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Abstract. Over the last half century, a vast literature documenting the
importance of deterministic, nondeterministic, and alternating finite au-
tomata as an enormously valuable concept has been developed. In the
present paper, we tour a fragment of this literature. Mostly, we dis-
cuss developments relevant to finite automata related problems like, for
example, (i) simulation of and by several types of finite automata, (ii)
standard automata problems such as, e.g., fixed and general membership,
emptiness, universality, equivalence, and related problems, and (iii) min-
imization and approximation. We thus come across descriptional and
computational complexity issues of finite automata. We do not prove
these results but we merely draw attention to the big picture and some
of the main ideas involved.

1 Introduction

Nondeterministic finite automata (NFAs) were introduced in [59], where their
equivalence to deterministic finite automata (DFAs) was shown. Later the con-
cept of alternation was developed in [10], where also alternating finite automata
(AFAs) were investigated, which turned out to be equivalent to DFAs, too. Many
work has been done in the study of descriptional complexity of simulation of and
by several types of automata and on the computational complexity of decision
problems related to finite automata. The goal of this research is to obtain tight
bounds on simulation results and to classify the computational complexity of
problems according to the complexity classes NC1, L, NL, P, NP, and PSPACE,
or others—for basics in computational complexity theory we refer to, e.g., [33].
Our tour on the subjects listed in the abstract of finite automata related prob-
lems cover some (recent) results in the field of descriptional and computational
complexity. It obviously lacks completeness and it reflects our personal view of
what constitute the most interesting links to descriptional and computational
complexity theory. In truth there is much more to the regular languages, DFAs,
NFAs, etc., than one can summarize here. For a recent survey on finite automata
we refer to [68] and [30].

Our nomenclature of finite automata is as follows: The powerset of a set Q is
denoted by 2Q and the empty word by λ. A nondeterministic finite automaton
(NFA) is a quintuple A = (Q, Σ, δ, q0, F ), where Q is the finite set of states, Σ
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is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set
of accepting states, and δ : Q × Σ → 2Q is the transition function. A finite
automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all states
q ∈ Q and letters a ∈ Σ. In this case we simply write δ(q, a) = p instead of
δ(q, a) = {p} assuming that the transition function is a mapping δ : Q×Σ → Q.
So, any DFA is complete, that is, the transition function is total, whereas it
may be a partial function for NFAs in the sense that the transition function of
nondeterministic machines may map to the empty set. The language accepted
by the NFA or DFA A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where
the transition function is recursively extended to δ : Q × Σ∗ → 2Q. A finite
automaton is said to be minimal if its number of states is minimal with respect
to the accepted language. Note that a sink state is counted for DFAs, since they
are always complete, whereas it is not counted for NFAs, since these devices are
not necessarily complete. For further details we refer to [33].

We identify the logical values false and true with 0 and 1 and write {0, 1}Q

for the set of finite functions from Q into {0, 1}, and {0, 1}{0,1}Q

for the set of
Boolean formulas (functions) mapping {0, 1}Q into {0, 1}. An alternating finite
automaton (AFA) is a quintuple A = (Q, Σ, δ, q0, F ), where Q, Σ, q0, and F are
as for NFAs, and δ : Q×Σ → {0, 1}{0,1}Q

is the transition function. The transi-
tion function maps pairs of states and input symbols to Boolean formulas. Before
we define the language accepted by the AFA A we have to explain how a word
is accepted. As the input is read (from left to right), the automaton “builds” a
propositional formula, starting with the formula q0, and on reading an input a,
replaces every q ∈ Q in the current formula by δ(q, a). The input is accepted if
and only if the constructed formula on reading the whole input evaluates to 1 on
substituting 1 for q, if q ∈ F , and 0 otherwise. This substitution defines a map-
ping from Q into {0, 1} which is called the characteristic vector fA of A. Then the
language accepted by A is defined as L(A) = {w ∈ Σ∗ | w is accepted by A }.
Two automata are equivalent if and only if they accept the same language. For
further details we refer to [10] and [33].

2 Descriptional Complexity of Finite Automata
Simulations

Since regular languages have many representations in the world of finite au-
tomata, it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. Here
we measure the costs of representations in terms of the states of a minimal au-
tomaton accepting a language. More precisely, the simulation problem is defined
as follows:

– Given two classes of finite automata C1 and C2, how many states are suffi-
cient and necessary in the worst case to simulate n-state automata from C1

by automata from C2?

In particular, we are interested in simulations between DFAs, NFAs, and AFAs.
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It is well known that to any NFA one can always construct an equivalent
DFA [59]. This so-called powerset construction, where each state of the DFA is
associated with a subset of NFA states, turned out to be optimal, in general.
That is, the bound on the number of states necessary for the construction is
tight in the sense that for an arbitrary n there is always some n-state NFA
which cannot be simulated by any DFA with strictly less than 2n states [56,58].
So, NFAs can offer exponential saving in the number of states compared with
DFAs. This gives rise to the following theorem.

Theorem 1 (NFA by DFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then 2n states are sufficient and necessary in the worst case for a DFA
to accept L(A).

The situation becomes more involved when AFAs come into play. Alternating
finite automata as we have defined them have been developed in [10]. At the
same period in [9] the so-called Boolean automata were introduced. Note, that
several authors use the notation “alternating finite automata” but rely on the
definition of Boolean automata. Though it turned out that both types are al-
most identical, there are differences with respect to the initial configurations.
While for AFAs the computation starts with the fixed propositional formula q0,
a Boolean automaton starts with an arbitrary propositional formula. Clearly,
this does not increase their computational capacities. However, it might make
a difference of one state from a descriptional complexity point of view when
simulating a Boolean automaton by an AFA. It is an open problem whether or
not the additional state is really necessary, that is, whether the bound of n + 1
is tight.

Next we turn to the simulation of AFAs by NFAs and DFAs. The tight bound
of 22n

states for the deterministic simulation of n-state AFAs has already been
shown in the famous fundamental papers [10] for AFAs and [9,50] for Boolean
automata.

