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Abstract. While reasoners are year after year scaling up in the classical,
time invariant domain of ontological knowledge, reasoning upon rapidly
changing information has been neglected or forgotten. On the contrary,
processing of data streams has been largely investigated and specialized
Stream Database Management Systems exist. In this paper, by coupling
reasoners with powerful, reactive, throughput-efficient stream manage-
ment systems, we introduce the concept of Stream Reasoning. We expect
future realization of such concept to have high impact on the future In-
ternet because it enables reasoning in real time, at a throughput and
with a reactivity not obtained in previous works.
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1 Introduction and Motivation

Semantics is more and more evoked as a powerful tool to facilitate interoperabil-
ity, flexibility and adaptability. The growing scalability of reasoning techniques
[1] is key to the relevant role that semantics will play in the future Internet.
While reasoners scale up in the classical, static domain of ontological knowledge,
reasoning upon rapidly changing information has been neglected or forgotten.
Data streams are unbounded sequences of time-varying data elements; they
occur in a variety of modern applications, such as network monitoring, traffic
engineering, sensor networks, RFID tags applications, telecom call records, fi-
nancial applications, Web logs, click-streams, etc. Processing of data streams
has been largely investigated in the last decade [2], specialized Data Stream
Management Systems (DSMSs) have been developed, and features of DSMSs
are becoming supported by major database products, such as Oracle and DB2.
The combination of reasoning techniques with data streams gives rise to
Stream Reasoning, an unexplored, yet high impact, research area. To under-
stand the potential impact of Stream Reasoning, we can consider the emblematic
case of Urban Computing [3J4J5/6] (i.e., the application of pervasive computing
to urban environments). The very nature of Urban Computing can be explained
by means of data streams, representing real objects that are monitored at given
locations: cars, trains, crowds, ambulances, parking spaces, and so on. Reasoning
about such streams can be very effective in reducing costs: for instance, looking
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for parking lots in large cities may cost up to 40% of the daily fuel consumption.
Problems dramatically increase when big events, involving lots of people, take
place; a typical Urban Computing problem is to help citizens willing to partici-
pate to such events in finding a parking lot and reaching the event locations in
time, while globally limiting the occurrences of traffic congestions.

Some years ago, due to the lack of data, solving Urban Computing problems
looked like a Sci-Fi idea. Nowadays, a large amount of the required information
can be made available on the Internet at almost no cost: computerized systems
contain maps with the commercial activities and meeting places (e.g., Google
Earth), events scheduled in the city and their locations, positions and speed in-
formation of public transportation vehicles and of mobile phone users [B], parking
availabilities in specific parking areas, and so on. However, current technologies
are not up to the challenge of solving Urban Computing problems: this requires
combining a huge amount of static knowledge about the city (i.e., urbanistic,
social and cultural knowledge) with an even larger set of data streams (origi-
nating in real time from heterogeneous and noisy data sources) and reasoning
above the resulting time-varying knowledge.

A new generation of reasoners is clearly needed in order to simultaneously in-
struct the car GPS of numerous citizens with the fastest route to the most conve-
nient parking lot during exceptional events. Time constraints for such a reasoner
are very demanding (i.e., few ms per query) because citizens are continuously
making driving decisions and the traffic keeps evolving; therefore, continuous in-
ference is required. In this work, we define Stream Reasoning as a new paradigm,
based upon the state of the art in DSMS and reasoning, in order to enable such
applications. By coupling reasoners with powerful, reactive, throughput-efficient
stream management systems, we expect to enable reasoning in real time, at a
throughput and with a reactivity not obtained in previous works.

In the rest of the paper, we identify the problem we want to untangle (Section
). We introduce a Conceptual Architecture for Stream Reasoning (Section [))
that instantiates the pluggable algorithmic framework proposed in the LarKC
project [7U8]. We present two stream reasoning frameworks based on such ar-
chitecture, one representing an evolutionary approach that combines existing
solutions (Section M), the other representing a revolutionary approach that pro-
poses a new reasoning paradigm (Section [Bl). We conclude the paper discussing
the challenges we are facing while planning our future work (Section []).

2 Problem Definition

Our attempt to combine data stream and reasoning technologies starts from ter-
minology. Database (DB) and Knowledge Engineering (KE) communities often
use different terms to indicate the same concepts. DB community distinguishes
among schema and data, whereas KE community distinguishes among factual,
terminological, and nomological knowledge. The notion of data is close to the
notion of factual knowledge, and similarly the notion of schema is close to the
notion of terminological knowledge. Nomological knowledge is information about
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rules defining actions and action-types and governing means-ends relationships
in a given culture or society (e.g., when it rains, traffic gets slower); this notion
is somehow captured by constraint languages for DBs, but it is mainly peculiar
of KE. For the purpose of this paper, we name “knowledge” both terminological
and nomological knowledge (thus we include in term knowledge the DB notion
of schema) and we use “data” as a synonymous of factual knowledge.

