
Minimal Union-Free Decompositions of Regular

Languages�

Sergey Afonin and Denis Golomazov

Lomonosov Moscow State University, Institute of Mechanics, Moscow, Russia
serg@msu.ru

Abstract. A regular language is called union-free if it can be repre-
sented by a regular expression that does not contain the union operation.
Every regular language can be represented as a finite union of union-free
languages (the so-called union-free decomposition), but such decomposi-
tion is not necessarily unique. We call the number of components in the
minimal union-free decomposition of a regular language the union width
of the regular language. In this paper we prove that the union width of
any regular language can be effectively computed and we present an al-
gorithm for constructing a corresponding decomposition. We also study
some properties of union-free languages and introduce a new algorithm
for checking whether a regular language is union-free.

1 Introduction

Regular expressions are a natural formalism for the representation of regular
languages. It is well known that there exist regular languages that can be rep-
resented by infinitely many equivalent regular expressions, and a number of
“canonical” forms of regular expressions representing a given regular language
have been proposed in the literature, such as concatenative decomposition [1,2]
and union-free decomposition (see e.g. [3]). This paper is devoted to the task of
finding a minimal union-free decomposition of a regular language. A language
is called union-free if it can be represented by a regular expression without the
usage of the union operation. For example, the language represented by the ex-
pression (a + b∗)∗ is union-free because there exists an equivalent expression
(a∗b∗)∗. Union-free languages have been introduced under the name “star-dot
regular” languages by J. Brzozowski in [4].

Every regular expression r can be transformed into a regular expression r′ in
which union operations appear only on the “top level” of the expression, i.e., it
takes the following form: r′ = r1 + . . .+ rm, and the regular expressions r1, . . . , rm

do not contain the “+” operator (see [3]). This means that every regular language
canbe represented as a finite union of union-free languages.But this decomposition
is not necessarily unique: for example, (a + b)∗ = (a∗b∗)∗ = {ε} + a∗ba∗ + b∗ab∗,
and these are two different union-free decompositions of the language (a+ b)∗. We

� The research presented in this paper was partially supported by the RFBR grant
number 09-01-00822-a.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 83–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 S. Afonin and D. Golomazov

call the minimal number of components in such a representation the union width
of the regular language and a corresponding decomposition (that is not necessarily
unique) is called a minimal union-free decomposition of a regular language. In this
paper we present an algorithm that computes the union width and constructs a
minimal union-free decomposition of a regular language.

The union width of a regular language and corresponding decompositions
may be considered as canonical representations of a regular expression, as well
as a complexity measure of a regular language [5], similar to the restricted star
height.

Union-free decompositions play an important role in the algorithm for check-
ing membership of a regular language in a rational subset of a finitely generated
semigroup of regular languages with respect to concatenation as a semigroup
product. In order to check such membership one should verify that at least one
of the distance automata corresponding to the components of an arbitrary union-
free decomposition of a certain regular language is limited. We do not go into the
details here (see [6]). We will just mention that checking the limitedness property
is Pspace-complete [7], thus, the number of components in a union-free decom-
position is an important parameter influencing membership-checking complexity.

The problem of constructing union-free decompositions of regular languages
has also practical applications. In particular, regular languages can be used for
a description of the syntactic structure of a programming language [8]. The
concatenation operation corresponds to the sequential continuation, the Kleene
star corresponds to loops, and the union operation corresponds to branching. In
this context, union-free languages represent sequences of operators that do not
contain conditional transitions. Minimal union-free decompositions of regular
languages may be useful for simplifying and normalizing such descriptions.

The main result of the current paper is that the union width of a regular
language L can be effectively computed, and we present an algorithm that con-
structs the corresponding decomposition. This result is achieved by using the
combinatorial technique we have adopted from [2]. First we take the set C(L) of
all maximum finite concatenations of letters and certain star languages derived
from the automaton of L. We prove that C(L) is a finite set and that for every
union-free decomposition of L there exists a union-free decomposition of L of the
same number of elements that consists of languages from C(L). Consequently,
there exists a minimal union-free decomposition that consists of languages from
C(L). Thus we can obtain it by examining all the subsets of the finite set C(L).

We also present an algorithm for checking whether a given regular language is
union-free. This decidability result is already known (see Theorem 1 below) but
it is based on reduction to the computationally expensive problem of checking
limitedness of distance automata, which is Pspace-complete.

