generators from one-way functions. We
show that when they are done in a certain black-box way, such a security
loss is in fact unavoidable.

1 Introduction

Although we have many protocols today for all kinds of interesting and im-
portant cryptographic tasks, almost all of these protocols have their security
based on some assumptions. These assumptions all imply P �= NP, so having
unconditional proofs of their security seems far beyond our reach. One line of
research then is to identify the weakest possible assumptions or primitives from
which one can build more advanced cryptographic protocols. One such primi-
tive is one-way function (OWF), a function which is easy to compute but hard
to invert, with respect to polynomial time computation. It is now known that
from a OWF, one can construct other cryptographic primitives such as pseudo-
random generator (PRG), pseudo-random function, private-key encryption, bit
commitment, zero-knowledge proof, and digital signature. In fact, all these prim-
itives are known to be equivalent in the sense that they can all be built from each
other [21,6,9,7,11,18,17,10]. According to [5], these primitives may be categorized
as in the world of private cryptography. There are other primitives, including
public-key encryption, oblivious transfer, private information retrieval, and key
agreement, which may be categorized as in the world of public cryptography.
Primitives in the world of public cryptography seem to require a stronger as-
sumption, and it has been shown that trapdoor one-way permutations can be

� This work supported was in part by the National Science Council under the Grant
NSC97-2221-E-001-012-MY3.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 72–87, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

On the Security Loss in Cryptographic Reductions 73

used to build all of them. The relationships among primitives in public cryptogra-
phy are more complicated, but most of them have been settled [13,12,5,2,14,4,1].

From a theoretical perspective, we seem to have obtained a good understand-
ing of the relationships among these primitives. However, from a practical point
of view, there are still issues to be resolved. The first is that even when we can
construct one primitive from another, the construction may not be as efficient as
we desire. For example, although we can use any one-way function to construct
all the primitives in the world of private cryptography, the constructions often
do not appear efficient enough to have a practical impact. Can we improve the
efficiency of such constructions? Some negatives results have been obtained re-
cently for the tasks of amplifying hardness of OWF [15,16], constructing PRG
from OWF [3,20,16], and constructing encryption or signature scheme [3] from
(trapdoor) one-way permutation.

The second issue is that when constructing a primitive from another, one often
suffers some kind of security loss. For example, although one can construct a PRG
from a OWF, the proofs currently available can only guarantee the security of
the PRG for weaker adversaries having a smaller running time (or circuit size)
than that for OWF. Therefore, if we want to have a PRG with a certain security
level, we need to start from a OWF with a much higher security level, which
would require a substantial cost to implement and make it less attractive in
practice. Similar problems also occur in other constructions, and people have
tried to improve these constructions, but with limited success so far. Again, one
may wonder whether or not such improvements are indeed impossible. Not much
seems to be known, and our goal is to show that such security losses are basically
unavoidable. We would like to start from two of the most basic primitives: OWF
and PRG, and study the task of hardness amplification for OWF and the task
of constructing PRG from OWF.

We say that a function f is ε-hard (to invert) for time t (or size t), if any
algorithm running in time t (or circuit of size t) must fail to invert f(x) for
at least ε fraction of x. The task of hardness amplification is to transform a
function f which is ε-hard for time t into a function f̄ which is (1− δ)-hard for
time t̄, for some small δ and ε. According to [21,8], this is possible with t̄ = t/γ1,
for some γ1 = ((1/δ)/ log(1/ε))O(1) (it seems that a more careful analysis can
give γ1 = O((1/δ)/ log(1/ε))). That is, the hardness of the new function f̄ is
now measured against algorithms with a running time (or circuit size) smaller
by a γ1 factor than that for the initial function f . Therefore, when we want to
transform a weakly OWF (with hardness n−O(1)) into a strongly OWF (with
hardness 1−n−ω(1)), we lose a polynomial factor in the running time (or circuit
size) of adversaries. We say that a function g : {0, 1}n → {0, 1}m is ε-random
for time t (or size t) if for any algorithm C running in time t (or circuit of size
t), the probabilities of C(u) = 1 and C(g(x)) = 1, over random u and random
x respectively, differ by at most ε. According to [10], one can construct such a
function g with m > n (a PRG), which is ε-random for time t/γ2 (or size t/γ2),
from any function f which is (1 − n−Ω(1))-hard for time t (or size t), for some

74 C.-J. Lu

γ2 = (n/ε)O(1). From [7], one can have γ2 = nO(1)/ε2, for the simpler case when
m = n+ 1 and f is a permutation.

We would like to show the impossibility of having a hardness amplification
of OWF or a construction of PRG from OWF which can avoid such a loss of
security. However, it is not clear how to establish the impossibility of transform-
ing one primitive P to another primitive Q, especially given the possibility that
the primitive Q may indeed exist. Therefore, one can only expect to have such
impossibility results for a certain restricted types of transformations. Here, we
consider transformations which are done in some black-box way.

Black-Box Reductions. The standard notion of black-box transformation from
a primitive P to a primitive Q consists of two oracle algorithms T (·) and R(·)

satisfying the following two conditions: (1) correctness: for any N that imple-
ments P , TN implements Q, and (2) security: for any N that implements P and
for any A that breaks TN (as an implementation of Q), RA,N breaks N (as an
implementation of P).

Although this may look restricted, almost all the known transformations be-
tween primitives in cryptography (including those we discussed before) are done
in such a black-box way. In this paper, we consider a more general model, in
which we drop the first condition and keep only the second one, namely, only
the security proof is required to be done in a black-box way. We call this the
weakly-black-box model, and note that impossibility results on such a more gen-
eral model become stronger. We consider two transformations in this model:
hardness amplification for OWF and constructing PRG from OWF. In the case
of weakly-black-box hardness amplification, there exists an oracle algorithm R
(an adversary) such that for any M which breaks the hardness condition of the
new function f̄ , R using M as an oracle can break the hardness condition of
the initial function f . In the case of weakly-black-box PRG construction, there
exists an oracle algorithm R (an adversary) such that for any D which breaks
the randomness condition of the resulting generator g, R using D as an oracle
can break the hardness condition of the initial function f . Here we consider the
more general case in which R can be non-uniform by allowing it to have an ad-
vice string (or seeing R as a collection of circuits with oracle gates), and again
this makes our impossibility results stronger.

Our Results. We first consider the task of weakly-black-box hardness amplifi-
cation for OWF, which transforms ε-hard functions into (1− δ)-hard functions.
Our first two results show that any algorithm R realizing such a hardness ampli-
fication must make at least q1 = Ω((1/δ)/ log(1/ε)) queries to the oracle, unless
it can use a long advice string. More precisely, our first result shows that for
any R which is allowed to make adaptive oracle queries, it must make at least q1
oracle queries or use some linear-size advice. This implies that when doing hard-
ness amplification in this way and considering adversaries as uniform (or slightly
non-uniform) algorithms, one can only guarantee the hardness of the new func-
tion f̄ against adversaries with a computation time smaller by a q1 factor, so a
security loss of this factor is in fact unavoidable. Our second result shows that

On the Security Loss in Cryptographic Reductions 75

for any R which can only make non-adaptive queries, it must again makes at
least q1 oracle queries or now use an advice of exponential length. This implies
that when doing hardness amplification in this way and considering adversaries
as non-uniform circuits of some small exponential size, one can only guarantee
the hardness of the new function f̄ against adversaries with a circuit size smaller
by a q1 factor, so a security loss of this factor is again unavoidable.

We next consider the task of weakly-black-box construction of PRG from
OWF, which transforms (1 − δ)-hard functions into ε-random functions. Our
third and forth results show that any algorithm R realizing such a construction
must make at least q2 = Ω(n/ε2) queries, unless it can use a long advice. More
precisely, our third result shows that for any R which is allowed to make adap-
tive oracle queries, it must make at least q2 oracle queries or use some linear-size
advice. Again, this implies that when constructing PRG in this way and con-
sidering adversaries as uniform (or slightly non-uniform) algorithms, a security
loss of a q2 factor is in fact unavoidable. Finally, our forth result shows that
for any R which can only make non-adaptive queries, it must again make at
least q2 oracle queries or now use an advice of exponential length. Again, this
implies that when constructing PRG in this way and considering adversaries as
non-uniform circuits of some small exponential size, a security loss of a q2 factor
is also unavoidable.

We remark that in a different setting, Shaltiel and Viola [19] recently showed
that for the task of amplifying the hardness of computing Boolean functions (in-
stead of inverting one-way functions), a security loss in terms of circuit size is also
unavoidable when this is done in a black-box way. However, they only considered
the case that the oracle algorithmRmakes non-adaptive queries, and there seem to
be further complications when dealing with inverting one-way functions. On the
other hand, our proof (for hardness amplification, with R making non-adaptive
queries) is different in spirit from theirs, and our proof can be modified to give an
alternative (and perhaps more intuitive) proof to their result.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n} and let Un denote the uniform dis-
tribution over {0, 1}n. We will consider the computational model of non-uniform
oracle algorithms. For such an algorithm R, let Rf ;α denote the algorithm R us-
ing f as an oracle and α as an advice.

For a many-to-one function f : {0, 1}n → {0, 1}m and an algorithm M :
{0, 1}m → {0, 1}n, we say that M inverts f(x), denoted as M(f(x)) ≡ x, if
M(f(x)) ∈ f−1(f(x)), and we say that M can α-invert f , if

Pr
x∈Un

[M(f(x)) ≡ x] ≥ α.

For a function g : {0, 1}n → {0, 1}m and an algorithm D : {0, 1}m → {0, 1}, we
say that D can ε-distinguish g if∣∣∣∣ Pr

x∈Un

[D(g(x)) = 1]− Pr
u∈Um

[D(u) = 1]
∣∣∣∣ ≥ ε.

76 C.-J. Lu

One can allowM and D to be probabilistic, in which case the probabilities above
are taken also over their randomness.

Next, let us introduce two types of black-box transformations which we will
study in this paper. Note that in a usual black-box model, both the construction
and the security proof are required to be done in a black-box way. Here we
consider weaker models which only require the security proof to be done in a
black-box way.

Definition 1. A weakly-black-box hardness amplification from (ε, n,m)-
hardness to (ε̄, n̄, m̄)-hardness consists of a non-uniform oracle algorithm R sat-
isfying the following condition. For any function f : {0, 1}n → {0, 1}m, there
exists a function f̄ : {0, 1}n̄ → {0, 1}m̄ such that

– given any M : {0, 1}m̄ → {0, 1}n̄ which can (1 − ε̄)-invert f̄ , there exists an
advice α such that Rf,M ;α can (1− ε)-invert f .

Definition 2. A weakly-black-box transformation from (ε, n,m)-hardness to
(ε̄, n̄, m̄)-randomness consists of a non-uniform oracle algorithm R satisfying
the following condition. For any function f : {0, 1}n → {0, 1}m, there exists a
function g : {0, 1}n̄ → {0, 1}m̄, with m̄ ≥ n̄+ 1, such that

– given any D : {0, 1}m̄ → {0, 1} which can ε̄-distinguish g, there exists an
advice α such that Rf,D;α can (1 − ε)-invert f .

In the two definitions above, the oracle algorithm R in general is allowed to make
adaptive queries, which can depend on the answers from previous queries. We
will also consider the case requiring that R only makes non-adaptive queries,
which do not depend on the answers from previous queries but can depend on
the input and the advice.

We will need the following (known) fact that a randomly chosen function is
likely to be hard to invert. The proof can be modified from those in, e.g., [3,22],
which we omit here.

Lemma 1. Let c any constant such that 0 < c < 1, and let C be any non-
uniform oracle algorithm which uses an advice of length at most 2cn and makes
at most 2cn queries to the oracle. Then there is a constant c1 > 0 such that if
we sample a random function f : {0, 1}n → {0, 1}m,

Pr
f

[∃α : Cf ;α can 2−c1n-invert f
] ≤ 2−2Ω(n)

.

Finally, we will rely on the following lemma, which gives a large deviation bound
for a sequence of random variables with a sparse dependency relationship. This
may have some interest of its own.

Lemma 2. Suppose Z1, . . . , Zk is a sequence of binary random variables such
that for each i ∈ [k], E[Zi] = μi and Zi is mutually independent of all but
d − 1 other random variables. Then for any even t ∈ N and for any A ∈ N,
Pr[|∑i∈[k] Zi −

∑
i∈[k] μi| ≥ A] ≤ 2(4tdk/A2)t/2.

On the Security Loss in Cryptographic Reductions 77

Due to the space limitation, we omit the proof here. The idea is that
Pr[|∑i∈[k] Zi −

∑
i∈[k] μi| ≥ A] ≤ E[(

∑
i∈[k](Zi − μi))t]/At, and the numer-

ator equals
∑

i1,...,it∈[k] E[
∏

i∈{i1,...,it}(Zi − μi)] which have most of the terms
equal to zero.

3 Hardness Amplification

In this section, we show that any algorithm R realizing a weakly-black-box hard-
ness amplification must make many queries, unless it can use a long advice. Our
first result, Theorem 1 below, shows such a query lower bound for any R which
is allowed to use an advice of linear length and to make adaptive queries. We
will give the proof in Subsection 3.1.

Theorem 1. Suppose an algorithm R uses an advice of length �̄ and realizes a
weakly-black-box hardness amplification from (ε, n,m)-hardness to ((1−δ), n̄, m̄)-
hardness, with 2−cn ≤ ε, δ ≤ c and �̄ ≤ cn for a small enough constant c > 0.
Then R must make at least Ω((1/δ) log(1/ε)) oracle queries.

Our second result, Theorem 2 below, shows a query lower bound for any R which
is even allowed an advice of exponential length but can only make non-adaptive
queries. We will give the proof in Subsection 3.2.

Theorem 2. Suppose an algorithm R uses an advice of length � and realizes a
weakly-black-box hardness amplification from (ε, n,m)-hardness to ((1−δ), n̄, m̄)-
hardness, with 2−cn ≤ ε, δ ≤ c and � ≤ 2cn for a small enough constant c > 0.
Then R must make at least Ω((1/δ) log(1/ε)) oracle queries, if it only makes
non-adaptive queries.

3.1 Proof of Theorem 1

Consider any non-uniform oracle algorithm R which realizes such a hardness
amplification. Assume that R makes at most q ≤ (c0/δ) log(1/ε) oracle queries,
for a small enough constant c0, and we will show that this leads to a contradic-
tion. The basic idea is that when R makes only a small number of queries, it is
easy to get confused between some useful oracle M : {0, 1}m̄ → {0, 1}n̄ (which
is correlated with f) and a useless one 0̄ : {0, 1}m̄ → {0, 1}n̄ (which is indepen-
dent of f). Here, we take 0̄ to be the all-zero function, where 0̄(ȳ) = 0n̄ for any
ȳ ∈ {0, 1}m̄. We will first describe a natural approach which will encounter two
obstacles, and we will then show how to modify the approach to overcome the
obstacles.

First, we would like to pick a function f : {0, 1}n → {0, 1}m, such that f is
hard to invert by Rf,0̄;α for any advice α, and the corresponding harder function
f̄ does not map many inputs into a small subset. Its existence is guaranteed by
the following lemma.

Lemma 3. There exists a function f : {0, 1}n → {0, 1}m satisfying the following
two conditions:

78 C.-J. Lu

1. for any advice α ∈ {0, 1}�̄, Prx∈Un

[
Rf,0̄;α(f(x)) ≡ x

] ≤ 2−Ω(n), and
2. for any set S ⊆ {0, 1}m̄ with |S| ≤ 2(3/4)n, Prx̄∈Un̄

[
f̄(x̄) ∈ S] ≤ δ.

Proof. First, note that giving R the oracle 0̄ does not help as any query to it can
be answered by R itself without actually querying 0̄. Next, observe that for any
f such that the corresponding function f̄ does not satisfy the second condition,
witnessed by the set S, the function C, defined as

C(ȳ) =
{

any element from f̄−1(ȳ) if ȳ ∈ S,
0n̄ otherwise,

can δ-invert f̄ which implies that Rf,C;α can (1 − ε)-invert f for some advice
α ∈ {0, 1}�̄. Note that such a function C can be described by |S|(m̄ + n̄) bits,
so it can be replaced by an additional advice of that length. Thus, we can
obtain from R another algorithm R̄ which uses an advice of length at most
�̄+ |S|(m̄+ n̄) ≤ 2(4/5)n such that if a function f fails on one of the conditions,
then we have Prx[R̄f ;ᾱ(f(x)) ≡ x] > 2−Ω(n) for some advice ᾱ. By Lemma 1,
the fraction of such f ’s is less than one, which implies the existence of an f
satisfying both conditions. �
Fix one such function f guaranteed by the lemma, and let f̄ : {0, 1}n̄ → {0, 1}m̄

be the corresponding harder function. To find an inverter for f̄ , we start from the
function f̄−1, which clearly 1-inverts f̄ , and since it suffices to δ-invert f̄ , we can
afford to destroy most of its outputs. More precisely, let M : {0, 1}m̄ → {0, 1}n̄

be the probabilistic function (or equivalently, a distribution over deterministic
functions) such that independently for any ȳ ∈ {0, 1}m̄,

M(ȳ) =
{

any element from f̄−1(ȳ) with probability 3δ,
0n̄ with probability 1− 3δ,

where we let f̄−1(ȳ) = {0n̄} when ȳ /∈ Image(f̄). Then by a Markov inequality,
we can have the following lemma showing that with a good probability,M inverts
f̄ well and thus can help R for inverting f .

Lemma 4. PrM

[
M 2δ-inverts f̄

] ≥ δ.

On the other hand, we would like to show that M is unlikely to help R for
inverting f . More precisely, we would like to show that for any advice α ∈ {0, 1}�̄,
the probability (over M) that Rf,M ;α (1 − ε)-inverts f is very small. The idea
is that when R only makes a small number of queries, it has some chance of
confusing the (useful) oracle M with the (useless) oracle 0̄.

Let us fix an advice α ∈ {0, 1}�̄ now. Consider the binary random variables
V α

x , for x ∈ {0, 1}n, defined as

– V α
x = 1 if and only if Rf,M ;α(f(x)) �≡ x.

Then we would like to give an upper bound on the probability

Pr
M

[
Pr
x

[
Rf,M ;α(f(x)) �≡ x

] ≤ ε
]

= Pr
M

⎡⎣ ∑
x∈{0,1}n

V α
x ≤ ε2n

⎤⎦ .

On the Security Loss in Cryptographic Reductions 79

However, a Markov inequality can only give an upper bound about 1− 2ε (one
can show that E[V α

x] ≥ 3ε for most x), which is too large, while our goal is to
have an upper bound of 2−Ω(n). For this we would like to apply Lemma 2.

However, there seem tobe some obstacles preventing us fromapplyingLemma2.
First, many of these random variables may all depend on each other because the
corresponding computations ofRmay all queryM on somecommon entry. Second,
even for a fixed x, the queries made by Rf,M ;α(f(x)) can vary for different M , as
we allowR to make adaptive queries which can depend on the answers of previous
queries.

To deal with the second obstacle, we consider another set of random variables
Zα

x , for x ∈ {0, 1}n, defined as

– Zα
x = 1 if and only if M(ȳ) = 0n̄ for any query ȳ made by Rf,0̄;α(f(x)).

Note that Rf,M ;α(f(x)) = Rf,0̄;α(f(x)) if Zα
x = 1. Thus, for any x in the set

Bad
α, defined as

Bad
α =

{
x ∈ {0, 1}n : Rf,0̄;α(f(x)) �≡ x

}
,

we have Zα
x ≤ V α

x , because V α
x = 1 if Zα

x = 1. Furthermore, by Lemma 3,
|Bad

α| ≥ 2n(1 − 2−Ω(n)) ≥ 2n/2.
Even when working with the variables Zα

x ’s, we still face the first obstacle
discussed above. To deal with this, we fix the values of M at those frequently
queried entries. Call ȳ ∈ {0, 1}m̄ heavy for an advice α if

Pr
x

[
Rf,0̄;α(f(x)) queries 0̄ at ȳ

]
≥ w,

where we choose w = 2−(2/3)n. Let M̂ be the restriction of M defined as

M̂(ȳ) =
{

0n̄ if ȳ is heavy for some α,
M(ȳ) otherwise.

Note that for each α, the number of heavy entries for α is at most q/w, be-
cause this number times w is at most the average number of queries made by
Rf,0̄;α(f(x)) over x ∈ {0, 1}n, which is at most q. Thus, the total number of all
such heavy entries (over all α’s) is at most (q/w)2�̄ ≤ 2(3/4)n, since 2−cn ≤ δ, ε
and �̄ ≤ cn̄ for a small enough constant c. Let V̂ α

x and Ẑα
x denote the random

variables corresponding to V α
x and Zα

x , respectively, over the distribution of M̂ .
Observe that now for each α, every variable Ẑα

x is mutually independent of all
but qw2n other such variables, so it becomes possible to apply Lemma 2.

From now on, we will work with the distribution M̂ and the random variables
V̂ α

x and Ẑα
x , for x ∈ {0, 1}n. Let us see how this affects the arguments before

when considering M , V α
x , and Zα

x . First, just as Lemma 4, we can show that
such M̂ also has a good chance of inverting f̄ well.

Lemma 5. PrM̂ [M̂ δ-inverts f̄] ≥ δ.

80 C.-J. Lu

Proof. Let S be the set of heavy entries over all α’s, which has |S| ≤ 2(3/4)n, and
we know that any ȳ such that M̂(ȳ) �= M(ȳ) is contained in S. Since f satisfies
the second condition of Lemma 3, we have

Pr̄
x

[
M̂(f̄(x̄)) �= M(f̄(x̄))

]
≤ Pr̄

x

[
f̄(x̄) ∈ S] ≤ δ.

Thus, if M can 2δ-invert f̄ , M̂ can δ-invert f̄ . Then from Lemma 4, we have the
lemma. �
From this lemma and the guarantee of R, we have

Pr
M̂

[
∃α : Rf,M̂ ;α (1− ε)-inverts f

]
≥ δ

which implies the existence of an advice α ∈ {0, 1}�̄ such that

Pr
M̂

[
Rf,M̂ ;α (1− ε)-inverts f

]
≥ δ2−�̄. (1)

Let’s fix one such α. On the other hand, PrM̂ [Rf,M̂ ;α (1 − ε)-inverts f] is

Pr
M̂

⎡⎣ ∑
x∈{0,1}n

V̂ α
x ≤ ε2n

⎤⎦ ≤ Pr
M̂

⎡⎣ ∑
x∈Bad

α

V̂ α
x ≤ ε2n

⎤⎦ ,
and since we still have Ẑα

x ≤ V̂ α
x for any x ∈ Bad

α, the above is at most

Pr
M̂

⎡⎣ ∑
x∈Bad

α

Ẑα
x ≤ ε2n

⎤⎦ ≤ Pr
M̂

⎡⎣ ∑
x∈Bad

α

Ẑα
x ≤ 2ε |Bad

α|
⎤⎦

as |Bad
α| ≥ 2n/2. Then we bound the last probability by the following.

Lemma 6. PrM̂ [
∑

x∈Bad
α Ẑα

x ≤ 2ε|Bad
α|] < δ2−�̄.

Proof. Note that for any x ∈ {0, 1}n,

Pr
M̂

[
Ẑα

x = 1
]
≥ (1− 3δ)q ≥ 3ε,

as we assume ε, δ ≤ c and q ≤ (c0/δ) log(1/ε), for small enough constants c, c0.
By Lemma 2 with k = |Bad

α| ≥ 2n/2, A = εk, d = 1 + qw2n ≤ 2n/2, and
t = ε22n/2/16, we have

Pr
M̂

⎡⎣ ∑
x∈Bad

α

Ẑα
x ≤ 2ε |Bad

α|
⎤⎦ ≤ 2

(
ε22n

4ε2k

)t/2

≤ 2
(

1
2

)t/2

< δ2−�̄,

since 2−cn ≤ δ, ε and �̄ ≤ cn for a small enough constant c. (Note that the bound
still holds even if we allow �̄ ≤ 2cn.) �
This leads to a contradiction to the bound in (1). Therefore, the assumption we
made at the beginning cannot hold, and R must make Ω((1/δ) log(1/ε)) oracle
queries, which proves Theorem 1.

On the Security Loss in Cryptographic Reductions 81

3.2 Proof of Theorem 2

Note that what is different from Theorem 1 is that now we require that R makes
only non-adaptive queries and as a result we allow R a much longer advice.
Again, assume that R makes at most q ≤ (c0/δ) log(1/ε) oracle queries, for a
small enough constant c0 > 0, and we will show that this leads to a contradiction.

Observe that in the proof of Theorem 1, why we can only have �̄ ≤ O(n̄) is
that the restriction M̂ fixes all the heavy entries over all α’s at once, but there
are (q/w)2�̄ such entries which can not exceed 2n̄. Here, instead, we will consider
different restrictions for different α’s separately. Call ȳ ∈ {0, 1}m̄ heavy for an
advice α if

Pr
x

[
Rf,M ;α(f(x)) queries M at ȳ

] ≥ w,

where w = 2−(2/3)n, and note that this definition actually is independent of the
choice of f and M as we assume that R makes only non-adaptive queries. As in
the proof of Theorem 1, one can show that the number of heavy entries for any
advice α is at most q/w. We will consider restricting an oracle function M (or 0̄)
by fixing its values on those heavy entries for some α according to some function
ρ : {0, 1}m̄ → {0, 1}n̄. For an advice α and a function ρ : {0, 1}m̄ → {0, 1}n̄, let
Mα

ρ denote such a restriction of M , defined as Mα
ρ (ȳ) = ρ(ȳ) if ȳ is heavy for α

and Mα
ρ (ȳ) = M(ȳ) otherwise. Similarly, let 0̄α

ρ denote such a restriction of 0̄.
As in Lemma 3, we have the following lemma. Due to the space limitation, we
omit its proof (which follows from Lemma 1, as 0̄α

ρ has a short description and
can be replaced by a short additional advice).

Lemma 7. There exists a function f : {0, 1}n → {0, 1}m such that for any
advice α ∈ {0, 1}� and any function ρ : {0, 1}m̄ → {0, 1}n̄,

Pr
x

[
Rf,0̄α

ρ ;α(f(x)) ≡ x
]
≤ 2−Ω(n).

Let us pick one such function f guaranteed by the lemma, let f̄ be the corre-
sponding harder function, and letM be the probabilistic function defined accord-
ing to this f̄ . As in Lemma 4, we have PrM

[
M δ-inverts f̄

] ≥ δ, and as before,
this implies the existence of an advice α ∈ {0, 1}� such that
PrM

[
Rf,M ;α (1− ε)-inverts f

] ≥ δ2−�. Let us fix one such advice α. By an
average argument, there must exist a restriction Mα

ρ of M which fixes the values
of those heavy entries for α, such that

Pr
Mα

ρ

[
Rf,Mα

ρ ;α (1− ε)-inverts f
]
≥ δ2−�. (2)

On the other hand, we will show a contradiction to this bound. Consider the set

Bad
α =

{
x ∈ {0, 1}n : Rf,0̄α

ρ ;α(f(x)) �≡ x
}
,

which by Lemma 7 has |Bad
α| ≥ 2n/2. Let V̂ α

x denote the binary random
variable, over the distribution of Mα

ρ , defined as

82 C.-J. Lu

– V̂ α
x = 1 if and only if Rf,Mα

ρ ;α(f(x)) �≡ x.

Note that each variable V̂ α
x is mutually independent of all but qw2n other vari-

ables. Then one can again show that for any x ∈ Bad
α, PrMα

ρ
[V̂ α

x = 1] ≥
(1− 3δ)q ≥ 3ε, and PrMα

ρ

[
Rf,Mα

ρ ;α (1− ε)-inverts f
]

is

Pr
Mα

ρ

⎡⎣ ∑
x∈{0,1}n

V̂ α
x ≤ ε2n

⎤⎦ ≤ Pr
Mα

ρ

⎡⎣ ∑
x∈Bad

α

V̂ α
x ≤ 2ε |Bad

α|
⎤⎦ < δ2−�,

by Lemma 2. This contradicts the bound in (2). Thus, R must make at least
Ω((1/δ) log(1/ε)) queries, which proves Theorem 2.

4 Randomness from Hardness

In this section, we show that any algorithmR realizing a weakly-black-box trans-
formation from hardness to randomness must make many queries, unless it can
use a long advice string. Our first result, Theorem 3 below, shows such a query
lower bound for any R which is allowed to use an advice of linear length and to
make adaptive queries. We will give the proof in Subsection 4.1.

Theorem 3. Suppose an algorithm R uses an advice of length �̄ and realizes a
weakly-black-box transformation from ((1 − δ), n,m)-hardness to (ε, n̄, m̄)-
randomness, with 2−cn ≤ ε, δ ≤ c and �̄ ≤ cn for a small enough constant
c > 0. Then R must make at least Ω(n/ε2) oracle queries.

Our second result, Theorem 4 below, shows a query lower bound for any R which
is even allowed an advice of exponential length but can only make non-adaptive
queries. We will give the proof in Subsection 4.2.

Theorem 4. Suppose an algorithm R uses an advice of length � and realizes a
weakly-black-box transformation from ((1 − δ), n,m)-hardness to (ε, n̄, m̄)-
randomness, with 2−cn ≤ ε, δ ≤ c and � ≤ 2cn̄ for a small enough constant
c > 0. Then R must make at least Ω(n/ε2) oracle queries, if it only makes
non-adaptive queries.

4.1 Proof of Theorem 3

Consider any R which realizes such a weakly-black-box transformation. Assume
that R makes at most q ≤ c0n/ε

2 oracle queries, for a small enough constant
c0 > 0, and we will show that this leads to a contradiction. The basic idea is
that when R makes only a small number of queries, it is easy to get confused
between some useful oracle D : {0, 1}m̄ → {0, 1} (which is correlated with f)
and a useless one B : {0, 1}m̄ → {0, 1} (which is independent of f). Here, we
take B to be a random function.

First, we would like to pick a function f which is hard to invert by Rf,B;α for
any α. The existence of such a function is guaranteed by the following lemma,

On the Security Loss in Cryptographic Reductions 83

which follows from Lemma 1 by observing that the oracle B, which is indepen-
dent of f , can be simulated by R itself without needing to query it.

Lemma 8. There exists a function f : {0, 1}n → {0, 1}m such that for any
advice α ∈ {0, 1}�̄, Prx,B

[
Rf,B;α(f(x)) ≡ x

] ≤ 2−Ω(n).

Fix one such function f guaranteed by the lemma, and let g = gf : {0, 1}n̄ →
{0, 1}m̄ be the resulting generator. To find a distinguisher for g, let us start
from the characteristic function of Image(g), denoted as T (i.e., T (u) = 1 if and
only if u ∈ Image(g)), which clearly can (1− 2−(m̄−n̄))-distinguish g, and since
we only need to ε-distinguish g, we can afford to add some noise to T . More
precisely, let N : {0, 1}m̄ → {0, 1} be a noise function such that independently
for any u ∈ {0, 1}m̄,

N(u) =
{

1 with probability 1−4ε
2 ,

0 with probability 1+4ε
2 ,

and consider the probabilistic distinguisher (or equivalently a distribution over
deterministic distinguishers) D = T ⊕N such that for any u ∈ {0, 1}m̄, D(u) =
T (u)⊕N(u). The following shows that D has a good chance of distinguishing g
well.

Lemma 9. PrD[D ε-distinguishes g] ≥ ε.

Proof. From the definition, Prx,D [D(g(x)) = 1]− Pru,D [D(u) = 1] is

1 + 4ε
2

−
(

2−(m̄−n̄) · 1 + 4ε
2

+
(
1− 2−(m̄−n̄)

)
· 1− 4ε

2

)
≥ 2ε,

since m̄ ≥ n̄+ 1 and hence 2−(m̄−n̄) ≤ 1
2 . Then by a Markov inequality, we have

the lemma. �

As before, from this lemma and the guarantee of R, one can show the existence
of an advice α ∈ {0, 1}�̄ such that

Pr
D

[
Rf,D;α δ-inverts f

] ≥ ε2−�̄. (3)

Let us fix one such advice α.
On the other hand, we will show that this bound cannot hold as D is unlikely

to help R for inverting f . The idea is that when R only makes a small number
of queries, it behaves similarly according to the two different oracles D and B.
More precisely, we will show that for most input x,

Pr
D

[
Rf,D;α(f(x)) ≡ x

]
is small if Pr

B

[
Rf,B;α(f(x)) ≡ x

]
is small.

Here we choose not to show that the two probabilities have a small difference,
as it would then only give a much smaller query lower bound.

84 C.-J. Lu

Let c1 be a small enough constant, and consider the set

Bad
α =

{
x ∈ {0, 1}n : Pr

B

[
Rf,B;α(f(x)) ≡ x

] ≤ 2−c1n
}
. (4)

From Lemma 8 and a Markov inequality, we have Prx [x /∈ Bad
α] ≤ 2−Ω(n).

Furthermore, we have the following.

Lemma 10. For any x ∈ Bad
α, PrD[Rf,D;α(f(x)) ≡ x] ≤ 2−Ω(n).

Proof. Fix any x ∈ Bad
α. First, let us consider the computations ofRf,B;α(f(x))

over all possible instances of the oracle B, which can be seen as a tree in a natu-
ral way as follows. Each internal node corresponds to a query u ∈ {0, 1}m̄ to the
oracle B, which has two edges coming out for the two possible answers of B(u),
and each leaf contains the output of Rf,B;α(f(x)) following the corresponding
path of computation. We can assume without loss of generality that R always
makes exactly q queries to the oracle B (by making dummy queries if neces-
sary), and it never makes the same query twice on any path of computation (by
remembering all previous queries and their answers). The tree has exactly 2q

leaves, and the bound of (4) implies that at most L = 2−c1n · 2q leaves have
Rf,B;α(f(x)) ≡ x.

Now let us see what happens to the probability bound in (4) when we change
the oracle from B to D. While over a random B, each leaf is reached with the
same probability 2−q, this no longer holds if now we measure the probability
over the distribution of D. Note that each edge corresponds to the bit D(u) =
T (u)⊕N(u), for some u, and since T is fixed (as we have fixed f and thus g),
we can label that edge by the bit N(u). Then a leaf on a path with i labels
of 1 is now reached with probability

(1−4ε
2

)i (1+4ε
2

)q−i
, which increases as i

decreases. Observe that the sequences of labels on the 2q paths to the leaves are
all different. Thus, the probability PrD

[
Rf,D;α(f(x)) ≡ x

]
can be bounded from

above by the sum of the L largest probabilities among the leaves, which is at
most

t∑
i=0

(
q

i

)(
1− 4ε

2

)i (1 + 4ε
2

)q−i

, (5)

for any t such that
∑t

i=0

(
q
i

) ≥ L. We can take t = (1−5ε
2)q, which gives

t∑
i=0

(
q

i

)
≥ 2−O(ε2q) · 2q ≥ 2−c1n · 2q ≥ L,

since q ≤ c0n/ε
2 and we can take c0 to be much smaller than c1. Then the bound

in (5) is at most 2−Ω(ε2q) ≤ 2−Ω(n) (using, for example, a Chernoff bound), which
proves the lemma. �
Now let V α

x , for x ∈ {0, 1}n, denote the binary random variable, over D, such
that

– V α
x = 1 if and only if Rf,D;α(f(x)) ≡ x.

On the Security Loss in Cryptographic Reductions 85

We know from Lemma 10 that for any x ∈ Bad
α, PrD[V α

x = 1] ≤ 2−Ω(n). Then
we have

E
D

⎡⎣ ∑
x∈{0,1}n

V α
x

⎤⎦ ≤ ∑
x∈Bad

α

E
D

[V α
x] +

∑
x/∈Bad

α

1 ≤ 2−Ω(n) · 2n < ε2−�̄δ · 2n,

since we assume 2−cn ≤ ε, δ and �̄ ≤ cn for a small enough constant c. By a
Markov inequality, we have

Pr
D

[
Rf,D;α δ-inverts f

]
= Pr

D

[∑
x

V α
x ≥ δ2n

]
< ε2−�̄, (6)

which contradicts the bound in (3). This implies that R must make at least
Ω(n/ε2) oracle queries, which proves Theorem 3.

4.2 Proof of Theorem 4

Note that what is different from Theorem 3 is that now we require that R makes
only non-adaptive queries and as a result we allow R a much longer advice.
Again, assume that R makes at most q ≤ c0n/ε

2 oracle queries, for a small
enough constant c0 > 0, and we will show that this leads to a contradiction.
The proof here will follow closely that for Theorem 3, except that at the end
we will manage to get a smaller bound than that in inequality (6), by applying
Lemma 2 instead of a Markov inequality. The idea is similar to that in the proof
of Theorem 2.

Let w = 2−(2/3)n, call an entry ȳ ∈ {0, 1}m̄ heavy for an advice α if
Prx[Rf,D;α(f(x)) queries D at ȳ] ≥ w, and again one can show that the number
of heavy entries for any α is at most q/w. Note that this definition is indepen-
dent of the choice of D and f as we assume that R only makes non-adaptive
queries. As in the proof of Theorem 2, we will consider restricting the functions
D and B by fixing their values on those heavy entries for some α according to
some function ρ : {0, 1}m̄ → {0, 1}n̄, and let Dα

ρ and Bα
ρ denote the correspond-

ing restrictions, respectively. Then similar to Lemma 7 and Lemma 8, one can
show the existence of a function f : {0, 1}n → {0, 1}m such that for any advice
α ∈ {0, 1}� and any function ρ : {0, 1}m̄ → {0, 1},

Pr
x,Bα

ρ

[
Rf,Bα

ρ ;α(f(x)) ≡ x
]
≤ 2−Ω(n). (7)

Let f be such a function guaranteed above, let g = gf be the resulting gen-
erator, and let D be the probabilistic distinguisher defined according to this g.
As in Lemma 9, we have PrD [D ε-distinguishes g] ≥ ε. Then as in the proof of
Theorem 2, one can show that this implies the existence of an advice α and a
restriction Dα

ρ of D which fixes the values of those heavy entries for α, such that

Pr
Dα

ρ

[
Rf,Dα

ρ ;α δ-inverts f
]
≥ ε2−�. (8)

Let us fix one such α and ρ.

86 C.-J. Lu

On the other hand, we will show that the bound above can not hold. Let c1
be a small enough constant, and consider the set:

Bad
α =

{
x ∈ {0, 1}n : Pr

Bα
ρ

[
Rf,Bα

ρ ;α(f(x)) ≡ x
]
≤ 2−c1n

}
.

By the bound in (7) and a Markov inequality, we have Prx [x ∈ Bad
α] ≥ 1/2.

Let V̂ α
x denote the binary random variable, over the distribution of Dα

ρ , defined
as

– V̂ α
x = 1 if and only if Rf,Dα

ρ ;α(f(x)) ≡ x.

Note that each variable V̂ α
x is mutually independent of all but qw2n other vari-

ables. Then using an argument similar to that in the proof of Theorem 3, one can
show that for any x ∈ Bad

α, PrDα
ρ
[V̂ α

x = 1] ≤ 2−Ω(n) ≤ δ/3, and by Lemma 2,
PrDα

ρ
[Rf,Dα

ρ ;α δ-inverts f] is

Pr
Dα

ρ

⎡⎣ ∑
x∈{0,1}n

V̂ α
x ≥ δ2n

⎤⎦ ≤ Pr
Dα

ρ

⎡⎣ ∑
x∈Bad

α

V̂ α
x ≥ (δ/2) |Bad

α|
⎤⎦ < ε2−�,

which contradicts the bound in (8). As a result, R must make at least Ω(n/ε2)
queries, which proves Theorem 4.

References

1. Chang, Y.-C., Hsiao, C.-Y., Lu, C.-J.: The impossibility of basing one-way permu-
tations on central cryptographic primitives. J. Cryptology 19(1), 97–114 (2006)

2. Di Crescenzo, G., Malkin, T.G., Ostrovsky, R.: Single database private informa-
tion retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000)

3. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

4. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: Proc. IEEE FOCS 2001, pp. 126–135 (2001)

5. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: Proc. IEEE FOCS
2000, pp. 325–335 (2000)

6. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

7. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
ACM STOC 1989, pp. 25–32 (1989)

8. Goldreich, O., Impagliazzo, R., Levin, L., Venkatesan, R., Zuckerman, D.: Security
preserving amplification of hardness. In: Proc. IEEE FOCS 1990, pp. 318–326
(1990)

9. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: Proc. IEEE FOCS 1986,
pp. 174–187 (1986)

On the Security Loss in Cryptographic Reductions 87

10. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

11. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proc. IEEE FOCS 1989, pp. 230–235 (1989)

12. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proc. ACM STOC 1989, pp. 44–61 (1989)

13. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. ACM STOC
1998, pp. 20–31 (1998)

14. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000)

15. Lin, H., Trevisan, L., Wee, H.M.: On hardness amplification of one-way functions.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 34–49. Springer, Heidelberg
(2005)

16. Lu, C.-J.: On the complexity of parallel hardness amplification for one-way func-
tions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 462–481.
Springer, Heidelberg (2006)

17. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

18. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proc. ACM STOC 1990, pp. 387–394 (1990)

19. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. In: Proc.
ACM STOC 2008, pp. 589–598 (2008)

20. Viola, E.: On constructing parallel pseudorandom generators from one-way func-
tions. In: Proc. IEEE CCC 2005, pp. 183–197 (2005)

21. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: Proc. IEEE FOCS
1982, pp. 80–91 (1982)

22. Zimand, M.: Exposure-resilient extractors and the derandomization of probabilistic
sublinear time. Computational Complexity 17(2), 220–253 (2008)

On Randomizing Hash Functions to Strengthen
the Security of Digital Signatures�

Praveen Gauravaram		 and Lars R. Knudsen

Department of Mathematics
Technical University of Denmark
Matematiktorvet, Building S303

DK-2800 Kgs. Lyngby
Denmark

P.Gauravaram@mat.dtu.dk, Lars.R.Knudsen@mat.dtu.dk

Abstract. Halevi and Krawczyk proposed a message randomization
algorithm called RMX as a front-end tool to the hash-then-sign digital
signature schemes such as DSS and RSA in order to free their reliance
on the collision resistance property of the hash functions. They have
shown that to forge a RMX-hash-then-sign signature scheme, one
has to solve a cryptanalytical task which is related to finding second
preimages for the hash function. In this article, we will show how to
use Dean’s method of finding expandable messages for finding a second
preimage in the Merkle-Damg̊ard hash function to existentially forge a
signature scheme based on a t-bit RMX-hash function which uses the
Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in
2t/2 chosen messages plus 2t/2+1 off-line operations of the compression
function and similar amount of memory. This forgery attack also
works on the signature schemes that use Davies-Meyer schemes and
a variant of RMX published by NIST in its Draft Special Publica-
tion (SP) 800-106. We discuss some important applications of our attack.

Keywords: Digital signatures, Hash functions, Davies-Meyer, RMX.

1 Introduction

The collision attacks on the MD5 [36] and SHA-1 [30] hash functions in the recent
years are one of the most vital contributions in the field of cryptology [40, 41].
Since then, there has been a reasonable amount of research showing how seriously
these attacks (in particular on MD5) could undermine the security of the digital
signatures [24, 6, 17, 39, 38] in which these hash functions are deployed.

For a long time, it has been suggested to randomize the messages using a fresh
random value, also called salt, before they are hashed and signed, in order to free

� The work in this paper has been supported in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.

�� Author and this research project has been supported by the Danish Research Council
for Technology and Production Sciences grant number 274-08-0052.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 88–105, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

On Randomizing Hash Functions to Strengthen the Security 89

the security of the digital signatures from depending on the collision resistance of
the hash functions [14,13,1]. Message randomization before hashing would make
an attacker to predict the random value in order to make use of collisions in a
hash function to forge a digital signature. In consequence of that, the security
of a digital signature would be forced to depend on a property weaker than the
collision resistance of the hash function.

At Crypto 2006, Halevi and Krawczyk [19] proposed and analysed two simple
message randomization transforms as the front-end tools for any hash-then-sign
signature scheme which uses Merkle-Damg̊ard hash functions [26,9]. They have
shown that these message randomization techniques would base the security
of the hash-then-sign signature schemes on the second preimage resistance of
the hash function. They have noted that long message second preimage attack
of Kelsey and Schneier [23] can be mounted on the hashes of the randomized
messages to find second preimages to existentially forge the signatures of these
hashes. Merkle-Damg̊ard hash functions with these front-end tools were also
considered as new modes of operation [19]. One of these transforms, called RMX,
has the practical viability with the signature schemes such as RSA [37] and
DSA [29] and was fully specified in [19, Appendix D], [20, 21]. We call a hash-
then-sign signature scheme which uses RMX as the front-end tool, a RMX-hash-
then-sign signature scheme.

A signer computes the signature of a message m using a RMX-hash-then-
sign signature scheme as follows: He chooses a random value denoted r, and
randomizes m by passing the pair (r,m) as input to the RMX transform. The
randomized message is given by M = RMX(r,m). The signer processes the
messageM using a t-bit hash function H and obtains the t-bit hash value H(M).
The signer signs the hash value H(M) using a signature algorithm, denoted SIG,
and obtains the signature s. The signer sends the triplet (m, r, s) to the verifier
who computes M = RMX(r,m) and provides the pair (M, s) to the verification
procedure to verify s.

The RMX transform requires no change to the signatures algorithms such
as RSA and DSA. The implementation of RSA [37] based on RMX-SHA-1 was
discussed in [21]. In 2007, NIST has published a variant of RMX as a draft
special publication (SP) 800-106 [10] which was superseded in 2008 by a sec-
ond draft SP 800-106 [11]. In addition, NIST intends that the candidate hash
functions in the SHA-3 hash function competition support randomized hash-
ing [31].

1.1 Related Work

Dang and Perlner [12] have shown a generic chosen message forgery attack on
the signature schemes based on t-bit RMX-hashes in 2t/2 chosen messages and
2t/2 operations of the hash function and similar memory. This attack produces
a collision of form H(RMX(r,m)) = H(RMX(r∗, n)) which implies SIG(m) =
SIG(n) where (r,m) �= (r∗, n), m is one of the chosen messages and n is the
forgery message of m.

90 P. Gauravaram and L.R. Knudsen

1.2 Our Results

In this article, we first note that the attack of Dang and Perlner [12] does not pro-
duce a verifiable forgery if the signer uses the same random value for both RMX
hashing and signing such as in DSA [29, 32], ECDSA [3, 32] and RSA-PSS [37].
The re-use of the random value in the signature schemes for the randomized hash-
ing to save the communication bandwidth was addressed in [19, 33, 27, 11, 12].
The attack of [12] also does not work on the signature schemes based on the
other randomized hash function analysed by Halevi and Krawczyk [19] wherein
both the salt and randomized hash value are signed to produce a signature.

We then show an existential forgery attack under a generic chosen message
attack [18] on the RMX-hash-then-sign signature schemes when the compression
functions of the hash functions have fixed points. Our attack produces a valid
forgery in the above applications wherein the forgery attack of Dang and Perlner
does not succeed. Our attack uses Dean’s trick of finding fixed-point expandable
messages [15, 23] for finding second preimages in the hash functions that use
fixed point compression functions. Many popular hash functions, that include,
MD4 [35], MD5 [36], SHA family [30] and Tiger [2] have compression functions
that use Davies-Meyer construction [22, 34] for which fixed points can be easily
found [28]. In an existential forgery attack, the attacker asks the signer for the
signatures on a set of messages of his choice and is then able to produce a
valid signature on a message which was never signed by the signer. Our forgery
attack requires 2t/2 equal length chosen messages, 2t/2+1 off-line operations of
the compression function and a probability of 2−24 to hit the correct bits used
to pad the message by the RMX transform. The attack requires about 2t/2

memory. With this computational work, we can establish a collision of the form
H(RMX(r,m)) = H(RMX(r,m‖n)) where m is one of the chosen messages and
n �= m is a randomized message block which gives a fixed point. This implies
SIG(m) = SIG(m‖n) and we show the message m‖n as the forgery of m. Our
attack also works on the signature schemes that use a variant of RMX published
by NIST in its SP 800-106 [11] and in its earlier version [10].

1.3 Impact of Our Results

Our forgery attack on the RMX-hash-then-sign signature schemes is totally im-
practical for the reasonable hash value sizes of 256 bits. Moreover, our attack
can not be parallelizable as it requires a real signer to sign a huge set of mes-
sages. Our analysis is in no contradiction to that of Halevi and Krawczyk [19].
Moreover, it complements their analysis by showing that RMX-hashes achieve
an essential security improvement with respect to off-line birthday attacks in
forcing these attacks to work on-line (e.g. requiring 2t/2 messages signed by the
legitimate signer and similar amount of memory). Our analysis demonstrates
that the security of RMX-hash-then-sign signature schemes based on the t-bit
ideal fixed-point compression functions is equivalent to that of the t-bit standard
keyed hash function HMAC [4] based on a t-bit ideal compression function. The
attack of [12] has a similar impact, though its application is limited.

On Randomizing Hash Functions to Strengthen the Security 91

1.4 Guide to the Paper

In Section 2, we provide the notation and the background information necessary to
understand the paper. In Section 3, we describe randomized hash functions of [19]
and outline the RMX specification and its variant published by NIST [11]. In Sec-
tion 4, we discuss the forgery attack of [12] on the RMX-hash-then-sign schemes
and its limitations. In Section 5, we show how to apply Dean’s fixed point expand-
able messages to forge hash-then-sign signatures. In Section 6, we describe our
forgery attack on the signature schemes based on the RMX hash mode and its vari-
ants. In Section 7, we conclude the paper with some open questions.

2 Preliminaries

In this section, we define some notation and review some fundamentals of hash
functions and digital signatures that will be used throughout the paper.

2.1 Notation

The symbol ‖ represents the concatenation operation. The notation eα represents
the concatenation of e bit α times where e is either 0 or 1. For example, 14 =
1‖1‖1‖1. If a is a positive integer, we represent by a[α], the first (from left to
right) α bits of a. For example, if a = 1011011001 then a[4] = 1011. Similarly, if
ab is a positive integer, we represent by (ab)[α], the first α bits of ab.

2.2 Merkle-Damg̊ard Hash Functions

Let H : {0, 1}∗ → {0, 1}t be a Merkle-Damg̊ard hash function based on the
compression function h : {0, 1}b × {0, 1}t → {0, 1}t. An upper bound in bits
(say 2l) on the length of the message to be hashed is often specified for H . The
message m to be processed using H is split into blocks m1,m2, . . . ,mL−1 and
mL. Let |mi| = b for i = 1 to L− 1 and q be the number of the message bits in
the last block mL where q < b. If q ≤ b − l − 1 then the message m is padded
with 1‖0b−l−q−1‖|m| where |m| is the l-bit binary representation of the length
of the message m. If q > b− l− 1 then the message m is padded with 1‖0b−q−1

and a separate b-bit block 0b−l‖ |m| is concatenated to the padded message
m‖1‖0b−q−1. Every message block mi, for i = 1 . . . L, is processed using h as
defined by Hi = h(Hi−1,mi) where H0 is the initial value (IV) of H , Hi is the
intermediate hash value of H at iteration i of h and HL is the hash value of H .
We denote by HH0 , a hash function with H0 as the IV.

Some properties of an ideal hash function HH0.

1. Collision resistance (CR): It should take about 2t/2 operations of HH0 to
find two messages m and n such that m �= n and HH0(m) = HH0(n).

2. Second preimage resistance (SPR): For a challenged target message m, it
should take about 2t operations of HH0 to find another message n such that
n �= m and HH0(m) = HH0(n). However, for a target message of 2d blocks,
second preimages for HH0 can be found in about 2t−d operations of h [23].

92 P. Gauravaram and L.R. Knudsen

Some properties of an ideal compression function h.

1. CR: It should take about 2t/2 operations of h to find two different pairs
(Hi−1,mi) and (H∗

i−1, ni) such that h(Hi−1,mi) = h(H∗
i−1, ni).

2. SPR: For a challenged pair (Hi−1,mi), it should take about 2t opera-
tions of h to find a pair (H∗

i−1, ni) such that (Hi−1,mi) �= (H∗
i−1, ni) and

h(Hi−1,mi) = h(H∗
i−1, ni). This property is also called random-SPR (r-

SPR) [19].

2.3 Compression Functions with Fixed Points

A fixed point for a compression function h is a pair (Hi−1,mi) such that
h(Hi−1,mi) = Hi−1. Let h be the Davies-Meyer compression function which
is defined by h(Hi−1,mi) = Emi(Hi−1) ⊕Hi−1 = Hi where mi is the message
block which is used as a key to the block cipher E and the input state Hi−1
is the plaintext to E. A fixed point for h can be easily found by evaluating
the expression E−1

mi
(0) for some message block mi. Davies-Meyer feed-forward

can also use addition mod 2t and fixed points can still be found for this case.
This technique to find fixed points for the Davies-Meyer construction has been
described in [28], [23, Appendix A.1].

2.4 Existential Forgery Attack on the Signature Schemes

An existential forgery of a signature scheme SIG under a generic chosen message
attack [18] (also called weak chosen message attack [8]) is performed as follows:

1. The attacker sends to the challenger (signer) a list of q messages m1, . . . ,mq.
2. The challenger generates a public and private key pair (Pk, Sk) using a

key generation algorithm. The challenger generates the signatures si on the
messages mi computed using his private key Sk and the signature algorithm
SIG for i = 1, . . . , q. The challenger sends to the attacker the public key Pk
and the signatures si.

3. The attacker forges the signature scheme SIG by outputting a pair (m, s) if:
(a) (m, s) /∈ {(m1, s1), . . . , (mq, sq)}; and
(b) The triplet (Pk,m, s) produces a valid verification.

Let Adv be the probability that the adversary wins the above game, taken
over the coin tosses made by him and the challenger. The adversary is said to
(t, q, ε)-existentially forge the signature scheme SIG if he runs in time at most t,
makes at most q queries and Adv ≥ ε.

3 Randomized Hashing

A family of hash functions {Hr}r∈R for some set R is target collision resistant
(TCR) [5, 19] if no efficient attacker after choosing a messagem and receiving the
salt r ∈R R can find a second preimage n such that m �= n and Hr(m) = Hr(n)

On Randomizing Hash Functions to Strengthen the Security 93

except with insignificant probability. The usage of the family {Hr}r∈R for the digi-
tal signaturesnecessitates the users to sign the salt r alongwith the hash of themes-
sage. However, hash-then-sign signature schemes such as DSA [29] and RSA [37]
do not support signing the salt in addition toHr(m). In order to free such signature
schemes from signing the salt, Halevi and Krawczyk introduced the notion of en-
hanced TCR (eTCR) hash function family [19]. The hash function family {H̃r}r∈R

is eTCR if there exists no efficient attacker who after committing to a messagem
and receiving the salt r, can find a pair (r∗, n) �= (r,m) such that H̃r(m) = H̃r∗(n)
except with insignificant probability.

Halevi and Krawczyk [19] presented two randomized hash function modes for
H . The first t-bit scheme, denoted Hr, XORs every block mi of the message m
with a b-bit random value r as shown below:

HH0
r (m) = HH0

r (m1‖ . . . ‖mL) def= HH0(m1 ⊕ r‖m2 ⊕ r‖ . . . ‖mL ⊕ r).

The second t-bit scheme, denoted H̃r, prepends r to mi ⊕ r for i = 1 . . . , L as
shown below:

H̃H0
r (m) = H̃H0

r (m1‖ . . . ‖mL) def= HH0(r‖m1 ⊕ r‖m2 ⊕ r‖ . . . ‖mL ⊕ r).

The functions H̃r and Hr are eTCR and TCR respectively if the compression
function h is either chosen-SPR (c-SPR) or Evaluated-SPR (e-SPR) [19]. These
properties for the compression function h are defined below:

1. c-SPR: For a given message block mi, find (Hi−1, H
∗
i−1, ni) such that

h(Hi−1,mi) = h(H∗
i−1, ni).

2. e-SPR: Choose u ≥ 1 values Δ1, . . . , Δu each of length b bits. Receive a
random value r ∈ {0, 1}b and then define mi = r⊕Δu and Hi−1 = HH0(r⊕
Δ1‖ . . . ‖r ⊕Δu−1). Find (H∗

i−1, ni) such that h(Hi−1,mi) = h(H∗
i−1, ni).

A generic birthday attack can be mounted on the c-SPR property of h and
it does not work on the r-SPR and e-SPR properties of h [19]. The eTCR con-
struction H̃r was proposed as the preferred hash function mode for use in digital
signatures as it does not require explicit signing of the salt r and allows for bet-
ter implementation flexibility. A concrete specification of H̃r called RMX and its
usage with the digital signatures and its implementation details were discussed
in [19, Appendix D] [20] and [21] respectively. RMX was also considered as a
message randomization transform.

3.1 RMX Specification

The RMX scheme randomizes an input message m of at most 2l− b bits using a
random value r of length between 128 and b bits to an output message M . The
RMX algorithm is defined below following [19, Appendix D], [20,21]:

1. Three random values r0, r1 and r2 are computed from r as follows:
(a) r0 = r‖0b−|r| such that |r0| = b bits.

94 P. Gauravaram and L.R. Knudsen

(b) r1 = r‖r‖ . . . ‖r︸ ︷︷ ︸
b bits

such that |r1| = b and the last repetition of r is truncated

if needed.
(c) r2 = r

[b−l−8]
1 (The first b− l− 8 bits of r1).

2. Split the input message m into L − 1 b-bit blocks m1,m2. . . . ,mL−1 and a
last block mL of length b′ where 1 ≤ b′ ≤ b.

3. Set M0 = r0.
4. For i = 1 to L− 1:

(a) Mi = mi ⊕ r1.
5. Let lpad (meaning last block pad) be a 16-bit string, representing the bit

length b′ of mL in the big-endian notation. If lpad0 and lpad1 are the first
and second bytes of lpad, respectively, and each of these bytes represents a
number between 0 and 255, then b′ = 256× lpad1 + lpad0.
(a) If b′ ≤ b − l − 24 then set M∗

L = mL‖0k‖lpad where k = b − b′ − 16− l.
Set ML = M∗

L ⊕ r2 .
(b) If b′ > b − l − 24 then set M∗

L = mL‖0b−b′ and M∗
L+1 = 0b−l−24‖lpad.

Set ML = M∗
L ⊕ r1 and ML+1 = M∗

L+1 ⊕ r2.
6. Output the randomized message M = RMX(r,m) = M0‖ . . . ‖ML in the

case of (5a) and M = RMX(r,m) = M0‖ . . . ‖ML‖ML+1 in the case of (5b).

Remark 1. We note that when b′ ≤ b − l − 24, the padding rule designed for
RMX with k = b − b′ − 16 − l requires a separate block to accommodate the
padding and length encoding (at least l + 1) bits of the message M required
by the hash function HH0 as illustrated in Appendix A. In addition, when b′ ≤
b − l − 24, with k = b − b′ − 16 − l, |M∗

L| = b − l and hence |r2| = b − l bits
which means r2 = r

[b−l]
1 . For example, let |mL| = b′ = b − l − 24 bits. Then

k = b− b′ − l − 16 = b − (b − l − 24)− l − 16 = 8 bits. Now M∗
L = mL‖08‖lpad

and |M∗
L| = b− l − 24 + 8 + 16 = b− l bits. Hence, r2 should also be b− l bits.

Hence, in this paper, we set r2 = r
[b−l]
1 for b′ ≤ b− l − 24 bits.

If we set k = b − b′ − 24 − l for b′ ≤ b − l − 24 bits then the padding and
length encoding bits required by HH0 can be accommodated in the last block of
M as illustrated in Appendix A. When k = b− b′ − 24− l, with b′ ≤ b− l− 24,
|M∗

L| = b−l−8 bits and hence |r2| = b−l−8 bits which means r2 = r
[b−l−8]
1 which

is the same as in RMX specification. For example, let |mL| = b′ = b− l−24 bits.
Then k = b−b′−l−24 = b−(b−l−24)−l−24 = 0 bits. Now M∗

L = mL‖00‖lpad
and |M∗

L| = b − l − 24 + 0 + 16 = b − l − 8 bits and hence |r2| = b − l − 8 bits
and we can set r2 = r

[b−l−8]
1 .

A variant of RMX. NIST has published a variant of RMX in its SP 800-
106 [11] replacing its previous draft SP 800-106 [10]. We call the latest variant of
RMX in SP 800-106 [11] by RMXSP whose specification is placed in Appendix B.

Remark 2. We note that RMX and RMXSP differ in the padding rule defined for
the messages. In addition, in RMX, the prepended random value r is extended
to a block of b bits by padding it with 0 bits, whereas, in RMXSP, it is directly
concatenated with the XOR of the message blocks and random value.

On Randomizing Hash Functions to Strengthen the Security 95

4 Generic Forgery Attack on the RMX-Hash-Then-Sign
Signature Schemes

Dang and Perlner [12] proposed an on-line birthday forgery attack on the sig-
nature schemes based on t-bit RMX-hashes in 2t/2 chosen messages, 2t/2 off-
line hash function operations and a similar amount of memory as outlined
below:

– On-line phase:
1. Query the signer for the signatures of 2t/2 chosen messages mi where
i = 1, . . . , 2t/2. Store every mi in a Table L1.

2. The signer chooses a fresh random value ri to compute the signature si

of every message mi using SIG. The signer first computes RMX(mi) and
then computes SIG(HH0(RMX(mi))) = si. The signer returns the pair
(ri, si) where i = 1, . . . , 2t/2.

– Off-line phase:
1. For i = 1, . . . , 2t/2, using ri, compute the hash valuesHH0(RMX(ri,mi))

and store them together with (ri, si) in L1.
2. Choose random pairs (rj ,mj) and compute the hash values
HH0(RMX(rj ,mj)) where j is in increments of 1. While computing a
hash value, check whether it collides with any of the hash values in the
Table L1. After about j = 2t/2 attempts, with a good probability, we
can find one collision. Let that random pair be (ry ,my). That is, we
can find (rx,mx, Hx) from L1 where (rx,mx) �= (ry ,my) and Hx =
HH0(RMX(ry,my)) = HH0(RMX(rx,mx)) where x, y ∈ {1, . . . , 2t/2}.
Hence, SIG(mx) = SIG(my).

3. Output message my as the forgery of mx.

4.1 Limitations of the Forgery Attack

We note that the above attack does not produce a valid forgery in the following
signature applications. These applications were noted in [19, 12].

– The random component that already exists in the signature schemes such
as RSA-PSS, DSA and ECDSA, can also be used for randomized hashing
(e.g., RMX hash mode) to save the bandwidth. The above attack does not
succeed on such signature schemes during the forgery verification as the
random value used by the signer for RMX hashing and signing matches the
arbitrary value chosen by the attacker with a negligible probability.

– When the signature schemes based on TCR hashing Hr are used to sign a
message m, both r and Hr(m) have to be signed. For a valid forgery on such
signatures, the attacker should use the same random value as the signer;
hence this attack does not succeed.

96 P. Gauravaram and L.R. Knudsen

5 Application of Dean’s Fixed Point Expandable
Messages to Forge Hash-Then-Sign Signature Schemes

Dean [15,23] has shown that if it is easy to find fixed points for the compression
function then a fixed point expandable message, a multicollision using different
length messages, can be constructed for the hash function. Using Dean’s trick,
we show that, one out of 2t/2 signatures obtained on the equal length messages
from a legitimate signer can be forged by finding a collision which looks like
HH0(m) = HH0(m‖n) where n is the fixed point message block. This implies
SIG(m‖n) = SIG(m) and we show the message m‖n as the forgery of m in 2t/2+1

invocations of HH0 and one chosen message query to the signer. We assume that
h is the Davies-Meyer compression function. The attack is outlined below:

1. Consider 2t/2 equal-length messages mi of length (c× b)− (l+ 1) bits where
c is the number of b-bit blocks and i = 1, . . . , 2t/2. Compute the hash values
Hi of mi under HH0 where each mi is padded with a bit 1 followed by l bits
that represent the binary format of the length (c× b)− (l+1) bits. Let these
l + 1 bits be pad bits. Store mi and Hi in a table L1.

2. For j = 1, . . . , 2t/2, compute 2t/2 fixed points for h such that h(H∗
j , n

j) = H∗
j

where the last l + 1 bits of every block nj are fixed with a padding bit 1
and l bits that represent the binary format of the length of the message
mi‖pad‖(nj)[b−(l+1)] where (nj)[b−(l+1)] represents the first b− (l+1) bits of
nj . Let the last l+1 bits of nj be padf bits where by padf we mean padding
bits in the fixed point block. Store H∗

j and (nj)[b−(l+1)] in a table L2.
3. According to the birthday paradox, with a significant probability, we can find

a hash value Hx from the list L1 and a hash value H∗
y from the list L2 such

that HH0(mx‖pad) = Hx = H∗
y = h(H∗

y , n
y) for some x ∈ {1, . . . , 2t/2} and

y ∈ {1, . . . , 2t/2}. This implies HH0(mx‖pad‖ny) = HH0(mx‖pad) = Hx.
Let m = mx and n = (ny)[b−(l+1)].

4. Ask the signer for the signature on the message m. The signer hashes the
message m‖pad using HH0 and then signs the hash value HH0(m‖pad) using
the signature algorithm SIG to obtain the signature s = SIG(m).

5. Now, HH0(m‖pad‖n‖padf) = HH0(m‖pad). Hence, SIG(HH0(m‖pad)) =
SIG(HH0(m‖pad‖n)) which implies SIG(m) = SIG(m‖pad‖n). Note that padf
bits are the padded bits to the messagem‖pad‖nwhen it is hashed withHH0 .

6. Output the message m‖pad‖n as the forgery of the chosen message m.

Remark 3. Our attack technique subtly differs from Dean’s trick [15, 23] as we
exert control over the fixed point message blocks by integrating the padding
and length encoding bits that represent the length of the forgery message in the
last few bits of the fixed point block. Whereas in Dean’s trick to find expandable
messages, all bits in the fixed point block can be random. Hence, our trick would
also work to find expandable messages for the hash functions when the message
inputs are XORed with a random value.

On Randomizing Hash Functions to Strengthen the Security 97

6 Existential Forgery Attack on Some RMX-Hash-Then-
Sign Signatures

Here we extend the technique presented in Section 5 to provide an existential
forgery attack on the hash-then-sign signatures that use t-bit fixed point com-
pression functions and RMX transform specified in Section 3.1 and Remark 1.
Our forgery attack also works in the applications outlined in Section 4.1 wherein
the generic forgery attack described in Section 4 does not succeed.

In this attack, we first determine the length of the message to be forged and
also length of the message to be produced as a forgery. We then compute 2t/2

fixed point message blocks for the compression function by integrating padding
and length encoding bits required for the forgery message into the fixed point
blocks. We then ask the signer to sign 2t/2 equal length chosen messages and
collect their signatures and random values used for signing. We use those 2t/2

random values and messages to compute 2t/2 RMX-hashes and find a collision
with the 2t/2 pre-computed fixed point hash values. We will find one of the
chosen messages (along with its random value and signature) and one fixed point
message block whose respective hashes collide. We then XOR the fixed point
block and the random value to obtain a new block and concatenate it as a suffix
block to the chosen message. Finally, we produce this concatenated message as
the forgery of the chosen message. The attack involves some subtleties due to
the fact that the RMX transform has a padding layer and hence, the attack has
an additional negligible complexity of 224 which adds to the complexity of 2t/2

chosen messages and 2t/2+1 operations of the compression function.
The pseudocode for the existential forgery attack on the signature scheme

SIG which uses a hash function HH0 based on the Davies-Meyer compression
function h and RMX as the message randomization algorithm is given below:

– Pre-computation phase:
1. Determine the length of the message to be forged. Let it be a message
m of 2b− l− 24 bits. Let m∗ be the forgery of m to be produced whose
length can be pre-determined using |m| as given by |m∗| = |m|+ l+24+
b+(b− l−24−1) = 2b− l−24+ l+24+ b+ b− l−25 = 4b− l−25 bits.

2. Pre-compute 2t/2 fixed points for the compression function h using mes-
sage blocks N j , each of size b bits, such that H∗

j−1 = h(H∗
j−1, N

j) for
j = 1, . . . , 2t/2. While finding fixed points, fix the last l + 1 bits of each
message block N j for the pad bit 1 and l bits to represent the pre-
determined length encoding of the message m∗ of length 4b− l− 25 bits
to be produced as forgery. Let these l + 1 bits be padf bits. Store the
pairs (N j , H∗

j−1) for j = 1, . . . , 2t/2 in a Table L1.
– On-line phase:

1. Query the signer with 2t/2 equal length chosen messages mi for i =
1, . . . , 2t/2 (the message can also be the same in these queries). Let |mi| =
b+ b− l−24 bits. Every message mi can be represented as mi = mi

1‖mi
2

where |mi
1| = b bits and |mi

2| = b− l− 24 bits. Store these 2t/2 messages
in a Table L2.

98 P. Gauravaram and L.R. Knudsen

For i = 1, . . . , 2t/2, the signer computes the signatures si on the equal-
length messages mi as follows:
(a) The signer chooses a fresh random value ri for every query i indepen-

dent of the message mi. The signer calculates three random values
r0,i, r1,i and r2,i for every chosen random value ri following the RMX
specification in Section 3.1 and Remark 1 as follows:
i. r0,i = ri‖0b−|ri|

ii. r1,i = ri‖ri‖ . . . ‖ri such that |r1,i| = b bits and the last repetition
of ri is truncated if needed.

iii. r2,i = r
[b−l]
1,i (as noted in Remark 1).

(b) The signer splits every message mi as mi = mi
1‖mi

2 where |mi
1| = b

bits and |mi
2| = b− l − 24 bits.

(c) The signer randomizes every message mi as follows:
i. M i

0 = r0,i

ii. M i
1 = mi

1 ⊕ r1,i

iii. M i
2 = (mi

2‖08‖lpad)⊕ r2,i

(d) Let padm represents the l-bit binary encoded format of the
length of the message M i

0‖M i
1‖M i

2. For every randomized mes-
sage M i

0‖M i
1‖M i

2, the signer computes the hash value by pass-
ing this message as input to the hash function HH0 . The
hash value for every randomized message is H̃H0

ri
(mi) =

HH0(M i
0‖M i

1‖(M i
2‖1‖0l−1)‖(0b−l‖padm)). The signer returns the

signature si = SIG(H̃H0
ri (mi)) of every message mi.

2. For every queried message mi where i = 1, . . . , 2t/2, the signer returns
the pair (ri, si).

– Offline phase:
1. Add the received pair (ri, si) to the table L2.
2. Using the random value ri, compute three random values r0,i, r1,i and
r2,i following the RMX specification in Section 3.1 and Remark 1.

3. Randomize the message mi as follows:
(a) M i′

0 = r0,i

(b) M i′
1 = mi

1 ⊕ r1,i

(c) M i′
2 = (mi

2‖08‖lpad)⊕ r2,i

4. Let M i′ = M i′
0 ‖M i′

1 ‖M i′
2 . The validity of the signatures si returned

by the signer during the on-line phase of the attack ensures that
M i′

0 ‖M i′
1 ‖M i′

2 = M i
0‖M i

1‖M i
2.

5. Compute H̃H0
ri

(mi) = HH0(M i
0‖M i

1‖(M i
2‖1‖0l−1)‖(0b−l‖padm)) and

add the hash values H̃H0
ri

(mi) to the Table L2. Let H̃H0
ri

(mi) = Hi for
i = 1, . . . , 2t/2. Now the Table L2 contains the values (mi, ri, si, Hi).

6. Find a collision between the 2t/2 hash values stored in the Tables L1 and
L2. With a significant probability, we can find a hash value Hx from the
Table L2 and a hash value H∗

y from the Table L1 such that:

HH0(Mx
0 ‖Mx

1 ‖(Mx
2 ‖1‖0l−1)‖(0b−l‖padm)) = Hx = h(H∗

y , N
y) = H∗

y

On Randomizing Hash Functions to Strengthen the Security 99

where
(a) Mx

0 = r0,x and |Mx
0 | = b

(b) Mx
1 = mx

1 ⊕ r1,x and |Mx
1 | = b

(c) Mx
2 = (mx

2‖08‖lpad)⊕ r2,x and |Mx
2 | = b− l

(d) Ny = (Ny)[b−l−1]‖padf
and x ∈ {1, . . . , 2t/2}, y ∈ {0, . . . , 2t/2 − 1}. This step is illustrated in
Figure 1(a) and 1(b).

7. Let r′2,x be the last l bits of r1,x. Then r1,x = r2,x‖r′2,x. Note that |r2,x| =
b−l. Let padr = r′2,x⊕(1‖0l−1). Let padr1 = (r[b−l]

1,x ⊕0b−l)‖(r′2,x⊕padm).
Note that |padr1| = b bits.

8. Calculate (Ny)[b−l−1]⊕r[b−l−1]
1,x = ny as shown in Figure 1(c). The prob-

ability that the last 24 bits of ny are 08‖lpad is 2−24. These 24 bits
represent the padding bits of the message randomized by RMX.

9. Letm∗ = mx
1‖(mx

2‖08‖lpad‖padr)‖padr1‖(ny)[|n
y|−24] andm = mx

1‖mx
2 .

Note that |m| = 2b− l − 24 bits and m∗ = 4b− l − 25 bits which is the
same as predetermined in Step (1) of the pre-computation phase of the
attack. The signature SIG(m) on the message m is also valid on m∗ as
H̃H0

r (m) = H̃H0
r (m∗).

10. Finally, output the message m∗ as the forgery of the message m.

Complexity: It takes 2t/2 operations of h to precompute fixed points; 2t/2 cho-
sen message queries to the signer during the on-line phase; 2t/2 operations of h
and XOR operations during the off-line phase and a probability of 2−24 to hit
the correct padding bits of the RMX transform. Total complexity of the attack
is approximately 2t/2+1 operations of the compression function and 2t/2 chosen
messages. The memory requirements of the attack are as follows assuming that
the size of the signature is four times that of the security level of t/2 bits of a
t-bit hash (which is possible in DSA): b×2t/2+t×2t/2 bits in the precomputation
phase; 2b × 2t/2 bits in the on-line phase and |r| × 2t/2 + t × 2t/2 + 2t × 2t/2

bits in the off-line phase. The total memory required for the attack is equal to
(3b+ 4t+ |r|)× 2t/2 bits. This is approximately 2t/2+3 memory of t-bit values.

Illustration: Forging a signature scheme based on RMX-SHA-256 requires about
2129 operations of the SHA-256 compression function, 2128 chosen messages and a
probability of 2−24. Assuming that |r| = 128 bits, this attack requires a memory
of about 2131. In comparison, as noted in [19], forging a signature scheme based on
RMX-SHA-256 using second preimage attack of [23] requires about 2201 SHA-256
compression function operations, more than 255 memory and one chosen message.

Remark 4. Our forgery attack on the RMX-hash-then-sign signature schemes is
independent of the size of the random value r. Our analysis assumes that in the
RMX specification, b′ = b − l − 24 bits. The attack also works for about the
same complexity when b′ < b− l − 24 bits. However, when b′ > b− l − 24 bits,
the padding bits of the RMX transform are placed in the last two blocks ML

and ML+1. Since, the last block ML+1 does not contain any message bits, it is
not possible to generate a fixed point block which can represent this block and
hence, the attack does not work.

100 P. Gauravaram and L.R. Knudsen

RMX

(b)

(c)

(a)

mx
1 mx

2

Mx
0 Mx

1 Mx
2

HH0

Hx Hx
Hx E

Ny

(Ny)[b−l−1]‖padf
(Ny)[b−l−1]

r
[b−l−1]
1,x

ny

Fig. 1. Forgery attack on the RMX-hash-then-sign scheme based on Davies-Meyer

6.1 Applications of Our Forgery Attack

Our existential forgery attack on SIG based on RMX-hashes that use fixed point
compression functions also works on SIG based on RMXSP-hashes that use fixed
point compression functions. When |m| + 1 ≥ |r| for RMXSP, the complexity
of our forgery attack on SIG using RMXSP is similar to the one on SIG using
RMX with the exception that it requires a success probability of 1/2 to hit the
correct padding bit “1” used to pad the message by RMXSP. The same attack
also works on the signature schemes that use the previous version of RMXSP [10]
by assuming |m|+ 16 ≥ |r|. The attack has similar complexity as when RMX is
used except that it has a success probability of 2−16 to hit the 16 padding bits
used to pad the message by this variant.

Our forgery attack also works on the signatures based on the proposal
HH0(r‖HH0

r (m)) [19] and on the signature schemes that use RMX transform to-
gether with the hash functions that use split padding [42] (assures that a minimum
number of message bits are used in every block including the padding and length
encoding block) to pad the message input to the hash function. Adding sequential
counters to the RMXhash function (similar to theHAIFA hash mode [7]) also does
not add any protection against our attack nor to the one in Section 4 as the counter
inputs can be controlled in both the attacks. Note that sequential counters to the
RMX hash function would still prevent the attempts to forge the RMX-hash-then-
sign schemes using second preimage attacks of [23,15].

Remark 5. Our on-line birthday forgery attack does not work on the signature
schemes that use wide-pipe hash construction [25] with the internal state size
w ≥ 2t based on the fixed point compression functions as the attack requires at
least 2t chosen messages and 2t+1 operations of the compression function. For
example, Grøstl hash function [16], one of the selected candidates for the first
round of NIST’s SHA-3 hash function competition, uses a compression function
for which fixed points can be easily found and has w ≥ 2t for a t-bit hash value.

On Randomizing Hash Functions to Strengthen the Security 101

6.2 Attack on the e-SPR Property of the Compression Functions

Our forgery attack on the RMX-hash-then-sign signature schemes translates into
a birthday collision attack on the e-SPR property of the compression function
h for which fixed points can be easily found. Recall that in the e-SPR game, we
choose u ≥ 1 values Δ1, . . . , Δu, each of length b bits. We then receive a random
value r ∈ {0, 1}b and definemi = r⊕Δu andHi−1 = HH0(r⊕Δ1‖ . . . ‖r⊕Δu−1).
Finally, we aim to find a pair (H∗

i−1, ni) such that (H∗
i−1, ni) �= (Hi−1,mi) and

h(Hi−1,mi) = h(H∗
i−1, ni). The attack is outlined below:

1. Collect 2t/2 fixed point pairs (Hi−1,m
i) for h in a Table L where i =

1, . . . , 2t/2. Play the e-SPR game 2t/2 times always with Δ1 = Δ2 = 0
and every time we receive a fresh random value rj for j = 1, . . . , 2t/2.

2. We check if Hi−1 = HH0(rj‖rj) for some i and j. Let that rj = r and fixed
point be (Hi−1,mi) where mi = mi for some i.

3. Let H∗
i−1 = HH0(r), ni = r, Hi−1 = HH0(r‖r). Now h(H∗

i−1, ni) =
HH0(r‖r) = HH0(r‖r‖mi) = h(Hi−1,mi).

Thus, after an expected number of 2t/2 games, we win one game. Note that
the forgery attack in Section 4 also translates into an e-SPR attack on any
compression function after an expected number of 2t/2 e-SPR games.

7 Conclusion

Our research opens an interesting question on how to improve RMX SHA family
without degrading its performance much to protect the signatures based on it
against our forgery attack. One solution is not to mix the message bits processed
using RMX transform with the padding and length encoding bits of the hash
function by having only the latter bits in the last block. However, this patch
introduces insufficient amount of randomness in the last block and requires some
changes to the implementations of SHA family. It is an interesting problem
to study this design. Recently, it has been suggested to use RMX-MD5 as a
countermeasure to prevent impersonation attacks on the websites using collision
attacks on MD5 [38]. Considering that one out of 264 legitimate signatures based
on RMX-MD5 can be forged following our results, it is an interesting problem
to combine our techniques with those of [38] to analyse the security of RMX-
MD5 over MD5 in the website certificates. Our research shows that randomized
hashing is not easy to implement safely and we recommend NIST to consider
our research during the SHA-3 hash function competition. It is clear from our
attacks and those of [15,23] that it is well-worth investigating the SPR properties
of the compression functions to identify possible weaknesses that may affect the
randomized hashing setting.

Acknowledgments. Many thanks Quynh Dang and Ray Perlner for valuable
discussions on this research and to Chris Mitchell for bringing to our awareness
some important early works [14, 13,1] on randomized hashing to strengthen the

102 P. Gauravaram and L.R. Knudsen

digital signature security. Many thanks to our friends in the Information Security
Group, RHUL for hosting Praveen Gauravaram to present preliminary results
of this work and for their valuable discussions. Many thanks to the anonymous
reviewers of Eurocrypt 2009 for some interesting comments and corrections;
especially to the reviewer who suggested us to provide Section 6.2 and reminding
us of the work of Dean [15]. Many thanks to our Crypto colleagues at MAT, DTU
and Pierre-Alain Fouque for valuable discussions on this subject.

References

1. Akl, S.G.: On the Security of Compressed Encodings. In: Chaum, D. (ed.) Advances
in Cryptology: Proceedings of Crypto 1993, pp. 209–230. Plenum Press, New York
(1983)

2. Anderson, R., Biham, E.: Tiger: A Fast New Hash Function. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039, pp. 89–97. Springer, Heidelberg (1996)

3. ANSI. ANSI X9.62:2005: Public Key Cryptography for the Financial Services In-
dustry, The Elliptic Curve Digital Signature Algorithm (ECDSA) (2005)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making uOWHFs
practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

6. Bellovin, S., Rescorla, E.: Deploying a New Hash Algorithm. In: Proceedings of
NDSS. Internet Society (Feburary 2006)

7. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007) (Accessed on May 14, 2008),
http://eprint.iacr.org/2007/278

8. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

9. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Dang, Q.: NIST Special Publication 800-106 Draft Randomized Hashing Dig-
ital Signatures (2007) (Accessed on July 21, 2008), http://csrc.nist.gov/

publications/drafts/Draft-SP-800-106/Draft-SP800-106.pdf
11. Dang, Q.: Draft NIST Special Publication 800-106 Draft Randomized Hashing

Digital Signatures (2008) (Accessed on August 6, 2008), http://csrc.nist.gov/
publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf

12. Dang, Q., Perlner, R.: Personal communication (October 2008)
13. Davies, D., Price, W.: Security for Computer Networks. John Wiley, Chichester

(1984)
14. Davies, D.W., Price, W.L.: The Application of Digital Signatures Based on Public-

Key Cryptosystems. In: Proc. Fifth Intl. Computer Communications Conference,
pp. 525–530 (October 1980)

15. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (1999)

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – A SHA-3 Candidate. First Round of NIST’s
SHA-3 Competition (2008) (Accessed on January 5, 2009), http://www.groestl.
info/Groestl.pdf

On Randomizing Hash Functions to Strengthen the Security 103

17. Gauravaram, P., McCullagh, A., Dawson, E.: Collision Attacks on MD5 and SHA-1:
Is this the “Sword of Damocles” for Electronic Commerce? In: Clark, A., McPher-
son, M., Mohay, G. (eds.) AusCERT Conference Refereed R & D Stream, pp. 1–13
(2006)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

19. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006), http://www.ee.technion.ac.il/~hugo/rhash/rhash.pdf

20. Halevi, S., Krawczyk, H.: The RMX Transform and Digital Signatures (2006)
(Accessed on July 30, 2008), http://www.ee.technion.ac.il/~hugo/rhash/

rhash-nist.pdf

21. Halevi, S., Shao, W., Krawczyk, H., Boneh, D., McIntosh, M.: Implementing the
Halevi-Krawczyk Randomized Hashing Scheme (2007) (Accessed on July 28, 2008),
http://www.ee.technion.ac.il/~hugo/rhash/implementation.pdf

22. Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of Iterated Hash Functions
Based on Block Ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 379–390. Springer, Heidelberg (1994)

23. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

24. Lenstra, A.K., de Weger, B.: On the Possibility of Constructing Meaningful Hash
Collisions for Public Keys. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 267–279. Springer, Heidelberg (2005)

25. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

26. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

27. Mironov, I.: Collision-Resistant No More: Hash-and-Sign Paradigm Revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006)

28. Miyaguchi, S., Ohta, K., Iwata, M.: Confirmation that Some Hash Functions Are
Not Collision Free. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp. 326–343. Springer, Heidelberg (1991)

29. NIST. FIPS PUB 186-2: Digital Signature Standard (DSS) (January 2000)
(Accessed on August 15, 2008), http://csrc.nist.gov/publications/fips/

fips186-2/fips186-2-change1.pdf

30. NIST. FIPS PUB 180-2-Secure Hash Standard (August 2002) (Accessed on May 18,
2008), http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

31. NIST. Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Docket No: 070911510-7512-01
(November 2007)

32. NIST. Draft FIPS PUB 186-3: Digital Signature Standard (2008) (Accessed
on January 4, 2008), http://csrc.nist.gov/publications/drafts/fips_186-3/
Draft_FIPS-186-3_November2008.pdf

33. Pasini, S., Vaudenay, S.: Hash-and-Sign with Weak Hashing Made Secure. In:
Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
338–354. Springer, Heidelberg (2007)

104 P. Gauravaram and L.R. Knudsen

34. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

35. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

36. Rivest, R.: The MD5 Message-Digest Algorithm. Internet Request for Comment
RFC 1321, Internet Engineering Task Force (April 1992)

37. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. RSA Data Se-
curity, Inc. (June 2002) (Accessed on August 15, 2008), ftp://ftp.rsasecurity.
com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

38. Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: MD5 Considered Harmful Today Creating A Rogue CA Certificate.
Presented at 25th Annual Chaos Communication Congress (2008) (Accessed on
January 3, 2009), http://www.win.tue.nl/hashclash/rogue-ca/

39. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

40. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

41. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

42. Yasuda, K.: How to Fill Up Merkle-Damg̊ard Hash Functions. In: Pieprzyk, J.
(ed.) Advances in Cryptology - ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289.
Springer, Heidelberg (2008)

A Observation in the Padding Rule of RMX

Consider hashing of a message m using RMX-SHA-256. For SHA-256, b = 512
bits. Let |m| = 512 + 424 = 936 bits where |m1| = 512 and |m2| = 424 bits.
Following the specification of RMX given in Section 3.1, b′ = b − l − 24 =
512− 64− 24 = 424 bits and k = b− b′ − 16− l = 512− 424− 16− 64 = 8 bits.
Let |r| = 128 bits. Now the randomized message M is defined as follows:

1. M0 = r0
2. M1 = m1 ⊕ r1
3. Calculation of M2:

(a) M∗
2 = m2‖08‖lpad where |M∗

2 | = 448 bits
(b) M2 = M∗

2 ⊕ r2
Therefore, RMX(r,m) = M = M0‖M1‖M2. A hash function HH0 used to pro-
cess M requires at least l+1 bits for padding and length encoding. For SHA-256,
l = 64 bits and hence it requires at least 65 bits for padding and length encoding.
It is difficult to accommodate more than 64 bits in the remaining l-bit positions
in the last block M2 as it already has 448 bits. Therefore to process M using
SHA-256, M is padded as follows: M = M0‖M1‖(M2‖1‖063︸ ︷︷ ︸

512 bits

)‖ (0448‖l)︸ ︷︷ ︸
512 bits

where l

represents the 64-bit binary encoded format of the length of M . Similarly, if

On Randomizing Hash Functions to Strengthen the Security 105

b′ = 423 bits then k = 9 bits and M∗
2 = m2‖09‖lpad. So, if b′ ≤ b − l − 24 then

HH0 requires an extra block to pad and length encode M .
Alternatively, when b′ ≤ b− l−24 bits, we could define k = b−b′−24− l bits.

Then the hash function HH0 does not require an extra block to length encode the
message M . In the above illustration, when |m| = 936 bits, M∗

2 = m2‖00‖lpad
and M2 = M∗

2 ⊕ r2 where |M∗
2 | = 440 bits and M = M0‖M1‖M2. To process M

using a hash function HH0 , M is padded as follows: M = M0‖M1‖ (M2‖1‖07‖l)︸ ︷︷ ︸
440+72 bits

.

B Message Randomization Technique RMXSP

Let m be the input message, r be a message independent random bit string of at
least 128 bits and at most 1024 bits and M be the randomized message. Let zpad
be a string of zero bits, which is zero or more “0” bits. Let λ denotes zero “0”
bits or an empty string. Let pad = 1‖zpad. Let rpad be the 16-bit binary format
of |r|. The input message m is encoded to the form m‖pad and this encoded
message is then randomized (transformed to M) as specified below.

1. If |m|+ 1 ≥ |r|:
(a) pad = 1‖λ = 1.
Else
(a) pad = 1‖0|r|−|m|−1.

2. m′ = m‖pad.
3. If |r| > 1024 then stop and output an error indicator.
4. rem = |m′| mod |r|
5. Concatenate �|m′|/|r|� copies of the r to the rem left-most bits of r to get
R, such that |R| = |m′|. Now let

R = r‖r‖ . . . ‖r︸ ︷︷ ︸

|m′|/|r|� times

‖r[rem]

6. The randomized output is given by M = RMXSP(r,m) = r‖(m′ ⊕R)‖rpad.

Illustration: Let |r| = 128 and |m| = 927 bits. Now |m| + 1 ≥ r, therefore
zpad = λ and pad = 1. Now m′ = m‖pad = m‖1 and |m′| = 928 bits. The
random value R = r‖ . . . ‖r︸ ︷︷ ︸

7 times

‖r[32].

Cryptanalysis of MDC-2�

Lars R. Knudsen1, Florian Mendel2, Christian Rechberger2,
and Søren S. Thomsen1

1 Department of Mathematics, Technical University of Denmark
Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark

2 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Abstract. We provide a collision attack and preimage attacks on the
MDC-2 construction, which is a method (dating back to 1988) of turning
an n-bit block cipher into a 2n-bit hash function. The collision attack
is the first below the birthday bound to be described for MDC-2 and,
with n = 128, it has complexity 2124.5, which is to be compared to the
birthday attack having complexity 2128. The preimage attacks constitute
new time/memory trade-offs; the most efficient attack requires time and
space about 2n, which is to be compared to the previous best known
preimage attack of Lai and Massey (Eurocrypt ’92), having time com-
plexity 23n/2 and space complexity 2n/2, and to a brute force preimage
attack having complexity 22n.

Keywords: MDC-2, hash function, collision, preimage.

1 Introduction

MDC-2 is a method of constructing hash functions from block ciphers, where
the output size of the hash function is twice the size of the block cipher (hence
it is called a double-length construction). MDC-2 was developed at IBM in the
late 80s. A conference paper by IBM researchers Meyer and Schilling from 1988
describes the construction [21]. A patent was filed in August 1987, and the patent
was issued in March 1990 [1]. The construction was standardised in ISO/IEC
10118-2 in 1994 [9]. It is mentioned in great detail in both the Handbook of
Applied Cryptography [20, Alg. 9.46] and in the Encyclopedia of Cryptography
and Security [27, pp. 379–380]. Furthermore, it is in practical use (see e.g.,
[10, 15,26]).

Since publication, there seems to have been a wide belief in the cryptographic
community that given an ideal block cipher, MDC-2 provides a collision resistant
hash function. By this we mean that given an n-bit block cipher (thus yielding a
2n-bit hash function), the required effort to find a collision in the hash function
is expected to be 2n. However, there is no proof of this property. The only proof

� This work has been supported in part by the European Commission through the
ICT programme under contract ICT-2007-216676 ECRYPT II.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 106–120, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Cryptanalysis of MDC-2 107

that collision resistance is better than 2n/2, as offered by many simpler (single-
length) constructions, is due to Steinberger [25], who showed that for MDC-2
based on an ideal cipher, an adversary asking less than 23n/5 queries has only a
negligible chance of finding a collision.

In this paper we provide the first collision attack on MDC-2 which breaks the
birthdaybound. The attackmakesnonon-standard assumptions on the underlying
block cipher. When applied to an instantiation of MDC-2 with e.g., a 128-bit block
cipher (see e.g., [28]), the attack has complexity about 2124.5, which is better than
the expected 2128 collision resistance for an ideal 256-bit hash function.

We also present improved preimage attacks on MDC-2. The previous best
known preimage attack, first described by Lai and Massey [16], has time com-
plexity about 23n/2 and requires around 2n/2 memory. In this paper we provide a
range of time/memory trade-offs, the fastest of which is significantly faster than
the Lai/Massey attack. We describe attacks of any time complexity from 2n to
22n. The memory requirements are such that the product of the time and space
complexities is always around 22n. Hence, our most efficient preimage attack has
time and space complexity about 2n.

Finally, we describe how to use the preimage attack to find multicollisions
faster than by the previous best known multicollision attack of Joux [11].

Related work. As mentioned, Lai and Massey described [16] a preimage attack
on MDC-2 of complexity around 23n/2. Knudsen and Preneel gave [14] a preim-
age attack on MDC-4 (a stronger and less efficient variant of MDC-2, to which
the attacks described in this paper do not apply) of complexity 27n/4. Steinberger
proved [25] a lower bound of 23n/5 for collision resistance of MDC-2 in the ideal
cipher model.

Our attacks in fact apply to a larger class of hash function constructions based
on block ciphers (see Section 2.1). Knudsen, Lai and Preneel described [13] colli-
sion and preimage attacks on all block cipher based hash function constructions
of rate 1, meaning that one message block is processed per block cipher call.
These attacks do not apply to MDC-2 (having rate 1/2).

Recently, a number of new double-length constructions have been proposed. At
FSE 2005, Nandi et al. [23] proposed a rate 2/3 scheme, and they proved that find-
ing a collision requires at least 22n/3 queries. Later the same year (Indocrypt 2005),
Nandi [22] introduced a class of rate 1/2 double-length schemes, all instances of
which having optimal collision resistance 2n. At Asiacrypt 2005, Lucks [18] pro-
posed the double-pipe scheme as a failure-friendly design, meaning that collision
resistance is retained even if the underlying compression function slightly fails to
be collision resistant. The scheme maintains two chains, which are combined at the
end, and hence is in fact a single-length scheme. However, by omitting the merging
at the end one has a double-length scheme, which is optimally collision resistant.
Hirose [8] proposed (FSE 2006) a collision resistant double-length scheme, based
on an n-bit block cipher accepting keys of more than n bits. The rate depends on
the key size. For all these schemes, the security proof is based on the assumption
that the underlying primitive (compression function or block cipher) is secure. Our
attacks do not apply to any of the schemes mentioned here.

108 L.R. Knudsen et al.

Hellman has described a generic method to find a preimage of a 2n-bit hash
function with runtime 24n/3 [7]. The caveat is that (apart from requiring 24n/3

memory) a precomputation of cost 22n is needed. The preimage attacks on MDC-
2 that are described in this paper are on a much better time/memory trade-off
curve, and do not require a 22n precomputation.

2 Preliminaries

The collision attack presented in this paper makes use of multicollisions.

Definition 1. Let f be some function. An r-collision for f is an r-set {x1, . . . , xr}
such that f(x1) = . . . = f(xr). A multicollision is an r-collision for some r > 1. A
2-collision is known simply as a collision.

Consider the classical occupancy problem (see e.g., [5]) consisting of randomly
throwing q1 balls into 2n urns, where it is assumed that each of the 2nq1 possible
outcomes is equally likely. In order for the probability that at least one urn
contains at least r balls to be 1− 1/e, one must throw about

q1 = (r!2n(r−1))1/r (1)

balls in total [5, IV,(2.12)]. The classical occupancy problem can be translated into
the problem of finding an r-collision for a sufficiently random n-bit function f .
Hence, this task has expected complexity q1 as given by (1). In the following we
shall use this expression as an estimate for the complexity of finding an r-collision.

We note that a standard birthday collision attack has complexity 2(n+1)/2, ac-
cording to (1) with r = 2. With 2n/2 queries a collision is found with probability
about 1− e−1/2 ≈ 0.39.

2.1 Description of the MDC-2 Construction

MDC-2 was originally defined using DES [24] as the underlying block cipher.
Here, we think of MDC-2 as a general double-length construction method for
hash functions based on block ciphers. For ease of presentation we shall assume
that keys and message blocks are of the same size, even if this is in fact not the
case for DES. In Appendix A, we discuss this special case.

Let EK(m) denote the encryption under some block cipher (assumed to be
secure) of plaintext m using the key K. If X is an n-bit string, then we let XL

denote the leftmost n/2 bits of X , and we let XR denote the rightmost n/2
bits of X . Given E, MDC-2 defines a 2n-bit hash function (with some given,
distinct initial values H0 and H̃0) as follows. Split the message M (assumed to
be appropriately padded) into t blocks m1, . . . ,mt, and do, for each i from 1 to
t, the following (‘‖’ denotes concatenation).

V = EHi−1(mi)⊕mi

Ṽ = EH̃i−1
(mi)⊕mi,

followed by

Cryptanalysis of MDC-2 109

Hi−1 H̃i−1

mi

� �
�

�

E

�

�

�

�

E

�

�

� ���

� �
Hi H̃i

Fig. 1. The MDC-2 construction

Hi = V L‖Ṽ R

H̃i = Ṽ L‖V R.

The output is Ht‖H̃t. See also Figure 1. In other words, the chaining variables
Hi−1 and H̃i−1 are used as keys in two block cipher calls, which each encrypt
the message block mi, and subsequently xor the resulting ciphertexts with mi.
The two right halves of the results are then swapped to obtain the next pair of
chaining variables. In what follows, these steps will be called an iteration.

In the original description of MDC-2 [21], two bits of each of the two keys
Hi−1 and H̃i−1 were fixed. This had two implications. First of all, all known
weak and semi-weak keys of DES were ruled out, and secondly, this measure
ensured that the two keys were always different. There seems to be no strong
consensus that fixing key bits is a necessary security measure when MDC-2 is
based on some other block cipher for which weak keys are not believed to exist.
However, one might argue that ensuring that the two keys are different increases
security – although this practice also has a cost in terms of security: the amount
of state passed on from one iteration to the next is less than 2n bits. The attacks
presented in this paper can be applied regardless of whether or not some key
bits are fixed. However, the discussion of Section 6 assumes that no key bits are
fixed.

A generalisation. We may generalise the MDC-2 construction. Let f : {0, 1}n

× {0, 1}n → {0, 1}n be any function, and let g be any (efficiently invertible)
bijection from 2n bits to 2n bits. Then a generalised construction is the
following.

W = f(Hi−1,mi)‖f(H̃i−1,mi)
Hi‖H̃i = g(W).

(2)

110 L.R. Knudsen et al.

Hi−1 H̃i−1

mi
��
f

�

��
f

�
g

� �
Hi H̃i

Fig. 2. The generalised MDC-2 construction

See Figure 2. In standard terms, (2) defines a compression function h : {0, 1}3n →
{0, 1}2n. The attacks presented in this paper apply to any instance of this con-
struction. Notice that MDC-2 has f(x, y) = Ex(y)⊕y and g(a‖b‖c‖d) = a‖d‖c‖b.
In the following we shall use the notation of the generalised construction. We
assume that evaluating g (both forwards and backwards) costs much less than
evaluating f . Our complexity estimates will be in terms of compression function
evaluations. For example, if an attack requires T calls of f , we shall count this
as having time complexity T/2, since f is evaluated twice in the compression
function.

3 The Collision Attack

The collision attack applies to any construction of the type (2). We use the
notation of Section 2 in the following description of the collision attack.

1. Given initial chaining values H0 and H̃0, find an r-collision in H1. Let the
messages producing the r-collision be m1

1, . . . ,m
r
1, and let the r (“random”)

values of H̃1 be H̃1
1 , . . . , H̃

r
1 .

2. Let � = 1.
3. Choose the message block m�

2 arbitrarily, and evaluate W �
j = f(H̃j

1 ,m
�
2) for

every j, 1 ≤ j ≤ r. If W �
i = W �

j for some i �= j, 1 ≤ i, j ≤ r, then a collision
(mi

1‖m�
2,m

j
1‖m�

2) has been found. If not, increment � and repeat this step.

See Figure 3. Step 1 requires finding an r-collision in an n-bit function. This
is expected to take time q1 = (r!2n(r−1))1/r as mentioned in Section 2. The
probability of success in Step 3 is about

(
r
2

)
2−n, since there are

(
r
2

)
pairs of

n-bit values, which may be equal. Hence, we expect to need to repeat Step 3
2n/

(
r
2

)
times. In each iteration we evaluate the encryption function r times. In

the construction (2), f is evaluated twice per message block, and hence the r
evaluations of f are equivalent to r/2 compression function evaluations. The
total work required in Step 3 is therefore expected to be

q2 = (r/2) · 2n/

(
r

2

)
= 2n/(r − 1).

Cryptanalysis of MDC-2 111

Hiv H̃iv

mi
1

� �
f f

�

� �

�
g

m2
��
f

�

��
f

�
g

� �
H2 H̃2

Fig. 3. The collision attack. Thick lines mean that there are r different values of this
variable. Thin lines mean that there is only one.

Table 1. Time complexity of the collision attack on MDC-2 with an n-bit block cipher,
compared to birthday complexity. For details in the case of MDC-2 based on DES
(n = 54), see Appendix A.1.

n r
Collision attack complexity

Section 3 Birthday
54 8 251.5 254

64 9 261.3 264

128 14 2124.5 2128

256 24 2251.7 2256

The total work required is q1 + q2 = (r!2n(r−1))1/r + 2n/(r− 1). Hence, we may
choose r as the integer ≥ 2 that minimises this expression. Notice that q1 is
an increasing function of r, and q2 is decreasing. By setting q1 = q2 one gets,
very roughly, a time complexity around (log2(n)/n)2n. However, it turns out
that the best choice of r is not exactly the one where q1 = q2, as one might
expect. Table 1 shows the best choices of r and the corresponding complexities
for different sizes n of the block cipher.

The probability of success of our attack with these complexities is about 1−1/e
for Step 1, and the same probability for Step 3 when repeated 2n/

(
r
2

)
times, in

total (1 − 1/e)2 ≈ 0.40. As mentioned in Section 2, the probability of success
for the birthday attack with 2n queries is about 1 − e−1/2 ≈ 0.39. Hence, we
consider the comparisons fair.

112 L.R. Knudsen et al.

4 Preimage Attacks

A brute force preimage attack on MDC-2 (or on (2) in general) has time com-
plexity O(22n) and space complexity O(1). The previous best known preimage
attack is due to Lai and Massey [16], and has time complexity O(23n/2) and space
complexity O(2n/2). Hence, for both attacks the product of the time complexity
and the space complexity is O(22n). In the following subsection we describe a
range of preimage attack time/memory trade-offs, for which the product of the
time and the space complexities is at most n22n, but where time complexity
can be anything between O(n2n) and O(22n). In Section 4.2 we describe how to
reach a time and space complexity of O(2n).

4.1 An Attack Allowing for Time/Memory Trade-Offs

The attack uses pseudo-preimages, which are preimages of the compression func-
tion where both the chaining value and the message block can be chosen freely
by the attacker. The attack can be outlined as follows.

1. Build a binary tree of pseudo-preimages with the target image HT‖H̃T as
root: the nodes are labelled with intermediate hash values, and each edge is
labelled with a message block value meaning that this message block maps
from the intermediate hash value at the child node to the intermediate hash
value at the parent. The tree has (on average) two children for each node,
and it has depth d meaning there are 2d leaves.

2. From the initial value Hiv‖H̃iv of the hash function, find a message block
that produces an intermediate hash value equal to one of the leaves in the
tree from Step 1.

See Figure 4. The above technique clearly leads to a preimage consisting of a
message block that maps to a leaf � in the tree, and a sequence of d message
blocks corresponding to the path in the tree that leads from the leaf � to the
root. Hence the total length of the message is d+ 1 blocks.

The value of d determines the time/memory trade-off. We shall discuss con-
crete values of d later. The cost of Step 1 will be evaluated in the following.

HT‖H̃THiv‖H̃iv

�

Fig. 4. A binary tree of pseudo-preimages of depth d = 3

Cryptanalysis of MDC-2 113

Since the tree has 2d leaves, Step 2 is expected to take time 22n−d. In effect, by
constructing the tree we produce 2d new target images, which improves the effi-
ciency of the final brute force search by a factor of 2d. The memory requirements
are 2d + 2d−1 + . . .+ 1 = 2d+1 − 1 intermediate hash values.

We note that the last message block, the one that maps to the target image,
must contain proper padding for a message of d + 1 blocks. If there are not
enough degrees of freedom in the last block to both ensure proper padding and
to find two pseudo-preimages, then a few initial steps (consisting of finding a
small number of pseudo-preimages) are needed to ensure proper padding. It will
become clear in the following that this only has a small effect on the total time
complexity.

Constructing the tree (Step 1 above) is very time consuming for an ideal hash
function. However, for the MDC-2 construction, there is an efficient method
based on the following theorem.

Theorem 1. Given a target hash value HT‖H̃T, a pseudo-preimage can be
found in time at most 2n−1 with probability about (1 − 1/e)2. By a pseudo-
preimage we mean a pair (Hp, H̃p) and a message block m such that
g(f(Hp,m)‖f(H̃p,m)) = HT‖H̃T.

Proof. The method is the following. Let U‖Ũ = g−1(HT‖H̃T). Choose m arbi-
trarily, define fm(x) = f(x,m), and evaluate fm on all x ∈ {0, 1}n. Referring
again to the classical occupancy problem, when randomly throwing 2n balls into
2n urns, the probability that a given urn contains at least one ball is about 1−1/e.
Assuming that fm is sufficiently random, this means that the probability that a
given image has at least one preimage is about 1− 1/e, and additionally assum-
ing independence, it means that the probability of finding at least one preimage
of both U and Ũ is (1− 1/e)2. Let these preimages be Hp and H̃p, respectively.
Then g(fm(Hp)‖fm(H̃p)) = HT‖H̃T. Finally, the complexity of evaluating fm

2n times corresponds to 2n−1 compression function evaluations. �
We note that for an ideal 2n-bit compression function, the above task has com-
plexity about 22n. The story does not finish with Theorem 1, however. Clearly, by
evaluating a random n-bit function 2n times, one finds on average one preimage
for all elements of {0, 1}n. Thus, we obtain the following corollary.

Corollary 1. Given t target hash values, in time 2n−1 one pseudo-preimage
(on average) can be found for each target hash value. Here, t can be any number
between 1 and 2n.

Proof. The technique is the same as above (we note that inverting g, which
must be done 2t times, is assumed to be a much simpler task than evaluating
f). Since fm is evaluated on all 2n possible inputs, on average one preimage is
found for each element of {0, 1}n. Therefore, again assuming independence, we
also expect one preimage on average of each of the t target hash values. With
respect to the complexity, we repeat that 2n calls to fm is equivalent to about
2n−1 compression function calls. �

114 L.R. Knudsen et al.

In the case of MDC-2, where g has a special form that allows to compute n bits
of the output given only n bits of the input (and vice versa), t above can actually
be 22n without affecting the complexity. The reason is that g (in this case) never
has to be inverted more than 2n times.

Due to Theorem 1 and Corollary 1, the tree described above can be efficiently
constructed as follows (note that the tree will, in fact, not be binary, due to some
nodes having no children, and others having more than two, but on average the
number of children per node will be two):

Assign the value HT‖H̃T of the target image to the root of the tree. Then find
(in expected time 2n) two pseudo-preimages of the target image by the method
of Theorem 1 (applied twice with different message blocks m). This means the
tree now contains the root and two children of the root. Then find two pseudo-
preimages of each of the two children of the root. This also takes time 2n due to
Corollary 1 (again, applied twice). Continue like this d times, ending up with a
tree of depth d having 2d leaves. The time complexity is d2n.

As mentioned, with 2d leaves, meaning 2d new target images, finding by brute
force a true preimage has complexity 22n−d. Hence, the total time complexity is
about d2n + 22n−d. Memory requirements are 2d+1− 1 intermediate hash values
and a negligible number of message blocks.

Observe that with d = 0 one gets time complexity 22n and space complexity 1,
which is not surprising since we do not build a tree at all, so we have a standard
brute force preimage attack. With d = n/2 one gets time complexity about 23n/2

and space complexity about 2n/2, equivalent to the attack of Lai and Massey, but
the technique is different. The most efficient attack appears when d = n, in which
case the time complexity is about (n+1)2n, and the space complexity is 2n+1. We
improve the efficiency of this particular time/memory trade-off in Section 4.2.

We note that this attack provides practically any time/memory trade-off for
which the product of the time and the space complexities is about 22n. Figure 5
shows some example trade-offs.

2n

22n

1 2n

d = 0

d = n/2

d = 2n/3
d = 3n/4

d = n

Space

T
im

e

Fig. 5. A visualisation of the time/memory trade-off. Both axes are logarithmic. The
case d = 0 corresponds to the brute force attack. Larger values of d constitute improve-
ments with respect to attack efficiency.

Cryptanalysis of MDC-2 115

HT‖H̃T

�
��

�

�

�	

��

�

Fig. 6. Constructing a tree of pseudo-preimages by finding one child of every node in
each step

Alternative methods. The tree above does, in fact, not have to be binary. If
every node has on average 2b children, then when the tree has depth d, there
are 2bd leaves. The time required to construct the tree is d2b+n−1. The time
required for Step 2 above is 22n−bd. The memory requirements are about 2bd for
reasonably large b. With b = n/(d+ 1), which approximately balances the time
spent in Steps 1 and 2, the total time complexity is about (d/2+1)2n(d+2)/(d+1)

and the memory requirements are 2nd/(d+1).
An alternative way of constructing the tree is the following. First, find a

pseudo-preimage of the root. Then, find a pseudo-preimage of the root and its
child. Continue applying Corollary 1 this way, finding in each step a pseudo-
preimage for each node in the tree, thus doubling the tree size in every step.
After d steps, the tree contains 2d nodes. The time complexity is d2n−1. See
Figure 6.

Now, if there is no length padding, then we may perform a brute force search
that links the initial value to any of the 2d nodes in the tree. This brute force
search has complexity 22n−d. Compared to the variant of the previous section,
both time and space requirements are roughly halved. We note that this attack
resembles a method described by Leurent [17] of finding preimages of MD4.

Length padding can be circumvented in the same way as it is circumvented
in Kelsey and Schneier’s second preimage attack on the Merkle-Damg̊ard con-
struction [12], but the resulting attack is slightly slower than the variant above,
since there is (apparently) no efficient method of finding fixed points of the
compression function.

4.2 Pushing the Time Complexity Down to 2n

The attack above can be modified to obtain an attack of time complexity very
close to 2n. The attack applies a technique which bears some resemblance with
the one used in a preimage attack by Mendel and Rijmen on the HAS-V hash
function [19], and also with the P3graph method introduced by De Cannière and
Rechberger in [4]. The attack works as follows:

1. Choose two message blocks m0 and m1 arbitrarily, but with correct padding
for a message of length n+ 1 blocks. Here we assume that padding does not
fill an entire message block.

2. Compute f(i,mb) for each b ∈ {0, 1} and for every i from 0 to 2n − 1. Store
the outputs in the lists Ub, sorted on the output. Sorting can be done in
linear time by using, e.g., Bucket-Sort or direct addressing [3].

116 L.R. Knudsen et al.

Table 2. Time complexities of the preimage attack of Section 4.2 compared to the
previous best known preimage attack of Lai and Massey, and to a brute force attack.
For details on the case of DES (n = 54), we refer to Appendix A.2.

n
Preimage attack complexity

Section 4.2 Lai-Massey Brute force
54 255 281 2108

64 265 296 2128

128 2129 2192 2256

256 2257 2384 2512

3. Construct a binary tree with 2n leaves having the target image HT‖H̃T as
root (as above for d = n). The two children of each node in the tree are
found by lookups in U0 and U1, respectively.

4. Given 2n new target images (namely the leaves in the tree), perform a brute
force search starting from the initial value of the hash function.

Step 2 above takes time 2n. Memory requirements for each of the lists Ub are 2n

values of n bits. Step 3 is expected to take a negligible amount of time compared
to Step 2, since the tree is constructed by about 2n table lookups. Step 4 takes
an expected time 2n, since there are 2n target images, and the probability of
reaching each of them is 2−2n. In total, the time complexity of the attack is
about 2n+1, and the memory requirements are about the same.

We note that if padding spans several message blocks, a few initial steps are
required to invert through the padding blocks. This may add a small factor of
2n to the complexity.

Table 2 shows some example complexities of this attack for different sizes of
n, compared to the previous best known preimage attack and the brute force
attack.

5 Multicollisions

The preimage attack described in the previous section can be used to construct
multicollisions for the construction (2). Let the hash function be H , and let its
initial value be Hiv‖H̃iv. Apply the above preimage attack twice with target
hash value Hiv‖H̃iv, yielding two messages M0 and M1. In other words, we find
M0,M1 such that H(M0) = H(M1) = Hiv‖H̃iv. Now we can construct a 2t-
collision for arbitrary t; the messages in the multicollision consist of t copies of
M0 or M1, concatenated together.

The time complexity is twice the complexity of the preimage attack, i.e.,
2n+2. For t > 4 this is more efficient than the previous best known multicollision
attack by Joux [11], which has time complexity t2n, assuming a birthday attack
is used to produce each individual collision; by applying the collision attack of
Section 3, the complexity is reduced to (very roughly) (t log2(n)/n)2n. Still the

Cryptanalysis of MDC-2 117

multicollision attack based on the preimage attack is faster when t > 4n/ log2(n).
A drawback of the preimage-based method is memory requirements, which are
about 2n+1 in our attack, whereas by using cycle-finding methods [6, 2], the
memory requirements of Joux’s attack can be reduced to a negligible quantity.

6 Other Non-random Properties

Say M is a message of t blocks, and let H(M) = Ht‖H̃t be the MDC-2 hash of
M . The probability that Ht �= H̃t is (1− 2−n)t, because the two halves must be
different after the processing of every block out of the t blocks, in order for them
to be different at the end. For an ideal 2n-bit hash function, this probability is
1− 2−n, irrespective of the value of t. Hence, when t� 1, the probability of the
two output halves being equal is much higher in MDC-2 than in an ideal hash
function. In fact, if t = 2n, then the probability is around 1 − 1/e ≈ 0.63, since
(1 − 2−n)2

n ≈ 1/e for plausible values of n. The property does not hold for the
construction (2) in general (nor does it hold if some key bits are fixed to ensure
that the two keys in each iteration are different). What is required is that some
n-bit value b exists for every n-bit value a such that g(a‖a) = b‖b.

If, during the processing of a message, one has obtained two equal halves, a
standard birthday collision attack can be applied in time 2n/2. Hence, a new type
of birthday attack on MDC-2 is as follows. Search for a message block m0 such
that f(H0,m0) = f(H̃0,m0) = H1. Then find a pair (m1,m

′
1) of message blocks

such that f(H1,m1) = f(H1,m
′
1). This attack takes the same amount of time

as a standard birthday attack (it is in fact faster by a factor of two, since f only
has to be called 2n times), but a naive implementation uses only 2n/2 memory
compared to 2n for a (naive) standard birthday attack. By using cycle-finding
methods, memory requirements can be made negligible in both cases.

7 Application to Other Constructions

The construction (2) can be generalised even further. For example, we may define
the following general construction, where f and f̃ are two distinct functions both
mapping as {0, 1}n × {0, 1}n → {0, 1}n, and g : {0, 1}2n → {0, 1}2n is (again)
an invertible mapping:

W = f(Hi−1,mi)‖f̃(H̃i−1,mi)
Hi‖H̃i = g(W).

(3)

Our attacks also apply to this construction, except that in some cases the com-
plexity is up to twice as high. For instance, finding a pseudo-preimage of HT‖H̃T
now requires 2n evaluations of both f and f̃ , and hence the total time complex-
ity is comparable to 2n compression function evaluations, and not 2n−1 as is the
case when f = f̃ .

Apart from MDC-2 we have not found other constructions in the literature
that fall under the category of (2) or (3). However, a construction that easily

118 L.R. Knudsen et al.

comes to mind is the dual of MDC-2, meaning that the message block is used as
the key in the block cipher calls, and the chaining value is used as the plaintext
and also in the feed-forward. An advantage of this dual construction is that some
block ciphers accept keys that are larger than the plaintext block, and hence the
message blocks are larger which results in improved performance. However, since
this construction is an instance of (2), it is susceptible to the attacks described
in this paper.

8 Conclusion

In this paper we presented the first collision attack on the MDC-2 construction
having time complexity below that of a birthday attack. The attack applies to
other constructions similar to MDC-2, and does not rely on weaknesses of the
underlying block cipher.

We also described new and improved time/memory trade-offs for preimage
attacks, where almost any trade-off such that the product of time and space
complexities is about 22n, with time complexity between 2n and 22n, is possible.
These new trade-offs mean that, e.g., a second preimage attack on MDC-2 based
on DES (see Appendix A) is not far from being practical.

We showed how to construct multicollisions based on the fastest preimage
attack, and we discussed some other constructions to which our attacks apply.

We believe the attacks have great theoretical and potential practical signifi-
cance. Double-length schemes have been studied intensively in the last two or
three decades, and for many years it was believed that MDC-2 was collision
resistant, assuming the underlying block cipher was secure. In fact, the main
criticism of MDC-2 seems to have been its somewhat poor performance. These
attacks show that we still have a lot to learn about double-length construc-
tions, although the recent shift towards provably secure schemes provides some
consolation.

Acknowledgements

We would like to thank Prof. Bernhard Esslinger of University of Siegen, Joerg-
Cornelius Schneider and Henrik Koy of Deutsche Bank for discussions on MDC-
2-DES and providing us with references for its use [26,15,10]. We also would like
to thank the reviewers for insightful comments and for providing the reference
to Feller [5] for the estimate (1).

References

1. Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas Jr., S.M., Meyer, C.H.W.,
Oseas, J., Pilpel, S., Schilling, M.: Data authentication using modification detection
codes based on a public one way encryption function, March 13, 1990, US Patent
no. 4,908,861. Assigned to IBM. Filed (August 28, 1987), http://www.google.

com/patents?vid=USPAT4908861 (2008/09/02)

Cryptanalysis of MDC-2 119

2. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numerical
Mathematics 20(2), 176–184 (1980)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

4. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008)

5. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn.,
vol. 1. Wiley, Chichester (1968)

6. Floyd, R.W.: Nondeterministic Algorithms. Journal of the Association for Com-
puting Machinery 14(4), 636–644 (1967)

7. Hellman, M.E.: A Cryptanalytic Time–Memory Trade-Off. IEEE Transactions on
Information Theory IT-26(4), 401–406 (1980)

8. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

9. International Organization for Standardization. ISO/IEC 10118-2:1994. Informa-
tion technology – Security techniques – Hash-functions – Part 2: Hash-functions
using an n-bit block cipher algorithm (1994) (Revised in 2000)

10. International Organization for Standardization. ISO 9735-6:2002. Electronic data
interchange for administration, commerce and transport (EDIFACT) – Application
level syntax rules (Syntax version number: 4, Syntax release number: 1) – Part 6:
Secure authentication and acknowledgement message (message type – AUTACK)
(2002), http://www.gefeg.com/jswg/v41/data/V41-9735-6.pdf (2008/09/02)

11. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

12. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

13. Knudsen, L.R., Lai, X., Preneel, B.: Attacks on Fast Double Block Length Hash
Functions. Journal of Cryptology 11(1), 59–72 (1998)

14. Knudsen, L.R., Preneel, B.: Fast and Secure Hashing Based on Codes. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg
(1997)

15. Kraus, D.: Integrity mechanism in German and international payment sys-
tems (2002), http://www.src-gmbh.de/whitepapers/Intergrity_mechanisms_

in_payment_systems_Kraus_en.pdf (2008/09/02)
16. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.

(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)
17. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,

pp. 412–428. Springer, Heidelberg (2008)
18. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)

ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)
19. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V Compression Function. In: Nam,

K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 335–345. Springer, Hei-
delberg (2007)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

21. Meyer, C.H., Schilling, M.: Secure Program Load with Manipulation Detection
Code. In: Proceedings of SECURICOM 1988, pp. 111–130 (1988)

120 L.R. Knudsen et al.

22. Nandi, M.: Towards Optimal Double-Length Hash Functions. In: Maitra, S., Veni
Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp.
77–89. Springer, Heidelberg (2005)

23. Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security Analysis of a 2/3-Rate Double
Length Compression Function in the Black-Box Model. In: Gilbert, H., Handschuh,
H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)

24. National Bureau of Standards. Data Encryption Standard (DES), Federal Infor-
mation Processing Standards Publication (FIPS PUB) 46 (January 15, 1977)

25. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

26. Struif, B.: German Health Professional Card and Security Module Card, Specifica-
tion, Pharmacist & Physician, v. 2.0 (2003), http://www.dkgev.de/media/file/
2589.spez-engl-3.pdf (2008/09/02)

27. van Tilborg, H.C.A. (ed.): Encyclopedia of Cryptography and Security. Springer,
Heidelberg (2005)

28. Viega, J.: The AHASH Mode of Operation, Manuscript (September 2004), http://
www.cryptobarn.com/papers/ahash.pdf (2008/09/02)

A The Special Case of MDC-2 Instantiated with DES

For simplicity, throughout the paper we assumed that the key size k equals the
block size n of the block cipher with which MDC-2 is instantiated. However,
this is not necessarily the case, with DES [24] (n = 64, k = 56) being the
most prominent example. The effective key size for MDC-2 with DES is further
reduced by two bits to k = 54. For the following, it suffices to think of the
mapping from chaining blocks to keys as a truncation from 64 to 54 bits. The
exact details of this mapping are of no concern for the following treatment, hence
we refer to [9] for the full details.

A.1 Collision Attacks

The collision attack as described in Section 3 produces a collision in the last
chaining value of length 2n. However, if an arbitrary message block is appended
to the expected colliding message pair, it suffices to look for a collision in the 2k
bits that will be used as the key input of DES in the following iteration. Hence,
for the collision attack on MDC-2 based on DES having complexity about 251.5,
instead of two, at least three message blocks are needed.

A.2 Preimage Attacks

Also for the preimage attack of Section 4, the target hash is assumed to be of
size 2n. In order to take advantage of a smaller key size k, the last message block
needs to be known by the attacker. In this case the time complexity can be as
low as 255; if no first preimage is given then the attack has a complexity of about
265.

Cryptanalysis on HMAC/NMAC-MD5 and
MD5-MAC�

Xiaoyun Wang1,2, Hongbo Yu1, Wei Wang2,
Haina Zhang2, and Tao Zhan3

1 Center for Advanced Study, Tsinghua University, Beijing 100084, China
{xiaoyunwang,yuhongbo}@mail.tsinghua.edu.cn

2 Key Laboratory of Cryptographic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

{wwang,hnzhang}@math.sdu.edu.cn
3 Shandong University, Jinan 250100, China

zhantao@sdu.edu.cn

Abstract. In this paper, we present the first distinguishing attack on
HMAC and NMAC based on MD5 without related keys, which distin-
guishes the HMAC/NMAC-MD5 from HMAC/NMAC with a random
function. The attack needs 297 queries, with a success probability 0.87,
while the previous distinguishing attack on HMAC-MD5 reduced to 33
rounds takes 2126.1 messages with a success rate of 0.92. Furthermore, we
give distinguishing and partial key recovery attacks on MDx-MAC based
on MD5. The MDx-MAC was proposed by Preneel and van Oorschot in
Crypto’95 which uses three subkeys derived from the initial key. We are
able to recover one 128-bit subkey with 297 queries.

Keywords: HMAC, NMAC, MDx-MAC, MD5, Distinguishing attack,
Key recovery.

1 Introduction

Many cryptographic schemes and protocols use hash functions as primitives. In
recent work [3,4,16,17,18,19], devastating collision attacks on hash functions from
the MD4 family were discovered. Such attacks have undermined the confidence
in the most popular hash functions such as MD5 or SHA-1, and raise the interest
in reevaluating the actual security of the Message Authentication Code (MAC)
algorithms based on them [7,6,9].

HMAC and NMAC are hash-based message authentication codes proposed by
Bellare, Canetti and Krawczyk [1]. NMAC is the theoretical foundation of HMAC,
and HMAC has been implemented in widely used protocols including SSL/TLS,
SSH and IPsec. The security of NMAC and HMAC has been carefully analyzed
in [1,2]. It was proved that NMAC is a pseudo-random function family (PRF) un-
der the assumption that the compression function of the keyed hash function is a

� Supported by the National Natural Science Foundation of China (NSFC Grant
No. 60525201 and No. 90604036) and 973 Project (No.2007CB807902 and
No.2007CB807903).

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 121–133, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

122 X. Wang et al.

PRF. This proof can be extended to HMAC by an additional assumption: the key
derivation function in HMAC is a PRF. However, if the underlying hash function
is weak (such as MD5), the above proofs may not work.

There are three types of the attacks on HMAC/NMAC, namely, distinguishing
attacks, existential forgery attacks and universal forgery attacks. Distinguishing
attacks can be divided into distinguishing-R and distinguishing-H attacks [9],
where distinguishing-R attack means distinguishing HMAC/NMAC from a ran-
dom function, and distinguishing-H attack detects instantiated HMAC/NMAC
(by existing hash functions) from HMAC/NMAC with a random function. A
general distinguishing-R attack on HMAC using the birthday paradox was intro-
duced by Preneel and van Oorschot [10]. This attack requires about 2

l
2 messages

and works with probability 0.63, where l is the length of the initial value.
In this paper, we focus on the distinguishing-H attack on HMAC/NMAC-MD5

that checks which cryptographic hash function is embedded in HMAC/NMAC.
For simplicity, we call it distinguishing attack. In [9], Kim et al. introduced two
kinds of distinguishers of the HMAC structure, the differential distinguisher and
the rectangle distinguisher, and used them to analyze the security of HMAC based
on HAVAL, MD4, MD5, SHA-0 and SHA-1. For MD5 reduced to 33 rounds, they
described a distinguishing attack taking 2126.1 messages with a success probabil-
ity 0.92. Using the pseudo-collisions found by den Boer and Bosselaers [5], Con-
tini and Yin [6] proposed a related-key distinguishing attack on NMAC-MD5 with
247 queries and a success probability of 0.25. They applied it to construct forgery
and partial key-recovery attacks on NMAC-MD5. Fouque et al. [7] presented the
first full-key recovery attack on HMAC/NMAC-MD4, and extended Contini and
Yin’s attack to the full key-recovery attack on NMAC-MD5. The latter was inde-
pendently found by Rechberger and Rijmen [11,12] with better results than [7] by
ignoring the conditions in the last 5 steps. They also proposed a full key-recovery
attack in the related-key setting on NMAC with SHA-1 reduced to 34 steps, and
improved the attack on HMAC instantiated with reduced SHA-1 variants of more
steps in [12]. Recently, Wang et al. [15] suggested more efficient full key-recovery
attacks on HMAC/NMAC-MD4 and NMAC-MD5 using near-collisions. However,
all the attacks on NMAC-MD5 are in the related-key setting, hence these attacks
can not be applied to the corresponding HMAC.

In this paper, we are able to get rid of related keys, and propose the first distin-
guishing attacks on HMAC/NMAC-MD5. Based on the dBB pseudo-collision [5],
we search for a new kind of collision which is called a dBB collision. With the
specific structure and high probability of a dBB collision, we can successfully
distinguish a dBB collision from other random collisions found by the birth-
day attack. Once a dBB collision is detected, the distinguisher outputs HMAC/
NMAC-MD5; otherwise, it outputs HMAC/NMAC with a random function. The
attack needs 297 queries in total, and the success rate is 0.87.

Another contribution of this paper is to introduce distinguishing and partial
key recovery attacks on the MDx-MAC based on MD5 called the MD5-MAC.
The MDx-MAC was proposed by Preneel and van Oorschot in Crypto’95 [10]
which transforms any MD4-family hash function into a MAC algorithm. It uses

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 123

three subkeys K0, K1 and K2 which are derived from an original key K. The role
of K0 and K2 is similar to the two secret keys in the envelope MAC construction,
and four 32-bit words of K1 are added to all the step operations of four rounds
respectively. The dBB collision can be used not only to distinguish MD5-MAC
directly, but also to capture the full subkey K1 which is involved in the collision
path. The number of queries in the attack is about 297.

This paper is organized as follows. Background and definitions are recalled in
Section 2. In Section 3, we first introduce a distinguishing attack on the keyed
IV MAC, which is an adaptive chosen message attack, and then extend it to
distinguish HMAC/NMAC-MD5 from HMAC/NMAC with a random function.
In Section 4, we present distinguishing and key recovery attacks on MD5-MAC.
Finally, Section 5 concludes the paper.

2 Background and Definitions

2.1 Notations

H : a hash function
H : a hash function without padding
h : a compression function
x‖y : concatenation of the two bitstrings x and y
+ : addition modular 232

⊕ : bitwise exclusive OR
∨ : bitwise OR
∧ : bitwise AND

≪ s : left-rotation by s-bit

2.2 Brief Description of MD5

MD5 [13] is a hash function proposed by Rivest as a strengthened version of MD4.
It takes an arbitrary length message and produces a 128-bit hash value. First, the
input messageM is padded to be M , a multiple of 512 bits. Suppose the length of
M in bits is l. Append the bit “1” to the end of the message followed by k “0” bits,
where k is the smallest non-negative integer such that l+1+ k = 448 mod 512.
Then append the 64-bit block that is equal to the number l expressed using
a binary representation. The padded message M is then divided into 512-bit
message blocks, i.e., M = (M0, . . . ,Mn−1), and processed by Merkle-Damg̊ard
iterative structure. Each iteration invokes a compression function which takes
a 128-bit chaining value and 512-bit message block as inputs, and outputs a
128-bit value as the hash value of this iteration.

The compression function has four rounds. Every round has 16 steps and
employs a round function. For the padded message M with n blocks, the hash
function is performed n iterations in total. The k-th iteration is the
following:

124 X. Wang et al.

– Input: 512-bitmessageMk−1=(m0,m1, · · · ,m15) anda 128-bit chaining value
(A0, B0, C0, D0) = CVk−1, where CVk−1 is the output of (k − 1)-th iteration.

– Step update: For 0 ≤ i ≤ 15,

Ai+1 = Bi + (Ai + f(Bi, Ci, Di) + w4i + c4i) ≪ s4i,

Di+1 = Ai+1 + (Di + f(Ai+1, Bi, Ci) + w4i+1 + c4i+1) ≪ s4i+1,

Ci+1 = Di+1 + (Ci + f(Di+1, Ai+1, Bi) + w4i+2 + c4i+2) ≪ s4i+2,

Bi+1 = Ci+1 + (Bi + f(Ci+1, Di+1, Ai+1) + w4i+3 + c4i+3) ≪ s4i+3,

where for 0 ≤ j ≤ 63, wj is one of the 16 message words, cj and sj are step-
dependent constants, f is a round-dependent Boolean function as follows:

f(x, y, x) = (x ∧ y) ∨ (¬x ∧ z) if 0 ≤ i ≤ 3,
f(x, y, x) = (x ∧ z) ∨ (y ∧ ¬z) if 4 ≤ i ≤ 7,
f(x, y, x) = x⊕ y ⊕ z if 8 ≤ i ≤ 11,
f(x, y, x) = y ⊕ (x ∨ ¬z) if 12 ≤ i ≤ 15.

– Output: CVk = (A0 +A16, B0 +B16, C0 + C16, D0 +D16).

CVn = H(M) is the hash value, and CV0 is the initial value.

2.3 Pseudo-Collisions of MD5

Our attacks are based on the dBB pseudo-collisions found by den Boer and
Bosselaers [5], which satisfy the following relations:

h(IV,M) = h(IV ′,M), (1)
IV ⊕ IV ′ = (231, 231, 231, 231) = ΔMSB, (2)
MSB(B0) = MSB(C0) = MSB(D0), (3)

where M is a one-block message, and MSB means the most significant bit. The
probability of the dBB pseudo-collision is 2−46. The specific differential path for
the dBB pseudo-collision is shown in Table 1. We call the relations (2) and (3) dBB
conditions. Now we define an important type of collision as the dBB collision:

dBB collision: A collision of two-block messages (x‖y, x′‖y) is called a dBB
collision if

1. Let CV = h(IV, x) and CV ′ = h(IV, x′). The pair (CV,CV ′) satisfies the
dBB conditions.

2. (CV, y) and (CV ′, y) compose a dBB pseudo-collision, i.e., h(CV, y) =
h(CV ′, y).

2.4 Secret Prefix MAC, HMAC and NMAC

A MAC algorithm is a hash function with a secret key K as the secondary input.
HMAC and NMAC are two popular MAC algorithms which are all derived from

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 125

efficient hash functions. Another three earlier hash based MACs are constructed
by the Secret Prefix Method, Secret Suffix Method and Envelope Method.

The secret prefix method was proposed in the 1980s, and was suggested for
MD4 independently in [14] and [8]. The secret prefix MAC is constructed as:

Secret-Prefix-MACK(M) = H(K‖M).

If the key K (maybe padded) is a full block, secret prefix MAC is equivalent
to a hash function with a secret IV , which is called the keyed IV MAC. We
denote this kind of MAC construction based on MD5 as KIMAC-MD5 which is
the basic design unit for HMAC/NMAC-MD5.

The NMAC function, on input message M and a pair of 128-bit independent
keys (K1,K2), is defined as:

NMAC(K1,K2)(M) = HK1(HK2(M)).

In fact, the outer function acts on the output of the iterated hash function, and
thus involves one iteration of the compression function. That is to say, the outer
function is basically the compression function hK1 acting on HK2(M) which has
been padded to a full block size.

Since the NMAC replaces the fixed IV in H with a secret key, this requires a
modification of existing implementation of the underlying hash function. The con-
struction ofHMAC is motivated to avoid this problem, and still uses the usual fixed
IV . On input message M and a single secret keyK, HMAC is computed as:

HMACK(M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)),

where K is the completion by adding ”0”s of K to a full block of the iterated
hash function, and opad and ipad are two one-block length constants.

Basically, HMACK is the same as NMAC(h(K⊕opad),h(K⊕ipad)). For simplicity,
we denote the HMACK(M) by Hout(Hin(M)).

2.5 Description of MD5-MAC

The MDx-MAC was proposed by Preneel and van Oorschot in Crypto’95 [10],
which converts MDx-family hash functions into MAC algorithms with a key K
up to 128 bits. The underlying hash function can be any of MD5, RIPEMD,
SHA, or other similar algorithms except MD4. For convenience, we denote the
MDx-MAC based on MD5 as MD5-MAC.

Let MD5 denote MD5 algorithm without padding. The 128-bit secret key K
is expanded to three 128-bit subkeys K0, K1 and K2 by the following procedure.

For i = 0 to 2, Ki = MD5(K||Ui||K), where U0, U1 and U2 are three different
96-byte constants (See [10] for details). The MD5-MAC is then obtained from
MD5 with the following modifications:

1. The initial value IV of MD5 is replaced by K0.
2. The key K1 is split into four 32-bit words denoted by K1[i] (0 ≤ i ≤ 3) which

are added to the constants used in round i of each MD5 iteration respectively.

126 X. Wang et al.

3. Following the block containing the padding and appended length as defined
by MD5, an additional 512-bit block of the following form

K2 = K2||K2 ⊕ T0||K2 ⊕ T1||K2 ⊕ T2

is appended, where Ti (0 ≤ i ≤ 2) are three 128-bit constants.
4. The MAC value is the leftmost m bits of the hash value.

In [10], the authors recommended m = n/2 for most applications. For our
attack, we assume m = n.

3 Distinguishing Attacks on HMAC/NMAC-MD5

To describe the distinguishing attack on HMAC/NMAC-MD5, we start with
a distinguishing attack on KIMAC-MD5 which is an adaptive chosen message
attack.

3.1 Adaptive Chosen Message Attack on KIMAC-MD5

The core of the attack is to find a pair (x, x′) whose output difference satisfies
the dBB conditions, and to detect whether x and x′ can lead to a dBB collision
by appending 247 y separately with a reasonable probability.

The adversary performs the following steps:

1. Generate a structure of 266 random messages, and query the MACs of these
messages. We assume that the MAC algorithm is either a KIMAC-MD5 or
KIMAC with a random function (KIMAC-RF).

2. Use the birthday attack [20] to find two messages (x, x′) where (HK(x),
HK(x′)) satisfies the dBB conditions.

3. Let pad(pad′) be the padding for x(x′). Append 247 different messages y to
the messages x‖pad and x′‖pad′ respectively, and query the MACs with the
two sets of 247 messages.

4. If a collision (x‖pad‖y, x′‖pad′‖y) is found, output the MAC as KIMAC-
MD5. Otherwise, the MAC is KIMAC-RF.

The data complexity of the attack is 266 +2 ·247 ≈ 266 chosen messages. Since
we can use the birthday attack to search pairs satisfying dBB-conditions, the
time complexity is dominated by the size of the structure in Step 1 (the data
collection phase), which is about 266 queries, i.e., 266 MAC computations.

Now let us analyze the success probability of this attack. From the above
process, we observe that, when a specific message pair (x, x′) is found in step 2,
our attack succeeds in the following cases. If the KIMAC is based on MD5, a
message y such that HK(x‖pad‖y) = HK(x′‖pad′‖y) is searched. Otherwise, if
the KIMAC is KIMAC-RF, no collision is found. The detailed computation of
the probability is as follows.

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 127

For two random messages x and x′, the output difference HK(x) ⊕ HK(x′)
satisfies the dBB conditions with probability:

1
2128 ×

1
4

=
1

2130 .

According to the birthday paradox and Taylor series expansion, no matter
what kind of oracle MAC is, among the 266 messages, we can find a message
pair (x, x′) satisfying the dBB conditions with probability

q ≈ 1− (1− 1
2130)C2

266 ≈ 1− e−2 ≈ 0.86.

For KIMAC-MD5, the collision in step 4 happens with higher probability
2−46 instead of the average probability 2−128. So, when the KIMAC is based
on MD5, we can find a collision among 247 adaptive chosen messages in Step 4
with probability p1 = 1 − (1 − 1

246)2
47 ≈ 0.86. Otherwise, a collision occurs for

KIMAC-RF with a low probability p2 = 1− (1− 1
2128)2

47 ≈ 0. Hence, the success
rate of this attack is

q × [
p1

2
+ (

1− p2

2
)]

≈ 0.86× (0.86× 1
2

+
1
2
)

≈ 0.80.

The success rate can be improved by repeating the attack several times.

3.2 Adaptive Chosen Message Attack on HMAC-MD5

The above attack cannot be applied to HMAC-MD5 directly due to the fact that
the dBB collision of Hin is concealed by the outer level hashing Hout. However,
we can discard all other collisions by some concrete detective techniques, and
save the dBB collisions.

Suppose that we get a collision of HMAC which has the form (x‖y, x′‖y).
Denote Hin(x) as CV , and Hin(x′) as CV ′, for simplicity. Let ΔCV = CV ⊕
CV ′. The key of our attack is to distinguish the dBB collisions according to the
relation of Hin(x) and Hin(x′):

1. Internal collision: If ΔCV = 0, (x‖y, x′‖y) is called an internal collision.
2. External collision: If ΔCV �= 0, (x‖y, x′‖y) is an external collision. Further-

more, when ΔCV satisfies the dBB conditions, and (CV, y) and (CV ′, y)
compose a dBB pseudo-collision, (x‖y, x′‖y) is a dBB collision. Otherwise,
the collision is a non-dBB external collision.

The adversary performs as follows:

1. Generate 289 one-block messages x randomly, and append a fixed 447-bit
message y (taking padding into consideration) to each x. Query all the mes-
sages x‖y to get their MACs.

128 X. Wang et al.

2. Find all the collided messages (x‖y, x′‖y) satisfying HMACK(x‖y) =
HMACK (x′‖y). Note that on average, there are 249 internal collisions, 2
dBB collisions and 250 non-dBB external collisions.

3. For all the collisions (x‖y, x′‖y) collected in step 2 , we append y′ �= y to x
and x′, query (x‖y′, x′‖y′), and check if they collide. This way, the internal
collisions can be detected. In the next step, we only need to distinguish the
dBB collisions from the non-dBB external collisions.

4. For the remaining collisions, append 247 different y′ �= y to x and x′, respec-
tively, query the MACs for x‖y′ and x′‖y′, and check whether a collision
occurs. Once a collision (x‖y′, x′‖y′) is found, we conclude that the original
collision (x‖y, x′‖y) is a dBB collision, and output the MAC is HMAC-MD5.
Otherwise, the MAC is a HMAC-RF.

Complexity evaluation
There are at most 2177 pairs produced by 289 messages, so the expected num-

ber of internal collisions is 2177−128 = 249. Similarly, the expectation of non-dBB
external collisions is 249 + 249 = 250 where 249 collisions occur after Hin and
other 249 collisions occur after Hout. For two messages x and x′, the output
difference hK(x) ⊕ hK(x′) satisfies the dBB conditions with probability 2−130.
Consequently, there are 2177−130 = 247 pairs satisfying the dBB conditions, and
about 247−46 = 2 of them are dBB collisions.

In step 1, the data complexity is 289. We keep a table of 289 entries in step
2, finding 249 + 250 + 2 collisions needs about 289 table lookups. In step 3, the
time complexity is about 249 + 250 + 2 ≈ 250.58 MAC computations. In step 4 ,
both the data and time complexity are about (250 + 2)× 247 ≈ 297.

Therefore, the total time complexity of attack is about 297 MAC computations
and 289 table lookups, and data complexity is about 297 chosen messages.

Success rate
As analyzed in section 3.1, we divide the success rate into two parts:

– If the MAC is HMAC-MD5, the attack succeeds when a dBB collision is
found among 250.58 collisions.
The probability that there exists a dBB collision among 250.58 collisions is

1− (1− 1
2130+46)2

177 ≈ 1− e−2 ≈ 0.86.

The probability that the dBB collision can be detected in step 4 is about

1− (1− 1
246)2

47 ≈ 1− e−2 ≈ 0.86.

Thus, if the MAC is HMAC-MD5, the attack can find a dBB collision with
probability 0.86× 0.86 = 0.74.

– If the MAC is HMAC-RF, the attack succeeds when no dBB collision is
detected. The success probability is about

((1 − 1
2128)2

47
)2

50 ≈ 1.

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 129

Therefore, the success rate of the whole attack is about

1
2
× 0.74 +

1
2
× 1 = 0.87.

3.3 Chosen Message Attack on HMAC-MD5

In this subsection, we relax the adaptive chosen message attack to a chosen
message attack. The data complexity will increase up to 2113, but the table size
is reduced from original 289 to 266 entries.

The chosen message distinguishing attack on HMAC-MD5 is described as
follows:

1. Select a set of 266 one-block messages x at random. Append a chosen 447-bit
message y to all the x, and form a structure of 266 messages x‖y. Choose
247 different messages y to produce 247 structures. Make 2113 MAC queries
for all of the structures.

2. For each structure, fulfill the birthday attack [20] to find all the collisions
(x‖y, x′‖y) satisfying HMACK(x‖y) = HMACK(x′‖y).

3. For each collision (x‖y, x′‖y) found in step 2, we determine the type of the
collision.
– Check whether all the pairs (x‖y′, x′‖y′) in other structures are collisions.

If all other pairs (x‖y′, x′‖y′) collide, then (x‖y, x′‖y) is an internal col-
lision.

– Check whether there exists at least one y′ such that (x‖y′, x′‖y′) is a
collision in another structure. If so, we conclude that (x‖y, x′‖y) is a
dBB collision, and the MAC is HMAC-MD5. If there is no dBB collision,
the MAC is HMAC-RF.

It is clear that the attack needs about 2113 chosen messages. For each struc-
ture, the expectation is 8 internal collisions and 16 external collisions. So the
total number of collisions in all 247 structures is about 24× 247 < 252. For each
collision, 247 table lookups are needed. Therefore the time complexity is less
than 252 × 247 = 299 table lookups, and the table size is 266 entries.

The computation of success rate is the same as in subsection 3.2.

Application to NMAC: NMAC is a generalized version of HMAC as intro-
duced in subsection 2.3. Since the above attack on HMAC-MD5 has no relation
with the secret key, hence it can be applied to NMAC-MD5 directly.

4 Partial Key Recovery Attack on the MD5-MAC

Obviously, the distinguishing attack on HMAC/NMAC-MD5 described in Sec-
tion 3 is also applicable to distinguish the MD5-MAC from the MDx-MAC based
on a random functions.

It should be noted that our distinguishing attack on HMAC/NMAC-MD5
can not be extended to recover the inner keys. Even though the partial bits of

130 X. Wang et al.

intermediate states of the second block y can be recovered using the method
in [6], we can not derive the inner keys of HMAC/NMAC by the backward
computation because of the existence of the first block x. For the MDx-MAC, the
situation is different since its secret keys are not only involved in the beginning
(IV) and the end, but also in every iteration. We are able to recover the second
secret key K1 involved in every iteration.

This process can be divided into three phases. The first phase is to find a dBB
collision. Note that by the techniques described in section 3, it’s easy to find a
dBB collision (x‖y, x′‖y) with the complexity of 297 MAC computations. The
second phase is to recover some bits of the intermediate states by the given dBB
collision (x‖y, x′‖y). The third phase is to recover the secret key K1.

4.1 Recovering Some Bits of the Intermediate States

We can use the bit carry method of [6] to recover 255 bits of the intermediate
chaining variables of the second block y. Let y = y[0]y[1]...y[15] where each y[i]
is a 32-bit words. Table 1 lists the dBB differential path. The 6-th column of
the table contains sufficient conditions that guarantee the dBB differential holds,
and the last column lists the recovered 255 bits of the first round. The complexity
of this part is less than 246 × 255 ≈ 254 MAC computations.

4.2 Recovering the 128-Bit Subkey K1

We implement the divided and conquer attack to recover the 32-bit subkeys
K1[0], K1[1], K1[2] and K1[3] separately.

1. Recovering the 32-bit subkey K1[0]
From Table 1, 95 bits in the first five variables A1, D1, C1, B1 and A2 can
be recovered. We guess the other 65 unknown bits, and for each guess, we
compute K1[0], D2, C2, B2, A3 and D3 successively.

K1[0] = (A2 −B1) ≫ s0 −A1 − f1(B1, C1, D1)− y′[0]− C0

D2 = A2 + (D1 + f(A2, B1, C1) + y[1] + c1 +K1[0]) ≪ s1

C2 = D2 + (C1 + f(D2, A2, B1) + y[2] + c2 +K1[0]) ≪ s2

B2 = C2 + (B1 + f(C2, D2, A2) + y[3] + c3 +K1[0]) ≪ s3

A3 = B2 + (A2 + f(B2, C2, D2) + y[4] + c4 +K1[0]) ≪ s4

D3 = A3 + (D2 + f(A3, B2, C2) + y[5] + c5 +K1[0]) ≪ s5

If the 90 bits of D2, C2, B2, A3 and D3 are consistent with the corresponding
recovered bits in Table 1, we get the right secret key K1[0] and A1, D1, C1,
B1 and A2. In this way, we can compute all the chaining variable values Ai,
Bi, Ci and Di (1 ≤ i ≤ 4) in the first round.

2. Recovering the 32-bit subkey K1[1]
Guess the 32-bit key K1[1] . For each candidate K1[1], we compute Ai, Bi,
Ci and Di (5 ≤ i ≤ 8) using the known values (A4, D4, C4, B4) and message

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 131

y. If K1[1] is the right key, then Ai, Bi, Ci, and Di (5 ≤ i ≤ 8) will satisfy
all the 15 conditions in steps 17-33 of Table 1 with probability 1. Otherwise,
Ai, Bi, Ci, and Di (5 ≤ i ≤ 8) will satisfy the 15 conditions with probability
2−15. In this way, there are about 232 · 2−15 = 217 candidates K1[1] left. It
only needs two other dBB collisions (x‖y′, x′‖y′) to discard the wrong K1[1],
and capture the right one from the 217 candidates. To find two other dBB
collisions takes about 247 MAC computations.

3. Recover the 32-bit subkeys K1[2] and K1[3]
From Table 1, we know that there is only one condition in the third round.
This means that at most 33 dBB collisions (colliding pairs have the common
first block (x, x′)) are needed to filter the wrong keys from a 232 key space
and obtain the right key K1[2]. Similarly, as there are 15 conditions in the
4-th round, 3 dBB collisions are required to determine the right K1[3].

Overall, the complexity of the key recovery is dominated by 297 queries, which
is the complexity of finding a dBB collision.

5 Conclusions

In this paper, we utilize the dBB pseudo-collisions to construct dBB collisions
which have the dBB specific structure and differential path with high probabil-
ity. The specific structure can be used to construct a distinguishing attack on
HMAC/NMAC-MD5, with 297 queries and 297 MAC computations under adap-
tive chosen message attack. Under chosen message attacks, the complexities is
up to 2113 queries and 299 table lookups. For MD5-MAC, the specific differential
path can be used to recover the subkey involved in the differential path with
complexity of 297 queries.

Acknowledgements. We would like to thank Christian Rechberger and three
reviewers for their very helpful comments on the paper. We also hope to thank
Guangwu Xu for revising the paper during his stay in Tsinghua University.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

132 X. Wang et al.

5. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

6. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

7. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

8. Galvin, J.M., McCloghrie, K., Davin, J.R.: Secure management of SNMP networks.
Integrated Network Management II, 703–714 (1991)

9. Kim, J.-S., Biryukov, A., Preneel, B., Hong, S.H.: On the security of HMAC and
NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended abstract). In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

10. Preneel, B., van Oorschot, P.: MDx-MAC and building fast MACs from hash func-
tions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer,
Heidelberg (1995)

11. Rechberger, C., Rijmen, V.: On authentication with HMAC and non-random prop-
erties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 119–133.
Springer, Heidelberg (2007)

12. Rechberger, C., Rijmen, V.: New results on NMAC/HMAC when instantiated with
popular hash functions. Journal of Universal Computer Science 14(3), 347–376
(2008)

13. Rivest, R.L.: The MD5 message digest algorithm. Request for Comments (RFC
1321), Network Working Group (1992)

14. Tsudik, G.: Message authentication with one-way hash functions. ACM Comput.
Commun. Rev. 22(5), 29–38 (1992)

15. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

16. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

17. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

18. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

20. Yuval, G.: How to swindle rabin. Cryptologia 3, 187–190 (1979)

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC 133

Appendix

Table 1. The dBB differential path and its corresponding sufficient conditions

step mi CV shift si Output Sufficient Recovered bits
difference conditions

-4 A0 32
-3 D0 32
-2 C0 32 C0,32 = D0,32
-1 B0 32 B0,32 = C0,32
1 m0 A1 7 32 A1,32 = B0,32 32, 31, 30, ..., 8
2 m1 D1 12 32 D1,32 = A1,32 32, 31, 30, ..., 13
3 m2 C1 17 32 C1,32 = D1,32 32, 31, 30, ..., 18
4 m3 B1 22 32 B1,32 = C1,32 32, 31, 30, ..., 23
5 m4 A2 7 32 A2,32 = B1,32 32, 31, 30, ..., 8
6 m5 D2 12 32 D2,32 = A2,32 32, 31, 30, ..., 13
7 m6 C2 17 32 C2,32 = D2,32 32, 31, 30, ..., 18
8 m7 B2 22 32 B2,32 = C2,32 32, 31, 30, ..., 23
9 m8 A3 7 32 A3,32 = B2,32 32, 31, 30, ..., 8
10 m9 D3 12 32 D3,32 = A3,32 32, 31, 30, ..., 13
11 m10 C3 17 32 C3,32 = D3,32 32, 31, 30, ..., 18
12 m11 B3 22 32 B3,32 = C3,32 32, 31, 30, ..., 23
13 m12 A4 7 32 A4,32 = B3,32 32, 31, 30, ..., 8
14 m13 D4 12 32 D4,32 = A4,32 32, 31, 30, ..., 13
15 m14 C4 17 32
16 m15 B4 22 32 B4,32 = C4,32
17 m1 A5 5 32 A5,32 = B4,32
18 m6 D5 9 32 D5,32 = A5,32
19 m11 C5 14 32 C5,32 = D5,32
20 m0 B5 20 32 B5,32 = C5,32
21 m5 A6 5 32 A6,32 = B5,32
22 m10 D6 9 32 D6,32 = A6,32
23 m15 C6 14 32 C6,32 = D6,32
24 m4 B6 20 32 B6,32 = C6,32
25 m9 A7 5 32 A7,32 = B6,32
26 m14 D7 9 32 D7,32 = A7,32
27 m3 C7 14 32 C7,32 = D7,32
28 m8 B7 20 32 B7,32 = C7,32
29 m13 A8 5 32 A8,32 = B7,32
30 m2 D8 9 32 D8,32 = A8,32
31 m7 C8 14 32 C8,32 = D8,32
32 m12 B8 20 32
33 m5 A9 4 32
34 m8 D9 11 32
35 m11 C9 16 32
36 m14 B9 23 32
37 m1 A10 4 32
38 m4 D10 11 32
39 m7 C10 16 32
40 m10 B10 23 32
41 m13 A11 4 32
42 m0 D11 11 32
43 m3 C11 16 32
44 m6 B11 23 32
45 m9 A12 4 32
46 m12 D12 11 32
47 m15 C12 16 32
48 m2 B12 23 32 B12,32 = D12,32
49 m0 A13 6 32 A13,32 = C12,32
50 m7 D13 10 32 D13,32 = B12,32
51 m14 C13 15 32 C13,32 = A13,32
52 m5 B13 21 32 B13,32 = D13,32
53 m12 A14 6 32 A14,32 = C13,32
54 m3 D14 10 32 D14,32 = B13,32
55 m10 C14 15 32 C14,32 = A14,32
56 m1 B14 21 32 B14,32 = D14,32
57 m8 A15 6 32 A15,32 = C14,32
58 m15 D15 10 32 D15,32 = B14,32
59 m6 C15 15 32 C15,32 = A15,32
60 m13 B15 21 32 B15,32 = D15,32
61 m4 A16 6 32 A16,32 = C15,32
62 m11 D16 10 32 D16,32 = B15,32
63 m2 C16 15 32 C16,32 = A16,32
64 m9 B16 21 32

Finding Preimages in Full MD5
Faster Than Exhaustive Search

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we present the first cryptographic preimage
attack on the full MD5 hash function. This attack, with a complexity
of 2116.9, generates a pseudo-preimage of MD5 and, with a complexity
of 2123.4 , generates a preimage of MD5. The memory complexity of the
attack is 245 ×11 words. Our attack is based on splice-and-cut and local-
collision techniques that have been applied to step-reduced MD5 and
other hash functions. We first generalize and improve these techniques
so that they can be more efficiently applied to many hash functions
whose message expansions are a permutation of message-word order in
each round. We then apply these techniques to MD5 and optimize the
attack by considering the details of MD5 structure.

Keywords: MD5, splice-and-cut, local collision, hash function, one-way,
preimage.

1 Introduction
Cryptographic hash functions are important primitives of cryptographic tech-
niques, which generate short-length strings from arbitrary length input messages.
There are many applications to make a scheme secure using a hash function: mes-
sage compression in digital signatures and message authentication, for example.
A hash function H should satisfy several security properties such as

– Preimage resistance: for given y, x s.t. H(x) = y must be difficult to find,
– 2nd-preimage resistance: for given x, x′ s.t. H(x) = H(x′), x �= x′ must

be difficult to find,
– Collision resistance: A pair of (x, x′) s.t. H(x) = H(x′), x �= x′ must be

difficult to find.

For a given n-bit hash value y, if the hash values of 2n distinct messages are
computed, there is a high probability that one of those values will match with y.
Therefore, any method that can find a preimage faster than 2n hash computation
is a threat for hash functions. We stress that National Institute of Standards
and Technology (NIST) requires preimage resistance with a complexity of 2n for
SHA-3 candidates [15].

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 134–152, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Finding Preimages in Full MD5 Faster Than Exhaustive Search 135

MD5 [11] was proposed by Rivest in 1991. It generates 128-bit hash values by
iteratively applying a compression function consisting of 64 steps. Though its
security is suspect, MD5 is one of the most widely used hash functions in the
world. So, a detailed analysis of the preimage resistance of MD5 is required.

Variants of collision attacks on MD5 were proposed by den Boer and Bosse-
laers in 1993 [5] and by Dobbertin in 1996 [6]. The first collision attack on MD5
was proposed by Wang et al. in 2005 [16]. Since then, several improved collision
attacks have been proposed. The most effective attack, proposed by Klima [8],
can generate a collision in one minute with a standard PC. Although there have
been several powerful collision attacks on MD5, the preimage resistance of MD5
has not been broken yet.

1.1 History of Preimage Attacks on MD4-Family

The history of preimage attacks on MD4-based hash functions is as follows. (In
this paper, we omit the unit of complexity, which is the computational complexity
of the compression function of the corresponding hash function.)

The first successful preimage attack was the one proposed by Leurent on MD4
at FSE 2008. The attack, with a complexity of 2100.5, generates a preimage
[9]. The first preimage attack on MD5 was presented by De et al. in 2007. It
attacked the first 26 steps with a SAT solver [4]. At ACISP 2008, Sasaki and
Aoki presented a preimage attack with a complexity of 296 on intermediate 44
steps of MD5 [13]. The paper shows that if the round order of MD5 is modified,
intermediate 51 steps can be attacked. At SAC 2008, Aumasson et al. proposed
a preimage attack with a complexity of 2102 on the first 47 steps of MD5 and
an attack on full HAVAL-3 [2]. Also at SAC 2008, Aoki and Sasaki [1] showed
an attack with a complexity of 2121 on the last 63 steps of MD5, and showed
how to find a preimage of full MD5 slightly faster than the preimage resistance
complexity 2128 by using a clever brute force algorithm. They also show one-
block preimage attack on MD4. At CRYPTO 2008, Cannière and Rechberger
attacked 49 steps of SHA-0 and 44 steps of SHA-1 [3]. Sasaki and Aoki proposed
attacks on intermediate 52 steps of HAS-160 at ICISC 2008 [12] and 3-, 4-, and
5-pass HAVAL at Asiacrypt 2008 [14].

So far, the preimage resistance of full MD4, full HAVAL-3 and full HAVAL-
4 were broken. Although these attacks are theoretically very interesting, they
are not important from the industrial view point. On the other hand, regarding
widely used hash functions such as MD5 or SHA-1, only step-reduced versions
are analyzed and no preimage attack on the full specification has been conducted.

1.2 Related Techniques

Here, we explain previous attack techniques related to our work. See Section 3
for details of each technique.

The attacks on full HAVAL-3 and 47-steps MD5 by Aumasson et al. [2], which
are later generalized by Sasaki and Aoki [14] use the local-collision technique,

136 Y. Sasaki and K. Aoki

where the absorption properties are used to make a local collision and the con-
sistency check is performed in the attack. On the other hand, the attacks on
one-block MD4 and 63-steps MD5 by Aoki and Sasaki [1] use the splice-and-cut
technique, where the attacks are made to be more efficient with the partial-
matching technique and the partial-fixing technique.

1.3 Our Results

This paper proposes the first cryptanalytic preimage attack on the full MD5. It
finds a pseudo-preimage of full MD5 with a complexity of 2116.9 and a preimage
of full MD5 with a complexity of 2123.4. The memory complexity of the attack
is 245 × 11 words.

In this paper, first, we improve several existing techniques with respect to
following four points so that they can be more efficiently applied to various hash
functions.

1. Generalization of the local-collision technique
As described in a previous paper [14], the local-collision technique can be
applied only if the two chosen neutral words are located a certain number
of steps away. Since this limitation is too restrictive, the local-collision tech-
nique could not be applied to full MD5. Another paper [12] shows a variant
of the local-collision technique; however, it is particular to HAS-160, which
is the attack target of the paper. In this paper, we generalize the local-
collision technique so that the same advantage can be obtained in various
situations. Because our new technique no longer forms a local-collision, we
call it initial-structure technique.

2. Extension of the absorption properties
When we construct the initial structure, the absorption properties must be
considered. In this paper, we newly consider cross absorption properties,
which are extended versions of the absorption properties. This can further
increase the situations where the initial structure can be constructed.

3. Partial-fixing technique for unknown carry behavior
The partial-fixing technique partially computes the step function even if a
part of the message words and chaining variables are not known. In previous
papers, only partial computations whose carried number effects are determin-
istic were considered. In this paper, we also consider partial computations
where an attacker cannot guess the carried number behavior in advance.
Then, we propose an efficient attack procedure that does not increase the
total attack complexity.

4. Efficient consistency check method
We also solve a problem of an existing technique, where the consistency of
the initial structure or the local collision is inefficiently checked, and thus
the complexity becomes too high to attack successfully in some situation.

We stress that our improved techniques are not particular to MD5, but can be
generally applied to hash functions whose message expansions are permutations
of message-word order in each round.

Finding Preimages in Full MD5 Faster Than Exhaustive Search 137

Table 1. Comparison of preimage attacks on MD5

Paper Number of Complexity
attacked steps Pseudo-preimage Preimage

[4] 26 Not given †

[13] 44 (Steps 3-46) 296 †

[2] 47 296 2102

[1] 63 2112 2121

[1] 64 (Full) 2125.7 ‡ 2127 ‡

This paper 64 (Full) 2116.9 2123.4

† One-block attack.
‡ The brute force attack is used, but the computation order is optimized.

Secondly, we combine all of our improved techniques and apply them to full
MD5. Then, we optimize the attack by considering the details of MD5 structure.
A summary of our results and previous results is shown in Table 1.

The organization of this paper is as follows. In Section 2, we describe the
specification of MD5 and introduce the notation. In Section 3, we briefly de-
scribe the related work. In Section 4, we improve several existing techniques. In
Section 5, we describe the attack on MD5 in detail and evaluate its complexity.
In Section 6, we conclude this paper.

2 Description of MD5

2.1 MD5 Specification and Its Properties

This section describes the specification of MD5. For details, we refer to [11].
MD5 is one of the Merkle-Damg̊ard hash functions, that is, the hash value is

computed as follows:{
H0 ← IV,

Hi+1 ← md5(Hi,Mi) for i = 0, 1, . . . , n− 1, (1)

where IV is the initial value defined in the specification, md5: {0, 1}128×{0, 1}512
→ {0, 1}128 is the compression function of MD5, andHn is the output of the hash
function. Before (1) is applied, the messages string M is processed as follows.

– The messages are padded in 512-bit multiples.
– The padded string includes the length of the message represented by 64 bits.

The length string is represented as little endian and is placed at the end of
the padding part.

After this process, the message string is divided into 512-bit blocks, Mi (i =
0, 1, . . . , n− 1).

138 Y. Sasaki and K. Aoki

Table 2. Boolean functions, rotation numbers, and message expansion of MD5

Φ0, Φ1, . . . , Φ15 Φj(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
Φ16, Φ17, . . . , Φ31 Φj(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
Φ32, Φ33, . . . , Φ47 Φj(X, Y, Z) = X ⊕ Y ⊕ Z
Φ48, Φ49, . . . , Φ63 Φj(X, Y, Z) = Y ⊕ (X ∨ ¬Z)

s0, s1, . . . , s15 7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
s16, s17, . . . , s31 5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
s32, s33, . . . , s47 4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
s48, s49, . . . , s63 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21

π(0), π(1), . . . , π(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16), π(17), . . . , π(31) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32), π(33), . . . , π(47) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48), π(49), . . . , π(63) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

The compression function Hi+1 ← md5(Hi,Mi) is computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. The following recurrence is done.{

p0 ← Hi

pj+1 ← Rj(pj ,mπ(j)) for j = 0, 1, . . . , 63

3. Hi+1 (= p64 +Hi) is output, where “+” denotes 32-bit word-wise addition.
In this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let Qj be a 32-bit value that satisfies pj =
(Qj−3, Qj, Qj−1, Qj−2). Rj(pj ,mπ(j)) computes pj+1 as follows:{

Qj+1 ← Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) +mπ(j) + kj) ≪ sj ,
pj+1 ← (Qj−2, Qj+1, Qj , Qj−1),

where Φj , kj , and ≪ sj are the bitwise Boolean function, constant value, and
left rotation defined in the specification, respectively. π(j) is a function for
MD5 message expansion. Details of Φj , sj , and π(j) are shown in Table 2. Note
R−1

j (pj+1,mπ(j)) is computed with almost the same complexity as that of Rj .

3 Related Works

3.1 Converting Pseudo-Preimages to a Preimage

For a given hash value HN and a compression function CF , pseudo-preimage is a
pair of (v,M), v �= IV such that CF (v,M) = HN . First, we describe the generic
algorithm for the Merkle-Damg̊ard hash functions with n-bit output, which con-
verts pseudo-preimages to a preimage [10, Fact 9.99]. Assume that there is an
algorithm that finds (H1, (M1,M2, . . . ,MN−1)) such that Hi+1 = CF (Hi,Mi)
(i = 1, 2, . . . , N − 1) with the complexity of 2x and H1 looks random. Prepare

Finding Preimages in Full MD5 Faster Than Exhaustive Search 139

a table that includes 2n/2−x/2 entries of (H1, (M1,M2, . . . ,MN−1)). Compute
2n/2+x/2 CF (H0,M0) for random M0. One of the results will agree with one of
the entries in the table with high probability. The required complexity of the at-
tack is about 2n/2+1+x/2. Therefore, showing how to find (H1,M1) from a given
hash value within 2x, x < n− 2 is enough for a theoretical preimage attack.

3.2 Preimage Attack on 63 Steps of MD5

At SAC 2008, Aoki and Sasaki proposed a preimage attack on 63 steps of MD5
based on the splice-and-cut, partial-matching, and partial-fixing techniques [1].

The splice-and-cut technique is a way to apply the meet-in-the-middle attack.
The authors consider the first and last steps as consecutive steps, and divide the
attack target into two chunks of steps so that each chunk includes independent
message words from the other chunk. Such message words are called neutral
words. Then, a pseudo-preimage is computed by the meet-in-the-middle attack.

The partial-matching technique enables an attacker to skip several steps of an
attack target when searching for chunks. Assume that one of the divided chunks
provides the value of pi, where pi = (Qi−3, Qi, Qi−2, Qi−1), and the other chunk
provides the value of pi+3, where pi+3 = (Qi, Qi+3, Qi+2, Qi+1). pi and pi+3
cannot be directly compared; however, a part of the values, that is, 32-bits of
Qi, can be compared immediately. In such a case, one can ignore messages used
in steps i, i+ 1, and i+ 2 when the meet-in-the-middle attack is performed.

The partial-fixing technique enables an attacker to skip more steps. The idea
is to fix a part of the neutral words so that an attacker can partially compute
a chunk even if a neutral word for the other chunk appears. This enables the
attacker to skip more steps. For example, consider the equation for computing
Qj−3 in the inversion of the step function R−1

j (pj+1,mπ(j)):

Qj−3 = ((Qj+1 −Qj) ≫ sj)− Φj(Qj , Qj−1, Qj−2)−mπ(j) − kj . (2)

When the lower n bits of Qj−1, Qj−2, and mπ(j) are fixed and other variables
are fully fixed, the lower n bits of Qj−3 can be computed independently from
the higher 32− n bits of Qj−1, Qj−2, and mπ(j).

3.3 Preimage Attack on HAVAL

A combination of the meet-in-the-middle and local collision was first proposed
by Aumasson et al. [2]. Sasaki and Aoki further improved this by using the
splice-and-cut technique instead of the simple meet-in-the-middle attack [14].
As a result, they succeeded in attacking full HAVAL-3, full HAVAL-4, and step-
reduced HAVAL-5, and slightly improved the complexity of the brute force attack
on full HAVAL-5.

The local-collision technique named by Sasaki and Aoki [14] enables an at-
tacker to skip several steps at the beginning of chunks. The key idea of this tech-
nique is to select two neutral words that can form a local collision. Schematic
explanation is shown in the left diagram of Figure 1. To achieve this, the se-
lected neutral words must be exactly (L · n + 1) steps away each other, where

140 Y. Sasaki and K. Aoki

n ≥ 1 and L denotes the number of chaining variables, e.g., L=8 for HAVAL
and L=4 for MD5. Changes of the neutral words’ values must be guaranteed not
to give any influence to other chaining variables. To stop the difference propa-
gating through Φj , the values of the other chaining variables must be fixed so
that input differences are ignored in the output value. Such properties are called
absorption properties. Finally, changes of neutral-words’ values are checked to
be offset each other. For example, in the left diagram of Figure 1, we need to
check Q1st

j−3 +m2nd +m1st ?= Q2nd
j+5 for a given (m1st, Q1st

j−3,m
2nd, Q2nd

j+5). We call
such a checking procedure consistency check.

Because a local collision of HAVAL can be formed by only two message words
and Φj has many absorption properties, the local-collision technique can be
effectively applied to HAVAL.

3.4 Preimage Attack on HAS-160

An example of a variant of the local-collision technique is shown in Ref. [12].
Differently from Ref. [14], Ref. [12] applies the local-collision technique even
if two neutral words are located three steps away, not (L · n + 1) steps away.
However, this technique is particular to their attack target HAS-160.

4 Improved Techniques

We applied all the previously mentioned techniques to full MD5, but the attempt
failed. To attack MD5, further improvements are necessary. In this section, we
give some intuition of our improved idea. For the concrete application to MD5,
we refer to Section 5.

4.1 Initial Structure: Generalization of Local-Collision Technique

In the previous works, the local-collision technique is applicable if selected neu-
tral words are exactly (L · n + 1) steps away. However, this technique has the
following three problems.

1. The limitation of (L ·n+1) steps away is too restrictive to find good chunks.
2. If more than two message words are necessary to form a local collision, the

limitation becomes much stronger. In fact, MD5 needs three words.
3. Absorption properties of Φ are necessary to obtain a local collision, however,
Φ does not always have such properties.

The above problems are solved by our new technique. It is visualized in Figure 1.
Previous work fixes the value of Qj , Qj−1, Qj−2 and Qj+4, Qj+3, Qj+2 for

any value of m1st, Q1st,m2nd, Q2nd. However, we found the essential point is to
make the first chunk independent of (m2nd, Q2nd) and make the second chunk
independent of (m1st, Q1st). Therefore, Qj , Qj−1, Qj−2, which are included in
the first chunk, can be changed depending on the value of (m1st, Q1st). Similarly,
Qj+4, Qj+3, Qj+2 can be changed depending on (m2nd, Q2nd).

Finding Preimages in Full MD5 Faster Than Exhaustive Search 141

1st-chunk

2nd-chunk

Q1st Qj Qj-1 Qj-2

m2nd

m1st

Qj+2 Q2nd Qj+4 Qj+3

1st-chunk

2nd-chunk

(Qj-3)1st Qj Qj-1 Q1st

m2nd

Qj-1 Q2nd (Qj+1)2ndQj

m1st

match?
(2-32)

match?
(2-32)

j+2

j+5

j-2j-3

Left side describes local-collision technique; right side describes our
generalization called initial structure. Underlined variables are neutral words.
Notation (Q)x denotes a chaining variable whose value changes depending on
the value of neutral words for x-chunk.

Fig. 1. MD5 structures with old and new techniques applied

Based on this observation, we can construct several new patterns of “local
collision”. Because these patterns no longer form a local collision, we call this
technique initial structure. The following is the concept of the initial structure.

Initial structure is a few consecutive steps including at least two neutral
words named m2nd and m1st, where steps after the initial structure (2nd
chunk) can be computed independently of m1st and steps before the initial
structure (1st chunk) can be computed independently of m2nd.

In the above concept, if m1st appears in an earlier step than m2nd, the structure
can be included in the first and second chunks, hence the attack can be easily
performed. We are interested in the case where m2nd appears earlier than m1st.

An example of the initial structure of MD5 consisting of two steps is shown in
Figure 1. In this structure, 232 values of m1st, Q1st,m2nd, Q2nd are tried when we
compute two chunks. To make the second chunk independent of Q1st, we choose

142 Y. Sasaki and K. Aoki

Table 3. Possible patterns of initial structure of MD5

mπ(i) mπ(i+1) mπ(i+2) mπ(i+3) mπ(i+4)

Pattern 1 ◦ ◦
Pattern 2 ◦ ◦ ◦
Pattern 3 ◦ ◦ ◦
Pattern 4 ◦ ◦ ◦

◦ denotes a neutral word that is necessary to form initial structure.
Note: Pattern 3 is the local collision usually considered.

