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Abstract. Deciding whether a finite set of polyominoes tiles the plane
is undecidable by reduction from the Domino problem. In this paper,
we prove that the problem remains undecidable if the set of instances is
restricted to sets of 5 polyominoes. In the case of tiling by translations
only, we prove that the problem is undecidable for sets of 11 polyominoes.

Introduction

Tiling the plane given a finite set of tiles is an old and fascinating problem.
For an survey on tilings, the reader is invited to consult Grinbaum and Shep-
hard [I]. A celebrated computability result by Berger [2] is the undecidability of
the Domino problem: given a finite set of Wang tiles, unit squares with colored
edges, decide if the Wang tiles can tile the whole plane so that matching edges
share a same color. A polyomino is a simple kind of tile: it consists of rookwise
connected unit squares. Golomb [3] studied tiling by polyominoes and proved in
[4] that the Domino problem can be reduced to deciding if a finite set of poly-
ominoes tiles the plane. The reduction can be achieved by a classical encoding of
Wang tiles by polyominoes that preserves tilings. In this reduction, the number
of polyominoes is equal to the initial number of Wang tiles. A natural question
arises: what happens if we consider the tiling problem for a fixed number of
polyominoes? From this previous result, two cases might happen: (1) the prob-
lem is undecidable starting from a certain fixed number of polyominoes (2) the
problem is decidable for every fixed number of polyominoes but the family of de-
cision procedures is not itself recursive. As case (1) is more likely to happen, the
question is to find the frontier between decidability and undecidability. Such a
study of decidability questions with respect to a parameter appears for example
in the study of semi-Thue systems or for Post correspondence problem (PCP)
where it is shown that PCP(2) is decidable and PCP(7) is undecidable [5I6/[T].

Motivated by parallel computing, Wijshoff and van Leeuwen [§] proved that
the tilability of the plane by translation of a unique polyomino is decidable.
That result was further studied and understood by Beauquier and Nivat [9] who
described precisely the tilings by translation generated by a unique polyomino.

This paper is organized as follows. In section [Il we introduce Wang tiles,
polyominoes and dented polyominoes, a special variation of polyominoes used in
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the constructions. In section [2, we prove that it is undecidable whether a set of
5 polyominoes tiles the plane. In section Bl we deduce from previous section that
it is undecidable whether a set of 11 polyominoes tiles the plane by translation.
In section [ we discuss the case of smaller sets of tiles.

1 Definitions

Polyominoes. A polyomino is a simply connected tile obtained by gluing to-
gether rookwise connected unit squares. A tiling, of the Euclidian plane, by a set
of polyominoes is a partition of the plane such that each element of the partition
is the image by an isometry of a polyomino of the set. A tiling by translation is
a tiling where isometries are restricted to translations. A tiling is periodic if it is
invariant by translation, biperiodic if it is invariant by two non-colinear transla-
tions, aperiodic if it is not periodic. A set of polyominoes is aperiodic if it admits
a tiling and all its tilings are aperiodic.

A tiling is discrete if all the vertices of the unit squares composing the poly-
ominoes are aligned on the grid Z>2 If a tiling is not discrete, the tiling can be
split into two tilings of a half-plane along a line going through an edge along
which two unit squares are not aligned. By shifting one half-plane to align the
tiles, and iterating this process, one obtains the following lemma.

Lemma 1. A set of polyominoes admits a tiling if and only if it admits a discrete
tiling.

In this paper where we deal with tilability, we only consider discrete tilings,
thanks to this lemma. Thus, a polyomino can be considered as a finite, simply
connected, subset of Z2 and a tiling by a set of polyominoes is a partition of Z2
where each element is the image by an isometry of an element of the set. Each
such isometry can be decomposed into a translation and one out of 8 elementary
transformations obtained by composing right angle rotations and mirroring. A
sample polyomino and its 8 transformations are represented in Fig. [I1
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Fig. 1. A polyomino and its 8 transformations
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Polyominoes are compactly described by their contour words. A contour word
of a polyomino is a (finite) word on the alphabet {e, w,n, s} describing a walk
along the outline of the polyomino starting from and ending to a vertex of the
boundary of the polyomino where e is an east move (1,0), w is a west move
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(=1,0), n is a north move (0,1) and s is a south move (0,—1). A word is a
contour word if and only if the associated path does not cross itself. A polyomino
with a pointed contour word is represented in Fig.