Theorem 2 (AFA by DFA Simulation). Let n ≥ 1 and A be an n-state
AFA or Boolean automaton. Then 22n

states are sufficient and necessary in the
worst case for a DFA to accept L(A).

The original proofs of the upper bound rely on the fact that an AFA or a Boolean
automaton can enter only finitely many internal situations, which are given by
Boolean functions depending on n Boolean variables associated with the n states.
The number of 22n

such functions determines the upper bound.
In [17] the constructions of simulating NNFAs are presented which implies the

same upper bound. Basically, an NNFA is an NFA with multiple entry states,
where initially one is nondeterministically chosen. The basic idea is that the
NNFA simulates the AFA or Boolean automaton A by guessing the sequence of
functions of the form {0, 1}Q that appear during the evaluation of the propo-
sitional formula computed by the A in reverse order. Since there are 2n such
functions we obtain the upper bound stated in Theorem 3. Moreover, since the
powerset constructions works also fine for the NNFA by DFA simulation, the
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presented construction also reveals the upper bound for the AFA simulation by
DFAs already stated in Theorem 2.

It is known that any NNFA can be simulated by an NFA having one more
state. The additional state is used as new sole initial state which is appropriately
connected to the successors of the old initial states. On the other hand, in gen-
eral this state is needed. Nevertheless, it is an open problem whether there are
languages accepted by n-state AFAs or Boolean automata such that any equiv-
alent NFA has at least 2n + 1 states. In [17] it is conjectured that this bound
presented in the following theorem is tight.

Theorem 3 (AFA by NNFA and NFA Simulation). Let n ≥ 1 and A be an
n-state AFA or Boolean automaton. Then 2n states are sufficient and necessary
in the worst case for an NNFA to accept L(A). Moreover, 2n + 1 states are
sufficient for an NFA to accept L(A), and for every n ≥ 1 there is an n-state
AFA or Boolean automaton A such that any NFA accepting L(A) has at least 2n

states.

The matching lower bound of Theorem 2 is shown in [10] for AFAs by witness
languages in a long proof. Before we come back to this point for Boolean au-
tomata, we turn to an interesting aspect of AFAs and Boolean automata. One
can observe that the construction of the simulating NNFA is backward determin-
istic [10]. So, the reversal of a language accepted by an n-state AFA or Boolean
automaton is accepted by a not necessarily complete 2n-state DFA which in turn
can be simulated by a (2n +1)-state complete DFA. This result has significantly
be strengthened in [50], where it is shown that the reversal of every n-state DFA
language is accepted by a Boolean automaton with 	log2(n)
 states. With other
words, with restriction to reversals of regular languages a Boolean automaton
can always save exponentially many states compared with a DFA. The next
theorem summarizes these results.

Theorem 4 (Reversed AFA by DFA Simulation). Let n ≥ 1 and A be
an n-state AFA or Boolean automaton. Then 2n + 1 states are sufficient and
necessary in the worst case for a DFA to accept the reversal of L(A). If the
minimal DFA accepting the reversal of L(A) does not have a rejecting sink state,
then 2n states are sufficient. Moreover, the reversal of every language accepted
by an n-state DFA is accepted by a Boolean automaton with 	log2(n)
 states.

The theorem lefts open whether the reversal of every n-state DFA language
is also accepted by some AFA with 	log2(n)
 states. However, we know that
	log2(n)
 + 1 states are sufficient for this purpose.

Now we are prepared to argue for the matching lower bound of Theorem 2
for Boolean automata in a simple way. It is well known that for any m ≥ 1
there is an m-state DFA A such that any DFA accepting the reversal of L(A)
has 2m states [50]. Setting m = 2n we obtain a 2n-state DFA language L(A)
whose reversal is accepted by a Boolean automaton with n states by Theorem 4.
On the other hand, the reversal of L(A) takes at least 22n

states to be accepted
deterministically.
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Next we argue that the upper bound of Theorem 3 cannot be improved in
general. To this end, let A be an n-state AFA or Boolean automaton such that
any equivalent DFA has 22n

states. Let m be the minimal number of states for an
equivalent NNFA. Since the NNFA can be simulated by a DFA with at most 2m

states, we conclude 2m ≥ 22n

, that is, the NNFA has at least m ≥ 2n states.
We now direct our attention to the question whether alternation can always

help to represent a regular language succinctly. It is well known that nonde-
terminism cannot help for all languages. So, how about the worst case of the
language representation by alternating finite automata? The situation seems to
be more sophisticated. Theorem 4 says that for reversals of n-state DFA lan-
guages we can always achieve an exponential saving of states. Interestingly, this
potential gets lost when we consider the n-state DFA languages itself (instead
of their reversals). The next theorem and its corollary are from [51].

Theorem 5. For every n ≥ 1 there exists a minimal DFA A with n states such
that any AFA or Boolean automaton accepting L(A) has at least n states.

The DFAs An = ({q0, q1, . . . , qn−1}, {a, b}, δ, q1, F ) witness the theorem for n ≥
2, where F = { qi | 0 ≤ i ≤ n − 1 and i even } and the transition function given
by

δ(qi, a) = q(i+1) mod n and δ(qi, b) =

{
qi for 0 ≤ i ≤ n − 3
qn−1 for i ∈ {n − 2, n − 1}.

Each DFA An has the property that any DFA A′
n accepting the reversal of L(A)

has at least 2n states. Moreover, An and A′
n both are minimal, complete and

do not have a rejecting sink state [50]. Assume that L(A) is accepted by some
AFA or Boolean automaton with m < n states. Then the reversal of L(A) would
be accepted by some DFA having at most 2m states by Theorem 4. This is a
contradiction since 2m < 2n.