Knowledge and data can change over time. For instance, in Urban Computing,
names of streets, landmarks, kinds of events, etc. change very slowly, whereas
the number of cars that go through a traffic detector in five minutes changes
very fast. In order to classify knowledge and data according to the frequency
of their changes we first need to introduce the notion of “observation period”,
defined as the period when we the system is subject to querying. In the context
of this paper, we consider knowledge as invariable during the observation
period; only data can change. Of course, knowledge is subject to change, but
then the mutating part of the system is not object of observation. This is not
surprising: in the DB context, change of schemas occur by means of create or
alter table command; while, for instance, the alter table command is executed
all query processing relative to that table is suspended.

Examples of invariable knowledge, in the case of Urban Computing, include
obvious terminological knowledge (such as an address is made up by a street
name, a civic number, a city name, and a ZIP code), which defines the conceptual
schema of the application, and less obvious nomological knowledge that describes
how the world is expected to be (e.g., given traffic lights are switched off or
certain streets are closed during the night) or to evolve (e.g., traffic jams appears
more often when it rains or when important sport events take place).

Data can be further classified according with the frequency they are expected
to change.

1. Invariable data: data that do not change in the observation period, e.g. the
names and lengths of the roads.

2. Periodically changing data, for which a temporal law describing their
evolution is present in the invariable knowledge. We can distinguish:

(a) Probabilistic data, e.g. the fact that a traffic jam is present in the west
side of Milan due to bad weather or due to a soccer match is taking place
in San Siro stadium;

(b) Pure periodic data, e.g. the fact that every night at 10pm Milan west-side
overpass road closes.

3. Event driven changing data that got updated as a consequence of some
external event not described in the knowledge, which are further character-
ized by the mean time between changes:

(a) Fast, as an example consider the intensity of traffic (as monitored by
sensors) for each street in a city;

(b) Medium, as an example consider roads closed for accidents or congestion
due to traffic;

(¢) Slow, as an example consider roads closed for scheduled works.
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Traditional databases are suitable for capturing relatively small quantity of
knowledge in their schema and huge dataset of both invariable data and event
driven changing data whose mean time between changes is slow or medium.
Periodically changing data can be modeled by means of triggers that perform
updates; for example a trigger may update the state of a traffic light when it
gets switch off for night-time.

Current reasoners are suitable for capturing large and complex knowledge, but
at the cost of small datasets. Complex form of periodically changing data can
be modeled by means of rules. However, reasoners cannot capture event-driven
changing data whose mean time between changes is fast.

If we consider dynamic query generation, we observe that reasoners are best
equipped to execute in reaction to the user’s invocation, while many modern
applications such as urban computing (but also network monitoring, financial
analysis, sensor networks, etc.) require long-running, or continuous, queries or
reasoning tasks.

Stream Database Management Systems (DSMS) represent a paradigm change
in the database world because they move from persistent relations to transient
streams, with the innovative assumption that streams can be consumed on the
flight (rather then stored forever) and from user-invoked queries to continuous
queries, i.e., queries which are persistently monitoring streams and are able to
produce their answers even in the absence of invocation. DSMSs can support
parallel query answering over data originating in real time and can cope with
burst of data by adapting their behavior and gracefully degradating answer
accuracy by introducing higher approximations.

Is combining data stream and reasoning possible? Can the innovation so far
confined within the DB community be leveraged in realizing a new generation
of reasoners able to cope with continuous reasoning tasks?

3 A Conceptual Architecture for Stream Reasoning

We are developing the Stream Reasoning vision with the LarKC European Re-
search Project]. LarKC proposes [7I8] a pluggable algorithmic framework which
will be implemented on a distributed computational platform. The pluggable
algorithmic framework ideally includes five steps to be iterated until a good
enough answer [9] is found:

1. retrieve relevant resource/content/context;

2. abstract by extracting information, calculating statistics and transforming
to logic,

select relevant problems/methods/data,

reason upon the aggregated knowledge, and

5. decide if a new iteration is needed.

Ll

In Figure [Il we present our vision in plugging data stream technologies in
the LarKC framework. The top part of the figure represents the problem space

! http://www.larkc.eu
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Fig. 1. Conceptual System Architecture

grounded in the Urban Computing field: data from the urban environment (e.g.,
traffic info, events, geo-tags, etc. ) are translated in models and by reasoning on
those models traffic control actions can be taken (e.g., controlling traffic lights,
showing messages on traffic information panels, asking police intervention, etc.).
The bottom part of the figure represents the four pluggable steps of the LarKC
approach that we consider for Stream Reasoninﬁ interconnected by the data
that flow from left to right.