Qj−3 to cancel the change of Q1st. Similarly, when we compute the second chunk,
we compute Qj+1 according to the value of m2nd. In the end, this structure
provides 264 free bits for both the first and second chunks, guarantees that the
first and second chunks are independent of each other, and succeeds with a
probability of 2−32 for randomly given m1st, Q1st,m2nd, Q2nd.

As the example shown in Figure 1, some initial structure patterns do not
use the absorption properties of Φ. This gives a big advantage to an attacker
compared to the previous local-collision technique because such structures can
be constructed even if Φ does not have absorption properties, e.g., Φ is XOR.

We manually searched for patterns of initial structures that are formed within
5 steps, and found that patterns shown in Table 3 can form the initial structure.

4.2 Cross Absorption Property

The cross absorption property is an extension of the absorption property. By
considering the cross absorption property, the number of possible initial structure
patterns can be increased.

The absorption properties of MD5 summarized in Ref. [13] focus on how to
ignore one of the input variables of Φj(X,Y, Z). This enables us to fix the output
of Φj(X,Y, Z) even if one of X,Y, Z changes.

Cross absorption properties enable us to fix the output of Φj(X,Y, Z) even if
two of X,Y, Z are changed. To achieve cross absorption properties, we partially
fix changing variables so that fixed bits cover all 32 bits. For example, let us
consider Φj(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z), where Y and Z are neutral words.
To fix the output, we first fix lower n bits of Y and fix lower n bits of X to 1.
Then, we fix higher 32− n bits of Z and fix higher 32 − n bits of X to 0. As a
result, the output of Φj is fixed to Y in lower n bits and Z in higher 32− n bits
for any value of lower n bits of Z and higher 32− n bits of Y .

By considering the cross absorption properties, more complicated initial struc-
tures shown in Table 4 can be constructed. Pattern 6 is useful because only two

Table 4. Initial structure with cross absorption properties

mπ(i) mπ(i+1) mπ(i+2) mπ(i+3) mπ(i+4)

Pattern 5 ◦ ◦
Pattern 6 ◦ ◦

Finding Preimages in Full MD5 Faster Than Exhaustive Search 143

message words are involved and the length of the structure is relatively long (4
steps). See Section 5.2 for the application to MD5.

4.3 Partial-Fixing Technique for Unknown Carried Number
Behavior

The previous partial-fixing technique on MD5 [1] enables us to skip six steps at
the end of chunks by partially computing the chaining variables. Let us consider
the equation A + B, where A and B are only partially known. When known
part of A and B starts from LSB, we can uniquely compute A+B in the same
number of bits, whereas, when known part starts from an intermediate bit x,
we cannot uniquely determine intermediate bits of A + B due to the unknown
carried number from bit x−1 to x. However, by considering both possible carried
number patterns, the number of candidates of A + B can be reduced to only
two. Consequently, for each addition of values with intermediate known bits, we
obtain the correct pairs and the same number of wrong pairs.

A small amount of incorrect pairs can be filtered out with negligible com-
plexity. After we find the corresponding message by a partial matching test, we
compute the step function and check the exact carried number value step by
step. This computation costs only 1 step, that is, 2−6(= 1

64) MD5 computations,
and the number of remaining pairs will be reduced by checking the correctness
of carried number assumption and matching test for increased known bits. In
the end, when the number of unknown carried numbers is up to 6, we consider
all 26 possible carried number patterns, and incorrect data is filtered out with a
complexity of 1(= 26 ·2−6) MD5 computations, which is a very small extra cost.
This enables us to skip eight steps at the end of chunks. See Section 5.3 for the
application to MD5.

4.4 Efficient Consistency Check Method

In previous works, the consistency of the initial structure (or local-collision) is
checked after the partial matching test of chunk’s results is finished. This strategy
fails if the number of matched bits is small.

For example, we consider the attack procedure for the left structure in Fig-
ure 1. We compute chunks for 264 values of (m1st, Q1st) and (m2nd, Q2nd). As-
sume the partial matching test works for small numbers of bits, e.g., only 12 bits.
Ideally, we should obtain 284(= 2128 · 2−32 · 2−12) pairs where the partial 12 bits
are matched and the initial structure is properly satisfied with a complexity of
284. Therefore, by repeating the above procedure 232 times, we expect to obtain
a pair where all 128 bits are matched with a complexity of 2116(= 284 · 232).
However, the previous method computes a few steps for 2116(= 2128 ·2−12) pairs
after the 12-bit matching test, and then, checks the full-bit match test and fi-
nally checks the consistency of the initial structure, which is satisfied with a
probability of 2−32. Computing a few steps for 2116 pairs costs roughly 2116

step function computation, and repeating this procedure 232 times requires 2148,
which is worse than the brute force attack.

144 Y. Sasaki and K. Aoki

We solve this problem by performing the consistency check together with
the partial matching test. This can be performed with a small amount of extra
computation and memory. Again, we consider the attack procedure for the left
structure in Figure 1. When we compute the first chunk by trying all (m1st, Q1st),
we additionally store the value of m1st +Q1st in a table. Then, when we compute
the second chunk by trying all (m2nd, Q2nd), we compute Q2nd−m2nd and com-
pare it with m1st +Q1st stored in the table. By this effort, the previous example
examines a 44-bit matching test instead of a 12-bit matching test for 2128 pairs,
and thus, the complexity becomes 284. After 232 repetation of this procedure,
we will find a 128-bit matched pair with a complexity of 2116.

5 Preimage Attacks on Full MD5

5.1 Selected Initial Structure and Chunks

When we searched for good chunks, we assumed that the partial-matching and
partial-fixing techniques could enable us to skip a maximum of 11 steps. Under
this assumption, we considered all possible patterns and positions of the initial
structure. As a result, we found that the pattern 6 in Table 4 for i = 14 skipping
steps 43-50 is the only useful pattern. This chunk separation is shown in Figure 2.

5.2 Details of Initial Structure for Full MD5

Construction of the initial structure is complicated. We need to consider the
rotation number sj and constant kj in each step. First, we show how to fix
message words and chaining variables inside the initial structure in Figure 3
and then explain how computations in the initial structure behave. We have
confirmed that the numbers and positions of fixed bits are optimal when both
of the initial structure and partial-fixing techniques are considered.

Numbers written in a small bold font near variables denote the value of each
variable. To denote bit information of variables, we use notation ab, which means

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5 6© 7 8 9 10 11 12 13 14© 15

first chunk initial
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0 5 10 15 4 9 14© 3 8 13 2 7 12

structure second chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14© 1 4 7 10 13 0 3 6© 9 12 15 2

second chunk skip
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14© 5 12 3 10 1 8 15 6© 13 4 11 2 9

skip first chunk

Fig. 2. Selected chunks for full-round MD5

Finding Preimages in Full MD5 Faster Than Exhaustive Search 145

Q14
1st Q13 Q12

Q13 Q14

Q12 Q14 Q13

Q14

(Q15)2nd Q18
2nd (Q17)2nd

(Q16) 2nd

<<< 17

k14

m14
2nd

<<< 22

k15
m15

<<< 5

k16
m1

<<< 9

k17

m6
1st

(Q17) 2nd

(Q16) 2nd

(Q15) 2nd(Q16) 2nd

(Q15) 2nd

(Q15) 2nd

(Q11)1st
132

132

-k15+1

-k15+1

132

032

-Φ14-k14-(012Pad)
+ ((-Q14)>>>17)

x12Pad

y15112y5

y15112y5015x1205

015x1205 015x1205

015x1205

132

(Depends on only x)

x32

y308y21

match with Pr.=2-32

Φ
14

Φ
15

Φ
16

Φ
17

x12020 +
((-Q14)>>>17)

= p14

= p18

The lower 20 bits of m14 are fixed to satisfy the message padding. For example,
all bits are fixed to 1.

Fig. 3. Initial structure for full MD5

the one-bit value a continues for b bits. For example, 032 means all 32 bits are
0, and 015x1205 means that the first 5 bits1 are fixed to 0, the next 12 bits are
free-bits for the second chunk, and the last 15 bits are fixed to 0.

To construct the initial structure, we firstly choose m6 and Q14 as neutral
words for the first chunk and m14 and Q18 as neutral words for the second
chunk so that both chunks can produce 264 items whereas the consistency of
the initial structure checked in the dotted circle is satisfied with a probability
of 2−32. In Figure 3, we use notation 1st and 2nd to denote neutral words for
the first and second chunks, respectively. Let x and y represent a free bit in the
neutral words for the second and first chunks, respectively. Here, free bit means
the unfixed bits of neutral words where we try all values when we perform the
meet-in-the-middle attack. We secondly fix values of variables to guarantee that
p14 can be computed independently of the value of ‘x’s and p18 can be computed
independently of the value of ‘y’s. We also choose variables that are computed

1 In this paper, LSB is the first bit (= 0th bit), and MSB is the last bit (= 31st bit).

146 Y. Sasaki and K. Aoki

depending on the value of neutral words for each chunk. In Figure 3, we indicate
such variables with notation ()1st and ()2nd.

In Remarks of this section, we will explainQ11 can be computed independently
of ‘x’s of m14. Therefore, p14 is independent of ‘x’s. Now, we explain why p18 is
guaranteed to be independent of ‘y’s by fixing values as shown in Figure 3.

Values of ‘y’s in m6 only give impact to the data line where the consistency
is checked in step 17 with a probability of 2−32. Therefore, p18 is independent of
‘y’s in m6. The remaining work is to guarantee that values of ‘y’s in Q14 do not
impact other data lines in steps 14, 15, and 16.

1. In step 14, values of y in Q14 can impact the value of Q15 through Φ14 and
through the direct addition from Q14 to Q15. To prevent these impacts, we
choose the value of Q11 so that the sum of Q11, output of Φ14, Q14 ≫ s14,
and fixed part (lower 20 bits) of m14 are always the same value. Therefore,
every time we choose Q14, we compute Q11 as follows.

Q11 = −Φ14(Q14, Q13, Q12)−k14−(m14∧0xfffff)+((−Q14) ≫ s14), (3)

where we also cancel the addition of k14 for simplicity. This cancellation
may fail because of the relationship of addition and rotation. This problem
is solved in the Remarks of this section.

2. In step 15, we arrange the values of Q15, Q14, and Q13 so that changes of ‘y’s
in Q14 is absorbed in the computation of Φ15. Because two input variables
Q15 and Q14 have free-bits, we use the cross absorption property introduced
in Section 4.2. Remember Φ15 = (Q15 ∧ Q14) ∨ (¬Q15 ∧ Q13). Because the
values of Q15 and Q13 are 0 and 1, respectively, in bit positions 0-4 and
17-31, the value of Φ15 becomes 1. In bit positions 5-16, because the values
of Q14 and Q13 are 1, the value of Φ15 becomes 1. Therefore, regardless of
the value of ‘y’s in Q14, the output of Φ15 is fixed to 132.

3. In step 16, the Boolean function is Φ16 = (Q16 ∧Q14)∨ (Q15 ∧¬Q14). If Q16
can be fixed to the same value as Q15, Q14 is absorbed in the computation
of Φ16. This is achieved by setting Q12 + Φ15 + k15 +m15 = 0 since Q16 =
Q15 + (Q12 + Φ15 + k15 + m15) ≪ 22. Remember, m15 is involved in the
message padding part. To guarantee that the length of the preimage will be
at most 232−1 bits, we fix m15 to 0. We know that Φ15 = 0xffffffff = −1.
Therefore, fixing Q12 = −k15 + 1 can achieve the desired condition.

Finally, p18 is guaranteed to be independent of ‘y’s, and the initial structure is
properly constructed for any selection of ‘x’s and ‘y’s.

Remarks. Computation for step 14 performed by equation (3) may fail and the
probability of this depends on the values of chaining variables and the message
word. We experimentally confirmed that for all 232 possible patterns of unfixed
bits in (m14, Q14), the choice of Q14 does not impact m14 with high probability.
Specifically, for any (m14, Q14), the following equation holds.

Q11 + Φ14 + k14 + (m14 ∧ 0xfffff) = ((−Q14) ≫ s14) Pr. = 1, (4)
((m14 + ((−Q14) ≫ s14)) ≪ s14) +Q14 = (m14 ≪ s14) Pr. = 1− 2−17.(5)

Finding Preimages in Full MD5 Faster Than Exhaustive Search 147

5.3 Details of Partial-Fixing for Skipping 8 Steps

As is explained in Section 4.3, meet-in-the-middle for skipping 8 steps will need
to deal with unknown carried number behavior. The number of bits matched and
number of unknown carried numbers depend on the number of rotations in each
step. For the chunk we chose, we can apply 12-bit matching including 5 unknown
carried numbers. We explain how the partial computation is performed step by
step. The schematic explanation is in Figure 4. We use a notation Xb2−b1 to
denote that values of bit positions b1 to b2 of a variable X are known.

Inverse computation for Steps 50-48. This is exactly the same as the partial-
fixing technique used in Ref. [1]. In details, the equation for computing

Q51Q48 Q50 Q49Q47Q44 Q46 Q45

Q50Q47 Q49 Q48Q46Q43 Q45 Q44

Q49Q46 Q48 Q47Q45Q42 Q44 Q43

Q48Q45 Q47 Q46Q44Q41 Q43 Q42

Q47Q44 Q46 Q45Q43Q40 Q42 Q41

k47

m2

k43

m6

k48

m0

k44

m9

k49

m7

k45

m12

k50

m14

k46

m15

All All All All

19-0

All All All19-0

All All 19-019-0

All 19-0 19-019-0

All

All

All

All

All

28-21

19-0 19-0 19-019-9(21)

19-0 19-0 19-019-9(21)

19-9(21)

19-9(21)

19-9(21)

19-0

19-0

All All All All

All 19-12(22) All All

19-16(22)

8-bit match (23)

4-bit match (22)

(-k47)

All
(-k44)

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

<<< 23 <<< 23

<<< 4 <<< 6

<<< 11 <<< 10

<<< 16 <<< 15

19-0

Figures written in a small bold font denote the known bits of each variable.

Fig. 4. Partial-matching for 8 steps

148 Y. Sasaki and K. Aoki

Q47 in R−1
50 (p51,m50) is as follows.

Q47 = ((Q31−0
51 −Q31−0

50) ≫ s50)−Φ50(Q31−0
50 , Q31−0

49 , Q31−0
48)−m19−0

π(50)−k50.

(6)
kj is constant, hence kj is known value. Because the lower 20 bits (positions
0 to 19) of m14(= mπ(50)) are fixed and known, we can uniquely obtain the
lower 20 bits of Q47 independently of the upper 12 bits of m14. Similarly,
the lower 20 bits of Q46 and Q45 can be uniquely computed as follows:

Q46 = ((Q31−0
50 −Q31−0

49) ≫ s49)− Φ49(Q31−0
49 , Q31−0

48 , Q19−0
47)−m31−0

π(49) − k49,

(7)

Q45 = ((Q31−0
49 −Q31−0

48) ≫ s48)− Φ48(Q31−0
48 , Q19−0

47 , Q19−0
46)−m31−0

π(48) − k48.

(8)

Inverse computation for Step 47. Equation for Q44 is as follows:

Q44 = ((Q31−0
48 −Q19−0

47) ≫ s47)−Φ47(Q19−0
47 , Q19−0

46 , Q19−0
45)−m31−0

π(47)−k47.

(9)
We can uniquely compute the lower 20 bits of Q48 − Q47. Let the value
after the right rotation by 23(= s47) bits be u, and then, we uniquely obtain
u28−9. We can also compute the lower 20 bits of the output of Φ47. Set the
value of m2(= mπ(47)) to −k47 in advance. Then, the equation (9) becomes
u28−9 − Φ19−0

47 . By considering two possible carried number patterns from
bit position 8 to 9, we can obtain two candidates of Q19−9

44 .
Forward computation for Step 43. m6(= mπ(43)) in bit positions 21-28 are

fixed. Then, the equation for Q44 in R43(p43,mπ(43)) is as follows.

Q44 = Q31−0
43 + (Q31−0

40 + Φ43(Q31−0
43 , Q31−0

42 , Q31−0
41) +m28−21

π(43) + k43) ≪ s43.

(10)
By considering two possible carried number patterns from bit 20 to 21, we
obtain two candidates of bit positions 21-28 of m6+(Q40+Φ43+k43). Let the
value after the left rotation by 23(= s43) bits be v, and thus, we obtain two
candidates of v19−12. Finally, by considering two carried number patterns
from bit 11 to 12 in the addition of Q43, we obtain two candidates of Q19−12

44
for each v19−12. (In total, we obtain 22 candidates of Q19−12

44 for each p43.)
Forward computation for Step 44. The equation for Q45 is as follows.

Q45 = Q19−12
44 +(Q31−0

41 +Φ44(Q19−12
44 , Q31−0

43 , Q31−0
42)+m31−0

π(44) +k44) ≪ s44.

(11)
We set m9(= mπ(44)) to −k44 to ignore the addition of these values. Bits
12-19 of Φ44 can be computed. Then, we obtain two candidates of (Q41 +
Φ44)19−12. After the left rotation by 4(= s44) bits, known bits are moved to
16-23. Finally, after the addition of Q44, we obtain two candidates of Q19−16

45
for each (Q41 + Φ44)19−12. (In total, we obtain 22 candidates of Q19−16

45 for
each Q19−12

44 .)

Finding Preimages in Full MD5 Faster Than Exhaustive Search 149

As a result, by comparing forward and backward computation results, we can
compare Q19−12

44 in total 8 bits with 3 unknown carried numbers and Q19−16
45

in total 4 bits with 2 unknown carried numbers. Therefore, our attack overall
performs 12-bit match with 5 unknown carried numbers.

5.4 Attack Procedure

The attack procedure for a given hash value Hn is as follows:

1. Set chaining variables in the initial structure as shown in Figure 3.
2. Set m2,m9,m15, and part of m6 and m14 as shown in Figures 3 and 4. Set

other message words to randomly chosen values but satisfy the padding.
3. For all possible values of bit positions 0-20 and 29-31 of m6 and bit positions

0-4 and 17-31 of Q14, in total 44 free-bits,
(a) Compute Q11 by equation (3),
(b) Compute Q14 +m6 for efficient consistency check. Let this value be C1st.
(c) Do the following.⎧⎨⎩

pj ← R−1
j (pj+1,mπ(j)) for j = 13, 12, . . . , 0,

p64 ← Hn − p0,
pj ← R−1

j (pj+1,mπ(j)) for j = 63, 62, . . . , 51,

(d) Compute Q19−0
47 , Q19−0

46 , and Q19−0
45 by equations (6), (7), and (8).

(e) Compute two candidates of Q19−12
44 by equation (9).

(f) Make a table of (m6, Q14, C
1st, p51, Q47, Q46, Q45, Q44).

4. For all possible values of bit positions 20-31 of m14 and all bits of Q18, in
total 44 free-bits,
(a) Compute Q15, Q16, and Q17 as shown in Figure 3.
(b) Compute ((Q18 −Q17) ≫ s17) − Φ17 − k17 for the efficient consistency

check. Let this value be C2nd.
(c) Compute pj+1 ← Rj(pj ,mπ(j)) for j = 18, 19, . . . , 42.
(d) i. Compute 22 candidates of Q19−12

44 for each p43 by equation (10), and
Q19−16

45 for each Q19−12
44 by equation (11). In total, for each p43, we

obtain 24 candidates of (Q19−12
44 , Q19−16

45).
ii. Check whether bits 12-19 of Q44 and bits 16-19 Q45 in total 12 bits

are matched with those in the table and C2nd is matched with C1st

in the table.
iii. If matched, compute R43(p43,m6) by corresponding m6 and check

whether bits 9-11 of Q44 are matched and the carried number as-
sumption of Q44 is correct.

iv. If matched, compute R44(p44,m9) and check whether bits 0-15 ofQ45
are matched and the carried number assumption of Q45 is correct.

v. Similarly, compute Q46 to Q51 and check the matching. If all bits
are matched, the corresponding (p0,M) is a pseudo-preimage.

150 Y. Sasaki and K. Aoki

5.5 Complexity Evaluation

Let the complexity of 1 step function be 1
64 MD5 compression function.

Steps 1 and 2: Negligible.
Step 3a: The complexity is 244 · 1

64 .
Step 3b: The complexity is much less than 244 · 1

64 .
Step 3c: The complexity is 244 · 27

64 .
Step 3d: The complexity is 244 · 3

64 .
Steps 3e, 3f: The complexity is 244 ·21 · 1

64 and provides 245 items in the table.
Step 4a: The complexity is 244 · 3

64 .
Step 4b: The complexity is 244 · 1

64 .
Step 4c: The complexity is 244 · 25

64 .
Step 4(d)i: The complexity is 244 · 22 · 1

64 + 244 · 22+2 · 1
64 , and provides 248

candidates.
Step 4(d)ii: Comparison can be performed with negligible cost by the standard

meet-in-the-middle method. The number of remaining pairs is 249(= 245 ·248 ·
2−12 · 2−32).

Step 4(d)iii: The complexity is 243(= 249 · 1
64). The number of remaining pairs

is 244(= 249 · 2−3 · 2−2).
Step 4(d)iv: The complexity is 238(= 244 · 1

64). The number of remaining pairs
is 226(= 244 · 2−16 · 2−2).

Step 4(d)v: The complexity is negligible compared to those of the other steps.

The sum of the above complexity is 244 · 116
64 ≈ 244.86. This means that we

can obtain 244 pairs where 12 bits are matched with a complexity of 244.86.
Therefore, by repeating the above procedure 272 times, we expect to obtain a
pseudo-preimage. Finally, the complexity of finding a pseudo-preimage of MD5 is
2116.86(= 244.86·272), and this is converted to a preimage attack with a complexity
of 2123.43 ≈ 2123.4 with the conversion algorithm explained in Section 3.1.

In the attack procedure, the dominant memory complexity is for Step 3f, which
requires 245 (m6, Q14, C

1st, p51, Q47, Q46, Q45, Q44)s to be stored. Therefore the
memory complexity of our attack is at most 245 × 11 words.

Remarks

Because the value of m14, which is the lower 32-bits of the message length string,
is not fixed in our attack, we cannot fix the length of preimage in advance. There-
fore, when we convert pseudo-preimages to a preimage, the required message
length is different for each pseudo-preimage. This problem is solved by using ex-
pandable message described in [7]. Note the cost for constructing an expandable
message is negligible compared to the complexity of the preimage attack.

6 Conclusion

This paper shows a preimage attack on full MD5. Compared to the previous
preimage attacks, we developed several new techniques: the initial structure,

Finding Preimages in Full MD5 Faster Than Exhaustive Search 151

which is a generalization of the previous local-collision technique, the cross
absorption properties, the partial-fixing technique for unknown carried num-
ber behavior, and the efficient consistency check method for the initial struc-
ture. By combining these techniques, our attack with a complexity of 2116.9

finds a pseudo-preimage of full MD5, and with a complexity of 2123.4 finds
a preimage of full MD5. The memory complexity of the attack is 245 × 11
words.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Workshop Records of SAC 2008, Sackville, Canada, pp. 82–98 (2008)

2. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Workshop Records of SAC 2008, Sackville, Canada, pp. 99–
114 (2008) (ePrint version is avaliable at IACR Cryptology ePrint Archive: Report
2008/183), http://eprint.iacr.org/2008/183.pdf

3. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008) (slides on preliminary results were appeared at ESC 2008 seminar),
http://wiki.uni.lu/esc/

4. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash
functions using SAT solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

5. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

6. Dobbertin, H.: The status of MD5 after a recent attack. CryptoBytes The tech-
nical newsletter of RSA Laboratories, a division of RSA Data Security, Inc., 2(2)
(Summer, 1996)

7. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

8. Klima, V.: Tunnels in hash functions: MD5 collisions within a minute. In: IACR
Cryptology ePrint Archive: Report 2006/105 (2006),
http://eprint.iacr.org/2006/105.pdf

9. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

11. Rivest, R.L.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),
http://www.ietf.org/rfc/rfc1321.txt

12. Sasaki, Y., Aoki, K.: A preimage attack for 52-steps HAS-160. In: Preproceedings
of Information Security and Cryptology ICISC 2008 (2008)

13. Sasaki, Y., Aoki, K.: Preimage attacks on step-reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

152 Y. Sasaki and K. Aoki

14. Sasaki, Y., Aoki, K.: Preimage attacks on 3, 4, and 5-pass HAVAL. In: Pieprzyk,
J.P. (ed.) Advances in Cryptology - ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–
271. Springer, Heidelberg (2008)

15. U.S. Department of Commerce, National Institute of Standards and Technology.
Federal Register, vol. 72(212) Friday, November 2, 2007/Notices, (2007)
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

16. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

Asymmetric Group Key Agreement

Qianhong Wu1,2, Yi Mu3, Willy Susilo3, Bo Qin1,4, and Josep Domingo-Ferrer1

1 Universitat Rovira i Virgili, Dept. of Comp. Eng. and Maths
UNESCO Chair in Data Privacy, Tarragona, Catalonia

{qianhong.wu,bo.qin,josep.domingo}@urv.cat
2 Key Lab. of Aerospace Information Security and Trusted Computing
Ministry of Education, School of Computer, Wuhan University, China

3 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{ymu,wsusilo}@uow.edu.au

4 Dept. of Maths, School of Science, Xi’an University of Technology, China

Abstract. A group key agreement (GKA) protocol allows a set of users
to establish a common secret via open networks. Observing that a major
goal of GKAs for most applications is to establish a confidential chan-
nel among group members, we revisit the group key agreement defini-
tion and distinguish the conventional (symmetric) group key agreement
from asymmetric group key agreement (ASGKA) protocols. Instead of
a common secret key, only a shared encryption key is negotiated in an
ASGKA protocol. This encryption key is accessible to attackers and cor-
responds to different decryption keys, each of which is only computable
by one group member. We propose a generic construction of one-round
ASGKAs based on a new primitive referred to as aggregatable signature-
based broadcast (ASBB), in which the public key can be simultaneously
used to verify signatures and encrypt messages while any signature can
be used to decrypt ciphertexts under this public key. Using bilinear pair-
ings, we realize an efficient ASBB scheme equipped with useful prop-
erties. Following the generic construction, we instantiate a one-round
ASGKA protocol tightly reduced to the decision Bilinear Diffie-Hellman
Exponentiation (BDHE) assumption in the standard model.

1 Introduction
Many complex cryptosystems rely on the existence of a confidential channel
among the users. A major goal of key agreement protocols is to establish such a
channel for two or more users. Since the inception of the Diffie-Hellman protocol
[12] in 1976, it has been an elusive open problem to construct a one-round group
key agreement protocol from scratch. A round means that each party sends one
message and can broadcast simultaneously. A key agreement protocol is said
to be from scratch if each participant does not hold any secret values prior to
the execution of the protocol. Each type of long-term-key free protocols can
only provide security against passive attackers, but they are the basis to build

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 153–170, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

154 Q. Wu et al.

advanced protocols against more powerful attackers. We concentrate on new key
agreement protocols from scratch in this report.

1.1 Our Contribution

This paper investigates a close variation of the above mentioned problem of
one-round group key agreement protocols and focuses on “how to establish a
confidential channel from scratch for multiple parties in one round”. We provide
a short overview of some new ideas to solve this variation.

Asymmetric GKA. Observe that a major goal of GKAs for most appli-
cations is to establish a confidential broadcast channel among the group. We
investigate the potentiality to establish this channel in an asymmetric manner
in the sense that the group members merely negotiate a common encryption
key (accessible to attackers) but hold respective secret decryption keys. We in-
troduce a new class of GKA protocols which we name asymmetric group key
agreements (ASGKAs), in contrast to the conventional GKAs. A trivial solution
is for each member to publish a public key and withhold the respective secret
key, so that the final ciphertext is built as a concatenation of the underlying
individual ones. However, this trivial solution is highly inefficient: the ciphertext
increases linearly with the group size; furthermore, the sender has to keep all the
public keys of the group members and separately encrypt for each member. We
are interested in nontrivial solutions that do not suffer from these limitations.

Aggregatable signature-based broadcast (ASBB). Our proposals rely
on a new notion named aggregatable signature-based broadcast. In an ASBB
scheme, the public key can be simultaneously used to verify signatures and en-
crypt messages, and any valid signature can be used to decrypt ciphertexts un-
der this public key; furthermore, an ASBB scheme satisfies the key-homomorphic
property and the aggregatability property. The key-homomorphic property means
that the combination of signatures on the same message produces a valid sig-
nature of this message under the combination of the corresponding public keys.
As a consequence, the combined signature can be used as a decryption key of
the new ASBB instance. Aggregatability states that the combination of secure
ASBB instances produces a new secure ASBB instance.

Non-trivial one-round ASGKA. We propose a non-trivial one-round AS-
GKA scheme. Our idea is to generate the public key of an ASBB scheme in a
distributed manner, such that only each member can obtain a signature under
this public key. These signatures can be used as their respective decryption keys
and a confidential channel among the group is established. We build an efficient
ASBB scheme from bilinear pairings and prove its security under the decision
n-Bilinear Diffie-Hellman exponentiation (n-BDHE) assumption with the help
of a random oracle. By following the generic construction and exploiting the ran-
domness in the setup stage, we instantiate a one-round ASGKA protocol and
tightly reduce its security to the decision n-BDHE assumption in the standard
model (without using random oracles). The proposed one-round ASGKA proto-
col achieves the confidential channel of a one-round conventional GKA protocol.

Asymmetric Group Key Agreement 155

Also, our ASGKA proposal has additional advantages, e.g., serving as a public
key based broadcast scheme without requiring a dealer.

1.2 One-Round Group Key Agreement

A key agreement protocol enables two or more users within an open network
to create a common secret key. In what follows we review round-efficient key
agreement protocols, especially, one-round protocols. These protocols are unau-
thenticated and only secure against passive attacks but they are the basis on
which protocols with active security can be built. To date, only very few one-
round key agreement protocols (excluding their variations) have been found, i.e.,
the two-party Diffie-Hellman [12] and the tripartite Joux [19] protocols.

The basic Diffie-Hellman protocol [12] is a one-round two-party protocol. Af-
ter each party publishes one element in a finite cyclic group, two parties can
establish a common secret key. If one party fixes its published element as its
public key and the other party generates its element dynamically for each ses-
sion, the Diffie-Hellman protocol implies a public key cryptosystem, i.e., the
well-known ElGamal cryptosystem [13].

The Joux protocol [19] is a one-round tripartite protocol. Similarly to the
Diffie-Hellman protocol, by fixing two members’ published strings as their public
keys, the Joux protocol implies a mini broadcast cryptosystem without a trusted
dealer in which only these two members can decrypt the messages. Neverthe-
less, the Joux protocol is limited to three parties. To date, it remains unknown
whether it can be extended to more than three parties without introducing ad-
ditional rounds.

For more than three parties, Boneh and Silverberg proposed a one-round
(n+ 1)-party protocol [6] but their protocol relies on n-linear pairings which by
itself is also an open problem and no construction has been found so far. As-
suming that there exist n-linear pairing maps, their protocol implies a broadcast
cryptosystem [4,14] for n users by fixing n users’ published strings as their public
keys. Similarly to the Joux protocol, the Boneh-Silverberg protocol is limited to
n+ 1 parties. It seems difficult to extend it to more than n+ 1 parties without
additional rounds even if the existence of efficient n-linear pairings is assumed.

Burmester and Desmedt [11] extended the Diffie-Hellman protocol to n par-
ties. Their protocol requires two rounds and is the most efficient existing GKA
protocol in round efficiency without constraints on n. Some papers (e.g., [7,22])
can achieve authenticated GKA in one-round. But these GKA protocols are
based on public key encryption and differ from the above ones in that they are
not from scratch. The protocol in [7] is PKI-based and only one party uses its
public key for encryption purpose. Since setting up a PKI may be regarded as
a one-round protocol, such protocols can fairly be compared with a two-round
protocol from scratch. It is an open question whether our one-round protocol
can be used to build a two-round authenticated GKA from scratch.

However, as remarked by Joux [19], in some cases the two rounds in key
agreement protocols can be somewhat cumbersome, and a single pass would be
much more preferable. For instance, exchanging an email message key among a

156 Q. Wu et al.

group of users with a two-round key agreement protocol would require all of them
to be connected concurrently. Another scenario is a group of friends wishing to
share their private files via the insecure Internet; doing so with a two-round key
agreement protocol would require all of them to be online at the same time. In
practice, it is difficult for a group of distributed users to be online concurrently
(especially if they live in different time zones). In these scenarios, the bandwidth
is not a problem but the round efficiency is critical. In addition, the bandwidth
overhead can be mitigated by the hardware development but the round overhead
can only be addressed by more efficient protocols.

Unauthenticated GKA protocols can only be secure against passive attackers.
Hence, it is necessary to improve these basic protocols to meet active security
for practical applications. There are lots of studies following this research line.
In [1] Bellare et al. showed a compiler which converts unauthenticated protocols
into authenticated ones in the two-party setting; extending [1] to the group set-
ting is possible but inefficient. In [20], Katz and Yung proposed an aggregatable
compiler which transforms any secure GKA protocol against passive attackers
into a secure authenticated GKA protocol against active attackers. The compiler
preserves forward security of the original protocol. In [21], Kudla and Paterson
considered modular proof techniques for authenticated key agreement protocols
which are not designed in a modular way but which one nevertheless wishes
to prove secure. Different key agreement protocols secure against active attack-
ers may be constructed from authentication techniques and a library of basic
protocols including our protocols in this paper.

1.3 Motivating Applications

By way of motivation, we illustrate some interesting applications and advantages
of the new notion of ASGKA as well as our one-round instantiation.

Application scenarios. Our ASGKA protocol suits broadcast applications
to which regular broadcast schemes and GKA protocols are difficult to apply.
We have in mind applications where it is hard to find a trusted party to serve
as a dealer in a regular broadcast scheme, and it is inconvenient to require
all the parties to stay online concurrently to implement a (two-round) regular
GKA protocol. Such applications include broadcast to ad hoc groups, off-line file
sharing via internet, secure group chat, group purchase of encrypted content with
identity privacy (i.e., where the seller cannot identify the members of a group
purchase) and so on. These applications deal with not very large self-organized
groups which live a period of time after being established. Hence, our ASGKA
fills the application gap left by regular GKA or broadcast schemes.

Comparison with the trivial solution. As mentioned in Section 1.1, the
trivial solution suffers from linear complexity in the ciphertext size, keys storage
requirement and encryption overhead. In our scheme, the ciphertext, the nego-
tiated public key and all decryption keys are of constant size. Although in our
proposal each member’s published string is linear in the group size in negotia-
tion, no one needs to keep any bit of them after executing the protocol. Hence,
the storage requirement is small in our scheme. The encryption operation in our

Asymmetric Group Key Agreement 157

scheme is also efficient, i.e., three exponentiations. Due to the heavy communi-
cation overhead in key establishment, our scheme does not improve on the trivial
solution for one-time group applications1. However, in practice, once a group is
established, it is likely to live for a period of time, as discussed above, in which
case the communication overhead incurred by our protocol can be amortized
over the group lifetime.

Public key based broadcast without a dealer. For our ASGKA proposal,
if each member is allowed to register to a certificate authority its published string
as its public key, then anyone knowing the public keys of all members can send
encrypted messages to the group and only the group members can decrypt the
message. Here, the ciphertexs and the secret key of each member are constant
and independent of the group scale. This implies that our ASGKA protocol can
be used as an efficient public key based dealer-free broadcast scheme which, to
the best of our knowledge, is not found in the public literature. However the ex-
isting broadcast schemes in the literature do require such a privileged dealer and
confidential channels from the dealer to each subscribers before implementing
the broadcast system, which is undesirable in some applications.

Key self-confirmation. After a GKA protocol is executed, the agreed keys
may become invalid for various reasons, for instance, inside attackers or commu-
nication errors. Some proposals (e.g., [10,20]) suggest a simple method to com-
plete the key confirmation. They assume that the group members have agreed
on a public message in advance. After running the basic protocols, each member
encrypts this message with its derived session key and broadcasts the ciphertext.
Then the members can verify whether they share the same session key (the ex-
isting GKAs are symmetric) by checking the consistency of the ciphertexts. This
method may not work if there exist inside attackers (a major goal of the key
confirmation is to prevent inside attacks). Such attackers can invalidate a correct
session key by simply sending a random string in the last round. This flaw can
be fixed by letting the group members prove that they have behaved honestly,
but such fixes seem expensive in practice. For our asymmetric GKA protocol,
the key confirmation is simple and requires no additional rounds if the proto-
col has been correctly executed. Group members can choose a random message
and encrypt it using their derived encryption keys. Then they can decrypt using
their derived decryption keys. If the decryption outputs a correct plaintext, the
corresponding member concludes that the ASGKA protocol has been correctly
run; otherwise, the member raises a public alarm. Hence, if an ASGKA protocol
has been correctly executed, each member can verify this fact locally without
communicating with others and no additional rounds are required.

Identification of disruptive principals in GKA protocols. In existing
GKA protocols, it is not a trivial job to identify malicious principals aiming to
disrupt the protocol even if some of these protocols are authenticated and proven
secure against active attackers. Indeed, authentication in a GKA protocol only
prevents such attacks by outside adversaries. A disruptive principal can just

1 Those applications are about fully dynamic group broadcast without a dealer and
could be interesting for future research.

158 Q. Wu et al.

broadcast some authenticated random strings during the protocol execution to
paralyze the protocol. To thwart such attackers, group members may be required
to prove that they have behaved correctly in a zero-knowledge manner. This
modification can work (to identify the disruptive principals) but it introduces a
substantial cost. In our ASGKA scheme, since the transcripts from participants
are indeed signatures under their respective temporary public keys, anyone who
did not honestly behave can be identified and expelled if any group member
raises an alarm after key confirmation.

1.4 Paper Organization

In Section 2, we revisit the notion of group key agreement. Section 3 presents a
generic ASGKA construction from ASBBs with key homomorphic property and
aggregatability. An ASBB scheme is efficiently realized in Section 4 and the one-
round ASGKA protocols naturally follow from the generic formula. Section 5 is
a conclusion.

2 Group Key Agreement Revisited

In the conventional GKA definition, a group of members interact to establish
a common secret key within an open network. One may notice that a major
goal of GKAs is to establish a confidential broadcast channel among the group.
In such a broadcast context from GKA protocols, there is no need for a dealer
to distribute decryption keys, but only group members can broadcast to other
group members2. However, in practice the senders can be potentially anyone, as
the case of asymmetric encryption. Hence, we are motivated to find alternatives
to achieve the final goal of conventional GKAs. For instance, assume that there
exists a public key based broadcast cryptosystem in which the single public
key corresponds to numerous secret decryption keys; if the group members can
jointly generate such a cryptosystem and share the public key while only the
group members can extract a secret key during the joint computation, then any
message encrypted under this public key can only be decrypted by the group
members and a confidential channel is built among them.

2.1 Protocol Variables and Partner Relationship

The following revisited GKA definition derives from the widely-accepted ones due
to [7,8,9,10,20]. Similarly to [20], we assume for simplicity a fixed, polynomial-size
set P = {U1, · · · ,U�} of potential players. Any subset of the potential players may
decide at any point to establish a confidential channel among them, but we assume
that these subsets are the same during a run of the protocol and concentrate on
static groups.
2 In some applications, this feature can be an advantage, e.g., intra-group authenti-

cations. In our ASGKA protocol, intra-group authentication can be easily realized
since the underlying primitive can be used as a signature scheme.

Asymmetric Group Key Agreement 159

Whenever group membership changes, a new group Pv = {U1, · · · ,Un} is
formed and its members can establish a confidential channel through an instance
performing a group key agreement protocolΣ: the index v increases whenever the
membership changes and P0 denotes the initial group. Π ıi

Ui
denotes an instance

ıi of a group member Ui. An instance Π ıi

Ui
has a unique session identifier Sidıi

Ui

and a partner identifier Pidıi

Ui
. After the GKA protocol Σ has been terminated

successfully,Π ıi

Ui
has a unique decryption key identifier Dkidıi

Ui
corresponding to a

decryption key dkıi

Ui
, and a unique encryption key identifier Ekidıi

Ui
corresponding

to an encryption key ekıi

Ui
, and a freshness identifier Fidıi

Ui
representing whether

dkıi

Ui
is compromised. If not, Fidıi

Ui
= 1; else Fidıi

Ui
= 0. Finally, the partner

identifier Pidıi

Ui
corresponds to a set of group members Pıi

Ui
= Pv \ {Ui}.

Definition 1 (Successful termination of GKA). We say that a GKA pro-
tocol Σ has been successfully terminated in the instance Π ıi

Ui
if for 1 ≤ k �= i ≤ n,

(1) each Uk of Pıi

Ui
has instance Π ık

Uk
containing {Sidık

Uk
, Pidık

Uk
, Dkidık

Uk
, Ekidık

Uk
};

(2) Sidık

Uk
= Sidıi

Ui
; (3) Pık

Uk
= Pv \{Uk}. In this case, we state that the instances

Π ıi

Ui
and Π ık

Uk
are partnered.

2.2 Adversarial Model

In the real world, a protocol determines how principals behave in response to
signals from their environment. In the model, these signals are sent by the adver-
sary A. For simplicity, only passive adversaries are considered in the definitions.
A passive adversary is assumed to merely eavesdrop all communication in the
network. An adversary A’s interaction with the principals in the network (more
specifically, with the various instances) is modeled by the following oracles:

– Parameter(1λ): On A’s query λ, respond with common parameters denoted
by π, including two polynomial time algorithms E(·, ·) and D(·, ·).

– Setup(P0): On A’s query P0, start the protocol Σ and output the initial
group P0 = {U1, · · · ,U�}. For 1 ≤ k ≤ �, initialize Sidık

Uk
← 0, Pidık

Uk
←

∅, Dkidık

Uk
← NULL, Ekidık

Uk
← NULL, Fidık

Uk
← 1, S ← 0.

– Execute(U1, · · · ,Un): Execute the protocol between unused instances of play-
ers {U1, · · · , Un} = Pv ⊆ P0 and output the transcript of the execution. Here,
v changes whenever the group changes and hence is the group sequence num-
ber. The number of group members and their identities are chosen by the ad-
versary. For 1 ≤ k ≤ n, update Sidık

Uk
← Sidık

Uk
+ 1, Pidık

Uk
← Pv \ {Uk},

Dkidık

Uk
← dkık

Uk
, Ekidık

Uk
← ekık

Uk
, S ← S + 1. S is the session sequence num-

ber to record the running times of Execute.
– Ek-Reveal(Π ıi

Ui
): Output Ekidıi

Ui
.

– Dk-Reveal(Π ıi

Ui
): Output Dkidıi

Ui
. Update Fidıi

Ui
← 0. We allow the encryp-

tion key to be different from the decryption key and hence the Ek-Reveal
oracle and the Dk-Reveal oracle are distinguished.

– Test(Π ıi

Ui
,m0,m1): This query is used to define the advantage of an ad-

versary A. A executes this query on a fresh instance Π ıi

Ui
(see Definition 4

below) at any time, but only once (other queries have no restriction). When
A asks this query, it receives a challenge ciphertext c∗ = E(mρ, ek

ıi

Ui
), where

ρ is the result of a coin flip. Finally, A outputs a bit ρ′.

160 Q. Wu et al.

2.3 Properties of GKA

A major goal of GKA protocols is to establish a confidential channel for group
members. We use this goal to define the correctness of a GKA protocol while
use the approaches to the goal to classify GKA protocols.

Definition 2 (Correctness). We say a GKA protocol Σ is correct if, when-
ever it has been successfully terminated, for any instance Π ıi

Ui
and any of its

partners Π ık

Uk
and any message m in the message space of E(·, ·), it holds that

D(E(m, ekıi

Ui
), dkık

Uk
) = m and D(E(m, ekık

Uk
), dkıi

Ui
) = m.

Definition 3 (Asymmetric Group Key Agreement). A GKA protocol Σ
is said to be symmetric if after being successfully terminated, it holds that dkıi

Ui
=

dkık

Uk
= sk. Else, Σ is said to be an asymmetric group key agreement protocol.

A GKA protocol is nontrivial if |E(m, ekıi

Ui
)| and |E(m, ekık

Uk
)| are independent of

n, where |s| denotes the binary length of string s. This restraint rules out trivial
protocols where each member just publishes a public key and keeps its secret
key for an agreed public key cryptosystem. The conventional GKA protocols are
all symmetric. An ASGKA protocol allows different members to have different
decryption keys. However, it does not state whether the inside members can
use their secret decryption keys to (collusively) compute a new (equivalent)
decryption key. This issue of traitor traceability is beyond our scope.

We first define the notion of freshness as the precondition to define the secrecy
of GKA protocols, in which the corruption query Dk-Reveal models insider
attacks and captures forward security of GKAs.

Definition 4 (Freshness). An instance Π ıi

Ui
is fresh if before the adversary

answers the Test oracle, neither the instance Π ıi

Ui
nor anyone of its partnered

instances has received a Dk-Reveal query.

Let us proceed to the main security notion of GKAs against passive attackers.
In the conventional GKA definitions, the group members finally share a secret
key. Accordingly, the security is defined by the indistinguishability of the shared
key from a random string. In our definition we allow the group members to
have different decryption keys. Hence, we define the security of GKAs by the
security of the final confidential channel, i.e., the indistinguishability of messages
transferred via this channel.

Definition 5 (Secrecy of GKA). Let Σ be a GKA protocol and A be a passive
adversary against Σ. When A asks a query Test(Π ıi

Ui
,m0,m1) to a fresh instance

Π ıi

Ui
in Σ, A receives a challenge ciphertext c∗ = E(mρ, ek

ıi

Ui
), where ρ is the

result of a coin flip. Finally, A outputs a bit ρ′. The advantage of A in the above
secrecy game is defined as AdvGKA

A,Σ = |Pr[ρ′ = ρ]− 1
2 |. Σ is said to be secure for

static groups if A is allowed to query all the oracles and AdvGKA
Σ is negligible.

Asymmetric Group Key Agreement 161

3 Generic Construction of One-Round ASGKA

In this section, we propose a secure generic construction of one-round ASGKA
protocols for static groups. To achieve this goal, we present a primitive referred to
as aggregatable signature-based broadcast (ASBB). It has the key-homomorphic
property and aggregatability which are crucial for our generic one-round ASGKA
protocol.

3.1 Aggregatable Signature-Based Broadcast

An ASBB scheme can be used simultaneously as a signature scheme and a broad-
cast scheme. It exploits the duality between decryption keys and signatures which
has been noticed in ID-based encryption [3] and certificate-based encryption [17],
but the encryption in ASBB does not take input the receivers’ identities.

The security of an ASBB scheme incorporates the standard notion of security
for a signature scheme, i.e., existential unforgeability under a chosen message
attack (EUF-CMA) [18] and the security as an encryption scheme.

Definition 6 (Aggregatable signature-based broadcast). An ASBB
scheme consists of six polynomial-time algorithms:

– π ← ParaGen(1λ): On input a security parameter λ, output the public pa-
rameters π.

– (pk, sk)← KeyGen(π): On input π, output a public/secret key pair (pk, sk).
– σ ← Sign(pk, sk, s): On input the key pair (pk, sk) and any string s, output

a signature σ.
– 0/1 ← Verify(pk, s, σ): On input the public pk and a signature σ of string
s, output 0 or 1.

– c ← Encrypt(pk,m): On input a public key pk and a plaintext m, output a
ciphertext c.

– m ← Decrypt(pk, s, σ, c): On input the public key pk, any valid string-
signature (s, σ) and a ciphertext c, output the plaintext m.

Given the system parameters π, a public key pk and a challenge ciphertext
c = Encrypt(pk,mρ) for m0 and m1 chosen by an attacker A, where ρ is the
challenger’s random coin flip, the attacker wins if it outputs a guess bit ρ′ = ρ.
An ASBB scheme is said to be semantically indistinguishable against chosen
plaintext attacks (Ind-CPA) if, for any polynomial-time attacker A, |Pr[ρ =
ρ′] − 1

2 | is negligible in λ. An ASBB scheme is said to be EUF-CMA-Ind-CPA
secure if the underlying signature is EUF-CMA secure and the encryption is
Ind-CPA secure.

An ASBB scheme has a key-homomorphic property, as mentioned in Section 1.1.
This means that, given two signatures on the same message under two public
keys, one can efficiently produce a signature of the same message under a new
public key derived from the original two public keys.

162 Q. Wu et al.

Definition 7 (Key homomorphism). An ASBB scheme is said to be key
homomorphic if, for any two public/secret key pairs (pk1, sk1), (pk2, sk2) ←
KeyGen(π) and any message string s, σ1 = Sign(pk1, sk1, s), σ2 = Sign(pk2, sk2,
s), it holds that (1) Verify(pk1 ⊗ pk2, s, σ1 ! σ2) = 1 and (2) Decrypt(pk1 ⊗
pk2, s, σ1!σ2, c) = m for any plaintext m such that c← Encrypt(pk1⊗pk2,m),
where ⊗ : Γ × Γ → Γ and ! : Ω × Ω → Ω are two efficient operations in the
public key space Γ and the signature space Ω, respectively.

For key homomorphic ASBB schemes sharing system parameters, the combina-
tion of signatures of the same string under different public keys is also a valid
signature of this string under the combination of given public keys. Note that
this property does not contradict the standard EUF-CMA security of signatures,
since in a EUF-CMA game, the public key is provided by the challenger while
the public key derived from combination is generated by the attacker in the
key-homomorphic notion.

Let us consider this problem further. Since the combination of given public
keys yields the public key of a new ASBB instance, we naturally question the
security of the resulting ASBB instance such as the EUF-CMA security, Ind-
CPA security or other properties that are potentially useful. For our focus of
one-round GKAs, we study the Ind-CPA security of the resulting system and
introduce another important property, i.e., aggregatability, in an ASBB scheme.

Definition 8 (Aggregatability). The aggregatability of an ASBB scheme is
defined by the following game between an adversary A and a challenger CH:

– Setup: A initializes the game with an integer n. CH replies with (π, pk1, · · · ,
pkn) which are the system parameters and n independent public keys of the
key-homomorphic ASBB scheme.

– Education: For 1 ≤ j �= i ≤ n, the adversary A can adaptively choose any
string sj ∈ {0, 1}∗ to query CH for a valid signature σi(sj) under pki. sj is
determined by the attacker but the limit is that si �= sj if i �= j. In other
words, the attacker can freely decide n messages sj(1 ≤ j ≤ n) but it cannot
query sj to PKj, although the queries to PKi are allowable.

– Challenge: CH and A run a standard Ind-CPA game under the combined
public key pk = pk1 ⊗ · · · ⊗ pkn. A wins if A outputs a correct guess bit.
Denote A’s advantage by AdvA = |Pr[win]− 1

2 |.
An ASBB scheme is said to be (τ, ε, n)-aggregatable against adaptively chosen

message attacks if no τ-time algorithm A has advantage AdvA ≥ ε in the above
aggregatability game. An ASBB scheme is said to be (τ, ε, n)-aggregatable against
non-adaptively chosen message attacks if the adversary is required to provide sj

for j = 1, · · · , n after the Setup stage and no τ-time algorithm A has advantage
AdvA ≥ ε in the corresponding non-adaptive aggregatability game.

The aggregatability against non-adaptively chosen message attacks is sufficient
for our purpose of one-round GKAs. Note that, in the above aggregatability
definition, the EUF-CMA security is implicitly used. This is because if the un-
derlying ASBB is not EUF-CMA secure, the attacker may successfully forge sig-
natures of some message s′ under all the public keys after the Education stage.

Asymmetric Group Key Agreement 163

Due to the key-homomorphic property, the attacker can obtain a signature σ′ of
s′ under pk and σ′ is also a valid decryption key. As a result, the attacker can
decrypt normally and the aggregatability cannot hold.

3.2 A Generic Construction of One-Round ASGKA Protocols

Based on ASBBs, we present a generic construction of ASGKA protocols for
static groups. The construction is illustrated in Matrix (1), where ⇓/↓, ≺: and
TPK represent public/private computation, broadcast operation and temporary
public key, respectively.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1knows U2knows U3knows · · · Unknows TPK

U1 ≺: © σ1(ID2) σ1(ID3) · · · σ1(IDn) pk1

U2 ≺: σ2(ID1) © σ2(ID3) · · · σ2(IDn) pk2

U3 ≺: σ3(ID1) σ3(ID2) © · · · σ3(IDn) pk3

...
...

...
...

. . .
...

...

Un ≺: σn(ID1) σn(ID2) σn(ID3) · · · © pkn

↓ ↓ ↓ · · · ↓ ⇓

example: dk1 dk2 dk3 · · · dkn pk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Protocol I: One-Round ASGKA Protocol

– Public Parameter Generation.The public parameters are the description
π of an ASBB scheme.

– Group Setup.Decide the group of the players P={U1, · · · ,Un}. Let ID1, · · · ,
IDn be the respective identities.

– Group Key Agreement. Ui randomly generates a public key pki and broad-
casts the corresponding row in Matrix (1):

σi(ID1), · · · , σi(IDi−1), σi(IDi+1), · · · , σi(IDn), pki.

Here, σi(IDj) is a signature of IDj corresponding to the public key pki. ©
represents that σi(IDi) is not published for 1 ≤ i ≤ n.

– Group Encryption Key Derivation. The group encryption key is:

pk =
n⊗

j=1

pkj .

– Decryption Key Derivation. Player Ui can calculate its secret decryption
key dki from the corresponding column of Matrix (1):

164 Q. Wu et al.

dki = σi(IDi)
n,j =i⊙
j=1

σj(si) =
n⊙

j=1
σj(IDi).

Note that an attacker cannot compute dki since σi(IDi) is unpublished. The
last row is the output of a successful run of an ASGKA instance.

– Encryption/Decryption. Since π is an ASBB scheme, dki is a signature of
si under the new public key pk. Hence, dki is also a decryption key corre-
sponding to the new public key pk and the Encryption/Decryption algo-
rithms can be trivially realized in π.

We give the proof of the following theorem in [23].

Theorem 1. The proposed generic one-round ASGKA protocol for static groups
is secure if the underlying key homomorphic ASBB is EUF-CMA-Ind-CPA se-
cure and aggregatable against non-adaptive chosen message attacks.

Although we only consider the CPA security in our ASGKA protocol, by noting
that the resulting output of the protocol can be viewed as a public key based
broadcast system, it is possible to achieve security against chosen ciphertext
attacks (CCA). In fact, some generic approaches that convert a CPA secure
encryption scheme into a CCA secure one can apply to our scheme, similarly
to the Fujisaki-Okamoto conversion [15]. Since our focus is one-round ASGKAs
with basic security, we will not explore such improvements here.

4 The Proposal

From the generic construction, to realize one-round ASGKA protocols, one needs
only to implement a secure ASBB scheme. We construct an ASBB scheme secure
in the random oracle model using available bilinear pairing techniques.

4.1 An Efficient ASBB Scheme

The scheme is realized in bilinear pairing groups [5,16]. Let PairGen be an algo-
rithm that, on input a security parameter 1λ, outputs a tuple Υ = (p,G,GT , e),
where G and GT have the same prime order p, and e : G×G→ GT is an efficient
non-degenerate bilinear map such that e(g, g) �= 1 for any generator g of G, and
for all u, v ∈ Z, it holds that e(gu, gv) = e(g, g)uv.

– Public parameters: Let Υ = (p,G,GT , e) ← PairGen(1λ), G = 〈g〉. Let
H : {0, 1}∗ → G be a cryptographic hash function. The system parameters
are π = (Υ, g,H).

– Public/secret keys: Select at random r ∈ Z∗
p, X ∈ G \ {1}. Compute

R = g−r, A = e(X, g).

The public key is pk = (R,A) and the secret key is sk = (r,X).

Asymmetric Group Key Agreement 165

– Sign: The signature of any string s ∈ {0, 1}∗ under the public key pk is

σ = XH(s)r.

– Verify: Given a message-signature pair (s, σ), the verification equation is

e(σ, g)e(H(s), R) = A.

If the equation holds, output 1 to represent that purported signature is valid.
Else output 0 and reject the purported signature.

– Encryption: For a plaintext m ∈ GT , randomly select t ∈ Z∗
p and compute

c1 = gt, c2 = Rt, c3 = mAt.

– Decryption: After receiving a ciphertext (c1, c2, c3), anyone with a valid
message-signature pair (s, σ) can extract

m =
c3

e(σ, c1)e(H(s), c2)
.

The correctness of the proposed ASBB scheme follows from a direct verifica-
tion. Define ⊗ by (R1, A1)⊗ (R2, A2) = (R1R2, A1A2) and ! by σ1!σ2 = σ1σ2.
For security, we have the following claims in which Claim 2 follows from the
definition of ⊗ and !, and the security proof of Claim 3 can be found in the full
version of the paper [23].

Theorem 2. Let G be a bilinear group of prime order p. For any positive
integers n, the following claims hold. (1) The proposed ASBB scheme is (τ ′, ε, n)-
aggregatable against non-adaptive chosen message attacks in the random ora-
cle model assuming the decision (τ, ε, n)-BDHE assumption holds in G, where
τ ′ = τ +O((qH +n2)τExp). (2) The proposed ASBB scheme is key-homomorphic.
(3) The proposed ASBB scheme is EUF-CMA-Ind-CPA secure in the random
oracle model under the Computational Diffie-Hellman (CDH) and Decisional
Bilinear Diffie-Hellman (DBDH) assumptions.

Proof. The aggregatability relies on the decision n-BDHE assumption which is
shown to be sound by Boneh et al. [2] in the generic group model. The decision
n-BDHE assumption in G is as follows.

Definition 9. Let G be bilinear group of prime order p as defined in Section 4.1
and g, h two independent generators of G. Denote −→y g,α,n =(g1, · · · , gn, gn+2, · · · ,
g2n) ∈ G2n−1, where gi = gαi

for some unknown α ∈ Z∗
p. An algorithm B that

outputs b ∈ {0, 1} has advantage ε in solving the decision n-BDHE problem if

|Pr[B(g, h,−→y g,α,n, e(gn+1, h)) = 0]− Pr[B(g, h,−→y g,α,n, Z) = 0)]| ≥ ε

where the probability is over the random choice of g, h in G, the random choice
α ∈ Z∗

p, the random choice of Z ∈ GT , and the random bits consumed by B.
We say that the decision (τ, ε, n)-BDHE assumption holds in G is if no τ-time
algorithm has advantage at least ε in solving the decision (τ, ε, n)-BDHE problem.

166 Q. Wu et al.

Based on the decision BDHE assumption, we prove the critical aggregatability
of our ASBB scheme. We construct an algorithm B that uses a decision BDHE
challenge to simulate all the requested service for an aggregatability attacker A.
Then B uses the answer bit from A to solve the the decision BDHE assumption.
We illustrate that B has the same advantage as A in the same time complexity
except for an additive factor, i.e., the reduction is tight.

Suppose that A is a τ -time adversary A breaking the aggregatability with
probability larger than ε for a system parameterized with a given n. We build
an algorithm B with advantage ε in solving the decision n-BDHE problem in G.
B takes as input a random decision n-BDHE challenge (g, h,−→y g,α,n, Z), where−→y g,α,n = (g1, · · · , gn, gn+2, · · · , g2n) and Z is either e(gn+1, h) or a random
element of GT (recall that gi = g(αi)). B proceeds as follows.

Preparation for simulation. For j = 1, · · · , n, B randomly selects vi ∈ Zp

and computes hj = gjg
vj . B randomly selects i∗ ∈ {1, · · · , n}, ai, ri ∈ Z∗

p. Let
Si∗ = {1, · · · , i∗ − 1, i∗ + 1, · · · , n}. Compute

Ri∗ = gri∗ (
∏

k∈Si∗
gn+1−k), σi∗,j = gai∗ g−ri∗

j (
∏k =j

k∈Si∗
g−1

n+1−k+j)R
−vj

i∗ (j �= i∗).

For i �= i∗, compute

Ri = grig−1
n+1−i, σi,j = gaig−ri

j gn+1−i+jR
−vj

i for j �= i.

Noting that g(αj)
i = g(αi+j) = gi+j for any i, j, for j �= i∗, we have that

e(σi∗,j , g)e(hj, Ri∗) = e(gai∗ g−ri∗
j (

∏k =j
k∈Si∗

g−1
n+1−k+j)R

−vj

i∗ , g)e(gjg
vj , Ri∗)

= e(gai∗ g−ri∗
j (

∏k =j
k∈Si∗

g−1
n+1−k+j), g)e(gj , Ri∗)

= e(gai∗ g−ri∗
j (

∏k =j
k∈Si∗

g−1
n+1−k+j), g)e(gj , g

ri∗ (
∏

k∈Si∗
gn+1−k))

= e(gai∗ g−ri∗
j (

∏k =j
k∈Si∗

g−1
n+1−k+j), g)e(g, g

ri∗
j (

∏
k∈Si∗

gn+1−k+j))

= e(gai∗ , g)e(g, gn+1) = e(g, g)ai∗e(g, g)αn+1 def= Ai∗ .
For j �= i(i �= i∗), it holds that
e(σi,j , g)e(hj, Ri) = e(gaig−ri

j gn+1−i+jR
−vj

i , g)e(gjg
vj , Ri)

= e(gaig−ri

j gn+1−i+j , g)e(gj, Ri) = e(gaig−ri

j gn+1−i+j , g)e(gj , g
rig−1

n+1−i)
= e(gai , g)e(g−ri

j gn+1−i+j , g)e(g, gri

j g
−1
n+1−i+j) = e(gai , g)

= e(g, g)ai
def= Ai.

Hence, for all j �= i(i ∈ {1, · · · , n}), we have that

e(σi,j , g)e(hj, Ri) = Ai. (2)

After the above preparations, B runs the aggregatability game with attacker
A. During the game, B will give A the public system parameters including public
keys and A can ask signatures from B according to Definition 8. We model the
hash function as a random oracle maintained by B and the A can ask hash
outputs with its chosen queries.

Setup simulation. B needs to generate n public keys {pk1, · · · , pkn}. B sets
pki = (Ri, Ai) and forwards them to A. Note that ri, ai are uniformly distributed
in Z∗

p. Hence the simulated public keys have an identical distribution as in the

Asymmetric Group Key Agreement 167

real world and the simulation is perfect. After the Setup stage, A has to submit
its distinct queries sj ∈ {0, 1}∗(1 ≤ j ≤ n) in the Education stage to B.

Random oracle simulation. After Setup stage, A can query the random
oracle at any point. Assume that A queries the random oracle at most qH times.
For each time, A queries B with (s′j , j) for the hash output of s′j, where s′j ∈
{0, 1}∗ and j is a positive integer. Assume that s′j is fresh (If s′j has been queried,
B just returns the previous reply for consistence). To simulate the random oracle,
B works as follows. If 1 ≤ j ≤ n and s′j = sj , B sets H(s′j) := hj ; else if 1 ≤ j ≤ n
but s′j �= sj or n < j ≤ qH , B randomly selects hj ∈ G and sets H(s′j) := hj .
B responds with hj to the query (s′j , j) from A. Clearly, the simulation of the
random oracle is perfect.

Education simulation. For 1 ≤ j ≤ n, B needs to generate signatures
σi(sj) such that verify(σi(sj), sj , pki) = 1(i �= j). After the above preparation,
B can easily simulate education: When A requests the signature on sj under the
public key pki, B responds with σi(sj) = σi,j . From Equation (2), the simulated
signatures are well formed and the simulation is also perfect.

Challenge simulation. B andA run a standard Ind-CPA game under the the
aggregated public encryption key. Denote that a = a1+ · · ·+an, r = r1+ · · ·+rn.
Note that Si∗ = {1, · · · , n}\{i∗}. It follows that the aggregated public encryption
key is (R,A) where
R = Ri∗

∏
k∈Si∗

Rk = gri∗ (
∏

k∈Si∗
gn+1−k)

∏
k∈Si∗

grkg−1
n+1−k

= gri∗
∏

k∈Si∗
grk = g

∑n
k=1 rk = gr,

A = Ai∗
∏

k∈Si∗
Ak = e(g, g)ai∗ e(g, g)αn+1 ∏

k∈Si∗
e(g, g)ak

= e(g, g)αn+1 ∏n
k=1 e(g, g)

ak = e(g, g)αn+1+a.
For the aggregated public key (R,A), the decryption keys corresponding to each
group member are not revealed. Although neither B nor A know the stars �
satisfying e(�, g)e(H(si), R) = A, B knows r, a ∈ Z∗

p such that R = gr, A =
e(g, g)αn+1+a, where α is unknown. Hence, B can challenge A as follows.

When receiving the plaintexts m0,m1 ∈ GT chosen by A, B randomly selects
a bit b ∈ {0, 1} and computes the challenge ciphertext (c∗1, c∗2, c∗3) where c∗1 =
h, c∗2 = hr, c∗3 = mbZe(g, h)a. B claims that Z = e(gn+1, h) to answer the decision
n-BDHE challenge if and only if A’s guess bit b′ = b.

Success probability: Since g, h are generators, we let h = gt for some un-
known t ∈ Z∗

p. Hence,
Rt = (gr)t = (gt)r = hr,
At = (gr)t = e(g, g)(α

n+1+a)t = e(g, gt)(α
n+1+a)

= e(gαn+1
, h)e(g, h)a = e(gn+1, h)e(g, h)a.

Therefore, if and only if Z = e(gn+1, h), (c∗1, c
∗
2, c

∗
3) = (gt, Rt,mbA

t) and (c∗1, c
∗
2,

c∗3) is well formed (i.e., it is a valid ciphertext of mb under the public key (R,A)).
Hence, B has the same advantage to solve the decision n-BDHE challenge as that
of B breaking the aggregatability of the ASBB scheme.

Time-complexity: In the simulation, B’s overhead is dominated by com-
puting (σi,j , Ri, Ai) for j �= i and hj . Computing hj requires qH exponen-
tiations in G (the overhead to sample a random element in G is about one

168 Q. Wu et al.

exponentiation). Computing σi,j requires O(n2) exponentiations in G. Note that
B can compute Ai by an exponentiation in GT rather than a pairing computa-
tion. Computing Ri, Ai requiresO(n) exponentiations in G and GT , respectively.
Let τExp denote the time complexity to compute one exponentiation without dif-
ferentiation of exponentiations in different groups. Hence, the time complexity
of B is τ ′ = τ +O((qH + n2)τExp). �

4.2 Concrete One-Round ASGKA Protocol

Following the generic construction, it is easy to realize a one-round ASGKA
protocol using the instantiated ASBB scheme. Interestingly, we can remove the
hash requirements by observing the randomness in the setup stage. That is, we
bind the i-th user by randomly choosing hi ∈ G rather than setting hi = H(IDi),
while other parts are realized literally following from the generic construction.

– Public parameters generation. It is the same as the above ASBB scheme.
– Group setup. Decide the group of the players P = {U1, · · · ,Un}. Randomly

choose hi ∈ G for i = 1, · · · , n. hi can map to Ui in a natural way, e.g.,
according to the dictionary order in their binary representation.

– Group key agreement. Ui randomly chooses Xi ∈ G, ri ∈ Z∗
p and publishes

{σi,j , Ri, Ai}i=j , where σi,j = Xih
ri

j , Ri = g−ri , Ai = e(Xi, g).

– Group encryption key derivation. The players share the same group encryption
key(R,A):

R =
∏n

j=1 Rj = g−Σn
j=1rj , A =

∏n
j=1 Aj = e(

∏n
j=1Xj , g).

– Decryption key derivation. Using the private input (Xi, ri) during the protocol
execution phase, player Ui can calculate its secret decryption key from the
public communication:

σi = Xih
ri

i

∏n,j =i
j=1 σj,i =

∏n
j=1Xjh

rj

i = (
∏n

j=1Xj)h
Σn

j=1rj

i .

– Encryption. For a plaintextm ∈ GT , anyone who knows the public parameters
and the group encryption key can output the ciphertext c = (c1, c2, c3), where
t← Zp, c1 = gt, c2 = Rt, c3 = mAt.

– Decryption. Since e(σi, g)e(hi, R) = A, each player Ui can decrypt

m =
c3

e(σi, c1)e(hi, c2)
.

Corollary 1. The above n-party ASGKA protocol is secure against passive at-
tackers in the standard model under the decision n-BDHE assumption.

Proof. The proof is a simple combination of Theorems 1 and 2, but since at
the group setup stage, B can simulate hj = gjg

vj with a randomly chosen value
vi ∈ Z∗

p, it does not need the help of a random oracle. The detailed proof is
omitted to avoid repetition. �

Asymmetric Group Key Agreement 169

5 Conclusions and Future Work

We reconsidered the definition of group key agreement and presented the no-
tion of asymmetric group key agreement. Based on a new notion of aggregatable
signature-based broadcast, we presented a generic construction of one-round AS-
GKA protocols, which can also be used as a broadcast scheme but does not need
a trusted dealer to distribute secret keys. Finally, efficient ASBB and one-round
ASGKA schemes were instantiated using available bilinear pairings. The pro-
posed ASGKA protocol is secure under the decision BDHE assumption without
using random oracles. It fills the application gaps left by conventional GKA and
broadcast systems. ASGKA being a new notion, it opens numerous avenues for
future research such as round-efficient ASGKAs against active attackers, AS-
GKAs with traitor traceability and (conditional) reductions between ASGKA
and conventional GKA protocols.

Acknowledgments and Disclaimer

The authors gratefully acknowledge Professor Colin Boyd for helping to pre-
pare the final paper and anonymous reviewers for their helpful comments. This
paper is partly supported by the Spanish Government through projects CON-
SOLIDER INGENIO 2010 CSD2007-00004 “ARES” and TSI2007-65406-C03-01
“E-AEGIS”, by the Australian ARC Discovery Grant DP0877123, and by the
Chinese NSF projects 60673071 and 60873268. The fifth author is also partially
supported as an ICREA-Acadèmia researcher by the Government of Catalonia.
The views of those authors with the UNESCO Chair in Data Privacy do not
necessarily reflect the position of UNESCO nor commit that organization.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and
Analysis of Authentication and Key Exchange. In: STOC 1998, pp. 419–428. ACM
Press, New York (1998)

2. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

3. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. SIAM
J. of Computing 32(3), 586–615 (2003)

4. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryp-
tion Schemes. In: Pieprzyk, J. (ed.) Asiacrypt’08. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

5. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

6. Boneh, D., Silverberg, A.: Applications of Multilinear Forms to Cryptography.
Contemporary Mathematics 324, 71–90 (2003)

170 Q. Wu et al.

7. Boyd, C., González-Nieto, J.M.: Round-Optimal Contributory Conference Key
Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174.
Springer, Heidelberg (2002)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

10. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably Authenti-
cated Group Diffie-Hellman Key Exchange. In: Samarati, P. (ed.) ACM CCS 2001,
pp. 255–264. ACM Press, New York (2001)

11. Burmester, M., Desmedt, Y.G.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

12. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

13. ElGamal, T.: A Public Key Cryptosystem and Signature Scheme Based on Discrete
Logarithms. IEEE Transaction on Information Theory 31, 467–472 (1985)

14. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

15. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

16. Galbraith, S.D., Rotger, V.: Easy Decision Diffie-Hellman Groups. Journal of Com-
putation and Mathematics 7, 201–218 (2004)

17. Gentry, C.: Certificate-Based Encryption and the Certificate-Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–291. Springer,
Heidelberg (2003)

18. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against
Adaptive Chosen-message Attacks. SIAM J. Computing 17(2), 281–308 (1988)

19. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. J. of Cryptology 17,
263–276 (2004)

20. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

21. Kudla, C., Paterson, K.G.: Modular Security Proofs for Key Agreement Proto-
cols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005)

22. Tzeng, W.-G., Tzeng, Z.-J.: Round-Efficient Conference Key Agreement Protocols
with Provable Security. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 614–627. Springer, Heidelberg (2000)

23. Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric Group Key
Agreement. The full version (2009), http://eprint.iacr.org/

Adaptive Security in Broadcast Encryption
Systems (with Short Ciphertexts)

Craig Gentry1,	 and Brent Waters2,		

1 Stanford University and IBM
cgentry@cs.stanford.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. We present new techniques for achieving adaptive security in
broadcast encryption systems. Previous work on fully collusion resistant
broadcast encryption systems with very short ciphertexts was limited to
considering only static security.

First, we present a new definition of security that we call semi-static se-
curity and show a generic “two-key” transformation from semi-statically
secure systems to adaptively secure systems that have comparable-size ci-
phertexts. Using bilinear maps, we then construct broadcast encryption
systems that are semi-statically secure in the standard model and have
constant-size ciphertexts. Our semi-static constructions work when the
number of indices or identifiers in the system is polynomial in the secu-
rity parameter.

For identity-based broadcast encryption, where the number of poten-
tial indices or identifiers may be exponential, we present the first adap-
tively secure system with sublinear ciphertexts. We prove security in the
standard model.

1 Introduction
Broadcast encryption systems [17] allow a sender, who wants to send a message
to a dynamically chosen subset S ⊆ [1, n] of users, to construct a ciphertext
such that only users in S can decrypt; the sender can then safely transmit this
ciphertext over a broadcast channel to all users. It is preferable if the system is
public key (anybody can encrypt), permits stateless receivers (users do not need
to update their private keys), and is fully collusion resistant (even if all users
outside of S collude, they cannot decrypt). Typically in this paper, when we
speak of a broadcast encryption system, we will assume that it has these prop-
erties. The main challenge in building efficient broadcast systems is to encrypt
messages with short ciphertexts.

Traditionally, broadcast encryption systems have relied on combinatorial tech-
niques. Such systems include a collusion bound t, where using larger values of

� Supported by IBM Fellowship and Herbert Kunzel Stanford Graduate Fellowship.
�� Supported by NSF CNS-0716199; and the U.S. Department of Homeland Security

under Grant Award Number 2006-CS-001-000001.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 171–188, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

172 C. Gentry and B. Waters

t impacts system performance. If an adversary compromises more than t keys,
the system would no longer guarantee security even for encryptions solely to un-
compromised users. Among systems that are fully collusion resistant, the cipher-
text typically grows linearly with either the number of privileged receivers (in
the broadcast subset) or the number of revoked users [22,15,20,19,24]. Recently,
Boneh, Gentry, and Waters [8] broke through this barrier. They presented new
methods for achieving fully collusion resistant systems with short (i.e., O(λ),
where λ is the security parameter) ciphertexts by applying computational tech-
niques using groups with bilinear maps. However, they used a static model of
security in which an adversary declares the target set S∗ of his challenge cipher-
text before even seeing the system parameters.

Unfortunately, the weaker static model of security does not capture the power
of several types of attackers. Attackers might choose which keys to attempt to
compromise and ciphertexts to attack based on the system parameters or the
structure of previously compromised keys. To capture general attackers we must
use an adaptive definition of security.

Adaptive Security. We would like to achieve a system that is provably fully
collusion resistant under adaptive attacks. Arguably, this is the “right” model
for security in broadcast encryption systems.

Achieving this goal, however, seems challenging. In a security reduction, in-
tuitively, we would expect that a simulation must know all the private keys
requested by the attacker, but not know any of the private keys for S∗, the set
encrypted to in the challenge ciphertext. Once the public parameters are pub-
lished, the simulator is essentially bound to what keys it knows. Therefore, in
the adaptive setting it might appear that the best we can do in a reduction is to
simply guess what keys the adversary might request. Unfortunately, for a system
with n users a reduction might guess correctly only a negligible (in n) fraction
of the time.

One approach for achieving adaptive security is to apply a hybrid argument.
Instead of doing a reduction in one step, one can break the reduction into n +
1 hybrid experiments H0, . . . , Hn, such that hybrid games Hi and Hi+1 are
indistinguishable to the adversary. In this reduction in Hybrid Hi the challenge
ciphertext is to set S∗\[1, i], where S∗ is the challenge specified by the adversary.
Since each reduction in the hybrid games lops off only one user at a time, the
reduction needs only to guess whether user i+1 will be in S∗ when distinguishing
between Hi and Hi+1, thus avoiding an exponential drop-off.

The key leverage that this solution needs is the ability to reduce the target set
anonymously. This can be done with O(λ · |S|) size ciphertexts. Recently, Boneh
and Waters [10] achieved O(λ · √n) size ciphertexts. They combine the BGW
broadcast techniques with the private linear broadcast techniques of Boneh,
Sahai, and Waters [9] (that were originally designed for building traitor tracing
techniques). Unfortunately, the

√
n factor seems to be inherent in this approach

with groups that have bilinear (as opposed to say trilinear) maps.

Our Methods. First, we introduce a new general technique for proving systems
adaptively secure. The first component of our methodology is the introduction of

Adaptive Security in Broadcast Encryption Systems 173

the semi-static model of security. In the semi-static model of security an attacker
must first commit to a set S̃ before setup, but then can later attack any set S∗

that is a subset of S̃. This gives the attacker more flexibility than the static
model, in which it had to exactly commit to the set it attacks.

At first glance the semi-static model might appear as simply a minor variant
of the static model. However, we will also show a generic transformation from
semi-static security to adaptive security. Suppose a ciphertext in the semi-static
scheme was of size C for a set S of users; then in our transformation the ci-
phertexts will be of size 2 · C plus |S| bits. At the heart of our transformation
is a two-key technique where two keys are assigned to each user, but the user is
given only one of them. We note that our techniques are partially inspired from
those used by Katz and Wang [21] to achieve tight security for IBE systems in
the random oracle model.

Using this transformation we might simply hope to prove the BGW system to
be semi-statically secure. Unfortunately, the BGW proof of security requires an
“exact cancellation” and there is not an obvious way to prove BGW to be semi-
statically secure. Instead, we provide two new constructions with constant-size
ciphertexts, and prove semi-static security in the standard model. The first con-
struction is a variant of the BGW that still has short ciphertexts, but that requires
longer-size private keys. Like the BGW encryption system, we prove our security
under the decisional Bilinear Diffie-Hellman Exponent (BDHE) assumption.

Our first construction has two principal limitations. First, it has long private
keys. Second, our semi-static transformation works only when n = poly(λ),
since the time complexities of the security reductions are at least linear in n. For
identity-based broadcast encryption (IBBE), where n may be exponential in λ,
we use a different approach.

To solve these problems we use techniques from the Gentry IBE system [18].
We begin by building an “initial” identity-based broadcast encryption system
with core component of size O(λ) plus an additional “tag” of size O(λ · |S|). The
tag represents a random polynomial in Zp. The public key is of size O(� · λ) for
when we can broadcast to at most � users.

While a system with ciphertexts of size O(λ · |S|) is not immediately useful,
we can build on this in several ways.

– First, we show that for standard (non-identity-based) broadcast systems we
can omit the tag and achieve O(λ) size ciphertexts and private keys while
retaining semi-static security.

– Second, we show how in the random oracle model the tag can be generated
from a short O(λ) size seed and get adaptively secure ID-based broadcast
encryption with O(λ) size ciphertexts.

– Finally, in the standard model we show how to achieve ID-based encryption
with O(λ ·√|S|) size ciphertexts. In this approach we essentially perform√|S| encryptions to

√|S| of the recipients, but share one tag polynomial
across all these encryptions.

We prove the security of this base scheme and its derivatives under a new
non-interactive assumption.

174 C. Gentry and B. Waters

1.1 Related Work

Dodis and Fazio [16] showed how to build an adaptively secure revocation system
building upon the techniques of Cramer and Shoup [12] and Naor and Pinkas [23].
In their system the ciphertext size is O(λ · |R|), where R is the set of revoked
users.

Delerablée, Paillier, and Pointcheval [14] describe a system that is somewhat
incomparable to ours and the others discussed here; it allows the adversary to
wait until just before each dynamic join operation to declare whether it is joining
as an honest or corrupt party (the challenge broadcast is for the honest parties),
but then each join operation triggers a change to the public key.

The concept of identity-based broadcast encryption (IBBE) was proposed
in [13] (and independently in [27]). This concept is related to identity-based
encryption [25], in which the maximal size of a broadcast group is � = 1. It is
also related to multi receiver ID-based KEM (mID-KEM), introduced in [26]
and further developed in [4,5,11,2]. We also note that Panjwani [1] considered
adaptive corruptions, but in the context of stateful protocols such as Logical
Key Hierarchy.

2 Adaptive Security in Broadcast Encryption

We present background material on broadcast encryption systems. Then we show
our main transformation; we describe how to build adaptive securely broad-
cast encryption systems from those that are secure against a “semi-static”
adversary.

2.1 Broadcast Encryption Systems

We begin by formally defining the notion of security for a public-key broadcast
encryption system. For simplicity we define broadcast encryption as a key en-
capsulation mechanism. In addition, we make our definition general enough to
capture identity-based encryption systems.

A broadcast encryption system is made up of four randomized algorithms:

Setup(n, �) Takes as input the number of receivers n and the maximal size � ≤ n
of a broadcast recipient group. It outputs a public/secret key pair 〈PK,SK〉.
(We leave another input, the input security parameter λ, implicit.)

KeyGen(i, SK) Takes as input an index i ∈ {1, . . . , n} and the secret key SK.
It outputs a private key di.

Enc(S, PK) Takes as input a subset S ⊆ {1, . . . , n} and a public key PK. If
|S| ≤ �, it outputs a pair 〈Hdr,K〉 where Hdr is called the header and K ∈ K
is a message encryption key.
Let Esym be a symmetric encryption scheme with key-space K, and algo-
rithms SymEnc and SymDec. Let M be a message to be broadcast to the
set S, and let CM

R← SymEnc(K,M) be the encryption of M under the
symmetric key K. The broadcast to users in S consists of 〈S,Hdr, CM 〉.

Adaptive Security in Broadcast Encryption Systems 175

Dec(S, i, di,Hdr, PK) Takes as input a subset S ⊆ {1, . . . , n}, an index i ∈
{1, . . . , n}, a private key di for i, a header Hdr, and the public key PK. If
|S| ≤ � and i ∈ S, then the algorithm outputs the message encryption key
K ∈ K. The key K can then be used to decrypt CM to obtain M .

As usual, we require that the system be correct, namely, that for all S ⊆
{1, . . . , n}≤� and all i ∈ S, if 〈PK,SK〉 R← Setup(n, �), di

R← KeyGen(i, SK),
and 〈Hdr,K〉 R← Enc(S, PK), then
Dec(S, i, di,Hdr, PK) = K.

Our goal is to illustrate the issues for adaptive security. For simplicity, we
define security against chosen plaintext attacks. However, our definitions can
readily be extended to reflect chosen-ciphertext attacks.

2.2 Security Definitions

Arguably, the “correct” definition for security in broadcast encryption systems
is that of adaptive security. In an adaptively secure system, the adversary is
allowed to see PK and then ask for several private keys before choosing the set
of indices that it wishes to attack.

Adaptive security in broadcast encryption is defined using the following game
between an attack algorithm A and a challenger. Both the challenger and A are
given n and � as input.

Setup. The challenger runs Setup(n, �) to obtain a public key PK, which
it gives to the adversary.

Key Query Phase. Algorithm A adaptively issues private key queries for
indices i ∈ {1, . . . , n}.

Challenge. The adversary then specifies a challenge set S∗, such that for
all private keys i queried we have that i /∈ S∗. The challenger sets
〈Hdr∗,K0〉 R← Enc(S∗, PK) and K1

R← K. It sets b R← {0, 1} and gives
(Hdr∗,Kb) to algorithm A.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define A’s advantage in attacking the broadcast encryption system BE with
parameters (n, �) and security parameter λ as

AdvBrA,BE,n,�(λ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
We may omit the system name when it can be understood from the context.

Definition 1. We say that a broadcast encryption system BE is adaptively se-
cure if for all poly-time algorithms A we have that AdvBrA,BE,n,�(λ) = negl(λ).

In addition to the adaptive game for broadcast security, we consider two other
weaker security notions. The first is static security, where the adversary must

176 C. Gentry and B. Waters

commit to the set S∗ of identities that it will attack in an “Init” phase before
the setup algorithm is run. This is the security definition that is used by recent
broadcast encryption systems [8].

We also propose a new security definition called semi-static security. In this
game the adversary must commit to a set S̃ of indices at the Init phase. The
adversary cannot query a private key for any i ∈ S̃, and it must choose a tar-
get group S∗ for the challenge ciphertext that is a subset of S̃. A semi-static
adversary is weaker than an adaptive adversary, but it is stronger than a static
adversary, in that its choice of which subset of S̃ to attack can be adaptive.

2.3 Transforming Semi-static Security to Adaptive Security

At first the benefits of achieving semi-static security versus just static security
might appear incremental. Indeed, in both games, the adversary is forced to
restrict its queries before it even sees the public key.

Despite this apparent shortcoming, we will show that the semi-static security
definition is a very useful tool for achieving adaptive security. We will show how
to transform any semi-static broadcast encryption scheme to one secure under
adaptive attacks with a modest increase in overhead.

Our main idea is to apply a simulation for a two-key technique. In such a
system each user will be associated with two potential private keys; however, the
authority will give it only one of the two. An encryptor (that does not know which
private key the receiver possesses) will need to encrypt the ciphertext twice, once
for each key. This technique was used by Katz and Wang [21] to create tightly
secure signature and identity-based encryption systems in the random oracle
model.

The main benefit is that a simulator will have the private keys for every
identity. In the Katz-Wang constructions this enabled tight security reductions.
In the context of broadcast encryption, the impact will be much stronger, since
trying to guess S∗ would otherwise result in an exponential loss of security in the
reduction. We now show how to apply the two-key idea to broadcast encryption.

Suppose we are given a semi-static secure broadcast system BESS with al-
gorithms SetupSS, KeyGenSS, EncSS, DecSS. Then we can build our adaptively
secure broadcast system BEA as follows.

Setup(n, �): Run 〈PK ′, SK ′〉 R← SetupSS(2n, �). Set s R← {0, 1}n. Set PK ←
PK ′ and SK ← (SK ′, s). Output 〈PK,SK〉.

KeyGen(i, SK): Run d′i
R← KeyGenSS(2i− si, SK

′). Set di ← 〈d′i, si〉. Output
di.

Enc(S, PK): Generate a random set of |S| bits: t ← {ti R← {0, 1} : i ∈ S}.
Generate K R← K. Set

S0 ← {2i− ti : i ∈ S} , 〈Hdr0, κ0〉 R← EncSS(S0, PK
′)

S1 ← {2i− (1− ti) : i ∈ S} , 〈Hdr1, κ1〉 R← EncSS(S1, PK
′)

Set C0
R←SymEnc(κ0,K),C1

R←SymEnc(κ1,K), Hdr←〈Hdr0,C0,Hdr1, C1, t〉.
Output 〈Hdr,K〉.

Adaptive Security in Broadcast Encryption Systems 177

Dec(S, i, di,Hdr, PK): Parse di as 〈d′i, si〉 and Hdr as 〈Hdr0, C0,Hdr1, C1, t〉.
Set S0 and S1 as above. Run

κsi⊕ti ← DecSS(Ssi⊕ti , i, d
′
i,Hdrsi⊕ti , PK

′)

Run K ← SymDec(κsi⊕ti , Csi⊕ti). Output K.

Note that, aside from the string t, the BEA ciphertext is only about twice as long
as a BESS ciphertext. Suppose that we have a semi-static broadcast encryption
system in which ciphertexts are “constant-size” – i.e., O(λ) for security parame-
ter λ. Then, our transformation gives an adaptively secure broadcast encryption
system with ciphertexts that are O(λ+ |S|), versus O(λ · |S|). In particular, the
ciphertext size in BEA increases by only one bit per additional recipient.

Later, we will describe a semi-static broadcast encryption system in which
Hdr contains only two group elements of, say, 200 bits apiece – a total of 400
bits. As an example, suppose we apply the transformation above to this scheme
to encrypt to 1000 users, and use AES for the symmetric system. In this case,
the Hdr size of the induced adaptively-secure broadcast encryption system is
2 · 400 + 2 · 128 + 1000 = 2056 bits, versus say 400 · 1000 = 400000 bits.

It is easy to see that, assuming BEA is adaptively secure, we can get adaptively
secure broadcast encryption system with truly constant-size O(λ) ciphertexts
in the random oracle model as follows. Put a hash function H : {0, 1}O(λ) ×
{1, . . . , n} → {0, 1} in the public key. The sender encrypts as before, except that
it generates t by setting u R← {0, 1}O(λ) and ti ← H(u, i); it replaces t by u in
the ciphertext. The recipient decrypts as before, except that it recovers t from
u using H .

Alternatively, without random oracles, we get an adaptively secure broadcast
encryption system with O(

√
λ · |S|) size ciphertexts from a semi-static system

with O(λ) size ciphertexts by partitioning the |S| users into
√|S|/λ groups of√

λ · |S| users, and then re-using the same
√
λ · |S|-bit string t for every group.

Asymptotically, this beats the adaptively-secure system of [10], but often the
system above with O(λ+ |S|) size ciphertexts will still be preferable in practice.
Security follows from the security of the underlying semi-static system by a
hybrid argument (omitted).

We now show that BEA is secure if BESS is secure.

Theorem 1. Let A be an adaptive adversary against BEA. Then, there exist
algorithms B1, B2, B3, and B4, each running in about the same time as A, such
that

AdvBrA,BEA,n,�(λ) ≤ AdvBrSSB1,BESS,2n,�(λ) + AdvBrSSB2,BESS,2n,�(λ)
+ AdvSymB3,Esym

(λ) + AdvSymB4,Esym
(λ)

Proof. We present the proof as a sequence of games. Let Wi denote the event
that A wins game i.

178 C. Gentry and B. Waters

Game 0. The first game is identical to the adaptive security game given above.
Thus, ∣∣∣∣Pr[W0]− 1

2

∣∣∣∣ = AdvBrA,BEA,n,�(λ) (1)

Game 1. Game 1 is identical to Game 0, except that the challenger gener-
ates C0 in the challenge ciphertext as follows: set κ†0

R← K and then C0
R←

SymEnc(κ†0,K0).
We claim that there exists an algorithm B1, whose running time is about the

same as A, such that

|Pr[W1]− Pr[W0]| = AdvBrSSB1,BESS,2n,�(λ) (2)

To break BESS , B1 sets s R← {0, 1}n and S̃ ← {2i − (1 − si) : i ∈ {1, . . . , n}}.
It sends S̃ to the challenger, which sends back PK ′. B sets PK ← PK ′ and
forwards PK to A.

When A queries the BEA private key for i ∈ {1, . . . , n}, B queries the chal-
lenger for the BESS private key for 2i−si. The challenger sends back d′i; B sends
(d′i, si) to A.
A requests a challenge ciphertext on some S∗ ⊆ {1, . . . , n}. B sets t ←

{ti ← 1 − si : i ∈ S∗}. It sets S0 ← {2i − ti : i ∈ S∗} and S1 ← {2i −
(1 − ti) : i ∈ S∗}, and queries the challenger for a challenge ciphertext on
S0. The challenger sends back (Hdr0, κ

(b)
0), where b denotes the bit flipped by

the challenger. B sets (Hdr1, κ1)
R← Enc(S1, PK

′). It generates K0,K1
R← K,

b† R← {0, 1}, C0
R← SymEnc(κ(b)

0 ,K0) and C1
R← SymEnc(κ1,K0). It sets Hdr ←

〈Hdr0, C0,Hdr1, C1, t〉. It sends (Hdr,Kb†) to A.
Eventually, A outputs a bit b′. If b′ = b†, B sends 0 to the challenger; else, it

sends 1.
If b = 0, A’s view is as in Game 0. The private keys sent by B are appropriately

distributed. The string t appears to be uniformly random, since A’s private key
queries reveal only the values of si for i /∈ S∗. Also, κ(0)

0 is generated correctly,
and so the dependent values are as well. If b = 1, A’s view is as in Game 1. The
claim follows.
Game 2. Game 2 is identical to Game 1, except that the challenger sets κ1

R← K
when constructing the challenge ciphertext. By an analysis similar to above, we
conclude that there exists an algorithm B2, which runs in about the same time
as A, for which

|Pr[W2]− Pr[W1]| = AdvBrSSB2,BESS,2n,�(λ) (3)

Game 3. Game 3 is identical to Game 2, except that the challenger sets K†
0

R← K
and C0

R← SymEnc(κ†0,K
†
0). We claim that there exists an algorithm B3, which

runs in about the same time as A, for which

|Pr[W3]− Pr[W2]| = AdvSymB3,Esym
(λ) (4)

Adaptive Security in Broadcast Encryption Systems 179

This follows, since it is straightforward to construct B3 as an algorithm that
attacks the semantic security of Esym.

Game 4. Game 4 is identical to Game 3, except that the challenger sets K†
1

R← K
and C1

R← SymEnc(κ†1,K
†
1). As above, we obtain

|Pr[W4]− Pr[W3]| = AdvSymB4,Esym
(λ) (5)

Finally, the theorem follows if the following claim is true:∣∣∣∣Pr[W4]− 1
2

∣∣∣∣ = 0 (6)

This claim follows since, in Game 4, Hdr is independent of Kb, and hence b.

3 BE Construction with Small Ciphertexts

Now that we have our transformation of semi-static security to adaptive security,
we would like to leverage it to create new adaptively secure broadcast encryp-
tion systems. One obvious candidate to examine is the Boneh-Gentry-Waters [8]
broadcast encryption system. Unfortunately, it was proven only to be statically
secure and there does not appear to be an obvious way to make the proof semi-
static.1

To prove semi-static security we will need to use a variant of the BGW sys-
tem. We first describe our construction. Then we describe the decisional-BDHE
assumption (the same one used by BGW). Then we prove our system to be
semi-statically secure under this assumption.

3.1 Our Construction

Let GroupGen(λ, n) be an algorithm that, on input security parameter λ, gen-
erates groups G and GT of prime order p = p(λ, n) > n with bilinear map
e : G×G → GT .

Setup(n, n): Run 〈G,GT , e〉 R←GroupGen(λ, n). Set α R←Zp and g, h1, . . . , hn
R←

Gn+1. Set PK to include a description of 〈G,GT , e〉, as well as

g , e(g, g)α , h1 , . . . , hn.

The secret key is SK ← gα. Output 〈PK,SK〉
KeyGen(i, SK): Set ri

R← Zp and output

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri

i , ∀j =i di,j ← hri

j

1 The BGW reduction depends upon an exact cancellation between a value embedded
by the simulator in the parameters and a function of the target set S∗.

180 C. Gentry and B. Waters

Enc(S, PK): Set t R← Zp and

Hdr ← 〈C1, C2〉 where C1 ← gt , C2 ← (
∏
j∈S

hj)t

Set K ← e(g, g)α·t. Output 〈Hdr,K〉.
Dec(S, i, di,Hdr, PK): If i ∈ S, parse di as 〈di,0, . . . , di,n〉 and Hdr as 〈C1, C2〉

and output
K ← e(di,i ·

∏
j∈S\{i}

di,j , C1) · e(di,0, C2)

Correctness: We check that decryption recovers the correct value of K.

e(di,i ·
∏

j∈S\{i}
di,j , C1) · e(di,0, C2) = e(gα · (

∏
j∈S

hj)ri , gt) · e(g−ri , (
∏
j∈S

hj)t)

= e(g, g)α·t

as required.

3.2 The BDHE Assumption

We base the security of the above system on the decision BDHE assumption,
used in [8]. The decision BDHE problem is as follows.

Definition 2 (Decision BDHE problem (for m)). Let G and GT be groups
of order p with bilinear map e : G × G → GT , and let g be a generator for G.
Set a, s R← Z∗

p and b R← {0, 1}. If b = 0, set Z ← e(g, g)am+1·s; else, set Z R← GT .
The problem instance consists of gs, Z, and the set

{gαi

: i ∈ [0,m] ∪ [m+ 2, 2m]}
The problem is to guess b.

We define AdvBDHEA,m(λ) in the expected way. We have the following theorem.

Theorem 2. Let A be a semi-static adversary against the above system. Then,
there is an algorithm B, which runs in about the same time as A, such that

AdvBrSSA,n,n(λ) = AdvBDHEB,n(λ)

We provide the proof in Appendix A.

3.3 Semi-static BE with Small Ciphertexts and Private Keys

In the semi-static system described in Section 3, the public key and private
keys are of size O(λ · n). However, we have an alternative construction that has
a public key of size O(λ · �) and constant-sized private keys (i.e., O(λ)). This
construction is a special case of the identity-based broadcast encryption system
that we provide in Section 4.1. We provide more details in Section 4.3.

Adaptive Security in Broadcast Encryption Systems 181

4 Identity-Based BE with Small Ciphertexts and Private
Keys

The essential property of an identity-based broadcast encryption (IBBE) system
is that it remains efficient when n is exponential in the security parameter λ.
Adaptive security is even more challenging in this setting. In particular, our
semi-static constructions do not give adaptively secure IBBE, since the time
complexities of the reduction algorithms are at least linear in n.

Here we first describe an initial IBBE system with adaptive security, where the
ciphertext size is constant aside from a random “tag” that has length O(λ · |S|).
This long tag is needed by the simulator to handle the fact that the adversary
chooses the target set S∗ adaptively. The public key has size O(λ ·�), and private
keys are constant size (i.e., O(λ)). This system is an extension of Gentry’s IBE
system [18].

At first, a system with such a long tag appears to be pointless. However, there
are several ways to address this apparent problem. First, for polynomial-size n,
we show that the system is semi-statically secure if we replace the random tag
with a constant tag; the ciphertext size then becomes constant. Second, we make
the straightforward observation that, in the random oracle model, we obtain an
adaptively secure IBBE system with constant-size ciphertexts if we generate the
tag from the random oracle. Finally, we construct an adaptively secure IBBE
system (in the standard model) that, for a recipient group of size k ≤ �, has
O(λ · √k)-size ciphertexts, a O(λ · √�)-size public key, and still constant-size
private keys, by reusing the same O(λ · √k)-size tag in O(

√
k) separate sub

ciphertexts from the initial system. As far as we know, this is the first IBBE
system with sub-linear ciphertexts secure against adaptive adversaries.

4.1 An Initial IBBE Construction

Let GroupGen(λ, n, �) be an algorithm that outputs suitable bilinear group pa-
rameters 〈G,GT , e〉, where G is of order p ≥ n+ �.

Setup(n, �): Run 〈G,GT , e〉 R← GroupGen(λ, n, �). Set g1, g2
R← G. Set α, β, γ R←

Zp. Set ĝ1 ← gβ
1 and ĝ2 ← gβ

2 . PK contains a description of 〈G,GT , e〉, the
parameters n and �, along with gγ

1 , gγ·α
1 and the set

{gαj

1 , ĝαj

1 , gαk

2 , ĝαk

2 : j ∈ [0, �], k ∈ [0, �− 2]}
Generate a random key κ for a PRF Ψ : [1, n] → Zp. The private key is
SK ← (α, γ, κ).

KeyGen(i, SK): Similar to Gentry’s IBE system, set ri ← Ψκ(i) and output
the private key

di ← 〈ri, hi〉 , where hi ← g
γ−ri
α−i

2

Enc(S, PK): Run τ R←TagGen(S,PK). Output 〈Hdr,K〉 R←TagEncrypt(τ,S,PK).

182 C. Gentry and B. Waters

TagGen(S, PK): Let k = |S|. Set F (x) ∈ Zp[x] to be a random (�− 1)-degree
polynomial such that F (n+ j) = 1 for j ∈ [k + 1, �]. Output τ ← F (x).
Note that τ can be expressed by k values in Zp – e.g., {F (i) : i ∈ S}; F (x)
can be interpolated from these values and {F (n+ j) = 1 : j ∈ [k + 1, �]}.

TagEncrypt(τ, S, PK): Parse τ as F (x) and S as {i1, . . . , ik}. Set ij ← n+ j

for j ∈ [k + 1, �]. Set P (x) =
∏�

j=1(x − ij). Set t R← Zp and set K ←
e(g1, ĝ2)γ·α�−1·t. Next, set

Hdr ← 〈C1, . . . , C4〉 ← 〈ĝP (α)·t
1 , gγ·t

1 , g
F (α)·t
1 , e(g1, ĝ2)α�−1·F (α)·t〉 .

Output 〈τ,Hdr,K〉.
Dec(S, i, di, τ,Hdr, PK): Suppose i ∈ S = {i1, . . . , ik}. Parse di as 〈ri, hi〉, τ as

F (x), and Hdr as 〈C1, . . . , C4〉. Define P (x) as above. Let

Pi(x) = x�−1 − P (x)
(x− i) , Fi(x) =

F (x)− F (i)
x− i , and ei = − ri

F (i)
.

Set

K ← e(C1, hi · gei·Fi(α)
2) · e(C2 · Cei

3 , ĝ
Pi(α)
2)/Cei

4 (7)

Note that the recipient can compute gFi(α)
2 and ĝPi(α)

2 from PK, since Fi(x)
and Pi(x) are polynomials of degree �− 2.

Correctness: We verify that decryption recovers the message. First, we note
that K = K1 ·K2, where we gather the terms containing a γ in K1, and the
other terms in K2. (Recall hi = g

γ/(α−i)
2 · g−ri/(α−i)

2 .)

K1 = e(C1, g
γ
2)1/(α−i) · e(C2, ĝ

Pi(α)
2)

K2 = e(C1, g
−ri/(α−i)+ei·Fi(α)
2) · e(C3, ĝ

Pi(α)
2)ei/Cei

4

We have that

K
1/t
1 = e(g1, ĝ2)γ(P (α)/(α−i)+Pi(α)) = e(g1, ĝ2)γ·α�−1

We also have that

K
1/t
2 = e(g1, ĝ2)−ri·P (α)/(α−i)+ei·P (α)·Fi(α)+ei·Pi(α)·F (α)−ei·α�−1·F (α)

= e(g1, ĝ2)ei·P (α)·F (α)/(α−i)+ei·Pi(α)·F (α)−ei·α�−1·F (α)

= e(g1, ĝ2)ei·F (α)(P (α)/(α−i)+Pi(α)−α�−1)

= e(g1, ĝ2)0 = 1

as required.

Adaptive Security in Broadcast Encryption Systems 183

4.2 Security of the Initial IBBE Construction

Below, we define a class of assumptions that is narrower than the general bilinear
DH exponent “uber-assumption” defined by Boneh et al. [6], but broad enough
to cover some frequently used assumptions. One reason that we think carving
out this class of assumptions is useful is that it is much easier to glance at an
assumption in this class and verify that it at least superficially makes sense than
it is for some of the wilder assumptions within general BDHE.

Definition 3 (The Decision BDHE Sum Problem for (S,m)). Fix S ⊂ Z
and m ∈ Z \ (S + S). Let G and GT be groups of order p with bilinear map
e : G×G → GT , and let g be a generator for G. Set α R← Z∗

p and b R← {0, 1}. If
b = 0, set Z ← e(g, g)αm

; otherwise, set Z R← GT . Output

{gαi

: i ∈ S} and Z

The problem is to guess b.

In the decision n-BDHI problem, S = [0, n] and m = −1. One can reduce the
Decision BDHE Sum problem for S = [0, n] ∪ [n+ 2, 2n] ∪ [3n] and m = 4n+ 1
to the decision BDHE problem for n – i.e., s in the BDHE problem is replaced
by α3n.

Although we do not use it in this paper, we mention an obvious (possibly
easier) variant of the problem:

Definition 4 (The Decision BDHE Sum Problem for (S,m) (variant)).
As above, except Z is replaced in the instance by random (z1, z2) ∈ G2 satisfying
e(z1, z2) = Z.

A recent paper [3] builds the first adaptively secure hierarchical identity based
encryption (HIBE) system that allows a polynomial number of levels by building
on our IBBE system and using this variant of the Decision BDHE Sum problem.

We base the security of our system on the Decision BDHE Sum problem for
m = 4d+ 4�− 1 and

S = [0, �− 2] ∪ [d+ �, 2d+ �− 1] ∪ [2d+ 2�, 2d+ 3�− 1]
∪[3d+ 3�, 4d+ 3�] ∪ [4d+ 4�, 5d+ 4�+ 1]

where d = q + 2�, q and � non-negative. We define AdvBDHESA,q,�(λ) in the
expected way, using these particular values of S and m.

We have the following theorem.

Theorem 3. Let A be an adaptive adversary against the above initial IBBE
system that makes at most q queries. Then, there exist algorithms B1 and B2
such that

AdvBrA,n,�(λ) ≤ AdvPRFB1,Ψ (λ) + AdvBDHESB2,q,�(λ) + (�+ 2)/p (8)

where B1 runs in about the same time as A, and B2 runs in time t(A) +O((q+
�)2 · λ3), assuming exponentiations take time O(λ3).

We provide the proof in Appendix B.

184 C. Gentry and B. Waters

4.3 Variants of the IBBE Construction

Semi-Static BE with Constant-Size Ciphertexts and Private Keys.
When n = poly(λ), we obtain a semi-statically secure variant of the above system
with constant-size ciphertexts by making the following simple change.

TagGen(S, PK): Output τ ← F (x) ← 1.

Since τ is always 1, we do not need to include it in the ciphertext. Also, some
terms in PK become unnecessary – in particular, {gαi

2 : i ∈ [0, �− 2}}.
We have the following theorem. Let q = n.

Theorem 4. Let A be a semi-static adversary against the above system. Then,
there exist algorithms B1 and B2 such that

AdvBrA,n,�(λ) ≤ AdvPRFB1,Ψ (λ) + AdvBDHESB2,q,�(λ) + (�+ 2)/p (9)

where B1 runs in about the same time as A and B2 runs in time t(A) +O((q +
�)2 · λ3), assuming exponentiations take time O(λ3).

We prove this simultaneously with Theorem 3 in Appendix B.

Adaptively Secure IBBE with Constant-Size Ciphertexts in the ROM.
In the random oracle model, the obvious way to modify the initial IBBE system
to obtain constant-size ciphertexts is to generate τ using a hash function H :
{0, 1}O(λ) × [1, n]→ Zp. In particular, we make the following modification.

TagGen(S, PK): Output τ ← {0, 1}O(λ).

In TagEncrypt and Dec, F (x) is set to be the (� − 1)-degree polynomial that
interpolates F (i) = H(τ, i) for i ∈ S and F (i) = 1 for i ∈ [n+j] with j ∈ [k+1, �].
The ciphertext size is constant, since the size of τ is constant (i.e., O(λ)). We
omit the easy tight reduction from an adversary that breaks the initial system
to an adversary that breaks this system.

Adaptively Secure IBBE with Sublinear-Size Ciphertexts. Let � = �1·�2.
Below, we describe a system that builds on the initial IBBE system and allows
one to encrypt to a set S with |S| = k1 · k2, k1 ≤ �1, k2 ≤ �2.

SetupSL(n, �): Run (PK ′, SK ′)←Setup(n, �2). Set PK←(PK ′, �1) and SK←
SK ′. Output 〈PK,SK〉.

KeyGenSL(i, SK): Run di
R← KeyGen(i, SK ′). Output di.

EncryptSL(S, PK): Partition S into k1 ≤ �1 sets 〈S1, . . . , Sk1〉 of size k2 ≤ �2.
Run τ R← TagGen(S1, PK

′). Generate K R← K. For j ∈ [1, k1], set

〈Hdrj , κj〉 R← TagEncrypt(τ, Sj , PK
′) , cj ← SymEnc(κj ,K)

Set Hdr ← 〈Hdr1, c1, . . . ,Hdrk1 , ck1〉. Output 〈τ,Hdr,K〉.

Adaptive Security in Broadcast Encryption Systems 185

DecryptSL(S, i, di, τ,Hdr, PK): Parse Hdr as 〈Hdr1, c1, . . . ,Hdrk1 , ck1〉 and S
as 〈S1, . . . , Sk1〉. Suppose i ∈ Sj . Run

κj ← Dec(Sj , i, di, τ,Hdrj , PK
′) and K ← SymDec(κj , cj)

Output K.

We have the following theorem.

Theorem 5. Let A be an adaptive adversary against this system that makes at
most q queries. Then, there exist algorithms B1 and B2, the former being an
adversary against the initial IBBE system that makes at most q queries, each
algorithm running in about the same time as A, such that

AdvBrA,n,�(λ) ≤ �1 ·
(
AdvBrB1,n,�2(λ) + AdvSymB2,Esym

(λ)
)

(10)

As before Esym is a symmetric encryption scheme. We omit the proof, since it is
a simple hybrid argument similar to the proof of Theorem 1.

It is easy to handle the case where |S| cannot be expressed as a product k1 ·k2
with k1, k2 = O(

√|S|). Let S′ consist of the first k1 · k2 identities in S, where
k1 = k2 = �√|S|�. Encrypt to S′ using the above system, and to S \S′ using any
reasonable system – e.g., the initial system. The overall size of the ciphertext
is still O(λ ·√|S|). One can prove the security of this double encryption by a
sequence of games similar to the proof of Theorem 1.

References

1. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized Key Delegation for Hierarchical
Identity-Based Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

3. Anonymous. Hierarchical Identity Based Encryption with Polynomially Many Lev-
els (Manuscript, 2008)

4. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient Multi-receiver Identity-Based En-
cryption and Its Application to Broadcast Encryption. In: Vaudenay, S. (ed.) PKC
2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005)

5. Barbosa, M., Farshim, P.: Efficient Identity-Based Key Encapsulation to Multiple
Parties. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796,
pp. 428–441. Springer, Heidelberg (2005)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Gentry, C., Hamburg, M.: Space Efficient Identify Based Encryption
without Pairings. In: FOCS 2007 (2007)

8. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

186 C. Gentry and B. Waters

9. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

10. Boneh, D., Waters, B.: A Fully Collusion Resistant Broadcast, Trace, and Revoke
System. In: CCS 2006 (2006)

11. Chatterjee, S., Sarkar, P.: Multi-receiver Identity-Based Key Encapsulation with
Shortened Ciphertext. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 394–408. Springer, Heidelberg (2006)

12. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ci-
phertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

14. Delerablée, C., Paillier, P., Pointcheval, D.: Fully Collusion Secure Dynamic Broad-
cast Encryption with Constant-Size Ciphertexts or Decryption Keys. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

15. Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

16. Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive
Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 100–115. Springer, Heidelberg (2002)

17. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

18. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

19. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in
Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

20. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

21. Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes with Tight
Security Reductions. In: CCS 2003 (2003)

22. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

23. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

24. Sharmila Deva Selvi, S., Sree Vivek, S., Gopalakrishnan, R., Karuturi, N.N., Pandu
Rangan, C.: Provably Secure ID-Based Broadcast Signcryption (IBBSC) Scheme.
Eprint 2008/225

25. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

26. Smart, N.P.: Efficient Key Encapsulation to Multiple Parties. In: Blundo, C.,
Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg
(2005)

27. Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. Eprint 2007/217

Adaptive Security in Broadcast Encryption Systems 187

A Proof of Theorem 2

B receives the problem instance, which includes gs, Z, and the set

{gai

: i ∈ [0, n] ∪ [n+ 2, 2n]}

Init A commits to a set S̃ ⊆ [1, n].

Setup B generates y0, . . . , yn
R← Zp. It sets

hi ← gyi for i ∈ S̃

hi ← gyi+ai

for i ∈ [1, n] \ S̃

Formally, B sets α← y0 ·an+1. It sets PK to include a description of 〈G,GT , e〉,
as well as

g , e(g, g)α , h1 , . . . , hn

where e(g, g)α can be computed as e(ga, gan

)y0 . B sends PK to A.

Private Key Queries A is allowed to query the private key only for indices
i ∈ [1, n] \ S̃. To answer the query, B generates zi

R← Zp and formally sets
ri ← zi − y0 · an+1−i. It outputs

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri

i , ∀j =i di,j ← hri

j

Notice that B can compute all these terms from the instance; in particular

di,i = gαhri

i = gy0·an+1+(yi+ai)(zi−y0·an+1−i)

which can be computed since the an+1 term in the exponent cancels out.

Challenge A chooses a subset S∗ ⊂ S̃. B sets

Hdr ← 〈C1, C2〉 where C1 ← gs , C2 ← (
∏

j∈S∗
hj)s

It sets K ← Zy0 . It sends 〈Hdr,K〉 to A.
Notice that B can compute these terms from the instance. C1 and K come

directly from the instance. B can compute C2 since it knows DLg(hi) for all
i ∈ S∗; in particular,

C2 = (
∏

j∈S∗
hj)s = (

∏
j∈S∗

gyj)s = (gs)
∑

j∈S∗ yj

Guess Eventually, A outputs a bit b′. B sends b′ to the challenger.

188 C. Gentry and B. Waters

Perfect Simulation From A’s perspective, B’s simulation has exactly the same
distribution as the semi-static game defined in Section 2.2. The public and pri-
vate keys are appropriately distributed, since α and the values {DLg(hi)} and
{ri} are uniformly random and independent.

When b = 0 in the semi-static game, 〈Hdr,K〉 is generated according to the
same distribution as in the real world. This is also true in B’s simulation: when
b = 0, K = e(g, g)α·s, and so the challenge is valid ciphertext under randomness
s. When b = 1 in the semi-static game, 〈Hdr,K ′〉 is generated as in the real
world, but K ′ is replaced by K

R← K, and 〈Hdr,K〉 is sent to the adversary.
This distribution is identical to that of B’s simulation, where Hdr is valid for
randomness s, but K = Z is a uniformly random element of GT .

From this, we see that B’s advantage in deciding the BDHE instance is pre-
cisely A’s advantage against BESS .

B Proof of Theorems 3 and 4

First, a lemma. Let p(x)q(x)|i denote the coefficient of xi in p(x)q(x).

Lemma 1. Let f1(x), f2(x) ∈ Fp[x] be polynomials of degrees d1 and d2, respec-
tively, whose resultant is nonzero. Let d3 ← d1 + d2 − 1 and i ∈ {d1, . . . , d3}.
There exists a polynomial t(x) ∈ Fp[x] of degree d3 such that t(x)f1(x)|i =
1, t(x)f1(x)|j = 0 for j ∈ {d1, . . . , d3} \ {i}, and t(x)f2(x)|j = 0 for j ∈
{d2, . . . , d3}.
Proof. (Lemma 1) Consider the Sylvester matrix S of f1(x) and f2(x). The
condition on t(x) is equivalent to S ·(t0, . . . , td3)T = (0, . . . , 0, 1, 0, . . . , 0)T , where
ti = t(x)|i. Since the resultant of f1(x) and f2(x) is nonzero, the Sylvester matrix
is invertible. Set (t0, . . . , td3)

T ← S−1 · (0, . . . , 0, 1, 0, . . . , 0)T and t(x) =
∑

i tix
i.

The complexity of computing t(x) is O(d2(d1 + d2)) arithmetic operations over
Zp.

Proof. (Theorems 3 and 4) This is given in the full version.

Traitors Collaborating in Public: Pirates 2.0

Olivier Billet1 and Duong Hieu Phan2

1 Orange Labs, Issy-les-Moulineaux, France
2 Université Paris 8, Saint-Denis, France

olivier.billet@orange-ftgroup.com, hieu.phan@univ-paris8.fr

Abstract. This work introduces a new concept of attack against traitor
tracing schemes. We call attacks of this type Pirates 2.0 attacks as they
result from traitors collaborating together in a public way. In other
words, traitors do not secretly collude but display part of their secret
keys in a public place; pirate decoders are then built from this public
information. The distinguishing property of Pirates 2.0 attacks is that
traitors only contribute partial information about their secret key mate-
rial which suffices to produce (possibly imperfect) pirate decoders while
allowing them to remain anonymous. The side-effect is that traitors can
publish their contributed information without the risk of being traced;
giving such strong incentives to some of the legitimate users to become
traitors allows coalitions to attain very large sizes that were deemed
unrealistic in some previously considered models of coalitions.

This paper proposes a generic model for this new threat, that we use
to assess the security of some of the most famous traitor tracing schemes.
We exhibit several Pirates 2.0 attacks against these schemes, providing
new theoretical insights with respect to their security. We also describe
practical attacks against various instances of these schemes. Eventually,
we discuss possible variations on the Pirates 2.0 theme.

1 Introduction

Traitor tracing is a cryptographic primitive introduced by Chor, Fiat, and Naor
in [9] in the context of secure content distribution. This context covers for in-
stance multimedia content rental, or broadcasting to a very large number of
subscribers like in pay-TV systems, mass distribution of high value DVDs, or in
web-based distribution of various multimedia contents. In all of these settings,
the content is encrypted before its distribution in order to prevent illegal access
which helps ensuring the revenues of the distributor. To decrypt the content,
every legitimate user is provided with a decryption means, commonly called
decoder. The main issue faced by the distributor is the construction and dissem-
ination of unauthorized decoders, possibly creating a parallel market.

Hardware tamper resistant solutions are often too expensive compared to the
price of the offered services. Furthermore, it would not prevent an organization
from breaking into one box and extracting the necessary information to build
and resell unauthorized decoders.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 189–205, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

190 O. Billet and D.H. Phan

This is where traitor tracing schemes step into the game: the key material
embedded in the decoders is diversified on a user basis. Thus, decoders are
‘marked’ with the identity of the user and traitor tracing allows the authority
to trace a user that produced a pirate decoder. Such users, called traitors, are
more powerful when they collude to create a pirate decoder. In this case, traitor
tracing should allow the tracing of at least one of the traitors that took part in the
coalition. A trivial solution to the problem of traitor tracing is to provide every
user with a randomly chosen key that identifies him and encrypt the content as
many times as there are users in the system. Obviously, such a solution is totally
impracticable due to bandwidth restrictions. Hence, bandwidth preservation in
traitor tracing schemes is of crucial importance.

Since the seminal work of Chor, Fiat, and Naor, there have been several
proposals and improvements in traitor tracing schemes. We give a few landmarks
of the work in traitor tracing but this list is of course not exhaustive. Boneh and
Franklin exposed an elegant algebraic construction coming with a deterministic
tracing procedure in [4]. Fiat and Tassa proposed a way to dynamically remove
traitors from the system once they are caught, see [12]. Kiayias and Yung gave a
powerful method to turn black-box tracing against stateless decoders into black-
box tracing against stateful decoders in [16]. In [6], Boneh, Sahai, and Waters
introduced a full collusion traitor tracing scheme with sub-linear ciphertext size
and constant size private keys. Traitor tracing schemes based on codes have been
much investigated since the seminal work of Boneh and Shaw [7]: Kiayias and
Yung [17] proposed a scheme with constant rate, [8,19] relaxed the assumption
that the tracer is a trusted third party, and [3,5] recently achieved constant size
ciphertexts. Among the most famous traitor tracing schemes are schemes from
the NNL framework [18] as they were used as a basis to design the widely spread
content protection system for HD-DVDs and Blu-ray disks called AACS [1].
These are not exactly traitor tracing schemes, but rather very efficient broadcast
encryption schemes with some black-box tracing abilities.

Pirates 2.0 attacks are primarily targeted to code based schemes and schemes
from the NNL framework, but might be used against other combinatoric schemes.

1.1 Collaborative Traitors: Pirates 2.0

From the point of view of the attack model for traitor tracing schemes, there
has been no radical change since the introduction of the concept in [9]. One
remarkable exception is Pirate Evolution from [15] which exposes a new threat
against trace and revoke schemes such as [18]. In this paper, we introduce another
new threat that we call Pirates 2.0 against both traitor tracing schemes and the
trace and revoke schemes from [18].

The main characteristics of our new Pirates 2.0 threat are as follows:

Anonymity Guarantee: Traitors that participate in a Pirates 2.0 attack are
provided with a guarantee (through the exhibition of a mathematical proof)
that they cannot be traced by the authority.

Partial Contributions: Traitors never need to reveal their whole secret key.

Traitors Collaborating in Public: Pirates 2.0 191

Public Collusions: Traitors operate in a public environment: they publish se-
cret data from their decoders.

Large Coalitions: Traitors take part in unusually large coalitions.
Dynamic Coalitions: Traitors can come into action only when necessary.

The anonymity guarantee together with considerations on imperfect decoders
makes the basis of our attack scenario and everything else heavily relies on it.
The anonymity guarantee indeed gives strong incentives to potential traitors to
actually take the plunge: With ubiquitous access to the Internet, leaking secret
data, say, in a peer-to-peer network without further action can be done very
quickly and in a straightforward way. This makes it an appealing scenario among
the ever growing [11,10,24] set of users hostile to the currently deployed Digital
Rights Management systems (DRM). The characteristic that large coalitions can
easily be achieved is therefore a direct consequence of the fact that traitors are
guaranteed not to be traced by an authority.

Considerations on imperfect decoders are the other determinant ingredient: A
pirate decoder is considered to be useful if it can decrypt (resp. decrypt with a
high probability) valid ciphertexts; such a pirate decoder is called perfect (resp.
imperfect) decoder. In previous work, it is assumed that a pirate decoder always
decrypts ciphertexts from the tracer when it is not able to detect the presence of
the tracing procedure, i.e. it is assumed that the pirate decoder is either perfect
or only slightly imperfect. This assumption makes sense in the classical model
of coalitions since any coalition, knowing at least one legitimate key, is able to
decrypt all valid ciphertexts anyway. However, in the Pirates 2.0 setting, we show
that another trade-off is possible for the pirates when the scheme uses variable
length ciphertexts: the pirate decoder is only required to decrypt ciphertexts
reasonably shaped. As an example of this scenario, consider the NNL scheme
where the expansion of valid ciphertexts can vary a lot: A pirate decoder that
can decrypt ciphertexts of size lower than, say 1 GB, is highly imperfect, but
still useful to pirates.

In this paper, we show that some traitor tracing schemes and trace and revoke
schemes (including the NNL scheme from [18] and code based schemes) are sus-
ceptible to Pirates 2.0 attacks. We give several practical attacks against various
instances of such schemes, most notably against the AACS. We then derive the
theoretical implications for all these traitor tracing schemes.

1.2 Comparing Pirates 2.0 and the Classical Setting

We summarize below the main differences between our new attack model and
the classical one:

Motivation: The classical model for coalitions captures the fact that pirates
might invest some amount of money in order to sell unauthorized decoder to
the black market. In the case of Pirates 2.0, the motivation might be to get
rid of a protection system to which a large number of users are hostile. In the
history of DVDs for instance, the main motivation to crack the system came
from compatibility issues: the protection was thought to be too restrictive.

192 O. Billet and D.H. Phan

Static vs. Adaptive: The classical model of pirates is static. The coalitions
consist of randomly chosen decoders. Therefore it is not possible to bias the
collection process. In a Pirates 2.0 attack, traitors are able to contribute
information adaptively, that is, depending on the current state of affair at
the moment of the contribution. Therefore, even if during the publication
process each traitor operates isolated (i.e. without communication with the
other traitors), having access to published information at the time of the
contribution makes it a collaborative process.

Anonymity: In the classical model of coalitions, traitors colluding must trust
each other, or at least, one third party (say the pirate who collects the secret
data). In contrast, the Pirates 2.0 attack only requires that the partial secret
information provided by the traitors guarantees their anonymity.

Size of Coalitions: In the classical models, one usually assumes a small num-
ber of traitors (especially for combinatorial schemes like those relying on
codes or those based on trees). This assumption seems reasonable in the
classical model because each traitor must trust a third party and even in the
case of an isolated traitor, getting a large number of decoder legally might
be very expensive. In Pirates 2.0, this assumption becomes wrong, since the
traitors guaranteed to remain anonymous can form a very large coalition.

2 Formalization of Pirates 2.0

There are many possible settings for a Pirates 2.0 attack. For instance, the
construction of a pirate decoder can be active or passive. In the active case,
the contributions made by the traitors are driven by the pirate upon building
the pirate decoder. In the passive case, the traitors contribute information at
their discretion. In this work, we focus on the last of these scenarios which
leaves more freedom to the traitors and makes the attack even more realistic.

Also, there are two possible ways of collecting the information contributed by
the traitors: in a centralized way or in a distributed way. Again, the distributed
way leads to a stronger attack with less constraints in practice: traitors can easily
use peer-to-peer networks to contribute their information, whereas a centralized
server is more susceptible to shut down by legal action. We therefore choose to
focus on the distributed setting, though in some cases, assuming a centralized
entity like a pirate server would render the work of contributing for the traitors
and of building a pirate decoder easier than in a peer-to-peer network. In the
rest of the paper, we point out where it is relevant to use the facilities that a
pirate server would provide.

2.1 A Setting for Pirates 2.0

We now describe several concepts that we use in the Pirates 2.0 setting:
Traitors and Pirates. As usual, a traitor is a legitimate user in possession of

some secret data that we call his secret key and who leaks part of this secret key.
Pirates are not legitimate users: they are not entitled to secret data but are able

Traitors Collaborating in Public: Pirates 2.0 193

to collect relevant information from their public environment in order to produce
a pirate decoder. We naturally assume that pirates and traitors respectively
collect and contribute information in a stateful way: a traitor keeps track of (all)
the information he contributed to the public, whereas both pirates and traitors
can keep track of all of the information that was contributed to the public.

Contributed Information. The contributed information is the sum of in-
formation that was put into the public domain by the traitors at a given point
in time, i.e. the secret data leaked from the system. The current contributed
information at any point in time is denoted by C. Initially, C = ∅.

Traitor’s Strategy. A traitor’s strategy is a publicly available probabilistic
algorithm Contribute that traitors execute to provide information to pirates. A
traitor’s strategy comes with a certificate that information leaked following this
strategy allows the traitors to preserve some anonymity level. Traitors might
in principle use different strategies, but for simplicity we only consider in the
following the case where all traitors implement the same strategy.

The strategy Contribute, takes as input the traitor’s secret key sk, some in-
formation I already contributed by other traitors (for instance the set C of
all contributed information at the time Contribute is run) as well as the his-
tory H of the contributions made by the traitor. The traitor’s strategy returns
Contribute(sk, I,H) as the traitor’s contribution to the public. (And therefore,
the overall information contributed to the public C is accordingly updated:
C ← C ∪ Contribute(sk, I,H).)

Public Information. The public information P consists of all the public data
available from the broadcaster (such as for instance its public key, the public key
of users if any, etc.) together with the contributed information C.

Anonymity Level. The public procedure Anonymity provides the level of
anonymity Anonymity(sk, S,P) of a traitor with the secret key sk who leaked an
information S (which corresponds to the sum of all his contributions) following
a public strategy (we refine this notion later on by using extraction functions).
The anonymity level output by the procedure corresponds to the uncertainty
on the traitor’s identity from the tracing authority point of view when provided
with the sequence of contributed information S. At level 1 the traitor is known,
while at level N , the traitor is undistinguishable from another user.

Pirate Decoder. We think of a pirate decoder as the output of an algorithm
called Pirate. If the amount of information available from P is large enough, Pirate
produces a pirate decoder Pirate(P) and simply outputs ‘failed’ otherwise.

In the following we assume that the contribution of secret data to the public
domain C by the traitors is a discrete process.

Definition 1 (Security against Pirates 2.0). A traitor tracing scheme is
said to be α−secure against Pirates 2.0 if it prevents the construction of pirate
decoders from information published by traitors with an anonymity level greater
than α.

Note that not all traitor tracing (or trace and revoke) schemes are susceptible
to Pirates 2.0 attacks. On the other hand, even fully collusion resistant schemes
might be at risk as Pirates 2.0 attacks allow highly imperfect decoders: decoder

194 O. Billet and D.H. Phan

can refuse to decrypt classes of specific ciphertexts—e.g. depending on their size.
As we will show in the next sections, some of the most famous schemes, including
the one used in the AACS, are susceptible to our new attack strategy.

2.2 A Concrete Treatment of Anonymity Estimation

The basic idea behind Pirates 2.0 attacks is that traitors are free to contribute
some piece of secret data as long as several users of the system could have
contributed exactly the same information following the same (public) strategy:
this way, they are able to remain somewhat anonymous. The anonymity level is
meant to measure exactly how anonymous they remain.

Definition 2 (Extraction Function). An extraction function is an efficiently
computable function f that outputs information about the secret key.

Definition 3 (Masked Traitor). A traitor t is said to be masked by a user u
for an extraction function f if f(sku) = f(skt).

This notion of a traitor being masked by another user in the system is the basic
undistinguishability notion that allows us to estimate the level of anonymity of
a traitor after his contribution:

Definition 4 (Anonymity Level). The level of anonymity of a traitor t after
a contribution ∪1≤i≤nfi(skt) is defined as the number α of users masking t for
each of the n extraction functions fi simultaneously:

α = #{u | ∀i, fi(skt) = fi(sku)} .

In the previous definitions, we use the equality between each extraction func-
tion fi to derive the anonymity level. One can wonder why not simply consider
equality between the global information leaked by a traitor and the global infor-
mation another user u could extract like ∪ifi(skt) = ∪jgj(sku) with any set of
extraction functions {gj}. The answer is that we do not want to keep the traitor
strategy secret and therefore, the authority can, at least from a theoretical point
of view, use its knowledge of the set of extraction functions {fi} used by the
traitors to gain additional information and to trace the traitors. (It might well
be that there exists another user u such that ∪ifi(skt) = ∪jgj(sku) holds, but
∪ifi(skt) = ∪ifi(skv) would have been impossible for any user v other than t.)

3 Pirates 2.0 and the Subset-Cover Framework

The subset-cover framework proposed by Naor, Naor, and Lotspiech in [18] is
a powerful tool to design efficient trace and revoke systems. It captures many
previously proposed traitor tracing systems and forms the basis of the so called
NNL scheme used in the content protection system for HD-DVDs known as
AACS [1]. However, as we show in this section, this scheme is susceptible to our
attack and we explain how to defeat the AACS system.

Traitors Collaborating in Public: Pirates 2.0 195

3.1 Brief Description of the Subset-Cover Framework

The subset-cover framework is a powerful means to capture several trace and
revoke designs. It encompasses several traitor tracing schemes proposed to date
and maybe even more importantly, serves as the basis for two of the most efficient
trace and revoke schemes: the complete subtree scheme and the subset difference
scheme.

In the subset-cover framework, the set N of users in the system is covered by
a collection of subsets Si such that ∪iSi ⊃ N and Si ∩ N �= ∅. This covering is not
a partition of N and the sets Si rather overlap. To every subset Si corresponds a
long term secret key Li, and every user that belongs to Si is provided with this
secret key—or in an equivalent way, with some material that allows him to derive
this secret key. Therefore, every user u of the system is given a collection of long
term keys {Lik

} that together form his secret key which we denote by sku.
In order to broadcast some content M , the center uses a standard hybrid

scheme: a session key K is first drawn randomly and used to encrypt (with
an encryption scheme E′) the content, before being encrypted under multiple
long term keys (with another encryption scheme E). The long term keys Lik

,
k = 1, . . . , l are chosen so that the corresponding subsets Si1 , . . . , Sil

only cover
the set of users entitled to decrypt. Therefore, the center broadcasts ciphertexts
of the form:[(

i1, ELi1
(K)

)
,
(
i2, ELi2

(K)
)
, . . . ,

(
il, ELil

(K)
) ‖ E′

K(M)
]

To decrypt, a valid decoder for user u performs the following sequence of oper-
ations: It first looks for an index ij in the first element of each of the l couples
(ik, Eik

(K)) in turn such that Sij ⊂ sku. If no index correspond, the decoder
does not decrypt; otherwise, the decoder retrieves the corresponding long term
key Lij and uses it to decrypt the associated encrypted session key Eij (K) and
then decrypts the payload E′

K(M).
Since the system is built to handle revoked users, let us also denote by R the

set of revoked users in the system at any point in time. In order to prevent
them (independently, but also working together as a coalition) from accessing
the encrypted content E′

K(M), the collection Si1 , . . . , Sil
is specially crafted so

that:
l⋃

k=1

Sik
= N \ R .

The tracing procedure. Now that we showed how the system deals with
revoked users, we have to describe the way it disables pirate decoders. As is
usual, the tracing procedure works with black-box access to the pirate decoder
only. The idea is to refine the covering initially used to broadcast ciphertexts
so that the pirate decoder cannot decrypt with probability p higher than some
threshold. To this end, the authors of [18] suggest to use an hybrid argument:
the pirate box is provided with “ciphertexts” with payload E′

K(M) and headers
of type j (for j = 1, . . . , l):(

i1, ELi1
(R)

)
, . . . ,

(
ij , ELij

(R)
)
,
(
ij+1, ELij+1

(K)
)
, . . . ,

(
il, ELil

(K)
)

196 O. Billet and D.H. Phan

where R is some randomly chosen element independent from K. If we denote
by pj the probability that the pirate box correctly decrypts the specially crafted
ciphertexts of type j, there must exist an index t such that |pt − pt−1| ≥ p

l
and therefore some traitor belongs to Sit . The tracer then iterates this basic
procedure, applying it to an arbitrary covering of Sit until either Sit contains a
single element (which thus matches a traitor) or the pirate box cannot decrypt
above the threshold (and no one is accused of being a traitor, but the new
partition renders the pirate box useless).

The authors of [18] showed that this tracing procedure is correct as soon as
the revocation scheme satisfies a so-called “bifurcation property”: every subset
can be split into two subsets of roughly the same size. As we will see, this is the
case for the two schemes complete subtree and subset difference.

3.2 General Attack Strategy against Subset-Cover Schemes

The generic process for the attack is relatively simple and runs in a few steps:

Elaborating the strategy
The main idea is to select a collection of subsets Sι1 , . . . , Sιw such that:
– The number of users in each subset Sιk

is large, so that the anonymity
level of the traitors is guaranteed to remain high enough when they
contribute the associated long term key Lιk

;
– For any set R of revoked users and any method used by the broadcaster

to partition N \ R into subsets Si1 , . . . , Sim , the probability that one of
the subsets Sιk

belongs to the partition Si1 , . . . , Sim is high—say exceeds
a given threshold τ—or the broadcaster exceeds its available bandwidth.

Contributing data
Let us define the extraction functions fi to be fi(sk) = Li if Li ∈ sk and
‘missing’ otherwise. To contribute part of his private key skt, a traitor t per-
forms the following sequence of lookups: for each index i from {ι1, ι2, . . . , ιw}
(taken in any order) the traitor computes C = fi(skt) and if C �= failed
and C �∈ P returns and outputs C. The information H about skt that the
traitor already contributed to the public is included in the argument list so
that the contribution is Contribute(skt,P , H).

Building pirate decoders
A pirate decoder simply embeds the public keys Lι1 , . . . , Lιw . Upon reception
of a ciphertext[(

i1, ELi1
(K)

)
,
(
i2, ELi2

(K)
)
, . . . ,

(
il, ELil

(K)
) ‖ E′

K(M)
]

from the center, the pirate checks whether {ι1, . . . , ιw} ∩ {i1, . . . , im} = ∅.
If not, that is if there is an index ιk = il in both sets (which was assumed
to occur with high probability), the pirate box recovers the corresponding
key Lιk

, uses it to decrypt the session key K from ELil
(K), and therefore is

able to correctly decrypt the payload.

Traitors Collaborating in Public: Pirates 2.0 197

Anonymity
The level of anonymity of a given traitor t in a subset cover scheme is related
to the number of users of the system that know the complete list of subsets
St1 , . . . , Stl

for which the traitor contributed the keys Lt1 , . . . , Ltl
to the

public.

3.3 Pirates 2.0 against the Complete Subtree Scheme

The complete subtree scheme. In this scheme, the users correspond to the
leaves of a complete binary tree whereas the collection of subsets Si exactly
corresponds to all the possible subtrees in the complete tree. When |N| = 2n, the
complete binary tree is of length n and there are exactly n subtrees that contain
a given leaf. Figure 1 shows a covering using six subsets of twelve users that
excludes four revoked users (depicted in black). This subset scheme complies
with the bifurcation property since any subset (or equivalently any subtree of
the complete binary tree) can be split into two subsets of equal size (the two
subtrees rooted at the two children of the root of the original subtree). Regarding
key assignment, each user represented by a leaf u in the complete binary tree is
provided with the keys Li associated to the nodes i on the path from the leaf u
to the root.

Covering algorithm. In the case of the complete subtree, the covering used to
exclude the r = |R| revoked users from N is the collection of subsets that hang
off the Steiner tree of the revoked leaves. (The Steiner tree of the revoked leaves
is the minimal subtree of the complete binary tree that connects all the revoked
leaves to the root and it is unique.) Since any user only knows the keys from its
leaf to the root and since this path is included in the Steiner tree for revoked
users, these users cannot decrypt anymore. This algorithm produces covers of
size O(r log(N/r)).

We now give a version of our attack against subset cover schemes in the case
of the complete subtree scheme:

Theorem 1. On average, a randomly chosen group of ρ log ρ traitors (operating
isolated) is able to mount a Pirates 2.0 attack against a complete subtree scheme

Fig. 1. Complete subtree: leaves correspond to users, S1, . . . , S6 is the covering that
excludes revoked users in black while allowing other users to decrypt derived from the
Steiner tree associated to the set of revoked users R

198 O. Billet and D.H. Phan

in which the center wants to ensure a ciphertext rate1 of at most ρ(N − r)/N .
Moreover, each traitor is guaranteed an anonymity level of N/ρ.

Proof. For simplicity we assume that no collision occurs during the contribution
process (the traitors contribute sequentially, although in a completely random
way, their share of secret data) and that the contribution of a traitor is readily
available to the public. (It is obviously possible to deal with these refinements by
considering statistical processes instead and then bounding the loss in efficiency
that would occur in such a general case.)

Following the general attack strategy described in the previous section, define
Sι1 , . . . , Sιw to be the subsets corresponding to all the subtrees of the complete
tree having more than N/ρ leaves so that for each ιk more than N/ρ users share
the corresponding long term keys Lιk

. These subsets also correspond to all the
nodes between level 0 (the root) and the level λ = �log ρ� and thus, there are
w = 2�ρ� of them. Then, a traitor contributing one of the Lιk

at level λ together
with every Lιj on the path from node ιk to the root has a level of anonymity2

higher than N/ρ. (As mentioned above, more than N/ρ users share the key Lιk

and moreover the same users also know about Lιi for every node ιi on the
path from node ιk to the root because of the assignment scheme.) Now, the
number of traitors needed to collect the �ρ� long term keys (and those above) is
given by the answer to the classical coupon collection problem: to collect all the
m possible items when one receives a uniformly chosen item at each draw requires
m logm draws on average. This demonstrates the first part of the theorem.

It only remains to show that either a pirate is able to produce a working
decoder, or the center uses too much bandwidth (the ciphertext rate is bigger
than ρ). Let r be the number of revoked users. Let us assume that the broadcaster
only uses subsets rooted at a level l ≥ λ since otherwise the priate decoder is
able to decrypt the ciphertexts. Now every subset can cover at most N/2λ users
so that ρ(N − r)/N of them are needed to cover the N − r legitimate users. �

Theoretical and practical impact. From a theoretical point of view, Theorem 1
shows that instead of the O(r log(N/r)) complexity that was first derived, the
bandwidth required for the complete subtree scheme to operate securely actually
is O(ρ(N − r)/N + r log(N/r)) for a number of ρ log ρ traitors taking part in a
Pirates 2.0 attack.

From a practical point of view, we note that we assumed that every long
term key can be leaked by at least one traitor. For a system accommodating
232 users and a long term key at the 12th level, this assumption translates into
the fact that among a million of users there is at least one that takes the step
of contributing it to the public (with the guarantee of remaining anonymous!);
this hypothesis seems reasonable to us.

1 The ciphertext rate is the number of subsets used by the center.
2 Having a lot of revoked users in the subtree does not affect the level of anonymity:

revoked users know the keys on their path to the root and could have contributed
them as well. This, however, affects the decryption threshold of the pirate decoder.

Traitors Collaborating in Public: Pirates 2.0 199

Also, note that even in the case where one long term key is not contributed
by any user, the attack remains valid: the pirate box will not be able to decrypt
only with a very small probability.

3.4 Pirates 2.0 against the Subset Difference Scheme

The subset difference scheme has been introduced to lower the number of subsets
required to partition the set of legitimate users N\R. It improves on the complete
subtree scheme exposed above by a factor of log(N/r) in terms of bandwidth
usage for the headers.

To attain this level of performance, the number of possible subsets has been
tremendously increased. Remember that Si denotes the full binary subtree of
the complete binary tree rooted at node i. Now, for each node j in Si different
from i, let us denote by Si,j the binary subtree rooted at node i of which the full
binary subtree rooted at node j has been removed. (See examples in Figure 3.)
A user will need to know all the keys Li,j such that he belongs to the subtree
rooted at i but not in the subtree rooted at j. However, it would be impossible
for each device to store such a huge number of long term keys. This is why a
key derivation procedure has been designed to allow the derivation of most of
the O(N) long term keys a user is entitled from a much smaller set of keys: a
user only needs to store O(log2(N)) keys. Each node i in the full binary tree is
first assigned a random label LABELi and labels LABELi,j together with their
corresponding long term keys Li,j are deduced (in a pseudo-random way) from
label LABELi. The key derivation procedure then works as follows: from each
LABELi, a pseudo-random value LABELi,j is obtained for each sub-node j using
the tree based construction proposed by Goldreich, Goldwasser, and Micali [13];
from this value, a long term key Li,j is eventually deduced (in a pseudo-random
way). Each user is then provided with labels LABELi,j for all nodes i that are
on the path from the leaf that represents the user to the root, and all nodes j
hanging off this path as described on Fig. 2. This key assignment ensures that
every user in the subtree rooted at node i but not in the subtree rooted at node j
is able to derive Li,j while every user in the subtree rooted at node j is not able
to derive Li,j .

Covering algorithm. The covering algorithm works by maintaining a subtree T
of the Steiner tree of R and removes nodes from it at each steps:

Fig. 2. Key assignment. User u receives all the labels LABELi,j such that i is a parent
of j and i is on the path from the leaf of u to the root.

200 O. Billet and D.H. Phan

Fig. 3. Subset difference: leaves correspond to users and black nodes are not able to
derive the necessary information to decrypt. Therefore S4,19 prevents user 19 from
decrypting, S5,10 prevents users 20 and 21 from decrypting, and S3,28 prevents user 28
from decrypting. All other users are able to decrypt.

init: Make T the Steiner tree of R.
select: If there is only one leaf vk in T and it is not the root (or node 0),

add the subset S0,k and return. If there is only the root in T , return.
Otherwise, select two leaves vj1 and vj2 from T so that their least
common ancestor v does not contain any other leave of T than vj1

and vj2 . Call vi1 and vi2 the children of v such that vi1 is the ancestor
of vj1 and vi2 the ancestor of vj2 . Then, if vi1 �= vj1 add Si1,j1 to the
partition and similarly if vi2 �= vj2 add Si2,j2 to the partition. Remove
all the descendants of v from T , which makes v a leaf of T . Reiterate
the step ‘select’.

An example output of this procedure is shown in Figure 3.

Theorem 2. On average, a randomly chosen group of ρ log ρ traitors (operating
isolated) is able to mount a Pirates 2.0 attack against a subset difference scheme
in which the center wants to ensure a ciphertext rate of at most ρ(N − r)/N .
Moreover, each traitor is guaranteed a level of anonymity of at least N/2ρ.

Proof. In the following proof we make use of labels of a special type, that we
call direct labels. Direct labels are LABELi,j

such that the node j is a direct descendant of
the node i. The first six direct labels of the
tree are described in the figure on the left.

First, note that a pirate knowing all the keys Li,j where the node i lies in
the first λ = �log ρ

2� levels, is able to decrypt all the ciphertexts where the rate
is lower than ρ(N − r)/N where r is the number of revoked users. Indeed, the
broadcaster must use subsets Sk,l where the node k does not lie in the first
λ levels in order to prevent the pirate from decrypting the ciphertexts. Since
each of these subsets covers less than N/2λ+1 users (those who are in the subtree
rooted at node k), the center must use at least ρ(N − r)/N subsets to cover all
the legitimate users.

Collecting all the keys rooted at a level l ≤ λ is however totally unpractical
since there are a tremendous number of such keys. The pirate can nevertheless
go around this difficulty by collecting labels LABELi,j instead of keys Li,j and
using the derivation procedure to lower the minimum information to be kept:
the labels that users possess allow to derive a large number of keys. Therefore,

Traitors Collaborating in Public: Pirates 2.0 201

we claim that it is enough for the pirate to collect all direct labels LABELi,j

where i is located in the first λ levels in order to derive all keys Li,k. (Once the
pirate knows the two direct labels at node i, he can derive all keys Li,k where k
is in the subtree rooted at i.)

To prove the theorem, we show that on average, ρ log ρ randomly chosen
traitors are able to contribute all the direct labels of the first λ levels. Each
traitor contributes all his direct labels LABELi,j for the nodes i located in the
first λ levels. Note that at each level, a traitor has been assigned exactly one
of the direct labels. Thus, when all direct labels at level exactly λ have been
contributed, so have the direct labels of all the first λ− 1 levels. As a randomly
chosen traitor knows a uniformly chosen direct label out of the ρ

2 direct labels of
level λ, a randomly chosen group of ρ log ρ traitors (operating isolated) is able
to contribute all direct labels LABELi,j where i is located in the first λ levels.

Moreover, such traitors share their contribution with every user in the same
subtree rooted at level λ+ 1: each traitor is covered by N/ρ users. �
Remark 1. Theorem 2 is proven in the case of static attacks: traitors submit
information non-adaptively, such as in a peer-to-peer scenario. However, the
number of required traitors to mount a Pirate 2.0 attack can be lowered to ρ in
the case of an adaptive attack such as in a server-based scenario.

Impact on AACS. In the case of AACS, the subset difference scheme is used
with N = 231 users. The header is written in a so-called Media Key Block or
MKB for short which (among other) encodes the indices for the difference subsets
as well as the media key encrypted once for each of the corresponding long term
keys. These keys are 16 bytes long and the indices are encoded using 5 bytes.
According to Section 3.2.5.5 of AACS specifications [2]: “For the purposes of
designing performance, a one megabyte buffer is sufficient to process the MKB.”
Although this is not an intrinsic limitation of the system, very large MKBs would
decrease the performances of hardware devices and would increase their price.
This is why applications like disk replicators often only allocate 1MB space for
the MKB. In the case of AACS, this means that only 211.6 = 220/21 encrypted
keys will be able to fit this space and thus a Pirates 2.0 attack against the
AACS would only require some thousand collaborating traitors which, given the
guarantee offered to traitors (a million of other users cover each traitor), seems
very practicable.

Also note that once again the attack given here is just an illustration of our
general concept of attack. There are several possible improvements and refine-
ments such as taking advantage of the partition algorithm (remember that the
scheme is a trace and revoke scheme and not a full traitor tracing scheme, so
that it might fail to single out a traitor).

4 Pirates 2.0 and Code Based Schemes

Traitor tracing schemes based on codes (be it collusion secure codes [7,25] or
identifiable parent property codes [14,22]) have been proposed during more than

202 O. Billet and D.H. Phan

half a decade [17,8,21,20,23,5]. Their main advantage is their efficiency in terms
of bandwidth requirements, but their main drawback is that their efficiency (in
terms of the size of the private key) is highly sensitive to the number of traitors
in the coalition.

4.1 General Framework of Codes Based Schemes

Traitor tracing schemes built on codes more or less fit in the following framework:

Setup: The scheme generates a code C of length � which is either a collusion
secure code or a q-ary c-IPP code. The alphabet for the code is A = {0, 1}
in the case of a collusion secure code and A = {1, . . . , q} in the case of an
IPP code. Then, for each position i = 1, . . . , � in a codeword and for each
possible letter a from A, a key Ki,a is randomly chosen. Hence, there are 2�
possible keys (resp. q� possible keys) in the system in the case of collusion
secure codes (resp. IPP codes).

Key assignment: Each user u is given a codeword Wu from C. Then, for
each position i = 1, . . . , � in this codeword, the user is provided with the
key Ki,Wu[i] where Wu[i] is the letter at position i in the codeword Wu.
Thus, each user gets � keys in its decoder.

Decoder: A ciphertext usually contains a header that specifies the positions
of the keys involved in the decryption process. For instance, in the case of
the scheme [17] proposed by Kiayias and Yung, all the keys of the user are
involved. In the case of the scheme [5] proposed by Boneh and Naor only
one key is involved during a decryption process.

4.2 Pirates 2.0 against Code Based Schemes

Our goal is to show how our generic attack can be applied to this class of schemes.
We do not focus on any concrete construction but rather deal with the underlying
codewords. For ease of exposition, we describe an attack when the underlying
code is a Tardos’ code [25] but this attack might easily translate to other codes.

First, recall that a Tardos’ code secure against coalitions of size at most c is
built as follows. First, the code length is set to be � = �100c2 log(N/ε)�. Then, for
each integer i in the interval [1, . . . , �] a (secret) value 0 < pi < 1 heavily biased
towards 0 or 1 is randomly drawn. Then, any of the N codewords is constructed
by randomly choosing for each position i in [1, . . . , �] the bit ‘0’ or the bit ‘1’
according to the probability pi.

Theorem 3. For any traitor tracing scheme that relies on Tardos’ code for its
set of keys, a set of T traitors collaborating to mount a Pirates 2.0 attack allows
to produce a pirate decoder while maintaining a level of anonymity higher than
N · 2−�/T on the average.

Proof. Since contributing large amounts of a codeword makes your level of
anonymity drop a lot, a strategy that handles every traitor with equity is to
make them contribute the same amount of secret data. Since there are T traitors,

Traitors Collaborating in Public: Pirates 2.0 203

let them each contribute �/T elements of (the secret data associated with) their
codeword. Of course, people are then already able to construct pirate decoders
with the collected material. The anonymity level α a traitor can expect is easy
to assess: if m = ��/T �,

α = N
∏m

i=1

(
p2

σ(i) + (1− pσ(i))2
)
. (1)

Indeed, for a randomly chosen traitor, there is a probability pi that the letter at
position i is ‘0’ and for any other codeword randomly chosen a probability pi that
the letter at that position is also ‘0’. Similarly there is a probability 1−pi that the
letter at position i is ‘1’ and the same probability that another codeword gets the
same letter at that position. Therefore, the probability that another codeword
gets the same letter as that of the traitor for some position i is qi = p2

i +(1−pi)2.
The probability that a block of size m of the traitor’s codeword is the same as
that of another user is thus

∏m
i=1 qσ(i), where σ is a permutation of {1, . . . , �}

that accounts for the particular selection of the block of size m.
The sum from Eq. (1) takes into account every possible block of codeword of

length m and by multiplying by the total number of users in the system, we get
the average number of users masking a randomly chosen traitor, that is its level
of anonymity in the system. Now since p2

i + (1− pi)2 ≥ 1
2 we get a (very loose)

bound on the level of anonymity: α ≥ N · 2−�/T . �
Theoretical and practical impact. From a theoretical point of view, the above
theorem shows that the number of traitors required to mount a Pirates 2.0 is
only linear in the size of the decoder and only logarithmic in the number of users
in the system. From a practical point of view, it would require about 217 traitors
to mount a Pirate 2.0 attack against a traitor tracing scheme that relies on a
30-collusion secure code with 232 users. Each traitor would be masked by about
a few thousand users in this case.

5 Conclusion

Throughout this paper we presented a novel concept of attack against combina-
torial traitor tracing schemes. We focused on the main ideas behind this concept
of attack, but some variations could be further investigated. For instance, it is
possible to consider the case of dishonest traitors (a common threat to collab-
orative work is bad contributions which have to be tracked and eliminated).
Dishonest traitors capture the fact that the authority could try to perturb the
creation of pirate decoders by publishing incorrect information. However, one
of the traitors might use its own authorized decoder to verify the contribution
of the other traitors: after having sorted out these contributions, he is able to
produce a pirate decoder.

Another direction is to consider probabilistic guarantees for the level of
anonymity of contributing traitors: the traitors are only certified to have a high
level of anonymity with some (possibly very high) probability. This is useful if

204 O. Billet and D.H. Phan

the authority tries to embed markers specific to a single user. However, there
is a trade-off for the authority between the effectiveness of this process against
Pirates 2.0 and the efficiency of the scheme.

Eventually, the most interesting direction is probably to provide modified
versions of the common traitor tracing schemes that resist Pirates 2.0 attacks
without sacrificing the efficiency of the original schemes.

References

1. AACS LA. AACS Specifications, http://www.aacsla.com/specifications
2. AACS LA. Introduction and Common Cryptographic Elements. Downloaded

from, http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.
91.pdf

3. Billet, O., Phan, D.H.: Efficient Traitor Tracing from Collusion Secure Codes.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer,
Heidelberg (2008)

4. Boneh, D., Franklin, M.K.: An Efficient Public Key Traitor Tracing Scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidel-
berg (1999)

5. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertexts (2008)
6. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with

Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

7. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Copper-
smith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg
(1995)

8. Chabanne, H., Phan, D.H., Pointcheval, D.: Public Traceability in Traitor Tracing
Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005)

9. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

10. DefectiveByDesign, http://www.defectivebydesign.org/
11. Electronic Frontier Foundation, http://www.eff.org/
12. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. In: Wiener, M. (ed.) CRYPTO 1999.

LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)
13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-

tended abstract). In: Symposium on Foundations of Computer Science—FOCS
1984, pp. 464–479. IEEE, Los Alamitos (1984)

14. Hollmann, H.D.L., van Lint, J.H., Linnartz, J.-P.M.G., Tolhuizen, L.M.G.M.: On
Codes with the Identifiable Parent Property. J. Comb. Theory, Ser. A 82(2), 121–
133 (1998)

15. Kiayias, A., Pehlivanoglu, S.: Pirate Evolution: How to Make the Most of Your
Traitor Keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465.
Springer, Heidelberg (2007)

16. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

17. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

Traitors Collaborating in Public: Pirates 2.0 205

18. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

19. Pfitzmann, B.: Trials of Traced Traitors. In: Anderson, R. (ed.) IH 1996. LNCS,
vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

20. Phan, D.H.: Traitor tracing for stateful pirate decoders with constant ciphertext
rate. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 354–365.
Springer, Heidelberg (2006)

21. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Pub-
lic Key Traitor Tracing with Full-Public-Traceability. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275.
Springer, Heidelberg (2006)

22. Sarkar, P., Stinson, D.R.: Frameproof and IPP codes. In: Pandu Rangan, C., Ding,
C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 117–126. Springer, Heidelberg
(2001)

23. Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against powerful
pirates. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Workshop on Coding and
Cryptography—WCC 2007, April 2007, pp. 379–388 (2007)

24. Stop DRM Now!, http://stopdrmnow.org/
25. Tardos, G.: Optimal probabilistic fingerprint codes. In: ACM Symposium on The-

ory of Computing—STOC 2003, pp. 116–125. ACM, New York (2003)

Key Agreement from Close Secrets over
Unsecured Channels

Bhavana Kanukurthi and Leonid Reyzin

Boston University Computer Science
111 Cummington St., Boston, MA 02215, USA

http://cs-people.bu.edu/bhavanak, http://www.cs.bu.edu/~reyzin

Abstract. We consider information-theoretic key agreement between
two parties sharing somewhat different versions of a secret w that has
relatively little entropy. Such key agreement, also known as informa-
tion reconciliation and privacy amplification over unsecured channels,
was shown to be theoretically feasible by Renner and Wolf (Eurocrypt
2004), although no protocol that runs in polynomial time was described.
We propose a protocol that is not only polynomial-time, but actually
practical, requiring only a few seconds on consumer-grade computers.

Our protocol can be seen as an interactive version of robust fuzzy
extractors (Dodis et al., Crypto 2006). While robust fuzzy extractors,
due to their noninteractive nature, require w to have entropy at least half
its length, we have no such constraint. In fact, unlike in prior solutions,
in our solution the entropy loss is essentially unrelated to the length or
the entropy of w, and depends only on the security parameter.

1 Introduction

We consider the problem of information-theoretic key agreement between two
parties that initially possess only correlated weak secrets. At the start of the
protocol, Alice has a string w, Bob has w′ that is similar, but not identical,
to w, and the adversary Eve’s information about w is incomplete. The goal is
for Alice and Bob to agree on a shared secret key k about which Eve has no
information. Security has to hold even in the case of active Eve, i.e., one who can
perform the (wo)man-in-the-middle attack. It is important that the output k be
as long as possible given the entropy of w (the difference between the length of
k and the entropy of w is known as the entropy loss).

This setting arises, for example, when Alice and Bob have access to a (possi-
bly) noisy channel that can be partially eavesdropped by Eve; or when a trusted
server (Alice) stores the biometric of a user (Bob), and the user subsequently
uses his fresh biometric reading to authenticate himself to the server; or when
Alice and Bob are mobile nodes wanting to authenticate each other based on
the fact that their knowledge of a location is greater than Eve’s (e.g., if they are
much closer to a particular location than Eve, and thus are able to observe it at
higher resolution).

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 206–223, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Key Agreement from Close Secrets over Unsecured Channels 207

Renner and Wolf [RW04] proposed the first protocol to solve this problem.
This protocol (described in [RW04, Corollary 9]) is very general: it does not
require proximity between w and w′, but only requires, roughly, that information
that w and w′ contain about each other is more than the information that Eve
has about them. However, the price for this generality is that the protocol is not
practical as presented: the round complexity is quite high, and the local running
time of each party is not even polynomial.

Renner and Wolf mention briefly, however [RW04, Section 2.2], that local run-
ning time can be made polynomial through the use of error-correcting techniques
when w and w′ “are bitstrings which differ in a certain limited number of posi-
tions” (that is, are close in the Hamming metric). Indeed, subsequently, Dodis et
al. [DKRS06] used error-correctingtechniques to propose a protocol that is compu-
tationally efficient not only for the Hamming metric, but also for the set difference
metric. Moreover, their protocol has just a single message from Alice to Bob.

Unfortunately, the price for such high efficiency is high entropy loss: if the
length of w is n and its entropy (after the error-correcting information) is m,
then the protocol of Dodis et al. cannot output k longer than m− (n −m). In
particular, if the entropy of w is less than half its length, it achieves nothing (this
is unavoidable in all single-message protocols [DKRS06, KR08a], as pointed out
in [DKRS06] and shown in [DW08]).

Our Contribution. We build on the results of [RW04] and [DKRS06] by proposing
a protocol that is efficient for both parties and has both lower round complexity
and lower entropy loss than the protocol of [RW04]. Our analysis decouples
security from the length n of w, thus offering a flexible tradeoff between security
and performance. Without going into details of all the parameters, for security
2−L, the length of k in our protocol is about m−L2/2−O(L logL+L logn) and
the number of messages exchanged between Alice and Bob is L+logn+5. More
details and a more careful performance comparison are provided in Section 2.

Our protocol is more general than the work of [DKRS06] not only in the
entropy requirement, but also in the kinds of differences between w and w′ it can
handle. Specifically, it can handle any metric that has secure sketches [DORS08]
(see Section 3.2) that do not lose too much entropy (in particular, therefore, our
protocol tolerates Hamming, set difference, edit distance [DORS08] and point-set
difference [CL06] errors). Thus, while Renner and Wolf showed feasibility of key
agreement from correlated information, and Dodis et al. showed its practicality
for certain restricted settings, we demonstrate its practicality for a broad class
of settings.

Implementation Results. We implemented our protocol (using Shoup’s NTL
[Sho01]), although we have not performed careful code optimization and did not
include any improvements of Section 4.2. The protocol was tested for L = 80 and
n = 100, 000 on a LAN with Alice and Bob running on a 2.4Ghz Intel Pentium
4 and a WAN with Alice running on a 2.4Ghz Intel Xeon instead. The running
times over a WAN and LAN were nearly the same, both less than 5 seconds. Of
the total running time, approximately 1.5 seconds were spent by each party on

208 B. Kanukurthi and L. Reyzin

computation and an additional 1 second was spent in total communication costs.
The improvements in Section 4.2 will reduce the running time further (although
the impact of these improvements on the number of rounds and the amount of
computation is easy to understand, it is difficult to say how much the actual
total running times will decrease).

Other related work. Variants of this problem have been studied, under the names
“information reconciliation,” “privacy amplification,” and “fuzzy extractors.”
Without providing an exhaustive overview of the literature, we note here the
most closely related work. Information-theoretic security against active Eve was
achieved by Maurer, Renner, and Wolf [Mau97, MW97, Wol98, MW03, RW03]
in the restricted setting when w = w′ or when w, w′, and Eve’s information
come from repeated independent identically distributed experiments. Boyen et
al [BDK+05] removed those restrictions, instead requiring that w and w′ be
close in some metric that has secure sketches, but achieved only computational
security. One of their solutions relies on the random oracle model, and the other
on computational assumptions necessary to enable password-base authenticated
key agreement.

The starting point for our work is the same as for [RW04]: a protocol, also
by Renner and Wolf [RW03], designed for the case of w = w′. We modify it for
the case of w �= w′ in a way that improves it even for the case of w = w′, and
provide a more careful, concrete security analysis for it ([RW03] provides only
an asymptotic analysis that works when n→∞).

2 Overview of the Result

Notation, Distributions, Entropy Let Ul denote the uniform distribution on
{0, 1}l. Let X1, X2 be two probability distributions over some set S. Their sta-
tistical distance is

SD (X1, X2)
def= max

T⊆S
{Pr[X1 ∈ T]− Pr[X2 ∈ T]} =

1
2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]
∣∣∣∣

(they are said to be ε-close if SD (X1, X2) ≤ ε). The min-entropy of a random
variable W is H∞(W) = − log(maxw Pr[W = w]) (all logarithms are base 2,
unless specified otherwise). Following [DORS08], for a joint distribution (W,E),
define the (average) conditional min-entropy of W given E as

H̃∞(W | E) = − log(E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A com-
putationally unbounded adversary who receives the value of E cannot find the
correct value of W with probability greater than 2−H̃∞(W |E).

Throughout this paper, for any string x, we use the notation λx to denote its
length and hx to denote its entropy (i.e, H∞(X)).

Key Agreement from Close Secrets over Unsecured Channels 209

Model We now define our goal, by modifying the noninteractive robust fuzzy ex-
tractor definition of [DKRS06]. An Interactive Robust Fuzzy Extractor protocol
allows two parties, Alice and Bob, holding instances w,w′ of correlated random
variables W,W ′ that are guaranteed to be close but not identical, to agree on
a secret key. We assume that w and w′ are within distance at most η in some
underlying metric space. The correctness of the protocol guarantees that when
the protocol is executed in the presence of a passive adversary (one who does
not interfere with messages between Alice and Bob), the parties end up agreeing
on the same secret key, as long as dis(w,w′) ≤ η.

The security of the protocol guarantees that even when the protocol is ex-
ecuted in the presence of an active adversary, who interferes with messages
arbitrarily, if both parties accept, then they agree on a key that is uniformly
random from the adversary’s point of view. Moreover, if only one party accepts,
then its key is still uniformly random from the adversary’s point of view. (As
was observed in, for example, [Wol98] and [Sho99], we cannot require that if
one party rejects, then so does the other party, because an active adversary can
always replace the last message with an invalid one—by that time, the sender
of that message must have already accepted, while the recipient will reject.)

More formally, let w,w′ ∈ {0, 1}n chosen according to distributions W,W ′

be the secret values held by Alice and Bob respectively. Call three correlated
random variables (W,W ′, E) (where W and W ′ range over some metric space
M) suitable if H̃∞(W | E) ≥ hW and Pr(w,w′)←(W,W ′)[dis(w,w′) ≤ η] = 1. Let
Protocol (A,B) be executed in the presence of an active adversary Eve. Let Ca

be the random variable describing A’s view of the communication when (A,B) is
executed in the presence of Eve.Likewise, define Cb. (We will use ca, cb to denote
specific values of these variables.) We denote the private coins of Alice and Bob
by ra and rb respectively. Alice’s output will be denoted by kA = A(w, ca, ra),
and Bob’s by kB = B(w′, cb, rb) (if successful, both will be of length λk; rejection
will be denoted by a special symbol ⊥). Let C = Ca ∪ Cb ∪ E be Eve’s view of
the protocol; because Eve is computationally unbounded, we can assume she is
deterministic.

Definition 1. An interactive protocol (A,B) played by Alice and Bob on a com-
munication channel fully controlled by an adversary Eve, is an (M, hW , λk, η,
δ, ε)-interactive robust fuzzy extraction protocol if it satisfies the following prop-
erties whenever (W,W ′, E) are suitable:

1. Correctness. If Eve is passive, then Pr[kA = kB] = 1.
2. Robustness. The probability that the following experiment outputs “Eve wins”

is at most δ: sample (w,w′, e) from (W,W ′, E); let ca, cb be the communi-
cation upon execution of (A,B) with Eve(e) actively controlling the chan-
nel, and let A(w, ca, ra) = kA,B(w′, cb, rb) = kB. Output “Eve wins” if
(kA �= kB ∧ kA �=⊥ ∧kB �=⊥).

3. Extraction. Letting C denote an active Eve’s view of the protocol,

SD ((kA, C,E | kA �=⊥), (Uλk
, C,E)) ≤ ε and

SD ((kB, C,E | kB �=⊥), (Uλk
, C,E)) ≤ ε .

210 B. Kanukurthi and L. Reyzin

Our Protocol. Before going into details in subsequent sections, we present here a
high-level overview of our protocol. We start with an authentication sub-protocol
Auth presented in [RW03] that achieves the following: using the secret w that is
common to Alice and Bob, it allows Alice to send to Bob an authentic (but nonse-
cret) messageM of length λM bit-by-bit in 2λM messages. Alice and Bob [RW03]
can use this sub-protocol in order to agree on a key k as follows: they use Auth to
get an extractor seed s from Alice to Bob, and then extract k from w using s.1

We modify this protocol by using Auth to authenticate a MAC key instead
of an extractor seed. The MAC key, in turn, is used to authenticate the extrac-
tor seed s (which can be done very efficiently using simple information-theoretic
MACs). This seems counterintuitive, because Auth reveals what is being authen-
ticated, while MAC keys need to remain secret. The insight is to use the MAC
key before Auth begins.2 Our modification is beneficial for three reasons. First,
MAC keys can be made shorter than extractor keys, so Auth is used on a shorter
string, thus reducing the number of rounds and the entropy loss. Second, this
modification allows us to use the same MAC key to authenticate not only the
extractor seed s, but also the error-correction information (the so-called “secure
sketch” of w [DORS08]) in the case Bob’s w′ is different from Alice’s w. Third,
because there are MACs that are secure even against (limited) key modifica-
tion [DKRS06, CDF+08], we can lower the security parameters in Auth, further
increasing efficiency and reducing entropy loss.

The rest of the paper is devoted to filling in the details of the above overview,
including smaller improvements not discussed here, and proving the following
theorem.

Theorem 1. Given an [n, κ, 2η + 1]2 linear error correcting code, the proto-
col presented in Section 4 is an (M, hW , λk, η, δ, ε)-interactive robust fuzzy ex-
traction protocol, where M is the Hamming space over {0, 1}n with the fol-
lowing parameters: Setting security δ = 2−L, the protocol can extract λk =
hW − (n−κ)− 2 log 1

ε − (L2/2+O(L(logn+ logL))) bits (assuming n < 2L and
λk− (n−κ)+ 2 log 1

ε > 10L). The protocol involves an exchange of L+ logn+5
messages between the two parties.

The constant hidden by the O in the entropy loss is small, with O(L(log n +
logL)) really being less than 3L log 2L+ 1

2L logn+ 3(log 8L)(log 16n).
We obtain similar results for other metric spaces, with the only difference

being that n − κ in the entropy loss gets replaced by the entropy loss of the
secure sketch for that metric space (see Section 3.2).

Comparison with Prior Work. When no error-correction is needed (i.e., w = w′

and η = 0), then n−κ = 0, and we get an improvement of the result of [RW03].

1 For technical reasons, since the adversary can modify message of Auth, she may have
some information about the string extracted from w; this problem is easily handled,
see Section 4.

2 This idea has been used before in several contexts; to the best of our knowledge it
was first used in [Che97] in the context of secure link state routing.

Key Agreement from Close Secrets over Unsecured Channels 211

The result of [RW03] sets L = Θ(
√
n/ logn) and loses Θ(n/ logn) bits of entropy.

This can be seen in the description of protocol Auth in [RW03], which has Θ(
√
n)

rounds, each losing Θ(L) bits. Our protocol has only Θ(L) rounds, with each also
losing Θ(L) bits. Thus, our result is a Θ(log n)-factor improvement in efficiency
and entropy loss for the same security (moreover, the constant hidden by Θ,
although difficult to compute exactly, is substantial, likely bigger than logn in
real applications).

A precise comparison with [RW04], which uses [RW03] as a building block and
adds error-correction, is even more complicated. Our advantage in the number
of rounds remains the same, though the constant factor improves even further.
To compare the entropy loss, we can fix the secure sketch code used in our
protocol (which can be based on any linear error-correcting code) to the one
implicitly used in [RW04]. In that case, the entropy loss due to added error-
correction is asymptotically the same for our protocol and for the protocol of
[RW04], though the constant in our protocol is substantially lower. On the other
hand, an important advantage of our protocol is that we can choose a code that
is efficiently decodable, in which case the entropy loss due to error-correction
may increase, but the protocol will run in polynomial-time.

We now compare our result to the construction of [DKRS06]. The advantage
of the [DKRS06] construction is that it takes only a single message and the
entropy loss is linear in L rather than quadratic. The disadvantage is that it
loses additional n − hW bits of entropy, which means that it is most effective
when W has very high entropy. In particular, it becomes inapplicable when
hW ≤ n/2.

3 Building Blocks

3.1 Extractors

Because in this paper Eve is always assumed to have some external information E
about Alice and Bob’s secrets, we need the following variant, defined in [DORS08,
Definition 2], of the definition of strong extractors of [NZ96]:

Definition 2. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic
function that uses r bits of randomness. We say that Ext is an average-case
(n,m, l, ε)-strong extractor if for all pairs of random variables (W,E) such that
w ∈W is an n-bit string and H̃∞(W | E) ≥ m, we have SD((Ext(W ;X), X,E),
(Ul, X,E) ≤ ε, where X is the uniform distribution over {0, 1}r.

We should note that some strong extractors (in particular, universal hashing
[CW79,HILL99])are alreadyaverage-case extractors,andany strong extractor can
bemade average-casewith a slight increase in input entropy [DORS08, Section 2.5].

The following (new) lemma shows that strings extracted by average-case ex-
tractors have high average min-entropy, even given the seed. The proof can be
found in the full version [KR08b].

212 B. Kanukurthi and L. Reyzin

Lemma 1. Let Ext be a an average-case (n,m, l, ε)-strong extractor. Then if
H̃∞(W | E) ≥ m, and W consists of n-bit strings, H̃∞(Ext(W,X) | X,E) ≥
min

(
l, log 1

ε

)− 1.

3.2 A Variation on Secure Sketches

So far, we have presented the error-correcting information that Alice sends to
Bob in the first message as a secure sketch. Actually, we need a slight variant
on secure sketches, one that provides some resilience even when the sketch is
modified. The requires a different definition than the definition of [DORS08],
though it turns out that known constructions need to be modified only slightly
to satisfy it.

Secure sketches, defined in [DORS08], provide two algorithms: “generate”
(Gen) that takes an input w and produces a sketch P and “recover” (Rec) that
outputs w from the sketch P and any w′ sufficiently close to w. Their security
guarantees that some entropy remains in w even given P . Secure sketches provide
no guarantees when P has been tampered with, while we need to make sure
that the output of Rec still has entropy. Thus, we need to add a weak form of
robustness (i.e., resilience to active attack) to secure sketches. At the same time,
we do not need a full recovery of the original w: we will be satisfied if both Gen
and Rec produce some string R that preserves some of the entropy of w. In that
way, our new primitive is like a fuzzy extractor, except we do not require that
R be uniform, merely that it have entropy. In keeping with extractor literature
terminology [CRVW02], we call the primitive a weakly robust fuzzy conductor
because it conducts entropy from w to R and is robust against active attacks on
P . Because we no longer recover the original w but rather reproduce the same
R, we rename Rec into Rep.