Up to now we dealt with simulations whose costs optimality is witnessed by
regular languages which may be built over alphabets with two or more letters.
For the particular case of unary regular languages, that is, languages over a
single letter alphabet, the situation turned out to be significantly different. The
problem of evaluating the costs of unary automata simulations was raised in [61],
and has led to emphasize some relevant differences with the general case. So,
we next turn to draw a part of that picture, which is complemented by the
sophisticated studies in [55] which reveal tight bounds also for many other types
of finite automata and, in addition, is a valuable source for further references.
For state complexity issues of unary finite automata Landau’s function F (n) =
max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 and x1 + · · · + xk = n } plays a crucial
role. Here, lcm denotes the least common multiple. Since F depends on the
irregular distribution of the prime numbers, we cannot expect to express F (n)
explicitly by n. The following asymptotic tight bound on the unary NFA by DFA
simulation was presented in [13,14].
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Theorem 6 (Unary NFA by DFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).

In general, the deterministic simulation of AFAs may cost a double exponen-
tial number of states. The unary case is cheaper. Since every unary language
coincides trivially with its reversal, the upper bound of the following theorem
is immediately derived from Theorem 4. Interestingly, to some extend for unary
languages it does not matter in general whether we simulate an AFA determin-
istically or nondeterministically. The tight bounds differ at most by one state.
The upper bound of this claim follows since any DFA is also an NFA and NFAs
are not necessarily complete. The lower bounds can be seen by considering the
single word language Ln = {a2n−1}. For each n ≥ 1, the language Ln is accepted
by some minimal (2n + 1)-state DFA as well as by some minimal 2n-state NFA.

Theorem 7 (Unary AFA by DFA and NFA Simulation). Let n ≥ 1 and A
be an n-state AFA accepting a unary language. Then 2n + 1 states are sufficient
and necessary in the worst case for a DFA to accept L(A). If the minimal DFA
does not have a rejecting sink state, then 2n states are sufficient. Moreover, 2n

states are sufficient and necessary in the worst case for an NFA to accept L(A).

Theorem 5 revealed that alternation cannot help to reduce the number of states
of DFAs or NFAs in all cases. The same is true for nondeterministic simulations of
DFAs in general and in the unary case. However, for unary languages alternation
does help. By Theorem 7 we know already that any AFA simulating an n-state
DFA accepting a unary language has not less than 	log2(n)
 − 1 states. Once
more the unary single word languages Ln are witnesses that this saving can be
achieved. This gives rise to the next theorem.

Theorem 8 (Unary DFA by AFA Simulation). Let n ≥ 1 and A be an n-
state DFA accepting a unary language. Then 	log2(n)
 − 1 states are necessary
for an AFA to accept L(A). Moreover, there exists a minimal DFA A with n
states accepting a unary language such that any minimal AFA accepting L(A)
has exactly 	log2(n)
 − 1 states.

Finally, we derive the always possible savings for unary NFA by AFA simulations
as follows. Given some n-state NFA accepting a unary language, by Theorem 6
we obtain an equivalent DFA that has at most eΘ(

√
n·lnn) = 2Θ(

√
n·ln n) states.

Now Theorem 4 in combination with says essentially that there is an equivalent
AFA with Θ(

√
n · ln n) states. In order to see that these savings are optimal in

general, consider a unary n-state NFA such that any equivalent DFA must have
eΘ(

√
n·ln n) states. Since the bound of Theorem 6 is tight such automata exist.

Clearly, any equivalent AFA has at least Θ(
√

n · ln n) states. Otherwise there
would be an equivalent DFA with less than eΘ(

√
n·ln n) states by Theorem 7.

Theorem 9 (Unary NFA by AFA Simulation). Let n ≥ 1 and A be a
minimal n-state NFA accepting a unary language. Then Θ(

√
n · ln n) states are
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sufficient for an AFA to accept L(A). Moreover, there exists an n-state NFA
accepting a unary language such that any equivalent AFA requires Θ(

√
n · ln n)

states. If A is a unary n-state NFA such that any equivalent DFA has at least
eΘ(

√
n·ln n) states, then any AFA accepting L(A) has at least Θ(

√
n · ln n) states.

Concerning structural properties in [17] it is shown that negations in the Boolean
functions defining an AFA can be avoided at the cost of increasing the number
of states by factor of two. For the role played by the number of accepting states
the following is known. While the family of languages accepted by DFAs with
k accepting states is strictly contained in the family of languages accepted by
DFAs with k+1 accepting states, for k ≥ 0, it is known that for NFAs two states
are always sufficient. The situation for AFAs is in contrast to the situation for
DFAs but parallels the situation for NFAs. More precisely, in [17] it has been
shown that for every n-state AFA A accepting a λ-free regular language one
can construct an equivalent n-state AFA A′ without accepting state. If L(A)
contains the empty word, then A′ has one sole accepting state that coincides
with the start state.

3 Computational Complexity of Some Decision Problems
for Finite Automata

We recall what is known from the computational complexity point of view on
some standard problems for regular languages. The problems considered in this
section are all decidable, as most problems for finite automata, and they will be
grouped as mentioned in the abstract.

3.1 The Fixed and General Membership Problem

Our tour on problems for regular languages is started with the definition of the
fixed and general membership problem: The former problem is device indepen-
dent by definition and is commonly referred to in the literature as the fixed
membership problem for regular languages:

– Fix a finite automaton A. For a given word w, does the word w belong to
the language L(A), i.e., is w ∈ L(A)?

A natural generalization is the general membership problem, which is defined as
follows:

– Given a finite automaton A and a word w, i.e., a suitable coding1 〈A, w〉,
does the word w belong to the language L(A), i.e., is w ∈ L(A)?