The paper has the following structure: Section 2 provides some basic defi-
nitions, Section 3 presents results concerning general properties of union-free
languages, Section 4 is devoted to the algorithm for finding a minimal union-free
decomposition of a regular language, and Section 5 contains conclusions and
ideas for the further work.

Minimal Union-Free Decompositions of Regular Languages 85

2 Preliminaries

Let Σ = {a1, . . . , an} be a finite alphabet, L ⊆ Σ∗ be a regular language and
V = 〈Σ, Q, q0, F, ϕ〉 be the corresponding minimal deterministic finite automa-
ton, where Q = {q1, . . . , qm} is the set of all states of V , q0 ∈ Q is the initial
state, F ⊆ Q is the set of final states and ϕ : Q × Σ → Q is the transition
function of the automaton. Let M ⊆ Σ∗, q1 ∈ Q. The definition of the func-
tion ϕ is extended as follows: ϕ(q1, M) = {q ∈ Q | ∃α = α1α2 · · ·αp ∈ M :
ϕ(· · ·ϕ(ϕ(q1, α1), α2), . . . , αp) = q}.

An ordered list of states {q1,. . . ,qm} (qi ∈ Q) is called a path marked with
a word w ∈ Σ∗ iff w = a1 · · ·am−1 and ϕ(qi, ai) = qi+1, i = 1, . . . , m − 1. A
path in an automaton is called cycle-free iff it starts at the initial state q0, ends
at a final state qf ∈ F and does not contain any cycles, i.e., there is no state
occurring in the list more than once. It should be noted that by “a cycle-free
path in a language” we actually mean a word in the language that is represented
by a cycle-free path in the minimal automaton associated with the language.

A language W ⊆ Σ∗ is called a star language iff W = V ∗ for some V ⊆
Σ∗. A language L is called union-free iff it can be represented by a regular
expression that contains the star and concatenation operations only, i.e., it takes
the following form:

L = S∗
01S

∗
02 · · ·S∗

0k0
u1S

∗
11 · · ·S∗

1k1
u2 · · ·S∗

l−1,1 · · ·S∗
l−1,kl−1

ulS
∗
l,1 · · ·S∗

l,kl
, (1)

where Sij are regular languages, u1, . . . , ul are non-empty words, and l � 0. We
call (1) a general form of a union-free language and denote it GF (L).

Let L be a union-free language. We denote tsw(L) the shortest word in L.
Proposition 1 shows that the definition is correct, i.e., there cannot exist two
different words of minimum length.

Definition 1. Let L be a regular language. Then a representation L = L1∪L2∪
· · · ∪Lk is called a union-free decomposition of L iff Li is a union-free language
for all i = 1, . . . , k. The decomposition is called minimal iff there is no other
union-free decomposition of L with fewer elements.

Theorem 1 (K. Hashiguchi [9]). Let L be a regular language, T ⊆ {·,∪, ∗}
be a subset of the rational language operations (concatenation, union, and star),
and M = {M1, . . . , Mn} be a finite set of regular languages. Then it is decid-
able whether L can be constructed from elements of M using a finite number of
operations from T .

As an immediate corollary we obtain that it is decidable whether a regular
language L is union-free, by taking singleton languages as M and T = {·, ∗}.

Let B be a subset of the set of states Q of the automaton V = 〈Σ, Q, q0, F, ϕ〉.
The set of words {x ∈ Σ∗ | ∀q ∈ B, ϕ(q, x) ∈ B} is denoted str(B).

Lemma 1 (J.A. Brzozowski, R. Cohen [2]). Let B ⊆ Q. Then str(B) is a
regular star language.

86 S. Afonin and D. Golomazov

3 Union-Free Languages

In this section some common properties of union-free languages are studied. In
particular, we present an algorithm for checking whether a regular language is
union-free.

First, we adduce an example of a union-free language. Its associated finite
automaton is shown in Fig. 1(a). We believe that it is not a simple task to
recognize a union-free language by looking at the automaton. For example, the
well-known Kleene algorithm constructs a regular expression that contains three
union operations on the top level. The language can be represented as M =
S∗

1bS∗
2aS∗

3 where S1, S2, and S3 are shown in Fig. 1(b),1(c), and 1(d), respectively
(the initial states of these automata are marked by 1).

