

Lecture Notes in Computer Science 5457
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Adrian Horia Dediu Armand Mihai Ionescu
Carlos Martín-Vide (Eds.)

Language and
Automata Theory
and Applications

Third International Conference, LATA 2009
Tarragona, Spain, April 2-8, 2009
Proceedings

13

Volume Editors

Adrian Horia Dediu
Research Group on Mathematical Linguistics
Universitat Rovira i Virgili
Tarragona, Spain
E-mail: adrian.dediu@urv.cat

Armand Mihai Ionescu
Research Group on Mathematical Linguistics
Universitat Rovira i Virgili
Tarragona, Spain
E-mail: armandmihai.ionescu@urv.cat

Carlos Martín-Vide
European Research Council Executive Agency
Brussels, Belgium
E-mail: carlos.martin@urv.cat

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.4, I.1, I.5, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00981-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00981-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12626878 06/3180 5 4 3 2 1 0

Preface

These proceedings contain all the papers that were presented at the Third In-
ternational Conference on Language and Automata Theory and Applications
(LATA 2009), held in Tarragona, Spain, during April 2–8, 2009.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms on automata and words; automata and logic; automata for sys-
tem analysis and program verification; automata, concurrency and Petri nets;
biomolecular nanotechnology; cellular automata; circuits and networks; com-
binatorics on words; computability; computational, descriptional, communica-
tion and parameterized complexity; data and image compression; decidability
questions on words and languages; digital libraries; DNA and other models of
bio-inspired computing; document engineering; extended automata; foundations
of finite-state technology; fuzzy and rough languages; grammars (Chomsky hier-
archy, contextual, multidimensional, unification, categorial, etc.); grammars and
automata architectures; grammatical inference and algorithmic learning; graphs
and graph transformation; language varieties and semigroups; language-based
cryptography; language-theoretic foundations of natural language processing, ar-
tificial intelligence and artificial life; mathematical evolutionary genomics; pars-
ing; patterns and codes; power series; quantum, chemical and optical computing;
regulated rewriting; string and combinatorial issues in computational biology
and bioinformatics; symbolic dynamics; symbolic neural networks; term rewrit-
ing; text algorithms; text retrieval, pattern matching and pattern recognition;
transducers; trees, tree languages and tree machines; and weighted machines.

LATA 2009 received 121 submissions, many among them of good quality.
Each one was reviewed by at least three Program Committee members plus, in
most cases, by additional external referees. After a thorough and vivid discussion
phase, the committee decided to accept 58 papers (which means an acceptance
rate of 47.93%). The conference program also included three invited talks and
two invited tutorials. Part of the success in the management of such a large
number of submissions is due to the excellent facilities provided by the EasyChair
conference management system.

We would like to thank all invited speakers and authors for their contribu-
tions, the reviewers for their cooperation and Springer for the collaboration and
publication.

January 2009 Adrian Horia Dediu
Armand Mihai Ionescu

Carlos Mart́ın-Vide

Organization

LATA 2009 was hosted by the Research Group on Mathematical Linguistics
(GRLMC) at Rovira i Virgili University, Tarragona, Spain.

Program Committee

Parosh Abdulla Uppsala, Sweden
Stefania Bandini Milan, Italy
Stephen Bloom Hoboken, USA
John Brzozowski Waterloo, Canada
Maxime Crochemore London, UK
Jürgen Dassow Magdeburg, Germany
Michael Domaratzki Winnipeg, Canada
Henning Fernau Trier, Germany
Rusins Freivalds Riga, Latvia
Vesa Halava Turku, Finland
Juraj Hromkovič Zurich, Switzerland
Lucian Ilie London, Canada
Kazuo Iwama Kyoto, Japan
Aravind Joshi Philadelphia, USA
Juhani Karhumäki Turku, Finland
Jarkko Kari Turku, Finland
Claude Kirchner Bordeaux, France
Maciej Koutny Newcastle, UK
Hans-Jörg Kreowski Bremen, Germany
Kamala Krithivasan Chennai, India
Martin Kutrib Giessen, Germany
Andrzej Lingas Lund, Sweden
Aldo de Luca Naples, Italy
Rupak Majumdar Los Angeles, USA
Carlos Mart́ın-Vide (Chair) Brussels, Belgium
Joachim Niehren Lille, France
Antonio Restivo Palermo, Italy
Jörg Rothe Düsseldorf, Germany
Wojciech Rytter Warsaw, Poland
Philippe Schnoebelen Cachan, France
Thomas Schwentick Dortmund, Germany
Helmut Seidl Munich, Germany
Alan Selman Buffalo, USA
Jeffrey Shallit Waterloo, Canada
Frank Stephan Singapore

VIII Organization

External Reviewers

Jean-Paul Allouche
Carl Alphonce
Marcella Anselmo
Franz Baader
M. Sakthi Balan
Dorothea Baumeister
Paul Bell
Suna Bensch
Clara Bertolissi
Eike Best
Henrik Björklund
Hans-Joachim Böckenhauer
Miko�laj Bojańczyk
Henning Bordihn
Ahmed Bouajjani
Pascal Bouvry
Paul Brauner
Anne Brüggemann-Klein
Michelangelo Bucci
Arturo Carpi
Giuseppa Castiglione
Stephan K. Chalup
Jan Chomicki
Christine Choppy
Hubert Comon-Lundh
Christophe Costa Florêncio
Stefano Crespi Reghizzi
Erzsébet Csuhaj-Varjú
Flavio D’Alessandro
Peter Damaschke
Alessandro De Luca
Hervé Debar
Giorgio Delzanno
Stéphane Demri
Alain Denise
Jacques Désarménien
Chrysanne DiMarco
Daniel Dougherty
Jean-Philippe Dubernard
Michael Emmi
Gábor Erdélyi
Pierre Ganty
Florent Garnier
Olivier Gauwin

Thomas Gawlitza
Wouter Gelade
Pierre Genevès
Rémi Gilleron
Francesc Godoy
Guillem Godoy
Massimiliano Goldwurm
Jean Goubault-Larrecq
Hermann Gruber
Stefan Gulan
Frank Gurski
Peter Habermehl
Tero Harju
Michael A. Harrison
Pierre-Cyrille Héam
Mika Hirvensalo
Markus Holzer
Christopher Homan
Florent Jacquemard
Petr Jancar
Ryszard Janicki
Jesper Jansson
Nataša Jonoska
Helmut Jürgensen
Michael Kaminski
Aleksandr Karbyshev
Tomi Kärki
Victor Khomenko
Dennis Komm
Adrian Kosowski
Lukasz Kowalik
Richard Královic
Bohuslav Krena
Dalia Krieger
Vladislav Kubon
Aurélien Lemay
Alberto Leporati
Martin Leucker
Christos Levcopoulos
Maria Madonia
Kalpana Mahalingam
Andreas Malcher
Sabrina Mantaci
Wim Martens

Organization IX

Tomáš Masopust
Giancarlo Mauri
Ian McQuillan
Massimo Merro
Tommi Meskanen
Tobias Mömke
Debdeep Mukhopadhyay
Aniello Murano
Anca Muscholl
Benedek Nagy
Stefan Näher
N. S. Narayanaswamy
Gonzalo Navarro
Frank Neven
Phong Q. Nguyen
Damian Niwinski
Thomas Noll
Dirk Nowotka
Ulrik Nyman
Mitsunori Ogihara
Alexander Okhotin
Friedrich Otto
Matteo Palmonari
Elisabeth Pelz
Mia Persson
Jean-Éric Pin
Sophie Pinchinat
Wojciech Plandowski
Denis Poitrenaud
Ely Porat
Igor Potapov
Sylvia Pott
Raghavan Rama
Narad Rampersad

Silvio Ranise
Kenneth W. Regan
Andreas Reuss
Christophe Reutenauer
Magnus Roos
Giovanna Rosone
David Sabel
Martin Schwarz
Marinella Sciortino
Sebastian Seibert
David James Sherman
Nataliya Skrypnyuk
Holger Spakowski
Andreas Sprock
Monika Steinová
Martin Sulzmann
Siamak Taati
Isabelle Tellier
Pascal Tesson
John Thistle
Ralf Treinen
Bianca Truthe
Otto Urpelainen
György Vaszil
Masilamani Vedhanayagam
Kumar Neeraj Verma
Stephan Waack
Osamu Watanabe
Bruce W. Watson
James Worrell
Menno van Zaanen
Hans Zantema
Louxin Zhang
Pawe�l Żyliński

Organizing Committee

Mădălina Barbaiani
Gemma Bel-Enguix
Adrian Horia Dediu
Szilárd-Zsolt Fazekas
Armand Mihai Ionescu
Maria Dolores Jiménez-López
Alexander Krassovitskiy
Guangwu Liu

Carlos Mart́ın-Vide (Chair)
Zoltán-Pál Mecsei
Robert Mercaş
Cătălin-Ionuţ Tı̂rnăucă
Cristina Tı̂rnăucă
Bianca Truthe
Sherzod Turaev
Florentina-Lilica Voicu

Table of Contents

Invited Talks

Recent Developments in Algorithmic Teaching . 1
Frank J. Balbach and Thomas Zeugmann

Monadic Second-Order Logic for Graphs: Algorithmic and Language
Theoretical Applications . 19

Bruno Courcelle

Descriptional and Computational Complexity of Finite Automata 23
Markus Holzer and Martin Kutrib

Hypothesis Spaces for Learning . 43
Sanjay Jain

State Complexity of Nested Word Automata . 59
Kai Salomaa

Regular Papers

A Language-Based Comparison of Extensions of Petri Nets with and
without Whole-Place Operations . 71

Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent Van Begin

Minimal Union-Free Decompositions of Regular Languages 83
Sergey Afonin and Denis Golomazov

Commutative Regular Shuffle Closed Languages, Noetherian Property,
and Learning Theory . 93

Yohji Akama

Matching Trace Patterns with Regular Policies . 105
Franz Baader, Andreas Bauer, and Alwen Tiu

Absolute Convergence of Rational Series Is Semi-decidable 117
Raphaël Bailly and François Denis

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 129
Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid

Reoptimization of Traveling Salesperson Problems: Changing Single
Edge-Weights . 141

Tobias Berg and Harald Hempel

XII Table of Contents

Refinement and Consistency of Timed Modal Specifications 152
Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet

Nondeterministic Instance Complexity and Proof Systems with
Advice . 164

Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller

How Many Holes Can an Unbordered Partial Word Contain? 176
Francine Blanchet-Sadri, Emily Allen, Cameron Byrum, and
Robert Mercaş