Let M be a metric space with distance function dis. Suppose (Gen,Rep) are
two procedures, where Gen(w), for w ∈ M, outputs an extracted string R ∈
{0, 1}∗ and a helper string P ∈ {0, 1}∗, and Rep(w′, P ′), for w′ ∈ M, P ′ ∈
{0, 1}∗, outputs R′ ∈ {0, 1}∗.
Definition 3. The procedures (Gen,Rep) are an (M, hW , hR, hR′ , η)-weakly ro-
bust fuzzy conductor if they satisfy the following properties:

1. Error-Tolerance. If dis(w,w′) ≤ η and R,P were generated by (R,P) ←
Gen(w), then Rep(w′, P) = R.

2. Security of Gen. For any suitable (W,W ′, E), the string R has high entropy
even for those who observe P and E: if (R,P) ← Gen(W), then H̃∞(R |
E,P) ≥ hR.

3. Security of Rep. Even if the adversary modifies P , the string produced by Rep
has high entropy: for all (adversarial) functions A and suitable (W,W ′, E),
if (R,P) ← Gen(W), P ′ ← A(P,E), and R′ ← Rep(W ′, P ′), then H̃∞(R′ |
E,P) ≥ hR′ .

We can build weakly robust fuzzy conductors out of any secure sketch (SS,Rec).
(Secure sketches, defined in [DORS08], allow the recovery of w from a close

Key Agreement from Close Secrets over Unsecured Channels 213

string w′). We use the secure sketch constructions of [DORS08] to build weakly
robust fuzzy conductors for Hamming, set difference, and edit distance metrics.
Namely, in Appendix A, we easily obtain

– for Hamming distance over an alphabet of size F , given an [n, κ, 2t+1] linear
error-correcting code for the alphabet, we get hR = hW − (n − κ) logF ,
hR′ = hW − 2(n− κ) logF , and η = t.

– for set difference, with sets whose elements come from a universe of size U ,
we get hR = hW − η log(U + 1) and hR′ = hW − 2η log(U + 1) for any η.

– for edit distance over an alphabet of size we get hR = hW−�n
c � log(n−c+1)−

α, and hR′ = hW −�n
c � log(n−c+1)−2α, where α = (2c−1)η�log(F c +1)�,

for any constant c and η.

3.3 One-Time Message Authentication Codes (MACs)

One-time MACs allow information-theoretic authentication of a message using
a key shared in advance.

Definition 4. A function family
{
MACk : {0, 1}λM → {0, 1}λσ

}
is a δ-secure

one-time deterministic MAC for messages of length λM with tags of length λσ if
for any M ∈ {0, 1}λM and any function (adversary) A : {0, 1}λσ → {0, 1}λM ×
{0, 1}λσ ,

Pr
k

[MACk(M ′) = σ′ ∧ M ′ �= M | (M ′, σ′) = A(MACk(M))] ≤ δ .

MAC Construction. We will use the following standard MAC technique [dB93],
[Tay93], [BJKS93]. View the key k as two values, a and b, of λσ bits each.
Split the message M into c chunks M0, . . . ,Mc−1, each λσ bits long, and view
these as coefficients of a polynomial M̃(x) ∈ F2λσ [x] of degree c − 1. Then
MACk(M) def= aM̃(a)+ b. This is a �λM/λσ� 2−λσ -secure message authentication
code.

This construction has two properties that are particularly important to us.
First, its key length is close to optimal (it is not hard to show that λσ ≥ log 1

δ —
else, adversary could simply guess a tag; and |k| ≥ 2 log 1

δ —else, there would be
fewer than 1

δ tags for M ′ given one of the 1
δ tags for M). Second, it is secure

even when the adversary knows something about the key, with security degrading
according to the amount of information adversary knows (this kind of security
was first addressed in [MW97]). Intuitively, the security of this MAC is roughly
the entropy of the key minus half the key length. More formally,

Proposition 1. Let (K,E) be a joint distribution. Then for all (adversarial)
functions M with λM -bit outputs and A,

Pr
(k,e)←(K,E)

[MACk(M ′) = σ′ ∧ M ′ �= M | (M ′, σ′) = A(MACk(M(e)), e)]

≤
⌈
λM

λσ

⌉
2λσ−H̃∞(K|E) .

214 B. Kanukurthi and L. Reyzin

We defer the proof of this proposition to the full version [KR08b]. We note
that its proof becomes simpler (than similar prior proofs) if we use the notion
of average min-entropy. In particular, we will use following lemma [DORS08]
that states that average min-entropy of a variable from the point of view of an
adversary doesn’t decrease by more than the number of bits (correlated with the
variable) observed by the adversary.

Lemma 2. If B has at most 2λ possible values, then

H̃∞(A | B,E) ≥ H̃∞(A,B | E)− λ ≥ H̃∞(A | E)− λ

3.4 A Modification of Renner-Wolf Interactive Authentication

The [RW03] authentication protocol allows two parties who share the same string
R to authenticate a message M , even if R has very little entropy.

We generalize this protocol slightly (to use general extractors instead of the
specific polynomial authentication function) and present it in Figure 1. We as-
sume that Ext is an average-case extractor that takes seeds of length q, and
outputs L + 1-bit strings that are 2−L−1-close to uniform as long as the input
has sufficient entropy h (in particular, h ≥ 3L+1 suffices if one is using universal
hashing as the extractor). For our purposes, it suffices to assume that the length
of M and the number of ones in it (i.e., its Hamming weight wt(M)) are known
to Bob. If |M | is known but wt(M) is not, M can be first encoded as a balanced

Alice and Bob share a string R. Alice wishes to authentically send Bob
M = M1 . . . MλM

of λM bits. The value λM and the number of ones in
M is known to Bob.

For i = 1 to λM :

1. Alice sends Bob challenge xi ∈r {0, 1}q .

2. Bob receives x′

i, sends b′i = Ext(R;x′

i), and challenge y′

i ∈r {0, 1}q

3. Alice receives bi, yi, verifies that bi = Ext(R; xi) and aborts if not.
She sends (1, ai = Ext(R; yi)) if Mi = 1, and (0,⊥) otherwise.

4. Bob receives b′i, a
′

i aborts if b′i = 1 and a′

i �= Ext(R; y′

i); accepts otherwise.
If i = λM , Bob verifies that the number of ones in the received string match
the expected number of ones; aborts otherwise.

Note that step 3 and 4 of each iteration are combined
with steps 1 and 2, respectively, of the next iteration.

Fig. 1. Protocol Interactive Message Authentication Auth

Key Agreement from Close Secrets over Unsecured Channels 215

string (i.e., a string with the same number of zeros and ones), by encoding, for
example, a 0 as 01 and a 1 as a 10. This doubles the length of M .3

We note that [RW03] present a technique that can be used even if |M | is
unknown (namely, encoding M as a string that becomes balanced only at the
end), but we will not need it here.

Each round of the protocol reveals L + 1 bits of information correlated to
R if Mi = 0, and 2L + 1 bits of information of information correlated to R
if Mi = 1. Hence, by Lemma 2, the adversary’s uncertainty about R will be
sufficient for the extractor to work until the last round as long as H̃∞(R|E) ≥
3L+ 1 + (L+ 1)(λM + wt(M)), and by Lemma 1 the ai and bi values will have
entropy L from the adversary’s point of view.

The intuition for the security of this protocol is that Eve cannot answer a
random query xi or yi with probability greater than 2−L because of the entropy
of the answers, and hence can neither remove zero bits (because challenges to
Bob keep him synchronized) nor insert one bits (because Alice is required to
answer a challenge for each one). She can insert zero bits and change zeros
to ones, but that is taken care of by the assumption that Bob knows λM and
wt(M).

We do not formally define or prove security of this protocol, as the proof is
essentially the same as in [RW03]. The probability that Eve succeeds in trans-
mitting M ′ �= M to Bob and Bob does not reject (or Alice rejects and Bob
accepts) is at most 2−L.

We note the following security property observed in [RW04]. Consider a setting
where, because of Eve’s malicious interference, Bob does not have the same R
as Alice does, but instead some (possibly correlated) R′. The protocol may not
be complete, of course. However, it still secure, in the sense that Eve’s chances
of authenticating a message M ′ �= M are not more than when R is the same for
Alice and Bob, as long as R′ also has sufficient entropy (≥ 3L+1+(L+1)(λM +
wt(M))).

An additional security property (neither mentioned nor needed before) is that
no information about the messageM being authenticated is revealed to Eve until
Bob receives the first message of the protocol. This holds with probability at least
1 − 2−L even when Eve is active, because she cannot get Alice to reveal even
the first bit M1 without answering her challenge xi, which she is unlikely to do
without Bob’s help.

3 More efficient methods for encoding M as a balanced string are, of course, also
possible. The length of M can be increased by less than log2 |M | through the use
of algorithms from Bos and Chaum [BC92] or Reyzin and Reyzin [RR02]. These
algorithms compute a bijection between integers in [1,

(
n

n/2

)
] and subsets of size n/2

of a set of size n. Any such subset can be viewed as a balanced string (where the ith

bit is set to 1 iff the ith element is in the subset). Therefore, to balance a string M ,
it can be viewed as integer, and the subset produced by one of the above algorithms
can be viewed as its balanced encoding.

216 B. Kanukurthi and L. Reyzin

4 Our Protocol

We propose the following privacy amplification protocol, in which Alice starts
with w and Bob with w′ such that dis(w,w′) ≤ η. Below, MAC refers to the con-
struction from Lemma 3.3 and Ext refers to an arbitrary average-case extractor
(the choice of extractor will affect security only marginally, and will mostly affect
efficiency, as we discuss below; in particular, extractors as simple as universal
hashing can be used). Lengths that are currently undefined (such as of MAC
keys and extractor seeds) will be set in subsequent sections in order to achieve
desired security levels. In the protocol description below, extractor outputs of
varying lengths and distance from uniform are needed at different stages of the
protocol. We account for this variation by using two different extractors, denoted
by Ext1, Ext2.

1. Alice generates a random MAC key k1 and extractor seed s1, computes
(R,P)← Gen(w), σ1 = MACk1(s1, P), and sends ((s1, P), σ1) to Bob.

2. Alice initiates the Renner-Wolf message authentication protocol(Auth) for
the message k1 (suitably converted to a balanced string as indicated in Sec-
tion 3.4), using R as the shared secret value.

3. Bob receives ((s′1, P
′), σ′

1), and computes R′ = Rep(w′, P ′). He responds to
Alice’s Auth protocol, using the string R′ as the shared secret value.

4. Upon completion of Alice’s side of Auth (if she has not yet rejected), Alice
– extracts k2 = Ext1(R; s1);
– generates a random seed s2;
– sends Bob s2 and σ2 = MACk2(s2);
– outputs her final key kA = k3 = Ext2(R; s2).

5. Upon completion of Bob’s side of the Auth with the received message k′1,
and receipt of s′2, σ

′
2 from Alice, Bob

– verifies the first MAC, Verifyk′
1
((s′1, P ′), σ′

1) (if fail, rejects);
– computes the key for the second MAC, k′2 = Ext1(R′; s′1);
– verifies the second MAC, Verifyk′

2
(s′2, σ

′
2) (if fail, rejects);

– outputs his final key kB = k′3 = Ext2(R′; s′2).

The intuition behind the security of this protocol is in the ordering of events.
First, Alice authenticates a message (s1, P) to Bob using a MAC with a truly
random key k1 which is unknown to Eve. This ensures that Eve cannot (except
with negligible probability) succeed in modifying the message while preserving
the integrity of the tag. However, Bob does not know k1, either—which means
he must defer the verification of the tag σ until a later stage.

Second, after she is sure that Bob has received the message and the tag (and
thus it is too late for Eve to try modifying them), Alice transmits k1 to Bob
using the Renner-Wolf authentication protocol. The protocol reveals all of k1 to
Eve, but at this point k1 is completely useless to her, because it is too late to try
to modify the message and the tag. She cannot modify k1 (except with negligible
probability), by the security of the authentication protocol. It is crucial here that
the authentication protocol is secure even if Eve modified P (such modification

Key Agreement from Close Secrets over Unsecured Channels 217

would not be detected until later), giving Alice and Bob different secrets R and
R′, because both R and R′ have sufficiently high entropy. This enables Bob to
verify the correctness of the MAC (and hence ensure that R = R′) at the end of
the protocol.

The last steps of the protocol are a bit confusing, because instead of just
outputting k2 as the final key, Alice adds a level of indirection, using k2 as a
key to authenticate another extractor seed s2, which is then used to extract the
output key. This is similar to [RW03] and is needed because k2, computed as
Ext(w; s1), is guaranteed to be close to uniform only when s1 is a random seed
independent of Eve’s view. However, s1 is revealed to Eve before Auth and an
active Eve can modify the challenges within Auth (which are extractor seeds)
to be correlated to s1. By the time Ext(w; s1) is computed after Auth, s1 is not
necessarily independent of Eve’s view. Thus, k2 is not necessarily suitable for
the final output, although it is possible to show that it still has entropy and
is therefore suitable as a MAC key. In Section 4.2 we show how to reduce the
length of k2 (and thus the entropy loss) as compared to the protocol of [RW03].

4.1 Analysis

The security parameter for our protocol is L. Through out this section, as with
the rest of the paper, for any string x we use λx to denote the length of the x
and hx to denote its entropy (i.e, H∞(x)).

Robustness We can view the protocol as consisting of two phases.

– Phase 1: Agreeing on k2 from close secrets w,w′

– Phase 2: Using k2 to agree final string k3

Security of Phase 1. Suppose Eve succeeds in an active attack against Phase
1, i.e., k2 �= k′2. There are two possibilities.

1. k1 = k′1 (Eve does not attack protocol Auth). Therefore, in order for k2 �= k′2,
either s1 �= s′1 or P �= P ′. Because Bob verifies the first MAC, Eve needs to
come up with a valid ((s′1, P

′
1), σ

′
1), which she has to do when she forwards

Bob his very first message. This case again gives rise to two possible options,
depending on when Eve sends to Bob her guess for ((s′1, P

′
1), σ

′
1):

– If Eve sends it right after Alice sends ((s1, P1), σ1) and her first challenge
x1 to Bob, then this is equivalent to an active attack on a MAC, because
she needs to produce her “guess” for ((s′1, P ′

1), σ′
1), before she sees any

information correlated with k1. We denote this probability by Pr[mac].
For an appropriate setting of length of k1 (namely, 2L+ 2 logλ(s1,P)/L,
where λ(s1,P) is the length of s1 and P) using the MAC construction
from Section 3.3, we can show that Pr[mac] ≤ 2−L.

– If Eve sends it later, then she needs to respond to x1. We denote this
probability by Pr [random− challenge]. From Section 3.4, it follows that
Pr[random− challenge] ≤ 2−L.

218 B. Kanukurthi and L. Reyzin

2. k1 �= k′1 : In this case, Eve has to authenticate k′1 �= k1, using Protocol Auth
in order to succeed. Therefore, her chances of success in this case are bounded
by her chances of succeeding in an active attack against Auth. We denote
this probability by Pr[Auth]. Again, if we run Auth on the security parameter
L+ 1, we can show that Pr[auth] ≤ 2−L.

Security of Phase 2. This analysis is essentially the same as in [RW03]; we
improve it in the next section. The key k2 = Ext(R, s1) agreed upon by the parties
at the end of Phase 1 is used in Phase 2 to authenticate a fresh extractor seed s2
(of length λs2) using the single message MAC scheme of Section 3.3. However, the
authentication protocol ofPhase 1 givesEve the ability to query the parties and get
some information aboutExt(w, s1),decreasing the entropy ofk2.Knowing that this
decrease will be no more than the amount communicated about R during Phase
1 (which is Θ(L2) bits), we will set the length of k2 to be twice that plus 2L +
2 logλs2/L to get the desired 2−L security for the second MAC.

It is easy to verify by counting the entropy lost during each round that the
protocol, as presented here, gives us Theorem 1 up to constant factors. (More
precisely, it proves the following modification of Theorem 1: in the expression for
λk, increase the coefficient of L2 from 1/2 to 9, and increase the number of mes-
sages by a factor of 4.) In the next section we present a number of improvements
that reduce the entropy loss by (significant) constant factors, proving Theorem 1.

4.2 Constant-Factor Improvements

In this section we propose improvements that reduce the round complexity by
a factor of 4 and the entropy loss by a factor of up to 18, making this protocol
considerably more practical.

Reducing the length of the extracted MAC key k2. Note that choosing the length
of k2 as above increases the entropy loss of the protocol by almost a factor of 3.
By reworking the analysis of Phase 1 using the notion of average min-entropy
(similar to the analysis in proof of Proposition 1), we can show that requiring
k2 to be longer than twice the communication in Phase 1, as discussed above, is
unnecessary. Using the same notation that we used in the protocol description,
we let σ2 denote the tag of the MAC. To succeed in forging it, the adversary
Eve needs to successfully change σ2 to σ′

2. In addition, in Phase 1 she is also
allowed to query Alice and Bob, say, T times. Protocol Auth implicitly imposes
the constraint that Eve needs to also respond to T such queries. Let us denote her
queries by (q1, . . . , qT) and responses by (q′1, . . . , q′T). We analyze the security of
phases I and II jointly by looking at the average min-entropy of (σ′

2, (q
′
1, . . . , q

′
T))

given (σ2, (q1, . . . , qT)). It turns out to be roughly λk2 − T − λσ2 , which makes
the likelihood that Eve to completes phase I and comes up with σ′

2 is no more
than 2−L if λk2 > 2L+ T .

Working Base 4. Recall that in ith round of Auth, Bob sends Alice an extrac-
tor seed sufficient to extract L + 1 bits, and Alice responds with either nothing
or the extracted string, depending on the value of the ith bit of the message being

Key Agreement from Close Secrets over Unsecured Channels 219

transmitted. We improve this by encoding the message transmitted by Auth
(namely, the MAC key k1) in base 4 rather than in base 2. Bob will send Alice an
extractor seed sufficient to extract 3L+1 bits, and Alice will respond with nothing,
the first L + 1 bits, the first 2L + 1 bits, or all 3L + 1 bits depending on the ith
digit of the message. This protocol works for strings that are “balanced” in base 4:
i.e., messages M of length κM whose base-4 digits whose digits add up to 1.5κM .
It takes κM rounds and loses 2.5LκM bits of entropy, while maintaining the same
security. This improves the number of rounds by a factor 2 and the entropy loss by a
factor of 3/2.5 = 1.2, because κM is half of the length thatM would have if written
in binary (the techniques used to balance a message in base 2 are also applicable
in base 4, and increase the length by essentially the same ratio).

Working in Parallel. We further improve Auth by having Alice and Bob au-
thenticate two halves of M to each other. Namely, Alice authenticates half of
M to Bob at the same time as Bob authenticates half of M to Alice. Since M
was initially chosen by Alice, she first has to sends half of M to Bob to he can
authenticate it back to her. This has to occur in Alice’s second message, because
we need to make sure that M remains secret until after Bob’s first message. Note
that Bob’s messages for authenticating his half of M can be combined with his
answers to Alice’s challenges. Namely, in each round, Alice will send Bob an
extractor seed sufficient to extract 4L + 1 bits, and Bob will respond with the
first L + 1 bits, the first 2L + 1 bits, or the first 3L + 1 bits, or all 4L + 1 bits
depending on the appropriate digit of M .

Note that the security proof goes through without adding any new challenges
from Bob to Alice (i.e., Alice’s responses remain 0, L + 1, 2L + 1 or 3L + 1
extracted bits long).

This improvement cuts the number of rounds essentially by a factor of 2
(except for the fact that Bob ends up one round behind), and cuts the entropy
loss by a factor of 5/4=1.25 (because there are no challenges from Bob to Alice,
only from Alice to Bob, and now there are half as many of those).

Not converting to/from a balanced string. Because MACs work even when the
key does not have full entropy, Alice can simply choose a random balanced
string for the MAC key k1 instead of choosing fully random k1, converting it to
a balanced string for Auth, and then having Bob convert it back. The security of
the MAC will remain essentially 2−L if k1 is a random string of length 2L+2 logL
bits that is balanced when viewed in base 4 (because its entropy H∞(k1) will be
at least 2L+ logL by bounds on the central quadrinomial coefficient).

While this by itself is not a big improvement (on Alice’s side, choosing a
random balanced string is about as hard as choosing a random string of length
2L and converting to a balanced one of length 2L + logL; so the savings are
mainly on Bob’s side), it enables the next one.

Lowering the number of extracted bits in Auth. If we lower the bit length of
the extracted strings exchanged in Auth, we increase the probability that the
adversary succeeds in making a few changes to k1. However, by using a MAC

220 B. Kanukurthi and L. Reyzin

secure against related key attacks, we can actually tolerate a few such changes.
Cramer et al. [CDF+08, Corollary 2], following a construction in [DKRS06],
present a MAC that is essentially as efficient as the one we use, and is secure even
if the adversary is allowed to change the key by exclusive-or with an adversarially
chosen string. Thus, we need to make sure that Eve’s changes to k1 can be
characterized as exclusive-or with a particular string.

Namely, suppose that instead of using responses of length 0, L+ 1, 2L+ 1, or
3L+ 1, Alice uses responses of length 0, μ+ 1, 2μ+ 1, or 3μ+ 1, and instead of
using responses of length L + 1, 2L + 1, 3L + 1, or 4L + 1, Bob uses responses
of length L+ 1, L+ μ+ 1, L+ 2μ+ 1, or L+ 3μ+ 1, for some μ < L. The fact
that Bob’s responses are of length at least L+ 1 ensures that Eve cannot insert
or delete digits from k1 but with probability 2−L. She can, however, increase a
digit with probability 2−μ. Because we require a balanced string, any decreased
digit must be compensated by an increased digit; thus, if the total sum of digit
changes is γ, then the probability that Eve does not get caught is 2−γμ/2.

We are working base 4, but using MACs that are based on bit-string keys.
We will convert from base 4 to base 2 using the Gray code: 0 → 00, 1→ 01, 2→
11, 3 → 10. This will ensure that Hamming distance between the key sent by
Alice and the key received by Bob is at most γ. (If we did not use the working-
in-base-4 improvement, then, of course, this would not be necessary.)

The MAC of [CDF+08] is secure when the adversary chooses the modification to
the key without seeing the key. Namely, for any string Δ, the probability that the
adversary can forge aMACwith the key k1⊕Δ is low,where the probability is taken
over a randomk1. In our setting, the adversarydoes get to see the key, because Auth
does not hide k1. However, what helps is that Δ likely has low Hamming weight,
because to achieve high Hamming weight, Eve would have to successfully respond
to a number of random challenges which does not hold. Therefore, the number of
possibleΔ values is small, which is almost as good as having a fixedΔ.

More precisely, let π be the security of the MAC for any fixed Δ, and α
be the length of the MAC key. Then there are at most α2/2 values of Δ of
Hamming weight 2, and by the union bound, the probability that will succeed
with a forgery of the MAC by changing k1 by two bits is at most πα2/2. At the
same time, the probability that Eve will then be able to change k1 by two bits is
at most 2−μ. Letting μ = 2 logα, we get that Eve’s probability of success overall
is π/2. Similarly, there are at most α3/3! values of Δ of Hamming weight 3, and
the overall probability of success using any such Δ is π/3!. Continuing in this
manner, we get that overall probability of Eve’s success through modification of
k1 is less than π(1/2! + 1/3! + 1/4! + . . .) = π(e − 2) < π (we are using here
that Δ of Hamming weight 1 is impossible because the string k1 ⊕Δ that Bob
receives must be balanced).

Now to achieve MAC security π = 2−L, we need to set the length of the MAC
key, to be α ≤ 2L+2 log(n/L+3)+2, and μ = 2 log(α) = 2 log(2L+2 log(n/L+
3) + 2). This follows from [CDF+08, Corollary 2].

Careful counting of round complexity and entropy loss, taking into account
the improvements above, gives us the statement Theorem 1.

Key Agreement from Close Secrets over Unsecured Channels 221

Acknowledgments

We thank Yevgeniy Dodis and Daniel Wichs for several insightful discussions. We
also thank Renato Renner and Stefan Wolf for sharing with us their thoughts
on the encoding of a string into a balanced string. We are grateful to MIT’s
Theory of Computation Group, where some of this work was performed, for
its hospitality. This work was supported in part by the U.S. National Science
Foundation grants CCF-0515100 and CNS-0546614.

References

[BC92] Bos, J.N.E., Chaum, D.: Provably Unforgeable Signatures. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg
(1993)

[BDK+05] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote
Authentication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

[BJKS93] Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On Families
of Hash Functions via Geometric Codes and Concatenation. In: Stinson
[Sti93], pp. 331–342

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Alge-
braic Manipulation with Applications to Robust Secret Sharing and Fuzzy
Extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 471–488. Springer, Heidelberg (2008)

[Che97] Cheung, S.: An efficient message authentication scheme for link state rout-
ing. In: 13th Annual Computer Security Applications Conference, pp. 90–
98 (1997)

[CL06] Chang, E.-C., Li, Q.: Hiding Secret Points Amidst Chaff. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 59–72. Springer, Hei-
delberg (2006)

[CRVW02] Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness
conductors and constant-degree lossless expanders. In: IEEE Conference
on Computational Complexity, p. 15 (2002)

[CW79] Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal
of Computer and System Sciences 18, 143–154 (1979)

[dB93] den Boer, B.: A Simple and Key-Economical Unconditional Authentica-
tion Scheme. Journal of Computer Security 2, 65–71 (1993)

[DKRS06] Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust Fuzzy Extractors and
Authenticated Key Agreement from Close Secrets. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006)

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal
on Computing 38(1), 97–139 (2007); arXiv:cs/0602007

[DW08] Dodis, Y., Wichs, D.: One-round authenticated key agreement from weak
secrets. Technical Report 2008/503, Cryptology ePrint archive (2008),
http://eprint.iacr.org

[HILL99] H stad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Com-
puting 28(4), 1364–1396 (1999)

222 B. Kanukurthi and L. Reyzin

[KR08a] Kanukurthi, B., Reyzin, L.: An Improved Robust Fuzzy Extractor. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229,
pp. 156–171. Springer, Heidelberg (2008)

[KR08b] Kanukurthi, B., Reyzin, L.: Key agreement from close secrets over un-
secured channels. Technical Report 2008/494, Cryptology ePrint archive
(2008), http://eprint.iacr.org

[Mau97] Maurer, U.M.: Information-theoretically secure secret-key agreement by
NOT authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

[MW97] Maurer, U.M., Wolf, S.: Privacy amplification secure against active ad-
versaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
307–321. Springer, Heidelberg (1997)

[MW03] Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated pub-
lic channels — Part III: Privacy amplification. IEEE Trans. Info. The-
ory 49(4), 839–851 (2003)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–53 (1996)

[RR02] Reyzin, L., Reyzin, N.: Better than BiBa: Short One-Time Signatures with
Fast Signing and Verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP
2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002)

[RW03] Renner, R.S., Wolf, S.: Unconditional authenticity and privacy from an ar-
bitrarily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 78–95. Springer, Heidelberg (2003)

[RW04] Renner, R.S., Wolf, S.: The Exact Price for Unconditionally Secure Asym-
metric Cryptography. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 109–125. Springer, Heidelberg (2004)

[Sho99] Shoup, V.: On formal models for secure key exchange. Techni-
cal Report RZ 3120 (#93166), IBM Zurich Research Lab (1999),
http://eprint.iacr.org/1999/012

[Sho01] Shoup, V.: Ntl: A library for doing number theory, version 5.4.2 (2001),
http://www.shoup.net/ntl

[Sti93] Stinson, D.R. (ed.): CRYPTO 1993. LNCS, vol. 773, pp. 22–26. Springer,
Heidelberg (1994)

[Tay93] Taylor, R.: An Integrity Check Value Algorithm for Stream Ciphers. In:
Stinson [Sti93], pp. 40–48

[Wol98] Wolf, S.: Strong security against active attacks in information-theoretic
secret-key agreement. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998.
LNCS, vol. 1514, pp. 405–419. Springer, Heidelberg (1998)

A Building Weakly Robust Fuzzy Conductors

As mentioned before, weakly robust fuzzy conductors can be built trivially out
of any secure sketch (SS,Rec) defined in [DORS08]. For the sake of completeness,
we review the definition below.

Definition 5. An (m, m̃, t)-secure sketch is a pair of efficient randomized pro-
cedures (SS,Rec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗.
The recovery procedure Rec takes an element w′ ∈M and s ∈ {0, 1}∗.

Key Agreement from Close Secrets over Unsecured Channels 223

2. Correctness: If dis(w,w′) ≤ t then Rec(w′, SS(w)) = w.
3. Security: For any distribution W over M with min-entropy m, the (average)

min-entropy of W conditioned on s does not decrease very much. Specifically,
if H∞(W) ≥ m then H̃∞(W | SS(W)) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦
To build a weakly robust fuzzy conductor from a secure sketch, simply let
Gen(w) = (w, SS(w)), and R = Rep(w′, P ′) = Rec(w′, P ′) unless Rec(w′, P ′)
fails to produce a value that is within η of w′ (which can happen only if
P ′ �= P), in which case let Rep(w′, P ′) = w′. If the sketch length is λ, then
this construction is an (M, hW , hW − λ, hW − 2λ, η)-weakly robust fuzzy con-
ductor. This can be seen as follows: H̃∞(R|E,P) ≥ hW − λ by Lemma 2. If
Rec(w′, P ′) = R′, then w can be recovered from R′ if one knows SS(w′) and
SS(w), by computing Rec(R′, SS(w′)) to get w′ and then Rec(w′, SS(w)) to get
w. Hence, H̃∞(R′|E, SS(w), SS(w′)) ≥ H̃∞(w|E, SS(w), SS(w′)) ≥ hW − 2λ,
again by Lemma 2.

This produces weakly robust fuzzy conductors for Hamming distance and
set difference, using deterministic secure sketches of Constructions 3, 5, and 6
of [DORS08]. In particular, for Hamming distance over an alphabet of size F ,
given an [n, k, 2t + 1] linear error-correcting code for the alphabet, this gives
hR = hW − (n − k) logF , hR′ = hW − 2(n − k) logF , and η = t. For set
difference, with sets whose elements come from a universe of size n, this gives
hR = hW − η log(n+ 1) and hR′ = hW − 2η log(n+ 1) for any η. Construction
9 of [DORS08], for edit distance, needs to modified slightly by omitting the
information required to reverse the embedding, and letting R be the embedded
version of w, R = SHc(w); this produces a weakly robust fuzzy conductor for
edit distance over alphabet of size F with λ = (2c − 1)η�log(F c + 1)�, hR =
hW − �n

c � log(n − c + 1) − λ, and hR′ = hW − �n
c � log(n − c + 1) − 2λ, for any

choice of positive integer c and any η.

Order-Preserving Symmetric Encryption

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill

Georgia Institute of Technology, Atlanta, GA, USA
{sasha,nchenette}@gatech.edu, {younho,amoneill}@cc.gatech.edu

Abstract. We initiate the cryptographic study of order-preserving sym-
metric encryption (OPE), a primitive suggested in the database commu-
nity by Agrawal et al. (SIGMOD ’04) for allowing efficient range queries
on encrypted data. Interestingly, we first show that a straightforward
relaxation of standard security notions for encryption such as indistin-
guishability against chosen-plaintext attack (IND-CPA) is unachievable
by a practical OPE scheme. Instead, we propose a security notion in the
spirit of pseudorandom functions (PRFs) and related primitives asking
that an OPE scheme look “as-random-as-possible” subject to the order-
preserving constraint. We then design an efficient OPE scheme and prove
its security under our notion based on pseudorandomness of an under-
lying blockcipher. Our construction is based on a natural relation we
uncover between a random order-preserving function and the hypergeo-
metric probability distribution. In particular, it makes black-box use of
an efficient sampling algorithm for the latter.

1 Introduction
Motivation. The concept of order-preserving symmetric encryption (OPE) was
introduced in the database community by Agrawal et al. [1]. These are deter-
ministic encryption schemes (aka. ciphers) whose encryption function preserves
numerical ordering of the plaintexts. The reason for interest in such schemes
is that they allow efficient range queries on encrypted data. That is, a remote
untrusted database server is able to index the (sensitive) data it receives, in
encrypted form, in a data structure that permits efficient range queries (asking
the server to return ciphertexts in the database whose decryptions fall within a
given range, say [a, b]). By “efficient” we mean in time logarithmic (or at least
sub-linear) in the size of the database, as performing linear work on each query
is prohibitively slow in practice for large databases.

In fact, OPE not only allows efficient range queries, but allows indexing and
query processing to be done exactly and as efficiently as for unencrypted data,
since a query just consists of the encryptions of a and b and the server can
locate the desired ciphertexts in logarithmic-time via standard tree-based data
structures. Indeed, subsequent to its publication, [1] has been referenced widely
in the database community, and OPE has also been suggested for use in in-
network aggregation on encrypted data in sensor networks [28] and as a tool for
applying signal processing techniques to multimedia content protection [13]. Yet

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 224–241, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Order-Preserving Symmetric Encryption 225

a cryptographic study of OPE in the provable-security tradition never appeared.
Our work aims to begin to remedy this situation.

Related Work. Our work extends a recent line of research in the cryptographic
community addressing efficient (sub-linear time) search on encrypted data, which
has been addressed by [2] in the symmetric-key setting and [5,10,6] in the public-
key setting. However, these works focus mainly on simple exact-match queries.
Development and analysis of schemes allowing more complex query types that
are used in practice (e.g. range queries) has remained open.

The work of [22] suggested enabling efficient range queries on encrypted data
not by using OPE but so-called prefix-preserving encryption (PPE) [29,4]. Un-
fortunately, as discussed in [22,2], PPE schemes are subject to certain attacks
in this context; particular queries can completely reveal some of the underly-
ing plaintexts in the database. Moreover, their use necessitates specialized data
structures and query formats, which practitioners would prefer to avoid.

Allowing range queries on encrypted data in the public-key setting was studied
in [11,26]. While their schemes provably provide strong security, they are not
efficient in our setting, requiring to scan the whole database on every query.

Finally, we clarify that [1], in addition to suggesting the OPE primitive, does
provide a construction. However, the construction is rather ad-hoc and has cer-
tain limitations, namely its encryption algorithm must take as input all the
plaintexts in the database. It is not always practical to assume that users know
all these plaintexts in advance, so a stateless scheme whose encryption algorithm
can process single plaintexts on the fly is preferable. Moreover, [1] does not define
security nor provide any formal security analysis.

Defining security of OPE. Our first goal is to devise a rigorous definition
of security that OPE schemes should satisfy. Of course, such schemes cannot
satisfy all the standard notions of security, such as indistinguishability against
chosen-plaintext attack (IND-CPA), as they are not only deterministic, but also
leak the order-relations among the plaintexts. So, although we cannot target for
the strongest security level, we want to define the best possible security under
the order-preserving constraint that the target-applications require. (Such an
approach was taken previously in the case of deterministic public-key encryp-
tion [5,10,6], on-line ciphers [4], and deterministic authenticated encryption [25].)

Weakening IND-CPA. One approach is to try to weaken the IND-CPA def-
inition appropriately. Indeed, in the case of deterministic symmetric encryption
this was done by [7], which formalizes a notion called indistinguishability under
distinct chosen-plaintext attack or IND-DCPA. (The notion was subsequently ap-
plied to MACs in [3].) Since deterministic encryption leaks equality of plaintexts,
they restrict the adversary in the IND-CPA experiment to make queries to its left-
right-encryption-oracle of the form (x1

0, x
1
1), . . . , (x

q
0, x

q
1) such that x1

0, . . . , x
q
0 are

all distinct and x1
1, . . . , x

q
1 are all distinct. We generalize this to a notion we call

indistinguishability under ordered chosen-plaintext attack or IND-OCPA, asking
these sequences instead to satisfy the same order relations. (See Section 3.2.) Sur-
prisingly, we go on to show that this plausible-looking definition is not very use-

226 A. Boldyreva et al.

ful for us, because it cannot be achieved by an OPE scheme unless the size of its
ciphertext-space is exponential in the size of its plaintext-space.

An alternative approach. Instead of trying to further restrict the adversary
in the IND-OCPA definition, we turn to an approach along the lines of pseudo-
random functions (PRFs) or permutations (PRPs), requiring that no adversary
can distinguish between oracle access to the encryption algorithm of the scheme
or a corresponding “ideal” object. In our case the latter is a random order-
preserving function with the same domain and range. Since order-preserving
functions are injective, it also makes sense to aim for a stronger security notion
that additionally gives the adversary oracle access to the decryption algorithm
or the inverse function, respectively. We call the resulting notion POPF-CCA
for pseudorandom order-preserving function against chosen-ciphertext attack.

Towards a construction. After having settled on the POPF-CCA notion,
we would naturally like to construct an OPE scheme meeting it. Essentially, the
encryption algorithm of such a scheme should behave similarly to an algorithm
that samples a random order-preserving function from a specified domain and
range on-the-fly (dynamically as new queries are made). But it is not immediately
clear how this can be done; blockciphers, our usual tool in the symmetric-key
setting, do not seem helpful in preserving plaintext order. Our construction takes
a different route, borrowing some tools from probability theory. We first uncover
a relation between a random order-preserving function and the hypergeometric
(HG) and negative hypergeometric (NHG) probability distributions.

The connection to NHG. To gain some intuition, first observe that any
order-preserving function f from {1, . . . ,M} to {1, . . . , N} can be uniquely rep-
resented by a combination of M out of N ordered items (see Proposition 1).
Now let us recall a probability distribution that deals with selections of such
combinations. Imagine we have N balls in a bin, out of which M are black and
N − M are white. At each step, we draw a ball at random without replace-
ment. Consider the random variable Y describing the total number of balls in
our sample after we collect the x-th black ball. This random variable follows the
so-called negative hypergeometric (NHG) distribution. Using our representation
of an order-preserving function, it is not hard to show that f(x) for a given point
x ∈ {1, . . . ,M} has a NHG distribution over a random choice of f . Assuming an
efficient sampling algorithm for the NHG distribution, this gives a rough idea
for a scheme, but there are still many subtleties to take care of.

Handling multiple points. First, assigning multiple plaintexts to ciphertexts
independently according to the NHG distribution cannot work, because the re-
sulting encryption function is unlikely to even be order-preserving. One could
try to fix this by keeping tracking of all previously encrypted plaintexts and
their ciphertexts (in both the encryption and decryption algorithms) and ad-
justing the parameters of the NHG sampling algorithm appropriately for each
new plaintext. But we want a stateless scheme, so it cannot keep track of such
previous assignments.

Order-Preserving Symmetric Encryption 227

Eliminating the state. As a first step towards eliminating the state, we show
that by assigning ciphertexts to plaintexts in a more organized fashion, the state
can actually consist of a static but exponentially long random tape. The idea is
that, to encrypt plaintext x, the encryption algorithm performs a binary search
down to x. That is, it first assigns Enc(K ,M/2), then Enc(K ,M/4) if m < M/2
and Enc(K , 3M/4) otherwise, and so on, until Enc(K , x) is assigned. Crucially,
each ciphertext assignment is made according to the output of the NHG sampling
algorithm run on appropriate parameters and coins from an associated portion
of the random tape indexed by the plaintext. (The decryption algorithm can be
defined similarly.) Now, it may not be clear that the resulting scheme induces a
random order-preserving function from the plaintext to ciphertext-space (does
its distribution get skewed by the binary search?), but we prove (by strong
induction on the size of the plaintext-space) that this is indeed the case.

Of course, instead of making the long random tape the secret key K for our
scheme, we can make it the key for a PRF and generate portions of the tape
dynamically as needed. However, coming up with a practical PRF construction to
use here requires some care. For efficiency it should be blockcipher-based. Since
the size of parameters to the NHG sampling algorithm as well as the number
of random coins it needs varies during the binary search, and also because such
a construction seems useful in general, it should be both variable input-length
(VIL) and variable output-length, which we call a length-flexible (LF)-PRF. We
propose a generic construction of an LF-PRF from a VIL-PRF and a (keyless)
VOL-PRG (pseudorandom generator). Efficient blockcipher-based VIL-PRFs are
known, and we suggest a highly efficient blockcipher-based VOL-PRG that is
apparently folklore. POPF-CCA security of the resulting OPE scheme can then
be easily proved assuming only standard security (pseudorandomness) of an
underlying blockcipher.

Switching from NHG to HG. Finally, our scheme needs an efficient sampling
algorithm for the NHG distribution. Unfortunately, the existence of such an al-
gorithm seems open. It is known that NHG can be approximated by the negative
binomial distribution [24], which in turn can be sampled efficiently [16,14], and
that the approximation improves as M and N grow. However, quantifying the
quality of approximation for fixed parameters seems difficult.

Instead, we turn to a related probability distribution, namely the hyperge-
ometric (HG) distribution, for which a very efficient exact (not approximated)
sampling algorithm is known [20,21]. In our balls-and-bin model with M black
and N −M white balls, the random variable X specifying the number of black
balls in our sample as soon as y balls are picked follows the HG distribution. The
scheme based on this distribution, which is the one described in the body of the
paper, is rather more involved, but nearly as efficient: instead ofO(logM)·TNHGD
running-time it is O(logN) · THGD (where TNHGD, THGD are the running-times
of the sampling algorithms for the respective distributions), but we show that it
is O(logM) · THGD on average.

Discussion. It is important to realize that the “ideal” object in our POPF-CCA
definition (a random order-preserving function), and correspondingly our OPE

228 A. Boldyreva et al.

construction meeting it, inherently leak some information about the underlying
plaintexts. Characterizing this leakage is an important next step in the study of
OPE but is outside the scope of our current paper. (Although we mention that
our “big-jump attack” of Theorem 1 may provide some insight in this regard.)

The point is that practitioners have indicated their desire to use OPE schemes
in order to achieve efficient range queries on encrypted data and are willing
to live with its security limitations. In response, we provide a scheme meeting
what we believe to be a “best-possible” security notion for OPE. This belief
can be justified by noting that it is usually the case that a security notion for
a cryptographic object is met by a “random” one (which is sometimes built
directly into the definition, as in the case of PRFs and PRPs).

On a more general primitive. To allow efficient range queries on encrypted
data, it is sufficient to have an order-preserving hash function familyH (not neces-
sarily invertible). The overall OPE scheme would then have secret key (KEnc,KH)
whereKEnc is a key for a normal (randomized) encryption scheme andKH is a key
for H , and the encryption of x would be Enc(KEnc, x)‖H(KH , x) (cf. efficiently
searchable encryption (ESE) in [5]). Our security notion (in the CPA case) can
also be applied to such H . In fact, there has been some work on hash functions
that are order-preserving or have some related properties [23,15,18]. But none of
these works are concerned with security in any sense. Since our OPE scheme is effi-
cient and already invertible, we have not tried to build any secure order-preserving
hash separately.

On the public-key setting. Finally, it is interesting to note that in a public-
key setting one cannot expect OPE to provide any privacy at all. Indeed, given
a ciphertext c computed under public key pk, anyone can decrypt c via a simple
binary-search. In the symmetric-key setting a real-life adversary cannot simply
encrypt messages itself, so such an attack is unlikely to be feasible.

2 Preliminaries

Notation and conventions. We refer to members of {0, 1}∗ as strings. If x
is a string then |x| denotes its length in bits and if x, y are strings then x‖y
denotes an encoding from which x, y are uniquely recoverable. For � ∈ N we
denote by 1� the string of � “1” bits. If S is a set then x

$← S denotes that x is
selected uniformly at random from S. If A is a randomized algorithm and Coins
is the set from where it draws its coins, then we write A(x, y, . . .) as shorthand
for R $← Coins ; A(x, y, . . . ;R), where the latter denotes the result of running A
on inputs x, y, . . . and coins R. And a

$← A(x, y, . . .) means that we assign to
a the output of A run on inputs x, y, For a ∈ N we denote by [a] the set
{1, . . . , a}. For sets X and Y, if f : X → Y is a function, then we call X the
domain, Y the range, and the set {f(x) | x ∈ X} the image of the function.
An adversary is an algorithm. By convention, all algorithms are required to
be efficient, meaning run in (expected) polynomial-time in the length of their
inputs, and their running-time includes that of any overlying experiment.

Order-Preserving Symmetric Encryption 229

Symmetric Encryption. A symmetric encryption scheme SE = (K, Enc, Dec)
with associated plaintext-space D and ciphertext-space R consists of three algo-
rithms. The randomized key generation algorithm K returns a secret key K .
The (possibly randomized) encryption algorithm Enc takes the secret key K ,
descriptions of plaintext and ciphertext-spaces D,R and a plaintext m to return
a ciphertext c. The deterministic decryption algorithm Dec takes the secret key
K , descriptions of plaintext and ciphertext-spaces D,R, and a ciphertext c to
return a corresponding plaintext m or a special symbol ⊥ indicating that the
ciphertext was invalid.

Note that the above syntax differs from the usual one in that we specify the
plaintext and ciphertext-spaces D,R explicitly; this is for convenience relative
to our specific schemes. We require the usual correctness condition, namely that
Dec(K ,D,R, (Enc(K ,D,R,m)) = m for all K output by K and all m ∈ D.
Finally, we say that SE is deterministic if Enc is deterministic.

IND-CPA. Let LR(·, ·, b) denote the function that on inputs m0,m1 returns
mb. For a symmetric encryption scheme SE = (K, Enc, Dec) and an adversary
A and b ∈ {0, 1} consider the following experiment:

Experiment Expind-cpa-b
SE (A)

K
$←K

d
$← AEnc(K,LR(·,·,b))

Return d

We require that each query (m0,m1) that A makes to its oracle satisfies |m0| =
|m1|. For an adversary A, define its ind-cpa advantage against SE as

Advind-cpa
SE (A) = Pr[Expind-cpa-1

SE (A) = 1]− Pr[Expind-cpa-0
SE (A) = 1] .

Pseudorandom functions (PRFs). A family of functions is a map F : Keys×
D → {0, 1}�, where for each key K ∈ Keys the map F (K, ·) : D → {0, 1}� is a
function. We refer to F (K, ·) as an instance of F . For an adversary A, its prf-
advantage against F , Advprf

F (A), is defined as

Pr
[
K $←Keys : AF (K,·) = 1

]
− Pr

[
f $← FuncD,{0,1}� : Af(·) = 1

]
,

where FuncD,{0,1}� denotes the set of all functions from D to {0, 1}�.

3 OPE and Its Security

3.1 Order-Preserving Encryption (OPE)

We are interested in deterministic encryption schemes that preserve numeri-
cal ordering on their plaintext-space. Let us define what we mean by this. For
A,B ⊆ N with |A| ≤ |B|, a function f : A→ B is order-preserving (aka. strictly-
increasing) if for all i, j ∈ A, f(i) > f(j) iff i > j. We say that deterministic en-
cryption scheme SE = (K, Enc,Dec) with plaintext and ciphertext-spaces D,R

230 A. Boldyreva et al.

is order-preserving if Enc(K, ·) is an order-preserving function from D to R for
all K output by K (with elements of D,R interpreted as numbers, encoded as
strings). Unless otherwise stated, we assume the plaintext-space is [M] and the
ciphertext-space is [N] for some N ≥M ∈ N.

3.2 Security of OPE

A first try. Security of deterministic symmetric encryption was introduced
in [7], as a notion they call security under distinct chosen-plaintext attack (IND-
DCPA). (It will not be important to consider CCA now.) The idea is that because
deterministic encryption leaks plaintext equality, the adversary A in the IND-
CPA experiment defined in Section 2 is restricted to make only distinct queries
on either side of its oracle (as otherwise there is a trivial attack). That is, sup-
posing A makes queries (m1

0,m
1
1), . . . , (m

q
0,m

q
1), they require that m1

b , . . .m
q
b are

all distinct for b ∈ {0, 1}.
Noting that any OPE scheme analogously leaks the order relations among

the plaintexts, let us first try generalizing the above approach to take this into
account. Namely, let us further require the above queries made by A to satisfy
mi

0 < mj
0 iff mi

1 < mj
1 for all 1 ≤ i, j ≤ q. We call such an A an IND-OCPA

adversary for indistinguishability under ordered chosen-plaintext attack.

IND-OCPA is not useful. Defining IND-OCPA adversary seems like a plau-
sible way to analyze security for OPE. Surprisingly, it turns out not to be too
useful for us. Below, we show that IND-OCPA is unachievable by a practical
order-preserving encryption scheme, in that an OPE scheme cannot be IND-
OCPA unless its ciphertext-space is extremely large (exponential in the size of
the plaintext-space).

Theorem 1. Let SE = (K, Enc,Dec) be an order-preserving encryption scheme
with plaintext-space [M] and ciphertext-space [N] for M,N ∈ N such that 2k−1 ≤
N < 2k for some k ∈ N. Then there exists an IND-OCPA adversary A against
SE such that

Advind-cpa
SE (A) ≥ 1− 2k

M − 1
.

Furthermore, A runs in time O(logN) and makes 3 oracle queries.

So, k in the theorem should be almost as large as M for A’s advantage to be
small. The proof is in Appendix A.

Discussion. The adversary in the proof of Theorem 1 uses what we call the “big-
jump attack” to distinguish between ciphertexts of messages that are “very close”
and “far apart.” The attack shows that any practical OPE scheme inherently
leaks more information about the plaintexts than just their ordering, namely
some information about their relative distances. We return to this point later.

An alternative approach. Instead, we take the approach used in defining
security e.g. of PRPs [17] or on-line PRPs [4], where one asks that oracle access
to the function in question be indistinguishable from access to the corresponding

Order-Preserving Symmetric Encryption 231

“ideal” random object, e.g. a random permutation or a random on-line permuta-
tion. As order-preserving functions are injective, we consider the “strong” version
of such a definition where an inverse oracle is also given.

POPF-CCA. Fix an order-preserving encryption scheme SE = (K, Enc,Dec)
with plaintext-space D and ciphertext-space R, |D| ≤ |R|. For an adversary A
againstSE , define its popf-cca-advantage (or pseudorandom order-preserving func-
tion advantage under chosen-ciphertext attack), Advpopf-cca

SE (A), against SE as

Pr
[
K

$←K : AEnc(K,·),Dec(K,·) = 1
]
− Pr

[
g

$← OPFD,R : Ag(·),g−1(·) = 1
]
,

where OPFD,R denotes the set of all order-preserving functions from D to R.

Lazy sampling. Now in order for this notion to be useful, i.e. to be able show
that a scheme achieves it, we also need a way to implement A’s oracles in the
“ideal” experiment efficiently. In other words, we need to show how to “lazy
sample” (a term from [8]) a random order-preserving function and its inverse.1

As shown in [8], lazy sampling of “exotic” functions with many constraints
can be tricky. In the case of a random order-preserving function, it turns out
that straightforward procedures—which assign a random point in the range to
a queried domain point, subject to the obvious remaining constraints—do not
work (that is, the resulting function is not uniformly distributed over the set of
all such functions). So how can we lazy sample such a function, if it is possible
at all? We address this issue next.

A caveat. Before proceeding, we note that a shortcoming of our POPF-CCA
notion is it does not lead to a nice answer to the question of what information
about the data is leaked by a secure OPE scheme, but only reduces this to the
question of what information the “ideal object” (a random order-preserving func-
tion) leaks. Although practitioners have indicated that they are willing to live
with the security limitations of OPE for its useful functionality, more precisely
characterizing the latter remains an important next step before our schemes
should be considered for practical deployment.

4 Lazy Sampling a Random Order-Preserving Function

In this section, we show how to lazy-sample a random order-preserving function
and its inverse. This result may also be of independent interest, since the more
general question of what functions can be lazy-sampled is interesting in its own
right, and it may find other applications as well, e.g. to [12]. We first uncover a
connection between a random order-preserving function and the hypergeometric
(HG) probability distribution.
1 For example, in the case of a random function from the set of all functions one can

simply assign a random point from the range to each new point queried from the
domain. In the case of a random permutation, the former can be chosen from the
set of all previously unassigned points in the range, and lazy sampling of its inverse
can be done similarly. A lazy sampling procedure for a random on-line PRP and its
inverse via a tree-based characterization was given in [4].

232 A. Boldyreva et al.

4.1 The Hypergeometric Connection

To gain some intuition we start with the following claim.

Proposition 1. There is bijection between the set OPFD,R containing all order-
preserving functions from a domain D of size M to a range R of size N ≥ M
and the set of all possible combinations of M out of N ordered items.

Proof. Without loss of generality, it is enough to prove the result for domain
[M] and range [N]. Imagine a graph with its x-axis marked with integers from
1 to M and its y = f(x)-axis marked with integers from 1 to N . Given S, a
set of M distinct integers from [N], construct an order-preserving function from
[M] to [N] by mapping each i ∈ [M] to the ith smallest element in S. So, an
M -out-of-N combination corresponds to a unique order-preserving function. On
the other hand, consider an order-preserving function f from [M] to [N]. The
image of f defines a set of M distinct objects in [N], so an order-preserving
function corresponds to a unique M -out-of-N combination.

Using the above combination-based characterization it is straightforward to jus-
tify the following equality, defined for M,N ∈ N and any x, x+1 ∈ [M], y ∈ [N]:

Pr[f(x) ≤ y < f(x+ 1): f $←OPF[M],[N]] =

(
y
x

) · (N−y
M−x

)(
N
M

) . (1)

Now let us recall a particular distribution dealing with an experiment of selecting
from combinations of items.

Hypergeometric distribution. Consider the following balls-and-bins model.
Assume we have N balls in a bin out of which M balls are black and N−M balls
are white. At each step we draw a ball at random, without replacement. Consider
a random variable X that describes the number of black balls chosen after a
sample size of y balls are picked. This random variable has a hypergeometric
distribution, and the probability that X = x for the parameters N,M, y is

PHGD(x;N,M, y) =

(
y
x

) · (N−y
M−x

)(
N
M

) .

Notice the equality to the right hand side of Equation (1). Intuitively, this equal-
ity means we can view constructing a random order–preserving function f from
[M] to [N] as an experiment where we have N balls, M of which are black.
Choosing balls randomly without replacement, if the y-th ball we pick is black
then the least unmapped point in the domain is mapped to y under f . Of course,
this experiment is too inefficient to be performed directly. But we will use the
hypergeometric distribution to design procedures that efficiently and recursively
lazy sample a random order-preserving function and its inverse.

4.2 The LazySample Algorithms

Here we give our algorithms LazySample, LazySampleInv that lazy sample a
random order-preserving function from domain D to range R, |D| ≤ |R|, and its

Order-Preserving Symmetric Encryption 233

inverse, respectively. The algorithms share and maintain joint state. We assume
that both D and R are sets of consecutive integers.

Two subroutines. Our algorithms make use of two subroutines. The first,
denoted HGD, takes inputs D,R, and y ∈ R to return x ∈ D such that for each
x∗ ∈ D we have x = x∗ with probability PHGD(x−d; |R|, |D|, y−r) over the coins
of HGD, where d = min(D) − 1 and r = min(R) − 1. (Efficient algorithms for
this exist, and we discuss them in Section 4.5.) The second, denoted GetCoins,
takes inputs 1�,D,R, and b‖z, where b ∈ {0, 1} and z ∈ R if b = 0 and z ∈ D
otherwise, to return cc ∈ {0, 1}�.

The algorithms. To define our algorithms, let us denote by w cc← S that w is
assigned a value sampled uniformly at random from set S using coins cc of length
�S , where �S denotes the number of coins needed to do so. Let �1 = �(D,R, y)
denote the number of coins needed by HGD on inputs D,R, y. Our algorithms
are given in Figure 1; see below for an overview. Note that the arrays F, I,
initially empty, are global and shared between the algorithms; also, for now,
think of GetCoins as returning fresh random coins. We later implement it by
using a PRF on the same parameters to eliminate the joint state.

Overview. To determine the image of input m, LazySample employs a strat-
egy of mapping “range gaps” to “domain gaps” in a recursive, binary search
manner. By “range gap” or “domain gap,” we mean an imaginary barrier be-
tween two consecutive points in the range or domain, respectively. When run,

LazySample(D,R, m)
01 M ← |D| ; N ← |R|
02 d ← min(D) − 1 ; r ← min(R) − 1
03 y ← r + �N/2�
04 If |D| = 1 then
05 If F [D,R, m] is undefined then
06 cc

$← GetCoins(1�R ,D,R, 1‖m)
07 F [D,R, m] cc←R
08 Return F [D,R, m]

09 If I [D,R, y] is undefined then
10 cc

$← GetCoins(1�1 ,D,R, 0‖y)
11 I [D,R, y] $← HGD(D,R, y; cc)
12 x ← d + I [D,R, y]
13 If m ≤ x then
14 D ← {d + 1, . . . , x}
15 R ← {r + 1, . . . , y}
16 Else
17 D ← {x + 1, . . . , d + M}
18 R ← {y + 1, . . . , r + N}
19 Return LazySample(D,R, m)

LazySampleInv(D,R, c)
20 M ← |D| ; N ← |R|
21 d ← min(D) − 1 ; r ← min(R) − 1
22 y ← r + �N/2�
23 If |D| = 1 then m ← min(D)
24 If F [D,R, m] is undefined then
25 cc

$← GetCoins(1�R ,D,R, 1‖m)
26 F [D,R, m] cc←R
27 If F [D,R, m] = c then return m
28 Else return ⊥
29 If I [D,R, y] is undefined then
30 cc

$← GetCoins(1�1 ,D,R, 0‖y)
31 I [D,R, y] $← HGD(D,R, y; cc)
32 x ← d + I [D,R, y]
33 If c ≤ y then
34 D ← {d + 1, . . . , x}
35 R ← {r + 1, . . . , y}
36 Else
37 D ← {x + 1, . . . , d + M}
38 R ← {y + 1, . . . , r + N}
39 Return LazySampleInv(D,R, c)

Fig. 1. The LazySample, LazySampleInv algorithms

234 A. Boldyreva et al.

the algorithm first maps the middle range gap y (the gap between the middle
two range points) to a domain gap. To determine the mapping, on line 11 it
sets, according to the hypergeometric distribution, how many points in D are
mapped up to range point y and stores this value in array I. (In the future
the array is referenced instead of choosing this value anew.) Thus we have that
f(x) ≤ y < f(x + 1) (cf. Equation (1)), where x = d + I[D,R, y] as computed
on line 12. So, we can view the range gap between y and y + 1 as having been
mapped to the domain gap between x and x+ 1.

If the input domain point m is below (resp. above) the domain gap, the
algorithm recurses on line 19 on the lower (resp. upper) half of the range and
the lower (resp. upper) part of the domain, mapping further “middle” range gaps
to domain gaps. This process continues until the gaps on either side of m have
been mapped to by some range gaps. Finally, on line 07, the algorithm samples a
range point uniformly at random from the “window” defined by the range gaps
corresponding to m’s neighboring domain gaps. The is result assigned to array
F as the image of m under the lazy-sampled function.

4.3 Correctness

When GetCoins returns truly random coins, it is not hard to observe that
LazySample, LazySampleInv are consistent and sample an order-preserving
function and its inverse respectively. But we need a stronger claim; namely, that
our algorithms sample a random order-preserving function and its inverse. We
show this by arguing that any (even computationally unbounded) adversary has
no advantage in distinguishing oracle access to a random order-preserving func-
tion and its inverse from that to the algorithms LazySample, LazySampleInv.
The following theorem states this claim.

Theorem 2. Suppose GetCoins returns truly random coins. Then for any (even
computationally unbounded) algorithm A we have

Pr[Ag(·),g−1(·) = 1] = Pr[ALazySample(D,R,·),LazySampleInv(D,R,·) = 1] ,

where g, g−1 denote an order-preserving function picked at random from OPFD,R
and its inverse, respectively.

We clarify that in the theorem A’s oracles for LazySample, LazySampleInv
in the right-hand-side experiment share and update joint state. It is straightfor-
ward to check, via simple probability calculations, that the theorem holds for
an adversary A that makes one query. The case of multiple queries is harder.
The reason is that the distribution of the responses given to subsequent queries
depends on which queries A has already made, and this distribution is difficult
to compute directly. Instead our proof, given in the full version [9], uses strong
induction in a way that parallels the recursive nature of our algorithms.

4.4 Efficiency

We characterize efficiency of our algorithms in terms of the number of recur-
sive calls made by LazySample or LazySampleInv before termination. (The

Order-Preserving Symmetric Encryption 235

proposition below is just stated in terms of LazySample for simplicity; the
analogous result holds for LazySampleInv.)

Proposition 2. The number of recursive calls made by LazySample is at most
logN + 1 in the worst-case and at most 5 logM + 12 on average.

Above and in similar instances later in the paper, we omit ceilings on logM, logN
for readability. The proof is in the full version [9]. Note that the algorithms make
one call to HGD on each recursion, so an upper-bound on their running-times is
then at most (logN+1)·THGD in the worst-case and at most (5 logM+12)·THGD
on average, where THGD denotes the running-time of HGD on inputs of size at
most logN . However, this does not take into account the fact that the size of
these inputs decrease on each recursion. Thus, better bounds may be obtained
by analyzing the running-time of a specific realization of HGD.

4.5 Realizing HGD

An efficient implementation of sampling algorithm HGD was designed by Ka-
chitvichyanukul and Schmeiser [20]. Their algorithm is exact; it is not an approx-
imation by a related distribution. It is implemented in Wolfram Mathematica
and other libraries, and is fast even for large parameters. However, on small pa-
rameters the algorithms of [27] perform better. Since the parameter size to HGD
in our LazySample algorithms shrinks across the recursive calls from large to
small, it could be advantageous to switch algorithms at some threshold. We refer
the reader to [27,20,21,14] for more details.

We comment that the algorithms of [20] are technically only “exact” when
the underlying floating-point operations can be performed to infinite precision.
In practice, one has to be careful of truncation error. For simplicity, Theorem 2
did not take this into account, as in theory the error can be made arbitrarily
small by increasing the precision of floating-point operations (independently of
M,N). But we make this point explicit in Theorem 3 that analyzes security of
our actual scheme.

5 Our OPE Scheme and Its Analysis

Algorithms LazySample, LazySampleInv cannot be directly converted into
encryption and decryption procedures because they share and update a joint
state, namely arrays F and I, which store the outputs of the randomized al-
gorithm HGD. For our actual scheme, we can eliminate this shared state by
implementing the subroutine GetCoins, which produces coins for HGD, as a
PRF and (re-)constructing entries of F and I on-the-fly as needed. However,
coming up with a practical yet provably secure construction requires some care.
Below we give the details of our PRF implementation for this purpose, which
we call TapeGen.

236 A. Boldyreva et al.

5.1 The TapeGen PRF

Length-Flexible PRFs. In practice, it is desirable that TapeGen be both vari-
able input-length (VIL)- and variable output-length (VOL)-PRF,2 a primitive
we call a length-flexible (LF)-PRF. (In particular, the number of coins used by
HGD can be beyond one block of an underlying blockcipher in length, ruling out
the use of most practical pseudorandom VIL-MACs.) That is, LF-PRF TapeGen
with key-space Keys takes as input a key K ∈ Keys, an output length 1�, and
x ∈ {0, 1}∗ to return y ∈ {0, 1}�. Define the following oracle R taking inputs 1�

and x ∈ {0, 1}∗ to return y ∈ {0, 1}�, which maintains as state an array D:

Oracle R(1�, x)
If |D[x]| < � then

r
$←{0, 1}�−|D[x]|

D[x]← D[x]‖r
Return D[x]1 . . .D[x]�

Above and in what follows, si denotes the i-th bit of a string s, and we require
everywhere that � < �max for an associated maximum output length �max. For
an adversary A, define its lf-prf-advantage against TapeGen as

Advlf-prf
TapeGen(A) = Pr[ATapeGen(K,·,·) = 1]− Pr[AR(·,·) = 1] ,

where the left probability is over the random choice of K ∈ Keys. Most practi-
cal VIL-MACs (message authentication codes) are PRFs and are therefore VIL-
PRFs, but the VOL-PRF requirement does not seem to have been addressed
previously. To achieve it we suggest using a VOL-PRG (pseudorandom genera-
tor) as well. Let us define the latter.

Variable-output-length PRGs. Let G be an algorithm that on input a seed
s ∈ {0, 1}k and an output length 1� returns y ∈ {0, 1}�. Let OG be the oracle
that on input 1� chooses a random seed s ∈ {0, 1}k and returns G(s, �), and let
S be the oracle that on input 1� returns a random string r ∈ {0, 1}�. For an
adversary A, define its vol-prg-advantage against G as

Advvol-prg
G (A) = Pr[AOG(·) = 1]− Pr[AS(·) = 1] .

As before, we require above that � < �max for an associated maximum output
length �max. Call G consistent if Pr[G(s, �′) = G(s, �)1 . . .G(s, �)�′] = 1 for all
�′ < �, with the probability over the choice of a random seed s ∈ {0, 1}k. Most
PRGs are consistent due to their “iterated” structure.

Our LF-PRF construction. We propose a general construction of an LF-
PRF that composes a VIL-PRF with a consistent VOL-PRG, namely using the
output of the former as the seed for the latter. Formally, let F be a VIL-PRF
and G be a consistent VOL-PRG, and define the associated pseudorandom tape
2 That is, a VIL-PRF takes inputs of varying lengths. A VOL-PRF produces outputs

of varying lengths specified by an additional input parameter.

Order-Preserving Symmetric Encryption 237

generation function TapeGen which on inputs K, 1�, x returns G(1�, F (K,x)).
The following says that TapeGen is indeed an LF-PRF if F is a VIL-PRF and
G is a VOL-PRG.

Proposition 3. Let A be an adversary against TapeGen that makes at most q
queries to its oracle of total input length �in and total output length �out. Then
there exists an adversary B1 against F and an adversary B2 against G such that

Advlf-prf
TapeGen(A) ≤ 2 · (Advprf

F (B1) + Advvol-prg
G (B2)) .

Adversaries B1, B2 make at most q queries of total input length �in or total
output length �out to their respective oracles and run in the time of A.

The proof is in [9]. Concretely, we suggest the following blockcipher-based con-
sistent VOL-PRG for G. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
Define the associated VOL-PRG G[E] with seed-length k and maximum output
length n · 2n, where G[E] on input s ∈ {0, 1}k and 1� outputs the first � bits of
the sequence E(s, 〈1〉)‖E(s, 〈2〉)‖ . . . (Here 〈i〉 denotes the n-bit binary encoding
of i ∈ N.) The following says that G[E] is a consistent VOL-PRG if E is a PRF.

Proposition 4. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let A
be an adversary against G[E] making at most q oracle queries whose responses
total at most p · n bits. Then there is an adversary B against E such that

Advvol-prg
G[E] (A) ≤ 2q ·Advprf

E (B) .

Adversary B makes at most p queries to its oracle and runs in the time of A.
Furthermore, G[E] is consistent.

The proof is in [9]. Now, to instantiate the VIL-PRF F in the TapeGen construc-
tion, we suggest OMAC (aka. CMAC) [19], which is also blockcipher-based and
introduces no additional assumption. Then the secret-key for TapeGen consists
only of that for OMAC, which in turn consists of just one key for the underlying
blockcipher (e.g. AES).

5.2 Our OPE Scheme and Its Analysis

The scheme. Let TapeGen be as above, with key-space Keys. Our associated
order-preserving encryption scheme OPE [TapeGen] = (K, Enc,Dec) is defined as
follows. The plaintext and ciphertext-spaces are sets of consecutive integersD,R,
respectively. Algorithm K returns a random K ∈ Keys. Algorithms Enc,Dec are
the same as LazySample, LazySampleInv, respectively, except that HGD
is implemented by the algorithm of [20] and GetCoins by TapeGen (so there
is no need to store the elements of F and I). That is, whenever an element
I[D,R, y] is needed, it is instead computed as the output of HGD(D,R, y) on
coins TapeGen(K, 1�1 , (D,R, 0‖y)), where as before �1 = �(D,R, y) is the num-
ber of coins needed by HGD on inputs D,R, y, and analogously an element

238 A. Boldyreva et al.

F [D,R,m] is computed by sampling a uniformly random element of R using
coins TapeGen(K, 1�R , (D,R, 1‖m)). (The length parameter to TapeGen is just
for convenience; one can always generate more output bits on-the-fly by invok-
ing TapeGen again on a longer such parameter. In fact, our implementation of
TapeGen can simply pick up where it left off instead of starting over.) The exact
code is given in the full paper [9].

Security. The following theorem characterizes security of our OPE scheme,
saying that it is POPF-CCA secure if TapeGen is a LF-PRF. Applying Proposi-
tion 4, this is reduced to pseudorandomness of an underlying blockcipher.

Theorem 3. Let OPE [TapeGen] be the OPE scheme defined above with plain-
text-space of size M and ciphertext-space of size N . Then for any adversary A
against OPE [TapeGen] making at most q queries to its oracles combined, there
is an adversary B against TapeGen such that

Advpopf-cca
OPE[TapeGen](A) ≤ 2 · (Advprf

TapeGen(B) + λ) .

Adversary B makes at most q1 = q ·(logN+1) queries of size at most 5 logN+1
to its oracle, whose responses total q1 ·λ′ bits on average, and its running-time is
that of A. Above, λ, λ′ are constants depending only on HGD and the precision
of the underlying floating-point computations (not on M,N).

The proof is in [9]. Above, λ represents an “error term” due to the fact that the
“exact” hypergeometric sampling algorithm of [20] technically requires infinite
floating-point precision, which is not possible in the real world. One way to
bound λ would be to bound the probability that an adversary can distinguish
the used HGD sampling algorithm from the ideal (infinite precision) one.

Efficiency. The efficiency of our scheme follows from our previous analyses.
Using the suggested implementation of TapeGen in Subsection 5.1, encryption
and decryption require the time for at most logN + 1 invocations of HGD on
inputs of size at most logN plus at most (5 logM + 12) · (5 logN + λ′ + 1)/128
invocations of AES on average for λ′ in the theorem. See [9] for the details.

5.3 On Choosing N

One way to choose the size of the ciphertext-space N for our scheme is just
to ensure the number of functions [M] to [N] is very large, say more than 280.
(We assume that the size of the plaintext-space M is given.) The number of
such functions, which is given by

(
N
M

)
, is maximized when M = N/2. And, since

(N/M)M ≤ (
N
M

)
, it is greater than 280 as long as M = N/2 > 80. However, once

we have a greater understanding of what information about the data is leaked
by a random order-preserving function (the “ideal object” in our POPF-CCA
definition), more sophisticated criteria might be used to select N . In fact, it
would also be possible to view our scheme more as a “tool” like a blockcipher
rather than a full-fledged encryption scheme itself, and to try to use it to design
an OPE scheme with better security in some cases. We leave these as interesting
and important directions for future work.

Order-Preserving Symmetric Encryption 239

6 On Using the Negative Hypergeometric Distribution

In the balls-and-bins model described in Section 4.1 with M black and N −M
white balls in the bin, consider the random variable Y describing the total num-
ber of balls in our sample after we pick the x-th black ball. This random vari-
able follows the negative hypergeometric (NHG) distribution. As we discussed
in the Introduction, use of the NHG distribution instead of the HG one permits
slightly simpler and more efficient lazy sampling algorithms and corresponding
OPE scheme. For completeness, we specify them in the full version [9]. The prob-
lem is that they require an efficient NHG sampling algorithm, and the existence
of such an algorithm is apparently open. What is known is that the NHG dis-
tribution can be approximated by the negative binomial distribution [24], the
latter can be sampled efficiently [16,14], and the approximation improves as M
and N grow. However, quantifying the quality of the approximation for fixed
parameters seems difficult. If future work either develops an efficient exact sam-
pling algorithm for the NHG distribution or shows that the approximation by
the negative binomial distribution is sufficiently close, then our NHG-based OPE
scheme could be a good alternative to the HG-based one.

Acknowledgements

We thank the anonymous reviewers of Eurocrypt 2009 for helpful comments.
Alexandra Boldyreva and Adam O’Neill are supported in part by Alexandra’s
NSF CAREER award 0545659 and NSF Cyber Trust award 0831184. Younho
Lee was supported in part by the Korea Research Foundation Grant funded
by the Korean Government (MOEHRD) (KRF:2007-357-D00243). Also, he is
supported by Professor Mustaque Ahamad through the funding provided by
IBM ISS and AT&T.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: SIGMOD 2004, pp. 563–574. ACM, New York (2004)

2. Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-secure schemes for basic query
support in outsourced databases. In: DBSec 2007, pp. 14–30. Springer, Heidelberg
(2007)

3. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

4. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and
the hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

240 A. Boldyreva et al.

7. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: CCS 2002, pp. 1–11. ACM Press,
New York (2002)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

9. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption (2009), www.cc.gatech.edu/~aboldyre/publications.html

10. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg
(2007)

12. Cem Say, A.C., Kutsi Nircan, A.: Random generation of monotonic functions for
Monte Carlo solution of qualitative differential equations. Automatica 41(5), 739–
754 (2005)

13. Erkin, Z., Piva, A., Katzenbeisser, S., Lagendijk, R.L., Shokrollahi, J., Neven,
G., Barni, M.: Protection and retrieval of encrypted multimedia content: When
cryptography meets signal processing. EURASIP Journal on Information Security
(2007) (Article ID 78943)

14. Fishman, G.S.: Discrete-event simulation: modeling, programming, and analysis.
Springer, Heidelberg (2001)

15. Fox, E.A., Chen, Q.F., Daoud, A.M., Heath, L.S.: Order-preserving minimal per-
fect hash functions and information retrieval. ACM Transactions on Information
Systems 9(3), 281–308 (1991)

16. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer,
Heidelberg (2003)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33(4), 792–807 (1986)

18. Indyk, P., Motwani, R., Raghavan, P., Vempala, S.: Locality-preserving hashing in
multidimensional spaces. In: STOC 1997, pp. 618–625. ACM Press, New York (1997)

19. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

20. Kachitvichyanukul, V., Schmeiser, B.W.: Computer generation of hypergeometric
random variates. Journal of Statistical Computation and Simulation 22(2), 127–145
(1985)

21. Kachitvichyanukul, V., Schmeiser, B.W.: Algorithm 668: H2PEC: sampling
from the hypergeometric distribution. ACM Transactions on Mathematical Soft-
ware 14(4), 397–398 (1988)

22. Li, J., Omiecinski, E.: Efficiency and security trade-off in supporting range queries
on encrypted databases. In: DBSec 2005, pp. 69–83. Springer, Heidelberg (2005)

23. Linial, N., Sasson, O.: Non-expansive hashing. In: STOC 1996, pp. 509–518. ACM
Press, New York (1996)

24. López-Blázquez, F., Salamanca Miño, B.: Exact and approximated relations be-
tween negative hypergeometric and negative binomial probabilities. Communica-
tions in Statistics. Theory and Methods 30(5), 957–967 (2001)

25. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

Order-Preserving Symmetric Encryption 241

26. Shi, E., Bethencourt, J., Chan, T.-H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: Symposium on Security and Privacy 2007,
pp. 350–364. IEEE, Los Alamitos (2007)

27. Walker, A.J.: An efficient method for generating discrete random variables with gen-
eral distributions. ACM Transactions on Mathematical Software 3, 253–256 (1977)

28. Westhoff, D., Girao, J., Acharya, M.: Concealed data aggregation for reverse mul-
ticast traffic in sensor networks: Encryption, key distribution, and routing adapta-
tion. IEEE Transactions on Mobile Computing 5(10), 1417–1431 (2006)

29. Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. In: ICNP 2002, pp. 280–289. IEEE, Los Alamitos (2002)

A Proof of Theorem 1

We introduce the following concept for the proof. For an order-preserving func-
tion f : [M]→ [N] call i ∈ {3, . . . ,M−1} a big jump of f if the f -distance to the
next point is as big as the sum of all the previous, i.e. f(i+1)−f(i) ≥ f(i)−f(1).
Similarly we call i ∈ {2, . . .M − 2} a big reverse-jump of f if f(i)− f(i− 1) ≥
f(M)− f(i). The proof uses the following simple combinatorial lemma.

Lemma 1. Let f : [M]→ [N] be an order-preserving function and suppose that
f has k big jumps (respectively big reverse-jumps). Then N ≥ 2k.

For completeness, we prove the lemma in the full version [9]. We now proceed
to prove the theorem.

Proof. (of Theorem 1) Consider the following ind-ocpa adversary A against SE :

Adversary AEnc(K,LR(·,·,b))

m
$←{1, . . . ,M − 1}

c1 ← Enc(K ,LR(1,m, b))
c2 ← Enc(K ,LR(m,m+ 1, b))
c2 ← Enc(K ,LR(m+ 1,M, b))
Return 1 if (c3 − c2) > (c2 − c1)
Else return 0

First we claim that

Pr[Expind-ocpa-1
SE (A) = 1] ≥ (M − 1)− k

M − 1
= 1− k

M − 1
.

The reason is thatm is picked independently at randomand if b = 1 thenA outputs
1 just whenm+1 is not a big reverse-jump of Enc(K, ·), and sinceN ≤ 2k we know
that Enc(K, ·) has at most k big reverse-jumps by Lemma 1. Similarly,

Pr[Expind-ocpa-0
SE (A) = 1] ≤ k

M − 1
because if b = 0 thenA outputs 1 just whenm is a big jump of Enc(K, ·), and since
N ≤ 2k we know that Enc(K, ·) has at most k big jumps by Lemma 1. Subtracting
yields the theorem. Note that A only needs to pick a random element of [M] and
do basic operations on elements of [N], which is O(logN) as claimed.

A Double-Piped Mode of Operation
for MACs, PRFs and PROs:

Security beyond the Birthday Barrier

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We revisit the double-pipe construction introduced by Lucks
at Asiacrypt 2005. Lucks originally studied the construction for iterated
hash functions and showed that the approach is effective in improving
security against various types of collision and (second-)preimage attacks.
Instead, in this paper we apply the construction to the secret-key set-
ting, where the underlying FIL (fixed-input-length) compression func-
tion is equipped with a dedicated key input. We make some adjustments
to Lucks’ original design so that now the new mode works with a sin-
gle key and operates as a multi-property-preserving domain extension of
MACs (message authentication codes), PRFs (pseudo-random functions)
and PROs (pseudo-random oracles). Though more than twice as slow as
the Merkle-Damg̊ard construction, the double-piped mode enjoys secu-
rity strengthened beyond the birthday bound, most notably, high MAC
security. More specifically, when iterating an FIL-MAC whose output
size is n-bit, the new double-piped mode yields an AIL-(arbitrary-input-
length-)MAC with security up to O

(
25n/6

)
query complexity. This bound

contrasts sharply with the birthday bound of O
(
2n/2

)
, which has been

the best MAC security accomplished by earlier constructions.

Keywords: domain extension, unpredictability, unforgeability, message
authentication code, MAC, birthday bound.

1 Introduction

Many of the symmetric-key cryptographic schemes are usually realized by it-
erating a smaller, fixed-input-length (FIL) primitive. Examples include hash
functions and message authentication codes (MACs), which are often built of a
compression function or of a block cipher. The underlying compression function
or block cipher has also a fixed output length, say n-bit. The size n corresponds
to a security parameter in more ways than one, because it defines not only
the final output size of the scheme but also the size of intermediate values in
the iteration. For example, in the case of the Merkle-Damg̊ard (MD) construc-
tion [18,9] or Cipher-Block-Chaining (CBC) mode of operation [22,15], the size
of the intermediate values is exactly equal to n.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 242–259, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

A Double-Piped Mode of Operation for MACs, PRFs and PROs 243

The “small” size n of intermediate values leads to various types of attacks and
to limited security of the overlying scheme. For instance, the Merkle-Damg̊ard
hash functions are known to be vulnerable to multi-collision attacks [14] and to
long-message second-preimage attacks [16]. These attacks exploit the fact that
internal collisions can be found with O

(
2n/2

)
work. For iterated MACs, the

internal collisions immediately yield forgery [25,26], which confines the security
of the overlying MAC scheme to O

(
2n/2

)
query complexity. This security bound

is often called the birthday “barrier.”

Lucks’ Double-Pipe Construction. A natural approach to precluding the
above-mentioned attacks is to increase the size of intermediate values and to
make it larger than the final output size n. This idea was embodied by the
double-pipe hash [17] proposed by Lucks. In the double-pipe hash, the size of
intermediate values was doubled to 2n bits by invoking two applications of the
compression function per message block. The double-pipe design is more than
twice as slow as the MD construction, but Lucks showed that the double-pipe
hashing successfully rules out various birthday-type attacks.

In this paper we apply the double-pipe construction to the secret-key setting
and analyze the security of the scheme as a MAC. We also consider stronger
security notions of pseudo-random functions (PRFs) and pseudo-random oracles
(PROs).1 Of particular interest is the case of being merely a secure MAC, because
there has been no known construction of MAC-Pr (preserving) domain extension
with security beyond the birthday barrier. So we raise the following question:

Q. Can we prove that a double-piped mode provides an AIL-
(arbitrary-input-length-)MAC secure beyond the birthday
barrier based on the sole assumption that the underlying com-
pression function is a secure FIL-MAC?

Our Results. The answer to the above question turns out to be positive. We
work in the dedicated-key setting [4], where the underlying compression function
is equipped with a dedicated key input like a block cipher. We then make two
slight modifications to Lucks’ original design and show that the new double-piped
mode operates as a MAC-Pr, PRF-Pr and PRO-Pr domain extension with each
type of security ensured beyond the birthday bound.

1n

1n

m[]m[2]

1n1n

m[1]

fk

fk

0n

0n

fk

fk fk

0d 3n

fk

fk

Fig. 1. Our double-piped mode of operation

1 We use the term “PRO” [3] interchangeably with “indifferentiability” [19,5].

244 K. Yasuda

Figure 1 describes our altered double-piped mode of operation iterating a
compression function fk : {0, 1}d → {0, 1}n (d ≥ 3n) with a secret key k (A
formal definition of the scheme will be given in Sect. 4). The mode takes as its
input a message M = m[1]

∥∥ m[2]
∥∥ · · · ∥∥ m[�] (being properly padded) with

each block of d− 2n bits and outputs the final value τ ∈ {0, 1}n.
The mode basically follows Luck’s original design, except that we make the

following two minor changes:

• In the original, the chaining variable to the second application of the com-
pression function was “tweaked” by swapping two hash values. Instead, we
tweak the chaining variable by XOR-ing (rather than swapping) one of the
two output values with a constant 1n.

• In the original, the final iteration handled the last message block and worked
just like intermediate iterations, except to omit the second application of the
compression function. Instead, we arrange a special finalization step, which
handles no message block and takes the last chaining variable “shifted” by 1n.

The former has been already used by [6] in a more generalized form. The change
is technical, and we adopt it only for simplicity of the proof. The latter technique
was employed in the CS construction [20]. Unlike the first one, this change is
essential to the security of our scheme. We remark that in principle the two
changes do not affect Luck’s original analysis, and the scheme (without the
secret key) remains secure as a hash function.

The new double-piped mode of operation is highly secure; we obtain the fol-
lowing security results:

• MAC-Pr. This is the main result. We show that the scheme yields a MAC-
Pr domain extension providing security beyond the birthday barrier. Our se-
curity proof involves new techniques of transforming collisions into a forgery.
Using these techniques we are able to prove MAC security up to O

(
25n/6

)
query complexity, improving on the previous best security of the birthday
bound O

(
2n/2

)
. We also provide a discussion on the gap between our bound

O
(
25n/6

)
and the full security O

(
2n

)
.

• PRF-Pr. Our result for PRF is a straightforward corollary of that for
PRO. This is due to the fact that we are working in the dedicated-key
setting with the key being secret. In such a scenario, the notion of indis-
tinguishability (i.e., PRF) becomes strictly weaker than that of indifferen-
tiability (i.e., PRO). The new mode gives the full O(2n) security of PRF.

• PRO-Pr. We prove that the double-piped mode is indifferentiable beyond
the birthday bound; the mode is secure up to O(2n) query complexity. This
bound has been already realized by earlier constructions, but our scheme has
slight performance advantages over them (see Sect. 2).

Organization. Section 2 reviews previous constructions of domain extensions
for MACs, PRFs and PROs. Section 3 provides basic notation, adversary models,
and security notions used in the paper. In Sect. 4 we give a formal definition of
our double-piped mode of operation. Section 5 is devoted to the security proofs

A Double-Piped Mode of Operation for MACs, PRFs and PROs 245

Table 1. Comparing the MAC/PRF/PRO security of various domain extensions

MAC PRF PRO

Feistel network 2n/6 2n 2n/16 [10,23,8]

Enciphered CBC 2n/4 2n/2 2n/4 [11]

NI, CS, ESh, MDP 2n/2 2n/2 2n/2 [1,20,5,4,12]

Proposed double-pipe 25n/6 2n 2n —

Benes, multilane-NMAC, one-pass — 2n — [24,27,28]

Prefix-free, chopMD, Maurer-Tessaro — 2n 2n [6,7,21]

of our MAC-Pr result. In Sect. 6 and 7 we present the security results for PRF-Pr
and PRO-Pr, respectively.

2 Related Work

In this section we go through prior constructions of MAC-Pr, PRF-Pr and PRO-
Pr domain extensions. For MACs, previous constructions provide security only
up to the birthday bound. For PRFs and PROs, we mention only those construc-
tions which have security above the birthday bound. See Table 1 for summary.2

MAC-Pr Constructions. The study of MAC-Pr domain extension was initi-
ated by An and Bellare [1] who presented the NI construction. The NI construc-
tion was built on the MD iteration in the dedicated-key setting. The subsequent
work, including CS [20], ESh [4] and MDP [12], is all based on the MD con-
struction. All of these constructions have the birthday-bound security O

(
2n/2

)
.

Dodis and Puniya [10] showed that the Feistel network, when iterated sufficiently
many times, yields a secure, MAC domain extension with a relatively low bound
of O

(
2n/6

)
query complexity. A year later Dodis et al. [11] proposed the enci-

phered CBC mode, which iterates block ciphers (or “length-preserving MACs”)
and provides an AIL-MAC with the better security of O

(
2n/4

)
.

PRF-Pr Constructions. The problem of PRF domain extension has been
extensively studied. Patarin analyzed the Feistel network [23] and the Benes
network [24], and these constructions were shown to give O(2n) security. For
PRF, there exist constructions which are more efficient than the double-pipe
design, such as multilane-NMAC [27] and the one-pass construction in [28].
PRO-Pr Constructions. Chang et al. [6] proved that a double-pipe MD con-
struction with prefix-free padding is indifferentiable beyond the birthday bound.
Chang and Nandi [7] also proved that the chopMD construction based on a 2n-
bit compression function is indifferentiable beyond the birthday bound. These
constructions are similar to our double-piped mode of operation, but our con-
struction has slight performance gains over them as our scheme requires neither a
2 Here we focus on deterministic constructions without use of nonce or random-

ization. We also focus on property-preserving domain extensions. Hence other
constructions—for example RMAC [13]—are excluded from our comparison.

246 K. Yasuda

prefix-free encoding nor a 2n-bit compression function. Maurer and Tessaro [21]
treated the problem in a different setting, where the input size (rather than
output) of the primitive was restricted to n bits.

3 Preliminaries

General Notation. We write x ← y for the assignment of the value y to
a variable x. Given a set X , we write x

$←− X for the operation of selecting
an element uniformly at random from the set X and assigning its value to a
variable x. The symbol x

∥∥ y represents the concatenation of two strings x
and y, x ⊕ y the exclusive OR of x and y, and |x| the length of x in bits. For
a finite string M ∈ {0, 1}∗ and a block size b, the length of M in blocks is
the quantity � =

⌈ |M|+1
b

⌉
. We adopt the notation M b←− M‖10∗ to signify the

“canonical” padding procedure, i.e., M ←M‖10b�−|M|−1, where � is the length
in blocks of the original M (before being padded). Given a padded message M ,
we use the notation m[1]

∥∥ · · · ∥∥ m[�] b←− M as a shorthand for partitioning the
string M into b-bit blocks and assigning each block value to m[1], . . . ,m[�], so
that each m[i] is of b-bit length. Also, we write x

∥∥ y
a,b←−− z for dividing the

string z ∈ {0, 1}a+b into x ∈ {0, 1}a and y ∈ {0, 1}b. Throughout the paper we
fix the output size n and define x̄ def= x⊕ 1n0|x|−n for a string x with |x| ≥ n.

Adversaries and Games. An adversary is a probabilistic algorithm. An ad-
versary A may take inputs or have access to one or more oracles. We write
y ← AO(x) to mean that the adversary A, given input x and access to oracle O,
outputs a value which is assigned to the variable y. The notation AO(x) = y
indicates the event that the output value of the adversary A, taking an input
value x and interacting with oracle O, happens to be equal to the value y.

Often it is convenient to describe oracle behavior in a game style. The notation
G(A) indicates running A according to the description of G. By y ← G(A) we
mean the operation of running A in game G, and the value returned by game
G is assigned to the variable y. Likewise we define G(A) = y. Games frequently
involve sets and flags. A set Set is used to record certain specific types of values
that appear in the game. We write Set ∪←− x for the operation Set ← Set ∪ {x}.
A flag flag is used to detect some event that happens in the game. By abuse of
notation we let flag also denote the event that the flag flag gets set. We write
flag for the complement of the event flag. Unless otherwise stated, sets are set
to ∅ and flags are set to 0 at the beginning of each game execution.

MACs. We adopt the standard single-verification model for the notion of MAC
security.3 Succinctly, for a keyed family of functions fk : X → Y with k ∈ K
and for an adversary A define

Advmac
f (A) def= Pr

[
x	 is new ∧ fk(x) = y	

∣∣ (x	, y) ← Afk(·), k $←− K
]

3 It suffices to consider only single-verification adversaries, because our MACs are
deterministic [2].

A Double-Piped Mode of Operation for MACs, PRFs and PROs 247

as the advantage function,4 where we call a message x	 new if it has not been
queried to oracle fk(·).
PRFs. The notion of PRF says that a keyed family of functions fk : X → Y
with a random key k

$←− K should be indistinguishable from a truly random
function g : X → Y . Succinctly, define

Advprf
f (A) def= Pr

[
Afk(·) = 1

∣∣ k $←− K
]− Pr

[
Ag(·) = 1

∣∣ g $←− {g : X → Y }].
The notion of PRF implies a secure MAC [2].

PROs. Roughly speaking, the notion of indifferentiability [19,5] corresponds to
a type of indistinguishability where adversaries are given oracle access not only
to the overlying scheme but also to the underlying primitive. Let F : {0, 1}∗ →
{0, 1}n be a mode of operation which iterates a random function f : {0, 1}d →
{0, 1}n. Let S : {0, 1}d → {0, 1}n be a (stateful) simulator having access to a
random function F : {0, 1}∗ → {0, 1}n. We define

Advpro
F,S(A) def= Pr

[
AF,f = 1

]− Pr
[
AF ,S = 1

]
.

Here it is important to note that the simulator cannot “observe” the queries that
A makes to F .

Resources. We bound resources of adversaries in terms of its time complex-
ity t, the number of queries q and the total length of queries σ in blocks.5 We
write, for example, Advmac

f (t, q, σ) def= maxA Advmac
f (A), where the max runs

over all adversaries, each having a time complexity at most t, making at most q
queries, the total length of queries being at most σ blocks. To measure the time
complexity of adversaries, we fix a model of computation. The time complex-
ity of an adversary includes its code size and the total time needed to perform
its overlying experiment, in particular the time to access its oracles. We write
Timef for the time to perform one computation of f (for fixed-length inputs)
and Memf (σ) the memory to store σ-many input/output pairs of f . Lastly we
note that for the notion of PROs, the resources of the simulator must be also
taken into consideration.

4 Definition of the Double-Piped Mode

Now we give a formal definition of our double-piped mode of operation Fk :
{0, 1}∗ → {0, 1}n in Fig. 2. Our mode F takes a secret key k ∈ {0, 1}κ and a
message M ∈ {0, 1}∗, outputting a tag τ ∈ {0, 1}n. It iterates a single compres-
sion function fk : {0, 1}d → {0, 1}n operating with a single key k ∈ {0, 1}κ. We
require that d ≥ 3n. We refer back to Fig. 1 for pictorial representation.

4 Throughout the paper the probabilities are defined over all coins of adversaries,
oracles and games.

5 The block length depends on each scheme, and in our construction it is equal to
d − 2n bits.

248 K. Yasuda

Algorithm Fk(M)
101 M

d−2n←−−− M‖10∗; m[1]
∥∥ m[2]

∥∥ · · · ∥∥ m[�] d−2n←−−− M

102 v1[1] ← 0n; v2[1] ← 0n

103 for i = 1 to �

104 x1[i] ← v1[i]
∥∥ v2[i]

∥∥ m[i]; x2[i] ← v1[i]
∥∥ v2[i]

∥∥ m[i]
105 v1[i + 1] ← fk

(
x1[i]

)
; v2[i + 1] ← fk

(
x2[i]

)
106 end for

107 τ ← fk

(
v1[� + 1]

∥∥ 1n
∥∥ v2[� + 1]

∥∥ 0d−3n
)

108 ret τ

Fig. 2. Definition of our double-piped mode of operation Fk : {0, 1}∗ → {0, 1}n

5 MAC-Pr beyond the Birthday Barrier

In this section we prove that the double-piped mode F is an AIL-MAC with
security well above the birthday bound, based on the sole assumption that the
compression function f is a secure FIL-MAC. First we roughly outline our proof
and then proceed to its full description.

5.1 Outline of the MAC-Pr Proof

We convert a forger attacking F into ones attacking f . We start by observing
that the success of forging a tag value for F implies at least one of the following
three events:

• Event forge: A forgery of the tag value for f occurs at the finalization step,
• Event ones: An output value of f happens to be equal to 1n at some internal

invocation to f , or
• Event match: The 2n-bit chaining values at the input to the finalization

step happen to be the same for two different queries.

The first two events immediately give us forgers attacking f without birthday
degradation, but the third one does not. So we break the third event down
further, showing that the match event points to at least one of the following
three events:

• Event zeros: At some iteration point, the 2n-bit chaining value happens to
be equal to 02n,

• Event twofold: At some iteration point, the output of the “upper” f happens
to be equal to that of the “lower” f , or

• Event dblcoll: A collision of 2n-bit chaining values occurs somewhere, yield-
ing two collisions of such a type for f .

The zeros and twofold events instantly provide forgers attacking f without
birthday degradation. To treat the dblcoll event, however, we need to partition

A Double-Piped Mode of Operation for MACs, PRFs and PROs 249

the case depending on “how many” (single, n-bit) collisions for f are formed in
the game. We introduce a threshold value θ and denote by theta the event that
“θ-many” (single, n-bit) collisions for f are found. We divide the case as follows:

• Case theta: In this case we construct a forger attacking f by utilizing the
accumulation of collisions. Usually the transformation of a collision into a
forgery would lead to birthday degradation [1], but we succeed in maintaining
a forgery probability above the birthday bound owing to the large (θ-many)
number of collisions.

• Case dblcoll∧theta: On the other hand, if there are not “so many” collisions,
then we can create a forger attacking f with a good success probability by
utilizing the double, 2n-bit collision(s). Namely, we first detect that a colli-
sion occurs at the half n-bit value, say v ∈ {0, 1}n, of the chaining variable
(and there are not so many such collisions). We then try to forge a tag, hop-
ing that the remaining half n-bit value will also collide. The (predicted) tag
value is chosen from previous chaining variables with its half value colliding
to v (and there are not so many candidates for the tag value).

Finally, we choose the threshold value θ appropriately so that the security
bound becomes optimal in our setting. This gives us the desired security of
O
(
25n/6

)
query complexity.

5.2 Detailed Proof of MAC-Pr

We now state our main theorem:

Theorem 1. Let F be the double-piped mode. If the underlying compression
function f is a secure FIL-MAC, then the mode F yields a secure AIL-MAC
with security above the birthday bound. Specifically, we have

Advmac
F (t, q, σ) ≤ 9 · σ6/5 ·Advmac

f (t′, q + 2σ),

where t′ = t+ (q + 2σ) · Timef + Memf (2σ).

Proof. Let A be a forger attacking F , having a time complexity at most t, making
at most q queries to Fk(·) oracle, the query complexity being at most σ blocks.
We consider game G1 as defined in Fig. 3. Game G1 precisely corresponds to
the game defining Advmac

F (A), except that it introduces three flags forge, ones
and match.

We claim that a successful forgery by A implies at least one of the events
forge, ones or match. A forgery by A immediately implies the event forge as long
as the value u at line 443 is new. If the value u is not new, then it must have been
inserted into the set Dom(f) at lines 331, 345 or 431. An insertion at lines 331
or 431 implies the event ones, while that at line 345 implies match. Thus we have

Advmac
F (A) def= Pr

[
G1(A) = 1

] ≤ Pr
[
forge ∨ ones ∨match

]
≤ Pr

[
forge

]
+ Pr

[
ones

]
+ Pr

[
match ∧ ones

]
.

250 K. Yasuda

Game G1(A):
201 k

$←− {0, 1}κ

202 (M�, τ�) ← AFk(·)

203 if M� ∈ Dom(F) then ret 0 end if
204 ret Vk(M�, τ�)

On query M to Fk(·):
300 Dom(F) ∪←− M ; M

d−2n←−−− M‖10∗

301 m[1]
∥∥ m[2]

∥∥ · · · ∥∥ m[�] d−2n←−−− M
302 v1[1] ← 0n; v2[1] ← 0n

303 for i = 1 to �
304 x1[i] ← v1[i]

∥∥ v2[i]
∥∥ m[i]

305 x2[i] ← v1[i]
∥∥ v2[i]

∥∥ m[i]
306 v1[i + 1] ← fk

(
x1[i]

)
�
311 v2[i + 1] ← fk

(
x2[i]

)
�
�
331 Dom(f) ∪←− x1[i], x2[i]
332 if v1[i + 1] = 1n or v2[i + 1] = 1n

333 then ones ← 1 end if
334 end for
341 Dbl ∪←− v1[� + 1]

∥∥ v2[� + 1]
343 u ← v1[� + 1]

∥∥ 1n
∥∥ v2[� + 1]

∥∥ 0d−3n

345 τ ← fk(u); Dom(f) ∪←− u
347 ret τ

Subroutine Vk(M, τ):
400 M

d−2n←−−− M‖10∗

401 m[1]
∥∥ m[2]

∥∥ · · · ∥∥ m[�] d−2n←−−− M
402 v1[1] ← 0n; v2[1] ← 0n

403 for i = 1 to �
404 x1[i] ← v1[i]

∥∥ v2[i]
∥∥ m[i]

405 x2[i] ← v1[i]
∥∥ v2[i]

∥∥ m[i]
406 v1[i + 1] ← fk

(
x1[i]

)
�
411 v2[i + 1] ← fk

(
x2[i]

)
�
�
431 Dom(f) ∪←− x1[i], x2[i]
432 if v1[i + 1] = 1n or v2[i + 1] = 1n

433 then ones ← 1 end if
434 end for
441 if v1[� + 1]

∥∥ v2[� + 1] ∈ Dbl
442 then match ← 1 end if
443 u ← v1[� + 1]

∥∥ 1n
∥∥ v2[� + 1]

∥∥ 0d−3n

444 τ ′ ← fk(u)
445 if τ = τ ′ and u /∈ Dom(f)
446 then forge ← 1 end if
447 if τ = τ ′ then ret 1 end if
448 ret 0

Fig. 3. Definition of game G1(A) for MAC-Pr. The marks � and � indicate that more
lines will be inserted in later games.

We start with bounding Pr
[
forge

]
. We construct a forger B1 attacking f as

follows: B1 runs the adversary A, simulating Fk(·) oracle and computing the
subroutine Vk(·, ·) by making queries to its fk(·) oracle. The adversary B1 stops
at line 444 before making the query u to its fk(·) oracle and submits a forgery
(u, τ). Note that B1 always succeeds under the event forge, making at most
q + 2σ queries to its oracle. So we get

Pr
[
forge

] ≤ Advmac
f (B1) ≤ Advmac

f (t1, q + 2σ),

where t1 = t+ (q + 2σ) ·Timef .
Wenext treat the termPr

[
ones

]
.We construct a forgerB2 attacking f as follows:

B2 first picks an indexα $←− {1, 2, . . . , 2σ} and then starts running the adversaryA,
simulating Fk(·) oracle and (if necessary) computing Vk(·, ·) by making queries to
its fk(·) oracle. The adversaryB2 keeps a counter, which is initialized to 0 and gets
incremented as B2 makes a call to fk(·) oracle except for the finalization step at
line 345 where the counter remains unchanged. Just before making the α-th query
xα to fk(·) oracle, B2 quits running A and outputs a forgery (xα, 1n).

A Double-Piped Mode of Operation for MACs, PRFs and PROs 251

Insert following lines into game G1 (at mark �):
On query M to Fk(·):
320 if v1[i + 1] = v2[i + 1]
321 then twofold ← 1 end if
322 w ← v1[i + 1]

∥∥ v2[i + 1]
323 if x1[i] /∈ Dom1(f) and w ∈ Dbl
324 then dblcoll ← 1 end if
325 Dom1(f) ∪←− x1[i]; Dbl ∪←− w
326 if w = 02n then zeros ← 1 end if

Subroutine Vk(M, τ):
422 w ← v1[i + 1]

∥∥ v2[i + 1]
423 if x1[i] /∈ Dom1(f) and w ∈ Dbl
424 then dblcoll ← 1 end if
425 Dom1(f) ∪←− x1[i]; Dbl ∪←− w
426 if w = 02n then zeros ← 1 end if

Fig. 4. Definition of game G2(A) for MAC-Pr

We now argue that the forger B2 always succeeds as long as the index α is
correctly guessed; the α-th query is expected to be the first call to fk(·) oracle
such that the value 1n gets returned. We verify that the value xα is new if the
index α is such a value. The only thing to check is whether xα has been already
queried at the finalization step (at line 345). If it had been queried, then it would
mean that xα is of the form ∗1n∗ in which the leftmost ∗ is some n-bit string,
contradicting with the minimality of α. Now the choice of α is independent of
the event ones, so we get Advmac

f (B2) ≥ 1
2σ ·Pr[ones]. Observe that the adversary

B2 makes at most q + 2σ queries to its oracle, and hence we obtain

Pr
[
ones

] ≤ 2σ · Advmac
f (B2) ≤ 2σ · Advmac

f (t1, q + 2σ).

We proceed to the evaluation of Pr
[
match ∧ ones

]
. To do this, we consider

game G2 defined in Fig. 4. Game G2 adds three new flags zeros, twofold and
dblcoll to game G1.

We show that match implies at least one of the events zeros, twofold or dblcoll.
Let (M	, τ) be the forgery output by the adversary A. The event match implies
that there exists some previous query M ′ to Fk(·) oracle such that Fk(M ′) =
Fk(M), making an internal collision of the value u at lines 343 and 443. If either
(i) M ′ is a suffix ofM	 withM	 producing a chaining variable of 02n or (ii) M	 is
such a suffix of M ′, then the case immediately implies the zeros event. If neither
is such a suffix of the other, then the condition Fk(M ′) = Fk(M) guarantees
that there must be an internal collision of 2n-bit chaining variables. The collision
value may be of the form v‖v ∈ {0, 1}2n leading to the event twofold, or otherwise
we must have the event dblcoll. Therefore, we have

Pr
[
match ∧ ones

] ≤ Pr
[
(zeros ∨ twofold ∨ dblcoll) ∧ ones

]
≤ Pr

[
zeros ∧ ones

]
+ Pr

[
twofold ∧ ones

]
+ Pr

[
twofold ∧ dblcoll ∧ ones

]
.

We bound the probability Pr
[
zeros∧ones

]
. We construct a forger B3 attacking

f as follows: B3 first picks an index α $←− {1, 2, . . . , σ} and then starts running
the adversary A, simulating game G2 by making queries to its fk(·) oracle. The
adversary B3 keeps a counter, which is initialized to 0 and gets incremented by 1

252 K. Yasuda

(and not by 2) as B3 makes two calls to fk(·) oracle either at lines 306-311 or
at lines 406-411. Just before the α-th execution of lines 306-311 or of lines 406-
411, in which two queries x1

α, x
2
α are about to be made, B3 quits running A and

outputs a forgery (x1
α, 0

n).
The adversary B3 always succeeds under the event zeros ∧ ones along with

the condition that the index α is correctly guessed (i.e., the α-th execution
of lines 306-311 or of lines 406-411 sets the flag zeros for the first time), be-
cause the query x1

α is guaranteed to be new if the value α is minimal (Notice
that either x1

α = x1
α′ or x1

α = x2
α′ for some α′ < α implies the event zeros

at index α′). In particular, the value x1
α cannot have been queried at the fi-

nalization step (at line 345) due to the event ones. Now the choice of α is in-
dependent of the event zeros ∧ ones, so we get Advmac

f (B3) ≥ 1
σ · Pr[zeros ∧

ones]. The adversary B3 makes at most q + 2σ queries to its oracle, which
gives us

Pr
[
zeros ∧ ones

] ≤ σ ·Advmac
f (B3) ≤ σ · Advmac

f (t1, q + 2σ).

We then treat the term Pr
[
twofold∧ones

]
. We construct a forger B4 attacking

f as follows: B4 first picks an index α $←− {1, 2, . . . , σ−1} and then starts running
the adversary A, simulating game G2 by making queries to its fk(·) oracle. The
adversary B4 keeps the same type of counter as the one used by B3. Just before
the α-th execution of lines 306-311, in which two queries x1

α, x
2
α are about to be

made, B4 quits running A, makes a query v1
α ← fk(x1

α) and outputs a forgery
(x2

α, v
1
α).

The adversary B4 always succeeds under the event twofold ∧ ones provided
that the index α is correctly chosen (i.e., the α-th execution of lines 306-
311 sets the flag twofold for the first time), because the query x2

α must be
new if the value α is minimal (Notice that either x2

α = x1
α′ or x2

α = x2
α′ for

some α′ < α implies the event twofold at index α′). Also, the value x2
α cannot

have been queried at the finalization step (at line 345) under the event ones.
Now the choice of α is independent of the event twofold ∧ ones, so we get
Advmac

f (B4) ≥ 1
σ−1 ·Pr[twofold∧ ones]. The adversary B4 makes at most q+ 2σ

queries to its oracle, and hence

Pr
[
twofold∧ ones

] ≤ (σ − 1) · Advmac
f (B4) ≤ (σ − 1) · Advmac

f (t1, q + 2σ).

We go on to handle the term Pr
[
twofold ∧ dblcoll ∧ ones

]
. We introduce a

threshold value θ = θ(σ) in game G3, as defined in Fig. 5. For the moment
we just let θ be a certain function of σ. The description of θ is to be de-
termined at the end of the proof. Game G3 involves three sets All, Coll and
Pair. The set All simply stores all input/output pairs (x, v) already computed
as fk(x) = v. The set Coll is a subset of All and stores only those pairs (x, v)
that are colliding. The set Pair stores colliding pairs (x′, x). We define a function
N(All, v) def=

{
(x, v)

∣∣ (x, v) ∈ All, v = v	
}
. We see that

A Double-Piped Mode of Operation for MACs, PRFs and PROs 253

Insert following lines into game G2 (at mark �):

On query M to Fk(·):
307 C

(
x1[i], v1[i + 1]

)
312 C

(
x2[i], v2[i + 1]

)
Subroutine Vk(M, τ):
407 C

(
x1[i], v1[i + 1]

)
412 C

(
x2[i], v2[i + 1]

)

Subroutine C(x, v):
501 U ← N(All, v)
502 if (x, v) /∈ All and U
= ∅ then
503 Coll ∪←− (x, v); Coll ← Coll ∪ U
504 for each (x′, v′) ∈ U
505 Pair ∪←− (x′, x) end for
506 end if
507 All ∪←− (x, v)
508 if |Pair| ≥ θ(σ) then theta ← 1 end if

Fig. 5. Definition of game G3(A) for MAC-Pr

Pr
[
twofold∧ dblcoll ∧ ones

]
= Pr

[
(twofold ∧ dblcoll ∧ ones ∧ theta)

∨ (twofold ∧ dblcoll ∧ ones ∧ theta)
]

≤ Pr
[
ones ∧ theta

]
+ Pr

[
twofold∧ dblcoll ∧ ones ∧ theta

]
.

We evaluate the probability Pr
[
ones∧theta

]
. We construct a forgerB5 attacking

f as follows: B5 picks two indices α, β $←− {1, 2, . . . , 2σ} such that α < β. Then B5
starts running the adversaryA, simulating Fk(·) oracle and (if necessary) comput-
ing Vk(·, ·) by making queries to its fk(·) oracle. The adversaryB5 keeps the same
type of counter as the one used by forgerB2 (counting the number of calls to fk(·)
oracle except at the finalization step). On making the α-th queryxα to fk(·) oracle,
B5 records the returned value vα ← fk(xα). The adversary B5 resumes running
A. Then just before making the β-th query xβ to fk(·), B5 stops running A and
outputs (xβ , vα) as a forgery.

The adversary B5 succeeds in forgery if fk(xα) = fk(xβ) and the value xβ has
not been queried at any previous point γ < β. Note that the query xβ cannot
have been made at the finalization step, since we are under the event ones. Now we
see that the number of such working pairs (α, β) is exactly |Pair|, and this quan-
tity |Pair| becomes larger than θ(σ) if the event theta occurs. Since there are

(2σ
2

)
choices of (α, β) total and this choice is independent from the event ones ∧ theta,
we obtain Advmac

f (B5) ≥ θ(σ)
(2σ

2) · Pr
[
ones ∧ theta

]
. This yields

Pr
[
ones ∧ theta

] ≤ (2σ
2

)
θ(σ)

· Advmac
f (B5) ≤ 2σ2

θ(σ)
·Advmac

f (t1, q + 2σ),

where we observe that B5 makes at most q + 2σ queries to its fk(·) oracle.
Lastly, we assess the probability Pr

[
twofold∧ dblcoll∧ ones∧ theta

]
. For this,

it is helpful to give a graphical interpretation of the sets Coll and Pair. See
Fig. 6. The vertices of the collision graph are simply the points in Coll. Two
distinct points (x, v), (x′, v′) ∈ Coll are connected by an edge if they are col-
liding, i.e., if v = v′. Hence, the edges correspond to the points in Pair. The

254 K. Yasuda

Fig. 6. A simple illustration of the collision graph. The number of vertices is equal
to |Coll|, and the number of edges is equal to |Pair|.

collision graph is always a disjoint union of complete graphs, containing no iso-
lated vertices.

Now we construct a forger B6 attacking f under the event twofold∧ dblcoll∧
ones ∧ theta. First observe that the event theta sets a limit on the number of
vertices in the collision graph. The number is at most 2θ(σ), for otherwise the
number of edges would exceed θ(σ). Hence we have |Coll| ≤ 2θ(σ) throughout
the game. The adversary B6 first picks an index β

$←− {2, 3, . . . , �2θ(σ)�} and
then starts running A, simulating game G3 by making queries to its fk(·) oracle.
B6 keeps a counter, and on the β-th insertion of a colliding value (xβ , vβ) into
the set Coll (so that at this point |Coll| = β), B6 stops running A and carries
out the following operation:

1. If the β-th insertion happens to be at the “lower” pipe (i.e., at lines 312
or 412), then B6 aborts.

2. Otherwise, the β-th insertion of (xβ , vβ) occurs at the “upper” pipe (i.e., at
lines 307 or 407), in which case B6 computes the following:
(a) Choose (xα, vα) $←− N(All, vβ)�{(xβ, vβ)} so that xα �= xβ and fk(xα) =

vα = vβ = fk(xβ).
(b) Obtain the value v′α ← fk(x̄α) by either querying x̄α to fk(·) oracle again

or searching the set All for the entry (x̄α, ·).
(c) Submit (x̄β , v

′
α) as a forgery.

We verify that B6 succeeds in forgery as long as the values for β and xα

are guessed correctly (and that the case B6 aborts is not a concern). The ba-
sic idea is that B6 hopes to have (vα, v

′
α) = (vβ , v

′
β) with v′β

def= fk(x̄β) and
x̄β being new. The event twofold ∧ dblcoll guarantees the existence of such a
pair (α, β) with (vα, v

′
α) = (vβ , v

′
β), xα �= xβ and xα �= x̄β . So let α	 < β	

be the minimal indices satisfying these conditions (Note that at (α	, β) the
event twofold ∧ dblcoll does not necessarily occur, since the query xα� may well
be in the “lower” pipe). The minimality ensures that x̄β� is new under the
event ones.

We evaluate the success probability ofB6. In order to do this, we need to count
the number of possible values for xα at step 2(a). We claim that this number is at
most

√
2θ(σ). To see this, observe that the values for xα come from the vertices of

the connected component corresponding to the output collision value vβ . Such a
connected component is a complete graph, and the number of vertices must be at

A Double-Piped Mode of Operation for MACs, PRFs and PROs 255

most
√

2θ(σ)+1, for otherwise the number of edges would exceed
(⌈√

2θ(σ)+1
⌉

2

)
≥(√

2θ(σ)+1
)√

2θ(σ)
2 > θ(σ), contradicting with the event theta. Hence the number

of possible candidates for xα is at most
(√

2θ(σ)+1
)−1 =

√
2θ(σ), excluding the

point xβ . Now observe that the choices of β and xα are completely hidden from the
transcript ofA, and these values do not affect the probability Pr

[
twofold∧dblcoll∧

ones∧ theta
]
, yielding Advmac

f (B6) ≥ 1
2θ(σ) · 1√

2θ(σ)
·Pr

[
twofold∧dblcoll∧ ones∧

theta
]
. Hence we get

Pr
[
twofold∧ dblcoll ∧ ones ∧ theta

] ≤ 2θ(σ)
√

2θ(σ) · Advmac
f (B6)

≤ 3 · θ(σ)3/2 ·Advmac
f (t2, q + 2σ),

where t2 = t + (q + 2σ) · Timef + Memf (2σ). Note that B6 makes at most
q + 2σ queries to its oracle and maintains the list All, which consumes at most
Memf (2σ) amount of time complexity.

It remains to determine the threshold function θ(σ). To do this, we sum up
the terms obtained:

Advmac
F (A) ≤ Advmac

f (B1) + 2σ · Advmac
f (B2)

+ σ · Advmac
f (B3) + (σ − 1) ·Advmac

f (B4)

+
2σ2

θ(σ)
·Advmac

f (B5) + 3 · θ(σ)3/2 ·Advmac
f (B6).

Now we simply set θ(σ) def= σ4/5. This choice leads to the coefficients of 2σ2

θ(σ) =
2σ6/5 and 3 · θ(σ)3/2 = 3σ6/5. Rounding off the terms yields Advmac

F (A) ≤
9 · σ6/5 ·Advmac

f (t2, q + 2σ), as desired. �

5.3 On the Tightness of the Bound O
(
25n/6

)
At the current stage the best attack we know is the birthday attack, which re-
quires O(2n) query complexity. Hence the bound obtained O

(
25n/6

)
is not tight.

The gap originates in our construction of adversary B6. Recall that when B6
makes a choice of β it assumes the worst case scenario of 2θ(σ)-many vertices,
the collision graph being a disjoint union of numerous 2-complete graphs. On
the other hand, when B6 makes a choice of xα it assumes the other worst case
scenario of

√
2θ(σ)-many vertices, the collision graph being a single gigantic

complete graph. Hence we are considering two extreme cases which cannot hap-
pen concurrently. It remains an open problem to fill in the gap between our proof
bound O

(
25n/6

)
and the best known attack bound O(2n).

6 PRF-Pr beyond the Birthday Barrier

The PRF-Pr property of our mode immediately follows from the forthcoming
PRO-Pr result. This implication is due to the following simple lemma:

256 K. Yasuda

Lemma 1 (PRO-Pr ⇒ PRF-Pr in the Dedicated-Key Setting). Let Fk :
{0, 1}∗ → {0, 1}n be a mode of operation in the dedicated-key setting, which
iterates a primitive fk : {0, 1}d → {0, 1}n with a secret key k. If the mode F is
PRO-Pr in the sense of iterating a random function f : {0, 1}d → {0, 1}n, then
it is PRF-Pr. Specifically, for any simulator S, we have

Advprf
F (t, q, σ) ≤ Advprf

f (t′, q′) + Advpro
F,S(t, q, σ),

where t′ = t+ q′ · Timef and q′ is the number of calls to f necessary to process
σ-long queries to F .

Proof. Let A be a distinguisher attacking F , having a time complexity at most t,
making queries whose total complexity is at most σ blocks. We let F 	 : {0, 1}∗ →
{0, 1}n denote the mode of operation identical to F except that the underlying
primitive is replaced with a random function f : {0, 1}d → {0, 1}n (rather than
a pseudo-random function fk). Let F : {0, 1}∗ → {0, 1}n be a random function.
We can bound the advantage Advprf

F (A) as

Pr
[
AFk(·) = 1

]− Pr
[
AF(·) = 1

]
=Pr

[
AFk(·) = 1

]− Pr
[
AF �(·) = 1

]
+ Pr

[
AF �(·) = 1

]− Pr
[
AF(·) = 1

]
≤Advprf

f (B) + Advpro
F,S(A),

where we construct the distinguisher B, who attacks f , “naturally” from A who
is distinguishing between Fk and F 	. Note that S can be any simulator. We see
that B makes at most q′ queries to its f oracle and that A makes no queries to
the underlying primitive or to the simulator. This gives us the bound. �

7 PRO-Pr beyond the Birthday Barrier

In this section we show that our double-piped mode of operation F : {0, 1}∗ →
{0, 1}n is PRO-Pr with security above the birthday bound. It turns out that
our mode provides the full PRO security of O(2n) query complexity. Our proof
essentially follows the lines of [3].

In order to state our theorem, we give a description of simulators. See Fig. 7.
The simulators maintain a directed, edge-labeled graph structure Vert(f) and
Edge(f). The symbol P (Edge(f), w) denotes the set of “paths”m1‖m2‖ · · · (con-
catenated labels) starting at the origin 02n and connecting to the vertex w. The
simulators also involve arrays f [·] and g[·], which are everywhere undefined at the
beginning of the game. The symbol Dom(f) denotes the set of already-defined
domain points in the array f .

Theorem 2. The mode of operation F is PRO-Pr beyond the birthday bound.
Specifically, we have

Advpro
F,S(t, qf , σF) ≤ σF + qf

2n−1 +
5σ2

F + 18σF qf + 17q2f
22n

,

where the simulator S has a time complexity at most t+Memf (2σF) and makes
at most qf queries to F oracle (the idealized F).

A Double-Piped Mode of Operation for MACs, PRFs and PROs 257

Initialization:
600 Vert(f) ← {02n}

Simulator S(x):
700 if x ∈ Dom(f) then ret f [x] end if

701 v1‖v2‖m n,n,d−2n←−−−−−− x

702 if v2 = 1n then v′
2‖m′ n,d−3n←−−−−− m

703 if v1‖v′
2 ∈ Vert(f) then

704 M
$←− P

(
Edge(f), v1‖v′

2

)
705 f [x] ← F(M)
706 else f [x] $←− {0, 1}n end if

707 else f [x] $←− {0, 1}n; f [x̄] $←− {0, 1}n

708 if v1‖v2 ∈ Vert(f) then
709 Vert(f) ∪←− f [x]

∥∥ f [x̄]
710 Edge(f) ∪←− (

v1‖v2, m, f [x]‖f [x̄]
)

711 end if
712 if v̄1‖v2 ∈ Vert(f) then
713 Vert(f) ∪←− f [x̄]

∥∥ f [x]
714 Edge(f) ∪←− (

v̄1‖v2, m, f [x̄]‖f [x]
)

715 end if end if
716 ret f [x]

Simulator Sf (x):
800 if x ∈ Dom(f) then ret f [x] end if

801 w‖m 2n,d−2n←−−−−− x

802 f [x] $←− {0, 1}n; f [x̄] $←− {0, 1}n

803 if w ∈ Vert(f) then
804 Vert(f) ∪←− f [x]

∥∥ f [x̄]
805 Edge(f) ∪←− (

w, m, f [x]‖f [x̄]
)
end if

806 if w̄ ∈ Vert(f) then
807 Vert(f) ∪←− f [x̄]

∥∥ f [x]
808 Edge(f) ∪←− (

w̄, m, f [x̄]‖f [x]
)
end if

809 ret f [x]

Simulator Sg(u):
900 if u ∈ Dom(g) then ret g[u] end if
901 if u ∈ Vert(f) then

902 M
$←− P

(
Edge(f), u

)
903 g[u] ← H(M)
904 else g[u] $←− {0, 1}n end if
905 ret g[u]

Fig. 7. Definitions of simulators S , Sf and Sg for PRO-Pr

1n

m[]m[2]

1n1n

m[1]

f

f

0n

0n

f

f gf

f

Fig. 8. Description of H : {0, 1}∗ → {0, 1}n iterating two random functions f and g

Proof (Sketch). First we introduce a slightly modified mode of operation H :
{0, 1}∗ → {0, 1}n. See Fig. 8. The new mode H iterates two independent random
functions f and g. The mode H is identical to the original F except that the
finalization step is replaced with the new function g.

We start with noting that F is secure if H is secure. The reduction is without
birthday degradation. Namely, we show that ifH is PRO-Pr beyond the birthday
bound, then so is F . More specifically, we obtain

Advpro
F,S(t, qf , σF) ≤ Advpro

H,Sf ,Sg
(t, qf , qf , σF) +

σF + qf
2n

,

where in the parameters of Advpro
H,Sf ,Sg

the second “qf” is for the number of
queries to g oracle and the last σF for the total complexity of queries made to
H oracle. The proof is the same as the one for Theorem 5.2 in [3].

258 K. Yasuda

Now it remains to analyze the security of H . The analysis amounts to bound-
ing the probability that certain “bad” events occur as in [3]. The key to keeping
the security bound in O(2n) is to treat the output values of f always as pairs(
f(x), f(x̄)

)
and to keep track of those “bad” events associated with the 2n-bit

values. By doing so, we are able to obtain

Advpro
H,Sf ,Sg

(t, qf , qg, σH) ≤ σH + qf
2n

+
5σ2

H + 14σHqf + 12q2f + 4σHqg + qg + 4qfqg
22n

,

which yields the claimed bound. �

Acknowledgments

The author is most grateful to the Eurocrypt 2009 anonymous reviewers for
their valuable comments. One of the reviewers carried out a thorough review
of the MAC-Pr proof and pointed out a couple of typos. Some of the reviewers
pointed out an inappropriate treatment of the related work. These comments
were especially helpful in revising the paper.

References

1. An, J.H., Bellare, M.: Constructing VIL-mACs from FIL-mACs: Message authen-
tication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive: Re-
port 2004/304 (2004)

3. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

4. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

5. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

6. Chang, D., Lee, S.-J., Nandi, M., Yung, M.: Indifferentiable security analysis of
popular hash functions with prefix-free padding. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

7. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

8. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

A Double-Piped Mode of Operation for MACs, PRFs and PROs 259

9. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007)

11. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving mACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

12. Hirose, S., Park, J.H., Yun, A.: A simple variant of the merkle-damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

13. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

14. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

15. JTC1: Data cryptographic techniques—Data integrity mechanism using a crypto-
graphic check function employing a block cipher algorithm, ISO/IEC 9797 (1989)

16. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

17. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

18. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

19. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

20. Maurer, U.M., Sjödin, J.: Single-key AIL-mACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

21. Maurer, U.M., Tessaro, S.: Domain extension of public random functions: Beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

22. NIST: Computer data authentication, FIPS 113 (1985)
23. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,

M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)
24. Patarin, J.: A proof of security in O(2n) for the Benes scheme. In: Vaudenay, S. (ed.)

AFRICACRYPT 2008. LNCS, vol. 5023, pp. 209–220. Springer, Heidelberg (2008)
25. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast mACs from hash

functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

26. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

27. Yasuda, K.: Multilane HMAC— security beyond the birthday limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

28. Yasuda, K.: A one-pass mode of operation for deterministic message
authentication— security beyond the birthday barrier. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 316–333. Springer, Heidelberg (2008)

On the Security of Cryptosystems with
Quadratic Decryption:

The Nicest Cryptanalysis

Guilhem Castagnos1,	 and Fabien Laguillaumie2

1 PRISM - Université de Versailles St-Quentin-en-Yvelines
45, avenue des États-Unis, 78035 Versailles Cedex, France

guilhem.castagnos@prism.uvsq.fr
2 GREYC - Université de Caen-Basse Normandie

Boulevard du Maréchal Juin, BP 5186, 14032 Caen Cedex, France
fabien.laguillaumie@info.unicaen.fr

Abstract. We describe the first polynomial time chosen-plaintext total
break of the NICE family of cryptosystems based on ideal arithmetic in
imaginary quadratic orders, introduced in the late 90’s by Hartmann,
Paulus and Takagi [HPT99]. The singular interest of these encryption
schemes is their natural quadratic decryption time procedure that consists
essentially in applying Euclid’s algorithm. The only current specific crypt-
analysis of these schemes is Jaulmes and Joux’s chosen-ciphertext attack to
recover the secret key [JJ00]. Originally, Hartmann et al. claimed that the
security against a total break attack relies only on the difficulty of factor-
ing the public discriminant Δq = −pq2, although the public key was also
composed of a specific element of the class group of the order of discrim-
inant Δq , which is crucial to reach the quadratic decryption complexity.
In this article, we propose a drastic cryptanalysis which factors Δq (and
hence recovers the secret key), only given this element, in cubic time in the
security parameter. As a result, performing our cryptanalysis on a crypto-
graphic example takes less than a second on a standard PC.

Keywords: Polynomial time total break, quadratic decryption, NICE
cryptosystems, imaginary quadratic field-based cryptography.

1 Introduction

We propose an original and radical cryptanalysis of a large class of schemes
designed within imaginary quadratic fields, based on the NICE cryptosystem
(cf. [HPT99,PT99,PT00]) which recovers the secret key from the sole public key.
These systems have been intensively developed and studied in the late 90’s, since
they offer a very efficient secret operation (decryption or signature), compared
to cryptosystems based on traditional number theory. The one-wayness of these

� This work was done while this author was with the GREYC - ENSICAEN.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 260–277, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

On the Security of Cryptosystems with Quadratic Decryption 261

schemes rely on the difficulty of the Smallest Kernel-Equivalent Problem (SKEP)
and their security against a total break was believed to rely on the difficulty of
the factorisation of numbers of the form pqr. The first and only cryptanalysis of
the NICE encryption scheme, proposed by Jaulmes and Joux’s at Eurocrypt’00
[JJ00], recovers the secret key with an access to a decryption oracle1. In the
setting of the NICE cryptosystems, the public key contains a discriminant Δq =
−pq2 and the representation of a reduced ideal h whose class belongs to the
kernel of the surjection from the class group of the quadratic order of (public)
discriminant Δq = −pq2 to the class group of the maximal order of (secret)
discriminant ΔK = −p. We will show that with this knowledge of h we can
actually factor the public discriminant in cubic time in the security parameter.

1.1 Imaginary Quadratic Field-Based Cryptography

The first use of class groups of imaginary quadratic fields allowed to achieve a
Diffie-Hellman key exchange. This paper by Buchmann and Williams [BW88]
was the first of several attempts to design imaginary quadratic field-based cryp-
tosystems. Key exchange was also discussed by McCurley in [McC89]. Ten years
after, a new encryption scheme appeared in the literature, in the work of
Hühnlein, Jacobson, Paulus and Takagi [HJPT98]. The goal of this paper was
also to improve the efficiency of the seminal cryptosystems. In fact, the key
point of these Elgamal-like encryption schemes is the switching between the
class group of the maximal order and the class group of a non-maximal order,
which can be done with quadratic complexity (as already mentioned). Unfortu-
nately, Hühnlein et al.’s scheme, although using this efficient switching, did not
benefit from a quadratic time decryption since the decryption of this scheme
really needed a final exponentiation (like in Elgamal).

Soon after, quadratic decryption time was eventually reached with a new
encryption scheme, called NICE, for New Ideal Coset Encryption, described in
[HPT99,PT99,PT00]. In [HPT99], it is shown that the decryption time of NICE
is comparably as fast as the encryption time of RSA with public exponent e =
216 +1 and an even better implementation is described by Hühnlein in [Huh00].
The key idea of NICE is not to mask the message by a power of the public key
(which leads to a cubic decryption like in Elgamal), but by an element which
belongs to the kernel of the map which switches between the class group of a
non-maximal order to the maximal order. This hiding element is added to the
public key and naturally disappears from the ciphertext when applying the map.

As the semantic security of NICE holds only under a chosen-plaintext at-
tack, Buchmann, Sakurai and Takagi patched the scheme by adapting clas-
sical techniques to obtain a chosen-ciphertext security in the random oracle
model [BST02]. This enhanced scheme, based on REACT [OP01] is called NICE-
X, and of course resists Jaulmes and Joux’s attack [JJ00]. Hühnlein, Meyer and
Takagi also built in [HMT99] Rabin and RSA analogues based on non-maximal
imaginary quadratic orders, but the only advantages over the original systems

1 This attack can actually be deflected by adding a suitable padding.

262 G. Castagnos and F. Laguillaumie

is their seemingly natural immunity against low exponent attacks and some
chosen-ciphertext attacks.

The design of signature schemes has also been addressed in [HM00, Huh01]
with an adaptation of Schnorr signatures (cf. [Sch00]). Again an element of the
kernel of the switching between two class groups is published: this element is
crucial for the efficiency of the signature generation. An undeniable signature
scheme has been designed in [BPT04], and again, the public element of the
kernel is needed for the design of an efficient scheme.

1.2 Related Work on Security Issues of Quadratic Field-Based
Cryptography

All the NICE schemes share the same public information: a discriminant of the
form Δq = −pq2 and the representation of a reduced ideal h whose class belongs
to the kernel of the surjection from the class group of the quadratic order of
(public) discriminant Δq = −pq2 to the class group of the maximal order of
(secret) discriminant ΔK = −p. Of course, a factorisation of the discriminant
obviously totally breaks the scheme. Therefore, the security parameters are set
such that the factorisation of numbers of the form pqr is difficult. This particular
factorisation has been addressed by Boneh, Durfee and Howgrave-Graham in
[BDH99], but for small r (such as 2), their method is not better than Lenstra’s
ECM method [Len87] or the Number Field Sieve [LL93]. In [BST02], the authors
also mention the Quadratic Order Discrete Logarithm Problem (QODLP). The
fastest algorithm to solve the QODLP is the Hafner-McCurley algorithm [HM89],
but its running time has a worse subexponential complexity than the fastest
factoring algorithm. In [PT00], Paulus and Takagi argue that “the knowledge of
h does not substantially help to factorΔq using currently known fast algorithms”.
They also mention the possibility to find a power of the class [h] of order 2, but
computing the order of the class [h] in the class group of the order of discriminant
Δq is essentially equivalent to factor this discriminant. The problem of factoring
the discriminant Δq given [h] is called the Kernel Problem in [BPT04] and again
is assumed to be “intractable”.

Up to now, the sole specific cryptanalysis of this family of encryption schemes
is the chosen-ciphertext nice cryptanalysis from [JJ00]. This attack uses the fact
that the decryption fails (i.e., does not recover the plain message) if the norm of
the ideal representing the message is greater than

√|ΔK |/3, so that the decoded
message will expectedly be one step from being reduced. The relation between
two pairs original message/decoded message leads to a Diophantine equation of
the form k = XY for a known “random” integer k of the size of the secret primes.
The authors suggest to factor this integer to find out X and Y and then factor
Δq. This attack is feasible for the parameters proposed in [HPT99], but can be
defeated by enlarging the key size by a factor of 3. No complexity analysis is
given for this attack, and the scheme can also be repaired by adding redundancy
to the message as suggested in [JJ00] and [BST02]. Note that, contrary to ours,
Jaulmes and Joux’s attack also applies to [HJPT98].

On the Security of Cryptosystems with Quadratic Decryption 263

1.3 Our Contributions

We propose the first definitive cryptanalysis of cryptosystems based on NICE,
which have been resisting for almost 10 years. All these schemes contain in
the public key the representation of the reduced ideal h whose class belongs
to the kernel of the surjection from the class group of the quadratic order of
discriminant Δq = −pq2 to the class group of the maximal order of discriminant
ΔK = −p. The key point of our attack is the fact that this ideal h is indeed
always equivalent to a non-reduced ideal of norm q2, as we will show in Theorem
2. The core of our attack then consists of lifting the class of h in the class group of
the order of discriminant Δqr

2, where r is chosen to make the ideals of norm q2

reduced. This operation will reveal an ideal of norm q2 and thus the factorisation
of Δq, leading to a total break of the scheme.

Note that the public ideal h is crucial in the design of NICE: Random powers
of this element are used to hide the message. As it is in the kernel of a surjective
map, this randomness can be removed from the ciphertext and the message
recovered by applying this map which leads to a decryption algorithm with
quadratic complexity (the computation is done with Euclid’s algorithm).

The attack described in this paper thus uses this extra piece of information
given in the public key to factor the public discriminant. Therefore, this setting
is insecure in order to build a cryptosystem with quadratic decryption time.
Note that such a scheme with quadratic decryption is a very rare object in group
theory based cryptography. Although some schemes built from lattices or coding
theory problems have this property, to our knowledge, very few schemes built
from the integer factorisation or the discrete logarithm problems have it (e. g.,
variants of Okamoto-Uchiyama and Paillier’s cryptosystems, cf. [CNP99,Pai99]).

As a matter of fact, the encryption schemes built on NICE from [HPT99,PT99,
PT00,BST02,Huh00], the signature schemes [Huh01,HM00] and the undeniable
signature scheme [BPT04] totally succumb to our attack.

The rest of the paper is organised as follows: The next section gives a back-
ground on orders of imaginary quadratic fields to understand the NICE cryptosys-
tem, and then Section 3 is the core of the paper. We describe the cryptanalysis
by first discussing the (im-)possibility of reversing the reduction process applied
on the reduced ideal h in Subsection 3.1. Then, in Subsection 3.2, we describe
our attack (Algorithm 3) whose correctness is then proved with Theorem 3 and
Corollary 1. Finally, we illustrate the attack with an example.

2 Background

The next subsection widely follows the description from [Cox99].

2.1 Computations in Quadratic Orders

A quadratic field K is a subfield of the field of complex numbers C which has
degree 2 over Q. Such a field can be uniquely written as Q(

√
n) where n is a

264 G. Castagnos and F. Laguillaumie

square-free integer, different from 1 and 0. Its (fundamental) discriminant ΔK

is defined as n if n ≡ 1 (mod 4) and 4n otherwise. We will then consider K in
terms of its discriminant : K = Q(

√
ΔK) with ΔK ≡ 0, 1 (mod 4). An order O

in K is a subset of K such that O is a subring of K containing 1 and O is a
free Z-module of rank 2. The ring OΔK of integers2 in K is the maximal order
of K in the sense that it contains all the other orders of K. It can be written as
Z + 1

2 (ΔK +
√
ΔK)Z. If we set f = [OΔK : O] the finite index of any order O

in OΔK , then O = Z + f 1
2 (ΔK +

√
ΔK)Z = Z + fOΔK . The integer f is called

the conductor of O. The discriminant of O is then Δf = f2ΔK . We will then
use the notation OΔf

for such an order.
Now we discuss the ideals of an order OΔ of discriminant Δ. If a is a nonzero

ideal of OΔ, its norm is defined as N(a) = |OΔ/a|. An ideal a is said to be
proper if {β ∈ K : βa ⊂ a} = OΔ. This definition can be extended to fractional
ideals, which are of the form αa where α ∈ K× and a is an ideal of OΔ. If
we denote by I(OΔ) the set of proper fractional ideals of OΔ and its subgroup
P (OΔ) consisting of principal ideals, the ideal class group of OΔ is defined as
C(OΔ) = I(OΔ)/P (OΔ). Its cardinality is the class number of OΔ denoted as
h(OΔ).

Every ideal a of OΔ can be written as

a = m

(
aZ +

−b+
√
Δ

2
Z

)

with m ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ Δ (mod 4a). In the sequel, we
will only consider primitive ideals, which are those with m = 1. This expression
is unique if −a < b ≤ a and we will now denote a primitive ideal by (a, b). The
norm of such an ideal is then a.

This notation represents also the positive definite binary quadratic form ax2+
bxy+cy2 with b2−4ac = Δ. Theorem 7.7 from [Cox99] shows that, up to equiva-
lence relations, it is essentially equivalent to work with ideals and positive definite
quadratic forms. An ideal (a, b) of OΔ is said to be reduced if the corresponding
quadratic form is reduced, which means that |b| ≤ a ≤ c and b ≥ 0 if one of
the inequalities is not strict. Note that in every class of OΔ-ideals there exists
exactly one reduced ideal. From the theory of quadratic forms, we can efficiently
compute a reduced equivalent ideal. The algorithm, which is due to Gauss, is
described in [Coh00, Algorithm 5.4.2 p. 243] and is called Red in the rest of the
paper. In general, instead of working with classes, we will work with reduced
ideals. The product of ideals is also efficiently computable with the composition
of quadratic forms algorithm, see [Coh00, Algorithm 5.4.7 p. 243]. These two al-
gorithms have quadratic complexity. A crucial fact for our purpose is described
in Lemma 5.3.4 from [Coh00]: If an ideal a = (a, b) is reduced, then a ≤ √

Δ/3
and conversely, if a <

√
Δ/4 and −a < b ≤ a, then a is reduced.

Let
(

a
b

)
be the Kronecker symbol of a and b. The formula for the class number

is given by the following theorem.

2 i.e., the set of all α ∈ K which are roots of a monic polynomial in Z[X]

On the Security of Cryptosystems with Quadratic Decryption 265

Theorem 1 ([Cox99, Theorem 7.24]). Let OΔf
be the order of conductor f

in an imaginary quadratic field K (i. e., Δf = f2ΔK). Then

h(OΔf
) =

h(OΔK)f
[O×

ΔK
: O×

Δf
]

∏
p|f

(
1−

(
ΔK

p

)
1
p

)
.

Given an order OΔf
of conductor f , a nonzero OΔf

-ideal a is said to be prime
to f if a + fOΔf

= OΔf
(it is equivalent to say that its norm N(a) is prime to

f – see Lemma 7.18 from [Cox99]). We denote by I(OΔf
, f) the subgroup of

I(OΔf
) generated by ideals prime to f . P (OΔf

, f) is the subgroup generated by
the principal ideals αOΔf

where α ∈ OΔf
has a norm prime to f . Note that in

every ideal class, there exists an ideal prime to f (cf. [Cox99, Corollary 7.17]).
To establish Theorem 1, Cox has studied the links between the class group of
the maximal order of an imaginary quadratic field and the class groups of any of
its orders. The following propositions throw a light on such fundamental links.

Proposition 1 ([Cox99, Proposition 7.19]). The inclusion I(OΔf
, f) ⊂

I(OΔf
) induces an isomorphism

I(OΔf
, f)/P (OΔf

, f) - I(OΔf
)/P (OΔf

) = C(OΔf
).

Proposition 2 ([Cox99, Proposition 7.20]). Let OΔf
be an order of con-

ductor f in an imaginary quadratic field K.

i. If A is an OΔK -ideal prime to f , then A ∩ OΔf
is an OΔf

-ideal prime to f
of the same norm.

ii. If a is an OΔf
-ideal prime to f , then aOΔK is an OΔK -ideal prime to f of

the same norm.
iii. The mapϕf : I(OΔf

, f)−→I(OΔK , f) such that a .→ aOΔK is an isomorphism.

Consequently, the map ϕf from Proposition 2 induces a surjection
ϕ̄f : C(OΔf

) C(OΔK
)

that can be computed as follows: given a class [a] ∈ C(OΔf
), one finds b ∈ [a]

such that b ∈ I(OΔf
, f) (see standard techniques [HJPT98, Algorithm 1]) and

ϕ̄f ([a]) = [ϕf (b)] = [bOΔK]. The next two algorithms compute ϕf and its inverse
(cf. [PT00]).

Input: A = (A,B) ∈ I(OΔK , f)
Output: A ∩ OΔf

= (a, b) ∈ I(OΔf
, f)

1. a← A
2. b← Bf modc 2a (|b| < a) [centered euclidean division]
3. Return (a, b)

Algorithm 1: Algorithm to compute ϕ−1
f

266 G. Castagnos and F. Laguillaumie

Input: a = (a, b) ∈ I(OΔf
, f), Δf

Output: aOΔK = (A,B) ∈ I(OΔK , f)
1. A← a
2. δ ← Δf mod 2
3. Compute u and v ∈ Z such that 1 = uf + aδv [extended Euclidean

algorithm]
4. B ← bu+ aδv modc 2a (|B| < a) [centered euclidean division]
5. Return (A,B)

Algorithm 2: Algorithm to compute ϕf

Takagi and Paulus showed, in Section 4.2 from [PT00], that in the NICE
setting the computation of this homomorphism ϕf cannot be done without the
knowledge of the prime secret conductor.

The following effective lemma was used in [Cox99] to prove the formula
of Theorem 1 by computing the order of ker ϕ̄f and by Hühnlein, for exam-
ple in [Huh00, Huh01] to efficiently compute in ker ϕ̄f . It also proves the cor-
rectness of our attack. Indeed with a well-known system of representatives of
(OΔK/fOΔK)× / (Z/fZ)×, we will derive a suitable system of representatives
for ker ϕ̄f , which is essential for the proofs of Theorem 2 and Lemma 2.

Lemma 1. Let ΔK be a fundamental negative discriminant, different from −3
and −4, and f a conductor. Then there exists an effective isomorphism

ψf : (OΔK
/fOΔK

)× / (Z/fZ)× ker ϕ̄f .
∼

We will denote by φΔK (f) := f
∏

p|f
(
1−

(
ΔK

p

)
1
p

)
the order of ker ϕ̄f .

Proof. The proof follows the line of the proof of [Cox99, Proposition 7.22 and
Theorem 7.24]. �
Remark 1. To effectively map a class from (OΔK/fOΔK)× / (Z/fZ)× to ker ϕ̄f ,
one takes a representative α ∈ OΔK , α := x + y ΔK+

√
ΔK

2 where x, y ∈ Z and
gcd(N(α), f) = 1 (to ensure that α is invertible modulo fOΔK), and computes

ψf

(
[α]

)
=

[
ϕ−1

f (αOΔK)
]
,

which is in ker ϕ̄f . In this computation, the representation of αOΔK can be
obtained with [BTW95, Proposition 2.9] and the evaluation of ϕ−1

f with Algo-
rithm 1.

Conversely, given a class of ker ϕ̄f usually represented by its reduced ideal,
one finds a representative ideal h ∈ I(OΔf

, f) (with [HJPT98, Algorithm 1]) and
computes α ∈ OΔK such that αOΔK = ϕf (h) (ϕf is evaluated with Algorithm 2
and α can be found with [HJW03, Algorithm 1]). Eventually, ψ−1

f ([h]) = [α] ∈
(OΔK/fOΔK)× / (Z/fZ)×.

On the Security of Cryptosystems with Quadratic Decryption 267

KeyGen(1λ):
– Let p be a λ-bit prime such that p ≡ 3 (mod 4) and let q be a prime such

that q >
√

p/3.
– Set {

ΔK = −p
Δq = ΔKq2 = −pq2

– Let k and l be the bit lengths of �√|ΔK |/4� and q −
(

ΔK
q

)
respectively.

– Let [h] be an element of ker ϕ̄q, where h is a reduced OΔq - ideal.

The public key pk consists of the quadruple (Δq, h, k, l), and the secret key sk
consists of the pair (p, q).

Encrypt(1λ, pk, m):
– A message m is embedded into a reduced OΔq -ideal m with log2(N(m)) < k.
– Pick randomly r ∈ [[1, 2l−1]] and compute c = Red(m× hr).

Decrypt(1λ, sk, c): Compute ϕ−1
q (Red(ϕq(c))) = m.

Fig. 1. Description of NICE

2.2 The NICE family

We will now describe in Fig. 1 the original NICE cryptosystem as it is presented
in [PT00]. For our purpose, it is only important to concentrate on the key gen-
eration which outputs an element [h] of ker ϕ̄q as a part of the public key. Other
encryption schemes which share this key generation can be found in [HPT99,
PT00,BST02, Huh00,PT99], and signature schemes in [Huh01,HM00,BPT04].
As already mentioned, all these cryptosystems succumb to our attack.

Underlying Algorithmic Assumptions. The security against a total break
(resp. of the one-wayness) of the NICE cryptosystem is proved to rely on the
hardness of the following problems:

Definition 1 (Kernel Problem [BPT04]). Let λ be an integer, p and q be
two λ-bit primes with p ≡ 3 (mod 4). Fix a non-fundamental discriminant Δq =
−pq2. Given an element [h] of ker ϕ̄q, factor the discriminant Δq.

Definition 2 (Smallest Kernel-Equivalent Problem [BST02,BPT04]
(SKEP)). Let λ be an integer, p and q be two λ-bit primes with p ≡ 3 (mod 4).
Fix a non-fundamental discriminant Δq = −pq2. Given an element [h] of ker ϕ̄q

and an element [m] ∈ C(OΔq), compute the ideal with the smallest norm in the
equivalence class, modulo the subgroup generated by [h], of [m].

It is clear that an algorithm which solves the Kernel Problem also solves the
Smallest Kernel-Equivalent Problem. The insecurity of the Kernel Problem will
be discussed in the next section.

268 G. Castagnos and F. Laguillaumie

3 The Cryptanalysis

3.1 Intuition

In the NICE setting, ΔK = −p, Δq = ΔKq
2 where p and q are two large

primes, and the schemes are totally broken if one can recover p and q from
Δq. (Un-)fortunately, another piece of information is given in the public key: an
ideal h whose class belongs to the kernel of ϕ̄q, the surjection from C(OΔq) to
C(OΔK). In [PT00] (for example), the authors suppose that no ideal whose class
is in ker ϕ̄q leaks a factor of the public discriminant Δq, except if this element
has order 2, but then a subexponential computation is required to find it.

While investigating this assumption, we experimentally found non-reduced
ideals of the form (q2, kq), with k odd and |k| < q whose classes belong to the
kernel of ϕ̄q, and which obviously give the factorisation of Δq. By using the
effective isomorphism of Lemma 1, we actually prove in the next theorem that
one can build a representative set of this kernel with ideals of norm q2.

Theorem 2. Let ΔK be a fundamental negative discriminant, different from
−3 and −4 and q an odd prime conductor. There exists an ideal of norm q2 in
each nontrivial class of ker ϕ̄q.

Proof. Let us recall the effective isomorphism from Lemma 1:

ψq: (OΔK
/qOΔK

)× / (Z/qZ)× ker ϕ̄q.
∼

We are going to build a set of representatives of (OΔK/qOΔK)× / (Z/qZ)× and
apply ψq (which can be computed according to Remark 1) to obtain ideals of
norm q2 which are a set of representatives of ker ϕ̄q.

Let us set αk = k + ΔK+
√

ΔK

2 with k ∈ {0, . . . , q − 1}. Clearly N(αk) =(
k + ΔK

2

)2 − ΔK

4 = k2 +ΔKk+ ΔK(ΔK−1)
4 . Consider the following set of repre-

sentatives of (OΔK/qOΔK)× / (Z/qZ)×:{
1
} ∪ {

αk with k ∈ {0, . . . , q − 1}, N(αk) �≡ 0 (mod q)
}
,

indeed, it is easy to check that all the αk belong to different classes and that
they are in sufficient number: If

(
ΔK

q

)
equals 1 (resp. equals 0, resp. equals −1)

then the order of the quotient (OΔK/qOΔK)× / (Z/qZ)× is 1 + (q − 2) (resp.
1 + (q − 1), resp. 1 + (q + 1)). We are now going to compute the image of this
set by ψq in ker ϕ̄q.

Following the proof of [BTW95, Proposition 2.9], we detail here the compu-
tation of Ak = αkOΔK . The representation of Ak is (ak, bk), with ak = N(αk).
Let us now find bk. The representation of OΔK is

(
1, ΔK+

√
ΔK

2

)
. A simple cal-

culation gives

αkOΔK = αkZ +
(
kΔK

2
+
ΔK(ΔK + 1)

4
+ (k +ΔK)

√
ΔK

2

)
Z

On the Security of Cryptosystems with Quadratic Decryption 269

which must be equal to mk

(
akZ + −bk+

√
ΔK

2 Z
)
. As mentioned in the proof

of [BTW95, Proposition 2.9], mk is the smallest positive coefficient of
√
ΔK/2

in Ak: in our case mk = gcd(1, k +ΔK) and therefore mk = 1.
Since αk ∈ αkOΔK , there exists μk and νk such that αk = akμk+ −bk+

√
ΔK

2 νk.
By identification in the basis (1,

√
ΔK), νk = 1 and by a multiplication by 2, we

obtain 2k+ΔK = 2akμk − bk. As the value of bk is defined modulo 2ak, we can
take

bk = −2k −ΔK .

We now need to compute ϕ−1
q (Ak). From Algorithm 1, it is equal to (ak, bkq

mod 2ak). Eventually, in every nontrivial class of ker ϕ̄q, there exists an ideal
(ak, bkq). This ideal corresponds to the quadratic form akx

2 + bkqxy+ cky
2 with

ck =
q2

(
(2k +ΔK)2 −ΔK

)
4(k2 +ΔKk) +ΔK(ΔK − 1)

= q2,

which is then equivalent to the form q2x2 − bkqxy + aky
2 corresponding to the

ideal (q2,−bkq) whose norm is q2. �

A first attempt: inverting the reduction process. From this theorem,
the reduced ideal h published in the NICE cryptosystems is equivalent to an
ideal of norm q2. A first attack is thus to try to do a brute force ascent of the
reduction algorithm, i. e., the Gauss algorithm, from h. To “invert” a step of
this algorithm (see Algorithms 1.3.14 and 5.4.2 of [Coh00]), one has to consider
all the possible quotients of the Euclidean division. The number of possible
quotients is heuristically low (say ten), and the complexity of the attack grows
exponentially with the number of reduction steps. If this number is very low,
the attack will be feasible. In particular, if q <

√
p/4, all ideals of the form

(q2, kq) are already reduced, so the norm of h is q2 and the schemes are insecure.
If the parameters for NICE are chosen as proposed in [PT00] (i. e.,

√
p/3 < q)

the number of reduction steps can still be too low. In the given implementation
and later papers (e. g., [BST02]), p and q are actually chosen of same size λ,
the security parameter. Let us analyse more generally the numbers of reduction
steps needed to reduce ideals of the form (q2, kq) in C(OΔq).

If we translate the problem in terms of quadratic forms, the quadratic form
q2x2 + kqxy+ c(k)2y2, with c(k) := 1

4 (k2 + p), can be represented by the matrix(
q2 kq/2
kq/2 c(k)

)
,

which defines (up to an isometry) two vectors u and v of C such that |u|2 = q2,
|v|2 = c(k) and 〈u, v〉 = kq/2, where 〈·, ·〉 denotes the usual scalar product in C.
If we consider the complex number z = v

u (we suppose here that u is larger than
v, i. e., q2 > 1

4 (k2 + p)), then

z =
〈u, v〉
|u|2 + i

det(u, v)
|u|2 =

kq

2q2
+ i

√|Δq|
q2

=
k

2q
+ i

√
p

q
·

270 G. Castagnos and F. Laguillaumie

The mean number of iteration Ah of the Gauss algorithm when the complex
number z belongs to the strip {|/(z)| ≤ 1/h} is heuristically

Ah ∼ 1
2

log h

⎡⎢⎢⎣ 1
log(1 +

√
2)
− 1

log
(

π2

6 logφ

)
⎤⎥⎥⎦ ,

where φ is the golden ratio.
Inside this horizontal strip, the complex numbers z for which the number of

iterations is of order Ω(logL) are those for which their real part 0(z) is close to
a rational number whose continued fraction expansion is of order Ω(logL).

Then, since our complex number z is of the form z = k
2q + i

√
p

q , the number of
iterations of the Gauss Algorithm on the input z will be (with a high probability)
of orderΩ(log qp−

1
2) provided that the height of the continued fraction expansion

of the rational number k/q is of order Ω(log q) (which is always the case, with
a high probability). See [VV07] for a precise analysis of Gauss algorithm. If
we set q = pα these theoretical results give a behaviour in Ω

((
α − 1

2

)
log p

)
,

and therefore if we set α = 1 as suggested in [BST02], we have a number of
steps proportional to log p/2 = λ/2 so the going up is infeasible. Note that our
experiments confirm this complexity. Therefore we have to establish another
strategy to recover these non-reduced ideal of norm q2.

3.2 An Algorithm to Solve the Kernel Problem

Description. In this subsection, we describe an algorithm which totally breaks
the NICE family of cryptosystems by solving the Kernel Problem in polyno-
mial time in the security parameter. More precisely, given Δq = −pq2 where
p and q are two λ-bit primes and h a reduced ideal whose class is in the ker-
nel of the surjection from C(OΔq) to C(OΔK), this algorithm outputs p and
q in cubic time. The next subsection is dedicated to the analysis of the cor-
rectness and the complexity of this algorithm. The main result is given in
Corollary 1.

The strategy of the attack, detailed in the next algorithm, is as follows. First,
in an initialisation phase (steps 1–3), we generate a power r of a small odd prime.
This integer r is chosen large enough to make the ideals of norm q2 reduced
in C(OΔqr2). Then, the core of the algorithm consists in lifting [h′] (where h′

is equivalent to h and prime to r) in this class group. In step 5, we compute
g = h′ ∩ OΔqr2 , which is an OΔqr2-ideal, with Algorithm 1 (this algorithm still
works between two non-maximal orders).

Then, in step 6, we compute the reduced element f of the class of g raised to
the power φΔK (r). In the next subsection, we will prove that this lift (steps 5 and
6) maps almost all the elements of ker ϕ̄q, including [h], to elements of ker ϕ̄qr

whose reduced ideal has norm q2. As a consequence, the ideal f computed in step
6 has norm q2 and eventually step 7 extracts p and q.

On the Security of Cryptosystems with Quadratic Decryption 271

Input: λ ∈ Z, Δq = −pq2 ∈ Z, h = (a, b) ∈ I(OΔq , q) with [h] ∈ ker ϕ̄q of
order > 6

Output: p, q

Initialisation:
1. Set r′ = 3
2. Set δr′ = �λ+3

2
log 2
log r′ � and r = r′ δr′

3. If the order of [h] divides φΔK (r) then set r′ to the next prime and
goto 2.

4. Find h′ ∈ [h] such that h′ ∈ I(OΔq , r
′) [HJPT98, Algorithm 1]

Core Algorithm:

5. Compute g = h′ ∩ OΔqr2 [Algorithm 1]
6. Compute f = Red(gφΔK

(r))
7. Return p = Δq/N(f), q =

√
N(f)

Algorithm 3: Solving the Kernel Problem

Remark 2. We omit elements of small order in the input of our algorithm, be-
cause they are useless for the NICE cryptosystems. As we will see in the proof
of Corollary 1, this restriction ensures that the incrementation of step 3 will be
done at most once. For completeness, if the order of [h] is 3, only few iterations
will be done to obtain a suitable r such that the order of [h] does not divide
φΔK (r) = r′ δr′−1

(
r′ − (

ΔK

r′
))

, and for an order of 5, r′ = 3 suits. Note also
that elements of order 2 (4 and 6) leads to ambiguous ideals which give the
factorisation of the discriminant (see [Sch82]).

Correctness. Again, the proof of correctness of Algorithm 3 will be done by
using the effective isomorphisms between ker ϕ̄q and (OΔK/qOΔK)× / (Z/qZ)×

and between ker ϕ̄qr and (OΔK/qrOΔK)× / (Z/qrZ)×. The integer r is an odd
integer prime to q and ΔK such that r > 2q/

√|ΔK |, i. e., such that ideals of
norm q2 are reduced in C(OΔqr2).

First in Lemma 2, we prove that nontrivial elements of a certain subgroup
of the quotient (OΔK/qrOΔK)× / (Z/qrZ)× map to classes of ker ϕ̄qr whose re-
duced element has norm q2. Actually, this subgroup contains the image of a
particular lift of (OΔK/qOΔK)× / (Z/qZ)× following the Chinese remainder the-
orem: A class [α] modulo q is lifted to a class [β] modulo qr such that [β] ≡ 1
(mod r) and [β] ≡ [α]φΔK

(r) (mod q).
Then, in Theorem 3, we prove that the lift computed in steps 4 and 6 of

Algorithm 3 corresponds to the lift previously mentioned on the quotients of
OΔK . As a result, this lift evaluated on an element of ker ϕ̄q either gives the
trivial class or a class corresponding to the nontrivial elements of the subgroup
of Lemma 2, i. e., a class whose reduced element has norm q2.

272 G. Castagnos and F. Laguillaumie

Finally, in Corollary 1, we prove that Algorithm 3 is polynomial and correct,
i. e., that the choice of r done in the initialisation of the algorithm ensures that
the lift will produce a nontrivial class and hence an ideal of norm q2.

Lemma 2. Let ΔK be a fundamental negative discriminant, different from −3
and −4 and q an odd prime conductor and r be an odd integer prime to q and ΔK

such that r > 2q/
√|ΔK |. The isomorphism ψqr of Lemma 1 maps the nontrivial

elements of the kernel of this natural surjection

π : (OΔK
/qrOΔK

)× / (Z/qrZ)× (OΔK
/rOΔK

)× / (Z/rZ)×

to classes of ker ϕ̄qr ⊂ C(OΔKq2r2), whose reduced element has norm q2.

Proof. This proof is similar to the proof of Theorem 2, but relative to r (more
precisely, specialising r = 1 in this lemma yields Theorem 2). Let us set αk = k+

rΔK+
√

ΔK

2 where k ∈ Z takes φΔK (q) values s.t.

⎧⎨⎩
k �≡ 0 (mod r),
k ≡ 0, . . . , q − 1 (mod q),
k2 �≡ r2ΔK (mod q).

and denote S = {1}∪{αk}k. For each k, the norm N(αk) is equal to
(
k + rΔK

2

)2−
ΔK

r2

4 .
Since r is prime to q, the Chinese remainder theorem gives the isomorphism

between (OΔK/qrOΔK)× / (Z/qrZ)× and(
(OΔK/qOΔK)× / (Z/qZ)×

)
×

(
(OΔK/rOΔK)× / (Z/rZ)×

)
.

As all the elements of S map to the neutral element in (OΔK/rOΔK)× / (Z/rZ)×

and gives all the elements of (OΔK/qOΔK)× / (Z/qZ)×, S is actually a set of
representatives of kerπ.

Let us now compute Ak = αkOΔK . Its representation is (ak, bk), with ak =
N(αk) and then

αkOΔK = αkZ +
(
k + r

ΔK +
√
ΔK

2

)(
ΔK +

√
ΔK

2

)
Z,

which must be equal to mk

(
akZ + −bk+

√
ΔK

2 Z
)
. The integer mk is then equal

to gcd(r, rΔK + k) which is equal to 1 since gcd(k, r) = 1.
As αk ∈ αkOΔK , there exists μk and νk such that αk = akμk + −bk+

√
ΔK

2 νk.
By identification in the basis (1,

√
ΔK), νk = r and by multiplying by 2, we

obtain 2k + rΔK = 2akμk − rbk and again we can take

bk =
−2k
r
−ΔK .

Then ϕ−1
qr (Ak) is equal to (ak, Bk) where Bk = bkqr. This ideal corresponds to

the quadratic form akx
2 +Bkxy + cky

2 with

ck =
B2

k − q2r2ΔK

4ak
= q2,

On the Security of Cryptosystems with Quadratic Decryption 273

which is then equivalent to the form q2x2−Bkxy+aky
2 corresponding to the ideal

(q2,−Bk) = (q2,−Bk modc 2q2), where the subscript c designates the centered
euclidean division. Finally, this ideal is reduced because | − Bk modc 2q2| <
q2 <

√
ΔKq2r2/4 . �

Theorem 3. Let ΔK be a fundamental negative discriminant, different from
−3 and −4 and q be an odd prime conductor. Let r be an odd integer, prime
to both q and ΔK such that r > 2q/

√|ΔK |. Given a class of ker ϕ̄q and h a
representative in I(OΔq , qr) , then the class

[h ∩OΔqr2]φΔK
(r)

is trivial if the order of [h] divides φΔK (r) and has a reduced element of norm
q2 otherwise.

Proof. Let h ∈ I(OΔq , q) be a representative of a class of ker ϕ̄q. Let α ∈ OΔK

such that hOΔK = αOΔK . Let us remark first that h ∩ OΔqr2 , which is an
OΔqr2 -ideal, is equal to αOΔK ∩ OΔqr2 . Therefore [h ∩ OΔqr2] is in ker ϕ̄qr .
By the isomorphisms of Lemma 1, [h] ∈ ker ϕ̄q corresponds to

(
[α] (mod q)

) ∈
(OΔK/qOΔK)× / (Z/qZ)× and [h∩OΔqr2] corresponds to

(
[α] (mod qr)

)
in the

quotient (OΔK/qrOΔK)× / (Z/qrZ)×.
Once again, we are going to use properties of quotients of OΔK to obtain some

information on the kernel of ϕ̄q and ϕ̄qr . Let

s : (OΔK/qOΔK)× / (Z/qZ)× −→ (OΔK/qrOΔK)× / (Z/qrZ)×

[α] .−→ [α]φΔK
(r)
.

The map s is a well-defined morphism. Indeed, if α and β are two elements
of OΔK such that [α] = [β] in (OΔK/qOΔK)× / (Z/qZ)×, then, in the Chinese
remainder isomorphism (describing the quotient (OΔK/qrOΔK)× / (Z/qrZ)×),
[α]φΔK

(r) maps to ([α]φΔK
(r) (mod q), [1] (mod r)). On the other hand, the ele-

ment [β]φΔK
(r) maps to ([β]φΔK

(r) (mod q), [1] (mod r)) and therefore s([α]) =
s([β]). Note that the kernel of s is the subgroup of φΔK (r)-th roots of unity of
(OΔK/qOΔK)× / (Z/qZ)×.

Let us define the morphism ŝ between ker ϕ̄q and ker ϕ̄qr such that the fol-
lowing diagram commutes:

ker ϕ̄q ker ϕ̄qr

(OΔK
/qOΔK

)× / (Z/qZ)× (OΔK
/qrOΔK

)× / (Z/qrZ)×

ŝ

�ψqr

s

ψq � �

274 G. Castagnos and F. Laguillaumie

Now, we prove that ŝ([h]) = [h ∩ OΔqr2]φΔK
(r). Indeed, ŝ([h]) = ŝ ◦ ψq([α]

(mod q)) and by commutativity of the diagram

ŝ ◦ ψq([α] (mod q)) = ψqr ◦ s([α] (mod q))
= ψqr

((
[α] (mod q)

)φΔK
(r)

)
= ψqr

((
[α] (mod qr)

)φΔK
(r)

)
= ψqr

(
[α] (mod qr)

)φΔK
(r)

= [h ∩ OΔqr2]φΔK
(r).

By construction, ker ŝ is the subgroup of φΔK (r)-th roots of unity of ker ϕ̄q

and therefore, if the order of [h] divides φΔK (r), then ŝ([h]) = [OΔqr2]. Otherwise,
as the image of s is a subset of the kernel of the surjection π of Lemma 2, the
reduced ideal of the class ŝ([h]) has norm q2. �

Corollary 1. Algorithm 3 solves the Kernel Problem and totally breaks the NICE
family of cryptosystems in cubic time in the security parameter.

Proof. The correctness of Algorithm 3 follows from the previous theorem: All the
assumptions are verified. In particular, r > 2q/

√|ΔK | and h′ is a representative
of [h] in I(OΔq , qr): The ideal h′ is chosen prime to r′ and will be also prime
to q, otherwise the factorisation of Δq is already recovered. Now, [f] is trivial if
the order of [h] divides φΔK (r) = r′ δr′−1

(
r′ − (

ΔK

r′
))

. As we suppose that the
order of [h] is greater than 6 (see Remark. 2), at most one iteration of step 3
will be done, otherwise the order of [h] divides both φΔK (3δ3) and φΔK (5δ5),
which is impossible (since their gcd is 2, 4 or 6, according to the value of the
Kronecker symbols). Eventually, f has norm q2 and therefore Algorithm 3 outputs
a nontrivial factorisation of Δq.

The cost of the initialisation phase is essentially cubic in the security parame-
ter. The core of the algorithm consists in applying Algorithm 1 whose complexity
is quadratic in λ, and an exponentiation whose complexity is cubic. �

Corollary 1 implies that all the schemes for which a public element of the kernel
of ϕ̄q is needed are broken in polynomial time. This includes the NICE encryp-
tion scheme and its variants, notably the enhanced IND-CCA2 version (cf. [PT99,
HPT99,PT00,Huh00,BST02]), the derived signature scheme (cf. [HM00,Huh01])
and the undeniable signature scheme (cf. [BPT04]). Note that this result does
not affect the security of the adaptation of seminal cryptosystems in imagi-
nary quadratic fields, i. e., the Diffie-Hellman key exchange of [BW88,McC89],
the Rabin and RSA analogues of [HMT99] and the adaptation of Elgamal
of [HJPT98].

Example. We apply our cryptanalysis on the example of the NICE encryption
scheme mentioned in [JJ00], described as follows:

On the Security of Cryptosystems with Quadratic Decryption 275

Δq = −100113361940284675007391903708261917456537242594667
4915149340539464219927955168182167600836407521987097
2619973270184386441185324964453536572880202249818566
5592983708546453282107912775914256762913490132215200
22224671621236001656120923

a = 57022687708942583181685884381175588713007831807699951
95092715895755173700399141486895731384747

b = 33612360405827547849585862980179491106487317456059301
64666819569606755029773074415823039847007

The public key consists in Δq and h = (a, b).
The ideal h = (a, b) is equivalent to the ideal h′ = (a′, b′) with norm prime to

3 with b′ = −b and a′ = (b2 −Δq)/4a:

a′ = 43891898980317792308326285455049173482378605867
42403785190862097985269408138288879224220052968
10150815323915182343893632698778887397967669

b′ = −3361236040582754784958586298017949110648731745
605930164666819569606755029773074415823039847007

We used the following power of 3:

r = 383 = 3990838394187339929534246675572349035227

Then, in 20ms, we have computed the lift of (a′, b′) of norm q2:

f = (536312317197703883982960999928233845099174632823
695735108942457748870561203659790025346332338302
277214655139356149715939077126809522499818706407
36401120729,
50726115195894796350644539158073328654518399170
010324260439808053865626730478159167292645232706
489579615441563764090965623987919889655079184915
879970067243)

The experiments have been done on a standard laptop running Linux with
PARI/GP.

4 Conclusion

We totally break a large class of cryptosystems based on imaginary quadratic
field arithmetic, whose main interest was the quadratic complexity of the secret
operation. This polynomial time attack shows that SKEP and the kernel prob-
lem are not suited to build cryptosystems and lessen the number of public-key

276 G. Castagnos and F. Laguillaumie

cryptosystems with quadratic decryption time. The adaptation of NICE recently
proposed in [JSW08] in the very different setting of real quadratic fields, seems
to resist to our attack.

Acknowledgement. We warmly thank Denis Simon with whom we had helpful
discussions on quadratic forms, Brigitte Vallée for her huge contribution to the
analysis of the complexity of our first attack, and last not but least Andreas
Enge for his conscientious reviewing of a preliminary version of our paper and
for his precious comments.

References

[BPT04] Biehl, I., Paulus, S., Takagi, T.: Efficient Undeniable Signature Schemes
based on Ideal Arithmetic in Quadratic Orders. Des. Codes Cryptogra-
phy 31(2), 99–123 (2004)

[BDH99] Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large
r. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337.
Springer, Heidelberg (1999)

[BST02] Buchmann, J., Sakurai, K., Takagi, T.: An IND-CCA2 Public-Key Cryp-
tosystem with Fast Decryption. In: Kim, K.-c. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 51–71. Springer, Heidelberg (2002)

[BW88] Buchmann, J., Williams, H.C.: A Key-Exchange System based on Imagi-
nary Quadratic Fields. J. Cryptology 1, 107–118 (1988)

[BTW95] Buchmann, J., Thiel, C., Williams, H.C.: Short Representation of
Quadratic Integers. In: Proc. of CANT 1992, Math. Appl., vol. 325, pp.
159–185. Kluwer Academic Press, Dordrecht (1995)

[CNP99] Coron, J.-S., Naccache, D., Paillier, P.: Accelerating Okamoto-Uchiyama
public-key cryptosystem. Electronics Letters 35(4), 291–292 (1999)

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Heidelberg (2000)

[Cox99] Cox, D.A.: Primes of the form x2 + ny2. John Wiley & Sons, Chichester
(1999)

[HM89] Hafner, J.L., McCurley, K.S.: A Rigorous Subexponential Algorithm for
Computation of Class Group. J. Amer. Math. Soc. 2(4), 837–850 (1989)

[HPT99] Hartmann, M., Paulus, S., Takagi, T.: NICE - New Ideal Coset Encryption.
In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 328–339.
Springer, Heidelberg (1999)

[Huh00] Hühnlein, D.: Efficient Implementation of Cryptosystems Based on Non-
maximal Imaginary Quadratic Orders. In: Heys, H.M., Adams, C.M. (eds.)
SAC 1999. LNCS, vol. 1758, pp. 147–167. Springer, Heidelberg (2000)

[Huh01] Hühnlein, D.: Faster Generation of NICE-Schnorr-Type Signatures. In:
Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 1–12. Springer,
Heidelberg (2001)

[HJPT98] Hühnlein, D., Jacobson Jr., M.J., Paulus, S., Takagi, T.: A Cryptosystem
Based on Non-maximal Imaginary Quadratic Orders with Fast Decryption.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 294–307.
Springer, Heidelberg (1998)

On the Security of Cryptosystems with Quadratic Decryption 277

[HJW03] Hühnlein, D., Jacobson Jr., M., Weber, D.: Towards Practical Non Interac-
tive Public-Key Cryptosystems Using Non-Maximal Imaginary Quadratic
Orders. Des. Codes Cryptography 30(3), 281–299 (2003)

[HM00] Hühnlein, D., Merkle, J.: An Efficient NICE-Schnorr-Type Signature
Scheme. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp.
14–27. Springer, Heidelberg (2000)

[HMT99] Hühnlein, D., Meyer, A., Takagi, T.: Rabin and RSA Analogues Based on
Non-maximal Imaginary Quadratic Orders. In: Proc. of ICISC 1998, pp.
221–240 (1999)

[JSW08] Jacobson Jr., M.J., Scheidler, R., Weimer, D.: An Adaptation of the
NICE Cryptosystem to Real Quadratic Orders. In: Vaudenay, S. (ed.)
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 191–208. Springer, Heidel-
berg (2008)

[JJ00] Jaulmes, É., Joux, A.: A NICE cryptanalysis. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 382–391. Springer, Heidelberg (2000)

[LL93] Lenstra, A.K., Lenstra Jr., H.W. (eds.): AMCP 1998. LNM, vol. 1554, p.
131. Springer, Heidelberg (1993)

[Len87] Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Math-
ematics 126(2), 649–673 (1987)

[McC89] McCurley, K.S.: Cryptographic Key Distribution and Computation in Class
Groups. In: Proc. of NATO ASI on Number Theory and Applications, pp.
459–479. Kluwer Academic Press, Dordrecht (1989)

[OP01] Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-Security Asym-
metric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)

[Pai99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[Poi00] Pointcheval, D.: Chosen-Ciphertext Security for Any One-Way Cryptosys-
tem. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146.
Springer, Heidelberg (2000)

[Poi05] Pointcheval, D.: Provable Security for Public Key Schemes. In: Advanced
Courses CRM Barcelona, Advanced Course on Contemporary Cryptology,
pp. 133–189. Birkhäuser Publishers, Basel (2005)

[PT99] Paulus, S., Takagi, T.: A generalization of the Diffie-Hellman problem and
related cryptosystems allowing fast decryption. In: Proc. of ICISC 1998,
pp. 211–220 (1999)

[PT00] Paulus, S., Takagi, T.: A New Public-Key Cryptosystem over a Quadratic
Order with Quadratic Decryption Time. J. Cryptology 13(2), 263–272
(2000)

[Sch82] Schoof, R.: Quadratic fields and factorization. Computational Methods in
Number Theory, MC-Tracts 154/155, 235–286 (1982)

[Sch00] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

[VV07] Vallée, B., Vera, A.: Lattice Reduction in Two Dimensions: Analyses under
Realistic Probabilistic Models. In: Proc. of AofA 2007, DMTCS. AH, pp.
181–216 (2007)

Cube Attacks on Tweakable Black Box
Polynomials

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute
Rehobot 76100, Israel

Abstract. Almost any cryptographic scheme can be described by tweak-
able polynomials over GF (2), which contain both secret variables (e.g.,
key bits) and public variables (e.g., plaintext bits or IV bits). The crypt-
analyst is allowed to tweak the polynomials by choosing arbitrary values
for the public variables, and his goal is to solve the resultant system of
polynomial equations in terms of their common secret variables. In this
paper we develop a new technique (called a cube attack) for solving such
tweakable polynomials, which is a major improvement over several pre-
viously published attacks of the same type. For example, on the stream
cipher Trivium with a reduced number of initialization rounds, the best
previous attack (due to Fischer, Khazaei, and Meier) requires a barely
practical complexity of 255 to attack 672 initialization rounds, whereas
a cube attack can find the complete key of the same variant in 219 bit
operations (which take less than a second on a single PC). Trivium with
735 initialization rounds (which could not be attacked by any previous
technique) can now be broken with 230 bit operations. Trivium with 767
initialization rounds can now be broken with 245 bit operations, and
the complexity of the attack can almost certainly be further reduced to
about 236 bit operations. Whereas previous attacks were heuristic, had
to be adapted to each cryptosystem, had no general complexity bounds,
and were not expected to succeed on random looking polynomials, cube
attacks are provably successful when applied to random polynomials of
degree d over n secret variables whenever the number m of public vari-
ables exceeds d + logdn. Their complexity is 2d−1n + n2 bit operations,
which is polynomial in n and amazingly low when d is small. Cube at-
tacks can be applied to any block cipher, stream cipher, or MAC which is
provided as a black box (even when nothing is known about its internal
structure) as long as at least one output bit can be represented by (an
unknown) polynomial of relatively low degree in the secret and public
variables.