ISl
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Fig. 2. A polyomino with a pointed contour word

Wang Tiles. A Wang tile is a unit square with colored edges. A tiling by a
set of Wang tiles is a discrete tiling by tiles of the set such that along each edge
the colors match on both sides. The Domino problem is the following decision
problem: given a finite set of Wang tiles, decide whether it admits a tiling.

Theorem 1 (Berger [2]). The Domino problem is undecidable.

The Polyomino problem is the following decision problem: given a finite set of
polyominoes, decide whether it admits a tiling. By a reduction from the Domino
problem to the Polyomino problem, Golomb [4] proved the undecidability of the
Polyomino problem.

Theorem 2 (Golomb [4]). The Polyomino problem is undecidable.

The reduction proceeds as follows. Given a finite set of Wang tiles, Golomb
encodes each tile into a big squarish polyomino. Special bumps and dents are
added to the corners of the tiles to force both alignment and orientation of the
tiles: if one of the encoding polyominoes appears with an orientation, all the
other tiles of the tiling have to use the same orientation. Special bumps and
dents are used along the sides of the big polyominoes to encode the colors of the
Wang tiles. Quotienting the set of tilings of the set of encoding polyominoes by
isometries, it is in bijection with the set of tilings of the given set of Wang tiles.

Dented Polyominoes. A dented polyomino is a polyomino with edges labeled
by a shape and an orientation. The four possible orientations {p, q, b, d} and their
interpretation depending on the direction of the edge are depicted on Table [Tl
for a sample shape. On a contour word, inside shapes define bumps and outside
shapes define dents. A tiling by a set of dented polyominoes is a tiling by the
corresponding set of polyominoes where bumps and dents match along edges.

Dented polyominoes provide a convenient tool to construct complicated sets
of polyominoes. These polyominoes with puzzle bumps and dents can be easily
converted into polyominoes.

Lemma 2. FEvery finite set of dented polyominoes can be encoded as a finite set
of polyominoes such that their sets of tilings are in one-to-one correspondence.
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Table 1. Encoding of bumps and dents orientation
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Proof. In order to guarantee that bumps and dents do not interfere with the
matching conditions of polyominoes, the idea is to rescale the polyominoes. For
all k € Z*, a k-rescaling of a set of polyominoes consists into scaling the poly-
ominoes by a factor k, i.e., replacing each unit square by a square of k by k unit
squares. Tilings are preserved by rescaling: the set of tilings of a set of polyomi-
noes is in one-to-one correspondence with the set of tilings of its k-rescaling.
To encode a finite set of dented polyominoes into a finite set of polyominoes:
first, rescale the set of polyominoes by a factor far bigger than the size of any
shape of its bumps and dents; then, add bumps and dents in the middle of each
rescaled edge. O

2 Tiling with a Fixed Number of Polyominoes

The k-Polyomino problem is the following decision problem: given a set of k
polyominoes, decide whether it admits a tiling. This section is dedicated to the
proof of the following theorem.

Theorem 3. The 5-Polyomino problem is undecidable.

We will proceed by reduction of the Domino problem. Given a finite set 7 of
Wang tiles, we construct a set of 5 dented polyominoes P(7) such that, up to
isometry, the set of tilings of 7 is in one-to-one correspondence with the set of
tilings of P(7). The proof goes as follows. First, we describe the construction of
P(7). Then, we explain how to encode any tiling of 7 by a tiling of P (7). Finally,
we show that any tiling of P(7) encodes a tiling of 7.