An Answer to a Conjecture on Overlaps in Partial Words Using
Periodicity Algorithms . 188

Francine Blanchet-Sadri, Robert Mercaş, Abraham Rashin, and
Elara Willett

Partial Projection of Sets Represented by Finite Automata, with
Application to State-Space Visualization . 200

Bernard Boigelot and Jean-François Degbomont

Larger Lower Bounds on the OBDD Complexity of Integer
Multiplication . 212

Beate Bollig

Picture Languages Generated by Assembling Tiles 224
Paola Bonizzoni, Claudio Ferretti,
Anthonath Roslin Sagaya Mary, and Giancarlo Mauri

Undecidability of Operation Problems for T0L Languages and
Subclasses . 236

Henning Bordihn, Markus Holzer, and Martin Kutrib

Decision Problems for Convex Languages . 247
Janusz Brzozowski, Jeffrey Shallit, and Zhi Xu

On a Family of Morphic Images of Arnoux-Rauzy Words 259
Michelangelo Bucci and Alessandro De Luca

Monadic Datalog Tree Transducers . 267
Matthias Büchse and Torsten Stüber

On Extended Regular Expressions . 279
Benjamin Carle and Paliath Narendran

Multi-tilde Operators and Their Glushkov Automata 290
Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot

Non-uniform Cellular Automata . 302
Gianpiero Cattaneo, Alberto Dennunzio, Enrico Formenti, and
Julien Provillard

Table of Contents XIII

A Cryptosystem Based on the Composition of Reversible Cellular
Automata . 314

Adam Clarridge and Kai Salomaa

Grammars Controlled by Special Petri Nets . 326
Jürgen Dassow and Sherzod Turaev

Nested Counters in Bit-Parallel String Matching . 338
Kimmo Fredriksson and Szymon Grabowski

Bounded Delay and Concurrency for Earliest Query Answering 350
Olivier Gauwin, Joachim Niehren, and Sophie Tison

Learning by Erasing in Dynamic Epistemic Logic . 362
Nina Gierasimczuk

The Fault Tolerance of NP-Hard Problems . 374
Christian Glaßer, A. Pavan, and Stephen Travers

Termination of Priority Rewriting . 386
Isabelle Gnaedig

State Complexity of Combined Operations for Prefix-Free Regular
Languages . 398

Yo-Sub Han, Kai Salomaa, and Sheng Yu

Towards a Taxonomy for ECFG and RRPG Parsing 410
Kees Hemerik

Counting Parameterized Border Arrays for a Binary Alphabet 422
Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Bounded Hairpin Completion . 434
Masami Ito, Peter Leupold, and Victor Mitrana

Rigid Tree Automata . 446
Florent Jacquemard, Francis Klay, and Camille Vacher

Converting Self-verifying Automata into Deterministic Automata 458
Galina Jirásková and Giovanni Pighizzini

Two Equivalent Regularizations for Tree Adjoining Grammars 469
Anna Kasprzik

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm for
Weighted Matching . 481

Aude Liefooghe, Hélène Touzet, and Jean-Stéphane Varré

Membership Testing: Removing Extra Stacks from Multi-stack
Pushdown Automata . 493

Nutan Limaye and Meena Mahajan

XIV Table of Contents

Automata on Gauss Words . 505
Alexei Lisitsa, Igor Potapov, and Rafiq Saleh

Analysing Complexity in Classes of Unary Automatic Structures 518
Jiamou Liu and Mia Minnes

An Application of Generalized Complexity Spaces to Denotational
Semantics via the Domain of Words . 530

Jordi Llull-Chavarŕıa and Oscar Valero

Segmentation Charts for Czech – Relations among Segments in
Complex Sentences . 542

Markéta Lopatková and Tomáš Holan

A Note on the Generative Power of Some Simple Variants of
Context-Free Grammars Regulated by Context Conditions 554

Tomáš Masopust

Efficiency of the Symmetry Bias in Grammar Acquisition 566
Ryuichi Matoba, Makoto Nakamura, and Satoshi Tojo

A Series of Run-Rich Strings . 578
Wataru Matsubara, Kazuhiko Kusano, Hideo Bannai, and
Ayumi Shinohara

On Accepting Networks of Evolutionary Processors with at Most Two
Types of Nodes . 588

Victor Mitrana and Bianca Truthe

The Halting Problem and Undecidability of Document Generation
under Access Control for Tree Updates . 601

Neil Moore

Prediction of Creole Emergence in Spatial Language Dynamics 614
Makoto Nakamura, Takashi Hashimoto, and Satoshi Tojo

On the Average Size of Glushkov’s Automata . 626
Cyril Nicaud

Tiling the Plane with a Fixed Number of Polyominoes 638
Nicolas Ollinger

New Morphic Characterizations of Languages in Chomsky Hierarchy
Using Insertion and Locality . 648

Kaoru Onodera

On Parallel Communicating Grammar Systems and Correctness
Preserving Restarting Automata . 660

Dana Pardubská, Martin Plátek, and Friedrich Otto

Table of Contents XV

Finitely Generated Synchronizing Automata . 672
Elena V. Pribavkina and Emanuele Rodaro

Genetic Algorithm for Synchronization . 684
Adam Roman

Constructing Infinite Words of Intermediate Arithmetical
Complexity . 696

Paul V. Salimov

From Gene Trees to Species Trees through a Supertree Approach 702
Celine Scornavacca, Vincent Berry, and Vincent Ranwez

A Kleene Theorem for Forest Languages . 715
Lutz Straßburger

Determinization and Expressiveness of Integer Reset Timed Automata
with Silent Transitions . 728

P. Vijay Suman and Paritosh K. Pandya

One-Clock Deterministic Timed Automata Are Efficiently Identifiable
in the Limit . 740

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Author Index . 753

Recent Developments in Algorithmic Teaching

Frank J. Balbach1 and Thomas Zeugmann2

1 Neuhofen, Germany
frank-balbach@gmx.de

2 Division of Computer Science
Hokkaido University, Sapporo 060-0814, Japan

thomas@ist.hokudai.ac.jp

Abstract. The present paper surveys recent developments in algorith-
mic teaching. First, the traditional teaching dimension model is recalled.

Starting from the observation that the teaching dimension model
sometimes leads to counterintuitive results, recently developed ap-
proaches are presented. Here, main emphasis is put on the following
aspects derived from human teaching/learning behavior: the order in
which examples are presented should matter; teaching should become
harder when the memory size of the learners decreases; teaching should
become easier if the learners provide feedback; and it should be possible
to teach infinite concepts and/or finite and infinite concept classes.

Recent developments in the algorithmic teaching achieving (some) of
these aspects are presented and compared.

1 Introduction

When preparing a lecture, a good teacher is carefully selecting informative ex-
amples. Additionally, a good teacher is taking into account that students do not
memorize everything previously taught. And usually we make a couple of as-
sumptions about the learners. They should neither be ignorant, lazy, nor should
they be tricky. Thus, it is only natural to ask whether or not such human behav-
ior is at least partially reflected in some algorithmic learning and/or teaching
models studied so far in the literature.

Learning concepts from examples has attracted considerable attention in
learning theory and machine learning. Typically, a learner does not know much
about the source of these examples. Usually the learner is required to learn from
all such sources, regardless of their quality. This is even true for the query learn-
ing model introduced by Angluin [1,2], since the teacher or oracle, though answer-
ing truthfully, is assumed to behave adversarially whenever possible. Therefore,
it was only natural to ask whether or not one can also model scenarios in which
a helpful teacher is honestly interested in the learner’s success.

Perhaps the first approach was proposed by Freivalds, Kinber, and Wieha-
gen [3,4]. They developed a learning model in the inductive inference paradigm
of identifying recursive functions in which the learner is provided with good ex-
amples chosen by an implicitly given teacher. Jain, Lange, and Nessel [5] adopted

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 F.J. Balbach and T. Zeugmann

this model to learn recursively enumerable languages from good examples in the
inductive inference paradigm.

The next step was to consider teaching as the natural counterpart of learning.
Teaching has been modeled and investigated in various ways within algorithmic
learning theory. However, the more classical models studied so far all follow one
of two basically different approaches.

In the first approach, the goal is to find a teacher and a learner such that
a given learning task can be carried out by them. Jackson and Tomkins [6]
as well as Goldman and Mathias [7,8] defined models of teacher/learner pairs
where teachers and learners are constructed explicitly. In all these models, some
kind of adversary disturbing the teaching process is necessary to avoid collusion
between the teacher and the learner. That is, when modeling teaching, a major
problem consists in avoiding coding tricks. Though there is no generally accepted
definition of coding tricks, it will be clear from our exposition that no form of
coding tricks is used and thus no collusion occurs.

Angluin and Kriķis’ [9,10] model prevents collusion by giving incompatible
hypothesis spaces to teacher and learner. This makes simple encoding of the
target impossible.

In the second approach, a teacher has to be found that teaches all determin-
istic consistent learners. Here a learner is said to be consistent if its hypothesis is
correctly reflecting all examples received. This prevents collusion, since teaching
happens the same way for all learners and cannot be tailored to a specific one.
Goldman, Rivest, and Shapire [11] and Goldman and Kearns [12] substitute the
adversarial teacher in the online learning model by a helpful one selecting good
examples. They investigate how many mistakes a consistent learner can make
in the worst case. In Shinohara and Miyano’s [13] model the teacher produces a
set of examples for the target concept such that it is the only consistent one in
the concept class. The size of this set is the same as the worst case number of
mistakes in the online model. This number is termed the teaching dimension of
the target. Because of this similarity we shall from now on refer to both models
as the teaching dimension model (abbr. TD model).

One difficulty of teaching in the TD model results from the fact that the
teacher is not knowing anything about the learners besides them being consis-
tent. In reality a teacher can benefit a lot from knowing the learners’ behavior
or their current hypotheses. It is therefore natural to ask how teaching can be
improved if the teacher may observe the learners’ hypotheses after each example.
We refer to this scenario as to teaching with feedback.

After translating this question into the TD model, one sees that there is no
gain in sample size at all. The current hypothesis of a consistent learner reveals
nothing about its following hypothesis. Even if the teacher knew the hypothesis
and provided a special example in response, he can only be sure that the learner’s
next hypothesis will be consistent. But this was already known to the teacher.
So, in the TD model, feedback is useless.