Data arrives to the Stream Reasoner as streamed input. A first step selects
the relevant data in the input stream by exploiting load-shedding techniques [10].
Such techniques were developed to deal with bursty streams that may have un-
predictable peaks during which the load may exceed available system resources.
The key idea behind load-shedding is to introduce sampling policies that proba-
bilistically drop stream elements as they are input to the selection step. Sampling
and filtering policies can be either a) specified explicitly at stream-registration
time, or b) inferred by gathering statistics over time, or ¢) by explicitly including
punctuation in streams [11].

An example of sampling and filtering policy could be: if in a city a data
stream originates from each traffic control camera, images should be sampled at
given times rather than be continuously analyzed; in normal traffic condition,
each stream could be sampled every 5 minutes, with options for increasing or
decreasing the sampling rates (in congestion condition sample every 2 minutes,
at night sample every 10 minutes).

The sampled streams resulting from the selection step are fed into a second
step that abstracts from fine grain data streams into aggregated events. Such
abstraction step can be done either by exploiting data compression techniques or

2 We are explicitly omitting the retrieval step, because data stream retrieval should
not be different from any other resource retrieval, therefore we will relay on pluggable
components conceived by others.
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by aggregation queries. Data compression techniques includes the usage of his-
tograms [12] or wave-lets [I3], when the abstraction is meant to be an aggregation
(e.g., counting the number of cars running through traffic detectors), and using
Bloom filters [14] for duplicate elimination, set difference, or set intersection.

By abstraction query we mean, a continuous query that, given a large set of
(possibly) unrelated low-level data in the input streams, produces an aggregated
event. For instance, the abstraction step may rise a traffic congestion alert for a
given street if the number of cars counted by the traffic control camera exceed
100 cars and it has been continuously increasing in the last 15 minutes.

The main proposition brought up in this paper is that, either for doing the
abstraction step, or immediately after the abstraction, data streams are consol-
idated as RDF streams. RDF streams are new data formats set at the con-
fluence of conventional data streams and of conventional atoms usually injected
into reasoners. At this stage of our research, we envision two alternative formats
for RDF streams:

— A RDF molecules stream is an unbounded bag of pairs < p, 7 >, where
p is a RDF molecule [15] and 7 is the timestamp that denotes the logical
arrival time of RDF molecule p on the stream;

— A RDF statements stream is a special case of RDF molecules stream in
which p is an RDF statement instead of an RDF molecule.

Descending from the two formats, we conceive two different stream reasoning
frameworks. RDF molecule streams introduce stream reasoning as a progressive
process, allowing for reuse of existing DSMS and reasoners. RDF statements
stream introduce stream reasoning as a revolutionary process, requiring upon
reasoners the same paradigm shift as the introduction of data streams upon
databases. Section [ and [f] describe respectively the two frameworks.

As last step, before producing the solution of the application problem of our
concern (e.g., a congestion situation is monitored and traffic is rerouted according
to planning activities), the answering process reaches the decision step. In such
step quality metrics and decision criteria, defined by the application developer,
are used to check if the quality of the answer is good enough and to adapt the
behavior of each step (e.g., changing the sampling frequency).

4 RDF Molecules Stream Reasoning Framework

As we have just stated, RDF molecule streams introduce stream reasoning as
a progressive process. They allow for reuse of existing DSMS and reasoners by
coupling them using a transcoder and a pre-reasoner (see Figure [2)).

In particular, the abstraction step can be realized using a DSMS and a
transcoder. The DSMS receives the sampled data streams and generates an ab-
stracted data stream by continuously answering the abstraction queries designed
by the application developer, which typically perform an aggregation of events.
The transcoder generates a stream element < p, 7 >, where p is a RDF molecule
and the timestap 7 typically corresponds to the end of the aggregation interval,
and puts it in the outgoing RDF stream.
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Fig.2. RDF Molecules Stream Reasoning Framework

We choose RDF molecules [I5] as the minimum amount of information, be-
cause RDF molecules are the finest component into which an RDF graph can be
decomposed without loss of information. Given that a data stream is composed
by tuples and each tuple carries a minimum amount of processable information,
a direct transcoding of each tuple into an RDF molecule is always possible.