2.1 Encoding a Set of Wang Tiles

Let 7 be a set of N Wang tiles. The set of dented polyominoes P(7) consists of
the following 5 tiles, represented in Fig.

meat encodes all tiles of the set 7 sequentially;

jaw acts as a selector to select exactly one tile of the meat;

filler is used for padding the blank leaved by the meat inside the jaw;
tooth erases the bits on the meat so that it fits inside the jow;

wire links meat pieces together to verify tiling constraints.
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From left to right and bottom to top : meat, tooth, wire, filler, jaw
Notice that here N =4 and k = 3 to fit the page (in the text k > 4).

Fig. 3. Tiles (rotated to fit in page)
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More formally, the dented polyominoes use 4 different shapes for bumps and
dents, detailed on Table 2

Table 2. Types of bumps and dents

blank bit marker inside
shape _re _Je 52
notation b m 1
order 1 4 4 2
bump wire, tooth meat, filler tooth, filler
dent meat jaw jaw

Let k be a large enough integer and choose an encoding on k — 4 bits of the
colors of the set of Wang tiles (horizontal and vertical colors can use different
encodings). Let (a}), (b%), (), (d}) be respectively the north, east, south, and
west binary encoding of the tiles where 7 is the tile index from 1 to N and j is
the bit index from 1 to k — 4. Let (a}) be the encoding of the k bits, by adding
prefix 00 and suffix 01, of (a}) on the alphabet {b,d}. Let (b%) be the encoding
of the k bits, by adding prefix 10 and suffix 11, of (b;) on the alphabet {p,q}.
Let (c}) be the encoding of the k bits, by adding prefix 00 and suffix 01, of (c})
on the alphabet {b,d}. Let (2%) be the encoding of the k bits, by adding prefix
10 and suffix 11, of (d;) on the alphabet {p,q}. The dented polyominoes are
given by their contour words on Table

Table 3. Contour encoding of the tiles

tooth: efnw}s
wire: elgn5w2N(k+1)+1n4w55562N(k+1)+184

b b\~ ( b, \Fk d q p\E o pNE. P
filler: ey, (567;) (ein) esnwi, (nwh)”® (whs)® wh,s

. . . N-1 k k N-1 B
jaw: el (eE” (ne?)" (ePs)* e?,b) s (wfn (swd)” (win) wfn) wd s1e2(N—1)(h+2)+4 4
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Notice the following important properties of these tiles. The meat consists of
a sequence of N diamonds decorated with bit shapes with a prefix and a suffix
marker shape pointing to the diamond. If one connects a tooth in each bit dent
of a diamond of the meat, the diamond becomes similar to the filler. Moreover,
both inside parts of a jaw consists of N — 1 places to put a filler plus a marker
shape at the entry of the jaw, pointing outside.



644 N. Ollinger

2.2 Encoding Tilings by Wang Tiles
Let us first prove the following lemma.
Lemma 3. FEvery tiling by 7 can be encoded as a tiling by P(T).

The set of dented polyominoes is designed to encode a Wang tile by selecting one
diamond of a meat, hiding the other diamonds using two jaws on the left and
the right, padding inside the jaws with teeth and fillers, as represented in Fig. 4l
The colors of the tile are propagated to the four neighbor tiles using wires.

Fig. 4. Encoding of a Wang tile including inter-tiles wires

Let T € 72° be a tiling by 7. Each north-west diagonal (x + y = 4 for the
ith diagonal) is encoded as a line of Wang tile encodings where a jaw connects
tile T'(x,i — x) to tile T(z 4+ 1,i — = — 1). These lines of encoding are put on
top of each other with a slight translation so that tile T'(x,7 — x) is connected
by wires to T(x + 1,1 — ), T'(z,i —x+ 1), T(x — 1,71 — ) and T'(z,i — x — 1),
as represented in Fig. Bl Notice that the choices made for a, b, ¢, and 0 permits
such a connection only if the Wang tiling is valid. Thus, one obtains a tiling of
the dented polyominoes.

Fig. 5. Wiring of Wang tiles
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2.3 Every Tiling Encodes a Tiling
Now, we prove the following lemma.
Lemma 4. Every tiling by P(7) encodes a tiling by 7.