There are also several other deficiencies in the teaching models studied so far.
These deficiencies include that the order in which the teacher presents examples

Recent Developments in Algorithmic Teaching 3

does not matter, and that teaching infinite concepts or infinite concept classes is
severely limited. Another drawback is the rather counterintuitive dependence on
the memory size of the learner. If the learner’s memory size is large enough to
store all examples provided by the teacher, then successful teaching is possible.
Otherwise, it immediately becomes impossible. Another problem is that there
are concept classes which are intuitively easy to teach that have a large teaching
dimension.

Therefore, our goal has been to devise teaching models that remedy the above
mentioned flaws. In particular, our aim has been to develop teaching models such
that the following aspects do matter.

(1) The order in which the teacher presents the information should have an
influence on the performance of the teacher.

(2) Teaching should get harder when the memory size of the learners decreases,
but it should not become impossible for small memory.

(3) Teaching should get easier when the learners give feedback to the teacher.
(4) Concepts that are more complex should be harder to teach.
(5) The teaching model should work for both finite and infinite concepts and/or

finite and infinite concept classes.

We studied and developed several models of algorithmic teaching to overcome
these flaws to a different extent (cf. [14,15,16,17,18]). Within the present paper,
we shortly summarize our and the related results obtained.

The paper is organized as follows. Section 2 shortly recalls the TD model
and fundamental definitions needed subsequently. Then we discuss more recent
approaches. In Section 3 we summarize results concerning teaching learners that
have to obey restrictions on possible mind changes. Next, we turn our attention
to a randomized model of teaching (see Section 4). Finally, we shortly touch
teaching dimensions for complexity based learners and for cooperative learning.

2 The Teaching Dimension Model

We start by introducing the necessary notions and definitions. Let N = {0, 1, . . .}
denote the set of all natural numbers. For any set S we write |S| to denote its
cardinality. Let X be any (finite) set of instances also called instance space. A
concept c is a subset of X and a concept class C is a set of concepts over X .
It is convenient to identify every concept c with its characteristic function, i.e.,
for all x ∈ X we have c(x) = 1 if x ∈ c and c(x) = 0 otherwise. We consider
mainly three instance spaces: {0, 1}n for Boolean functions, Σ∗ for languages
over a finite and non-empty alphabet Σ, and Xn = {x1, . . . , xn} for having any
fixed instance space of cardinality n.

By X = X × {0, 1} we denote the set of examples over X . An example (x, b)
is either positive, if b = 1, or negative, if b = 0.

A concept c is consistent with a set S = {(x1, b1), . . . , (xn, bn)} of examples
iff c(xi) = bi for all i = 1, . . . , n.

In the TD model, a learning algorithm takes as input a set S of examples for a
concept c ∈ C and computes a hypothesis h. As mentioned in the Introduction, we

4 F.J. Balbach and T. Zeugmann

have to restrict the set of admissible learners. A consistent and class preserving
learning algorithm is only allowed to choose the hypotheses from the set

H(S) = {h ∈ C | h is consistent with S} .

A teaching set1 for a concept c with respect to C is a set S of examples such
that c is the only concept in C consistent with S, i.e., H(S) = {c} (cf. [12,11]).
The teaching dimension TD(c) is the size of the smallest teaching set for c, the
teaching dimension of C is

TD(C) = max{TD(c) | c ∈ C} . (1)

Consequently, the teaching dimension of a concept c determines the number of
examples needed by an optimal teacher for teaching c to all consistent and class
preserving learning algorithms. So in the TD model the information theoretic
complexity of teaching is reduced to a combinatorial parameter. Note that the
teaching dimension has been calculated for many natural concept classes such
as (monotone) monomials, monotone k-term DNFs, k-term µ-DNFs, monotone
decision lists and rectangles in {0, 1, . . . , n− 1}d (cf. [12]); for linearly separable
Boolean functions (cf. [21,22]); for threshold functions (cf. [13]); and for k-juntas
and sparse GF2 polynomials (cf. [23]).

Since the teaching dimension does depend exclusively on the concept class, it
has also been compared to other combinatorial parameters studied in learning
theory. These parameters comprise the query complexity in Angluin’s [2] query
learning model, the VC-dimension and parameters studied in the online learning
model (cf. Hegedűs [24,25], Ben-David and Eiron [26], and Rivest and Yin [27]).

Despite its succinctness and elegance, the teaching dimension has also draw-
backs. For seeing this, let us consider the following example. Fix any natural
number n ≥ 2 and define the concept class Sn = {c0, c1, . . . , cn} over Xn as
follows: c0 = ∅ as well as ci = {xi} for all i = 1, . . . , n. Then we have TD(ci) = 1
for all i = 1, . . . , n, since the single positive example (xi, 1) is sufficient for
teaching ci. Nevertheless, TD(c0) = n, since there are at least two consistent hy-
potheses until all n negative examples have been presented to the learners. Thus,
TD(Sn) = n despite the fact that the class Sn seems rather simple. However,
the teaching dimension is the maximum possible.

Similar effects can be observed for the class of all monomials, all 2-term DNFs,
all 1-decision lists, and all Boolean functions (over {0, 1}n), since all these classes
have the same teaching dimension, i.e., 2n.

2.1 The Average Teaching Dimension

As we have shortly outlined, the teaching dimension does not always capture our
intuition about the difficulty to teach concepts. One reason for the implausibility
of the results sometimes obtained is due to the fact that the teaching dimension of
the class is determined by the worst case teaching dimension over all concepts.
1 Note that a teaching set is also called key [13], discriminant [19] and witness set [20].

Recent Developments in Algorithmic Teaching 5

Thus, all easily learnable concepts are not taken into account. So a natural
remedy is to consider the average teaching dimension instead of the worst case
teaching dimension.

Definition 1. Let C be a concept class. The average teaching dimension of C is
defined as TD(C) = 1

|C|
∑

c∈C TD(c).

Looking again at the class Sn defined above, we directly see that

TD(Sn) =
n + n · 1
n + 1

< 2 for all n ≥ 2

and thus much smaller than the (worst case) teaching dimension TD(Sn) = n.
Anthony, Brightwell and Shawe-Taylor [22] showed that the average teach-

ing dimension for the class of linearly separable Boolean functions is O(n2) and
Kuhlmann [28] proved that all classes of VC-dimension 1 have an average teach-
ing dimension of less than 2 and that balls of radius d in {0, 1}n have an average
teaching dimension of at most 2d.

A more general result was shown by Kushilevitz, Linial, Rabinovich, and
Saks [20]. They showed an upper bound of O(

√
|C|) for the average teaching

dimension of any concept class C. Additionally, in [20] a family of classes is
defined for which the average teaching dimension is Ω(

√
|C|).

Naturally, determining the average teaching dimension for classes that are
more complex than Sn is often much harder than calculating their worst case
teaching dimension. However, recently progress has been made. Balbach [14]
succeeded in showing that 2-term DNFs and 1-decision lists have an average
teaching dimension of O(n) nicely contrasting their teaching dimension which
is 2n.

Based on Balbach’s [14] results, Lee, Servedio, and Wan [23] have shown
that the class of DNFs with at most s ≤ 2Θ(n) terms has an average teaching
dimension of O(ns). Furthermore, they proved that the class of k-juntas has an
average teaching dimension of at most 2k + o(1) and that the average teaching
dimension of the class of GF2 polynomials with s ≤ (1 − ε) log2 n monomials is
at most ns + 2s.

Nevertheless, there are still points of concern when comparing the TD model
and the average teaching dimension model to a scenario where we have a machine
teacher and human learners. Such scenarios are of interest for intelligent tutoring
systems (abbr. ITS), see e.g., www.aaai.org/AITopics/html/tutor.html.

Human learners are not necessarily consistent, they do not remember all ex-
amples, they are sensitive to the order of examples, and they usually provide
feedback about their learning progress.

Clearly, the order of examples does not matter in the TD model and as men-
tioned in the Introduction, in the TD model feedback is useless. Learners not
being consistent with all examples are excluded by the definition of the TD
model. There is, however, a dependence on the memory of the learners. As long
as the learners can memorize at least TD(c) many examples, teaching the con-
cept c is possible. If less than TD(c) many examples can be memorized then
teaching becomes impossible.

6 F.J. Balbach and T. Zeugmann

Last but not least, the applicability to infinite concepts and classes is limited.
Even a rather simple class, like the class of all finite languages over a fixed
alphabet Σ yields an infinite teaching dimension. Therefore, we continue with
different approaches to model algorithmic teaching.

3 Teaching Learners with Restricted Mind Changes

In this section we summarize some of the results from Balbach and Zeugmann [16].
We modify the TD model by introducing a neighborhood relation over all possible
hypotheses. The learners are then restricted to choose a new hypothesis from the
neighborhood of their current one. This may reflect human behavior, since humans
tend to modify their hypotheses instead of creating completely new ones.

We then compare basically two variants: In the first, the teacher receives
the learner’s hypothesis after every example taught. In the second, the teacher
has no feedback available. As a matter of fact, in this new model feedback can
really make a difference. Some concept classes can be taught much faster with
feedback than without and some cannot be taught unless feedback is available
to the teacher.

Some additional notation is necessary. Let R be a set of strings. We say that
R represents the class C iff there is a function γ : R × X → {0, 1} such that
C = {Cr | r ∈ R}, where Cr = {x | γ(r, x) = 1}. The length of r is denoted by
|r| and size(c) := min{|r| | Cr = c} for every c ∈ C. For any set S, we denote
by S∗ the set of all finite tuples over S. We use the symbols ◦ for concatenation
of tuples and � for the symmetric difference of two sets. Let c be a concept and
let x ∈ X ∗ be a list of examples, then err(x, c) is the set of all examples in x
that are inconsistent with c.

For studying feedback, the learners in our model have to evolve over time. We
adopt the online learning model and divide the teaching process into rounds. In
each round the teacher provides an example to the learner who then computes a
hypothesis from R. At the end of the round the teacher observes this hypothesis.

Thus, we describe a teacher by a function T : R×R∗ → X receiving a concept’s
representation and a sequence of previously observed hypotheses as input and
outputting an example.

A learner can be described by a function L : X ∗ → R receiving a sequence of
examples as input and outputting a hypothesis. Let ν ⊆ R × R be a relation
over R. Then L is called restricted to ν iff ∀x ∈ X ∗ ∀z ∈ X [(L(x), L(x◦z)) ∈ ν],
that is ν defines the admissible mind changes of L. Now, (R, ν) is a directed graph
and we define the neighborhood of r ∈ R as Nb(r) := {s ∈ R | (r, s) ∈ ν} ∪ {r}
and denote by dist(r, s) the length of a shortest path from r to s.