Keywords: Cryptanalysis, algebraic attacks, cube attacks, tweakable
black box polynomials, stream ciphers, Trivium.

1 Introduction

Solving large systems of multivariate polynomial equations is considered an ex-
ceedingly difficult problem, which had been studied extensively over many years.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 278–299, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Cube Attacks on Tweakable Black Box Polynomials 279

The problem is NP-complete even when the system contains only quadratic equa-
tions modulo 2 (see [18]), and it provides the main protective mechanism in many
cryptographic schemes.

The main mathematical tool developed in order to solve such equations is
the notion of Grobner bases (see [1],[2] and [3]), but when we try to apply it in
practice to random equations with more than 100 variables it usually runs out of
space without providing any answers. The much simpler linearization technique
considers each term in these polynomials as a new independent variable, and
tries to solve the resultant system of linear equations by Gauss elimination.
Its main problem is that it requires a hugely overdefined system of polynomial
equations. For example, a system of 256 polynomial equations of degree d = 16
in n = 256 variables over GF (2) is expected to have a unique solution, but in
order to find it by linearization we have to increase the number of equations
to the number of possible terms in these equations, which is about nd = 2128.
There are several improved algorithms such as XL and XSL (see [3],[4],[5], [6]
and [7]) which reduce the number of required equations and the time and space
complexities, but they are still completely impractical for such sizes.

The main observation in this paper is that the polynomial equations defined
by many cryptographic schemes are not arbitrary and unrelated. Instead, they
are typically variants derived from a single master polynomial by setting some
tweakable variables to any desired value by the attacker. For example, in block
ciphers and message authentication codes (MAC’s) the output depends on key
bits which are secret and fixed, and on message bits which are public and control-
lable by the attacker in a chosen plaintext attack. Similarly, in stream ciphers
the output depends on secret fixed key bits and on public IV bits which can
be chosen arbitrarily. By modifying the values of these tweakable public bits,
the attacker can obtain many derived polynomial equations which are closely
related. What we show in this paper is that when the master polynomial is suf-
ficiently random, we can eliminate with provably high probability all of its nd

nonlinear terms by considering a surprisingly small number of only 2dn tweaked
variants, and then solve a precomputed version of the resultant n linear equa-
tions in n variables using only n2 bit operations. For example, when d = 16 and
n = 10, 000, we can simultaneously eliminate all the 2200 nonlinear terms by
considering only the 220 derived polynomial equations obtained by encrypting
220 chosen plaintexts defined by setting 20 public bits to all their possible values.
After this “massacre” of nonlinear terms, the only thing left is a random looking
system of linear equations in all the secret variables, which is easy to solve. In
case the master polynomial is not random, there are no guarantees about the
success rate of the attack, and if the degree of the master polynomial is too high,
the basic attack technique is not likely to work. For these cases, we describe in
the appendix several generalizations which may prove to be useful.

To demonstrate the attack, consider the following dense master polynomial
of degree d = 3 over three secret variables x1, x2, x3 and three public variables
v1, v2, v3:

280 I. Dinur and A. Shamir

P (v1, v2, v3, x1, x2, x3) = v1v2v3 + v1v2x1 + v1v3x1 + v2v3x1 + v1v2x3 + v1v3x2+
v2v3x2+v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+v1x3+v3x1+x1x2+x2x3+x2+

v1+v3+1

Third degree polynomials over six variables can have
(6
3

)
+
(6
2

)
+
(6
1

)
+
(6
0

)
= 42

possible terms, and thus there are 242 such polynomials overGF (2). To eliminate
all the 35 possible nonlinear terms by Gauss elimination, we typically need 35
such polynomials. By setting the three public variables v1, v2, v3 to all their
possible 0/1 values, we can get only 8 derived polynomials, which seem to be
insufficient. However, summing the 4 derived polynomials with v1 = 0 we get
x1 + x2, summing the 4 derived polynomials with v2 = 0 we get x1 + x2 + x3,
and summing the four derived polynomials with v3 = 0 we get x1 + x3, which
simultaneously eliminated all the nonlinear terms. When we numerically sum
modulo 2 the values of the derived polynomials in these three different ways
(instead of symbolically summing the polynomials themselves), we get a simple
system of three linear equations in the three secret variables. Consequently, the
master nonlinear polynomial can be solved by a chosen message attack which
evaluates it for just 8 combinations of values of its public variables.

Since we deal with dense multivariate polynomials of relatively high degree,
their explicit representations are extremely big, and thus we assume that they
are provided only implicitly as black boxes which can be queried. This is a
natural assumption in cryptanalysis, in which the attacker can interact with an
encryption black box that contains the secret key. A surprising consequence of
our approach is that we can now attack completely unknown cryptosystems (such
as the CRYPTO-1 algorithm implemented in millions of transportation smart
cards, whose design was kept as a trade secret until very recently) which are
embedded in tamper resistant hardware, without going through the tedious and
expensive process of physical reverse engineering! Since the number of queries
we use is much smaller than the number needed in order to uniquely interpolate
the polynomial from its black box representation, our algorithm manages to
break such unknown cryptosystems even when it is information theoretically
impossible to uniquely determine them from the available data.

Some of the issues we deal with in this paper are how to efficiently estimate
the degree d of a given black box multivariate polynomial, how to solve high
degree polynomials which can be well approximated by low degree polynomials
(e.g., when they only contain a small number of high degree terms which almost
always evaluate to zero), and how to easily find the linear equations defined by
the sums of these huge derived polynomials. Note that in the black box model
the attacker is not allowed to perform symbolic operations such as asking for
the coefficient of a particular term, evaluating the GCD of two polynomials,
or computing their Grobner basis, unless he first interpolates them from their
values by a very expensive procedure which requires a huge number of queries.

We call this cryptanalytic technique a cube attack since it sets some pub-
lic variables to all their possible values in n (not necessarily disjoint) (d − 1)-
dimensional boolean cubes, and sums the results in each cube. The attack is not
completely new, since some of its ideas and techniques were also used in previous

Cube Attacks on Tweakable Black Box Polynomials 281

heuristic attacks on various cryptosystems, but we believe that this is the first
time that all these elements were brought together, accompanied by careful
analysis of their complexity and success rate for random black box
polynomials.

Cube attacks should not be confused with the interpolation attacks of Jakob-
sen and Knudsen ([17]), which deal with cryptosystems whose basic operations are
quadratic polynomials over all or half of the input. Such polynomials are univariate
or bivariate polynomials over GF (2n), and thus have fairly compact representa-
tions which can be easily interpolated from sufficiently many input/output pairs.
Our attack deals with huge black box multivariate polynomials overGF (2) which
cannot possibly be interpolated from the available data.

The attack is remotely related to the square attack (see [8]) which considers the
special case of cryptographic schemes whose secret bits are grouped into longer
words, which are arranged in a two dimensional square. Cube attacks make no such
assumptions about how the secret bits in the polynomial equations are related to
each other, and thus they can be applied in a much broader set of circumstances.

The attack is also superficially similar to integral attack (also called saturation
attack in the literature) and to high order differential attack which sum the
output of cryptosystems over various subsets of input variables. However, as
explained in section 3, this is just an artifact of the special field GF (2) in which
addition and subtraction are the same operation, and over a general field GF (pk)
with p > 2 we have to use a different way to apply cube attacks.

Several previously published techniques try to break particular schemes by
highly heuristic attacks that sum output values on some Boolean cubes of public
variables. These related attacks include [26], [27], [28], [29], [30] and [31], and are
collectively referred to as chosen IV statistical attacks. Compared to these attacks,
the cube attack is much more general, is applicable to block ciphers in addition to
stream ciphers, and has a better-defined preprocessing phase which does not need
adaptations for each given scheme. As a result, cube attacks can be applied with
provable success rate and complexity even when the cryptosystem is modelled by
a random black box polynomial about which nothing is known. The most impor-
tant difference is that in cube attacks each summation leads to an easily solvable
linear equation (in any number of secret key bits), whereas in chosen IV statistical
techniques there are many attack scenarios, and each summation typically leads
only to a statistically biased expression (in a small subset of the secret key bits).
Such a bias has to be amplified by many repetitions using a much larger amount
of data before it can be used in order to find the key. The most convincing demon-
stration of this difference is the best previously known chosen IV attack on the
Trivium stream cipher [28]: When the number of initialization rounds is reduced
to 672, this attack has a relatively high complexity of 255 operations, whereas the
standard unoptimized cube attack can perform full key recovery in just 219 bit
operations; When the number of initialization steps is increased to 735, no pre-
viously published attack is faster than exhaustive search, whereas the same cube
attack can easily perform full key recovery in 230 bit operations. These and further
results about Trivium are discussed in the appendix.

282 I. Dinur and A. Shamir

2 Terminology

This section describes the formal notation we use in the rest of the paper. The
attacker is given a black box that evaluates an unknown polynomial p over
GF (2) of n + m inputs bits (x1, .., xn, v1, .., vm) and outputs a single bit. The
polynomial is assumed to be in Algebraic Normal Form, namely, the sum of
products of variables. The input bits x1, .., xn are the secret variables, while
v1, .., vm are the public variables. The solution consists of two phases. During
the preprocessing phase, the attacker is allowed to set the values of all the
variables (x1, .., xn, v1, .., vm) and to use the black box in order to evaluate the
corresponding output bit of p. This corresponds to the usual cryptanalytic setting
in which the attacker can study the cryptosystem by running it with various keys
and plaintexts. During the online phase, the n secret variables are set to unknown
values, and the attacker is allowed to set the values of the m public variables
(v1, .., vm) to any desired values and to evaluate p on the combined input.

To simplify our notation, we ignore in the rest of this section the distinction
between secret and public variables, and denote all of them by x1, ..., xn. Since
x2

i = xi modulo 2, the terms tI in the polynomial can be indexed by the subset
I ⊆ {1, ..., n} of the variables which are multiplied together, and every poly-
nomial can be represented by sums of tI for a certain collection of subsets I.
We denote by Pn

d the set of all the multivariate polynomials over GF (2) with n
variables and total degree bounded by d.

Given a multivariate polynomial p and any index subset I, we can factor the
common subterm tI out of some of the terms in p, and represent the polynomial as
the sum of terms which are supersets of I and terms which are not supersets of I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

We call pS(I) the superpoly of I in p. Note that for any p and I, the superpoly of I
in p is a polynomial that does not contain any common variable with tI , and each
term in q(x1, .., xn) misses at least one variable from I.

To demonstrate these notions, let

p(x1, x2, x3, x4, x5) = x1x2x3 + x1x2x4 + x2x4x5 + x1x2 + x2 + x3x5 + x5 + 1

be a polynomial of degree 3 in 5 variables, and let I = {1, 2} be an index subset
of size 2. We can represent p as:

p(x1, x2, x3, x4, x5) = x1x2(x3 + x4 + 1) + (x2x4x5 + x3x5 + x2 + x5 + 1)

where

tI = x1x2

pS(I) = x3 + x4 + 1
q(x1, x2, x3, x4, x5) = x2x4x5 + x3x5 + x2 + x5 + 1

Definition 1. A maxterm of p is a term tI such that deg(pS(I)) ≡ 1, i.e. the
superpoly of I in p is a linear polynomial which is not a constant.

Cube Attacks on Tweakable Black Box Polynomials 283

Any subset I of size k defines a k-dimensional Boolean cube of 2k vectors CI

in which we assign all the possible combinations of 0/1 values to variables in I,
and leave all the other variables undetermined. Any vector v ∈ CI defines a new
derived polynomial p|v with n− k variables (whose degree may be the same or
lower than the degree of the original polynomial). Summing these derived poly-
nomials over all the 2k possible vectors in CI , we end up with a new polynomial,
which is denoted by pI �

∑
v∈CI

p|v. In the next section, we prove that this
polynomial has a simple alternative definition, which makes it extremely useful
in cryptanalytic applications.

3 The Main Observation

Theorem 1. For any polynomial p and subset of variables I, pI ≡ pS(I) modulo 2.

Proof. Write p(x1, .., xn) ≡ tI ·pS(I) +q(x1, .., xn). We first examine an arbitrary
term tJ of q(x1, .., xn), where J is the subset containing the variable indexes
that are multiplied together in tJ . Since tJ misses at least one of the variables
in I, it is added an even number of times (for the two possible values of any one
of the missed variables, where all the other values of the variables are kept the
same), which cancels it out modulo 2 in

∑
v∈C p|v.

Next, we examine the polynomial tI · pS(I): All v ∈ CI zero tI , except when
we assign the value 1 to all the variables in I. This implies that the polynomial
pS(I) (which has no variables with indexes in I and is thus independent of the
values we sum over) is summed only once, when tI is set to 1. Consequently, the
formal sum of all the derived polynomials is exactly the superpoly pS(I) of the
term we sum over. �

Basically, the theorem states that the sum of the 2k polynomials derived from
the original polynomial p by assigning all the possible values to the k variables in
I, eliminates all the terms except those which are contained in the superpoly of I
in p. The summation thus reduces the total degree of the master polynomial by
at least k, and if tI is any maxterm in p, this sum yields a linear equation in the
remaining variables. For example, if we sum the polynomial p(x1, x2, x3, x4, x5)
defined in the previous section over the four possible values of x1 and x2 in
the maxterm tI = x1x2, we get the linear expression pS(I) = (x3 + x4 + 1).
Consequently, all the cryptanalyst has to do in order to solve a tweakable master
polynomial of degree d is to find sufficiently many maxterms in it, and for each
maxterm to sum at most 2d−1 derived polynomials. Note that he only has to add
the 0/1 values of these derived polynomials (which he can obtain via a chosen
plaintext attack), and not their huge symbolic expressions. The summed bit is
then equated with a fixed linear expression which can be derived from the master
black box polynomial during a separate preprocessing stage, since it is not key-
dependent. For low degrees such as d = 16, the derivation of the right hand side
of each linear equation during the online phase of the attack requires at most
215 = 32768 additions of single bit values, which takes a negligible amount of
time.

284 I. Dinur and A. Shamir

Over a general field GF (pk) with p > 2, the correct way to apply cube attacks
is to alternately add and subtract the outputs of the master polynomial with
public inputs that range only over the two values 0 and 1 (and not over all
their possible values of 0, 1, 2, ..., p−1), where the sign is determined by the sum
(modulo 2) of the vector of assigned values. In this form, they are reminiscent
of FFT computations. Cube attacks are thus more closely related to high order
differential attacks than to integral attacks, but they do not use the same formal
operator. For example, consider the bivariate polynomial p(x, v) = 4x2v3+3x2v5

(mod 7) of degree 7. The formal derivative of this polynomial with respect to v
is the 6-degree polynomial p′v(x, v) = 5x2v2 +x2v4 (mod 7) whereas our numeric
difference yields p(x, 1)− p(x, 0) = (4x2 + 3x2)− (0 + 0) = 0 (mod 7) which has
degree 0. In addition, cube attacks use algebraic rather than statistical techniques
to actually find the secret key.

4 The Preprocessing Phase

Given an explicit description of the master polynomial, it is easy to split it
into p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn) for any term tI . However, when the
exponentially long master polynomial is given only as a black box, it is not clear
how to find this representation, and how to store it in a compact way.

When tI is a maxterm, the issue of compact representation becomes easy,
since we only have to know its superpoly pS(I) in order to apply the attack,
and this expression is a short linear combination of some of the secret variables
xi, with the possible addition of the constant 1. Note that we can eliminate all
the public variables vi that are not summed over from this linear expression by
fixing each one of them to 0 (or to 1) during the summation.

In order to actually find pS(I) for a given black box master polynomial and a
maxterm tI in it, we use a separate preprocessing phase in which the attacker is
given the extra power of tweaking both the public and the secret variables:

Theorem 2. Let tI be a maxterm in a black box polynomial p. Then:

1. The free term in pS(I) can be computed by summing modulo 2 the values of
p over all the inputs of n+m variables which are zero everywhere except on
the d− 1 variables in the summation cube CI .

2. The coefficient of xj in the linear expression pS(I) can be computed by sum-
ming modulo 2 all the values of p for input vectors which are zero everywhere
except on the summation cube CI and all the values of p for input vectors
which are zero everywhere except on the summation cube and at xj which is
set to 1.

The proof is based on the observation that in a linear expression, the coefficient
of any variable xj is 1 if and only if flipping the value of xj flips the value of
the expression, and the free term can be computed by setting all the variables
to zero.

In the rest of this section, we distinguish between the cases of random and
non-random master polynomials.

Cube Attacks on Tweakable Black Box Polynomials 285

4.1 Preprocessing Random Polynomials

In many cryptographic schemes, the mixing of the inputs is so thorough that the
representation of each ciphertext bit as a fully expanded polynomial function of
the n key bits and m plaintext bits can be viewed as a random polynomial:

Definition 2. A random polynomial of degree d in n+m variables is a polyno-
mial p ∈ Pn+m

d such that each possible term of degree at most d is independently
chosen to occur with probability 0.5.

In fact, the notion of randomness we need in order to lower bound the success
probability of cube attacks is considerably weaker, since the only terms which
play any role in the attack are those that correspond to maxterms in p:

Definition 3. A d-random polynomial with n+m variables is a polynomial p ∈
Pn+m

d such that each possible term of degree d which contains one secret variable
and d− 1 public variables is independently chosen to occur with probability 0.5,
and all the other terms can be chosen arbitrarily.

In any d-random polynomial, any term tI which is the product of d − 1 public
variables vi has an extremely high probability to be a maxterm: Its corresponding
superpoly is a polynomial of degree at most 1, and it is a polynomial of degree 0
only when for all the secret variables xi the terms tIxi are not chosen to appear
in the polynomial. The probability of this event is 2−n.

For any two terms tI1 and tI2 which are the products of d−1 public variables,
we get independent random choices of their corresponding superpolys, even when
I1 and I2 are almost identical. For example, when d = 4, I1 = {1, 2, 3}, and
I2 = {1, 2, 4}, each one of the two terms v1v2v3x5 and v1v2v4x5 occurs in p with
probability 0.5 independently of the other. Since we do not need disjoint subsets
of public variables as our maxterms, we only need about d + logd n tweakable
public variables in order to pack n different maxterms among their products,
since

(
d+logd n

d

)
=

(
d+logd n
logd n

)
≈ dlogd n = n. In particular, when d = 16 and

n = 10, 000, it suffices to have only m = 20 tweakable public variables to apply
the cube attack, since

(20
15

)
= 15, 504 > n. Note that the computations of these

maxterms are not independent since we reuse the same derived polynomials in
many overlapping cube summations, but the results of the computations are
independent linear combinations of the secret variables.

After choosing n random maxterms, the attacker defines an n × n matrix A
whose rows contain their corresponding superpolys. If the matrix is nonsingular,
the attacker precomputes and stores A−1 in order to reduce the complexity of
the linear algebra in the online phase of the attack from O(n3) to O(n2).

Since A is a random matrix in which each entry is independently selected with
probability 1/2, it is very easy to compute the probability that it is nonsingular:

Lemma 1. The probability that an n× n random binary matrix over GF (2) is
invertible is

∏n
i=1(1− 2−i) ≈ 0.28879

Proof. The proof is by a simple induction on the rows of the matrix.

286 I. Dinur and A. Shamir

This is a constant probability, which can be made arbitrarily close to 1 during the
preprocessing phase by considering a few extra maxterms. For d = 16 n = 10, 000
and m = 20, there are 15, 504 possible superpolys to choose from, and the
probability that the rank of all these random linear expressions will be smaller
than 10, 000 is negligible.

Since the preprocessing phase has to be executed only once for each cryp-
tosystem whereas the online phase has to be executed once for each key, some
cryptanalytic attacks “cheat” by allowing extremely expensive operations dur-
ing an unbounded preprocessing phase which make the whole attack impractical.
When cube attacks are applied to random polynomials, the complexity of the
preprocessing phase is at most n times larger than that of the online phase of
the attack, and thus if one phase is practically feasible so is the other.

4.2 Preprocessing Nonrandom Polynomials

When the polynomial representation of the cryptosystem is not assumed to be
d-random, there are no guarantees about the success rate of the attack. The
basic questions we are faced with in this case are how to estimate the degree
d of the polynomial p which is only given as a black box, and how to choose
appropriate maxterms if they exist. We propose the following technique, which
is a variant of the random walk proposed in [28].

The attacker randomly chooses a size k between 1 and m and a subset I of
k public variables, and computes the value of the superpoly of I by numerically
summing over the cube CI (setting each one of the other public variables to
a static value, usually to zero). If his subset I is too large, the sum will be a
constant value (regardless of the choice of secret variables), and in this case he
has to drop one of the public variables from I and repeat the process. If his
subset I is too small, the corresponding pS(I) is likely to be a nonlinear function
in the secret variables, and in this case he has to add a public variable to I and
repeat the process. The correct choice of I is the borderline between these cases,
and if it does not exist the attacker can restart with a different initial I.

The best way to understand this process is to think about a (not necessarily
random) polynomial p in which all the terms have the same degree d, but contain
different proportions of secret and public variables. When we sum over subsets I
with d−2 public variables, we will get a purely quadratic polynomial in the secret
variables which corresponds to all those terms that contain the d − 2 variables
in I as their public variables and two additional secret variables. Linear terms
will not occur in this polynomial since every term which contains d − 1 public
variables is eliminated by at least one public variable which is not in I and is thus
set to zero. Note that for nonrandom polynomials, this quadratic expression may
be empty for some I (misleading us to believe that I is too large), but nonempty
for another I (indicating correctly that it is too small), and thus we may have
to restart the preprocessing with several initial I’s. When we sum over subsets I
with d−1 public variables, we will get a linear polynomial in the secret variables,
but again it may be empty. In particular, if all the terms in the nonrandom p
contain at least two secret variables, we will never be able to get any linear

Cube Attacks on Tweakable Black Box Polynomials 287

superpoly during the preprocessing phase, regardless of the choice of I. When
we sum over I with d public variables, we will get a key-independent constant,
which is zero or one depending on whether the unique term which is the product
of all the public variables in I does or does not occur in p. In this case we will
always act correctly by reducing the size of I. Finally, when we sum over an I
of size d+ 1 or larger, we will always get the zero polynomial, since every term
in p misses at least one of the public variables in I, and will thus be added an
even number of times modulo 2.

For any choice of values for all the secret variables, we sum the 0/1 values of
p over the subcube CI of public variables, setting all the other public variables
to zero. This sum is a function of secret variables only, and we can test it for
linearity during the preprocessing phase (in which we are allowed to modify
the secret variables) by using any one of the efficient linearity tests which were
developed as part of the PCP theorem (see [9]).

One example of such a linearity test is the BLR test (see [10]), which chooses
vectors x,y ∈ {0, 1}n independently and uniformly at random, and verifies that
pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x + y]. The test ensures that if pS(I) is
linear, the test always succeeds, whereas if pS(I) is far from being linear, the
test fails with high probability. The test is repeated sufficiently many times
until the attacker is convinced that pS(I) is very close to being linear (e.g.,
it it linear, except for a few high degree terms which almost always evaluate
to zero). By using the cube attack in this case, we can find most but not all
of the possible keys, which is good enough in our cryptanalytic application.
Note that in our preprocessing, almost all the functions we test are likely to be
nonlinear superpolys (which typically fail in one of the first few linearity tests,
thus requiring only a few cube summations) or easily detected constant functions,
whereas in the preprocessing done by Fischer Khazaei and Meier, almost all the
functions they test are balanced, and distinguishing them from slightly biased
functions requires a huge number of cube summations on average.

As in the random setting, the attacker stops when sufficiently many linearly
independent vectors are derived and A−1 can be computed. The online phase of
the attack is identical to the case of random polynomials.

There are many possible optimizations of this process. For example, summing
the values of p over subcubes with large intersections can be sped up by memo-
rizing various partial sums, and thus we do not have to start from scratch when
we add or eliminate one public variable from I in our proposed random walk
search technique. Another extension uses the freedom to choose the values of the
public variables that are not summed over. In case we get an empty superpoly
for a specific cube, and a non-linear superpoly for any of its sub-cubes, we can
still try to make the superpoly nonempty in order to get a maxterm by setting
some of the remaining public variables to one. If the result is still zero, we can set
some more of these variables to one. If the result is non-linear, we can set a few
public variables that are not summed over back to zero. Note that this random
walk over the values of the public variables we do not sum over is different from

288 I. Dinur and A. Shamir

the previously described random walk over the subset of the public variables we
sum over.

A different attack scenario on non random polynomials uses the cube attack as
a distinguisher rather than as a key extraction procedure. For example, if some
output bit is a polynomial of degree at most d in the n + m input variables,
summing it over any d-dimensional cube of public variables will always give a
constant value (which depends on the summation set I, but not on the key,
and thus can be precomputed in the preprocessing phase), whereas in a random
cipher such a sum will be uniformly distributed. Since the attacker has to sum
over a single cube and does not have to solve any equations, the complexity of this
distinguisher is just 2d. Consequently, ANY cryptographic scheme in which d < n
and d < m can be distinguished from a random cipher by an algorithm which is
faster than exhaustive search, regardless of whether its polynomial representation
is random or not. A detailed description of the theory and applications of cube
distinguishers appearers in [19].

5 Applications to Block Ciphers

In chosen plaintext attacks on block ciphers, the public variables are the bits
of the plaintext. Since most block ciphers have a block size of at least 128 bits,
there is no shortage of tweakable variables.

Since the attack is using only a single bit from the ciphertext, it makes no
difference whether the cryptographic mapping is invertible or not. Consequently,
we can attack a keyed hash function (also known as a MAC, or message authen-
tication code) by using exactly the same techniques. An example of such an
attack on the keyed hash function MD6 can be found in [19].

The main problem in applying the cube attack to block ciphers is that they
usually contain many rounds, and the degree of the polynomial grows exponen-
tially with the number of rounds (until it hits the maximum possible value of
n+m). Several techniques that may help to overcome the problem of high degree
polynomials in block ciphers appear in the appendix.

6 Applications to Stream Ciphers

In the case of stream ciphers, the secret variables represent the key, and the
public variables represent the IV. The model assumes that the attacker can
simulate the cipher during the preprocessing phase, and can apply a chosen IV
attack during the online phase. Note that we can also use a known IV attack if
the stream cipher operates in the common counter mode that uses consecutive
binary numbers (such as the packet number or the time of day) as its IV’s, since
their least significant bits contain full subcubes of various dimensions.

Many proposed stream ciphers use one or more linear feedback shift registers
(LFSR), which are either filtered or combined by nonlinear functions to produce
the output. In this case, the degree of the output polynomial is only determined
by this function, is relatively small, is easy to bound, and does not increase when

Cube Attacks on Tweakable Black Box Polynomials 289

the cipher generates a large number of bits (many of which are kept hidden during
the initialization phase). The attack requires the knowledge of only one output
bit for several IV values, and we can choose its location arbitrarily. In particular,
we can choose a bit location in which the corresponding plaintext bit is known.
Typical examples of such locations include standard packet header bits, or the
high bits of ASCII characters which are known to be zero.

As an extreme example of the power of cube attacks, consider a long LFSR
with 10, 000 bits and a secret dense feedback polynomial, which is filtered by a
layer of 1, 000 S-boxes. Each S-box is a different secret mapping of 8 bits from
the LFSR into one output bit, and the connection pattern between the LFSR
and the S-boxes is also assumed to be secret. In each clock cycle, the cipher
outputs only one bit, which is the XOR of the outputs of all the S-boxes. Each
bit in the LFSR is initialized by a different secret dense quadratic polynomial
in 10, 000 key and IV bits. The LFSR is clocked a large and secret number of
times without producing any outputs, and then only the first output bit for any
given IV is made available to the attacker.

The attack is a structural attack which is based only on the general form of the
cryptosystem (as described in figure 1). Note that the attacker does not know the
secret LFSR feedback polynomial, the 1, 000 S-boxes, the LFSR/S-Box intercon-
nection pattern, the actual key/IV mixing function, or the number of dummy ini-
tialization steps. The only properties of this design which are exploited by the cube
attack are that the output of each S-box is a random looking polynomial of degree
16 (obtained by substituting quadratic expressions in each one of its 8 input vari-
ables), that the XOR of these S-boxes is also a polynomial of degree 16 (in the
10, 000 secret and public variables), and that we have sufficient tweaking power
over the generation of the first output bit. The attack uses only 220 output bits
(one for each IV value), which are summed in 10, 000 overlapping 15 dimensional
cubes (note that

(20
15

)
= 15504 > 10000). The attacker can thus get 10, 000 linear

equations in 10, 000 variables, which he can easily solve by using the precomputed
inverse of the coefficient matrix. This stream cipher can thus be broken in less than
230 bit operations, even though it could not be attacked by any previous technique,
including correlation attacks or the analysis of low Hamming weight LFSR modi-
fications (see for instance [11],[12],[13],[14],[15], and [16]).

We have experimentally tested the cube attack on this stream cipher, in order
to rule out the possibility that the black box polynomials which represent this
stream cipher have some unexpected properties that foil the attack. In all our
tests, the attack behaved exactly as expected under the assumption that the
polynomials are d-random.

Some stream ciphers such as LILI and A5/1 use clock control in order to foil
correlation attacks. If A5/1 had used its clock control only when producing the
output bits (but not during the initialization rounds), it would have been trivial
to break it with a straightforward cube attack, which uses only the first output
bit produced for each IV value.

Other types of stream ciphers such as Trivium (see [21]) include a small
amount of nonlinearity in the feedback of the shift register, and thus the degree

290 I. Dinur and A. Shamir

Sbox SboxSbox

Key IV

Sbox

Mix

Output

 LFSR

Fig. 1. A typical Filtered LFSR generator

of the output polynomial grows slowly over time. Since the attacker needs only
the first output bit for each IV, it may be possible to apply the cube attack to
such schemes, provided that they do not apply too many initialization rounds
in which no output is produced. Results of the attack on simplified variants of
Trivium that apply fewer initialization rounds are given in appendix B.

If the attacker is given more than one output bit in each execution of the
stream cipher, he can slightly reduce the number of public variables required in
the attack by summing the outputs of several polynomials pi defining different
output bits. This way he can get more than one linear equation for each maxterm
during the preprocessing phase, and thus he can use fewer tweakable bits and
use a smaller number of expensive restarts (which use many initialization steps)
of the stream cipher during his attack.

An interesting observation is that unlike the case of other attacks, XOR’ing the
outputs of several completely unrelated stream ciphers does not provide enhanced
protection against cube attacks: If each one of the stream ciphers can be repre-
sented by a low degree multivariate polynomial, their XOR is also a low degree
polynomial which can be attacked just as easily as the individual stream ciphers.

7 Conclusions

In this paper we introduced a new type of cryptanalytic attack and described
some of its applications. It joins the rank of linear, differential, algebraic, and
correlation attacks by being a generic attack that can be applied to many types of
cryptographic schemes. We demonstrated its effectiveness by breaking (both in
theory and with an actual implementation) a standard construction of a stream
cipher which seems to be secure against all the previously known attacks. We

Cube Attacks on Tweakable Black Box Polynomials 291

also used the attack to break simplified Trivium variants with complexity that
is considerably lower than the complexity of previous known attacks. The attack
is likely to be the starting point for a new area of research, and hopefully it will
lead to a better understanding of what makes cryptosystems secure.

Acknowledgements. We would like to thank Shahram Khazaei, Willi Meier
and Paul Crowley for independently verifying our results.

References

1. Ajwa, I.A., Liu, Z., Wang, P.S.: Gröbner bases algorithm. Technical report, ICM
Technical Reports Series (ICM-199502-00) (1995)

2. Faugère, J.c.: A new efficient algorithm for computing gröbner bases (f4). Journal
of Pure and Applied Algebra, 75–83 (1999)

3. Gwenole, A., Jean-Charles, F., Hideki, I., Mitsuru, K., Makoto, S.: Comparison
Between XL and Groebner Basis Algorithms (2004)

4. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

5. Courtois, N., Patarin, J.: About the xl algorithm over gf(2). In: CT-RSA, pp.
141–157 (2003)

6. Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security estimates in XL
and gröbner bases-related algebraic cryptanalysis. In: López, J., Qing, S., Okamoto,
E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)

7. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

8. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

9. Arora, S.: Probabilistic checking of proofs: a new characterization of np. Journal
of the ACM, 2–13 (1998)

10. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences 47, 549–595 (1993)

11. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back, pp. 345–359. Springer, Heidelberg (2003)

12. Golic, J.D.: On the security of nonlinear filter generators. In: Proceedings of the
Third International Workshop on Fast Software Encryption, London, UK, pp. 173–
188. Springer, Heidelberg (1996)

13. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

14. Englund, H., Johansson, T.: A new simple technique to attack filter generators and
related ciphers. In: Selected Areas in Cryptography, pp. 39–53 (2004)

15. Golic, J.D., Clark, A., Dawson, E.: Generalized inversion attack on nonlinear filter
generators. IEEE Trans. Comput. 49(10), 1100–1109 (2000)

16. Johansson, T., Jnsson, F.: Fast correlation attacks through reconstruction of linear
polynomials, pp. 300–315. Springer, Heidelberg (2000)

292 I. Dinur and A. Shamir

17. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Fast
Software Encryption, pp. 28–40. Springer, Heidelberg (1997)

18. Garey, M.R., Johnson, D.S.: Computers, and Interactibility. A guide to the theory
of np-completeness. Bell Telephone Labratories, Incorporated

19. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recov-
ery Attacks On Reduced-Round MD6 and Trivium. In: Fast Software Encryption.
Springer, Heidelberg (2009)

20. estream: Ecrypt stream cipher project, http://www.ecrypt.eu.org/stream/
21. De Cannière, C., Preneel, B.: Trivium - a stream cipher construction inspired by

block cipher design principles. estream, ecrypt stream cipher. Technical report, of
Lecture Notes in Computer Science

22. Raddum, H.: Cryptanalytic results on trivium. eSTREAM, ECRYPT Stream Ci-
pher Project, Report 2006/039, 2006 (2006),
www.ecrypt.eu.org/stream/papersdir/2006/039.ps

23. Maximov, A., Biryukov, A.: Two trivial attacks on trivium. In: Selected Areas in
Cryptography, pp. 36–55 (2007)

24. McDonald, C.C.C., Pieprzyk, J.: Attacking bivium with minisat,
http://eprint.iacr.org/2007/040

25. Sönmez Turan, M., Kara, O.: Linear approximations for 2-round trivium. In: Proc.
First International Conference on Security of Information and Networks (SIN
2007), pp. 96–105. Trafford Publishing (2007)

26. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

27. Vielhaber, M.: Breaking one.fivium by aida an algebraic iv differential attack. Cryp-
tology ePrint Archive, Report 2007/413

28. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008)

29. Joux, A., Muller, F.: A chosen iv attack against turing. In: Selected Areas in
Cryptography, pp. 194–207 (2003)

30. O’Neil, S.: Algebraic structure defectoscopy. Cryptology ePrint Archive, Report
2007/378

31. Juhani, M., Saarinen, O.: Chosen-iv statistical attacks on estream ciphers. In:
Proceeding of SECRYPT 2006, pp. 260–266 (2006)

A Appendix: Extensions and Generalizations of Cube
Attacks

Various generalizations of the cube attack can be successfully applied even to
cryptosystems in which the attacker cannot find sufficiently many linear super-
polys, and thus the original attack fails:

1. In block ciphers, the attacker can try to use a ”meet in the middle” attack.
Each bit in the middle of the encryption process can be described as either a
polynomial in the plaintext and key bits, or as a polynomial in the ciphertext
and key bits. Since the number of rounds is halved, the degree of each one of
these polynomials may be the square root of the degree of the full polynomial

Cube Attacks on Tweakable Black Box Polynomials 293

which describes the cipher (especially when the number of rounds is relatively
small and these degrees did not hit their maximal possible values). Instead
of equating the given ciphertext bits to their high degree polynomials, the
attacker can equate the two low degree polynomials describing the two halves
of the encryption and get an easier to solve master equation. This technique
can also be extended to the case of double encryptions, where the attacker
has the additional benefit that the secret key bits used in the two polynomials
are disjoint. Note that the attacker can get multiple polynomial equations
for each one of the bits in the middle or for any one of their polynomial
combinations.

2. In some stream ciphers with many initialization rounds, it is difficult to find
the low degree maxterms required for the attack. In these cases, given that
the internal structure of the stream cipher in known, we can try a different
approach: The attacker explicitly represents the state register bits as poly-
nomials in terms of the public and private variables at some intermediate
initialization round. Given this explicit representation, the attacker performs
linearization on the private variables by replacing them with a new set of
private variables, reducing the degrees of the state register bit polynomials.
The values of the new set of private variables can then be recovered using the
basic techniques of the cube attack. After the values of the new private vari-
ables are recovered, the attacker can solve for the original key by solving the
equations obtained during linearization. If the cipher’s state is invertible, or
close to being invertible, the attacker can simply run the cipher backwards
to recover the key, instead of solving equations. Note that a similar tech-
nique may also be used to attack block ciphers, given that the attacker can
explicitly represent the polynomials at some intermediate encryption round.

3. The attacker can benefit from any system of linear equations (even if it has
fewer than n equations), or from any system of nonlinear equations in which
some of the variables occur linearly, by enumerating and testing only their
smaller set of solutions.

4. The attacker can exploit ANY nonlinear superpoly he can find and compactly
represent by guessing some of the secret variables in it and simplifying the
result. In particular, guessing n − 1 key bits will always suffice to turn any
superpoly into an easy to solve linear equation in the remaining variable, and
will thus result in an attack which is faster than exhaustive search, assuming
that the evaluation of the superpoly is not too time consuming.

5. The attacker can try to solve the equations he can derive from the cube
attack even when they are nonlinear, provided that their degrees are low
enough. When m is large, the attacker can sum over many possible subsets
of d − 1 public variables, and get a highly overdefined system of nonlinear
equations which might be solved by linearization or any other technique.

6. The attacker can easily recognize quadratic superpolys by a generalization of
the BLR linearity test: The attacker randomly chooses vectors x1,x2,x3 ∈
{0, 1}n, and verifies that pS(I)[0]+pS(I)[x1]+pS(I)[x2]+pS(I)[x3]+pS(I)[x1+
x2] + pS(I)[x1 + x3] + pS(I)[x2 + x3] + pS(I)[x1 + x2 + x3] = 0. Again, non
quadratic functions are likely to be eliminated after a few tests. The test can

294 I. Dinur and A. Shamir

be further generalized to cubic functions and to polynomials of higher degree
with the number of required function evaluations growing exponentially with
the degree. The coefficient calculation for polynomials of higher degree can
be generalized as well.

7. The attacker can use the cube attack even if he cannot compactly represent
superpolys. In this case, the attacker decides on a subkey (i.e. a subset of
private variables) whose value is guessed during the online phase. For each
value of the subkey bits, the degree of the superpolys in the remaining private
variables is likely to be reduced, and the attacker can compute and store them
more efficiently. Since the cubes and corresponding superpolys are now key-
dependant, they need to be computed and stored for each potential value
of the subkey. This requires more preprocessing time and memory, but gives
the attacker the extra flexibility of using different maxterms for each subset
of keys.

8. The attacker is usually given more than one output bit, and thus more than
one polynomial in the input bits. In addition to trying each one of them
separately, he can test any polynomial combination of these polynomials
and try to find some linear superpolys among these combinations.

9. Note that in the common mode of operation of stream ciphers in which
n = m, and the secret key and public IV bits are XOR’ed together dur-
ing the initialization step, the maximal possible degree of the polynomial
representation of the scheme is n, whereas in the general case the maximal
possible degree is n+m.

10. When the cryptographic scheme has an insufficient number of public vari-
ables (or none at all), we can recast the cube attack as a related key attack in
which we are also allowed to flip some of the secret key bits during the online
phase. By replacing some of the xi variables by the combinations xi + vi, we
may get linear pS(I) polynomials where none existed before.

B Appendix: Cube Attacks on Scaled-Down Trivium
Variants

Trivium [21] is a stream cipher designed in 2005 by C. De Canni‘ere and B.
Preneel and submitted to the Profile 2 (hardware) European project eSTREAM
[20]. It has an exceptionally simple structure, which leads to very good perfor-
mance in both hardware and software. Despite Trivium’s simplicity, there are no
substantial cryptanalytic results against it so far. Due to these outstanding qual-
ities, Trivium was chosen as part of the portfolio for Profile 2 by the eSTREAM
project.

B.1 Description of Trivium

Trivium’s internal state consists of 288 bits stored in three NLFSRs of different
lengths. In each round, each register is shifted by one bit. The feedback to
each register consists of a non linear combination of bits from another register,

Cube Attacks on Tweakable Black Box Polynomials 295

XORed with a bit from the same register. The output bit at the end of each
round is a linear combination of six state bits, two taken from each register.
During initialization, the 80-bit key is placed in the first register, and the 80-bit
IV is placed in the second register. The other state bits are set to zero, except
the last three bits in the third register, which are set to one. The state is then
updated 4× 288 = 1152 times without producing an output.

B.2 Previous Attacks

Trivium has a simple structure which led many cryptanalysts to try to attack
it. Nevertheless, to this day, there are no attacks better than exhaustive search
on the full version of Trivium. Due to Trivium’s cryptanalytic resistance, scaled-
down variants have been proposed and studied by cryptanalysts hoping to better
understand the full-scale version. Two scaled-down variants named Bivium A
and Bivium B were introduced in [22]. Both of these variants have an internal
state composed of only 2 shift registers. Previous attacks on Trivium and its
Bivium variants are summarized below:

– Raddum [22] developed an algorithm for solving sparse quadratic equations.
The algorithm was used to break Bivium A in ”about a day”, and requires
256 seconds to break Bivium B. The complexity of the attack applied to
Trivium is 2164.

– Maximov and Biryukov [23] developed a technique that can be applied to
Bivium and Trivium. The technique involves guessing certain key bits and
key bit products that reduce the Trivium quadratic equation system to a
linear equation system that can be solved by linear algebra. The technique
can be used to recover the state of Bivium B with complexity of c · 236.1,
and to recover the state of Trivium with complexity of c · 283.5, where the
constant c is the complexity of solving the system of linear equations.

– McDonald, Charnes, and Pieprzyk [24] showed that the MiniSat algorithm
can be used to attack Bivium B with complexity of about 256.

Another family of scaled-down Trivium variants, assumes that fewer than 1152
initialization rounds are performed before producing an output. Previous attacks
on Trivium variants with fewer than 1152 initialization rounds are summarized
below:

– Turan and Kara [25] used linear cryptanalysis to give a linear approximation
with bias 2−31 for Trivium with 288 initialization rounds.

– Englund, Johansson, and Turan [26] developed statistical tests and used
them to show statistical weaknesses of Trivium with up to 736 initialization
rounds. The basic idea is to use a statistical (rather than algebraic) variant
of a cube attack, which selects an IV subset, examines all the keystream
produced by assigning this subset all possible values, while keeping the other
IV bits fixed. The key stream is viewed as a function of the selected IV subset
variables, and statistical tests are performed to distinguish this function from
a random one.

296 I. Dinur and A. Shamir

– Vielhaber [27] recovered 47 key bits of Trivium with 576 initialization rounds
in negligible time. The key bits were recovered after some small IV spe-
cial subsets were found, each one with the following property: The result of
summing on some keystream bit produced by assigning a special subset all
possible IV values, while keeping the other IV bits fixed, is equal to either
one of the key bits or to the sum of two key bits. Note that this is a very
special case of our cube attack, and it is not clear why the author imposed
this unnecessary restriction.

– Fischer, Khazaei, and Meier [28] combined statistical tests with the method
described in [27], and showed an attack on Trivium with 672 initialization
rounds with complexity 255.

The last three attacks share their cube summing element with our attack, but
then proceed in a different way, which does not apply efficient linearity testing
to the resultant superpolys in order to find easy to solve linear equations. Our
greatly improved cryptanalytic results for Trivium clearly demonstrate that cube
attacks are more general, more efficient, and more powerful than these previous
techniques.

B.3 The Attack

We summarize the results we obtained so far for various simplified variants of
Trivium. All the maxterms and their associated linear equations were obtained
by running the preprocessing phase of the cube attack in a high level language
on a single PC over several weeks, and much better results can be expected by
using a more optimized implementation on a cluster of more powerful computers.

– The best known attack on the variant which uses 672 initialization rounds
is described by Fischer, Khazaei, and Meier in [28]. The authors attack this
variant with complexity 255. We were able to find 63 linearly independent
maxterms during the preprocessing phase of the cube attack on this variant
(in fact, we found more, but the additional maxterms do not reduce the
total complexity of the attack). All of the maxterms correspond to cubes of
size 12. The maxterms and cubes are listed in Table 1 next to the summed
output bit index. Both the key bit indexes and the IV bit indexes range from
0 to 79. The output bit index ranges from 672 to 685, hence the attacker
needs up to 14 initial output bits produced by the cipher after the 672 key
mixing rounds. Each of the maxterms passed at least 100 linearity tests, and
thus the maxterm equations are likely to be correct for most keys. During
the online phase of the cube attack, the attacker has to find the values of the
linear equations defined by these maxterms by summing over the 63 cubes,
of size 12. This requires a total of about 218 chosen IVs. After the maxterm
values are computed, the rest of the key can be recovered by exhaustive
search with complexity 217. The total complexity of the attack is thus no
more than 219, which is a big improvement compared to the best known
attack. Note that the maxterms are very sparse, hence the complexity of the
linear algebra in the preprocessing and online phases is negligible.

Cube Attacks on Tweakable Black Box Polynomials 297

– We pushed the attack further by strengthening the Trivium variant to use
735 initialization rounds before producing an output. Currently, there is
no known attack that is better than exhaustive search on this scaled-down
Trivium variant. We were able to find 53 linearly independent maxterms
corresponding to cubes of size 23 (again, we have more). The total complexity
of the online phase of the attack is less than 230, which is much better than
exhaustive search.

– Pushing the attack even further, we were able to find so far 35 maxterms
for the stronger Trivium variant that uses 767 initialization rounds. The
maxterms are listed in Table 2 in the appendix, next to the corresponding
cubes. Most cubes are of size 29, but there are a few cubes of size ranging
from 28 to 31. The complexity of the attack is 245 since it is dominated by
an exhaustive search for the 80−35 = 45 missing key bits, after the values of
the linear equations defined by these maxterms are computed. Computation
on weaker variants shows that once a cube of a certain size that corresponds
to a maxterm is found, we can expect to find many more cubes of the same
size with linear superpolys. Thus, given more preprocessing resources, it is
very likely that the online phase complexity of the attack can be reduced to
about 236.

Our results show that even after many key mixing initializations rounds, Triv-
ium is still breakable with complexity that is significantly faster than exhaustive
search. We are still investigating the resistance of stronger Trivium variants to
cube attacks and their generalizations.

B.4 Details of the New Cube Attacks on Scaled-Down Trivium
Variants

Tables 1 and 2, list the maxterms, cube IV indexes, and output bit indexes for
Trivium with 672 and with 767 initialization rounds respectively. In each one of
the summations in Table 1 , all the public variables that do not belong to the
cube were set to 0. In a few summations in Table 2, some public variables that
do not belong to the cube were set to 1. These are specified in the last column.
IV and key bits are indexed as in the original Trivium specification starting from
0 to 79 (e.g. key bits 65 and 68 and IV bits 68 and 77 determine the output bit
with index 0).

298 I. Dinur and A. Shamir

Table 1. Maxterms for Trivium with 672 Initialization rounds

Maxterm Equation Cube Indexes Output Bit Index
1+x0+x9+x50 {2,13,20,24,37,42,43,46,53,55,57,67} 675

1+x0+x24 {2,12,17,25,37,39,46,48,54,56,65,78} 673
1+x1+x10+x51 {3,14,21,25,38,43,44,47,54,56,58,68} 674

1+x1+x25 {3,13,18,26,38,40,47,49,55,57,66,79} 672
1+x2+x34+x62 {0,5,7,18,21,32,38,43,59,67,73,78} 678
1+x3+x35+x63 {1,6,8,19,22,33,39,44,60,68,74,79} 677

x4 {11,18,20,33,45,47,53,60,61,63,69,78} 675
x5 {5,14,16,18,27,31,37,43,48,55,63,78} 677
x7 {1,3,6,7,12,18,22,38,47,58,67,74} 675

1+x8+x49+x68 {1,12,19,23,36,41,42,45,52,54,56,66} 676
x11 {0,4,9,11,22,24,27,29,44,46,51,76} 684
x12 {0,5,8,11,13,21,22,26,36,38,53,79} 673
x13 {0,5,8,11,13,22,26,36,37,38,53,79} 673

1+x14 {2,5,7,10,14,24,27,39,49,56,57,61} 672
x15 {0,2,9,11,13,37,44,47,49,68,74,78} 685
x16 {1,6,7,12,18,21,29,33,34,45,49,70} 675
x17 {8,11,15,17,26,23,32,42,51,62,64,79} 677
x18 {0,10,16,19,28,31,43,50,53,66,69,79} 676
x19 {4,9,10,15,21,24,32,36,37,48,52,73} 672
x20 {7,10,18,20,23,25,31,45,53,63,71,78} 675

1+x20+x50 {11,16,20,22,35,43,46,51,55,58,62,63} 675
1+x21+x66 {10,13,15,17,30,37,39,42,47,57,73,79} 673

x22 {2,4,21,23,25,41,44,54,58,66,73,78} 673
x23 {3,6,14,21,23,27,32,40,54,57,70,71} 672

1+x24 {3,5,14,16,18,20,33,56,57,65,73,75} 672
1+x28 {6,11,14,19,33,39,44,52,58,60,74,79} 676
x29 {1,7,12,18,21,25,29,45,46,61,68,70} 675
x30 {2,8,13,19,22,26,30,46,47,62,69,71} 674
x31 {3,9,14,20,23,27,31,47,48,63,70,72} 673
x32 {4,10,15,21,24,28,32,48,49,64,71,73} 672
x33 {2,4,6,12,23,29,32,37,46,49,52,76} 680

1+x34+x62 {0,5,7,13,18,21,32,38,43,59,73,78} 678
1+x35+x63 {1,6,8,14,19,22,33,39,44,60,74,79} 677

x36 {2,4,5,8,15,19,27,32,35,57,71,78} 677
x38+x56 {0,3,4,9,20,28,33,41,54,58,72,79} 678

1+x39+x57+x66 {8,11,13,17,23,25,35,45,47,54,70,79} 674
x40+x58+x64 {0,6,10,16,19,31,43,50,66,69,77,79} 676

1+x41 {2,15,17,20,21,37,39,44,46,56,67,73} 674
x42+x60 {1,16,20,22,34,37,38,53,58,69,71,78} 674

x43 {2,7,14,22,41,45,48,58,68,70,72,76} 673
x44+x62 {3,14,16,18,20,23,32,46,56,57,65,73} 672

1+x45+x64 {0,6,10,16,18,28,31,43,53,69,77,79} 676
x46+x55 {2,8,11,13,28,31,35,37,49,51,68,78} 684

x47 {5,8,20,32,36,39,45,51,65,69,76,78} 676
x48 {2,4,10,14,16,22,25,44,49,51,57,78} 678

x49+x62 {1,12,19,23,36,41,42,45,52,56,69,75} 676
x51+x62 {1,7,8,13,21,23,28,30,47,68,71,75} 674

x52 {5,8,9,12,16,18,23,40,44,63,66,70} 674
x53 {2,11,21,24,32,55,57,60,63,66,70,77} 675

1+x54+x60 {4,7,10,18,20,25,50,53,61,63,71,78} 675
x55+x64 {5,12,16,19,22,36,47,55,63,71,77,79} 674
1+x56 {4,9,18,21,23,27,32,38,43,58,67,69} 677
x57 {1,7,9,14,18,21,33,40,45,49,59,68} 675

1+x58 {2,6,12,13,19,23,30,48,55,59,69,79} 673
x60 {5,7,10,13,15,17,28,40,47,73,76,79} 681
x61 {13,21,24,39,42,46,48,51,55,61,72,78} 673

1+x62 {2,4,10,11,19,34,47,55,56,58,69,77} 674
x63 {5,7,10,15,17,35,40,47,52,57,76,79} 674
x64 {8,11,13,17,23,25,35,47,62,64,68,79} 673
x65 {2,3,13,15,19,29,32,37,39,51,76,79} 682

1+x66 {5,7,10,13,15,17,35,40,52,70,76,79} 678
1+x67 {5,20,24,29,33,35,37,39,63,65,74,78} 677
1+x68 {1,12,19,23,36,41,52,54,56,66,69,75} 676

Cube Attacks on Tweakable Black Box Polynomials 299

Table 2. Maxterms for Trivium with 767 Initialization rounds

Maxterm Equation Cube Indexes Output Variables set to 1
1+x0 {1,3,4,7,9,10,12,16,19,21,25,27,29,30,32,34,35,37,40,47,50,51,60,61,64,67,72,73,79} 769
x3 {0,3,6,9,12,15,18,21,24,27,30,32,37,40,43,44,48,50,53,57,59,61,63,64,66,68,71,73,77,79} 773 {11}
x20 {1,3,5,7,10,14,18,20,22,23,26,30,36,38,42,43,44,45,47,49,52,54,60,63,69,71,72,73,78} 770 {53}
x22 {1,3,5,7,10,12,14,16,18,20,23,26,30,39,41,42,43,47,50,52,53,55,58,60,61,64,69,71,78} 769
x23 {0,2,4,6,8,10,14,17,19,21,23,26,30,34,35,36,43,45,46,48,49,54,59,64,67,72,73,74,75,79} 767

1+x29 {1,3,5,7,10,12,14,17,20,22,24,30,32,34,37,38,40,41,48,50,54,56,58,59,65,66,68,70,78} 774
x30 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,34,35,36,43,45,46,49,54,57,59,62,64,72,73,75,79} 773 {67}

1+x31 {0,2,4,6,8,10,13,14,17,19,21,23,26,30,31,34,35,36,37,42,53,60,61,64,66,69,72,73,77,79} 773
x32 {0,2,4,6,8,10,14,17,19,21,23,25,26,27,30,32,34,43,44,53,58,63,68,70,71,72,75,78,79} 772 {33,37,38}

1+x33+x60+x66+x68 {1,3,5,7,10,14,18,20,23,26,30,35,37,39,40,41,44,48,49,51,54,58,59,60,61,64,70,75,77,78} 772
1+x34 {1,3,5,7,10,12,14,16,17,20,24,28,30,33,34,36,40,42,45,46,51,52,54,56,62,66,70,77,78} 770 {76}
x35 {1,3,4,6,7,8,9,12,14,16,19,21,25,27,30,38,41,44,45,48,50,55,57,60,63,65,71,73,79} 769
x36 {0,2,4,5,6,8,10,14,17,19,21,23,26,27,30,37,39,40,47,48,55,62,65,70,73,75,77,78,79} 768 {54}
x37 {1,3,5,7,10,12,14,16,17,20,24,26,30,32,35,37,41,45,46,54,58,60,64,67,68,69,70,72,78} 770
x38 {0,2,4,6,8,10,14,17,19,23,25,26,30,34,36,38,40,42,44,53,56,57,60,63,69,72,73,75,79} 768 {39}
x41 {0,1,3,4,7,10,12,15,17,19,22,24,25,28,30,34,39,42,44,52,56,58,59,62,64,68,70,72,79} 773 {71}

1+x45 {1,3,5,7,10,12,14,16,18,20,22,23,26,30,33,39,42,43,47,50,52,53,55,58,60,64,71,77,78} 769
1+x46 {1,3,5,8,11,14,16,17,19,21,23,26,27,29,30,32,36,38,42,44,45,49,51,53,59,60,63,64,75,76,78} 771
x51 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,47,50,54,58,59,60,62,63,64,71,72,77,79} 773

1+x53+x57 {1,3,5,7,10,14,16,18,20,23,26,30,35,37,39,41,44,48,49,51,54,58,60,64,68,70,75,77,78} 773 {40,61}
x54 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,50,54,59,60,61,62,63,64,70,74,77,79} 767

1+x55 {1,3,5,7,10,12,14,17,18,20,24,27,30,33,36,38,40,41,44,53,56,59,61,66,68,72,75,76,78} 771
x56 {1,3,5,7,9,12,14,16,19,21,23,25,27,30,35,37,40,51,56,62,63,64,67,69,71,74,75,76,79} 769

1+x57 {1,3,5,7,10,12,14,17,20,24,30,32,34,37,38,40,48,50,52,54,56,57,58,59,63,66,68,70,78} 774
x58 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,36,43,45,48,49,54,57,59,62,64,67,72,74,75,79} 767

x59+x65 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,52,54,60,65,67,68,73,74,75,78} 773
x60 {2,4,10,13,15,19,23,25,27,31,33,34,37,40,41,45,48,50,51,54,56,60,61,62,67,69,71,73,76} 770

1+x60+x66 {1,3,4,5,7,9,12,16,19,21,25,27,30,32,33,35,38,40,43,45,47,51,55,57,59,60,62,75,79} 774
x61 {3,5,11,14,16,20,24,26,28,32,34,35,38,41,42,46,49,51,52,55,57,61,62,63,68,70,72,74,77} 769
x62 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,54,65,66,67,68,73,75,78} 772

1+x62+x68 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,59,60,67,68,73,75,77,78} 773
x63 {2,4,8,10,13,15,19,23,27,31,33,37,40,41,45,48,50,54,56,60,61,62,67,69,71,73,76,78} 770
x64 {3,5,9,11,14,16,20,24,28,32,34,38,41,42,46,49,51,55,57,61,62,63,68,70,72,74,77,79} 769
x65 {0,2,4,6,7,8,10,14,17,19,21,23,26,30,32,34,36,37,39,41,43,45,55,56,61,66,74,76,79} 767

1+x67 {2,4,6,8,11,13,15,17,19,21,23,24,27,31,34,40,42,43,44,48,51,56,59,61,65,70,72,78,79} 768

Smashing SQUASH-0

Khaled Ouafi	 and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.epfl.ch

Abstract. At the RFID Security Workshop 2007, Adi Shamir presented
a new challenge-response protocol well suited for RFIDs, although based
on the Rabin public-key cryptosystem. This protocol, which we call
SQUASH-0, was using a linear mixing function which was subsequently
withdrawn. Essentially, we mount an attack against SQUASH-0 with full
window which could be used as a “known random coins attack” against
Rabin-SAEP. We then extend it for SQUASH-0 with arbitrary window.
We apply it with the proposed modulus 21 277 − 1 to run a key recov-
ery attack using 1 024 chosen challenges. Since the security arguments
equally apply to the final version of SQUASH and to SQUASH-0, we
challenge the blame-game argument for the security of SQUASH. Nev-
ertheless, our attacks are inefficient when using non-linear mixing so the
security of SQUASH remains open.

Keywords: RFID, cryptanalysis, MAC.

1 The SQUASH Algorithm

RFID tags use challenge-response protocols in which a reader sends a random
challenge to a RFID tag to which this latter responds by computing the output
of an algorithm (generally a MAC) fed with the challenge and a unique secret
key. The reader then goes through a database containing a list of secrets asso-
ciated with the identity of each tag to find the matching secret and thus the
tag’s identity. Due to computation and power constraints, most of the primi-
tives proposed for RFID tags rely on symmetric key primitives since they offer
competitive throughput, compared to public-key primitives which require much
more transistors to be implemented as well as longer computation time.

At the RFID Security Workshop 2007, Adi Shamir [3] presented the SQUASH
algorithm, a message authentication code (MAC) which, although based on the
Rabin public-key cryptosystem, performs very well on benchmarks. In addition
to this, it offers some kind of provable security based on the hardness of factoring
large integers. This proof is used as a “safety net” as no attack using the modulus
factors is known so far.

Essentially, SQUASH consists of a public hard-to-factor modulus N of � bits
and a r-bit length key which is also the length of the challenge. The algorithm
is very simple as it only:

� Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 300–312, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Smashing SQUASH-0 301

– mixes the challenge and the secret key using a mixing function;
– converts it in a number;
– squares it modulo N ;
– truncates the result to a specific window of bits.

There was essentially two versions of SQUASH. The first one considered a
randomized version of the Rabin cryptosystem in which the square was hidden by
adding a random multiple ofN to avoid modulo N reduction, but which required
a full-size window (i.e. no truncation at the end). The second one (preferred
for efficiency reasons) considered a small window in the middle of the �-bit
result. Contrarily to the Rabin cryptosystem, SQUASH does not need to be
invertible. So, the factorization of the modulus N does not need to be known
by any participant. This motivated the recommendation of [4] to use Mersenne
numbers (numbers of the form N = 2� − 1) or the more general Cunningham
project numbers (numbers of the form N = a · bc ± d for small a, b, c, d) whose
factorization is unknown so far. Any other technical details regarding SQUASH
are not relevant for our analysis.

Through this paper, we denote by R,K, C, and T the response, key, challenge,
and truncation function of SQUASH respectively. The function SQUASH will
simply consist of the following:

R = T

⎛⎝(
�−1∑
i=0

2i × fi(K,C)

)2

mod N

⎞⎠ ,

where the fi’s are Boolean functions and the truncation function T is defined by

T (x) =
⌊
x mod 2b

2a

⌋
.

By expanding the square, we obtain:

R = T

((
�−1∑
i=0

�−1∑
i′=0

2i+i′ × fi(K,C)fi′ (K,C)

)
mod N

)
(1)

The version of SQUASH presented in 2007, which we call SQUASH-0, uses a
mixing function f expanding (using a linear feedback shift register) the XOR of
the key and the challenge. It was subsequently updated in the version available
on [3] following a private comment by Vaudenay. This comment was about a total
break on the first version, i.e. the variant using no truncation. Nevertheless, the
version published in [4] suggests to use a concrete non-linear mixing function.
In this paper, we first present the attack by Vaudenay and apply it to any
mixing function of form g(K)⊕L(C). Then, for L linear, we use discrete Fourrier
transform to propose a variant of the attack and we generalize it to the second
variant of SQUASH-0 using an arbitrary window.

Consequently, we restrict to the special case where there exists Boolean func-
tions gi and Li such that

fi(K,C) = gi(K)⊕ Li(C)

302 K. Ouafi and S. Vaudenay

for all i,K, and C, where⊕ denotes the exclusive or (XOR) operation. This is the
case for the Rabin-SAEP encryption [1] where K plays the role of the plaintext
and C plays the role of the random coins. In Sections 3 and 4, we further assume
that the Li’s are linear in the sense that Li(a⊕ b) = Li(a)⊕Li(b) for any a and b.

In what follows we first consider in Section 2 Vaudenay’s passive attack against
this algorithm with a full-size window. Namely, we assume the adversary gets the
full Rabin encryption but no linearity in the Li’s. This translates into a “known
random coins attack” against Rabin-SAEP. It works with complexity O(�2r6)
and O(r2) known challenges. Next, we study an active variant of this attack
in the linear case in Section 3 working in complexity O(�r2 log r/ log log r) and
O(r2/ log log r) chosen challenges. Finally, we apply the variant to the case of an
arbitrary window in Section 4. Our final attack has a complexity of O(�r2 log r)
and uses O(r2) chosen challenges. It works when the window is large enough,
namely b − a > 4 log2 r − 2. However, in the case of Mersenne numbers, those
figures boil down to a complexity of O(r2 log r) and O(r2/�) chosen challenges,
and the condition is relaxed to b− a > 2 log2 r− log2 �− 1. When the window is
smaller, there is still room for further improvements. We conclude that SQUASH-
0 is dead broken and that the security proof in SQUASH is incorrect if factoring
is hard. However, the security of SQUASH is still open.

2 Passive Attack with Full-Size Window

The goal of a passive total-break attack, is for an adversary to derive the
secret key from challenge-response samples only. In what follows, we denote
ki = (−1)gi(K) and ci = (−1)Li(C). We have

fi(K,C) =
1− kici

2

which is linear (in the sense of Z) in terms of ki with coefficients known to the
adversary. By expanding (1) we derive

R =
1
4

∑
i,i′

2i+i′cici′kiki′ − 2� − 1
2

∑
i

2iciki +
(2� − 1)2

4
mod N (2)

when no truncation T is used.
A first attack consists of collecting enough equations of this form and solving

them, e.g. by linearization or re-linearization [2]. Simple lineralization consists of
expressing kiki′ as a new unknown and solving linear equations. We get r(r+1)

2
unknowns and a solving algorithm of complexity O(�2r6) (as for O(r6) multi-
plications with complexity O(�2)) after collection of O(�r2) bits (as for O(r2)
samples of O(�) bits). Since kiki′ = ±1 which is unexpectedly small, we can
also consider algorithms based on lattice reduction using O(�) samples only. The
attack works even if the Li’s are not linear. In the Rabin-SAEP case, we ob-
tain a “known random coins attack” in which an adversary can request many
encryptions of the same plaintext and get the random coins with. His purpose

Smashing SQUASH-0 303

is to recover the plaintext. However, for � resp. r in the order of magnitude of
210 resp. 26, complexities are still very high.

Interestingly, we note that when N is a Mersenne number then N = 2�− 1 so
Equation (2) simplifies by getting rid of r unknowns. Therefore, we have r(r−1)

2

unknowns instead of r(r+1)
2 .

3 Active Attack with Full-Size Window

Let C1, . . . , Cd be a set of d random challenges, given an integer d to be later
discussed. Let Ui be the d-bit vector with coordinate Li(Cj), j = 1, . . . , d. We
consider an active attack making 2d chosen challenges. Given a d-bit vector x,
we define the challenge C(x) =

⊕
j xjCj and R(x), the response obtained after

submitting this challenge. Given a real function ϕ(x) and a d-bit vector V , we
further recall the multidimentional discrete Fourrier transform of a function ϕ
with group Zd

2:
ϕ̂(V) =

∑
x

(−1)x·V ϕ(x)

where x · V denotes the scalar dot product of vectors x and V . Thanks to the
linearity of Li, we have

ci(x) = (−1)Li(C(x)) = (−1)
⊕

j xjLi(Cj) = (−1)x·Ui

Using the following:

– ϕ(x) = 1 =⇒ ϕ̂(V) = 2d × 1V =0;
– ϕ(x) = (−1)xiUi =⇒ ϕ̂(V) = 2d × 1Ui=V ;
– ϕ(x) = (−1)xi(Ui⊕Uj) =⇒ ϕ̂(V) = 2d × 1Ui⊕Uj=V ;

we deduce from Equation (2) that

R̂(V) =
1
4

∑
i,i′

2i+i′
(∑

x

(−1)x·(Ui⊕Ui′⊕V)

)
kiki′

−2� − 1
2

∑
i

2i

(∑
x

(−1)x·(Ui⊕V)

)
ki

+
(2� − 1)2

4

∑
x

(−1)x·V (mod N). (3)

3.1 First Method

Let I be an integer between 0 and �− 1. We assume that C1, . . . , Cd are chosen
such that

– for all j we have LI(Cj) = 0;
– for every i < i′ there exists j such that Li(Cj) �= Li′(Cj).

304 K. Ouafi and S. Vaudenay

In terms of Ui’s, the hypotheses translate into observing that all the Ui’s are pair-
wise different and that one of these vectors is the vector containing only 0’s. Clearly,
we can find these vectors by using an incremental algorithm to select Cj ’s in the
hyperplane defined by LI(C) = 0. If we generate d random vectors in the hyper-
plane, under heuristic assumptions, the probability that the condition is fulfilled
is roughly e−�22−d−1

which is constant for d = 2�log2 �� and equal to e−1/2.
By (3), thanks to the hypotheses we obtain

R̂(0) = 2d−2
∑

i

22ik2
i − 2d+I−1(2� − 1)kI +

2d(2� − 1)2

4
(mod N)

but since k2
i = 1 for all i we obtain

R̂(0) = 2d−1(2� − 1)
(

2
3
2� − 1

3
− 2IkI

)
(mod N)

We can thus deduce kI when N is not a Mersenne number. This means that
recovering the key requires O(r�2) chosen challenges and complexity O(r�3).
Clearly, we can trade data complexity against time complexity.

The Mersenne case. If N is a Mersenne number N = 2� − 1, as suggested
in [4], the above expression vanishes so we have to make a specific treatment.
Actually, we have

R =
1
4

∑
i,i′

2i+i′cici′kiki′ mod N

By changing the assumption about the Ci’s to
– there is a unique I < J pair such that UI = UJ

we obtain
R̂(0) = 2I+J+d−1kIkJ (mod N)

so we can still adapt the attack. Other kinds of Cunningham numbers N = ab±c,
as suggested in [4], work like in the previous case.

3.2 Second Method

We now relax the assumption about the Ci’s. By taking a value V such that
– V �∈ {0, U0, U1, . . . , U�−1}
– there exists a unique {I, J} pair such that V = UI ⊕ UJ

then (3) simplifies to

R̂(V) = 2I+J−1+dkIkJ (mod N)

so we can deduce the value of kIkJ .
The advantage of this method is that from the same set of challenges we can

derive many equations of the form kIkJ = b (which are indeed linear equations)
for all I and J such that V = UI ⊕ UJ satisfies the above conditions. With
random Ci’s, the expected number of such equations is roughly 1

2�
2e−�22−d−1

so
for d ≈ 2 log2 � we obtain enough equations to recover all bits of K using O(�2)
chosen challenges and complexity O(�3 log �).

Smashing SQUASH-0 305

3.3 Generalization

We can further generalize this attack by taking all values V which are either 0
or equal to some UI or to some UI ⊕ UJ but without requiring unicity of I or
{I, J}. In general, we obtain an equation which may involve several kI or kIkJ

as Equation (3) simplifies to

R̂(V) =
∑

{I,J}:UI⊕UJ=V

2I+J−1+dkIkJ

−
∑

I:UI=V

(2� − 1)2I+d−1kI + (2� − 1)22d−21V =0 (mod N).

Provided that the number of monomials is not too large, the only correct ±1
assignment of the monomials leading to an expression matching the R̂(V) value
can be isolated.

Using d = log2
r(r+1)

2 we obtain only one unknown per equation on average
so we can recover all key bits with complexity O(�r2 log r) using O(r2) chosen
challenges. We can still slightly improve those asymptotic figures.

Let �m be the complexity of getting the matching ±1 assignments in one equa-
tion (i.e. m is the complexity in terms of modulo N additions). The complexity
of the Fourier transform is O(�d2d), so the complexity of the algorithm becomes
O(�(d+m)2d). The averagenumber of unknowns per equation is r22−d−1. Byusing
an exhaustive search strategy to solve the equation we obtain log2m ≈ r22−d−1.
With d = 2 log2 r − log2 log2 log r − 1 we have m = log r and we finally obtain a
complexity of O(�r2 log r/ log log r) with O(r2/ log log r) chosen challenges.

We could view the equation as a knapsack problem and use solving algorithms
better than exhaustive search. For instance, we can split the equation in two
halves and use a claw search algorithm. The effect of this strategy leads us to
log2m ≈ 1

2r
22−d−1 and we reach the same asymptotic complexity. However the

practical benefit may be visible as the following example shows.

Example 1. SQUASH with no truncation is trivially broken if we can factor the
modulus N so it should be at least of 1 024 bits. As an example, for � = 1 024 and
r arbitrary (up to �) we can take d = 14 so roughly 2d ≈ 16 000 chosen challenges.
We obtain at most �(�+1)

2 2−d ≈ 32 unknowns per equation on average. Using claw
search algorithm will work with 216 numbers in memory and 216 iterations to
recover 32 bits of the key for each equation.

The Mersenne case. Finally, another nice thing with Mersenne numbers is
that the equation further simplifies to

R̂(V) =
�−1∑
n=0

2n
∑

{I,J}:
UI⊕UJ=V,I+J−1+d mod �=n

kIkJ (mod N). (4)

So, if the set of {I, J}’s sparsely spread on (UI⊕UJ , (I+J−1+d) mod �) pairs,
the knapsack is nearly super-increasing and we can directly read all kIkJ bits
in the table of all R̂(V)’s. That is, m is constant. With d = 2 log2 r − log2 �− 1

306 K. Ouafi and S. Vaudenay

we roughly have � unknowns per equation and we can expect this phenomenon.
So, we obtain a complexity of O(r2 log r) with O(r2/�) chosen challenges. For
instance, with N = 21 277 − 1 and r = 128 we can take d = 3 so that 8 chosen
challenges are enough to recover all bits. With r = � we can take d = 10 so that
1 024 chosen challenges are enough.

Example 2. As a toy example we consider a SQUASH instance with N = 13×
19 = 247, � = 8, and r = 4 along with the function

f(K,C) = (K ⊕ C)‖(K ⊕ C)

with d = 2.
If K = 0x9, we have k0 = k3 = k4 = k7 = −1 and k1 = k2 = k5 = k6 = +1.

We take 2 random values for the Ci’s: C1 = 0x2 and C2 = 0xa. Here is a table
for the C(x) values:

x C(x) f(K,C(x)) R(x)

00 0x0 0x99 = 153 191

10 0x2 0xbb = 187 142

01 0xa 0x33 = 51 131

11 0x8 0x11 = 17 42

V R̂(V)

00 506

10 138

01 160

11 −40

The Ui’s are

U0 = U4 = 00, U1 = U5 = 11, U2 = U6 = 00, U3 = U7 = 01.

We sort monomials following the corresponding values of V as follows:

– V = 00: k0, k4, k2, k6, k0k4, k1k5, k2k6, k3k7, k0k2, k0k6, k2k4, k4k6,
– V = 01: k3, k7, k0k3, k0k7, k3k4, k4k7, k2k3, k2k7, k3k6, k6k7,
– V = 10: k1k3, k1k7, k3k5, k5k7,
– V = 11: k1, k5, k0k1, k0k5, k1k4, k4k5, k1k2, k1k6, k2k5, k5k6.

Due to the structure of f we know that k0 = k4, k1 = k5, k2 = k6 and k3 = k7
so the list simplifies (modulo N = 247) to:

R̂(00) =
(
20+4+1 + 21+5+1 + 22+6+1 + 23+7+1)

+
(
20+2+1 + 20+6+1 + 22+4+1 + 24+6+1) k0k2

−(28 − 1)
(
20+1 + 24+1) k0 − (28 − 1)

(
22+1 + 26+1) k2

+(28 − 1)2 +
1
3
(216 − 1)

Smashing SQUASH-0 307

R̂(10) =
(
21+3+1 + 21+7+1 + 23+5+1 + 25+7+1) k1k3

R̂(01) = −(28 − 1)
(
23+1 + 27+1) k3

+
(
20+3+1 + 20+7+1 + 23+4+1 + 24+7+1) k0k3

+
(
22+3+1 + 22+7+1 + 23+6+1 + 26+7+1) k2k3

R̂(11) =
(
20+1+1 + 20+5+1 + 21+4+1 + 24+5+1) k0k1

+
(
21+2+1 + 21+6+1 + 22+5+1 + 25+6+1) k1k2

−(28 − 1)
(
21+1 + 25+1) k1

which yields

R̂(00) = 176 + 89k0k2 − 25k0 − 100k2 (mod 247)
R̂(10) = 109k1k3 (mod 247)
R̂(01) = −200k3 + 178k0k3 + 218k2k3 (mod 247)
R̂(11) = 168k0k1 + 178k1k2 − 50k1 (mod 247)

The only values of k0 and k2 leading to R̂(00) = 506 (mod N) is k0 = −1
and k2 = +1. Similarly, k1 and k3 lead to R̂(10) = 138 (mod N) if and only if
k1 = −k3. Using R̂(01) = 160 (mod N), we deduce k3 = −1. From these values,
we recover the key K = 9.

4 Application to Limited Windows

In what follows we let S denote the Rabin encryption. We assume that S is
truncated to a window defined by

T (x) =
⌊
x mod 2b

2a

⌋
so that R = T (S). Our analysis from Section 3 still applies when R is replaced
by S. However, S is not directly available to the adversary.

Since it is not clear how to break this variant of SQUASH even when N
can be factored, � could be much smaller than usual values for modulo bit-
length. Indeed, [4] suggested an aggressive � = 128 with the Mersenne number
N = 2128 − 1, a = 48, b = 80, and r = 64.

4.1 First Method

First, by observing that for any e1, . . . , en ∈ ZN we have(
n∑

i=1

ei mod N

)
mod 2b =

((
n∑

i=1

ei mod 2b

)
+

(−βN mod 2b
))

mod 2b (5)

308 K. Ouafi and S. Vaudenay

for some 0 ≤ β < n thus

T

(
n∑

i=1

ei mod N

)
=

(
n∑

i=1

T (ei) + T (−βN) + α

)
mod 2b−a

for some 0 ≤ α ≤ n.
We now apply the previous attack (first method) with n = 2d and the list of

all d-bit vectors x. We use ei = S(x) corresponding to the challenge C(x). We
deduce

T
(
Ŝ(0) mod N

)
=

(
R̂(0) + T (−βN) + α

)
mod 2b−a.

Let

yb
I = 2d−1(2� − 1)

(
2
3
2� − 1

3
− 2Ib

)
mod N

for b = ±1. Based on the previous attack we obtain

T (ykI

I) =
(
R̂(0) + T (−βN) + α

)
mod 2b−a

for some α ∈ [0, 2d] and β ∈ [0, 2d−1]. The probability that there exists α and β
such that T (y−kI

I) matches the right-hand side of the equation is at most 22d−r,
so for 2d+ 1 < r it is likely that we can deduce kI .

The Mersenne case. When N is a Mersenne prime number, the T (−βN)
expression simplifies to T (β). This is always 0 for d ≤ a and it can be integrated
in the α in T (−βN) + α in other cases: all T (−βN) + α values are numbers in
the

[
0, 2d +

⌊
2d−1
2a

⌋]
range. In what follows we assume that d ≤ a for simplicity.

We now use yb
I,J = 2I+J+d−1b mod N and, with the updated hypotheses on

the Cj vectors, we obtain

T (ykIkJ

I,J) =
(
R̂(0) + α

)
mod 2b−a

for some α in the [0, 2d] range. Note that T (y−1
I,J) = T (y+1

I,J) and that

T (y+1
I,J) = T

(
2(I+J+d−1) mod �

)
=

{
2((I+J+d−1) mod �)−a if a ≤ (I + J + d− 1) mod � < b
0 otherwise.

This is enough to deduce kIkJ for (I, J) pairs such that there is no α for which
T (y−kIkJ

I,J) matches the right-hand side. Thus we can recover kIkJ .

4.2 Second Method

Similarly to (5), if εi = ±1 and ε1 + · · ·+ εn = 0 we have(
n∑

i=1

εiei mod N

)
mod 2b =

((
n∑

i=1

εi(ei mod 2b)

)
− βN mod 2b

)
mod 2b

Smashing SQUASH-0 309

for some |β| < n
2 thus

T

(
n∑

i=1

εiei mod N

)
=

(
n∑

i=1

εiT (ei) + T (−βN) + α

)
mod 2b−a

for some −n
2 < α ≤ n

2 . We deduce that for each V there exist α and β verifying

T
(
Ŝ(V) mod N

)
=

(
R̂(V) + T (−βN) + α

)
mod 2b−a.

With the appropriate conditions on the set of challenges we obtain

T
((

2I+J−1+dkIkJ

)
mod N

)
=

(
R̂(V) + T (−βN) + α

)
mod 2b−a

which can be used to recover kIkJ .
In the Mersenne case with d < a, T (−βN) is either 0 or 2b−a − 1 depending

on the sign of β so we have a single additional value for T (−βN) + α which is
−n

2 . Since we will always take d < a we omit the other cases.

4.3 Generalization

More generally, for all V there exists α and β such that

T

⎛⎝⎛⎝ ∑
{I,J}:UI⊕UJ=V

2I+J−1+dkIkJ

−
∑

I:UI=V

(2� − 1)2I+d−1kI + (2� − 1)22d−21V =0

)
mod N

)

=
(
R̂(V) + T (−βN) + α

)
mod 2b−a

with either −n
2 < α ≤ n

2 and |β| < n
2 for V �= 0 or 0 ≤ α ≤ n and 0 ≤ β < n for

V = 0.
Our attack strategy can now be summarized as follows.

1. Take a value for d. Make a table of all T (−βN) + α values. This table has
less than 22d terms (2d + 1 in the Mersenne case) and can be compressed
by dropping the d least significant bits (corresponding to the α part). In
the Mersenne case, it can be compressed to nothing as numbers of form
T (−βN) + α are all in the [−2d−1, 2d−1] range modulo 2b−a.

2. Pick d challenges at random and query all the 2d combinations C(x). Get
the responses R(x).

3. Compute the discrete Fourier transform R̂ in O(�d2d).
4. For each V , try all ±1 assignments of occurring unknowns in Ŝ(V) and keep

all those such that T (Ŝ(V) mod N)− R̂(V) is of form T (−βN) + α.

310 K. Ouafi and S. Vaudenay

Again, this attack uses O(2d) chosen challenges and a complexity of O(�(d +
2s2−d

)2d) where s is the number of unknowns, i.e. s = r(r+1)
2 resp. s = r(r−1)

2
in the Mersenne case. The remaining question is whether all wrong assignments
are discarded.

For a given equation, each of the 2s2−d

wrong assignments is discarded with
probability 22d−(b−a) resp. 2d−(b−a). Thus, if b − a > 2d + s2−d resp. b − a >
d + s2−d they can all be filtered out. The minimum of the right-hand side is
2 log2 s+2 log2

e ln 2
2 resp. log2 s+log2(e ln 2) and reached by d = log2 s+log2

ln 2
2

resp. d = log2 s + log2 ln 2. By taking this respective value for d we have O(r2)
chosen challenges and a complexity of O(�r2 log r), and the condition becomes
b− a > 4 log2 r + 2 log2

e ln 2
2 − 2 resp. b − a > 2 log2 r + log2(2e ln 2). If b − a >

4 log2 r − 2 resp. b− a > 2 log2 r this condition is always satisfied.

Example 3. We continue our toy example with a = 1 and b = 7 (i.e. we drop
the least and most significant bits after the Rabin encryption). We still use 4
chosen challenges which are the linear combinations of C1 = 2 and C2 = 10 and
compute the R̂(V) values (without any modular reduction). Here is a table for
the R(x) and R̂(V) values:

x C(x) f(K,C(x)) R(x)

00 0x0 0x99 = 153 T (191) = 31

10 0x2 0xbb = 187 T (142) = 7

01 0xa 0x33 = 51 T (131) = 1

11 0x8 0x11 = 17 T (42) = 21

V R̂(V)

00 60

10 4

01 16

11 44

The possible values of T (−βN) for |β| < n
2 are in {0, 4,−5}. The possible values

for T (−βN) + α are in [−7, 5] − {−3}. We take the equation R̂(10) = 4. The
possible values for R̂(10) + T (−βN) + α modulo 64 are in [−3, 9] − {1}. On
the other hand, T (109k1k3 mod N) can only be 5 (for k1k3 = −1) or −10 (for
k1k3 = +1) so we deduce k1k3 = −1. Similarly, for V = 01 we obtain

T (178k0k3 + 218k2k3 − 200k3 mod N) ∈ [9, 21]− {13}
The 8 possible values for T (178k0k3 + 218k2k3 − 200k3 mod N) are

k0k3 k2k3 k3 + + + + +− +−+ +−− −+ + −+− −−+ − −−
T 34 51 3 16 43 56 8 25

We deduce k3 = −1, k0k3 = +1, k2k3 = −1 as the only possible assignment.
Again, we recover K = 9.

The Mersenne case. Finally, the Mersenne case can simplify further using
Equation (4). We take d = 2 log2 r − log2 �− 1 and run the attack with O(r2/�)

Smashing SQUASH-0 311

chosen challenges and complexity O(r2 log r). Assuming that all unknowns kIkJ

sparsely spread on (UI ⊕UJ , (I + J − 1 + d) mod �) pairs then T (R̂(V) mod N)
yields b−a−d useful bits with roughly one kIkJ per bit and ends with d garbage
bits coming from T (−βN) + α. So, we can directly read the bits through the
window and it works assuming that b − a > d, which reads b − a > 2 log2 r −
log2 �− 1.

Example 4. We now use the parameters from [4]: � = 128, N = 2128− 1, a = 48,
b = 80. Although [4] suggested a 64-bit secret with non-linear mixing we assume
here that the mixing is of form f = g ⊕ L with linear L but that g expands
to r = 128 secret bits (possibly non-linearly). We have s = 8 128 unknowns of
form kiki′ . With d = 10 we obtain 1 024 vectors V so we can expect to find 8
unknowns in each equation. Equations are of form

T (Ŝ(V) mod N) =
(
R̂(V) + T (−βN) + α

)
mod 2b−a

where (T (−βN) + α) mod 2b−a is in the range [−29, 29] which gives a set of at
most 210 + 1. Filtering the 28− 1 wrong assignments on the 8 unknowns we can
expect 2−13 false acceptances in addition to the right one. Simple consistency
checks can discard wrong assignments, if any, and recover all ki’s. Clearly, all
computations are pretty simple and we only used 210 chosen challenges.

Using the final trick in the Mersenne case we use d = 6 and thus 64 chosen
challenges to get 64 equations which yield 26 bits each.

Example 5. With N = 21 277 − 1 and the worst case � = r the attack works for
b − a ≥ 21 and we can take d = 19. We request for 219 chosen challenges. We
obtain 219 equations with roughly 1.6 unknowns per equation.

By using the final trick we take d = 10. The T (−βN) +α part wastes 10 bits
from the window and we can expect to have a single unknown per remaining bit
so that we can simply read it through the window. Provided that the window
has at least 32 bits we expect to read 22 bits in each of the 1 024 equations so
we can recover all bits.

The narrow window case. When b − a is too small for the previous attack
to work, we can still work further on the analysis. To avoid wasting bits on
the window, we shall decrease the value for d. Typically, our attack will get
less equations and have more unknowns per equation. As a consequence it will
list many assignments, including a single correct one. Several directions can be
investigated:

– use the highly biased distribution of most significant garbage bits (since α
has expected value 0 and standard deviation roughly 2

d
2 /2
√

3);
– use small d and better knapsack solving algorithms;
– analyze these assignments on redundant bits and check for consistency within

an equation;
– analyze assignment lists in several equations and try to merge;
– use voting procedures and iterate.

This extension is left to further research.

312 K. Ouafi and S. Vaudenay

5 Extending to Non-linear Mappings

In case the mapping L is a (non-linear) permutation, we can adapt our attack
strategy by choosing the challenges as follow:

– pick d challenges C1, . . . , Cd.
– compute the chosen challenges by C	(x) = L−1

(⊕
j xjL(Cj)

)
.

By using,
c	i (x) = (−1)Li(C�(x)) = (−1)

⊕
j xjLi(Cj) = (−1)x·Ui

Equation (3) remains unchanged so that we can still apply all the attacks de-
scribed through Sections 3 and 4.

More generally, we can extend these attacks to any mixing function of form
f(K,C) = g(K) ⊕ L(C) as long as we can find vector spaces of dimension d in
the range of L.

6 Conclusion

One argument for motivating the SQUASH algorithm consisted of playing the
“blame game”: if anyone can break SQUASH, then the Rabin cryptosystem is
the one which should be blamed instead of the SQUASH design. Clearly, our
attack demonstrates that this argument is not correct. There are instances of
the SQUASH algorithm which can be broken although we still have no clue how
to factor integers. Indeed, our method translates into a “known random coins
attack” against Rabin-SAEP which leads to a plaintext recovery. Known random
coins attacks are not relevant for public-key cryptosystems although they are in
the way SQUASH is using it.

It is not clear how and if our attack can be adapted to the final version of
SQUASH with non-linear mappings. So, although the “blame game” argument
is not valid, the security of SQUASH is still an open problem.

References

1. Boneh, D.: Simplified OAEP for the RSA and rabin functions. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg (2001)

2. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by re-
linearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

3. Shamir, A.: SQUASH: A new one-way hash function with provable security
properties for highly constrained devices such as RFID tags. In: Invited lecture
to the RFID Security 2007 Workshop, http://mailman.few.vu.nl/pipermail/

rfidsecuritylist/2007-August/000001.html

4. Shamir, A.: SQUASH – A new MAC with provable security properties for highly
constrained devices such as RFID tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

Practical Chosen Ciphertext Secure Encryption
from Factoring

Dennis Hofheinz	 and Eike Kiltz		

Cryptology & Information Security Group
CWI Amsterdam, The Netherlands

{hofheinz,kiltz}@cwi.nl

Abstract. We propose a practical public-key encryption scheme whose
security against chosen-ciphertext attacks can be reduced in the stan-
dard model to the assumption that factoring is intractable.

Keywords: public-key encryption, chosen-ciphertext security, factoring.

1 Introduction
The security of almost any cryptographic primitive (such as public-key encryp-
tion or digital signatures) has to rely on the computational hardness of a certain
number-theoretic problem. Unfortunately, since there are currently no tools avail-
able to rigorously prove lower bounds on the complexity of such problems, one has
to base security on (unproven) cryptographic hardness assumptions. The only con-
fidence we have in such assumptions is that after a sufficiently large period of time,
nobody could successfully refute them. The most established cryptographic hard-
ness assumption is without doubt the so called factoring assumption which states
that, given the product of two distinct large primes, it is computationally infeasi-
ble to reconstruct the primes. Despite of intensive research, no algorithm has been
found that can efficiently factor composite numbers.

Main result. In this paper we propose a new public-key encryption scheme that
is based on Rabin’s trapdoor one-way permutation [35]. We can prove that the
security of our scheme against adaptive chosen-ciphertext attacks (CCA security)
is equivalent to the factoring assumption. Furthermore, the scheme is practical
as its encryption performs only roughly two, and its decryption roughly one
modular exponentiation. To the best of our knowledge, this is the first scheme
that simultaneously enjoys those two properties.

History. The notion of CCA security is due to Rackoff and Simon [36] and
is now widely accepted as the standard security notion for public-key encryp-
tion schemes. In contrast to security against passive adversaries (security against

� Supported by the Dutch Organization for Scientific Research (NWO).
�� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels

is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 313–332, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

314 D. Hofheinz and E. Kiltz

chosen-plaintext attacks aka semantic security), in a chosen-ciphertext attack the
adversary plays an active role by obtaining the decryptions of ciphertexts (or
even arbitrary bit-strings) of his choosing. The practical significance of such at-
tacks was demonstrated by Bleichenbacher [4] by means of a CCA attack against
schemes following the encryption standard PKCS #1.

Historically, the first scheme that was provably secure against CCA attacks
is due to Dolev, Dwork, and Naor [17] (building on an earlier result by Naor
and Yung [31]). Their generic construction is based on enhanced trapdoor per-
mutations and therefore (using the enhanced trapdoor permutations from [20,
App. C]) yields a scheme CCA secure under the factoring assumption. However,
in practice these schemes are prohibitively impractical, as they rely on expensive
non-interactive zero-knowledge proofs. The first practical schemes provably CCA
secure under standard cryptographic hardness assumptions were due to Cramer
and Shoup [15,14]. However, their framework of “hash proof systems” inherently
relies on decisional assumptions such as the assumed hardness of deciding if a
given integer has a square root modulo a composite number with unknown fac-
torization (DQR assumption), or of deciding if a given tuple is a Diffie-Hellman
tuple or not (DDH assumption). Until today, Cramer and Shoup’s framework of
hash proof systems (with its variations from [29,19,11,28,24,27]) and the recent
concept of lossy trapdoor functions [33] yield the only known CCA secure prac-
tical encryption schemes based on an assumption related to factoring: the DQR
assumption and Paillier’s decisional composite residuosity (DCR) assumption.
Currently, no practical scheme is known that is CCA secure solely under the
factoring assumption (or even under the potentially stronger RSA assumption).

In general, decisional assumptions are a much stronger class of assumptions
than computational assumptions. For example, deciding if a given integer has
a modular square root or not may be much easier than actually computing a
square root (or, equivalently, factoring the modulus). It is noteworthy that there
are known ways to achieve CCA security that do not inherently rely on deci-
sional assumptions (e.g., [9,13,23]). In particular, the first practical encryption
scheme CCA secure under the Computational Diffie-Hellman (CDH) assump-
tion was only recently proposed by Cash, Kiltz, and Shoup [13] and improved
by Hanaoka and Kurosawa [23]. On the other hand, [9] provide a practical en-
cryption scheme CCA secure under the Bilinear Computational Diffie-Hellman
(BCDH) assumption.

Random oracle schemes. In a different line of research, Bellare and Rog-
away [2,3] presented practical schemes for which they give heuristic proofs of
CCA security under standard computational hardness assumptions. Their proofs
are in the so-called random oracle model [2] where a hash function is treated as
an ideal random function. We stress that although a proof in the random oracle
model has a certain value it is still only a heuristic security argument for any
implementation of the scheme. In particular, there exist cryptographic schemes
that are provably secure in the random oracle model yet that are insecure with
any possible standard-model instantiation of the hash function [12].

Practical Chosen Ciphertext Secure Encryption from Factoring 315

Details of our construction. In 1979 Rabin [35] proposed an encryp-
tion scheme based on the “modular squaring” trapdoor permutation whose
one-wayness is equivalent to the factoring assumption. A semantically secure
variant was later proposed by Goldwasser and Micali [22]. Our construction
is based on the latter scheme [22] in its more efficient variant by Blum and
Goldwasser [6] (which uses the Blum-Blum-Shub pseudorandom generator [5]
to obtain an efficient hard-core function with linear output length). The Blum-
Goldwasser scheme can easily be shown insecure against a CCA attack. Our main
contribution consists of modifying the Blum-Goldwasser scheme such that it is
provably CCA secure under the same hardness assumption yet it retains its high
efficiency. Surprisingly, it is sufficient to add one additional group element to the
ciphertexts that is then used for a consistency check in the decryption algorithm.
For the consistency check itself, we also need to add two group elements to the
public key.

Note that Paillier and Villar [32] (building on work of Williams [38]) show that
the CCA security of schemes which only include an RSA modulus in the public
key cannot be proven (using a black-box reduction) equivalent to factoring. In
particular, this applies to the Blum-Goldwasser scheme [6] from which we start,
so we have to modify the scheme’s public key (and not only the ciphertexts).
And indeed, given our modifications, our scheme’s CCA security is equivalent to
the factoring problem.

Proof Details. At a more technical level, the additional group elements in
the public key can be set up by a simulator such that it is possible to decrypt
(without the knowledge of the scheme’s secret key) all consistent ciphertexts,
except the ciphertext that is used to challenge the adversary. This “all-but-one”
simulation technique can be traced back at least to [30], where it was used in the
context of pseudorandom functions.1 In the encryption context, “all-but-one”
simulations have been used in identity-based encryption [8] and were already
applied to several encryption schemes in [9,10,13,24,25].

The main novelty is that our proof makes direct use of the fact that the
underlying primitive is a trapdoor one-way permutation, rather than the Diffie-
Hellman problem. Therefore, the scheme’s consistency check can be directly im-
plemented by the simulator without having access to some external gap-oracle (as
in [9,10,25]) or using other extrinsic rejection techniques (such as “hash proof sys-
tems” [15,14], “twinning” [13], or authenticated symmetric encryption [28,24]2).
Thus, our proof technique is fundamentally different from all known approaches

1 We stress that our use of the term “all-but-one” refers to the ability to generate a
secret key that can be used to decrypt all consistent ciphertexts except for an exter-
nally given ciphertext. This is very different from the techniques of, e.g., [31,16,15]:
in these latter frameworks, the first step in the proof consists in making the challenge
ciphertext inconsistent, and then constructing a secret key that can be used to con-
struct all consistent ciphertexts. Hence, “all-but-one” really refers to an “artificially
punctured” secret key.

2 As opposed to generic CCA-secure symmetric encryption, a potentially weaker
primitive.

316 D. Hofheinz and E. Kiltz

to obtain CCA security. This also includes the recent class of schemes based on
lossy trapdoor functions [33].

Efficiency. The resulting encryption scheme (which is actually a key encapsu-
lation mechanism, see [15]) is very efficient: encryption needs roughly two, and
decryption roughly one modular exponentiations; the public-key contains the
modulus plus two group elements. (The modulus and one element can be viewed
as systems parameters shared among all parties). To the best of our knowledge
this is much more efficient than all known CCA-secure schemes based on an
assumption related to factoring, even the ones based on a decisional assumption.

2 Preliminaries

2.1 Notation

We write [N] = {1, . . . , N}. For group elements g, h, we denote by dloggh the
discrete logarithm of h to the base g, i.e., the smallest i ≥ 0 with h = gi.
A probabilistic polynomial-time (PPT) algorithm is a randomized algorithm
which runs in strict polynomial time. If A is a probabilistic algorithm, we write
y ← A(x) to denote that the random variable y is defined as the output of A
when run on input x and with fresh random coins. On the other hand, if S is a
set, then s← S defines s as being uniformly and independently sampled from S.
By k we denote the security parameter, which indicates the “amount of security”
we desire. Typically, an adversarial advantage should be bounded by 2−k, and a
typical value for k is 80.

2.2 Factoring

A prime number P is called a safe prime iff P = 2p + 1 for a prime p. We
assume a PPT algorithm IGen that, on input a security parameter k in unary,
generates two random safe primes P = 2p+1 and Q = 2q+1 with bitlength(p) =
bitlength(q) = �N(k)/2 − 1. We assume that p and q are odd, such that P and
Q are congruent 3 modulo 4 and N = PQ is a Blum integer. IGen returns N
along with P and Q. Here �N(k) denotes a function that represents, for any given
security parameter k, the recommended (bit-)size of the composite modulus N .
For the rest of the paper, we assume thatN is generated by the factoring instance
generator IGen. The set QRN ⊆ �

∗
N of quadratic residues modulo N is defined

as QRN := {x ∈ Z∗
N : ∃y ∈ Z∗

N with y2 = x mod N}. Since Z∗
N
∼= Z2×Z2×Zpq,

QRN is a cyclic group of order pq. Note that this implies that a uniformly
chosen element of QRN is a generator (of QRN) with overwhelming probability.
Computations in QRN are computations modulo N . If it is implied by context,
we omit writing explicitly “modN” for calculations modulo N .

Definition 1 (Factoring assumption). For an algorithm F, we define its fac-
toring advantage as

Advfac
IGen,F(k) := Pr

[
(N,P,Q) ← IGen(1k) : F(N) = {P,Q}] .

Practical Chosen Ciphertext Secure Encryption from Factoring 317

We say that F (tfac, εfac)-factors composite integers if F runs in time tfac and
Advfac

IGen,F(k) ≥ ε(k). The factoring assumption (with respect to IGen) states that
Advfac

IGen,F(k) is negligible in k for every PPT F.

The best algorithms currently known for factoring N = PQ of length �N =
bitlength(N) = logN have (heuristic) running time

LN (1/3, (64/9)1/3) = e1.92�N
1/3+o(1)(log �N)2/3

.

Therefore, if we want k bits of security, we need to choose the function �N(k)
such that the above term is lower bounded by 2k. As an example, one commonly
uses �N(80) = 1024.

2.3 Key Encapsulation Mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler
KEM framework. It is well-known that an IND-CCA secure KEM combined with
a (one-time-)IND-CCA secure symmetric cipher (DEM) yields a IND-CCA secure
public-key encryption scheme [15]. Efficient one-time IND-CCA secure DEMs can
be constructed even without computational assumptions by using an encrypt-
then-MAC paradigm [15] (or, alternatively, using computational assumptions
such as strong pseudorandom permutations [34]).

A key encapsulation mechanism (KEM) KEM = (Gen,Enc,Dec) consists of
three PPT algorithms. Via (pk , sk) ← Gen(1k), the key generation algorithm
produces public/secret keys for security parameter k ∈ �; via (K,C) ← Enc(pk),
the encapsulation algorithm creates a symmetric key3 K ∈ {0, 1}�K together with
a ciphertext C; via K ← Dec(sk , C), the possessor of secret key sk decrypts
ciphertext C to get back a key K which is an element in {0, 1}�K or a special
reject symbol ⊥. For correctness, we require that for all possible k ∈ �, and all
(K,C) ← Enc(pk), we have Pr[Dec(sk , C) = K] = 1, where the probability is
taken over the choice of (pk , sk) ← Gen(1k), and the coins of all the algorithms
in the expression above.

The common requirement for a KEM is indistinguishability against chosen-
ciphertext attacks (IND-CCA) [15], where an adversary is allowed to adaptively
query a decapsulation oracle with ciphertexts to obtain the corresponding key.
We are using the slightly simpler but equivalent one-phase definition from [26].
Formally:

Definition 2 (IND-CCA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we define the following experiments ExpCCA-real

KEM,A

and ExpCCA-rand
KEM,A :

Experiment ExpCCA-real
KEM,A (k)

(pk , sk)← Gen(1k)

(K∗, C∗) ← Enc(pk)
Return ADec(sk ,·)(pk ,K∗, C∗)

Experiment ExpCCA-rand
KEM,A (k)

(pk , sk)← Gen(1k)
R← {0, 1}�K

(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk , R, C∗)

3 For simplicity we assume that the KEM’s keyspace are bitstrings of length �K.

318 D. Hofheinz and E. Kiltz

In the above experiments, the decryption oracle Dec(sk , ·), when queried with a
ciphertext C �= C∗, returns K ← Dec(sk , C). (Dec(sk , ·) ignores queries C =
C∗.) We define A’s advantage in breaking KEM’s IND-CCA security as

AdvCCA
KEM,A(k) :=

1
2

∣∣∣Pr
[
ExpCCA-real

KEM,A (k) = 1
]
− Pr

[
ExpCCA-rand

KEM,A (k) = 1
]∣∣∣ .

A (tKEM, εKEM)-breaks KEM’s IND-CCA security (short: A (tKEM, εKEM)-breaks
KEM) if A runs in time at most tKEM = tKEM(k) and we have AdvCCA

KEM,A(k) ≥
εKEM(k). We say that KEM has indistinguishable ciphertexts under chosen-
ciphertext attacks (short: KEM is IND-CCA secure) if for all PPT A, the function
AdvCCA

KEM,A(k) is negligible in k.

2.4 Target-Collision Resistant Hashing

Informally, we say that a function T : X → Y is a target-collision resistant
(TCR) hash function (aka universal one-way hash function [31]), if, given a
random preimage x ∈ X , it is hard to find x′ �= x with T(x′) = T(x).

Definition 3 (TCR hash function). Let T : X → Y be a function. For an
algorithm B, define

AdvTCR
T,B (k) := Pr [x← X,x′ ← B(x) : x′ �= x ∧ T(x′) = T(x)] .

We say that B (tT, εT)-breaks T’s TCR property (short: B (tT, εT)-breaks T) iff
B’s running time is at most tT(k) and AdvTCR

T,B (k) ≥ εT(k). We say that T is
target-collision resistant if for all PPT B, the function AdvTCR

T,B (k) is negligible
in k.

3 Chosen-Ciphertext Security from Factoring

3.1 The Scheme

In this section, we will present our KEM construction. We will make use of two
building blocks: a target collision-resistant hash function, and the Blum-Blum-
Shub (BBS) pseudorandom number generator [5].

Concretely, for a product N = PQ of two primes P,Q and u ∈ �N , we estab-
lish the following notation: |u| denotes the absolute value of u and LSBN (u) =
u mod 2 the least significant bit of u, where in both cases u is interpreted as a
signed integer with −(N − 1)/2 ≤ u ≤ (N − 1)/2. Furthermore, let

BBSN (u) =
(
LSBN (u), LSBN (u2) . . . , LSBN (u2�K−1

)
)
∈ {0, 1}�K

denote the BBS generator applied to u and modulo N .4

4 For efficiency, and at the price of a worse reduction, one can even simultaneously
extract �log2 log2 N� bits of each u2i

instead of only the least significant bit [1].
However, our analysis treats the original BBS generator for simplicity.

Practical Chosen Ciphertext Secure Encryption from Factoring 319

Furthermore, forN as above, let T : �N → {1, . . . , 2�T−1} be a target-collision
resistant hash function.

The scheme. We are ready to define the following key encapsulation mechanism
KEM = (Gen,Enc,Dec):
Key generation. Gen(1k) chooses uniformly at random

• a modulus N = PQ = (2p+ 1)(2q + 1) (using IGen(1k), cf. Section 2.2),
• a quadratic residue g ∈ QRN ,
• an exponent α ∈ [(N − 1)/4],

Gen then sets X = gα2�K+�T and outputs a public key pk and a secret key sk ,
where

pk = (N, g,X) sk = (N, g, α).

Encapsulation. Enc(pk) chooses uniformly r ∈ [(N − 1)/4], sets

R = gr2�K+�T
t = T(R) ∈ {1, . . . , 2�T − 1} S =

∣∣(gtX
)r∣∣

and outputs the key K = BBSN (gr2�T) ∈ {0, 1}�K and the ciphertext C =
(R,S) ∈ QRN × (�∗

N ∩ [(N − 1)/2]).
Decapsulation. Dec(sk , (R,S)) verifies that (R,S) ∈ Z∗

N × (Z∗
N ∩ [(N − 1)/2])

and rejects if not. Then, Dec computes t = T(R) ∈ {1, . . . , 2�T − 1}, checks
whether (

S2)2�K+�T ?=
(
R2)t+α2�K+�T

(1)

holds, and rejects if not. If (1) holds, Dec computes a, b, c ∈ Z such that

2c = gcd(t, 2�K+�T) = at+ b2�K+�T . (2)

Note that c < �T since 0 < t < 2�T . Then, Dec derives

T =
((
S2)a · (R2)b−aα

)2�T−c−1

(3)

and from this K = BBSN (T) ∈ {0, 1}�K, which is the output.

We remark that decapsulation (or, rather, generation of the secret keys) does
not require knowledge about the factorization of N . Indeed, the modulus N as
well as the generator g can be viewed as global system parameters shared by
many parties. Then pk only contains the value X ∈ QRN and sk only contains
α ∈ [(N − 1)/4].

Our scheme uses an RSA modulus N that consists of safe primes. In Section 5
we show how to avoid this assumption and allow N to be an arbitrary Blum
integer.

Correctness. The correctness of the scheme might not be obvious, so we prove
it here. Fix a public key pk and a secret key sk as produced by Gen(1k), and
assume that (R,S) is a ciphertext for a key K as generated by Enc(pk). We

320 D. Hofheinz and E. Kiltz

have to show that Dec(sk , (R,S)) outputs K. First, it is clear that (R,S) ∈
Z∗

N × (Z∗
N ∩ [(N − 1)/2]). Also,

(
S2)2�K+�T

=
(∣∣(gtX

)r∣∣2)2�K+�T

= g2(t+α2�K+�T)r2�K+�T (∗)
=

(
R2)t+α2�K+�T

(where (∗) uses R = gr2�K+�T), so (1) holds. Hence, (R,S) is not rejected by Dec.
Now (1) implies

S2 =
(
R2) t+α2�K+�T

2�K+�T =
(
R2) t

2�K+�T
+α

, (4)

where the division in the exponent is computed modulo pq = |QRN |. (Note that
while S may or may not be a quadratic residue, S2 certainly is.) This gives

T
(3)
=

((
S2)a · (R2)b−aα

)2�T−c−1

=
((
S2 · (R2)−α

)a

· (R2)b
)2�T−c−1

(4)
=

(((
R2) t

2�K+�T

)a

· (R2)b
)2�T−c−1

=

((
R2)at+b2�K+�T

2�K+�T

)2�T−c−1

(2)
=

(
R2) 2c

2�K+�T
·2�T−c−1

=
(
R2) 1

2�K+1 (∗)
= gr2�T

, (5)

where, again, (∗) uses R = gr2�K+�T . But (5) shows that Dec outputs BBSN (T) =
BBSN (gr2�T) = K as desired.

Theorem 1 (IND-CCA security of KEM). Assume T is a target collision resis-
tant hash function and the factoring assumption holds. Then KEM is IND-CCA
secure in the sense of Definition 2.

The proof of Theorem 1 will be given in Section 4.

Efficiency. We claim that, with some trivial optimizations, encapsulation uses
roughly two exponentiations, and decapsulation roughly one exponentiation.
Namely, encapsulation can first compute A = gr and B = Xr, which are two full
exponentiations. Then, the remaining computations require only multiplications
or exponentiations with very small exponents: K = BBSN (A2�T), R = A2�K+�T ,
and S = AtB. (In fact, R is a by-product of computing K.) Similarly, decap-
sulation can first compute D = Rα/S, which requires one full exponentiation.
From D, (1) can be checked with D2�K+�T+1 ?= R2t, which requires only two
exponentiations with very small exponents. The key K can then be computed
as BBSN (T) for T = (RbD−a)2

�T−c

, which requires three exponentiations with
small exponents (note that the bit-length of a and b is at most �K + �T).

For concreteness let us assume that one regular exponentiation with an expo-
nent of length � requires 1.5 · � modular multiplications and that one squar-
ing takes the same time as one multiplication. Let us further assume that
�N := bitlength(N) = 1024 and �K = �T = 80. Then encapsulation requires
3�N + �K + 2.5�T = 3352 multiplications; decapsulation requires 1.5�N + 4�K +
6.5�T = 2376 multiplications. In Appendix A we also propose a variant of our

Practical Chosen Ciphertext Secure Encryption from Factoring 321

scheme that has slightly more efficient decapsulation but suffers from a compar-
atively large public key size.

We remark that, by adding the prime factors P and Q to the secret-key, we
can further improve the scheme’s efficiency. For example, using Chinese Remain-
dering will speed up decapsulation by a factor between 3 and 4.

4 Proof of Security

We split up the proof of Theorem 1 into two parts:
– We first recall that the BBS generator is pseudorandom if factoring Blum

integers is hard. This holds even if the modulus N and the 2�K-th power u2�K

of the BBS seed u are published, as is the case in our KEM. (Theorem 2.)
– We then prove that KEM is IND-CCA secure under the assumption that the

BBS generator is pseudorandom and the employed hash function is target-
collision resistant. This reduction is the heart of our proof. (Theorem 3.)

Combining both parts yields Theorem 1.
We start by recalling that the BBS generator is pseudorandom, in the following

sense.

Definition 4 (PRNG experiment for BBS generator). For an algorithm
D, define

AdvBBS
D (k) = Pr [D(N, z,BBSN (u)) = 1]− Pr

[
D(N, z, U{0,1}�K) = 1

]
,

where
– N ∈ � is distributed as IGen(1k),
– u ∈ QRN is uniformly chosen, and z = u2�K ,
– U{0,1}�K ∈ {0, 1}�K is independently and uniformly chosen.

We say that D (t, ε)-breaks BBS if D’s running time is at most t = t(k) and
AdvBBS

D (k) ≥ ε = ε(k).

Concretely, any BBS-distinguisher can be used to factor Blum integers.

Theorem 2 (BBS-distinguisher ⇒ factoring algorithm [7,5,1,18]). For
every algorithm D that (tBBS, εBBS)-breaks BBS, there is an algorithm F that
(tfac, εfac)-factors Blum integers, where

tfac ≈ k4tBBS/ε
2
BBS εfac = εBBS/�K.

Proof. Let D be an algorithm that (tBBS, εBBS)-breaks BBS. [7] show that D
gives rise to an algorithm D′ that (tLSB, εLSB)-distinguishes tuples (N, u2, LSB(u))
from tuples (N, u2, U{0,1}), where u ∈ QRN and U{0,1} ∈ {0, 1} are uniformly
chosen, tLSB ≈ tBBS, and εLSB = εBBS/�K. Building on [1], [18] show how to
transform D′ into an algorithm F that (tfac, εfac)-factors Blum integers, where
tfac ≈ k2tLSB/ε

2
LSB ≈ k4tBBS/ε

2
BBS and εfac = εLSB = εBBS/�K. (We use the inter-

pretation [30, Theorem 6.1] of the results from [18] here.) The claim follows.

322 D. Hofheinz and E. Kiltz

The following theorem contains the heart of our proof, namely, a simulation
that shows that any successful IND-CCA adversary on KEM implies a successful
BBS-distinguisher (and hence, using Theorem 2, can be used to factor Blum
integers).

Theorem 3 (IND-CCA adversary ⇒ BBS-distinguisher). For every adver-
sary A that (tKEM, εKEM)-breaks KEM’s IND-CCA property, there exists an algo-
rithm D that (tBBS, εBBS) breaks BBS and an adversary B that (tT, εT)-breaks T,
such that

tBBS ≈ tT ≈ tKEM εBBS + εT + 2−k+3 ≥ εKEM.

Proof. Setting up the variables for simulation. Assume an adversary A on
KEM’s IND-CCA security. We define a BBS-distinguisher D, which acts on input
(N, z, V) as follows. D first uniformly selects a quadratic residue g ∈ QRN , as
well as exponent β ∈ [(N − 1)/4], and sets

R∗ = z t∗ = T(R∗) ∈ {1, . . . , 2�T − 1} X = gβ2�K+�T−t∗ .

The public key used in the simulation is pk = (N, g,X). It will be convenient
to write X = gα2�K+�T as in Gen, for α = β − t∗/2�K+�T unknown to D. (Here
and in the following, a division of exponents is computed modulo pq, the order
of QRN .) Furthermore, in the following, we will silently assume that g generates
QRN , which is very likely, but not guaranteed. A rigorous justification that takes
into account error probabilities follows below.

Preparation of challenge ciphertext and key. To complete the definition of
the challenge ciphertext C∗ = (R∗, S∗), write R∗ = g2�K+�Tr∗

. Since we assumed
that g is a generator, this is possible, but of course r∗ is unknown. D defines

S∗ =
∣∣∣R∗β

∣∣∣ (
=

∣∣∣gr∗β2�K+�T
∣∣∣ =

∣∣∣∣(gt∗X
)r∗∣∣∣∣) (6)

as Enc would have computed. The (real) corresponding key K∗ is defined as

K∗ = BBSN

(
g2�Tr∗)

= BBSN

(
R∗ 1

2�K

)
= BBSN

(
z

1
2�K

)
= BBSN (u) . (7)

D then invokes A with public key pk = (N, g,X), challenge ciphertext C∗ =
(R∗, S∗), and challenge key V . Note that V is either the real challenge key
BBSN (u), or it is a uniform string.

On the distribution of simulated public key and challenge ciphertext.
We claim that the distribution of public key pk and challenge ciphertext C∗ is
almost identical in simulation and IND-CCA experiment. Concretely, we postpone
the straightforward but somewhat tedious proof of the following lemma until
after the description of our simulation.

Practical Chosen Ciphertext Secure Encryption from Factoring 323

Lemma 1. There exists an event badkey such that, conditioned on ¬badkey, pub-
lic key pk and challenge ciphertext C∗ are identically distributed in simulation
and IND-CCA experiment. Also, ¬badkey implies that g is a generator. We have

Pr [badkey] ≤ 2−k+3 (8)

both in the simulation and in the IND-CCA experiment.

Thus, conditioned on ¬badkey, D perfectly simulates A’s input as in the real IND-
CCA experiment if V = BBSN (u) = BBSN (z1/2�K), and as in the ideal IND-CCA
experiment if V is random.

How to handle A’s decryption queries. It remains to describe how D
handles decryption queries of A as in the IND-CCA experiment. So say that
A submits a ciphertext (R,S) for decryption. We may assume that (R,S) ∈
�

∗
N × (�∗

N ∩ [(N − 1)/2]). Let t = T(R) ∈ {1, . . . , 2�T − 1}. We call a ciphertext
consistent iff the original decryption algorithm would not have rejected it. Hence,
by (1), a ciphertext is consistent iff(

S2)2�K+�T ?=
(
R2)t−t∗+β2�K+�T

(
=

(
R2)t+α2�K+�T

)
. (9)

By our setup of variables, D can check (9) by itself, and hence detect and reject
inconsistent ciphertexts.

How to decrypt consistent ciphertexts. Now assume that C is consistent
and t �= t∗. Then, (4) and (5) follow (except for the deduction (∗)) just as in the
correctness proof, and we get

T =
(
R2) 1

2�K+1 (10)

for the raw key T that would have been computed by Dec. We will now show
how D can compute T . Namely, D computes a′, b′, c′ ∈ Z such that

2c′ = gcd(t− t∗, 2�K+�T) = a′(t− t∗) + b′2�K+�T . (11)

Since 1 ≤ t, t∗ < 2�T and t �= t∗, we have c′ < �T. Similarly to (4) and (5), we
obtain

S2 =
(
R2) t−t∗

2�K+�T
+β

, (12)

from (9), and from this

((
S2)a′

· (R2)b′−a′β
)2�T−c′−1

=
((

S2 · (R2)−β
)a′

· (R2)b′
)2�T−c′−1

(12)
=

(((
R2) t−t∗

2�K+�T

)a′

· (R2)b′
)2�T−c′−1

=

((
R2)a′(t−t∗)+b′2�K+�T

2�K+�T

)2�T−c′−1

(11)
=

(
R2) 2c′

2�K+�T
·2�T−c′−1

=
(
R2) 1

2�K+1 (10)
= T. (13)

324 D. Hofheinz and E. Kiltz

Note that from T , the final decryption key can be computed as K = BBSN (T).
Hence, using (13), D can correctly decrypt every consistent ciphertext with
t �= t∗.

The case t = t∗. So let us turn to the case that t = t∗ and the ciphertext is
consistent. Then, if R = R∗ holds, we have

S2 (9)
=

(
R2) t−t∗

2�K+�T
+β (∗)

=
(
R∗2

)β

= S∗2 (14)

where in (∗) we use R = R∗ and t = t∗. Furthermore, (R,S) �= (R∗, S∗) implies

|S| = S �= S∗ = |S∗|, so that S �= ±S∗ and (S + S∗)(S − S∗) = S2 − S∗2 (14)
=

0 mod N yields a non-trivial factorization of N . Hence, D can efficiently factor N
to solve its own input challenge (N, z, L) directly whenever R = R∗ and (R,S)
is consistent.

On the other hand, if T(R) = t = t∗ = T(R∗) and R �= R∗, then A has broken
the target-collision resistance of T. Formally, let badTCR denote the event that
t = t∗ and R �= R∗. If badTCR occurs, D can safely give up, since

Pr [badTCR] ≤ AdvTCR
T,B (k) (15)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the decryption procedure. We summarize the decryption
cases:
– inconsistent (R,S) (consistency check (9)⇔(1) not passed): reject,
– consistent (R,S) and t �= t∗: decrypt using (13),
– consistent (R,S), t = t∗, and R = R∗: factor N (using S �= ±S∗ and
S2 = S∗2 by (14)),

– consistent (R,S), t = t∗, and R �= R∗: give up simulation (A has found a
T-collision).

Hence, also decryption is faithfully simulated unless badTCR occurs.

Finishing the proof. We conclude that, unless badTCR or badkey occurs, D
perfectly simulates the real IND-CCA experiment upon input V = BBSN (u),
and the ideal IND-CCA experiment if V is random. If we let D output whatever
the simulated experiment outputs, we obtain:∣∣∣Pr [D(N, z,BBSN (u)) = 1]− Pr

[
ExpCCA-real

KEM,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey]∣∣∣Pr

[
D(N, z, U{0,1}�K)=1

]
− Pr

[
ExpCCA-rand

KEM,A (k)=1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey] .

(16)

Using (8) and (15), Theorem 3 follows from (16).
It remains to prove Lemma 1.

Proof of Lemma 1. Observe that pk and C∗ are distributed slightly differently
in the IND-CCA experiment (i.e., as generated by Gen and Enc) and in the
simulation:

Practical Chosen Ciphertext Secure Encryption from Factoring 325

– R∗ = gr∗
for uniform (hidden) r∗ ∈ [(N − 1)/4] in the experiment, while

R∗ ∈ QRN is a uniform group element in the simulation.
– X = gα2�K+�T for uniform (hidden) α ∈ [(N − 1)/4] in the experiment, while
X = gβ2�K+�T−t∗ for uniform (hidden) β ∈ [(N − 1)/4] in the simulation.

However, conditioned on the following event goodkey:
(in the experiment:) g is a generator, and r∗, α ≤ |QRN |,
(in the simulation:) g is a generator, and β ≤ |QRN |,

pk and C∗ are distributed identically in experiment and simulation: goodkey

implies that N , g, X , and R∗ are uniformly and independently chosen over their
respective domains, and S∗ follows deterministically from pk and R∗ according
to (7). Hence we only need to bound the probability of badkey := ¬goodkey.
Since |QRN | = pq and we assumed that p and q are n/2-bit primes, a uniform
QRN -element is a generator except with probability (p + q − 1)/pq ≤ 2−n/2+2.
Furthermore, (N − 1)/4 is a close approximation of the group order |QRN | =
pq = (N − 1)/4 − (p + q)/2, so that, e.g., r∗ ≤ |QRN | except with probability
2(p+ q)/(N − 1) ≤ 2−n/2+1. Hence,

Pr [badkey] ≤ max
{

2−n/2+2 + 2 · 2−n/2+1, 2−n/2+2 + 2−n/2+1
}

= 2−n/2+3
n/2≥k

≤ 2−k+3

both in the experiment and in the simulation.

5 Avoiding Safe Primes

In our KEM, we assume that N = PQ is composed of two safe primes (i.e.,
primes of the form P = 2p + 1 for prime p). We can drop this assumption
and allow arbitrary Blum integers N , if we employ a Goldreich-Levin [21] based
pseudorandom generator instead of the Blum-Blum-Shub generator. Namely, all
we actually need to prove that KEM is IND-CCA is that(

N, g, gr2�K+�T
,Extpk (gr2�T)

)
c≈
(
N, g, gr2�K+�T

, U{0,1}�K

)
, (17)

where
c≈ denotes computational indistinguishability, N is a Blum integer, g ∈

QRN , r ∈ [N/4], and U{0,1}�K ∈ {0, 1}�K are uniform, and Ext is a suitable
randomness extractor. In our original description of KEM, we have Extpk (u) =
BBSN (u). In that case, we only know that the hardness of factoring N implies
(17) if u = gr2�T is a uniform element of QRN (which is the case when N = PQ
for safe primes P,Q, since then g is a generator with high probability). But if g
is not a generator at least with high probability, then u may not be uniformly
distributed.

Now suppose we set

Extpk (u) =
(
GLs(u),GLs(u2), . . . ,GLs(u2�K−1

)
)
∈ {0, 1}�K

326 D. Hofheinz and E. Kiltz

for the Goldreich-Levin predicate GLs that maps u to the bitwise inner product
of s and u. Then a hybrid argument and the hard-core property of GLs show
that (17) is implied by the hardness of computing u with u2 = v mod N from
(N, g, v) (with v = gr). But any algorithm B that computes such a u from
(N, g, v) can be used to factor N . Namely, given N , choose uniformly h ∈ �N

and r̃ ∈ [N/4], and set g = h2 and v = g2r̃+1. (Observe that v is almost uniformly
distributed over 〈g〉, sinceN is a Blum integer.) Then, invokeB(N, g, v) to obtain
a square root u of v. We can then compute a square root of g as h̃ = uagb (for
a, b ∈ Z with a(2r̃ + 1) + 2b = gcd(2r̃ + 1, 2) = 1). With probability 1/2, then
gcd(h − h̃, N) yields a non-trivial factor of N . Hence (17) is implied by the
hardness of factoring arbitrary Blum integers, and our KEM (instantiated with
the Goldreich-Levin predicate) is IND-CCA secure. The price to pay is that we
need to place a seed s ∈ {0, 1}�N for the Goldreich-Levin hard-core function in
the public key. (However, note that s can be made a global system parameter,
like N and g.)

Acknowledgements

We are grateful to Victor Shoup, who generously allowed us to use his observa-
tions on how to compress the public key from O(�T) down to two group elements,
and on how to get rid of the assumption that P and Q are safe primes. We would
also like to thank Ronald Cramer and Ivan Damg̊ard for interesting discussions.

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and Rabin functions:
Certain parts are as hard as the whole. SIAM Journal on Computing 17(2), 194–
209 (1988)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
New York (1993)

3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

4. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15(2), 364–383 (1986)

6. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme
which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 289–302. Springer, Heidelberg (1985)

7. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing 13(4), 850–864 (1984)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

Practical Chosen Ciphertext Secure Encryption from Factoring 327

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 915–942 (2006)

10. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM Press, New York (2005)

11. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

13. Cash, D.M., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

16. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd ACM STOC,
pp. 542–552. ACM Press, New York (1991)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

18. Fischlin, R., Schnorr, C.-P.: Stronger security proofs for RSA and Rabin bits.
Journal of Cryptology 13(2), 221–244 (2000)

19. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. ACM Transactions on Information and System Security 9(2), 181–234
(2006)

20. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

21. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st
ACM STOC, pp. 25–32. ACM Press, New York (1989)

22. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

23. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, pp. 308–325. Springer, Heidelberg (2008)

24. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

25. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

26. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-
hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–
297. Springer, Heidelberg (2007)

27. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS.
Springer, Heidelberg (2009)

28. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

328 D. Hofheinz and E. Kiltz

29. Lucks, S.: A variant of the cramer-shoup cryptosystem for groups of unknown
order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer,
Heidelberg (2002)

30. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. SIAM
Journal on Computing 31(5), 1383–1404 (2002)

31. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. ACM Press, New York (1990)

32. Paillier, P., Villar, J.L.: Trading one-wayness against chosen-ciphertext security in
factoring-based encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

33. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, New York
(2008)

34. Phan, D.H., Pointcheval, D.: About the security of ciphers (Semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

35. Rabin, M.O.: Digital signatures and public key functions as intractable as factoriza-
tion. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology
(January 1979)

36. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

37. Reyzin, L., Reyzin, N.: Better than BiBa: Short One-Time Signatures with Fast
Signing and Verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS,
vol. 2384, pp. 144–154. Springer, Heidelberg (2002)

38. Williams, H.C.: A modification of the RSA public-key encryption procedure. IEEE
Transactions on Information Theory 26(6), 726–729 (1980)

A A Variant of Our Scheme

We now propose a variant of our scheme that has slightly more efficient decap-
sulation but suffers from a comparatively large public key size.

Let T : �N → {0, 1}�T be a target-collision resistant hash function. Then,
define the following key encapsulation mechanism KEM′ = (Gen′,Enc′,Dec′):
Key generation. Gen′(1k) chooses uniformly at random

• a modulus N = PQ = (2p+ 1)(2q + 1) (using IGen(1k), cf. Section 2.2),
• a quadratic residue h ∈ QRN ,
• exponents αi,j ∈ [(N − 1)/4] for i ∈ [�T] and j ∈ {0, 1},

Gen′ then gets g = h2 and

X1,j = gα1,j2�K · h j ∈ {0, 1}
Xi,j = gαi,j2�K

i = 2, . . . , �T, j ∈ {0, 1}.

Gen′ finally outputs a public key pk and a secret key sk , where

pk = (N, g, (Xi,j)i∈[�T],j∈{0,1}) sk = (N, (αi,j)i∈[�T],j∈{0,1}).

Practical Chosen Ciphertext Secure Encryption from Factoring 329

Encapsulation. Enc′(pk) chooses uniformly r ∈ [(N − 1)/4], sets

R = g2�Kr t = (t1, . . . , t�T
) = T(R) ∈ {0, 1}�T S =

∣∣∣∣∣
(

�T∏
i=1

Xi,ti

)r∣∣∣∣∣
and outputs the key K = BBSN (gr) ∈ {0, 1}�K and the ciphertext C =
(R,S) ∈ QRN × (Z∗

N ∩ [(N − 1)/2]).
Decapsulation. Dec′(sk , (R,S)) verifies that (R,S) ∈ Z∗

N × (Z∗
N ∩ [(N −1)/2])

and rejects if not. Then, Dec′ computes t = (t1, . . . , t�T
) = T(R) and checks

(
S2)2�K+1 ?=

(
R2)1+2�K+1 ∑ �T

i=1 αi,ti

(
=

(
R2)2dlogg

∏�T
i=1 Xi,ti

)
. (18)

If (18) does not hold, Dec′ rejects. Otherwise, Dec′ computes

T = S2 (R2)−∑ �T
i=1 αi,ti

(
(18)
=

(
R2) 1

2�K+1

)
. (19)

and outputs K = BBSN (T) = BBSN ((R2)
1

2�K+1)).

Correctness. The scheme enjoys correctness, since an honestly generated ci-
phertext (R,S) fulfils

(
S2)2�K+1

=

⎛⎝∣∣∣∣∣
(

�T∏
i=1

Xi,ti

)r∣∣∣∣∣
2⎞⎠2�K+1

= g2�K+1r·2dlogg

∏ �T
i=1 Xi,ti =

(
R2)2dlogg

∏ �T
i=1 Xi,ti ,

so that consistency in the sense of (18) holds, and Dec′(sk , (R,S)) outputs

BBSN (T) = BBSN ((R2)
1

2�K+1) = BBSN (gr) = K.

Efficiency. With some trivial optimizations, KEM′ uses roughly two exponen-
tiations for encapsulation and one for decapsulation. However, KEM′’s public
key contains 2�T + 1 group elements. This number can be roughly halved by
using the following technique. Namely, observe that in KEM′, the hash value
t = T(R) is interpreted as a bitwise selector of �T out of 2�T group elements
Xi,j . Instead, one can interpret t as an integer that specifies a subset of group
elements Xi. Concretely, we can define a mapping f from {0, 1}�T to subsets of
[�], where � denotes the number of group elements. For our proof, we will only
need that for any distinct t, t∗ ∈ {0, 1}�T, we have f(t) �⊆ f(t∗) and f(t∗) �⊆ f(t).
As an example, we can have the injective mapping f that associates to t the t-th
subset of [�] of size �/2. Using a suitable enumeration of these subsets, f can
be implemented efficiently, and we will only need about � ≈ �T + log �T group
elements Xi to make f injective. More sophisticated examples of such mappings

330 D. Hofheinz and E. Kiltz

f were suggested in the context of one-time signatures, see [37]. However, since
our scheme KEM is far superior in public key size and (roughly) on par with
KEM′ in terms of efficiency, we omit the details.

For concreteness let us again assume that one regular exponentiation with
an exponent of length � requires 1.5 · � modular multiplications and that one
squaring takes the same time as one multiplication. Let us further assume that
�N := bitlength(N) = 1024 and �K = �T = 80. Then encapsulation requires
3�N + �K + �T = 3232 multiplications; decapsulation requires 1.5�N + �K = 1616
multiplications. Hence in terms of efficiency KEM′ is slightly better than KEM,
in particular for decapsulation. However, KEM′ has the drawback of large public
key size.

Theorem 4 (IND-CCA security of KEM′). Assume T is a target collision
resistant hash function and the factoring assumption holds. Then KEM′ is secure
in the IND-CCA secure in the sense of Definition 2.

Given Theorem 2, it suffices to prove the following theorem.

Theorem 5 (IND-CCA adversary on KEM′ ⇒ BBS-distinguisher). For ev-
ery adversary A that (tKEM′ , εKEM′)-breaks KEM′’s IND-CCA property, there exists
an algorithm D that (tBBS, εBBS) breaks BBS and an adversary B that (tT, εT)-
breaks T, such that

tBBS ≈ tT ≈ tKEM′ εBBS + εT +
2�T + 3
2k−1 ≥ εKEM′ .

Proof. Setting up the variables for simulation. Assume an adversary A on
KEM′’s IND-CCA security. We define a BBS-distinguisher D, which acts on input
(N, z, V) as follows. D first uniformly picks an element h ∈ QRN , exponents
βi,j ∈ [(N − 1)/4] for i ∈ [�T], j ∈ {0, 1}, and sets

L = lcm(1, . . . , �T) g = h2L R∗ = z

t∗ = (t∗1, . . . , t
∗
�T

) = T(R∗) Xi,t∗i = g
βi,t∗

i
2�K

Xi,1−t∗i = g
βi,1−t∗

i
2�K · h.

Preparation of challenge ciphertext and key. To complete the definition
of the challenge ciphertext C∗ = (R∗, S∗), D defines

S∗ =
∣∣∣∣R∗

∑ �T
i=1 βi,t∗

i

∣∣∣∣
⎛⎝=

∣∣∣∣∣∣R∗
dlogg

∏ �T
i=1 Xi,t∗

i

2�K

∣∣∣∣∣∣
⎞⎠ (20)

such that (18) is met. Note that the (real) corresponding key K∗ according to
Dec′ is defined as

K∗ = BBSN

((
R∗2

) 1
2�K+1

)
= BBSN (z

1
2�K) = BBSN (u). (21)

Practical Chosen Ciphertext Secure Encryption from Factoring 331

D then invokes A with public key pk = (N, g, (Xi,j)i,j), challenge ciphertext
C∗ = (R∗, S∗), and challenge key V . Note that V is either the real challenge key
BBSN (u), or it is a uniform string.

On the distribution of simulated public key and challenge ciphertext.
The distribution of public key pk and challenge ciphertext C∗ is almost identical
in simulation and IND-CCA experiment. Concretely, the proof of the following
lemma is very similar to the proof of Theorem 1, and we omit it.

Lemma 2. There exists an event badkey such that, conditioned on ¬badkey, pub-
lic key pk and challenge ciphertext C∗ are identically distributed in simulation
and IND-CCA experiment. Furthermore, Pr [badkey] ≤ 2�T+3

2k−1 , both in the simula-
tion and in the IND-CCA experiment.

Thus, conditioned on ¬badkey, D perfectly simulates A’s input as in the real

IND-CCA experiment if V = BBSN (u) = BBSN (z
1

2�K), and as in the ideal IND-
CCA experiment if V is random.

How to handle A’s decryption queries. It remains to describe how D
handles decryption queries of A as in the IND-CCA experiment. So say that
A submits a ciphertext (R,S) for decryption. We may assume that (R,S) ∈
�

∗
N × (�∗

N ∩ [(N −1)/2]). Let t = (t1, . . . , t�T
) = T(R). Write d = |{i : ti �= t∗i }| ∈

{0, . . . , �T} for the Hamming distance of t and t∗, and abbreviate β =
∑�T

i=1 βi,ti .
We call a ciphertext consistent iff the original decryption algorithm would not
have rejected it. Hence, by (18), a ciphertext is consistent iff

S2 =
(
R2)dlogg

∏k
i=1 Xi,ti

2�K

(
=

(
R2)β2�K+dlogghd

2�K =
(
R2)β+ d

2�K+1L

)
(22)

Our goal will be to implement a consistency check using our setup of variables
above, and to decrypt consistent ciphertexts as in the IND-CCA experiment.

How to detect inconsistent ciphertexts. We first describe how D detects
inconsistent ciphertexts. Namely, (22) is equivalent to(

S2(R2)−β
)2�K+1L

= (R2)d (23)

since exponentiating with 2�K+1L is a bijection on QRN ,5 and the group elements
on both sides of (22) are squares. On the other hand, D can easily check (23)
and hence efficiently detect and reject inconsistent ciphertexts.

How to decrypt consistent ciphertexts. Now assume that C is consistent
and t �= t∗ (so that 1 ≤ d ≤ �T). Then,

BBSN

((
S2(R2)−β

)L
d

)
(23)
= BBSN

((
R2) 1

2�K+1

)
= K. (24)

5 At this point we need that the modulus N consists of the product of two safe primes
such that QRN is a cyclic group whose order does not divide the integers 1, . . . , �T.
Hence for KEM′ it does not seem to be possible to avoid safe primes. (In contrast to
KEM, cf. Section 5.)

332 D. Hofheinz and E. Kiltz

Since L/d ∈ � by definition of L = lcm(1, . . . , �T), D can retrieve K efficiently
using (24). Hence, D can decrypt all consistent ciphertexts satisfying t �= t∗.

The case t = t∗. So let us turn to the case that t = t∗ and the ciphertext is
consistent. Then, if R = R∗ holds, we have

S2 (22)
=

(
R2)dlogg

∏k
i=1 Xi,ti

2�K
(∗)
=

(
R∗2

)dlogg

∏k
i=1 Xi,t∗

i

2�K (20)
= S∗2, (25)

where (∗) uses R = R∗ and t = t∗. Furthermore, (R,S) �= (R∗, S∗) implies

|S| = S �= S∗ = |S∗|, so that S �= ±S∗ and (S + S∗)(S − S∗) = S2 − S∗2 (25)
=

0 mod N yields a non-trivial factorization of N . Hence, D can efficiently factor N
to solve its own input challenge (N, z, L) directly whenever R = R∗ and (R,S)
is consistent.

On the other hand, if T(R) = t = t∗ = T(R∗) and R �= R∗, then A has broken
the target-collision resistance of T. Formally, let badTCR denote the event that
t = t∗ and R �= R∗. If badTCR occurs, D can safely give up, since

Pr [badTCR] ≤ AdvTCR
T,B (k) (26)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the decryption procedure. We summarize the decryption
cases:
– inconsistent (R,S) (consistency check (23)⇔(22)⇔(18) not passed): reject,
– consistent (R,S) and t �= t∗: decrypt using (24),
– consistent (R,S), t = t∗, and R = R∗: factor N (using S �= ±S∗ and
S2 = S∗2 by (25)),

– consistent (R,S), t = t∗, and R �= R∗: give up simulation (A has found a
T-collision).

Hence, also decryption is faithfully simulated unless badTCR occurs.

Finishing the proof. We conclude that, unless badTCR or badkey occurs, D
perfectly simulates the real IND-CCA experiment upon input V = BBSN (u),
and the ideal IND-CCA experiment if V is random. If we let D output whatever
the simulated experiment outputs, we obtain:∣∣∣Pr [D(N, z,BBSN (u)) = 1]− Pr

[
ExpCCA-real

KEM′,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey]∣∣∣Pr

[
D(N, z, U{0,1}�K)=1

]
− Pr

[
ExpCCA-rand

KEM′,A (k)=1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey] .

(27)

Using Lemma 2 and (26), Theorem 5 follows from (27).

Realizing Hash-and-Sign Signatures under
Standard Assumptions

Susan Hohenberger1,	 and Brent Waters2,		

1 Johns Hopkins University
susan@cs.jhu.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. Currently, there are relatively few instances of “hash-and-
sign” signatures in the standard model. Moreover, most current instances
rely on strong and less studied assumptions such as the Strong RSA and
q-Strong Diffie-Hellman assumptions. In this paper, we present a new
approach for realizing hash-and-sign signatures in the standard model.
In our approach, a signer associates each signature with an index i that
represents how many signatures that signer has issued up to that point.
Then, to make use of this association, we create simple and efficient
techniques that restrict an adversary which makes q signature requests
to forge on an index no greater than 2�lg(q)� < 2q. Finally, we develop
methods for dealing with this restricted adversary. Our approach requires
that a signer maintains a small amount of state — a counter of the
number of signatures issued. We achieve two new realizations for hash-
and-sign signatures respectively based on the RSA assumption and the
Computational Diffie-Hellman assumption in bilinear groups.

1 Introduction
Digital signatures are a fundamental cryptographic primitive and a key build-
ing block in many larger systems. Typically, known constructions fall into one
of two categories: the “tree”-based approach or the “hash-and-sign” approach.
This latter paradigm generally yields more efficient constructions and shorter
signatures, and represents what practitioners have come to expect. While many
realizations of hash-and-sign signatures exist in the random oracle model (e.g.,
[16,33,28,4,29,7,19,18]), efficient schemes in the standard model are rare. More-
over, random oracle model schemes can be based on well-studied assumptions
such as the discrete logarithm problem, Computational Diffie-Hellman and RSA.

� Supported by NSF CNS-0716142 and a Microsoft New Faculty Fellowship.
�� Supported by NSF CNS-0524252, CNS-0716199, CNS-0749931; the US Army Re-

search Office under the CyberTA Grant No. W911NF-06-1-0316; and the U.S. De-
partment of Homeland Security under Grant Award Number 2006-CS-001-000001.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of the U.S. Department of Homeland Security. Portions of this
work were done while this author was at SRI International.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 333–350, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

334 S. Hohenberger and B. Waters

However, known standard model schemes are often based on much stronger as-
sumptions, such as Strong RSA [17,13], q-Strong Diffie-Hellman [6] and LRSW
[10].1 These assumptions allow the adversary a significant amount of flexibility
in his ability to win, such as allowing him to choose a signing exponent (Strong
RSA), compute a value relative to a chosen constant (q-Strong Diffie Hellman),
or choose a random base value (LRSW). In each case, there are many possible
correct answers to the adversary’s challenge; in fact, exponentially many. This
stands in high contrast to weaker, more studied assumptions, such as the discrete
logarithm problem, Computational Diffie-Hellman and RSA, where there is only
one correct answer for a given challenge. These assumptions which restrict the
adversary to a single correct response seem inherently more reliable than their
flexible counterparts. Thus, an important direction, in our opinion, is to push
forward to practical, standard model schemes under standard assumptions.

One challenging aspect is that the security definition of signatures [21] inher-
ently allows the adversary a great deal of flexibility; she wins if she outputs a
forgery on any message not previously signed. Likewise, most existing “hash-
and-sign” standard model schemes inherently enable the adversary a good deal
of flexibility on which forgeries it can output and then the security is based on
the hardness of a problem where there are many possible solutions. For exam-
ple, consider the construction of Cramer and Shoup [17,13]; since the legitimate
signer chooses a random prime from an exponentially large range, any proof
must consider a forger that has the same flexibility in choosing the exponent
and therefore the reduction is to the Strong RSA assumption (i.e, given (N, y),
it is hard to produce any pair (e, x) such that e > 1 and xe ≡ y mod N).

In this work, we present a new avenue: design the scheme in such a way that
enforces that any adversary output forgeries in some small set of categories that
roughly grows with the number of signatures created so far. (E.g., A category
could correspond to an RSA exponent used for verification in a prior signature.)
Once the forger is restricted to a small set of categories, the simulator can guess
where to program the challenge within this set. Alternatively, one can view our
approach as restricting the adversary to a small forgery set and then employing
selectively-secure techniques. The primary contribution of this work is the new
method for restricting a forger.

Our Approach. Let us give the intuition behind our two constructions. At the
core of our method, we associate with each signature an index i representing
the number of signatures previously issued by the signer. The actual signer will
only issue one signature per index. Roughly, the idea is to efficiently force the
adversary to forge on a previously seen index value. To restrict the adversary,
each signature is comprised of two logical components: a “core” signature on
the message under index i and a second component that bounds the highest
index number that the adversary might use. The most naive method would be
to create a separate signature that signs the current index being used; however,
1 One recent exception is the signature scheme due to Waters [34], which is provably

secure under the CDH assumption in bilinear groups. However, this scheme suffers
from a large public key size.

Realizing Hash-and-Sign Signatures under Standard Assumptions 335

this would itself demand a secure signature scheme and lead to a circularity. To
avoid this, the second component for a signature on index i will be a “signature”
on �lg(i)�. If we allow at most 2λ signatures, then there are at most λ possible
values for this second component and realizing it becomes simple. Moreover; the
set of “allowable” indices is at most a factor of 2 times the number of signatures
given out so far. It follows that any adversary must forge on a index set of
roughly the same size as the number of signatures he has seen (or break the
second component). Once we apply these techniques to force the adversary into
this small index set, we are in a position to create a system based on weaker
assumptions.

Let us illustrate this by describing a simplified version of our RSA-based
construction. Let N be a Blum-Williams integer. The signer publishes a modulus
N , a random value v ∈ Z∗

N and a hash function that enumerates a sequence of
primes, i.e., let H(i) = ei. To generate a signature using index i on message m,
the signer creates a “core” signature on m using the signing exponent e−1

i and
then also gives out i and the �lg(i)�-th square root of v. This ensures that an
adversary that makes at most q queries must sign using one of the first 2�lg(q)� <
2q values of ei (i.e., the output of H(j) on j = 1 to 2�lg(q)�); otherwise, the
adversary can take square roots and thereby factor N . Now that the adversary
is restricted to forging using a small set of ei values, we can use a combination of
previous techniques and new ideas to reduce from the standard RSA assumption.

Outline. We realize two new hash-and-sign signatures under the RSA assump-
tion and the Computational Diffie-Hellman assumption in bilinear groups, in
Sections 3 and 4 respectively. In Section 5, we discuss how to manage the signer’s
state in practice, including across multiple machines.

1.1 Related Work

The related work on designing secure signature schemes is vast and long standing.
We provide only a brief summary.

Tree-Based. Many of the earliest provably-secure constructions used the design
paradigm of a tree. Here a bound on the number of signatures to be issued is
first established, and then the efficiency of the signatures (i.e., their size and the
size of the public key) is in some way proportional to this bound. From gen-
eral assumptions, a series of works including Bellare-Micali [2], Naor-Yung [27],
and Rompel [32] established that signatures can be based on one-way functions.
From general and concrete assumptions, another series of works sought more ef-
ficient solutions, such as those of Goldwasser-Micali-Rivest [21], Goldreich [20],
Merkle [24], Dwork-Naor [15], Cramer-Damg̊ard [11,12] and many more. While
these works are fundamental to our understanding of provably secure signatures,
the tree-based constructions are often passed over in practice due to the compu-
tation and memory requirements.

Hash-and-Sign. In the search for more efficient constructions, many schemes
in the random oracle model were proposed, such as those of El Gamal [16],

336 S. Hohenberger and B. Waters

Schnorr [33], Okamoto [28], Bellare-Rogaway [4], Pointcheval-Stern [29] and
more recent short signatures by Boneh-Lynn-Shacham [7], signatures with tight-
reductions to Diffie-Hellman by Goh-Jarecki-Katz-Wang [19], and the recent
lattice-based signatures of Gentry-Peikert-Vaikuntanathan [18]. Unfortunately,
the schemes are only known to be secure relative to the random oracle heuristic.

Drawing closer to our objective, some prior works have explored secure hash-
and-sign signatures in the standard model. In 1999, Gennaro, Halevi and Ra-
bin [17] introduced the first hash-and-sign construction secure in the standard
model; its security depends on the Strong RSA assumption. Subsequent works
also based on Strong RSA of Cramer-Shoup [13] and Camenisch-Lysyanskaya [9]
improved the efficiency and added efficient protocols, respectively. (We will make
use of a key reduction technique due to Cramer and Shoup later on.)

More recent works pushed for shorter signatures in the standard model, mov-
ing away from Strong RSA to more complex bilinear assumptions. Two such ex-
amples are the Boneh-Boyen [6] signatures based on q-Strong Diffie-Hellman (i.e.,
given a generator g of prime order p and the tuple (gx, gx2

, . . . , gxq

), it is hard
to compute (c, g1/(x+c)) for any c ∈ Z∗

p) and the Camenisch-Lysyanskaya [10]
signatures based on the interactive LRSW assumption.

While these standard model schemes are useful and efficient, their security
depends on strong assumptions. In Strong RSA, q-Strong Diffie-Hellman and
LRSW, there are many correct answers to any given challenge, allowing the
adversary a significant amount of flexibility. This stands in sharp contrast to
mild and restricted assumptions such as RSA and CDH.

To our knowledge, the only example prior to this work of a practical signature
scheme secure in the standard model and under a mild complexity assumption is
due to Waters [34], whose scheme is based on CDH in bilinear groups. The draw-
back of Waters’ scheme compared to our scheme under the same assumption in
Section 4 is that the public key requiresO(λ) group elements, where λ is the secu-
rity parameter, whereas our public key requires O(1) group elements. There exist
variants of the Waters scheme (e.g., [26]) offering tradeoffs between the public key
size and the concrete security level, but the asymptotic behavior remains the same.

Interpretting our Results. In this work, we limit ourselves to the standard
practice of polynomial-time reductions. If we allowed super-polynomial reduc-
tions, it seems possible to interpret the Gennaro-Halevi-Rabin [17] and Cramer-
Shoup [13] solutions as provably secure under RSA and the selectively-secure
signatures of Boneh-Boyen [5] (as derived from their selectively-secure identity-
based encryption scheme) as provably secure under CDH. Indeed, one alternative
way of viewing our techniques is as a method for restricting a signature adversary
so that selectively-secure schemes become (fully) adaptively-secure.

One can also view our results as a step toward realizing practical, standard
model signatures under standard assumptions in a stateless manner. We remind
the reader that many of the early tree-based signatures, such as the GMR signa-
tures [21], also required the signer to keep a counter on the number of signatures
issued. Subsequently, Goldreich [20] showed how to remove this dependence on
state. We believe that a parallel outcome is possible here.

Realizing Hash-and-Sign Signatures under Standard Assumptions 337

2 Background

2.1 Signature Schemes

Since we consider stateful signers, we slightly alter the signature algorithm spec-
ifications as follows:

KeyGen(1λ) : the key generation algorithm outputs a keypair (PK, SK) and
an initial state s.

Sign(SK, s,M) : the signing algorithm takes in a secret key SK, a state s, and
a message M , and produces a signature σ.

Verify(PK,M, σ): the verification algorithm takes in a public key PK, a mes-
sage M , and a purported signature σ, and returns 1 if the signature is valid
and 0 otherwise.

We use the standard security notion of existential unforgeability with respect
to chosen-message attacks as formalized by Goldwasser, Micali and Rivest [21].
Here the adversary is given the public key and access to a signing oracle. The
adversary is considered to be successful if she is able to produce a valid signature
on any message not queried to the oracle.

2.2 Chameleon Hash Functions

A chameleon hash function H(m, r) has the usual collision-resistant hash prop-
erties with the additional feature that, given some special trapdoor information,
any target y and any message m′, it is possible to efficiently find a value r′ such
that H(m′, r′) = y. Chameleon hash functions were formalized by Krawczyk and
Rabin [23], who also presented a discrete-logarithm-based construction, derived
from the chameleon commitments of Boyar et al. [8]. We employ this hash in
Section 4 for our CDH-based signatures. In our RSA-based signatures in Sec-
tion 3, we can employ any chameleon hash function. Secure constructions exist
in the standard model under the discrete-logarithm assumption [23], the hard-
ness of factoring [23], and the RSA assumption [1]. See Appendix A for more on
RSA-based chameleon hashes.

2.3 RSA Assumption and Other Facts

We begin by recalling (one of the) standard versions of the RSA assumption [31].

Assumption 1 (RSA). Let k be the security parameter. Let positive integer N
be the product of two k-bit, distinct odd primes p, q. Let e be a randomly chosen
positive integer less than and relatively prime to φ(N) = (p − 1)(q − 1). Given
(N, e) and a random y ∈ Z∗

N , it is hard to compute x such that xe ≡ y mod N .

We remind the reader that in the Strong RSA assumption the adversary is
given (N, y) and succeeds by producing any integer pair (e, x) such that e > 1
and xe ≡ y mod N . The standard RSA version is much more restrictive on the
adversary.

338 S. Hohenberger and B. Waters

We will make use of the following additional facts.
In our RSA-based scheme, we will require a primality test. Fortunately, for

our purposes, it will be sufficient to use the efficient Miller-Rabin test [25,30].

Lemma 1 (Cramer-Shoup [13]). Given x, y ∈ Zn together with a, b ∈ Z such
that xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing
z ∈ Zn such that za = y.

Later on, we will choose our RSA moduli from the set of Blum-Williams integers,
since we will require that each square has a unique square root which is itself a
square. Formally, we will use:

Lemma 2 (Bellare-Miner [3]). Suppose n is a Blum-Williams integer. Sup-
pose a, a1, . . . , at ∈ Z∗

n and a is a square modulo n. Suppose x, x1, . . . , xt are
integers such that x1, . . . , xt > x ≥ 0. Suppose

a2x

=
t∏

j=1

a2xj

j mod n , then a =
t∏

j=1

a2xj−x

j mod n.

Theorem 2 (Prime Number Theorem). Defineπ(x) as the number of primes
≤ x. For x > 1,

π(x) >
x

ln x
.

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) �= 1.

Assumption 3 (Computational Diffie-Hellman [14]). Let g generate a
group G of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following
probability is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

3 Our RSA Realization

In our later CDH construction, the signer’s state of i will directly correspond
to the ith signature. This will not be true here. In our simplified scheme in
the introduction, we assumed the existence of a function that maps states to
different prime exponents. Our first challenge is to realize this function in a way
that allows us a means in the proof for embedding our RSA challenge exponent.
Our realization of this function, denoted H below, will require that we skip over
some states. Tantamount to our success will be the ability to maintain a correct
distribution in our reduction.

Realizing Hash-and-Sign Signatures under Standard Assumptions 339

To gain some intuition into the construction, let us begin by describing a
publicly-computable hash function H : Z → {0, 1}k, which will be used to link
exponents to states. Let F : Z → {0, 1}k be a pseudorandom function family.
Next, let c be a random value in {0, 1}∗. For a random PRF key K, we define
our corresponding hash function as HK(x) := c⊕ FK(x).

While it is unusual to publicly release a PRF key, we do so because we only
require some weaker properties from our hash function for which this construc-
tion will be sufficient. Specifically, we require that the hash function HK : (1)
outputs large primes with sufficient probability, and (2) on the first polynomial
inputs to the hash, all prime outputs are distinct with high probability. We will
later show that if the function HK does not meet these requirements then F
could not have been a PRF family.

Let us now turn to how the hash function HK is used in the system. The signer
keeps state as before and when signing with state s, if HK(s) is not prime, the
signer will skip over it and increment its state until it reaches some s′ such that
HK(s′) is prime. It will then sign using this prime and state s′. Thus, it will be
important to guarantee that the signer not have to skip over too many indices
when issuing signatures.

Now, we present our core construction and then remark on some different
possible optimizations. The construction here already reduces the public key
and signature size by one element in Z∗

N over the simplified RSA construction
described in the introduction.

3.1 RSA Construction

Setup(1λ). The setup algorithm chooses a Blum-Williams integer N , such that
2� < φ(N) < 2�+2, where � is another security parameter derived from 1λ. It
then chooses two random quadratic residues u, h ∈ QRN .

Next, it establishes a hash function H : Z → {0, 1}� by choosing a random
key K for the PRF function F : Z → {0, 1}�, a random c ∈ {0, 1}�, and defining
HK(x) = c⊕ FK(x).

It publishes the parameters L of some Chameleon Hash scheme ChamHash :
{0, 1}�′×{0, 1}�′′ → {0, 1} 2�

3 . (We note that such schemes in the standard model
exist under the hardness of factoring [23] and RSA [1]; see Appendix A.)

Finally, the public key consists of

N, u, h, c,K, L.

Anyone can compute HK() using these parameters. The setup algorithm sets its
state counter s = 0 and keeps the factorization of N as the secret key SK.

Sign(SK, s,M ∈ {0, 1}�′). The signer first increments its counter s by one as
s = s + 1. The algorithm then chooses a random r ∈ {0, 1}�′′ from the ap-
propriate range dictated by the choice of ChamHash. It then computes x =
ChamHash(M, r). Next, it checks if HK(s) is a prime. If not it increments
s = s+1 and tries again until es = HK(s) is a prime. Then the signer computes:

B = (uxh)(
1
2)�lg(s)	

mod N

340 S. Hohenberger and B. Waters

Note that we abuse notation here when taking square roots. When working
modulo Blum-Williams integers, let X

1
2 represent the unique square root of X

which is itself also a square. (See Lemma 2.) The signature is output as:

σ1 = B
1

es , r, s.

Conceptually, s is an index, but we will skip over many s values where HK(s) is
not a prime.

Verify(PK,M, σ = (σ1, r, i)). The verification algorithm first makes sure that
i < 2λ. If it is greater, then it rejects. Second, the verifier checks that HK(i) is
a prime. If not, it rejects.

Next, it squares σ1 a total of �lg(s)� times yielding the value Y = (σ1)2
�lg(s)	

.
Finally, it computes x = ChamHash(M, r) and ei = HK(i), and rejects unless it
verifies that

Y ei ≡ (uxh) mod N.

Comments. The above scheme is geared to showcase the main ideas, however,
one might consider different variants that allow for faster signature generation
and faster verification. One area for improvement is in the way that prime ex-
ponents are generated and linked to states.

As a first variant, instead of having the signer skip over an index i if HK(i)
is not prime (and thus, update and write to memory a state change), consider
a scheme that allows the signer to search for a prime in a small range around
the value HK(i). This option would require a more detailed analysis of the
probability of a collision among the prime exponents used as well as a more
complicated method for plugging in the RSA challenge.

As a second variant, consider a scheme that uses the first q primes starting
with 3 to sign q messages. This variant would enable both faster generation (via
a prime number seive to find the primes) and faster verification since we’d be
using small prime exponents. Unfortunately, this appears to require a reduction
from an assumption different than standard RSA; in particular, one might con-
sider reducing from an assumption that the adversary can’t take a root chosen
randomly from the first q odd prime roots. For any polynomial q, this assump-
tion is weaker than Strong RSA; however, we cannot reduce it to the standard
RSA assumption.

A third avenue for optimization, focusing on the size of N and the chameleon
hash parameters, is to note that our setting of {0, 1} 2�

3 as the chameleon hash
range is somewhat arbitrary. It can be set to any constant fraction of � bits
or any range R such that for a random prime e ∈ {0, 1}� the probability that
e �∈ R is non-negligible (we achieve e �∈ {0, 1} 2�

3 with high probability). In other
words, there can be a tradeoff here between the size of the parameters and the
concrete security. We also remind the reader that one can enlarge the domain of a
chameleon hash by first applying a normal collision-resistant hash function [23].

A fourth avenue for optimization, this time focusing on the number of elements
in the public key, is to find a method for directly embedding the chameleon hash
function into the signature itself (as we do in our CDH scheme in Section 4).

Realizing Hash-and-Sign Signatures under Standard Assumptions 341

3.2 Proof of Security

Theorem 4. If the RSA assumption holds when N is a Blum-Williams integer,
then the above construction is a secure signature scheme.

Proof. Our reduction will only work on certain types of RSA challenges. We first
describe this challenge set and then describe the reduction.

Our reduction will “throw out” all RSA challenges (N, e∗, y) where e∗ is not an
odd prime less than 2�. Fortunately, good challenges will occur with polynomial
probability. By construction, φ(N) < 2�+2. We also know, by Theorem 2, that
the number of primes ≤ 2� is ≥ 2�

� . Thus, a loose bound on the probability of e∗

being a prime in the proper range is (2�

�)/2�+2 = 1
4� .

Now, we describe the reduction. Suppose we have an adversary that makes
at most q(λ) queries where q() is a polynomial. (We say q queries where it is
clear from context.) We show that this adversary breaks RSA, on challenges
(N, e∗, y) where N is a Blum-Williams integer and e∗ is an odd prime < 2�. An
adversary can have two types of forgeries. Let x be the highest index on which
the adversary obtains a signature from the signer (i.e., the index at which the
qth prime appears).

Type I. The adversary forges for a message with index i greater than 2�lg(x)�.
Type II. The adversary forges for a message with index i less than or equal to

2�lg(x)�.

In Lemma 3, we show that a type I adversary can be used to break factoring
with a loss of a λ factor in the reduction. In Lemma 4, we show that a type II
adversary can be used to break RSA with a loss of a t factor in the reduction,
where t is a polynomial-size “bound on 2�lg(x)�” set to 4�[q + λ]. The value t is
established to avoid a circularity. In the proof of Lemma 4, the simulator would
like to guess the index of the adversary’s forgery in the range 1 to 2�lg(x)�, so that
it can set the function HK accordingly. However, the simulator cannot compute
x until it sets HK . To avoid this circularity, we bound t ≥ 2�lg(x)�. We want that
for a random function R, there are at least q primes in the set of {R(i)}i∈[1,x]
with high probability. Lemma 5 in Appendix B guarantees that this occurs for
x = 2�[q + λ] with probability 1 − e−[q+λ](1

2)2 . Thus, we set t = 2x = 4�[q + λ],
which establishes that t ≥ 2�lg(x)�. This concludes the proof.

Type I Adversary

Lemma 3. If a type I adversary succeeds with probability ε, then it can be used
to solve factoring with probability ε/(2λ)− negl(λ).

Proof. We provide a reduction showing how to turn a type I adversary into an
simulated adversary against factoring. Intuitively, in the simulation, the simula-
tor takes a guess of k∗ = �lg(i)�, the logarithm of the index i on which the type
I adversary will forge. There are at most λ values of k∗ so the simulator has at
least a 1/λ chance of guessing correctly.

We now describe the simulation. Given a factoring challenge N = p1p2, where
the goal is to produce either p1 or p2, proceed as follows.

342 S. Hohenberger and B. Waters

Setup The simulator begins by guessing a value k∗ in the range 1 to λ. Next, the
simulator selects a random PRF key K and random c ∈ {0, 1}�, which defines
the hash function HK(). Next, for i = 1 to t, the simulator computes ei = HK(i)
and tests to see if it is prime. If ei is prime, the simulator places i into a set E.
If |E| < q, the simulator aborts. In Lemma 5, we show that due to our choice of
t there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function,
where {0, 1} 2�

3 is the range of the hash. Finally, it chooses a random u′, h′ ∈ Z∗
N

and sets

û = (u′)
∏

j∈E ej and ĥ = (h′)
∏

j∈E ej

u = (û)2
k∗

and h = (ĥ)2
k∗
.

Since u′, h′ are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K, L), sets the internal

signing state s = 0 and keeps secret the chameleon hash trapdoor.

Sign When the adversary asks for a signature on message M , the simulator first
updates its state value s = s + 1. Since the adversary is polynomial, we know
that s < 2λ. If �lg(s)� ≥ k∗, the simulator’s guess was incorrect and it aborts.
Otherwise, the simulator selects a random r, computes x = ChamHash(M, r)
and outputs the signature as:

σ1 =
(
(u′xh′)

∏ j
=s
j∈E ej

)2(k∗−�lg(s))

, r, s.

Response Eventually, the type I adversary outputs a valid signature σ̃ = (σ̃1, r̃, ĩ)
on a message M̃ . If k∗ �= �lg(̃i)�, the simulator aborts. Otherwise, the simulator
computes x = ChamHash(M̃, r̃). From the verification equation and simulation
setup, we see that

(σ̃1
e∗

)2
k∗

= uxh = (ûxĥ)2
k∗
.

Since N is a Blum-Williams integer, it follows that (σ̃e∗
1)2 = (ûxĥ)2. Futher-

more, the fact that h′ was chosen randomly in Z∗
N and h′ is raised to a product

of odd primes ei implies that with probability 1
2 the value σ̃1

e∗
is congruent

to ûxĥ modulo p1, but not congruent modulo p2 or vice versa. In this case,
the simulator can factor N in the standard way, i.e., by computing a factor as
gcd(σ̃1

e∗ − ûxĥ, N).

Type II Adversary

Lemma 4. If a type II adversary succeeds with probability ε after making q
signing queries, then it can be used to solve RSA where N is a Blum-Williams
integer with probability ε/(4�[q + λ])− negl(λ).

Realizing Hash-and-Sign Signatures under Standard Assumptions 343

Proof. We provide a reduction showing how to turn a type II adversary into an
adversary against RSA. Our proof has two components. First, we’ll describe a
simulator and show that any adversary which is successful against the simulation
can be used to break RSA. Second, we’ll show that any adversary successful
against the above signature scheme will also be successful against the simulation.

Intuitively, in the simulation, the simulator takes a guess of i∗, the index on
which the type II adversary will forge, within a small range of 1 to t. We’ll lose
a factor of t here. The simulator will choose public parameters such that it is
straightforward to sign for any index except i∗. If the simulator is asked to sign
for index i∗, we program the Chameleon hash to allow this.

We now describe the simulation. Given an RSA challenge (N, e∗, y), where
the goal is to produce a value w ∈ Z∗

N such that we∗
= y, we proceed as follows.

For notation, let N = p1p2.

Setup. The simulator begins by guessing an index i∗ in the range 1 to t. Next,
the simulator selects a random PRF key K. It computes c = FK(i∗)⊕ e∗, which
defines the hash function HK(). Recall that e∗ < 2� since we “threw out” any
other RSA challenge. Next, for i = 1 to t, the simulator computes ei = HK(i)
and tests to see if it is prime. If ei is prime, the simulator places i into a set E.
If |E| < q, the simulator aborts. In Lemma 5, we show that due to our choice of
t there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function,
where {0, 1} 2�

3 is the range of the hash. The simulator then selects a random value
x∗ ∈ {0, 1} 2�

3 .
Finally, it chooses a random d ∈ Z∗

N and sets

û = y
∏j
=i∗

j∈E ej and ĥ = û−x∗
d
∏

j∈E ej , and then

u = (û)2
λ

and h = (ĥ)2
λ

.

Since y, d are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K, L), sets the internal

signing state s = 0 and keeps secret the chameleon hash trapdoor.

Sign. When the adversary asks for a signature on message M , the simulator first
updates its state value s = s + 1. Clearly, s < 2λ. Now, there are two cases for
computing the signature.

If s = i∗, then the simulator will employ the chameleon hash trapdoor to
find a value r such that ChamHash(M, r) = x∗. The simulator then outputs the
signature:

σ1 = (d
∏ j
=i∗

j∈E ej)2
(λ−�lg(i∗))

, r, i∗.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (ûx∗/e∗ · û−x∗/e∗ · d
∏ j
=i∗

j∈E ej)2
(λ−�lg(i∗))

= (ûx∗/e∗ · ĥ1/e∗
)2

(λ−�lg(i∗))

=
(
(ûx∗

ĥ)1/e∗)2(λ−�lg(i∗))

= ((ux∗
h)1/e∗)(

1
2)�lg(i

∗)	

344 S. Hohenberger and B. Waters

If s �= i∗, then the simulator chooses a random r and computes the value
x = ChamHash(M, r). The simulator then outputs the signature:

σ1 =
(
(yx

∏j
=s,j
=i∗
j∈E ej) · (y−x∗ ∏ j
=s,j
=i∗

j∈E ej) · (d
∏ j
=s

j∈E ej)
)2(λ−�lg(s))

, r, s.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = ((ûxĥ)1/es)2
(λ−�lg(s))

= ((uxh)1/es)(
1
2)�lg(s)	

Response. Eventually, the type II adversary outputs a valid signature σ̃ =
(σ̃1, r̃, ĩ) on a message M̃ such that ĩ ≤ t. If ĩ �= i∗, the simulator’s guess was
incorrect and it aborts.

Otherwise, the simulator computes x = ChamHash(M̃, r̃). If x = x∗, the
simulator aborts. Otherwise, from the verification equation and simulation setup,
we see that

(σ̃1
e∗

)2
�lg(̃i)	

= uxh = (ûxĥ)2
λ

We can see that (σ̃1
e∗

)2 = (ûxĥ)2
λ−�lg(̃i)	+1

via Lemma 2 since λ > �lg(̃i)� and
N is a Blum-Williams integer. Thus, we have two cases to consider regarding
the underlying square roots.

– Case A: σ̃1
e∗

or −σ̃1
e∗

is equal to (ûxĥ)2
λ−�lg(̃i)	

mod N .
– Case B: σ̃1

e∗
is congruent to (ûxĥ)2

λ−�lg(̃i)	
mod p1, but not congruent mod

p2 or vice versa.

Case A: Suppose v = σ̃1
e∗

is congruent to (ûxĥ)2
λ−�lg(̃i)	

mod N . (The case for
−v is analogous.) Clearly, v is a square modulo N . Since λ > �lg(̃i)�, we can
apply Lemma 2 to obtain

σ̃1
e∗

= (ûxĥ)2
λ−�lg(̃i)	

.

Let v = σ1/(d
∏j
=i∗

j∈E ej)2
λ−�lg(̃i)	

. Then substituting into the above equation
we have:

ve∗
= y2λ−�lg(̃i)	(x−x∗)

∏ j
=i∗
j∈E ej .

The simulator now runs the algorithm from Lemma 1 to obtain a value w
such that we∗

= y, and outputs w as the RSA challenge solution. We can
apply Lemma 1 since (1) w, y ∈ ZN , (2) e∗ and 2λ−�lg(̃i)�(x − x∗)

∏j =i∗

j∈E ej

are in Z, and (3) e∗ is relatively prime to 2λ−�lg(̃i)�(x − x∗)
∏j =i∗

j∈E ej with
high probability as shown in Lemma 6 of Appendix B.

Case B: The simulator computes gcd(σ̃1
e∗ − (ûxĥ)2

λ−�lg(̃i)	
, N) to obtain a fac-

tor of N .

This ends our description of the simulator. Due to space considerations, we
leave to the full version [22] our argument that any successful type II adversary
against our scheme will have success in the game presented by the simulator. To

Realizing Hash-and-Sign Signatures under Standard Assumptions 345

do this, we first define a sequence of games, where the first game models the real
world and the final game is exactly the view of the adversary when interacting
with our simulator. We then show via a series of claims that if a type II adversary
is successful against Game j, then it will also be successful against Game j + 1.

4 Our CDH Realization

Our CDH construction is both simplier and more efficient than its RSA counter-
part. This is partly due to the fact that here will not need to search for primes
and can instead directly associate the ith state with the ith signature. Here we
will also directly embed the chameleon hash function.

As before, each signature is associated with an index i and a category k =
�lg(i)�. We force the adversary to forge on a previously seen category, which
restricts her to a polynomial-size set from which to choose her forgery index.
Since this remaining set is polynomial in size, we can employ selectively-secure
techniques to obtain an adaptively-secure scheme. Specifically, we make use of
the selectively-secure signatures due to Boneh and Boyen [5] with a twist. Here
our index is like the message in their scheme and our message impacts their
“master key”.

4.1 CDH Construction

Setup(1λ). The setup algorithm selects a bilinear group G of prime order p >
2λ. It chooses a random exponent a ∈ Zp. It chooses random group elements
g, u, v, d, w, z, h ∈ G. The public key is output as:

g, ga, u, v, d, w, z, h.