In this section we assume that Σ = {a1, . . . , an} is a finite alphabet, L ⊆ Σ∗ is
a regular language and V = 〈Σ, Q, q0, F, ϕ〉 is its associated deterministic finite
automaton.

Proposition 1. Let L be a union-free language. Then tsw(L) is meaningfully
defined, i.e., if u and v are shortest words in L then u = v.

Proof. Suppose u = u1 · · ·ul, v = v1 · · · vl. Consider GF (L). It should have the
following form:

L = S∗
01S

∗
02 · · ·S∗

0k0
u1S

∗
11 · · ·S∗

1k1
u2 · · ·S∗

l−1,1 · · ·S∗
l−1,kl−1

ulS
∗
l,1 · · ·S∗

l,kl
.

Since v ∈ L and length of v is equal to that of u, vi = ui for i = 1, . . . , l, hence
u = v.
�

5

a

3

b

1

2a

b

4

a

b

a

b

a
b

(a) M

1

b

2a 3

b

4

a

b

5
a

b

a

b

a

(b) S1

1

2a

3
b

b

4

a

a

ba

b

(c) S2

1
2

a

3

b

a

4
b

5

a

6

b

b

a

a

b

a

b

(d) S3

Fig. 1. Example of the union-free language M = S∗
1bS∗

2aS∗
3

Minimal Union-Free Decompositions of Regular Languages 87

Remark 1. Obviously, the word u1 · · ·ul in the general form of a union-free lan-
guage L is equal to tsw(L).

Definition 2. Let 2Q = {B1, . . . , Bk}. We denote

B(L) = {str(B1), . . . , str(Bk)}.
By Lemma 1, B(L) is the finite set of regular star languages that can be con-
structed for every regular language. We now show that for every representation
of a subset of L as a product of a prefix language, a star language and a suffix
language the star language can be replaced with a language from B(L). Thus
we can extend every subset of L by replacing all star languages within it with
star languages from the fixed set B(L).

Lemma 2. Let M ⊆ L. Then for every representation M = PR∗T there exists
a language D ∈ B(L) so that M ⊆ PDT ⊆ L.

Proof. First it should be noted that we do not consider the automaton associated
with M and work only within the automaton for L.

Given a representation M = PR∗T we define

G = {q ∈ Q | ∃w ∈ P, ϕ(q0, w) = q}.

Then we denote ̂G = {q ∈ Q | ∀w ∈ T ϕ(q, w) ∈ F}. Obviously, G ⊆ ̂G ⊆ Q.
We define D = str(̂G). Taking any words p ∈ P and r ∈ R∗, we obtain that
ϕ(q0, p) ∈ G ⊆ ̂G and ϕ(q0, pr) ∈ ̂G, because ϕ(prt) ∈ F for all t ∈ T . This
means that ϕ(q, r) ∈ ̂G for all q ∈ ̂G, r ∈ R∗. Hence, R∗ ⊆ D ∈ B(L) and
M ⊆ PDT . PDT ⊆ L, because we extend the language R∗ to the language
D working within the same unmodified automaton for L and therefore cannot
obtain a language that contains more words than L does.
�
Corollary 1. For every representation L = PR∗T there exists a language D ∈
B(L) so that L = PDT .

Proof. We consider M = L and apply Lemma 2. Then L ⊆ PDT ⊆ L hence
L = PDT .
�
Definition 3. We denote C(L) a set of all maximal finite concatenations of
languages from B(L) and letters such that every concatenation is a subset of L.
Maximal means that if C1, C2 are such finite concatenations and C2 ⊆ C1 then
we include only the language C1 in C(L).

Lemma 3. Let M ⊆ L, B1 ⊆ Q, B2 ⊆ Q and M = P str(B1) str(B2)T , where
P and T are regular languages. Then ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B1) str(B2))
or there exists B3 ⊆ Q such that M ⊆ P str(B3)T ⊆ L.