As we have seen, in the TD model, the learner is required to always output
a consistent hypothesis. Since in the restricted model all admissible hypotheses
might be inconsistent, we have to modify this demand. We require that L chooses
only among the admissible hypotheses with least error with respect to the known
examples. Moreover, we require a form of conservativeness : L may only change
its hypothesis if the new one has a smaller error. This ensures that L will not

Recent Developments in Algorithmic Teaching 7

change its mind after reaching a correct hypothesis. On the other hand, we
also require L to search for a better hypothesis if it receives an inconsistent
example. Otherwise, L could stay at the initial hypothesis forever and teaching
were impossible.

Definition 2. Let R be a representation language for a concept class C and let
ν ⊆ R×R be a relation over R and h0 ∈ R a starting hypothesis. A ν-learner is
a function L : X ∗ → R with L(∅) = h0 and for all x ∈ X ∗ and for all z ∈ X :

(1) (L(x), L(x ◦ z)) ∈ ν,
(2) if L(x) �= L(x ◦ z) then z is inconsistent with CL(x),
(3) if z is inconsistent with CL(x) then

L(x ◦ z) ∈ argmins∈Nb(L(x)) |err (x ◦ z, Cs)|.

We briefly remark that one can think of many plausible variants of the above
definition. For instance, the learner could be allowed to change its mind on a
consistent example if its hypothesis is inconsistent with an example received
earlier. In this section, however, all learners follow Definition 2.

The teaching process for a concept c = Cr is fully described by a teacher T and
a learner L together with an initial hypothesis h0. Such a process will result in a
series (hi)i∈N of hypotheses and a series (zi)i∈N of examples: hi+1 = L(z0, . . . , zi)
and zi = T (r, (h0, . . . , hi)).

Definition 3. Let C be a concept class with representation R and let ν ⊆ R×R.
We call C teachable to ν-learners in the limit with feedback iff there is a teacher
T such that for all representations r ∈ R and all ν-learners L the series (hi)i∈N

of hypotheses converges to an h with Ch = Cr.
The teaching time of T on r is the maximum i such that there is a ν-learner L

that reaches a representation of Cr at round i for the first time.

Note that an infinite teaching time does not imply unteachability of a concept.
For studying the influence of feedback, we also have to define teaching without
feedback. In this situation the teacher is modeled as a function T : R×N→ X ,
where the second argument specifies the round. The series of hypotheses is then
given by hi+1 = L(T (r, 0), . . . , T (r, i)). With this notation the definition of teach-
ing in the limit without feedback is literally the same as Definition 3.

In the situation with feedback the teacher can stop teaching as soon as the
learner has reached the goal. If there is no feedback, the teacher may or may not
know when to stop. A teacher stopping after finitely many examples and still
ensuring the learning success is said to teach finitely without feedback. More for-
mally we consider T : R×N→ X ∪{⊥} where ⊥ means “teaching has stopped.”

With feedback we do not need to distinguish teaching finitely from teaching
in the limit and we shall call this kind of teaching simply teaching with feedback.

Definition 4. Let C be a concept class with representation R and let ν ⊆ R×R.
We call C finitely teachable to ν-learners without feedback iff there is a teacher T
such that for all representations r ∈ R and all ν-learners L the hypothesis hj

with j = min{i | T (r, i) = ⊥} satisfies Chj = Cr.

8 F.J. Balbach and T. Zeugmann

Setting ν = R × R in Definition 4 gives the teacher-directed learning model
having no restriction on hypothesis changes (cf. [11]). Theorem 5 justifies the
use of arbitrary ν’s for studying the impact of feedback on the teaching process.

Theorem 5. Let C be a concept class with representations R and let ν = R×R.
Then the following statements are equivalent:

(1) C is finitely teachable to ν-learners without feedback,
(2) C is teachable in the limit to ν-learners without feedback,
(3) C is teachable to ν-learners with feedback.

Furthermore in all three cases the same teacher can be used to obtain minimum
teaching time which for all c ∈ C equals TD(c) with respect to C.

Note that Theorem 5 relies on the fact that neither the teacher nor the learners
nor the function γ are required to be recursive. Adding these requirements leads
to new questions which we skip here due to space constraints.

Next, we apply the new framework to the class Cfin of all finite languages over
an alphabet Σ. This class cannot be taught in the TD model. By using different
ν-restrictions we demonstrate various effects.

We fix any total ordering on all strings over Σ and use as representation
language R the set of all comma-separated ordered lists of strings over Σ, i.e., r =
w1, . . . , wm ∈ R represents the language {w1, . . . , wm}. We define the allowed
transitions from r to s by (r, s) ∈ ν iff |Cr�Cs| ≤ 1. The initial hypothesis is
the empty string ε representing the empty concept. Now we have:

Fact 6. Cfin is finitely teachable to ν-learners without feedback.

Feedback can be utilized when the restriction is modified. We define (r, s) ∈ ν′

iff Cs = Cr ∪ {w1, w2} for some w1, w2 ∈ Σ∗ or Cs = Cr \ {w1}. In both cases, we
require that the size of the hypotheses may at most double each round: |s| ≤ 2|r|.
In the special case r = ε we allow every singleton concept as neighbor: (ε, s) ∈ ν
for all s with |Cs| = 1. For ν′-learners there is a big difference in teaching time
between teaching with and without feedback.

Fact 7. Cfin is teachable to ν′-learners with feedback such that for all c ∈ C the
number of examples is O(|c|) ≤ O(size(c)).

If we remove the size restriction from ν′ we obtain ν′′.

Fact 8. Cfin is not finitely teachable to ν′′-learners without feedback, but it is
finitely teachable with feedback as well as in the limit without feedback.

Finally we define ν′′′. It differs from ν′′ in that a string may only be removed
from the hypothesis if neither its predecessor nor its successor (with respect to
the fixed ordering on Σ∗) is contained in the hypothesis.

Fact 9. Cfin is not teachable to ν′′′-learners in the limit without feedback, but it
is finitely teachable with feedback.

Recent Developments in Algorithmic Teaching 9

If we denote by TFIN ,TFB ,TLIM the set of all (C, R, ν, h0) such that C is
finitely teachable without feedback, with feedback or in the limit, respectively,
we have just proved the following theorem.

Theorem 10. TFIN ⊂ TLIM ⊂ TFB.

The teaching times in our model can hardly be compared to the teaching dimen-
sion, since the latter depends only on C, whereas different choices of ν can lead
to different teaching times for the same C. The problem of finding an optimal
teacher (with or without feedback) for ν-learners is NP-hard, since it is a gener-
alization of finding an optimal teaching set, namely if ν = R×R (cf. [13,12,21]).
More precisely, we have the following theorem.

Theorem 11. For all notions of teaching, the following problem is NP-hard:

Instance: C, R, ν, and a concept c∗ as 0-1-vector of length |X |.
Question: Can c∗ be taught to ν-learners?

For infinite instance spaces or classes (and infinite ν) the next theorem applies.

Theorem 12. The following function is not computable:

Input: Algorithms computing total functions deciding C and ν.
Output: 1, if C can be taught to ν-learners; 0 otherwise.

We finish this section by looking at teaching without feedback. A teacher T with-
out feedback knows all learners’ initial hypotheses h0, but can quickly lose track
of them during teaching. On the other hand, T can rule out neighbors r of h0 by
giving examples consistent with h0, but inconsistent with r. If in such a way T
can eliminate all but one neighbor r′, he effectively forces all learners to switch
to r′. By continuing in this manner, T always knows all learners’ hypotheses
even without feedback. If the enforced hypotheses approach the target, T will
be successful. Figure 1 describes this strategy more formally.

1 r := h0;
2 while Cr �= c∗ do:

2.1 Find s ∈ Nb(r), S ⊆ X , and z ∈ X such that (1) Cr is consistent with S, but
not with z, (2) s is the only neighbor of r consistent with S ∪ {z}, and (3)
dist(s, r∗) < dist(r, r∗);

2.2 Teach S in arbitrary order and then z;
2.3 r := s;

Fig. 1. A simple general strategy for teaching without feedback by forcing all learners
to make the same mind changes. The initial hypothesis is h0, r∗ represents the target.

The feasibility of this strategy depends on Step 2.1. If teaching does not
need to be finite, the condition in Step 2 does not need to be checked. Albeit
simple, the strategy works surprisingly often for natural concept classes and
ν-restrictions. In the following we give some examples.

10 F.J. Balbach and T. Zeugmann

First, we consider the class of all monomials over n variables. Let R =
{0, 1, ∗}n and define (r, s) ∈ ν iff r and s differ only in one “bit.” As initial
hypothesis h0 = ∗n is used.

Fact 13. Monomials are finitely teachable without feedback. The teaching time
for each concept equals its teaching dimension.

Next, we look at decision trees. Each learner starts at the tree consisting of only
one negative leaf. In each round one leaf may be substituted by an internal node
that has two differently labeled leaves as children. This specifies a relation νDT

over all decision trees. Then, we have:

Fact 14. The class of Boolean functions represented as decision trees can be
taught without feedback to νDT -learners. The teaching time is linear in the size
of the tree representation.

Note that the teaching dimension with respect to all Boolean functions is 2n for
all concepts. As we have seen, for ν-learners based on decision trees, teaching
can often be successful with much fewer examples. Finally, we have been a bit
surprised to obtain:

Fact 15. The class of monotone 1-decision lists can be taught to νDL-learners
with feedback using m + 1 examples for a list of length m. It cannot be taught
without feedback.

In our model of teaching learners with restricted mind changes several effects
regarding feedback can be observed. Feedback can be useless, helpful, or even
indispensable for teaching. In addition, natural infinite concept classes can be
taught in this model. However, the main drawback is that one has to define suit-
ably a neighborhood relation for every concept class. Our next model avoids this
difficulty. It will also allows us to study teaching learners with limited memory.

4 The Randomized Teaching Model

For the sake of motivation, let us consider the concept class of all Boolean func-
tions over {0, 1}n. To teach a concept to all consistent learning algorithms, i.e.,
in the TD model, the teacher must present all 2n examples. Teaching a concept
to all consistent learners that can memorize less than 2n examples is impossible;
there is always a learner with a consistent, but wrong hypothesis. So teaching
gets harder, but in a rather abrupt way.

It seems that the worst case analysis style makes it impossible to investigate
the influence of memory limitations or learner’s feedback. A common remedy for
this is to perform an average case analysis instead (cf. Subsection 2.1). In this
section we look at a rather radical approach, i.e., we replace the set of learners
by a single one that is intended to represent an “average learner.”