The setup algorithm sets its state counter s = 0 and keeps a as the secret key
SK.

Sign(SK, s,M ∈ Zp). The message space is treated as Zp; to sign arbitrarily long
messages one could first apply a collision-resistant hash function. The signer first
increments its counter s by one as s = s + 1. If s > 2λ, then abort. Otherwise,
the algorithm chooses random r, t ∈ Zp and then outputs the signature as:

σ1 = (uMvrd)a(w�lg(s)�zsh)t, σ2 = gt, r, s.

Conceptually, we can think of t as the randomness from the Boneh-Boyen
selectively-secure signature [5] and r as the randomness for a Chameleon hash
function uMvr.

Verify(PK,M, σ = (σ1, σ2, r, i)). The verification algorithm first makes sure
that i < 2λ. If it is greater, then it rejects. Then it uses the bilinear map to
verify the signature by checking that

e(σ1, g) = e(uMvrd, ga)e(σ2, w
�lg(i)�zih).

346 S. Hohenberger and B. Waters

Theorem 5. If the CDH assumption holds in G, then the above construction is
a secure signature scheme.

Proof of this theorem appears in the full version [22].

Comments. First, the verification cost can be reduced to only two pairings by
publishing or having each verifier do a one-time precomputation of the values
e(u, ga), e(v, ga) and e(d, ga). This is competitive with the most efficient bilinear
schemes in the random oracle model, e.g., Boneh-Lynn-Shacham [7].

Second, we embedded a specific Chameleon hash function into our CDH
scheme, because this appears to be the most efficient construction. We could,
however, have set the signature as:

σ1 = (uxd)a(w�lg(s)�zsh)t, σ2 = gt, r, s.

where x = ChamHash(M, r) for any chameleon hash function mapping into Zp.
However, the public parameters necessary for the chameleon hash would likely
eclipse the gains of removing element v from the public key.

5 Handling State in Practice

One of the challenging issues when using our signature scheme in practice is that
a signer must maintain state. Issues that may arise in practice include multi-
ple (autonomous) machines sharing the same signing key and machine crashes,
among other problems. Fortunately, in our scheme, since the state is a simple
counter, most of these issues can be readily addressed.

Multiple Signers. Administrators often set up multiple machines with the
same signing key (e.g., parallelizing SSL connections at a highly visited site). In
most cases, it is impractical to assume that all of the machines can coordinate
to maintain a shared state. However, in our system, there is a simple solution to
deal with this problem. If n different machines are using the same signing key,
then machine i can give its jth signature with index n · j + i.

Handling Machine Crashes. On an actual implementation, it is important
to commit the counter increment (to persistent memory) before giving out the
signature. Otherwise, a crash might cause two signatures to be given out for the
same counter and thereby compromise security. We observe that it is perfectly
fine to skip over a small (i.e., polynomial) number of counters and recommend
erring on the side of safety.

Using the Machine Clock as a State. Instead of having a signer maintain
a state counter, one interesting alternative is to use the machine clock time as
the signer’s state. This can theoretically work in our system since the clock time
monotonically increases at a polynomial rate. One concern, however, is that the
signer should not issue more than one signature per clock period. Two potential
circumstances where this could arise are either if somehow the clock time was

Realizing Hash-and-Sign Signatures under Standard Assumptions 347

set backwards or the signing algorithm in two different invocations read the
same clock value. This is especially relevant in the age of dual-core processors,
where mechanisms are in place for managing access to shared memory, but there
are not necessarily guarantees that two cores on the same chip would not read
out the same clock value. Overall, using the clock as the state could be a risky
design choice and a detailed analysis of the system implementation should be
made before applying it.

6 Conclusion and Open Problems

We presented two practical hash-and-sign signatures based on RSA and CDH
in bilinear groups in the standard model. We employed a new technique for re-
stricting any adversary’s ability to forge, which can be alternatively viewed as a
mechanism for transforming selectively-secure techniques into adaptively-secure
constructions. We view our stateful constructions here as a step toward realiz-
ing similar stateless signatures. Recall that early tree-based signatures (e.g., the
GMR signatures [21]) had a stateful signer, until Goldreich [20] showed how to
remove the state. Goldreich’s techniques do not appear to apply directly here,
but we are optimistic that similar progress can be made. While we focused on
RSA and CDH based constructions, it would also be interesting to realize con-
structions under CDH in a non-bilinear group, lattices, or general assumptions.

Finally, we note that hash-and-sign signatures and their extensions with effi-
cient protocols (e.g., [9,10]) have been useful for integrating into larger systems,
such as anonymous credentials and e-cash. With this new building block and
some additional work, one might be able to base these larger systems on more
standard assumptions.

Acknowledgments

We thank Dan Boneh for valuable discussions, including suggesting the second
variant of our RSA scheme described in Section 3.1. We also thank Giuseppe
Ateniese, Matthew Green and the anonymous reviewers for helpful comments.

References

1. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

2. Bellare, M., Micali, S.: How to sign given any trapdoor function. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 200–215. Springer, Heidelberg (1990)

3. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

348 S. Hohenberger and B. Waters

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

8. Boyar, J., Kurtz, S.A., Krentel, M.W.: A discrete logarithm implementation of
perfect zero-knowledge blobs. Journal of Cryptology 2(2), 63–76 (1990)

9. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

11. Cramer, R., Damg̊ard, I.B.: Secure signature schemes based on interactive pro-
tocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 297–310.
Springer, Heidelberg (1995)

12. Cramer, R., Damg̊ard, I.B.: New Generation of Secure and Practical RSA-Based
Signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185.
Springer, Heidelberg (1996)

13. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Trans. on Information and System Security 3(3), 161–185 (2000)

14. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

15. Dwork, C., Naor, M.: Universal one-way hash functions and their cryptographic
applications. In: Symposium on the Theory of Computation, pp. 33–43 (1989)

16. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

17. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Symposium on the Theory of Computing, pp.
197–206 (2008)

19. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. of Cryptology 20(4), 493–514 (2007)

20. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987)

21. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing 17(2) (1988)

22. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard
assumptions (2009), http://eprint.iacr.org/2009/028

23. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed Sys-
tem Security Symposium (2000)

24. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

25. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences 13, 300–317 (1976)

26. Naccache, D.: Secure and practical identity-based encryption, Cryptology ePrint
Archive: Report 2005/369 (2005)

Realizing Hash-and-Sign Signatures under Standard Assumptions 349

27. Naor, M., Yung, M.: An efficient existentially unforgeable signature scheme and its
applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246.
Springer, Heidelberg (1994)

28. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

29. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

30. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number The-
ory 12, 128–138 (1980)

31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Comm. of the ACM 21(2), 120–126 (1978)

32. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Symposium on the Theory of Computing, pp. 387–394. ACM, New York (1990)

33. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptol-
ogy 4(3), 239–252 (1991)

34. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Chameleon Hash Function Based on RSA

While the chameleon hash function based on the hardness of factoring due to
Krawczyk and Rabin [23] would be sufficient to rest our Section 3 construction
entirely on the difficulty of RSA, we now present a more efficient option.

This construction is due to Ateniese and de Mederios [1]. Their work actually
presents an identity-based chameleon hash, which we simplify, since we will not
require the identity-based property. To obtain the identity-based feature, the
authors employed a signature scheme secure in the random oracle model and
proved the security of their scheme within this context. For completeness, we
provide a proof of the basic hash function under RSA in the standard model in
the full version [22], but the credit here should go to the prior work.

Let � be a security parameter. Let N be an RSA modulus such that 2� <
φ(N) < 2�+2. Choose a random, positive e ∈ {0, 1}� which is relatively prime
to φ(N) and a random J ∈ ZN . Set the public key as (N, e, J) and keep as the
trapdoor the factorization of N as well as a value d such that ed ≡ 1 mod φ(N).

The hash H : {0, 1} 2�
3 × ZN → ZN is computed as

H(m, r) = Jmre mod N.

The holder of the trapdoor can compute a collision for any messagem′ by solving
the following equation for r′:

Jmre = Jm′
r′e as r′ = r(Jd)m−m′

mod N.

We note that the choice of {0, 1} 2�
3 is somewhat arbitrary. It could be op-

timized to any constant fraction of � bits or any range {0, 1}�′ such that the
probability that e �∈ {0, 1}�′ is non-negligible.

350 S. Hohenberger and B. Waters

Theorem 6. The above chameleon hash function is secure under the RSA as-
sumption in the standard model.

B Completing the RSA Proof: Lemmas 5 and 6

Lemma 5. The probability that there are less than q prime numbers in a set of
2�[q + λ] independent, randomly chosen �-bit numbers is ≤ e−[q+λ](1

2)2 .

Lemma 6. Assuming that F is a PRF family, then in the proof of Lemma 4,
the challenge exponent e∗ and the simulator-produced value of 2λ−�lg(̃i)�(x −
x∗)

∏j =i∗

j∈E ej are relatively prime with high probability.

Proof of these technical lemmas appear in the full version [22]. The proof of
Lemma 5 uses Chernoff bounds (lower tail) to provide the given probability
bound. In the proof of Lemma 6, our argument is based on certain statistical
properties which are necessary, but not sufficient for a PRF. The fact that we
only use these statistical properties and not the full power of the PRF explains
why we are able to give out the seed in the construction.

A Public Key Encryption Scheme Secure against
Key Dependent Chosen Plaintext and Adaptive

Chosen Ciphertext Attacks

Jan Camenisch1, Nishanth Chandran2, and Victor Shoup3

1 IBM Research, work funded by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 216483

2 UCLA, work done while visiting IBM Research
3 NYU, work done while visiting IBM Research, supported by NSF award number

CNS-0716690

Abstract. Recently, at Crypto 2008, Boneh, Halevi, Hamburg, and Os-
trovsky (BHHO) solved the long-standing open problem of “circular en-
cryption,” by presenting a public key encryption scheme and proving
that it is semantically secure against key dependent chosen plaintext
attack (KDM-CPA security) under standard assumptions (and without
resorting to random oracles). However, they left as an open problem that
of designing an encryption scheme that simultaneously provides security
against both key dependent chosen plaintext and adaptive chosen cipher-
text attack (KDM-CCA2 security). In this paper, we solve this problem.
First, we show that by applying the Naor-Yung “double encryption”
paradigm, one can combine any KDM-CPA secure scheme with any (or-
dinary) CCA2 secure scheme, along with an appropriate non-interactive
zero-knowledge proof, to obtain a KDM-CCA2 secure scheme. Second,
we give a concrete instantiation that makes use the above KDM-CPA se-
cure scheme of BHHO, along with a generalization of the Cramer-Shoup
CCA2 secure encryption scheme, and recently developed pairing-based
NIZK proof systems. This instantiation increases the complexity of the
BHHO scheme by just a small constant factor.

1 Introduction
Encryption is the oldest cryptographic primitive; indeed, cryptography used to
be synonymous with encryption. Despite this, the right definition for the secu-
rity of encryption schemes has still not been settled! The first formal definition
of security for public key encryption was that of semantic security [17], which,
loosely speaking, states that given an encryption of a message an adversary can-
not learn any information about the message itself. As it turned out, this notion
of security does not offer sufficient protection for most practical applications [6],
as it does not take into account that an adversary could learn (partial infor-
mation about) some plaintext when he has access to a decryption oracle. The
subsequent stronger notion of security against chosen ciphertext attacks (CCA2
security [31]) takes this into consideration and gives an adversary access to a

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 351–368, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

352 J. Camenisch, N. Chandran, and V. Shoup

decryption oracle that will decrypt any ciphertext except a particular “challenge
ciphertext”. CCA2 security was considered the final answer with regard to the
security of public key encryption schemes.

However, none of the above notions of security allow an adversary to obtain
encryptions of secret keys or, more generally, functions of secret keys. Black,
Rogaway, and Shrimpton formally defined such a notion, calling it Key Depen-
dent Message (KDM) security [5]. A similar notion, called circular security, was
earlier defined by Camenisch and Lysyanskaya [11] and used to prevent sharing
of credentials. Both papers provided constructions in the random oracle model.

Without resorting to the use of random oracles, constructing a public key
encryption scheme (practical or not) that is semantically secure against key de-
pendent chosen plaintext attack (KDM-CPA) was a long-standing open problem.
It was only recently that Boneh et al. [9] gave a construction of a KDM-CPA
secure public key encryption scheme. They proved their scheme secure under
the Decisional Diffie-Hellman (DDH) assumption. We will refer to their scheme
as the BHHO scheme, which extends to obtain KDM-CPA security under the
more general K-linear assumption [36,27] (which includes the DDH assumption
for K = 1 and the DLIN assumption [8] for K = 2). However, Boneh et al. left
as an open problem the construction of an encryption scheme that is simulta-
neously secure against key dependent chosen plaintext and chosen ciphertext
attack (KDM-CCA2).

Our Contribution. In this paper, we solve this problem by constructing the first
KDM-CCA2 secure public key encryption scheme that can be proved secure
under standard assumptions, and without random oracles. In fact, we show that
a variation of the Naor-Yung paradigm [30] allows one to combine any KDM-
CPA secure encryption scheme and any regular CCA2 secure encryption scheme,
together with a non-interactive zero knowledge (NIZK) proof [7], to obtain a
KDM-CCA2 secure encryption scheme.

Moreover, we give a nearly practical instantiation of our general construction
using the BBHO KDM-CPA scheme, a K-linear version [14,36,23] of the Cramer-
Shoup [13] CCA2 scheme, and recently developed pairing-based NIZK proof
systems [19,18,20]. In the BHHO scheme, a ciphertext is a couple of hundred
group elements and our construction blows this up only be a small constant factor
(two or three, depending on the cryptographic assumption one employs). For our
construction, we need a pairing e : G × Γ → GT, and we prove security under
the K-linear assumption in G and the L-linear assumption in Γ , for appropriate
constants K and L (and we also need a collision-resistant hash function).

Motivational Example: Key-Wrap. The “key-wrap” problem motivates the need
for KDM-CCA2 secure encryption in practice. The key-wrap mechanism is found,
for instance, in cryptographic coprocessors such as IBM’s Common Cryptographic
Architecture [25] and RSA’s Public Key Cryptographic Standards [33]. Crypto-
graphic coprocessors are tamper-proof hardware tokens that process requests from
applications to perform cryptographic tasks such as encryption, signing and so on.
One can view these tokens as trusted hardware that stores keys of all users in the

A Public Key Encryption Scheme Secure against Key Dependent 353

system. When an application (or user) wishes to perform a cryptographic task, it
authenticates itself to the token and the token processes the request. For the pur-
pose of creating backup of data or to transport keys from one token to another, it is
often desired to encrypt keys (also known as “key wrapping”). Naturally, when we
encrypt private keys with other keys it might lead to a circularity. In other words,
an adversary might get to see an encryption of a secret key sk1 with public key pk2
as well as an encryption of a secret key sk2 with public key pk1 (such circularity
can in generalbe more complicated). Although one can circumvent this problem by
maintaining a hierarchy of keys and/or by maintaining separate keys for the pur-
pose of wrapping other keys, this is not always convenient or possible. In addition,
since the hardware token performs decryption, an adversary may effectively have
access to a decryption oracle.

Labeled Encryption. In many applications in which one uses a CCA2 secure en-
cryption scheme, the notion of a label is very useful. Very briefly, a label consists
of public data which is non-malleably attached to a ciphertext. In effect, it al-
lows the encryptor to control the context in which a ciphertext is decrypted. This
notion has been around for a long time, under various names, e.g., “indicator”,
“tag”, “header”, “associated data” [28,38,37,12,29,26,32]. While one can always
implement the label mechanism by appending the label to the plaintext, this is
often not the most practical way to achieve this.

Coming back to the key-wrap problem, a label may be used to describe the
type of message being encrypted: if it encrypts a key, who the key belongs to, etc.
When the hardware token decrypts a ciphertext labeled as a key, it can restrict
the usage of the decrypted key; in particular, the token can ensure that such a
key is only used within the token in appropriate ways (e.g., decryption, further
key-wrap). Even if a token restricts the usage in this way, an adversary may
attempt a chosen ciphertext attack by submitting an encryption of a key that
actually belongs to Alice, and make it look like it belongs to Bob; moreover,
perhaps the adversary is authorized to decrypt ciphertexts under Bob’s key,
which in effect allows him to decrypt ciphertexts encrypted under Alice’s key.
However, if labels are used as described above, CCA2 security will prevent such
attacks from succeeding.

Because of their utility, we include labels in our definition of KDM-CCA2 secu-
rity, and implement them in our construction.Moreover,we exploit the label mech-
anism for plain CCA2 encryption in our general construction to bind together the
two ciphertexts and NIZK proof of the Naor-Yung paradigm. Inparticular, we shall
see that the CCA2 encryption scheme we use directly support labels in a way that
interacts very nicely with pairing-based NIZK techniques, leading to a conceptu-
ally simple and quite efficient concrete instantiation of our general construction.

Another use of labels is to enlarge the message space of a CCA2 encryption
scheme: to encrypt a sequence of messages as a package, one can generate a
key pair for a strongly secure one-time signature scheme, and then encrypt each
message in the sequence using the verification key as a label, and then signing
the whole sequence of ciphertexts. This application is convenient for us, because
the BHHO scheme can only encrypt one bit of a secret key at a time.

354 J. Camenisch, N. Chandran, and V. Shoup

Other related work. Backes, Pfitzmann and Scedrov [2] and Backes, Dürmuth
and Unruh [1] considered KDM-CCA2 security of symmetric and asymmetric
encryption schemes, respectively. They in fact define a notion of security stronger
than we consider in our paper, by allowing the adversary to obtain some of the
secret keys. They showed that RSA-OAEP ([4]) is secure in this sense in the
random oracle model.

Halevi and Krawczyk [22] studied key-dependent message security (under the
name key-dependent input (KDI) security) with respect to primitives such as
pseudo-randomfunctions (PRFs) andblock ciphers. They showed that in the ideal-
cipher model, KDI secure PRFs can be built if one restricts the functions of the key
to be independent of the ideal-cipher. Further, they showed that this goal cannot
be achieved in the standard model. On the positive side, they show that if one al-
lows the PRF construction to depend on a fixed public value, but does not allow
the function of the key to depend on this value, then KDI secure PRFs can be con-
structed in the standard model. Hofheinz and Unruh [24], constructed a symmetric
key encryption scheme that achieves KDM-CPA security when an adversary can
only make a bounded number of encryptions. Haitner and Holenstein [21] proved
negative results for KDM-CPA security of encryption schemes when an adversary
can query encryptions of specific functions of the secret key.

Outline of the paper. In §2, we give and discuss the definitions of KDM-CCA2,
NIZK proofs, and strong one-time signatures, i.e., the ingredients of our generic
construction, which is presented in §3.

In §4, we present concrete instantiations of our building blocks: We recall
the BHHO KDM-CPA encryption scheme, the K-linear version of the Cramer-
Shoup CCA2 encryption scheme, and Groth’s strongly secure one-time signature
scheme. As a service to the reader, we give a self-contained exposition of a sim-
plified version of the NIZK proof system of Groth and Sahai [20] as it applies to
linear equations over a group. This allows us to completely describe the instan-
tiation of our construction and analyze its complexity.

In the full version of the paper [10], we discuss an alternative construction
of KDM-CCA2 encryption that uses a CPA secure encryption scheme instead
of a CCA2 secure encryption scheme but requires an NIZK proof system that
provides (unbounded) simulation soundness [34,35]. In the full paper, we also
show how to make the general NIZK proofs of [20] (unbounded) simulation
sound, given a CCA2 secure encryption scheme that supports ciphertexts with
labels, which again illustrates the power labels.

2 Preliminaries

2.1 Notation

When we say that an algorithm is efficient, we mean that the algorithm runs
in probabilistic polynomial time in the security parameter. All our algorithms
and functions take as input an implicit security parameter. When we say that
a function is negligible, we mean that it is negligible in the implicit security
parameter. Let a‖b denote the concatenation of string a with string b.

A Public Key Encryption Scheme Secure against Key Dependent 355

2.2 Definition of KDM-CCA2 Security

Let E be a public key encryption system that supports ciphertexts with la-
bels, which consists of three (probabilistic) efficient algorithms EncKeyGen, E
and D. EncKeyGen is a randomized key generation algorithm, that outputs a
public key/secret key pair (pk , sk). The algorithm E takes as input a message
m (from the message space M), a public key pk and a label �, and outputs a
ciphertext c := E(pk ,m, �). When we need to explicitly refer to the random-
ness in the encryption, we shall refer to an encryption of a message m with
randomness r by E(pk ,m, �; r). The decryption algorithm D takes as input a
secret key sk , a ciphertext c, and a label �, and either outputs a message m
or reject. The (perfect) correctness condition is that (with probability one)
D(sk ,E(pk ,m, �), �) = m for all messages m, labels � and (pk , sk) pairs output
by EncKeyGen.

When we use a public key encryption scheme E that does not support la-
bels, we refer to the encryption and decryption algorithms of such a scheme by
E(pk,m) and D(sk, c), respectively.

We extend the definition of key dependent message security from Black et
al. [5] to the notion of security against chosen ciphertext attack ([30,31,15]).
We will note that the standard definitions of public key encryption security are
specific instances of this definition.

Let S denote the space of secret keys output by EncKeyGen. As in [22] and [9],
key-dependence is defined with respect to a fixed set of functions C. Let n > 0
be an integer and let C be a finite set of functions C := {f : Sn →M}. KDM-
security is defined with respect to C through the following two experiments
between a challenger and an adversary A. Let d ∈ M be a fixed (dummy)
message in M. Experiment b (where b = 0, 1) is defined as follows:

1. Initialization phase: In both experiments the challenger runs EncKeyGen()
n times and obtains n key pairs (pk1, sk1), (pk2, sk2), · · · , (pkn, skn). It sends
the vector (pk1, pk2, · · · , pkn) to A.

2. Query phase: In both experiments, A may adaptively make the following
two types of queries to the challenger.

(a) Encryption queries: A can make a query of the form (i, f, �), where
1 ≤ i ≤ n, f ∈ C and � is a label. The challenger responds by setting
m := f(sk1, sk2, · · · , skn) ∈ M.
In Experiment b = 0, it sets c := E(pk i,m, �).
In Experiment b = 1, it sets c := E(pk i, d, �).
In both experiments, the challenger sends c to A.
When the adversary A submits (i, f, �) as an encryption query and the
response of the challenger is c, we call (i, c, �) a target tuple.

(b) Decryption queries: In both experiments, A can make a query of the
form (i, c, �), where 1 ≤ i ≤ n, c is a string to be decrypted using secret
key sk i and � is a label. The only restriction is that (i, c, �) cannot be
a (previous) target tuple. Note that c might not necessarily be a valid

356 J. Camenisch, N. Chandran, and V. Shoup

ciphertext. That is, c might not be an output of E(pk j ,m, �) for some
1 ≤ j ≤ n,m ∈M and �.
In both experiments, the challenger responds with D(sk i, c, �).

3. Final phase: Finally, the adversary outputs a bit b′ ∈ {0, 1}.

Definition 1 (KDM-CCA2). A public key encryption scheme E is KDM-
CCA2 secure with respect to C if

∣∣Pr
[
W0

]−Pr
[
W1

]∣∣ is negligible for all efficient
adversaries A, where Wb is the event that A outputs b′ = 1 in Experiment b.

Note that the standard security definitions for public key encryption can be
viewed as specific instances of the above general definition.

KDM-CPA: By restricting A from making any decryption queries, we get the
definition of key-dependent message semantic security (KDM-CPA) as de-
fined in [9].

CCA2: When we restrict the set of functions C from which A can draw f to
the set of all constant functions on Sn → M, we get the experiment for
multiple message, multiple key CCA2 security, which is equivalent to the
standard CCA2 security for a single message and single key (see [3]). If
we further restrict A from making any decryption queries, we obtain the
standard definition for semantic security (also see [3]).

Also note that, unlike regular CPA and CCA2 security, for both KDM-CPA and
KDM-CCA2 security, one cannot reduce the attack game to a single encryption
query and a single key pair.

We note that the definition of security by Backes et al. [1] is somewhat stronger
in that it allows the adversary to obtain some secret keys. To benefit from this in
practice, the users need to carefully keep track of which keys were compromised,
and which keys are related to each other via key-wrap. In contrast, our definition
pessimistically assumes that if one key is compromised then all potentially related
keys should be considered compromised as well—which is probably more realistic.

2.3 Non-interactive Zero-Knowledge Proofs

Let R be a binary relation that is efficiently computable. For pairs of the form
(x,w) ∈ R, x is referred to as the statement and w as the witness. Let L := {x :
(x,w) ∈ R for some w}.

A non-interactive proof system for R consists of the following efficient algo-
rithms: a common reference string (CRS) generation algorithm CRSGen, a prover
P, and a verifier V. The CRSGen algorithm outputs the CRS denoted by C. P
takes as input C, statement x, and witness w. It produces a proof p if (x,w) ∈ R
and outputs failure otherwise. V takes as input C, x, and p. V outputs accept
if it accepts the proof and reject otherwise.

Definition 2 (NIZK[7,16]). (CRSGen,P,V) is a non-interactive zero-
knowledge (NIZK) proof system for R if it has the following properties described
below:

A Public Key Encryption Scheme Secure against Key Dependent 357

Perfect Completeness: For all C output by CRSGen(), for all (x,w) ∈ R, and
for all p := P(C, x, w), Pr[V(C, x, p) outputs reject] = 0.

Computational Soundness: Consider the following game:

1. CRSGen() is run to obtain C, which is given to the adversary A.
2. A responds with (x, p).

A wins the game if V(C, x, p) = accept and x /∈ L. Let W be the event that A
wins the game. Then, for all efficient adversaries A, we have Pr[W] is negligible.

Computational Zero-knowledge: Let S := (S1, S2) be a simulator run-
ning in polynomial time. Consider the following two experiments:

Experiment 0: CRSGen() is run and the output C is given to A. A is then
given oracle access to P(C, ·, ·).

Experiment 1: S1() generates C and trapdoor t. A is given C, and is then given
oracle access to S′(C, t, ·, ·), where S′(C, t, x, w) is defined to be S2(C, t, x) if
(x,w) ∈ R and failure if (x,w) /∈ R.

Let Wi be the event that A outputs 1 in Experiment i, for i = 0 or 1. Then, for
all efficient adversaries A, we have

∣∣Pr[W0]− Pr[W1]
∣∣ is negligible.

Note that Blum et al. [7] give a weaker, “one time” definition of computational
zero-knowledge, in which the adversary is allowed to see only one fake proof.
However, because we cannot reduce KDM-security to an attack game with a
single encryption query, this is insufficient for our purposes.

2.4 Strongly Secure One-Time Signatures

We also require a strongly secure one-time signature scheme. This is a signature
scheme that satisfies the following security property: after obtaining the verifi-
cation key and a signature s on any message m of its choice, it is infeasible for
an efficient adversary to generate any valid signature s∗ on any message m∗ with
(s∗,m∗) �= (s,m). See [10] for a more formal definition.

3 Generic Construction of a KDM-CCA2 Secure Scheme

In this section, we give a generic construction of KDM-CCA2 secure public
key encryption scheme E with respect to a set of functions C. We require the
following building blocks: a public key encryption scheme Ekdm that is KDM-
CPA secure with respect to the set of functions C; a regular CCA2 secure public
key encryption scheme Ecca that supports ciphertexts with labels; an NIZK proof
system P for the language Leq consisting of the set of all pairs of ciphertexts that
encrypt the same message using Ekdm and Ecca; and a strongly secure one-time
signature scheme S.

358 J. Camenisch, N. Chandran, and V. Shoup

At a high level, E is similar to the construction of [30,15]. To encrypt a message
m, we generate a key-pair for the scheme S, encryptm using both Ekdm and Ecca,
where the label for Ecca will contain the verification key generated above (along
with any input label). Using P, we give a proof that both ciphertexts contain
the same plaintext. We then sign the two ciphertexts as well as the proof using
S. The final ciphertext consists of the verification key, the two ciphertexts, the
proof, and the signature.

3.1 Construction

We now formally describe the scheme E := (EncKeyGen,E,D) in detail. Let
Ekdm := (EncKeyGenkdm,Ekdm,Dkdm) (with key pair (pkkdm, skkdm)) and let
Ecca := (EncKeyGencca,Ecca,Dcca) (with key pair (pkcca, skcca)). Let S :=
(SignKeyGen, Sign,Verify). Let Leq be the set of all triples (c1, c2, �) such that

∃ m, r1, r2 : c1 = Ekdm(pkkdm,m; r1) ∧ c2 = Ecca(pkcca,m, �; r2).

Let P := (CRSGen,P,V) be an NIZK proof system for Leq. Note that there
maybe be common system parameters that are used to define Ekdm,Ecca, and
P, and these are input to all associated algorithms. The encryption scheme E
comprises of the following three algorithms.

EncKeyGen():
1. Run EncKeyGenkdm() and EncKeyGencca() to obtain key pairs

(pkkdm, skkdm) and (pk cca, skcca), respectively.
2. Run CRSGen() to generate the CRS C of the NIZK proof system P.

The public key is pk := (pkkdm, pkcca,C). The secret key is sk := skkdm.
E(pk ,m, �):

1. Let ckdm := Ekdm(pkkdm,m; rkdm).
2. Run SignKeyGen() to generate key pair (VK ots,SK ots).
3. Let ccca := Ecca(pk cca,m, �‖VK ots; rcca).
4. Let p be the NIZK proof (using P) for (ckdm, ccca, �‖VK ots) ∈ Leq.
5. Let c′ := ckdm‖ccca‖p and let s := SignSKots

(c′).
Then E(pk ,m, �) := ckdm‖ccca‖p‖VK ots‖s.

D(sk , c, �): Parse c as ckdm‖ccca‖p‖VK ots‖s (and output reject if this
fails). Output reject if either VerifyVK ots

(ckdm‖ccca‖p, s) = reject or
V(C, (ckdm, ccca, �‖VK ots), p) = reject; otherwise, output Dkdm(sk , ckdm).

The (perfect) correctness of the public key encryption scheme E trivially fol-
lows from the (perfect) correctness of the scheme Ekdm, (perfect) completeness
of the proof system P, and the (perfect) correctness of the signature scheme S.

3.2 Proof of Security

Theorem 1. Let Ekdm be a KDM-CPA secure scheme with respect to the set of
functions C. Let Ecca be a CCA2 secure scheme, S a strong one-time signature
scheme, and P an NIZK proof system for Leq. Then E, as constructed above, is
a KDM-CCA2 secure scheme with respect to C.

A Public Key Encryption Scheme Secure against Key Dependent 359

Proof. The proof is through a sequence of games. We first present a schematic
description of the sequence of games used to prove that E is KDM-CCA2 secure.
The underlined parts indicate what has changed in each game.

Game Process encrypt query Process decrypt query justification
0 enc. (m,m); real p dec. ckdm
1 enc. (m,m); real p dec. ccca soundness for P
2 enc. (m,m); fake p dec. ccca ZK for P
3 enc. (m,m); fake p dec. ccca; special reject strong one-time sig. S
4 enc. (m, d); fake p dec. ccca; special reject CCA2 for Ecca
5 enc. (m, d); fake p dec. ccca; no special reject strong one-time sig. S
6 enc. (d, d); fake p dec. ccca KDM-CPA for Ekdm
7 enc. (d, d); real p dec. ccca ZK for P
8 enc. (d, d); real p dec. ckdm soundness for P

The sequence of games involving the challenger Ch and adversary A are more
formally described below. Let Wi be the event that A outputs 1 in Game i.

Game 0: This is the actual attack game, i.e., Experiment 0 in Definition 1.
When responding to an encryption query, Ch encrypts the actual message
m using both encryption schemes. The label for Ecca additionally contains
VK ots which Ch picks using SignKeyGen(). Ch gives a real proof p that both
encryptions contain the same message. It produces the signature s using
SK ots.

Game 1: This game is exactly like Game 0, except that when responding to
a decryption query, Ch decrypts using secret key skcca instead of skkdm. It
follows from the soundness of the proof system P that

∣∣Pr[W1]− Pr[W0]
∣∣ is

negligible.
Game 2: This game is exactly like Game 1, except that when responding to

an encryption query, Ch gives a simulated proof p (using the trapdoor of
the proof system) instead of a real proof. It follows from the zero-knowledge
property of P that

∣∣Pr[W2]− Pr[W1]
∣∣ is negligible.

Game 3: This game is exactly like Game 2, except that when respond-
ing to a decryption query of the form (i, c, �) from A such that c =
ckdm‖ccca‖p‖VK ots‖s, Ch first checks if there exists a target tuple of the
form (i, c∗, �), with c∗ = c∗kdm‖ccca‖p∗‖VK ots‖s∗ for some c∗kdm, p

∗ and s∗. If
this is the case, then let c∗ be the first such response by Ch. Now if c∗ �= c,
then Ch rejects the encryption query. We call this the special rejection rule.
It follows from the strong one-time security of the signature scheme S that
Ch rejects via the special rejection rule only with negligible probability and
hence

∣∣Pr[W3]− Pr[W2]
∣∣ is negligible.

In Game 3, Ch never decrypts a ciphertext that was contained in a target tuple
using skcca. We can therefore make use of the CCA2 security of Ecca.

Game 4: This game is exactly like Game 3, except that when responding to
an encryption query, Ch encrypts the dummy message d using Ecca but still
encrypts the actual messagem using Ekdm. It follows from the CCA2 security
of Ecca that

∣∣Pr[W4]− Pr[W3]
∣∣ is negligible.

360 J. Camenisch, N. Chandran, and V. Shoup

Game 5: This game is exactly like Game 4, except that when responding to a
decryption query, Ch no longer follows the special rejection rule that was de-
fined in Game 3. It follows from the strong one-time security of the signature
scheme S, that

∣∣Pr[W5]− Pr[W4]
∣∣ is negligible.

Game 6: This game is exactly like Game 5, except that when responding to an
encryption query, Ch encrypts the dummy message d using both encryption
schemes. It follows from the KDM-CPA security of Ekdm that

∣∣Pr[W6] −
Pr[W5]

∣∣ is negligible.
Game 7: This game is exactly like Game 6, except that when responding to

an encryption query, Ch gives a real proof p that both encryptions contain
the same message. It follows from the zero-knowledge property of P that∣∣Pr[W7]− Pr[W6]

∣∣ is negligible.
Game 8: This game is exactly like Game 7, except that when responding to

a decryption query, Ch decrypts using secret key skkdm instead of skcca. It
follows from the soundness of the proof system P that

∣∣Pr[W8]− Pr[W7]
∣∣ is

negligible. Game 8 is Experiment 1 in Definition 1.

Combining the different games, we get that
∣∣Pr[W8]−Pr[W0]

∣∣ is negligible, which
proves Theorem 1. A more detailed proof can be found in [10]. �

Note that we used the computational soundness property of the proof system P
only in Games 1 and 8 and in both these games, Ch only gave real proofs for
true statements. Hence “plain” soundness of P is sufficient and we do not require
the proof system to be simulation sound ([34]). In the definition of KDM-CCA2
security, one cannot reduce the attack game to a single encryption query and a
single public key. Therefore, one-time zero-knowledge (see remark after Defini-
tion 2) would not be sufficient for our proof (one-time zero-knowledge does not
imply multi-proof zero-knowledge). However, note that CCA2 security is suffi-
cient, as the “single instance” definition implies the “multi-instance” definition
(see remark after Definition 1).

4 Specific Number-Theoretic Instantiation of a
KDM-CCA2 Secure Scheme

In this section, we give specific efficient instantiations of the building blocks
used to construct the generic scheme presented in §3. We introduce notation
and the number-theoretic assumptions in §4.1. In §4.2, we describe the KDM-
CPA scheme of Boneh et al. [9], while in §4.3, we describe the K-linear version
of the Cramer-Shoup CCA2 encryption scheme that we need. In §4.4 and §4.5,
we describe the NIZK proof system used to prove equality of plaintexts. We use
the efficient strongly one-time signature scheme of Groth [18] (which we describe
in §4.6), to complete our instantiation of a KDM-CCA2 secure scheme. In §4.7,
we discuss the size of the public key, system parameters, and ciphertext of our
encryption scheme.

A Public Key Encryption Scheme Secure against Key Dependent 361

4.1 General Notation and Assumptions

Let G be a group of prime order q. We shall write G using multiplicative notation.
One naturally views G as a vector space over Zq, where for x ∈ Zq and g ∈ G,
the “scalar product” of x and g is really the power gx. Because of this, we shall
often employ concepts and terminology from linear algebra.

For vectors !g := (g1, . . . ,gR) ∈ GR and !x := (x1, . . . , xR) ∈ ZR
q , define

〈!g, !x 〉 := gx1
1 . · · · . gxR

R ∈ G. When we write
∏K

i=1 !gi ∈ GR for vectors !gi ∈ GR,
we mean the component wise product of each of the R terms. Unless otherwise
specified, there is no a priori relation between g, !g,gi and !gi.

Definition 3 (K-linear assumption [36,27]). Let G be a group of prime
order q. For a constant K ≥ 1, the K-linear assumption in G is defined through
the following two experiments (0 and 1) between a challenger and an adversary
A that outputs 0 or 1.

Experiment 0: The challenger picks K + 1 random generators of G:
g1,g2, . . . ,gK+1, picks random x1, . . . , xK ∈ Zq and sets xK+1 =

∑K
i=1 xi.

A is given (g1,g2, . . . ,gK+1,gx1
1 ,gx2

2 , . . . ,gxK+1
K+1) as input.

Experiment 1: The challenger picks K + 1 random generators of G:
g1,g2, . . . ,gK+1 and picks random x1, x2, . . . , xK+1 ∈ Zq. A is given
(g1,g2, . . . ,gK+1,gx1

1 ,gx2
2 , . . . ,gxK+1

K+1) as input.

The K-linear assumption holds in G if for all efficient adversaries A,
∣∣Pr

[
W0

]−
Pr

[
W1

]∣∣ is negligible, where Wi is the event that A outputs 1 in Experiment i.

Another way to understand the K-linear assumption is as follows. Let us de-
fine group vectors !g1, . . . , !gK ∈ GK+1: !g1 := (g1, 1, 1, . . . , 1,gK+1), !g2 :=
(1,g2, 1, . . . , 1,gK+1), . . . , !gK := (1, 1, . . . , 1,gK ,gK+1). Let T denote the sub-
space of GK+1 generated by !g1, . . . , !gK . The K-linear assumption says that it
is hard to distinguish random elements of T from random elements of GK+1.
Note that the standard Decisional Diffie-Hellman (DDH) assumption is the 1-
linear assumption and the linear assumption (introduced in [8]) is the 2-linear
assumption.

Pairings. Let G, Γ and GT be groups of prime order q. We shall use Roman
letters to denote elements in G and Greek letters to denote elements in Γ . A
pairing is a map e : G× Γ → GT that satisfies the following properties: (1) e is
bilinear, which means that for all a ∈ G and α ∈ Γ , the maps e(a, ·) : Γ → GT
and e(·, α) : G → GT are linear maps; (2) e is non-degenerate, which means that
its image is not {1}; and (3) e is efficiently computable.

4.2 KDM-CPA Secure Scheme Based on the K-Linear Assumption

In this section, we describe the public key encryption scheme of Boneh et
al. [9] based on the K-linear assumption. Let N := �(K + 2) log2 q�. Ekdm =
(EncKeyGenkdm,Ekdm,Dkdm) is as described below. The message space of this
scheme is the group G.

362 J. Camenisch, N. Chandran, and V. Shoup

EncKeyGenkdm:
1. Pick random !g1, . . . , !gK ∈ GN .
2. Pick random !s ∈ {0, 1}N .
3. Define hi := 〈!gi, !s 〉 ∈ G for i = 1, . . . ,K.
4. Output the secret key skkdm := !s and the public key

pkkdm := (!g1, . . . , !gK ,h1, . . . ,hK).
Ekdm(pkkdm,m):

1. Pick random r1, . . . , rK ∈ Zq.
2. Output the ciphertext (!g,h) :=

(∏K
i=1 !g

ri

i , m ·∏K
i=1 hri

i

) ∈ GN ×G.

Dkdm(skkdm, (!g,h)): Output m := h/〈!g, !s 〉.

Note that the ith bit si of the secret key !s is encoded for the purpose of
encryption as gsi for some random (but fixed) g ∈ G.

The key space (of encoded secret keys) is GN . Define a function f�t,b : GnN →
G for fixed !t ∈ ZnN

q and b ∈ G to be the map f�t,b(!u) := 〈 !u,!t 〉 · b. Let C be the
set of all functions f�t,b for all values of !t ∈ ZnN

q and b ∈ G. Ekdm is KDM-CPA
secure with respect to the set of functions C [9].

Note that [9] explicitly describes the above scheme in the case K = 1, and
only briefly mentions its generalization to K > 1 (the explicit description of
which has been obtained from the authors of [9] via personal communication).

4.3 CCA2 Secure Scheme Based on the K-Linear Assumption

In this section, we describe a generalized version of the Cramer-Shoup encryption
scheme based on the K-linear assumption. This generalization was described
in [23] and [36]. However, given the K-linear decision problem, this scheme is
essentially already implicit in [14] (based on Theorems 2 and 3, along with
Example 1 in §7.4, of the full length version of that paper). This scheme is CCA2
secure and supports ciphertexts with labels. Ecca = (EncKeyGencca,Ecca,Dcca)
is as described below. The message space of this scheme is the group G, and the
label space is {0, 1}∗.

EncKeyGencca:

1. Pick random f1, . . . , fK+1 ∈ G.
2. Pick random !x, !y, !z ∈ ZK+1

q .
3. Define the following elements of GK+1: !f1 := (f1, 1, 1, . . . , 1, fK+1) , !f2 :=

(1, f2, 1, . . . , 1, fK+1) , . . . , !fK := (1, 1, . . . , 1, fK , fK+1).
4. Define the following elements of G: ci := 〈!fi, !x 〉, di := 〈!fi, !y 〉, ei :=
〈!fi, !z 〉 (i = 1, . . . ,K).

5. Output the secret key skcca := (!x, !y, !z) and the public key pkcca :=({fj}K+1
j=1 , {ci}K

i=1, {di}K
i=1, {ei}K

i=1
)
.

Ecca(pk cca,m, �):

1. Pick random w1, . . . , wK ∈ Zq.

A Public Key Encryption Scheme Secure against Key Dependent 363

2. Compute (!f ,a,b) :=
(∏K

i=1
!f wi

i , m ·∏K
i=1 cwi

i ,
∏K

i=1(diet
i)

wi
) ∈ GK+1×

G × G, where t := H(!f ,a, �) ∈ Zq and H is a collision resistant hash
function. Output the ciphertext is (!f ,a,b).

Dcca(skcca, (!f ,a,b), �):

1. Verify that b = 〈!f , !y + t!z 〉.
2. Output m := !a/〈!f , !x 〉.

Note that the schemes in [14,36,23] do not explicitly support labels; however,
the proof of security immediately generalizes to allow this, provided one assumes
(as we do) that H is collision resistant.

4.4 NIZK Proofs for Satisfiable Systems of Linear Equations over
Groups

In this section, we describe the NIZK proofs for proving that a system of linear
equations over a group is satisfiable. These proofs are derived from Groth and
Sahai [20]. The paper [20] deals with much more general systems of equations; for
many applications, such as ours, we only need linear equations. For completeness,
and concreteness, we describe how the methods of [20] apply to this setting. Our
exposition is self contained, but brief.

Let G be a group of prime order q. A linear equation over G is an equation of
the form g0 =

∏W
j=1 gXj

j , where g0,g1, . . . ,gW ∈ G are constants and X1, . . . , XW

are variables. An assignment to the variables is a tuple (x1, . . . , xW) ∈ ZW
q , and

such an assignment satisfies the equation if g0 =
∏W

j=1 gxj

j . A set S of linear
equations over G is called satisfiable if there exists an assignment to the variables
that simultaneously satisfies each equation in S.

Let Llsat be the language of all satisfiable sets of linear equations over G.
A witness for membership in Llsat is a satisfying assignment. Our goal is to
construct an efficient NIZK proof system for Llsat.

Our proof system for Llsat requires a pairing e : G×Γ → GT, where Γ and GT
are also groups of order q. In addition, we need to make the L-linear assumption
in Γ , for some constant L (typically, L is a small constant like 1 or 2, depending
on the assumption we make).

– The CRS generator works as follows:
1. Pick random γ1, . . . , γL+1 ∈ Γ .
2. Define the following elements of ΓL+1: !γ1 := (γ1, 1, . . . , 1, γL+1), !γ2 :=

(1, γ2, . . . , 1, γL+1), . . . , !γL := (1, 1, . . . , γL, γL+1).
3. Choose !γ ∈ ΓL+1 at random.
4. The common reference string is (γ1, . . . , γL+1, !γ).

– Given a set S of equations, along with a satisfying assignment (x1, . . . , xW),
the prover works as follows:
1. Commit to x1, . . . , xW by setting !δj := !γ xj

∏L
k=1 !γ

rjk

k , for j = 1, . . . ,W ,
where the rjk’s are randomly chosen elements of Zq.

364 J. Camenisch, N. Chandran, and V. Shoup

2. The proof consists of the commitments !δ1, . . . , !δW , and, in addition,
for each equation g0 =

∏W
j=1 gXj

j in S, the proof contains L corre-
sponding “proof elements” p1, . . . ,pL ∈ G, which are computed as:
pk :=

∏W
j=1 grjk

j (k = 1, . . . , L).
– To verify such a proof, the verifier takes the commitments !δ1, . . . , !δW , and,

for each equation g0 =
∏W

j=1 gXj

j in S, takes the corresponding proof elements
p1, . . . ,pL, and checks that

W∏
j=1

E(gj , !δj) = E(g0, !γ)
L∏

k=1

E(pk, !γk). (1)

Here, E : G×ΓL+1 → GL+1
T is the biliear map that sends (g, (α1, . . . , αL+1))

to (e(g, α1), . . . , e(g, αL+1)).

The CRS contains 2(L+ 1) elements of Γ , and a proof consists ofW (L+ 1) ele-
ments of Γ (for the commitments) and |S|L elements of G (for the proof elements).

We now show that the above proof system has perfect completeness, (statis-
tical) soundness, and computational zero-knowledge.

Perfect completeness. To argue perfect completeness, using bilinearity, one
checks by a simple calculation that for any satisfying assignment (x1, . . . , xW),
and for any choice of the rjk ’s, equation (1) will always be satisfied.

Soundness. A simple fact that will be useful in proving both the soundness and
zero-knowledge property is the following, which the reader can easily verify using
bilinearity:

Lemma 1. If !β1, . . . , !βR ∈ ΓL+1 are linearly independent, then the map

(h1, . . . ,hR) .→ E(h1, !β1) · · ·E(hR, !βR)

is an injective linear map from GR into GL+1
T .

To prove soundness, note that with overwhelming probability, the vectors
!γ,!γ1, . . . , !γL form a basis for ΓL+1. Suppose a proof contains commitments
!δ1, . . . , !δW ∈ ΓL+1. Regardless of how these commitments were actually com-
puted, each !δj can be expressed uniquely as !δj = !γ xj

∏L
k=1 !γ

rjk

k for some
xj , rj1, . . . , rjL ∈ Zq. Now consider any particular equation g∗

0 =
∏W

j=1 gXj

j ,
and corresponding proof elements p∗

1, . . . ,p
∗
L. Define g0 :=

∏W
j=1 gxj

j and
pk :=

∏W
j=1 grjk

j for k = 1, . . . , L, using the xj ’s and rjk’s determined
as above by the commitments. On the one hand, by perfect completeness, we
have

∏W
j=1 E(gj , !δj) = E(g0, !γ)

∏L
k=1 E(pk, !γk). On the other hand, if the

verification equation (1) holds for the given equation and proof elements, then
we also must have

∏W
j=1 E(gj , !δj) = E(g∗

0, !γ)
∏L

k=1 E(p∗
k, !γk). Thus, we have

E(g0, !γ)
∏L

k=1 E(pk, !γk) = E(g∗
0 , !γ)

∏L
k=1 E(p∗

k, !γk). Applying Lemma 1 to the
linearly independent vectors !γ,!γ1, . . . , !γL, we conclude that g0 = g∗

0 (and in fact,
pk = p∗

k for k = 1, . . . , L). It follows that if the proof verifies, then the assignment
x1, . . . , xW determined by the commitments simultaneously satisfies all the given
equations.

A Public Key Encryption Scheme Secure against Key Dependent 365

Zero Knowledge. The simulator generates a “fake CRS” as follows: it gener-
ates !γ1, . . . , !γL as usual, but it computes !γ as

∏L
k=1 !γ

sj

j for random s1, . . . , sL ∈
Zq. The trapdoor for the fake CRS is (s1, . . . , sL).

In a fake CRS, !γ1, . . . , !γL are linearly independent (with overwhelming prob-
ability), while !γ is a random element of the subspace V generated by !γ1, . . . , !γL.

To simulate a proof for a satisfiable set S of linear equations, the simulator
starts by setting !δj :=

∏L
k=1 !γ

rjk

k for random rjk ∈ Zq for j = 1, . . . ,W and
k = 1, . . . , L. For each equation g0 =

∏W
j=1 gXj

j in S, the simulator generates
proof elements p1, . . . ,pL as follows: pk := g−sk

0
∏W

j=1 grjk

j (k = 1, . . . , L).
The reader may easily verify, using the bilinearity property, that the verification
equation (1) is satisfied.

We now argue that fake proofs are computationally indistinguishable from
real proofs. To this end, let us introduce a hybrid prover, which works ex-
actly like a real prover, except that it uses a fake CRS. Such hybrid proofs
are computationally indistinguishable from real proofs, under the L-linear as-
sumption for Γ . Moreover, hybrid proofs are statistically indistinguishable from
fake proofs. To see this, observe that with overwhelming probability, !γ1, . . . , !γL

are linearly independent. Assuming this is true, in both the hybrid and fake
proofs, the distribution of the commitments are the same (uniformly and in-
dependently distributed over the subspace V). Additionally, in both types of
proofs, the proof elements p1, . . . ,pL for a given equation are uniquely deter-
mined in the same way by the equation, the commitments, and the CRS; indeed,
both types of provers generate proof elements that satisfy the verification equa-
tion (1); moreover, applying Lemma 1 to the vectors !γ1, . . . , !γL, we see that for
a fixed equation, commitments, and CRS, there exist unique p1, . . . ,pL that
satisfy (1).

4.5 NIZK Proof for Proving Equality of Plaintext

Given a ciphertext of Ekdm (from §4.2) of the form (!g,h) ∈ GN × G and a
ciphertext of Ecca (from §4.3) of the form (!f ,a,b) ∈ GK+1×G×G with respect
to a label � ∈ {0, 1}∗, we want to prove that they are valid encryptions of the
same message. This is done by proving that there exist r1, . . . , rK , w1, . . . , wK ∈
Zq such that !g =

∏K
i=1 !g

ri

i , !f =
∏K

i=1
!f wi

i , b =
∏K

i=1(diet
i)

wi , and h/a =∏K
i=1 hri

i /
∏K

i=1 cwi

i , where t := H(!f , a, �).
This translates into N+(K+1)+1+1 = N+K+3 equations in 2K variables.

Using the proof system above, this means we need (2K)(L + 1) elements of Γ
for commitments, and (N +K + 3)L elements of G for the proofs.

4.6 Strongly Secure One-Time Signature Scheme

Here is the strongly secure one-time signature scheme S from Groth [18]. It
makes use of a group G of prime order q with generator g, and a hash function
H : {0, 1}∗ → Zq. The scheme is secure assuming the hardness of computing
discrete logs in G (which follows from the K-linear assumption) and assuming
H is collision resistant.

366 J. Camenisch, N. Chandran, and V. Shoup

SignKeyGen: Pick random x, y ∈ Z∗
q and r, s ∈ Zq, and set f := gx, h := gy,

and c := frhs. The verification key is VK = (f ,h, c) and the secret key
SK = (x, y, r, s).

SignSK (m): To sign a message m ∈ {0, 1}∗, pick t at random from Zq. The
signature is s = (t, (x(r − t) + ys−H(m))/y).

VerifyVK (m, s): To verify the signature s = (t, w), check that c = gH(m)f thw.

4.7 Size of Public Key, System Parameters and Ciphertext

Using the K-linear assumption for G and the L-linear assumption for Γ , the
size of the public key, system parameters and ciphertext are as follows, where
N := �(K + 2) log2 q�.

The system parameters consists of the CRS which comprises 2(L+1) elements
of Γ , the descriptions of G, Γ,GT, e and the collision resistant hash function H
for Ecca and S.

The public key of E consists of (N + 1)K elements of G for the public key
pkkdm and 4K+1 elements of G for the public key pkcca, for a total of (N+5)K+1
elements of G.

The two ciphertexts (ckdm and ccca) require (N + 1) and (K + 3) elements of
G, respectively, giving a total of N +K + 4 elements of G. To prove equality of
plaintexts, we require (2K)(L + 1) elements of Γ for commitments, and (N +
K + 3)L elements of G for the proofs. Finally, to sign the resulting ciphertexts
and proofs using the one-time signature scheme S, we require 3 elements of G
for the verification keyVK of S and 2 elements of Zq for the signature.

Note that we can make the public key shorter, by making pk cca as part of
the system parameters; indeed, since the secret key skcca is not needed (other
than in the proof of security), one can simply generate all of the group elements
appearing in pk cca at random (yielding a distribution that is statistically close
to the real distribution on public keys).

We emphasize that, typically, one would set K = 1, 2 and L = 1, 2, depending
on the groups G and Γ . For example, at one extreme, if G = Γ , then one could
set K = L = 2; at the other extreme, if G �= Γ , and there is no (known)
efficiently computable homomorphism from G to Γ or vice versa, then one could
set K = L = 1.

References

1. Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under key-dependent mes-
sages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523.
Springer, Heidelberg (2008)

2. Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under
active attacks - BRSIM/UC-soundness of symbolic encryption with key cycles. In:
CSF, pp. 112–124 (2007)

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

A Public Key Encryption Scheme Secure against Key Dependent 367

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Selected Areas in Cryptography, pp. 62–75 (2002)

6. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC 1988, pp. 103–112 (1988)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

10. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
Cryptology ePrint Archive, Report 2008/375 (2008), http://eprint.iacr.org/

11. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

12. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002),
http://eprint.iacr.org/2001/085

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC 1991, pp. 542–552 (1991)

16. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS 1990, pp. 308–317
(1990)

17. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC 1982, pp. 365–377 (1982)

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

19. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

21. Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In:
TCC 2009 (2009)

22. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: CCS 2007: Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pp. 466–475. ACM, New York (2007)

368 J. Camenisch, N. Chandran, and V. Shoup

23. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

24. Hofheinz, D., Unruh, D.: Towards key-dependent message security in the stan-
dard model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–
126. Springer, Heidelberg (2008)

25. IBM. IBM CCA Basic Services Reference and Guide for the IBM 4758 PCI and
IBM 4764 PCI-X Cryptographic Coprocessors: Releases 2.53, 2.54, 3.20, 3.23, 3.24,
3.25, 3.27, and 3.30 (2008)

26. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

27. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-
hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–
297. Springer, Heidelberg (2007)

28. Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively
chosen ciphertext attacks. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 420–434. Springer, Heidelberg (1994)

29. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Def-
initions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

30. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC 1990, pp. 427–437 (1990)

31. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

32. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

33. RSA Laboratories. PKCS #11 v2.20: Cryptographic Token Interface Standard
(2004)

34. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553 (1999)

35. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

36. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

37. Shoup, V.: A proposal for an ISO standard for public key encryption, version 2.1
(2001), http://shoup.net/papers/

38. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

Cryptography without (Hardly Any) Secrets ?

Shafi Goldwasser

MIT and Weizmann Institute

Abstract. The absolute privacy of the secret-keys associated with cryp-
tographic algorithms has been the corner-stone of modern cryptography.
Still, in practice, keys do get compromised at times for a variety or rea-
sons. A particularly disturbing loss of secrecy is as a result of side channel
attacks. These attacks exploit the fact that every cryptographic algorithm
is ultimately implemented on a physical device and such implementations
enable ‘observations’ which can be made and measured on secret data and
secret keys. Indeed, side channel observations can lead to information leak-
age about secret keys,which in turn can andhave lead to complete breaks of
systems which have been proved mathematically secure, without violating
any of the underlying mathematical principles or assumptions. Tradition-
ally, such attacks have been followed by ad-hoc ‘fixes’ which make particu-
lar implementation invulnerable to particular attacks, only to potentially
be broken anew by new examples of side-channel attacks.

In recent years, starting with the work on physically observable cryp-
tography by [MR04] Micali and Reyzin, a new goal has been set to build a
general theory of physical security against a large class of families of side
channel attacks which one may call computational side-channel attacks.
These include any side channel attack in which leakage of information
on secrets occurs as a result of performing a computation on secrets.
Some well-known examples of such attacks include Kocher’s timing at-
tacks [Koc96] and power attacks [KJJ99]. A basic defining feature of a
computational side-channel attack, as put forth by [MR04] is that com-
putation and only computation leaks information. Namely, portions of
memory which are not involved in computation do not leak information.
A growing number of works [MR04, ISW03, PSP+08, GKR08, DP08]
have proposed cryptographic algorithms provably robust against compu-
tational side-channel attacks, by limiting in various ways the portions of
the secret key which are involved in each step of the computation.

In the work on one time programs this is taken to an extreme [GKR08].
Goldwasser, Tauman-Kalai, and Rothblum show how by using a new pro-
posed type of secure-memorywhich never touches any secrets or datawhich
isnotultimately fully revealed, it ispossible toperformanysecurecomputa-
tionswhichisprovablysecureagainstallcomputationalsidechannelattacks.

Memory-attacks proposed byAkavia,Goldwasser, and Vaikuntanathan
[AGV09] are an entirely very different family of side-channel attacks that
are not included in the computational side-channel attack family, as they
violate the basic premise of [MR04] that only computation leaks informa-
tion. This class of attacks was inspired by (although not restricted to) the
memory-freezing attack introduced recently by Halderman et al.
[HSH+08], where its is shown how to measure a significant fraction of the
bits of secret keys if the keys were ever stored in a part of memory (e.g.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 369–370, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

370 S. Goldwasser

DRAM), which could be accessed by an adversary even after the power of
the machine has been turned off. Thus, information leaks about portions
of the secret key which may have never been involved in any computation.
A memory-attack leaks a bounded number of bits computed as a result of
applying an arbitrary function of bounded length (smaller than than the
size of the secret key) to the content of the secret key of a cryptographic al-
gorithm. Naturally, this family of attacks is inherently parameterized and
quantitative in nature, as if the attack would uncover the entire secret key
at the outset, there would be no hope for any cryptography. The work of
[AGV09] exhibits a public-key encryption algorithm which is especially ro-
bust against memory-attacks. Its security is based on the computationally
intractability of the learning with errors (LWE) problem which is related
to the intractability of approximating the length of the shortest vector in
an integer lattice. Finally, a new interesting variant on the idea of memory
attacks, had been proposed by Tauman-Kalai etal [DTKL09] in their work
on security with auximlary-inputs. They propose to replace the restriction
of revealing a length shrinking function of the secret, to revealing functions
of the secret which are exponentially hard to invert.

In this talk we will survery this development, with special emphasis
on the works of [GKR08, AGV09, DTKL09].

References

[AGV09] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simulatneous hard-core
bits and cryptography against memory attack. In: TCC (2009)

[DP08] Dziembowski, S., Pietrzak, K.: Leakage-resilient stream ciphers. In: The
IEEE Foundations of Computer Science (2008)

[DTKL09] Dodis, Y., Tauman-Kalai, Y., Lovett, S.: Cryptography with auxilary in-
put. In: STOC (2009)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wag-
ner,D.(ed.)CRYPTO2008.LNCS,vol.5157,pp.39–56.Springer,Heidelberg
(2008)

[HSH+08] Halderman, A., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J., Feldman, A., Appelbaum, J., Felten, E.: Lest we remember: Cold
boot attacks on encryption keys. In: Usenix Security Symposium (2008)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware
against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[Koc96] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

[MR04] Micali, S., Reyzin, L.: Physically observable cryptography (extended ab-
stract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296.
Springer, Heidelberg (2004)

[PSP+08] Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block
cipher based pseudo random number generator secure against side-channel
key recovery. In: ASIACCS, pp. 56–65 (2008)

Salvaging Merkle-Damg̊ard for
Practical Applications

Yevgeniy Dodis1, Thomas Ristenpart2, and Thomas Shrimpton3

1 Dept. of Computer Science, New York University
dodis@cs.nyu.edu

http://www.cs.nyu.edu/~dodis/
2 Dept. of Computer Science & Engineering, University of California San Diego

tristenp@cs.ucsd.edu

http://www-cse.ucsd.edu/users/tristenp
3 Dept. of Computer Science, Portland State University

Faculty of Informatics, University of Lugano
teshrim@cs.pdx.edu

http://www.cs.pdx.edu/~teshrim

Abstract. Many cryptographic applications of hash functions are an-
alyzed in the random oracle model. Unfortunately, most concrete hash
functions, including the SHA family, use the iterative (strengthened)
Merkle-Damg̊ard transform applied to a corresponding compression func-
tion. Moreover, it is well known that the resulting “structured” hash
function cannot be generically used as a random oracle, even if the com-
pression function is assumed to be ideal. This leaves a large disconnect
between theory and practice: although no attack is known for many
concrete applications utilizing existing (Merkle-Damg̊ard based) hash
functions, there is no security guarantee either, even by idealizing the
compression function.

Motivated by this question, we initiate a rigorous and modular study
of developing new notions of (still idealized) hash functions which would
be (a) natural and elegant; (b) sufficient for arguing security of impor-
tant applications; and (c) provably met by the (strengthened) Merkle-
Damg̊ard transform, applied to a “strong enough” compression function.
In particular, we develop two such notions satisfying (a)-(c): a preim-
age aware function ensures that the attacker cannot produce a “useful”
output of the function without already “knowing” the corresponding
preimage, and a public-use random oracle, which is a random oracle that
reveals to attackers messages queried by honest parties.

1 Introduction
The primary security goal for cryptographic hash functions has historically been
collision-resistance. Consequently, in-use hash functions, such as the SHA fam-
ily of functions [28], were designed using the (strengthened1) Merkle-Damg̊ard

1 We do not mean to imply that there is a weak MD transform, but this name seems
to be in common use.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 371–388, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

372 Y. Dodis, T. Ristenpart, and T. Shrimpton

(MD) transform [27,17]: the input message M is suffix-free encoded (e.g. by ap-
pending a message block containing the length of M) and then digested by the
cascade construction using an underlying fixed-input-length (FIL) compression
function. The key security feature of the strengthened MD transformation is
that it is collision-resistance preserving [17,27]. Namely, as long as the FIL com-
pression function is collision-resistant, the resulting variable-input-length (VIL)
hash function will be collision-resistant too.

Random oracle model. Unfortunately, the community has come to under-
stand that collision-resistance alone is insufficient to argue the security of many
important applications of hash functions. Moreover, many of these applications,
like Fiat-Shamir [22] signatures or RSA [4] encryption, are such that no stan-
dard model security assumption about the hash function appears to suffice for
proving security. On the other hand, no realistic attacks against these applica-
tions have been found. Motivated in part by these considerations, Bellare and
Rogaway [4] introduced the Random Oracle (RO) model, which models the hash
function as a public oracle implementing a random function. Using this abstrac-
tion, Bellare and Rogaway [4,5,6] and literally thousands of subsequent works
managed to formally argue the security of important schemes. Despite the fact
that a proof in the RO model does not always guarantee security when one uses
a real (standard model) hash function [13], such a proof does provide evidence
that the scheme is structurally sound.

Is Merkle-Damg̊ard a good design? Given the ubiquity of MD-based hash
functions in practice, and the success of the RO model in provable security, it
is natural to wonder if a MD-based hash function H is reasonably modeled as
a RO, at least when the compression function is assumed to be ideal. But even
without formalizing this question, one can see that the answer is negative. For
example, the well-known extension attack allows one to take a value H(x) for
unknown x, and then compute the value H(x, 〈�〉, y), where � is the length of
x and y is an arbitrary suffix. Clearly, this should be impossible for a truly
random function. In fact, this discrepancy leads to simple attacks for natural
schemes proven secure in the random oracle model (see [16]).

Consequently, Coron et al. [16] adapted the indifferentiability framework of
Maurer et al. [26] to define formally what it means to build a secure VIL-RO from
smaller (FIL) idealized components (such as an ideal compression function or
ideal cipher). Not surprisingly, they showed that the strengthened MD transform
does not meet this notion of security, even when applied to an ideal compres-
sion function. Although [16] (and several subsequent works [2,3,25]) presented
straightforward fixes to the MD paradigm that yield hash functions indifferen-
tiable from a VIL-RO, we are still faced with a large disconnect between theory
and practice. Namely, many applications only enjoy proofs of security when the
hash function is modeled as a “monolithic” VIL-RO, while in practice these
applications use existing MD-based hash functions which (as we just argued)
are demonstrably differentiable from a monolithic RO (even when compression

Salvaging Merkle-Damg̊ard for Practical Applications 373

functions are ideal). Yet despite this gap, no practical attacks on the MD-based
design (like the extension attack) seem to apply for these important applications.

“Salvaging” Merkle-Damgård. The situation leads us to a question not ad-
dressed prior to this work: given a current scheme that employs an MD-based hash
functionH and yet does not seem vulnerable to extension-type attacks, can we prove
its security (at least if the compression function f is assumed to be ideal)? The most
direct way to answer this question would be to re-prove, from scratch, the security
of a given application when an MD-based hash function is used. Instead, we take
a more modular approach consisting of the following steps:

(1) Identify a natural (idealized) propertyX that is satisfied by a random oracle.
(2) Argue that X suffices for proving the security of a given (class of) applica-

tion(s), originally proved secure when H is modeled as a monolithic RO.
(3) Argue that the strengthened MD-transform is property-preserving for X ; that

is, as long as the compression function f satisfies X , then the VIL hash H
satisfies X .

(4) Conclude that, as long as the compression function f satisfies X , the given
(class of) application(s) is secure with an MD-based hash function H .

Although this approach might not be applicable to all scenarios, when it is ap-
plicable it has several obvious advantages over direct proofs. First, it supports
proofs that are easier to derive, understand, and verify. Second, proving that
a hash function satisfying X alone is enough (as opposed to being like a “full-
blown” RO) for a given application elucidates more precisely which (idealized)
property of the hash function is essential for security. Third, if the property X
is natural, it is interesting to study in its own right. Indeed, we will show several
applications of our notions which are quite general and not necessarily moti-
vated by salvaging the MD transform. Finally, due to point (4), it suffices to
argue/assume “only” that the compression function f — a smaller and much-
better-studied object — satisfies property X .

So which properties X? We introduce two: preimage awareness and indiffer-
entiability from a public-use random oracle.

1.1 Preimage Aware Functions

Intuitively, a function being Preimage Aware (PrA) means that if an attacker
is able to find a “later useful” output y of the hash function H , then it must
“already know” a corresponding preimage x. A bit more precisely, assume we
build H using some ideal primitive P (which could be a compression function or
a block cipher). Then, if the attacker A produces a value y at some point in time,
either one can immediately “extract” the corresponding (unique) preimage x of y
from the transcript of calls that A made to P so far, or, if one fails to do so,
A is exceedingly unlikely to find a valid preimage of y even with the benefit
of additional calls to P . Our notion is very similar in spirit to the notion of
plaintext awareness for encryption schemes [4,1] and the notion of extractability
for perfectly one-way functions [11,12]; we discuss these further below.

374 Y. Dodis, T. Ristenpart, and T. Shrimpton

We notice that random oracles are clearly PrA. In fact, preimage awareness
precisely captures the spirit behind a common proof technique used in the RO
model, often referred to as extractability, making it an interesting notion to
consider. We also show that preimage awareness is a natural strengthening of
collision-resistance (CR). That preimage awareness lies between being a RO and
CR turns out to be quite useful: informally, a PrA function is “strong enough” to
be a good replacement for a RO in some applications (where CR is insufficient),
and yet the notion of preimage awareness is “weak enough” to be preserved by
strengthened MD (like CR).

Merkle-Damg̊ard preserves preimage awareness. We show that the
(strengthened) MD transform preserves preimage awareness, in stark contrast
to the fact that it does not preserve indifferentiability from a RO [16]. Thus,
to design a variable-input-length preimage aware (VIL-PrA) function, it is suf-
ficient to construct a FIL-PrA function, or, even better, argue that existing
compression functions are PrA, even when they are not necessarily (indifferen-
tiable from) random oracles. The proof of this is somewhat similar to (but more
involved than) the corresponding proof that MD preserves collision-resistance.

Application: domain extension for ROs. A PrA hash function is exactly
what is needed to argue secure domain extension of a random oracle. More pre-
cisely, assuming h is a FIL-RO, and H is a VIL-PrA hash function (whose output
length matches that of the input of f), then F (x) = h(H(x)) is indifferentiable
from a VIL-RO. Ironically, when H is just CR, the above construction of F was
used by [16] to argue that CR functions are not sufficient for domain extension
of a RO. Thus, the notion of PrA can be viewed simultaneously as a non-trivial
strengthening of CR, which makes such domain extension work, while also a
non-trivial weakening of RO, which makes it more readily achieved.

Recipe for hash design. The previous two properties of PrA functions give a
general recipe for how to construct hash functions suitable for modeling as a VIL-
RO. First, invest as must as needed to construct a strong FIL function h (i.e. one
suitable for modeling as a FIL-RO.) Even if h is not particularly efficient, this is
perhaps acceptable because it will only be called once per message (on a short
input). Second, specify an efficient construction of a VIL-PrA hash function
built from some cryptographic primitive P . But for this we use the fact that
MD is PrA-preserving; hence, it is sufficient to focus on constructing a FIL-PrA
compression function f from P , and this latter task could be much easier than
building from P an object suitably like a FIL-RO.

Adopting our more modular point-of-view, several existing hash constructions
in the literature [16,2,3,30,19] enjoy an easier analysis. For example, the NMAC
construction of [16] becomes an example of our approach, where the outer h and
the inner f are both implemented to be like (independent) FIL-ROs. In [16] it
is argued directly, via a difficult and long argument, that the inner f can be
replaced by the Davies-Meyer construction (in the ideal-cipher model), despite
the fact that Davies-Meyer is not itself indifferentiable from a FIL-RO. We can

Salvaging Merkle-Damg̊ard for Practical Applications 375

instead just prove that Davies-Meyer is PrA (which requires only a few lines due
to the existing proof of CR [7]) and then conclude.

Lifting from CR to PrA. Another important aspect of preimage aware-
ness is that, for many important constructions, it gives a much more satisfac-
tory security target than collision resistance. Indeed, there exists a large body
of work [29,7,23,24,32,33,31,19] building FIL-CR hash functions from idealized
block ciphers and permutations. On the one hand, it seems very hard to prove the
security of such schemes in the standard model, since there exists a black-box
separation [34] between collision-resistant hash functions and standard-model
block ciphers (which are equivalent to one-way functions). On the other hand,
it seems quite unsatisfactory that one starts with such a “powerful” idealized
primitive (say, an ideal cipher), only to end up with a much “weaker” stan-
dard model guarantee of collision resistance (which is also insufficient for many
applications of hash functions). The notion of preimage awareness provides a
useful solution to this predicament. We show that all the constructions proven
CR in [29,7,33,31,19] are provably PrA. This is interesting in its own right, but
also because one can now use these practical constructions within our aforemen-
tioned recipe for hash design. We believe (but offer no proof) that most other
CR ideal-primitive-based functions, e.g. [23,24,32], are also PrA.

Other applications/connections? We believe that PrA functions have
many more applications than the ones so far mentioned. As one example, PrA
functions seem potentially useful for achieving straight-line extractability for
various primitives, such as commitments or zero-knowledge proofs. These, in
turn, could be useful in other contexts. As already mentioned, preimage aware-
ness seems to be quite related to the notion of plaintext awareness in public-key
encryption schemes [5,1], and it would be interesting to formalize this poten-
tial connection. PrA functions are also very related to so called extractable hash
functions (EXT) recently introduced by Canetti and Dakdouk [11,12]. However,
there are some important differences between EXT and PrA, which appear to
make our respective results inapplicable to each other: (a) EXT functions are
defined in the standard model, while PrA functions in an idealized model; (b)
EXT functions are keyed (making them quite different from in-use hash func-
tions), while PrA functions can be keyed or unkeyed; (c) EXT functions do not
permit the attacker to sample any “unextractable” image y, while PrA functions
only exclude images y which could be later “useful” to the attacker; (d) EXT
functions allow the extractor to depend on the attacker, while PrA functions
insist on a universal extractor.

1.2 Public-Use Random Oracles

Next, we consider applications that never evaluate a hash function on secret data
(i.e. data that must be hidden from adversaries). This means that whenever the
hash function is evaluated on some input x by an honest party C, it is safe to im-
mediately give x to the attacker A. We model this by formalizing the notion of a
public-use random oracle (pub-RO); such a RO can be queried by adversaries to

376 Y. Dodis, T. Ristenpart, and T. Shrimpton

reveal all so-far-queried messages. This model was independently considered, un-
der a different motivation, by Yoneyama et al. [36] using the name leaky random
oracle. Both of our papers observe that this weakening of the RO model is actu-
ally enough to argue security of many (but, certainly, not all) classical schemes
analyzed in the random oracle model. In particular, a vast majority of digital sig-
nature schemes, including Full Domain Hash (FDH) [4], probabilistic FDH [15],
Fiat-Shamir [22], BLS [10], PSS [6] and many others, are easily seen secure in the
pub-RO model. For example, in the FDH signature scheme [4], the RO H is only
applied to the message m supplied by the attacker, to ensure that the attacker
cannot invert the value H(m) (despite choosing m). Other applications secure in
the pub-RO model include several identity-based encryption schemes [9,8], where
the random oracle is only used to hash the user identity, which is public.

We go on to formalize this weakening of ROs in the indifferentiability frame-
work of Maurer et al. [26]. This allows us to define what it means for a hash func-
tion H (utilizing some ideal primitive P) to be indifferentiable from a public-use
random oracle (pub-RO). As our main technical result here, we argue that the
MD transform preserves indifferentiability from a pub-RO, even though it does
not preserve general indifferentiability from a (regular) RO. To get some intu-
ition about this fact, it is instructive to examine the extension attack mentioned
earlier, which was the root of the problem with MD for general indifferentiabil-
ity. There one is worried about adversaries being able to infer the hash output
on a message with unknown prefix. In the public-use setting, this is not an issue
at all: the security of a public-use application could never be compromised by
extension attacks since all messages are known by the attacker.

As a corollary of this result (and the composition theorem of [26]), we’ll see that
if the compression function f is indifferentiable from a FIL pub-RO, we can imme-
diately give a security proof for the above-mentioned public-use applications. In
particular, this is true when f is modeled as an ordinary FIL-RO.In the full ver-
sion [21], we discuss the more complicated case of the Davies-Meyer compression
function.

2 Preliminaries

When S is a set, x←$ S means to sample uniformly from S and assign the value
to x. When Dom and Rng are non-empty sets, let RFDom,Rng be the algorithm
that implements a lazily-sampled random oracle mapping from Dom to Rng . We
shorten this to RFDom,n or RFN,n when the range (resp.) domain and range are bit
strings of fixed lengths N,n > 0; RF∗,τ is a random oracle with constant output
stretch τ . Let κ, n > 0 be integers. A block cipher is a map E : {0, 1}κ×{0, 1}n →
{0, 1}n such that E(k, ·) is a permutation for all k ∈ {0, 1}κ. Let BC(κ, n) be the
set of all such block ciphers.

For any algorithm f that accepts inputs from Dom ⊆ {0, 1}∗, we write Time
(f,m) to mean the maximum time to run f(x) for any input x ∈ {0, 1}m ⊆ Dom.
When f is a function with domain Dom ⊆ {0, 1}∗, we define Time(f,m) to be the
minimum, over all programs Tf that implement the mapping f , of the size of Tf

plus the worst case running time of Tf over all elements x ∈ {0, 1}m ⊆ Dom. In

Salvaging Merkle-Damg̊ard for Practical Applications 377

either case, when we suppress the second argument, writing just Time(f), we mean
to maximize over all strings in the domain. Running times are relative to some fixed
underlying RAM model of computation, which we do not specify here.

As a small abuse of standard notation, we write O(X) to hide fixed, absolute
constants that are much smaller than the argument X .

Interactive TMs. An Interactive Turing Machine (ITM) accepts inputs via an
input tape, performs some local computation using internal state that persists
across invocations, and replies via an output tape. An ITM might implement
various distinct functionalities f1, f2, . . . that are to be exposed to callers. We
write P = (f1, f2, . . .) for an ITM implementing f1, f2, · · · . When functionalities
fi, fj (say) do not share state, we say that fi and fj are independent functional-
ities; these will be explicitly noted. We write MP if an ITM M has access to all
interfaces of P and write Mfi if M has access only to a particular interface fi

of P . We sometimes use the moniker ideal primitive to refer to an ITM; this is
to emphasize the use of an ITM as building block for some larger functionality.
We write F = RFDom,Rng to signify that F is the ideal primitive that implements
the algorithm RFDom,Rng .

Hash Functions and Merkle-Damgård. Let Dom ⊆ {0, 1}∗ be a non-empty
set of strings, and Rng be a non-empty set (typically {0, 1}n for some integer
n > 0). A hash function is then a map H : Dom → Rng. We will be con-
cerned with hash functions that use (oracle access to) an underlying ideal prim-
itive P . We write HP when we want to make this dependency explicit. When
the primitive is clear from context, we will sometimes suppress reference to it.
When computing Time(H, ·), calls to P are unit cost. Similar to our definition of
Time(H,m), we write NumQueries(H,m) for the minimum, over all programs TH

that compute H , of the maximum number of queries to P required to compute
HP (x) for any x ∈ {0, 1}m ⊆ Dom.

The primary method by which hash functions are constructed from underlying
primitives is the strengthened Merkle-Damg̊ard transform (SMD). For integers
n, d > 0, let fP : {0, 1}n × {0, 1}d → {0, 1}n be a compression function (using
idealized primitive P). Let y0 = IV , a fixed constant. We write SMD[fP] for
the algorithm that works on input M ∈ {0, 1}∗ by first computing m1 · · ·m� ←
sfpad(M), running yi ← fP (yi−1,mi) for each i ∈ [1 .. �] and returning y�. Here
sfpad(·) is a function that returns a suffix-free encoding of M that is parsed into �
blocks of d-bits each, where � ≥ �|M |/d� is defined by the encoding. A suffix-free
encoding has the property that for any M,M ′ such that |M | < |M ′| the string
returned by sfpad(M) is not a suffix of sfpad(M ′). (For example, appending to
a message its length.) Similarly, we write MD[fP] for the algorithm that splits
input M ∈ ({0, 1}d)+ into blocks m1, · · · ,m�, each of size d bits, then runs
yi ← fP (yi−1,mi) for each i ∈ [1 .. �], and returns y�. When the underlying
compression function is itself an idealized primitive provided as an oracle, the
algorithms SMD and MD work in the obvious manner.

Pseudorandom oracles. Following [16], we utilize the indifferentiability
framework [26] to formalize the notion of “behaving like a random oracle”, which

378 Y. Dodis, T. Ristenpart, and T. Shrimpton

we call being a pseudorandom oracle (PRO) following [2,3]. Fix non-empty sets
Dom,Rng . Let P be an ideal primitive and let F = RFDom,Rng . A simulator S is
an ITM that matches the number of interfaces of P and has oracle access to F .
A PRO adversary A has access to oracles and outputs a bit. We define the pro
advantage of a PRO adversary A against a function HP mapping from Dom to
Rng by

Advpro
H,S(A) = Pr

[
AH,P ⇒ 1

]− Pr
[
AF ,S ⇒ 1

]
where the first probability is over the coins used by A and primitive P , and the
second is over the coins used by A, F , and S. Note that a crucial aspect of the
definition is that the simulator, while able to query F itself, does not get to see
the queries made by the adversary to F .

3 Preimage Awareness

Suppose H is a hash function built from an (ideal) primitive P . We seek to,
roughly speaking, capture a notion which states that an adversary who knows a
“later useful” output z of HP must “already know” (be aware of) a particular
corresponding preimage x. We can capture the spirit of this notion using a
deterministic algorithm called an extractor. Consider the following experiment.
An adversary A initially outputs a range point z. The extractor is run on two
inputs: z and an advice string α. The latter contains a description of all of
A’s queries so far to P and the corresponding responses. The extractor outputs
a value x in the domain of H . Then A runs again and attempts to output
a preimage x′ such that HP (x) = z but x �= x′. Informally speaking, if no
adversary can do so with high probability, then we consider H to be preimage
aware. We now turn to formalizing a notion based on this intuition, but which
allows multiple, adaptive attempts by the adversary to fool the extractor.

Fix sets Dom ⊆ {0, 1}∗ and Rng , and let A be an adversary that outputs a
string x ∈ Dom. In the preimage awareness (pra) experiment defined in Figure 1,
the adversary is provided with two oracles. First, an oracle P that provides
access to the (ideal) primitive P , but which also records all the queries and
their responses in an advice string α. (We assume that when P is providing
an interface to multiple primitives, it is clear from the advice string to which
primitive each query was made.) Second, an extraction oracle Ex. The extraction
oracle provides an interface to an extractor E , which is a deterministic algorithm
that takes as input a point z ∈ Rng and the advice string α, and returns a point
in Dom ∪ {⊥}.

For hash function H , adversary A, and extractor E , we define the advantage
relation

Advpra
H,E(A) = Pr

[
Exppra

H,E,A ⇒ true
]

where the probabilities are over the coins used in running the experiments. We
will assume that an adversary never asks a query outside of the domain of the
queried oracle. We use the convention that the running time of the adversary A

Salvaging Merkle-Damg̊ard for Practical Applications 379

Exppra
H,E,A

x←$ AP,Ex

z ← HP (x)
Ret (x �= V[z] ∧ Q[z] = 1)

oracle P(m):
c← P (m)
α← α ‖ (m, c)
Ret c

oracle Ex(z):
Q[z]← 1
V[z]← E(z, α)
Ret V[z]

Fig. 1. (Left) Experiment for defining preimage awareness (PrA) for hash function H ,
extractor E and adversary A. (Right) Description of the oracles used in the PrA
experiment extractor E . The (initially empty) advice string α, the (initially empty)
array V, and the (initially everywhere ⊥) array Q are global.

does not include the time to answer its queries (i.e. queries are unit cost). When
there exists an efficient extractor E such that Advpra

H,E(A) is small for all reason-
able adversaries A, we say that the hash function H is preimage aware (PrA).
(Here “efficient”, “small”, and “reasonable” are meant informally.)

Remarks. As mentioned, the above formalization allows multiple, adaptive chal-
lenge queries to the extraction oracle. This notion turned out to be most con-
venient in applications. One can instead restrict the above notion to a single
query (or to not allow adaptivity) resulting in a definition with slightly simpler
mechanics. In the full version [21] we discuss such alternative formulations of
preimage awareness.

4 Relationships between PrA, CR, and Random Oracles

Our new notion preimage awareness is an interesting middle point in the contin-
uum between objects that are CR (on one end) and those that are random ora-
cles (on the other). More formally speaking, we’ll see in a moment that preimage
awareness is a strictly stronger notion than CR while it is easy to see that it is a
strictly weaker notion than indifferentiability from a random oracle. This is inter-
esting for several reasons. First, we show that a PrA function is a secure domain
extender for fixed-input-length random oracles, unlike CR functions [16]. (This
already suggests that CR does not necessarily imply PrA.). Preimage awareness
is consequently a very useful strengthening of CR, not to mention that it pro-
vides rigor to the folklore intuition that CR functions are insufficient for this
application due to a lack of extractability. Second, the MD transform preserves
preimage awareness. This is in stark contrast to the fact that MD (even if one
uses strengthening) does not preserve indifferentiability from a random oracle
(i.e. PRO-Pr). In the rest of this section, we explore these facts in more detail.

One can view preimage awareness as a strengthening of collision resistance in
the following way. Say that queries to P allow the adversary to compute distinct
domain points x, x′ such that HP (x) = HP (x′) = z. The adversary can make an
extraction query on z, and then succeed in the PrA game by returning whichever
of x and x′ is not extracted from (z, α) by the extractor.

380 Y. Dodis, T. Ristenpart, and T. Shrimpton

On the other hand, it is not hard to see that a RO is a PrA function. (con-
sider an extractor that simply scans the advice string looking for the challenge
point z). We now turn to the two claims mentioned above. The next theorem
captures that any PrA function is a good domain extender for an FIL random
oracle. The proof is given in the full version [21].

Theorem 1. [RO domain extension via PrA] Let P be an ideal primitive
and HP : Dom→ Rng be a hash function. Let R be an ideal primitive with two
interfaces that implements independent functionalities P and R = RFRng,Rng .
Define FR(M) = R(HP (M)). Let F = RFDom,Rng . Let E be an arbitrary ex-
tractor for H . Then there exists a simulator S = (S1,S2) such that for any PRO
adversary A making at most (q0, q1, q2) queries to its three oracle interfaces,
there exists a PrA adversary B such that

Advpro
F,S(A) ≤ Advpra

H,E(B) .

Simulator S runs in time O(q1 +q2·Time(E)). Let �max the the length (in bits) of

the longest query made by A to it’s first oracle. Adversary B runs in time that
of A plus O(q0 ·Time(H, �max) + q1 + q2), makes q1 + q0 ·NumQueries(H, �max)
primitive queries, q2 extraction queries, and outputs a preimage of length at
most �max. �

Theorem 1 shows that preimage awareness is a strong enough notion to provide
secure domain extension for random oracles. At the same time, the next theorem
shows that it is “weak” enough to be preserved by SMD. We consider SMD
based on any suffix-free padding function sfpad : {0, 1}∗ → ({0, 1}d)+ that is
injective. Further we assume it is easy to strip padding, namely that there exists
an efficiently computable function unpad : ({0, 1}d)+ → {0, 1}∗ ∪ {⊥} such that
x = unpad(sfpad(x)) for all x ∈ {0, 1}∗. Inputs to unpad that are not valid
outputs of sfpad are mapped to ⊥ by unpad.

Theorem 2. [SMD is PrA-preserving] Fix n, d > 0 and let P be an ideal
primitive. Let hP : {0, 1}n+d → {0, 1}n be a compression function, and let H =
SMD[hP]. Let Eh be an arbitrary extractor for the PrA-experiment involving h.
Then there exists an extractor EH such that for all adversaries A making at
most qp primitive queries and qe extraction queries and outputting a message of
at most �max ≥ 1 blocks there exists an adversary B such that

Advpra
H,EH

(A) ≤ Advpra
h,Eh

(B) .

EH runs in time at most �max (Time(Eh) + Time(unpad)). B runs in time at

most that of A plus O(qe�max), makes at most �max ·NumQueries(h, �max) + qp,
and makes at most qe�max extraction queries. �

Proof. We start by defining the adversary B; the extractor EH is implicit in its
description.

Salvaging Merkle-Damg̊ard for Practical Applications 381

adversary BP,Ex(ε):

x∗←$ AP,SimEx

x∗� · · ·x∗1 d← sfpad(x∗) ; c∗�+1 ← IV
For i = � down to 1 do

c∗i ← hP(c∗i+1 ‖ x∗i)
If Q[c∗i] = 1 and E[c∗i] �= c∗i+1 ‖ x∗i then

Ret c∗i+1 ‖ x∗i
Ret ⊥

subroutine SimEx(z, α):
i← 1 ; c1 ← z
While i ≤ �max do

ci+1 ‖ xi ← Ex(ci, α)
Q[ci]← 1 ; E[ci]← ci+1 ‖ xi

If ci+1 = ⊥ then Ret ⊥
x← unpad(xi · · ·x1)
If ci+1 = IV and x �= ⊥ then

Ret x
i← i+ 1

Ret ⊥

Adversary B answers A’s primitive queries by forwarding to its own oracle P. It
answers A’s extraction queries using the subroutine SimEx (which makes use of
B’s extraction oracle). The code ci+1 ‖ xi ← Ex(ci, α) means take the string
returned from the query and parse it into an n-bit string ci+1 and a d-bit
string xi. If the oracle returns ⊥, then ci+1 and xi are both assigned ⊥. The
code x∗� · · ·x∗1 d← sfpad(x∗) means take the output of sfpad(x∗) and parse it into
� d-bit blocks x∗� , . . . , x

∗
1. The tables Q and E, which record if a value was queried

to Ex and the value returned by the query, are initially everywhere ⊥.
The extractor EH works exactly the same as the code of SimEx except that

queries to Ex are replaced by directly running Eh and the tables Q and E can be
omitted. Loosely, extractor EH , when queried on a challenge image z, uses Eh to
compute (backwards) the preimages of each iteration of h leading to z. When a
chaining variable equal to IV is extracted, the function unpad is applied to the
extracted message blocks. If it succeeds, then the result is returned.

Note that we reverse the (usual) order of indices for message blocks and
chaining variables (starting high and counting down, e.g. x∗� · · ·x∗1) for both the
extractor and B due to the extractor working backwards.

To lower bound B’s advantage by the advantage of A we first point out that,
by construction of EH , the values returned by the simulated SimEx are distributed
identically to the values returned during execution of Exppra

H,EH ,A. Thus we have
that Advpra

H,EH
(A) = Pr[x∗ satisfies] where the event “x∗ satisfies”, defined over

the experiment Exppra
h,EB ,B, occurs when the message x∗ satisfies the conditions

of winning for A. Namely that HP (x∗) was queried to SimEx and the reply given
was not equal to x∗. We call x∗ a satisfying preimage for A. We will show that
whenever x∗ is a satisfying preimage for A, with x∗� · · ·x∗1 d← sfpad(x∗), there
exists a k with 1 ≤ k ≤ � for which adversary B returns the string c∗k+1 ‖ x∗k and
this string is a satisfying preimage for B (i.e. one that wins the PrA experiment
against h for B). This will establish that

Pr [x∗ satisfies] ≤ Advpra
h,Eh

(B) . (1)

Consider the query SimEx(HP (x∗)) necessarilymade byA. Let cj+1‖xj , . . . , c2‖x1
be the sequence of values returned by the Ex queries made by SimEx in the course
of responding to A’s query. Necessarily 1 ≤ j ≤ �max and 1 ≤ � ≤ �max .

382 Y. Dodis, T. Ristenpart, and T. Shrimpton

We will show that there exists a k such that 1 ≤ k ≤ min{j, �} and ck+1‖xk �=
c∗k+1 ‖ x∗k. (This includes the possibility that ck+1 = ⊥ and xk = ⊥.) First we
use this fact to conclude. Since k ≤ j it means that ck was queried to Ex. If
ck = c∗k = HP (c∗k+1 ‖ x∗k) we are done, because then c∗k+1 ‖ x∗k is a satisfying
preimage for B. Otherwise, ck �= c∗k and we can repeat the reasoning for k − 1.
At k = 1 we have that, necessarily, ck = c∗k since this was the image queried by
A. Thus there must exist a satisfying preimage, justifying (1).

We return to showing the existence of k such that 1 ≤ k ≤ min{j, �} and
ck+1 ‖ xk �= c∗k+1 ‖ x∗k. Assume for contradiction that no such k exists, meaning
that c∗i+1 ‖ x∗i = ci+1 ‖ xi for 1 ≤ i ≤ min{j, �}. If j > �, then since cj = IV
and x∗� · · ·x∗1 = x� · · ·x1 we have a contradiction because in such a situation the
loop in SimEx would have halted at iteration �. If j = �, then having x∗� · · ·x∗1 =
x� · · ·x1 and c�+1 = c∗�+1 = IV would imply that SimEx returned x = x∗,
contradicting that x∗ is a satisfying preimage for A. If j < �, then the loop in
SimEx must have stopped iterating because cj+1 = IV (if cj+1 = ⊥ we would
already have contradicted our assumption regarding k) and x �= ⊥. But by
assumption we have that x∗j · · ·x∗1 = xj · · ·x1 and so there exist two strings x
and x∗ for which sfpad(x) is a suffix of sfpad(x∗). This contradicts that sfpad
provides a suffix-free encoding.

Recall that if a compression function h is both CR and hard to invert for range
point the IV , then the plain MD iteration of h is a CR function [17,20]. We
prove an analogous theorem for plain MD and preimage awareness in [21]. This
is particularly useful in our context, because for the compression functions we
will consider (e.g. a FIL random oracle or an ideal cipher based compression
function) it is easy to verify that it is difficult to invert a fixed range point. Note
that this extra property on h (difficulty of inverting IV) is, in fact, necessary
for plain MD to provide preimage awareness.

5 Applying Preimage Awareness

The results of the previous section allow us to more elegantly and modularly
prove that a hash function construction is a pseudorandom oracle (PRO). Par-
ticularly, Theorems 1 and 2 mean that the task of building a PRO is reduced to
the significantly simpler task of building a compression function that is PrA. For
example, in the case that the compression function is itself suitable to model as
an FIL-RO, then it is trivially PrA and so one is finished. However, even if the
compression function has some non-trivial structure, such as when based on a
block cipher, it is still (relatively) straightforward to prove (suitable compression
functions) are PrA. In the rest of this section we show that most CR functions
built from an ideal primitive are, in fact, PrA.

Are there applications of preimage awareness beyond analysis of hash func-
tions? We believe the answer is yes. For example, one might explore applications
of CR functions, instead analyzing these applications assuming a PrA func-
tion. (As one potential application, the CR-function using statistically hiding

Salvaging Merkle-Damg̊ard for Practical Applications 383

commitment scheme of [18] conceivably achieves straight-line extractability given
instead a PrA function.) We leave such explorations to future work.

PrA for CR constructions. There is a long line of research [29,7,23,24],
[32,33,31,19] on building compression functions (or full hash functions) that are
provably collision-resistant in some idealized model, e.g. the ideal cipher model.
We show that in most cases one can generalize these results to showing the con-
structions are also PrA. We start by showing that the Davies-Meyer and other
so-called “type-1” PGV compression functions [29,7] are not only CR but PrA.
We also give bounds on the PrA-security of the Shrimpton-Stam compression
function [33] (see Theorem 4) and the first two steps of the MCM construc-
tion [30] (see Theorem 5); previously these were only known to be CR.

Let us begin by examining the Davies-Meyer compression function, which is
defined by DME(c,m) = Em(c)⊕ c where E is a block cipher. This compression
function and the rest of the 12 “type-1” PGV [29] block cipher-based compres-
sion functions were proved to be collision-resistant (to the birthday bound) in
the ideal-cipher model in [7]. We leverage their results in the proof of the follow-
ing theorem, given in the full version [21] where results for the other “type-1”
functions also appear.

Theorem 3. [Davies-Meyer is PrA.] Fix κ, n > 0, let E←$ BC(κ, n). Let P
be an oracle providing an interface to E and E−1. Let HP (c,m) = DME(c,m).
There exists an extractor E such that for any adversary A making at most qp
queries to P and qe extraction queries we have

Advpra
H,E(A) ≤ qeqp

2n−1 +
qp(qp + 1)

2n

where E runs in time at most O(qp). �

Next we show that it is possible to build a PrA compression function from
non-compressing random functions2. In particular, we examine the compression
function recently designed by Shrimpton and Stam [33]. They proved that this
compression function is nearly optimally collision resistant (i.e. to the birthday
bound), and we will now show that it is also PrA. The proof of the following is
in [21].

Theorem 4. [Shrimpton-Stam is PrA] Fix n > 0. Let P = (f1, f2, f3)
be an ideal primitive providing interfaces to independent functionalities f1 =
RFn,n, f2 = RFn,n and f3 = RFn,n. Define a compression function HP (c,m) =
f3(f1(m)⊕ f2(c))⊕ f1(m). Then there exists an extractor E such that for any
adversary A making qp queries to each of f1, f2, f3 (via P) and qe extraction
query, we have

Advpra
H,E(A) = O(qeq2p/2

n)

where the extractor runs in time O(q2p). �
2 One can view a block cipher as a compressing primitive, since it takes k +n bits and

produces n bits.

384 Y. Dodis, T. Ristenpart, and T. Shrimpton

Dodis et al. [19] also offer a compression function from non-compressing prim-
itives, this being f(c,m) = f1(c) ⊕ f2(m). A straightforward extension of the
argument in [19] shows that this function is PrA for ideal f1 and f2. See [21].

Finally, we show that the “mix-compress” portion of the “mix-compress-mix”
construction from [30] is PrA as long as the compress step is CR and relatively
balanced. First we must define a measure of balance. Associated to any func-
tion F : {0, 1}∗ → {0, 1}n is the set PreImF (�, z) = {y | y ∈ {0, 1}∗ ∧ |y| =
� ∧ F (y) = z} for all � > 0 and z ∈ {0, 1}n. That is, PreImF (�, z) contains
the length � preimages of z under F . We also define the function δF (�, z) =
|(|PreImF (�, z)| − 2�−n)/2�| related to F . The δF function measures how far
a particular preimage set deviates from the case in which F is regular. Let
ΔF = max{δF (�, z)}, where the maximum is taken over all choices of � and z.
The proof of the following is given in [21].

Theorem 5. [Mix-Compress is PrA.] Fix τ, n > 0, let F : {0, 1}∗ → {0, 1}n

and let P be an ideal primitive implementing RF∗,τ . Let HP (m) = F (P (m)).
Let A be a PrA adversary making qp primitive queries and qe extraction queries.
Then there exists a CR adversary B and an extractor E such that

Advpra
H,E(A) ≤ qeqp(

1
2n

+ΔF) + Advcr
H,F (B)

E runs in time at most O(qp). B runs in time at most that of A plus O(qp). �

6 Indifferentiability for Public-Use Random Oracles

In numerous applications, hash functions are applied only to public messages.
Such public-use occurs in most signature schemes (e.g. full-domain-hash [4],
probabilistic FDH [15], Fiat-Shamir [22], BLS [10], PSS [6]) and even some en-
cryption schemes (e.g. a variant of Boneh-Franklin IBE [14] and Boneh-Boyen
IBE [8]). It is easy to verify that the provable security of such schemes is re-
tained even if all hashed messages are revealed to adversaries. We introduce the
notion of a public-use random oracle (pub-RO). This is an ideal primitive that
exposes two interfaces: one which performs the usual evaluation of a random
oracle on some domain point and a second which reveals all so-far evaluated
domain points. All parties have access to the first interface, while access to the
latter interface will only be used by adversaries (and simulators).

A wide class of schemes that have proofs of security in the traditional random
oracle model can easily be shown secure in this public-use random oracle model.
Consider any scheme and security experiment for which all messages queried to a
RO can be inferred from an adversary’s queries during the experiment. Then one
can prove straightforwardly the scheme’s security in the pub-RO model, using
an existing proof in the full RO model as a “black box”. For example, these
conditions are met for unforgeability under chosen-message attacks of signature
schemes that use the RO on messages and for message privacy of IBE schemes
that use the RO on adversarially-chosen identities. All the schemes listed in the
previous paragraph (and others) fall into these categories.

Salvaging Merkle-Damg̊ard for Practical Applications 385

The pub-ROmodel was independently considered by Yoneyama et al. [36] (there
called the leaky random oracle model) under different motivation. They directly
prove some schemes secure when hash functions are modeled as a monolithic pub-
RO. They do not analyze the underlying structure of MD-based functions.

We utilize the indifferentiability framework of Maurer et al. [26] to formalize a
new notion of security for hash constructions: indifferentiability from a public-use
RO, which we will call being a public-use pseudorandom oracle (pub-PRO). This
new security property is weaker than that of being a PRO. We show that iterating
a fixed-input-length public-use random oracle (i.e. a compression function) via
MD yields a variable-input-length public-use random oracle. Put another way,
MD preserves the property of being a pub-PRO.

Public-use ROs. Fix sets Dom,Rng . A public-use random oracle (pub-RO) for
domain Dom and range Rng is an ideal primitive F = (Feval ,Freveal) defined as
follows. Let ρ = RFDom,Rng . The evaluation interface Feval , on input M ∈ Dom,
first adds the pair (M,ρ(M)) to an initially-empty setM and then returns ρ(M).
The reveal interface Freveal takes no input and returns M (suitably encoded
into a string). We say that F is a fixed-input-length (FIL) pub-RO if Dom only
includes messages of a single length.

Indifferentiability from a pub-RO. Fix sets Dom,Rng . Let P be an ideal
primitive and let F = (Feval ,Freveal) be a pub-RO for domain Dom and range
Rng . Let S be a simulator with oracle access to (both interfaces of) F . Then we
define the pub-pro advantage of an adversary A against a construction HP by

Advpub-pro
H,S (A) = Pr

[
AH,P ⇒ 1

]− Pr
[
AFeval ,S ⇒ 1

]
where the first probability is over the coins used by A and primitive P , and
the second is over the coins used by A, F , and S. In the second probability
experiment, while A has access only to Feval , the simulator S has oracle access
to both interfaces of F . The simulator’s ability to call Freveal , thereby seeing all
queries so-far-made by A to Feval , is the crucial difference between pub-PRO
and PRO.

The composition theorem in [26] (recast to use ITMs in [16]) can be applied to
pub-PROs. That is, a cryptographic scheme using a pub-PRO hash construction
HP for some ideal primitive P can have its security analyzed in a setting where
HP is replaced by a monolithic pub-RO F . In this setting, adversaries attacking
the scheme can perform queries to Freveal .

Merkle-Damg̊ard preserves pub-PRO. Let f = (feval , freveal) be a FIL
pub-RO. Then the next theorem statement, whose proof appears in [21], asserts
that MD[feval] is indifferentiable from a pub-RO. (That SMD[feval] is a pub-PRO
is an immediate corollary.)

Theorem 6. [MD preserves pub-PRO] Fix n, d > 0. Let f = (feval , freveal)
be a FIL pub-RO for domain {0, 1}n+d and range {0, 1}n. There exists a simu-
lator S = (Seval ,Sreveal) so that for any adversary A

Advpub-pro
MD,S (A) ≤ (σq0 + q1)2

2n
+
σq0 + q1 + 1

2n

386 Y. Dodis, T. Ristenpart, and T. Shrimpton

where q0 is the maximal number of queries by A to its first oracle, these of length
at most σ blocks of d bits, and q1 is the maximal number of queries by A to
either feval or Seval . Let q2 be the number of queries by A to either freveal or
Sreveal . Then S runs in time that of A plus O(q0σ(q1 + q2)) and makes at most
2q0 + q0q1σ queries. �

Davies-Meyers compression function. One might hope that the Davies-
Meyers compression function is pub-PRO analogously to the fact that it is PrA.
Unfortunately, this is not the case. Consider the following attack, due to [35].
Let A against DME(c, x) = Ex(c) ⊕ c work as follows. It picks a random z and
m and then queries its third oracle interface on m, z. When interacting with the
pub-RO F and any simulator S, we see that S would need to respond with a
value c such that Feval(c, x) = c ⊕ z. This corresponds to inverting F on some
fixed range point, which is hard. (Note that A has not, before querying the
simulator, submitted any queries to F .) Thus the adversary will win easily. On
the other hand, in the full version [21], we show that, although DM is not itself
pub-PRO, applying MD to it results in a VIL pub-PRO (in the ideal cipher
model). We discuss this in more detail in [21].

Acknowledgments

We thank Ilya Mironov, Martijn Stam, and Mihir Bellare for useful discussions
regarding this work. We thank Lei Wang for pointing out an error in an earlier
version of this work. Yevgeniy Dodis was supported in part by NSF Grants
0831299, 0716690, 0515121, and 0133806. Thomas Ristenpart was supported in
part by Mihir Bellare’s NSF grants CNS 0524765 and CNS 0627779 and a gift
from Intel corporation. He thanks the Faculty of Informatics at the University
of Lugano, Switzerland for hosting and supporting him while a portion of this
work was done. Thomas Shrimpton was supported by NSF grant CNS 0627752
and SNF grant 200021-122162.

References

1. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without
Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–
62. Springer, Heidelberg (2004)

2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design
Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73. ACM Press, New York (1993)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

Salvaging Merkle-Damg̊ard for Practical Applications 387

6. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

7. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–325. Springer, Heidelberg (2002)

8. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

10. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

11. Canetti, R., Dakdouk, R.R.: Extractable Perfectly One-Way Functions. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008)

12. Canetti, R., Dakdouk, R.: Towards a Theory of Extractable Functions. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–614. Springer, Heidelberg (2009)

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

14. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
J. Cryptology (JOC) 20(3), 265–294 (2007)

15. Coron, J.-S.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

16. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

17. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

18. Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the Existence of Statistically
Hiding Bit Commitment Schemes and Fail-Stop Sigantures. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer, Heidelberg (1994)

19. Dodis, Y., Pietrzak, K., Puniya, P.: A New Mode of Operation for Block Ciphers
and Length-Preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

20. Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What if
We Are Stuck with SHA? In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung,
M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer, Heidelberg (2008)

21. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for Practical
Applications (full version of this paper). IACR ePrint Archive (2009)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

23. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

388 Y. Dodis, T. Ristenpart, and T. Shrimpton

24. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

25. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

26. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, Impossibility Re-
sults on Reductions, and Applications to the Random Oracle Methodology. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

27. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

28. National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard, Supersedes FIPS PUB 180 (May 11, 1995)

29. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

30. Ristenpart, T., Shrimpton, T.: How to Build a Hash Function from Any Collision-
Resistant Function. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 147–163. Springer, Heidelberg (2007)

31. Rogaway, P., Steinberger, J.P.: Security/Efficiency Tradeoffs for Permutation-
Based Hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
220–236. Springer, Heidelberg (2008)

32. Rogaway, P., Steinberger, J.P.: Constructing Cryptographic Hash Functions from
Fixed-Key Blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 433–450. Springer, Heidelberg (2008)

33. Shrimpton, T., Stam, M.: Building a Collision-Resistant Compression Function
from Non-compressing Primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)

34. Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

35. Wang, L.: Personal correspondence (2009)
36. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky Random Oracle (Extended Ab-

stract). In: Provable Security – ProvSec 2008. LNCS, vol. 5324, pp. 226–240 (2008)

On the Security of Padding-Based Encryption
Schemes
– or –

Why We Cannot Prove OAEP Secure in the Standard
Model

Eike Kiltz	 and Krzysztof Pietrzak

Cryptology & Information Security Group
CWI Amsterdam, The Netherlands

{pietrzak,kiltz}@cwi.nl

Abstract. We investigate the security of “padding-based” encryption
schemes in the standard model. This class contains all public-key en-
cryption schemes where the encryption algorithm first applies some in-
vertible public transformation to the message (the “padding”), followed
by a trapdoor permutation. In particular, this class contains OAEP and
its variants.

Our main result is a black-box impossibility result showing that one
cannot prove any such padding-based scheme chosen-ciphertext secure
even assuming the existence of ideal trapdoor permutations. The latter
is a strong ideal abstraction of trapdoor permutations which inherits all
security properties of uniform random permutations.

Keywords: Padding-based encryption, OAEP, black-box, ideal trap-
door permutations.

1 Introduction

1.1 Padding Schemes for Encryption

Optimal Asymmetric Encryption Padding (OAEP) is one of the most known
and widely deployed asymmetric encryption schemes. It was designed by Bel-
lare and Rogaway [3] as a scheme based on a trapdoor permutation (TDP).
OAEP is standardized in RSA’s PKCS #1 V2.1 and is part of the ANSI X9.44,
IEEE P1363, ISO 18033-2 and SET standards. After the proposal of OAEP,
several variants were proposed, such as Shoup’s OAEP+ [41], Boneh’s Simpli-
fied OAEP [8] (SAEP), and many others (e.g., [1,8,12,13,16,30,29,34,36,37]).
All the aforementioned schemes can be classified as “padding-based encryption

� Supported by the research program Sentinels Sentinels is being financed by Technol-
ogy Foundation STW, the Netherlands Organization for Scientific Research (NWO),
and the Dutch Ministry of Economic Affairs.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 389–406, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

390 E. Kiltz and K. Pietrzak

schemes”: the encryption algorithm first applies a public injective transforma-
tion π to message m and randomness r, and then a trapdoor permutation f to
the result, i.e., Enc(m; r) = f(π(m, r)). Decryption inverts the trapdoor permu-
tation and then applies an inverse transformation π̂ to reconstruct the message
(or output a special rejection symbol), i.e., Dec(c) = π̂(f−1(c)). The two public
transformations Π = (π, π̂) (with the consistency requirement π̂(π(m, r)) = m,
for all m, r) are called a padding scheme. For example, in the case of OAEP the
padding Π consists of a two round Feistel network, involving two hash functions.

Despite their practical importance, the only known security results for all
known padding-based encryption schemes are in the random oracle model [2],
where one assumes the existence of “ideal hash functions.” For example, in the
random oracle model, OAEP+ is secure against chosen-ciphertext attack (IND-
CCA secure [38]) under the assumption that the TDP is one-way [41]; OAEP is
IND-CCA secure under the (stronger) assumption that the TDP is partial-domain
one-way [18]. However, such proofs merely provide heuristic evidence that break-
ing the scheme may be hard in reality, where the random oracles must be in-
stantiated with some efficient hash functions. Moreover, a growing number of
papers raised theoretical concerns regarding the soundness of the random oracle
model. (See, e.g., [10,24].) This leaves the question whether or not padding-
based encryption schemes can be securely instantiated in the standard model
based on reasonable assumptions to the underlying trapdoor permutation. Or,
the same question applied to OAEP: can we securely instantiate OAEP’s ran-
dom oracles assuming the TDP fulfils some strong security assumption beyond
(partial-domain) one-wayness?

Ideal Trapdoor Permutations. We consider keyed trapdoor permutations
TDP (which formally consist of key-generation, evaluation, and inversion
algorithms). Extending Dodis et. al. [17], we propose the notion of an ideal trapdoor
permutation. Informally, an ideal trapdoor permutation is a TDP that inherits all
securityproperties of a uniformly randompermutation.More concretely,TDP is an
ideal trapdoor permutation if it satisfies all game-based security properties which
are satisfied by random permutations. We stress that our basic definition only cov-
ers games where the challenger is not given the trapdoor to invert the TDP.1

Ideal TDPs are very powerful cryptographic primitives: by definition their se-
curity properties include, for example, (exponentially-hard) one-wayness,
partial-domain one-wayness, claw-freeness, pseudo-randomness, and many other
notions; from an ideal TDP we can build (in a black-box way) most crypto-
graphic primitives, including collision-resistant hashing, pseudorandom gener-
ators (PRGs) and functions (PRFs), digital signatures, perfectly one-way hash
functions (POWHFs), and, in particular, IND-CCA secure public-key encryption.

Let us remark that conceptually ideal TDPs are quite different from other ide-
alized models like the random oracle model or the ideal cipher model. Informally,

1 Note that allowing the challenger to access the trapdoor to invert the TDP would
make it possible to model the IND-CCA security experiment itself as such a game, and
thus security of schemes like OAEP would trivially follow from the fact that they are
secure in the random oracle model.

On the Security of Padding-Based Encryption Schemes 391

the latter two models refer to particular objects (e.g., the random oracle model
assumes that all parties have access to an oracle realizing a uniformly random
function), whereas an ideal TDP is defined by its security properties. Although
we also realize an ideal TDP via an oracle (basically, an ideal cipher with some
extra functionalities modelling the trapdoors), we can add other inefficient ora-
cles (in our case an oracle breaking all padding based encryption schemes) and
–if this oracle does not affect the security properties of an ideal TDP– still are
in the “ideal TDP” model.

Black-box reductions. Usually, when one constructs a cryptographic prim-
itive A (e.g., a PRG) out of another cryptographic primitive B (e.g., a OWF),
A uses B as a subroutine, independent of the particular implementation of B.
The security proof for A constructs an adversary for B using any adversary for
A as a subroutine. This is known as a “black-box reduction from primitive A to
B” [27,26]. Black-box reductions play an important role in cryptography since
almost all reductions are black-box. A black-box separation result means that
there exists no black-box reduction from A to B. The common interpretation
of these results is that there are inherent limitations in building primitive A
from B, and that these impossibility results can be overcome only by explicitly
using the code of primitive B in the construction. Although there are quite a
few cryptographic constructions which are not black box —in our context, the
most notable is the Naor-Yung paradigm to construct IND-CCA secure cryp-
tosystem from any enhanced trapdoor permutation [33,31]— such constructions
are usually prohibitively inefficient (e.g., the Naor-Yung paradigm relies on non-
interactive zero knowledge proofs), and thus mostly of theoretical interest.

1.2 Results

Main Result. Our main result is a negative one. We show that there is no
instantiation of a padding-based encryption scheme that allows a black-box reduc-
tion from ideal trapdoor permutations to its IND-CCA security. That is, we con-
sider all possible padding-based encryption schemes where the padding scheme
Π = ΠTDP is an oracle circuit having arbitrary access to the underlying trap-
door permutation TDP (and Π may even arbitrarily depend on the trapdoor-key
of the final permutation). None of these constructions can be proved IND-CCA
secure based on the security properties of the ideal trapdoor permutation TDP,
using a black-box reduction.2 As already discussed before, this hints some in-
herent limitations in the design concept of padding-based encryption schemes in
general, and of OAEP, in particular.

Let us stress that efficient ideal trapdoor permutations do not exist, thus show-
ing a black-box construction of some primitive from ideal TDPs would have lim-
ited practical relevance. (Somewhat similar to, say, a proof in the random oracle
model.) But keep in mind, that we prove an impossibility result, and showing that
no padding-based encryption scheme canbe proved secure from ideal TDPs, imme-
diately implies that no such scheme can be proven secure assuming a TDP which
2 Since we require that π̂ from Π = (π, π̂) is publicly invertible, we avoid that the

padding itself is already an IND-CCA secure encryption scheme.

392 E. Kiltz and K. Pietrzak

has some subset of the security properties of ideal TDPs (where the subset is such
that it potentially could be satisfied by some efficient construction).

Technical overview. To obtain our separation result, we describe two oracles,
T and B, such that T implements an ideal trapdoor permutation. Furthermore,
given access to oracle B, an adversary can (trivially) break the IND-CCA security
of any padding-based encryption scheme. Yet, B does not help an adversary to
break the security properties of the ideal trapdoor permutation. Now our main
result can be derived using the “two-oracle separation technique” by Hsiao and
Reyzin [26]. (Informally, since a black-box security proof would also have to be
valid relative to the two oracles T and B, such a proof cannot exists.)

Impact on OAEP and Related Schemes. One direct application of our gen-
eral theorem is that OAEP is unprovable, even assuming that (i) the TDP (used
for the final encryption) has any security property satisfied by ideal TDPs; (ii)
one makes any computational assumption on the hash functions in the Feis-
tel network, such that hash functions with this security properties can be con-
structed from ideal TDPs.

This in particular rules out the instantiability of OAEP from most
cryptographic primitives like (partial-domain) one-way trapdoor permutations,
collision-resistant hash functions, PRGs, PRFs, POWHFs, and more. (Since all
these primitives are black-box implied by ideal TDPs.) Our interpretation of this
result is that, in order to prove IND-CCA security of OAEP in the standard model,
one has to rely on a security property of the underlying TDP that is not fulfilled
by ideal TDPs3; or, one has to make use of special non black-box properties of the
employed trapdoor permutation (e.g., if one uses the RSA permutation one may
try to use the fact that it is homomorphic and random self-reducible).

We stress that, even though our results indicate certain limitations in the
design of OAEP and related schemes, we do not show that they are insecure,
nor that one of the security claims from [41,18] are incorrect. In particular,
OAEP’s random oracle model security proof [18] can still be viewed as a valid
argument supporting OAEP’s security in practice. In particular, there is no
“generic attack” on OAEP which treats the hash functions like random oracles.

Extensions. For the sake of simplicity we first prove our basic impossibility
result as outlined above. In the full version of this paper we will then discuss
how this result can be strengthened in several ways, in particular:
– We observe that our impossibility proof does not actually need the full power

of IND-CCA attacks, and thus we already exclude the possibility of proving se-
curity under a significantly weaker notion. Although this notion is somewhat
artificial, it contains (and thus we rule out) natural notions such as security
in the sense of IND-CCA1 (lunchtime) and NM-CPA (non-malleability).

– Following [17], we extend our results to ideal trapdoor permutations with
bounded inversions. The latter is like an ideal TDP, but in the game defining

3 This could either be security properties where the challenger has access to the trap-
door and thus can invert the permutation or properties not satisfied by random per-
mutations.

On the Security of Padding-Based Encryption Schemes 393

the security property, the challenger is additionally allowed to invert f on
an a-priori bounded number of points. We remark that ideal TDPs with
bounded inversion black-box imply the important cryptographic primitive
of verifiable random functions [32] (VRFs).

– A permutation f(·) is homomorphic, if from f(x), f(y) one can efficiently
compute f(x ◦ y) (for some group operation ◦). The homomorphic property
(of, e.g., RSA) has proved very useful and was exploited in numerous security
proofs. As ideal TDPs are not homomorphic, our main result does not rule
out the possibility of basing the security of some padding-based encryption
scheme on the homomorphic property of the underlying TDP. Unfortunately,
we show that this is not the case, as our impossibility result still holds if we
add some additional oracle which imposes a homomorphic structure on the
ideal TDP.

1.3 Related Work

Black-box Separations. After Impagliazzo and Rudich [27] showed that
there are no black-box constructions of key-agreement protocols from one-way
permutations, substantial additional work in this line followed (see, for exam-
ple [19,20,22,28,42], and many more). To obtain our separation result, we use
the direct “two-oracle separation technique” by Hsiao and Reyzin [26]. Most rel-
evant to our result is the work of Dodis et. al. [17], who consider the security of
full-domain hash signatures in the standard model. They showed that there is no
instantiation of full-domain hash signatures that can be proven secure based on
black-box access to (in our language) ideal trapdoor permutations. Also related
is the separation result by Gertner et. al. [21] on the black-box impossibility
of constructing IND-CCA from IND-CPA secure public-key encryption without
using “re-encryption” (i.e., where decryption of the IND-CCA secure scheme is
not allowed to use encryption of the IND-CPA secure scheme).

(In)security of OAEP. Due to its practical importance, a growing number of
papers consider the security properties of OAEP. Revisiting the earlier security
claims by Bellare and Rogaway [3], Shoup [41] showed that OAEP is black-box
unprovable solely based on the one-wayness of the underlying TDP, even in the
random oracle model. Later this result got complemented in [18] by showing
that, in the random oracle model, one needs to assume the stronger security
assumption of partial-domain one-wayness to prove OAEP secure.

In a series of two papers [6,7], Boldyreva and Fischlin considered the question
of instantiating the random oracles in OAEP (and other scenarios) by specific
candidates of standard-model hash functions, such as POWHFs and VRFs. In
particular, they showed that POWHFs or VRFs cannot generically instantiate
the random oracles in OAEP, no matter which TDP is used [6]. Although it
follows immediately from our generic impossibility result that one cannot prove
the security of OAEP (or any other padding-based scheme) assuming the hash
functions are instantiated with such primitives, the result of [6] (for the special
case of OAEP) is stronger as they show concrete instantiations which actually

394 E. Kiltz and K. Pietrzak

make OAEP insecure. On the positive side, [7] show that if the hash functions
in OAEP are instantiated using non-malleable pseudorandom generators, then
the resulting OAEP scheme is proved non-malleable. However, their security
definition of non-malleability is actually weaker than what is commonly called
NM-CPA security [4] which is the reason why their positive instantiation result
does not contradict our separation results.4

Brown [9] showed that RSA-OAEP cannot be proven CCA secure under a
certain class of security reductions denoted as “key-preserving” black-box re-
ductions, i.e., reductions that are restricted to make oracle calls to the CCA ad-
versary with respect to the same RSA instance that they are given as challenge.
Similar results (for the class of “single-key factoring-based encryption schemes”)
were independently obtained by Paillier and Villar [35]. Our impossibility re-
sults seem more general since we can exclude any black-box reduction (and not
only key-preserving ones) from ideal trapdoor permutations (and not only one-
wayness). Furthermore, the results from [9,35] do not allow the scheme’s public
key to contain any additional information beyond the RSA/factoring instance.
In particular, their results do not exclude the possibility to securely instantiate
OAEP from standard keyed hash functions, such as POWHFs and VRFs.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If x is a string, then [x]�
denote the � left-most bits of x. If S is a set then s←R S denotes the operation of
picking an element s of S uniformly at random. We write A(x, y, . . .) to indicate
that A is an algorithm (i.e., a Turing Machine) with inputs x, y, . . . and by
z ←R A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate that A is
an algorithm with inputs x, y, . . . and access to oracles O1,O2, With PT we
denote polynomial time and with PPT we denote probabilistic polynomial time.

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message space {0, 1}μ

(where μ = μ(k) is some polynomial in k) consists of three PT algorithms, of
which the first two, Kg and Enc, are probabilistic and the last one, Dec, is de-
terministic. Public/secret keys for security parameter k ∈ N are generated using
4 The non-malleability definitions of [7] only consider relations over one ciphertext

and not over polynomial-size ciphertext vectors. Using the characterization of [4],
one can actually prove that this is an even weaker notion than IND-CPA security
where the adversary is allowed to additionally make one single decryption query
(also called 1-bounded IND-CCA-security [14]). Our results show that full NM-CPA
security [4] is not black-box achievable. We remark that the security notion of [7] is
still meaningful since it prevents Bleichenbacher’s attack on PKCS [5].

On the Security of Padding-Based Encryption Schemes 395

(pk , sk) ←R Kg(1k). Given such a key pair, a message m ∈ {0, 1}μ is encrypted
by c ←R Enc(pk ,m); a ciphertext is decrypted by m← Dec(sk , c), where possi-
bly Dec outputs a special reject symbol ⊥ to denote an invalid ciphertext. For
correctness, we require that for all k ∈ N, all messages m ∈ {0, 1}μ, it must hold
that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1, where the probability is taken over the
above randomized algorithms and (pk , sk)←R Kg(1k). Sometimes we also asso-
ciate a randomness space {0, 1}ρ to PKE (where ρ = ρ(k) is some polynomial in
k), to denote that the randomness used in Enc is picked uniformly from {0, 1}ρ.

We recall the standard security notion of chosen ciphertext security [38] of
a PKE scheme which is defined through the following advantage function of an
adversary A.

Advcca
PKE(A) =

∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎣b = b′ :

(pk , sk)←R Kg(1k)
(m0,m1, state) ←R AO(sk ,·)(pk)
b←R {0, 1} ; c∗ ←R Enc(pk ,mb)
b′ ←R AO(sk ,·)(c∗, state)

⎤⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣ ,
where O(sk , c) = Dec(sk , c), in the second phase (“guess phase”), A is not
allowed to query O(sk , ·) for the challenge ciphertext c∗, and we require that
m0 and m1 are of the same length. state is some arbitrary state information.
PKE scheme PKE is said to be chosen ciphertext secure (IND-CCA secure) if
the advantage function Advcca

PKE(A) is a negligible function in k for all PPT
adversaries A.

3 Ideal Trapdoor Permutations

In this section we introduce the notion of an ideal trapdoor permutation. In-
tuitively, this is a trapdoor permutation that inherits all security properties of
a uniformly random permutation. This includes (partial-domain) one-wayness,
claw-freeness, and other non-standard notions.

3.1 Trapdoor Permutations

Definition 1. A triple of PPT algorithms (Tdg,F,F−1) implements a trap-
door permutation if Tdg is probabilistic and on input 1k generates an evalua-
tion/trapdoor key-pair (ek , td) ←R Tdg(1k), F(ek , ·) implements a permutation
fek(·) over {0, 1}k and F−1(td , ·) implements its inverse f−1

ek (·).

Note that the above definition is only functional, and does not impose any secu-
rity property. The most common security property for TDPs is one-wayness, i.e.,
one requires that it is hard to invert the permutation on random inputs with-
out knowing the trapdoor. We will consider a much broader class of security
properties. Using the notion of δ-hard games (generalizing a notion previously
used in [17]) we can capture any game-based cryptographic hardness experiment
involving permutations.

396 E. Kiltz and K. Pietrzak

3.2 Hard Games

A game is defined by a PPT algorithm G (the challenger). This G can interact
with another PPT algorithm A (the adversary) by exchanging messages over a
shared communication tape. Eventually, G outputs a decision bit d. We denote
one execution of game G with adversary A by d ←R ExpG(A) and say that A
wins game G if d = 1.

A game G as above defines a δ-hard game, where 0 ≤ δ < 1, if G is a PPT
algorithm (in the security parameter k ∈ N), and further no PPT adversary A
can win the game when both, G and A, have oracle access to t = t(k) uniform
random permutations τ1, . . . , τt over {0, 1}k (here t(·) is implicitly defined by G)
with probability significantly better than δ. Formally, we define the advantage
function of an adversary A in game G as

AdvG
RP(A, k) = Pr

[
d = 1 : d←R ExpGτ1(·),...,τt(·)

(Aτ1(·),...,τt(·)(1k))
]
. (1)

The RP in AdvG
RP(A, k) stands for “random permutation”. Let us stress once

more, that in the above game we do not give G (or A) access to the inversion
oracles τ−1

1 (·), . . . , τ−1
t (·).

Definition 2. Game G is δ-hard for some 0 ≤ δ ≤ 1, if for all PPT adversaries
A, AdvG

RP(A, k)− δ is negligible in k. The hardness of a game G, denoted δ(G),
is the smallest δ such that G is δ-hard.

Table 1 shows examples of hard games with the corresponding upper bound on
the advantage function AdvG

RP(A). Typical values for δ(G) are 0 and 1/2, the
latter comes up in games where the adversary just has to distinguish two cases,
and thus can trivially win with probability 1/2 by a random guess. The notion
of δ-hard games generalizes the hard-games used in [17], which only covered the
case δ = 0, but the results (and proofs) from [17] can easily be adapted to cover
general δ-hard games.

3.3 Ideal Trapdoor Permutations

A trapdoor permutation TDP = (Tdg,F,F−1) is secure for hard game G if Defini-
tion 2 is satisfied even if the random permutations used to define (1) are replaced
with instantiations of TDP. Let

AdvG
TDP(A, k) := Pr

[
d = 1 :

for i = 1, . . . , t : (ek i, td i)←R Tdg(1k) ;
d←R ExpGF(ek1,·),...,F(ekt,·)

(A(ek1, . . . , ek t))

]

Definition 3. A trapdoor permutation TDP is secure for game G if for all PPT
adversaries A, AdvG

TDP(A, k) − δ(G) is negligible in k. Furthermore, TDP is an
ideal trapdoor permutation if it is secure for all games.

On the Security of Padding-Based Encryption Schemes 397

Table 1. Examples of hard games. In the last column, q is an upper bound on the
number of queries the adversary A makes to each of its oracles τ1(·), . . . , τt(·). Note
that if q = q(k) is polynomially bounded, then in all cases AdvG

RP(A, k) − δ(G) is
negligible (even exponentially small), thus the games are δ-hard (with δ = 0 or δ = 1/2
as indicated in the table).

Game Description of game Gτ1,...,τt Advantage
Experiment Winning cond. δ(G) AdvG

RP(A, k)

One-wayness (OW) x ←R {0, 1}k ; y ← τ1(x) ; x′ ←R Aτ1 (y) x′ = x 0 ≤ (q + 1)/2k

Partial-domain OW x ←R {0, 1}k ; y ← τ1(x) ; x′ ←R Aτ1 (y) x′ = [x]� 0 ≤ q

2k + 2k−�

2k−q

Claw-freeness (x1, x2) ←R Aτ1,τ2 (1k) τ1(x1) = τ2(x2) 0 ≤ q2/2k

Pseudorandomness
x ←R {0, 1}k ; y1 ← τ1(x) ; b ←R {0, 1}
y2,0 ←R {0, 1}k ; y2,1 ← τ2(x)
b′ ←R Aτ1,τ2 (y1, y2,b)

b′ = b 1
2 ≤ 1

2 + q

2k

t(k)-correlated
input OW

x ←R {0, 1}k ; for i = 1, . . . , t : yi ← τi(x)
x′ ←R Aτ1,...,τt (y1, . . . , yt)

x′ = x 0 ≤ 1+t·q
2k

3.4 On the Power of Ideal Trapdoor Permutations

Ideal trapdoor permutations are a quite powerful primitive as most of the known
cryptographic primitives can be efficiently instantiated in a black-box way from
ideal trapdoor permutations. Examples include: collision-resistant hashing (from
claw-freeness [15]); pseudorandom generators and functions (from one-wayness,
using the Goldreich-Levin predicate [23]); perfectly one-way probabilistic hash
functions (from one-wayness [11]); IND-CCA secure public-key encryption (from
t(k)-correlated input one-wayness [39] for t(k) = 2k+1); bit commitment (from
one-wayness), digital signatures, oblivious transfer [25], trapdoor commitments,
and many more.

On the other hand, it is easy to see (see [17] for a proof) that ideal trapdoor
permutations do not exists. However, keep in mind that we are aiming for an im-
possibility result: we rule out the existence of padding-based encryption schemes
whose security can be black-box reduced to ideal TDPs. This will immediately
also rule out this possibility for any TDP which are only hard for a “realistic”
subset of all hard games.

4 Padding Schemes for Encryption

In this section we introduce the notion of padding-schemes and padding-based
encryption schemes. Many efficient and widely employed encryption schemes, in
particular OAEP and its variants, are padding-based.

4.1 Definitions

Let k, μ, ρ be three integers such that μ+ ρ ≤ k. A padding scheme Π consists
of two mappings π : {0, 1}μ × {0, 1}ρ → {0, 1}k and π̂ : {0, 1}k → {0, 1}μ ∪ {⊥}
such that π is injective and the following consistency requirement is fulfilled:

∀m ∈ {0, 1}μ, r ∈ {0, 1}ρ : π̂(π(m ‖ r)) = m .

398 E. Kiltz and K. Pietrzak

cm ∈ {0, 1}μ m/⊥

r ←R {0, 1}ρ

π π̂F F−1

Enc Dec

ek td

Fig. 1. Padding based encryption scheme from a trapdoor permutation TDP =
(Tdg, F, F−1)

A pair of oracle circuitsΠ = (π, π̂) is a TDP-based padding scheme, if πTDP, π̂TDP

is a padding scheme for any trapdoor permutation TDP = (Tdg,F,F−1).

Definition 4. Let μ, ρ : N → N be functions (defining a message and random-
ness space, respectively) where μ(k) + ρ(k) ≤ k for all k. We call a triple of
efficient oracle algorithms PKE = (Kg,Enc,Dec) a padding-based encryption
scheme with message space μ and randomness space ρ, if for any trapdoor per-
mutation TDP = (Tdg,F,F−1):
– (Key Generation) Given the security parameter k, KgTDP(k) returns a public

key pk = (ek , Π) and a secret key sk = (td , π̂), where ek and td are computed
by running (ek , td) ←R Tdg(1k) and Π = (π, π̂) is a TDP based padding
scheme.

– (Encryption) Given the public-key pk and a message m ∈ {0, 1}μ, EncTDP

(pk ,m) returns a ciphertext computed as c = fek(πTDP(m ‖ r)) ∈ {0, 1}k, for
r ←R {0, 1}ρ.

– (Decryption) Given the secret-key sk and a ciphertext c ∈ {0, 1}k, DecTDP

(sk , c) returns m = π̂TDP(f−1
ek (c)) ∈ {0, 1}μ ∪ {⊥}.5

See Fig. 1 for a graphical illustration of Definition 4. Note that it is not further
specified how DecTDP(sk , ·) behaves on invalid ciphertexts, i.e., on a c which is
not in the range of EncTDP(pk , ·). DecTDP(sk , ·) may return the special reject
symbol ⊥, or output any message, depending on the definition of π̂.

Also note that we include π̂ as part of the public-key, even though π̂ is not
required in the encryption algorithm at all. This apparently minor detail is im-
portant as we will explain later in Section 5. Basically, by including π̂ in pk , we
make sure that the padding scheme Π = (π, π̂) itself is not already an IND-CCA
secure encryption scheme.

4.2 Examples

Our definition of padding-based encryption schemes is quite broad and con-
tains many known encryption schemes, including OAEP and its variants. Fig. 2
contains the description of π for the underlying padding scheme Π , for some

5 Recall that we use fek (·) := F(ek , ·) and f−1
ek (·) := F−1(td , ·), where td is the trapdoor

corresponding to ek .

On the Security of Padding-Based Encryption Schemes 399

OAEP

m ‖ 0k−μ−ρ r

⊕ H1

H2 ⊕

s t

OAEP+

m ‖H ′
1(r ‖m) r

⊕ H1

H2 ⊕

s t

SAEP

m ‖ 0k−μ−ρ r

⊕ H1

s t

SAEP+

m ‖H ′
1(r ‖m) r

⊕ H1

s t

Fig. 2. Examples of the mapping π for important padding schemes. Here H1 : {0, 1}ρ →
{0, 1}k−ρ, H ′

1 : {0, 1}k−ρ → {0, 1}k−μ−ρ, H2 : {0, 1}k−ρ → {0, 1}ρ are hash functions
(whose circuit description are contained in the description of π).

important schemes. The corresponding inverse π̂ can be easily derived from
Π ’s consistency property. For example, in OAEP, π̂(s ‖ t) is defined as ⊥ or
m, depending whether w = 0k−μ−ρ, or not, where m ‖w = s ⊕H1(H2(s) ⊕ t)).
Other examples of padding-based encryption schemes not contained in Fig. 2
include OAEP++ [29], PSS-E [13], PSP2 S-Pad [16], full-domain permutation
encryption [36], 3-round OAEP [36,37], 4-round OAEP [1], and the schemes
from [12,30,34].

5 Uninstantiability from any Ideal Trapdoor Permutation

The following main theorem states that there does not exist a padding-based
encryption scheme PKE = (Kg,Enc,Dec) such that any adversary who breaks
the IND-CCA security of PKETDP can be used (in a black-box way) to break the
security of TDP as an ideal TDP.

Theorem 5. There is no black-box reduction from an ideal trapdoor permutation
to a chosen-ciphertext (IND-CCA) secure padding-based encryption scheme.

Proof. Fix a padding-based encryption scheme PKE = (Kg,Enc,Dec) with mes-
sage space μ(k) and randomness space ρ(k). If the message plus the randomness
space is too small, i.e., μ(k)+ρ(k) ∈ O(log k) or equivalently 2μ(k)+ρ(k) ∈ poly(k),
then PKETDP is trivially insecure to matter what TDP we use, as an adversary
in the IND-CCA experiment can trivially decrypt the challenge ciphertext by
doing an exhaustive search over all possible plaintext and randomness pairs
(m, r) ∈ {0, 1}μ(k)+ρ(k), without even using the decryption oracle. Such an ad-
versary runs in 2μ(k)+ρ(k) ∈ poly(k) time units and has success probability 1 in
breaking the IND-CCA security of PKE.

So from now on we can assume (w.l.o.g.) 2μ(k)+ρ(k) �∈ poly(k). Following [26,
Proposition 1], as to rule out black-box reductions, it is enough to prove that
there exist two oracles T and B such that the following holds:

400 E. Kiltz and K. Pietrzak

1. T can be used to implement a trapdoor permutation, i.e., there exists a triple
of oracle PPT algorithms TDP = (Tdg,F,F−1) such that TDPT implements
a trapdoor permutation (in the sense of Definition 1).

2. Relative to the oracles T and B, TDPT is an ideal trapdoor permutation.
That is, TDPT is an ideal trapdoor permutation as in Definition 3 even if
the adversary is given access to the oracles T and B.

3. For any padding-based encryption schemes PKE: relative to the oracles T

and B, PKETDPT

is not IND-CCA secure.
We first define the oracle T and show that it satisfies point 1 (Lemma 6) and

a relaxed version of point 2 where we do not consider the breaking oracle B
(Lemma 7). We then define the breaking oracle B, and prove that points 2 and 3
hold (Lemma 10 and Lemma 8, respectively).

Definition of T. (Oracle used to implement the trapdoor permutation.) Let
Pk denote the set of all permutations over {0, 1}k. For any k ∈ N, choose 2k +
1 permutations fk,0, . . . , fk,2k−1 and gk from Pk uniformly at random. T =
(T1,T2,T3) is defined as follows.
– T1(td) returns gk(td), where k = |td |. (Convert trapdoor into public key)
– T2(ek , x) with |ek | = |x| returns fk,ek (x), where k = |x|. (Evaluation)
– T3(td , y) with |td | = |y| returns f−1

k,gk(td)(y), where k = |y|. (Inversion)

Lemma 6. There is a PPT TDP such that TDPT implements a trapdoor per-
mutation.

Proof. We implement a trapdoor permutation TDPT = (Tdg,F,F−1) as follows.
– Tdg(1k) first picks a random trapdoor td ←R {0, 1}k, then computes the

corresponding key ek = T1(td), and outputs (ek , td).
– F(ek , x) returns T2(ek , x).
– F−1(td , y) returns T3(td , y).

According to Definition 1 this implements a trapdoor permutation. 	
Lemma 7. TDPT is an ideal trapdoor-permutation with probability 1 (over the
choice of T).

Proof. Consider any δ-hard game G (assume for now that t = 1, i.e., the game
involves just one permutation). Recall that the advantage of an adversary A in
winning the game is

preal := Pr
[
d = 1 : (ek , td)←R Tdg(1k) ; d←R ExpGF(ek,·)

(ATDPT

(ek))
]

(2)

Now let Tek denote T, where fk,ek (·) is replaced with a “fresh” random permu-
tation τ(·). Let

prand := Pr

[
d = 1 :

(ek , td)←R Tdg(1k) ; τ(·) ←R Pk ;
d←R ExpGτ(·)

(ATDPTek (ek))

]
(3)

By definition of a δ-hard game we have prand − δ ≤ negl(k). Below we will show
that |preal − prand | = negl(k), and thus preal − δ ≤ negl(k). As this holds for any
δ-hard game, TDPT is an ideal TDP.

On the Security of Padding-Based Encryption Schemes 401

To show that |preal−prand | = negl(k), we will argue that A cannot distinguish
the two games considered in (2) and (3) with non-negligible probability. First,
as a random permutation is one way almost certainly (see [19] for a proof),
an efficient adversary will find the trapdoor td given ek = T1(td) only with
exponentially small probability. (In particular, A will almost certainly never
query the inversion oracle F−1 with trapdoor td .) Second, one can show (we
omit the proof) that a permutation chosen at random from a set of exponentially
many permutations (in particular, fk,ek for ek ∈ {0, 1}k) can be distinguished
from a randomly chosen permutation by a polynomial size circuit only with an
exponentially small advantage. This two points imply that the distribution of
d in experiments (2) and (3) have exponentially small statistical distance, and
thus |preal − prand | is exponentially small. 	

Definition of B. (Oracle used to break the encryption scheme.) The oracle
B is defined below. It takes two types of inputs. On input the description of a
padding-based encryption scheme, B outputs a vector of challenge ciphertexts.
On input a padding-based encryption scheme with a vector of plaintexts, B
checks if those plaintexts correspond to the ciphertexts it would ask on a query
of the first type. If this is the case, B outputs the trapdoor of the encryption
scheme.

It is quite obvious how the oracle breaks the security of any padding based
encryption scheme (with message space μ(·) and randomness space ρ(·)). It is
less obvious that this oracle will not be of much use in winning any hard game.
In order to prove this we will show that basically the only possibility of making
a query of the second type to B containing the correct plaintexts (and thus re-
ceiving the trapdoor), is by already knowing the trapdoor. Note that the chosen-
ciphertext security game itself cannot be formulated as a hard game since the
challenger has to know the trapdoor to answer decryption queries. It is exactly
this additional power of the CCA challenger (as compared to the challenger in
a hard game) that allows an adversary interacting with the CCA challenger to
exploit the answers of the breaking oracle.

We now formally define B. (Like all other oracles we consider, this oracle
is stateless, and thus will return the same output when queried twice on an
identical input.)

1. B, on an input of the form (k, ek , Π), where k ∈ N, ek ∈ {0, 1}k, and
Π = {π, π̂} (where π : {0, 1}μ(k)+ρ(k) → {0, 1}k, π̂ : {0, 1}k → {0, 1}μ(k)

is a TDP-based padding scheme), outputs a vector of challenge ciphertexts
[c1, . . . , c4k], computed as

ci = fk,ek (πT(mi ‖ ri)), (4)

for randomly chosen mi ←R {0, 1}μ(k) and ri ←R {0, 1}ρ(k). Note that if
(ek , Π) is the public-key of some padding based encryption scheme, then ci
is a proper ciphertext of message mi for this public key.

2. B, on input (k, ek , Π, [m′
1, . . . ,m

′
4k]), checks if [m′

1, . . . ,m
′
4k]=[m1, . . . ,m4k],

where the mi are the plaintext messages chosen by B on input (k, ek , π) as

402 E. Kiltz and K. Pietrzak

described above. If the two plaintext vectors are identical, it returns td :=
g−1

k (ek), the trapdoor of the trapdoor permutation corresponding to ek from
the input of B. Otherwise, it outputs ⊥.

Lemma 8. There is a PPT A such that AT,B breaks the IND-CCA security of
PKETDPT

.

Proof. Adversary A in the IND-CCA experiment first obtains a public key which
contains ek for the trapdoor permutation and the padding scheme Π . Next,
it queries B on input (k, ek , π) to obtain the vector of challenge ciphertexts
[c1, . . . , c4k]. Next, A asks its decryption oracle O for the plaintexts m′

i = O(ci),
for i = 1, . . . , 4k. Finally, A makes the query (k, ek , π, [m′

1, . . . ,m
′
4k]) to B and

obtains the trapdoor td which can be used to decrypt the challenge ciphertext
c∗ (and hence distinguish). We have just shown that A is a PPT algorithm with
Advcca

PKE(A) = 1. 	
Let us stress that it is in the proof above where we exploit the fact (as mentioned
in the paragraph before Section 4.2) that any ciphertext can be decrypted given
the public key pk = (ek , Π = (π, π̂)) and trapdoor td . In particular, this means
that π̂ is efficiently computable.

By the following lemma, the breaking oracle B can be efficiently simulated
in some settings. In particular, this will be the case for δ-hard games, and thus
—as stated in Lemma 10 below— we are able to generalize Lemma 7 to hold
relative to B.

Lemma 9. For i = 1, . . . , t let (ek i, td i) ←R TdgT(1k). Consider any ora-
cle circuit C where CT,B(ek1, . . . , ek t) makes at most q(k) oracle queries where
q(k) ≤ 2μ(k)+ρ(k)/2. Then there exists an efficient simulator S such that the
output of CT,B(ek1, . . . , ek t) and CT,ST

(ek1, . . . , ek t) is exponentially close (i.e.,
the statistical distance is ≤ 2−k/2). Here S will get to see all F−1(·, ·) (and only
those) queries made by C to the T oracle.

Before we prove this lemma, let us see how we can use it to generalize Lemma 7.

Lemma 10. TDPT is an ideal trapdoor-permutation with probability 1 (over the
choice of T) even relative to B.

Proof. By Lemma 7 we know that TDPT is an ideal TDP relative to T only. Now
consider any game G and any adversary A, and let q(k) ∈ poly(k) denote the total
number of oracle queries made by G and A. As we assume 2μ(k)+ρ(k) �∈ poly(k)
we have q(k) ≤ 2μ(k)+ρ(k)/2 for all but finitely many k. Thus, by Lemma 9, we
can simulate B efficiently, in particular

AdvG
TDPT(AT,B, k) = AdvG

TDPT(AT,ST

, k)± negl(k) . (5)

As S is efficient, we can let its computation be done by the adversary: let Â
denote the adversary A, but which simulates the ST queries itself. (Note that
this is possible, as G never makes F−1 queries, and S needs to see only those.)

AdvG
TDPT(AT,ST

, k) = AdvG
TDPT(ÂT, k) (6)

On the Security of Padding-Based Encryption Schemes 403

As by Lemma 7, TDPT is an ideal TDP relative to T, Â cannot win the δ-hard
game G with advantage more than

AdvG
TDPT(ÂT, k) ≤ δ ± negl(k) . (7)

By (5)-(7), we obtain

AdvG
TDPT(AT,B, k) ≤ δ ± negl(k) ,

which implies that G is a δ-hard game, even relative to oracle B. 	

Proof (Lemma 9)
We only consider the case t = 1, i.e., where there is only one single key ek .

The generalization to t ≥ 1 is straight forward. The simulator S is defined as
follows.

On input of a query (k, ek , Π), S samples m1, . . . ,m4k and r1, . . . , r4k and
outputs [c1, . . . , c4k] computed as in (4). This query, as well as the values mi, ri
are stored. (If the query is repeated, the same answer is given). Note that the
output of this query was computed exactly the same way as B would.

On input a query (k, ek , Π, [m′
1, . . . ,m

′
4k]), S first checks if the query (k, ek , Π)

was already made.
– If this is not the case, S outputs ⊥. Note that this almost perfectly simulates

B, as B would also output ⊥ in this case, except if by chance all the m′
i

correspond to the mi that B would use on input (k, ek , Π). (The probability
of this event is 2−μ(k)4k what we ignore.)

– If C made the query (k, ek , Π), let [m1, . . . ,m4k] denote the message vector
used by S to answer this query. If [m1, . . . ,m4k] �= [m′

1, . . . ,m
′
4k] then output

⊥. Note that this perfectly simulates B.
– Otherwise, if [m1, . . . ,m4k] = [m′

1, . . . ,m
′
4k], S checks for all F−1 queries

(td , x) made by C, if ek ?= Tdg(td). If this is the case, S outputs this trapdoor
td , exactly as B would. If C never used the trapdoor td corresponding to ek
in a query, S outputs “fail”. Note that this is the only case where the answer
from S differs from what B would output.

To prove that S can almost perfectly simulate B, it remains to upper bound the
probability that an efficient adversary C can make ST output “fail” in the last
item above.

S outputs “fail”, if C makes a query (k, ek , Π) to ST, then receives 4k ci-
phertexts [c1, . . . , c4k] computed as ci = fk,ek (πT(mi ‖ ri)) for random mi, ri,
and then correctly computes (or guesses) all the mi without ever inverting fk,ek

(i.e., never using the F−1 oracle with the trapdoor td where ek = Tdg(td)). To
analyze the probability that S outputs “fail”, consider the following three sets.
– Let R = {πT(m ‖ r) : m ‖ r ∈ {0, 1}μ(k)+ρ(k)} denote the set of possible

inputs on which one must evaluate fk,ek in order to compute a ciphertext.
As πT is injective, |R| = 2μ(k)+ρ(k).

– Let Y = {πT(mi ‖ ri) : i = 1, . . . , 4k} denote the set of inputs to fk,ek one
must make in order to compute the ci’s. As πT is injective, |Y| = 4k.

404 E. Kiltz and K. Pietrzak

– Let X ⊂ R denote all the set of queries that C made to fk,ek (before and
after seeing the challenge vector [c1, . . . , c4k]).

Let miss := |Y \ X | denote the number of preimages of the ci’s which C did
not query. As the preimages of the ci are uniformly in R, and fk,ek is a random
permutation, miss is a random variable, which can be sampled as follows: from
a set R of (super-polynomial) size 2μ(k)+ρ(k), sample a random subset X of
(polynomial size) q(k) and a random subset Y of size 4k and let miss denote
the number of elements in Y which are not in X . The expected value of miss
is (1 − q(k)/2μ(k)+ρ(k))4k, which, as q(k) ≤ 2μ(k)+ρ(k)/2, is at least 4k/2 = 2k.
Applying a Hoeffding bound, we get that the probability that miss ≥ k (i.e.,
that miss is not bounded away by more than k from its expectation) is at least
1− e−k/2.

Thus, in order to get an answer �= ⊥ from B, C will have to guess almost
certainly at least k of the mi’s, the probability of that happening is roughly6

2−μ(k)·k ≤ 2−k. 	

This concludes the proof of Theorem 5.

References

1. Abe, M., Kiltz, E., Okamoto, T.: CCA-security with optimal ciphertext overhead.
In: ASIACRYPT, pp. 355–371 (2008)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

4. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

6. Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

7. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006)

8. Boneh, D.: Simplified OAEP for the RSA and rabin functions. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg (2001)

9. Brown, D.R.L.: What hashes make RSA-OAEP secure? Cryptology ePrint Archive,
Report 2006/223 (2006), http://eprint.iacr.org/

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

11. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: STOC, pp. 131–140 (1998)

6 It is not exactly that, as fk,ek is a random permutation, not a function.

On the Security of Padding-Based Encryption Schemes 405

12. Chevallier-Mames, B., Phan, D.H., Pointcheval, D.: Optimal asymmetric encryp-
tion and signature paddings. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 254–268. Springer, Heidelberg (2005)

13. Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: Universal padding schemes for
RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002)

14. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

15. Damg̊ard, I.: Collision free hash functions and public key signature schemes. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 203–216. Springer,
Heidelberg (1988)

16. Dodis, Y., Freedman, M.J., Jarecki, S., Walfish, S.: Versatile padding schemes for
joint signature and encryption. In: ACM CCS, pp. 344–353 (2004)

17. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

18. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)

19. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: FOCS, pp. 305–313 (2000)

20. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: FOCS, pp. 325–335
(2000)

21. Gertner, Y., Malkin, T.G., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 434–455. Springer, Heidelberg (2007)

22. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)

23. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32 (1989)

24. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
FOCS, pp. 102–115 (2003)

25. Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor per-
mutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409. Springer,
Heidelberg (2004)

26. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 92–105. Springer, Heidelberg (2004)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC, pp. 44–61 (1989)

28. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-
based hash functions. In: FOCS, pp. 535–542 (1999)

29. Kobara, K., Imai, H.: OAEP++: A very simple way to apply OAEP to determin-
istic OW-CPA primitives. Cryptology ePrint Archive, Report 2002/130 (2002),
http://eprint.iacr.org/

30. Komano, Y., Ohta, K.: Efficient universal padding techniques for multiplica-
tive trapdoor one-way permutation. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 366–382. Springer, Heidelberg (2003)

31. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. Journal of Cryptology 19(3), 359–377 (2006)

406 E. Kiltz and K. Pietrzak

32. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS, pp.
120–130 (1999)

33. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC (1990)

34. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–175. Springer, Heidelberg (2001)

35. Paillier, P., Villar, J.L.: Trading one-wayness against chosen-ciphertext security in
factoring-based encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

36. Phan, D.H., Pointcheval, D.: Chosen-ciphertext security without redundancy. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer, Heidel-
berg (2003)

37. Phan, D.H., Pointcheval, D.: OAEP 3-round:A generic and secure asymmetric en-
cryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
63–77. Springer, Heidelberg (2004)

38. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740,
pp. 433–444. Springer, Heidelberg (1993)

39. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

41. Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (2002)
42. Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions

Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

Simulation without the Artificial Abort:
Simplified Proof and Improved Concrete

Security for Waters’ IBE Scheme

Mihir Bellare and Thomas Ristenpart

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{mihir,tristenp}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,tristenp}

Abstract. Waters’ variant of the Boneh-Boyen IBE scheme is attractive
because of its efficency, applications, and security attributes, but suffers
from a relatively complex proof with poor concrete security. This is due in
part to the proof’s “artificial abort” step, which has then been inherited
by numerous derivative works. It has often been asked whether this step
is necessary. We show that it is not, providing a new proof that eliminates
this step. The new proof is not only simpler than the original one but
offers better concrete security for important ranges of the parameters.
As a result, one can securely use smaller groups, resulting in significant
efficiency improvements.

1 Introduction

The importance of identity-based encryption (IBE) as a cryptographic primitive
stems from its widespread deployment and the numerous applications enabled by
it. Since the initial work on providing realizations of IBE [8,15], improving the ef-
ficiency, security, and extensibility of the fundamental primitive has consequently
received substantial attention from the research community. A challenging prob-
lem has been to arrive at a practical IBE scheme with a tight security reduction
under standard assumptions. (The most attractive target being DBDH without
relying on random oracles.) While a typical approach for progressing towards
this goal is proposing new constructions, in this paper we take another route:
improving the concrete security of existing constructions. This requires providing
better proofs of security and analyzing the impact of their tighter reductions.

Why concrete security? Informally speaking, consider an IBE scheme with
a security reduction showing that attacking the scheme in time t with success
probability ε implies breaking some believed-to-be hard problem in time t+ ω1
with success probability ε′ ≥ ε/ω2. Tightness of the reduction refers to the value
of ω1 (the overhead in time needed to solve the hard problem using the scheme
attacker) and of ω2 (the amount by which the success probability decreases).

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 407–424, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

408 M. Bellare and T. Ristenpart

Unlike asymptotic treatments, provably-secure IBE has a history of utilizing
concrete security, meaning specifying ω1 and ω2 explicitly. Concrete-security for
IBE started with Boneh and Franklin [8] and has been continued in subsequent
works, e.g. [6,7,9,31,19,23] to name just a few.

As Gentry points out [19], concrete security and tight reductions are not
just theoretical issues for IBE, rather they are of utmost practical import: the
speed of implementations increases as ω1 and/or ω2 decrease. This is because
security guarantees are lost unless the size of groups used to implement a scheme
grow to account for the magnitude of these values. In turn group size dictates
performance: exponentiations in a group whose elements can be represented in r
bits takes roughlyO(r3) time. As a concrete example, this means that performing
four 160-bit group exponentiations can be significantly faster than a single 256-
bit group exponentiation. In practice even a factor of two efficiency slow-down is
considered significant (let alone a factor of four), so finding as-tight-as-possible
reductions is crucial.

Overview of IBE approaches. All practical IBE systems currently known
are based on bilinear pairings. We can partition the space of such systems along
two dimensions, as shown in the left table of Figure 1. In one dimension is
whether one utilizes random oracles or not. In the other is the flavor of hard
problem used, whether it be interactive (for example the q-BDHI assumption [6])
or non-interactive (for example bilinear Diffie-Hellman, or BDH, style assump-
tions [8]). Of note is that Katz and Wang [23], in the “random oracle/BDH”
setting, and Gentry [19], in the “no random oracle/interactive setting”, have
essentially solved the problem of finding practical schemes with tight reduc-
tions. On the other hand, finding practical schemes with tight reductions in the
“no random oracle/BDH” setting represents a hard open problem mentioned
in numerous works [6,7,31,19]. This last setting turns out to be attractive for
two reasons. First, from a security perspective, it is the most conservative (and
consequently most challenging) with regard to choice of assumptions. Second,
schemes thus far proposed in this setting follow a framework due to Boneh
and Boyen [6] (so-called “commutative blinding”) that naturally supports many
valuable extensions: hierarchical IBE [22], attribute-based IBE [29], direct CCA-
secure encryption [10,24], etc.

Progress in this setting is summarized in the right table of Figure 1. Boneh
and Boyen initiated work here with the BB1 scheme (the first scheme in [6]).
They prove it secure under the decisional BDH (DBDH) assumption, but in the
selective-ID attack model of [11] in which adversaries must commit to a targeted
identity before seeing the IBE system’s parameters. Boneh and Boyen show how
to prove full security, but the reduction doing so is exponentially loose (briefly,
because it requires guessing the hash of the to-be-attacked identity).

Waters’ proposed a variant of BB1 that we’ll call Wa [31]. This variant requires
larger public parameters, but can be proven fully secure with a polynomial re-
duction to DBDH that does not use random oracles. The relatively complex
security proof relies on a novel “artificial abort” step, that, while clever, is

Simulation without the Artificial Abort 409

Interactive BDH

RO model SK BF ,KW

Standard model BB2 ,Ge BB1 ,Wa

Scheme Security Reduction

BB1 selective-ID polynomial

BB1 full exponential

Wa full polynomial

Fig. 1. A comparison of practical IBE schemes. BF is the Boneh-Franklin scheme [8];
SK is the Sakai-Kasahara scheme [30]; KW is the Katz-Wang scheme [23]; BB1 and BB2

are the first and second Boneh-Boyen schemes from [6]; Wa is Waters’ scheme [31]; and
Ge is Gentry’s scheme [19]. (Left) The assumptions (an interactive assumption versus
bilinear Diffie-Hellman) and model (random oracles or not) used to prove security of
the schemes. (Right) Types of security offered by standard model BDH-based systems
and asymptotic reduction tightness.

unintuitive. It also significantly hurts the concrete security and, thereby, effi-
ciency of the scheme. Many researchers in the community have asked whether
artificial aborts can be dispensed with, but the general consensus seems to have
been that the answer is “no” and that the technique is somehow fundamental to
proving security. This folklore assessment (if true) is doubly unfortunate because
Wa, inheriting the flexibility of the Boneh-Boyen framework, has been used in
numerous diverse applications [10,1,5,27,12,13,20,24]. As observed in [24], some
of these subsequent works offer difficult to understand (let alone verify) proofs,
due in large part to their use of the artificial abort technique in a more-or-less
black-box manner. They also inherit its concrete security overhead.

This paper. Our first contribution is to provide a novel proof of Waters’ vari-
ant that completely eliminates the artificial abort step. The proof, which uses
several new techniques and makes crucial use of code-based games [4], provides
an alternate and (we feel) more intuitive and rigorous approach to proving the
security of Wa. Considering the importance of the original proof (due to its di-
rect or indirect use in [10,1,5,27,12,13,20,24]), a more readily understood proof is
already a significant contribution. Our reduction (like Waters’) is not tight, but
as we see below it offers better concrete security for many important parameter
choices, moving us closer to the goal of standard model BDH-based schemes with
tight reductions. The many Waters’-derived works [10,1,5,27,12,13,20,24] inherit
the improvements in concrete security. We briefly describe these derivatives in
Appendix A.

We now have the BB1 and Wa schemes, the former with an exponentially-
loose reduction and the latter with now two polynomial reductions each having
a complex concrete security formula. What is the most efficient approach for
providing provably-secure DBDH-based IBE? Since we want to account for the
impact of reduction tightness, answering this question requires work. We offer
a framework for computing the concrete efficiency of reductions, adopting tech-
niques from [26,25,18]. Efficiency is measured by mapping desired (provable)
security levels to requisite group sizes. Not only does this approach provide a

410 M. Bellare and T. Ristenpart

κ ε q sBB sW sBR TEnc(sW)/TEnc(sBR)

60 2−20 220 192 192 128 9

70 2−20 220 256 192 128 9

80 2−30 230 256 256 192 5

90 2−30 230 – 256 192 5

100 2−10 210 – 128 192 1/9

100 2−40 240 – 256 192 5

192 2−40 240 – 256 – –

Fig. 2. Table showing the security level of the pairing setups required to achieve κ-
bits of security for the BB1 and Wa encryption schemes when adversaries achieve ε
success probability using q key extraction queries. Loosely speaking, the security level
of the pairing setup is (log p)/2 where p is the size of the first pairing group. Here
sBB , sW , sBR are, respectively, the securities of the pairing setups for BB1, Wa under
Waters’ reduction, and Wa under the new reduction. The final column represents the
(approximate) ratio of encryption times for Wa as specified by the two reductions. A
dash signifies that one needs a pairing setup of security greater than 256.

metric for comparing different reductions, it also allows comparing the resultant
bit-operation speed of schemes when each is instantiated in groups of size suf-
ficient to account for the reduction. Providing such a framework that simul-
taneously provides simplicity, accuracy, and fairness (i.e. not biased towards
particular schemes/reductions) turned out to be very challenging.

Let us first mention the high-level results, before explaining more. In the
end our framework implies that Waters’ variant usually provides faster standard
model encryption (than BB1). Our new proof provides a better reduction for low
to mid range security parameters, while Waters’ reduction is tighter for higher
security parameters. The new reduction in fact drastically improves efficiency in
the former category, offering up to 9 times faster encryption for low parameters
and 5 times faster encryption for mid-range security levels. Where Waters’ re-
duction is tighter, we can continue to choose group size via it; the new reduction
never hurts efficiency.

BB1 does better than Wa when identities are short, such as n = 80 bits. We
have, however, focused on providing IBE with arbitrary identity spaces, which pro-
vides the most versatility. Supporting long identities (e.g. email addresses such as
john.doe123@anonymous.com) requires utilizing a collision-resistant hash func-
tion to compress identities. In this case, the birthday bound mandates that the bit
length n of hash outputs be double the desired security level, and this affects the
BB1 scheme more due to its reduction being loose by a factor of 2n.

Framework details. We present some results of applying our framework in
Figure 2. Let us explain briefly what the numbers signify and how we derived
them. (Details are in the full version of this paper [3].) By a setup we mean

Simulation without the Artificial Abort 411

groups G1,G2,GT admitting a bilinear map e: G1 × G2 → GT . The setup
provides security s (bits) if the best known algorithms to solve the discrete
logarithm (DL) problem take at least 2s time in any of the three groups. We
assume (for these estimates but not for the proof!) that the best algorithm
for solving DBDH is solving DL in one of the groups. An important practical
issue in pairings-based cryptography is that setups for arbitrary security are not
known. Accordingly, we will restrict attention to values s = 80, 112, 128, 192,
and 256, based on information from [28,25,26,16,17]. Now we take as our target
that the IBE scheme should provide κ bits of security. By this we mean that
any adversary making at most q = 1/ε Extract queries and having running
time at most ε2κ should have advantage at most ε. For each scheme/reduction
pair we can then derive the security s of the underlying pairing setup required
to support the desired level of security. See Figure 2 for BB1 (sBB), Wa under
Waters’ reduction (sW), and under the new reduction (sBR).

Other related work and open problems. Recently Hofheinz and Kiltz
describe programmable hash functions [21]. Their main construction uses the
same hash function (originally due to Chaum et al. [14]) as Waters’, and they
provide new proof techniques that provide a

√
n (n is the length of identi-

ties) improvement on certain bounds that could be applicable to Wa. But this
will only offer a small concrete security improvement compared to ours. More-
over, their results are asymptotic and hide (seemingly very large) unknown
constants.

As mentioned, providing a scheme based on DBDH that has a tight secu-
rity reduction (without random oracles) is a hard open problem, and one that
remains after our work. (One reason we explain this is that we have heard it
said that eliminating the artificial abort would solve the open problem just men-
tioned, but in fact the two seem to be unrelated.) Finding a tight reduction for
Waters’ (or another BB1-style scheme) is of particular interest since it would
immediately give a hierarchical IBE (HIBE) scheme with security beyond a con-
stant number of levels (the best currently achievable). From a practical point of
view we contribute here, since better concrete security improves the (constant)
number of levels achievable. From a theoretical perspective, this remains an open
problem.

Viewing proofs as qualitative. We measure efficiency of schemes when
one sets group size according to the best-known reduction. However, the fact
that a proof implies the need for groups of certain size to guarantee security of
the scheme does not mean the scheme is necessarily insecure (meaning there is
an attack) over smaller groups. It simply means that the proof tells us nothing
about security in these smaller groups. In the context of standards it is sometimes
suggested one view a proof as a qualitative rather than quantitative guarantee,
picking group sizes just to resist the best known attack. Our sense is that this
procedure is not viewed as ideal even by its proposers but rather forced on
them by the looseness of reductions. To rectify this gap, one must find tighter
reductions, and our work is a step to this end.

412 M. Bellare and T. Ristenpart

2 Definitions and Background

Notation. We fix pairing parameters GP = (G1,G2,GT , p, e, ψ) where G1,
G2, GT are groups of prime order p; e: G1 × G2 → GT is a non-degenerate,
efficiently computable bilinear map; and ψ: G2 → G1 is an efficiently com-
putable isomorphism [8]. Let Texp(G) denote the time to compute an exponen-
tiation in a group G. Similarly, let Top(G) denote the time to compute a group
operation in a group G. Let Tψ denote the time to compute ψ. Let G∗ = G−{1}
denote the set of generators of G where 1 is the identity element of G.

Vectors are written in boldface, e.g. u ∈ Zn+1
p is a vector of n + 1 values

each in Zp. We denote the ith component of a vector u by u[i]. If S ∈ {0, 1}∗
then |S| denotes its length and S[i] denotes its ith bit. For integers i, j we let
[i .. j] = {i, . . . , j}. The running time of an adversary A is denoted T(A). We use
big-oh notation with the understanding that this hides a small, fixed, machine-
dependent constant.

Games. Our security definitions and proofs use code-based games [4], and so we
recall some background from [4]. A game (look at Figure 3 for examples) has an
Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. A game G is executed with an adversaryA as follows. First,
Initialize executes, and its outputs are the inputs to A. Then A executes, its
oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output
of the latter is called the output of the game, and we let GA ⇒ y denote the
event that this game output takes value y. The boolean flag bad is assumed
initialized to false. Games Gi, Gj are identical-until-bad if their code differs
only in statements that follow the setting of bad to true. We let “GA

i sets bad”
denote the event that game Gi, when executed with adversary A, sets bad to
true (and similarly for “GA

i doesn’t setbad”). It is shown in [4] that if Gi,Gj are
identical-until-bad and A is an adversary, then

Pr
[
GA

i sets bad
]

= Pr
[
GA

j sets bad
]
. (1)

The fundamental lemma of game-playing [4] says that if Gi,Gj are identical-
until-bad then for any y

Pr
[
GA

i ⇒ y
]− Pr

[
GA

j ⇒ y
] ≤ Pr

[
GA

i sets bad
]
.

This lemma is useful when the probability that bad is set is small, but in our
setting this probability will be close to one. We will instead use the following
variant:

Lemma 1. Let Gi,Gj be identical-until-bad games and let A be an adversary.
Then for any y

Pr
[
GA

i ⇒ y ∧GA
i doesn’t set bad

]
= Pr

[
GA

j ⇒ y ∧GA
j doesn’t set bad

]
. �

Lemma 1 is implicit in the proof of the fundamental lemma of [4].

DBDH problem.The Decisional Bilinear Diffie-Hellman (DBDH) assumption
(in the asymmetric setting) [6] is captured by the game described in Figure 3. We

Simulation without the Artificial Abort 413

proc. Initialize:
g2

$← G∗
2 ; g1 ← ψ(g2) ; a, b, s

$← Zp ; d
$← {0, 1}

If d = 1 then W
$← e(g1, g2)abs Else W

$← GT

Ret (g1, g2, g
a
2 , gb

2, g
s
2, W)

Game DBDHGP

proc. Finalize(d′):
Ret (d′ = d)

proc. Initialize:
(mpk,msk) $← Pg; c

$← {0, 1}
Ret mpk

proc. Extract(I):
Ret Kg(mpk,msk, I)

Game IND-CPAIBE

proc. LR(I, M0, M1):
Ret Enc(mpk, I,Mc)

proc. Finalize(c′):
Ret (c′ = c)

Fig. 3. The DBDH and IND-CPA games

define the dbdh-advantage of an adversary A against GP = (G1,G2,GT , p, e, ψ)
by

Advdbdh
GP (A) = 2 ·Pr

[
DBDHA

GP ⇒ true
]− 1 . (2)

Identity-based encryption. An identity-based encryption (IBE) scheme is
a tuple of algorithms IBE = (Pg,Kg,Enc,Dec) with associated identity space
IdSp ⊆ {0, 1}∗ and message space MsgSp. The key-issuing center runs the pa-
rameter generation algorithm Pg (which takes no input) generates a master
public key mpk and a master secret key msk. The former is publicly distributed.
The key generation algorithm Kg takes as input mpk,msk, I, where I ∈ IdSp,
and outputs a secret key sk for party I. The encryption algorithm Enc takes
inputs mpk, I,M , where I ∈ IdSp and M ∈ MsgSp, and outputs a ciphertext
C. The deterministic decryption algorithm Dec takes inputs mpk, sk, I, C and
outputs either ⊥ or a plaintext M . We require the usual consistency, namely
that Dec(mpk, sk, I,Enc(mpk, I,M)) = M with probability one for all I ∈ IdSp

and M ∈ MsgSp, where the probability is over (mpk,msk) $← Pg ; sk $←
Kg(mpk,msk, I) and the coins used by Enc. We use the notion of privacy from [8],
namely indistinguishability under chosen-plaintext attack (ind-cpa). The ind-cpa
advantage of an adversary A against an IBE scheme IBE is defined by

Advind-cpa
IBE (A) = 2 ·Pr

[
IND-CPAA

IBE ⇒ true
]− 1 , (3)

where game IND-CPA is shown in Figure 3. We only allow legitimate adversaries,
where adversary A is legitimate if it makes only one query (I∗,M0,M1) to LR,
for some I∗ ∈ IdSp and M0,M1 ∈ MsgSp with |M0| = |M1|, and never queries I∗

to Extract. Here |M | denotes the length of some canonical string encoding of a
message M ∈ MsgSp. (In the schemes we consider messages are group elements.)

Waters’ IBE scheme. Let n be a positive integer. Define the hash family
H : Gn+1

1 × {0, 1}n → G1 by H(u, I) = u[0]
∏n

i=1 u[i]I[i] for any u ∈ Gn+1
1 and

any I ∈ {0, 1}n. The Waters IBE scheme Wa = (Pg,Kg,Enc,Dec) associated
to GP and n has associated identity space IdSp = {0, 1}n and message space
MsgSp = GT , and its first three algorithms are as follows:

414 M. Bellare and T. Ristenpart

proc. Pg

A1
$← G1 ; g2

$← G∗
2

b
$← Zp ; B2 ← gb

2 ; u $← Gn+1
1

mpk ← (g2, A1, B2,u)
msk← Ab

1
Ret (mpk,msk)

proc. Kg(mpk,msk, I)

(g2, A1, B2,u) ← mpk

K ← msk; r $← Zp

Ret (K ·H(u, I)r, gr
2)

proc. Enc(mpk, I,M)

(g2, A1, B2,u)← mpk

s
$← Zp

c1 ← e(A1, B2)s ·M
(c2, c2)← (gs

2, H(u, I)s)
Ret (c1, c2, c3)

Above, when we write (g2, A1, B2,u) ← mpk we mean mpk is parsed into its
constituent parts. We do not specify the decryption algorithm since it is not
relevant to IND-CPA security; it can be found in [31].

In [31] the scheme is presented in the symmetric setting where G1 = G2.
While this makes notation simpler, we work in the asymmetric setting because
it allows pairing parameters for higher security levels [17].

The hash function used by Waters’ scheme has restricted domain. One can
extend to IdSp = {0, 1}∗ by first hashing an identity with a collision-resistant
hash function to derive an n-bit string. To ensure security from birthday attacks,
the output length n of the CR function must have bit-length at least twice that
of the desired security parameter.

Waters’ result. Waters [31] proves the security of the Wa scheme associated to
GP, n under the assumption that the DBDH problem in GP is hard. Specifically,
let A be an ind-cpa adversary against Wa that runs in time at most t, makes
at most q ∈ [1 .. p/4n] queries to its Extract oracle and has advantage ε =
Advind-cpa

Wa (A). Then [31, Theorem 1] presents a dbdh-adversary BWa such that

Advdbdh
GP (BWa) ≥ ε

32(n+ 1)q
, and (4)

T(BWa) = T(A) + Tsim(n, q) + Tabort(ε, n, q) (5)

where

Tsim(n, q) = O (Tψ + (n+ q) ·Texp(G1) + q ·Texp(G2) + qn+ Top(GT)) (6)

Tabort(ε, n, q) = O(q2n2ε−2 ln(ε−1) ln(qn)) . (7)

An important factor in the “looseness” of the reduction is the Tabort(ε, n, q)
term, which can be very large, making T(BWa) much more than T(A). This
term arises from the “artificial abort” step. (In [31], the Tabort(ε, n, q) term only
has a qn factor in place of the q2n2 factor we show. However, the step requires
performing q times up to n operations over the integers modulo 4q for each of
the � = O(qnε−2 ln ε−1 ln qn) vectors selected, so our term represents the actual
cost.)