1 A coding function 〈·〉 maps a finite automaton A and a string w to a word 〈A, w〉 over
a fixed alphabet Σ. We do not go into the details of 〈·〉, but assume it fulfills certain
standard properties; for instance, that the coding of the input alphabet symbols as
well as the coding of the states is of logarithmic length.
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Obviously, the fixed membership problem for regular languages reduces to the
general membership problem for any suitable class of automata, that describes
the family of regular languages. On the other hand, the complexity of the general
membership problem may depend on the given language descriptor. For instance,
it is easy to see that the general membership problem for DFAs is in L, and in fact,
complete for L under weak reductions. The problem is NL-complete for NFAs [47],
and becomes P-complete for AFAs as shown in [45]. These completeness results
even hold for finite automata accepting languages over a singleton, i.e., unary
languages. We summarize these results in the following theorem:

Theorem 10 (General Membership). The general membership problem for
DFAs is L-complete with respect to constant depth reducibilities. Moreover, the
problem is NL-complete for NFAs and becomes P-complete for AFAs. The results
remain valid for automata accepting unary languages.

For the fixed membership problem there is much more to tell, since there is a deep
and nice connection between this problem and circuit complexity theory. There
exist several characterizations, in terms of formal logic, semigroup theory, and
operations on languages, of the regular languages in the circuit complexity classes
AC0, ACC0, and NC1—see, e.g., [6,7,53]. Here AC0 (NC1, respectively) is the
class of languages accepted by uniform circuit families of constant (logarithmic,
respectively) depth, polynomial size, with AND- and OR-gates of unbounded
(bounded, respectively) fan-in and ACC0 is the class of languages accepted by
AC0 circuits with additional MODULO-gates. Hence AC0 ⊆ ACC0 ⊆ NC1 and
note that AC0 is distinct from NC1 by [3] and [18]. It is conjectured that ACC0

is a proper subset of NC1, too.
First, observe that by a divide and conquer approach it is easy to see that

regular languages in general belong to NC1. On the other hand, the NC1 lower
bound (under weak reductions such as, e.g., constant depth reducibilities) was
established in the landmark paper of Barrington [5], where it was shown that
bounded width polynomial size programs over finite monoids recognize exactly
the languages in NC1. To this end, it was shown how to simulate the AND-, OR-,
and NOT-gates of a NC1-circuit with programs over the symmetric group S5 on
five elements. Programs over monoids are a straightforward generalization of
the concept of of recognizability. Here language L ⊆ Σ∗ is recognizable if and
only if there exists a finite monoid M , a morphism ϕ : Σ∗ → M , and a subset
N ⊆ M such that L = ϕ−1(N). In other words an input word w = a1a2 . . . an

is translated via the morphism ϕ to the word ϕ(a1)ϕ(a2) . . . ϕ(an) of monoid
elements, that is evaluated in the monoid to yield a value whose N membership
is tested. A program over a monoid M , for short M -program, takes an input
word a1a2 . . . an of length n and transforms it into a word σ = σ1σ2 . . . σm, for
some m, over monoid elements by querying the input positions in arbitrary order
and transforming the read letter into a monoid element, which is multiplied in
the monoid to yield the value of the program. More formally, an M -program for
input of length n, is a sequence of instructions Pn = 〈i1, ϕ1〉〈i2, ϕ2〉 . . . 〈im, ϕm〉,
where for each j with 1 ≤ j ≤ m we have 1 ≤ ij ≤ n and ϕj : Σ → M , and an
accepting subset N ⊆ M . On input w = a1a2 . . . an, the program produces the
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word ϕ(w) = ϕ1(ai1 )ϕ2(ai2 ) . . . ϕm(aim) of monoid elements, that is multiplied
out in M and whose N membership determines whether the input is recognized
or not, i.e., the word w is recognized if and only if ϕ(w) is in N . The words
recognized by the M -program Pn define a language L ⊆ Σn in the obvious way.
The result in [5] reads as follows:

Theorem 11 (Fixed Membership). The fixed membership problem for regu-
lar languages is NC1-complete with respect to constant depth reducibilities.

The strong algebraic background on this result has triggered further studies on
M -programs over monoids satisfying certain restrictions. For instance, one of
the best investigated restriction is aperiodicity. Here a monoid is aperiodic if
and only if all elements x from the monoid satisfy xt = xt+1, for some t ≥ 0.
It is well known that a language L has a aperiodic syntactic monoid if and
only if language L is star-free, i.e., it can be obtained from the elementary
languages {a}, for a ∈ Σ, by applying Boolean operations and finitely many
concatenations, where complementation is with respect to Σ∗. These languages
are exhaustively studied in, e.g., [54] and [60]. We mention in passing that first
it was shown in [63] that the aperiodicity problem (given a finite automaton
with input alphabet Σ, does it accept an aperiodic or star-free language?) for
DFAs is coNP-hard and belongs to PSPACE. Later this result was improved to
PSPACE-completeness [11]. In fact, using some algebraic background developed
in [67] on the parameterization of aperiodic and solvable monoids one can show
the following result [7].

Theorem 12 (Fixed Membership). (1) The fixed membership problem for
regular languages recognized by aperiodic monoids belongs to AC0. (2) The fixed
membership problem for regular languages recognized by solvable monoids be-
longs to ACC0.

A closer look reveals that one can obtain even more, namely a tight connec-
tion between the parameterization of AC0 in terms of circuit depth k and a
parameterization of aperiodic monoids, namely Brzozowski’s dot-depth hierar-
chy [15,16]. Instead of using a divide-and-conquer approach as for regular lan-
guages in general, the inductive definition of dot-depth k monoids or languages
allows a straightforward decomposition of language membership that gives a
one-to-one correspondence between dot-depth and circuit depth. In [7] it was
shown that the fixed membership problem for regular languages recognized by
dot-depth k monoids is solvable in AC0 by a family of depth k circuits.

3.2 Emptiness, Universality, Equivalence, and Related Problems

In this subsection we consider non-emptiness, universality, equivalence, and some
related problems such as, e.g., intersection emptiness or bounded universality
or equivalence, for finite automata in more detail. Obviously, these standard
problems are related to each other and we will briefly discuss their relations and
moreover some consequences to the complexity of some non-trivial properties for
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problems on DFAs, NFAs, and AFAs. The non-emptiness problem for NFAs is
defined as follows:

– Given a nondeterministic finite automaton A, is L(A) �= ∅?
Moreover, the universality problem for NFAs is:

– Given a nondeterministic finite automaton A with input alphabet Σ, is the
language L(A) universal, i.e., L(A) = Σ∗?