Proof. We denote three sets of states: D1 = ϕ(q0, P), D2 = ϕ(q0, P str(B1)),
and D3 = ϕ(q0, P str(B1) str(B2)). Since str(B1) and str(B2) contain the empty
word, D1 ⊆ D2 ⊆ D3. We also obtain that str(B1) ⊆ str(D2), because the

88 S. Afonin and D. Golomazov

set ϕ(q0, P str(B1) str(B1)) = ϕ(q0, P str(B1)) = D2. Suppose D2 = D3. This
means that str(B2) ⊆ str(D2). Therefore, str(B1) str(B2) ⊆ str(D2) and M =
P str(B1) str(B2)T ⊆ P str(D2)T . Finally, we take B3 = D2. P str(B3)T ⊆ L
because we have not modified the automaton for L and still work within it.
�
Lemma 4. C(L) is a finite set.

Proof. Every element in C(L) is a concatenation of star languages and letters.
As already mentioned, all the letters concatenated form the shortest word in
the language represented by the concatenation. First we limit the number of
letters in every concatenation by |Q| − 1. We do that as follows: if a concate-
nation Li ∈ C(L) contains more than |Q| − 1 letters, we show that there is
a language Mi ∈ C(L) such that Li ⊆ Mi, and we come to a contradiction
with the definition of C(L). We show how to effectively construct the language
Mi given the language Li. Suppose Li ∈ C(L) and its general form contains
more than |Q| − 1 letters. This means that tsw(Li) contains cycles in the au-
tomaton for L. Then tsw(Li) = u1v1 · · ·uhvh, where uj ∈ Σ∗, vj ∈ Σ+ and
every vj = vj1 · · · vjlj

(j = 1, . . . , h) represents a cycle in the path u1v1 · · ·uhvh

in the minimal automaton for L (and every uj does not contain any cycles).
This means that Li = Lu1Lv1 · · ·Luh

Lvh
where languages Luj and Lvj are parts

of the general form of Li corresponding to the words uj, vj , respectively. For
example, Lv1 = v11Sp1 · · ·Spkpv12Sp+1,1 · · ·Sp+1,kp+1v13 · · · v1l1 . Then we define
the language Mi as Mi = Lu1(Lv1)∗ · · ·Luh

(Lvh
)∗. First, Li ⊂ Mi. Second,

tsw(Mi) = u1 · · ·uh and u1 · · ·uh represents a cycle-free path in L. Third,
Mi ⊆ L, because it has been constructed within the automaton for L. This
means that Li ⊂ Mi ⊆ L and we come to a contradiction, since C(L) contains
only maximal languages.

Now we prove that there is only a limited number of star languages be-
tween every pair of adjacent letters in every concatenation M ∈ C(L). For
every representation M = P str(B1) · · · str(Bk)T we apply Lemma 3 and ob-
tain that either ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B2)) ⊂ . . . ⊂ ϕ(q0, P str(Bk)) or
we can replace the language M with the language M ′ such that M ⊆ M ′ and
M ′ = P str(D1) · · · str(Dl)T and

ϕ(q0, P str(D1)) ⊂ ϕ(q0, P str(D2)) ⊂ . . . ⊂ ϕ(q0, P str(Dl)).

In this case M /∈ C(L). We conclude that every element in C(L) can be written
as a concatenation with not more than |Q|−1 star languages between every pair
of adjacent letters. These two limitations complete the proof.
�
Corollary 2. Let M ∈ C(L). Then tsw(M) represents a cycle-free path in the
automaton associated with L.

Proof. Since M ⊆ L, tsw(M) ∈ L. Suppose tsw(M) contains cycles in the
automaton associated with L. Then applying the procedure described in the
proof of Lemma 4 (which constructs the language Mi using the language Li), we
obtain a language M ′ ∈ C(L) such that M ⊂ M ′. This means that M /∈ C(L)
and we get a contradiction.
�

Minimal Union-Free Decompositions of Regular Languages 89

Corollary 3. |C(L)| � c|Q| (2|Q|)|Q|−1
, where c is the number of cycle-free

paths in the automaton associated with L.

Proof. First, we fix a cycle-free path in the automaton associated with L (c
possibilities). Then we fix a position of star languages: since there are not more
than |Q|−1 letters, we have |Q| possibilities (because star languages can appear
before the first letter and after the last one). Then we choose not more than
|Q|−1 languages from B(L) (every language can appear more than once), having
(

2|Q|)|Q|−1
possibilities. Finally, we multiply all three expressions and come to

the statement of the corollary.
�
Remark 2. In order to construct C(L) given a language L, we simply take all pos-
sible concatenations that contain letters that being concatenated form cycle-free
paths in the automaton for L and that contain not more than |Q| − 1 languages
from B(L) between every pair of letters. Finally, we exclude the languages that
are not subsets of L and the languages that are subsets of other languages from
the set.