3 New Proof of Waters’ IBE without Artificial Aborts

We start with some high-level discussion regarding Waters’ original proof and
the reason for the artificial abort. First, one would hope to specify a simulator

Simulation without the Artificial Abort 415

that, given IND-CPA adversary A that attacks the IBE scheme using q Extract
queries and gains advantage ε, solves the DBDH problem with advantage not
drastically worse than ε. But A can make Extract queries that force any con-
ceivable simulator to fail, i.e. have to abort. This means that the advantage
against DBDH is conditioned on A not causing an abort, and so it could be
the case that A achieves ε advantage in the normal IND-CPA experiment but
almost always causes aborts for the simulator. In this (hypothetical) case, the
simulator could not effectively make use of the adversary, and the proof fails.

On the other hand, if one can argue that the lower and upper bounds on the
probability of A causing an abort to occur are close (i.e. the case above does not
occur), then the proof would go through. As Waters’ points out [31], the natural
simulator (that only aborts when absolutely necessarily) fails to provide such a
guarantee. To compensate, Waters’ introduced “artificial aborts”. At the end of
a successful simulation for the IBE adversary, the simulator BWa used by Waters’
generates O(qnε−2 ln ε−1 ln qn) random vectors. These are used to estimate the
probability that the Extract queries made by A cause an abort during any
given execution of the simulator. The simulator then artificially aborts with
some related probability. Intuitively, this forces the probability of aborting to
be independent of A’s particular queries. Waters’ shows that BWa provides the
aforementioned guarantee of close lower and upper bounds and the proof goes
through.

The artificial abort step seems strange because BWa is forcing itself to fail even
when it appears to have succeeded. The concrete security also suffers because
the running time of the simulator goes up by Tabort(ε, n, q) as shown in (7).

The rest of this section is devoted to proving the next theorem, which estab-
lishes the security of the Waters’ IBE scheme without relying on an artificial
abort step.

Theorem 1. Fix pairing parameters GP = (G1,G2,GT , p, e, ψ) and an inte-
ger n ≥ 1, and let Wa = (Pg,Kg,Enc,Dec) be the Waters IBE scheme associated
to GP and n. Let A be an ind-cpa adversary against Wa which has advantage
ε = Advind-cpa

Wa (A) > 0 and makes at most q ∈ [1 .. pε/9n] queries to its Extract
oracle. Then there is a dbdh adversary B such that

Advdbdh
GP (B) ≥ ε2

27qn+ 3ε
, and (8)

T(B) = T(A) + Tsim(n, q) (9)

where Tsim(n, q) was defined by (6). �

The limitations on q—namely, 1 ≤ q ≤ p/4n in Waters’ result and 1 ≤ q ≤ pε/9n
in ours—are of little significance since in practice p ≥ 2160, ε ≥ 2−80, and
n = 160. For q = 0 there is a separate, tight reduction. The remainder of this
section is devoted to the proof of Theorem 1.

Some definitions. Let m = �9q/ε� and let X = [−n(m − 1) .. 0] × [0 ..m −
1]× · · · × [0 ..m− 1] where the number of copies of [0 ..m− 1] is n. For x ∈ X ,

416 M. Bellare and T. Ristenpart

y ∈ Zn+1
p and I ∈ {0, 1}n we let

F(x, I) = x[0] +
n∑

i=1

x[i]I[i] and G(y, I) = y[0] +
n∑

i=1

y[i]I[i] mod p . (10)

Note that while the computation of G above is over Zp, that of F is over Z.

Adversary B. Our DBDH adversary B is depicted in Figure 4, where the sim-
ulation subroutines KgS and EncS are specified below. There are two main dif-
ferences between our adversary and that of Waters’. The first is that in our case
the parameter m is O(q/ε) while in Waters’ case it is O(q). The second differ-
ence of course is that Waters’ adversary BWa, unlike ours, includes the artificial
abort step. Once A has terminated, this step selects l = O(qnε−2 ln(ε−1) ln(qn))
new random vectors x1, . . . ,xl from X . Letting I1, . . . , Iq denote the identities
queried by A to its Extract oracle and I0 the identity queried to the LR ora-
cle, it then evaluates F(xi, Ij) for all 1 ≤ i ≤ l and 0 ≤ j ≤ q, and uses these
values to approximate the probability that bad is set. It then aborts with some
related probability. Each computation of F takes O(n) time, and there are q such
computations for each of the l samples, accounting for the estimate of (7). In
addition there are some minor differences between the adversaries. For example,
x is chosen differently. (In [31] it is taken from [0 ..m− 1]n+1, and an additional
value k ∈ [0 .. n], which we do not have, is mixed in.)

We note that our adversary in fact never aborts. Sometimes, it is clearly
returning incorrect answers (namely ⊥) to A’s queries. Adversary A will rec-
ognize this, and all bets are off as to what it will do. Nonetheless, B continues
the execution of A. Our analysis will show that B has the claimed properties
regardless.

An analysis of the running time of B, justifying equations (6) and (9), is given
in the full version of the paper [3].

Simulation subroutines. We define the subroutines that B utilizes to answer
Extract and LR queries. We say that (g1, g2, A2, A1, B2, B1,x,y,u, S,W) are
simulation parameters if: g2 ∈ G∗

2; g1 = ψ(g2) ∈ G∗
1; A2 ∈ G2; A1 = ψ(A2) ∈ G1;

B2 ∈ G2; B1 = ψ(B2) ∈ G1; x ∈ X ; y ∈ Zn+1
p ; u[j] = B

x[j]
1 g

y[j]
1 for j ∈ [0 .. n];

S ∈ G2; and W ∈ GT . We define the following procedures:

proc. KgS(g1, g2, A2, A1, B1,x,y, I)

r
$← Zp; w ← F(x, I)−1 mod p

L1 ← B
F(x,I)·r
1 g

G(y,I)·r
1 A

−G(y,I)w
1

L2 ← gr
2A

−w
2

Ret (L1, L2)

proc. EncS(S,W,M,y, I)

C1 ←W ·M
C2 ← S ; C3 ← ψ(S)G(y,I)

Ret (C1, C2, C3)

Note that if F(x, I) �= 0 then F(x, I) �≡ 0 (mod p) so the quantity w computed
by KgS is well-defined whenever F(x, I) �= 0. This is because the absolute value
of F(x, I) is at most

n(m− 1) = n

(⌈
9q
ε

⌉
− 1

)
<

9nq
ε
≤ p , (11)

Simulation without the Artificial Abort 417

Adversary B(g1, g2, A2, B2, S, W):

c
$← {0, 1} ; A1 ← ψ(A2) ; B1 ← ψ(B2)

For j = 0, . . . , n do
y[j] $← Zp

If j = 0 then x[j] $← [−n(m − 1) .. 0]
Else x[j] $← [0 .. m − 1]
u[j] ← B

x[j]
1 g

y[j]
1

mpk ← (g2, A1, B2,u)
Run A(mpk), answering queries by

query Extract(I):
sk(I) ← ⊥
If F(x, I) = 0 then bad ← true

Else sk(I) $← KgS(g1, g2, A2, A1, B1,x,y, I)
Ret sk(I)

query LR(I, M0, M1):
C ← ⊥
If F(x, I)
= 0 then bad ← true
Else C ← EncS(S, W, Mc,y, I)
Ret C

A finishes, returning bit c′

If bad = true then c′ $← {0, 1}
If c = c′ then Ret 1 else Ret 0

Fig. 4. Adversary B

the last because of the restriction on q in the theorem statement. The next
lemma captures two facts about the simulation subroutines, which we will use
in our analysis.

Lemma 2. Let (g1, g2, A2, A1, B2, B1,x,y,u, S,W) be simulation parameters.
Let I ∈ {0, 1}n. Let mpk = (g2, A1, B2,u). Let b be the discrete log of B1 to
base g1 and let msk = Ab

1. Let s be the discrete log of S to base g2. Then if
F(x, I) �= 0 the outputs of KgS(g1, g2, A2, A1, B1,x,y, I) and Kg(mpk,msk, I)
are identically distributed. Also if F(x, I) = 0 then for any M ∈ MsgSp, the
output of EncS(S,W,M,y, I) is (W ·M,S,H(u, I)s). �

The proof of Lemma 2, which follows arguments given in [31], is given in the full
version [3].

Overview. Consider executing B in game DBDHGP. If d = 1, then Lemma 2
implies that adversary B correctly answers oracle queries as long as it does not
set bad. On the other hand if d = 0 then B’s output is a random bit. Attempting
to conclude by showing that bad is seldom set fails, however, because in fact it
will be set with probability close to 1. Alternatively, if one could show that the
setting of bad is independent of the correctness of B’s output, then one could

418 M. Bellare and T. Ristenpart

proc. Initialize: Game G4

400 A1
$← G1 ; g2

$← G∗
2 ; b, s

$← Zp ; i ← 0
401 B2 ← gb

2 ; S ← gs
2 ; c, d

$← {0, 1} ; K ← Ab
1

402 For j = 0, . . . , n do
403 z[j] $← Zp ; u[j] ← gz[j]

404 mpk ← (g, A1, B2,u)
405 If d = 1 then W ← e(A1, B2)s

406 Else W
$← GT

407 Ret mpk

proc. Extract(I): Games G3, G4

320 cnt ← cnt + 1 ; Icnt ← I

321 r
$← Zp ; Ret sk(I) ← (K ·H(u, I)r, gr

2)

proc. LR(I,M0, M1): Games G3, G4

330 I0 ← I
331 Ret C ← (W ·Mc, S, H(u, I)s)

proc. Finalize(c′): Game G4

440 For j = 0, . . . , n do
441 If j = 0 then x[j] $← [−n(m − 1) .. 0]
442 Else x[j] $← [0 .. m − 1]
443 For j = 1, . . . , cnt do
444 If F(x, Ij) = 0 then bad ← true
445 If F(x, I0)
= 0 then bad ← true
446 If c = c′ then Ret 1 else Ret 0

Fig. 5. The game G4

conclude by multiplying the probabilities of these events. The difficulty in the
proof is that this independence does not hold. Waters’ artificial abort step is
one way to compensate. However, we have dropped this (expensive) step and
propose nonetheless to push an argument through. We will first use the game
sequence G0–G4 to arrive at a game where the choice of x is independent of the
game output. The subtle point is that this still does not provide independence
between setting bad and the game output, because the identities chosen by A
for its oracle queries affect both events. The first step in addressing this is a
conditioning argument based on Lemma 4 which allows us to express a lower
bound on the advantage of B in terms of probabilities γ(I) associated to different
queried identities. The crucial insight is that Lemma 5 gives upper and lower
bounds on these probabilities that are very close, specifically within a factor of
1 − ε of each other, due to our choice of m = O(q/ε) rather than merely the
m = O(q) of [31]. Using this allows us to conclude easily.

The game playing sequence. Assume without loss of generality thatA always
makes exactly q queries to its Extract oracle rather than at most q. The proof
starts using a sequence of games G0−G4 to move from B running in the DBDH

Simulation without the Artificial Abort 419

experiment to a game G4 (shown in Figure 5) that is essentially the IND-CPA
experiment, though with some additional bookkeeping. This transition is critical
since it moves to a setting where the choice of x is clearly independent of A’s
choices. For brevity, we capture this game playing sequence via the following
lemma whose proof is given in the full version [3]. Let GD4 denote the event that
GA

4 does not set bad.

Lemma 3. Advdbdh
GP (B) = 2 · Pr

[
GA

4 ⇒ d ∧ GD4
]− Pr [GD4] �

We now reach a subtle point. Consider the following argument: “The event GD4
depends only on x, which is chosen at lines 440–442 after the adversary and game
outputs are determined. So GD4 is independent of the event that GA

4 ⇒ d.” If we
buy this, the probability of the conjunct in Lemma 3 becomes the product of the
probability of the constituent events, and it is quite easy to conclude. However,
the problem is that the argument in quotes above is wrong. The reason is that
GD4 also depends on I0, . . . , Iq and these are adversary queries whose values
are not independent of the game output. Waters’ compensates for this via the
artificial abort step, but we do not have this step in B and propose to complete
the analysis anyway.

Conditional independence lemma. Let

ID = {(I0, . . . , Iq) ∈ ({0, 1}n)q+1 : ∀i ∈ [1 .. q] (I0 �= Ii)} .
For (I0, . . . , Iq) ∈ ID let

γ(I0, . . . , Iq) = Pr [F(x, I0) = 0 ∧ F(x, I1) �= 0 ∧ · · · ∧ F(x, Iq) �= 0]

where the probability is taken over x $← X . This is the probability of GD4 under
a particular sequence of queried identities I0, . . . , Iq. (We stress that here we first
fix I0, . . . , Iq and then choose x at random.) If γ(I0, . . . , Iq) were the same for
all (I0, . . . , Iq) ∈ ID then the problem discussed above would be resolved. The
difficulty is that γ(I0, . . . , Iq) varies with I0, . . . , Iq. Our next lemma is the main
tool to resolve the independence problem. Roughly it says that if we consider the
conditional space obtained by conditioning on a particular sequence I0, . . . , Iq
of queried identities, then independence does hold. To formalize this, let Q(I)
be the event that the execution of G4 with A results in the identities I0, . . . , Iq
being queried by A, where I = (I0, . . . , Iq). Then:

Lemma 4. For any I ∈ ID,

Pr
[
GA

4 ⇒ d ∧ GD4 ∧ Q(I)
]

= γ(I) ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]

(12)

Pr [GD4 ∧Q(I)] = γ(I) ·Pr [Q(I)] (13)

�
Proof. The set of coin tosses underlying the execution of G4 with A can be
viewed as a cross product Ω = Ω′ × X , meaning each member ω of Ω is a
pair ω = (ω′,x) where x is the choice made at lines 440–442 and ω′ is all the
rest of the game and adversary coins. For any I ∈ ID let Ω′(I) be the set of all
ω ∈ Ω′ such that the execution with ω produces I as the sequence of queried

420 M. Bellare and T. Ristenpart

identities. (Which I is produced depends only on ω′ since x is chosen after A has
terminated.) Let Ω′

out be the set of all ω ∈ Ω′ on which the execution outputs
d. (Again, this is determined only by ω′ and not x.) Let Xgd(I) be the set of all
x ∈ X such that

F(x, I0) = 0 ∧ F(x, Ii) �= 0 ∧ · · · ∧ F(x, Iq) �= 0 ,

where I = (I0, . . . , Iq). Now observe that the set of coins leading to GA
4 ⇒ d is

Ω′
out ×X and the set of coins leading to GD4 ∧ Q(I) is Ω′(I)×Xgd(I). So

Pr
[
GA

4 ⇒ d ∧ GD4 ∧Q(I)
]

=
|(Ω′

out ×X) ∩ (Ω′(I)×Xgd(I))|
|Ω′ ×X |

=
|(Ω′

out ∩Ω′(I)) ×Xgd(I)|
|Ω′ ×X | =

|Ω′
out ∩Ω′(I)| · |Xgd(I)|

|Ω′| · |X |

=
|Ω′

out ∩Ω′(I)| · |X |
|Ω′| · |X | · |Xgd(I)|

|X | =
|(Ω′

out ∩Ω′(I))×X |
|Ω′ ×X | · |Xgd(I)|

|X | .

But the first term above is Pr
[
GA

4 ⇒ d ∧ Q(I)
]

while the second is γ(I), estab-
lishing (12). For (13) we similarly have

Pr [GD4 ∧Q(I)] =
|Ω′(I)×Xgd(I)|

|Ω′ ×X | =
|Ω′(I)|
|Ω′| · |Xgd(I)|

|X |

=
|Ω′(I)| · |X |
|Ω′| · |X | · |Xgd(I)|

|X | =
|Ω′(I)×X |
|Ω′ ×X | · |Xgd(I)|

|X | .

But the final terms above are Pr [Q(I)] and γ(I), respectively, establishing (13).

Analysis continued. Let γmin be the smallest value of γ(I0, . . . , Iq) taken over
all (I0, . . . , Iq) ∈ ID. Let γmax be the largest value of γ(I0, . . . , Iq) taken over all
(I0, . . . , Iq) ∈ ID. Using Lemma 3 we have that

Advdbdh
GP (B) = 2 · Pr

[
GA

4 ⇒ d ∧ GD4
]− Pr [GD4]

=
∑
I∈ID

2 · Pr
[
GA

4 ⇒ d ∧ GD4 ∧ Q(I)
]−∑

I∈ID

Pr [GD4 ∧ Q(I)]

and applying Lemma 4:

Advdbdh
GP (B) =

∑
I∈ID

2γ(I) ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]−∑

I∈ID

γ(I) ·Pr [Q(I)]

≥ γmin

∑
I∈ID

2 ·Pr
[
GA

4 ⇒ d ∧ Q(I)
]

︸ ︷︷ ︸
=2·Pr[GA

4 ⇒d]

−γmax

∑
I∈ID

Pr [Q(I)]︸ ︷︷ ︸
=1

≥ 2γmin ·Pr
[
GA

4 ⇒ d
]− γmax . (14)

Simulation without the Artificial Abort 421

Now

Pr
[
GA

4 ⇒ d
]

= Pr
[
GA

4 ⇒ 1 | d=1
]
Pr [d=1]+Pr

[
GA

4 ⇒ 0 | d=0
]
Pr [d=0]

=
1
2
· Pr

[
GA

4 ⇒ 1 | d = 1
]
+

1
2
· Pr

[
GA

4 ⇒ 0 | d = 0
]

=
1
2
·
(

1
2

+
1
2
·Advind-cpa

Wa (A)
)

+
1
2
· 1
2

(15)

=
1
4
·Advind-cpa

Wa (A) +
1
2

(16)

where we justify (15) as follows. In the case that d = 0, the value W is uniformly
distributed over GT and hence line 331 gives A no information about the bit c.
So the probability that c = c′ at line 446 is 1/2. On the other hand if d = 1
then G4 implements the IND-CPAWa game, so 2 ·Pr

[
GA

4 ⇒ 1 | d = 1
] − 1 =

Advind-cpa
Wa (A) by (3). We substitute (16) into (14) and get

Advdbdh
GP (B) ≥ 2γmin

(
1
4
Advind-cpa

Wa (A) +
1
2

)
− γmax

=
γmin

2
Advind-cpa

Wa (A) + (γmin − γmax) . (17)

To finish the proof, we use the following:

Lemma 5.
1

n(m− 1) + 1

(
1− q

m

)
≤ γmin ≤ γmax ≤ 1

n(m− 1) + 1
�

The proof of Lemma 5, based on ideas in [31], is given in the full version of the
paper [3]. Let α = 1/(n(m − 1) + 1). Recall that m = �9q/ε� ≥ 9q/ε where
ε = Advind-cpa

Wa (A). Then, applying Lemma 5 to (17) we get

Advdbdh
GP (B) ≥ α

2

(
1− q

m

)
ε+ α

(
1− q

m

)
− α = α

[
1
2

(
1− q

m

)
ε− q

m

]
≥ α

[
1
2

(
1− qε

9q

)
ε− qε

9q

]
=

αε

18
(7− ε)

≥ αε

3
. (18)

Inequality (18) is justified by the fact that ε ≤ 1. Using the fact that m =
�9q/ε� ≤ 9q/ε+ 1 and substituting in for α, we complete the derivation of our
lower bound for B:

Advdbdh
GP (B) ≥ ε

3
· 1
n(m− 1) + 1

≥ ε

3
· 1
n(9q/ε) + 1

=
ε2

27qn+ 3ε
.

Acknowledgments

We thank Brent Waters for pointing out a bug in the proof of an earlier version
of this paper. We thank Sarah Shoup for participating in early stages of this

422 M. Bellare and T. Ristenpart

work. We thank Dan Boneh and Xavier Boyen for comments on earlier drafts of
this work. This work was supported in part by NSF grants CNS 0524765 and
CNS 0627779 and a gift from Intel corporation.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

3. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ ibe scheme (full version of this paper).
Available from authors’ home pages (January 2009)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Birkett, J.,Dent,A.W.,Neven,G., Schuldt, J.C.N.:Efficient chosen-ciphertext secure
identity-based encryption with wildcards. In: Pieprzyk, J., Ghodosi, H., Dawson, E.
(eds.) ACISP 2007. LNCS, vol. 4586, pp. 274–292. Springer, Heidelberg (2007)

6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

9. Boyen, X.: General ad hoc encryption from exponent inversion IBE. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg
(2007)

10. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005,
November 7–11, pp. 320–329. ACM Press, New York (2005)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

12. Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

13. Chatterjee, S., Sarkar, P.: HIBE with short public parameters without random
oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–
160. Springer, Heidelberg (2006)

14. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrat-
ing possession of discrete logarithms and some generalizations. In: Price, W.L.,
Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988)

Simulation without the Artificial Abort 423

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

16. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372 (2007), http://eprint.iacr.org/

17. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Cryp-
tology ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org/

18. Galindo, D.: The exact security of pairing based encryption and signature schemes.
In: Based on a talk at Workshop on Provable Security, INRIA, Paris (2004),
http://www.dgalindo.es/galindoEcrypt.pdf

19. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

20. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

21. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

22. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

23. Katz, J., Wáng, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: ACM CCS 2003, October 27–30, pp. 155–164. ACM Press,
New York (2003)

24. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

25. Lenstra, A.K.: Unbelievable security: Matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001)

26. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology: the journal of the International Association for Cryptologic Research 14(4),
255–293 (2001)

27. Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369 (2005), http://eprint.iacr.org/

28. National Institute for Standards and Technology. Recommendation for Key Man-
agement Part 1: General (revised). NIST Special Publication 800-57 (2005)

29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

30. Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054 (2003), http://eprint.iacr.org/

31. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

424 M. Bellare and T. Ristenpart

A Derivatives of Waters’ IBE

A large body of research [10,1,5,24,27,12,13,20] utilizes Waters’ scheme. Recall
that Waters’ already proposed a heirarchical IBE scheme based on Wa in [31],
and subsequently there have been numerous derivative works. All use the ar-
tificial abort, either due to a black-box reduction to Waters’ (H)IBE or as an
explicit step in a direct proof. Our new proof technique immediately benefits
those schemes that utilize Waters’ scheme directly (i.e. in a black-box manner).
For the rest, we believe that our techniques can be applied but have not checked
the details.

• Naccache [27] and Chatterjee and Sarkar [12,13] independently and concur-
rently introduced a space-time trade-off for Wa that involves modifying the
hash function utilized from H(u, I) = u[0]

∏n
i=1 u[i]I[i] for u ∈ Gn+1

1 to
H ′(u, I) = u[0]

∏�
i=1 u[i]I[i] where u ∈ G�+1

1 and each I[i] is now an n/�-bit
string. For appropriate choice of � this will significantly reduce the number of
elements included in the master public key. However the new choice of hash
function impacts the reduction tightness, and since their proof includes just
minor changes to Waters’, our new reduction will increase the efficiency of
this time/space trade-off for various security levels.

• In [10] BB1- and Wa-based constructions of CCA-secure public-key encryp-
tion schemes and their proofs for the Wa case directly utilize artificial aborts.

• Kiltz and Galindo [24] propose a construction of CCA-secure identity-based
key encapsulation that is a modified version of Wa.

• Wildcard IBE [1,5] is a generalization of heirarchical IBE that allows encryp-
tion to identities that include wildcards, e.g. “*@anonymous.com”. In [1] a
wildcard IBE scheme is proposed that utilizes the Waters HIBE scheme, and
the proof is black-box to it. In [5] a wildcard identity-based KEM is produced
based (in a non-black-box manner) on Waters’ IBE.

• Wicked IBE [2] allows generation of private keys for wildcard identities. These
private keys can then be used to generate derivative keys that replace the
wildcards with any concrete identity string. They suggest using the Waters’
HIBE scheme to achieve full security in their setting.

• Blind IBE, as introduced by Green and Hohenberger [20], enables the “trusted”
master key generator to generate a private key for an identity without learning
anything about the identity. To prove a Waters’-based blind IBE scheme se-
cure they utilize the Naccache proof [27] (mentioned above). They utilize blind
IBE schemes to build efficient and fully-simulatable oblivious transfer proto-
cols based on the non-interactive assumptions inherited from the BDH-based
IBE schemes used.

On the Portability of Generalized Schnorr Proofs

Jan Camenisch1,	, Aggelos Kiayias2,		, and Moti Yung3

1 IBM Research, Zurich, Switzerland
jca@zurich.ibm.com

2 Computer Science and Engineering, University of Connecticut
Storrs, CT, USA

aggelos@cse.uconn.edu
3 Google Inc. and Computer Science, Columbia University

New York, NY, USA
moti@cs.columbia.edu

Abstract. The notion of Zero Knowledge Proofs (of knowledge) [ZKP] is cen-
tral to cryptography; it provides a set of security properties that proved indispens-
able in concrete protocol design. These properties are defined for any given input
and also for any auxiliary verifier private state, as they are aimed at any use of the
protocol as a subroutine in a bigger application. Many times, however, moving
the theoretical notion to practical designs has been quite problematic. This is due
to the fact that the most efficient protocols fail to provide the above ZKP prop-
erties for all possible inputs and verifier states. This situation has created various
problems to protocol designers who have often either introduced imperfect pro-
tocols with mistakes or with lack of security arguments, or they have been forced
to use much less efficient protocols in order to achieve the required properties. In
this work we address this issue by introducing the notion of “protocol portabil-
ity,” a property that identifies input and verifier state distributions under which a
protocol becomes a ZKP when called as a subroutine in a sequential execution
of a larger application. We then concentrate on the very efficient and heavily em-
ployed “Generalized Schnorr Proofs” (GSP) and identify the portability of such
protocols. We also point to previous protocol weaknesses and errors that have
been made in numerous applications throughout the years, due to employment
of GSP instances while lacking the notion of portability (primarily in the case of
unknown order groups). This demonstrates that cryptographic application design-
ers who care about efficiency need to consider our notion carefully. We provide
a compact specification language for GSP protocols that protocol designers can
employ. Our specification language is consistent with the ad-hoc notation that
is currently widely used and it offers automatic derivation of the proof protocol
while dictating its portability (i.e., the proper initial state and inputs) and its secu-
rity guarantees. Finally, as a second alternative to designers wishing to use GSPs,
we present a modification of GSP protocols that is unconditionally portable (i.e.,
ZKP) and is still quite efficient. Our constructions are the first such protocols
proven secure in the standard model (as opposed to the random oracle model).

� This research has received funding from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 216483.

�� This research was partly supported by NSF CAREER 0447808, and NSF CNS 0831306.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 425–442, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

426 J. Camenisch, A. Kiayias, and M. Yung

1 Introduction

Motivation. Zero knowledge proofs [28] [ZKP], and zero knowledge proofs and ar-
guments of knowledge in particular, are a central tool in cryptosystem and protocol
design. These tools allow a designer to enforce parties to assure others that they take
specified actions consistent with their internal knowledge state [26]. Properties of ZKP
are defined over all inputs i.e., they provide security and correctness properties inde-
pendently of input distribution. A shortcoming of ZKP’s is that depending on the un-
derlying language it can be hard to come up with efficient protocols. This has lead
to the design of specialized protocols for specific language classes that occur often
in applications. A celebrated example that has proven to be very useful in the design
of efficient cryptographic schemes is known as Generalized Schnorr Proofs (extend-
ing the original seminal proof [37] to various algebraic settings like unknown order
modular groups that arise in the context of the RSA cryptosystem). These protocols
are at the heart of many efficient cryptographic systems and have been employed in a
great number of schemes including: anonymous e-cash, anonymous voting, group sig-
natures, distributed signing, distributed decryption, verifiable encryption, fair exchange,
ring signatures, and credential systems. These schemes capitalized on the high effi-
ciency of Schnorr’s method and constitute, perhaps, the most extensive application of
zero knowledge theory to practice so far. Further, a shorthand notation introduced in
[14,15] for GSP has been extensively employed in the past and contributed to the wide
employment of these protocols in cryptographic design. This notation suggested us-
ing e.g., PK(α : y = gα) to denote a proof of the discrete logarithm logg y and it
appeared in many works to describe quite complex discrete logarithm based relations,
e.g., [3,7,8,9,10,11,13,24,25,30,31,32,33,34,38,39,40,41,42,43]. What has been often
overlooked though is the fact that Generalized Schnorr Proofs are not zero-knowledge
proofs of knowledge! This is a consequence of the fact that the security properties of
such protocols are affected by the input distribution of the involved parties. Interest-
ingly, despite the long line of works in the proper formalization of zero-knowledge
proofs, this aspect has been largely overlooked, mainly due to the fact that it is only
critical from an application-oriented efficiency point of view rather than a theoretical
feasibility point of view. Let us illustrate the phenomenon with two examples:

Example 1. Consider the language L = {〈n, g, h, y〉 | ∃s, t : y = gsht mod n} ⊆
Lin = N4

k where Nk is all k-bit numbers and the following variation of the standard
Schnorr proof: the prover sends the value u = gs0ht0 for some random integers s0, t0;
upon receiving u the verifier responds with some integer c and finally the prover re-
sponds with s1 = s0 − c · s and t1 = t0 − c · t (calculated over the integers). The
verifier returns 1 if and only if u = ycgs1ht1 mod n. This protocol has been used nu-
merous times (see e.g., [23,15,1]). However the protocol is not a proof of knowledge:
on the one hand, in the case that the factorization of n is easy, it is feasible to de-
sign a knowledge extractor that in expected polynomial time can recover the witness to
the statement when interacting with any convincing prover. Nevertheless such extractor
can only succeed for certain choices of y as the above protocol can make the verifier
accept with high probability even for “malformed” y’s that satisfy y = ζgsht where ζ

On the Portability of Generalized Schnorr Proofs 427

is a small order element of Z∗
n. Furthermore, when the factorization of n is difficult, the

knowledge extractor cannot even take advantage of Chinese remaindering to process
the values submitted by the prover; in such case ensuring the verifier that a convincing
prover is indeed in possession of a witness becomes even more elusive. In addition, ob-
serve that the zero-knowledge property is affected by the way the protocol is executed,
and in particular the statistical zero-knowledge aspect of the above protocol depends on
the relative sizes of s0, s and t0, t.

Example 2. Consider the language L = {〈n, g, y〉 | ∃s, r : y = gs2
hr}. A way for

designing an efficient protocol for this language is to have the prover provide a commit-
mentC = gshr′

and then prove simultaneously the knowledge of the commitmentC as
well as the commitment Cs using two instances of the protocol in example 1. Clearly,
in this case we will have to deal with similar issues as in example 1, but furthermore we
will have an additional difficulty to simulate the value C as part of the zero-knowledge
simulator. For choices of the values of g, h, n where 〈h〉 happens to be a subgroup of
Z∗

n different than 〈g〉 it can be the case that C is not sufficiently hiding its gs compo-
nent. For example 〈h〉 can be the subgroup of quadratic residues in Z∗

n and g a quadratic
non-residue; this choice would be leaking one bit about the committed value s.

The above two cases exemplify the fact that there are many efficient protocols that are
not zero-knowledge proofs but they may potentially be used as such as long as they are
employed over a suitable input generation. It follows that given the state of the art what
is badly missing is a methodological, i.e, a formal way to guide cryptographic protocol
designers under what conditions (on input and verifier’s state) it is safe to deploy these
efficient protocols as subroutines in a larger application context. Identifying such safety
conditions and attaching them to a protocol is what we call “identifying the protocol’s
portability.”

We say that a protocol is portable with safety conditions defined by a class of input
generators, for the class over which it retains the properties of zero-knowledge proof of
knowledge. The lack of properly identifying this notion has created a number of crucial
protocol problems on previously published works. For example, the work of [23] has
been cited extensively and its results were used directly to justify the proof of knowl-
edge properties of various proposed schemes. This was done without realizing that some
of the security arguments in [23] are incorrect, which was finally noticed (and corrected
but without providing a formal protocol framework) by Damgård and Fujisaki [21] five
years after the publication of the original paper. Further, in various cases the possibility
of a biased input generation and reference string contribution by one of the parties was
not considered (either in the model or as an omission or as an oversight) and this led to
other works pointing out actual problems in these cases. For example, see the attack of
[16] on [1] that illustrates how a malicious key generation leads to a soundness attack
in the underlying signing protocol that, in turn, enables a framing attack in the group
signature scheme. Another example is the attack of [29] on [5] that takes advantage of
a malicious parameter generation to break the zero-knowledge property of the protocol
construction. In both cases the required properties can be preserved by ensuring proper
parameter generation (as it was argued in [2] and [5] respectively). These previous prob-
lem instances highlight the need of having a proper formalism that identifies conditions
for porting efficient protocols as zero-knowledge proofs.

428 J. Camenisch, A. Kiayias, and M. Yung

Our Contributions.

1. We introduce the notion of portability for proofs of knowledge protocols which
identifies input and initial constraints under which a protocol can be employed and
have the zero-knowledge proof properties. First, we define the notion of an input-
generator for a proof protocol and we formalize the properties of soundness and
zero-knowledge conditional on a given input generator. The portability of the pro-
tocol is defined, in turn, by identifying classes of input generators for which the
protocol is sound and zero-knowledge (thus, can be deployed safely). Note that un-
conditional portability characterizes protocols that retain their properties for any
input distribution (i.e., this notion coincides with regular zero-knowledge proofs of
knowledge).

2. We then identify a large class of input generation and soundness parameters over
which Generalized Schnorr Proofs (GSP) are portable. This clarifies the correct
way to employ the highly popular protocol description notation introduced in [14,15]
for GSP mentioned above. Based on our results the (frequently lacking and often
erroneous) security analysis of all these previous works is streamlined and pre-
sented in a unified way. Indeed, the notation PK(α, . . . : y = gα, . . .) was origi-
nally suggested for a few specific protocols without clear semantics and syntax for
the notation nor with a way to derive a concrete protocol for the notation. Subse-
quently, the notation was extended by many authors and was also used in different
(algebraic) settings thereby opening gaps between statement made in the notation
and the security properties offered by the protocol that the authors seemingly had
in mind. Sometimes, the notation has also been used with no particular protocol in
mind but just to describe any protocol (e.g., a generic zero-knowledge proof pro-
tocol) that proves knowledge of a witness to the statement. This leads to our next
contribution.

3. We introduce a new notation PKspec for specifying GSP proofs that puts forth the
soundness guarantees provided by the protocol specified by it. Our notation can
be used as a black-box in protocol design and the respective security proofs. To
illustrate our notation, as an example, consider two parties that jointly compute the
valuesU, V, n such thatU, V ∈ Z∗

n and one of them wishes to demonstrate a certain
structural relationship between them. This goal will be specified syntactically in the
following way (for example):

PKspec(α1, α2 : (V = hα1gα2 in Z∗
n) ∧ α1 ∈ [−∞ . . .+∞] ∧ α2 ∈ [L . . .R])

→ (α1, α2 : (V = ζ · hα1gα2 in Z∗
n) ∧α1 ∈ [−∞ . . .+∞] ∧α2 ∈ [L′ . . . R′])

Note that the specification is divided into two parts, the one appearing in the first
line is what the protocol designer (ideally) wishes to ensure and the second is what
will actually be ensured by the Schnorr protocol (in particular, the values ζ1, ζ2
will be selected from some small subgroup and the range [L′, R′] may be extended
compared to [L,R]). Based on our work, a protocol designer may write a GSP
specification as above and then rely on our analysis for the proof of a security
and soundness (which assures portability of the GSP protocol to his/ her specific
context).

On the Portability of Generalized Schnorr Proofs 429

4. To complete the tool kit for protocol designers, we introduce an efficient extension
of GSP protocols that is unconditionally portable. This construction is proven cor-
rect and secure in the standard model, whereas the only previously known efficient
protocols — known as the class of Σ+ protocols [5] — were shown secure in the
random oracle idealization.

5. The identification of portability for Generalized Schnorr Proofs facilitates the cor-
rect and secure design of efficient protocols. To illustrate the power of our frame-
work in this context we consider two well-known cryptographic constructions from
different subareas. We show how the employment of our GSP framework clarifies
their design and the assumptions they depend on, and assures their security while
coping with previously presented attacks. We first consider the original scalable
group signature scheme by Ateniese et al. [1] mentioned earlier. Recently, [16]
presented an attack (which is actually based on considering the extended setting
of dishonest group manager at the system’s setup phase, something not originally
anticipated; see [2] for a discussion). Employing the GSP framework, in turn, al-
lows us to clarify the settings where the protocol of [1] is secure and highlights the
exact requirements on the joint input to the proof of knowledge. As a side benefit
our framework also shows how the scheme can be made more efficient. Next, we
consider the efficient divisible e-cash scheme of Chan et al. [17]; the security of
this scheme was never analyzed properly (and originally the scheme as published
had problems). Employing our GSP framework here, we reveal the exact crypto-
graphic assumptions required for the modified scheme to be secure (something that
even the corrected version [18] has been lacking).

Due to lack of space the above contributions are included in the full version of the
paper available in [12].

How to use the results of this paper in cryptographic protocol design. Here we com-
ment briefly on the way our results can be used in cryptographic design. Suppose that
in a certain cryptographic system a party is required to execute a proof that involves a
series of discrete-log relations expressed in the widely used ad-hoc PK notation. Using
Theorem 1 the designer can obtain the corresponding PKspec expression and, by the
same theorem also automatically get the GSP protocol implementing the proof. Then
the designer examines the input generation that preceeds the protocol which is defined
by the system execution until the moment the GSP protocol should be invoked; if the
conditions of Theorem 1 are satisfied then the soundness and the zero-knowledge prop-
erty are implied immediately. If on the other hand, the conditions of Theorem 1 are not
met, then the designer may use the unconditionally portable transformations of GSP
protocols presented in section 6. For two concrete examples the reader can refer to the
full version of the paper [12].

2 Preliminaries

Notations. A function f : N → R is called negligible if for all c ∈ R there exists
ν0 ∈ N so that for all ν ≥ ν0 it holds that f(ν) < ν−c. When a random variable x
is distributed according to the probability distribution X with support S we will write

430 J. Camenisch, A. Kiayias, and M. Yung

Probx←X [x = s] for the probability that x takes the value s ∈ S. Let x, y be two
random variables with the same support S(ν) distributed according to the probability
distributions X(ν), Y (ν) where ν ∈ N. We say that x, y are statistically indistinguish-
able if the function f(ν) := 1

2

∑
s∈S(ν) |Probx←X(ν)[x = s]−Proby←Y (ν)[y = s]|

is a negligible function. If m ∈ N we will use the notation [m] to denote the set
{0, . . . ,m− 1}. In general we will denote by L some language typically over alphabet
{0, 1} unless otherwise specified. If L is an NP language,RL will be the corresponding
polynomial-time relation, i.e., L = {φ | ∃w : (φ,w) ∈ RL}.
Interactive Protocols. Let Π = (P, V) be a protocol where P, V are probabilistic in-
teractive Turing machines (ITM). The view of P inΠ is a random variable that contains
all messages exchanged with V as well as the contents of all tapes of P . Two protocols
Π1 = (P1, V1), Π2 = (P2, V2) can be concatenated if we execute first (P1, V1) and
then write the private outputs of P1, V1 to the input tapes of P2, V2 respectively and
start the execution of (P2, V2). We allow parties to output a special symbol ⊥ to sig-
nify that they “reject” a certain interaction. In the context of sequentially composed
protocols, producing a ⊥ symbol at some intermediate stage would signify that a party
refuses to continue with the execution (and the final output of the party becomes ⊥
which may interpreted as reject in the context of zero-knowledge proofs). For a given
protocol Π = (P, V) we will say that the two ITM’s V, V ′ are indistinguishable pro-
vided that in the context of the Π interaction it is impossible for any adversarial P to
distinguish whether it is communicating with V or V ′ (the notion is defined similarly
for the case of the ITM’s P, P ′).

3 Portability of Zero-Knowledge Proofs

A zero-knowledge proof protocol Σ = (P, V) for a language L enables P to demon-
strate to V that a joint input t belongs to an NP language L provided that the prover
possesses a witness w such that (t, w) ∈ RL. Soundness and zero-knowledge of such
protocols should hold for any input distribution. Here we consider the (non-limiting)
case that the prover and the verifier collaboratively construct the input t to the proof
protocol by engaging in a protocol Π (dubbed the “input-generator”); at this preamble
stage we denote the two parties by Pin, Vin to highlight their relation with the actual
prover and verifier. The output of this preamble stage will be the input to the actual
prover and verifier.

Definition 1. Let Lin ∈ BPP,L ∈ NP with L ⊆ Lin. ConsiderΠ , a two-party protocol
Π = 〈Pin, Vin〉 where each party may reject returning ⊥ while if Pin terminates suc-
cessfully it returns a pair 〈t, wP 〉 and similarly Vin returns 〈t′, wV 〉 where t, t′ ∈ Lin.
The protocolΠ is called an input generator for L, if for all executions that neither party
returns ⊥ it holds that (t, wP) ∈ RL and t = t′.

Next we define statistical zero-knowledge proofs of knowledge over input generators.
The definition follows the standard ZK notion with the only difference being that the
input instead of being totally adversarial (i.e., universally quantified) is produced by an
input generator protocol Π . The parties are allowed to be adversarial during this input

On the Portability of Generalized Schnorr Proofs 431

generation stage. In particular for soundness we allow the prover to bias the input gen-
eration and in formalizing soundness the knowledge extractor will be interacting with
the malicious prover in both stages (with rewinding power only during the second stage,
i.e., the proof system). Regarding zero-knowledge we condition on all input generation
executions that the honest prover agrees to execute the proof system and we require
the existence of a simulator that can simulate the view of any malicious verifier. Note
further that to support design flexibility we will allow the prover to show that the input
belongs to a possibly extended language Lext.

Definition 2. The two party protocol Σ = 〈P, V 〉 is a zero-knowledge proof of knowl-
edge over the input generator Π = 〈Pin, Vin〉 for L with knowledge error parameters
(Lext, κ) and zero-knowledge distance ε if these properties are satisfied:
(1) Completeness: it holds that both Pin and Vin terminate successfully with overwhelm-
ing probability and subsequently V accepts the interaction with the prover P with over-
whelming probability.
(2) Soundness: For any pair of (P ∗

in, P
∗) we denote by πP∗

in ,P∗ the probability that P ∗

convinces V on inputs generated by P ∗
in and Vin (where πP∗

in ,P∗ is taken over the entire
probability space of (P ∗

in, Vin), (P ∗, V)). We say thatΣ is sound overΠ , if there is some
Kin, such that: (i) Kin and Vin are indistinguishable as ITM’s, (ii) for any P ∗ there is
some K for which it holds that for any P ∗

in: K on input the view of Kin and the output
of P ∗

in, it returns w′ such that (t, w′) ∈ RLext where t is the statement that is determined
in the input generation stage between P ∗

in and Kin with probability of success at least
c · πP∗

in ,P∗ where c ∈ R while running in time polynomial in (πP∗
in ,P∗ − κ)−1.

(3) Zero-knowledge: Σ is statistical ZK over Π , if there exists an Sin, such that (i) Sin

and Pin are indistinguishable as ITMs, (ii) for any V ∗, there is a simulator S, such that
for any V ∗

in : the random variable that equals the view of V ∗ when interacting with P on
input generated by Pin, V

∗
in is distinguishable with distance at most ε from the random

variable that equals the output of S given as input the view of Sin and the output of V ∗
in .

We next introduce the notion of portability of a protocol:

Definition 3. The two party protocol Σ = 〈P, V 〉 is said to be portable over the class
of input generators W if for all Π ∈ W it holds that Σ a zero-knowledge proof of
knowledge over Π . If W contains all possible protocols then the protocol Σ is said to
be unconditionally portable.

Ensuring portability from semi-honest behavior. Suppose that a given protocol hap-
pens to be a zero-knowledge proof of knowledge for some input-generator Π as long
as the prover and the verifier are semi-honest at the input generation stage. In such an
occasion one can generically compile a protocolΣ∗ fromΠ andΣ so thatΣ∗ becomes
a zero-knowledge proof of knowledge over Π using the transformation from semi-
honest to malicious behavior put forth in [26] (see also [27], section 7.4). Note that
while this is feasible, it is not particularly efficient given that it requires expensive steps
such as coin-flipping combined with generic zero-knowledge proofs to ensure that no
party is deviating from the input distribution (recall that much of cryptographic protocol
design is motivated by avoiding generic inefficient tools). Our results will demonstrate

432 J. Camenisch, A. Kiayias, and M. Yung

that such generic techniques can be substituted by much more efficient ones for the
particular class of protocols we consider (i.e., generalized Schnorr proofs).

Comparison to common-reference-string/bare model ZK. Zero-knowledge proofs
are sometimes modeled in the common-reference string model, cf. [20] (or the common
random string model, [36]); in this setting there is an explicit separation between the
input of parties and the reference string that is assumed to be honestly generated and
provided to the parties. A common-reference-string ZK protocol is supposed to satisfy
the security properties conditional on the distribution of the reference string that no
party can bias. By comparison, in our setting there is no unbiased reference string that is
independent of the proof’s statement that can be used to assist in the proof of soundness
or zero-knowledge. While here we deal mainly with the bare model, it is worth noting
that even the availability of a common reference string does not eliminate the issues of
context dependent contributed inputs.

Relaxed Knowledge Extraction. In our formulation, the knowledge extractor only en-
sures that the prover possesses knowledge of a witness showing that t belongs to an
extended language Lext. If L = Lext the soundness definition will ensure that the in-
teractive input belongs to L (as in the standard definition of ZK), however we will
also consider slightly different languages Lext. The reason for this relaxation is that by
extending the language one may obtain more efficient protocols which is our primary
concern. Naturally this will allow the prover to convince the verifier to accept despite
the fact that the interactive input may be in the “gray area” Lext − L. Note that in
principle we will always be able to modify the interactive input proof of knowledge so
that L = Lext (if one does not mind the additional computation overhead that will be
incurred).

Sigma Protocols. Our applications will focus on protocols 〈P, V 〉 that are called Σ-
protocols, i.e., a three-move protocol in which the prover goes first, the verifier responds
with a random challenge from {0, 1}k, the prover responds, and finally the verifier either
accepts or rejects based on the prover’s response. All conversations in a Σ-protocol are
of the form 〈com, c, res〉 (commitment, challenge, response). These protocols typically

consider the setting where the verifier is restricted to be “honest” during the interactive
proof 〈P, V 〉 when proving the zero-knowledge property. While we will follow this,
however, we will still allow the verifier to be totally adversarial in the input building
stage. This is justified as the honest verifier setting can be transformed using numerous
techniques to the fully adversarial verifier setting (e.g. see [35,20]) and these techniques
readily apply to our setting.

Variations of the definition. In our definition we focused on knowledge extraction
following the definition of [6] (note that in our protocols the knowledge error will be
κ = 2−k where k is a parameter). Moreover we formulated zero-knowledge in the sta-
tistical sense. It is easy to reformulate the definition by strengthening zero-knowledge
(e.g., perfect zk) or relaxing it (e.g., computational zk). Moreover, soundness can be
relaxed to require only language membership from the prover (instead of knowledge
extraction), or defined with a specialized knowledge extractor that extracts two accept-
ing conversations with the same first move and then reconstructs the witness. Further,
in applications the protocols can be made non-interactive employing the Fiat-Shamir
heuristics [22] and then use the forking Lemma [35] for extraction in the random

On the Portability of Generalized Schnorr Proofs 433

oracle model. These alternative definitions are well understood in the context of build-
ing efficient zero-knowledge proofs and can be ported into our setting.

On the input generation stage. In an actual system, the input generator protocol
〈Pin, Vin〉 may abstract many parties and involve interactions between many partici-
pants. From a ZK security point of view, Pin will comprise the “prover side” (i.e., the
side that is interested in preserving zero-knowledge) and Vin will comprise the “verifier
side” (i.e., the side of the system that is interested in in preserving soundness). In a
multi-party system, we will be interested in primarily two input generators: in the first
one, Pin will include only the prover and (if it exists) any party the prover trusts while
Vin will include all other participants. In the second one, Vin will include the verifier and
(if it exists) any party the verifier trusts, while Pin will include all other participants. If
a protocol is portable over both of these input generators then it can be safely deployed
in the given system.

A central tool in our design is the notion of safeguard groups that we introduce next.

4 Safeguard Groups

A safeguard group is specified by a sampler algorithm Ssg that on input 1ν returns a
tuple 〈G, g,M, k, ζ〉; where G is a description of an Abelian group that contains an
implementation of G’s binary operator, inverse computation, the encoding of 1 as well
as the description of a polynomial-time group membership test that, given any string, it
decides whether it is a proper encoding of a group element; g is a generator of G; M is
an approximation of the order of g in G; and k is a security parameter that is related to
the length of the order of small-order group elements. Note that we will use the same
notation for the description of a group G and the group itself. Regarding the remaining
elements of the tuple we have that g ∈ G, ζ ⊆ G,M ∈ N with further properties to be
specified below.

Definition 4. A safeguard group sampler Ssg satisfies the following (where 〈G, g,M, k,
ζ〉 ← Ssg(1ν)):

C1. The exponent of G is not divisible by the square of any k-bit integer.
C2. The order m of g in G has no k-bit integer divisor, and M satisfies that (M −

m)/M = negl(ν).
C3. ζ contains only a polynomial (in ν) number of elements; they all have a known

(say part of the subgroup description) k-bit integer order.
C4. Small-Order Property. It is hard to find k-bit order elements of G outside ζ.

Formally, it holds that for all PPT A, Prob[(v �∈ ζ) ∧ (v has k bit order); v ←
A(1ν , τ); τ = (G, g,M, k, ζ)← Ssg(1ν)] = negl(ν).

C5. Strong-Root Property. Given z ∈ 〈g〉 it is hard to find e > 1 and u ∈ G such that
ue = z. Formally, it holds that for all PPTA, Prob[(ue = z)∧ (e > 1); 〈u, e〉 ←
A(1ν , τ, z); z ←R 〈g〉; τ = (G, g,M, k, ζ)← Ssg(1ν)] = negl(ν).

We remark that properties C3-C4 are not really essential and can be dropped at the ex-
pense of loosing tightness in some of our proof reductions and notational presentation;
we opt to enforce them as they make the presentation of the results more succinct and
are easily satisfied for the known examples of safeguard groups.

434 J. Camenisch, A. Kiayias, and M. Yung

Example 1. A safeguard group distribution can be built as follows: sample n as a safe
composite so that n = pq, p = 2p′ + 1, q = 2q′ + 1, where p′, q′ are prime numbers
larger than 2k, set G = Z∗

n and let g be a generator of quadratic residues modulo n.
Finally set ζ = {1,−1} andM = �n

4 �. Property C1 is immediate as the exponent of Z∗
n

is 2p′q′. Observe also that the properties C2 and C3 are easily satisfied. Indeed, it is easy
to see that M is sufficiently close to p′q′. Next observe that a violation of property C4
would mean the recovery of any other element that has a k-bit order outside {1,−1};
this would violate the factoring assumption (only the four square roots of 1 are k-bit
order elements in Z∗

n based on our selection of n). Property C5 amounts to the Strong-
RSA assumption with the target challenge being an arbitrary element of the quadratic
residues; this is a variant of the strong RSA problem that has been utilized extensively
in previous works (e.g., [19]).

Example 2. A second safeguard group is over the group G = Z∗
n2 where n is sampled

as before, i.e., n = pq, p = 2p′+1, q = 2q′ +1, so that g is a generator of the subgroup
of square n-th residues; as before we select p′, q′ larger than 2k and ζ = {1,−1}.
We remark that in both the above examples it is not necessary to select n as a safe
composite, i.e., we may allow p′ and q′ to be composite numbers themselves as long
as they have no small divisors (of k-bits). In practical settings where we will employ
safeguard groups, the parameter k may be required to be in the range from 80 to 256
bits.

Properties of Safeguard Groups. In the first lemma below regarding safeguard groups
we show that based on the properties of the safeguard group it is hard for an adver-
sary to produce arbitrary powers of a chosen power of a group element. This lemma
is an important building block of our general proof protocol. We remark that various
restricted special case incarnations of this lemma have appeared in the literature (the
most basic of which is referred to as Shamir’s trick and corresponds to case (i) in the
proof of lemma). These special incarnations are too restricted to be useful in our setting
and thus there is need for putting forth the lemma that is formulated as follows:

Lemma 1. Let τ = 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group distribution. Sup-
pose that A is a PPT that given τ and a random z ∈ 〈g〉 returns y ∈ G and t,m ∈ Z
such that yt = zm with 1 ≤ gcd(t,m) < |t| and t is a k-bit integer. It holds that the
success probability of A is negligible in ν.

Our main result regarding safeguard groups is Lemma 3. We show that any adversary
that is given any number of bases from the 〈g〉 subgroup of the safeguard group is
incapable of producing an entirely arbitrary discrete-log representation of a power of
his choosing within G. Before stating the main lemma, we show an auxiliary lemma.

Lemma 2. Let A,B be two integers with A > B and A = πB + v with 0 ≤ v < B
and let X be a random variable with X ←R [A]. Let Y = X mod B. The statistical
distance of the distribution of Y and the uniform distribution over ZB is at most v/A.
Let Y ′ = �X/B�. The statistical distance of the uniform distribution over {0, . . . , π}
and the distribution of Y ′ is at most 1/(π + 1).

On the Portability of Generalized Schnorr Proofs 435

Lemma 3. Let B1, . . . , Br ←R 〈g〉, 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group
distribution, and let A be a PPT that on input G, g,M, k, ζ, B1, . . . , Br it outputs inte-
gers e1, . . . , er, t and y ∈ G such that with probability α: |t| > 1 and

∏r
i=1 B

ei

i = yt

where t is a k-bit number and ∃i : t � | ei. Then the Strong-Root property is violated
with probability at least α/(2r + 1)− η where η is a function negligible in ν.

5 The Portability of Generalized Schnorr Proofs

In this section we discuss the portability of Generalized Schnorr Proofs. In particular
we will identify a wide class of input generators so that under the right conditions these
protocols are portable.

GSP-specs. A generalized Schnorr proof (GSP) operates on a statement t that involves
a number of groups and group elements (“bases”) with public and secret exponents. To
any such statement t we will associate the following:

i. A set of symbolic variables denoted by X = {α1, . . . , αr} with |X | = r.
ii. A sequence of group descriptions G1, . . . ,Gz as well as the descriptions of z sub-

groups ζ1, . . . , ζz of G1, . . . ,Gz respectively, so that the exponent of each ζi is (at
most) a k-bit integer. The description of the subgroup ζi will be typically given as
a list of elements (i.e., these subgroups are small). It may be the case that ζi = {1}.

iii. The group elements Ai,j ∈ Gi for j = 0, . . . , r where Ai,j will be the base for the
variable αj in group Gi.

iv. The range limits Lj, Rj , L
ext
j , Rext

j ∈ Z ∪ {−∞,∞} such that Lj < Rj , and
Lext

j ≤ Lj, Rj ≤ Rext
j for j = 1, . . . , r.

Next we give an explicit syntax notation and semantics for specifying the language
L that the prover wishes to convince the verifier the statement t belongs to. We define
two languages L and Lext:

L =
{
t ∈ Lin | ∃ xi ∈ Z :

z∧
i=1

(r∏
j=0

A
xj

i,j = Ai,0

)
∧

r∧
j=1

(
xj ∈ [Lj, Rj]

)}

Lext =
{
t ∈ Lin | ∃ xi ∈ Z :

z∧
i=1

(r∏
j=0

A
xj

i,j = ζi · Ai,0

)
∧

r∧
j=1

(
xj ∈ [Lext

j , Rext
j]

)}
We will use the following syntax to refer to a proof of knowledge for the languageL

whose soundness is only ensured in the extended language Lext; we call this notation a
GSP-spec τ .

PKspec
(
X :

r∏
j=1

A
αj

1,j = A1,0(in G1) . . . ∧ α1 ∈ [L1, R1] ∧ . . . ∧ αr ∈ [Lr, Rr]
)

→
(
X :

r∏
j=1

A
αj

1,j = ζ1·A1,0(in G1) . . .∧α1 ∈ [Lext
1 , Rext

1]∧. . .∧αr ∈ [Lext
r , Rext

r]
)

436 J. Camenisch, A. Kiayias, and M. Yung

Note that left-hand side of the above notation (i.e., the first line) is the statement of
the proof whereas the right-hand side (namely, the second line) is the actual (extended)
statement that will be guaranteed to hold (recall Definition 2). Note that in the extended
statement the ranges [Lj , Rj] will be extended to [Lext

j , Rext
j] and the unit element of

the group is extended to be any element in the (small) subgroup ζi for the i-th equation.
The specification allows for a wide range of proofs including polynomial relations

among the secret and inequality statements of secrets. We refer to in the full version of
the paper [12] for a discussion on what is covered by this specification and how it can
be extended, in particular to include also ∨-connectives or tighter ranges.

GSP input generators. A GSP input generator Π = 〈Pin, Vin〉 that is consistent with
a GSP-spec τ is a two party protocol that determines the parameters: z (the number of
groups), r (the number of symbolic variables), k (a parameter related to group selection
and the soundness property) and whose public output t includes the description of all
groups, bases and ranges of the GSP-spec as described in the items (i)-(iv) above.

The Generalized Schnorr Protocol ΣGSP
τ . For any GSP-spec τ one can design a

Sigma protocol based on Schnorr’s proof by introducing appropriate range checking
and compensating for the fact that groups of unknown order are used with computations
over the integers.

The protocol is based on two parameters k, l for free variables α1, . . . , αr such that
αj takes values in the range [Lj , Rj]. Below we set mj = Rj − Lj . Suppose the
prover is in possession of the witnesses x1, . . . , xr; the prover selects first the ran-
dom values tj ∈R [−2k+lmj , 2k+lmj] and computes the values Bi =

∏r
j=1 A

tj

i,j .
The prover terminates the first stage of computation by transmitting B1, . . . , Bz . The
verifier selects c ∈R {0, 1}k and responds by sending c to the prover. The prover, in
response computes the integers sj = tj − c · (xj − Lj) and sends them to the ver-
ifier. The verifier returns 1 if and only if for all j ∈ {1, . . . , r} it holds that sj ∈
[−2k+lmj−(2k−1)mj , 2k+lmj] as well as for all i ∈ {1, . . . , z} it holds thatBi ∈ Gi

and
∏r

j=1 A
sj

i,j =Gi Bi(A−1
i,0 ·

∏r
j=1 A

Lj

i,j)
c.

Portability of ΣGSP
τ . We will next identify a class of input generators Π for a given

GSP-spec τ over which ΣGSP
τ is portable as a zero-knowledge proof of knowledge.

Recall that Π defines the respective inputs (t, w) for the prover and t for the verifier.
We first describe the setting where some special care needs to be paid when arguing the
security of ΣGSP

τ . These settings involve variables that are “unsafe”:

Definition 5. (Unsafe Variables) For a GSP-spec τ , a symbolic variable αj ∈ X
is called unsafe if it satisfies at least one of the following three conditions: (1) it is
involved in an equation over a group Gi over a base element that is of unknown order
to the verifier (i.e., the order of the base is not included in the group’s description); (2)
the range [Lj, Rj] is non-trivial (i.e., it is not the range (−∞,+∞)); (3) the variable
appears across various bases that have known but different order.

The presence of unsafe variables may introduce problems in the knowledge extraction
argument and make the protocol fail the soundness property. Still, unsafe variables can
be tolerated provided they appear in conjunction to safeguard groups (cf. Definition 4).
The following definition defines input-generators that are suitable for the Σext

τ protocol

On the Portability of Generalized Schnorr Proofs 437

in the presence of unsafe variables. In a nutshell it says that for a GSP-input generator
protocol Π , a certain group will be called a safeguard group for Π as long as there
exists a simulator that playing the role of the verifier, it can “plug-in” a safeguard group
generated by Ssg in black-box fashion in the interaction with Pin without Pin noticing,
even if Pin is acting adversarially.

Definition 6. For any GSP-input-generator protocol Π = 〈Pin, Vin〉, a group Gi and
the bases Ai,j1 , . . . , Ai,jv ∈ Gi will be called respectively a safeguard group for
Π and its safeguard bases there exists a polynomial-time simulator SV s.t. for any
adversarial party P ∗

in in the protocolΠ , SV receives as input 〈G, g,M, k, ζ, g1, . . . , gv〉
where 〈G, g,M, k, ζ〉 ← Ssg(1ν) and g� = gs� with s�

¢← [M], and satisfies the
property that the input t produced by the interaction of P ∗

in and SV contains a group
Gi and bases Ai,j1 , . . . , Ai,jv that satisfy Gi = G and Ai,j1 = g1, . . . , Ai,jv = gv and
the view of P ∗

in when interacting with Vin is indistinguishable from the view of P ∗
in when

interacting with SV .

An equation
∏r

j=1 A
αj

i,j = Ai,0 over a safeguard group for Π will be called a “safe-
guarding equation.” Armed with the above we next identify a class of input generators
for which the generalized Schnorr proof ΣGSP

τ is portable.

Theorem 1. (Portability of Generalized Schnorr Proofs) Let τ be a GSP-spec. The
protocolΣGSP

τ is portable for honest verifiers, for all input generatorsΠ consistent with
τ provided that (I) the generated input t ∈ Lin has no unsafe variable, or (II) the five
following conditions hold: (i) Each unsafe variable appears at least once as an exponent
over a safeguard base. (ii) There is an ordering i1, . . . , iz of all the equations so that
(1) i1 is a safeguarding equation with all its free variables over safeguard bases, and
(2) in safeguarding equation iw for w > 1 it holds that all free variables of equation iw
appear over safeguard bases or have appeared at least once in a previous safeguarding
equation. (iii) If Gi is a safeguard group then it has description 〈Gi, gi,Mi, k, ζi〉 (i.e.,
all safeguard groups share the same k). (iv) Lext

j = Lj − 2k+l+2(Rj −Lj) andRext
j =

Rj +2k+l+2(Rj−Lj). (v) The knowledge error κ is c ·(2−k +r ·Advroot) for a suitable
c ∈ R and the zero-knowledge distance is ε = r · 2−l.

Example. Suppose that Vin selects an RSA-modulus n which is a multiple of two safe

primes, a quadratic residue base g ∈ Z∗
n as well as h

¢← 〈g〉. Vin transmits n, g, h to Pin.

In turn, Pin sends y = guhv mod n where u
¢← [�n

4 �] and v ∈ [2e] for some e ∈ N.
The input1 t generated by Pin, Vin in this case is the vector 〈n, g, h, y〉. Suppose now
that the prover P wishes to demonstrate to the verifier V that she knows u, v in their
respective ranges such that y = guhv mod n. It is easy to see that Z∗

n can play the role
of a safeguard group for the input generator described above with ζ = {−1,+1} and
that the conditions of Theorem 1 are satisfied, thus the protocol ΣGSP

τ can be used to
ensure to V that y = ±guhv mod n and u ∈ [−Eu, �n

4 � + Eu], v ∈ [−Ev, 2e + Ev]
where Eu = 2k+l+2 · �n

4 �, Ev = 2k+l+2+e.

1 In this simple example, it could be that y leaks some information about u, v to Vin (which
recall it may be an entity that includes more parties beyond the verifier); this does not affect
the zero-knowledge property over this input generator which — as it is the case with regular
ZK proofs — is concerned only with information leaks during the P, V interaction.

438 J. Camenisch, A. Kiayias, and M. Yung

6 Unconditionally Portable Protocols for GSP-specs

Theorem 1 of the previous section describes a class of input-generators for which the
generalized Schnorr proof protocol can be used in a safe way. Nevertheless, it may be
very well the case that we would like to use a proof for a GSP-spec outside this class
of input generators. In the remaining of the section we describe an efficient protocol
enhancement to the basic generalized Schnorr protocol that is unconditionally portable.
The Σext,+

τ protocol. Consider any input generator Π for which Theorem 1 does not
apply, i.e., (Π,Σext

τ) is not a zero-knowledge proof over Π . We next show one mod-
ification of Σext

τ into a protocol Σext+
τ so that Σext+

τ is a protocol that is universally
portable as a zero-knowledge proof.

The protocol Σext+
τ operates as follows: The verifier first selects a safeguard group

〈Z∗
n, g,M = �n/4�, k,V = {−1, 1}〉 where 〈g〉 = QR(n) together with a number of

safeguard bases g1, . . . , gu ∈ 〈g〉 where u is the number of variables that are unsafe.
We will denote the discrete-logarithm values of g� base g as ρ�. The verifier also selects
a prime P such that (P − 1)/2 is also prime and satisfies (P − 1)/2 > n as well as two
elements of order (P−1)/2 in Z∗

P denoted byG,H whereH is randomly selected from
〈G〉. When these elements are received the prover will check that P, (P−1)/2 ∈ Prime,
(P − 1)/2 > n and that G,H ∈ QR(P) (i.e., that H ∈ 〈G〉). We denote AdvDLOG
an upper bound on the probability that any polynomial-time bounded algorithm has
in returning logG(H) given G,H,P . Next, the prover computes a commitment of the
form C = grgx1

1 . . . gxu
u (modn) (which is an extended Pedersen commitment over the

safeguard group); note that r
¢← [2l+3M] where l is the security parameter related to

the zero-knowledge distance and x1, . . . , xu are the witnesses of P . Intuitively, what
will happen next can be interpreted as follows: the prover and the verifier will include
in the GSP-spec τ the safeguarding equation (C = grgx1

1 . . . gxu
u (in Z∗

n)) as one of
the equations that are needed to be shown (we call the extended GSP-spec τ+) but the
prover will not reveal C. This is because the parameters of the safeguard group were
selected by the verifier and thus the prover is at risk of revealing some information about
the witnesses.

B1, . . . , Bz

c
s1, . . . , sr

P : x1, . . . , xr

V
C = grgx1

1 . . . gxu
u mod n

Pin Vin

P : x1, . . . , xr

Pin Vin

n, g, g1, . . . , gu

Π,Σext
τ Π+,Σext+

τ

Com(·)
validateCom(·)

ψ = Com(C,B0)

safeguard group
and bases

commitment

V

c

s0, s1, . . . , sr

log(g1), . . . , log(gu)

open ψ

resψ

B1, . . . , Bz

ψ, comψ

P : x1, . . . , xr

V

Fig. 1. Illustration of the transformation of Σext
τ over input generator Π to the Σext+

τ

On the Portability of Generalized Schnorr Proofs 439

Instead, the (P, V) protocol interaction for τ+ will be modified as follows: the prover
P will make a commitment ψ1 to the value C denoted by ψ1 = Gr∗

HC mod P .
Similarly, the prover P will not submit the value B0 (that corresponds to the com-
mitment equation (C = grgx1

1 . . . gxu
u (in Z∗

n))); instead it will submit a commitment
ψ2 = Gr∗

0HB0 mod P . We call ψ = (ψ1, ψ2). Next, the prover P will need to show
that ψ is well-formed; this is easy as ψ1, ψ2 are Pedersen commitments, so it suffices to
prove knowledge of r∗ and C in ψ1 and prove knowledge of r∗0 and B0 in ψ2. We de-
note the Σ proof for the ψ commitment as comψ, c, resψ. These additional proofs can
be composed in parallel AND composition with the GSP protocol ΣGSP

τ and do not
incur any additional round complexity. After the verifier receives all values and accepts
the proofs (except for the equation over the safeguard group), it submits to the prover
the values ρ1, . . . , ρu who in turn checks whether g� = gρ� . In this case, the prover
opens the commitments ψ1, ψ2, and now the verifier is able to complete the verification
as described in the Σext

τ protocol. We illustrate the transformation in figure 1.

Remark. This transformation generalizes and improves the setting of the Σ+ proof
method introduced in [5]; it obviates the need of random oracles (their soundness ar-
gument was in the random oracle model). We note that if the number of rounds is at
premium then it is possible to reduce them to 3 by giving up on other aspects of the
protocol in terms of security or efficiency. Specifically, one can either have the verifier
demonstrate to the prover that the safeguard group is properly selected in an “offline”
stage (that will not be counting towards the rounds of the actual protocol) or assum-
ing the existence of an auxiliary input that is honestly distributed (an approach shown
in [4]).

We next prove our protocol secure for a type of “partly honest” verifiers that may
operate maliciously in the safeguard group selection (i.e., the first move of the Σext+

τ

protocol) but still select the challenge honestly (in the third move of the protocol). We
choose to do this for ease of presentation as there are standard techniques that can be
applied to port the protocol to the entirely malicious verifier setting (much like how an
honest verifier zero-knowledge protocol can be ported to the zero-knowledge setting).

Theorem 2. For any GSP-spec τ and any consistent input generator Π , the protocol
Σext,+

τ is an (unconditionally portable) zero-knowledge proof of knowledge over Π
against partly honest verifiers for the same Lext

� , Rext
� parameters as Theorem 1, knowl-

edge error κ = c(2−k + AdvDLOG + r · Advroot) for some c ∈ R and zero-knowledge
distance (r + 1)2−l.

7 Demonstrative Applications and Extensions

In the full version of the paper available in [12] we provide two demonstrative applica-
tions of our framework as well as a number of possible extensions to it. The full version
also includes proofs for all the statements in this version.

Acknowledgements

The authors thank Endre Bangerter for helpful discussions on the subject.

440 J. Camenisch, A. Kiayias, and M. Yung

References

1. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, p. 255. Springer, Heidelberg (2000)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: Remarks on ”analysis of one popular
group signature scheme” in asiacrypt 2006. Cryptology ePrint Archive, Report 2006/464
(2006), http://eprint.iacr.org/

3. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation in group signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)

4. Bangerter, E.: On Efficient Zero-Knowledge Proofs of Knowledge. PhD thesis, Ruhr U.
Bochum (2005)

5. Bangerter, E., Camenisch, J.L., Maurer, U.M.: Efficient proofs of knowledge of discrete log-
arithms and representations in groups with hidden order. In: Vaudenay, S. (ed.) PKC 2005.
LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005),
http://www.zurich.ibm.com/˜/jca/papers/bacama05.pdf

6. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

7. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

8. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K.-c. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. 11th ACM
Conference on Computer and Communications Security, pp. 225–234. ACM Press, New
York (2004)

10. Bussard, L., Molva, R., Roudier, Y.: History-Based Signature or How to Trust Anonymous
Documents. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995,
pp. 78–92. Springer, Heidelberg (2004)

11. Bussard, L., Roudier, Y., Molva, R.: Untraceable secret credentials: Trust establishment with
privacy. In: PerCom Workshops, pp. 122–126. IEEE Computer Society, Los Alamitos (2004)

12. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. Tech-
nical report, Cryptology ePrint Archive (2009)

13. Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Log-
arithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

14. Camenisch, J.L., Stadler, M.A.: Efficient Group Signature Schemes for Large Groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg
(1997)

15. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete
Logarithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520. Hartung Gorre Verlag,
Konstanz (1998)

16. Cao, Z.: Analysis of One Popular Group Signature Scheme. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 460–466. Springer, Heidelberg (2006)

17. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. In: Nyberg, K.
(ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)

18. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. GTE Technical
Report (1998), http://www.ccs.neu.edu/home/yiannis/pubs.html

19. Cramer, R., Shoup, V.: Signature schemes based on the strong rsa assumption. ACM Trans.
Inf. Syst. Secur. 3(3), 161–185 (2000)

On the Portability of Generalized Schnorr Proofs 441

20. Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg
(2000)

21. Damgård, I.B., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on
Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
125–142. Springer, Heidelberg (2002)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Sig-
nature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (1987)

23. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Poly-
nomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30.
Springer, Heidelberg (1997)

24. Furukawa, J., Yonezawa, S.: Group Signatures with Separate and Distributed Authorities. In:
Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 77–90. Springer, Heidelberg
(2005)

25. Gaud, M., Traoré, J.: On the Anonymity of Fair Offline E-cash Systems. In: Wright, R.N.
(ed.) FC 2003. LNCS, vol. 2742, pp. 34–50. Springer, Heidelberg (2003)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987:
Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 218–
229. ACM Press, New York (1987)

27. Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cam-
bridge (1999)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM Journal on Computing 18(1), 186–208 (1989)

29. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an Efficient Proof of
Knowledge of Discrete Logarithm. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 27–43. Springer, Heidelberg (2006)

30. Van Le, T., Nguyen, K.Q., Varadharajan, V.: How to Prove That a Committed Number Is
Prime. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716,
pp. 208–218. Springer, Heidelberg (1999)

31. Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Elec-
tronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer,
Heidelberg (1998)

32. MacKenzie, P.D., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001)

33. Mykletun, E., Narasimha, M., Tsudik, G.: Signature Bouquets: Immutability for Aggre-
gated/Condensed Signatures. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 160–176. Springer, Heidelberg (2004)

34. Nakanishi, T., Shiota, M., Sugiyama, Y.: An Efficient Online Electronic Cash with Unlink-
able Exact Payments. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 367–
378. Springer, Heidelberg (2004)

35. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures.
Journal of Cryptology 13(3), 361–396 (2000)

36. De Santis, A., Micali, S., Persiano, G.: Noninteractive Zero-Knowledge Proof Systems. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988)

37. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–
174 (1991)

38. Song, D.X.: Practical forward secure group signature schemes. In: Proc. 8th ACM Con-
ference on Computer and Communications Security, pp. 225–234. ACM press, New York
(2001)

442 J. Camenisch, A. Kiayias, and M. Yung

39. Susilo, W., Mu, Y.: On the Security of Nominative Signatures. In: Boyd, C., González Nieto,
J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer, Heidelberg (2005)

40. Tang, C., Liu, Z., Wang, M.: A verifiable secret sharing scheme with statistical zero-
knowledge. Cryptology ePrint Archive, Report 2003/222 (2003),
http://eprint.iacr.org/

41. Tsang, P.P., Wei, V.K.: Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation.
In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60.
Springer, Heidelberg (2005)

42. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable Linkable
Threshold Ring Signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)

43. Wei, V.K.: Tracing-by-linking group signatures. In: Zhou, J., López, J., Deng, R.H., Bao, F.
(eds.) ISC 2005. LNCS, vol. 3650, pp. 149–163. Springer, Heidelberg (2005)

A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks

François-Xavier Standaert1,	, Tal G. Malkin2, and Moti Yung2,3

1 UCL Crypto Group, Université catholique de Louvain
2 Dept. of Computer Science, Columbia University

3 Google Inc.
fstandae@uclouvain.be, tal,moti@cs.columbia.edu

Abstract. The fair evaluation and comparison of side-channel attacks
and countermeasures has been a long standing open question, limiting
further developments in the field. Motivated by this challenge, this work
makes a step in this direction and proposes a framework for the analy-
sis of cryptographic implementations that includes a theoretical model
and an application methodology. The model is based on commonly ac-
cepted hypotheses about side-channels that computations give rise to. It
allows quantifying the effect of practically relevant leakage functions with
a combination of information theoretic and security metrics, measuring
the quality of an implementation and the strength of an adversary, re-
spectively. From a theoretical point of view, we demonstrate formal con-
nections between these metrics and discuss their intuitive meaning. From
a practical point of view, the model implies a unified methodology for
the analysis of side-channel key recovery attacks. The proposed solution
allows getting rid of most of the subjective parameters that were limit-
ing previous specialized and often ad hoc approaches in the evaluation of
physically observable devices. It typically determines the extent to which
basic (but practically essential) questions such as “How to compare two
implementations?” or “How to compare two side-channel adversaries?”
can be answered in a sound fashion.

1 Introduction
Traditionally, cryptographic algorithms provide security against an adversary
who has only black box access to cryptographic devices. However, such a model
does not always correspond to the realities of physical implementations. Dur-
ing the last decade, it has been demonstrated that targeting actual hardware
rather than abstract algorithms may lead to very serious security issues. In this
paper, we investigate the context of side-channel attacks, in which adversaries
are enhanced with the possibility to exploit physical leakages such as power con-
sumption [19] or electromagnetic radiation [2,14]. A large body of experimental
work has been created on the subject and although numerous countermeasures
are proposed in the literature, protecting implementations against such attacks

� Associate researcher of the Belgian Fund for Scientific Research (FNRS - F.R.S.)

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 443–461, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

444 F.-X. Standaert, T.G. Malkin, and M. Yung

is usually difficult and expensive. Moreover, most proposals we are aware of only
increase the difficulty of performing the attacks, but do not fundamentally pre-
vent them. Eventually, due to the device-specific nature of side-channel attacks,
the comparison of their efficiency and the evaluation of leaking implementations
are challenging issues, e.g. as mentioned in [22], page 163.

Following this state-of-the art, our work is mainly motivated by the need of
having sound tools (i.e. a middle-ware between the abstract models and the
concrete devices) to evaluate and compare different implementations and ad-
versaries. As a matter of fact, the evaluation criteria in physically observable
cryptography should be unified in the sense that they should be adequate and
have the same meaning for analyzing any type of implementation or adversary.
This is in clear contrast with the combination of ad hoc solutions relying on
specific ideas designers have in mind. For example, present techniques for the
analysis of side-channel attacks typically allow the statement of claims such as:
“An implementation X is better than an implementation Y against an adver-
sary A”. But such claims are of limited interest since an unsuccessful attack may
theoretically be due both to the quality of the target device or to the ineffec-
tiveness of the adversary. The results in this paper aim to discuss the extent to
which more meaningful (adversary independent) statements can be claimed such
as: “An implementation X is better than an implementation Y ”. Similarly, when
comparing different adversaries, present solutions for the analysis of side-channel
attacks typically allow the statement of claims such as: “An adversary A suc-
cessfully recovers one key byte of an implementation X after the observation of q
measurement queries.”. But in practice, recovering a small set of key candidates
including the correct one after a low number of measurement queries may be
more critical for the security of an actual system than recovering the key itself
after a high number of measurement queries (e.g. further isolating a key from a
list can employ classical cryptanalysis techniques exploiting black box queries).
The results in this paper aim at providing tools that help claiming more flexible
statements and can capture various adversarial strategies.

Quite naturally, the previous goals imply the need of a sound model for the
analysis of side-channel attacks. But perhaps surprisingly (and to the best of our
knowledge), there have been only a few attempts to provably address physical
security issues. A significant example is the work of Micali and Reyzin who initi-
ated an analysis of side-channels taking the modularity of physically observable
computations into account. The resulting model in [24] is very general, capturing
almost any conceivable form of physical leakage. However and as observed by
the authors themselves, this generality implies that the obtained positive results
(i.e. leading to useful constructions) are quite restricted in nature and it is not
clear how they apply to practice. This is especially true for primitives such as
modern block ciphers for which even the black box security cannot be proven.

In the present work, we consequently give up a part of this generality and con-
centrate on current attacks (i.e. key recovery) and adversaries (i.e. statistical pro-
cedures to efficiently discriminate the key), trying to keep a sound and systematic
approachaside these points. For this purpose, we first separate the implementation

A Unified Framework for the Analysis of Side-Channel Key 445

issue (i.e. “how good is my implementation?”) and the adversarial issue (i.e. “how
strong is my adversary?”) in the physically observable setting. We believe that
the methodological division of both concerns brings essential insights and avoids
previous confusions in the analysis of side-channel attacks. As a consequence, we
introduce two different types of evaluation metrics. First, an information theo-
retic metric is used to measure the amount of information that is provided by a
given implementation. Second, an actual security metric is used to measure how
this information can be turned into a successful attack. We propose candidates
for these metrics and show that they allow comparing different implementations
and adversaries. We also demonstrate important connections between them in the
practically meaningful context of Gaussian leakage distributions and discuss their
intuitivemeaning.Eventually,wemove fromformaldefinitions topractice-oriented
definitions in order to introduce a unified evaluation methodology for side-channel
key recovery attacks. We also provide an exemplary application of the model and
discuss its limitations.

Related works include a large literature on side-channel issues, ranging from
attacks to countermeasures and including statistical analysis concerns. The side-
channel lounge [12], DPA book [22] and CHES workshops [8] provide a good list
of references, a state-of-the art view of the field and some recent developments,
respectively. Most of these previous results can be re-visited in the following
framework in order to improve their understanding. The goal of this paper is
therefore to facilitate the interface between theoretical and practical aspects in
physically observable cryptography. We mention that in parallel to our work, the
models in [3,20] consider a restricted context of noiseless leakages. They allow
deriving formal bounds on the efficiency of certain attacks but are not aimed to
analyze actual devices (that always have to deal with noise) which is our main
goal. Finally, [25] initiated a study of forward secure cryptographic constructions
with rigorous security analysis of side-channel attacks. [11,26] then proposed
similar constructions in a more general setting and standard model. These works
exploit assumptions such as bounded adversaries or leakages of which the validity
can be measured for different devices thanks to the methodology in this paper.

Finally, our analysis employs ideas from the classical communication theory
[10,28,29]. But whereas source and channel coding attempt to represent the in-
formation in an efficient format for transmission, cryptographic engineers have
the opposite goal to make their circuit’s internal configurations unintelligible to
the outside world. This analogy provides a rationale for our metrics. Note that
different measures of uncertainty have frequently been used in the cryptographic
literature to quantify the effectiveness of various attacks, e.g. in [6]. Our line of
research follows a slightly different approach in the sense that we assign specific
tasks to different metrics. Namely, we suggest to evaluate implementations with
an information theoretic metric (conditional entropy) and to evaluate attacks and
adversarieswith securitymetrics (success rates or guessing entropy).This allows us
to consider first implementations as non-adversarial information emitting objects
where keys are randomly chosen, and then adversaries which operate under cer-
tain (computational and access) restrictions on top of the implementations. This

446 F.-X. Standaert, T.G. Malkin, and M. Yung

duality enables our model to be reflective of the situation in the real world and
therefore to be useful beyond theoretical analysis, i.e. applicable to any simulated
or actual lab data, for various cryptographic algorithms.

Note that because of place constraints, proofs and technical details have been
removed from the paper and made available in an extended version [30].

2 Intuitive Description of the Model and Terminology

In this section, we give an intuitive description of side-channel key recovery
attacks that will be formally defined and investigated in the rest of this paper.

A generic side-channel key recovery is illustrated in Figure 1 that we explain
as follows. First, the term primitive is used to denote cryptographic routines cor-
responding to the practical instantiation of some idealized functions required to
solve cryptographic problems. For example, the AES Rijndael is a cryptographic
primitive. Second, the term device is used to denote the physical realization
of a cryptographic primitive. For example, a smart card running the AES Ri-
jndael can be the target device of a side-channel attack. A side-channel is an
unintended communication channel that leaks some information from a device
through a physical media. For example, the power consumption or the electro-
magnetic radiation of a target device can be used as side-channels. The output of
a side-channel is a physical observable. Then, the leakage function is an abstrac-
tion that models all the specificities of the side-channel and the measurement
setup used to monitor the physical observables. An implementation is the combi-
nation of a cryptographic device and a leakage function. Finally, a side-channel
adversary is an algorithm (or a set of algorithms) that can query the implemen-
tation to get the leakage function results in addition to the traditional black-box
access. Its goal is to defeat a given security notion (e.g. key recovery) within
certain computational bounds and capabilities. Note that leakage functions and
cryptographic implementations (aka physical computers) are formally defined in
[24] and this paper relies on the same assumption as theirs.

Figure 1 suggests that, similarly to the classical communication theory, two
aspects have to be considered (and quantified) in physically observable cryp-
tography. First, actual implementations leak information, independently of the
adversary exploiting it. The goal of our information theoretic metric is to mea-
sure the side-channel leakages in order to give a sound answer to the question:
“how to compare different implementations?”. Second, an adversary analogous
to a specific decoder exploits these leakages. The goal of our security metrics is to
measure the extent to which this exploitation efficiently turns the information
available into a key recovery. Security metrics are the counterpart of the Bit-
Error-Rate in communication problems and aim to answer the question: “how
to compare different adversaries?”. Interestingly, the figure highlights the differ-
ence between an actual adversary (of which the goal is simply to recover some
secret data) and an evaluator (of which the goal is to analyze and understand
the physical leakages). For example, comparing different implementations with
an information theoretic metric is only of interest for an evaluator.

A Unified Framework for the Analysis of Side-Channel Key 447

si
de

-c
ha

nn
el

 a
dv

er
sa

ry

gu
es

se
d

si
gn

al

ac
tu

al
 s

ec
ur

ity
 m

et
ric

(s
uc

ce
ss

 ra
te

 o
r

gu
es

si
ng

 e
nt

ro
py

)

ph
ys

ic
al

le

ak
ag

e

pra
cti

ce

in
fo

rm
at

io
n

th
eo

re
tic

 m
et

ric
(c

on
di

tio
na

l e
nt

ro
py

)

theory

si
de

-c
ha

nn
el

 e
va

lu
at

or

no
is

e

ta
rg

et
 d

ev
ic

e
in

cl
ud

in
g

H
W

an

d
S

W
 c

ou
nt

er
m

ea
su

re
s

ph
ys

ic
al

ob

se
rv

ab
le

ta
rg

et
 im

pl
em

en
ta

tio
n

or
 p

hy
si

ca
l c

om
pu

te
r

si
de

-c
ha

nn
el

ta
rg

et

si
gn

al

m
ea

su
re

m
en

t
ap

pa
ra

tu
s

(e
.g

. o
sc

illo
sc

op
e)

pd
f

ap
pr

ox
im

at
io

n

P
H

A
S

E
 I:

pr
ep

ar
at

io
n

(p
ro

fil
in

g
&

ch
ar

ac
te

riz
at

io
n)

P
H

A
S

E
 II

:e
xp

lo
ita

tio
n

bl
ac

k
bo

x
I/O

’s

F
ig

.
1
.
In

tu
it
iv

e
de

sc
ri
pt

io
n

of
a

si
de

-c
ha

nn
el

ke
y

re
co

ve
ry

at
ta

ck

448 F.-X. Standaert, T.G. Malkin, and M. Yung

In practice, side-channel attacks are usually divided in two phases. First an
(optional) preparation phase provides the adversary with a training device and
allows him to profile and characterize the leakages. Second, an exploitation phase
is directly mounted against the target device and is aimed to succeed the key
recovery. Importantly, actual adversaries do not always have the opportunity
to carry out a preparation phase (in which case profiling is done on the fly).
By contrast, it is an important phase for evaluators since it allows performing
optimized attacks and therefore leads to a better analysis of the physical leakages.
Before moving to the definitions of our metrics, we finally mention the “theory”
and “practice” arrows leading to the information theoretic metric in Figure 1.
These arrows underline the fact that one can always assume a theoretical model
for the side-channel and perform a simulated attack. If the model is meaningful,
so is the simulated attack. But such simulations always have to be followed by an
experimental attack in order to confirm the relevance of the model. Experimental
attacks exploit actual leakages obtained from a measurement setup.

3 Formal Definitions

In this section, we define the metrics that we suggest for the analysis of physically
observable devices. We first detail two possible security metrics, corresponding
to different computational strategies. Both metrics relate to the notion of side-
channel key recovery. Then, we propose an information theoretic metric driven
by two requirements: (1) being independent of the adversary and (2) having the
same meaning for any implementation or countermeasure. As a matter of fact
and following the standard approach in information theory, Shannon’s condi-
tional entropy is a good candidate for such a metric. Typically, the use of an
average criteria to compare implementations is justified by the need of adver-
sary independence. By contrast, the interactions of an adversary with a leaking
system (e.g. adaptive strategies) are quantified with the security metrics in our
model. We note that these candidate metrics will be justified by theoretical facts
in Section 5 and practical applications in Section 6. However, it is an interesting
open problem to determine if other metrics are necessary to evaluate side-channel
attacks (e.g. min entropy is briefly discussed in Section 6).

3.1 Actual Security Metrics

Success Rate of the Adversary. Let EK = {Ek(.)}k∈K be a family of crypto-
graphic abstract computers indexed by a variable keyK. Let (EK , L) be the phys-
ical computers corresponding to the association of EK with a leakage function
L. As most cryptanalytic techniques, side-channel attacks are usually based on a
divide-and-conquer strategy in which different (computationally tractable) parts
of a secret key are recovered separately. In general, the attack defines a function
γ : K → S which maps each key k onto an equivalent key class1 s = γ(k), such
1 We focus on recovering key bytes for simplicity and because they are usual targets in

side-channel attacks. But any other intermediate value in an implementation could
be recovered, i.e. in general we can choose s = γ(k, x) with x the input of Ek(.).

A Unified Framework for the Analysis of Side-Channel Key 449

that |S| 3 |K|. We define a side-channel key recovery adversary as an algorithm
AEK ,L with time complexity τ , memory complexity m and q queries to the target
physical computer. Its goal is to guess a key class s = γ(k) with non negligible
probability, by exploiting its collected (black box and physical) information. For
this purpose, we assume that the output of the adversary AEK ,L is a guess vector
g = [g1, g2, . . . , g|S|] with the different key candidates sorted according to the
attack result: the most likely candidate being g1. A practice-oriented description
of AEK ,L with a detailed specification of its features is given in [30], Appendix A.
Finally, we define a side-channel key recovery of order o with the experiment:

Experiment Expsc-kr-o
AEK ,L

[g← AEk,L; s = γ(k); k R←− K;]
if s ∈ [g1, . . . , go] then return 1;

else return 0;

The oth-order success rate of AEK ,L against a key class variable S is defined as:

Succsc-kr-o,S
AEK ,L

(τ,m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (1)

Intuitively, a success rate of order 1 (resp. 2, . . .) relates to the probability
that the correct key is sorted first (resp. among the two first ones, . . .) by the
adversary. When not specified, a first order success rate is assumed.

Computational Restrictions. Similarly to black box security, computational
restrictions have to be imposed to side-channel adversaries in order to capture
the reality of physically observable cryptographic devices. This is the reason
for the parameters τ,m, q. Namely, the attack time complexity τ and memory
complexitym (mainly dependent on the number of key classes |S|) are limited by
present computer technologies. The number of measurement queries q is limited
by the adversary’s ability to monitor the device. In practice, these quantities
are generally separated for the preparation and exploitation phases (see Section
5). But additionally to the computational cost of the side-channel attack itself,
another important parameter is the remaining workload after the attack. For
example, considering a success rate of order o implies that the adversary still
has a maximum of o key candidates to test after the attack. If this has to be
repeated for different parts of the key, it may become a non negligible task.
As a matter of fact, the previously defined success rate measures an adversary
with a fixed maximum workload after the side-channel attack. A more flexible
metric that is also convenient in our context is the guessing entropy. It measures
the average number of key candidates to test after the side-channel attack. The
guessing entropy was originally defined in [23] and has been proposed to quantify
the effectiveness of adaptive side-channel attacks in [20]. It can be related to the
notion of gain that has been used in the context of multiple linear cryptanalysis
to measure how much the complexity of an exhaustive key search is reduced
thanks to an attack [5]. We use it as an alternative to the success rate.

450 F.-X. Standaert, T.G. Malkin, and M. Yung

Guessing Entropy. We first define a side-channel key guessing experiment:

Experiment Expsc-kg
AEK ,L

[g← AEk,L; s = γ(k); k R←− K;]
return i such that gi = s;

The guessing entropy of AEK ,L against a key class variable S is then defined as:

GE sc-kr-S
AEK,L

(τ,m, q) = E
(
Expsc-kg

AEK,L

)
(2)

3.2 Information Theoretic Metric

Let S be the previously used target key class discrete variable of a side-channel
attack and s be a realization of this variable. Let Xq = [X1, X2, . . . , Xq] be a vec-
tor of variables containing a sequence of inputs to the target physical computer
and xq = [x1, x2, . . . , xq] be a realization of this vector. Let Lq be a random
vector denoting the side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, i.e. one actual output of the leakage function L corresponding to the
input vector xq. Let finally Pr[s|lq] be the conditional probability of a key class
s given a leakage lq. We define the conditional entropy matrix as:

Hq
s,s∗ = −

∑
lq

Pr[lq|s] · log2 Pr[s∗|lq], (3)

where s and s∗ respectively denote the correct key class and a candidate out of
the |S| possible ones. From 3, we derive Shannon’s conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]
∑
lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

(
Hq

s,s

)
(4)

It directly yields the mutual information: I(S;Lq) = H[S]− H[S|Lq]. Note that
the inputs and outputs of an abstract computer are generally given to the side-
channel adversary (but hidden in the formulas for clarity reasons). Therefore,
it is implicitly a computational type of entropy that is proposed to evaluate
the physical leakages. This is because divide-and-conquer strategies target a key
class assuming that the rest of the key is unknown. But from a purely infor-
mation theoretic point of view, the knowledge of a plaintext-ciphertext pair can
determine a key completely (e.g. for block ciphers). Hence and as detailed in the
next section, the amount of information extracted by a side-channel adversary
depends on its computational complexity. Note also that leakage functions can
be discrete or (most frequently) continuous. In the latter case, it is formally a
conditional differential entropy that is computed. Note finally that in simulated
attacks where an analytical model for a continuous leakage probability distribu-
tion is assumed, the previous sums over the leakages can be turned into integrals.

A Unified Framework for the Analysis of Side-Channel Key 451

4 Practical Limitations

One important goal of the present framework is to allow a sound evaluation of any
given implementation, if possible independently of an adversary’s algorithmic
details. For this purpose, the strategy we follow is to consider an information
theoretic metric that directly depends on the leakages probability distribution
Pr[Lq|S]. Unfortunately, there are two practical caveats in this strategy.

First, the conditional probability distribution Pr[Lq|S] is generally unknown.
It can only be approximated through physical observations. This is the reason
for the leakage function abstraction in the model of Micali and Reyzin that we
follow in this work. It informally states that the only way an adversary knows the
physical observables is through measurements. Therefore, practical attacks and
evaluations have to exploit an approximated distribution P̂r[Lq|S] rather than
the actual one Pr[Lq|S]. Second, actual leakages may have very large dimensions
since they are typically the output of a high sampling rate acquisition device like
an oscilloscope. As a consequence, the approximation of the probability distri-
bution for all the leakage samples is computationally intensive. Practical attacks
usually approximate the probability distribution of a reduced set of samples,
namely P̂r[L̃q|S]. We denote side-channel attacks that exploit the approximated
probability distribution of a reduced set of leakage samples as generic template
attacks. A straightforward consequence of the previous practical limitations is
that for any actual device, the mutual information I(S;Lq) can only be approx-
imated through statistical sampling, by using generic template attacks.

We note there are different concerns in the application of template attacks
such as: “how to limit the number of leakage samples for which the distribution
will be estimated?” or “how to limit the number of templates to build?”. The
data dimensionality reduction techniques used in [4,32] and the stochastic models
in [16,27] can be used to answer these questions in a systematic manner. But
there is no general theory allowing one to decide what is the best attack for a
given device. Hence, in the following we will essentially assume that one uses the
“best available tool” to approximate the leakage distribution. Quite naturally,
the better generic template attacks perform in practice, the better our framework
allows analyzing physical information leakages.

5 Relations between the Evaluation Metrics

In this section, we provide theoretical arguments that justify and connect the
previous information theoretic and security metrics. These connections allow us
to put forward interesting features and theoretical limitations of our model. In
particular, we will consider two important questions.

First, as mentioned in Section 4, generic template attacks require to estimate
the leakage probability distribution. Such a leakage model is generally built dur-
ing a preparation phase and then used to perform a key recovery during an
exploitation phase (as pictured in Figure 1). And as mentioned in Section 3.1,
these phases have to be performed within certain computational limits. Hence,

452 F.-X. Standaert, T.G. Malkin, and M. Yung

to the previously defined complexity values τ,m, q of the online phase, one has
to add the complexities of the preparation phase, denoted as τp, mp, qp. The
first question we tackle is: given some bounds on (τp,mp, qp), can an adversary
build a good estimation of the leakage distribution? We show in Section 5.1
that the conditional entropy matrix of Equation (3) is a good tool to answer
this question. We also show how it relates to the asymptotic success rate of a
Bayesian adversary. Then, assuming that one can build a good approximation
for the leakage distribution, we investigate the extent to which the resulting es-
timation of the mutual information allows comparing different implementations.
Otherwise said, we analyze the dependencies between our information theoretic
and security metrics. We show that there exist practically meaningful contexts of
Gaussian side-channels for which strong dependencies can be put forward. But
we also emphasize that no general statements can be made for arbitrary dis-
tributions. Section 5.2 essentially states that the mutual information is a good
metric to compare different implementations, but it always has to be completed
with a security analysis (i.e. success rate and/or guessing entropy).

5.1 Asymptotic Meaning of the Conditional Entropy:
“Can I Approximate the Leakage Probability Distribution?”

We start with three definitions.

Definition 1. The asymptotic success rate of a side-channel adversary AEK ,L

against a key class variable S is its success rate when the number of measure-
ment queries q tends to the infinity. It is denoted as: Succsc-kr-o,S

AEK,L
(q →∞).

Definition 2. Given a leakage probability distribution Pr[Lq|S] and a num-
ber of side-channel queries stored in a leakage vector lq, a Bayesian side-channel
adversary is an adversary that selects the key as argmaxs∗ Pr[s∗|lq].
Definition 3.An approximated leakage distribution P̂r[L̃q|S] is sound if the
first-order asymptotic success rate of a Bayesian side-channel adversary exploit-
ing this leakage distribution against the key class variable S equals one.

In this section, we assume that one has built an approximated leakage dis-
tribution P̂r[L̃q|S] with some (bounded) measurement queries qp, memory mp

and time τp. We want to evaluate if this approximation is good. For theoreti-
cal purposes, we consider an adversary/evaluator who can perform unbounded
queries to the target device during the exploitation phase. We use these queries
to evaluate the entropy matrix Ĥ

q

s,s∗ defined in Section 3.2. It directly leads to
the following relation with the asymptotic success rate of a Bayesian adversary.

Theorem 1. Assuming independent leakages for the different queries in a side-
channel attack, an approximated leakage probability distribution P̂r[L̃q|S] is sound
if and only if the conditional entropy matrix evaluated in an unbounded exploitation
phase is such that argmins∗ Ĥ

q

s,s∗ = s, ∀s ∈ S.

A Unified Framework for the Analysis of Side-Channel Key 453

The proof of Theorem 1 is given in [30]. There are several important remarks:

1. Theorem 1 only makes sense for bounded preparation phases. For unbounded
preparations, an adversary would eventually access the exact distribution
Pr[Lq|S]. In this context, the soundness does only depend on the cardinality
of the different sets {s∗|Pr[Lq|s∗] = Pr[Lq|s]}, ∀s ∈ S.

2. The condition of independence for consecutive leakages is not expected to
be fully verified in practice. For example, there could exist history effects in
the side-channel observations. However, it is expected to hold to a sufficient
degree for our proof to remain meaningful in most applications.

3. In practice, the exploitation phase in a side-channel attack is bounded as the
preparation. Therefore, Theorem 1 will be relevant as long as the number
of leakages used to test the approximated leakage distribution and estimate
the conditional entropy matrix is sufficient.

4. Finally, the condition on the entropy matrix Ĥ
q

s,s∗ is stated for the number
of queries q for which the leakage distribution Pr[Lq|S] was approximated
during the preparation phase. In general, finding a sound approximation for
q implies that it should also be feasible to find sound approximations for
any q′ > q. But in practice, computational limitations can make it easier to
build a sound approximation for small q values than for larger ones.

5.2 Comparative Meaning of the Conditional Entropy:
“Does More Entropy Imply More Security?”

Let us write an exemplary conditional entropy matrix and its estimation as:

Hq
s,s∗ =

⎛⎜⎜⎝
h1,1 h1,2 ... h1,|S|
h2,1 h2,2 ... h2,|S|
...

h|S|,1 h|S|,2 ... h|S|,|S|

⎞⎟⎟⎠ Ĥ
q

s,s∗ =

⎛⎜⎜⎝
ĥ1,1 ĥ1,2 ... ĥ1,|S|
ĥ2,2 ĥ2,2 ... ĥ2,|S|
...

ĥ|S|,1 ĥ|S|,2 ... ĥ|S|,|S|

⎞⎟⎟⎠
Theorem 1 states that if the diagonal values of a (properly approximated) matrix
are minimum for all key classes s ∈ S, then these key classes can be asymptot-
ically recovered by a Bayesian adversary. As a matter of fact, it gives rise to
a binary conclusion about the approximated leakage probability distribution.
Namely, Theorem 1 answers the question: “Can one approximate the leakage
probability distribution under some computational bounds τp,mp,qp?”.

Let us now assume that the answer is positive and denote each element hs,s

as the residual entropy of a key class s. In this subsection, we are interested
in the values of these entropy matrix elements. In particular, we aim to high-
light the relation between these values and the effectiveness of a side-channel
attack, measured with the success rate. Otherwise said, we are interested in the
question: “Does less entropy systematically implies a faster convergence towards
a 100% success rate?”. Contrary to the previous section, this question makes
sense both for the ideal conditional entropy matrix that would correspond to an
exact leakage distribution and for its approximation. Since general conclusions
for arbitrary leakage distributions are not possible to obtain, our strategy is to

454 F.-X. Standaert, T.G. Malkin, and M. Yung

first consider simple Gaussian distributions and to extrapolate the resulting con-
clusions towards more complex cases. We start with three definitions.

Definition 4. An |S|-target side-channel attack is an attack where an adversary
tries to identify one key class s out of |S| possible candidates.

Definition 5. An univariate (resp. multivariate) leakage distribution is a proba-
bility distribution predicting the behavior of one (resp. several) leakage samples.

Definition 6. A Gaussian leakage distribution is the probability distribution of
a leakage function that can be written as the sum of a deterministic part and a
normally distributed random part, with mean zero and standard deviation σ.

Finally, since we now consider the residual entropies of the different key classes
separately, we need a more specific definition of the success rate against a key
class s (i.e. a realization of the variable S), denoted as Succsc-kr-o,s

AEk,L
(τ,m, q). It

corresponds to the definition of Section 3.1 with a fixed key class.

Examples. Figure 2 illustrates several Gaussian leakage distributions. The up-
per left picture represents the univariate leakage distributions of a 2-target side-
channel attack, each Gaussian curve corresponding to one key class s. The up-
per right picture represents the bivariate leakage distributions of a 2-target side-
channel attack. Finally, the lower left and right pictures represent the univariate
and bivariate leakage distributions of an 8-target side-channel attack. Note that
in general, the internal state of an implementation does not only depend on the
keys but also on other inputs, e.g. the plaintexts in block ciphers. Hence, the dif-
ferent dimensions in a multivariate distribution can represent both the different
samples of a single leakage trace (generated with a single plaintext) or different
traces (e.g. each dimension could correspond to a different plaintext). Eventually,
it is an adversary’s choice to select the internal states for which templates will be
built. Therefore, we do not claim that these distributions always connect to prac-
tical attacks. But as will be seen in the following, even these simple theoretical
contexts hardly allow simple connections between information and security.

We now discuss formally the connections between the success rate against a key
class s and its residual entropy for idealized distributions and attacks.

Definition 7. An ideal side-channel attack is a Bayesian attack in which the
leakages are exactly predicted by the adversary’s approximated probability den-
sity function P̂r[L̃q|S] (e.g. thanks to an unbounded preparation phase).

Lemma 1. In an ideal 2-target side-channel attack exploiting a univariate Gaus-
sian leakage distribution, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Lemma 2. In an ideal 2-target side-channel attack exploiting a multivariate Gaus-
sian leakage distribution, with independent leakage samples having the same noise
standarddeviation, the residual entropyof a key class s is amonotonously decreasing
function of the single query (hence multi-queries) success rate against s.

A Unified Framework for the Analysis of Side-Channel Key 455

0
0

0.5

1

1.5

2

leakage values

le
ak

ag
e

pd
f

0
1

2
3

0
1

2
3

0

0.5

1

1.5

2

2nd leakage sample1st leakage sample

le
ak

ag
e

pd
f

0 1
0

0.5

1

1.5

2

leakage value

le
ak

ag
e

pd
f

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

1st leakage sample
2n

d
le

ak
ag

e
sa

m
pl

e

δ

δ i

Fig. 2. Illustrative leakage probability distributions Pr[Lq|S]

These lemmas essentially state that (under certain conditions) the entropy and
success rate in a 2-target side-channel attack only depend on the distance be-
tween the target leakages mean values normalized by their variance. It implies
the direct intuition that more entropy means less success rate. Unfortunately,
when moving to the |S|-target case with |S| > 2, such a perfect dependency does
not exist anymore. One can observe in the lower right part of Figure 2 that the
entropy and success rate not only depend on the normalized distances δi/σ but
also on how the keys are distributed within the leakage space. Therefore, we now
define a more specific context in which formal statements can be proven.

Definition 8. A perfect Gaussian leakage distribution Pr[Lq|s] for a key class s
is a Gaussian leakage distribution with independent leakage samples having the
same noise standard deviation such that the Euclidean distance between each
key class candidate mean value and the correct key class candidate mean value
is equal and the residual entropy of the key class s is maximum.

Theorem 2. In an ideal side-channel attack exploiting a perfect Gaussian leak-
age distribution, the residual entropy of a key class s is a monotonously decreas-
ing function of the single query (hence multi-queries) success rate against s.

The proofs of Lemmas 1, 2 and Theorem 2 are given in [30]. They constitute
our main positive results for the use of the conditional entropy as a comparison
metric for different implementations. Unfortunately, in the most general context
of non perfect leakage distributions, those general statements do not hold. Facts
1 and 2 in [30] even demonstrate that there exist no generally true dependencies
between the conditional entropy and the success rate in a general setting.

456 F.-X. Standaert, T.G. Malkin, and M. Yung

5.3 Intuition of the Metrics

In this section, we recall and detail a number of important intuitions that can be
extracted from the previous theory. We also discuss how they can be exploited
in practical applications and highlight their limitations.

Intuitions Related to Theorem 1

1.1 Theorem 1 tells if it is possible to approximate a given leakage function in
a bounded preparation phase. As mentioned in Section 4, such an approxi-
mation highly depends on the actual tools that are used for this purpose. In
general, the better the tools, the better the evaluation. Hence, Theorem 1
allows checking if these tools are powerful enough. If they are not...

1.2 Theorem 1 indicates some resistance of the target implementation against
side-channel attacks. If one cannot build a sound approximation of the leak-
age probability distribution, even with intensive efforts, then the 1st-order
asymptotic success rate of the Bayesian side-channel adversary does not
reach one. But this does not imply security against side-channel attacks
(e.g. think about a device where only one key could not be recovered). In
this context, it is important to evaluate the actual security metrics for dif-
ferent adversaries in order to check if high success rates can still be reached.

Intuitions Related to Theorem 2

2.1 Theorem 2 only applies to sound leakage distributions. Intuitively, it means
that comparing the conditional entropy provided by different leakage func-
tions only makes sense if the corresponding approximated leakage probability
distribution lead to asymptotically successful attacks.

2.2 Theorem 2 confirms that mutual information is a relevant tool to compare
different implementations. It shows meaningful contexts of Gaussian chan-
nels for which less residual entropy for a key class implies a more efficient
attack. It strengthens the intuitive requirements of Section 3, namely an ad-
versary independent metric with the same meaning for any implementation.

2.3 The conditional entropy is not a stand-alone metric to compare implemen-
tations and always has to be combined with a security analysis. This relates
both to theoretical limitations (since there exists no general relation between
information and security) and practical constraints. For a given amount of
information leaked by an implementation, different side-channel distinguish-
ers could be considered. Therefore, security metrics are useful to evaluate
the number of queries for these different attacks to succeed.

Note that the mutual information, success rates and guessing entropy are average
evaluation criteria. However in practice, the information leakages and security of
an implementation could be different for different keys. Therefore, it is important
to also consider these notions for the different keys separately (e.g. to evaluate

A Unified Framework for the Analysis of Side-Channel Key 457

the conditional entropy matrix rather than the mutual information). This last
remark motivates the following practice-oriented definition.

Definition 9. We say that a side-channel attack against a key class variable S
is a weak template attack if all the key classes s have the same residual entropy
hs,s and each line of the entropy matrix Hq

s,s∗ is a permutation of another line
of the matrix. We say that a side-channel attack is a strong template attack if
at least one of the previous conditions does not hold.

6 Applications of the Model

In order to confirm that (although limited by theoretical concerns) the intu-
ition of Theorem 2 applies to practice, this section provides examples of side-
channel attacks that can be reproduced by the reader. Applications to more
complex and practically meaningful contexts can be found in other publications
[21,30,31,32,33].

For this purpose, we consider a known plaintext attack against a reduced
block cipher that we formalize as follows. Let S be a 4-bit substitution box, e.g.
from the AES candidate Serpent. We target the computation of y = S(x ⊕ k),
where x is a random plaintext and k a secret key. A Bayesian adversary is pro-
vided with observations (x, L′(y) + r), where r is a gaussian noise with mean
0 and standard deviation σ. For any y value, the deterministic part of the
leakage L′(y) is given by a vector Z. The adversary’s goal is to recover the
key k. Our simulations exploit different leakage functions and assume an un-
bounded preparation phase (i.e. the adversary has knowledge of the exact leakage
distribution). We start the frequently observed Hamming weight leakages and
Z1 = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]. We also evaluate two other leakage
functions represented by the vectors: Z2 = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
and Z3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4]. The conditional entropies and
single-query success rates with σ = 0 can be straightforwardly computed as:

H[K|LZ1
1] - 1.97 H[K|LZ2

1] = 2 H[K|LZ3
1] - 2.16

Succsc-kr
LZ1

1
(q = 1) = 5

16 Succsc-kr
LZ2

1
(q = 1) = 1

4 Succsc-kr
LZ3

1
(q = 1) = 5

16

At first sight, it seems that these leakage functions exactly contradict Theorem
2. For example, when moving from Z2 to Z3, we see that both the conditional
entropy and the success rate are increased. However, the goal of side-channel
attacks is generally to reach high success rates that are not obtained with a
single query. Hence, it is also interesting to investigate the success rate for more
queries. In the left part of Figure 3, these success rates for increasing q values are
plotted. It clearly illustrates that while Z2 leads to a lower success rate than Z3
for q = 1, the opposite conclusion holds when increasing q. That is, the intuition
given by Theorem 2 only reveals itself for q > 2. Importantly, these conclusions
can vary when noise is inserted in the leakages, e.g. assuming σ = 1, we have:

H[K|LZ1
1] - 3.50 H[K|LZ2

1] - 3.42 H[K|LZ3
1] - 3.22

458 F.-X. Standaert, T.G. Malkin, and M. Yung

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of queries

su
cc

es
 r

at
e

σ = 0

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of queries

su
cc

es
s

ra
te

σ = 1

Fig. 3. 1st-Order success rates in function of the number of queries for the leakages
functions corresponding to Z1 (solid line), Z2 (dashed line) and Z3 (dotted line)

The right part of Figure 3 plots the success rates of these noisy leakage functions.
It again highlights a context in which Theorem 2 is eventually respected. In gen-
eral, these examples underline another important feature of our metrics. Namely,
the more challenging the side-channel attack (i.e. the more queries needed to
reach high success rates), the more significant the conditional entropy is. Oth-
erwise said: the mutual information better reveals its intuition asymptotically.
And in such contexts, the single-query success rate can be misleading.

Note that the examples in this section are more directly reflective of actual
side-channel attacks in which different plaintexts can generally be used to iden-
tify a key class than the ideal contexts investigated in Section 5.2.

A Short Note on Minimum Entropy. With respect to the relevance of
other metrics in the model, we finally mention that min entropy is equivalent to
a single-query success rate. Since side-channel attacks are essentially multiple-
query attacks, we believe that Shannon’s conditional entropy better captures
the information leakages in most practical applications. For example, Figure 3 is
typical of contexts where min entropy is misleading, i.e. where the success rate
for q = 1 is not very significant while the conditional entropy nicely quantifies the
evolution of this success rate for any larger q. But as already said, the information
theoretic analysis always has to be completed with a security analysis. Hence,
even in contexts where min entropy is the right metric, our model would detect it.

7 Evaluation Methodology

Following the previous sections, an evaluation methodology for side-channel at-
tacks intends to analyze both the quality of an implementation and the strength
of an adversary, involving the five steps illustrated in Figure 4. It again indicates
that the information theoretic metric can be used to measure an implementation
while the actual security metrics are rather useful to evaluate adversaries. Addi-
tionally to these metrics, it is often interesting to define a Signal-to-Noise Ratio
(SNR) in order to determine the amount of noise in the physical observations.

A Unified Framework for the Analysis of Side-Channel Key 459

Define the implementation 1 (EK ,L)

Define the target 2 s, | |

Evaluate the information

3 In theory: I (S ; L) ,

 In practice: I (S ; R (L)) , Evaluate the security5q

Define the adversary4

 In theory In practice

 Succ (,m,q) Succ (,m,q)

 GE (,m,q) GE (,m,q)

Signal-to-Noise Ratio

q

EK ,LA

^

A EK ,L

A EK ,L

A EK ,L

A EK ,L

sc-kr-o,Ssc-kr-o,S

sc-kr-o,Ssc-kr-o,S

~
Hq

s,s

Hq
s,s

^
*

*

Fig. 4. Evaluation methodology for side-channel attacks

Since noise insertion is a generic countermeasure to improve resistance against
side-channel attacks, it can be used to plot the information theoretic and security
metrics with its respect. We note finally that the definition of an implementa-
tion requires to evaluate the cost of the equipment used to monitor the leakages.
Since quantifying such costs is typically the tasks assigned the standardization
bodies, we refer to the common criteria [9] and FIPS 140-2 documents [13] (or
alternatively to the IBM taxonomy [1]) for these purposes. In general, the benefit
of the present model is not to solve these practical issues but to state the side-
channel problem in a sound framework for its analysis. Namely, it is expected
that the proposed security and information theoretic metrics can be used for
the fair analysis, evaluation and comparison of any physical implementation or
countermeasure against any type of side-channel attack.

8 Conclusions and Open Problems

A framework for the analysis of cryptographic implementations is introduced in
order to unify the theory and practice of side-channel attacks. It is aimed to
bridge the formal understanding of physically observable cryptography to the
exploitation of actual leakages in experimental key recoveries. The framework is
centered around a theoretical model in which the effect of practically relevant
leakage functions is evaluated with a combination of security and information
theoretic metrics. It allows discussing the underlying tradeoffs in physically ob-
servable cryptography in a fair manner. As an interface between an engineering
problem (how much is leaked?) and a cryptographic problem (how to exploit it?),
our framework helps putting forward properly quantified weaknesses in physi-
cally observable devices. The fair evaluations that it provides can then be used in
two directions. Either the physical weaknesses can be sent to hardware designers

460 F.-X. Standaert, T.G. Malkin, and M. Yung

in order to reduce physical leakages. Or they can be transmitted to cryptographic
designers in order to conceive schemes that can cope with physical leakages.

Open questions derive from this model in different directions. A first one re-
lates to the best exploitation of large side-channel traces, i.e. to the construction
of (ideally) optimal distinguishers. This requires investigating the best heuristics
to deal with high dimensional leakage data (our model assumes adversaries ex-
ploiting such specialized algorithms). A second one relates to the investigation of
stronger security notions than side-channel key recovery. That is, the different se-
curity notions considered in the black box model (e.g. undistinguishability from
an idealized primitive) should be considered in the physical world, as initiated in
[24] (but again in a more specialized way). A third possible direction relates to
the construction of implementations with provable (or arguable) security against
side-channel attacks, e.g. as proposed in [11,26,25]. Finally, this work could be
extended to other physical threats (e.g. fault attacks) and combined with other
approaches for modeling physical attacks such as [15,17,18].

References

1. Abraham, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction Security
System. IBM Systems Journal 30(2), 206–229 (1991)

2. Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM side-channel(s). In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

3. Backes, M., Köpf, B.: Formally Bounding the Side-Channel Leak-
age in Unknown-Message Attacks, IACR ePrint archive (2008),
http://eprint.iacr.org/2008/162

4. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template at-
tacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

5. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

6. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography, PhD
Thesis, ETH Dissertation, num 12187, Zurich, Switzerland (1997)

7. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

8. Cryptographic Hardware and Embedded Systems, http://www.chesworkshop.org
9. Application of Attack Potential to Smart Cards, Common Criteria Supporting

Document, Version 1.1 (July 2002), http://www.commoncriteriaportal.org
10. Cover, T.M., Thomas, J.A.: Information Theory. Wiley and Sons, New York (1991)
11. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: The proceed-

ings of FOCS 2008, Philadelphia, USA, pp. 293–302 (October 2008)
12. ECRYPT Network of Excellence in Cryptology, The Side-Channel Cryptanalysis

Lounge, http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
13. FIPS 140-2, Security Requirements for Cryptographic Modules, Federal Informa-

tion Processing Standard, NIST, U.S. Dept. of Commerce (December 3, 2002)
14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.

In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

A Unified Framework for the Analysis of Side-Channel Key 461

15. Gennaro, R., Lysyanskaya, A., Malkin, T.G., Micali, S., Rabin, T.: Algorithmic
Tamper-Proof Security: Theoretical Foundations for Security Against Tampering.
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg
(2004)

16. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

18. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

20. Köpf, B., Basin, D.: an Information Theoretic Model for Adaptive Side-Channel At-
tacks. In: The proceedings of ACMCCS 2007, Alexandria, VA, USA (October 2007)

21. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

23. Massey, J.L.: Guessing and Entropy. In: The proceedings of the IEEE International
Symposium on Information Theory, Trondheim, Norway, p. 204 (June 1994)

24. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

25. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Ci-
pher based PRNG Secure Against Side-Channel Key Recovery. In: ASIACCS 2008,
Tokyo, Japan, pp. 56–65 (March 2008)

26. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: The proceedings of Eu-
rocrypt 2009, Cologne, Germany. LNCS (April 2009) (to appear)

27. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–
46. Springer, Heidelberg (2005)

28. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

29. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1949)

30. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analy-
sis of Side-Channel Key Recovery Attacks (extended version), Cryptology ePrint
Archive, Report 2006/139

31. Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards security
limits in side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 30–45. Springer, Heidelberg (2006)

32. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

33. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

A Leakage-Resilient Mode of Operation

Krzysztof Pietrzak

CWI Amsterdam, The Netherlands

Abstract. A weak pseudorandom function (wPRF) is a cryptographic
primitive similar to – but weaker than – a pseudorandom function: for
wPRFs one only requires that the output is pseudorandom when queried
on random inputs. We show that unlike “normal” PRFs, wPRFs are seed-
incompressible, in the sense that the output of a wPRF is pseudorandom
even if a bounded amount of information about the key is leaked.

As an application of this result we construct a simple mode of opera-
tion which – when instantiated with any wPRF – gives a leakage-resilient
stream-cipher. The implementation of such a cipher is secure against ev-
ery side-channel attack, as long as the amount of information leaked per
round is bounded, but overall can be arbitrary large. The construction
is simpler than the previous one (Dziembowski-Pietrzak FOCS’08) as it
only uses a single primitive (a wPRF) in a straight forward manner.

1 Introduction
Traditionally, cryptographic algorithms are designed to withstand adversaries
that can attack the cryptosystem in a black-box fashion. This means that all
the adversary can do is to query the system at hand according to the security
definition. In many settings this is not a realistic assumption, as real-world ad-
versaries attack concrete implementations of cryptosystems, that possibly leak
information which cannot be efficiently computed from black-box access alone.
Attacks exploiting such leakage are called side-channel attacks. In the last two
decades we saw many cryptanalytic attacks exploiting side-channels as running-
time [31], electromagnetic radiation [39, 19], power consumption [33] and fault
detection [4, 3]. A recent example [18] is the side-channel attack against KeeLoq
(which refers to the “KeeLoq block-cipher” and some particular mode in which
this cipher is used), which is widely used as e.g. anti-theft mechanisms for cars.
Although the KeeLoq block-cipher seems not to be very secure to start with [9,
27], the devastating side-channel attack of [18] exploits a weakness in the mode
in which the cipher is used, rather than a weakness in the cipher itself, and it
would still be applicable even if the KeeLoq block-cipher was replaced with a
strong block-cipher, say AES ([18] Talk of Christof Paar). It is thus an intrigu-
ing question whether there exist modes of operation which are provably secure
against a wide class of side-channel attacks if instantiated with any block-cipher.

In this paper we answer this question affirmatively, by proposing a mode of
operation (cf. Figure 1) which turns any weak PRF into a stream-cipher which is
provably secure against all side-channel attacks, assuming only that the amount

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 462–482, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

A Leakage-Resilient Mode of Operation 463

of leakage in each round is bounded, and that only memory which is actually
accessed in some round leaks in this round. Such a “leakage-resilient” cipher was
recently constructed in [17], the main advantage of our new construction is its
simplicity, it can be instantiated with any weak PRF (e.g. with a block-cipher
like AES), whereas the construction from [17] additionally required extractors.

The simplicity of the construction (as compared to [17]) comes at the price of
more involved security proof. Besides the technical tools we already used in [17],
we will need new results concerning the security of weak PRFs when neither the
key nor the inputs are uniform. The technique we use to prove this results can
also be applied in other settings, e.g. for encryption schemes, and thus could be
of independent interest.

Why Leakage-Resilience. Leakage-resilience is an extremely strong security
notion considering adversaries who can choose arbitrary leakage functions. To
practitioners this may seem like an overkill, after all, why consider unrealistic
side-channels which leak some very involved function of the state instead of using
some ad-hoc countermeasures against “real” side-channels? A lesson cryptogra-
phers have learned in the last decades is that ad-hoc arguments usually result in
insecure systems, and this very much applies to the young history of side-channel
cryptanalysis. Implementing cryptographic algorithms in a straight forward way,
will almost certainly make them very susceptible to side-channel attacks. Often
– like in differential power analysis [33, 8] – such attacks extract a little bit of
information in each evaluation, and then combine this information to get the
secret key. Thus it is crucial that an implementation does not leak even small
amounts of (useful) information. In contrast, “leakage-resilient” algorithms as
considered in this work guarantee security even if in each invocation a bounded
amount of arbitrary information is leaked.

We advocate the following approach to side-channel security: first cryptogra-
phers design a leakage-resilient algorithm C, with the guarantee that whenever
you implement C such that in each invocation ≤ λ bits of information leak, the
implementation is safe. This still leaves the task of implementing C such that
the ≤ λ leakage bound is met.1 The rationale here is that this task is clearly
much more realistic than having to implement an algorithm in way where noth-
ing leaks at all, as it would be necessary if the algorithm would come with no
bound on the leakage that can be tolerated. (cf. Kocher [32] for a similar argu-
ment). It is only at this stage that one should consider using ad-hoc measures
like masking or blinding, using special circuit designs, and so on. Cryptography
seems to be of limited use at this stage, but a background on existing attacks and
implementation details is helpful here, thus this task is something that should
be left to security researchers and engineers.

Some Related Work. Most papers on side-channel security – like [31, 39, 19,
33, 4, 3] mentioned in the introduction – consider attacks and/or countermeasures

1 Note that this is unavoidable, as when one cannot keep at least some uncertainty
about the internal state, one cannot hope to get a secure implementation.

464 K. Pietrzak

against a specific side-channel. From the papers considering general models for
side-channel attacks, the work of Micali and Reyzin [35] on “physically observable
cryptography” is particularly insightful and written in a language accessible to
cryptographers. Their model is based on five “axioms”, some of which are (more
or less explicitly) used in our model.

Ishai et al. [29, 28] consider a model where the adversary can choose some
wires in the circuit, and then learns the values carried by those wires during
the computation. What makes their work exceptional is that they were the first
to prove how to implement any algorithm secure against an interesting side-
channel (i.e. probing attacks).2 The field of exposure-resilient cryptography [11]
considers the more restricting case where the adversary could learn some of the
input bits.

Very recently [1] showed that some particular public-key encryption schemes
are surprisingly robust against leakage: the scheme stays secure even if the min-
entropy of the key is just a constant fraction of the min-entropy of a random key.
We prove a similar result for any weak PRFs, but in order prove security even
for keys with such low min-entropy, we need the weak PRF to be exponentially
hard, whereas [1] can do so with some particular superpolynomial assumptions
(learning with error and lattice assumptions).

Papers that consider constructions of stream-ciphers which withstand side-
channel attacks (as in this work and [17]) include [32, 35, 36]. Kocher [32] con-
siders a very simple construction where one simply iterates a hash function
(SHA256 is suggested). This work is kept informal, with no proofs or even for-
mal claims, but contains several interesting conceptual ideas. Micali and Reyzin
[35] investigate reductions of side-channel resistant primitives, in particular they
show that the Blum-Micali construction is secure, assuming the implementation
of the underlying permutation already satisfies some strong form of side-channel
security. The work which aims at a goal most similar to ours is Petit et al. [36].
They propose and analyze a block-cipher based construction, where security
against sides-channels is achieved by making it hard to “combine” leakages from
different rounds.3 Their underlying model [41] is motivated by practical consid-
erations, considering leakage-functions and attacks that have been successfully
used to break systems. Compared to [36], we take a much more theoretical ap-
proach, our setting is more general and the underlying assumptions are weaker

2 Formally, Ishai et al. do the following: let t ≥ 0 be some constant and let [X] denote
a (t + 1) out of (t + 1) secret sharing of the value X. They construct a general
compiler, which turns every circuit G(.) into a circuit Gt(.) (of size t2|G|) such that
[G(X)] = Gt([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any t wires in the circuit Gt(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.

3 By using a forward secure primitive, one can ensure that past keys cannot be com-
bined with the current key, as they cannot even be computed. For future keys, this
is more tricky, as the cipher itself must be able to efficiently derive that keys.

A Leakage-Resilient Mode of Operation 465

in several aspects.4 The tools and techniques from [17] and this paper cannot be
used to prove security of the constructions from [32, 35, 36] (or any other con-
struction we are aware of), as those constructions are insecure against arbitrary
leakage functions as considered in this work, even if the underlying primitives
are ideal (e.g. Random oracles in [32] or ideal ciphers in [36]) and only one bit
of information leaks per invocation of the underlying primitive. (but this does
by no means mean that they are insecure against side-channels that arise in
practice.)5

Some interesting recent results in settings which are similar or otherwise rel-
evant to general models of side-channel security include [5], who show how to
securely realize protocols when perfect deletion is not possible. Goldwasser et al.
[22] construct “one-time programs” from simple hardware satisfying some weak
form of side-channel security. Dodis and Wichs [12] solve the long standing open
problem of two round authenticated key-agreement from non-uniform keys. (See
the full version [37] for a more detailed discussion on those papers.)

1.1 Leakage-Resilient Cryptography

In this section we informally introduce and motivate the model of “leakage-
resilient cryptography” from [17].

Consider some keyed cryptographic primitive CP. The most general side-
channel attack against CP(S0) – where S0 denotes the secret initial state – is
to allow an attacker to choose any leakage function f , which then is evaluated
on the initial state S0, and the adversary receives f(S0).6 Clearly we cannot
hope for any security at all here, as f could simply output the complete state
f(S0) = S0. Thus, it is necessary to somehow restrict the range of the leakage
function, we will consider functions with range {0, 1}λ, where λ 3 |S0| is some
parameter. The idea to define the set of leakage functions by restricting the out-
put length was inspired by the bounded-retrieval model [10, 14, 13, 6, 16], which
in turn was inspired by the bounded-storage model [34, 15, 42].
4 In particular 1. We prove security in the standard model, whereas [36] work in the ideal-

cipher model 2. The security notion considered in [36] is key-recovery, whereas we use
unpredictability (and, in a limited context, indistinguishability). 3. The leakage func-
tions considered in [36] (namely Hamming weight or identity plus noise) are motivated
by leakages observed in practice, whereas we bound only the amount, not the type of
information leaked 4. Finally, and most importantly, our approach differs in how the
observed leakage (cf. point 3.) can be exploited in order to break the security notion (cf.
point 2.). [36] show that a so called template attack [7] cannot recover the key, whereas
we prove security against every efficient adversary.

5 A crucial requirement we need from the construction in order to prove leakage-
resilience, is that the state can be split in (at least) two parts, and this parts evolve
independently, in the sense that any interaction between them is public. Formally,
one must be able to express the cipher as a process as in Lemma 5 in this paper.

6 Here the leakage function is applied only to the state S0, and not to any internal
variables appearing in the computation. This can be done without loss of generality
as all the internal variables are simply functions of the state S0, and thus can be
computed by f .

466 K. Pietrzak

As the implementation of any cryptosystem will leak more information the
longer it runs, we want to allow the attacker A to adaptively choose different
leakage functions during the lifetime of the system. For this, we assume that CP
runs in rounds (where a “round” is just some well defined part of the computa-
tion), and denote with Si the state of CP after round i (to simplify the exposition
we assume that the size of the state remains constant).

The attacker A we consider can adaptively choose a leakage function fi be-
fore the ith round, and after round i receives fi(Si−1), i.e. the leakage function
evaluated on the state at the beginning of round i. Unfortunately also here no
security is possible beyond round t, where t · λ ≥ |S0|, as A can simply define
the fi’s such that fi(Si−1) will be some λ bits of St. (note that for i ≤ t, fi can
compute the future state St from its input Si−1.) After round t the attacker A
has learned the entire state St, and no security is possible beyond this point.

Thus if we want security even after (much) more than |S0| bits have leaked,
we need to further restrict the leakage functions. The restriction we use is one of
the “axioms” from [35], and states that “only computation leaks information”.
This means that fi does not get the entire state Si−1 as input, but only the part
of the state that is actually accessed by CP in the ith round.

On Efficient Leakage Functions. As we consider a computational primitive,
and the total leakage can be larger than the entire state, we can only allow
efficient leakage functions.7 This is not explicitly stated, but naturally comes up
in the model, where the main result (Theorem 2) puts an upper bound on the
size of a circuit computing the entire random experiment in which the cipher is
attacked.

On (non)-Uniformity. Throughout, we always consider non-uniform adver-
saries.8 In particular, our main reduction is non-uniform, which means we prove
that if an adversary exists who breaks the stream-cipher, then an adversary (of
related complexity) exists who breaks the underlying weak PRF. The only step
in the proof where we need non-uniformity is a lemma from [2] which relates
two types of pseudoentropy notions. As [2] also prove this lemma in a uniform
setting (albeit which much worse parameters), it should be possible (though we
didn’t check the details) to make our reduction uniform, that is to show how
to efficiently construct an adversary against the weak PRF from any adversary
against the stream-cipher. (we refer to Goldreich’s article [20] as to why such a
reduction is desirable.)

7 A computationally unbounded leakage function could simply compute and output
the initial state from the output of the stream cipher. If one assumes that the to-
tal leakage is smaller than the key [1, 12], considering computationally unbounded
leakage functions is meaningful.

8 Recall that a uniform adversary can be modelled as a Turing-machine which as input
gets a security parameter, whereas (more powerful) non-uniform adversaries will,
for each security parameter, additionally get a different polynomial-length advice
string. Equivalently, we can model non-uniform adversaries as a sequence of circuits
(indexed by the security parameter), which is what we will do.

A Leakage-Resilient Mode of Operation 467

Relaxing Bounded Leakage. As described above, in each round we allow the
adversary to choose any function f with range {0, 1}λ, and she then learns the
leakage f(S), where S is the state accessed in this round. Note that this also
captures any efficient leakage function g, where there exists another (efficient)
leakage function f with range {0, 1}λ such that S → f(S) → g(S) is a Markov
chain and where one can efficiently sample g(S) given f(S) (as an adversary in
our model can ask for f(S), and then compute g(S) himself). This e.g. covers
the case where the leakage function outputs a noisy version of S.

We chose to work with bounded leakage as it is a very clean and intuitive
model, but for the proof we actually only require that f(S) does not contain
more than λ bits of “useful” information on S. Formally, “useful” means that
the HILL-pseudoentropy (a notion to be defined in Section 4) of S does not drop
by much more than λ bits given f(S). Unfortunately this most general notion is
quite unintuitive to work with.9

Relaxing the “only computation leaks information” Axiom. The leakage
function in round i gets as input only that part of the state which is accessed
in that round. This translates to the requirement on the implementation that
memory which is not accessed, must not leak at all. In our model and for our
particular construction (and also [17]) allowing the adversary to choose a single
leakage function f with λ bits output, and then giving her the leakage f(S+)
(where with S+ we denote the part of the state which is accessed and S− denotes
the remaining state) is equivalent to let her choose two function f ′ and f ′′ with
λ/2 bits output respectively, and then output the leakage f ′(S+) and f ′′(S−).
Thus it is o.k. if the entire state leaks as long the leakage of S+ and S− is
independent. In particular, we also get security against attacks which seem not
to obey the “only computation leaks information” axiom, like the cold boot
attack from [23] (see also [1]), who show how measure significant parts of a key
that was stored on some memory, even after power is turned off.

1.2 Seed Incompressibility

As main new technical tools we prove bounds on the security of weak PRFs when
the key (or the inputs) are not uniformly random as assumed in the security
definition for weak PRFs.

Recall that the standard security notion for a pseudorandom function (PRF)
F : {0, 1}κ × {0, 1}n → {0, 1}m requires that for a random key k ∈ {0, 1}κ

no efficient attacker can distinguish F(k, .) from a uniformly random function.
Motivated by the question if random-oracles can (in some settings) be instanti-
ated with efficient functions, Halevi et al. [24] investigate the question whether
9 A special more intuitive case – which is still more general than bounded leakage –

is to consider any (not necessarily) efficient leakage function g where there exists
an efficient f with range {0, 1}λ, such that given f(S) one can efficiently sample
some “fake” leakage g̃(S) where [S, g(S)] is computationally indistinguishable from
[S, g̃(S)] (bounded leakage corresponds to g̃ = g). Note that here the sampling
algorithm only gets f(S), whereas the distinguisher gets S.

468 K. Pietrzak

“seed-incompressible” functions exist. They consider a setting where an adver-
sary initially gets a “compressed key” f(k) (where f : {0, 1}κ → {0, 1}λ and
λ < κ). A simple observation is that by giving this extra input to an adversary,
no function F(k, .) can possibly be a PRF, as f(k) could e.g. encode the first λ
bits of F(k,X) (for some fixedX), and thus F(k, .) becomes easily distinguishable
from random.

In this paper we revisit the concept of seed incompressibility, but for weak
pseudorandom functions (wPRF): F is a wPRF, if F(k, .) cannot be distin-
guished from random, if queried on random inputs. Thus an adversary gets
to see X1, . . . , Xq and Z1, . . . , Zq, and then must guess whether Zi = F(k,Xi)
or Zi = R(Xi) where R is a uniformly random function. Unlike for normal
PRFs, for wPRFs it is not clear if and how a compressed seed f(k) helps the
distinguisher, e.g. now simply setting f(k) to denote the λ first bits of F(k,X)
for some fixed input X will not trivially break the security of F(k, .) as here the
adversary cannot choose the inputs X for which she gets to see F(k,X).

Of course by leaking λ bits of the key, we must tolerate some security loss. In
particular, if we use the trivial attack just described (leaking λ bits of F(k,X)),
the adversary can get “lucky”, and one of the q queries X1, . . . , Xq will hit
the fixed input X . Because of that, the adversary has some extra advantage
of roughly q/2n (compared to an adversary not getting f(k)). Further, if we
assume that the best attack against F is brute-force search over the keyspace,
then leaking λ bits of the key will degrade the security by a factor of 2λ. As
we prove in Lemma 2, it doesn’t get much worse than that: if F(k, .) cannot be
distinguished with advantage more than ε, then the advantage (against somewhat
smaller adversaries) is still bounded by roughly 2λ(ε + q2/2n+1) (here we set t
from Lemma 2 to n, and assume that n is large enough so that the last term in
(3) can be ignored.)

We actually do not consider the setting where the key k is random, and
then f(k), |f(k)| = λ is leaked, but the more general case where k is sampled
from some distribution with min-entropy at least |k| − λ. (and we need this
more general case later when proving the security of the leakage-resilient stream-
cipher), as for any function f and uniformly random k, k has still (expected)
min-entropy at least |k| − λ given f(k).

We then prove a similar result (Lemma 3) concerning the security of wPRFs
assuming the inputs (as opposed to the key) are not uniformly random.

Proof Sketch. We show that any wPRF is secure even when the secret key is
only sampled from some distribution with min-entropy |k| − λ by a (uniform)
reduction. Assume an adversary A can distinguish F(k, .) from a random func-
tion (when queried on random inputs X1, . . . , Xq) with advantage ε′. Using the
Markov bound one can show that this implies that a key k sampled from the
above distribution is “weak” with probability at least ε′/2, where a key k is said
to be weak, if the distinguishing advantage of A, conditioned on the key being
k, is at least ε′/2. If k is now sampled from the uniform distribution (and not
a distribution with min-entropy |k| − λ), then k will be weak with probabil-
ity at least ε′/2λ+1, i.e. we loose at most a factor 2λ. The crucial point is that

A Leakage-Resilient Mode of Operation 469

when observing the output of a function g(.) on sufficiently many random inputs,
then (using the Hoeffiding bound) one can almost certainly distinguish the cases
where g(.) is f(k, .) for a weak k and the case where g(.) is a random oracle,
as by definition of a weak key, the probability of A outputting 1 differs by at
least ε′/2 for both cases. Thus we can define an adversary which does the above
sampling and outputs 0 and 1 respectively in the two above cases. As outlined,
this adversary has a distinguishing advantage of at least ε′/2λ+1.10 In the above
argument it is important that in the case where g(.) is a random oracle, we can
sample many independent guess bits of A. This is not possible when considering
“normal” PRFs, as then the adversary A can simply query g(.) on some fixed
inputs, and her guess bits will be completely dependent. This is the point in the
proof where we exploit the fact that we consider weak PRFs.

1.3 Applications and Reductions

The unpredictability and indistinguishability based notions used in this paper
are the strongest possible considering general leakage-functions, and a stream
cipher satisfying them is sufficient to realize important primitives like stateful
leakage-resilient symmetric authentication and encryption.11

It would be very interesting to construct a leakage-resilient pseudorandom
function, as then we could implement those symmetric primitives in a stateless
way. Let us mention here that cryptographic reductions, like the GGM construc-
tion of PRFs form PRGs [21], will in general not preserve leakage-resilience.

1.4 Notation

For a set X , we denote withX ∗← X thatX is assigned a value sampled uniformly
at random from X . To save on notation, we write X i to denote a sequence
X1, . . . , Xi. Rn,m denotes a uniformly random function {0, 1}n → {0, 1}m, Rn

denotes Rn,n.

2 Leakage-Resilient Stream-Cipher from a Weak PRF

Figure 1 illustrates the mode of operation for which we prove that it gives a
leakage-resilient stream cipher if instantiated with any weak PRF. Below we first
10 The expression (3) in Lemma 2 is a bit more complicated than that. The last term

in (3) is the error from the Hoeffding bound, and the second to last term is due to
the fact that the sampled outputs are not completely independent as required by
the Hoeffding bound.

11 For authentication it is sufficient that the secret Xi used is unpredictable, thus here
we can allow the adversary to observe the leakage in the round where Xi is computed.
For semantically secure encryption, e.g. when using a one-time pad C = M ⊕ Xi,
we need Xi to be indistinguishable, thus here the adversary cannot get the leakage
in round i, but can so for all other rounds j < i (and, as we have forward security,
also j > i).

470 K. Pietrzak

K0 F F

X0 K1 F F

eval eval eval eval

A A A A A

X1 X2 X3 X4

K2

K3

K4

X0

X1

X2

X3

f1 f1(K0) f2 f2(K1) f3 f3(K2) f4 f4(K3)

Fig. 1. Leakage resilient stream-cipher SF from a seed-incompressible weak pseudoran-
dom function F. The regular evaluation is shown in black, the attack related part is
shown in gray with dashed lines.

define this construction, and state a Theorem which bounds the security of SF as
a normal stream-cipher. We then define what a leakage-resilient stream-cipher
is. Then we state our main theorem (Theorem 2) which bounds the security of
SF as a leakage-resilient stream-cipher in terms of the security of F as a weak
PRF.

The Construction: Let F : {0, 1}κ×{0, 1}n → {0, 1}κ+n be a function. Then,
with SF we denote the following simple construction of a stream cipher.

Initialization: The initial state is S0 = [K0,K1, X0], where K0,K1
∗← {0, 1}κ

and X0
∗← {0, 1}n. Only K0,K1 must be secret, X0 can be public.

State: The state before the ith round is Si−1 = [Ki−1,Ki, Xi−1].
Computation: In the ith round, SF(Si−1) computes

(Ki+1, Xi) := F(Ki−1, Xi−1)

and outputs Xi. Then the state Si−1 = [Ki−1,Ki, Xi−1] is replaced with
Si = [Ki,Ki+1, Xi] (note that Ki is not accessed in the ith round).

Security of S without Side-Channels: Theorem 1 below states that the
output of SF is pseudorandom (i.e. is a secure stream-cipher in the “classical”
sense) if F is a secure weak pseudorandom function. The proof of this theorem
is a straight forward hybrid argument and for space reasons only give in the full
version of this paper [37]. The security of SF is stated in terms of the security
of F as a weak pseudorandom function (wPRF), which is defined like a normal
PRF except that the inputs are random and not adversarially chosen.

Definition 1 (wPRF). F : {0, 1}κ×{0, 1}n → {0, 1}m is a weak (εprf , sprf , qprf)-
secure pseudorandom function (wPRF) if for all A of size sprf and for random
variables K ∗← {0, 1}κ and for i = 1, . . . , qprf

Xi
∗← {0, 1}m Yi = F(K,Xi) Ri = Rn,m(Xi)

we have Pr[A(Xqprf , Y qprf) = 1]− Pr[A(Xqprf , Rqprf) = 1] ≤ εprf

A Leakage-Resilient Mode of Operation 471

Theorem 1 (Security without Leakage). If F is a (εprf , sprf , 1) secure wPRF,
then for any � ∈ N, no adversary of size sprf− � · |F| can distinguish the first �+1
blocks as output by SF from uniformly random with advantage more than � · εprf .

Side-Channel Adversary: As outlined in Section 1.1, we consider an adver-
sary A who can attack SF by choosing any function fi : {0, 1}κ → {0, 1}λ before
round i, and at the end of the round receives the normal output Xi of SF and
also the leakage Λi

def= fi(Ki−1). In round i, SF(Si−1) only access Ki−1 and Xi−1,
thus giving Ki−1 as input to fi means that fi can use the entire state that SF

accesses in round i. Note that we don’t have to explicitly give Xi−1 as input to
fi, as A must only decide on fi after she got Xi−1 and thus can hard-code it
into fi. We denote with Aλ the set of adversaries as just described restricted to
choose leakage functions with range {0, 1}λ.

Leakage-Resilient Security Notion: Let view� denote the view of the ad-
versary after X� has been computed, i.e.

view� = [X0, . . . , X�, Λ1, . . . , Λ�].

With view−� = view� \X� we denote view� but without the last output X�. The
security notion we consider requires that X�+1 is indistinguishable from random,
even when given view� (which will imply that it is unpredictable given view−�+1).

We denote with S(S0)
�� A the random experiment where an adversary A ∈

Aλ attacks S (initialized with S0 = [K0,K1, X0]) for � rounds (cf. Fig. 1), and
with view(S(S0)

�� A) we denote the view view� of A at the end of the attack.
For any circuit D : {0, 1}∗ → {0, 1} (with one bit output), we denote with
AdvInd(D,A, S, �) the advantage of D in distinguishing K� from a random Un

∗←
{0, 1}n given view(S(S0)S

�−1� A), formally

AdvInd(D,A, S, �) = |preal − prand| where

prand
def= Pr

S0
[D(view(S(S0)

�−1� A), Un) = 1]

preal
def= Pr

S0
[D(view(S(S0)

�−1� A), X�) = 1]

Security of S against Side-Channel Attacks: The security of SF will depend
on the security of F as a weak pseudorandom function. Recall that the complexity
a non-uniform adversary is captured by the size of a circuit describing it. For
a circuit D, we let size(D) denote its size. We will also write size(S �−1� A) to
denote the size of a circuit needed to implement the entire random experiment
S

�−1� A, as illustrated in Figure 1, where eval denotes a circuit which on input
the description of a function f : {0, 1}κ → {0, 1}λ and K ∈ {0, 1}κ computes
and outputs f(K).

472 K. Pietrzak

Theorem 2 (Security with Leakage). Let F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

be a (εprf , sprf , n/εprf)-secure wPRF where εprf ≥ n · 2−n/3 and n ≥ 20. Let λ =
log(ε−1

prf)/6 and s′ = sprfε
2
prf/2

λ+2(n + κ)3. Then for any adversary A ∈ Aλ and

distinguisher D where size(S �−1� A) + size(D) ≤ s′ we have for any � ∈ N

AdvInd(D,A, S, �) ≤ 8 · � · ε1/12
prf (1)

On λ: Note that the amount of leakage λ = log(ε−1
prf)/6 we tolerate depends on

the hardness of the underlying wPRF. Thus if F is secure against adversaries of
super-polynomial size, i.e. εprf = 2ω(log κ), then the amount of leakage is at least
super-logarithmic λ = ω(log κ). This already covers many practical attacks like
Hamming weight attacks (see e.g. [30]).

If F is exponentially hard, i.e. εprf = 2−Ω(κ), then λ = Ω(κ), and thus we can
even leak a constant fraction of the internal state in each round.

Security loss: The security loss in the theorem is significant: the 12th root of
εprf comes up in the distinguishing advantage. In the full version [37] we discuss
several approaches which potentially can be used to prove a much better bound.

Unpredictability: Theorem 2 states that when given the view of an adver-
sary A who attacked S for � − 1 rounds, the next value X� to be computed is
indistinguishable from random. If the adversary is also given Λ� = f�(K�−1) (i.e.
the leakage computed in round �), X� cannot be pseudorandom any more, as Λ�

could e.g. be the λ first bits ofX�. In the case where Λ� is also leaked, one can still
prove (using Lemma 4) that X� is unpredictable: for any δ > 0, with probability
1−δ the random variable X� has n−λ− log(δ−1) bits of “HILL-pseudoentropy”
(a notion to be defined in Section 4).

Forward Security: Like the construction from [17], also SF is forward secure:
Theorem 2 holds even for a stronger security notion than AdvInd, where the
distinguisher D is additionally given entire state of SF after round �+ 1.

Instantiation with a block-cipher: Our construction requires a wPRF F :
{0, 1}κ × {0, 1}n → {0, 1}κ+n. Such an F can be constructed from any secure
block-cipher BC : {0, 1}κ×{0, 1}n → {0, 1}n like AES. (AES comes with different
security parameters κ = n = 128 and κ = n = 256). For this we have to do some
range expansion, e.g. by setting (‖ denotes concatenation)

F(K,X) = BC(K,X‖0))‖BC(K,X‖1). (2)

Here F : {0, 1}κ × {0, 1}n−1 → {0, 1}2n is a secure PRF (and thus wPRF)
assuming that BC : {0, 1}κ×{0, 1}n → {0, 1}n is a pseudorandom permutation,
which is the standard security notion for block-ciphers. 12

12 Let us stress, that just assuming that BC is a wPRF is not sufficient as (2) is not a
secure range expansion of wPRFs (see e.g. [38] for some secure constructions).

A Leakage-Resilient Mode of Operation 473

3 wPRF with Non-uniform Keys and Inputs

We will need the following classical technical lemma several times.

Lemma 1 (Hoeffding’s inequality [26]). Let X1, . . . , Xt be independent ran-
dom variables where for 1 ≤ i ≤ t : Pr(Xi ∈ [ai, bi]) = 1. Then, for the sum of
these variables X = X1 + · · ·+Xt we have the inequality:

Pr[X − E[X] ≥ tε] ≤ exp

(
− 2 t2 ε2∑t

i=1(bi − ai)2

)

Recall that a random variable Z has min-entropy k, denoted H∞(Z) = k if for
all z in the range of Z we have Pr[Z = z] ≤ 2−k.

Definition 2 (wPRF with non-uniform keys and inputs). We call a func-
tion F : {0, 1}κ×{0, 1}n → {0, 1}m a (εprf , sprf , qprf)-secure wPRF with α-low keys,
if it’s a wPRF as in Definition 1, whenever the key K comes from any distribution
with min-entropy κ− α (and not uniformly random).

Similarly, we say F is a (εprf , sprf , qprf)-secure wPRF with β-low inputs, if it’s
a wPRF as in Definition 1, except that the inputs Xi come from any distribution
with min-entropy m− β.

Non-uniform Keys. By the following lemma, every wPRF (using uniform
keys) is a wPRF for α-low keys. The loss in security is roughly 2α+1, which is
almost optimal.

Lemma 2. For any α > 0 and t ∈ N: If F : {0, 1}κ × {0, 1}n → {0, 1}m is a
(εprf , sprf , qprf)-secure wPRF (for uniform keys), then it is a (ε′prf , s

′
prf , q

′
prf)-secure

wPRF with α-low keys if the following holds13

qprf ≥ q′prf · t

εprf ≤ ε′prf/2
α+1 − q2prf

2n+1 − 2 · exp

(
− t

2 · ε′2prf
8

)
(3)

sprf ≥ s′prf · t
Proof. Assume there exists a random variable Kα where H∞(Kα) = κ − α,
but where F is not a (ε′prf , s

′
prf , q

′
prf)-secure wPRF if the key is Kα. To prove

the Lemma, we must show that then F is not (εprf , sprf , qprf)-secure wPRF for
uniformly random keys. By assumption, there exists an adversary A, |A| ≤ s′prf
such that ∑

k∈{0,1}κ

Pr[k = Kα] · ξk > ε′prf (4)

13 As ε′prf appears twice in eq.(3), we cannot easily express ε′prf as a function of εprf . One
can get a closed expression at the price of a worse bound by e.g. replacing ε′prf in (3)
with εprf , one then gets (for t ∈ N of our choice): q′prf := qprf/t, s′prf := sprf/t, ε′prf :=
2α+1

(
εprf + q2

prf/2
n+1 + 2 · exp

(−t2 · ε2prf/8
))

.

474 K. Pietrzak

where ξk denotes A’s advantage conditioned on the key being k, i.e. with Xi
∗←

{0, 1}n, Yi = F(k,Xi), Ri ← Rn,m(Xi) (for i = 1, . . . , q′prf)

ξk
def= Pr[A(Xq′

prf , Y q′
prf) = 1]− Pr[A(Xq′

prf , Rq′
prf) = 1]

We say k ∈ {0, 1}κ is weak if ξk ≥ ε′prf/2, and let K ⊂ {0, 1}κ denote the set of
all weak keys. From (4) we get by Markov

Pr[Kα ∈ K] ≥ ε′prf/2.

Let K be uniform over {0, 1}κ. If we define an event E depending on K by
Pr[E|K = k] = Pr[Kα = k]/2α−κ it satisfies (see [37] for the proof)

Pr[E] = 2−α and Pr[K = k|E] = Pr[Kα = k]

With this we can lower bound the probability that the uniformly random key K
is weak as

Pr[K ∈ K] ≥ Pr[E] Pr[K ∈ K|E] = Pr[E] Pr[Kα ∈ K] =
Pr[Kα ∈ K]

2α
≥ ε′prf

2α+1

(5)
We will construct an adversary Ã, where for Xi

∗← {0, 1}n, Yi = F(k,Xi), Ri ←
Rn,m(Xi) the adversary Ã(Xqprf , Rqprf) (where qprf = q′prf · t) will almost always
output 0, whereas Ã(Xqprf , Y qprf) will almost always output 1 if k ∈ K. So Ã
breaks the security of F as a weak PRF with advantage at least εprf ≈ Pr[k ∈
K] ≥ ε′prf/2

α+1. Let
φ = Pr[A(Xqprf , Rqprf) = 1] (6)

where the probability if over the choice of the Xi
∗← {0, 1}n, the random function

Rn,m used to compute Ri = Rn,m(Xi) and also A (if it’s not deterministic). Our
adversary Ã on input Xqprf , Zqprf , does the following.

– Split the input in t equal parts which we denote (X̂1, Ẑ1), . . . , (X̂t, Ẑt) (so
e.g. X̂i = X(i−1)q′

prf
+1, . . . , Xi·q′

prf
).

– For i = 1, . . . , t compute Ti ← A(X̂i, Ẑi) and let

T :=
t∑

i=1

Ti

If (T − t · φ) ≤ t · ε′prf/4 then Ã outputs 0, otherwise she outputs 1.

By the following two claims, Ã will almost never output 1 if the Zi are random,
but will output 1 with probability almost εprf/2α+1 if the the Zi were computed
by F.

Claim 1. Let Xi
∗← {0, 1}n and Ri = Rn,m(Xi), then

Pr[Ã(Xqprf , Rqprf) = 1] ≤ exp

(
− t

2 · ε′2prf
8

)
+

q2prf
2n+1

A Leakage-Resilient Mode of Operation 475

Proof. By definition Ã will output 1 iff (T − t · φ) > t · ε′prf/4. In the case where
the Zi are computed as Rn,m(Xi) (as it is the case for the Ri in this claim) we
have by eq.(6) t · φ = E[T], thus

Pr[Ã(Xqprf , Rqprf) = 1] = Pr
[
T − E[T] > t · ε

′
prf

4

]
(7)

Let T ′
1, . . . , T

′
t be independent binary random variables, where for j = 1, . . . , t

the Tj is sampled by choosing a uniformly random function Rj : {0, 1}n →
{0, 1}m and (for i = 1, . . . , q′prf) Xj,i

∗← {0, 1}n, Rj,i = Rj(Xi) and setting
T ′

j = A(Xj,1, . . . , Xj,q′
prf
, Rj,1, . . . , Rj,q′

prf
). Further let T ′ :=

∑t
j=1 T

′
j. As the T ′

j ’s
are independent, we can use Hoeffding’s inequality (Lemma 1) to upper bound

Pr
[
T ′ − E[T ′] > t · ε

′
prf

4

]
≤ exp

(
− t

2 · ε′2prf
8

)
(8)

This bound does not apply to (7), as unlike the T ′
j , the Tj are not completely

independent, as we use the same random function Rn,m for each Tj. We will
show that this is not a big problem if the domain is large enough, as conditioned
on all the Xi’s being different, the Ri’s will have the same distribution in the
computation of the Tj and T ′

j ; Let E denote the event, which holds if all the
qprf = q′prf · t values Xj,i (sampled to compute T or T ′) are pairwise distinct. As
those values are all sampled independently and uniformly from {0, 1}n, by the
birthday bound

Pr[¬E] ≤ q2prf
2n+1 (9)

Conditioned on E , the distribution of the Ti’s and T ′
i (and thus of T and T ′) is

identical, in particular

Pr
[
T ′ − E[T ′] > t · ε

′
prf

4

∣∣∣∣E] = Pr
[
T − E[T] > t · ε

′
prf

4

∣∣∣∣E] (10)

The claim now follows from (7)-(10). �

Claim 2. Let K ∗← {0, 1}κ and for i = 1, . . . , qprf : Xi
∗← {0, 1}n and Yi =

F(K,Xi), then

Pr[Ã(Xqprf , Y qprf) = 1] ≥ ε′prf
2α+1

(
1− exp

(
− t

2 · ε′2prf
8

))

Proof. We have

Pr[Ã(Xqprf , Y qprf) = 1] ≥ Pr[K ∈ K] · Pr[Ã(Xqprf , Y qprf) = 1|K ∈ K] (11)

By (5) we can lower bound the first term on the right side in (11) as

Pr[K ∈ K] ≥ ε′prf/2
α+1 (12)

476 K. Pietrzak

It remains to upper bound the second term. For this recall that Ã outputs 0
if |T − t · φ| > t · ε′prf/4, where T =

∑t
j=1 Tj and each Tj is the output of

A(Xq′
prf , Y q′

prf) where Yi = F(K,Xi) (here the Xq′
prf are independent for each j

but K is fixed). If K ∈ K, then by definition of K we have |E[Tj] − φ| ≥ ε′prf/2,
and thus Ã will only output 0, if the value of T is bounded away by at least
t · ε′prf/4 from its expectation, again using the Hoeffding bound

Pr[Ã(Xqprf , Y qprf) = 0|K ∈ K] = Pr
[
T − φ > t · ε

′
prf

4

]
≤ exp

(
− t

2 · ε′2prf
8

)
The claim follows from this equation and (11),(12). �

The bound on Ã’s advantage εprf as claimed in the lemma follows from the two
claims above. The bound on the size sprf and number of queries qprf made by Ã

follows directly from the definition of Ã.

Non-uniform Inputs. We just showed that a wPRF stays secure even if the
key is not uniform. In the full version of the paper we prove a similar result for
the case where the inputs are not uniformly random. We only consider the case
where the adversary gets a single input/output pair.

Lemma 3. Let β > 0, then if F : {0, 1}κ × {0, 1}n → {0, 1}m is a (εprf , sprf , 1)-
secure wPRF (for uniform inputs), it’s also a (ε′prf , s

′
prf , 1)-secure wPRF for β-low

entropy input, where for any t ∈ N

εprf ≤ ε′prf/2
β+1 − 2 · exp

(
−2 · t2 · ε′2prf

64

)
sprf ≥ s′prf · 2t

4 Proof of Theorem 2

Proof Sketch. We will prove the security of SF (cf. Figure 1) by proving
that if the state Xi−1,Ki−1 accessed in round i is independent and has HILL-
pseudoentropy n−2λ and κ−2λ, respectively, then also the output Xi,Ki+1 has
such a HILL-pseudoentropy given the leakage Λi = f(Xi−1,Ki−1) (Lemma 7).
Though we unavoidably get some degradation in the “quality” of the pseudoen-
tropy (in terms of ε, s in Definition 3 below), this degradation is only additive,
and thus we can sum it up over all rounds.14

14 This summation to bound the degradation in security is quite tedious. It might
seem that one could get a much simpler proof using a hybrid argument, where for
the jth hybrid one would simply replace the output in the first j rounds (having
high HILL-pseudoentropy) with some (indistinguishable) output having high min-
entropy. Unfortunately we can’t make this intuition work, the reason is that high
HILL-pseudoentropy only implies existence of an indistinguishable random variable
with high min-entropy, but gives no means as to how to sample it. Thus it is not
clear how to efficiently sample the hybrids just described.

A Leakage-Resilient Mode of Operation 477

Basic Definitions. We denote with δD(X ;Y) the advantage of a circuit D in
distinguishing the random variables X,Y , i.e.: δD(X ;Y) def= |Pr[D(X) = 1] −
Pr[D(Y) = 1]|. With δs(X ;Y) we denote maxDδ

D(X ;Y) where the maximum is
over all circuits D of size s.

Definition 3 (HILL-pseudoentropy[25, 2]). We say X has HILL pseudoen-
tropy k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y with min-
entropy H∞(Y) = k where δs(X ;Y) ≤ ε.

Definition 4 (PRG). A function prg : {0, 1}n → {0, 1}m is a (δ, s)-secure
pseudorandom generator (PRG) if δs(prg(Un) ; Um) ≤ δ.

Thus prg(Z) is indistinguishable from random if Z ∗← {0, 1}n. If some function
f(Z) of the seed is leaked, then prg(Z) will not look random any more, as e.g.
f(Z) could just output some bits of prg(Z). The following lemma states that if
the range of f is not too big, then prg(Z) will still have high HILL-pseudoentropy.

Lemma 4 (Pseudoentropy of a PRG, [17]). Let prg : {0, 1}n → {0, 1}m

and f : {0, 1}n → {0, 1}λ (where 1 ≤ λ < n < m) be any functions. If prg
is a (εprg, sprg)-secure pseudorandom-generator, then for any ε,Δ > 0 satisfying
εprg ≤ ε2

2λ − 2−Δ, we have with Z ∗← {0, 1}n and for any εHILL > 0

Pr
Z

∗←{0,1}n

[HHILL
ε+εHILL,ŝ(prg(Z)|f(Z)) ≥ m−Δ] ≥ 1− ε (13)

where ŝ ≈ ε2HILLsprg/8m.

We will use the following technical lemma about some general random processes
to show that the inputsXi and keysKi in the computation of SF are independent.

Lemma 5 ([16]). Let A0, B0 be independent random variables, and φ1, φ2, . . .
be any sequence of functions. Let A1, A2, . . ., B1, B2, . . . and V1, V2, . . . be defined
as

((Ai+1, Vi+1), Bi+1) := (φi+1(Ai, V1, . . . , Vi), Bi)
if i is even

(Ai+1, (Vi+1, Bi+1)) := (Ai, φi+1(Bi, V1, . . . , Vi))
otherwise

Then Bi → {V1, . . . , Vi} → Ai (and Ai → {V1, . . . , Vi} → Bi) is a Markov chain
(or equivalently, Ai and Bi are independent given the V1, . . . , Vi)

Combining Lemmata 2, 3 and 4, we can prove Lemma 6 below, which states that
the output F(K,X) of a wPRF has high HILL-pseudoentropy, even if K and X
have high min-entropy (but are independent) and given some leakage f(K,X).
We set t = n/εprf in Lemma 2 and 3, moreover we need the domain {0, 1}n of F
to be large enough, in particular, we will assume that (with εprf as in the lemma
below)

εprf ≥ n2

2n+1 · ε2prf
+ 2 exp(−n2/32) (14)

Note that the term on the right side drops exponentially in n, thus this restriction
is a very weak one, and is e.g. satisfied for any εprf ≥ n · 2−n/3 and n ≥ 20.

478 K. Pietrzak

Lemma 6. Let F : {0, 1}κ × {0, 1}n → {0, 1}m be a (εprf , sprf , n/εprf)-secure
wPRF. Let K ∈ {0, 1}κ and X ∈ {0, 1}n be independent where H∞(K) = κ−2λ
and H∞(X) = n − 2λ and let f : {0, 1}κ+n → {0, 1}λ be any leakage function,
then for large enough n (as just described) and λ ≤ log(ε−1

prf)/6

Pr
X,Y

[HHILL
ε′,s′ (F(K,X)|X, f(K,X)) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ε′ = 2−λ/2+2 and s′ = sprf/2λ+3(n+ κ)3.

Proof. We set Δ := 2λ and ε = εHILL := 2−λ/2+1, and require that

λ ≤ 2 + log(ε−1
prg)/2 (15)

so that it satisfies the condition εprg ≤ ε2

2λ − 2−Δ from Lemma 4, where now we
can write (13) as

Pr
Z

∗←{0,1}n

[HHILL
2−λ/2+2,ŝ(prg(Z)|f(Z)) ≥ m− 2λ] ≥ 1− 2−λ/2+1 (16)

where ŝ = sprg/2λ+1(n + κ). Now consider the wPRF F from the statement of
the lemma, first we apply Lemma 2 with t = n/εprf and qprf = t to get for a
uniformly random X ′ (in the second step below we use eq.(14)).

δsprfεprf/n(F(K,X ′)‖X ′ ; Um‖X ′) ≤
εprf · 2Δ+1 + 2Δ+1 (n2/2n+1 · ε2prf + 2 exp

(−n2/8
)) ≤ εprf · 2Δ+2

Thus F is a (sprfεprf/n, εprf · 2Δ+1, 1) secure wPRF even if we use a non-uniform
key K. Now we apply Lemma 3 (again with t = n/εprf and using eq.(14) in the
second step)

δsprfε2prf
/2n2(F(K,X)‖X ; Um‖X) ≤

εprf · 22Δ+3 + 2Δ+1 · 2 · exp(−n2/32) ≤ εprf · 22Δ+4

Thus we can see F on inputK,X as an (εprg, sprg)-secure pseudorandom generator
where sprg = sprfε

2
prf/2n

2 and εprg = εprf ·22Δ+4 (note that eq.(15) is still satisfied
as in the statement of the lemma we require λ ≤ log(ε−1

prf)/6).
Now consider any function f : {0, 1}κ+n → {0, 1}λ, by (16)

Pr
K,X

[HHILL
ε′,s′ (F(K,X)|f(K,X), X) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ε′ = 2−λ/2+2 and s′ = sprg/2λ+1(n+ κ) > sprfε
2
prf/2

λ+2(n+ κ)3.

The following lemma quantifies the security loss in one round of our stream
cipher. Let sizei denote the size of the circuit realizing the ith round of the
experiment SF �� A, then

∑�
i=1 sizei = size(S �� A).

A Leakage-Resilient Mode of Operation 479

Lemma 7 (The ith round). Consider the random experiment SF �� A. Then
if before round i ≤ � for some si−1 ≤ s′ (with s′, ε′, λ are as in the previous
lemma)

HHILL
εi−1,si−1

(Ki−1|viewi−1) ≥ κ− 2λ

HHILL
εi−1,si−1

(Xi−1|view−i−1) ≥ n− 2λ

then with probability 1−2−λ/2+1 the output (Ki+1, Xi) = F(Ki−1, Xi−1) satisfies

HHILL
εi,si

(F(Ki−1, Xi−1)|view−i) ≥ κ+ n− 2λ

where εi = εi−1 + ε′, si = si−1 + sizei

Proof. Consider random variables K ′
i−1, X

′
i−1 which have high min-entropy

H∞(K ′
i−1|viewi−1) ≥ κ− λ and H∞(X ′

i−1|view−i−1) ≥ n− λ
By Lemma 6 with probability at least 1− 2−λ/2+1

HHILL
ε′,s′ (F(K ′

i−1, X
′
i−1)|view−i) ≥ κ+ n− 2λ

holds with ε′ = 2−λ/2+2 and s′ = sprf

2λ+3·(n+κ)3 . If we now use the random variables
Ki−1, Xi−1 (only having high HILL-pseudoentropy) instead of K ′

i−1, X
′
i−1, we

get (recall that si−1 < s′)

HHILL
ε′+εi−1,si−1−sizei

(F(Ki−1, Xi−1)|view−i) ≥ κ+ n− 2λ

Let us stress that here the new error εi is ε′ + εi−1, and not ε′ + 2εi−1, as one
would think because we must add an error term of εi−1 for Ki−1 and Xi−1
respectively. Such a weaker bound would render the lemma useless, as then εi
would grow exponentially in i. The reason we only have to add εi−1, is that in
round i−1, F outputs (Xi−1,Ki), and it’s this tuple that cannot be distinguished
with advantage more than εi−1. Thus by adding an error εi−1 for Xi−1 in round
i, we also account for Ki to be used in the next round, and we won’t have to
add an extra error term there.

The bound on the security of SF as stated in Theorem 2 now follows by summing
up the security decrease in each round as stated in the previous lemma. To apply
the lemma, one must show that for each i, the Ki and Xi are independent given
the view of the adversary, this follows from Lemma 5 by identifying Ai (from
the Lemma) with K2(i−1) (as computed by SF), identifying Bi with K2(i−1)+1
and Vi with viewi. In particular, after � round, the error adds up to

AdvInd(D,A, S, �) ≤ � · 2−λ/2+3.

Note that this is a bit strange, as the advantage decreases by increasing the
leakage λ, but this is only due to the fact that we explicitly set the error pa-
rameters ε and εHILL as functions of λ in the proof of Lemma 6 in order to keep
the number of parameters down. Setting λ = log(ε−1

prf)/6 (note that this is the
largest value allowed in the statement of Lemma 6), we get the bound as claimed
in the theorem.

480 K. Pietrzak

Acknowledgements

I’d like to thank Stefan Dziembowski and Sebastian Faust for some interesting
discussions and the authors of [36, 41] for clarifying their work.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: TCC (2009)

2. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In:
RANDOM-APPROX, pp. 200–215 (2003)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

5. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without
perfect shredding. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
511–523. Springer, Heidelberg (2008)

6. Cash, D.M., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-
resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, p. 292.
Springer, Heidelberg (1999)

9. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on keeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

10. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

11. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 301–324. Springer, Heidelberg (2001)

12. Dodis, Y., Wichs, D.: One-round authenticated key agreement from weak secrets.
Cryptology ePrint Archive, Report 2008/503 (2008), http://eprint.iacr.org/

13. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

14. Dziembowski, S.: On forward-secure storage (extended abstract). In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

15. Dziembowski, S., Maurer, U.M.: On generating the initial key in the bounded-
storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 126–137. Springer, Heidelberg (2004)

A Leakage-Resilient Mode of Operation 481

16. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp.
227–237 (2007)

17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS (2008)
18. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,

M.T.M.: On the power of power analysis in the real world: A complete break of
the keeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

19. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: CHES, pp. 251–261 (2001)

20. Goldreich, O.: A uniform-complexity treatment of encryption and zero-knowledge.
Journal of Cryptology 6(1), 21–53 (1993)

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS, pp. 464–479 (1984)

22. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

23. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

24. Halevi, S., Myers, S., Rackoff, C.: On seed-incompressible functions. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 19–36. Springer, Heidelberg (2008)

25. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

26. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

27. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 1–18. Springer, Heidelberg (2001)

28. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

29. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

30. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

31. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

32. Kocher, P.C.: Design and validation strategies for obtaining assurance in coun-
termeasures to power analysis and related attacks. In: Proceedings of the NIST
Physical Security Workshop (2005)

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

34. Maurer, U.M.: A provably-secure strongly-randomized cipher. In: Damg̊ard, I.B.
(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg
(1991)

35. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

482 K. Pietrzak

36. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher
based pseudo random number generator secure against side-channel key recovery.
In: ASIACCS, pp. 56–65 (2008)

37. Pietrzak, K.: Full version of this paper,
http://homepages.cwi.nl/ pietrzak/publications.html

38. Pietrzak, K., Sjödin, J.: Range extension for weak pRFs; the good, the bad, and
the ugly. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 517–533.
Springer, Heidelberg (2007)

39. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: E-smart, pp. 200–210 (2001)

40. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudo-
random sets. In: FOCS, pp. 76–85 (2008)

41. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

42. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. Journal of Cryptology 17(1), 43–77 (2004)

ECM on Graphics Cards�

Daniel J. Bernstein1, Tien-Ren Chen2, Chen-Mou Cheng3,
Tanja Lange4, and Bo-Yin Yang2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Institute of Information Science, Academia Sinica, 128 Section 2 Academia Road,

Taipei 115-29, Taiwan, {by,trchen1033}@crypto.tw
3 Department of Electrical Engineering, National Taiwan University,
1 Section 4 Roosevelt Road, Taipei 106-70, Taiwan, doug@crypto.tw

4 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

tanja@hyperelliptic.org

Abstract. This paper reports record-setting performance for the elliptic-
curve method of integer factorization: for example, 926.11 curves/second
for ECM stage 1 with B1 = 8192 for 280-bit integers on a single PC. The
state-of-the-art GMP-ECM software handles 124.71 curves/second for
ECM stage 1 with B1 = 8192 for 280-bit integers using all four cores of
a 2.4 GHz Core 2 Quad Q6600.

The extra speed takes advantage of extra hardware, specifically two
NVIDIA GTX 295 graphics cards, using a new ECM implementation
introduced in this paper. Our implementation uses Edwards curves, relies
on new parallel addition formulas, and is carefully tuned for the highly
parallel GPU architecture. On a single GTX 295 the implementation
performs 41.88 million modular multiplications per second for a general
280-bit modulus. GMP-ECM, using all four cores of a Q6600, performs
13.03 million modular multiplications per second.

This paper also reports speeds on other graphics processors: for ex-
ample, 2414 280-bit elliptic-curve scalar multiplications per second on an
older NVIDIA 8800 GTS (G80), again for a general 280-bit modulus. For
comparison, the CHES 2008 paper “Exploiting the Power of GPUs for
Asymmetric Cryptography” reported 1412 elliptic-curve scalar multipli-
cations per second on the same graphics processor despite having fewer
bits in the scalar (224 instead of 280), fewer bits in the modulus (224
instead of 280), and a special modulus (2224 − 296 + 1).

Keywords: Factorization, graphics processing unit, modular arithmetic,
elliptic curves, elliptic-curve method of factorization, Edwards curves.

� Permanent ID of this document: 6904068c52463d70486c9c68ba045839. Date of this
document: 2009.01.26. This work was sponsored in part by the National Science
Foundation under grant ITR–0716498, in part by Taiwan’s National Science Council
(grants NSC-96-2221-E-001-031-MY3 and -96-2218-E-001-001, also through the Tai-
wan Information Security Center NSC-97-2219-E-001-001, -96-2219-E-011-008), and
in part by the European Commission through the ICT Programme under Contract
ICT–2007–216676 ECRYPT II. Part of this work was carried out while Bernstein
and Lange visited NTU.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 483–501, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

484 D.J. Bernstein et al.

1 Introduction

The elliptic-curve method (ECM) of factorization was introduced by Lenstra
in [34] as a generalization of Pollard’s p− 1 and Williams’ p+ 1 method. Many
speedups and good choices of elliptic curves were suggested and ECM is now the
method of choice to find factors in the range 1010 to 1060 of general numbers.
The largest factor found by ECM was a 222-bit factor of the 1266-bit number
10381 + 1 found by Dodson (see [49]).