We achieve this goal by substituting the set of deterministic learners by a
single randomized one. Basically, such a learner picks a hypothesis at random

Recent Developments in Algorithmic Teaching 11

from all hypotheses consistent with the known examples. Teaching is successful
as soon as the learner hypothesizes the target concept. For ensuring that the
learner maintains this correct hypothesis, we additionally require the learner to
be conservative, i.e., it can change its hypotheses only on examples that are
inconsistent with its current hypothesis. The complexity of teaching is measured
by the expected teaching time.

Next, we explain why this model should work. Since at every round there is
a chance to reach the target, the target will eventually be reached even if, for
instance, the randomized learner can only memorize few examples. The ability of
the teacher to observe the learner’s current hypothesis should be advantageous,
since it enables the teacher to teach an inconsistent example in every round.
Recall that only these examples can cause a hypothesis change. Below we show
these intuitions to be valid.

Note that for randomized learners the complexity of the teaching process does
not only depend on the examples, but also on the order in which they are given
to the learner.

The randomized teaching model can be regarded as a Markov Decision Process
(abbr. MDP). Such processes have been studied for several decades and we shall
make use of some results from this theory (cf. [29,30]). An MDP is a probabilistic
system whose state transitions can be influenced during the process by actions
which incur costs. Let � denote the set of all real numbers. Formally, an MDP
consists of a finite set S of states, an initial state s0 ∈ S , a finite set A of actions,
a function cost : S × A → �, and a function p : S × A × S → [0, 1]; cost(s, a)
is the cost incurred by action a in state s; p(s, a, s′) is the probability for the
MDP to change from state s to s′ under action a.

In the total cost infinite horizon setting, the goal is to choose actions such that
the expected total cost, when the MDP runs forever, is minimal. This makes
sense only if there is a costless absorbing state s∗ ∈ S . In the finite horizon
setting the MDP is only run for finitely many rounds.

The actions chosen at each point in time are described by a policy. This is a
function depending on the observed history of the MDP and the current state.
A basic result says that there is a minimum-cost policy that is stationary, i.e.,
that depends only on the current state. A stationary policy π : S → A defines a
Markov chain over S and for all s ∈ S an expected time H(s) to reach s∗ from s.
Such a policy is optimal iff for all s ∈ S :

π(s) ∈ argmin
a∈A

(
cost(s, a) +

∑
s′∈S

p(s, a, s′) ·H(s′)

)
.

Finding optimal policies can be phrased as a linear programming problem and
can thus be done in polynomial time in the representation size of the MDP.

For the following, we need a bit more notation. For numbers a, b with a < b
we write [a, b] to denote the set {a, a + 1, . . . , b} or {a, a + 1, . . . } if b = ∞. As
above, for any set S, we denote by S∗ the set of all finite lists of elements from S.
Furthermore, by Sm and S≤m we denote the set of all lists with length m and at
most length m, respectively. The operator ◦µ concatenates a list of length at most

12 F.J. Balbach and T. Zeugmann

µ with a single element resulting in a list of length at most µ: 〈x1, . . . , x�〉 ◦µ 〈y〉
equals 〈x1, . . . , x�, y〉 if � < µ and 〈x2, . . . , x�, y〉 if � = µ. We regard ◦∞ as the
usual list concatenation. For a list x of examples, we set

C(x) = {c ∈ C | x is consistent with c} .

We denote by Mn the concept class of monomials over {0, 1}n. We exclude
the empty concept fromMn and can thus identify each monomial with a string
from {0, 1, ∗}n and vice versa. We use Dn to denote the set of all 2n concepts
over [1, n]. Thus, there are 2n many concepts in Dn.

Next, we define the randomized teaching model. The teaching process is di-
vided into rounds. In each round the teacher gives the learner an example of a
target concept. The learner memorizes this example and computes a new hy-
pothesis based on its last hypothesis and the known examples.

The Learner. In a sense, consistency is a minimum requirement for a learner.
We thus require our learners to be consistent with all examples they know.
However, the hypothesis is chosen at random from all consistent ones.

The memory of our learners may be limited to µ ≥ 1 examples. If the memory
is full and a new example arrives, the oldest example is erased. In other words,
the memory works like a queue. Setting µ =∞ models unlimited memory.

The goal of teaching is making the learner to hypothesize the target and to
maintain it. Consistency alone cannot guarantee this behavior if the memory is
too small. In this case, there is more than one consistent hypothesis at every
round and the learner would oscillate between them rather than maintaining a
single one. To avoid this, conservativeness is required, i.e., the learner can change
its hypothesis only when taught an example inconsistent with its current one.

To study the influence of the learners’ feedback to the teacher, we distinguish
between private and public output of the learner. The private output is the result
of the calculation during a round (i.e., new memory content and hypothesis), the
public output is that part of the private one observable by the teacher. So, if
the learner gives feedback, the teacher can observe in every round the complete
hypothesis computed by the learner. If the learner does not give feedback, the
teacher can observe nothing. The following algorithm describes the behavior of
the µ-memory learner with/without feedback (short: L+

µ / L−
µ) during one round

of the teaching process.

Input : memory x ∈ X≤µ, hypothesis h ∈ C, example z ∈ X .
Private Output : memory x′, hypothesis h′.
Public Output : hypothesis h′ / nothing.

1 x′ := x ◦µ 〈z〉;
2 if z /∈ X (h) then pick h′ uniformly at random from C(x′);
3 else h′ := h;

For making our results dependent on C alone, rather than on an arbitrary
initial state of the learner, we stipulate a special initial hypothesis, called init.
We assume every example inconsistent with init. Thus, init is left after the first
example and cannot be reached again. Moreover, the initial memory is empty.

Recent Developments in Algorithmic Teaching 13

The Teacher. A teacher is an algorithm taking initially a given target concept c∗

as input. Then, in each round, it receives the public output of the learner (if any)
and outputs an example for c∗.

Definition 16. Let C be a concept class and c∗ ∈ C. Let Lσ
µ be a learner, where

σ ∈ {+,−}, let T be a teacher and let (hi)i∈N be the series of random variables
for the hypothesis at round i. The event “teaching success in round t,” denoted
by Gt, is defined as

ht−1 �= c∗ ∧ ∀t′ ≥ t : ht′ = c∗ .

The success probability of T is Pr
[⋃

t≥1 Gt

]
. A teaching process is success-

ful iff the success probability equals 1. A successful teaching process is called
finite iff there is a t′ such that Pr

[⋃
1≤t≤t′ Gt

]
= 1, otherwise it is called infi-

nite. For a successful teaching process we define the expected teaching time as
�[T, Lσ

µ, c∗, C] :=
∑

t≥1 t · Pr[Gt].

Definition 17. Let C be a concept class, c∗ ∈ C and Lσ
µ a learner. We call c∗

teachable to Lσ
µ iff there is a successful teacher T . The optimal teaching time

for c∗ is
Eσ

µ(c∗) := inf
T
�[T, Lσ

µ, c∗, C]

and the optimal teaching time for C is denoted by Eσ
µ(C) := maxc∈C Eσ

µ(c).

For exemplifying our model, we compute the optimal teaching times for Dn.
To the learner L+

µ (1 ≤ µ ≤ n) the teacher gives an example inconsistent with
the current hypothesis in each round. For all such examples, there are 2n−µ

hypotheses consistent with the µ examples in the learner’s memory and it chooses
one of them. So the probability of choosing the target concept is 2−(n−µ). Since
in the first µ− 1 rounds the memory contains less then µ examples, E+

µ (Dn) is,
for constant µ, asymptotically equal to 2n−µ. Clearly, teaching becomes faster
with growing µ. Moreover the teaching speed increases continuously with µ and
not abruptly as in the classical deterministic model. In particular, teaching is
possible even with the smallest memory size (µ = 1), although it takes very long
(2n−1 rounds).

Teaching is more difficult when feedback is unavailable. In this situation the
teacher can merely guess examples hoping that they are inconsistent with the
current hypothesis. Roughly speaking, when teaching Dn, the teacher needs two
guesses on average to find such an example. Hence, the expected teaching time
E−

µ is about two times E+
µ . Thus feedback doubles the teaching speed for Dn.

Fact 18. For all C and µ ∈ [1,∞] all c∗ ∈ C and σ ∈ {+,−}:
(1) E+

µ (c∗) ≤ E−
µ (c∗), (2) Eσ

∞(c∗) ≤ Eσ
µ+1(c

∗) ≤ Eσ
µ(c∗).

Proper inequality holds for the concepts in Dn.

Next, we relate the TD model, i.e., the teaching dimension, to the randomized
model (in terms of the expected teaching time).

14 F.J. Balbach and T. Zeugmann

Lemma 19 ([18]). Let C be a concept class and let c∗ ∈ C be a target. For all
µ ∈ [1, TD(c∗)],

E−
µ (c∗) ≥ E+

µ (c∗) ≥ µ(µ− 1)
2TD(c∗)

+ TD(c∗) + 1− µ,

and for all µ > TD(c∗), E−
µ (c∗) ≥ E+

µ (c∗) ≥ TD(c∗)/2.

Now, we take a closer look at learners with feedback. For the sake of presentation
we start with learners with 1-memory. A teaching process involving L+

1 can be
modeled as an MDP with S = C∪{init}, A = X (c∗), cost(h, z) = 1 for h �= c∗ and
cost(c∗, z) = 0. Furthermore, for h �= c∗, p(h, z, h′) = 1/|C(z)| if z ∈ X (h′)\X (h)
and p(h, z, h′) = 0 otherwise; finally p(c∗, z, c∗) = 1 (see [30,29]). The initial state
is init and the state c∗ is costless and absorbing. The memory is not part of the
state, since the next hypothesis only depends on the newly given example which
is modeled as an action.

An example z ∈ X (h) does not change the learner’s state h and is therefore
useless. An optimal teacher refrains from teaching such examples and thus we
can derive the following criterion.

Lemma 20. Let C be a concept class over X and let c∗ be a target. A teacher
T : C ∪ {init} → X (c∗) with expectations H : C ∪ {init} → � is optimal iff for
all h ∈ C ∪ {init}:

T (h) ∈ argmin
z∈X (c∗)
z /∈X (h)

⎛⎝1 +
1
|C(z)|

∑
h′∈C(z)

H(h′)

⎞⎠ .

This criterion can be used to prove optimality for teaching algorithms.
We compare E+

1 with other dimensions. The comparison of E+
1 with the

number MQ of membership queries (see Angluin [1]) is interesting because MQ
and E+

1 are both lower bounded by the teaching dimension.