Consider a tiling by the dented polyominoes. We first show that it must contain
a jaw. Consider any tile of the tiling. If it is a jaw, we are done. Examine Table[2l
If it is a meat or a filler, it has a marker bump that should be linked to a dent
only found on a jaw. If it is a tooth, it has an inside bump that should be linked
to a dent only found on a jaw. Finally, if it is a wire, it has bit bump that should
be linked to a meat, itself connected to a jaw.

Consider a jaw tile of the tiling. To fill all the marker bumps, only filler and
meat tiles can be used. As fillers have inside bumps, they can only be used
completely inside the jaw. Thus, the markers on the extremities of the jaw have
to be filled by the dents of a meat. Consider the meat that fills a marker at
the extremity of the jaw. As marker bumps only appear inside jaws, the marker
dent on the other side of the diamond of the meat next to the jaw has to be at
the extremity of a next jaw. The only possibility to fill the gap in between the
jaw and the meat locking its extremity is to use fillers and teeth. By now, we
have proved that each jaw of the tiling appears in a biinfinite line (or column if
rotated) of alternating jaws and meats where each meat has exactly one selected
diamond outside the jaws.

Consider now the diamond of each meat appearing outside the jaws: it has bit
bumps. A bit dent is found only on teeth and wires. As a tooth cannot appear
outside a jaw (it as an inside dent), only wires can be connected to these bumps.
Consider the two bit bumps side by side at the top of the diamond hill. The only
possibility for two wires to appear side by side is to have the left one point to the
left and the right one point to the right. This enforces all the wires in between
the jaw and the top hill wire to point in the same direction: left ones to the left
and right ones to the right. Thus, every tiling by dented polyominoes consists of
biinfinite lines (or columns) of selected meat diamonds connected by wires in a
lattice way as on Fig.

Due to isometries, it remains to prove that all the selected diamonds have the
same orientation. This part is enforced by the prefix/suffix trick in the a, b, ¢,
and 0 encoding: the only possibility for a diamond to be connected to another
diamond is that prefix and suffix match, thus both should be oriented in the
same way. Thus, the tiling is the image by an isometry of a tiling by Wang tiles.
We have proved that every tiling by P(7) encodes a tiling by 7, achieving the
reduction.

3 Tiling by Translation

The k-Polyomino translation problem is the following decision problem: given a
set of k polyominoes, decide if it admits a tiling by translation. Using the result
of previous section, one obtains the following.
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Theorem 4. The 11-Polyomino translation problem is undecidable.

To prove this theorem, for any finite set of Wang tiles 7, construct a set of
11 polyominoes as follows. Consider the set of 5 dented polyominoes P(7). To
encode any tiling by 7 into a tiling by P(7) as done in the previous section, we
use exactly:

1 transformation of meat;

1 transformation of jaw;

1 transformation of filler;

4 transformations of wire;
4 transformations of tooth.

The set of 11 polyominoes tiling by translation consists exactly of these tile
transformations. These dented polyominoes admit a tiling if and only if the set
of Wang tiles admits a tiling.

4 Going Further

What can be said about tilability for sets of less that 5 polyominoes? or less
than 11 polyominoes for tilings by translation? In the case of 1 polyomino, it is
decidable for tiling by translation and still open for tiling with isometries.

Theorem 5 (Wijshoff and van Leeuwen [8], Gambini and Vuillon [10]).
The 1-Polyomino translation problem is decidable in time quadratic in the size
of the contour word.

Open Problem 1. Is the 1-Polyomino problem decidable?

To prove the undecidability of the Polyomino problem, one has to be able to
construct aperiodic sets of polyominoes. Ammann et al provide a set of 2 polyg-
onal tiles with colors and 3 polygonal tiles with bumps and dents that admits
only aperiodic tilings. This set is convertible into polyominoes.

Theorem 6 (Ammann et al. [11]). There exists an aperiodic set of 3 poly-
ominoes.

Theorem 7 (Ammann et al. [I1]). There exists an aperiodic set of 8 poly-
ominoes for tiling by translation.

Open Problem 2. Is the k-Polyomino problem decidable for 3 < k < 5%
Open Problem 3. For8 < k < 11, is the k-Polyomino translation problem de-

cidable?
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