The equivalence problem for NFAs is defined for two devices as:

– Given two nondeterministic finite automata A1 and A2, is L(A1) = L(A2)?

This notation naturally generalizes to other types of finite automata.
Intuitively, the universality problem can be much harder than the correspond-

ing emptiness problem, which may also be true for the equivalence problem and
the universality problem. For instance, it is easy to see that emptiness reduces
to non-universality if the automata are logspace effectively closed under arbi-
trary homomorphism and concatenation with regular languages. Here a class
of automata C is logspace effectively closed under arbitrary homomorphism, if
for any automaton A from C with n states and any homomorphism h, one can
construct within deterministic logspace an automaton B from C that accepts
language h(L(A)). This implies that the number of states of B is bounded by
some polynomial pR(n). Similarly logspace effective closure under concatenation
with regular languages is defined. More general conditions for logspace many-one
reductions of universality or emptiness to equivalence, where one of the languages
is a fixed language, were studied in detail in a series of papers by Hunt III and
co-authors [37,38,39].

Now let us come to the complexity of the emptiness problem for finite au-
tomata. In general, if automata are logspace effectively closed under intersection
with regular sets, then the general membership logspace many reduces to the
non-emptiness problem for the same type of automata, because w ∈ L(A) if and
only if L(A)∩{w} �= ∅. Conversely, non-emptiness logspace many-one reduces to
general membership, if the automata are logspace effectively closed under homo-
morphism, since L(A) �= ∅ if and only if h(L(A)) �= ∅ if and only if λ ∈ h(L(A)),
where h(a) = λ, for a ∈ Σ. In [47] the following result on the non-emptiness
problem for NFAs was shown, which even holds for DFAs—since nondeterminis-
tic space complexity classes are closed under complementation [43,66] the result
also holds for the emptiness problem. Moreover, non-emptiness for AFAs was
considered in [45] and [28].

Theorem 13 (Non-Emptiness). The non-emptiness problem for NFAs and
DFAs is NL-complete, and it is PSPACE-complete for AFAs. The results remain
valid for automata accepting unary languages.

A natural variant of non-emptiness is intersection non-emptiness. This is the
problem to decide whether

⋂
1≤i≤n L(Ai) �= ∅, for given finite automata A1,

A2, . . . , An? If the number of automata in the input instance is bounded by
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some function g(n), then this problem is referred to as the g(n)-bounded inter-
section non-emptiness problem. For easier readability we abbreviate the former
problem by ∅ �= ⋂

C and the latter one by ∅ �= ⋂g(n)
C, where C is from

{DFA, NFA, AFA}. Trivially, non-emptiness logspace many-one reduces to inter-
section non-emptiness, even to k-bounded intersection non-emptiness for con-
stant k. The results on these problems read as follows: In [48] it was shown that
∅ �= ⋂

DFA is PSPACE-complete. Since ∅ �= ⋂
AFA can be decided within nonde-

terministic polynomial space, ∅ �= ⋂
NFA and ∅ �= ⋂

AFA are PSPACE-complete,
too. Recently it was shown in [4] that the infinite cardinality intersection prob-
lem, i.e., given automata A1, A2, . . . , An from C, does there exist infinitely many
words in

⋂
1≤i≤n L(Ai) is also PSPACE-complete, for DFAs. Further PSPACE-

complete problems on NFAs based on pattern and power acceptance were iden-
tified in [4].

For DFAs and NFAs these intractable intersection emptiness problems be-
come feasible, if the number of finite automata is bounded by some constant k,
but remains intractable for AFAs. More precisely, both the k-bounded intersec-
tion non-emptiness problems ∅ �= ⋂k DFA and ∅ �= ⋂k NFA are NL-complete,
for each k with k ≥ 1, by [19], and ∅ �= ⋂k AFA remains obviously PSPACE-
complete. Moreover, for the bounded intersection non-emptiness problem in gen-
eral it was shown in [49] that both ∅ �= ⋂g(n) DFA and ∅ �= ⋂g(n) NFA are
complete for NSPACE(g(n) · log n). In particular, both ∅ �= ⋂logk−1 n DFA and
∅ �= ⋂logk−1 n NFA are NSPACE(logk n)-complete, for k ≥ 1. Observe, that these
were the first natural complete problems for this complexity class. Finally, what
can be said about the (bounded) intersection non-emptiness problem for the
automata under consideration, when restricted to unary input alphabet? As a
consequence of [19] and [65] both ∅ �= ⋂

Tally-DFA and ∅ �= ⋂
Tally-NFA are

NP-complete, while ∅ �= ⋂
Tally-AFA again remains PSPACE-complete [28]—the

abbreviation of the problem instance are self-explaining. The latter result also
holds for the bounded variant, even for constant k. In [49] it is briefly mentioned
that ∅ �= ⋂k Tally-DFA is L- and ∅ �= ⋂k Tally-NFA is NL-complete. On the other
hand, completeness results for the bounded intersection non-emptiness problem
are not known for unary languages, as in the general case. Nevertheless, involved
upper and lower bounds by simultaneously bounded complexity classes (time,
space, and number of nondeterministic steps) were shown in [49].