Cryptographic applications such as RSA use “hard” integers with much larger
prime factors. The number-field sieve (NFS) is today’s champion method of find-
ing those prime factors. It was used, for example, in the following factorizations:

integer bits details reported
RSA–130 430 at ASIACRYPT 1996 by Cowie et al. [16]
RSA–140 463 at ASIACRYPT 1999 by Cavallar et al. [12]
RSA–155 512 at EUROCRYPT 2000 by Cavallar et al. [13]
RSA–200 663 in 2005 posting by Bahr et al. [4]
21039 − 1 1039 (special) at ASIACRYPT 2007 by Aoki et al. [2]

A 1024-bit RSA factorization by NFS would be considerably more difficult than
the factorization of the special integer 21039 − 1 but has been estimated to be
doable in a year of computation using standard PCs that cost roughly $1 billion
or using ASICs that cost considerably less. See [43], [35], [19], [22], [44], and [29]
for various estimates of the cost of NFS hardware. Current recommendations for
RSA key sizes — 2048 bits or even larger — are based directly on extrapolations
of the speed of NFS.

NFS is also today’s champion index-calculus method of computing discrete
logarithms in large prime fields, quadratic extensions of large prime fields, etc.
See, e.g., [26], [27], and [5]. Attackers can break “pairing-friendly elliptic curves”
if they can compute discrete logarithms in the corresponding “embedding
fields”; current recommendations for “embedding degrees” in pairing-based cryp-
tography are again based on extrapolations of the speed of NFS. See,
e.g., [30].

NFS factors a “hard” integer n by combining factorizations of many smaller
auxiliary “smooth” integers. For example, the factorization of RSA-155 ≈ 2512

generated a pool of ≈ 250 auxiliary integers < 2200, found ≈ 227 “smooth” inte-
gers factoring into primes < 230, and combined those integers into a factorization
of RSA-155. See [13] for many more details.

Textbook descriptions of NFS state that prime factors of the auxiliary integers
are efficiently discovered by sieving. However, sieving requires increasingly intol-
erable amounts of memory as n grows. Cutting-edge NFS computations control
their memory consumption by using other methods — primarily ECM — to dis-
cover large prime factors. Unlike sieving, ECM remains productive with limited
amounts of memory.

ECM on Graphics Cards 485

Aoki et al. in [2] discovered small prime factors by sieving, discarded any
unfactored parts above 2105, and then used ECM to discover primes up to 238.
Kleinjung reported in [29, Section 5] on ECM “cofactorisation” for a 1024-bit n
consuming, overall, a similar amount of time to sieving.

The size of the auxiliary numbers to be factored by ECM depends on the size
of the number to be factored with the NFS and on the relative speed of the ECM
implementation. The SHARK design [19] for factoring 1024-bit RSA makes two
suggestions for parameters of ECM — one uses it for 125-bit numbers, the other
for 163-bit numbers. The SHARK designers remark that ECM could be used
more intensively. In their design, ECM can be handled by conventional PCs
or special hardware. They write “Special hardware for ECM . . . can save up to
50% of the costs for SHARK” and “The importance of using special hardware for
factoring the potential sieving reports grows with the bit length of the number
to be factored.” As a proof of concept Pelzl et al. present in [40] an FPGA-based
implementation of ECM for numbers up to 200 bits and state “We show that
massive parallel and cost-efficient ECM hardware engines can improve the area-
time product of the RSA moduli factorization via the GNFS considerably.” Gaj
et al. [20] consider the same task and improve upon their results.

Evidently ECM is becoming one of the most important steps in the entire NFS
computation. Speedups in ECM are becoming increasingly valuable as tools to
speed up NFS.

This paper suggests graphics processing units (GPUs) as computation plat-
forms for ECM, presents algorithmic improvements that are particularly helpful
in the GPU context, and reports new ECM implementations for several NVIDIA
GPUs. GPUs achieve high throughput through massive parallelism — usually
more than 100 “cores” running at clock frequencies not much lower than that of
state-of-the-art CPUs; e.g., the NVIDIA GeForce 8800 GTS 512 has 128 cores
running at 1.625 GHz. This parallelism is well suited for ECM factorizations
inside the NFS, although it also creates new resource-allocation challenges, as
discussed later in this paper. We focus on moduli of 200–300 bits since we (cor-
rectly) predicted that our ECM implementation would be faster than previous
ones and since we are looking ahead to larger NFS factorizations than 1024 bits.

Measurements show that a computer running this paper’s new ECM imple-
mentation on a GPU performs 41.88 million 280-bit modular multiplications per
second and has a significantly better price-performance ratio than a computer
running the state-of-the-art GMP-ECM software on all four cores of a Core 2
Quad CPU. The best price-performance ratio is obtained by a computer that
has a CPU and two GPUs contributing to the ECM computation.

2 Background on ECM

A thorough presentation of ECM is given by Zimmermann and Dodson in [48].
Their paper also describes extensive details of the GMP-ECM software, essentially

486 D.J. Bernstein et al.

the fastest known ECM implementation to date. For more recent improvements
of bringing together ECM with the algorithmic advantages of Edwards curves and
improved curve choices we refer to [8] by Bernstein et al.

2.1 Overview of ECM

ECM tries to factor an integer m as follows.
Let E be an elliptic curve over Q with neutral element O. Let P be a non-

torsion point on E. If the discriminant of the curve or any of the denominators
in the coefficients of E or P happens not to be coprime with m without being
divisible by it we have found a factor and thus completed the task of finding
a nontrivial factor of m; if one of them is divisible by m we choose a different
pair (E,P). We may therefore assume that E has good reduction modulo m. In
particular we can use the addition law on E to define an addition law on Ẽ, the
reduction of E modulo m; let P̃ ∈ Ẽ be the reduction of P modulo m.

Let φ be a rational function on E which has a zero at O and has non-zero
reduction of φ(P) modulo m. In the familiar case of Weierstrass curves this
function can simply be Z/Y . For elliptic curves in Edwards form a similarly
simple function exists; see below.

Let s be an integer that has many small factors. A standard choice is s =
lcm(1, 2, 3, . . . , B1). Here B1 is a bound controlling the amount of time spent
on ECM. The main step in ECM is to compute R = [s]P̃ . The computation of
the scalar multiple [s]P̃ on Ẽ is done using the addition law on E and reducing
intermediate results modulo m.

One then checks gcd(φ(R),m); ECM succeeds if the gcd is nontrivial. If this
first step — called stage 1 — was not successful then one enters stage 2, a postpro-
cessing step that significantly increases the chance of factoring m. In a simple
form of stage 2 one computes R1 = [pk+1]R,R2 = [pk+2]R, . . . , R� = [pk+�]R
where pk+1, pk+2, . . . , pk+� are the primes between B1 and another bound B2,
and then does another gcd computation gcd(φ(R1)φ(R2) · · ·φ(R�),m). There
are more effective versions of stage 2. Stage 2 takes significantly less time than
stage 1 when ECM as a whole is optimized.

If q is a prime divisor of m, and the order of P modulo q divides s, then
φ([s]P̃) ≡ 0 (mod q). If φ([s]P̃) �≡ 0 mod m we obtain a nontrivial factor of
m in stage 1 of ECM as gcd(m,φ([s]P̃)). This happens exactly if there are two
prime divisors of m such that s is divisible by the order of P modulo one of them
but not modulo the other. Choosing s to have many small factors increases the
chance of m having at least one prime divisor q such that the order of P modulo q
divides s. Note that it is rare that this happens for all factors ofm simultaneously
unless s is huge.

Similar comments apply to stage 2, with s replaced by spk+1, spk+2, etc.
Trying a single curve with a large B1 is usually less effective than spending

the same amount of time trying many curves, each with a smaller B1. For each
curve one performs stage 1 and then stage 2.

ECM on Graphics Cards 487

2.2 Edwards Curves

Edwards curves were introduced by Edwards in [18] and studied for cryptography
by Bernstein and Lange in [10]. An Edwards curve is given by an equation of the
form x2 + y2 = 1+ dx2y2, for some d �∈ {0, 1}. Bernstein and Lange showed that
each elliptic curve with a point of order 4 is birationally equivalent to an Edwards
curve over the same field. For ECM we are interested in curves with smooth order
modulo factors of m, so in particular the condition of having a point of order 4 is
not a problem. On the contrary, curves with large Q-rational torsion subgroup
are more likely to lead to factorizations since the torsion subgroup is mapped
injectively under reduction. For our implementation we used Edwards curves
with Q-torsion group isomorphic to Z/2 × Z/8 which were generated with the
Edwards analogue of the Atkin-Morain construction [3] as described in [8].

The addition law on Edwards curves is given by

(x1, y1)⊕ (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

The neutral element is (0, 1), so φ in the previous subsection can simply be the
x-coordinate.

For an overview of explicit formulas for arithmetic on elliptic curves we refer
to the Explicit-Formulas Database (EFD) [9]. For doublings on Edwards curves
we use the formulas by Bernstein and Lange [10]. For additions we use the
mixed-addition formulas by Hisil et al. [25, page 8] to minimize the number of
multiplications. Earlier formulas by Bernstein and Lange are complete, and can
take advantage of fast multiplications by small parameters d, but completeness
is not helpful for ECM, and curves constructed by the Atkin-Morain method
have large d.

Note that the paper [8] also contains improvements of ECM using curves with
small coefficients and base point, in which case using inverted twisted Edwards
coordinates (see [7]) becomes advantageous. In Section 4 we describe how we
implemented modular arithmetic on the GPU. The chosen representation does
not give any speedup for multiplication by small parameters. This means that
we do not get the full benefit of [8] — but we still benefit from the faster elliptic-
curve arithmetic and the more successful curve choices on top of the fast and
highly parallel computation platform. In Section 5 we present new parallelized
formulas for Edwards-curve arithmetic.

3 Review of GPUs and GPU Programming

Today’s graphics cards contain powerful GPUs to handle the increasing com-
plexity and screen resolution in video games. GPUs have now developed into a
powerful, highly parallel computing platform that finds more and more interest
outside graphics-processing applications. In cryptography so far mostly secret-
key applications were implemented (see, e.g., [14] and the book [15]) while taking
full advantage of GPUs for public-key cryptography remained a challenge [38].

488 D.J. Bernstein et al.

Along with the G80 series of GPUs, NVIDIA introduced CUDA, a parallel
computing framework with a C-like programming language specifically intended
for compilation and execution on a GPU. In this section we describe current
NVIDIA graphics cards used for our implementations, give some background in-
formation on CUDA programming, and compare NVIDIA GPUs to AMD GPUs.

3.1 The NVIDIA Cards Used for CUDA

An NVIDIA GPU contains many streaming multiprocessors (MPs), each of
which contains the following elements:

– a scheduling and dispatching unit that can handle many lightweight threads;
– eight (8) “cores” (often called streaming processors, or SPs) each capable of a

fused single-precision floating-point multiply-and-add (MAD), or otherwise
one 32-bit integer add/subtract or logical operation every cycle;

– two (2) “super function units” that each can do various complex computa-
tions like 32-bit integer multiplications, floating-point divisions, or two (2)
single-precision floating-point multiplications per cycle;

– for the more advanced GT2xx GPUs, additional circuitry that in conjunction
with the SPs can do double-precision floating-point arithmetic, albeit with
a lower throughput (roughly 1/6 of that of single-precision counterpart);

– fast local shared memory, 16 banks of 1 kB each;
– controllers to access uncached thread-local and global memory;
– fast local read-only cache to device memory on the card, up to 8 kB;
– fast local read-only cache on, and access to, a texture unit (2 MPs on a G8x

or G9x, and 3 MPs on a GT2xx form a cluster sharing a texture unit);
– a file of 8192 (for G8x or G9x) or 16384 (for GT2xx) 32-bit registers.

Uncached memory has a relatively low throughput and long latency. For example,
the 128 SPs on a GeForce 8800 GTX run at 1.35 GHz, and the uncached memory
provides a throughput of 86.4 GB/s. That may sound impressive but it is only a
single 32-bit floating-point number per cycle per MP, with a latency of 400–600
cycles to boot.

The GPU can achieve more impressive data movement by broadcasting the
same data to many threads in a cycle. The shared memory in an MP can deliver
64 bytes every two cycles, or 4 bytes per cycle per SP if there is no bank conflict.
Latencies of all caches and shared memories are close to that of registers and
hence much lower than device memories.

G8x/G9x Series. The chip used in the GeForce 8800 GTX is a typical NVIDIA
G80-series GPU, a 90nm-process GPU containing 128 SPs grouped into 16 MPs.

G92 GPUs are a straightforward die shrink of the G80 to a 65nm process and
were used in the GeForce 8800 GTS 512 (16 MPs, not to be confused with the
“8800 GTS 384”, a G80) and 9800-series cards, e.g., the 9800 GTX (16 MPs)
and 9800 GX2 (two 9800 GTX’s on a PCI Express bridge).

GPUs codenamed G84/G85/G86 are NVIDIA’s low-end parts of the G80
series, with the same architecture but only 1–4 MPs and much lower memory

ECM on Graphics Cards 489

throughput. Similarly, G94/G96 describe low-end versions of the G92. These are
never cost-effective for our purposes (except maybe testing code on the road).

Note: Manufacturers often sell a top-end, envelope-pushing chip at a huge
markup, and slightly weaker chips (often just a batch failing a quality control
binning) at far more reasonable prices. The lower-priced G80s (e.g., the “8800
GTS 384”, 12 MPs, used in [46], or the older 8800 GT with 14 MPs) with
slightly lower clock rates, fewer functional units, and lower memory throughput
can achieve better price-performance ratio than the top-end G80s.

GT2xx Series. The GT2xx series started out at the same 65nm process as the
G92, with a new and improved design. The GTX 260 and the GTX 280 both run
at a slightly lower clock rate than the G92 but the GTX 260 has 24 MPs and
the GTX 280 has 30 MPs, almost twice as many as the G92. GT2xx GPUs are
also better in other ways. In particular, the size of the register file is doubled,
which is very helpful for our implementation.

The GTX 285 and 295 were introduced early in 2009, shortly before the time
of this writing. Our initial tests are consistent with reports that (a) the 285 is
a simple die-shrink of the 280 to a 55nm process, and (b) the 295 is just two
underclocked 285’s bolted together.

3.2 The CUDA Programming Paradigm

CUDA provides an environment in which software programmers can program
GPUs using a high-level, C-like language. A CUDA program (called a “kernel”)
starts with a source file foo.cu, which is first compiled by nvcc, the CUDA
compiler, into code for a virtual machine (foo.ptx), then converted into actual
machine code by the CUDA driver, and finally loaded and run on the GPU.

CUDA adopts a super-threaded, massively parallel computation model, in
which computation is divided into many (typically thousands of) threads. A
pool of physical processing units (e.g., the 128 SPs in G80) then executes these
threads in a seemingly concurrent fashion. This time-sharing of physical units
by many threads or computations is necessary because the instruction latency
is high: a typical instruction takes 20–24 clock cycles to execute in its entirety.
Because the SPs are fully pipelined, with enough instructions “in flight”, we can
hide this latency and approach the theoretical limit of one dispatched instruction
per cycle per SP. CUDA manuals suggest a minimum of 192 threads per MP.
This can be understood as 8 SPs × 24 stages = 192 in order to hide instruction
latency completely.

Modern CPUs do a lot more than pipelining. They actively search for in-
dependent instructions to issue in a program stream, dispatching them out of
order if needed. However, out-of-order execution requires a lot of extra circuitry.
NVIDIA has opted instead to make its chips completely in-order, hence CUDA
mostly utilizes what is called thread-level (in contrast with instruction-level)
parallelism.

At the programming level, the minimal scheduling entity is a warp of threads,
which consists of 32 threads in the current version of CUDA. A warp must be

490 D.J. Bernstein et al.

executed by a single MP. It takes four cycles for an MP to issue an instruction for
a warp of threads (16 if the instruction is to be executed by the super function
units). To achieve optimal instruction throughput, the threads belonging to the
same warp must execute the same instruction, for there is only one instruction-
decoding unit on each MP. We may hence regard an MP as a 32-way SIMD
vector processor.

We note that the GPU threads are lightweight hardware threads, which incur
little overhead in context switch. In order to support fast context switch, the
physical registers are divided among all active threads. This creates pressure
when programming GPUs. For example, on G80 and G92 there are only 8192
registers per MP. If we were to use 256 threads, then each thread could only use
32 registers, a tight budget for implementing complicated algorithms. The situ-
ation improved with the GT2xx family having twice as many registers, relieving
the register pressure and making programming much easier.

To summarize, the massive parallelism in NVIDIA’s GPU architecture makes
programming on graphics cards very different from sequential programming on
a traditional CPU. In general, GPUs are most suitable for executing the data-
parallel part of an algorithm. Finally, to get the most out of the theoretical
arithmetic throughput, one must minimize the number of memory accesses and
meticulously arrange the parallel execution of hardware threads to avoid resource
contention such as bank conflict in memory access.

3.3 Limitations and Alternatives

Race Conditions and Synchronization. A pitfall frequently encountered
when programming multiple threads is race conditions. In CUDA, threads are
organized into “blocks” so that threads belonging to the same block execute on
the same MP and time-share the SPs on a per-instruction, round-robin fashion.
Sometimes, the execution of a block of threads will need to be serialized when
there is resource contention, e.g., when accessing device memory, or accessing
shared memory when there is a bank conflict. Synchronization among a block
of threads is achieved by calling the intrinsic syncthreads() primitive, which
blocks the execution until all threads in a block have reached the same point in
the program stream. Another use of this primitive is to set up synchronization
barriers. Without such barriers, the optimizing compiler can sometimes reorder
the instructions too aggressively, resulting in race conditions when the code is
executed concurrently by a block of threads.

Pressure on Fast On-die Memories. A critically limited GPU resource is
memory — in particular, fast memory — including per-thread registers and per-
MP shared memory. For example, on a G8x/G9x/G2xx GPU the per-SP working
set of 2 kB is barely enough room to hold the base point and intermediate point
for a scalar multiplication on an elliptic curve without any precomputation. To
put this in perspective, all 240 SPs on a gigantic (1.4 × 109 gates) GTX 280
have between them 480 kB fast memory. That is less than the 512 kB of L2
cache in an aged Athlon 64 (1.6 × 108 gates)! Unfortunately, CUDA requires

ECM on Graphics Cards 491

many more (NVIDIA recommends 24 times the number of SPs) threads to hide
instruction latency effectively. Therefore, we will need collaboration and hence
communication among groups of threads in order to achieve a high utilization of
the instruction pipelines when implementing modular arithmetic operations on
GPUs.

A Brief Comparison to AMD GPUs. The main competition to NVIDIA’s
GeForce is Radeon from AMD (formerly ATI). The AMD counterpart to CUDA
is Brook+, also a C/C++-derived language. Brook+ programming is similar to
CUDA programming: GPU programs (“shaders”) are compiled into intermediate
code, which is converted on the fly into machine instructions. See Table 1 for a
comparison between current GeForce and Radeon GPUs.

Table 1. Comparison of Leading NVIDIA and AMD Video Cards

NVIDIA/AMD Lead GPU Series NVIDIA GT200 AMD RV770
Top configuration GeForce GTX 295 Radeon 4870x2
Arithmetic clock 1250 MHz 750 MHz
Registers per MP (or SIMD core) 16k × 32-bit 16k × 128-bit
#MPs / #SPs 2 × (30 × 8) 2 × (10 × 16(×5))
Registers on each chip 491,520 (1.875MB) 163,840 (2.5MB)
Local store per MP/SIMD core 16 kB 16 kB
Global store per chip None 16 kB
Max threads on chip 30,720 16,384
Max threads per MP 1,024 > 1, 000

GeForce and Radeon have different hardware and software models. Recall
that each GeForce MP has 8 SPs, each with a single-precision floating-point
fused multiplier-adder, plus 2 super function units, which can dispatch 4 single-
precision multiplications per cycle. The Radeon equivalent of an MP, called an
“SIMD core”, has 16 VLIW (very long instruction word) SPs, each of which
is capable of delivering 5 single-precision floating-point operations every cycle.
Pipelines on the Radeon are around a dozen stages deep, half as long as those
on the GeForce.

Overall the two architectures pose similar challenges: there are many threads
but very little fast memory available to each thread. A näıve calculation suggests
that to hide the latency of arithmetic operations one must schedule 16×12 = 192
threads per SIMD core with a Radeon, and 192 threads per MP with a GeForce,
so the number of registers per thread is similar for both architectures.

As a Radeon SIMD core does 80 floating-point operations per cycle to a
GeForce MP’s 20, but has at most 32 kB of scratch memory vs. 16 kB for
the GeForce MP, one can expect that a program for a Radeon would be more
storage-starved than for a GeForce. We plan to investigate Radeon cards as
an alternative to CUDA and GeForce cards, but our initial estimate is that

492 D.J. Bernstein et al.

ECM’s storage pressure makes GeForce cards more suitable than Radeon cards
for ECM.

4 High-Throughput Modular Arithmetic on a GPU

Modular arithmetic is the main bottleneck in computing scalar multiplication
in ECM. In this section we describe our implementation of modular arithmetic
on a GPU, focusing specifically on modular multiplication, the rate-determining
mechanism in ECM. We will explain the design choices we have made and show
how parallelism is used on this level.

4.1 Design Choices of Modular Multiplication

For our target of 280-bit integers, schoolbook multiplication needs less inter-
mediate storage space and synchronization among cooperative threads than the
more advanced algorithms such as Karatsuba. Moreover, despite requiring a
smaller number of word multiplications, Karatsuba multiplication is slower on
GPUs because there are fewer pairs of multiplications and additions that can be
merged into single MAD instructions, resulting in a higher instruction count. It
is partly for this reason that we choose to implement the modular multiplier us-
ing floating-point arithmetic as opposed to 32-bit integer arithmetic, which does
not have the fused multiply-and-add instruction; another reason is that floating-
point multiplication currently has a higher throughput on NVIDIA GPU than
its 32-bit integer counterpart.

We represent an integer using L limbs in radix 2r, with each limb stored as
a floating-point number between −2r−1 and 2r−1. This allows us to represent
any integer between −R/2 and R/2, where R = 2Lr. We choose to use Mont-
gomery representation [37] of the integers modulo m, where m is the integer
to be factored by ECM, and thus represent x mod m as x′ ≡ Rx (mod m).
Note that our limbs can be negative, so we use a signed representative in
−m/2 ≤ (x′ mod m) < m/2. In Montgomery representation, addition and sub-
traction are performed on the representatives as usual. Let m′ be the unique
positive integer between 0 and R such that RR′ − mm′ = 1. Given x′ ≡ Rx
(mod m) and y′ ≡ Ry (mod m) the multiplication is computed on the repre-
sentatives as α = (x′y′ mod R)m′ mod R followed by β = (x′y′ + αm)/R. Note
that since R is a power of 2, modular reductions modulo R correspond to taking
the lower bits while divisions by R correspond to taking the higher bits. One
verifies that −m < β < m and β ≡ R(xy) (mod m).

The Chosen Parameters. In the implementation described in this paper we
take L = 28 and r = 10. Thus, we can handle integers up to around 280 bits. To
fill up each MP with enough threads to effectively hide the instruction latency,
we choose a block size of 256 threads; together such a block of threads is in
charge of computing eight 280-bit arithmetic operations at a time. This means
that we have an 8-way modular multiplier per MP. Each modular multiplication

ECM on Graphics Cards 493

needs three 280-bit integer multiplications: one to obtain x′y′, one to obtain α,
and the third to obtain β. Each of the three integer multiplications is carried out
by 28 threads, each of which is responsible for cross-multiplying 7 limbs from
one operand with 4 from the other. The reason why we do not use all 32 threads
is clear now: because gcd(7, 4) = 1, there can never be any bank conflict or race
condition in the final stage when these 28 threads are accumulating the partial
products in shared memory. Bank conflicts, on the other hand, can still occur
when threads are loading the limbs into their private registers before computing
the partial products, so we carefully arrange x′ and y′ from different curves in
shared memory, inserting appropriate padding when necessary, to avoid all bank
conflicts in accessing shared memory.

4.2 Instruction Count Analysis

We give an estimate of the instruction count of our design on GPUs. Recall
that, in our design, each thread is responsible for cross-multiplying the limbs in
a 7-by-4 region. In the inner loop of integer multiplication, each thread needs to
load these limbs into registers (11 loads from on-die shared memory), multiply
and accumulate them into temporary storage (28 MAD instructions), and then
accumulate the result in a region shared by all 28 threads. That last part includes
10 load-and-adds, 10 stores, and 10 synchronization barriers (syncthreads)
to prevent the compiler from reordering instructions incorrectly. Together, it
should take 69 instructions per thread (plus other overhead) to complete such
a vanilla multiplication. A partial parallel carry takes about 7 instructions by
properly manipulating floating-point arithmetic instructions, and we need two
partial carries in order to bring the value in each limb to its normal range.
Furthermore, in Montgomery reduction we need a full carry for an intermediate
result that is of twice the length, so we essentially need 4 full carries in each
modular multiplication, resulting in 56 extra instructions per thread. This gives
a total of 263 instructions per modular multiplication.

5 Fast ECM on a GPU

We now describe our implementation of ECM on a GPU using the modular
multiplier described in the previous section. Recall that the speed bottleneck
of ECM is scalar multiplication on an elliptic curve modulo m and that the
factorization of m involves this computation on many curves.

Applications such as the NFS add a further dimension in that factorizations
of many auxiliary numbers are needed. We decided to use the parallelism of the
GPU to handle several curves for a given auxiliary integer, which can thus be
stored in the shared memory of an MP. All SPs in an MP follow the same series
of instructions which is a scalar multiplication on the respective curve modulo
the same m and with the same scalar s. Different auxiliary factorizations inside
NFS can be handled by different MPs in a GPU or different GPUs in parallel
since no communication is necessary among the factorizations. For the rest of
this section we consider one fixed m and s for the computation on a single MP.

494 D.J. Bernstein et al.

Step MAU 1 MAU 2
1 A=X2

1 B=Y 2
1 S

2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B − A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 A=X1 × X1 Z1=Z1 × C M
8 Z1=Z2

1 B=Y 2
1 S

9 Z1=Z1 + Z1 C=A + B a
10 B=B − A X1=X1 + Y1 a
11 Y1=B × C X1=X1 × X1 M
12 B=Z1 − C X1=X1 − C a
13 Z1=B × C X1=X1 × B M

4M+3S+6a

Fig. 1. Explicit formulas for DBL-DBL

The CPU first prepares the curve parameters (including the coordinates of
the starting point) in an appropriate format and passes them to the GPU for
scalar multiplication, whose result will be returned by the GPU. The CPU then
does the gcd computation to determine whether we have found any factors.

Our implementation of modular arithmetic in essence turns an MP in a GPU
into an 8-way modular arithmetic unit (MAU) that is capable of carrying out
8 modular arithmetic operations simultaneously. How to map our elliptic-curve
computation onto this array of 8-way MAUs on a GPU is of crucial importance.
We have explored two different approaches to use the 8-way MAUs we have
implemented. The first one is straightforward: we compute on 8 curves in parallel,
each of which uses a dedicated MAU. This approach results in 2 kB of working
memory per curve, barely enough to store the curve parameters (including the
base point) and the coordinates of the intermediate point. Besides the base point,
we cannot cache any other points, which implies that the scalar multiplication
can use only a non-adjacent form (NAF) representation of s. So we need to
compute log2 s doublings and on average (log2 s)/3 additions to compute [s]P̃ .

In the second approach, we combine 2 MAUs to compute the scalar multipli-
cation on a single curve. As mentioned in Sections 2 and 4, our implementation
uses Montgomery representation of integers, so it does not benefit from multipli-
cations with small values. In particular, multiplications with the curve coefficient
d take the same time as general multiplications. We provide the base point and
all precomputed points (if any) in affine coordinates, so all curve additions are
mixed additions. Inspecting the explicit formulas, one notices that both addition
and doubling require an odd number of multiplications/squarings. In order to
avoid idle multiplication cycles, we have developed new parallel formulas that
pipeline two group operations. The scalar multiplication can be composed of the
building blocks DBL-DBL (doubling followed by doubling), mADD-DBL (mixed
addition followed by doubling) and DBL-mADD. Note that there are never two

ECM on Graphics Cards 495

Step MAU 1 MAU 2
1 B=x2 × Z1 C=y2 × Z1 M
2 A=X1 × Y1 Z1=B × C M
3 E=X1 − B F=Y1 + C a
4 X1=X1 + C Y1=Y1 + B a
5 E=E × F Y1=X1 × Y1 M
6 F=A + Z1 B=A − Z1 a
7 E=E − B Y1=Y1 − F a
8 Z1=E × Y1 X1=E × F M
9 Y1=Y1 × B A=X1 × X1 M

10 Z1=Z2
1 B=Y 2

1 S
11 Z1=Z1 + Z1 C=A + B a
12 B=B − A X1=X1 + Y1 a
13 Y1=B × C X1=X1 × X1 M
14 B=Z1 − C X1=X1 − C a
15 Z1=B × C X1=X1 × B M

7M+1S+7a

Fig. 2. Explicit formulas for mADD-DBL

subsequent additions. At the very end of the scalar multiplication, one might
encounter a single DBL or mADD, in that case one MAU is idle in the final
multiplication.

The detailed formulas are given in Fig. 1, Fig. 2, and Fig. 3. The input to
all algorithms is the intermediate point, given in projective coordinates (X1 :
Y1 : Z1); the algorithms involving additions also take a second point in affine
coordinates (x2, y2) as input. The variables x2, y2 are read-only; the variables
X1, Y1, Z1 are modified to store the result. We have tested the formulas against
those in the EFD [9] and ensured that there would be no concurrent reads/writes
by testing the stated version and the one with the roles of MAU 1 and MAU 2
swapped. The horizontal lines indicate the beginning of the second operation.
There are no idle multiplication stages and only in DBL-mADD there is a wait
stage for an addition; another addition stage is used for a copy, which can be
implemented as an addition Z1 = X1 + 0. So the pipelined algorithms achieve
essentially perfect parallelism.

We note that in our current implementation, concurrent execution of a squar-
ing and a multiplication does not result in any performance penalty since squar-
ing is implemented as multiplication of the number by itself. Even if squarings
could be executed somewhat faster than general multiplications the performance
loss is minimal, e.g., instead of needing 3M+4S per doubling, the pipelined DBL-
DBL formulas need 4M+3S per doubling.

We also kept the number of extra variables to a minimum. The pipelined
versions need one extra variable compared to the versions on a single MAU
but now two MAUs share the computation. This frees up enough memory so
that we can store the eight points P̃ , [3]P̃ , [5]P̃ , . . . , [15]P̃ per curve. We store
these points in affine coordinates using only two Z/m elements’ worth of storage

496 D.J. Bernstein et al.

Step MAU 1 MAU 2
1 A=X2

1 B=Y 2
1 S

2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B − A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 Z1=Z1 × C A=X1 × Y1 M
8 B=x2 × Z1 C=y2 × Z1 M
9 E=X1 − B F=Y1 + C a

10 X1=X1 + C Y1=Y1 + B a
11 E=E × F Z1=B × C M
12 F=A + Z1 B=A − Z1 a
13 E=E − B Z1=X1 a
14 A=Z1 × Y1 X1=E × F M
15 A=A − F a
16 Z1=E × A Y1=A × B M

6M+2S+8a

Fig. 3. Explicit formulas for DBL-mADD

space. With these precomputations we can use a signed-sliding-window method
to compute [s]P̃ . This reduces the number of mixed additions to an average of
(log2 s)/6 (and worst case of (log2 s)/5).

6 Experimental Results

We summarize our results in Tables 2 and 3. Our experiments consist of running
stage-1 ECM on the product of two 140-bit prime numbers with B1 ranging
from 210 to 220 on various CPUs and GPUs. For CPU experiments, we run
GMP-ECM, the state-of-the-art implementation of ECM, whereas for GPU ex-
periments, we run our GPU ECM implementation as described in Sections 4
and 5.

The first column of each table lists the coprocessors. The next three columns
list their specifications: number of cores, clock frequency, and theoretical maxi-
mal arithmetic throughput (Rmax). Note that the Rmax figures tend to underes-
timate CPUs’ computational power while overestimating GPUs’ because CPUs
have wider data paths and are better at exploiting instruction-level parallelism.
Also, in calculating GPUs’ Rmax, we exclude the contribution from texture pro-
cessing units because we do not use them. The next two columns give the actual
performance numbers derived from our measurements.

Table 2 includes an extra row, the first row, that does not correspond to
any experiments we have performed. This row is extrapolated from the result of
Szerwinski and Güneysu published in CHES 2008 [46]. In their result, the scalar
in the scalar multiplications is 224 bits long, whereas in our experiments, it is
11797 bits long. Therefore, we have scaled their throughput by 224/11797 to fit

ECM on Graphics Cards 497

Table 2. Performance results of stage-1 ECM

Coprocessor #Cores
Freq Rmax Mulmods Curves

(GHz) (GFLOPS) (106/sec) (1/sec)
CHES 2008 [46] (scaled) 96 1.2 230.4 26.81
8800 GTS (G80) 96 1.2 230.4 7.51 57.30
8800 GTS (G92) 128 1.625 416.0 13.64 104.14
GTX 260 192 1.242 476.9 14.97 119.05
GTX 280 240 1.296 622.1 19.53 155.29
Core 2 Duo E6850 2 3.0 48.0 7.85 75.17
Core 2 Quad Q6600 4 2.4 76.8 13.03 124.71
Core 2 Quad Q9550 4 2.83 90.7 14.85 142.17
GTX 260 (parallel) 192 1.242 476.9 16.61 165.58
GTX 280 (parallel) 240 1.296 622.1 22.66 216.78
GTX 295 (parallel) 480 1.242 1192.3 41.88 400.70
Q6600+GTX 295×2 96.79 926.11

into our context. We also note that their modulus is a special prime, which should
lead to faster modular reduction, and that it only has 224 bits, as opposed to 280
in our implementation. We did not account for this difference in the performance
figure stated. In spite of that, our implementation on the same platform achieves
a significantly higher throughput, more than twice as many curves per second.

The remaining rows report two sets of performance numbers based on our
cycle-accurate measurements of ECM execution time: per-second throughput of
modular multiplication, and per-second throughput of elliptic-curve scalar mul-
tiplication with B1 = 8192. For the GTX 260 and the GTX 280 we tried our
ECM implementation using serial elliptic-curve arithmetic and our ECM im-
plementation using parallel elliptic-curve arithmetic; both results are presented
in the table. We are unable to make parallel arithmetic run on G80 and G92
because they do not have enough registers to accommodate the more compli-
cated control code. The bottommost row represents the situation in which we
use CPUs and GPUs simultaneously for ECM computations.

For the 8800 GTS (both G80 and G92), we used the CPU clock-cycle counter,
so our scalar-multiplication measurements include the overhead of setting up the
computation and returning the computed result.Ourmodular-multiplicationmea-
surements used separate experiments with B1 = 1048576 to effectively eliminate
this overhead. For the remaining GPUs we used the GPU clock-cycle counter, and
usedB1 = 8192 in all cases to avoid overflow in the counter. By experimenting with
additional choices ofB1 we have verified that, in all cases, modular-multiplication
throughput roughly remains the same for different B1’s and thus can be used to
accurately predict scalar-multiplication throughput given the number of modular
multiplications executed in each scalar multiplication.

In Section 4.2we have estimated that amodularmultiplication needs at least 263
instructions. Take GTX 280 as an example: if we divide its Rmax in Table 2 by the
achieved modular multiplication throughput, we see that in the experiment each

498 D.J. Bernstein et al.

Table 3. Price-performance results of stage-1 ECM

Coprocessor
Component-wise System-wise

Cost performance/cost Cost performance/cost
() (1/(sec·)) () (1/(sec·))

8800 GTS (G80) 119 0.48 1005 0.1140
8800 GTS (G92) 178 0.59 1123 0.1855
GTX 260 275 0.43 1317 0.1808
GTX 280 334 0.46 1435 0.2164
Core 2 Duo E6850 172 0.44 829 0.0907
Core 2 Quad Q6600 189 0.66 847 0.1472
Core 2 Quad Q9550 282 0.50 939 0.1541
GTX 260 (parallel) 275 0.60 1317 0.2515
GTX 280 (parallel) 334 0.65 1435 0.3021
GTX 295 (parallel) 510 0.79 2001 0.4005
Q6600+GTX 295×2 1210 0.77 2226 0.4160

modular multiplication consumes about 27454 floating-point operations, which
can be delivered in 13727 GPU instructions. Given that 32 threads are dedicated
to computing one single modular multiplication, each thread gets to execute about
429 instructions per modular multiplication. This number is about 60% more than
what we have estimated. We believe that the difference is due to the fact that there
are other minor operations such as modular additions and subtractions, as well as
managerial operations like data movement and address calculations.

Table 3 shows price-performance figures for different ECM coprocessors. For
each coprocessor, the next column shows the cheapest retail price pulled from
on-line vendors such as NewEgg.com as of January 23, 2009, which in turn gives
the per-US-dollar scalar-multiplication throughput listed in the next column.
This price-performance ratio can be misleading because one could not com-
pute ECM with a bare CPU or GPU— one needs a complete computer system
with a motherboard, power supply, etc. In the last column we give the per-US-
dollar scalar-multiplication throughput for an entire ECM computing system,
based on the advice given by a web site for building computer systems of good
price-performance ratio [6]. The baseline configuration consists of one dual-PCI-
Express motherboard and one 750 GB hard drive in a desktop enclosure with a
built-in 430-Watt power supply and several cooling fans. For CPU systems, we
include the CPU, 8 GB of ECC RAM, and a low-price graphics card. In contrast,
for GPU systems we include two identical graphics cards (since the motherboard
can take two video cards). We also add a 750-Watt (1200-Watt in the case of
GTX 295) power supply in order to provide enough power for the two graphics
cards, plus a lower-priced Celeron CPU and 2 GB of ECC RAM. This is justi-
fied because when we use GPUs for ECM computation, we use the CPU only
for light, managerial tasks. Finally, the configuration in the last row has both
CPU and GPU working on ECM, which achieves the best price-performance ra-
tio since the cost of the supporting hardware is shared by both CPU and GPUs.

ECM on Graphics Cards 499

We did not consider multi-socket motherboards with Opterons or Xeons because
they are not competitive in price-performance ratio.

We conclude that although the Q6600 has a very good price-performance ra-
tio among Intel CPUs — there is often such a “sweet spot” in market pricing
for a high-end (but not quite highest-end) part, especially toward the end of
the product life — the configuration of two GTX 295’s achieves a superior price-
performance ratio both component- and system-wise, not to mention that they
can be aided by a CPU to achieve an even better price-performance ratio. The
cost-effectiveness of GPUs for ECM makes GPUs suitable as a component of
designs such as SHARK and allows ECM cofactorization to play a larger role
inside the number-field sieve. To our knowledge, this is the first GPU implemen-
tation of elliptic-curve computation in which the GPU results are better than
CPU results in the number of scalar multiplications per dollar and per second.

References

1. 13th IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2005), Napa, CA, USA, April 17–20, 2005. IEEE Computer Society, Los
Alamitos (2005); ISBN 0-7695-2445-1. See [44]

2. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A Kilobit Special
Number Field Sieve Factorization. In: ASIACRYPT 2007 [31], pp. 1–12 (2007)
(Cited in §1, §1)

3. Atkin, A.O.L., Morain, F.: Finding suitable curves for the elliptic curve method of
factorization. Mathematics of Computation 60, 399–405 (1993); ISSN 0025-5718,
MR 93k:11115,
http://www.lix.polytechnique.fr/~morain/Articles/articles.english.html

(Cited in §2.2)
4. Bahr, F., Boehm, M., Franke, J., Kleinjung, T.: Subject: rsa200 (2005),

http://www.crypto-world.com/announcements/rsa200.txt (Cited in §1)
5. Bahr, F., Franke, J., Kleinjung, T.: Discrete logarithms in GF(p) - 160 digits (2007),

http://www.nabble.com/Discrete-logarithms-in-GF(p)-----160

-digits-td8810595.html (Cited in §1)
6. Bernstein, D.J.: How to build the 2009.01.23 standard workstation,

http://cr.yp.to/hardware/build-20090123.html (Cited in §6)
7. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards

Curves. In: AFRICACRYPT [47], pp. 389–405 (2008),
http://eprint.iacr.org/2008/013 (Cited in §2.2)

8. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves
(2008), http://eprint.iacr.org/2008/016 (Cited in §2, §2.2, §2.2, §2.2)

9. Bernstein, D.J., Lange, T.: Explicit-formulas database (2008),
http://hyperelliptic.org/EFD (Cited in §2.2, §5)

10. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
ASIACRYPT 2007 [31], pp. 29–50 (2007),
http://cr.yp.to/papers.html#newelliptic (Cited in §2.2, §2.2)

11. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003);
ISBN 3-540-40674- 3. See [43]

500 D.J. Bernstein et al.

12. Cavallar, S., Dodson, B., Lenstra, A.K., Leyland, P.C., Lioen, W.M., Montgomery,
P.L., Murphy, B., te Riele, H., Zimmermann, P.: Factorization of RSA-140 Using
the Number Field Sieve. In: ASIACRYPT 1999 [33], pp. 195–207 (1999) (Cited in
§1)

13. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W.M., Montgomery, P.L., Murphy,
B., te Riele, H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P.C., Marchand, J.,
Morain, F., Muffett, A., Putnam, C., Putnam, C., Zimmermann, P.: Factorization
of a 512-Bit RSA Modulus. In: EUROCRYPT 2000 [41], pp. 1–18 (2000) (Cited in
§1, §1)

14. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret Key
Cryptography Using Graphics Cards. In: CT-RSA 2005 [36], pp. 334–350 (2005)
(Cited in §3)

15. Cook, D.L., Keromytis, A.D.: CryptoGraphics: Exploiting Graphics Cards For Se-
curity. In: Advances in Information Security, vol. 20. Springer, Heidelberg (2006);
ISBN 978-0- 387-29015-7 (Cited in §3)

16. Cowie, J., Dodson, B., Elkenbracht-Huizing, R.M., Lenstra, A.K., Montgomery,
P.L., Zayer, J.: A World Wide Number Field Sieve Factoring Record: On to 512
Bits. In: ASIACRYPT 1996 [28], pp. 382–394 (1996) (Cited in §1)

17. Dwork, C. (ed.): CRYPTO 2006. LNCS, vol. 4117. Springer, Heidelberg (2006);
ISBN 3-540- 37432-9. See [27]

18. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American
Mathematical Society 44, 393–422 (2007),
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html

(Cited in §2.2)
19. Franke, J., Kleinjung, T., Paar, C., Pelzl, J., Priplata, C., Stahlke, C.: SHARK:

A Realizable Special Hardware Sieving Device for Factoring 1024-Bit Integers. In:
CHES 2005 [42], pp. 119–130 (2005) (Cited in §1, §1)

20. Gaj, K., Kwon, S., Baier, P., Kohlbrenner, P., Le, H., Khaleeluddin, M., Bachi-
manchi, R.: Implementing the Elliptic Curve Method of Factoring in Reconfigurable
Hardware. In: CHES 2006 [23], pp. 119–133 (2006) (Cited in §1)

21. Galbraith, S.D. (ed.): Cryptography and Coding 2007. LNCS, vol. 4887. Springer,
Heidelberg (2007); ISBN 978-3-540-77271-2. See [38]

22. Geiselmann, W., Shamir, A., Steinwandt, R., Tromer, E.: Scalable Hardware for
Sparse Systems of Linear Equations, with Applications to Integer Factorization.
In: CHES 2005 [42], pp. 131–146 (2005) (Cited in §1)

23. Goubin, L., Matsui, M. (eds.): CHES 2006. LNCS, vol. 4249. Springer, Heidelberg
(2006); ISBN 3- 540-46559-6. See [20]

24. Hess, F., Pauli, S., Pohst, M.E. (eds.): ANTS 2006. LNCS, vol. 4076. Springer,
Heidelberg (2006); ISBN 3- 540-36075-1. See [48]

25. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster group operations on elliptic
curves (2007), http://eprint.iacr.org/2007/441 (Cited in §2.2)

26. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method, Math-
ematics of Computation 72, 953–967 (2003) (Cited in §1)

27. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The Number Field Sieve in the
Medium Prime Case. In: CRYPTO 2006 [17], pp. 326–344 (2006) (Cited in §1)

28. Kim, K., Matsumoto, T. (eds.): ASIACRYPT 1996. LNCS, vol. 1163. Springer,
Heidelberg (1996); ISBN 3-540-61872-4. See [16]

29. Kleinjung, T.: Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024-bit integers. In: Proceedings of SHARCS 2006
(2006), http://www.math.uni-bonn.de/people/thor/cof.ps (Cited in §1, §1)

ECM on Graphics Cards 501

30. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In:
Coding and Cryptography [45], pp. 13–36 (2005) (Cited in §1)

31. Kurosawa, K. (ed.): ASIACRYPT 2007. LNCS, vol. 4833. Springer, Heidelberg
(2007); See [2], [10]

32. Laih, C.-S. (ed.): ASIACRYPT 2003. LNCS, vol. 2894. Springer, Heidelberg (2003);
ISBN 3-540-20592-6. See [35]

33. Lam, K.-Y., Okamoto, E., Xing, C. (eds.): ASIACRYPT 1999. LNCS, vol. 1716.
Springer, Heidelberg (1999); ISBN 3-540-66666-4. See [12]

34. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathemat-
ics 126, 649–673 (1987); ISSN0003-486X,MR89g:11125, http://links.jstor.org/
sici?sici=0003-486X(198711)2:126:3<649:FIWEC>2.0.CO;2-V (Cited §1)

35. Lenstra, A.K., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J.,
Leyland, P.C.: Factoring Estimates for a 1024-Bit RSA Modulus. In: ASIACRYPT
2003 [32], pp. 55–74 (2003) (Cited in §1)

36. Menezes, A.J. (ed.): CT-RSA 2005. LNCS, vol. 3376. Springer, Heidelberg (2005);
ISBN 3- 540-24399-2. See [14]

37. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985), http://www.jstor.org/pss/2007970 (Cited in
§4.1)

38. Moss, A., Page, D., Smart, N.P.: Toward Acceleration of RSA Using 3D Graphics
Hardware. In: Cryptography and Coding 2007 [21], pp. 364–383 (2007) (Cited in
§3)

39. Oswald, E., Rohatgi, P. (eds.): CHES 2008. LNCS, vol. 5154. Springer, Heidelberg
(2008); ISBN 978-3-540-85052-6. See [46]

40. Pelzl, J., Šimka, M., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C., Dru-
tarovský, M., Fischer, V., Paar, C.: Area-time efficient hardware architecture for
factoring integers with the elliptic curve method. IEE Proceedings on Information
Security 152, 67–78 (2005) (Cited in §1)

41. Preneel, B. (ed.): EUROCRYPT 2000. LNCS, vol. 1807. Springer, Heidelberg
(2000); ISBN 3-540-67517-5. See [13]

42. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005); ISBN 3-540-28474-5. See [19], [22]

43. Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Device. In:
CRYPTO 2003 [11], pp. 1–26 (2003) (Cited in §1)

44. Šimka, M., Pelzl, J., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C., Dru-
tarovský, M., Fischer, V.: Hardware Factorization Based on Elliptic Curve Method.
In: FCCM 2005 [1], pp. 107–116 (2005) (Cited in §1)

45. Smart, N.P. (ed.): Cryptography and Coding 2005. LNCS, vol. 3796. Springer,
Heidelberg (2005); See [30]

46. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryp-
tography. In: CHES 2008 [39], pp. 79–99 (2008) (Cited in §3.1, §6, §2)

47. Vaudenay, S. (ed.): AFRICACRYPT 2008. LNCS, vol. 5023. Springer, Heidelberg
(2008); ISBN 978-3- 540-68159-5. See [7]

48. Zimmermann, P., Dodson, B.: 20 Years of ECM. In: ANTS 2006 [24], pp. 525–542
(2006) (Cited in §2)

49. Zimmermann, P.: 50 largest factors found by ECM,
http://www.loria.fr/~zimmerma/records/top50.html (Cited in §1)

Double-Base Number System for Multi-scalar
Multiplications

Christophe Doche1,	, David R. Kohel2, and Francesco Sica3

1 Department of Computing, Macquarie University, Australia
doche@ics.mq.edu.au

2 Université de la Mediterranée, Aix-Marseille II, France
kohel@maths.usyd.edu.au

3 Department of Mathematics and Computer Science – AceCrypt
Mount Allison University, Sackville, Canada

fsica@mta.ca

Abstract. The Joint Sparse Form is currently the standard representa-
tion system to perform multi-scalar multiplications of the form [n]P +
m[Q]. We introduce the concept of Joint Double-Base Chain, a general-
ization of the Double-Base Number System to represent simultaneously
n and m. This concept is relevant because of the high redundancy of
Double-Base systems, which ensures that we can find a chain of reason-
able length that uses exactly the same terms to compute both n and m.
Furthermore, we discuss an algorithm to produce such a Joint Double-
Base Chain. Because of its simplicity, this algorithm is straightforward
to implement, efficient, and also quite easy to analyze. Namely, in our
main result we show that the average number of terms in the expansion
is less than 0.3945 log2 n. With respect to the Joint Sparse Form, this
induces a reduction by more than 20% of the number of additions. As
a consequence, the total number of multiplications required for a scalar
multiplications is minimal for our method, across all the methods using
two precomputations, P + Q and P − Q. This is the case even with co-
ordinate systems offering very cheap doublings, in contrast with recent
results on scalar multiplications. Several variants are discussed, including
methods using more precomputed points and a generalization relevant
for Koblitz curves. Our second contribution is a new way to evaluate φ̂,
the dual endomorphism of the Frobenius. Namely, we propose formulae
to compute ±φ̂(P) with at most 2 multiplications and 2 squarings in the
base field F2d . This represents a speed-up of about 50% with respect to
the fastest known techniques. This has very concrete consequences on
scalar and multi-scalar multiplications on Koblitz curves.

Keywords: Elliptic curve cryptography, scalar multiplication, Double-
Base Number System, Koblitz curves.

� This work was partially supported by ARC Discovery grant DP0881473.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 502–517, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Double-Base Number System for Multi-scalar Multiplications 503

1 Introduction

1.1 Elliptic Curve Cryptography

An elliptic curve defined over a field K can be seen as the set of points with
coordinates in K lying on a cubic with coefficients in K. Additionally, the curve
must be smooth, and if this is realized, the set of points on the curve can be
endowed with an abelian group structure. This remarkable property has been
exploited for about twenty years to implement fundamental public-key crypto-
graphic primitives. We refer to [21] for a thorough, yet accessible, presentation
of elliptic curves and to [2,16] for a discussion focused on cryptographic appli-
cations. In this context, two classes of elliptic curves are particularly relevant:
those defined over a large prime field Fp, represented either by a Weierstraß
equation or an Edwards form [5] and Koblitz curves defined over F2.

The core operation in elliptic curve cryptography is a scalar multiplication,
which consists in computing [n]P given a point P on the curve and some integer
n. Several methods exist relying on different representations of n. Among them,
the non-adjacent form (NAF) allows to compute [n]P with � doublings and �

3
additions on average, where � is the binary length of n.

1.2 Double-Base Number System

The Double-Base Number System (DBNS) was initially introduced by Dimitrov
and Cooklev [10] and later used in the context of elliptic curve cryptography [11].
With this system, an integer n is represented as

n =
�∑

i=1

ci2ai3bi , with ci ∈ {−1, 1}.

To find an expansion representing n, we can use a greedy-type algorithm whose
principle is to find at each step the best approximation of a certain integer (n
initially) in terms of a {2, 3}-integer, i.e. an integer of the form 2a3b. Then
compute the difference and reapply the process.

Example 1. Applying this approach for n = 542788, we find that

542788 = 2837 − 2337 + 2433 − 2.32 − 2.

In [13], Dimitrov et al. show that for any integer n, this greedy approach returns
a DBNS expansion of n having at most O

(log n
log log n

)
terms. However, in general

this system is not well suited for scalar multiplications. For instance, in order
to compute [542788]P from the DBNS expansion given in Example 1, it seems
we need more than 8 doublings and 7 triplings unless we can use extra storage
to keep certain intermediate results. But, if we are lucky enough that the terms
in the expansion can be ordered in such a way that their powers of 2 and 3 are
both decreasing, then it becomes trivial to obtain [n]P .

504 C. Doche, D.R. Kohel, and F. Sica

This observation leads to the concept of Double-Base Chain (DBC), intro-
duced in [11], where we explicitly look for expansions such that a� � a�−1 �
· · · � a1 and b� � b�−1 � · · · � b1. This guarantees that exactly a� doublings,
b� triplings, �− 1 additions, and at most two registers are sufficient to compute
[n]P . It is easy to modify the greedy algorithm to return a DBC. A tree-based
algorithm has also been recently developed with the same purpose [14].

Example 2. A modified version of the greedy algorithm returns the following
DBC

542788 = 21433 + 21233 − 21032 − 210 + 26 + 22.

A DBC expansion is always longer than a DBNS one, but computing a scalar
multiplication with it is now straightforward. The most natural method is
probably to proceed from right-to-left. With this approach, each term 2ai3bi

is computed individually and all the terms are added together. This can be
implemented using two registers.

The left-to-right method, which can be seen as a Horner-like scheme, needs
only one register. Simply initialize it with [2a�−a�−13b�−b�−1]P , then add c�−1P
and apply [2a�−1−a�−23b�−1−b�−2] to the result. Repeating this eventually gives
[n]P , as illustrated with the chain of Example 2

[542788]P = [22]
(
[24]

(
[24]

(
[32]

(
[223]([22]P + P)− P)− P)

+ P
)

+ P
)
.

1.3 Multi-scalar Multiplication

A signature verification mainly requires a computation of the form [n]P + [m]Q.
Obviously, [n]P , [m]Q can be computed separately and added together at the
cost of 2� doublings and 2�

3 additions on average, using the NAF and assuming
that n and m are both of length �. More interestingly, [n]P + [m]Q can also be
obtained as the result of a combined operation called a multi-scalar multiplica-
tion. So called Shamir’s trick, a special case of an idea of Straus [20], allows to
minimize the number of doublings and additions by jointly representing

(
n
m

)
in

binary. Scanning the bits from left-to-right, we perform a doubling at each step,
followed by an addition of P , Q or P + Q if the current bits of n and m are
respectively

(1
0

)
,
(0
1

)
, or

(1
1

)
. If P +Q is precomputed, we see that [n]P + [m]Q

can be obtained with � doublings and 3�
4 additions, on average.

It is possible to do better, as shown by Solinas [19], using the redundancy and
flexibility of signed-binary expansions. Indeed, the Joint Sparse Form (JSF) is
a representation of the form(

n

m

)
=

(
n�−1 . . . n0

m�−1 . . . m0

)
JSF

such that the digits ni,mi fulfill certain conditions. Given two integers n and m,
there is an efficient algorithm computing the JSF of n and m and if max(n,m) is
of length �, then the number of terms is at most �+1 and the number of nonzero
columns is �

2 on average. Also, the JSF is proven to be optimal, that is for any

Double-Base Number System for Multi-scalar Multiplications 505

given pair (n,m), the JSF has the smallest density among all joint signed-binary
representations of n and m.

Example 3. The joint sparse form of n = 542788 and m = 462444 is equal to(
n

m

)
=

(
1001̄0001001̄01001̄01̄00
10000100100001000100

)
JSF

where 1̄ stands for −1. The computation of [n]P +[m]Q requires 9 additions and
20 doublings, given that P +Q and P −Q are precomputed and stored.

2 Joint Double-Base Number System

In the present article, we introduce the Joint Double-Base Number System
(JDBNS) that allows to represent two integers n and m as

(
n

m

)
=

�∑
i=1

(
ci
di

)
2ai3bi , with ci, di ∈ {−1, 0, 1}.

To compare with other representation systems, we define the density of a JDBNS
expansion as the number of terms in the expansion divided by the binary length
of max(n,m). It is easy to find an expansion with a very low density, however,
just like in the one-dimension case, cf. Section 1.2, it cannot be used directly
together with a Horner-like scheme. That is why we also introduce the concept
of Joint Double-Base Chain (JDBC) where the sequences of exponents satisfy
a� � a�−1 � · · · � a1 and b� � b�−1 � · · · � b1. With this additional constraint,
the computation of [n]P + [m]Q can be done very efficiently provided that the
points P +Q and P −Q are precomputed.

Example 4. A JDBC for n and m is as follows(
542788
462444

)
=

(
1
1

)
21433 +

(
1
0

)
21233 +

(
1̄
1

)
2933 +

(
1
1

)
2932 +

(
1̄
1

)
2732

+

(
0
1

)
2632 +

(
1
1̄

)
2432 +

(
1
1

)
243 +

(
0
1

)
223 +

(
1
0

)
22.

Based on this representation, it is now trivial to compute [n]P + [m]Q with a
Horner-like scheme. Note however that the right-to-left method mentioned in
Section 1.2 cannot be adapted in this context.

Again, the greedy algorithm can be modified to return a JDBC, however, the
resulting algorithm suffers from a certain lack of efficiency and is difficult to
analyze. The method we discuss next is efficient, in the sense that it quickly
produces very short chains, and simple allowing a detailed complexity analysis.

506 C. Doche, D.R. Kohel, and F. Sica

3 Joint Binary-Ternary Algorithm and Generalizations

In [8], Ciet et al. propose a binary/ternary method to perform a scalar multiplica-
tion by means of doublings, triplings, and additions. Let vp(x) denote the p-adic
valuation of x, then the principle of this method is as follows. Starting from some
integer n and a point P , divide n by 2v2(n) and perform v2(n) doublings, then
divide the result by 3v3(n) and perform v3(n) triplings. At this point, we have
some integer x that is coprime to 6. Thus setting x = x− 1 or x = x+ 1 allows
to repeat the process at the cost of an addition or a subtraction.

We propose to generalize this method in order to compute a JDBC. First, let
us introduce some notation. For two integers x and y, we denote min

(
vp(x), vp(y)

)
by vp(x, y). It corresponds to the largest power of p that divides x and y simulta-
neously. Next, we denote by X the set of all pairs of positive integers (x, y) such
that v2(x, y) = v3(x, y) = 0. Finally, for positive x and y, we introduce the func-
tion gain(x, y). We set gain(1, 1) = 0, whereas for pairs (x, y) �= (1, 1), we define
gain(x, y) as the largest factor 2v2(x−c,y−d)3v3(x−c,y−d) among all c, d ∈ {−1, 0, 1}.

For instance, gain(52, 45) is equal to 22, corresponding to c = 0 and d = 1.
Note that this function can be implemented very efficiently, since in most cases
it depends only on the remainders of x and y modulo 6.

3.1 Algorithm

Let us explain our generalization. Take two positive integers n and m. Divide
by 2v2(n,m)3v3(n,m) in order to obtain (x, y) ∈ X. The idea is then to call the
function gain(x, y) and clear the common powers of 2 and 3 in x − c, y − d,
where c and d are the coefficients maximizing this factor. (In case several pairs
of coefficients achieve the same gain, any pair can be chosen.) The result is a new
pair in X so that we can iterate the process, namely compute the corresponding

Algorithm 1. Joint Binary-Ternary representation

Input: Two integers n and m such that n > 1 or m > 1.
Output: A joint DB-Chain computing n and m simultaneously.

1. i ← 1 [current index]

2. a1 ← v2(n, m) and b1 ← v3(n, m) [common powers of 2 and 3]

3. x ← n/(2a13b1) and y ← m/(2a13b1) [(x, y) ∈ X]

4. while x > 1 or y > 1 do

5. g ← gain(x, y) [with coefficients ci, di]

6. x ← (x − ci)/g and y ← (y − di)/g [(x, y) ∈ X]

7. i ← i + 1, ai ← ai + v2(g), and bi ← bi + v3(g)

8. ci ← x and di ← y [ci, di ∈ {0, 1}]
9. return

((
ci
di

)
2ai3bi

)
JDBC

Double-Base Number System for Multi-scalar Multiplications 507

gain, divide by the common factor, and so on. Since x and y remain positive and
decrease at each step, we will have at some point x 1 and y 1, causing the
algorithm to terminate.

Example 5. Algorithm 1 with input n = 542788 and m = 462444 returns the
following expansion(

542788
462444

)
=

(
1
1

)
21135 +

(
1
1̄

)
2934 +

(
0
1

)
2734 +

(
1
1̄

)
2733 +

(
0
1̄

)
2533

+

(
1
1

)
2532 −

(
1
1

)
253 +

(
0
1

)
24 +

(
1
1̄

)
22.

Note that we have no control on the largest powers of 2 and 3 in the expansion
returned by Algorithm 1. This can be a drawback since doublings and triplings
have different costs in different coordinate systems. To have more control, simply
modify the function gain. One possibility is to adjust the returned factor and
coefficients depending on the remainders of x and y modulo a chosen constant.
For instance, we can decide that when x ≡ 4 (mod 12) and y ≡ 3 (mod 12),
then the gain should be 3 rather than 22. Doing that in each case, we can thus
favor doublings or triplings. A complete analysis of the corresponding method
is totally obvious. This is not the case for the general method that we address
now.

3.2 Complexity Analysis

In the following, given integers n and m of a certain size, we compute the average
density of a JDBC obtained with Algorithm 1, as well as the average values of
the maximal powers of 2 and 3 in the joint expansion. This will in turn provide
the average number of additions, doublings and triplings that are necessary to
compute [n]P + [m]Q.

Let us start with the density of an expansion, which depends directly on
the average number of bits cleared at each step of Algorithm 1. Given a pair
(x, y) ∈ X and fixed values α and β, we determine the probability pα,β that
gain(x, y) = 2α3β by enumerating the number of pairs having the desired gain
in a certain square S and dividing by the total number of pairs in X∩S. Let Sγ,δ

denote the square [1, 2γ3δ]2. The total number of pairs we investigate is given
by the following Lemma.

Lemma 1. Given two integers γ and δ, the cardinality of X ∩ Sγ,δ, is equal to
22γ+132δ−1.
The proof is straightforward and is left to the reader. Next, let us choose γ, δ
to actually compute pα,β. At first glance, it seems that the square Sα+1,β+1 is a
good candidate for that. In fact, we can use it provided that when we consider a
larger square, say Sα+κ+1,β+η+1, the number of pairs having a gain equal to 2α3β

and the total number of pairs in X are both scaled by the same factor: 22κ32η.
Indeed, we expect that if (x, y) has a gain equal to 2α3β, then all the pairs of

508 C. Doche, D.R. Kohel, and F. Sica

the form (x+ i2α+13β+1, y+ j2α+13β+1) with (i, j) ∈ [0, 2κ3η− 1]2 will have the
same gain. However, this is not the case. For instance, gain(26, 35) = 32 whereas
gain(26 + 2 × 33, 35 + 5 × 2 × 33) = 24. These interferences are inevitable, but
intuitively, they will become less and less frequent and will eventually disappear
if we scan a set large enough. The following result makes this observation more
precise.

Lemma 2. Let α and β be two nonnegative integers. Take γ such that 2γ > 2α3β

and δ such that 3δ > 2α3β. Then, for any (x, y) ∈ X whose gain is equal to 2α3β,
we have

gain(x+ i2γ3δ, y + j2γ3δ) = gain(x, y), for all (i, j) ∈ Z2.

Lemma 2 gives a lower bound for pα,β. Indeed, let us consider a larger set
Sγ+κ,δ+η. Then to any pair (x, y) ∈ X ∩ Sγ,δ whose gain is 2α3β, we can as-
sociate the elements (x + i2γ3δ, y + j2γ3δ) with (i, j) ∈ [0, 2κ3η − 1]2 that are
in X ∩ Sγ+κ,δ+η and that have the same gain as (x, y). Conversely, if (x1, y1) ∈
X ∩ Sγ+κ,δ+η and gain(x1, y1) = 2α3β, then (x1, y1) can be written (x+i2γ3δ, y+
j2γ3δ) with (x, y) ∈ Sγ,δ and gain(x, y) = gain(x1, y1). Overall, this ensures that
scanning Sγ,δ gives the exact probability for a pair to have a gain equal to 2α3β

and allows to compute the first few probabilities. The following lemma deals
with the remaining cases.

Lemma 3. The probability pα,β is bounded above by 1
22α+132β−3 for any nonneg-

ative α, β.
The proofs of Lemmas 2 and 3 can be found in the extended version of the article
available online [15]. We can now prove our main result.

Theorem 1. Let n � m be two integers such that gcd(n,m) is coprime with 6.
The average density of the JDBC computing

(
n
m

)
and returned by Algorithm 1

belongs to the interval [0.3942, 0.3945]. The average values of the biggest powers
of 2 and 3 in the corresponding chain are approximately equal to 0.55 log2 n and
0.28 log2 n.

Proof. We determine the first probabilities pα,β using Lemmas 1 and 2. Namely,
we enumerate pairs having a gain equal to 2α3β in the square Sγ,δ, with γ and δ
as in Lemma 2. With an appropriate implementation, we need to investigate only
22(γ−α)32(δ+1−β) pairs and a quick computation gives pα,β . We have performed
the computations for 0 α 8 and 0 β 5, and results show that these
parameters cover more than 99.99% of the cases. We found that the probability
pi,j is equal to 2−2i+33−2j for i � 2 and j � 1. For i 1 or j = 0, the
probabilities do not seem to follow any pattern:

p0,0 = 0 p0,1 = 2
32 p0,2 = 41

2334 p0,3 = 169
2536 p0,4 = 2729

2938 p0,5 = 10921
211310

p1,0 = 0 p1,1 = 5
33 p1,2 = 95

2435 p1,3 = 383
2637 p1,4 = 6143

21039 p1,5 = 24575
212311

p2,0 = 5
2.32 p3,0 = 7

2332 p4,0 = 17
2334 p5,0 = 635

2736 p6,0 = 637
2636 p7,0 = 2869

21038 p8,0 = 51665
213310 ·

Double-Base Number System for Multi-scalar Multiplications 509

Now, if the gain of (x, y) is equal to 2α3β in Line 5 of Algorithm 1, then the
sizes of x and y both decrease by (α + β log2 3) bits in Line 6. Therefore, if K
denotes the average number of bits eliminated at each step of Algorithm 1, we
have

K =
∞∑

α=0

∞∑
β=0

pα,β(α+ β log2 3) �
8∑

α=0

5∑
β=0

pα,β(α+ β log2 3)

and thanks to the values above, we obtain K � 2.53519. Using Lemma 3, we
bound the remaining terms in the double sum to get K 2.53632. The density
being the inverse of K, we deduce the bounds of the theorem.

Similarly, we deduce that on average we divide by 2α3β at each step for some
α ∈ [1.40735, 1.40810] and β ∈ [0.71158, 0.71183]. To obtain the average of the
largest power of 2 (respectively 3) in an expansion, we simply note that it is
equal to α (respectively β) multiplied by the average length of the expansion.�

Since the JSF has a joint density of 1
2
, we see that a JDBC returned by Al-

gorithm 1 has on average 21% less terms than a JSF expansion, whereas both
representation systems require exactly 2 precomputations. See Table 2 to appre-
ciate the impact of the Joint Binary-Ternary algorithm overall on multi-scalar
multiplications.

3.3 Variants of the Joint Binary-Ternary Method

One simple generalization is to allow nontrivial coefficients in the expansion.
This corresponds to use more precomputed points when computing a multi-
scalar multiplication. For instance, if we allow the coefficients in the expansion
to be 0,±1,±5, then 10 points must be stored to compute [n]P + [m]Q effi-
ciently. Namely, P +Q, P −Q, [5]P , [5]Q, [5]P +Q, [5]P −Q, P +[5]Q, P − [5]Q,
[5]P+[5]Q, and [5]P−[5]Q. The only difference with Algorithm 1 lies in the func-
tion gain(x, y), which now computes the largest factor 2v2(x−c,y−d)3v3(x−c,y−d)

for c, d ∈ {−5,−1, 0, 1, 5}. Clearly, the average number of bits that is gained at
each step is larger than in Algorithm 1, and indeed, following the ideas behind
Theorem 1, it is possible to show that the average density of an expansion re-
turned by this variant is approximately equal to 0.3120. Note that this approach
gives shorter multi-chains on average than the hybrid method explained in [1]
that uses 14 precomputations for a density of 0.3209.

If we want to add a new value, e.g. 7, to the set of coefficients, we have to
use 22 precomputed points, which does not seem realistic. If the computations
are performed on a device with limited memory, storing 10 points is already too
much. A possibility is to precompute only P +Q, P −Q, [5]P , and [5]Q and use
only coefficients of the form

(1
0

)
,
(0
1

)
,
(1
1

)
,
(1
1̄

)
,
(5
0

)
,
(0
5

)
and their opposite in the

JDBC. In this scenario, adding a new coefficient has a moderate impact on the
total number of precomputations. Again, the only difference lies in the function
gain. It is easy to perform an analysis of this method following the steps that
lead to Theorem 1. This is left to the interested reader.

510 C. Doche, D.R. Kohel, and F. Sica

Another variant, we call the Tree-Based Joint Binary-Ternary method, is a
generalization of the tree-based approach to compute single DB-Chains [14].
Namely, instead of selecting the coefficients c, d that give the maximal gain in
order to derive the next pair of integers, simply build a tree containing nodes
(x, y) corresponding to all the possible choices of coefficients. The idea is that
taking a maximal gain at each step is not necessarily the best choice overall.
Giving a certain flexibility can allow to find shorter expansions. The downside
is that the number of nodes grows exponentially so that the algorithm becomes
quickly out of control. A practical way to deal with this issue is to trim the tree
at each step, by keeping only a fixed number B of nodes, for instance the B
smallest ones (e.g. with respect to the Euclidean norm). Tests show that the
value B does not have to be very large in order to introduce a significant gain. In
practice, we use B = 4, which achieves a good balance between the computation
time and the quality of the chain obtained.

Algorithm 2. Tree-Based Joint Binary-Ternary method

Input: Two integers n and m such that n > 1 or m > 1 and a bound B.
Output: A tree containing a joint DB-chain computing n and m.

1. Initialize a tree T with root node (n, m)

2. if v2(n, m) > 0 or v3(n, m) > 0 then

3. g ← 2v2(n,m)3v3(n,m)

4. Insert the child
(

n
g
, m

g

)
under the node (n, m)

5. repeat

6. for each leaf node L = (x, y) in T do [insert 8 children]

7. for each pair (c, d) ∈ {−1, 0, 1}2 \ {(0, 0)} do

8. gc,d ← 2v2(x−c,y−d)3v3(x−c,y−d)

9. Lc,d ←
(

x−c
gc,d

, y−d
gc,d

)
and insert Lc,d under L

10. Discard any redundant leaf node

11. Discard all but the B smallest leaf nodes

12. until a leaf node is equal to (1, 1)

13. return T

Remarks 6

(i) The choice B = 1 corresponds to the Joint Binary-Ternary method. It is
clear that on average, the larger B is, the shorter will be the expansion.
However, a precise complexity analysis of Algorithm 2 seems rather difficult.

(ii) To find an actual JDBC computing n and m, go through the intermediate
nodes of any branch having a leaf node equal to (1, 1).

Double-Base Number System for Multi-scalar Multiplications 511

(iii) To select the nodes that we keep in Line 11, we use a weight function that
is in our case simply the size of the gain, of the form 2α3β. To have more
control on the largest powers of 2 and 3 in the expansion, we can use another
weight function, e.g. depending on α or β.

(iv) It is straightforward to mix the tree-based approach with the use of nontriv-
ial coefficients. Simply, modify Line 7 to handle different sets of coefficients.

Example 7. To compute [542788]P+[462444]Q, the JSF needs 9 additions and
20 doublings, whereas the joint Binary-Ternary method only requires 8 additions,
11 doublings, and 5 triplings, cf. Examples 1 and 5. Applying Algorithm 2 with
B = 4, we find that(

542788
462444

)
=

(
1
1

)
21135 +

(
1
1̄

)
2934 +

(
1
1

)
2634 +

(
1̄
1

)
2434

−
(

1
1

)
2333 +

(
1̄
0

)
2232 +

(
1
1̄

)
223 +

(
1
0

)
22.

This last expansion still requires 11 doublings and 5 triplings but saves one
addition.
Next, we describe some experiments aimed at comparing all these methods in
different situations.

3.4 Experiments

We have run some tests to compare the different methods discussed so far for
different sizes ranging from 192 to 512 bits. More precisely, we have investigated
the Joint Sparse Form (JSF), the Joint Binary-Ternary (JBT), and its Tree-
Based variant with parameter B adjusted to 4 (Tree-JBT). All these methods
require only 2 precomputations. Also, for the same set of integers, we have looked
at methods relying on more precomputed values. The variant of the Tree-Based
explained above that needs only [5]P and [5]Q on top of P + Q and P − Q is
denoted Tree-JBT5. In this spirit Tree-JBT7 needs extra points [7]P and [7]Q,
whereas Tree-JBT52 needs all the possible combinations, such as [5]P + [5]Q,
that is 10 precomputations in total. Table 1 displays the different parameters
for each method, in particular the length of the expansion, corresponding to
the number of additions and the number of doublings and triplings. The values
obtained are inline with those announced in Theorem 1. The notation #P stands
for the number of precomputed points required by each method.

To demonstrate the validity of our approach, we compare it against the Joint
Sparse Form and the hybrid method [1]. These methods have the best known
density when using respectively two and 14 precomputed points. Furthermore,
we performed computations using inverted Edwards coordinates [7]. This sys-
tem offers so efficient doublings that it makes a Double-Base approach irrelevant
for single scalar multiplications [6]. Indeed, with this system a doubling can be

512 C. Doche, D.R. Kohel, and F. Sica

Table 1. Parameters of JDBC obtained by various methods

Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P � a� b� � a� b� � a� b� � a� b� � a� b�� a� b�

JSF 2 96 192 0 128 256 0 160 320 0 190 384 0 224 448 0 256 512 0

JBT 2 77 104 55 102 138 74 128 174 92 153 208 110 179 241 130 204 279 146

Tree-JBT 2 72 107 53 96 141 72 119 178 89 143 214 107 167 248 126 190 281 145

Tree-JBT5 4 64 105 54 85 141 71 106 176 90 126 211 108 147 246 126 169 281 145

Tree-JBT7 6 60 102 55 80 137 74 99 171 93 119 204 112 139 238 131 158 273 150

Tree-JBT52 10 54 105 54 72 140 72 89 176 90 107 210 109 125 245 127 142 283 144

Hybrid 14 61 83 69 82 110 92 102 138 115 123 165 138 143 193 161 164 220 184

obtained with 3M + 4S, a mixed addition with 8M + S, and a tripling with
9M + 4S, where M and S represent respectively a multiplication and a squaring
in Fp. To ease the comparisons, we make the usual assumption that 1S ≈ 0.8M.

Table 2 gives the overall number of multiplications needed for a scalar multi-
plication with a particular method, using inverted Edwards coordinates. These
tests show that the Joint Binary-Ternary is faster than the Joint Sparse Form.
The Tree-Based variant is even faster, but the time necessary to derive the ex-
pansion is considerably higher than the simple Joint Binary-Ternary. Beyond the
speed-up, that is close to 5%, it is interesting to notice that even with very cheap
doublings, Double-Base like methods are faster. Regarding methods requiring
more precomputed values, it is to be noted that all the variants introduced in
this paper use significantly less precomputed points than the hybrid method.
Nevertheless, they are all faster when counting the costs of precomputations, as
shown in Table 2. One can check that this is still the case even when those costs
are ignored.

Table 2. Complexity of various scalar multiplication methods for different sizes

Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P NM NM NM NM NM NM
JSF 2 2044 2722 3401 4062 4758 5436

JBT 2 2004 2668 3331 3995 4664 5322

Tree-JBT 2 1953 2602 3248 3896 4545 5197

Tree-JBT5 4 1920 2543 3168 3792 4414 5042

Tree-JBT7 6 1907 2521 3137 3753 4365 4980

Tree-JBT52 10 1890 2485 3079 3677 4270 4862

Hybrid 14 2047 2679 3311 3943 4575 5207

To conclude, note that JDBC expansions are relevant for scalar multiplications
as well. Namely, if we want to compute [n]P , one possibility is to split n as
n0 + 2A3Bn1, where A and B are fixed constants chosen so that n0 and n1
have approximately the same size and also to adjust the number of doublings
and triplings. Then run Algorithm 1 or 2 to find a chain computing n0 and n1
simultaneously and derive [n]P as [n0]P + [n1]Q, where Q = [2A3B]P .

Double-Base Number System for Multi-scalar Multiplications 513

4 Koblitz Curves

The results above can be applied to compute a scalar multiplication on any ellip-
tic curve. However, in practice, these techniques concern mainly curves defined
over a prime field of large characteristic.

For Koblitz curves,

Ea2 : y2 + xy = x3 + a2x
2 + 1, a2 ∈ {0, 1}

there exists a nontrivial endomorphism, the Frobenius denoted by φ and defined
by φ(x, y) = (x2, y2). Let μ = (−1)1−a2 , then it is well-known that the Frobenius
satisfies φ2 − μφ+ [2] = [0]. So, in some sense, the complex number τ such that
τ2 − μτ + 2 = 0 represents φ. If an integer n is equal to some polynomial in
τ , then the endomorphism [n] will be equal to the same polynomial in φ. The
elements of the ring Z[τ], called Kleinian integers [12], thus play a key role in
scalar multiplications on Koblitz curves.

4.1 Representation of Kleinian Integers

It is easy to show that Z[τ] is an Euclidean ring and thus any element η ∈ Z[τ]
has a τ-adic representation of the form

η =
�−1∑
i=0

ciτ
i, with ci ∈ {0, 1}.

There are also signed-digit representations and among them, the τ -NAF has a
distinguished status, achieving an optimal density of 1

3 · Its generalization, the
τ -NAFw, has an average density of 1

w+1 for 2w−2 − 1 precomputed points.
In [3,4,12], the concept of Double-Base is extended to Kleinian integers. In

particular, for a given η ∈ Z[τ], there is an efficient algorithm described in [3]
that returns a τ -DBNS expansion of the form

η =
�∑

i=1

±τaizbi ,

where z = 3 or τ̄ . This method produces in general an expansion whose terms
cannot be ordered such that a� � a�−1 � · · · � a1 and b� � b�−1 � · · · � b1.
Unlike what we have seen in Section 1.2, such an expansion can still be used
to compute a scalar multiplication in certain situations. The price to pay is
to incorporate conversion routines between polynomial and normal bases [18]
to compute repeated applications of the Frobenius for free. This approach is
described in [17].

Since implementing these conversion techniques can be challenging, especially
on devices with limited capabilities, we will not follow this path and introduce
instead the concept of τ-Double-Base Chains (τ -DBC) where, as in the integer

514 C. Doche, D.R. Kohel, and F. Sica

case, we ask that a� � a�−1 � · · · � a1 and b� � b�−1 � · · · � b1 in the
expansion above. The algorithm described in [3] could be adapted to return a
τ -DBC, however the implementation would certainly be tricky and the analysis
quite involved. Instead, we can generalize the greedy algorithm or the binary-
ternary method to produce such a chain.

4.2 Scalar Multiplication

The τ -adic representation of η implies that

[η]P =
�−1∑
i=0

ciφ
i(P).

Now, if we work in the extension F2d , and if η ∈ Z is of size 2d, the length � of
the τ -adic expansion of η is twice as long as what we expect, that is 2d instead of
d. That is why in practice, we first compute δ = ηmod τd−1

τ−1 · Under appropriate
conditions, we have [δ]P = [η]P with δ of length half then length of η. From
now on, we assume that this reduction has been done and that the length of η
is approximately d.

Computing [η]P with the τ -NAF involves d
3 additions on average and d

Frobenius that need at most 3d squarings in F2d . With the τ -NAFw, we need
2w−2 − 1 + d

w+1 additions, the same amount of Frobenius, and some memory
to store 2w−2 − 1 precomputed points. The complexity of the τ -DBNS is well
understood, however as mentioned earlier, it requires change of basis techniques
that are not available in our scenario.

The complexity of the τ -DBC is much more difficult to analyze. Only some
experiments give an indication of its performance, and tests show that the τ -
DBC cannot compete, for instance with the τ -NAF. The problem comes from
the cost of the second endomorphism that is too expensive to balance the saving
induced on the number of additions. To make use of the τ -DBC, it is crucial to
reduce this cost. There is little hope to reduce significantly the cost of a tripling,
that is why we focus our efforts on φ̂.

Obviously, we can implement φ̂(P) = μP − φ(P) with a subtraction and, in
López–Dahab coordinates, this corresponds to the cost of a mixed addition, i.e.
8M + 5S, where M and S are respectively the cost of a multiplication and a
squaring in F2d . But it is possible to do better. Indeed, we can replace φ̂ by the
halving map using the equation φφ̂(P) = [2]P . A halving works on the point
P = (x1, y1) represented as (x1, λ1) with λ1 = x1 + y1/x1. It involves solving a
quadratic equation, computing a square root and a trace, and performing at least
one multiplication, cf. [2]. It is thus difficult to accurately analyze the cost of a
halving, but half the cost of a mixed López–Dahab addition, that is 4M + 4S, is
a reasonable estimate. This is still too expensive to justify the use of the τ -DBC
to compute a scalar multiplication. We show next how to compute ±φ̂(P) in a
much more efficient way.

Double-Base Number System for Multi-scalar Multiplications 515

4.3 Fast Evaluation of φ̂

In this part, we show how to compute ±φ̂(P) in López–Dahab coordinates with
2M + S when a2 = 1 and 2M + 2S when a2 = 0.

Lemma 4. Let P1 = (X1 : Y1 : Z1) be a point in López–Dahab coordinates on
the curve Ea2 and let P2 = φ̂(P1). Then the López–Dahab coordinates of P2,
namely (X2 : Y2 : Z2) satisfy

X2 = (X1 + Z1)2, Z2 = X1Z1,

Y2 =
(
Y1 + (1− a2)X2

)(
Y1 + a2X2 + Z2

)
+ (1− a2)Z2

2 .

The coordinates of the negative of P2 are equal to (X2 : Y ′
2 : Z2) with Y ′

2 =(
Y1 + a2X2

)(
Y1 + (1− a2)X2 + Z2

)
+ (1− a2)Z2

2 .
The proof can be found in the extended version of the article [15].
This new way to compute φ̂ is also beneficial to the τ -DBNS, especially re-

garding the algorithm described in [3]. A direct application of the formulae above
induces a speed-up on the overall scalar multiplication ranging from 15% to 20%.

4.4 Multi-scalar Multiplication Algorithms

To perform [η]P+[κ]Q at once, there is also a notion of τ -adic Joint Sparse Form,
τ -JSF [9]. The τ -JSF and the JSF have very similar definitions. For instance,
they have the same average joint density, that is 1

2
. However the optimality of

the JSF does not carry over to the τ -JSF. Namely, for certain pairs in Z[τ], the
joint density of the τ -JSF expansion is not minimal across all the signed τ -adic
expansions computing this pair.

Now, let us explain how we can produce joint τ -DBNS expansions and
more importantly joint τ -DBC. The generalization of the greedy-type method
is straightforward. At each step, find the closest approximation of (η, κ) of
the form (cτατβ , dτατβ) with c, d ∈ {−1, 0, 1} with respect to the distance
d
(
(η, κ), (η′, κ′)

)
=

√
N(η − η′)2 + N(κ− κ′)2, where N(.) is the norm in Z[τ].

Then subtract the closest approximation and repeat the process until we reach
(0, 0). To find a joint τ -DBC, do the same except that this search must be done
under constraint, just like in the integer case.

Another possibility is to adapt the method developed in Section 3. We call
this approach the Joint-ττ method. The framework is exactly the same, the
only difference lies in the function gain. This time gain(η, κ) computes a suitable
common factor τατβ of the elements (η−c, κ−d) for c, d ∈ {−1, 0, 1}. We are not
interested in the factor having the largest norm, instead we prefer to control the
largest power of τ , as this has a crucial impact on the overall complexity. This
can be done quite easily by adjusting certain parameters as it is suggested at the
end of Section 3.1. For each choice of the function gain, there is a corresponding
algorithm, that should be analyzed quite easily, following the integer case. We
decided to run some experiments first to inform us on the optimal choices for
the function gain. A summary is detailed next.

516 C. Doche, D.R. Kohel, and F. Sica

4.5 Experiments

We have run some tests to compare the τ -JSF with the Joint-ττ for popular sizes
used with Koblitz curves, ranging from 163 to 571 bits. Table 3 displays the dif-
ferent parameters for each method, in particular the length of the expansion, the
values a� and b� corresponding respectively to the number of additions, the num-
ber of applications of φ and of φ̂, as well as the total number of multiplications
NM in F2d needed to perform a multi-scalar multiplication for the correspond-
ing size. Both methods require only 2 precomputations and the figures include
those costs. Also to ease comparisons we have made the usual assumption that
1S ≈ 0.1M. Results show that our approach introduces improvements regarding
scalar multiplications of 8 to 9% in total over the τ -JSF.

Table 3. Comparison between the τ -JSF and the Joint-ττ

163 bits 233 bits 283 bits 347 bits 4409 bits 571 bits

Method � a� b� � a� b� � a� b� � a� b� � a� b�� a� b�

τ-JSF 82 163 0 117 233 0 142 283 0 174 347 0 205 409 0 286 571 0

NM 738 1050 1272 1558 1834 2555

Joint-ττ 65 116 44 92 167 62 112 204 76 137 251 93 161 295 110 224 412 155

NM 671 955 1154 1410 1665 2318

References

1. Adikari, J., Dimitrov, V., Imbert, L.: Hybrid Binary-Ternary Joint Sparse Form and
its Application in Elliptic Curve Cryptography, http://eprint.iacr.org/2008/

2. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Nguyen, K., Lange, T., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Math-
ematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton
(2005)

3. Avanzi, R.M., Dimitrov, V.S., Doche, C., Sica, F.: Extending scalar multiplica-
tion using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 130–144. Springer, Heidelberg (2006)

4. Avanzi, R.M., Sica, F.: Scalar multiplication on koblitz curves using double bases.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 131–146. Springer,
Heidelberg (2006)

5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Hei-
delberg (2007)

6. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 167–182. Springer, Heidelberg (2007)

7. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/

8. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multi-
plications in Elliptic Curve Cryptography. Des. Codes Cryptogr. 39(2), 189–206
(2006)

Double-Base Number System for Multi-scalar Multiplications 517

9. Ciet, M., Lange, T., Sica, F., Quisquater, J.-J.: Improved algorithms for effi-
cient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 388–400. Springer, Heidelberg (2003)

10. Dimitrov, V.S., Cooklev, T.: Hybrid Algorithm for the Computation of the Matrix
Polynomial I+A+· · ·+AN−1. IEEE Trans. on Circuits and Systems 42(7), 377–380
(1995)

11. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

12. Dimitrov, V.S., Järvinen, K.U., Jacobson Jr., M.J., Chan, W.F., Huang, Z.: FPGA
implementation of point multiplication on koblitz curves using kleinian integers. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer,
Heidelberg (2006)

13. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An Algorithm for Modular Exponen-
tiation. Information Processing Letters 66(3), 155–159 (1998)

14. Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains.
In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 433–
446. Springer, Heidelberg (2008)

15. Doche, C., Kohel, D.R., Sica, F.: Double-Base Number System for Multi-Scalar
Multiplications, http://eprint.iacr.org/2008/

16. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptogra-
phy. Springer, Heidelberg (2003)

17. Okeya, K., Takagi, T., Vuillaume, C.: Short memory scalar multiplication on koblitz
curves. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 91–105.
Springer, Heidelberg (2005)

18. Park, D.J., Sim, S.G., Lee, P.J.: Fast scalar multiplication method using change-of-
basis matrix to prevent power analysis attacks on koblitz curves. In: Chae, K.-J.,
Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 474–488. Springer, Heidelberg
(2004)

19. Solinas, J.A.: Low-weight binary representations for pairs of integers. Combina-
torics and Optimization Research Report CORR 2001-41, University of Waterloo
(2001)

20. Straus, E.G.: Addition chains of vectors (problem 5125). Amer. Math. Monthly 70,
806–808 (1964)

21. Washington, L.C.: Elliptic Curves. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton (2003); number theory and
cryptography

Endomorphisms for Faster Elliptic Curve
Cryptography on a Large Class of Curves

Steven D. Galbraith1,	, Xibin Lin2,		, and Michael Scott3,	 	 	

1 Mathematics Department,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom

steven.galbraith@rhul.ac.uk
2 School of Mathematics and Computational Science,

Sun Yat-Sen University, Guangzhou, 510275, P.R. China
linxibin@mail2.sysu.edu.cn

3 School of Computing, Dublin City University,
Ballymun, Dublin 9, Ireland
mike@computing.dcu.ie

Abstract. Efficiently computable homomorphisms allow elliptic curve
point multiplication to be accelerated using the Gallant-Lambert-
Vanstone (GLV) method. We extend results of Iijima, Matsuo, Chao and
Tsujii which give such homomorphisms for a large class of elliptic curves
by working over Fp2 and demonstrate that these results can be applied to
the GLV method.

In general we expect our method to require about 0.75 the time of
previous best methods (except for subfield curves, for which Frobenius
expansions can be used). We give detailed implementation results which
show that the method runs in between 0.70 and 0.84 the time of the
previous best methods for elliptic curve point multiplication on general
curves.

Keywords: elliptic curves, point multiplication, GLV method, isogenies.

1 Introduction
Let E be an elliptic curve over a finite field Fq and let P,Q ∈ E(Fq) have
order r. The fundamental operations in elliptic curve cryptography are point
multiplication [n]P and multiexponentiation [n]P +[m]Q where n,m ∈ Z. There
is a vast literature on efficient methods for computing [n]P and [n]P + [m]Q (a
good reference is [3]). There is a significant difference between computing [n]P
for varying n and a fixed point P , and computing [n]P where both n and P
vary; this paper focusses on the latter case.

� This work supported by EPSRC grant EP/D069904/1.
�� This author thanks the Chinese Scholarship Council.

� � � This author acknowledges support from the Science Foundation Ireland under
Grant No. 06/MI/006.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 518–535, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Endomorphisms for Faster Elliptic Curve Cryptography 519

The Gallant-Lambert-Vanstone (GLV) method [15] is an important tool for
speeding up point multiplication. The basic idea is as follows. If the elliptic curve
E has an efficiently computable endomorphism ψ (other than a standard multi-
plication by n map) such that ψ(P) ∈ 〈P 〉 then one can replace the computation
[n]P by the multiexponentiation [n0]P + [n1]ψ(P) where |n0|, |n1| ≈ √

r. The
integers n0 and n1 are computed by solving a closest vector problem in a lattice,
see [15] for details. In principle this computation requires only around 0.6 to 0.7
the time of the previous method (the precise details depend on the relative costs
of doubling and addition, the window size being used, etc). Some examples al-
low higher degree decompositions such as [n0]+[n1]ψ(P)+ · · ·+[nm−1]ψm−1(P)
where |ni| ≈ r1/m which can give further speedups. We call the latter approach
the m-dimensional GLV method.

Gallant, Lambert and Vanstone [15] only gave examples of suitable efficiently
computable endomorphisms in two cases, namely subfield curves (i.e., groups
E(Fqm) where E is defined over Fq; these do not have prime or nearly prime
order unless q is very small) and curves with special endomorphism structure
(essentially, that the endomorphism ring has small class number). Hence, if one
is using randomly chosen prime-order elliptic curves over finite fields for cryp-
tography (or if one wants to use special primes such as NIST primes, see Section
2.2.6 of [18]) then the GLV method is not usually available. Indeed, in Section
7 of [33] one finds the claim “the GLV method is only effective for those excep-
tional elliptic curves that have complex multiplication by an order with small
discriminant.”

In fact, Iijima, Matsuo, Chao and Tsujii [20] constructed an efficiently com-
putable homomorphism on elliptic curves E(Fp2) with j(E) ∈ Fp arising from the
Frobenius map on a twist of E. Apparently they did not realise the application of
their results to theGLVmethod. In this paperwe give a generalisation of the Iijima-
Matsuo-Chao-Tsujii (IMCT) construction and analyse it in the context of the GLV
method. The construction applies to all elliptic curvesoverFp2 such that j(E) ∈ Fp

and, as noted in [20,29], can be used with curves of prime order.
The curves considered in this paper are not completely general: the number

of Fq2 -isogeny classes of elliptic curves over Fq2 is approximately 2q2 whereas
the construction in Section 2 gives only approximately q isomorphism classes
of curves. However, this is a major improvement over earlier papers on the
GLV method which, in practice, were only applied to a finite number of Fq-
isomorphism classes for any given q. The results of this paper therefore overturn
the claims of Section 7 of [33].

The basic idea is somewhat analogous to subfield curves: We take elliptic curves
E with j(E) ∈ Fq and consider the group E(Fqm). However a crucial difference is
that E is defined over Fqm , not Fq. This means that it is possible to obtain curves
of prime order and so there is no need to restrict attention to q being small. Our
method can be used with any prime power q and any elliptic curvesE over Fq and
always gives rise to a GLV method of dimension at least two.

We give experimental results comparing the cost of our algorithm for point
multiplication [n](x, y) with previous methods for this operation (indeed, we

520 S.D. Galbraith, X.Lin, and M. Scott

compare with optimised implementations due to Bernstein [4] and Gaudry-
Thomé [17], which, based on ideas of Montgomery [28], use only x-coordinate
arithmetic). The purpose of our implementation experiments is to give a good
picture of the speedup obtained with the new method compared with using
curves over prime fields; we stress that our implementation is not claimed to be
the best possible and that one could probably achieve further speedups from a
different choice of curve coordinates or different exponentiation methods.

We find that the new method runs in between 0.70 and 0.84 the time of the
previous best methods. The exact performance depends on the platform being
used; our best result is for 8-bit processors. Our methods (unlike methods using
Montgomery ladders, such as [4,17]) can also be used for signature verification.
Our experimental results in Table 4 show that Schnorr signature verification
runs in around 0.73 the time of the best previous methods for the same curve.

Note that our techniques can also be implemented on elliptic curves given
by any equation (e.g., Edwards or Jacobi-quartic form, see [6,7,8]) and exploit
their benefits. We also generalise the method to hyperelliptic curves. The details
of both these cases are omitted due to lack of space, but are given in the full
version of the paper.

The focus in this paper is on curves over fields of large prime characteristic,
since in small characteristic one might prefer to use subfield curves and Frobenius
expansions. However, Hankerson, Karabina and Menezes [19] have experimented
with the method in characteristic 2 and they report that the new method runs
in about 0.74 to 0.77 the time of the best standard method for general curves.

We now give an outline of the paper. First we describe the homomorphism
and explain how it leads to a 2-dimensional GLV method. Section 3 gives a
specific key generation algorithm which may be convenient for some applications.
Section 4 shows how to get a 4-dimensional GLV method for y2 = x3 + B over
Fp2 . Section 5 gives some details about our implementation. The proof of the
pudding is the timings in Section 6. Section 7 discusses known security threats
from using the construction and explains how to avoid them.

2 The Homomorphism

We consider elliptic curves defined over any field Fq with identity point OE .
Recall that if E is an elliptic curve over Fq with q + 1 − t points then one can
compute the number of points #E(Fqm) efficiently. For example, #E(Fq2) =
q2 + 1− (t2 − 2q) = (q + 1)2 − t2. As usual we define

E(Fqm)[r] = {P ∈ E(Fqm) : [r]P = OE}.
When we say that a curve or mapping is ‘defined over Fqk ’ we mean that the

coefficients of the polynomials are all in Fqk . The implicit assumption throughout
the paper is that when we say an object is defined over a field Fqk then it is not
defined over any smaller field, unless explicitly mentioned.

The following result gives the main construction. Novices can replace the
words ‘separable isogeny’ with ‘isomorphism’, set d = 1 and replace φ̂ by φ−1

Endomorphisms for Faster Elliptic Curve Cryptography 521

without any significant loss of functionality (in which case one essentially obtains
the result of Iijima et al [20]). Recall that if r is a prime we write r‖N to mean
r | N but r2 � N .

Theorem 1. Let E be an elliptic curve defined over Fq such that #E(Fq) =
q + 1− t and let φ : E → E′ be a separable isogeny of degree d defined over Fqk

where E′ is an elliptic curve defined over Fqm with m | k. Let r | #E′(Fqm) be a
prime such that r > d and such that r‖#E′(Fqk). Let π be the q-power Frobenius
map on E and let φ̂ : E′ → E be the dual isogeny of φ. Define

ψ = φπφ̂.

Then

1. ψ ∈ EndF
qk

(E′) (i.e., ψ is a group homomorphism).
2. For all P ∈ E′(Fqk) we have ψk(P)− [dk]P = OE and ψ2(P)− [dt]ψ(P) +

[d2q]P = OE.
3. There is some λ ∈ Z such that λk − dk ≡ 0 (mod r) and λ2 − dtλ+ d2q ≡ 0

(mod r) such that ψ(P) = [λ]P for all P ∈ E′(Fqm)[r].

Proof. First note that φ̂ is an isogeny from E′ to E and is defined over Fqk , that
π is an isogeny from E to itself defined over Fq, and that φ is an isogeny from E
to E′ defined over Fqk . Hence ψ is an isogeny of E′ to itself, and is defined over
Fqk (or maybe a subfield). Therefore, ψ is a group homomorphism.

Since φφ̂ = d on E′ it follows that

ψ2 = φπφ̂φπφ̂ = φπdπφ̂ = dφπ2φ̂

and, by induction, ψk = dk−1φπkφ̂. For P ∈ E′(Fqk) we have φ̂(P) ∈ E(Fqk)
and so πk(φ̂(P)) = φ̂(P). Hence ψk(P) = [dk]P .

Similarly, writing Q = φ̂(P) for P ∈ E′(Fqk) we have π2(Q)− [t]π(Q)+[q]Q =
OE and so [d]φ(π2−[t]π+[q])φ̂(P) = OE . Using the previous algebra, this implies

(ψ2 − [dt]ψ + [qd2])P = OE .

Finally, let P ∈ E′(Fqm) have order r. Since ψ(P) ∈ E′(Fqk) also has order
r and r‖#E′(Fqk) it follows that ψ(P) = [λ]P for some λ ∈ Z. Since ψ is a
homomorphism, ψ([a]P) = [a]ψ(P) = [λ]([a]P) for all a ∈ Z. Since ψk(P) −
[dk]P = [λk]P − [dk]P = OE it follows that λk − dk ≡ 0 (mod r). Similarly,
λ2 − dtλ+ d2q ≡ 0 (mod r). �
We stress that there is nothing unexpected in the above construction. Consider
the case when φ is an isomorphism: Then E′ ∼= E implies End(E′) ∼= End(E). We
know that End(E) contains the p-power Frobenius map and hence End(E′) con-
tains a corresponding endomorphism. The above Theorem simply writes down
this endomorphism explicitly.

The proof generalises immediately to hyperelliptic curves (see the full version
of this paper or [22]).

522 S.D. Galbraith, X.Lin, and M. Scott

2.1 Special Case of Quadratic Twists

We now specialise Theorem 1 to elliptic curves over Fp where p > 3 and the case
m = 2.

Corollary 1. Let p > 3 be a prime and let E be an elliptic curve over Fp

with p + 1 − t points. Let E′ over Fp2 be the quadratic twist of E(Fp2). Then
#E′(Fp2) = (p − 1)2 + t2. Let φ : E → E′ be the twisting isomorphism defined
over Fp4 . Let r | #E′(Fp2) be a prime such that r > 2p Let ψ = φπφ−1. For
P ∈ E′(Fp2)[r] we have ψ2(P) + P = OE.

Proof. Let E : y2 = x3 + Ax + B with A,B ∈ Fp. We have #E(Fp2) = p2 +
1 − (t2 − 2p). Let u ∈ Fp2 be a non-square in Fp2 , define A′ = u2A,B′ = u3B
and E′ : y2 = x3 + A′x + B′. Then E′ is the quadratic twist of E(Fp2) and
#E′(Fp2) = p2 + 1 + (t2 − 2p) = (p− 1)2 + t2. The isomorphism φ : E → E′ is
given by

φ(x, y) = (ux,
√
u

3
y)

and is defined over Fp4 .
If r | #E′(Fp2) is prime such that r > 2p then r � #E(Fp2) = (p+1−t)(p+1+t)

and so r‖#E′(Fp4) = #E(Fp2)#E′(Fp2). Hence we may apply Theorem 1. This
shows that ψ = φπφ−1 is a group homomorphism such that ψ(P) = [λ]P for
P ∈ E′(Fp2)[r] where λ4−1 ≡ 0 (mod r). We now show that, in fact, λ2 +1 ≡ 0
(mod r).

By definition, ψ(x, y) = (uxp/up,
√
u

3
yp/
√
u

3p) where u ∈ Fp2 (i.e., up2
= u)

and
√
u �∈ Fp2 (and so,

√
u

p2

= −√u). If P = (x, y) ∈ E′(Fp2) then xp2
=

x, yp2
= y and so

ψ2(x, y) = (uxp2
/up2

,
√
u

3
yp2

/
√
u

3p2

)
= (x, (−1)3y)
= −(x, y).

This completes the proof. �
The above result applies to any elliptic curve over Fp (with p > 3) and shows
that the 2-dimensional GLV method can be applied. Note that it is possible for
#E′(Fp2) to be prime, since E′ is not defined over Fp (for further analysis see
Nogami and Morikawa [29]). One feature of this construction is that, since p is
now half the size compared with using elliptic curves over prime fields, point
counting is much faster than usual (this was noted in [29]). Since we are dealing
with elliptic curves over Fp2 , where p is prime, Weil descent attacks are not a
threat (see Section 7).

An exercise for the reader is to show that if E is an elliptic curve over Fp and
if E′ over Fp is the quadratic twist of E then the map ψ satisfies ψ(P) = −P
for all P ∈ E′(Fp). The homomorphism is therefore useless for the GLV method
in this case.

Endomorphisms for Faster Elliptic Curve Cryptography 523

Lemma 1. Let p ≡ 5 (mod 8) be a prime. Let notation be as in Corollary 1.
Then one may choose

ψ(x, y) = (−xp, iyp)

where i ∈ Fp satisfies i2 = −1.

Proof. See the full version of the paper. �

Lemma 2. Let notation be as in Corollary 1. Then ψ(P) = [λ]P where λ =
t−1(p− 1) (mod r).

Proof. The proof of Corollary 1 shows that ψ(P) = [λ]P for some λ ∈ Z. Since
ψ2(P) = −P we have λ2+1 ≡ 0 (mod r). Similarly, ψ2(P)−[t]ψ(P)+[p]P = OE ,
so λ2− tλ+ p ≡ 0 (mod r). Subtracting the second equation from the first gives
tλ+ (1− p) ≡ 0 (mod r). �

Finally, we give some remarks about the lattice which arises in the GLV method
when decomposing [n]P as [n0]P + [n1]ψ(P). Recall from [15] that we consider
the lattice

L = {(x, y) ∈ Z2 : x+ yλ ≡ 0 (mod r)}.

It is easy to prove that {(r, 0), (−λ, 1)} is a basis for L; this shows that the
determinant of L is r. The GLV method uses Babai’s rounding method to solve
the closest vector problem (CVP), and this method requires a reduced basis.

Lemma 3. Let notation be as in Corollary 1. The vectors {(t, p− 1), (1− p, t)}
are an orthogonal basis for a sublattice L′ of L of determinant #E′(Fp2). Given a
point (a, b) ∈ R2 there exists a lattice point (x, y) ∈ L′ such that ‖(a, b)−(x, y)‖ ≤
(p+ 1)/

√
2.

Proof. By Lemma 2 we have that tλ + (1 − p) ≡ 0 (mod r), which proves that
(1− p, t) ∈ L. Multiplying by λ and using λ2 ≡ −1 (mod r) gives (t, p− 1) ∈ L.
It is easy to check that the vectors are orthogonal and thus linearly independent.
The vectors both have length

√
#E′(Fp2) ≤

√
p2 + 2p+ 1 = p + 1. This basis

has determinant (p − 1)2 + t2 = #E′(Fp2) so generates a sublattice L′ ⊆ L (if
#E′(Fp2) = r then L = L′).

Finally, simple geometry shows that the maximum distance from a lattice
point is

√
#E′(Fp2)/2 ≤ (p+ 1)/

√
2. �

Computing the coefficients n0, n1 for the GLV method is therefore particularly
simple in this case (one does not need to use lattice reduction or the methods of
[30,21,33]). Further, one knows that |n0|, |n1| ≤ (p+1)/

√
2. As always, an alter-

native to the decomposition method which can be used in some cryptographic
settings is to choose small coefficients n0, n1 ∈ Z directly rather than choosing
a random 0 ≤ n < r and then computing the corresponding (n0, n1).

524 S.D. Galbraith, X.Lin, and M. Scott

2.2 Higher Dimension Decompositions

The GLV method can be generalised to m-dimensional decompositions [n]P =
[n0]P + [n1]ψ(P) + · · · + [nm−1]ψm−1(P) (for examples with m = 4 and m =
8 see [13]). Such a setting gives improved performance. As we have found 2-
dimensional expansions using E′(Fp2) it is natural to try to get anm-dimensional
decomposition using E′(Fpm).

In general, to obtain an m-dimensional decomposition it is required that ψ
does not satisfy any polynomial equation on E′(Fpm)[r] of degree < m with
small integer coefficients. Note that ψ always satisfies a quadratic polynomial
equation but that the coefficients are not necessarily small modulo r.

The following result gives a partial explanation of the behaviour of ψ on
E′(Fpm).

Corollary 2. Let p > 3 be a prime and let E be an elliptic curve over Fp.
Let E′ over Fpm be the quadratic twist of E(Fpm). Write φ : E → E′ for the
twisting isomorphism defined over Fp2m . Let r | #E′(Fpm) be a prime such that
r > 2pm−1 Let ψ = φπφ−1. For P ∈ E′(Fpm)[r] we have ψm(P) + P = OE.

Proof. As in Corollary 1, we have r‖#E′(Fp2m) = #E′(Fpm)#E(Fpm) so The-
orem 1 applies. Using the same method as the proof of Corollary 1 we have
ψm(x, y) = (uxpm

/upm

,
√
u

3
ypm

/
√
u

3pm

) = −P . �
A problem is that the polynomial xm + 1 is not usually irreducible, and it
is possible that ψ satisfies a smaller degree polynomial. For example, in the
case m = 3 one sees that #E′(Fp3) cannot be prime as it is divisible by
N = #E(Fp2)/#E(Fp). If r | #E′(Fp3)/N and P ∈ E′(Fp3)[r] then ψ2(P) −
ψ(P) + 1 = OE . Hence one only gets a 2-dimensional decomposition in the case
m = 3.

Indeed, the interesting case is when m is a power of 2, in which case xm +1 is
irreducible and one can obtain an m-dimensional GLV decomposition. Indeed,
Nogami and Morikawa [29] already proposed exactly this key generation method
(choosing E over Fp and then using a quadratic twist over Fp2c) as a method
to generate curves of prime order. Note that [29] does not consider the GLV
method.

Therefore, the next useful case is m = 4, giving a 4-dimensional GLV method.
On the downside, this case is potentially vulnerable to Weil descent attacks (see
Section 7) and so the prime p must be larger than we would ideally like.

The other way to get higher dimension decompositions is to have maps φ
defined over larger fields than a quadratic extension. An example of this is given
in Section 4.

3 Key Generation

Let p > 3 be prime. We present a key generation algorithm for the quadratic
twist construction. Our algorithm is designed so that the resulting curve

Endomorphisms for Faster Elliptic Curve Cryptography 525

E′ : y2 = x3 + A′x + B′ over Fp2 has coefficient A′ = −3, which is conve-
nient for efficient implementation when using Jacobian coordinates (see Section
13.2.1.c of [3] or Section 3.2.2 of [18]). The key generation algorithm can be mod-
ified to work with other models for elliptic curves and one can always choose at
least one coefficient to have a special form.

We use Lemma 1, which gives a particularly simple map ψ. It should be clear
that the algorithm can be used in more general cases. Our algorithm produces
curves of prime order, but this can be relaxed by requiring only h < H for some
bound H in line 7.

Algorithm 1. Key generation for quadratic twist construction
Output: p, E′, ψ, λ
1: Choose a prime p = 5 (mod 8) � e.g., a NIST prime (Section 2.2.6 of [18])
2: Set u =

√
2 ∈ Fp2

3: Set A′ = −3 and A = A′/2 ∈ Fp

4: repeat
5: Choose random B ∈ Fp and let E : y2 = x3 + Ax + B
6: Compute t = p + 1 − #E(Fp).
7: until (p − 1)2 + t2 = hr where r is prime and h = 1
8: Set B′ = Bu3 ∈ Fp2 and E′ : y2 = x3 + A′x + B′

9: Set λ = t−1(p − 1) (mod r)
10: Compute i ∈ Fp so that i2 = −1
11: Define ψ(x, y) = (−xp, iyp).
12: return p, (A′, B′), ψ, λ

As remarked earlier, key generation is fast compared with standard ECC,
since the point counting for #E(Fp) is over a field half the usual size (this is
precisely the point of the paper [29]).

4 Using Special Curves

We have seen that one can obtain a 2-dimensional GLV method for any ellip-
tic curve over Fp. However, 2-dimensional GLV methods were already known
for some special curves (i.e., those with a non-trivial automorphism or endo-
morphism of low degree). We now show how one can get higher-dimensional
expansions using elliptic curves E over Fp2 with #Aut(E) > 2.

The two examples of interest are E : y2 = x3 +B and y2 = x3 +Ax. We give
the details in the former case. The latter is analogous.

Let p ≡ 1 (mod 6) and let B ∈ Fp. Define E : y2 = x3 + B. Choose u ∈ Fp12

such that u6 ∈ Fp2 and define E′ : Y 2 = X3 + u6B over Fp2 . Repeat the
construction (choosing p,B, u) until #E′(Fp2) is prime (or nearly prime). Note
that there are 6 possible group orders for y2 = x3 + B′ over Fp2 and three
of them are never prime as they correspond to group orders of curves defined
over Fp.

526 S.D. Galbraith, X.Lin, and M. Scott

The isomorphism φ : E → E′ is given by φ(x, y) = (u2x, u3y) and is defined
over Fp12 . The homomorphism ψ = φπφ−1, where π is the p-power Frobenius on
E, is defined over Fp2 and satisfies the characteristic equation

ψ4 − ψ2 + 1 = 0

corresponding to the 12-th cyclotomic polynomial. Hence one obtains a
4-dimensional GLV method for these curves. This leads, once again, to a sig-
nificant speedup of these curves compared with previous techniques.

Note that −ψ2 satisfies the characteristic equation x2 + x + 1 and so acts as
the standard automorphism (x, y) .→ (ζ3x, y) on E.

5 Remarks on Our Implementation

In this section we briefly describe the implementation we used for our experi-
ments. As mentioned in the introduction, we do not claim that our implementa-
tion is the best possible. We believe that, for the parameters and implementation
platforms considered in this paper, it gives a fair estimate of the speedup ob-
tained by using the GLV method.

The main point of the GLV method is to replace a large point multiplication
[n]P by a multiexponentiation [n0]P +[n1]ψ(P). There are numerous algorithms
for multiexponentiation, all built on a fundamental observation by Straus, and
much has been written on the topic. One approach is to use ‘interleaving’; this
idea seems to have been independently discovered in [15] and [24]. We refer to
Section 3.3.3 of [18] for details. Another approach is the joint sparse form (see
Solinas [34]). The full version of the paper contains further analysis of multiex-
ponentiation methods (e.g., higher-dimensional joint sparse forms, the Euclidean
Montgomery ladder etc).

Two fundamental ideas used to speed up the computation of [n]P on elliptic
curves are the use of signed binary expansions (for example, non-adjacent forms,
see Definition 3.28 [18] or Definition 9.13 of [3]) and sliding window methods.
A very efficient method (as it only uses a few word operations) to compute the
NAF of an integer n is to compute 3n (using standard integer multiplication),
then form the signed expansion (3n) − n and discard the least significant bit.
The natural extension of non-adjacent forms to windows is called width-w NAFs
(see Section IV.2.5 of [9], Definition 3.32 of [18] or Definition 9.19 of [3]). Instead
of using width-w NAFs one can use sliding windows over NAF expansions (see
Section IV.2.4 of [9] or Algorithm 3.38 on page 101 of [18]). This is convenient
since it is cheaper to compute a NAF than a width-w NAF.

More generally, one can use signed fractional windows [25,26]. Finally, one
could consider fractional sliding windows over NAFs. This does not seem to
have been considered in the literature and it is an open problem to determine
the density in this case. More details of these methods are given in the full
version of the paper.

Our implementation uses interleaving with sliding (non-fractional) windows
of width w = 4 over NAF expansions (we found that using w = 5 was slightly

Endomorphisms for Faster Elliptic Curve Cryptography 527

slower for our parameters). Hence we must precompute {P, [3]P, [5]P, [7]P, [9]P};
note that the points {ψ(P), [3]ψ(P), [5]ψ(P), [7]ψ(P), [9]ψ(P)} can be obtained
on the fly at little cost. This is very similar to Algorithm 3.51 of [18], which uses
interleaving over width-w NAFs (the authors of [18] tell us that there is a typo
in line 2 of Algorithm 3.5.1: one should replace “3.30” with “3.35”). We do not
claim that this is the fastest possible approach, but it requires relatively little
precomputation and is very simple to implement. It is possible that one could
obtain slightly faster results using fractional windows or other methods.

The next decision is which coordinate system to use for elliptic curve arith-
metic. The best choice is probably inverted Edwards or Jacobi quartic [6,7,8] but
for legacy reasons our implementation uses Jacobian coordinates. As usual, one
prefers to use mixed additions in the main loop as they are faster. However this
requires that any precomputed values must be “normalized”, that is converted
to affine form, before entering the loop. This conversion, if done naively for
each precomputed point, would require expensive field inversions, so we use the
precomputation strategy of Dahmen, Okeya and Schepers (DOS) [12], as recom-
mended in [8] (there are also recent improvements due to Longa and Miri [23]),
which requires only a single inversion.

The full version of the paper gives more details of the implementation, as
well as a theoretical estimate of the number of Fp2 operations required for our
algorithm.

6 Experimental Results

We now give some timing comparisons for the computation of [n]P (and also
signature verification) on elliptic curves at the 128-bit security level. Our timings
are for the case of quadratic twists as presented in Section 2.1.

6.1 The Example Curve

It is natural to use the Mersenne prime p = 2127 − 1, which is also used in
Bernstein’s surface1271 genus 2 implementation [5]1. This prime supports a
very fast modular reduction algorithm.

Since p ≡ 3 (mod 4) we represent Fp2 as Fp(
√−1). Note that since p �=

5 mod 8 the previously described key generation process is not applicable here.
However it can easily be modified to handle this case as well, although the
homomorphism requires more multiplications to compute.

Let
E : y2 = x3 − 3x+ 44

1 Note that the Pollard rho algorithm using equivalence classes in this case requires
approximately 2125 group operations, the same as for Bernstein’s Curve25519 or
Surface1271. Whether this is precisely the same security level as AES-128 is un-
clear, but since Curve25519 and Surface1271 have been used for benchmarking we
feel our choice is justified.

528 S.D. Galbraith, X.Lin, and M. Scott

be defined over the field Fp. Then #E(Fp) = p+1−twhere t =3204F5AE088C39A7
in hex. By Corollary 1 the quadratic twist E′ over Fp2 of E(Fp2) has #E′(Fp2) =
(p−1)2+t2, which is a primewe call r. The curvewas quickly foundusing amodified
version of Schoof’s algorithm.

We use u = 2 + i instead of u =
√

2 in Algorithm 1. The homomorphism in
this case simplifies to

ψ(x, y) = (ωxx̄, ωy ȳ)

where x̄ denotes the Galois conjugate of x, and ωx = u/up, ωy =
√
u3/u3p as in

the proof of Corollary 1. By Lemma 2 we have ψ(P) = [λ]P where λ = t−1(p−1)
(mod r).

6.2 Comparison Curve

For comparison purposes we consider an elliptic curve E defined over Fp2 where
p2 = 2256 − 189 is a 256-bit pseudo-Mersenne modulus. This provides approxi-
mately the same level of security as the curve in the previous subsection.

The full version of the paper gives a theoretical comparison of the implemen-
tations. Table 1 gives operation counts for our test implementation. The notation
SSW means sliding windows of window size w = 5 over NAFs, GLV+JSF means
using joint sparse forms for the multiexponentiation and GLV+INT means in-
terleaving sliding windows of size 4 over NAFs as described in Section 5. In our
implementations we averaged the cost over 105 point multiplications.

Table 1. Point multiplication operation counts

Method Fp muls Fp adds/subs
E(Fp2), 256-bit p2 SSW 2600 3775
E(Fp2), 127-bit p SSW 6641 16997
E(Fp2), 127-bit p GLV+JSF 4423 10785
E(Fp2), 127-bit p GLV+INT 4109 10112

The results in Table 1 agree with the rough analysis given in the full version
of the paper. The table includes the often neglected costs of field additions and
subtractions. Note that when implementing Fp2 arithmetic, each multiplication
using Karatsuba requires five Fp additions or subtractions (assuming Fp2 =
Fp(
√−1)), so the number of these operations increases substantially.
Clearly the superiority (or otherwise) of the method depends on the relative

cost of 128-bit and 256-bit field multiplications (and additions or subtractions)
on the particular platform.

To give a more accurate picture we have implemented both methods on two
widely differing platforms, a 1.66GHz 64-bit Intel Core 2, and on an 8-bit 4MHz
Atmel Atmega1281 chip (which is a popular choice for wireless sensor network
nodes). We present the results in the following two subsections.

Endomorphisms for Faster Elliptic Curve Cryptography 529

6.3 8-bit Processor Implementation

Our first implementation is on a small 4MHz 8-bit Atmega1281 processor. Here
the base field multiplication times will dominate, so this function was written
in optimal loop-unrolled assembly language. We use the MIRACL C library
[31], which includes tools for the automatic generation of such code (and which
holds the current speed record for this particular processor [32]), and we use the
cycle accurate AVR Studio tool to measure the time for a single variable point
multiplication.

Table 2. Point multiplication timings – 8-bit processor

Atmel Atmega1281 processor Method Time (s)
E(Fp2), (256-bit p2) SSW 5.49
E(Fp2) (127-bit p) SSW 6.20
E(Fp2), (127-bit p) GLV+JSF 4.21
E(Fp2), (127-bit p) GLV+INT 3.87

Table 2 show a that our best method for point multiplication takes about 0.70
of the time required for the 256 bit E(Fp2) curve.

Observe that simply switching to an E(Fp2) curve at the same security level
does not by itself give any improvement, in fact it is somewhat slower. The theo-
retical advantage of using Karatsuba in the latter case appears to be outweighed
by the extra “fussiness” of the Fp2 implementation; and of course Karatsuba can
also be applied to the Fp case as well if considered appropriate. Looking at the
timings, a field multiplication takes 1995 μs over Fp2 (256-bit), as against 2327
μs over Fp2 (127-bit p), although for a field squaring the situation is reversed,
taking 1616 μs over Fp2 as against only 1529 μs over Fp2 . Field addition and
subtraction favours the Fp2 case (124 μs versus 174 μs). However using the new
homomorphism and applying the GLV method, our new implementation is still
clearly superior.

Note that for this processor it is probably more appropriate in practice to use
the JSF method for point multiplication, as it is much better suited to a small
constrained enviroment, with limited space for online precomputation.

6.4 64-Bit Processor Implementation

It has been observed by Avanzi [2], that software implementations over smaller
prime fields, where field elements can be stored in just a few CPU registers (as
will be the case here), suffer disproportionally when implemented using general
purpose multi-precision libraries. This effect would work against us here, as we
are using the general purpose MIRACL library [31]. Special purpose libraries
like the mpFq library [17] which generate field-specific code, and implementations
which work hard to squeeze out overheads, such as Bernstein’s implementations
[5] are always going to be faster.

530 S.D. Galbraith, X.Lin, and M. Scott

In the context of a 64-bit processor, while one might hope that timings would
be dominated by the O(n2) base field multiplication operations, for small values
of n the O(n) contribution of the numerous base field additions and subtractions
becomes significant, as also observed by Gaudry and Thomé [17]. Observe that
on the 64-bit processor a 128-bit field element requires just n = 2 (and indeed the
description as “multi-precision” should really give way to “double precision”).
Therefore it is to be expected that the speed-up we can achieve in this case will
be less than might have been hoped.

So is our new method faster? There is really only one satisfactory way to re-
solve the issue – and that is to identify the fastest known E(Fp2) implementation
on a 64-bit processor for the same level of security, and try to improve on it. We
understand that the current record is that announced by Gaudry and Thomé at
SPEED 2007 [17], using an implementation of Bernstein’s curve25519 [4]. This
record is in the setting of an implementation of the elliptic curve Diffie-Hellman
method, which requires a single point multiplication to determine the shared
secret key.

We point out that the clever implementation and optimizations of curve25519
are for the sole context of an efficient Diffie-Hellman implementation – ours is
general purpose and immediately applicable to a wide range of ECC protocols.
In particular the implementation of curve25519 uses Montgomery’s parameter-
isation of an elliptic curve, is not required to maintain a y coordinate, and hence
can achieve compression of the public key at no extra cost (i.e., without the
calculation of a square root).

On the other hand we have the use of a particularly nice modulus 2127 − 1,
which brings many benefits. For example a base field square root of a quadratic
residue x can be calculated as simply x2125

.
In order to be competitive we wrote a specialised hand-crafted x86-64 assem-

bly language module to handle the base field arithmetic, and integrated this
with the MIRACL library. Given that each field element can be stored in just
two 64-bit registers, this code is quite short, and did not take long to generate,
optimize and test.

To obtain our timings we follow Gaudry and Thomé, and utilise two different
methods, one based on actual cycle counts, and a method which uses an operating
system timer. There are problems with both methods [17], so here we average the
two. In practise the two methods were in close agreement, but not of sufficient
accuracy to justify exact numbers – so we round to the nearest 1000 cycles. See

Table 3. Point multiplication timings – 64-bit processor

Intel Core 2 processor Method Clock cycles
E(Fp2), 255-bit p2 Montgomery [17] 386,000
E(Fp2), 127-bit p SSW 490,000
E(Fp2), 127-bit p GLV+JSF 359,000
E(Fp2), 127-bit p GLV+INT 326,000

Endomorphisms for Faster Elliptic Curve Cryptography 531

Table 3 for our results. As can be seen, our best method takes 0.84 of the time
of the Gaudry and Thomé implementation. Note that point decompression, as
required by a Diffie-Hellman implementation which wishes to minimise the size
of the public key, would require approximately an extra 26,000 clock cycles for
our implementation.

It is interesting to observe from Table 3 that a careful implementation over a
quadratic extension which does not exploit our homomorphism is substantially
slower, taking 490,000 cycles. So again it seems that merely switching to a smaller
field size is not by itself advantageous on a 64-bit processor, although some of the
difference can be explained by the particularly clever parameterization chosen
for curve25519. However by using the GLV method we are able to make up this
difference, and indeed overtake the previous record.

To ensure a fair comparison, we exploited the very useful eBats project [10]
(now incorporated into eBACS [11]). Our eBat implements a Diffie-Hellman key
exchange algorithm, and can be directly and independently compared with an
implementation based on curve25519. There are two main functions for a Diffie-
Hellman implementation, one which calculates the key pair, and a second which
calculates the shared secret. For the key pair calculation we exploit the fact that
for our method a multiplication of a fixed point can benefit from extensive off-
line precomputation, and use a fixed-base comb algorithm (see Section 3.3.2 of
[18]), and so this calculation requires only 146,000 cycles. For the shared secret
calculation we use the GLV+INT method, plus the cost of a point decompression.

Our latest eBat can be downloaded from:
ftp://ftp.computing.dcu.ie/pub/crypto/gls1271-3.tar
Profiling the code reveals that our version (with point compression) spends 49%
of its time doing base field multiplications and squarings, 15% of the time doing
base field additions and subtractions and nearly 6% of the time is required for
the few modular inversions.

6.5 ECDSA/Schnorr Signature Verification

Verification of both ECDSA and Schnorr signatures requires the calculation of
[a]P +[b]Q, where P is fixed. In our setting we must calculate [a0]P +[a1]ψ(P)+
[b0]Q+[b1]ψ(Q) – in other words a 4-dimensional multiexponentiation algorithm
is required. The methods of Bernstein [4] and Gaudry-Thomé [17] are based on
Montgomery arithmetic and are not appropriate for signature verification.

Again we use an interleaving algorithm, using windows over a NAF expansion.
Since P is now fixed, precomputation of multiples of P (and therefore of ψ(P))
can be carried out offline, and so a larger window size of 6 can be used for the
multiplication of P . This requires the precomputation and storage of 42 points.
For the online precomputation required on Q, we again use sliding windows of
size 4 over NAF expansions.

In Table 4 we compare our method with an implementation that does not
use the GLV method. The notation GLV+INT means a 4-dimensional multiex-
ponentiation as described above and the notation INT means the 2-dimensional
interleaving algorithm which calculates [a]P + [b]Q directly for random a, b < r,

532 S.D. Galbraith, X.Lin, and M. Scott

Table 4. Signature Verification timings – 64-bit processor

Intel Core 2 processor Method Fp muls Fp adds/subs Clock cycles
E(Fp2), 127-bit p GLV+INT 5174 12352 425,000
E(Fp2), 127-bit p INT 7638 19046 581,000

using size 6 sliding windows over NAFs for the fixed point P , and size 5 sliding
windows over NAFs for the variable point Q.

Antipa et al [1] propose a variant of ECDSA with faster signature verification
(note that their method does not apply to Schnorr signatures). The basic method
gives essentially the same performance as our method (they transform [a]P+[b]Q
to a 4-dimensional multiexponentiation with coefficients ≈ √r). Their method,
as with ours, assumes that P is fixed and that certain precomputation has been
done.

The paper [1] also gives a variant where the public key is doubled in size to
include Q and Q1 = [2�log2(r)/3�]Q. Their method transforms [a]P + [b]Q to a 6-
dimensional multiexponentiation with coefficients of size ≈ r1/3. In this context
(i.e., enlarged public keys) we can improve upon their result. LetM = 2�log2(r)/4�

and suppose the public key featuresQ andQ1 = [M]Q. The GLV idea transforms
[a]P+[b]Q to [a0]P+[a1]ψ(P)+[b0]Q+[b1]ψ(Q) where a0, a1, b0, b1 ≈ √r. We now
write a0 = a0,0 +Ma0,1 where a0,0, a0,1 ≈ r1/4 and similarly for a1, b0, b1. Hence
the computation becomes an 8-dimensional multiexponentiation with coefficients
of size ≈ r1/4. Another advantage of our method is that it applies to Schnorr
signatures whereas the method of [1] is only for ECDSA and other variants of
ElGamal signatures.

Finally, we mention that the methods in [27] can also be applied in our setting.

7 Security Implications

The homomorphism ψ of Theorem 1 (at least, in the case when φ is an iso-
morphism) defines equivalence classes of points in E′(Fpm) of size 2m by [P] =
{±ψi(P) : 0 ≤ i < m}. By the methods of Gallant-Lambert-Vanstone [14]
and Wiener-Zuccherato [35] one can perform the Pollard rho algorithm for the
discrete logarithm problem on these equivalence classes. This speeds up the solu-
tion of the discrete logarithm problem by a factor of

√
m compared with general

curves. Hence one bit should be added to the key length to compensate for this
attack.

A more serious threat comes from the Weil descent philosophy, and in par-
ticular the work of Gaudry [16]. Gaudry gives an algorithm for the discrete
logarithm problem in E′(Fpm) requiring time O(p2−4/(2m+1)) group operations
(with bad constants) which, in principle, beats the Pollard methods for m ≥ 3.
The proposal for elliptic curves in the case m = 2 is immune to Gaudry’s Weil
descent attack.

Endomorphisms for Faster Elliptic Curve Cryptography 533

Gaudry’s method also applies to abelian varieties: if A is an abelian varitey
of dimension d over Fpm then the algorithm has complexity O(p2−4/(2dm+1)).
Hence, for Jacobians of genus 2 curves over Fp2 one has an algorithm running in
time O(p1.55), rather than the Pollard complexity of O(p2). Gaudry’s method is
exponential time and so one can secure against it by increasing the field size. For
example, to achieve 128-bit security level with genus 2 curves over Fp2 or elliptic
curves over Fp4 one should take p to be approximately 80 bits rather than the
desired 64 bits (this is a very conservative choice; Gaudry’s algorithm requries
expensive computations such as Gröbner bases and so one can probably safely
work with primes smaller than 80 bits).

Acknowledgements

We thank Dan Bernstein, Billy Brumley, Jinhui Chao, Pierrick Gaudry, Darrel
Hankerson, Alfred Menezes, Yasuyuki Nogami, Fre Vercauteren and the anony-
mous referees for suggestions and comments.

References

1. Antipa, A., Brown, D., Gallant, R.P., Lambert, R., Struik, R., Vanstone, S.A.:
Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

2. Avanzi, R.M.: Aspects of Hyperelliptic Curves over Large Prime Fields in Soft-
ware Implementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 148–162. Springer, Heidelberg (2004)

3. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Cryptography. Chapman and Hall/CRC
(2006)

4. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J.: Elliptic vs. Hyperelliptic, part 1 ECC, Toronto, Canada (2006),
http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/slides.html

6. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

7. Bernstein, D.J., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S., Lu, H.-F.
(eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

8. Bernstein, D.J., Lange, T.: Analysis and Optimization of Elliptic-Curve Single-
Scalar Multiplication. In: Finite Fields and Applications: Proceedings of Fq8, Con-
temporary Mathematics 461, pp. 1–18. American Mathematical Society (2008)

9. Blake, I., Seroussi, G., Smart, N.P. (eds.): Elliptic Curves in Cryptography. Cam-
bridge University Press, Cambridge (1999)

10. eBATS: ECRYPT Benchmarking of Asymmetric Systems,
http://www.ecrypt.eu.org/ebats/

11. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems (accessed January 9, 2009), http://bench.cr.yp.to/

534 S.D. Galbraith, X.Lin, and M. Scott

12. Dahmen, E., Okeya, K., Schepers, D.: Affine Precomputation with Sole Inversion
in Elliptic Curve Cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 245–258. Springer, Heidelberg (2007)

13. Galbraith, S.D., Scott, M.: Exponentiation in Pairing-Friendly Groups Using Ho-
momorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 211–224. Springer, Heidelberg (2008)

14. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Improving the Parallelized Pollard
Lambda Search on Anomalous Binary Curves. Math. Comp. 69, 1699–1705 (2000)

15. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

16. Gaudry, P.: Index Calculus for Abelian Varieties of Small Dimension and the El-
liptic Curve Discrete Logarithm Problem. J. Symbolic Comput. (to appear)

17. Gaudry, P., Thome, E.: The mpFq Library and Implementing Curve-Based Key
Exchanges. In: SPEED workshop presentation, Amsterdam (June 2007)

18. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography.
Springer, Heidelberg (2004)

19. Hankerson, D., Karabina, K., Menezes, A.J.: Analyzing the Galbraith-Lin-Scott
Point Multiplication Method for Elliptic Curves over Binary Fields, eprint
2008/334

20. Iijima, T., Matsuo, K., Chao, J., Tsujii, S.: Costruction of Frobenius Maps of Twist
Elliptic Curves and its Application to Elliptic Scalar Multiplication. In: SCIS 2002,
IEICE Japan, pp. 699–702 (January 2002)

21. Kim, D., Lim, S.: Integer Decomposition for Fast Scalar Multiplication on Elliptic
Curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 13–20.
Springer, Heidelberg (2003)

22. Kozaki, S., Matsuo, K., Shimbara, Y.: Skew-Frobenius Maps on Hyperelliptic
Curves, IEICE Trans. E91-A(7), 1839–1843 (2008)

23. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

24. Möller, B.: Algorithms for Multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

25. Möller, B.: Improved Techniques for Fast Exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

26. Möller, B.: Fractional Windows Revisited: Improved Signed-Digit Representations
for Efficient Exponentiation. In: Park, C.-S., Chee, S. (eds.) ICISC 2004. LNCS,
vol. 3506, pp. 137–153. Springer, Heidelberg (2005)

27. Möller, B., Rupp, A.: Faster Multi-exponentiation through Caching: Accelerating
(EC)DSA Signature Verification. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 39–56. Springer, Heidelberg (2008)

28. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Math. Comp. 47, 243–264 (1987)

29. Nogami, Y., Morikawa, Y.: Fast Generation of Elliptic Curves with Prime Order
over Extension Field of Even Extension Degree. In: Proceedings 2003 IEEE Inter-
national Symposium on Information Theory, p. 18 (2003)

30. Park, Y.-H., Jeong, S., Kim, C.-H., Lim, J.-I.: An Alternate Decomposition of an
Integer for Faster Point Multiplication on Certain Elliptic Curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg
(2002)

Endomorphisms for Faster Elliptic Curve Cryptography 535

31. Scott, M.: MIRACL – Multiprecision Integer and Rational Arithmetic C/C++
Library (2008), http://ftp.computing.dcu.ie/pub/crypto/miracl.zip

32. Scott, M., Szczechowiak, P.: Optimizing Multiprecision Multiplication for Public
Key Cryptography (2007), http://eprint.iacr.org/2007/299

33. Sica, F., Ciet, M., Quisquater, J.-J.: Analysis of the Gallant-Lambert-Vanstone
Method based on Efficient Endomorphisms: Elliptic and Hyperelliptic Curves. In:
Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer,
Heidelberg (2003)

34. Solinas, J.A.: Low-Weight Binary Representations for Pairs of Integers, Technical
Report CORR 2001–41, CACR (2001)

35. Wiener, M., Zuccherato, R.J.: Faster Attacks on Elliptic Curve Cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

Generating Genus Two Hyperelliptic Curves
over Large Characteristic Finite Fields

Takakazu Satoh	

Department of Mathematics,
Tokyo Institute of Technology, Tokyo, 152-8551, Japan

satohcgn@mathpc-satoh.math.titech.ac.jp

Abstract. In hyperelliptic curve cryptography, finding a suitable hy-
perelliptic curve is an important fundamental problem. One of necessary
conditions is that the order of its Jacobian is a product of a large prime
number and a small number. In the paper, we give a probabilistic poly-
nomial time algorithm to test whether the Jacobian of the given hyper-
elliptic curve of the form Y 2 = X5 + uX3 + vX satisfies the condition
and, if so, to give the largest prime factor. Our algorithm enables us to
generate random curves of the form until the order of its Jacobian is
almost prime in the above sense. A key idea is to obtain candidates of its
zeta function over the base field from its zeta function over the extension
field where the Jacobian splits.

Keywords: hyperelliptic curve, point counting.

1 Introduction
In (hyper)elliptic curve cryptography, point counting algorithms are very impor-
tant to exclude the weak curves. For elliptic curves over finite fields, the SEA
algorithm (see Schoof[36] and Elkies[8]) runs in polynomial time (with respect to
input size). In case that the characteristic of the coefficient field is small, there are
even faster algorithms based on the p-adic method (see e.g. Vercauteren[40] for a
comprehensive survey). The p-adic method gives quite efficient point counting al-
gorithms for higher dimensional objects, e.g. Kedlaya[22], Lercier and Lubicz[26],
Lauder[23]. However, so far, there is no known efficient practical algorithm for
hyperelliptic curves of genus two in case that the characteristic of the coefficient
field is large.

In theory, Pila[32] generalized the Schoof algorithm to a point counting al-
gorithm for Abelian varieties over finite fields. Nevertheless, a pure polynomial
time algorithm has not been successfully used even for the Jacobian of hyper-
elliptic curves of genus two. Current implementations for crypto size curves of
genus two more or less contain the BSGS process, hence the running time grows
exponentially. For details on implementation, see Matsuo, Chao and Tsujii[27],
Gaudry and Schost[17,18] and references cited there.

� The work was supported by the Grant-in-Aid for the Scientific Research (B)
18340005.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 536–553, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Generating Genus Two Hyperelliptic Curves 537

On the other hand, using basic properties on character sums (see e.g. Berndt,
Evans and Williams[3] for standard facts on the topic), Furukawa, Kawazoe
and Takahashi[11] gives an explicit formula for the order of Jacobians of curves
of type Y 2 = X5 + aX where a ∈ F×

p . However, there are, at most, only 8
isomorphism classes over Fp among these curves for each prime p. In order
to obtain a curve suitable for cryptography, they try various values of p until
a suitable curve is found. Their method relies on the binomial expansion of
X5 + aX . The idea was generalized to hyperelliptic curves over prime fields of
the form Y 2 = X5 + a (ibid.) and Y 2 = X2k+1 + aX in Haneda, Kawazoe and
Takahashi[19]. Recently, Anuradha[2] obtained similar formulae for non-prime
fields. But their method seems to be applicable only to binomials in X .

In this paper, we consider an intermediate case: our curve is in a certain special
form but not as special as was considered in the above papers and time com-
plexity to test one curve is of probabilistic polynomial time. More specifically,
we give an algorithm to test whether the order of the Jacobian of a given hyper-
elliptic curve of genus two in the form Y 2 = X5 + uX3 + vX has a large prime
factor. If so, the algorithm outputs the prime factor. Moreover, under a certain
condition (see Remark 5) which is always satisfied in cryptographic applications,
our algorithm determines the group order itself. Numerical experiments suggest
that curves in this form which are suitable for cryptography exist for any large
p. We may attempt to choose the base field for which arithmetic operations can
be efficiently performed.

The order of the Jacobian of hyperelliptic curves Y 2 = X(X2n + uXn + v)
over a prime field are already studied by Leprévost and Morain[24]. In case of
n = 2, they gave some explicit formulae for the order of the Jacobian in terms of
certain modular functions, whose evaluations are computationally feasible only
for special combinations of u and v.

Our method is totally different from the preceding point counting works.
Let p ≥ 5 be a prime and let q be a power of p. However, it is recommended
to take q = p to avoid a possible attack due to Gaudry[15] (cf. Section 8).
Let C/Fq : Y 2 = X5 + uX3 + vX be an arbitrary (in view of cryptographic
application, randomly) given hyperelliptic curve. We now observe a key idea of
our method. Put r = q4. We denote the Jacobian variety of C by J , which is
an Abelian variety of dimension two defined over Fq. Now J is Fr-isogenous to
a square of an elliptic curve defined over Fr. Hence the (one dimensional part
of the) zeta function of J as an Abelian variety over Fr is a square of the zeta
function of the elliptic curve, which is computed by the SEA algorithm. On the
other hand, we have some relation between the zeta function of J over Fr and
over Fq. This gives (at most 26) possible orders of J(Fq). For each candidate, we
first check that the order is not weak for cryptographic use, that is, the order is
a product of a small positive integer and a large prime. If the curve is weak, we
stop here. (Note that, if the curve passes the test, its Jacobian is simple over Fq.)
Then, we take random points of J(Fq) to see whether the prime actually divides
#J(Fq). Our algorithm runs in probabilistic polynomial time in log q. In order

538 T. Satoh

to find a hyperelliptic curve suitable for cryptography, we repeat the process
with randomly given u and v until we obtain a curve with desired properties.

In the case of characteristics two, Hess, Seroussi and Smart[20] proposed an
algorithm using Weil descent to construct verifiably randomly a hyperelliptic
curve in a certain family which is suitable for a hyperelliptic cryptosystem. The
efficiency of their algorithm in case of large characteristics is not clear. As to
products of elliptic curves, Scholten[35] randomly constructs a hyperelliptic curve
of genus two for odd prime fields whose Jacobian is isogenous to the Weil re-
striction of elliptic curves. Both of the works start with elliptic curves while our
algorithm starts with the hyperelliptic curve Y 2 = X5 +uX3 + vX where u and
v are given.

Recently Sutherland[38] proposed an algorithm based on a generic group
model to produce Abelian varieties from random hyperelliptic curves. When
applied to curves of genus two, its running time is quite practical but its heuris-
tic time complexity is of sub-exponential. Although these two algorithms [20,38]
take random input data, it is highly non-trivial to observe distribution of out-
put of the algorithm. In case of our algorithm, it is obvious that our algorithm
generates each curve of type Y 2 = X5 + uX3 + vX , suitable to cryptography
with equal probability if we generate random u and v uniformly.

The Jacobian has complex multiplications by
√−1 for all u and v as long as

the curve is actually a hyperelliptic curve. This fact can be used to make scalar
multiplication faster by the Gallant, Lambert and Vanstone algorithm[12]. We
can also take advantage of real multiplications with efficient evaluations (if any)
due to Takashima[39]. However we also note that such an efficient endomorphism
also speeds up solving discrete log problems Duursma, Gaudry and Morain[7].

In case of q ≡ 1 mod 4, we can apply our algorithm to Y 2 = X(X2−α2)(X2−
β2) for randomly generated α, β ∈ F×

q . (When q ≡ 3 mod 4, such curves
are never suitable for cryptography. See Remark 2.) All 2-torsion points of the
Jacobian of such a curve are Fq-rational. Hence, the efficient scalar multiplication
algorithm due to Gaudry[14] is applicable to them. Although it is not clear how
often such a curve is suitable for cryptography, a numerical experiment found a
few suitable curves.

After the initial submission for the conference, the author learned that Gaudry
and Schost[16] completely describes the hyperelliptic curves whose Jacobian is
isogenous to a product of two elliptic curves by an isogeny with kernel Z/2Z⊕
Z/2Z. Our idea is probably applicable to such curves given by in terms of the
Rosenhain form or the invariants (Ω, Υ) in the notation of [16]. The j-invariants
of two elliptic curves will be different but no essential change to our idea is re-
quired. However, the author have not derived explicit formulae for these parame-
ters, yet. Recently, Paulhus[31] gave explicit descriptions of splitting of Jacobian
into elliptic curves for some curves of genus greater than two. Although the use
of curves with genues greater than four in cryptography is rather questionable
in view of the index calculus method due to Gaudry[13], it would be interesting
to consider number theoretic properties of the order of such curves.

Generating Genus Two Hyperelliptic Curves 539

The rest of the paper is organized as follows. In Section 2, we review some facts
on arithmetic properties of the Jacobian varieties. In Section 3, we give an explicit
formula of the elliptic curve whose power is isogenous to the Jacobian of the given
hyperelliptic curve of the above form. In Section 4, we show how to retrieve
possible orders of the Jacobian via the decomposition obtained in the preceding
section. In Section 5, we state our algorithm and observe its computational
complexity. In Section 6, we give an illustrative small numerical example. In
Section 7, we report results of numerical experiments with cryptographic size
parameters. We observe some security implication of our curves in section 8.

Throughout the paper, we let p be a prime greater than or equal to 5 and q
a power of p. We put r = q4.

2 Some Properties of the Jacobian Varieties

We summarize arithmetic properties of the Jacobian varieties used in the later
sections. See the surveys Milne[29,30] for more descriptions.

Let A/Fq be an Abelian variety of dimension d. The (one dimensional part of
the) zeta function ZA(T,Fq) is the characteristic polynomial of the q-th power
Frobenius map on Vl(A) = Tl(A) ⊗Zl

Ql where l is a prime different from p
and Tl(A) is the l-adic Tate module. It is known that ZA(T,Fq) ∈ Z[T] with
degZA(T,Fq) = 2d and that it is independent of the choice of l. It holds that

#A(Fq) = ZA(1,Fq). (1)

Let
∏2d

i=1(T − zi,q) be the factorization of ZA(T,Fq) in C[T]. Permuting indices
if necessary, we may assume that

z1,qz2,q = q, . . . , z2d−1,qz2d,q = q. (2)

Let n ∈ N and put q̃ = qn. Since the q̃-th power map is the n-times iteration of
the q-th power map, we see

{z1,q̃, z2,q̃, . . . , z2d,q̃} = {zn
1,q, z

n
2,q, . . . , z

n
2d,q} (3)

including multiplicity. It holds that |zi,q̃| =
√
q̃.

In case thatA is isogenous to A1×A2 over Fq, we have Vl(A) ∼= Vl(A1)⊕Vl(A2)
as Gal(Fq/Fq)-modules. Hence

ZA(T,Fq) = ZA1(T,Fq)ZA2(T,Fq). (4)

Let E/Fq be an elliptic curve, which is an Abelian variety of dimension 1 over
Fq. The above items translate to the well known formula

ZE(T,Fq) = T 2 − tT + q

with |t| ≤ 2
√
q where t = q + 1−#E(Fq).

540 T. Satoh

Let C/Fq be a hyperelliptic curve of genus two and let J be its Jacobian
variety, which is an Abelian variety of dimension two defined over Fq. Let z1,q,
. . ., z4,q be the roots of ZJ(T,Fq) arranged as in (2). We see

ZJ(T,Fq) = T 4 − aqT
3 + bqT

2 − qaqT + q2 (5)

where

aq =
4∑

i=1

zi,q, bq =
3∑

i=1

4∑
j=i+1

zi,qzj,q.

We note |aq| ≤ 4
√
q and |bq| ≤ 6q. We will also use the Hasse-Weil bound

(
√
q − 1)4 ≤ #JC(Fq) ≤ (1 +

√
q)4. (6)

3 Decomposition of the Jacobian

In this section, we give an explicit formula of two elliptic curves whose product
is isogenous to the Jacobian of the hyperelliptic curves of our object. Such a
decomposition has been more or less known, e.g. Leprévost and Morain[24],
Cassel and Flynn[5, Chap. 14], and Frey and Kani[9]. Here we derive a formula
which is ready to implement our method efficiently.

Let C : Y 2 = X5 + uX3 + vX be a hyperelliptic curve where u ∈ Fq and
v ∈ F×

q . We denote the Jacobian variety of C by J . There exist α, β ∈ F×
r such

that
X5 + uX3 + vX = X(X2 − α2)(X2 − β2).

We choose and fix s ∈ F×
q8 satisfying s2 = αβ. In fact, s ∈ F×

r since s4 = α2β2 =
v ∈ F×

q . It is straightforward to verify

X2 + (α+ β)X + αβ = A(X + s)2 +B(X − s)2
X2 − (α+ β)X + αβ = B(X + s)2 +A(X − s)2

where

A =
1
2

(
1 +

α+ β

2s

)
,

B =
1
2

(
1− α+ β

2s

)
.

Then

X4 + uX2 + v = (X2 − α2)(X2 − β2) = (X + α)(X + β)(X − α)(X − β)

= AB

(
(X + s)4 +

(
B

A
+
A

B

)
(X + s)2(X − s)2 + (X − s)4

)
.

Note that X can be rewritten in terms of X − s and X + s:

X =
1
4s

(
(X + s)2 − (X − s)2) .

Generating Genus Two Hyperelliptic Curves 541

Define E1/Fr and E2/Fr by

E1 : Y 2 = δ(X − 1)(X2 − γX + 1)
E2 : Y 2 = −δ(X − 1)(X2 − γX + 1)

where

δ =
AB

4s
= − (α− β)2

64s3
, (7)

γ = −
(
B

A
+
A

B

)
= 2(α2 + 6αβ + β2)/(α− β)2. (8)

Then, we have two covering maps ϕi : C → Ei defined over Fr by

ϕ1(x, y) =

((
x+ s

x− s
)2

,
y

(x− s)3
)
,

ϕ2(x, y) =

((
x− s
x+ s

)2

,
y

(x+ s)3

)
.

They induce maps ϕ∗
i : Div(Ei) → Div(C) and ϕi∗ : Div(C) → Div(Ei).

They again induce maps (which are also denoted by) ϕ∗
i : Pic0(Ei) (∼= E) →

Pic0(C) (∼= J) and ϕi∗ : J → Ei. We note that ϕi∗ ◦ϕ∗
i is the multiplication by

2 map on Ei and that both ϕ1∗ ◦ ϕ∗
2 and ϕ2∗ ◦ ϕ∗

1 are the zero maps. Therefore
J is isogenous to E1 × E2.

Since 2|[Fr : Fp] and p ≥ 5, both E1 and E2 are isomorphic to the following
elliptic curve in the short Weierstrass from:

E : Y 2 = X3 − (γ − 2)(γ + 1)
3

δ2X − (γ − 2)2(2γ + 5)
27

δ3. (9)

Eventually, J is isogenous to E × E over Fr. Using (4), we conclude

ZJ(T,Fr) = ZE(T,Fr)2. (10)

Remark 1. Observe that in fact γ ∈ Fq2 . By (8), we see that γ ∈ Fq if and only
if either u = 0 or u �= 0 and αβ ∈ F×

q (i.e. v is a square element in Fq). Thus,
we do not need to run the SEA algorithm to E/Fr. Define E′/Fq(γ) by

E′ : Y 2 = X3 − (γ − 2)(γ + 1)
3

X − (γ − 2)2(2γ + 5)
27

. (11)

Let σ be the trace of the #Fq(γ)-th power Frobenius endomorphism on E′. We
obtain σ by running the SEA algorithm to E′/Fq(γ). Note that the size of the
coefficient field is smaller than the size of Fr by a factor of 1/2 or 1/4. Let τ ′ be
the trace of the r-th power Frobenius endomorphism on E′. Then

τ ′ =

⎧⎨⎩ (σ2 − 2q)2 − 2q2 (γ ∈ Fq),

σ2 − 2q2 (γ �∈ Fq).

542 T. Satoh

Now E is isomorphic to E′ over Fr2 . Let τ be the trace of the r-th power
Frobenius endomorphism on E. Unless j(E) = 0 or j(E) = 1728, we have

τ =

⎧⎨⎩ τ ′ (δ(r−1)/2 = 1),

−τ ′ (δ(r−1)/2 = −1).

(And it is easy to compute τ in case of j(E) = 0 or j(E) = 1728, see e.g.
Schoof[37, Sect. 4].) This device does not affect growth rate of the computational
complexity of our algorithm. However practical performance improvement by
this is significant, since the most of computational time is spent for the SEA
algorithm.

Remark 2. Note that, in fact, E1 and E2 are defined over Fq(s). Changing the
sign of α if necessary in case of q ≡ 3 mod 4, we see s ∈ Fq when v is a fourth
power element of F×

q . In this case J already splits over Fq. Note that in case of
q ≡ 3 mod 4, any square element in F×

q is a fourth power element.

4 Computing Possible Order of the Jacobian

In this section, we consider how to obtain ZJ(T,Fq) from ZJ(T,Fr). Actually,
this is quite elementary.

Let z1,q, . . ., z4,q be the roots of ZJ(T,Fq) arranged as (2). Put sn =
∑4

i=1 z
n
i,q

with a convention s0 = 4. Then

s1 = aq,

s2 = a2
q − 2bq,

s3 = a3
q − 3aqbq + 3qaq

and
si = aqsi−1 − bqsi−2 + qaqsi−3 − q2si−4

for i ≥ 4. In particular, we obtain

s4 = a4
q − 4(bq − q)a2

q + 2b2q − 4q2,

s8 = a8
q − 8(bq − q)a6

q + (20b2q − 32qbq + 4q2)a4
q

+(−16b3q + 24qb2q + 16q2bq − 16q3)a2
q + 2b4q − 8q2b2q + 4q4.

Recall that r = q4. Hence ar = s4 and

br = (s24 − s8)/2 = 2q2a4
q + (−4qb2q + 8q2bq − 8q3)a2

q + b4q − 4q2b2q + 6q4.

Recall that J is isogenous to E × E over Fr where E is defined by (11). Let t
be the trace of r-th Frobenius map on E. Then, ZE(T,Fr) = T 2− tT + r. Thus
(10) gives

T 4 − arT
3 + brT

2 − · · · = T 4 − 2tT 3 + (2r + t2)T 2 + · · · ,

Generating Genus Two Hyperelliptic Curves 543

that is

0 = a4
q − 4(bq − q)a2

q + 2b2q − 4q2 − 2t, (12)

0 = 2q2a4
q + (−4qb2q + 8q2bq − 8q3)a2

q + b4q − 4q2b2q + 6q4 − (2q4 + t2).

Eliminating bq by computing a resultant of the above two polynomials, we obtain

a16
q − 32qa14

q + (368q2 − 8t)a12
q + (−1920q3 + 64tq)a10

q

+(4672q4 + 64tq2 − 112t2)a8
q + (−5120q5 − 1024tq3 + 768t2q)a6

q

+(2048q6 + 1024tq4 − 512t2q2 − 256t3)a4
q = 0. (13)

This yields at most 13 possible values for aq. Note that aq is an integer satisfying
|aq| ≤ 4

√
q. In order to find integer solutions of aq, we choose any prime l

satisfying l > 8
√
q and factor the above polynomial in Fl. We only need linear

factors. For each Fl-root, we check whether it is a genuine root in characteristic
zero and its absolute value does not exceed 4

√
q. For each possible aq, we easily

obtain at most two possible values of bq satisfying the above equations. Thus,
we have obtained at most 26 candidates for #J(Fq).

5 The Algorithm and Its Complexity

In this section, we analyze a time computational complexity of our algorithm.
First, we state our method in a pseudo-code. Then, we show our algorithm
terminates in probabilistic polynomial time in log q. We denote the identity
element of J by 0 in the following.

In addition to the coefficients of hyperelliptic curve C, we give two more
inputs: the “cofactor bound” M and a set of “test points” D, which is any
subset of J(Fq) satisfying #D > M .

In order that the discrete logarithm problem on J(Fq) is not vulnerable to
the Pohlig-Hellman attack[33], #J(Fq) must be divisible by a large prime (at
least 160 bit in practice). We request that the largest prime factor is greater
than #J(Fq)/M , which ensures that the factor is greater than (

√
q− 1)4/M . In

the following algorithm, M must be less than (
√
q − 1)2. In practice, M < 28

(at most) in view of efficiency of group operation. So, building up D is easy for
such small M .

Algorithm 1
Input: Coefficients u, v ∈ Fq in C : Y 2 = X5 + uX3 + vX ,
a cofactor bound M ∈ N satisfying M < (

√
q − 1)2,

a subset D of J(Fq) satisfying #D > M .
Output: The largest prime factor of #J(Fq) if it is greater than #J(Fq)/M .
Otherwise, False.
Procedure:
1: Let α0, β0 ∈ Fq2 be the solution of x2 + ux+ v = 0.
2: Find α ∈ Fr and β ∈ Fr satisfying α2 = α0, β2 = β0.

544 T. Satoh

3: Compute δ and γ by (7) and (8), respectively.
4: Compute #E(Fr) by the SEA algorithm and put t = 1 + qr −#E(Fr).
5: Find a prime l satisfying 8

√
q < l ≤ q.

6: Find solutions of (13) modulo l.
7: for each solution τ do:
8: Lift τ ∈ Fl to aq ∈ Z so that |aq| ≤ 4

√
q.

9: if aq is really a root of (13) and if aq is even then
10: for each integer solution bq of (12) satisfying |bq| ≤ 6q do:
11: L = 1− aq + bq − qaq + q2 /* cf. (1), (5) */
12: if (

√
q − 1)4 ≤ L ≤ (

√
q + 1)4 then /* cf. (6) */

13: Find the largest divisor d of L less than M .
14: L′ = L/d
15: if (L′ is prime) then
16: Find a point P ∈ D such that dP �= 0.
17: if LP = 0, then output L′ and stop.
18: endif
19: endif /* L satisfies the Hasse-Weil bound */
20: endfor /* bq */
21: endif
22: endfor /* τ */
23: Output False and stop.

Remark 3. Actually, in the SEA algorithm in Step 4, we obtain t before we
obtain #E(Fq).

Remark 4. Instead of giving a set D by listing all points, we can specify D by
some conditions and we generate elements of D during execution of the above
procedure. In the implementation used in the next section, the author used

D = {[P] + [Q]− 2[∞] : P, Q ∈ C(Fq)− {∞}, PX �= QX}
where ∞ is the point at infinity of C (not J) and the subscript X stands for the
X-coordinate. Then, #D ≈ O(q2). It is easy to generate a uniformly random
point of D in probabilistic polynomial time.

Remark 5. In case that d ≤
√

q

8 − 1
2 (which always holds when M ≤

√
q

8 − 1
2),

the value of L at Step 17 gives #J(Fq). The reason is as follows. Observe that(
x

8
− 1

2

)
((x + 1)4 − (x− 1)4) < (x − 1)4

for x ∈ R. Thus

L′ ≥ (
√
q − 1)4

d
≥ (

√
q − 1)4

√
q

8 − 1
2

> (
√
q + 1)4 − (

√
q − 1)4.

Hence, there is only one multiple of L′ in the Hasse-Weil bound (6), which must
be #J(Fq).

Generating Genus Two Hyperelliptic Curves 545

Remark 6. Instead of Steps 5–6, one can choose a small prime l which does not
divide the discriminant of the square free part of (13), and then factor (13) mod-
ulo l and lift the factors to modulo ln where ln > 8

√
q. See e.g. von zur Gathen

and Gerhard[42] for details of both methods and comparison. In theory, both
methods run in polynomial time w.r.t. input size. In practice, time for these
steps are negligible for crypto size parameters. The use of a large prime is easy
to implement and conceptually simple. One theoretical concern is the number of
primality tests to find l. As we will see (14) below, there exist at least Ω(q/ log q)
primes l satisfying 8

√
q < l < q. Thus, average number of primality tests to find

l in Step 5 is O(log q). In an actual implementation, we may search for a prime
by testing odd numbers greater than 8

√
q one by one. Primality tests can be

performed by a deterministic polynomial time algorithm by Agrawal, Kayal and
Saxena[1]. Since our main interest is in hyperelliptic cryptography, we do not go
into complexity arguments on primality tests further.

Theorem 1. Let M < (
√
q − 1)2 be fixed. Then Algorithm 1 terminates in

probabilistic polynomial time in log q (with respect to the bit operations). In case
that #J(Fq) is divisible by a prime greater than (

√
q − 1)4/M , Algorithm 1

returns the largest prime factor of #J(Fq).

Proof. Note that t, q, aq and bq are integers. Hence aq must be even by (12).
This explains Step 9. If we reach Step 16, we have, as an Abelian group,

J(Fq) ∼= G⊕ (Z/L′Z)

where G is an Abelian group of order d. Since gcd(d, L′) = 1, there are at most
d points Q ∈ J(Fq) satisfying dQ = 0. Since #D > M , we can find P at Step
16 by testing at most M elements in D. Note #J(Fq) ≥ (

√
q − 1)4. Therefore,

L′ ≥ #J(Fq)
M

≥ #J(Fq)
(
√
q − 1)2

≥
√

#J(Fq).

Since L′ is a prime, it must be the largest prime factor of #J(Fq), which com-
pletes the proof of correctness of the algorithm.

Now we consider computational complexity. Note that a bit size of any variable
appearing in Algorithm 1 is bounded by c log q where c is a constant depending
only on M and the primality test algorithm used in Step 5. Thus we have only
to show that, instead of the number of bit operations, the number of arithmetic
operations performed in Algorithm 1 is bounded by a polynomial in log q. For a
positive real number x, put θ(x) =

∑
l≤x θ(x) as usual where l runs over primes

less than x. By Chebyshev’s theorem[6], there exist constants C1 and C2 such
that

Kx− C1
√
x log x < θ(x) <

6
5
Kx

for all x > C2 where K = log 21/231/351/5

301/30 (= 0.921...). Let ν(q) be the number of
primes l satisfying 8

√
q < l ≤ q. Then

ν(q) log q ≥
∑

8
√

q<l≤q

log l = θ(q)− θ(8√q)

546 T. Satoh

and thus
ν(q) ≥ K

q

log q
− C3

√
q for q > C4 (14)

with some C3, C4 > 0. Therefore, if we test random odd numbers between
8
√
q and q to find l, an average number of primality tests in Step 5 is less than

log q
2K

(
1 + 2C3 log q

K
√

q

)
for all q > C4. In Steps 1, 2 and 6, we need to factor univariate

polynomials over Fr or Fl. However, the degree of polynomials to be factored
is either 2 or 13. Hence the Cantor-Zassenhaus factorization[4] factors them
in probabilistic polynomial time. The SEA algorithm (even Schoof’s algorithm
alone) runs in polynomial time. Summing up, we obtain our assertions. �

6 A Numerical Example

We give an illustrative example of our algorithm. We set M = 16. Let q =
p = 509 and consider C : Y 2 = X5 + 3X3 + 7X . Then, Fr = Fp(θ) where
θ4 + 2 = 0. For simplicity, we write an element μ3θ

3 + μ2θ
2 + μ1θ + μ0 of Fr as

[μ3 μ2 μ1 μ0]. Then we have α = [193 0 90 0], β = [67 0 396 0], s = [0 0 427 0],
δ = [29 0 488 0] and γ = [0 56 0 17]. Hence the short Weierstrass form of E is

Y 2 = X3 + [0 370 0 73]X + [293 0 464 0].

An elliptic curve point counting algorithm gives t = 126286. We take l = 191.
Then, (13) in this example is

a16
q − 16288a14

q + 94331520a12
q − 249080786944a10

q + 313906268606464a8
q

−185746793889398784a6
q + 41664329022490804224a4

q = 0.

Reducing modulo l, we obtain

0 = aq
16 + 138aq

14 + 58aq
12 + 46aq

10 + 63aq
8 + 94aq

6 + 136aq
4

= (aq
2 + 56aq + 170)(aq

2 + 135aq + 170)(aq
2 + 150)2(aq + 28)2(aq + 163)2aq

4

where aq is the reduction of aq modulo l. Hence aq = −28, 0, 28. In case of
aq = −28, Eq. (12) is b2q − 784bq + 460992 = 0. Thus bq = 1176, 392. The
former values gives L = 274538 = 11 · 24958 and 24958 is apparently not prime.
Similarly, the case bq = 392 gives L = 273754 = 13 · 21058. In case of aq = 0,
Eq. (12) does not have an integer solution. Finally, we consider the case aq = 28.
The equation (and hence the solution) for bq is the same as that for aq = −28.
Now bq = 1176 gives L = 245978 = 2 · 122989 and 122989 = 29 · 4241 is not
prime. But in the case of bq = 392, we obtain L = 245194 = 2 · 122597 and
122597 is prime. Take P = (X2 + 286X + 46, 347X + 164) ∈ J(Fp) written in
the Mumford representation. Then, 2P = (X2 +365X+23, 226X+240) �= 0 but
LP = 0. Thus, 122597 is the largest prime divisor of #J(Fp). In this example,
we also conclude #J(Fp) = 245194 because d = 2 ≤

√
509
8 − 1

2 = 2.32...

Generating Genus Two Hyperelliptic Curves 547

7 Cryptographic Size Implementation

In this section, we report implementation results for cryptographic size parame-
ters. The results show that our algorithm certainly produces hyperelliptic curves
for cryptographic use with an acceptable computational complexity. In reality,
almost all computation time is consumed in an elliptic curve point counting (Step
4 in Algorithm 1). We begin with remarks on an elliptic curve point counting.

First, deployment of Remark 1 is very important. Assume that we use the
Karatsuba algorithm for multiplications. Then Remark 1 reduces running time
by a factor of 22+2 log2 3 ≈ 36.2 in theory. More importantly, a number of modular
polynomials necessary for the SEA algorithm is approximately halved.

Next the action of the Frobenius map can be computed more efficiently than
a straightforward method. Let p be a prime and let n be an integer greater than
1. In this paragraph, we put q = pn. Assume that we use a variant of the baby-
step giant-step algorithm due to Maurer and Müller[28] to find an eigenvalue
of the Frobenius endomorphism. Then a bottleneck of Elkies’ point counting
algorithm for elliptic curves defined over Fq is a computing action of the q-th
power map and

(
q−1
2

)
-th power map in Fq[t]/〈b(t)〉 for some b(t) ∈ Fq[t]. To

reduce their computational time, we use an algorithm due to von zur Gathen
and Shoup[43] with a modification to take the action of p-th power map on
Fq into consideration. See Vercauteren[41, Sect. 3.2] in the case p = 2. Even
in the case of n = 2 (which is the case we need), the modification saves much
time. The overall performance improvement of elliptic curve point counting with
this technique highly depends on an implementation and field parameters. In
author’s implementation (which uses the Elkies primes only) for p ≈ 287 and
n = 2, the improvement was approximately in range 20 ∼ 40% depending on
elliptic curves.

Now we back to our algorithm. In what follows, q is the cardinality of the
coefficient field of hyperelliptic curves to be generated. Assume that we need the
Jacobian variety whose bit size of the group order is N . Then, log q ∼= N/2. Note
we apply the SEA algorithm to elliptic curves over Fq2 . Thus we can paraphrase
that time to test one random hyperelliptic curve of the form Y 2 = X5+uX3+vX
is comparable to time to test one random elliptic curve if their group sizes are the
same. Of course, this is only rough comparison. For example, in the elliptic curve
case, we can employ early abort strategy (see Lercier[25, Sect. 4.1]), whereas we
need to complete the SEA algorithm in our Algorithm 1.

Since our curves Y 2 = X5+uX3+vX are in rather special form, they may be
less likely suitable for cryptographic use. The author has no idea for theoretical
results on this point. To observe the circumstance, the following numerical ex-
periments are performed. Take a 87 bit number A = 0x5072696d654e756d626572
in hexadecimal (the ASCII code for the string ”PrimeNumber”). For the largest
five primes p less than A satisfying p ≡ 1 mod 4 and p ≡ 3 mod 4, that is, for
each prime A− 413, A− 449, A− 609, A− 677 and A− 957 (they are 1 mod 4)
and A− 23, A− 35, A− 39, A− 179, A− 267 (they are 3 mod 4), Algorithm 1 is
executed for 200 randomly generated (u, v) ∈ Fq × (F×

q −F4
q) (cf. Remark 2). In

Table 1, we list the cofactors obtained in the numerical experiments. For each

548 T. Satoh

Table 1. Distributions of cofactor returned by the algorithm

p cofactors
A − 413 2, 4, 4, 10, 10, 16, 16, 20, 40 80, 130, 208, 400, 580
A − 449 2, 4, 4, 4, 26, 120, 394, 722, 740
A − 609 2, 20, 52, 116, 256, 484, 820
A − 677 4, 4, 8, 10, 20, 26, 34, 40, 82, 362, 400, 482, 740
A − 957 2, 4, 4, 16, 20, 20, 20, 72, 90, 100, 262, 720
A − 23 2, 2, 2, 14, 14, 16, 16, 34, 112, 184, 302
A − 35 2, 8, 14, 18, 34, 56, 72, 194, 392
A − 39 2, 2, 2, 8, 16, 62, 94, 98, 584, 656, 752, 784
A − 179 2, 8, 18, 18, 32, 128, 146, 386, 512
A − 267 2, 8, 8, 8, 14, 32, 34, 34, 50, 350, 446

curve, if the order of its Jacobian is a product of an integer less than 210 and a
prime, the value of the integer is listed in the second column. Thus the orders
of the Jacobians of those curves are divisible by primes greater than 2162. In
Table 2, we list values of u and v attained the best possible in the sense that the
order of the Jacobian of the curve is two times of a prime: So, the probability
to obtain the best possible curves in the above experiment is 13

2000 = 0.0065.
By the prime number theorem, a “density” of primes around A2/2 is approxi-
mately 1/ loge(A

2/2) ≈ 0.0084. In the case p = A − 677, no best possible curve
was found in the above computation. But further computation finds that the
order of the Jacobian of the curve with u = 93589879629357849667104247 and
v = 2243510914087562678935813 is a product of 2 and a prime

4729205283037531066627852907078079919137325850534317.

This suggests that we can find a curve of the form Y 2 = X5 + uX3 + vX for
cryptographic use for any p. However, one might want to generate a random
prime p and u ∈ Fp, v ∈ F×

p for each curve.
Another observation is that curves with cofactor 6 and 12 were not found,

where four curves with cofactor 18 were found. The author has no explanation
of such phenomena.

The order of Jacobians of the curves Y 2 = X5 + uX3 + vX seems less likely
to be a product of a small positive integer and a large prime than a random
integer. However, our experiments also suggests that our algorithm generates
hyperelliptic curves with acceptable computational time.

We end this section with examples of curves to which we can apply Gaudry’s
efficient scalar multiplication [14]. Let p = 287 − 67. Among 400 randomly gen-
erated pairs (α, β) ∈ F×

p × F×
p such that αβ is not a quadratic residue and

that α �= ±β, two of them gave the curve Y 2 = X(X2 − α2)(X2 − β2) with a
cofactor 16. The corresponding values of u and v are

(u, v) = (143809213492221778144040547, 131138969142842659104031301),
(152044042900483697472576701, 43873817134806557122336146).

Generating Genus Two Hyperelliptic Curves 549

Table 2. Curves with cofactor 2

p u, v, order/2 (= prime)
A − 23 26278410876831238768152256, 86364989829465111812877054,

4729205283036596803451142572175714600434665322659127
A − 23 48005263478608513799676536, 41220251281438002920145925,

4729205283036596803451142580643662966701834068021159
A − 23 20282462437998363621453892, 6836694457598533392327545,

4729205283036596803451142581337328176502841705402207
A − 35 67648337171838833749692452, 56901612904748554441926559,

4729205283036596803451141380721691201885455554767791
A − 39 14846780454565145653845797, 21699720008937250121391434,

4729205283036596803451141023536273098194538766932527
A − 39 33146413473211029791343648, 8030718465375635617924126,

4729205283036596803451141003485671885741104209956991
A − 39 71798113541184209350130597, 3265596437264818243652042,

4729205283036596803451140981775351582462210871812743
A − 179 57049947468040934287481804, 79903956336370051333994749,

4729205283036596803451127379057522635612989733951431
A − 267 36056874937457171776037216, 25118608280476680778431722,

4729205283036596803451118692677289444771081686145071
A − 413 83008004756000748681115585, 56563321965691537707290563,

4729205283035613601049401303125512580675953218245917
A − 449 28607196238761965671229454, 25170972284073882698894414,

4729205283036732721230159064013212885177303300174073
A − 609 95130756913811082727444951, 60322547687988038644971694,

4729205283037716579981536630854867757005904536055113
A − 957 10340770761867668646270127, 33230037969144840368622007,

4729205283036083218847231566586093424184432683788437

Since all 2-torsion points are Fq-rational, the cofactor 16 is the best possible
value. We need further experiments and analysis to observe the probability of
such curves being suitable for cryptography.

8 Security Considerations

We described an algorithm to generate a hyperelliptic curve C/Fq such that the
order of Jacobian J of C is a product of a small number and a large prime. Since
C is of the special form Y 2 = X5 + uX3 + vX , the curve C and its Jacobian
J have some special structures. This might affect difficulties of the discrete log
problems on J(Fq). We consider the problem.