For instance, in our Urban Computing example we may have a system of
traffic sensors that feed a data stream by recording every sensed car across
a given road. An aggregator associated with each sensor counts the number
of vehicles, distinguishing them according to their type; then, the transcoder
encodes this information into an RDF molecule stream element. For instance,
an RDF molecule for this example is composed of four triples connected by a
blank node _:x

http : //uc.ex/tcc#123  uc : measure ;X
:x  uc:numberOfCars  120.
:x  uc:numberOfTrucks  70.

,Jun.17,09 : 06 : 16AM>
:x  uc: numberOfOtherVehicles  37.

RDF molecule streams are fed into pre-reasoners that perform the incre-
mental maintenance of materialized RDF snapshots, i.e. RDF views describing
the state of the system at a given time, which are given as input to reasoners
according to application-specific strategies. Reasoners are not aware of time and
produce a set of answers that remain valid until pre-reasoners produce the next
snapshot. The efficient incremental materialization of RDF snapshots performed
by pre-reasoners is a research challenge under investigation; background studies
concern the incremental maintenance of materialized ontologies [16] and indexing
of temporal XML documents [17].

5 RDF Statements Stream Reasoning Framework

As we anticipated in Section[3] we are also considering a more revolutionary ap-
proach, where streams are directly represented in RDF, and therefore continuous
and/or aggregation queries can be directly expressed in RDF languages. Com-
pared to RDF molecule streams, RDF statement streams are fine grain streams
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of triples. We envision the possibility to define up to eight different types of RDF
statements streams depending upon the kind of information that changes at each
stream input, ranging from a completely unspecified to a completely specified
RDF triple. In the former case, every new element in the stream is an arbitrary
RDF triple; in the latter case, every new element in the stream corresponds to
the occurrence of an instance of RDF stream which is totally fixed (e.g., another
unidentified vehicle seen at a given sensor). The following table summarizes the
eight cases:

Name Subject Predicate Object Denotation
free - - - free

bound subject S - - S

bound predicate - p - P

bound object - - o o

free subject - p 0 po

free predicate S - 0 SO

free object S P - sp

bound S p o Spo

For RDF statement streams it is possible to define continuous queries both in
terms of a formal abstract semantics and a concrete query language that imple-
ments the abstract semantics (namely C-SPARQL), following the path already
explored in designing CQL [I8] for DSMS.

As for CQL, the abstract semantics of such a C-SPARQL language is based on
two data types, RDF statements streams (later on shortly named RDFstream)
and instantaneous RDF graphs (later on shortly named tgraph). The two
data types are a direct mapping of stream and relation data types in CQL.
C-SPARQL queries are executed as trees of fine-grain operators performing se-
lection and abstraction over streams; their optimization and parallelization can
be approached by using techniques which are translated from DSMS systems.
In Figure Bl we depict how we expect our C-SPARQL engine to share query
plans among different registered queries in order to continuously answer in a
throughput-efficient manner.

As for CQL, the abstract semantics of C-SPARQL includes operators of three
classes:

— A tgraph-to-tgraph operator takes one or more tgraph as input and produces
a tgraph as output.

— A RDFstream-to-tgraph operator takes a RDF statements stream as input
and produces a tgraph as output.

— A tgraph-to-RDFstream operator takes a tgraph as input and produces a
RDFstream as output.

RDFstream-to-tgraph operators use sliding windows [19] over RDF state-
ments streams; their efficient evaluation can use the fact that stream elements
enter into windows and then exit from windows sequentially, according to the
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total order associated with time. RDF data is typically used in the context of
ontological languages (e.g., RDF/S and OWL) enabling to describe resources
and their properties. The efficient evaluation of multiple queries with several
overlapping sliding windows upon both RDF data and language-specific onto-
logical properties is a research challenge currently under investigation; methods
presented in [I6] can be adapted.

In this framework, scalability will be achieved by distribution and paral-
lelism. Indeed, while each stream should allocated to a given processor, all other
operator-based computations can be distributed according to an explicit, well-
defined data flow; hence, distributed database methods fully apply.

6 Conclusions and Future Works

In this paper we have presented some preliminary steps toward Stream Reason-
ing. Our main contribution is an integration architecture, taking advantage of the
benefits of both data streams and reasoners, from which two stream reasoning
frameworks can be derived.

The one based on RDF molecules is an evolution of the currently available so-
lutions that relies on the possibility to couple DSMSs and state-of-the-art reason-
ers. This approach requires investigating an appropriate solution for incremental
maintenance of time-varying RDF views and engineering throughput-efficient
transcoder technology for bridging data streams to RDF Molecules Streams.

The one based on RDF statements is a revolutionary approach to reasoning
that requires defining C-SPARQL semantics, studying its computational com-
plexity, defining the concrete C-SPARQL language, and implementing a query
processor that heavily exploits the intrinsic characteristic of streams.
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