Lemma 5. Let L be a regular language and M ⊆ L be a union-free language.
Then there exists a language CM ∈ C(L) such that M ⊆ CM .

Proof. We take every star language S∗
i,j from the general form of M . Thus M =

PS∗
i,jT where

P = S∗
01 · · ·S∗

0k0
a1 · · ·S∗

i1 · · ·S∗
i,j−1

and T = S∗
i,j+1 · · ·Si,kiai+1 · · ·alS

∗
l,1S

∗
l,2 · · ·S∗

l,kl
. Then we apply Lemma 2 and

derive that M ⊆ P str(Bk)T where Bk ∈ B(L). Thus we extended the “un-
known” language S∗

i,j to the known language str(Bk) from the set B(L). After
applying the procedure of extension to each star language in the general form for
M , we get a language CM that is a finite concatenation of languages from B(L)
and letters and also an extension of M . Hence M ⊆ CM and CM ∈ C(L).
�
Theorem 2. Let L be a regular language. Then L is a union-free language iff
L ∈ C(L).

Proof

Necessity. We consider M = L and apply Lemma 5. Then there exists a language
CL ∈ C(L) such that L ⊆ CL. But since all languages from C(L) are subsets of
L, L = CL and hence L ∈ C(L).

Sufficiency. Suppose L ∈ C(L) and L is a non-union-free language. Then it
cannot be represented as a finite concatenation from C(L) because every con-
catenation from C(L) only consists of union-free languages (languages from B(L)
and letters), and we come to a contradiction.
�

4 Union-Free Decomposition

Theorem 3. Let L be a regular language. Then there exists an algorithm that
results in a minimal union-free decomposition of L: L = L1 ∪ L2 ∪ · · · ∪ Lk (the
algorithm is described within the proof).

90 S. Afonin and D. Golomazov

Proof. To construct a minimal union-free decomposition, we examine all the sub-
sets of C(L) and choose the subset containing a minimum number of languages
(among all the subsets) which being added up are equal to L. It should be noted
that there is at least one subset containing languages which being added up are
equal to L, because there exists at least one union-free decomposition of L and to
every component of the decomposition we can apply Lemma 5, thus obtaining a
decomposition of L into languages from C(L). The final step is to prove that the
decomposition obtained is minimal, i.e., there exists no decomposition contain-
ing fewer elements than the one we got. Suppose we have such a decomposition
L = N1∪N2∪· · ·∪Np, p < k. We take each language Ni (i = 1, . . . , p) and apply
Lemma 5 to it, getting a union-free language CNi ∈ C(L) such that Ni ⊆ CNi .
Thus we get the new decomposition L = CN1 ∪CN2 ∪· · ·∪CNp , p < k and every
language CNi belongs to the set C(L). But since we have already examined all
the subsets of C(L), we have examined the subset {CN1 , . . . , CNp} too, and we
must have chosen this subset for the minimal decomposition. This contradiction
completes the proof.
�
Unfortunately, the algorithm for constructing a minimal union-free decomposi-
tion of a given regular language L is computationally expensive since it requires
checking all the subsets of the set C(L), which can contain up to c|Q| (2|Q|)|Q|−1

elements, where c is the number of cycle-free paths in the automaton associated
with L (see Corollary 3). We believe that there exist more effective algorithms
that result in a minimal union-free decomposition of a given regular language.
Some ideas on creating such an algorithm are given below.

A promising way of constructing minimal union-free decompositions can be
developed using the technique of cutting maximum star languages introduced
in [2]. In short, the technique is as follows. Let L be a regular language. The
equation L = X∗L is proved to have the unique maximal solution X0 (w.r.t. in-
clusion). Moreover, the equation L = X∗

0Y is proved to have the unique minimal
solution Y0. To construct a minimal union-free decomposition of L we solve these
two equations and obtain the language Y0. Then we apply the same procedure to
the language Y0 and get the minimal language Y1 such that L = X∗

0X∗
1Y1. If the

process ends (and it is an open problem, see [10]) we either obtain the language
Ym = {ε} (and thus the union-free decomposition L = X∗