Fact 21
(1) For all C and c∗ ∈ C: E+

1 (c∗) ≥ TD(c∗).
(2) There is no function of TD upper bounding E+

1 (c).
(3) There is no function of E+

1 upper bounding MQ.
(4) There is a concept class C with E+

1 (C) > MQ(C).
(5) For all concept classes C, E+

1 (C) ≤ 2MQ(C).

Roughly speaking, teaching L+
1 can take arbitrarily longer than teaching in the

classical model, but is still incomparable with membership query learning.
We finish this subsection by looking at learners with ∞-memory. A straight-

forward MDP for teaching c∗ to L+
∞ has states S = (C ∪ {init}) × X (c∗)≤|X|.

The number of states can be reduced because two states (h, m) and (h, m′) with
C(m) = C(m′) are equivalent from a teacher’s perspective, but in general the
size of the resulting MDP will not be polynomial in the size of the matrix rep-
resentation of C. Therefore, optimal teachers cannot be computed efficiently by
the known general MDP algorithms.

Recent Developments in Algorithmic Teaching 15

A similar criterion as Lemma 20 can be stated for the L+
∞ learner, too, and

used to prove optimality of algorithms. Note that there is always a teacher that
needs at most TD(c∗) rounds by giving a minimal teaching set, hence E+∞(c∗) ≤
TD(c∗). Second, it follows from Lemma 19 that E+

∞(c∗) ≥ TD(c∗)/2. This means
that every algorithm computing E+

∞(c∗) also computes a factor 2 approximation
of the teaching dimension.

As it has often been noted [13,21,12], the problem of computing the teaching
dimension is essentially equivalent to the SET-COVER (or HITTING-SET) problem
which is a difficult approximation problem. Raz and Safra [31] have shown that
there is no polynomial time constant-factor approximation (unless P = NP).
Moreover, Feige [32] proved that SET-COVER cannot be approximated better than
within a logarithmic factor (unless NP ⊆ DTime(nlog log n)).

Corollary 22. Unless NP ⊆ DTime(nlog log n), computing E+∞ is NP-hard and
cannot be approximated with a factor of (1 − ε) log(|C|) for any ε > 0.

However, we have:

Fact 23. Let C be a concept class and c∗ ∈ C a target. Then there is a successful
teacher for the learner L+∞ halting after at most |X | rounds that is also optimal.

Note that our model of teaching a randomized learner also allows for studying
teaching from positive data only. The interested reader is referred to [18] for
details. Here we only mention the following topological characterization.

Theorem 24. Let C be a concept class and c∗ ∈ C a target concept. Then for
all learners Lσ

µ with µ ∈ [1,∞], σ ∈ {+,−}: The concept c∗ is teachable from
positive data iff there is no c ∈ C with c ⊃ c∗.

Studying the teachability of randomized learnerswithout feedback is much harder,
since the problem of finding the optimal cost in an MDP whose states are not
observable is much more difficult. We refer the interested reader to Balbach and
Zeugmann [17] for results in this regard.

5 Further Directions

A number of variations of the teaching dimension have been studied in which
the learner is assumed to act smarter than just choosing a consistent hypothesis.
One such model (see Balbach [14,15]) assumes the learner picks hypotheses that
are not only consistent but of minimal complexity. This model is inspired by
the Occam’s razor principle. A teacher that exploits this learning behavior can
make do with fewer examples than in the original teaching dimension model. For
example, 2-term DNFs and 1-decision lists can be taught with O(n) examples,
as opposed to 2n examples (n being the number of variables). Note that this
model presupposes a measure of complexity for all concepts in the class, such as

16 F.J. Balbach and T. Zeugmann

the length of a decision list or the number of terms in a DNF. But there might
not be a unique, natural complexity measure for a given class.

Another variant devised by Balbach [15] assumes that the learners know the
teaching dimensions of all concepts in the class and choose their hypotheses only
from the consistent ones with a teaching dimension at least as large as the sam-
ple given by the teacher. In other words, they assume the teacher does not give
more examples than necessary for the concept to be taught. This optimal teacher
teaching dimension (OTTD) model demands more of the learners, as they need
to know all the teaching dimensions, but reduces the number of examples com-
pared to the plain teaching dimension. For example, the OTTD of monomials is
linear in the number of variables, and the OTTD of 1-decision lists is bounded
by Ω(

√
n · 2n/2) and O(n

√
log n · 2n/2).

If the learners in the OTTD model base their reasoning on the OTTD rather
than the teaching dimension, one obtains yet another dimensionality measure.
Intuitively, the learners assume that the teacher knows how they think and
adjusts the sample he gives. Now the teacher can exploit this new behavior of
the students, again reducing the number of examples needed. This gives rise to a
series of decreasing dimensionality notions which, for finite concept classes, will
eventually converge.

In a similar vein, Zilles, Lange, Holte, and Zinkevich [33] defined a teaching
model which is based on cooperative learners. Here the learners are assumed to
know all minimal teaching sets for all concepts in the class, and they always
choose from the consistent hypotheses a minimal teaching set which contains all
examples given so far. In other words they assume that at all times the sample
given by the teacher can be extended to a minimal teaching set for the concept
to be taught. This demands even more of the learners than the OTTD, as they
now have to know all minimal teaching sets of all concepts. In a similar way as
above, this idea can be iterated, yielding a series of dimensionality notions that
converge to one called the subset teaching dimension (STD). The STD is a lower
bound for the iterated OTTDs. Zilles et al. [33] show a number of surprising
properties of the STD. For example, the STD of the class of monomials is two,
independent of the number of variables. A surprising property of the STD is its
nonmonotonicity, that is, the STD of some classes is less than that of one of
their subclasses.

Finally, Zilles et al. [33] devise a dimensionality notion called the recursive
teaching dimension (RTD), which combines the easy teachability of the mono-
mials in the STD model with the property of monotonicity in the TD and OTTD
models. However, it is not based on refined assumptions about the learners’ be-
havior and only measures the teachability of an entire concept class, not that of
individual concepts. The basic idea is to order the concepts in a class and de-
termine the teaching dimension of each concept with respect only to the class of
all following concepts. The maximum teaching dimension for any concept mini-
mized over all possible orderings determines the RTD of the class. The RTD is
a lower bound for all iterated OTTDs, but its precise relationship to the STD is
unknown. The STD is conjectured to be a lower bound for the RTD.

Recent Developments in Algorithmic Teaching 17

References

1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
2. Angluin, D.: Queries revisited. Theoret. Comput. Sci. 313, 175–194 (2004)
3. Freivalds, R., Kinber, E.B., Wiehagen, R.: Inductive inference from good exam-

ples. In: Jantke, K.P. (ed.) AII 1989. LNCS (LNAI), vol. 397, pp. 1–17. Springer,
Heidelberg (1989)

4. Freivalds, R., Kinber, E.B., Wiehagen, R.: On the power of inductive inference
from good examples. Theoret. Comput. Sci. 110, 131–144 (1993)

5. Jain, S., Lange, S., Nessel, J.: On the learnability of recursively enumerable lan-
guages from good examples. Theoret. Comput. Sci. 261, 3–29 (2001)

6. Jackson, J., Tomkins, A.: A computational model of teaching. In: Proc. 5th Annual
ACM Workshop on Computational Learning Theory, pp. 319–326. ACM Press,
New York (1992)

7. Goldman, S.A., Mathias, H.D.: Teaching a smarter learner. J. of Comput. Syst.
Sci. 52, 255–267 (1996)

8. Mathias, H.D.: A model of interactive teaching. J. of Comput. Syst. Sci. 54, 487–
501 (1997)

9. Angluin, D., Kriķis, M.: Teachers, learners and black boxes. In: Proceedings of the
Tenth Annual Conference on Computational Learning Theory, pp. 285–297. ACM
Press, New York (1997)

10. Angluin, D., Kriķis, M.: Learning from different teachers. Machine Learning 51,
137–163 (2003)

11. Goldman, S.A., Rivest, R.L., Schapire, R.E.: Learning binary relations and total
orders. SIAM J. Comput. 22, 1006–1034 (1993)

12. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. of Comput. Syst.
Sci. 50, 20–31 (1995)

13. Shinohara, A., Miyano, S.: Teachability in computational learning. New Generation
Computing 8, 337–348 (1991)

14. Balbach, F.J.: Teaching classes with high teaching dimension using few examples.
In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 668–683.
Springer, Heidelberg (2005)

15. Balbach, F.J.: Measuring teachability using variants of the teaching dimension.
Theoret. Comput. Sci. 397, 94–113 (2008)

16. Balbach, F.J., Zeugmann, T.: Teaching learners with restricted mind changes. In:
Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp.
474–489. Springer, Heidelberg (2005)

17. Balbach, F.J., Zeugmann, T.: Teaching memoryless randomized learners without
feedback. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS
(LNAI), vol. 4264, pp. 93–108. Springer, Heidelberg (2006)

18. Balbach, F.J., Zeugmann, T.: Teaching randomized learners. In: Lugosi, G., Si-
mon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 229–243. Springer,
Heidelberg (2006)

19. Natarajan, B.K.: Machine Learning: A Theoretical Approach. Morgan Kaufmann,
San Mateo (1991)

20. Kushilevitz, E., Linial, N., Rabinovich, Y., Saks, M.: Witness sets for families of
binary vectors. Journal of Combinatorial Theory Series A 73, 376–380 (1996)

21. Anthony, M., Brightwell, G., Cohen, D., Shawe-Taylor, J.: On exact specification
by examples. In: Proc. 5th Annual ACM Workshop on Computational Learning
Theory, pp. 311–318. ACM Press, New York (1992)

18 F.J. Balbach and T. Zeugmann

22. Anthony, M., Brightwell, G., Shawe-Taylor, J.: On specifying Boolean functions by
labelled examples. Discrete Applied Mathematics 61, 1–25 (1995)

23. Lee, H., Servedio, R.A., Wan, A.: DNF are teachable in the average case. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS, vol. 4005, pp. 214–228. Springer,
Heidelberg (2006)

24. Hegedűs, T.: Combinatorial results on the complexity of teaching and learning. In:
Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 393–402.
Springer, Heidelberg (1994)

25. Hegedűs, T.: Generalized teaching dimensions and the query complexity of learn-
ing. In: Proc. 8th Annual Conference on Computational Learning Theory, pp. 108–
117. ACM Press, New York (1995)

26. Ben-David, S., Eiron, N.: Self-directed learning and its relation to the VC-
dimension and to teacher-directed learning. Machine Learning 33, 87–104 (1998)

27. Rivest, R.L., Yin, Y.L.: Being taught can be faster than asking questions. In:
Proc. 8th Annual Conference on Computational Learning Theory, pp. 144–151.
ACM Press, New York (1995)

28. Kuhlmann, C.: On teaching and learning intersection-closed concept classes. In:
Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS, vol. 1572, pp. 168–182.
Springer, Heidelberg (1999)

29. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Chichester (1994)

30. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific
(2001)

31. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. of the 29th ACM
Symposium on Theory of Computing, pp. 475–484. ACM Press, New York (1997)

32. Feige, U.: A threshold of ln n for approximating set cover. J. of the ACM 45,
634–652 (1998)

33. Zilles, S., Lange, S., Holte, R., Zinkevich, M.: Teaching dimensions based on co-
operative learning. In: 21st Annual Conference on Learning Theory - COLT 2008,
Helsinki, Finland, pp. 135–146. Omnipress (2008)

Monadic Second-Order Logic for Graphs:
Algorithmic and Language Theoretical

Applications�

Bruno Courcelle

Université Bordeaux-1, LaBRI, CNRS
Institut Universitaire de France

351, Cours de la Libération
33405, Talence cedex, France

courcell@labri.fr

Abstract. This tutorial will present an overview of the use of Monadic
Second-Order Logic to describe sets of finite graphs and graph transfor-
mations, in relation with the notions of tree-width and clique-width. It
will review applications to the construction of algorithms, to Graph The-
ory and to the extension to graphs of Formal Language Theory concepts.