First we note that the automorphism group of J is larger than that of a generic
genus two hyperelliptic curve. One might think the larger automorphism group
fasten the discrete log computation on J(Fp) by using the technique described
in Duursma, Gaudry and Morain[7]. To some extent, it does. However, its influ-
ence is rather limited. Let us observe a reason. Let t be a time to perform one

550 T. Satoh

multiplication on Fp. Let G be a (not necessarily finite, commutative) group act-
ing on J(Fq) from left. We assume that the multiplication by (−1)-map belongs
to G and that, expect for the (−1)-times map, a computation of the action of an
element of G needs more time than t. Put N = #J(Fq) and N = #(G \ J(Fq))
for simplicity. The above mentioned method uses a random walk on the coset
space G \ J(Fq) while original Pollard ρ method uses a random walk on J(Fq).
Thus in order to solve DLP on J(Fq), the expected number of walks is reduced
by a factor of (N/N)1/2. However, we need to consider some extra costs. At
each random walk step, we need to find a representative of a G-orbit to test a
match on G \ J(Fq). For P ∈ J(Fq), the representative is a point having some
properties (e.g. having a minimal X-coordinate regarded as an integer) among
the points in the orbit G · P . The time for this is no less than t#(G · P)/2. In
average, this is tN

2N
. Let T be a time to compute the next point (not an equiva-

lence class) by one step walk on J(Fq). Thus, the method in [7] runs faster than
original Pollard ρ, in average, by a factor of

T
√
N√

N
(
T + tN

2N

) ≤√
T

2t
,

regardless of G. In our case, we may assume that T/2t ≤ 216, for example. (In
reality, we can perform an addition on J(Fq) with less than 100 multiplications
over Fq and q is, at most, a small power of p.) We have only to increase the size
of q by four bits.

A more powerful attack to our curve would be the index calculus method due
to Gaudry[15]. In short, the method solve the DLP on an elliptic curve defined
over Fqn whose heuristic time complexity (with respect to the number of group
operations) is Õ(q2−(2/n)) as q →∞ for fixed n. The O-constant depends on n.
Generically, a polynomial of degree 2n(n−1) appears during the computation.

Now, it is obvious that the DLP on J(Fq) is reduced to that on E/Fq(s),
where E and s are defined as in Section 3. Recall that [Fq(s) : Fq] is either two
or four. So, the time complexity of Gaudry’s index calculus method is Õ(q) and
Õ(q3/2), according to n = 2 and 4, respectively. On the other hand, the order of
J(Fq) is O(q2) and square root algorithms solve the DLP on J(Fq) with O(q)
group operations. Thus, Gaurdy’s index calculus method does not provide an
asymptotically faster attack than square root algorithms, at least for the case
q = p. In case of q > p, we can consider the Weil restriction of E to a subfield of
Fq with a lager n. When [Fq : Fp] is even and [Fq(s) : Fq] = 2, Gaudry’s index
calculus with n = 4 runs moderate space complexity and its time complexity is
Õ(q3/4), at least asymptotically. This case must be avoided. In the other cases,
the efficiency of Gaudry’s index calculus is questionable due to its huge space
complexity. It is probably prudent to take q = p in cryptographic applications.

Remark 7. We also need further tests for suitability to hyperelliptic curve cryp-
tosystem for general hyperelliptic curves. These includes (but not limited to) the
following conditions. The minimal embedding degree (in the sense of Hitt[21])
should not be too small to avoid multiplicative DLP reduction by Frey and

Generating Genus Two Hyperelliptic Curves 551

Rück[10]. If M is close to (
√
q − 1)2 by some reason, the algorithm may return

p as the largest prime factor. In this case, the input curve must not be used
because it is vulnerable to the additive DLP reduction by Rück[34].

9 Conclusion

We presented an efficient algorithm to test whether a given hyperelliptic curve
Y 2 = X5 +uX3 +vX over Fq is suitable or not for cryptography and if suitable,
the largest prime divisor of the number of Fq-rational points of the Jacobian of
the curve. This enables us to use a randomly generated hyperelliptic curve in
the form which is supposed to be suitable for hyperelliptic curve cryptography.
Although our family of curves is far more general than the curves given by
binomials, it is still in a very special form. The difficulty of the discrete log
problem on the simple but not absolutely simple Jacobian is open.

Acknowledgments

The major part of the work is performed during the author visited Prof. Steven
Galbraith at Royal Holloway University. The author would like to thank their
hospitality during his stay. He also would like to thank Steven Galbraith, Pierrick
Gaudry, Florian Hess, Tanja Lange, Katsuyuki Takashima, Frederik Vercauteren
and the anonymous reviewers for their helpful comments on this work.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math. 160, 781–793
(2004)

2. Anuradha, N.: Number of points on certain hyperelliptic curves defined over finite
fields. Finite Fields Appl. 14, 314–328 (2008)

3. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi sums. John Wiley &
Sons, Inc., New York (1998)

4. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Math. Comp. 36, 587–592 (1981)

5. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a middlebrow arithmetic of curves of
genus 2. London Math. Soc. Lecture Note Series, vol. 230. Cambridge Univ. Press,
Cambridge (1996)

6. Chebyshev, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17,
366–390 (1852) Œuvres, I-5

7. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-
tion on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

8. Elkies, N.D.: Elliptic and modular curves over finite fields and related computa-
tional issues. In: Buell, D.A., Teitelbaum, J.T. (eds.) Computational perspectives
on number theory, Chicago, IL (1995); AMS/IP Stud. Adv. Math., vol. 7, pp.
21–76. AMS, Providence, RI (1998)

552 T. Satoh

9. Frey, G., Kani, E.: Curves of genus 2 covering elliptic curves and an arithmetical
application. In: van der Geer, G., Oort, F., Steenbrink, J. (eds.) Arithmetic alge-
braic geometry, Texel (1989); Progress in Math., vol. 89, pp. 153–176. Birkhäuser
Boston, Boston (1991)

10. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comp. 62, 865–874 (1994)

11. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves
of type y2 = x5 +ax over finite prime fields. In: Matsui, M., Zuccherato, R.J. (eds.)
SAC 2003. LNCS, vol. 3006, pp. 26–41. Springer, Heidelberg (2004)

12. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

13. Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic
curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34.
Springer, Heidelberg (2000)

14. Gaudry, P.: Fast genus 2 arithmetic based on theta functions. J. Math. Cryptol-
ogy 1, 243–265 (2007)

15. Gaudry, P.: Index calculus for abelian varieties of small dimension and
the elliptic curve discrete logarithm problem. J. Symbolic Comput. (2008),
doi:10.1016/j.jsc.2008.08.005

16. Gaudry, P., Schost, É.: On the invariants of the quotients of the Jacobian of a curve
of genus 2. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227,
pp. 373–386. Springer, Heidelberg (2001)

17. Gaudry, P., Schost, É.: Construction of secure random curves of genus 2 over prime
fields. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 239–256. Springer, Heidelberg (2004)

18. Gaudry, P., Schost, É.: Hyperelliptic point counting record: 254 bit Jacobian. Post
to NMBRTHRY list (June 22, 2008)

19. Haneda, M., Kawazoe, M., Takahashi, T.: Suitable curves for genus-4 HCC over
prime fields: point counting formulae for hyperelliptic curves of type y2 = x2k+1 +
ax. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 539–550. Springer, Heidelberg (2005)

20. Hess, F., Seroussi, G., Smart, N.P.: Two topics in hyperelliptic cryptography. In:
Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 181–189.
Springer, Heidelberg (2001)

21. Hitt, L.: On the minimal embedding field. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 294–301. Springer,
Heidelberg (2007)

22. Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001)

23. Lauder, A.G.B.: Rigid cohomology and p-adic point counting. J. Théor. Nombres
Bordeaux 17, 169–180 (2005)

24. Leprévost, F., Morain, F.: Revêtements de courbes elliptiques à multiplication
complexe par des courbes hyperelliptiques et sommes de caractéres. J. Number
Theory 64, 165–182 (1997)

25. Lercier, R.: Finding Good Random Elliptic Curves for Cryptosystems Defined
over F2n . In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 379–392.
Springer, Heidelberg (1997)

26. Lercier, R., Lubicz, D.: A quasi quadratic time algorithm for hyperelliptic curve
point counting. Ramanujan J. 12, 399–423 (2006)

Generating Genus Two Hyperelliptic Curves 553

27. Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for
point counting of hyperelliptic curves over finite fields. In: Fieker, C., Kohel, D.R.
(eds.) ANTS 2002. LNCS, vol. 2369, pp. 461–474. Springer, Heidelberg (2002)

28. Maurer, M., Müller, V.: Finding the eigenvalue in Elkies’ algorithm. Experimental
Math. 10, 275–285 (2001)

29. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 103–150. Springer, New York (1986)

30. Milne, J.S.: Jacobian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 167–212. Springer, New York (1986)

31. Paulhus, J.: Decomposing Jacobians of curves with extra automorphisms. Acta
Arith. 132, 231–244 (2008)

32. Pila, J.: Frobenius maps of Abelian varieties and finding roots of unity in finite
fields. Math. Comp. 55, 745–763 (1990)

33. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Trans. Info. Theory 24, 106–110
(1978)

34. Rück, H.G.: On the discrete logarithm in the divisor class group of curves. Math.
Comp. 68, 805–806 (1999)

35. Scholten, J.: Weil restriction of an elliptic curve over a quadratic extension.
preprint, http://homes.esat.kuleuven.be/~jscholte/

36. Schoof, R.: Elliptic curves over finite fields and the computation of square roots
mod p. Math. Comp. 44, 483–494 (1985)

37. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux 7, 219–254 (1995)

38. Sutherland, A.V.: A generic apporach to searching for Jacobians. Math. Comp. 78,
485–507 (2009)

39. Takashima, K.: A new type of fast endomorphisms on Jacobians of hyperelliptic
curves and their cryptographic application. IEICE Trans. Fundamentals E89-A,
124–133 (2006)

40. Vercauteren, F.: Advances in point counting. In: Blake, I.F., Seroussi, G., Smart,
N.P. (eds.) Advances in elliptic curve cryptography. London Math. Sco. Lecture
Note Ser, vol. 317, pp. 103–132. Cambridge Univ. Press, Cambridge (2005)

41. Vercautern, F.: The SEA algorithm in characteristic 2, preprint (2000),
http://homes.esat.kuleuven.be/~fvercaut/papers/SEA.pdf

42. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge
UP, Cambridge (2003)

43. von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polyno-
mials. Computational complexity 2, 187–224 (1992)

Verifiable Random Functions from
Identity-Based Key Encapsulation�

Michel Abdalla1, Dario Catalano2,		, and Dario Fiore2

1 CNRS–LIENS, Ecole Normale Supérieure, Paris, France
michel.abdalla@ens.fr

2 Dipartimento di Matematica e Informatica, Università di Catania, Italy
{catalano,fiore}@dmi.unict.it

Abstract. We propose a methodology to construct verifiable random
functions from a class of identity based key encapsulation mechanisms
(IB-KEM) that we call VRF suitable. Informally, an IB-KEM is VRF
suitable if it provides what we call unique decryption (i.e. given a cipher-
text C produced with respect to an identity ID, all the secret keys cor-
responding to identity ID ′, decrypt to the same value, even if ID �= ID ′)
and it satisfies an additional property that we call pseudorandom decap-
sulation. In a nutshell, pseudorandom decapsulation means that if one
decrypts a ciphertext C, produced with respect to an identity ID, using
the decryption key corresponding to any other identity ID ′ the resulting
value looks random to a polynomially bounded observer. Interestingly,
we show that most known IB-KEMs already achieve pseudorandom de-
capsulation. Our construction is of interest both from a theoretical and
a practical perspective. Indeed, apart from establishing a connection be-
tween two seemingly unrelated primitives, our methodology is direct in
the sense that, in contrast to most previous constructions, it avoids the
inefficient Goldreich-Levin hardcore bit transformation.

1 Introduction
Verifiable Random Functions (VRFs for short) were introduced by Micali, Rabin
and Vadhan [21]. Informally a VRF is something that behaves like a random
function but also allows for efficient verification. More precisely, this means that
associated with a secret key sk (the seed), there is a public key pk and a function
F such that the following properties are satisfied. First, the function is efficiently
computable, given sk , on any input. Second, having only pk and oracle access to
the function, the value Fpk (x) = y looks random to any polynomially bounded
observer who did not query Fpk (x) explicitly. Third, a proof πpk (x) that Fpk (x) =
y is efficiently computable knowing sk and efficiently verifiable knowing only pk .

VRFs turn out to be very useful in a variety of applications essentially be-
cause they can be seen as a compact commitment to an exponential number of

� The full version of this paper is available at http://www.dmi.unict.it/~fiore
�� Work partially done while visiting the computer science department at Ecole Nor-

male Supérieure.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 554–571, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Verifiable Random Functions from Identity-Based Key Encapsulation 555

(pseudo)random bits. To give a few examples, Micali and Reyzin [22] show how to
use VRFs to reduce to 3 the number of rounds of resettable zero knowledge proofs
in the bare model. Micali and Rivest [23] described a very simple non interac-
tive lottery system used in micropayment schemes, based on VRFs. Jarecki and
Shmatikov [17] employed VRFs to build a verifiable transaction escrow scheme
that preserves users anonymity while enabling automatic de-escrow. Liskov [18]
used VRFs to construct updatable Zero Knowledge databases. In spite of their
popularity VRFs are not very well understood objects. In fact, as of today, only
four constructions are known, in the standard model [21,20,11,13]. The schemes
given in [21,20] build VRFs in two steps. First they focus on constructing a
Verifiable Unpredictable Function (VUF). Informally a VUF is a function that is
hard to compute but whose produced outputs do not necessarily look random.
Next they show how to convert a VUF into a VRF using the Goldreich-Levin [15]
theorem to “extract” random bits. Unfortunately, however, the VRF resulting
from this transformation is very inefficient and, furthermore, it looses a quite
large factor in its exact security reduction. This is because, the transformation
involves several steps, all rather inefficient. First one uses the Goldreich Levin
theorem [15] to construct a VRF with very small (i.e. slightly super polynomial
in the security parameter) input space and output size 1. Next, one iterates the
previous step in order to amplify the output size to (roughly) that of the input.
Then, using a tree based construction, one iterates the resulting function in or-
der to get a VRF with unrestricted input size and finally one evaluates the so
obtained VRF several times in order to get an output size of the required length.

The constructions given in [11,13], on the other hand, are direct, meaning
with this that they manage to construct VRF without having to resort to the
Goldreich Levin transform. The VRF presented in [11] is based on a “DDH-
like” assumption that the author calls sum-free decisional Diffie-Hellman (sf-
DDH). This assumption is similar to that one employed by Naor-Reingold [24]
to construct PRFs, with the difference that it applies an error correcting code C
to the input elements in order to compute the function. The specific properties
of the employed encoding allow for producing additional values that can be used
as proofs. This construction is more efficient than [21,20] in the sense that it does
not need the expensive Goldreich Levin transform. Still it has some efficiency
issues as the size of the produced proofs and keys is linear in the input size.
Dodis [11] also adapts this construction to provide a distributed VRF, that is a
standard VRF which can be computed in a distributed manner.

The scheme proposed by Dodis and Yampolskiy [13], on the other hand, is
more attractive, at least from a practical point of view, as it provides a simple
implementation of VRFs with short (i.e. constant size) proofs and keys. It is
interesting to note that, even though the latter construction is far more efficient
than previous work, it builds upon a similar approach. Basically, the construc-
tion in [13] works in two steps. First they consider a simple VUF (which is
basically Boneh Boyen [3] weakly secure signature scheme) that is secure for
slightly superpolynomially sized input spaces. Next, rather than resorting to the
Godreich Levin [15] hardcore bit theorem to convert it into a VRF, they show

556 M. Abdalla, D. Catalano, and D. Fiore

how to modify the original VUF in order to make it a VRF, under an appropriate
decisional assumption.

From the discussion above, it seems clear that, with the possible exception
of [11], all known constructions of verifiable random functions, follow similar
design criteria. First one builds a suitable VUF and then transforms it into a
VRF by either using the Goldreich Levin transform, or via some direct, ad hoc,
modifications of the original VUF. The main drawback of this approach is that,
once a good enough VUF is found, one has to either be able to make it a VRF
directly or accept the fact that the VRF obtained from the Goldreich Levin
transform is not going to be a practical one. Thus it seems very natural to ask if
there are alternative (and potentially more efficient) ways that allow to construct
VRFs directly, without needing to resort to the two steps methodology sketched
above.

Our Contribution. In this paper we show how to construct VRF from a
class of identity based encryption (IBE) schemes [26] that we call VRF suitable.
Roughly speaking an identity based encryption scheme, is an asymmetric en-
cryption scheme where the public key can be an arbitrary string. Such schemes
consists of four algorithms. A Setup algorithm, that generates the system com-
mon parameters as well as a master key msk ; a key derivation algorithm that
uses the master secret key to generate a private key dsk corresponding to an arbi-
trary public key string ID (the identity); an encryption algorithm that encrypts
messages using the public key ID and a decryption algorithm that decrypts
ciphertexts using the corresponding private key.

Informally an IBE is said to be VRF suitable if the following conditions are
met. First, the scheme has to provide unique decryption. This means that, given
a ciphertext C produced with respect to some arbitrary identity ID , all the se-
cret keys corresponding to any other identity ID ′ decrypt to the same value (i.e.
even if ID ′ �= ID). Second, the Key Encapsulation Mechanism (KEM) associ-
ated with the IBE (see below for a definition of key encapsulation mechanism)
has to provide what we call pseudorandom decapsulation. Very informally, pseu-
dorandom decapsulation means that if C is an encapsulation produced using
some identity ID , the “decapsulated” key should look random even if the decap-
sulation algorithm is executed using the secret key corresponding to any other
identity ID∗ �= ID . Having a scheme that achieves pseudorandom decapsulation
may seem a strong requirement at first. We argue that it is not, as basically all
currently known secure (in the standard model) IBE schemes already provide
pseudorandom decapsulation.

Our result is of interest both from a theoretical and a practical point of view.
Indeed, apart from establishing a connection between two seemingly unrelated
primitives, our method is direct, in the sense that it allows to build a VRF
from a VRF suitable IBE without having to resort to the inefficient Goldreich
Levin transform. Moreover, the reduction is tight. This means that, once an effi-
cient VRF suitable IBE is available, this leads to an equally efficient VRF, with
no additional security loss. Furthermore, our constructions immediately allow

Verifiable Random Functions from Identity-Based Key Encapsulation 557

for efficient distributed VRFs as long as a distributed version of the underly-
ing encryption scheme is available (which is the case for most schemes used in
practice).

As a second contribution of this paper, we investigate on the possibility of im-
plementing VRF suitable IBEs. Toward this goal, we first show how to construct
a VRF suitable IB KEM from the Sakai-Kasahara IB KEM [25]. Interestingly,
the resulting VRF turns out to be very similar to the Dodis-Yampolskiy VRF
[13], thus showing that the latter construction can actually be seen as a special
case of our general methodology. Next, we propose a new implementation of
VRF suitable IB KEM inspired (but more efficient) by Lysyanskaya’s VRF [20]
(which in turn builds from the Naor Reingold’s PRF [24]). The proposed scheme
can be proved secure under the assumed intractability, in bilinear groups, of
the decisional �-th weak Bilinear Diffie Hellman Inversion problem (decisional
�-wBDHI∗ for short) introduced by Boneh, Boyen and Goh [4]. Interestingly,
even though the decisional �-wBDHI∗ assumption is asymptotic in nature, the
� parameter does not need to be too large in order for our security proof to go
through. This is because it directly affects only the size of the space of valid iden-
tities but not the number of adversarial queries allowed in the security reduction1

(as opposed to most known proofs using asymptotic assumptions). This means
that in practice it is enough to assume the decisional �-wBDHI∗ assumption to
hold only for reasonably small values of � (such as � = 160 or � = 256).

IBEs and Digital Signatures. Naor pointed out (see [5]) that a fully secure
identity based encryption scheme can be transformed into a secure signature
scheme as follows. One sets the message space as the set I of valid identities of
the IBE. To sign m ∈ I one executes the key derivation algorithm on input m,
and outputs dsk as the signature. A signature on m is verified by encrypting a
random M with respect to the identity m, and then by checking that decrypting
the resulting ciphertext one gets back M . Thus if one considers an IBE with
unique key derivation (i.e. where for each identity one single corresponding de-
cryption key can be computed) the methodology sketched above leads to a secure
unique digital signature scheme (i.e. a digital signature scheme for which each
message admits one single valid signature). Since secure unique signatures are,
by definition, verifiable unpredictable functions, at first glance our construction
might seem to (somewhat) follow from Naor’s remark. We argue that this does
not seem to be the case for two reasons. First, our construction does not re-
quire the underlying IB-KEM to have unique key derivation, but only to provide
unique decryption. Clearly the former property implies the latter, but there is
no reason to exclude the possibility of constructing a scheme realizing unique
decryption using a randomized key derivation procedure. Second, a crucial re-
quirement for Naor’s transformation to work is that the original IBE is actually
fully secure. A VRF-suitable IBE, on the other hand, is required to be secure
only in a much weaker sense (that we call weak selective ID security).

1 Here by not affecting the number of adversarial queries we mean that � grows lin-
early with respect to the identity space but only logarithmically with respect to the
number of adversarial queries.

558 M. Abdalla, D. Catalano, and D. Fiore

Other related Work. As pointed out above the notion of VRF is related
to the notion of unique signatures. Unique signatures were introduced by Gold-
wasser and Ostrovsky [16] (they called them invariant signatures). The only
known constructions of unique signatures in the plain model (i.e. without com-
mon parameters or random oracles) are due to Micali, Rabin and Vadhan [21],
to Lysyanskaya [20] and to Boneh and Boyen [3]. In the common string model,
Goldwasser and Ostrovsky [16] also showed that unique signatures require the
same kind of assumptions needed to construct non interactive zero knowledge.

Dodis and Puniya in [12] address the problem of constructing Verifiable Ran-
dom Permutations from Verifiable Random Functions. They define VRPs as the
verifiable analogous of pseudorandom permutations. In particular they point out
that the technique of Luby-Rackoff [19] (for constructing PRPs from PRFs) can-
not be applied in this case. This is due to the fact that VRP proofs must reveal
the VRF outputs and proofs of the intermediate rounds. In their paper they
show a construction in which a super-logarithmic number of executions of the
Feistel transformation suffices to build a VRP.

More recently Chase and Lysyanskaya [8] introduced the notion of simulatable
VRF. Informally a simulatable VRF is a VRF with the additional property that
proofs can be simulated, meaning with this that a simulator can fake proofs
showing that the value of Fsk (x) is y for any y of its choice. Simulatable VRFs can
be used to provide a direct transformation from single theorem non interactive
zero knowledge to multi theorem NIZK and work in the common reference string
model.

2 Preliminaries

Before presenting our results we briefly recall some basic definitions. In what
follows we will denote with k a security parameter. The participants to our
protocols are modeled as probabilistic Turing machines whose running time is
bounded by some polynomial in k. Denote with N the set of natural numbers
and with R+ the set of positive real numbers. We say that a function ε : N → R+

is negligible if and only if for every polynomial P (k) there exists an k0 ∈ N such
that for all k > k0 ε(k) < 1/P (k). If A is a set, then a $← A indicates the process
of selecting a at random and uniformly over A (which in particular assumes that
A can be sampled efficiently).

Verifiable Random Functions Verifiable Random Functions (VRFs for
short) were introduced by Micali, Rabin and Vadhan [21]. Intuitively, a VRF
is something that behaves like a pseudorandom function, but also allows for a
proof of its output correctness. More formally, a VRF is a triplet of algorithms
VRF = (Gen,Func,V) providing the following functionalities. The key generation
algorithm Gen is a probabilistic algorithm that takes as input the security pa-
rameter and produces a couple of matching public and private keys (vpk , vsk).
The deterministic algorithm Func, on input the secret key vsk and the input x
to the VRF, computes (Fvsk (x),Provevsk (x)), where Fvsk (x) is the value of the
VRF and Provevsk (x) its proof of correctness. The verification algorithm V takes

Verifiable Random Functions from Identity-Based Key Encapsulation 559

as input (vpk , x, v, π) and outputs a bit indicating whether or not π is a valid
proof that Fvsk (x) = v.

Let a : N → N ∪ {∗} and b : N → N be functions computable in polynomial
time (in k). Moreover we assume that a(k) and b(k) are bounded by a polynomial
in k, except if a takes the value ∗ (in this case we simply assume that the VRF
can take inputs of arbitrary length). Formally, we say that VRF = (Gen,Func,V)
is a VRF of input length a(k) and output length b(k), if the following conditions
are met.

Domain Range Correctness. For all x ∈ {0, 1}a(k) it has to be the case that
Fvsk (x) ∈ {0, 1}b(k). We require this condition to hold with overwhelming
probability (over the choices of (vpk , vsk)).

Provability. For all x ∈ {0, 1}a(k) if Provevsk (x) = π and Fvsk (x) = v then
V(vpk , x, v, π) = 1. We require this condition to hold with overwhelming
probability (over the choices of (vpk , vsk) and the coin tosses of V).

Uniqueness. No values (vpk , x, v1, v2, π1, π2) can satisfy (unless with negligible
probability over the coin tosses of V) V(vpk , x, v1, π1) = V(vpk , x, v2, π2) = 1,
when v1 �= v2.

Pseudorandomness. For all probabilistic polynomial time adversaries A =
(A1, A2) we require that

Pr

⎡⎢⎣ (vpk , vsk) $← Gen(1k); (x, ω) ← A
Func(·)
1 (vpk)

b′ = b b
$← {0, 1}; v0 ← Fvsk (x); v1

$← {0, 1}b(k)

b′ ← A
Func(·)
2 (ω, vb)

⎤⎥⎦ ≤ 1
2

+ ε(k)

where the notationAFunc(·) indicates that A has oracle access to the algorithm
Func. In order to make this definition sensible, we impose that A cannot
query the oracle on input x.

Remark 1. One might consider a relaxation of the pseudorandomness property
in which the adversary is required to commit ahead of time (i.e. before seeing
the public key) to the input value it intends to attack. We call selective-VRF a
VRF that satisfies this weaker pseudorandomness2.

ID based encryption An identity based encryption scheme is a tuple of al-
gorithms IBE = (Setup,KeyDer,Enc,Dec) providing the following functionality.
The trusted authority runs Setup, on input 1k, to generate a master key pair
(mpk ,msk). Without loss of generality we assume that the public key mpk spec-
ifies a message space M and a value n (polynomial in the security parameter)
indicating the length of each identity. It publishes the master public key mpk and
keeps the master secret key msk private. When a user with identity ID wishes
to become part of the system, the trusted authority distributor generates a user
decryption key dID

$← KeyDer(msk , ID), and sends this key over a secure and
authenticated channel to the user. To send an encrypted message m to the user
2 For lack of space we defer a more formal definition of this notion to the full version

of this paper.

560 M. Abdalla, D. Catalano, and D. Fiore

with identity ID , the sender computes the ciphertext C $← Enc(mpk , ID ,m),
which can be decrypted by the user as m← Dec(dID ,C).

Boneh and Franklin [5] formally defined the notion of security for identity
based encryption schemes. In particular they defined chosen plaintext security
against adaptive chosen identity attack. Intuitively, such a notion, captures the
requirement that security should be preserved even when facing an adversary
who is allowed to choose the identity it wishes to attack. Later, Canetti, Halevi,
and Katz [7] introduced a weaker notion of security in which the adversary is
required to commit ahead of time (i.e. before the parameters of the scheme
are made public) to the identity it intends to attack. A scheme meeting such
a weaker security requirement is said selective ID, chosen plaintext secure IBE
(IND-sID-CPA).

In this paper we introduce a new notion of security for IBE schemes that we
call weak selective ID security. More precisely, we define weak selective ID secu-
rity as the full fledged selective case with the exception that here the challenge
identity is chosen by the challenger and given in input to the adversary. Clearly,
this notion is weaker with respect to selective ID security as it is easy to see that
the latter implies the former.

Identity Based Key Encapsulation. An identity-based key encapsulation
mechanism (IB-KEM) scheme allows a sender and a receiver to agree on a ran-
dom session key K in such a way that the sender can create K from public
parameters and receiver identity and the receiver can recover K using his secret
key. This notion, in the context of identity-based encryption, was first formalized
by Bentahar et al. [1].

An IB-KEM scheme is defined by four algorithms:

– Setup(1k) is a probabilistic algorithm that takes in input a security parameter
k and outputs a master public key mpk and a master secret key msk .

– KeyDer(msk , ID) The key derivation algorithm uses the master secret key to
compute a secret key skID for identity ID .

– Encap(mpk , ID) The encapsulation algorithm computes a random session
key K and a corresponding ciphertext C encrypted under the identity ID .

– Decap(C , skID) allows the possessor of a secret key skID to decapsulate C
to get back a session key K. We denote by K the session key space.

For correctness it is required that ∀k ∈ N, ID ∈ ID, (C ,K) $← Encap(mpk ,
ID) the following probability holds for all possible (mpk ,msk) $← Setup(1k):

Pr[Decap(C ,KeyDer(msk , ID)) = K] = 1

Here we define the notion of weak selective ID security for IB-KEM schemes. Let
IBKEM be a IBE scheme with key encapsulation mechanism. Then IBKEM is
weakly selective ID secure against adaptively-chosen plaintext attacks
(wsIB-KEM-CPA) if there exists no polynomially bounded adversaryA with non
negligible advantage against the Challenger in the following game:

Setup. In this phase the challenger selects a challenge identity ID∗ (according
to an arbitrary distribution) and runs (mpk ,msk) ← Setup(1k). Then it

Verifiable Random Functions from Identity-Based Key Encapsulation 561

computes (C ∗,K∗) = Encap(mpk , ID∗) and flips a binary coin b
$← {0, 1}.

Then it sets K̄ = K∗ if b = 0, otherwise it picks a random key K̄
$← K.

Finally it runs A on input (mpk , ID∗,C ∗, K̄) and keeps msk for itself.
Key derivation queries. The adversary is allowed to ask key derivation que-

ries for an arbitrary (but polynomial) number of adaptively chosen identities
different from ID∗.

Guess. In the end of this game A outputs b′ as its guess for b.

The adversary wins if b′ = b. We formally define the advantage of A against
IBKEM in the above game as

AdvwsIB-KEM-CPA
IBKEM,A (k) =

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣
where the probability is taken over the coin tosses of the challenger and the
adversary.

VRF-suitable IB-KEMs. Our VRF construction relies on a special class of
identity based key encapsulation mechanisms that we call VRF suitable. In par-
ticular, a VRF suitable IB-KEM is defined by the following algorithms

– Setup(1k) is a probabilistic algorithm that takes in input a security parameter
k and outputs a master public key mpk and a master secret key msk .

– KeyDer(msk , ID) The key derivation algorithm uses the master secret key to
compute a secret key skID for identity ID and some auxiliary information
auxID needed to correctly encapsulate and decapsulate the key.

– Encap(mpk , ID , auxID) The encapsulation algorithm computes a random ses-
sion key K, using (mpk , ID , auxID). Moreover it uses (mpk , ID) to computes
a ciphertext C encrypted under the identity ID . Notice that auxID is re-
quired to compute K but not to compute C .

– Decap(C , skID , auxID) allows the possessor of skID and auxID to decapsulate
C to get back a session key K. We denote by K the session key space.

Remark 2. Notice that the description above differs from the one given for basic
IB-KEM in that here we require the encapsulation and decapsulation mechanism
to use some auxiliary information auxID , produced by KeyDer, to work correctly.
Clearly if one sets auxID = ⊥ one goes back to the original description. Thus
the new paradigm is slightly more general as it allows to consider encapsulation
mechanism where everybody can compute the ciphertext but only those knowing
the auxID information can compute the key. Notice however that auxID does
not allow, by itself, to decapsulate. In some sense, this auxiliary information
should be seen as a value that completes the public key (rather than something
that completes the secret key) 3. Even though such a syntax may look totally
meaningless in the standard public key scenario, it turns out to be extremely
useful (see below) in our context.
3 In fact this auxiliary information is not required to be kept secret in our constructions

since the adversary can in principle obtain its value for any identity of its choice
including the challenge identity (see definition of pseudorandom decapsulation).

562 M. Abdalla, D. Catalano, and D. Fiore

Moreover, the IB-KEM has to satisfy the following properties:

1. Unique decryption.Let ID0 be any valid identity and C a ciphertext en-
cryptedunder ID0.We require thatno valid identity ID can satisfy (unlesswith
negligible probability) Decap(C , sk′ID , auxID

′) �= Decap(C , sk′′ID , auxID
′′),

where (sk′ID , auxID
′) ← KeyDer(msk , ID), (sk′′ID , auxID

′′) ← KeyDer(msk ,
ID)

2. Pseudorandom decapsulation. LetC be an encapsulation produced using
identity ID0, we require the session key to look random even if the decapsu-
lation algorithm is executed using the secret key corresponding to any other
ID . More formally, we define the following experiment, for a polynomially
bounded adversary A = (A1,A2).

Experiment ExpIB-KEM-RDECAP
IBKEM,A (k)

(mpk ,msk) $← Setup(1k)
Choose ID0 ∈ ID (according to any arbitrary distribution)
C∗ $← Encap(mpk , ID0)
(ID , st) $← AKeyDer(·)

1 (mpk , C∗, ID0)
(auxID , skID) $← KeyDer(msk , ID)
b

$← {0, 1}; K0
$← Decap(C∗, skID , auxID); K1

$← K
b′ ← AKeyDer(·)

2 (st,Kb, auxID)
If b′ = b then return 1, else return 0

With AKeyDer(·) we denote that an algorithm A has oracle access to the key
derivation algorithm. Let ID denote identity space, i.e. the space from which
the adversary (and everybody else) is allowed to choose the identities. In the
experiment ExpIB-KEM-RDECAP

IBKEM,A we need the following restrictions:

– the identity ID output by A1 should not be asked before;
– A2 is not allowed to query the oracle on ID .

We define the advantage of A in the IB-KEM-RDECAP experiment as

AdvIB-KEM-RDECAP
IBKEM,A (k) =

∣∣∣∣Pr [ExpIB-KEM-RDECAP
IBKEM,A (k) = 1

]
− 1

2

∣∣∣∣ .
IBKEM has pseudorandom decapsulation if for any polynomially bounded
adversary A the advantage AdvIB-KEM-RDECAP

IBKEM,A (k) is a negligible function
in k.

Remark 3. Requiring that an IB-KEM provides pseudorandom decapsulation
might seem a very strong requirement at first. We argue that it is not, at least if
the known constructions of IB-KEMs are considered. Indeed, all currently known
schemes which are IND-CPA secure (but not IND-CCA secure) in the standard
model already have this property (see the full version of the paper for details).

Verifiable Random Functions from Identity-Based Key Encapsulation 563

3 The Construction

In this section we show our construction of Verifiable Random Functions from
a VRF-suitable IB-KEM IBKEM = (Setup,KeyDer,Encap,Decap). Let ID be
the identity space, K the session key space and SK the secret key space. Then
we construct VRF = (Gen,Func,V) which models a function from input space
ID to output space K.

Gen(1k) runs (mpk ,msk) ← Setup(1k), chooses an arbitrary identity ID0 ∈ ID
and computes C0 ← Encap(mpk , ID0). Then it sets vpk = (mpk , C0) and
vsk = msk .

Funcvsk(x) computesπx = (skx, auxx) = KeyDer(msk , x) and y = Decap(C0, πx).
It returns (y, πx) where y is the output of the function and πx is the proof.

V(vpk , x, y, πx) first checks if πx is a valid proof for x in the following way. It
computes (C,K) = Encap(mpk , x, auxx) and checks if K = Decap(C, πx).
Then it checks the validity of y by testing if Decap(C0, πx) = y. If both the
tests are true, then the algorithm returns 1, otherwise it returns 0.

Now we prove that the proposed construction actually realizes a secure VRF.

Theorem 1. Assume IBKEM is a VRF Suitable IB-KEM scheme, as described
in section 2 then the construction given above is a verifiable random function.

Proof. According to the definition given in section 2, we prove that VRF =
(Gen,Func,V) is a verifiable random function by showing that it satisfies all the
properties. Domain range correctness and provability trivially follow from the
IB-KEM scheme correctness. Since IBKEM has unique decryption the unique-
ness property is satisfied for construction of VRF. To prove the residual pseu-
dorandomness we assume there exists an adversary A = (A1,A2) that breaks
the residual pseudorandomness of VRF with non-negligible probability 1

2 + ε(k).
Then we can build an adversary B = (B1,B2) which has non-negligible advantage
ε(k) in the IB-KEM-RDECAP game.
B1 receives in input from its Challenger the public key mpk and a ciphertext

C∗
0 . It sets vpk = (mpk , C∗

0) and runs A1(vpk). The adversary A is allowed
to make queries to the function oracle Func(·). B simulates this oracle in the
following way. Given input x ∈ ID, it queries the key derivation oracle on x.
It obtains skx and returns (Decap(C∗

0 , skx), skx) to the adversary. When A1
outputs an element x̄, B1 gives the same element to its challenger. Thus the
challenger produces K∗, which is either the decapsulation of C∗

0 with sk x̄ or a
random element of K, and gives it to B2. Then B2 runs b′ ← A2(st,K∗) and
outputs b′ to the Challenger.

Since the simulation is perfect, if A outputs b′ = b with probability 1
2 + ε(k),

then B’s advantage is exactly ε(k).

Notice that, when describing the notion of VRF suitable IB-KEM, we did not
expect the underlying scheme to meet any additional security requirement. With
the following theorem (whose proof is deferred to the full version of this paper)
we show that, indeed, a necessary condition, in order for an IB-KEM to be VRF
suitable, is that it is secure only in a weak selective sense.

564 M. Abdalla, D. Catalano, and D. Fiore

Theorem 2. Let IBKEM be a VRF Suitable IB-KEM, then it is also a weakly
selective secure IB-KEM (in the sense of the definition given in section 2).

4 VRF Suitable IBEs

In this section we describe our constructions of Verifiable Random functions from
VRF suitable encryption schemes. In particular, in light of the results presented
in section 3, we focus on constructing VRF suitable IB-KEM schemes.

We start by describing, in section 4.1, a VRF from the Sakai-Kasahara [25]
IB-KEM. Interestingly, the proposed VRF is basically the same as the VRF
proposed by Dodis and Yampolskiy [13], thus showing that their construction
can be seen as a special case of our general paradigm.

Next we present, in section 4.2, a new construction of VRF suitable IB-KEM
from an assumption related to the �-Bilinear Diffie Hellman Inversion assump-
tion (see [2]), that is known as the decisional �-weak Bilinear Diffie Hellman
Inversion assumption (decisional �-wBDHI∗, following the acronym used in [4]).
The decisional �-wBDHI∗ was introduced by Boneh, Boyen and Goh in [4] and it
(informally) states that given gb, gc, gb2 , ..., gb�

, the quantity e(g, g)b�+1c should
remain indistinguishable from random to any polynomially bounded adversary.
The assumption is related to the � bilinear Diffie Hellman Inversion assumption
(�-BDHI), in the sense that the former is known to hold in all those groups
where the latter holds, but the converse is not known to be true. Interestingly,
in order for our construction to work, the � parameter does not need to be too
large. This is because it only limits to 2� the size of the space of valid identities
but it does not affect in any other way the number of adversarial queries allowed
in the security proof (as in most known proofs using q-type assumptions). Said
in a different way, � is required to grow only in a logarithmic way (rather than
linearly) with respect to the number of adversarial queries allowed. This means
that it is enough to assume that the �-wBDHI∗ assumption holds only for rather
small values of � (i.e. � = 160 or � = 256).

As a final note we mention that, in principle, one could construct a VRF from
Boneh Franklin’s IBE. Indeed, in the full version of this paper, we show that
the KEM version of the scheme is actually a VRF suitable IB-KEM, under the
decisional Bilinear Diffie Hellman assumption. This construction, however, is of
very limited interest, since the proof holds in the random oracle model.

4.1 Sakai-Kasahara VRF

We briefly recall the KEM version of the Sakai-Kasahara IBE scheme (SK for
short) [25]. This scheme relies on the q-decisional Bilinear Diffie-Hellmann In-
version assumption (DBDHI for short), introduced by Boneh and Boyen in
[2]. Informally, the DBDHI assumption in bilinear group G of prime order p
states that, for every PPT algorithm A and for a parameter q, A has negligible
probability into distinguishing e(g, g)1/x ∈ GT from a random one after seeing
(g, gx, g(x2), · · · , g(xq)). If we suppose that G(1k) is a bilinear group generator

Verifiable Random Functions from Identity-Based Key Encapsulation 565

which takes in input a security parameter k, then (asymptotically) the DBDHI
assumption holds for G if A’s probability of success is negligible in k, for any q
polynomial in k.

– Setup(1k) runs G(1k) to obtain the description of the groups G,GT and of
a bilinear map e : G ×G → GT . The description of G contains a generator
g ∈ G. Then the algorithm picks a random s

$← Zp and sets h = gs, mpk =
(g, h),msk = s.

– KeyDer(msk , ID) We assume ID ∈ Zp. The key derivation algorithm con-
structs the secret key skID = g

1
s+ID .

– Encap(mpk , ID) The encapsulation algorithm picks a random t
$← Z	

p and
computes a random session key K = e(g, g)t and a corresponding ciphertext
C = (gsgID)t.

– Decap(C , skID) the decapsulation algorithm uses the secret key skID to com-
pute a session key K from a ciphertext C as follows: K = e(C , skID).

First notice that, assuming auxID = ⊥ ∀ID , the above description fits our
syntax of VRF suitable IB-KEMs. Now we prove (for lack of space the actual
proof appears in the full version of this paper) that the Sakai-Kasahara IB-
KEM scheme can be used to construct a VRF (i.e. that it actually provides
unique decryption and pseudorandom decapsulation). In particular, the resulting
VRF can only support superpolynomially-sized (in the security parameter) input
space. Notice that all known constructions of VRF made the same assumption.

Theorem 3. Assuming that the DBDHI assumption holds in a bilinear group
G, then the Sakai-Kasahara IBE scheme [25] is a VRF-suitable IBE.

Similarity with the Dodis-Yampolskiy VRF. Now we show that the Dodis-
Yampolskiy VRF [13] (that we briefly recall in appendix A) can be seen as a
special instantiation of the construction given above. Indeed, theorem 3 leads to
the following VRF.

Gen(1k) Runs G(1k) to obtain the description of the groups G,GT and of a
bilinear map e : G × G → GT . The description of G contains a generator
g ∈ G. Then the algorithm picks random s, t

$← Zp and sets h = gs, C0 = ht,
vpk = (g, h, C0), vsk = s.

Funcvsk(x) Let Funcvsk(x)=(Fvsk (x), πvsk (x)). One sets Funcvsk(x)= e(C0, skx)
= e(g, g)(st)/(s+x) as the VRF output and πvsk (x) = KeyDer(x) = g1/(s+x)

as the proof of correctness.
V(vpk , x, y, πx) To verify whether y was computed correctly, one starts by

running the Encap algorithm on input (vpk , x). Encap chooses ω
$← Zp

and then computes K ← e(g, g)ω and C = (hgx)ω. Then one checks that
K = Decap(C, πx) = e((gx · h)ω, πx) and y = Decap(C0, πx) = e(ht, πx).

Thus by setting t = s−1 mod p and ω = 1, the construction above can be
optimized to get exactly the Dodis Yampolskiy VRF.

566 M. Abdalla, D. Catalano, and D. Fiore

4.2 The New Construction

In this section we propose a new construction of VRF suitable IB-KEM from the
(conjectured) computational intractability of the decisional weak �-Bilinear Diffie-
Hellman Inversion problem (see below for a formal description). The new scheme
is inspired from Lysyanskaya [20] VRF in that the validity of each new auxiliary
information auxID (required to compute the session key) is verified by exploiting
the DDH-CDH separation in bilinear groups. The new scheme however is more ef-
ficient as it leads to a VRF directly (i.e. rather than having to construct a unique
signature scheme first) and does not require error correcting codes.

Decisional weak �-Bilinear Diffie Hellman Inversion Problem [4]. The
decisional �-wBDHI∗ problem in G is defined as follows. Let G be a bilinear
group of prime order p and g a generator of G. Given gb, gc, gb2 , ..., gb�

, we say
that an algorithm A has advantage ε in solving decisional �-wBDHI∗ in G if

Pr[A(gc, gb, gb2 , ..., gb�

, e(g, g)b�+1c) = 1] − Pr[A(gc, gb, gb2 , ..., gb�

, e(g, g)z) = 1] ≥ ε

where the probability is over the random choices of b, c, z ∈ Z∗
p

We say that the decisional �-wBDHI∗ assumption holds inG if no polynomially
bounded adversary has advantage better than negligible in solving the decisional
�-wBDHI∗ problem in G.

Remark 4. Cheon showed in [9] an attack against the Strong Diffie-Hellman
Assumption and its related problems (among which the DBDHI used to prove
the security of the Dodis-Yampolskiy VRF). This attack reduces the security of
a factor

√
q and applies to the �-wBDHI∗ as well. However, as it is stated at

the beginning of this section, in our construction it is enough to assume that
the �-wBDHI∗ assumption holds only for rather small values of � (i.e. � = 160
or � = 256). Thus in our case the security loss is not significant as in Dodis-
Yampolskiy’s.

The proposed scheme follows

Setup(1k) runs G(1k) to obtain the description of the groups G,GT and of a
bilinear map e : G × G → GT . The description of G contains a generator
g ∈ G. Let {0, 1}� be the space of valid identities. Then the algorithm picks
(at random) a, α1, β1, . . . , α�, β�

$← Zp, sets g1 = ga, and for i = 1, . . . , � sets
g0i = gβi and g1i = gαi . The public parameters are

mpk =
(
g, g1, {gij}i=0,1;j=1..�

)
The master secret key is msk = (a, {αi, βi}i=1,..,�)

KeyDer(msk , ID) We assume ID = ID1 · · · ID� where each ID i ∈ {0, 1}. The
key derivation algorithm constructs the secret key skID and the auxiliary
information auxID as follows. Let h0 = g, for i = 1 to � one computes

hi = (hi−1)α
IDi
i β

(1−IDi)
i

and sets auxID = (h1, . . . , h�) and skID = ha
� .

Verifiable Random Functions from Identity-Based Key Encapsulation 567

Encap(mpk , ID , auxID) Let auxID = (h1, . . . , h�) computed as above, the encap-
sulation algorithm picks a random t

$← Z	
p and computes a random session

key K = e(g1, h�)t and a corresponding ciphertext C = gt.
Decap(C , skID , auxID) the decapsulation algorithm uses the secret key skID and

the auxiliary information auxID to compute a session key K from a cipher-
text C . This is done as follows. First, in order to guarantee the unique
decryption property, a check on the validity of the auxiliary information has
to be performed. This is done as follows, let h0 = g, for i = 1, . . . , �

if ID i = 1 check e(g, hi)
?= e(g1i, hi−1)

else check e(g, hi)
?= e(g0i, hi−1)

If any of the above checks fails output reject. Second, the key K is computed
as K = e(C, skID) = e(g1, h�)t Notice that, the validity of skID can be
verified by first encrypting some random message m with respect to the
public key (g, g1, h�) and then by checking if one can decrypt it correctly
using skID .

Now we prove the following result

Theorem 4. Suppose the decisional �-wBDHI∗ assumption holds in G, then the
scheme given above is a secure VRF suitable IB-KEM scheme.

Proof. Let ID = {0, 1}� the identity space. First notice that the scheme fits
the syntax of VRF suitable IB-KEMs. We prove the theorem by showing that
the scheme has the unique decryption property and meets the pseudorandom
decapsulation requirement.

Unique Decryption. We prove this by showing that for a given identity ID
the corresponding h� is uniquely determined as

h� = g
∏�

i=1 α
IDi
i β

1−IDi
i

The proof is by induction on i. First notice that it must be the case h1 =
gα

ID1
1 β

1−ID1
1 , as otherwise the check e(g, h1)

?= e(gID11, h0) = e(gα
ID1
1 β

1−ID1
1 , g)

would fail. Now assume that the statement holds true for any index j − 1 < �,
i.e. that hj−1 = g

∏j−1
i=1 α

IDi
i β

1−IDi
i . We prove that the same holds for j.

hj = h
α

IDj
j β

1−IDj
j

j−1 =
(
g
∏j−1

i=1 α
IDi
i β

1−IDi
i

)α
IDj
j β

1−IDj
j

= g
∏j

i=1 α
IDi
i β

1−IDi
i

Pseudorandom Decapsulation.Assume that there is an an adversary A that
breaks the pseudorandom decapsulation of the proposed scheme with adv-
antage ε, we show how to build an adversary B that solves the decisional �-
wBDHI∗ problem with advantage ε/2� and runs in time comparable to that
needed by A. B starts by receiving, from some challenging oracle, the values

568 M. Abdalla, D. Catalano, and D. Fiore

(C = gc, B1 = gb, B2 = gb2 , . . .B� = gb�

and a value T that can be either of the
form e(g, g)b�+1c or of the form e(g, g)z, for random z ∈ Z∗

p, depending on some
random (and hidden) bit d that B is supposed to guess. First, notice that in the
proposed scheme the ciphertext C is independent of specific identities, thus B
can produce it without having to commit to any ID0. B chooses ID at random
as its guess for the challenge identity. Then it sets g1 = Ba

1 , for random a ∈ Z∗
p,

chooses at random αi, βi
$← Z∗

p, for i = 1, . . . , �, and computes for i = 1, . . . , �

g0i =
{
Bβi

1 if ID i = 0
gβi if ID i = 1

g1i =
{
gαi if ID i = 0
Bαi

1 if ID i = 1

Notice that the public parameters mpk =
(
g, g1, {gij}i=0,1;j=1..�

)
are dis-

tributed exactly as those produced by the setup algorithm. The master secret
key is implicitly set to msk = (ab, {αib

IDi , βib
1−IDi}i=1,..,�). Next, B computes

C∗ as follows C∗ ← C = gc. Thus, C∗ is also correctly distributed. Now B runs
A on input (mpk , C∗, ID0), for some randomly chosen identity ID0. Notice that,
from the received inputs, A gets no information at all about the ID chosen by
B, thus such a choice will be identical to the challenge identity with probability
1/2�.

Now we show how B can answer key derivation queries for identities ID �= ID .
Since ID �= ID there exists (at least) an index j such that ID j �= IDj . For such
index we have that either g0j = gβj (if IDj = 0) or g1j = gαj (otherwise). This
means that the h� corresponding to identity ID will contain the (unknown) b
with exponent � − 1, at most. Let n < � denote the number of positions i such
that ID i = ID i. B computes the hi as follows.

h1 =

{
gα

ID1
1 β

1−ID1
1 if ID1 �= ID1

B
α

ID1
1 β

1−ID1
1

1 if ID1 = ID1

h2 =

⎧⎪⎪⎨⎪⎪⎩
h

α
ID2
2 β

1−ID2
2

1 if ID2 �= ID2

B
α

ID2
2 β

1−ID2
2

1 if ID2 = ID2 ∧ ID1 �= ID1

B
α

ID2
2 β

1−ID2
2

2 if ID2 = ID2 ∧ ID1 = ID1

. . .

Finally, letting ωID =
∏�

i=1 α
IDi

i β1−ID i

i , h� is computed as BωID
n .

The skID is set to BaωID
n+1 . Recall that, since n < �, B can do this operation

using the values received by the challenger. It is easy to check that both the
auxID = (h1, . . . , h�) and skID are distributed as in the real key derivation
algorithm.

Once A is done with its first phase of key derivation queries it outputs a chal-
lenge identity ID∗. If ID∗ �= ID , B outputs a random bit and aborts. Otherwise
it constructs KID as T aωID , where ωID =

∏�
i=1 α

ID i

i β1−IDi

i and auxID is com-
puted as before. This time however h� is set to BωID

� , thus B will not be able to
explicitly compute sk ID . However this is not a problem as B is not required to
do so. Finally B hands (KID , sk ID) to A. A replies back with a guess d′ (d′ = 0

Verifiable Random Functions from Identity-Based Key Encapsulation 569

means real, d′ = 1 means random). B outputs d′ as well. Additional key deriva-
tion queries are dealt with as in the first phase. This completes the description
of the simulator.

Now notice that if T = e(g, g)b�+1c, KID is a valid key for the identity ID . This
is because, KID = e(g1, hID)c, where hID is the h� corresponding to identity ID .
Thus, hID = gb�ωID

KID = e(g1, hID)c = e(gab, gb�ωID)c = T aωID

If on the other hand T is a random value so is KID . Thus, by standard cal-
culations one gets that, if A has advantage ε in breaking the pseudorandom
decapsulation property of the scheme, B breaks the decisional �-wBDHI∗ with
advantage ε/2�. �
Remark 5. It is interesting to note that if one is interested only into a selective-
VRF, then the above construction leads directly to a scheme with large input
space. This does not hold for the Dodis-Yampolskiy VRF because in its security
proof the simulator has to guess all the queries that the adversary is going to
ask even in the weaker selective case.

5 Conclusions

In this paper we introduced a new methodology to construct verifiable random
functions (VRF) from a class of identity based key encapsulation schemes that
we call VRF suitable. We showed the applicability of our methods by providing
two concrete realizations of the new primitive. The first one leads to a VRF
that is very similar to the Dodis-Yampolskiy construction, while the second
leads to a new construction. A natural question left open by this research is
to find new (potentially better) instantiations of the primitive, possibly ones
supporting exponentially large (in the security parameter) identity spaces and
provably secure under non interactive assumptions. This would solve the long
standing open problem of realizing a secure VRF with unbounded input size.

Acknowledgements

We thank Gregory Neven for collaborating with us at an early stage of this
research. We also thank Eike Kiltz and Jonathan Katz for helpful discussions.
This work was supported in part by the European Commission through the
IST Program under Contract ICT-2007-216646 ECRYPT II and in part by the
French National Research Agency through the PACE project.

References

1. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions
of identity-based and certificateless KEMs. Journal of Cryptology 21(2), 178–199
(2008)

570 M. Abdalla, D. Catalano, and D. Fiore

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption-
without pairings. In: 48th FOCS, Providence, USA, pp. 647–657. IEEE Computer
Society Press, Los Alamitos (2007)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

8. Chase, M., Lysyanskaya, A.: Simulatable vRFs with applications to multi-theorem
NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322.
Springer, Heidelberg (2007)

9. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

10. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

11. Dodis, Y.: Efficient construction of (Distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2002)

12. Dodis, Y., Puniya, P.: Verifiable random permutations. Cryptology ePrint Archive,
Report 2006/078 (2006), http://eprint.iacr.org/

13. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

14. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

15. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st
ACM STOC, Seattle, Washington, USA, May 15–17, pp. 25–32. ACM Press, New
York (1989)

16. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993)

17. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction
escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 590–608. Springer, Heidelberg (2004)

18. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

19. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

Verifiable Random Functions from Identity-Based Key Encapsulation 571

20. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

21. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
October 17–19, pp. 120–130. IEEE Computer Society Press, New York (1999)

22. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)

23. Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002)

24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, Miami Beach, Florida, October 19–22, pp. 458–467.
IEEE Computer Society Press, Los Alamitos (1997)

25. Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic curve. In:
2003 Symposium on Cryptography and Information Security – SCIS 2003, Hama-
matsu, Japan (2003), http://eprint.iacr.org/2003/054

26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

27. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A The VRF by Dodis and Yampolskiy

In this section we describe the VRF by Dodis and Yampolskiy [13].

Gen(1k) Runs G(1k) to obtain the description of the groups G,GT and of a
bilinear map e : G × G → GT . The description of G contains a generator
g ∈ G. Then the algorithm picks a random s

$← Zp and sets h = gs, vpk =
(g, h), vsk = s.

Funcvsk(x)Let Funcvsk(x)=(Fvsk (x), πvsk (x)). One sets Funcvsk(x)
=e(g, g)1/(s+x) as the VRF output and πvsk (x) = g1/(s+x) as the proof of cor-
rectness.

V(vpk , x, y, πx) To verify if y was computed correctly, one checks that e(gx ·
h, πx) = e(g, g) and y = e(g, πx).

Optimal Randomness Extraction from a
Diffie-Hellman Element

Céline Chevalier, Pierre-Alain Fouque, David Pointcheval,
and Sébastien Zimmer

École Normale Supérieure, CNRS-INRIA, Paris, France
{Celine.Chevalier,Pierre-Alain.Fouque,David.Pointcheval,

Sebastien.Zimmer}@ens.fr

Abstract. In this paper, we study a quite simple deterministic random-
ness extractor from random Diffie-Hellman elements defined over a prime
order multiplicative subgroup G of a finite field Zp (the truncation), and
over a group of points of an elliptic curve (the truncation of the abscissa).
Informally speaking, we show that the least significant bits of a random
element in G ⊂ Z∗

p or of the abscissa of a random point in E(Fp) are
indistinguishable from a uniform bit-string. Such an operation is quite
efficient, and is a good randomness extractor, since we show that it can
extract nearly the same number of bits as the Leftover Hash Lemma can
do for most Elliptic Curve parameters and for large subgroups of finite
fields. To this aim, we develop a new technique to bound exponential
sums that allows us to double the number of extracted bits compared
with previous known results proposed at ICALP’06 by Fouque et al. It
can also be used to improve previous bounds proposed by Canetti et al.
One of the main application of this extractor is to mathematically prove
an assumption proposed at Crypto ’07 and used in the security proof
of the Elliptic Curve Pseudo Random Generator proposed by the NIST.
The second most obvious application is to perform efficient key derivation
given Diffie-Hellman elements.

1 Introduction
Since Diffie and Hellman’s seminal paper [10], many cryptographic schemes are
based on the Diffie-Hellman technique: key exchange protocols [10] of course,
but also encryption schemes, such as ElGamal [12] and Cramer-Shoup [9] ones,
or pseudo-random generators, as the Naor-Reingold PRNG [23]. More precisely,
the security of these schemes relies on the Decisional Diffie-Hellman assumption
(DDH) [4], which means that there is no efficient algorithm that can distinguish
the two distributions in G3, (ga, gb, gab) and (ga, gb, gc), where a, b and c are
chosen at random in �1, q�, and G = 〈g〉 is a cyclic group, generated by g of
prime order q. For many of the schemes whose security is based on the DDH
assumption, the DH element is used as a shared random element of G. How-
ever, a perfectly random element of G is not a perfectly random bit string and
sometimes, as in key derivation for example, it can be useful to derive a uniform
bit string which could be used as a symmetric key. Therefore, from this random
element of G, one has to find a way to generate a random bit string.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 572–589, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

Optimal Randomness Extraction from a Diffie-Hellman Element 573

1.1 Related Work

One classical solution to derive a random-looking bit-string from the DH element
is to use a hash function. One indeed gets a uniform bit-string, but in the random
oracle model [2].

Another solution, secure in the standard model, is to use a randomness ex-
tractor, such as the one which has been proposed by Gennaro et al. in [15].
But one first needs to have some entropy in the DH element, whereas gab is
totally determined by ga and gb. This entropy is computationally injected using
a computational assumption, as the CDH and DDH assumptions.

The CDH assumption, which states that gab is difficult to compute from ga and
gb, implies that several bits of gab are not known from the adversary. Therefore,
from the adversary point of view, there is some randomness in it. So one solution
is to prove the hardness of predicting the least significant bits of a DH element.
This comes from the hardcore bit theory, where one tries to provide a reduction
between an algorithm that predicts the least significant bits of the DH element
to the recovery of the whole DH element: predicting these bits is thus as hard
as solving the CDH problem. However, usually, only a small number of bits can
be proved to be random-looking, given ga and gb [6, 5, 20].

This entropy can also be computationally created using the DDH assumption,
which says that we have log2(q) bits of entropy in the DH element, but one does
not know where exactly: one cannot extract them directly out of the representa-
tion of the element in G. This is the goal of a randomness extractor. The Leftover
Hash Lemma [17, 15] is the most famous randomness extractor. It is a probabilis-
tic randomness extractor that can extract entropy for any random source which
has sufficient min-entropy. The main drawback with the Leftover Hash Lemma
is that it requires the use of pairwise independent hash functions, which are
not used in practice, and extra perfect randomness. A computational version of
this Leftover Hash Lemma, has also been proposed and analysed in [14], version
which has the advantage of using pseudorandom functions for randomness ex-
traction and not pairwise independent hash functions. However, it still requires
the use of extra perfect randomness. The two previous solutions are generic: it
could be interesting to find a deterministic solution dedicated to the randomness
extraction from a random element in G, since it would prevent the use of extra
randomness.

Definitely, the most interesting solution in this vein is to keep the least signif-
icant bits of the DH element and hope that the resulting bit-string is uniform,
as it is proposed in many papers [6, 5, 20]. Truncation, as studied above and in
this paper, is quite simple and deterministic, which is of high interest from a
practical point of view, even if it is specific to DH distributions.

A first step in this direction was the analysis of Canetti et al. [8] which basi-
cally shows that the concatenation of the least significant bits of ga, gb and gab

is close to the uniform distribution. This result was achieved using exponential
sums techniques. However, Boneh [4] noted: “This is quite interesting although
it does not seem to apply to the security analysis of existing protocols. In most
protocols, the adversary learns all of ga and gb.” This result is statistical and

574 C. Chevalier et al.

no cryptographic assumption is required, since some bits of a and b are free,
when the view of the adversary is limited to some part of ga and gb. There is no
chance to extend this result to our problem, since, as already noted, given the
entire representation of ga and gb, there is no randomness at all in gab. However,
under the DDH assumption, some entropy appears in the DH element, and so,
one can expect to extract it into a bit-string that will be close to the uniform
distribution, in a statistical sense.

At ICALP’06, Fouque et al. [13] use this idea and show that under the DDH
assumption, the least significant bits of gab are nearly uniformly distributed,
given ga and gb, if the group G is a large enough multiplicative subgroup (of
prime order q) of a finite field (let say Zp), that is, q is not too small compared
to p. The large q is the main drawback since q needs to be at least half the
size of p, which makes the cryptographic protocol quite inefficient. To prove this
result, the authors upper bound the statistical distance, evaluating directly the
L1 norm, using exponential sums.

Since elliptic curves cryptography uses large subgroup in practice, the same
result for elliptic curve could be of practical interest. Gürel [16] studied the
case of elliptic curves over quadratic extensions of a finite field, with a large
fraction of bits, and over a prime finite field, but with similar limitations as above
in the number of extracted bits. He also upper bounds directly the statistical
distance by evaluating the L1 norm, but using a sum of Legendre characters.
His technique only uses the Legendre character, which is not enough in the case
of Zp. Consequently, the technique of the authors of [13] needed to sum on all
characters.

1.2 Our Results

In this paper, we show that the following distributions are computationally in-
distinguishable

(aP, bP, Uk) ≈C (aP, bP, lsbk(x(abP))),

where Uk is the uniform distribution on k-bit strings, lsbk() is the function
which truncates the k least significant bits of a bit-string and x() is the abscissa
function of points on an elliptic curve.

Under the DDH assumption, we know that (aP, bP, abP) ≈C (aP, bP, cP) for
random scalars a, b, c ∈ �1, q�, in the group G, generated by P of prime order q.
Then, we prove, without any cryptographic or mathematical assumption, that

(aP, bP, Uk) ≈S (aP, bP, lsbk(x(cP)))

in a statistical sense.
Actually, we first show this result for prime order multiplicative subgroups

of finite fields. This result extends those of Canetti et al. and of Fouque et al.
since we are able to extract twice the number of bits as before. This new result
is achieved by introducing a new technique to bound the statistical distance.
Whereas previous techniques directly tried to bound the L1 norm, while it is
hard to cope with the absolute value, we upper-bound the Euclidean L2 norm,

Optimal Randomness Extraction from a Diffie-Hellman Element 575

which is much easier since only squares are involved. Finally, we are also able,
in some cases, to improve our result using classical techniques on exponential
sums. Then, the number of extracted bits can be made quite close to the number
that the Leftover hash lemma can extract.

However, since the result still applies to large subgroups only, we extend it to
Elliptic Curve groups. In general, the co-factor of EC groups is small: less than
8, and even equal to one for the NIST curves, over prime fields. We thus achieve
our above-mentioned result using more involved techniques on exponential sums
over functions defined on the points of the elliptic curve. More precisely, we can
show that the 82 (resp. 214 and 346) least significant bits of the abscissa of a
DH element of the NIST curves over prime fields of 256 (resp. 384 and 521) bits
are indistinguishable from a random bit-string. They can thus be directly used
as a symmetric key. To compare with Gürel’s result in [16], for an elliptic curve
defined over a prime field of 200 bits, Gürel extracts 50 bits with a statistical
distance of 2−42, while with the same distance, we can extract 102 bits. Note
that Gürel’s proof was easier to understand, but we did not manage to evaluate
the L2 norm of Legendre character sums and generalize his proof.

One main practical consequence of the result for elliptic curve is that, we can
avoid the Truncated Point Problem (TPP) assumption used in the security proof
of the NIST Elliptic Curve Dual Random Bit Generator (DRBG) [7, 24].

1.3 Organization of the Paper

In Section 2, we review some notations and the definition of a deterministic
randomness extractor as well as some results on the Leftover Hash Lemma.
Then, in Section 3, we improve the results of Canetti et al. and of Fouque et al.
using a new technique to bound exponential sums, using the Euclidean norm.
In this section, we also improve the bound in some cases. Next, in Section 4, we
prove the same kind of result for the group of points of an elliptic curve. Finally,
in Section 5, we show some applications of our proofs to the security of the NIST
EC DRBG [7, 24] and the key derivation from a DH element.

2 Notations

First, we introduce the notions used in randomness extraction. In the following,
a source of randomness is viewed as a probability distribution.

2.1 Measures of Randomness

To measure the randomness existing in a random variable, we use two different
measures: the min entropy and the collision entropy. The min entropy measures
the difficulty that an adversary has to guess the value of the random variable,
whereas the collision entropy measures the probability for two elements drawn
according this distrubtion to collide. In this paper, the collision entropy is used
as an intermediate tool to establish results, which are then reformulated using
min entropy.

576 C. Chevalier et al.

Definition 1 (Min Entropy). Let X be a random variable with values in a
finite set X . The guessing probability of X, denoted by γ(X), is the probability
maxx∈X (Pr[X = x]). The min entropy of X is: H∞(X) = − log2(γ(X)).

For example, when X is drawn from the uniform distribution on a set of size N ,
the min-entropy is log2(N).

Definition 2 (Collision Entropy). Let X and X ′ be two random indepen-
dent and identically distributed variables with values in a finite set X . The col-
lision probability of X, denoted by Col(X) is the probability Pr[X = X ′] =∑

x∈X Pr[X = x]2. The collision entropy of X is: H2(X) = − log2(Col(X)).

The collision entropy is also called the Renyi entropy. There exists an easy re-
lation between collision and min entropies: H∞(X) ≤ H2(X) ≤ 2 ·H∞(X). To
compare two random variables we use the classical statistical distance:

Definition 3 (Statistical Distance). Let X and Y be two random variables
with values in a finite set X . The statistical distance between X and Y is the
value of the following expression:

SD(X,Y) =
1
2

∑
x∈X

|Pr[X = x]− Pr[Y = x]| .

We denote by Uk a random variable uniformly distributed over {0, 1}k. We say
that a random variable X with values in {0, 1}k is δ-uniform if the statistical
distance between X and Uk is upper-bounded by δ.

Lemma 4. Let X be a random variable with values in a set X of size |X | and ε =
SD(X,UX) the statistical distance between X and UX , the uniformly distributed
variable over X . We have:

Col(X) ≥ 1 + 4ε2

|X | . (1)

Proof. This lemma, whose result is very useful in this work, is proved in Ap-
pendix A.

2.2 From Min Entropy to δ-Uniformity

The most common method to obtain a δ-uniform source is to extract randomness
from high-entropy bit-string sources, using a so-called randomness extractor.
Presumably, the most famous randomness extractor is provided by the Leftover
Hash Lemma [17, 19], which requires the use of universal hash function families.

Definition 5 (Universal Hash Function Family). A universal hash func-
tion family (hi)i∈{0,1}d with hi : {0, 1}n → {0, 1}k, for i ∈ {0, 1}d, is a family of
functions such that, for every x �= y in {0, 1}n, Pri∈{0,1}d [hi(x) = hi(y)] ≤ 1/2k.

Optimal Randomness Extraction from a Diffie-Hellman Element 577

Let (hi)i∈{0,1}d be a universal hash function family, let i denote a random variable
with uniform distribution over {0, 1}d, let Uk denote a random variable uniformly
distributed in {0, 1}k, and let X denote a random variable taking values in
{0, 1}n, with i and X mutually independent and with X min entropy greater
than m, that is H∞(X) ≥ m. The Leftover Hash Lemma (which proof can be
found in [25]) states that SD(〈i, hi(X)〉, 〈i, Uk〉) ≤ 2(k−m)/2−1.

In other words, if one wants to extract entropy from the random variable X ,
one generates a uniformly distributed random variable i and computes hi(X).
The Leftover Hash Lemma guarantees a 2−e security, if one imposes that

k ≤ m− 2e+ 2. (2)

The Leftover Hash Lemma extracts nearly all of the entropy available whatever
the randomness sources are, but it needs to invest few additional truly random
bits. To overcome this problem, it was proposed to use deterministic functions.
They do not need extra random bits, but only exist for some specific randomness
sources.

Definition 6 (Deterministic Extractor). Let f be a function from {0, 1}n

into {0, 1}k. Let X be a random variable taking values in {0, 1}n and let Uk

denote a random variable uniformly distributed in {0, 1}k, where Uk and X are
independent. We say that f is an (X, ε)-deterministic extractor if:

SD (f(X), Uk) < ε.

2.3 Characters on Abelian Groups

We recall a standard lemma for character groups of Abelian groups.

Lemma 7. Let H be an Abelian group and Ĥ = Hom(H,C∗) its dual group.
Then, for any element χ of Ĥ, the following holds, where χ0 is the trivial char-
acter:

1
|H |

∑
h∈H

χ(h) =

{
1 if χ = χ0

0 if χ �= χ0

In the following, we denote by ep the character such that for all x ∈ Fp, ep(x) =
e

2iπx
p ∈ C∗.

2.4 Elliptic Curves

Let p be a prime and E be an elliptic curve over Fp given by the Weierstrass
equation

y2 + (a1x+ a3) · y = x3 + a2x
2 + a4x+ a6.

We denote by E(Fp) the group of elements of E over Fp and by Fp(E) the
function field of the curve E , defined as the field of fractions over the points

578 C. Chevalier et al.

of E : Fp(E) = Fp[X,Y]/E(Fp). It is generated by the functions x and y, satis-
fying the Weierstrass equation of E , and such that P = (x(P), y(P)) for each
P ∈ E(Fp) \ {O}. Let fa ∈ Fp(E) be the application fa = a · x where a ∈ Z∗

p.

If f ∈ Fp(E), we denote by deg(f) its degree, that is
t∑

i=1
ni deg(Pi) if

t∑
i=1
niPi is

the divisor of poles of f . Finally, we denote by Ω = Hom(E(Fp),C∗) the group
of characters on E(Fp), and by ω0 the trivial character (such that ω0(P) = 1 for
each P).

3 Randomness Extraction in Finite Fields

In this section, we first extends results from Fouque et al. [13], in order to extract
bits from random elements in a multiplicative subgroup of a finite field. Then,
we use the same techniques to improve the result of Canetti et al. [8].

3.1 Randomness Extraction

We study now the randomness extractor which consists in keeping the least
significant bits of a random element from a subgroup G of Z∗

p. The proof tech-
nique presented here allows us to extract twice the number of bits extracted by
Fouque et al.. In the particular case when q ≥ p3/4, where q is the cardinal of
G, we prove an even better result: one can extract as many bits as with the
Leftover Hash Lemma. This means that, in the case when q ≥ p3/4, our extrac-
tor is as good as the Leftover Hash Lemma, but computationally more efficient
and easiest to use in protocols, since it does not require extra perfect public
randomness.

In the original paper, Fouque et al. upper bound directly the statistical dis-
tance between the extracted bits and the uniform distribution, using exponential
sums. We still use them, but propose to apply exponential sum technique to up-
per bound the collision probability of the extracted bits. The Cauchy-Schwartz
inequality allows to relate statistical distance and collision probability and to
conclude. Since the distribution of extracted bits is very close to the uniform
distribution, the Cauchy-Schwartz inequality is very tight. That is the reason
why we do not lose much with our roundabout way. On the contrary, we are
able to find a good upper bound of collision resistance, and thus the global
upper bound is improved.

The result in the case when q ≥ p3/4 is elaborated on the same basic idea but
requires more elaborated techniques on exponential sums to be established.

Theorem 8. Let p be a n-bit prime, G a subgroup of Z∗
p of cardinal q (we

denote � = log2(q) ∈ R), UG a random variable uniformly distributed in G and
k a positive integer. We have:

SD(lsbk (UG) , Uk) ≤

⎧⎪⎪⎨⎪⎪⎩
23n/4−�−1 + 2(k−�)/2

(
if p3/4 ≤ q

)
2(k+n+log2 n)/2−�

(
if (2−8p)2/3 ≤ q ≤ p3/4

)
2(k+n/2+log2 n+4)/2−5�/8

(
if p1/2 ≤ q ≤ (2−8p)2/3

)
2(k+n/4+log2 n+4)/2−3�/8

(
if (216p)1/3 ≤ q ≤ p1/2

)
.

Optimal Randomness Extraction from a Diffie-Hellman Element 579

We remind that these inequalities are non trivial only if they are smaller than 1.

Proof. We give here a sketch of proof of the theorem, the complete proofs are in
the full version.

Let us define K = 2k, u0 = msbn−k (p− 1). Let denote by ep the following
character of Zp: for all y ∈ Zp, ep(y) = e

2iπy
p ∈ C∗. The character ep is an

homomorphism from (Zp,+) in (C∗, ·). For all a ∈ Z∗
p, let also introduce the

following notation:
S(a,G) =

∑
x∈G

ep(ax).

The two main interests of exponential sums is that they allow to construct
some characteristic functions and that in some cases we know good upper bounds
for them. Thanks to these caracteristic functions one can evaluate the size of
certain sets and, manipulating sums, one can upper bound the size of these sets.

In our case, we construct 1(x, y, u) = 1
p ×

∑p−1
a=0 ep(a(gx − gy −Ku)), where

1(x, y, u) is the characteristic function which is equal to 1 if gx−gy = Ku mod p
and 0 otherwise. Therefore, we can evaluate Col(lsbk (UG)) where UG is uniformly
distributed in G:

Col(lsbk (UG)) =
1
q2
×

∣∣∣{(x, y) ∈ �0, q − 1�2 | ∃u ≤ u0, g
x − gy = Ku mod p}

∣∣∣
=

1
q2p

×
q−1∑
x=0

q−1∑
y=0

u0∑
u=0

p−1∑
a=0

ep(a(gx − gy −Ku)).

Then we manipulate the sums, separate some terms (a = 0) and obtain:

Col(lsbk (UG)) =
u0 + 1
p

+
1
q2p

p−1∑
a=1

|S(a,G)|2
(

u0∑
u=0

ep(−aKu)

)
. (3)

The last three bounds. From this point, the proof of the last three inequations
is different from the proof of the first inequation. First, we give here the sketch of
proof of the last three inequations of the theorem (we remind that the complete
proof is given in the full version).

In Equation (3) we inject the absolute value, introduce M = maxa(|S(a,G)|),
make classical manipulations and obtain:

Col(lsbk (UG)) ≤ u0 + 1
p

+
M2 log2(p)

q2
.

We now use the Lemma 4 which gives a relation between the statistical dis-
tance ε of lsbk (X) with the uniform distribution and the collision probability:
Col(lsbk (UG)) ≥ 1+4ε2

2k . The previous upper bound, combined with some manip-
ulations, gives:

2ε ≤
√

2k ·Col(lsbk (UG))− 1 ≤
√

2k

p
+

2k/2M log1/2
2 (p)

q
. (4)

580 C. Chevalier et al.

We conclude the theorem using the following upper bounds for M :

M ≤
⎧⎨⎩
p1/2

(
interesting if p2/3 ≤ q

)
4p1/4q3/8

(
interesting if p1/2 ≤ q ≤ p2/3

)
4p1/8q5/8

(
interesting if 216/3p1/3 ≤ q ≤ p1/2

)
.

The first bound above is the famous Polya-Vinogradov bound that we recall
in Theorem 9 (its proof is reminded in the full version). The other bounds are
from [22, 18]. The last third bounds of the theorem can be easily deduced.

Theorem 9 (Polya-Vinogradov inequality). Let p be a prime number, G a
subgroup of (Z∗

p, ·). For all a ∈ Z∗
p, we have:∣∣∣∣∣∑

x∈G

ep(ax)

∣∣∣∣∣ ≤ √p.
The first bound. We give now a sketch of proof of the first inequality, a precise
proof is given in the full version. For that, we use a bit more elaborated results
than previously: for all coset ω ∈ Z∗

p/G, and for all two representatives a and
a′ of the coset ω, we have S(a,G) = S(a′, G). Therefore we can naturally define
S(ω,G).

To establish the first inequality, we use Equation (3) and manipulating sums
we establish that:

Col(lsbk (UG)) =
u0 + 1
p

+
1
q2p

∑
ω∈Z∗

p/G

|S(ω,G)|2
u0∑

u=0

S(−ωKu,G).

Then we use the Polya-Vinogradov inequality combined with the inequality∑
ω∈Z∗

p/G |S(ω,G)|2 ≤ p (the proof of this result is reminded in the full ver-
sion) and show that:

Col(lsbk (UG)) ≤ u0 + 1
p

+
u0
√
p+ q

q2
.

Finally, we finish, as for previous inequalities, using that Col(lsbk (UG)) ≥ 1+4ε2

2k ,
and obtain:

2ε ≤ 2(k−n+1)/2 + 23n/4−� + 2(k−�)/2.

Since � ≤ n− 1, this gives the expected bound. �
Since the min entropy of UG, as an element of Z∗

p but uniformly distributed in
G, equals � = log2(|G|) = log2(q), the previous proposition leads to:
Corollary 10. Let e be a positive integer and let us suppose that one of these
inequations is true:

k ≤

⎧⎪⎪⎨⎪⎪⎩
�− (2e+ 2) and 2e · p3/4 ≤ q

2�− (n+ 2e+ log2(n)) and (2−8 · p)2/3 ≤ q ≤ 2e · p3/4

5�/4− (n/2 + 2e+ log2(n) + 4) and p1/2 ≤ q ≤ (2−8 · p)2/3

3�/4− (n/4 + 2e+ log2(n) + 4) and (216 · p)1/3 ≤ q ≤ p1/2.

In this case, the application Extk is an (UG, 2−e)-deterministic extractor.

Optimal Randomness Extraction from a Diffie-Hellman Element 581

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000

 N
um

be
r

of
 b

its
 e

xt
ra

ct
ed

 Size of G

Fig. 1. This is the number of bits extracted according to the group size, for n = 1024
and e = 80. The long dash line represents Fouque et al. [13] result, the plain line is our
results. Note the jump for q = p3/4. The short dash line represents our result without
particular improvement in the case q ≥ p3/4.

This means that if one wants a 2−e security, and if (2−8 · p)2/3 ≤ q ≤ 2e · p3/4,
one can extract k bits with k ≤ 2(�− (n/2 + e+ log2 n/2)).

In most practical cases, the second bound is the most appropriate. However,
sometimes it is one of the others. For example, with n = 1024, � = 600 and
e = 80, the second bound says that we can extract 6 bits. Using the third bound
given in the theorem above we can actually extract 64 bits.

If one wants to extract a 256-bit string, for the same values of n and e,
one needs a group of size greater than 2756. The figure 1 presents our upper
bounds and also the original upper bounds of Fouque et al. [13], in the case
when n = 1024 and e = 80.

3.2 Truncated Inputs

Our above result proves that given ga and gb, the least significant bits of gab

are globally indistinguishable from a random bit-string, under the Decisional
Diffie-Hellman problem.

But our technique can be applied to other results which upper-bound statisti-
cal distances using character sums. One of them is the result of Canetti et al. [8],
which studies some statistical properties of Diffie-Hellman distribution. They
show that if one takes a proportion of the least significant bits of gx, gy, gxy,
then one obtains a distribution whose statistical distance from uniform is ex-
ponentially small. Basically, it shows that given the least significant bits of

582 C. Chevalier et al.

ga and gb, the least significant bits of gab are globally indistinguishable from a
random bit-string, without any computational assumption.

More precisely, if k1, k2, k3 are three integers and U1, U2, U3 three independent
random variables uniformly distributed in respectively {0, 1}k1, {0, 1}k2, {0, 1}k3,
then, using the notations as in previous subsection, their Theorem 9 inequality,
can be restated as follows:

SD ((lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) , (U1, U2, U3))3 2k1+k2+k3p1/4 log1/3
2 (p)

q1/3 .

Using our techniques, we can prove a better upper-bound:

Theorem 11. Let p be a prime, G a subgroup of Z∗
p of cardinal q and X,Y two

independent random variables uniformly distributed in {1, . . . , q}. If k1, k2, k3
are three integers and U1, U2, U3 three independent random variables uniformly
distributed in respectively {0, 1}k1, {0, 1}k2, {0, 1}k3, then we have:

SD ((lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) , (U1, U2, U3))3 2
k1+k2+k3

2 p1/4 log1/3
2 (p)

q1/3 .

Proof (Sketch of the proof.). First, find an upper bound for the collision entropy
Col (lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) using exponential sum techniques and the
inequality of Theorem 8 of [8]. Conclude with Lemma 4. �

4 Randomness Extraction in Elliptic Curves

We now show how the randomness extractor studied in the previous section,
which consisted in keeping the least significant bits of a random element from
a subgroup G of Z∗

p, can be extended to another structure, that is the group of
elements of an elliptic curve. The main idea is to evaluate the element “M ” of
the proof of Theorem 8, which is the upper bound of S(a,G) as defined in the
previous section.

4.1 A bound for S(a, G)

If G is a subgroup of E(Fp), f ∈ Fp(E) and ω ∈ Ω, we define

S(ω, f,G) =
∑

P∈G

ω(P)ep(f(P)).

In particular, since ep ∈ Ω,

S(a,G) = S(ω0, fa, G) =
∑

P∈G

ep(fa(P)).

The objective of this section is to show the following result:

Theorem 12. Let E be an elliptic curve over Fp and f ∈ Fp(E). Then,

S(ω, f, E(Fp)) ≤ 2 deg(f)
√
p.

As a consequence, if a ∈ Z∗, S(a, E(Fp)) ≤ 4
√
p.

Optimal Randomness Extraction from a Diffie-Hellman Element 583

More specifically, in the case where the co-factor is not equal to 1, we are inter-
ested in its corollary. Note that in the case of Fp, all the curves recommended
by the NIST have co-factor equal to 1. The proof of this corollary can be found
in the full version.

Corollary 13. Let E be an elliptic curve over Fp, a ∈ Z∗ and G a subgroup
of E(Fp). Then,

S(ω, f,G) ≤ 2 deg(f)
√
p and S(a,G) ≤ 4

√
p.

Proof (of Theorem 12). For sake of simplicity, we only show the case where ω =
ω0 in order to use easier notations. We follow the proof of Bombieri in [3] and Ko-
hel and Shparlinski in [21], by first considering Sm(f, E(Fp)) = S(σ ◦ f,E(Fpm))
where σ is the trace from Fpm to Fp. Note that for our needs, the interesting
sum corresponds to m = 1.

This sum comes from the character ep ◦ f , which defines an Artin-Schreier
extension (informally, an extension of degree p) of the function field Fp(E), and
then an Artin-Schreier covering of E(Fp). An easy way to evaluate this sum is to
consider the L-function related to this Artin-Schreier covering. L-functions are
a standard means to assemble several elements in a unique object (a series), in
the same manner as a generating power series, see for example [26, chap. 14].
Bombieri shows that this L-function is defined as follows, for t ∈ C such that
|t| < q−1:

L(t, f, E(Fp)) = exp
(

+∞∑
m=1

S(f, E(Fp))tm/m
)
.

By the Artin conjecture, which proof was given by Weil in [27] (see the full
version), this function is a polynomial of degree D = deg(f). Denote its D
complex roots (not necessarily distincts) by θi = ωi

−1. Then, we have the two
following equations:

L(t, f, E(Fp)) =
+∞∑
i=0

1
i!

(
+∞∑
m=1

Sm(f, E(Fp))tm/m
)i

L(t, f, E(Fp)) =
D∏

i=1
(1 − ωit).

The first equation can be rewritten the following way:

1 +
+∞∑
m=1

Sm(f, E(Fp))tm/m+
1
2

+∞∑
m=1

+∞∑
n=1

Sm(f, E(Fp))Sn(f, E(Fp))
m n

tm+n + . . .

If we consider the coefficient of the polynomial of order 1, we obtain:

S1(f, E(Fp)) = −
D∑

i=1
ωi.

The Riemann hypothetis for function fields (see [27] for the proof and the full
version for the statement) shows that each zero of the above L-function verifies
|θi| = 1/

√
p. This boils down to |S1(f, E(Fp))| ≤ deg(f)

√
p, which is the result

required. Finally, we conclude by remarking that deg(fa) = 2. �

584 C. Chevalier et al.

4.2 Randomness Extraction

We now show an equivalent of Theorem 8:

Theorem 14. Let p be a n-bit prime, G a subgroup of E(Fp) of cardinal q gen-
erated by P0, q being a �-bit prime, UG a random variable uniformly distributed
in G and k a positive integer. We have:

SD(lsbk (UG) , Uk) ≤ 2(k+n+log2 n)/2+3−�.

Proof. We follow the proof of Theorem 8, by constructing 1(r, s, u) = 1
p ×∑p−1

a=0 ep(a(f(rP0)−f(sP0)−Ku)), where 1(r, s, u) is the characteristic function
which is equal to 1 if f(rP0)−f(sP0) = Ku mod p and 0 otherwise. Therefore, we
can evaluate Col(lsbk (x(UG))) where UG is uniformly distributed in G, exactly
in the same way, and inject M ≤ 4

√
p in Equation (4) to obtain:

2ε ≤
√

2k

p
+

2k/2+2√p√log2(p)
q

.

We conclude as before using the two inequalities 2n−1 < p ≤ 2n and 2�−1 < q ≤
2� and remarking that the first term is negligible with respect to the second one:

2ε ≤ 2(k−n−1)/2 + 2(k+n+log2(n))/2+3−�. �
Using the co-factor α = |E(Fp)| / |G| ≤ 2n−� of the elliptic curve, we obtain the
following result:

Corollary 15. Let e be a positive integer and let us suppose that this inequation
is true:

k ≤ 2�− (n+ 2e+ log2(n) + 6) = n− (2 log2(α) + 2e+ log2(n) + 6).

In this case, the application Extk is an (UG, 2−e)-deterministic extractor.

5 Applications

Our extractor can be applied in every protocol which generates (possibly under
the DDH assumption) a uniformly distributed element in a subgroup of Z∗

p or
a random point over an elliptic curve, while a random bit-string is required
afterwards. Our results are indeed quite useful in cryptographic protocols and
primitives where one has to extract entropy from a Diffie-Hellman element.

5.1 Key Extraction

The most well known cryptographic primitive where randomness extractors are
required is the key extraction phase of a key exchange protocol in order to create
a secure channel. The key exchange can be either interactive (classical 2-party or
group key exchange) or non-interactive (the Key Encapsulation Mechanism of an

Optimal Randomness Extraction from a Diffie-Hellman Element 585

hybrid encryption scheme). After a Diffie-Hellman key exchange (or ElGamal-
like key encapsulation) performed over a group G, the parties share a common
Diffie-Hellman element, which is indistinguishable from a uniformly distributed
element in G granted the DDH assumption. However, they need a uniformly
distributed bit-string to key a symmetric primitive: one thus extracts entropy
from the DH element using a randomness extractor.

The two most well-known tools used for this task are hash functions (seen as
random oracles [2]) and universal hash functions (in order to apply the Leftover
HashLemma).Hash functions are themost often adopted solution, because of their
flexibility and efficiency. However, they have a significant drawback: the validity of
this technique holds in the random oraclemodel only. On the contrary, the Leftover
HashLemmashows that theuse ofuniversal hash functions is secure in the standard
model and that, if the cardinal of the groupG is equal to q and if onewants to achieve
a security of 2−e, then one can extract k = log2 q − 2e bits. However this solution
requires some extra, public and perfectly random bits, which increases both time
and communication complexities of the underlying protocols.

The truncation of the bit-string representation of the random element is defi-
nitely the most efficient randomness extractor, since it is deterministic, and it does
not require any computation. However, the original results presented in [13, 16]
were not as good as the Leftover Hash Lemma, from the number of extracted bit
point of view. One could extract much less than log2 q − 2e bits. In this paper, for
large subgroups of Z∗

p (when the order q is larger than p3/4 · 2e), one extracts up to
log2 q−2e bits, which is as good as the Leftover Hash Lemma. For large subgroups
of an elliptic curve over Fp, one extractsn−2e−log2(n)−2 log2(α)−6 bits whereα
is the co-factor of the elliptic curve, which is not far from the Leftover Hash Lemma
since, in practice, α is very small (often equal to 1). And then, for usual finite field
size (p between 256 and 512), one can extract approximately n− 2e− 16.

Even with our improvement, the simple extractor may seem not very practical
for subgroups of Z∗

p, since quite large subgroups are needed. Indeed to generate a
256-bit string, with a 80-bit security and a 1024-bit prime p, one requires a 725-
bit order subgroup, when the Leftover Hash Lemma would need a 416-bit order
subgroup only: the time for exponentiation is approximately doubled. Note that,
however, one saves on the time of the generation of extra randomness. Anyway,
on elliptic curves, the improvement is quite meaningful, since groups in use are
already quite large. The NIST elliptic curves have co-factor 1, and then on the
256-bit finite field elliptic curve, one can extract 82 bits, with a 80-bit security.
On the 384-bit finite field, 214 bits can be extracted, while we can get 346 bits
on the 521-bit field. This is clearly enough as symmetric key material for both
privacy and authentication, without any additional cost.

We insist on the fact that it can apply for interactive key exchange, but also
for the ElGamal [11] or Cramer-Shoup [9] encryption schemes.

5.2 NIST Random Generator

The very recent NIST SP 800-90 elliptic curve Dual Random Bit Generator
(DRBG) [24] has been approved in the ANSI X9.82 standard in 2006. Based on

586 C. Chevalier et al.

the elliptic curves, the design of this random bit generator (RBG) is adapted
from the Blum-Micali generator. At Crypto ’07, Brown and Gjøsteen [7] adapted
the Blum-Micali RNG security proof to show that the DRBG output is indistin-
guishable from a uniformly distributed bit-string for all computationally limited
adversaries. In this section, we show that our result allows to improve this se-
curity result at two different places. The first improvement reduces the number
of assumptions on which the security proof relies. The second one decreases the
implicit security bound given in [7].

Getting Rid of TPP Assumption. The security result of [7] holds under
three computational assumptions: the classical decisional Diffie-Hellman problem
(DDH), the new x-logarithm problem (XLP) (which states that, given an elliptic
curve point, it is hard to determine whether the discrete logarithm of this point
is congruent to the x-coordinate of an elliptic curve point), and the truncated
point problem (TPP). The latter TPP states that, given a k-bit string, it is hard
to tell if it was generated by truncating the x-coordinate of a random elliptic
curve point or if it was chosen uniformly at random. This problem is exactly the
problem we studied in this paper. In section 4, we proved that this problem is
indeed hard if the elliptic curve is defined over Fp (where p is an n-bit prime)
and if k = n − 2e − 2 log2(α) − log2(n) bits are kept after the truncation (we
remind that e denotes the expected security level and α the cofactor of the
elliptic curve). Therefore, our result strengthens the security proof of [7] since
thanks to it, when the elliptic curve is defined over Fp of appropriate size, the
TPP assumption actually holds, and thus their security proof relies on the DDH
and XLP assumptions only.

It is interesting to note that Brown and Gjøsteen [7], when making their
highly heuristic assumptions, estimated that the expected number of bits that
could be kept after truncation would be approximately k = n− 2e−C where C
is some constant (if the cofactor of the elliptic curve is equal to 1). Our result
confirms this heuristic analysis, but is more precise since it proves that in all
cases we can keep at least k = n− 2e− log2(n) bits. However, we recall Brown
and Gjøsteen’s warning and recommend to skip 2e+ log2(n) bits of the elliptic
curve point abscissa in the ECRNG.

Improvement of the Security Bound. Finally, our result also allows to im-
prove the security bound of [7]. For the sake of clarity, this security bound is
not explicitly stated in [7], but can be recovered from the proof. At the very last
stage of the proof, the TPP assumption is used to show that if Z1, . . . , Zm are
uniformly distributed points on the elliptic curve and if b1, . . . , bm are uniformly
distributed k-bit strings, then (lsbk (Z1) , . . . , lsbk (Zm)) is indistinguishable from
(b1, . . . , bm). If any adversary has a probability of successfully distinguishing
lsbk (Z1) from b1 smaller than δ, a classical hybrid argument implies that any ad-
versary has a probability of successfully distinguishing (lsbk (Z1) , . . . , lsbk (Zm))
from (b1, . . . , bm) smaller than m · δ. This bound can be improved to

√
2m/π · δ.

Optimal Randomness Extraction from a Diffie-Hellman Element 587

First, notice that in our case, δ is equal to 2(k+log2 n+2 log2(α)−n)/2. Using
a result that can be found in [1], one can show that the advantage of the
best adversary in distinguishing to two above m-uples is approximately equal
to

√
m · (2k ·Col(lsbk (Z1))− 1)/2π, if 2k · Col(lsbk (Z1)) − 1 3 1. The lat-

ter expression 2k · Col(lsbk (Z1)) − 1 is exactly the one we upper-bounded in
the proof in Section 4: it is smaller than 2k+log2(n)+2 log2(α)−n+2 = 4δ2. This
implies that, if δ 3 1, the advantage of the best adversary in distinguishing
(lsbk (Z1) , . . . , lsbk (Zm)) from (b1, . . . , bm) is upper bounded by

√
2m/π · δ. We

thus improve the bound from [7] by a factor
√
m.

Acknowledgements

This work was supported in part by the French ANR-07-SESU-008-01 PAMPA
Project and the European ICT-2007-216646 ECRYPT II Contract.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
New York (1993)

3. Bombieri, E.: On exponential sums in finite fields. American Journal of Mathemat-
ics 88, 71–105 (1966)

4. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

5. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
diffie–hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001)

6. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

7. Brown, D.R.L., Gjøsteen, K.: A security analysis of the NIST SP 800-90 elliptic
curve random number generator. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 466–481. Springer, Heidelberg (2007)

8. Canetti, R., Friedlander, J., Konyagin, S., Larsen, M., Lieman, D., Shparlinski,
I.: On the Statistical Properties of Diffie-Hellman Distributions. Israel Journal of
Mathematics 120, 23–46 (2000)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

11. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

588 C. Chevalier et al.

12. El Gamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 396–402. Springer, Heidelberg (1986)

13. Fouque, P.-A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing
the MSB or LSB of secret keys in diffie-hellman schemes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251.
Springer, Heidelberg (2006)

14. Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and
applications to TLS. In: Abe, M., Gligor, V.D. (eds.) ASIACCS, pp. 21–32. ACM
Press, New York (2008)

15. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed diffie-hellman over non-
DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004)

16. Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve. Cryp-
tology ePrint Archive, Report 2005/324 (2005), http://eprint.iacr.org/

17. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

18. Heath-Brown, D.R., Konyagin, S.: New bounds for Gauss sums derived from kth

powers, and for Heilbronn’s exponential sum. Q. J. Math. 51(2), 221–235 (2000)
19. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proc. of the 30th

FOCS, pp. 248–253. IEEE, New York (1989)
20. Jetchev, D., Venkatesan, R.: Bits security of the elliptic curve diffie–hellman secret

keys. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 75–92. Springer,
Heidelberg (2008)

21. Kohel, D.R., Shparlinski, I.E.: On exponential sums and group generators for el-
liptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838,
pp. 395–404. Springer, Heidelberg (2000)

22. Konyagin, S.V., Shparlinski, I.: Character Sums With Exponential Functions and
Their Applications. Cambridge University Press, Cambridge (1999)

23. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, Los Alami-
tos (1997)

24. NIST. Recommendation for Random Number Generation Using Deterministic
Random Bit Generators. NIST Special Publications 800-90 (March 2007), http:
//csrc.nist.gov/publications/PubsSPs.html

25. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2005)

26. Washington, L.: Elliptic Curves: Number Theory and Cryptography. CRC Press,
Boca Raton (2003)

27. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. In: Actu-
alités scientifiques et industrielles, Publications de l’institut de Mathématique de
l’université de Strasbourg, vol. 1041, Paris, Hermann (1948)

Optimal Randomness Extraction from a Diffie-Hellman Element 589

A Relation between Collision Probability and Statistical
Distance

In this section we prove the following lemma. The proof is taken from [25] and is
given here for the sake of completeness. Note that this lemma is a consequence
of the Cauchy-Schwarz inequality, which implies that the smaller the statistical
distance is, the tighter the inequation is (if X is uniformly distributed, then the
inequality is an equality).

Lemma 4. Let X be a random variable with values in a set X of size |X | and
ε = SD(X,UX) be the statistical distance between X and UX a random variable
uniformly distributed over X . We have:

Col(X) ≥ 1 + 4ε2

|X | .

To prove the lemma we need the following result which states that norm 1 is
smaller than norm 2.

Lemma 16. Let X be a finite set and (αx)x∈X a sequence of real numbers. We
have: (∑

x∈X |αx|
)2

|X | ≤
∑
x∈X

α2
x. (5)

Proof. This inequality is a direct consequence of Cauchy-Schwarz inequality:∑
x∈X

|αx| =
∑
x∈X

|αx| · 1 ≤
√∑

x∈X
α2

x ·
√∑

x∈X
12 ≤

√
|X |

√∑
x∈X

α2
x.

The result can be deduced easily. �
If X is a random variable with values in X and if we consider that αx =
Pr[X = x], then, since the sum of probabilities is equal to 1, and since Col(X) =∑

x∈X Pr[X = x]2, we have:

1
|X | ≤ Col(X). (6)

We are now able to prove the above Lemma 4.

Proof. If ε = 0 the result is an easy consequence of equation Equation (6). Let
assume that ε is different from 0. Let define qx = |Pr[X = x]− 1/ |X || /(2ε), we
have

∑
x qx = 1. According to equation Equation (5), we have:

1
|X | ≤

∑
x∈X

q2x =
∑
x∈X

(Pr[X = x]− 1/ |X |)2
4ε2

=
1

4ε2

(∑
x∈X

Pr[X = x]2 − 1/ |X |
)

≤ 1
4ε2

(Col(X)− 1/ |X |) .

The lemma can be deduced easily. �

A New Randomness Extraction Paradigm for
Hybrid Encryption

Eike Kiltz1, Krzysztof Pietrzak1, Martijn Stam2, and Moti Yung3

1 Cryptology & Information Security Group
CWI Amsterdam, The Netherlands

{kiltz,pietrzak}@cwi.nl
2 LACAL, EPFL, Switzerland

martijn.stam@epfl.ch
3 Google Inc. and Columbia University, USA

moti@cs.columbia.edu

Abstract. We present a new approach to the design of IND-CCA2 secure
hybrid encryption schemes in the standard model. Our approach pro-
vides an efficient generic transformation from 1-universal to 2-universal
hash proof systems. The transformation involves a randomness extractor
based on a 4-wise independent hash function as the key derivation func-
tion. Our methodology can be instantiated with efficient schemes based
on standard intractability assumptions such as Decisional Diffie-Hellman,
Quadratic Residuosity, and Paillier’s Decisional Composite Residuosity.
Interestingly, our framework also allows to prove IND-CCA2 security of
a hybrid version of 1991’s Damg̊ard’s ElGamal public-key encryption
scheme under the DDH assumption.

Keywords: Chosen-ciphertext security, hybrid encryption, randomness
extraction, hash proof systems, ElGamal

1 Introduction

Chosen-Ciphertext Security. Indistinguishability against chosen-ciphertext
attack (IND-CCA2 security) is by now the accepted standard security definition
for public-key encryption schemes. It started with the development of security
under lunchtime attacks (also called IND-CCA1) by Naor and Yung [20], who
also gave a proof of feasibility using inefficient non-interactive zero-knowledge
techniques. This was extended to the more involved systems with IND-CCA2
security in their full generality [22,9].

Known practical constructions. Efficient designs in the standard model
were first presented in the breakthrough works of Cramer and Shoup [2,3,4,24].
At the heart of their design methodology is the notion of hash proof systems
(HPSs), generalizing the initial system based on the decisional Diffie-Hellman
(DDH) problem. Moreover, they are the first to formalize the notion of “Hybrid
Encryption,” where a public key cryptosystem is used to encapsulate the (ses-
sion) key of a symmetric cipher which is subsequently used to conceal the data.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 590–609, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35

A New Randomness Extraction Paradigm for Hybrid Encryption 591

This is also known as the KEM-DEM approach, after its two constituent parts
(the KEM for key encapsulation mechanism, the DEM for data encapsulation
mechanism); it is the most efficient way to employ a public key cryptosystem
(and encrypting general strings rather than group elements).

Kurosawa and Desmedt [17] later improved upon the original work of Cramer
and Shoup with a new paradigm. Whereas Cramer and Shoup [4] require both the
KEM and the DEM IND-CCA2 secure, Kurosawa and Desmedt show that with a
stronger requirement on the DEM (i.e., one-time authenticated encryption), the
requirement on the KEM becomes weaker and can be satisfied with any strongly
2-universal hash proof system. (Cramer and Shoup need both a 2-universal and
a smooth hash proof system.)

Main Result. The main result of this work is a new paradigm for constructing
IND-CCA2 secure hybrid encryption schemes, based on the Kurosawa-Desmedt
paradigm. At its core is a surprisingly clean and efficient new method employing
randomness extraction (as part of the key derivation) to transform a universal1
hash proof system (that only assures IND-CCA1 security) into a universal2 hash
proof system. In fact, our method also works for a more general class of hash
proof systems which we denote “κ-entropic” hash proof systems. From that point
on we follow the Kurosawa-Desmedt paradigm: the combination of a universal2
HPS with a one-time authenticated encryption scheme (as DEM) will provide an
IND-CCA2 secure hybrid encryption scheme. The efficient transformation enables
the design of new and efficient IND-CCA2 secure hybrid encryption schemes
based on various hard subset membership problem, such as the DDH assumption,
Paillier’s Decisional Composite Residuosity (DCR) assumption [21], the family of
Linear assumptions [14,23] that generalizes DDH, and the Quadratic Residuosity
(QR) assumption.

For the new transformation to work we require a sufficiently compressing 4-
wise independent hash function (made part of the public key); we also need
a generalization of the leftover hash lemma [13] that may be of independent
interest.

Applications. One application of our method is centered around Damg̊ard’s
public-key scheme [5] (from 1991) which he proved IND-CCA1 secure under the
rather strong knowledge of exponent assumption.1 This scheme can be viewed
as a “double-base” variant of the original ElGamal encryption scheme [10] and
consequently it is often referred to as Damg̊ard’s ElGamal in the literature. We
first view the scheme as a hybrid encryption scheme (as advocated in [24,4]),
applying our methodology of randomness extraction in the KEM’s symmetric
key derivation before the authenticated encryption (as DEM). The resulting
scheme is a hybrid Damg̊ard’s ElGamal which is IND-CCA2 secure, under the
standard DDH assumption. We furthermore propose a couple of variants of our
basic hybrid scheme that offer certain efficiency tradeoffs. Compared to Cramer

1 This assumption basically states that given two group elements (g1, g2) with un-
known discrete logarithm ω = logg1

(g2), the only way to efficiently compute (gx
1 , gx

2)
is to know the exponent x.

592 E. Kiltz et al.

and Shoup’s original scheme [2] and the improved scheme given by Kurosawa-
Desmedt [17], our scheme crucially removes the dependence on the hard to con-
struct target collision hash functions (UOWHF), using an easy-to-instantiate
4-wise independent hash function instead. Furthermore, the IND-CCA2 security
of hybrid Damg̊ard’s ElGamal can be directly explained through our randomness
extraction paradigm when applying it to the DDH-based universal1 hash proof
system. In contrast, due to the dependence on the target colission resistant hash
function, the efficient schemes from [2,17] cannot be directly explained through
Cramer and Shoup’s hash proof system framework [3] and therefore all require
separate proofs.

Another application of our method is given by a κ-entropic HPS from the QR
assumption which is a variant of a HPS by Cramer and Shoup [3]. The resulting
IND-CCA2 secure encryption scheme has very compact ciphertexts which only
consist of one single element in Z∗

N plus the symmetric part. Like the scheme by
Cramer and Shoup, the number of exponentiations in ZN (for encryption and
decryption) is linear in the security parameter. Hofheinz and Kiltz [15] give an
IND-CCA2 secure encryption scheme based on the factoring assumption that is
much more efficient than ours but has slightly larger ciphertexts.

Related Work. Cramer and Shoup [3] already proposed a generic transfor-
mation from universal1 to universal2 HPSs. Unfortunately their construction
involves a significant overhead: the key of their transformed universal2 HPS has
linearly many keys of the original universal1 HPS. We further remark that the
notion of randomness extraction has had numerous applications in complexity
and cryptography, and in particular in extracting random keys at the final step
of key exchange protocols. Indeed, Cramer and Shoup [3] already proposed using
a pairwise independent hash function to turn a universal1 HPS into a universal2
HPS. Our novel usage is within the context of hybrid encryption as a tool that
shifts the integrity checking at decryption time solely to the DEM portion. In
stark contrast to the generic transformations by Cramer and Shoup ours is prac-
tical.

Various previous proofs of variants of Damg̊ard’s original scheme have been
suggested after Damg̊ard himself proved it IND-CCA1 secure under the strong
“knowledge of exponent” assumption (an assumption that has often been criti-
cized in the literature; e.g., it is not efficiently falsifiable according to the clas-
sification of Naor [19]). More recent works are by Gjøsteen [12] who showed
the scheme IND-CCA1 secure under some interactive version of the DDH as-
sumption, where the adversary is given oracle access to some (restricted) DDH
oracle. Also, Wu and Stinson [26], and at the same time Lipmaa [18] improve
on the above two results. However, their security results are much weaker than
ours: they only prove IND-CCA1 security of Damg̊ard’s ElGamal, still requiring
security assumptions that are either interactive or of “knowledge of exponent”
type. Desmedt and Hieu [8] recently showed a hybrid variant that is IND-CCA2
secure, yet under an even stronger assumption than Damg̊ard’s. Finally, and
concurrently with our work, Desmedt et al. [7] recently showed a hybrid variant
IND-CCA1 secure under the DDH assumption and a weaker KDF than ours.

A New Randomness Extraction Paradigm for Hybrid Encryption 593

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s←R S
denotes the operation of picking an element s of S uniformly at random. We
write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and by
z ←R A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .) and
letting z be the output. We write lg x for logarithms over the reals with base 2.
The statistical distance between two random variables X and Y having a com-
mon domain X is Δ [X , Y] = 1

2

∑
x∈X |Pr [X = x]−Pr [Y = x]|. We also define

the conditional statistical distance as ΔE [X , Y] = 1
2

∑
x∈X |Pr [X = x | E] −

Pr [Y = x | E]|. The min-entropy of a random variableX is defined asH∞(X) =
− lg(maxx∈X Pr[X = x]).

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message space M(k)
consists of three polynomial time algorithms (PTAs), of which the first two, Kg
and Enc, are probabilistic and the last one, Dec, is deterministic. Public/secret
keys for security parameter k ∈ N are generated using (pk , sk) ←R Kg(1k).
Given such a key pair, a message m ∈ M(k) is encrypted by C ←R Enc(pk ,m);
a ciphertext is decrypted by m←R Dec(sk,C), where possibly Dec outputs ⊥ to
denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all
messages m ∈ M(k), it must hold that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 where
the probability is taken over the above randomized algorithms and (pk , sk) ←R

Kg(1k).
The security we require for PKE is IND-CCA2 security [22,9]. We define the

advantage of an adversary A = (A1,A2) as

Advcca2
PKE,A(k) def=

∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎣b = b′ :

(pk , sk)←R Kg(1k)
(m0,m1,St) ←R A

Dec(sk ,·)
1 (pk)

b←R {0, 1} ; C ∗ ←R Enc(pk ,mb)
b′ ←R A

Dec(sk ,·)
2 (C ∗,St)

⎤⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣ .
The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. PKE scheme
PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA2
secure in short) if the advantage function Advcca2

PKE,A(k) is a negligible function in
k for all adversaries A = (A1,A2) with probabilistic PTA A1, A2.

For integers k, t, Q we also define Advcca2
PKE,t,Q(k) = maxA Advcca2

PKE,A(k), where
the maximum is over all A that run in time at most t while making at most Q
decryption queries.

We also mention the weaker security notion of indistinguishability against
lunch-time attacks (IND-CCA1 security), which is defined as IND-CCA2 security
with the restriction that the adversary is not allowed to make decryption queries
after having seen the challenge ciphertext.

594 E. Kiltz et al.

2.3 Hash Proof Systems

Smooth Projective Hashing. We recall the notion of hash proof systems as
introduced by Cramer and Shoup [3]. Let C,K be sets and V ⊂ C a language.
In the context of public-key encryption (and viewing a hash proof system as
a key encapsulation mechanism (KEM) [4] with “special algebraic properties”)
one may think of C as the set of all ciphertexts, V ⊂ C as the set of all valid
(consistent) ciphertexts, and K as the set of all symmetric keys. Let Λsk : C → K
be a hash function indexed with sk ∈ SK, where SK is a set. A hash function
Λsk is projective if there exists a projection μ : SK → PK such that μ(sk) ∈ PK
defines the action of Λsk over the subset V . That is, for every C ∈ V , the value
K = Λsk (C) is uniquely determined by μ(sk) and C. In contrast, nothing is
guaranteed for C ∈ C \ V , and it may not be possible to compute Λsk(C) from
μ(sk) and C. More precisely, following [14] we define universal1 and universal2
as follows.

universal1. The projective hash function is ε1-almost universal1 if for all C ∈
C \ V ,

Δ [(pk , Λsk(C) , (pk ,K)] ≤ ε1 (1)

where in the above pk = μ(sk) for sk ←R SK and K ←R K.
universal2. The projective hash function is ε2-almost universal2 if for all

C,C∗ ∈ C \ V with C �= C∗,

Δ [(pk , Λsk (C∗), Λsk (C) , (pk , Λsk (C∗),K)] ≤ ε2 (2)

where in the above pk = μ(sk) for sk ←R SK and K ←R K.

We introduce the following relaxation of the universal1 property which only
requires that for all C ∈ C \ V , given pk = μ(sk), Λsk (C) has high min entropy.

κ-entropic. The projective hash function is ε1-almost κ-entropic if for all C ∈
C \ V ,

Pr [H∞(Λsk (C) | pk) ≥ κ] ≥ 1− ε1 (3)

where in the above pk = μ(sk) for sk ←R SK.

From the above definitions, we get the following simple lemma.

Lemma 1. Every ε1-almost universal1 projective hash function is ε1-almost κ-
entropic, for κ = lg(|K|).

Collision probability. To a projective hash function we also associate the col-
lision probability, δ, defined as

δ = max
C,C∗∈C\V,C =C∗

(Prsk [Λsk (C) = Λsk (C∗)]) . (4)

Hash Proof System. A hash proof system HPS = (Param,Pub,Priv) consists
of three algorithms. The randomized algorithmParam(1k) generates parametrized

A New Randomness Extraction Paradigm for Hybrid Encryption 595

instances of params = (group,K, C,V ,PK,SK, Λ(·) : C → K, μ : SK → PK),
where group may contain someadditional structuralparameters.Thedeterministic
public evaluation algorithmPub inputs the projection key pk = μ(sk),C ∈ V and a
witness r of the fact thatC ∈ V and returnsK = Λsk (C).Thedeterministic private
evaluation algorithm Priv inputs sk ∈ SK and returns Λsk (C), without knowing
a witness. We further assume that μ is efficiently computable and that there are
efficient algorithms given for sampling sk ∈ SK, sampling C ∈ V uniformly (or
negligibly close to) together with a witness r, sampling C ∈ C uniformly, and for
checking membership in C.

We say that a hash proof system is universal1 (resp., κ-entropic, universal2)
if for all possible outcomes of Param(1k) the underlying projective hash function
is ε1(k)-almost universal1 (resp., ε1(k)-almost entropic, ε2(k)-almost universal2)
for negligible ε1(k) (resp., ε2(k)). Furthermore, we say that a hash proof system
is perfectly universal1 (resp., κ-entropic, universal2) if ε1(k) = 0 (resp., ε2(k)).

Subset Membership Problem. As computational problem we require that the
subset membership problem is hard in HPS which means that for random C0 ∈ V
and random C1 ∈ C \ V the two elements C0 and C1 are computationally indis-
tinguishable. This is captured by defining the advantage function Advsm

HPS,A(k)
of an adversary A as

Advsm
HPS,A(k) def=

∣∣Pr [A(C,V , C1) = 1]− Pr [A(C,V , C0) = 1]
∣∣

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V .

Hash Proof Systems with Trapdoor. Following [17], we also require that
the subset membership problem can be efficiently solved with a master trap-
door. More formally, we assume that the hash proof system HPS additionally
contains two algorithms Param′ and Decide. The alternative parameter genera-
tor Param′(1k) generates output indistinguishable from the one of Param(1k) and
additionally returns a trapdoor ω. The subset membership deciding algorithm
Decide(params , ω, x) returns 1 if x ∈ V , and 0, otherwise. All known hash proof
systems actually have such a trapdoor.

2.4 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algo-
rithm E (encrypting m ∈M(k) with keys S ∈ KSE(k)) and decryption algorithm
D (returning m ∈ M(k) or ⊥). Here we restrict ourselves to deterministic algo-
rithms E and D.

The most common notion of security for symmetric encryption is that of
(one-time) ciphertext indistinguishability (IND-OT), which requires that all ef-
ficient adversaries fail to distinguish between the encryptions of two messages
of their choice. Another common security requirement is ciphertext authenticity.
(One-time) ciphertext integrity (INT-OT) requires that no efficient adversary
can produce a new valid ciphertext under some key when given one encryption
of a message of his choice under the same key. A symmetric encryption scheme

596 E. Kiltz et al.

which satisfies both requirements simultaneously is called secure in the sense of
authenticated encryption (AE-OT secure). Note that AE-OT security is a stronger
notion than chosen-ciphertext security. Formal definitions and constructions are
provided in the full version [16]. There we also recall how to build a symmetric
scheme with k-bit keys secure in the sense of AE-OT from a (computationally se-
cure) one-time symmetric encryption scheme, a (computationally secure) MAC,
and a (computationally secure) key-derivation function.

3 Randomness Extraction

In this section we review a few concepts related to probability distributions
and extracting uniform bits from weak random sources. As a technical tool for
our new paradigm, we will prove the following generalization of the leftover
hash lemma [13]: if H is 4-wise independent, then (H,H(X),H(X̃)) is close to
uniformly random, where X, X̃ can be dependent (but of course we have to
require X �= X̃).

Let H be a family of hash functions H : X → Y. With |H| we denote the
number of functions in this family and when sampling from H we assume a
uniform distribution. Let k > 1 be an integer, the hash-family H is k-wise
independent if for any sequence of distinct elements x1, . . . , xk ∈ X the random
variables H(x1), . . . ,H(xk), where H ←R H, are uniform random. We refer to [6]
for a simple and efficient construction of a compressing k-wise independent hash
function.

Recall that the leftover hash lemma states that for a 2-wise independent hash
function H and a random variable X with min-entropy exceeding the bitlength
of H’s range, the random variable (H,H(X)) is close to uniformly random [13].

Lemma 2. Let X ∈ X be a random variable where H∞(X) ≥ κ. Let H be a
family of pairwise independent hash functions with domain X and image {0, 1}�.
Then for H ←R H and U� ←R {0, 1}�, Δ [(H,H(X)) , (H, U�)] ≤ 2(�−κ)/2.

We will now prove a generalization of the leftover hash lemma that states that
even when the hash function is evaluated in two distinct points, the two out-
puts jointly still look uniformly random. To make this work, we need a 4-wise
independent hash function and, as before, sufficient min-entropy in the input
distribution. We do note that, unsurprisingly, the loss of entropy compared to
Lemma 2 is higher, as expressed in the bound on the statistical distance (or al-
ternatively, in the bound on the min-entropy required in the input distribution).

Lemma 3. Let (X, X̃) ∈ X ×X be two random variables (having joint distribu-
tion) where H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] ≤ δ. Let H be a family of
4-wise independent hash functions with domain X and image {0, 1}�. Then for
H ←R H and U2� ←R {0, 1}2�,

Δ
[
(H,H(X),H(X̃)) , (H, U2�)

]
≤ √1 + δ · 2�−κ/2 + δ .

A New Randomness Extraction Paradigm for Hybrid Encryption 597

Proof. We will first prove the lemma for δ = 0, and at the end show how the
general case δ > 0 can be reduced to it. Let d = lg |H|. For a random variable
Y and Y ′ an independent copy of Y , we denote with Col[Y] = Pr[Y = Y ′] the
collision probability of Y . In particular,

Col[(H,H(X),H(X̃))]

= Pr
H,(X,X̃),H′,(X′,X̃′)

[(H,H(X),H(X̃)) = (H′,H′(X ′),H′(X̃ ′))]

= Pr
H,H′

[H = H′] · Pr
H,(X,X̃),H′,(X′,X̃′)

[(H(X),H(X̃)) = (H′(X ′),H′(X̃ ′)) | H = H′]

= Pr
H,H′

[H = H′]︸ ︷︷ ︸
=2−d

· Pr
H,(X,X̃),(X′,X̃′)

[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))] . (5)

We define the event E, which holds if X, X̃,X ′, X̃ ′ are pairwise different.

Pr
(X,X̃),(X′,X̃′)

[¬E] = Pr
(X,X̃),(X′,X̃′)

[X = X ′ ∨X = X̃ ′ ∨ X̃ = X ′ ∨ X̃ = X̃ ′]

≤ 4 · 2−κ = 2−κ+2

Where in the first step we used that δ = 0, and thus X �= X̃,X ′ �= X̃ ′. In
the second step we use the union bound and also our assumption that the min
entropy of X and X̃ is at least κ (and thus, e.g., Pr[X = X ′] ≤ 2−κ). With this
we can write (5) as

Col[H,H(X),H(X̃)] ≤ 2−d · (Pr[(H(X),H(X̃)) = (H(X ′),H(X̃ ′)) | E] + Pr[¬E])

≤ 2−d(2−2� + 2−κ+2)

where in the second step we used that H is 4-wise independent. Let Y be a
random variable with support Y and U be uniform over Y, then

‖Y − U‖22 = Col[Y]− |Y|−1 .

In particular,

‖(H,H(X),H(X̃))− (H, U2�)‖22 = Col[H,H(X),H(X̃)]− 2−d−2�

≤ 2−d(2−2� + 2−κ+2)− 2−d−2� = 2−d−κ+2 .

Using that ‖Y ‖1 ≤
√|Y|‖Y ‖2 for any random variable Y with support Y, we

obtain

Δ
[
(H,H(X),H(X̃)) , (H, U2�)

]
=

1
2
‖(H,H(X),H(X̃))− (H, U2�)‖1

≤ 1
2

√
2d+2� · ‖(H,H(X),H(X̃))− (H, U2�)‖2

≤ 1
2

√
2d+2� ·

√
2−d−κ+2 = 2�−κ/2 .

598 E. Kiltz et al.

This concludes the proof of (3) for δ = 0. Now consider X, X̃ as in the statement
of the lemma where Pr[X = X̃] ≤ δ for some δ > 0. Let π denote any permuta-
tion over X without a fixpoint, i.e., π(x) �= x for all x ∈ X . Let (Y, Ỹ) be sampled
as follows: first sample (X, X̃), if X �= X̃ let (Y, Ỹ) = (X, X̃), otherwise sample
Y ←R X uniformly at random and set Ỹ := π(Y). By definition Pr[Y = Ỹ] = 0,
and as (Y, Ỹ) has the same distribution as (X, X̃) except with probability δ,
Δ

[
(X, X̃) , (Y, Ỹ)

]
≤ δ. Moreover, using that maxx∈X Pr[X = x] ≤ 2−κ

max
x∈X

Pr[Y = x] ≤ 2−κ + δ/|X | ≤ (1 + δ)2−κ .

Thus H∞(Y) ≥ κ− lg(1+ δ), and similarly H∞(Ỹ) ≥ κ− lg(1+ δ). We can now
apply the lemma for the special case δ = 0 (which we proved) and get

Δ
[
(H,H(Y),H(Ỹ)) , (H, U2�)

]
≤ 2�−(κ−lg(1+δ))/2 =

√
1 + δ · 2�−κ/2 .

The lemma now follows as

Δ
[
(H,H(X),H(X̃)) , (H, U2�)

]
≤ Δ

[
(H,H(Y),H(Ỹ)) , (H, U2�)

]
+Δ

[
(X, X̃) , (Y, Ỹ)

]
≤ √1 + δ · 2�−κ/2 + δ .

4 Hybrid Encryption from Randomness Extraction

In this section we revisit the general construction of hybrid encryption from
universal2 hash proof systems. As our main technical result we show an efficient
transformation from a κ-entropic to a universal2 HPS, so in particular also from
a universal1 to a universal2 HPS. Combining the latter universal2 HPS with
an AE-OT secure symmetric cipher gives an IND-CCA2 secure hybrid encryption
scheme. This result can be readily applied to all known hash proof systems with a
hard subset membership problem that are universal1 (e.g., from Paillier’s DCR,
the DDH/n-Linear [14,23] assumptions) or κ-entropic (e.g., from the QR [3]
assumption) to obtain a number of new IND-CCA2 secure hybrid encryption
schemes. More concretely, in Section 5 we will discuss the consequences for DDH-
based schemes and in Section 6 for QR-based schemes.

4.1 Hybrid Encryption from HPSs

Recall the notion of a hash proof system from Section 2.3. Kurosawa and Desmedt
[17] proposed the following hybrid encryption scheme which improved the schemes
from Cramer and Shoup [3].

Let HPS = (Param,Pub,Priv) be a hash proof system and let SE = (E,D) be
an AE-OT secure symmetric encryption scheme whose key-space KSE matches

A New Randomness Extraction Paradigm for Hybrid Encryption 599

the key-space K of the HPS.2 The system parameters of the scheme consist of
params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = μ(sk) ∈ PK. Return (pk , sk).
Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V . The session

key K = Λsk (C) ∈ K is computed as K ← Pub(pk , C, r). The symmetric
ciphertext is ψ ← EK(m). Return the ciphertext (C , ψ).

Dec(sk ,C). Reconstruct the key K = Λsk (C) as K ← Priv(sk , C) and return
{m,⊥} ← DK(ψ).

Note that the trapdoor property of the HPS is not used in the actual scheme:
it is only needed in the proof. However, as an alternative the trapdoor can be
added to the secret key.3 This allows explicit rejection of invalid ciphertexts
during decryption. The security of this explicit-rejection variant is identical to
that of the scheme above.

The following was proved in [17,11,14].

Theorem 4. Assume HPS is (ε2) universal2 with hard subset membership prob-
lem (with trapdoor), and SE is AE-OT secure. Then the encryption scheme is
secure in the sense of IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · ε2 .
We remark that even though in general the KEM part of the above scheme
cannot be proved IND-CCA2 secure [1], it can be proved “IND-CCCA” secure.
The latter notion was defined in [14] and proved sufficient to yield IND-CCA2
secure encryption when combined with an AE-OT secure cipher. We also remark
that the security bound in the above theorem implicitly requires that the image
of Λsk (·) restricted to V is sufficiently large (say, contains at least 2k elements).
This is since otherwise the key-space of the symmetric scheme is too small and
the two advantages functions Advint-ot

SE,t (k) and Advind-ot
SE,t (k) cannot be negligible.

There is also an analogue “lite version” for universal1 HPS, giving IND-CCA1
only (and using a slightlyweaker asymmetric primitive). It canbe stated as follows.

Theorem 5. Assume HPS is universal1 with hard subset membership problem
and SE is WAE-OT secure. Then the encryption scheme is secure in the sense
of IND-CCA1.
We note that if the HPS is only κ-entropic then we can use the standard Leftover
Hash Lemma (Lemma 2) to obtain a universal1 HPS.

4.2 A Generic Transformation from κ-Entropic to Universal2 HPSs

We propose the following transformation. Given a projective hash function Λsk :
C → K with projection μ : SK → PK and a family of hash functions H with
H : K → {0, 1}�. Then we define the hashed variant of it as:
2 The requirement that KSE = K is not a real restriction since one can always apply a

key-derivation function KDF : K → KSE.
3 Strictly speaking the algorithm to sample elements in V (with witness) should then

be regarded as part of the public key instead of simply a system parameter.

600 E. Kiltz et al.

ΛH
sk : C → {0, 1}�, ΛH

sk (C) := H(Λsk (C)) .

We also define PKH = PK × H and SKH = SK × H, such that the hashed
projection is given by μH : SKH → PKH, μH(sk ,H) = (pk ,H). This also induces
a transformation from a hash proof system HPS into HPSH, where the above
transformation is applied to the projective hash function. Note that C and V are
the same for HPS and HPSH (so that in particular the trapdoor property for the
language V is inherited).

We are now ready to state our main theorem. To simplify the bounds, we will
henceforth assume that δ ≤ 1

2 and � ≥ 6.

Theorem 6. Assume HPS is ε1-almost κ-entropic with collision probability δ ≤
1/2 and H is a family of 4-wise independent hash functions with H : K → {0, 1}�

and � ≥ 6. Then HPSH is ε2-almost universal2 for

ε2 = 2�−κ−1
2 + 3ε1 + δ .

Proof. Let us consider, for all C,C∗ ∈ C\V with C �= C∗, the statistical distance
relevant for universal2 for HPS and let Y be the following random variable

Y := (pk ,H, U2�) ,

where pk = μ(sk) for sk ←R SK, H ←R H and U2� ←R {0, 1}2�. Then we can
use the triangle inequality to get

Δ [(pk ,H,H(Λsk (C∗)),H(Λsk (C)) , (pk ,H,H(Λsk(C∗)), U�)]

≤ Δ [(pk ,H,H(Λsk (C∗)),H(Λsk (C))) , Y] +Δ [Y , (pk ,H,H(Λsk (C∗)), U�)] (6)

where as before pk = μ(sk) for sk ←R SK, H ←R H and U� ←R {0, 1}�. In the
latter probability space, let EC∗ be the event that H∞(Λsk (C∗)) | pk) ≥ κ. We
can upper bound the second term of (6), using again the triangle inequality in
the first step, as

Δ [Y , (pk ,H,H(Λsk(C∗)), U�)] ≤ ΔEC∗ [Y , (pk ,H,H(Λsk(C∗)), U�)] + Pr
sk

[¬EC∗]

≤ 2
�−κ
2 + ε1 . (7)

In the last step we used the (standard) leftover hash-lemma (Lemma 2). Let EC

be the event that H∞(Λsk (C)) | pk) ≥ κ. Similarly, we now bound the first term
of (6) as

Δ [(pk ,H,H(Λsk(C∗)),H(Λsk (C))) , Y]

≤ ΔEC∧EC∗ [(pk ,H,H(Λsk(C∗)),H(Λsk (C))) , Y] + Pr
sk

[¬EC ∨ ¬EC∗]

≤ √1 + δ · 2�−κ
2 + δ + 2ε1 ,

where in the last step we used Lemma 3. Combining this with (7) and using
δ ≤ 1/2 and � ≥ 6 we obtain the required bound on ε2.

A New Randomness Extraction Paradigm for Hybrid Encryption 601

4.3 Hybrid Encryption from κ-Entropic HPSs

Putting the pieces from the last two sections together we get a new IND-CCA2
secure hybrid encryption scheme from any κ-entropic hash proof system. Let
HPS = (Param,Pub,Priv) be a hash proof system, let H be a family of hash
functions with H : K → {0, 1}� and let SE = (E,D) be an AE-OT secure sym-
metric encryption scheme with key-space KSE = {0, 1}�. The system parameters
of the scheme consist of params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = μ(sk) ∈ PK. Pick a random
hash function H ←R H. The public-key is (H, pk), the secret-key is (H, sk).

Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V . The session
key K = H(Λsk (C)) ∈ {0, 1}� is computed as K ← H(Pub(pk , C, r)). The
symmetric ciphertext is ψ ← EK(m). Return the ciphertext (C , ψ).

Dec(sk ,C). Reconstruct the key K = H(Λsk (C)) as K ← H(Priv(sk , C)) and
return {m,⊥} ← DK(ψ).

Combining Theorems 4 and 6 gives us the following corollary.

Corollary 7. Assume HPS is (ε1-almost) κ-entropic with hard subset member-
ship problem and with collision probability δ(k), that H is a family of 4-wise
independent hash functions with H : K → {0, 1}�(k), and that SE is AE-OT se-
cure. If 2�(k)−κ(k)/2 and δ(k) are negligible, then the encryption scheme above is
secure in the sense of IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k) + 2Q ·Advint-ot
SE,t (k) + Advind-ot

SE,t (k) + Q · (2�− κ−1
2 + 3ε1 + δ).

5 Instantiations from the DDH Assumption

In this section we discuss two practical instantiations of our randomness extrac-
tion framework whose security is based on the DDH assumption.

5.1 The Decisional Diffie-Hellman (DDH) Assumption

A group scheme GS [4] specifies a sequence (GRk)k∈N of group descriptions. For
every value of a security parameter k ∈ N, the pair GRk = (Gk, pk) specifies
a cyclic (multiplicative) group Gk of prime order pk. Henceforth, for notational
convenience, we tend to drop the index k. We assume the existence of an efficient
sampling algorithm x ←R G and an efficient membership algorithm. We define
the ddh-advantage of an adversary B as

Advddh
GS,B(k) def=

∣∣Pr[B(g1, g2, gr
1, g

r
2) = 1]− Pr[B(g1, g2, gr

1, g
r̃
2) = 1]

∣∣ ,
where g1, g2 ←R G, r ←R Zp, r̃ ←R Zp \ {r}. We say that the DDH problem is
hard in GS if the advantage function Advddh

GS,B(k) is a negligible function in k for
all probabilistic PTA B.

602 E. Kiltz et al.

5.2 Variant 1: The Scheme HE1

The universal1 hash proof system. We recall a universal1 HPS by Cramer
and Shoup [3], whose hard subset membership problem is based on the DDH
assumption. Let GS be a group scheme where GRk specifies (G, p) and let g1, g2
be two independent generators of G. Define C = G2 and V = {(gr

1, g
r
2) ⊂ G2 :

r ∈ Zp}. The value r ∈ Zp is a witness of C ∈ V . The trapdoor generator
Param picks a uniform trapdoor ω ∈ Zp and computes g2 = gω

1 . Note that using
trapdoor ω, algorithm Decide can efficiently perform subset membership tests
for C = (c1, c2) ∈ C by checking whether cω1 = c2.

Let SK = Z2
p, PK = G, and K = G. For sk = (x1, x2) ∈ Z2

p, define μ(sk) =
X = gx1

1 gx2
2 . This defines the output of Param(1k). For C = (c1, c2) ∈ C define

Λsk (C) := cx1
1 cx2

2 . (8)

This defines Priv(sk , C). Given pk = μ(sk) = X , C ∈ V and a witness r ∈ Zp

such that C = (gr
1 , g

r
2) public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = Xr .

Correctness follows by (8) and the definition of μ. This completes the description
of HPS. Clearly, under the DDH assumption, the subset membership problem is
hard in HPS. Moreover, this HPS is known to be (perfect) universal1 [3].

Lemma 8. The above HPS is perfect universal1 (so ε1 = 0) with collision prob-
ability δ = 1/p.

Proof. To show that the HPS is universal1, it suffices to show that given the
public key X and any pair (C,K) ∈ (C \ V)×K, there exists exactly one secret
key sk such that μ(sk) = X and Λsk (C) = K. Let ω ∈ Z∗

p be such that g2 = gω
1 ,

write C = (gr
1 , g

s
2) for r �= s and consider a possible secret key sk = (x1, x2) ∈ Z2

p.
Then we simultaneously need that μ(sk) = gx1+ωx2

1 = X = gx (for some x ∈ Zp)
and Λsk(C) = grx1+sωx2

1 = K = gy
1 (for some y ∈ Zp). Then, using linear

algebra, x1 and x2 follow uniquely from r, s, x, y and ω provided that the relevant
determinant (s− r)ω �= 0. This is guaranteed here since r �= s and ω �= 0.

To verify the bound on the collision probability δ it suffices —due to symmetry—
to determine for any distinct pair (C,C∗) ∈ (C\V)2 the probability Prsk [Λsk (C) =
Λsk (C∗)]. In other words, for (r, s) �= (r′, s′) (with r �= s and r′ �= s′, but that is
irrelevant here) we have that

δ = Pr
x1,x2←RZp

[grx1+x2ωs
1 = gr′x1+x2ωs′

1]

= Pr
x1,x2←RZp

[rx1 + x2ωs = r′x1 + x2ωs
′]

= 1/p .

(For the last step, use that if r �= r′ for any x2 only one x1 will “work”; if
r = r′ then necessarily s �= s′ and for any x1 there is a unique x2 to satisfy the
equation.)

A New Randomness Extraction Paradigm for Hybrid Encryption 603

The hybrid encryption scheme HE1. We apply the transformation from
Section 4.3 to the above HPS and obtain an hybrid encryption scheme which is
depicted in Figure 1.

Theorem 9. Let GS = (G, p) be a group scheme where the DDH problem is
hard, let H be a family of 4-wise independent hash functions from G to {0, 1}�(k)

with lg p ≥ 4�(k), and let SE be a symmetric encryption scheme with key-space
KSE = {0, 1}�(k). that is secure in the sense of AE-OT. Then HE1 is secure in
the sense of IND-CCA2. In particular,

Advcca2
HE1,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · 2−�(k)+1 .

Proof. By Lemma 8 the HPS is (perfectly) universal1 and therefore (by Lemma 1)
it is also (perfectly) κ-entropic with κ = lg(|K|) = lg p ≥ 4�(k). It leaves to bound
the loss due to the κ-entropic to universal2 HPS transformation from Corollary 7:

(1 + δ)2�−κ
2 + 2

�−κ
2 + 3ε1 + δ ≤ 2−�+1

where we used that |K| = |G| = p ≥ 24� and (by Lemma 8) ε1 = 0 and δ = 1/p.

We remark that in terms of concrete security, Theorem 9 requires the image
{0, 1}�(k) of H to be sufficiently small, i.e., �(k) ≤ 1

4 lg p. For a symmetric cipher
with �(k) = k = 80 bits keys we are forced to use groups of order lg p = 4k = 320
bits. For some specific groups such as elliptic curves this can be a drawback since
there one typically works with groups of order lg p = 2k = 160 bits.

Kg(1k)
x1, x2 ←R Zp ; X ← gx1

1 gx2
2

Pick H ←R H
pk ← (X, H) ; sk ← (x1, x2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗

p

c1 ← gr
1 ; c2 ← gr

2

K ← H(Xr) ∈ {0, 1}�

ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C)
Parse C as (c1, c2, ψ)
K ← H(cx1

1 cx2
2)

Return {m,⊥} ← DK(ψ)

Fig. 1. Hybrid encryption scheme HE1 = (Kg, Enc, Dec) obtained by applying our
randomness extraction framework to the HPS from Section 5.2

Relation to Damg̊ard’s ElGamal. In HE1, invalid ciphertexts of the form
cω1 �= c2 are rejected implicitly by authenticity properties of the symmetric cipher.
Similar to [4], a variant of this scheme, HEer

1 = (Kg,Enc,Dec), in which such
invalid ciphertexts get explicitly rejected is given in Figure 2. The scheme is
slightly simplified compared to a direct explicit version that adds the trapdoor
to the secret key; the simplification can be justified using the techniques of
Lemma 8.

We remark that, interestingly, Damg̊ard’s encryption scheme [5] (also known
as Damg̊ard’s ElGamal) is a special case of HEer

1 from Fig. 2 where the hash
function H is the identity function (or an easy-to-invert, canonical embedding of

604 E. Kiltz et al.

Kg(1k)
ω,x ←R Zp

g2 ← gω
1 ; X ← gx

1

Pick H ←R H
pk ← (g2, X, H) ; sk ← (x,ω)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗

p

c1 ← gr
1 ; c2 ← gr

2

K ← H(Xr)
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C)
Parse C as (c1, c2, ψ)
if cω

1 �= c2 return ⊥
K ← H(cx

1)
Return {m,⊥} ← DK(ψ)

Fig. 2. Hybrid encryption scheme HEer
1 = (Kg, Enc, Dec). A variant of HE1 with explicit

rejection

the group into, say, the set of bitstrings) and SE is “any easy to invert group
operation” [5], for example the one-time pad with EK(m) = K⊕m. In his paper,
Damg̊ard proved IND-CCA1 security of his scheme under the DDH assumption
and the knowledge of exponent assumption in GS.4 Our schemes HEer

1 and HE1
can therefore be viewed as hybrid versions of Damg̊ard’s ElGamal scheme, that
can be proved IND-CCA2 secure under the DDH assumption.

5.3 Variant 2: The Scheme HE2

The universal1 hash proof system. We now give an alternative (and new)
universal1 hash proof system from the DDH assumption. Keep C and V as in
Section 5.2. Define SK = Z4

p, PK = G2, and K = G2. For sk = (x1, x2, x̂1, x̂2) ∈
Z4, define μ(sk) = (X, X̂) = (gx1

1 gx2
2 , gx̂1

1 gx̂2
2). For C = (c1, c2) ∈ C define

Λsk (C) := (cx1
1 cx2

2 , cx̂1
1 cx̂2

2) .

This also defines Priv(sk , C). Given pk = μ(sk), C ∈ V and a witness r ∈ Zp

such that C = (c1, c2) = (gr
1 , g

r
2), public evaluation Pub(pk , C, r) computes K =

Λsk (C) as
K = (Xr, X̂r) .

Similar to Lemma 8 we can prove the following.

Lemma 10. The above HPS is perfect universal1 with collision probability δ =
1/p2.

The scheme HE2. For our second hybrid encryption scheme HE2 we make the
same assumption as for HE1, with the difference thatH is now a family Hk : G2 →
{0, 1}�(k) of 4-wise independent hash functions with lg p ≥ 2�(k). The resulting
hybrid encryption scheme obtained by applying Corollary 7 (in conjuction with
Lemma 10) is depicted in Figure 3.

4 To be more precise, Damg̊ard only formally proved one-way (OW-CCA1) security of
his scheme, provided that the original ElGamal scheme is OW-CPA secure. But he
also remarks that his proof can be reformulated to prove IND-CCA1 security, provided
that ElGamal itself is IND-CPA secure. IND-CPA security of ElGamal under the DDH
assumption was only formally proved later [25].

A New Randomness Extraction Paradigm for Hybrid Encryption 605

Theorem 11. Let GS = (G, p) be a group scheme where the DDH problem is
hard, let H be a family of 4-wise independent hash functions from G2 to {0, 1}�(k)

with lg p ≥ 2�(k), and let SE be a symmetric encryption scheme with key-space
KSE = {0, 1}�(k) that is secure in the sense of AE-OT. Then HE2 is secure in the
sense of IND-CCA2. In particular,

Advcca2
HE2,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · 2−�(k)+1 .

Note that HE2 now only has the restriction lg p ≥ 2�(k) which fits nicely with the
typical choice of �(k) = k and lg p = 2k. So one is free to use any cryptographic
group, in particular also elliptic curve groups.

Similar to HEer
1 , the variant HEer

2 with explicit rejection can again be proven
equivalent. In the explicit rejection variant, HEer

2 , the public-key contains the
group elements g2 = gω

1 , X = gx
1 , and X̂ = gx̂

1), and decryption first checks if
cω1 = c2 and then computes K = H(cx1 , c

x̂
1).

Kg(1k)
x1, x2, x̂1, x̂2 ←R Zp

X ← gx1
1 gx2

2 ; X̂ ← gx̂1
1 gx̂2

2

Pick H ←R H
pk ← (X, X̂, H)
sk ← (x1, x2, x̂1, x̂2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗

p

c1 ← gr
1 ; c2 ← gr

2

K ← H(Xr, X̂r)
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk , C)
Parse C as (c1, c2, ψ)
K ← H(cx1

1 cx2
2 , cx̂1

1 cx̂2
2)

Return {m,⊥} ← DK(ψ)

Fig. 3. Hybrid encryption scheme HE2 = (Kg, Enc, Dec) obtained by applying our
randomness extraction framework to the HPS from Section 5.3

Relation to a scheme by Kurosawa and Desmedt. We remark that,
interestingly, the scheme HE2 is quite similar to the one by Kurosawa and
Desmedt [17]. The only difference is that encryption in the latter defines the
key as K = Xrt · X̂r ∈ G, where t = T(c1, c2) is the output of a (keyed) target
collision-resistant hash function T : G×G → Zp.

5.4 Efficiency Considerations

In this section we compare the efficiency of HE1/HE2 and their explicit rejection
variants HEer

1 /HEer
2 with the reference scheme KD by Kurosawa and Desmedt [17]

and its variants [11,14].
The drawback of HE1 is that, in terms of concrete security, Theorem 9 requires

the image {0, 1}� of H to be sufficiently small, i.e., � ≤ 1
4 lg p. Consequently, for a

symmetric cipher with � = k = 80 bits keys we are forced to use groups of order
lg p ≥ 4k = 320 bits. For some specific groups such as elliptic curves this can be
a drawback since there one typically works with groups of order lg p = 2k = 160
bits. However, for other more traditional groups such as prime subgroups of

606 E. Kiltz et al.

Table 1. Efficiency comparison for known CCA2-secure encryption schemes from the
DDH assumption. All “symmetric” operations concerning the authenticated encryption
scheme are ignored. The symbols “tcr” and “4wh” denote one application of a target
collision-resistant hash function and 4-wise independent hash function, respectively.

Scheme Assumption Encryption Decryption Ciphertext Key-size Restriction
#[multi/sequential,single]-exp Size Public Secret on p = |G|

KD DDH & TCR [1, 2]+tcr [1, 0]+tcr 2|G|+|ψ| 4|G|+|T| 4|Zp| lg p ≥ 2�(k)
HEer

1 DDH [0, 3]+4wh [1, 0]+4wh 2|G|+|ψ| 3|G|+|H| 2|Zp| lg p ≥ 4�(k)
HEer

2 DDH [0, 4]+4wh [1, 0]+4wh 2|G|+|ψ| 4|G|+|H| 4|Zp| lg p ≥ 2�(k)

Z∗
q one sometimes takes a subgroup of order already satisfying the requirement

lg p ≥ 4k. The scheme HE2 overcomes this restriction at the cost of an additional
exponentiation in the encryption algorithm.

Table 1 summarizes the efficiency of the schemes KD [17], HEer
1 , and HEer

2 .
(A comparison of the explicit rejection variants seems more meaningful.) It is
clear that when groups of similar size are used, our new scheme HEer

1 will be
the most efficient. But, as detailed above, typically HEer

1 will have to work in a
larger (sub)group. Even when underlying operations such as multiplication and
squaring remain the same, the increased exponent length will make this scheme
noticeably slower than the other two options.

6 Instantiations from the Quadaratic Residuosity
Assumption

Quadratic residuosity assumption. Let b = b(k) : N → N>0 be a function.
Let N = pq be an RSA modulus consisting of distinct safe primes of bit-length
b/2, i.e., p = 2P + 1 and q = 2Q + 1 for two primes P,Q. Let JN denote the
(cyclic) subgroup of elements in Z∗

N with Jacobi symbol 1, and let QRN denote
the unique (cyclic) subgroup of Z∗

N of order PQ (so in particular QRN ⊂ JN)
which is the group of all squares modulo N . We assume the existence of an RSA
instance generator RSAgen that generates the above elements, together with a
random generator g ∈ QRN . The quadratic residuosity (QR) assumption states
that distinguishing a random element from QRN from a random element from
JN is computationally infeasible.

The hash proof system. Define C = JN and V = QRN = {gr : r ∈ ZPQ}.
The value r ∈ Z is a witness of C ∈ V . (Note that it is possible to sample
an almost uniform element from V together with a witness by first picking r ∈
Z
N/4� and defining C = gr.) Define SK = Zn

2PQ, PK = QRn
N , and K = Jn

N . For
sk = (x1, . . . , xn) ∈ Zn

2PQ, define μ(sk) = (X1, . . . , Xn) = (gx1 , . . . , gxn).
For C ∈ C define

Λsk (C) := (Cx1 , . . . , Cxn) .

A New Randomness Extraction Paradigm for Hybrid Encryption 607

This defines Priv(sk , C). Given pk = μ(sk), C ∈ V and a witness r ∈ ZPQ

such that C = gr, public evaluation Pub(pk , C, r) computes K = Λsk(C) as

K = (Xr
1 , . . . , X

r
n) .

This completes the description of HPS. Under the QR assumption, the subset
membership problem is hard in HPS. (The statistical difference between the
uniform distribution over QRN and the proposed way of sampling above, is at
most 2−b/2, causing only a small extra term between the QR advantage and the
HPS membership advantage.)

Consider a pair (Xi, xi), where xi is from sk and Xi is from pk and note that
Xi does not reveal whether 0 ≤ xi < PQ or PQ ≤ xi < 2PQ. Therefore, for
C ∈ C \ V , given pk = μ(sk), each of the Cxi contains exactly one bit of min
entropy such that H∞((Cx1 , . . . , Cxn) | pk) = n. Therefore:

Lemma 12. The hash proof system is n-entropic with collision probability
δ = 2−n.

The encryption scheme. Let H : Jn
N → {0, 1}k be a 4-wise independent hash

function and let SE be a symmetric cipher with key-space {0, 1}k, i.e., we set
�(k) = k. For the encryption scheme obtained by applying Corollary 7 (which
is depicted in Fig. 4) we choose the parameter n = n(k) = 4k + 1 such that
k − (n− 1)/2 = −k so we can bound ε2 by 2−k + 2−n using Theorem 6.

Theorem 13. Assume the QR assumption holds, let H be a family of 4-wise
independent hash functions from J

n(k)
N to {0, 1}k with n(k) ≥ 4k + 1, and let

SE be a symmetric encryption that is secure in the sense of AE-OT. Then the
encryption scheme from Fig. 4 is IND-CCA2 secure. In particular,

Advcca2
PKE,t,Q(k) ≤ 2−b/2 +Advqr

GS,t(k)+ 2Q ·Advint-ot
SE,t (k)+Advind-ot

SE,t (k)+Q2−k+1 .

The scheme has very compact ciphertexts but encryption/decryption are quite
expensive since they require n = 4k + 1 exponentiations in Z∗

N . (Note that
decryption can be sped up considerably compared to encryption by using CRT
and multi-exponentiation techniques.)

Kg(1k)
(N, P, Q, g) ←R RSAgen(1k)
For i = 1 to n := 4k + 1 do

xi ←R Z2PQ ; Xi ← gxi

Pick H ←R H
pk ← (N, g, (Xi), H) ; sk ← ((xi))
Return (sk , pk)

Enc(pk ,m)
r ←R Z�N/4�
c ← gr

K ← H(Xr
1 , . . . , Xr

n)
ψ ← EK(m)
Return C = (c, ψ)

Dec(sk ,C)
Parse C as (c, ψ)
K ← H(cx1 , . . . , cxn)
Return

{m,⊥} ← DK(ψ)

Fig. 4. Hybrid encryption scheme HE3 = (Kg, Enc, Dec) obtained by applying our
randomness extraction framework to the HPS from Section 6

608 E. Kiltz et al.

Acknowledgements

We thank Ronald Cramer for interesting discussions. We are furthermore grateful
to Victor Shoup for pointing out the scheme from Section 5.3. We thank Kenny
Paterson, Steven Galbraith and James Birkett for useful feedback, prompting
the comparison in Section 5.4.

References

1. Choi, S.G., Herranz, J., Hofheinz, D., Hwang, J.Y., Kiltz, E., Lee, D.H., Yung,
M.: The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure.
Information Processing Letters (to appear, 2009)

2. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

3. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

4. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

5. Damg̊ard, I.B.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

6. Damg̊ard, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs
dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

7. Desmedt, Y., Lipmaa, H., Phan, D.H.: Hybrid Damg̊ard is CCA1-secure under the
DDH assumption. In: CANS 2008. LNCS, vol. 5339, pp. 18–30. Springer, Heidel-
berg (2008)

8. Desmedt, Y., Phan, D.H.: A CCA secure hybrid Damg̊ards ElGamal encryption.
In: ProvSec 2008. LNCS, vol. 5324, pp. 68–82. Springer, Heidelberg (2008)

9. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

11. Gennaro, R., Shoup, V.: A note on an encryption scheme of Kuro-
sawa and Desmedt. Cryptology ePrint Archive, Report 2004/194 (2004),
http://eprint.iacr.org/

12. Gjøsteen, K.: A new security proof for Damg̊ard’s ElGamal. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006)

13. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

14. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

15. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

A New Randomness Extraction Paradigm for Hybrid Encryption 609

16. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. Cryptology ePrint Archive, Report 2008/304
(2008), http://eprint.iacr.org/

17. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

18. Lipmaa, H.: On CCA1-Security of Elgamal and Damg̊ard cryptosystems. Cryptol-
ogy ePrint Archive, Report 2008/234 (2008), http://eprint.iacr.org/

19. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

20. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. ACM Press, New York (1990)

21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

22. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

23. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007),
http://eprint.iacr.org/

24. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

25. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998)

26. Wu, J., Stinson, D.R.: On the security of the ElGamal encryption scheme and
D̊amgard’s variant. Cryptology ePrint Archive, Report 2008/200 (2008),
http://eprint.iacr.org/

Erratum to: Advances in Cryptology –
EUROCRYPT 2009

Antoine Joux

DGA and University of Versailles Saint-Quentin-en-Yvelines,
45, avenue des Etats-Unis, 78035 Versailles Cedex, France

antoine.joux@m4x.org

Erratum to:

A. Joux (Ed.)

Advances in Cryptology – EUROCRYPT 2009

DOI: 10.1007/978-3-642-01001-9

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© Springer-Verlag
Berlin Heidelberg. The book has been updated with the changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-642-01001-9

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, p. E1, 2009.
c© Springer-Verlag Berlin Heidelberg 2017

http://dx.doi.org/10.1007/978-3-642-01001-9
http://dx.doi.org/10.1007/978-3-642-01001-9

Author Index

Abdalla, Michel 554
Aggarwal, Divesh 36
Aoki, Kazumaro 134

Bellare, Mihir 1, 407
Bernstein, Daniel J. 483
Billet, Olivier 189
Boldyreva, Alexandra 224

Camenisch, Jan 351, 425
Castagnos, Guilhem 260
Catalano, Dario 554
Chandran, Nishanth 351
Chen, Tien-Ren 483
Chenette, Nathan 224
Cheng, Chen-Mou 483
Chevalier, Céline 572

Dinur, Itai 278
Doche, Christophe 502
Dodis, Yevgeniy 371
Domingo-Ferrer, Josep 153

Fiore, Dario 554
Fouque, Pierre-Alain 572

Galbraith, Steven D. 518
Gauravaram, Praveen 88
Gentry, Craig 171
Goldwasser, Shafi 369
Goyal, Vipul 54

Hofheinz, Dennis 1, 313
Hohenberger, Susan 333

Kanukurthi, Bhavana 206
Kiayias, Aggelos 425
Kiltz, Eike 313, 389, 590
Knudsen, Lars R. 88, 106
Kohel, David R. 502

Laguillaumie, Fabien 260
Lange, Tanja 483
Lee, Younho 224
Lin, Xibin 518
Lu, Chi-Jen 72

Malkin, Tal G. 443
Maurer, Ueli 36
Mendel, Florian 106
Mu, Yi 153

O’Neill, Adam 224
Ouafi, Khaled 300

Phan, Duong Hieu 189
Pietrzak, Krzysztof 389, 462, 590
Pointcheval, David 572

Qin, Bo 153

Rechberger, Christian 106
Reyzin, Leonid 206
Ristenpart, Thomas 371, 407

Sahai, Amit 54
Sasaki, Yu 134
Satoh, Takakazu 536
Scott, Michael 518
Shamir, Adi 278
Shoup, Victor 351
Shrimpton, Thomas 371
Sica, Francesco 502
Stam, Martijn 590
Standaert, François-Xavier 443
Susilo, Willy 153

Thomsen, Søren S. 106

Vaudenay, Serge 300

Wang, Wei 121
Wang, Xiaoyun 121
Waters, Brent 171, 333
Wu, Qianhong 153

Yang, Bo-Yin 483
Yasuda, Kan 242
Yilek, Scott 1
Yu, Hongbo 121
Yung, Moti 425, 443, 590

Zhan, Tao 121
Zhang, Haina 121
Zimmer, Sébastien 572

	Preface
	Organization
	List of Presented Posters
	Table of Contents
	Possibility and Impossibility Results forEncryption and Commitment Secure underSelective Opening
	1 Introduction
	1.1 Background
	1.2 Results for Encryption
	1.3 Results for Commitment
	1.4 History

	2 Notation
	3 Encryption Related Definitions
	3.1 Encryption Schemes
	3.2 Encryption Security under Selective Opening

	4 Lossy Encryption
	4.1 Instantiation from DDH
	4.2 Instantiation from Lossy TDFs
	4.3 An Extension: Efficient Opening
	4.4 The GM Probabilistic Encryption Scheme

	5 SOA-Security from Lossy Encryption
	6 Commitment Preliminaries and Definitions
	7 Simulation-Based Commitment Security underSelective Openings
	7.1 Impossibility from Black-Box Reductions
	7.2 Possibility Using Non-black-box Techniques

	8 Indistinguishability-Based Commitment Security underSelective Openings
	8.1 Impossibility from Black-Box Reductions
	8.2 Statistically Hiding Schemes Are Secure

	9 On the Role of Property P
	Acknowledgements
	References

	Breaking RSA Generically Is Equivalent toFactoring
	1 Introduction
	1.1 Breaking RSA vs. Factoring
	1.2 The Generic Model of Computation
	1.3 Related Work and Contributions of This Paper

	2 Preliminaries
	2.1 Straight-Line Programs
	2.2 Generic Ring Algorithms
	2.3 Mathematical Preliminaries

	3 TheMainTheorem
	3.1 Statement of the Theorem
	3.2 Proof of the Theorem
	3.2.1 Overview of the Proof
	3.2.2 The Proof for Straight-Line Programs
	3.2.3 From Deterministic GRAs to SLPs
	3.2.4 Handling Randomized GRAs
	3.2.5 Putting Things Together

	4 Conclusions and Open Problems
	References

	Resettably Secure Computation
	1 Introduction
	2 The Resettable Ideal Model
	2.1 Resettable Two-Party Computation
	2.2 Simultaneous Resettable Multi-party Computation
	2.3 Extensions

	3 Building Blocks
	4 Resettable Two-Party Computation
	4.1 The Construction

	5 Simultaneous Resettable Multi-party Computationwith Honest Majority
	5.1 The Construction

	References

	On the Security Loss in Cryptographic Reductions�
	1 Introduction
	2 Preliminaries
	3 Hardness Amplification
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Randomness from Hardness
	4.1 Proof of Theorem 3
	4.2 Proof of Theorem 4

	References

	On Randomizing Hash Functions to Strengthen the Security of Digital Signatures�
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Impact of Our Results
	1.4 Guide to the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Merkle-Damg˚ard Hash Functions
	2.3 Compression Functions with Fixed Points
	2.4 Existential Forgery Attack on the Signature Schemes

	3 Randomized Hashing
	3.1 RMX Specification

	4 Generic Forgery Attack on the RMX-Hash-Then-SignSignature Schemes
	4.1 Limitations of the Forgery Attack

	5 Application of Dean’s Fixed Point ExpandableMessages to Forge Hash-Then-Sign Signature Schemes
	6 Existential Forgery Attack on Some RMX-Hash-Then-Sign Signatures
	6.1 Applications of Our Forgery Attack
	6.2 Attack on the e-SPR Property of the Compression Functions

	7 Conclusion
	References
	A Observation in the Padding Rule of RMX
	B Message Randomization Technique RMXSP

	Cryptanalysis of MDC-2�
	1 Introduction
	2 Preliminaries
	2.1 Description of the MDC-2 Construction

	3 The Collision Attack
	4 Preimage Attacks
	4.1 An Attack Allowing for Time/Memory Trade-Offs
	4.2 Pushing the Time Complexity Down to 2n

	5 Multicollisions
	6 Other Non-random Properties
	7 Application to Other Constructions
	8 Conclusion
	Acknowledgements
	References
	A The Special Case of MDC-2 Instantiated with DES

	Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC�
	1 Introduction
	2 Background and Definitions
	2.1 Notations
	2.2 Brief Description of MD5
	2.3 Pseudo-Collisions of MD5
	2.4 Secret Prefix MAC, HMAC and NMAC
	2.5 Description of MD5-MAC

	3 Distinguishing Attacks on HMAC/NMAC-MD5
	3.1 Adaptive Chosen Message Attack on KIMAC-MD5
	3.2 Adaptive Chosen Message Attack on HMAC-MD5
	3.3 Chosen Message Attack on HMAC-MD5

	4 Partial Key Recovery Attack on the MD5-MAC
	4.1 Recovering Some Bits of the Intermediate States
	4.2 Recovering the 128-Bit Subkey K1

	5 Conclusions
	Acknowledgements.
	References
	Appendix

	Finding Preimages in Full MD5Faster Than Exhaustive Search
	1 Introduction
	1.1 History of Preimage Attacks on MD4-Family
	1.2 Related Techniques
	1.3 Our Results

	2 Description of MD5
	2.1 MD5 Specification and Its Properties

	3 Related Works
	3.1 Converting Pseudo-Preimages to a Preimage
	3.2 Preimage Attack on 63 Steps of MD5
	3.3 Preimage Attack on HAVAL
	3.4 Preimage Attack on HAS-160

	4 Improved Techniques
	4.1 Initial Structure: Generalization of Local-Collision Technique
	4.2 Cross Absorption Property
	4.3 Partial-Fixing Technique for Unknown Carried NumberBehavior
	4.4 Efficient Consistency Check Method

	5 Preimage Attacks on Full MD5
	5.1 Selected Initial Structure and Chunks
	5.2 Details of Initial Structure for Full MD5
	5.3 Details of Partial-Fixing for Skipping 8 Steps
	5.4 Attack Procedure
	5.5 Complexity Evaluation

	6 Conclusion
	References

	Asymmetric Group Key Agreement
	1 Introduction
	1.1 Our Contribution
	1.2 One-Round Group Key Agreement
	1.3 Motivating Applications
	1.4 Paper Organization

	2 Group Key Agreement Revisited
	2.1 Protocol Variables and Partner Relationship
	2.2 Adversarial Model
	2.3 Properties of GKA

	3 Generic Construction of One-Round ASGKA
	3.1 Aggregatable Signature-Based Broadcast
	3.2 A Generic Construction of One-Round ASGKA Protocols

	4 The Proposal
	4.1 An Efficient ASBB Scheme
	4.2 Concrete One-Round ASGKA Protocol

	5 Conclusions and Future Work
	Acknowledgments and Disclaimer
	References

	Adaptive Security in Broadcast EncryptionSystems (with Short Ciphertexts)
	1 Introduction
	2 Adaptive Security in Broadcast Encryption
	2.1 Broadcast Encryption Systems
	2.2 Security Definitions
	2.3 Transforming Semi-static Security to Adaptive Security

	3 BE Construction with Small Ciphertexts
	3.1 Our Construction
	3.2 The BDHE Assumption
	3.3 Semi-static BE with Small Ciphertexts and Private Keys

	4 Identity-Based BE with Small Ciphertexts and PrivateKeys
	4.1 An Initial IBBE Construction
	4.2 Security of the Initial IBBE Construction
	4.3 Variants of the IBBE Construction

	References

	Traitors Collaborating in Public: Pirates 2.0
	1 Introduction
	1.1 Collaborative Traitors: Pirates 2.0
	1.2 Comparing Pirates 2.0 and the Classical Setting

	2 Formalization of Pirates 2.0
	2.1 A Setting for Pirates 2.0
	2.2 A Concrete Treatment of Anonymity Estimation

	3 Pirates 2.0 and the Subset-Cover Framework
	3.1 Brief Description of the Subset-Cover Framework
	3.2 General Attack Strategy against Subset-Cover Schemes
	3.3 Pirates 2.0 against the Complete Subtree Scheme
	3.4 Pirates 2.0 against the Subset Difference Scheme

	4 Pirates 2.0 and Code Based Schemes
	4.1 General Framework of Codes Based Schemes
	4.2 Pirates 2.0 against Code Based Schemes

	5 Conclusion
	References

	Key Agreement from Close Secrets overUnsecured Channels
	1 Introduction
	2 Overview of the Result
	3 Building Blocks
	3.1 Extractors
	3.2 A Variation on Secure Sketches
	3.3 One-Time Message Authentication Codes (MACs)
	3.4 A Modification of Renner-Wolf Interactive Authentication

	4 Our Protocol
	4.1 Analysis
	4.2 Constant-Factor Improvements

	Acknowledgments
	References

	Order-Preserving Symmetric Encryption
	1 Introduction
	2 Preliminaries
	3 OPEandItsSecurity
	3.1 Order-Preserving Encryption (OPE)
	3.2 Security of OPE

	4 Lazy Sampling a Random Order-Preserving Function
	4.1 The Hypergeometric Connection
	4.2 The LazySample Algorithms
	4.3 Correctness
	4.4 Efficiency
	4.5 Realizing HGD

	5 Our OPE Scheme and Its Analysis
	5.1 The TapeGen PRF
	5.2 Our OPE Scheme and Its Analysis
	5.3 On Choosing N

	6 On Using the Negative Hypergeometric Distribution
	Acknowledgements
	References

	A Double-Piped Mode of Operationfor MACs, PRFs and PROs:Security beyond the Birthday Barrier
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Definition of the Double-Piped Mode
	5 MAC-Pr beyond the Birthday Barrier
	5.1 Outline of the MAC-Pr Proof
	5.2 Detailed Proof of MAC-Pr
	5.3 On the Tightness of the Bound O(25n/6)

	6 PRF-Pr beyond the Birthday Barrier
	7 PRO-Pr beyond the Birthday Barrier
	Acknowledgments
	References

	On the Security of Cryptosystems withQuadratic Decryption:The Nicest Cryptanalysis
	1 Introduction
	1.1 Imaginary Quadratic Field-Based Cryptography
	1.2 Related Work on Security Issues of Quadratic Field-BasedCryptography
	1.3 Our Contributions

	2 Background
	2.1 Computations in Quadratic Orders
	2.2 The NICE family

	3 The Cryptanalysis
	3.1 Intuition
	3.2 An Algorithm to Solve the Kernel Problem

	4 Conclusion
	Acknowledgement.
	References

	Cube Attacks on Tweakable Black BoxPolynomials
	1 Introduction
	2 Terminology
	3 The Main Observation
	4 The Preprocessing Phase
	4.1 Preprocessing Random Polynomials
	4.2 Preprocessing Nonrandom Polynomials

	5 Applications to Block Ciphers
	6 Applications to Stream Ciphers
	7 Conclusions
	Acknowledgements.
	References

	Smashing SQUASH-0
	1 The SQUASH Algorithm
	2 Passive Attack with Full-Size Window
	3 Active Attack with Full-Size Window
	3.1 First Method
	3.2 Second Method
	3.3 Generalization

	4 Application to Limited Windows
	4.1 First Method
	4.2 Second Method
	4.3 Generalization

	5 Extending to Non-linear Mappings
	6 Conclusion
	References

	Practical Chosen Ciphertext Secure Encryptionfrom Factoring
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Factoring
	2.3 Key Encapsulation Mechanisms
	2.4 Target-Collision Resistant Hashing

	3 Chosen-Ciphertext Security from Factoring
	3.1 The Scheme

	4 Proof of Security
	5 Avoiding Safe Primes
	Acknowledgements
	References

	Realizing Hash-and-Sign Signatures underStandard Assumptions
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Signature Schemes
	2.2 Chameleon Hash Functions
	2.3 RSA Assumption and Other Facts
	2.4 Bilinear Groups and the CDH Assumption

	3 Our RSA Realization
	3.1 RSA Construction
	3.2 Proof of Security

	4 Our CDH Realization
	4.1 CDH Construction

	5 Handling State in Practice
	6 Conclusion and Open Problems
	Acknowledgments
	References

	A Public Key Encryption Scheme Secure againstKey Dependent Chosen Plaintext and AdaptiveChosen Ciphertext Attacks
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Definition of KDM-CCA2 Security
	2.3 Non-interactive Zero-Knowledge Proofs
	2.4 Strongly Secure One-Time Signatures

	3 Generic Construction of a KDM-CCA2 Secure Scheme
	3.1 Construction
	3.2 Proof of Security

	4 Specific Number-Theoretic Instantiation of aKDM-CCA2 Secure Scheme
	4.1 General Notation and Assumptions
	4.2 KDM-CPA Secure Scheme Based on the K-Linear Assumption
	4.3 CCA2 Secure Scheme Based on the K-Linear Assumption
	4.4 NIZK Proofs for Satisfiable Systems of Linear Equations overGroups
	4.5 NIZK Proof for Proving Equality of Plaintext
	4.6 Strongly Secure One-Time Signature Scheme
	4.7 Size of Public Key, System Parameters and Ciphertext

	References

	Cryptography without (Hardly Any) Secrets ?
	References

	Salvaging Merkle-Damg˚ard forPractical Applications
	1 Introduction
	1.1 Preimage Aware Functions
	1.2 Public-Use Random Oracles

	2 Preliminaries
	3 Preimage Awareness
	4 Relationships between PrA, CR, and Random Oracles
	5 Applying Preimage Awareness
	6 Indifferentiability for Public-Use Random Oracles
	Acknowledgments
	References

	On the Security of Padding-Based EncryptionSchemes
	1 Introduction
	1.1 Padding Schemes for Encryption
	1.2 Results
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Public-Key Encryption

	3 Ideal Trapdoor Permutations
	3.1 Trapdoor Permutations
	3.2 Hard Games
	3.3 Ideal Trapdoor Permutations
	3.4 On the Power of Ideal Trapdoor Permutations

	4 Padding Schemes for Encryption
	4.1 Definitions
	4.2 Examples

	5 Uninstantiability from any Ideal Trapdoor Permutation
	References

	Simulation without the Artificial Abort:Simplified Proof and Improved ConcreteSecurity for Waters’ IBE Scheme
	1 Introduction
	2 Definitions and Background
	3 New Proof of Waters’ IBE without Artificial Aborts
	Acknowledgments
	References

	On the Portability of Generalized Schnorr Proofs
	1 Introduction
	2 Preliminaries
	3 Portability of Zero-Knowledge Proofs
	4 Safeguard Groups
	5 The Portability of Generalized Schnorr Proofs
	6 Unconditionally Portable Protocols for GSP-specs
	7 Demonstrative Applications and Extensions
	Acknowledgements
	References

	A Unified Framework for the Analysis ofSide-Channel Key Recovery Attacks
	1 Introduction
	2 Intuitive Description of the Model and Terminology
	3 Formal Definitions
	3.1 Actual Security Metrics
	3.2 Information Theoretic Metric

	4 Practical Limitations
	5 Relations between the Evaluation Metrics
	5.1 Asymptotic Meaning of the Conditional Entropy:
	5.2 Comparative Meaning of the Conditional Entropy:
	5.3 Intuition of the Metrics

	6 Applications of the Model
	7 Evaluation Methodology
	8 Conclusions and Open Problems
	References

	A Leakage-Resilient Mode of Operation
	1 Introduction
	1.1 Leakage-Resilient Cryptography
	1.2 Seed Incompressibility
	1.3 Applications and Reductions
	1.4 Notation

	2 Leakage-Resilient Stream-Cipher from a Weak PRF
	3 wPRF with Non-uniform Keys and Inputs
	4 Proof of Theorem 2
	Acknowledgements
	References

	ECM on Graphics Cards
	1 Introduction
	2 Background on ECM
	2.1 Overview of ECM
	2.2 Edwards Curves

	3 Review of GPUs and GPU Programming
	3.1 The NVIDIA Cards Used for CUDA
	3.2 The CUDA Programming Paradigm
	3.3 Limitations and Alternatives

	4 High-Throughput Modular Arithmetic on a GPU
	4.1 Design Choices of Modular Multiplication
	4.2 Instruction Count Analysis

	5 FastECMonaGPU
	6 Experimental Results
	References

	Double-Base Number System for Multi-scalarMultiplications
	1 Introduction
	1.1 Elliptic Curve Cryptography
	1.2 Double-Base Number System
	1.3 Multi-scalar Multiplication

	2 Joint Double-Base Number System
	3 Joint Binary-Ternary Algorithm and Generalizations
	3.1 Algorithm
	3.2 Complexity Analysis
	3.3 Variants of the Joint Binary-Ternary Method
	3.4 Experiments

	4 Koblitz Curves
	4.1 Representation of Kleinian Integers
	4.2 Scalar Multiplication
	4.3 Fast Evaluation of A
	4.4 Multi-scalar Multiplication Algorithms
	4.5 Experiments

	References

	Endomorphisms for Faster Elliptic CurveCryptography on a Large Class of Curves
	1 Introduction
	2 The Homomorphism
	2.1 Special Case of Quadratic Twists
	2.2 Higher Dimension Decompositions

	3 KeyGeneration
	4 Using Special Curves
	5 Remarks on Our Implementation
	6 Experimental Results
	6.1 The Example Curve
	6.2 Comparison Curve
	6.3 8-bit Processor Implementation
	6.4 64-Bit Processor Implementation
	6.5 ECDSA/Schnorr Signature Verification

	7 Security Implications
	Acknowledgements
	References

	Generating Genus Two Hyperelliptic Curvesover Large Characteristic Finite Fields
	1 Introduction
	2 Some Properties of the Jacobian Varieties
	3 Decomposition of the Jacobian
	4 Computing Possible Order of the Jacobian
	5 The Algorithm and Its Complexity
	6 A Numerical Example
	7 Cryptographic Size Implementation
	8 Security Considerations
	9 Conclusion
	Acknowledgments
	References

	Verifiable Random Functions fromIdentity-Based Key Encapsulation
	1 Introduction
	2 Preliminaries
	3 The Construction
	4 VRF Suitable IBEs
	4.1 Sakai-Kasahara VRF
	4.2 The New Construction

	5 Conclusions
	Acknowledgements
	References

	Optimal Randomness Extraction from aDiffie-Hellman Element
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 Notations
	2.1 Measures of Randomness
	2.2 From Min Entropy to δ-Uniformity
	2.3 Characters on Abelian Groups

	3 Randomness Extraction in Finite Fields
	3.1 Randomness Extraction
	3.2 Truncated Inputs

	4 Randomness Extraction in Elliptic Curves
	4.1 A bound for S(a,G)
	4.2 Randomness Extraction

	5 Applications
	5.1 Key Extraction
	5.2 NIST Random Generator

	Acknowledgements
	References

	A New Randomness Extraction Paradigm forHybrid Encryption
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Public-Key Encryption
	2.3 Hash Proof Systems
	2.4 Symmetric Encryption

	3 Randomness Extraction
	4 Hybrid Encryption from Randomness Extraction
	4.1 Hybrid Encryption from HPSs
	4.2 A Generic Transformation from κ-Entropic to Universal2 HPSs
	4.3 Hybrid Encryption from κ-Entropic HPSs

	5 Instantiations from the DDH Assumption
	5.1 The Decisional Diffie-Hellman (DDH) Assumption
	5.2 Variant 1: The Scheme HE1
	5.3 Variant 2: The Scheme HE2
	5.4 Efficiency Considerations

	6 Instantiations from the Quadaratic ResiduosityAssumption
	Acknowledgements
	References

	Erratum to: Advances in Cryptology – EUROCRYPT 2009
	Author Index