0X∗
1 · · ·X∗

m) or get a
language Ym such that the equation Ym = X∗Ym has no non-trivial solutions.
In the latter case we check whether all the words in the language Ym start with
the same letter. If it is the case and, for example, all the words in Ym start
with a, we write Ym = aY ′

m, L = X∗
0X∗

1 · · ·X∗
maY ′

m and apply the procedure
described above to the language Y ′

m (solve the equation Y ′
m = X∗Y ′

m etc.). If it
is not, and there are words in Ym that start with different letters, e.g. a1, . . . , an,
we can write Ym = Ym1 ∪ · · · ∪ Ymn so that every language Ym1 , . . . , Ymn con-
tains only words starting with the same letter ai, 1 � i � n. Then we write
L = X∗

0X∗
1 · · ·X∗

mYm1 ∪ X∗
0X∗

1 · · ·X∗
mYm2 ∪ · · · ∪ X∗

0X∗
1 · · ·X∗

mYmn and apply
the procedure described above to every language Ym1 , . . . , Ymn . If the process
ends, thus we obtain the union-free decomposition of the language L, which is
likely to be minimal, but this is yet to be proved. As already mentioned, an-

Minimal Union-Free Decompositions of Regular Languages 91

other open problem connected with this technique is that the described process
of “cutting stars” has not yet been proved to always be finite (see [10]).

5 Conclusions and Further Work

In this paper we have presented an algorithm for constructing a minimal union-
free decomposition of a regular language. The algorithm includes an exhaustive
search but we tend to think that there exist more effective algorithms that solve
the problem.

We have also studied some common properties of union-free languages. In
particular, we have presented the new algorithm for checking whether a given
language is union-free which can be more effective than the one existing in the
field (see [9, 7]).

There are some other interesting questions connected with the problems con-
sidered. For instance, whether languages that form a minimal union-free decom-
position are pairwise disjoint (as sets of words). If it is not always the case, one
can consider minimal union-free decompositions that consist of pairwise disjoint
languages and ways of constructing them.

Another open problem is connected with star height. Given a star height of a
regular language is it possible to construct a minimal union-free decomposition
that consists of languages of the same star height?

Acknowledgements. The authors would like to thank the anonymous review-
ers for valuable comments. The first author would also like to thank Benedek
Nagy for drawing attention to the problem.

References

1. Paz, A., Peleg, B.: On concatenative decompositions of regular events. IEEE Trans-
actions on Computers 17(3), 229–237 (1968)

2. Brzozowski, J., Cohen, R.: On decompositions of regular events. Journal of the
ACM 16(1), 132–144 (1969)

3. Nagy, B.: A normal form for regular expressions. In: Eighth International Con-
ference on Developments in Language Theory, CDMTCS Technical Report 252,
CDMTCS, Auckland, pp. 51–60 (2004)

4. Brzozowski, J.: Regular expression techniques for sequential circuits. PhD thesis,
Princeton University, Princeton, New Jersey (1962)

5. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. In: STOC
1974: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
pp. 75–79. ACM, New York (1974)

6. Afonin, S., Khazova, E.: Membership and finiteness problems for rational sets of
regular languages. International Journal of Foundations of Computer Science 17(3),
493–506 (2006)

7. Leung, H., Podolskiy, V.: The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theoretical Computer Science 310(1–3), 147–158
(2004)

92 S. Afonin and D. Golomazov

8. Nagy, B.: Programnyelvek elemeinek szintaktikus lersa norml formban (syntactic
description of the elements of the programming languages in a normal form). In:
IF 2005, Conference on Informatics in Higher Education, Debrecen (2005)

9. Hashiguchi, K.: Representation theorems on regular languages. Journal of Com-
puter and System Sciences 27, 101–115 (1983)

10. Brzozowski, J.: Open problems about regular languages. In: Book, R.V. (ed.) For-
mal Language Theory, Santa Barbara, CA, Univ. of CA at Santa Barbara, pp.
23–47. Academic Press, New York (1980)

11. Nagy, B.: Union-free languages and 1-cycle-free-path-automata. Publicationes
Mathematicae Debrecen 68, 183–197 (2006)

	Minimal Union-Free Decompositions of Regular Languages
	Introduction
	Preliminaries
	Union-Free Languages
	Union-Free Decomposition
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