We first explain the role of Logic. A graph, either finite or infinite, can be consid-
ered as a logical structure whose domain (the ground set of the logical structure)
consists of the set of vertices; a binary relation on this set represents adjacency.
Graph properties can be expressed by logical formulas of different languages
and classified accordingly. First-order formulas are rather weak in this respect
because they can only express local properties, like having degree or diameter
at most k for fixed k. Most properties of interest in Graph Theory can be ex-
pressed in second-order logic (this language allows quantifications on relations
of arbitrary but fixed arity), but unfortunately, little can be obtained from such
expressions.

Second-order formulas that only use quantifications on unary relations, i.e., on
sets are Monadic second-order formulas. They can express many basic and useful
graph properties like connectivity, k-colorability, planarity and minor inclusion,
just to take a few examples. These properties are said to be monadic second-order
expressible and the corresponding sets of graphs are called monadic second-order
definable. Many algorithmic properties follow from such logical descriptions. In
particular, every monadic second-order definable set of finite graphs of bounded
tree-width has a linear time recognition algorithm ([1], [2], [3], [4], [5]).

Monadic second-order formulas are also used in Formal Language Theory to
describe languages, i.e., sets of words or terms. A fundamental result in this field
is that monadic second-order formulas and finite automata have the same ex-
pressive power. It is fundamental for the theory and practice of model-checking,

� Supported by the GRAAL project of “Agence Nationale pour la Recherche”.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 19–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 B. Courcelle

and, in Language Theory, it helps to analyze and classify the regular languages,
i.e., those defined by finite automata. Monadic second-order formulas are even
more important for describing sets of graphs than for describing languages be-
cause there is no convenient notion of graph automaton. They can also replace
finite automata for defining graph transformations, that we call transductions,
as in Language Theory.

However, monadic second-order logic alone yields no interesting results. As
mentioned above every monadic second-order graph property has, for each k, a
polynomial time checking algorithm for graphs of tree-width at most k. No such
algorithm can exist for arbitrary graphs, otherwise P=NP because 3-colorability
is expressible by a monadic second-order formula. The checking problem for every
monadic second-order graph property is nevertheless fixed parameter tractable
(FPT) for tree-width as parameter. (See [4], [5] on this notion). Hence in order
to be useful, the expression of a graph property by a monadic second-order
formula must be coupled with constraints on the considered graphs like having
bounded tree-width, or with other constraints that are also based on appropriate
types of hierarchical decompositions. Clique-width is another graph parameter,
based on certain graph decompositions, that yields FPT algorithms for monadic
second-order expressible properties ([2], [6], [7]). Tree-width and clique-width
are important for language theoretical issues as well as for the construction of
polynomial algorithms.

It is convenient to formalize the hierarchical graph decompositions that yield
the notions of tree-width and clique-width and fit with monadic second-order
logic, as algebraic terms written with appropriate graph operations that general-
ize the concatenation of words. The value of such a term t is a finite graph G and
t is one of its hierarchical decompositions of the considered type. The subterms
of t define (roughly speaking) combinations of larger and larger subgraphs of G.
This fact justifies the use of the word “hierarchical” in the above description.

Sets of finite graphs can be described as subsets of certain graph algebras,
by means of notions of Universal Algebra that are already known in Language
Theory. Two of these notions are those of an equational and of a recognizable set
of elements of an algebra. In the monoid of words, the corresponding classes of
sets are respectively those of context-free and of regular languages. The notion
of an equational set generalizes to arbitrary algebras the well-known Least-Fixed
Point Characterization of context-free languages, and that of a recognizable set
generalizes the characterization of regular languages in terms of finite congru-
ences. Many properties of equational and recognizable sets of graphs are just
particular instances of results that hold in arbitrary algebras, but others are
particular to the considered algebras of graphs.

Finite graphs can thus be handled in two ways. The “logical way” characterizes
graphs “from inside”, that is, in terms of what they are made of and contain:
vertices, edges, paths, minors, subgraphs. The “algebraic way” characterizes sets
of graphs in a global way : a graph is treated as an element of an algebra
and related with other elements of the same algebra, that are not necessarily
among its subgraphs. Two important theorems relate these two approaches. The

Monadic Second-Order Logic for Graphs 21

Recognizability Theorem says that every set of finite graphs that is monadic
second-order definable is recognizable. The Equationality Theorem says that a
set of finite graphs is equational if and only if it is the set of graphs “definable
inside finite trees” by a fixed finite tuple of monadic second-order formulas : we
will say : “is the image of a set of finite trees under a monadic second-order
transduction”.

It follows from the Recognizability Theorem that, for a graph G defined by a
term t (relative to an appropriate graph algebra), one can check in time O(|t|)
whether or not G satisfies a fixed monadic second-order property. It follows also
that the graphs of an equational set that satisfy a fixed monadic second-order
property (like planarity) form an equational set. We call this result the Filtering
Theorem. It generalizes the classical fact that the intersection of a context-free
language with a regular one is context-free. Since the emptiness of an equational
set is decidable, we get as a corollary that the monadic second-order satisfiability
problem is decidable for every equational set L . This means that one can decide
whether or not a given monadic second-order formula is satisfied by some graph
in L. The Equationality Theorem entails that the family of equational sets of
graphs is preserved under monadic second-order transductions. This corollary
is similar to the fact that the image of a context-free language under a ratio-
nal transduction is context-free. (A rational transduction can be specified by
a nondeterministic finite-state transducer, and if the image of every word is a
finite set, then it is also a monadic second-order transduction). The corollary
follows from the fact that the class of monadic second-order transductions is
closed under composition.

The Recognizability and the Equationality Theorem contribute to establish-
ing the foundations of a sound and robust extension of the theory of formal
languages intended to cover descriptions of sets of finite graphs, and in which
monadic second-order logic plays a major role. From the above informal state-
ments, this extension may seem to be straightforward. However, general graphs
are intrinsically more complex than words and terms, and some results do not
extend. Let us give two examples. The set of all finite graphs is not equational,
whereas the set of all words on a finite alphabet is (trivially) context-free. There
are uncountably many recognizable sets of graphs, and this fact forbids any char-
acterization of these sets in terms of graph automata, that would generalize a
classical characterization of regular languages. These examples reflect the fact
that the sets of graph operations upon which Recognizability and Equationality
are based are infinite, and that this infiniteness is unavoidable.

According to the above presentation, monadic second-order formulas express-
ing graph properties do not use edge set quantifications. This is due to the chosen
representation of a graph by a relational structure. If we replace a graph G by its
incidence (bipartite) graph Inc(G), where each edge is made into a vertex and
where the adjacency relation edgInc(G)(e, v) expresses that a vertex v of G is an
end of edge e, then monadic second-order formulas to be interpreted in Inc(G)
can use edge set quantifications. A graph property is MS2-expressible if it is ex-
pressible by a monadic second-order formula on incidence graphs. This variant of

22 B. Courcelle

monadic second-order logic has strictly more expressive power than the initially
defined language. The existence of a perfect matching is MS2-expressible but not
monadic second-order expressible. However, the two variants of monadic second-
order logic have the same expressive power on words, on trees and on certain
classes of graphs like those of planar graphs or, for each k, of graphs of degree
at most k.

The Recognizability Theorem and the Equationality Theorem have thus two
versions, relative to the two possible representations of graphs by relational struc-
tures and to two different graph algebras. The graph algebra corresponding to
MS2-formulas, called the HR algebra, is the one with graph operations that ex-
press tree-decompositions and characterize tree-width. The one corresponding
to monadic second-order formulas without edge set quantifications is called the
VR algebra, it defines clique-width. The acronyms HR and VR refer respectively
to hyperedge replacement and vertex replacement because the equational sets
of the HR and of the VR algebras are the sets of graphs generated by certain
context-free graph grammars called respectively hyperdege replacement and ver-
tex replacement graph grammars. (See [1] and the first two chapters of the same
volume.)

These results are also interesting for Structural Graph Theory, i.e., for the
study of graph decompositions, of embeddings of graphs on surfaces, of forbid-
den configuration characterizations, of colorings expressed as homomorphisms
between graphs. Quick proofs that certain graph classes have bounded tree-
width or clique-width can be obtained from the Equationality Theorem.

All these definitions and results are in a book in preparation [2].

References

1. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars
and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World
Scientific, Singapore (1997)

2. Courcelle, B.: Graph structure and monadic second-order logic. In: Book in prepa-
ration. Cambridge University Press, Cambridge (2009),
http://www.labri.fr/perso/courcell/ActSci.html

3. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable
graphs. Theor. Comput. Sci. 109, 49–82 (1993)

4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
6. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems

on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)
7. Makowsky, J.: Algorithmic uses of the feferman-vaught theorem. Ann. Pure Appl.

Logic 126, 159–213 (2004)

http://www.labri.fr/perso/courcell/ActSci.html

Descriptional and Computational Complexity of
Finite Automata

Markus Holzer and Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. Over the last half century, a vast literature documenting the
importance of deterministic, nondeterministic, and alternating finite au-
tomata as an enormously valuable concept has been developed. In the
present paper, we tour a fragment of this literature. Mostly, we dis-
cuss developments relevant to finite automata related problems like, for
example, (i) simulation of and by several types of finite automata, (ii)
standard automata problems such as, e.g., fixed and general membership,
emptiness, universality, equivalence, and related problems, and (iii) min-
imization and approximation. We thus come across descriptional and
computational complexity issues of finite automata. We do not prove
these results but we merely draw attention to the big picture and some
of the main ideas involved.