Another problem closely connected to non-emptiness is the so-called short
word problem, which was investigated in [49], too. The main idea underlying
short words is that in general the shortest word accepted of an NFA can be
of exponential length in the coding of this automaton. Thus, the natural ques-
tion arises whether the automaton accepts words which are “short” in some
sense. Regarding words of linear length as short, we can define the short word
problem as follows: Given a finite automaton A, is there a word w of length
less or equal than the coding of A, such that w ∈ L(A)? We abbreviate this
problem by ∅ �= Clin and ∅ �= Tally-Clin when the automata accept unary
languages, where C ∈ {DFA, NFA, AFA}. Using standard methods one sees
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that ∅ �= DFAlin and ∅ �= NFAlin are NL-complete, while ∅ �= Tally-DFAlin

is L-complete and ∅ �= Tally-NFAlin is NL-complete. For AFAs it was shown
in [28] that ∅ �= AFAlin is NP- and ∅ �= Tally-AFAlin is P-complete. Con-
sidering the combination of the (bounded) intersection non-emptiness problem
with the short word restriction leads to more interesting results. We refer to
these problems as ∅ �= ⋂g(n)

Clin and ∅ �= ⋂g(n) Tally-Clin , respectively. The
problems ∅ �= ⋂g(n) DFAlin and ∅ �= ⋂g(n) NFAlin are complete for simul-
taneously time and space bounded classes between NTISP(pol n, log n) = NL
and NTISP(pol n, poln) = NP, namely for NTISP(pol n, g(n) · log n)—see [49].
For g(n) = logk n these classes are the nondeterministic counterparts of the
SCk-hierarchy. The restriction of these problems with respect to DFAs (NFAs,
respectively) to short words, always leads to L-complete (NL-complete, respec-
tively) sets, regardless of the function g(n). The corresponding problems for
AFAs, namely ∅ �= ⋂g(n) AFAlin and ∅ �= ⋂g(n) Tally-AFAlin are P-complete,
also regardless of g(n).

Now let us consider the next standard problem, the universality problem.
As previously mentioned, emptiness and universality are closely related to each
other by the complementation operation. The universality problem for DFAs was
shown to be NL-complete [12]. For NFAs and AFAs, respectively, the problem
under consideration was investigated in [1,57] and [28], respectively, in more
detail. For the results on automata accepting unary languages we refer to [65]
and [28]. We summarize these results in the following theorem.

Theorem 14 (Universality). The universality problem for DFAs is NL-com-
plete and for NFAs and AFAs it is PSPACE-complete. For automata accepting
unary languages, the universality problem isNL-complete forDFAs, coNP-complete
for NFAs, and PSPACE-complete for AFAs.

Next we consider two variants of universality. The first one is the union univer-
sality problem, that is to decide for given automata A1, A2, . . . , An, whether⋃

1≤i≤n L(Ai) = Σ∗? Trivially, universality logspace many-one reduces to the
union universality problem for any class of automata. For DFAs this problem is
readily seen to be PSPACE-complete by a reduction from the intersection empti-
ness problem for DFAs, which was discussed in detail earlier. For NFAs and
AFAs the union universality problem is PSPACE-complete, too, since it is al-
ready PSPACE-hard for a single automaton, and containment can easily be seen
since NFAs and AFAs are logspace effective closed under union. Thus, further
variants of this problem, comparable to variants of the intersection emptiness
problem, are not worth studying. Another, not to well-known generalization
of the universality problem is the bounded universality problem first studied
in [12]. The bounded universality problem is the problem of deciding for a given
finite automaton A and a unary integer n, whether L(A) ∩ Σ≤n = Σ≤n? The
bounded non-universality problem is defined accordingly. In [12] it was shown
that the bounded universality problem for NFAs is coNP-complete, while it is
NL-complete for DFAs. Thus, the complexity of non-bounded universality is sig-
nificantly lower than that of the equivalence problem, which is discussed below.
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Regarding the problem of computing the lexically first witness string that proves
bounded non-universality for NFAs, an ΔP

2 upper bound, and NP- and coNP-
hardness lower bounds were shown in [12]. Computing any witness string, thus
dropping the lexically first criterion, leads to a problem that is computational
equivalent to the bounded non-universality problem and, thus, is an NP-complete
problem for NFAs. For AFAs the bounded universality is seen to be coNP-
complete.

The last standard problem we are interested in, is the equivalence problem. Be-
sides the emptiness problem, the equivalence problem is certainly one of the most
important decision problems that has been investigated extensively in the litera-
ture. That equivalence is harder than emptiness is (partially) true for DFAs and
NFAs, because equivalence is NL-complete for deterministic [12] and PSPACE-
complete for NFAs. However, in case of AFAs equivalence remains as hard as
emptiness as shown in [45]. Automata on unary input alphabet were investigated
in [28,65]. As the reader may notice, universality and equivalence are computa-
tional equivalent with respect to logspace many-one reductions for the finite
automata types under consideration.

Theorem 15 (Equivalence). The equivalence problem for DFAs is NL-complete
and for NFAs and AFAs it is PSPACE-complete. For automata accepting unary
languages, the universality problem is NL-complete for DFAs, coNP-complete for
NFAs, and PSPACE-complete for AFAs.

Most of the presented results on emptiness, universality, and equivalence date
back to the pioneering papers [57,64,65] and [27,36,37,38,39,62], where mostly
problems on regular-like expressions were investigated. Obviously, a lower bound
on the computational complexity of a problem for ordinary regular expressions
implies the same lower bound for NFAs, since any regular expression of size n
can be converted into an equivalent (n+1)-state NFA [42]. Most of these results
on regular expressions are summarized in [20]—e.g., one can read the following
entry, literally taken from [20], on inequivalence for regular expressions:

“[The inequivalence for regular expressions r1 and r2, i.e., deciding
whether L(r1) �= L(r2), is . . . ] PSPACE-complete, even if |Σ| = 2 and
L(r2) = Σ∗. In fact, PSPACE-complete if r2 is any fixed expression rep-
resenting an “unbounded” language [39]. NP-complete for fixed r2 rep-
resenting any infinite “bounded” language, but solvable in polynomial
time for fixed r2 representing any finite language. The general problem
remains PSPACE-complete if r1 and r2 both have “star-height” k for
fixed k ≥ 1 [39], but is NP-complete for k = 0 (“star-free”) [34,65].
Also NP-complete if one of both of r1 and r2 represent bounded lan-
guages (a property that can be checked in polynomial time) [39] or if
|Σ| = 1 [65]. For related results and intractable generalizations, see cited
references, [35], and [38].”

Here a language L is bounded if and only if there exist words w1, w2, . . . , wk,
for some k, such that L ⊆ w∗

1w∗
2 . . . w∗

k. In [41] it was shown that boundedness
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is a necessary and sufficient condition for context-free languages to be sparse.
A language L ⊆ Σ∗ is sparse, if there exists a polynomial p such that for all n
we have |L ∩ Σ≤n| ≤ p(n), where Σ≤n is the set of all words over Σ of length
at most n. While boundedness for languages specified by regular expressions
is easily shown to be solvable in polynomial time via an inductive proof [39],
it is not that clear, whether this also holds for NFAs. Here the equivalence
of boundedness and sparseness for context-free languages comes into play. The
sparseness problem, i.e., given an automaton A, is L(A) sparse?, was shown to be
NL-complete for both DFAs and NFAs [40], and for AFAs it is PSPACE-complete.
For automata accepting unary languages the problem under consideration is
trivial. Hence, the boundedness problem for NFAs is efficiently solvable.

Next we summarize some results on some problems related to universality and
equivalence, namely the segment equivalence and the closeness problem: (1) The
segment equivalence problem is defined as follows: Given two automata A1 and A2

and n, is L(A1) ∩ Σ≤n = L(A2) ∩ Σ≤n? If n is coded in binary, it is called
the binary-encoded segment equivalence problem. Segment and binary-encoded
segment equivalence were studied in [40]. There it was shown that segment equiv-
alence for DFAs is NL-complete, whereas for NFAs the problem becomes coNP-
complete. As in case of ordinary equivalence one can show that the complexity
of segment equivalence for AFAs is the same as for NFAs, hence coNP-complete,
if the input alphabet contains at least two letters. For automata accepting unary
languages it is easy to see that the segment equivalence problem is L-complete
for DFAs, NL-complete for NFAs, and P-complete for AFAs. Moreover, for the
binary-encoded segment equivalence problem it was shown that both NFAs and
AFAs induce a PSPACE-complete problem [40]. (2) The closeness problem mea-
sures the similarity of languages in terms of the density of their symmetric dif-
ference, i.e., two languages L1 and L2 are close if and only if (L1 \L2)∪(L2 \L1)
is sparse. Thus, the closeness problem is to decide whether for given two au-
tomata A1 and A2, the symmetric difference of L(A1) and L(A2) is sparse?
In [40] it was shown that the closeness problem for DFAs is NL-complete and
for NFAs it is PSPACE-complete. Moreover, PSPACE-completeness also holds for
the closeness problem for AFAs. Note, that the closeness problem for automata
accepting unary languages is trivial.

Along the lines of development in computational complexity theory, authors
began to study functional problems and classes, see, e.g., [2]. One of the most
easiest functional problems for finite state devices is census. Here for a given finite
automaton A and 1n, one asks how many words up to length n are accepted
by A? Other well known functional problems are census of the complement,
ranking, maximal word, and maximal relative word—for a precise definition of
these problems we refer to [2]. For DFAs and NFAs it was shown in [2] that
most of these problems are complete for logarithmic space bounded counting
classes like, e.g., #L, spanL, or optL, while for AFAs these problems turn out to
be complete for their polynomially time bounded counterparts #P or optP [28].

We have seen that most problems for NFAs and AFAs are intractable, while
some problem for DFAs are effectively solvable. In the remainder of this
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subsection we consider two results of Hunt III and co-authors [27,38], which
show that the above mentioned behavior on the computational complexity of
DFA and NFA based problems is not accidental. It thus explains in part, why
most problems for NFAs and AFAs are intractable. We feel that these nice results
demand more attention, therefore we present it here.

Theorem 16 (Hardness for DFAs and NFAs Problems). Let Σ be an
alphabet with |Σ| ≥ 2 and P : 2Σ∗ → {0, 1} be any non-trivial predicate on
the regular languages. Assume that the set Pleft of all languages δx(L), where L
is a regular language, P (L) is true, and x ∈ Σ∗, is not equal to the family
of all regular languages—here δx(L) = { y ∈ Σ∗ | xy ∈ L } refers to the left
quotient of L with respect to the word x from Σ∗. Then the P -problem for NFAs,
that is, to determine whether for a given nondeterministic finite automaton A
the predicate P on L(A) is true, is PSPACE-hard, assuming P (Σ∗) to be true.
Moreover, the corresponding P -problem for DFAs is at least NL-hard.

Finally, we summarize some results on the operation problem from the com-
putational complexity perspective. For a survey on the descriptional complex-
ity of the operation problem for DFAs and NFAs we refer to [68] and [29,30].
Let ◦ be a fixed operation on languages that preserves regularity. Then the ◦-
operation problem is defined as follows: Given finite automata A1, A2, and A3,
is L(A1) ◦ L(A2) = L(A3)? Obviously, this problem generalizes to unary lan-
guage operations. It turned out that both the concatenation operation problem
and the Kleene star operation for DFAs are PSPACE-complete [46]. A converse
problem to the ◦-operation problem is the minimum ◦-problem. That is, given
a finite automaton A and an integer k, are there finite automata A1 and A2 of
the same type with |A1|+ |A2| ≤ k such that L(A1) ◦L(A2) = L(A)? For DFAs
this problem is NP-complete for union and intersection, and PSPACE-complete
for concatenation and Kleene star. Interestingly, the minimum reverse-operation
problem is shown to be solvable in polynomial time if the integer k is given in
unary, although DFAs are not logspace effective closed under reversal.

3.3 Minimization of Finite Automata

The study of the minimization problem for finite automata dates back to the
early beginnings of automata theory. Here we focus mainly on some recent de-
velopments related to this fundamental problem—for further reading we refer
to [46] and references therein. The minimization problem is also of practical rele-
vance, because regular languages are used in many applications, and one may like
to represent the languages succinctly. The decision version of the minimization
problem, for short the NFA-to-NFA minimization problem, is defined as follows:

– Given a nondeterministic finite automaton A and a natural number k in
binary, that is, an encoding 〈A, k〉, is there an equivalent k-state nondeter-
ministic finite automaton?

This notation naturally generalizes to other types of finite automata, for exam-
ple, the DFA-to-NFA minimization problem. It is well known that for a given
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n-state DFA one can efficiently compute an equivalent minimal automaton in
O(n log n) time [32]. More precisely, the DFA-to-DFA minimization problem is
complete for NL, even for DFAs without inaccessible states [12]. This is contrary
to the nondeterministic case since the NFAs minimization problem is known to
be computationally hard [46], which is also true for AFAs. The PSPACE-hardness
result for NFAs was shown by a reduction from the union universality problem
to the NFA-to-NFA minimization problem. For some further problems related
to minimization we refer also to [24].

Theorem 17 (Minimization). The DFA-to-DFA minimization problem is
NL-complete, while the NFA-to-NFA minimization problem is PSPACE-complete,
even if the input is given as a deterministic finite automaton. The AFA-to-AFA
minimization problem is PSPACE-complete, too.

In order to better understand the very nature of nondeterminism one may ask
for minimization problems for restricted types of finite automata. Already in [46]
it was shown that for the restricted class of unambiguous finite automata (UFA)
some minimization problems remain intractable. To be more precise, the UFA-
to-UFA and the DFA-to-UFA minimization problems are NP-complete. We men-
tion in passing that in [12] necessary and sufficient conditions were provided to
distinguish between exponential, polynomial, bounded, and k-bounded ambigu-
ity, and it was shown that these ambiguity problems, i.e., determining whether
the degree of ambiguity of a given NFA is exponential, polynomial, bounded,
k-bounded, where k is a fixed integer, or unambiguous are all NL-complete.

Later in [52] it was shown that the minimization of finite automata equipped
with a very small amount of nondeterminism is already computationally hard.
To this end, a reduction from the NP-complete minimal inferred DFA prob-
lem [21,46] to the the minimization problems for multiple initial state determin-
istic finite automata with a fixed number of initial states (MDFA) as well as
for nondeterministic finite automata with fixed finite branching has been shown.
Prior to this, the MDFA-to-DFA minimization problem in general was proven
to be PSPACE-complete in [31]. Here the minimal inferred DFA problem [21] is
defined as follows: Given a finite alphabet Σ, two finite subsets S, T ⊆ Σ∗, and
an integer k, is there an k-state DFA that accepts a language L such that S ⊆ L
and T ⊆ Σ∗ \ L? Such an automaton can be seen as a consistent “implementa-
tion” of the sets S and T . Recently, the picture was completed in [8] by getting
much closer to the tractability frontier for nondeterministic finite automata min-
imization. There a class of NFAs is identified, the so called δ-nondeterministic
finite automata (δNFA), such that the minimization problem for any class of
finite automata that contains δNFAs is NP-hard, even if the input is given as a
DFA. Here the class of δNFAs contains all NFAs with the following properties:
(i) The automaton is unambiguous, (ii) the maximal product of the degrees of
nondeterminism over the states in a possible computation is at most 2, and (iii)
there is at most on state q and a letter a such that the degree of nondeterminism
of q and a is 2. It is worth mentioning that for every n-state δNFA there is an
equivalent DFA with at most O(n2) states.
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The situation for the minimization problem in general is, in fact, even worse.
Recent work [23] shows that the DFA-to-NFA problem cannot be approximated
within

√
n/polylogn for state minimization and n/polylogn for transition mini-

mization, provided some cryptographic assumption holds. Moreover, the NFA-
to-NFA minimization problem was classified to be inapproximable within o(n),
unless P = PSPACE, if the input is given as an NFA with n states [23]. That
is, no polynomial-time algorithm can determine an approximate solution of size
o(n) times the optimum size. Even the DFA-to-NFA minimization problem re-
mains inapproximable within a factor of at least n1/3−ε, for all ε > 0, unless
P = NP [26], for alphabets of size O(n), and not approximable within n1/5−ε for
a binary alphabet, for all ε > 0. Under the same assumption, it was shown that
the transition minimization problem for binary input alphabets is not approx-
imable within n1/5−ε, for all ε > 0. The results in [26] proved approximation
hardness results under weaker (and more familiar) assumptions than [23]. Fur-
ther results on the approximability of the minimization problem when the input
is specified as regular expression or a truth table can be found in [23,26].

The unary NFA-to-NFA minimization problem is coNP-hard [65], and simi-
larly as in the case of finite languages contained in ΣP

2 . The number of states
of a minimal NFA equivalent to a given unary cyclic DFA cannot be computed
in polynomial time, unless NP ⊆ DTIME(nO(log n)) [44]. Note that in the latter
case the corresponding decision version belongs to NP. Inapproximability results
for the problem in question have been found during the last years, if the input is
a unary NFA: The problem cannot be approximated within

√
n

ln n [22], and if one
requires in addition the explicit construction of an equivalent NFA, the inapprox-
imability ratio can be raised to n1−ε, for every ε > 0, unless P = NP [23]. On the
other hand, if a unary cyclic DFA with n states is given, the nondeterministic
state complexity of the considered language can be approximated within a factor
of O(log n). The picture on the unary NFA-to-NFA minimization problem was
completed in [25]. Some of the aforementioned (in)approximability results, which
only hold for the cyclic case, generalize to unary languages in general. In partic-
ular, it was shown that for a given n-state NFA accepting a unary language, it
is impossible to approximate the nondeterministic state complexity within o(n),
unless P = NP. Observe that this bound is tight. In contrast, it is proven that the
NFA-to-NFA minimization problem can be constructively approximated within
O(

√
n), where n is the number of states of the given DFA. Here by constructively

approximated we mean that we can build the nondeterministic finite automaton,
instead of only approximately determining the number of states needed. This
solves an open problem stated in [46] on the complexity of converting a DFA to
an approximately optimal NFA in the case of unary languages.
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