1 Introduction

Nondeterministic finite automata (NFAs) were introduced in [59], where their
equivalence to deterministic finite automata (DFAs) was shown. Later the con-
cept of alternation was developed in [10], where also alternating finite automata
(AFAs) were investigated, which turned out to be equivalent to DFAs, too. Many
work has been done in the study of descriptional complexity of simulation of and
by several types of automata and on the computational complexity of decision
problems related to finite automata. The goal of this research is to obtain tight
bounds on simulation results and to classify the computational complexity of
problems according to the complexity classes NC1, L, NL, P, NP, and PSPACE,
or others—for basics in computational complexity theory we refer to, e.g., [33].
Our tour on the subjects listed in the abstract of finite automata related prob-
lems cover some (recent) results in the field of descriptional and computational
complexity. It obviously lacks completeness and it reflects our personal view of
what constitute the most interesting links to descriptional and computational
complexity theory. In truth there is much more to the regular languages, DFAs,
NFAs, etc., than one can summarize here. For a recent survey on finite automata
we refer to [68] and [30].

Our nomenclature of finite automata is as follows: The powerset of a set Q is
denoted by 2Q and the empty word by λ. A nondeterministic finite automaton
(NFA) is a quintuple A = (Q, Σ, δ, q0, F), where Q is the finite set of states, Σ

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 23–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

24 M. Holzer and M. Kutrib

is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set
of accepting states, and δ : Q × Σ → 2Q is the transition function. A finite
automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all states
q ∈ Q and letters a ∈ Σ. In this case we simply write δ(q, a) = p instead of
δ(q, a) = {p} assuming that the transition function is a mapping δ : Q×Σ → Q.
So, any DFA is complete, that is, the transition function is total, whereas it
may be a partial function for NFAs in the sense that the transition function of
nondeterministic machines may map to the empty set. The language accepted
by the NFA or DFA A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where
the transition function is recursively extended to δ : Q × Σ∗ → 2Q. A finite
automaton is said to be minimal if its number of states is minimal with respect
to the accepted language. Note that a sink state is counted for DFAs, since they
are always complete, whereas it is not counted for NFAs, since these devices are
not necessarily complete. For further details we refer to [33].

We identify the logical values false and true with 0 and 1 and write {0, 1}Q
for the set of finite functions from Q into {0, 1}, and {0, 1}{0,1}Q

for the set of
Boolean formulas (functions) mapping {0, 1}Q into {0, 1}. An alternating finite
automaton (AFA) is a quintuple A = (Q, Σ, δ, q0, F), where Q, Σ, q0, and F are
as for NFAs, and δ : Q×Σ → {0, 1}{0,1}Q

is the transition function. The transi-
tion function maps pairs of states and input symbols to Boolean formulas. Before
we define the language accepted by the AFA A we have to explain how a word
is accepted. As the input is read (from left to right), the automaton “builds” a
propositional formula, starting with the formula q0, and on reading an input a,
replaces every q ∈ Q in the current formula by δ(q, a). The input is accepted if
and only if the constructed formula on reading the whole input evaluates to 1 on
substituting 1 for q, if q ∈ F , and 0 otherwise. This substitution defines a map-
ping from Q into {0, 1} which is called the characteristic vector fA of A. Then the
language accepted by A is defined as L(A) = {w ∈ Σ∗ | w is accepted by A }.
Two automata are equivalent if and only if they accept the same language. For
further details we refer to [10] and [33].

2 Descriptional Complexity of Finite Automata
Simulations

Since regular languages have many representations in the world of finite au-
tomata, it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. Here
we measure the costs of representations in terms of the states of a minimal au-
tomaton accepting a language. More precisely, the simulation problem is defined
as follows:

– Given two classes of finite automata C1 and C2, how many states are suffi-
cient and necessary in the worst case to simulate n-state automata from C1
by automata from C2?

In particular, we are interested in simulations between DFAs, NFAs, and AFAs.

Descriptional and Computational Complexity of Finite Automata 25

It is well known that to any NFA one can always construct an equivalent
DFA [59]. This so-called powerset construction, where each state of the DFA is
associated with a subset of NFA states, turned out to be optimal, in general.
That is, the bound on the number of states necessary for the construction is
tight in the sense that for an arbitrary n there is always some n-state NFA
which cannot be simulated by any DFA with strictly less than 2n states [56,58].
So, NFAs can offer exponential saving in the number of states compared with
DFAs. This gives rise to the following theorem.

Theorem 1 (NFA by DFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then 2n states are sufficient and necessary in the worst case for a DFA
to accept L(A).

The situation becomes more involved when AFAs come into play. Alternating
finite automata as we have defined them have been developed in [10]. At the
same period in [9] the so-called Boolean automata were introduced. Note, that
several authors use the notation “alternating finite automata” but rely on the
definition of Boolean automata. Though it turned out that both types are al-
most identical, there are differences with respect to the initial configurations.
While for AFAs the computation starts with the fixed propositional formula q0,
a Boolean automaton starts with an arbitrary propositional formula. Clearly,
this does not increase their computational capacities. However, it might make
a difference of one state from a descriptional complexity point of view when
simulating a Boolean automaton by an AFA. It is an open problem whether or
not the additional state is really necessary, that is, whether the bound of n + 1
is tight.

Next we turn to the simulation of AFAs by NFAs and DFAs. The tight bound
of 22n

states for the deterministic simulation of n-state AFAs has already been
shown in the famous fundamental papers [10] for AFAs and [9,50] for Boolean
automata.

Theorem 2 (AFA by DFA Simulation). Let n ≥ 1 and A be an n-state
AFA or Boolean automaton. Then 22n

states are sufficient and necessary in the
worst case for a DFA to accept L(A).

The original proofs of the upper bound rely on the fact that an AFA or a Boolean
automaton can enter only finitely many internal situations, which are given by
Boolean functions depending on n Boolean variables associated with the n states.
The number of 22n

such functions determines the upper bound.
In [17] the constructions of simulating NNFAs are presented which implies the

same upper bound. Basically, an NNFA is an NFA with multiple entry states,
where initially one is nondeterministically chosen. The basic idea is that the
NNFA simulates the AFA or Boolean automaton A by guessing the sequence of
functions of the form {0, 1}Q that appear during the evaluation of the propo-
sitional formula computed by the A in reverse order. Since there are 2n such
functions we obtain the upper bound stated in Theorem 3. Moreover, since the
powerset constructions works also fine for the NNFA by DFA simulation, the

26 M. Holzer and M. Kutrib

presented construction also reveals the upper bound for the AFA simulation by
DFAs already stated in Theorem 2.

It is known that any NNFA can be simulated by an NFA having one more
state. The additional state is used as new sole initial state which is appropriately
connected to the successors of the old initial states. On the other hand, in gen-
eral this state is needed. Nevertheless, it is an open problem whether there are
languages accepted by n-state AFAs or Boolean automata such that any equiv-
alent NFA has at least 2n + 1 states. In [17] it is conjectured that this bound
presented in the following theorem is tight.

Theorem 3 (AFA by NNFA and NFA Simulation). Let n ≥ 1 and A be an
n-state AFA or Boolean automaton. Then 2n states are sufficient and necessary
in the worst case for an NNFA to accept L(A). Moreover, 2n + 1 states are
sufficient for an NFA to accept L(A), and for every n ≥ 1 there is an n-state
AFA or Boolean automaton A such that any NFA accepting L(A) has at least 2n

states.

The matching lower bound of Theorem 2 is shown in [10] for AFAs by witness
languages in a long proof. Before we come back to this point for Boolean au-
tomata, we turn to an interesting aspect of AFAs and Boolean automata. One
can observe that the construction of the simulating NNFA is backward determin-
istic [10]. So, the reversal of a language accepted by an n-state AFA or Boolean
automaton is accepted by a not necessarily complete 2n-state DFA which in turn
can be simulated by a (2n +1)-state complete DFA. This result has significantly
be strengthened in [50], where it is shown that the reversal of every n-state DFA
language is accepted by a Boolean automaton with �log2(n)� states. With other
words, with restriction to reversals of regular languages a Boolean automaton
can always save exponentially many states compared with a DFA. The next
theorem summarizes these results.

Theorem 4 (Reversed AFA by DFA Simulation). Let n ≥ 1 and A be
an n-state AFA or Boolean automaton. Then 2n + 1 states are sufficient and
necessary in the worst case for a DFA to accept the reversal of L(A). If the
minimal DFA accepting the reversal of L(A) does not have a rejecting sink state,
then 2n states are sufficient. Moreover, the reversal of every language accepted
by an n-state DFA is accepted by a Boolean automaton with �log2(n)� states.

The theorem lefts open whether the reversal of every n-state DFA language
is also accepted by some AFA with �log2(n)� states. However, we know that
�log2(n)�+ 1 states are sufficient for this purpose.

Now we are prepared to argue for the matching lower bound of Theorem 2
for Boolean automata in a simple way. It is well known that for any m ≥ 1
there is an m-state DFA A such that any DFA accepting the reversal of L(A)
has 2m states [50]. Setting m = 2n we obtain a 2n-state DFA language L(A)
whose reversal is accepted by a Boolean automaton with n states by Theorem 4.
On the other hand, the reversal of L(A) takes at least 22n

states to be accepted
deterministically.

Descriptional and Computational Complexity of Finite Automata 27

Next we argue that the upper bound of Theorem 3 cannot be improved in
general. To this end, let A be an n-state AFA or Boolean automaton such that
any equivalent DFA has 22n

states. Let m be the minimal number of states for an
equivalent NNFA. Since the NNFA can be simulated by a DFA with at most 2m

states, we conclude 2m ≥ 22n

, that is, the NNFA has at least m ≥ 2n states.
We now direct our attention to the question whether alternation can always

help to represent a regular language succinctly. It is well known that nonde-
terminism cannot help for all languages. So, how about the worst case of the
language representation by alternating finite automata? The situation seems to
be more sophisticated. Theorem 4 says that for reversals of n-state DFA lan-
guages we can always achieve an exponential saving of states. Interestingly, this
potential gets lost when we consider the n-state DFA languages itself (instead
of their reversals). The next theorem and its corollary are from [51].

Theorem 5. For every n ≥ 1 there exists a minimal DFA A with n states such
that any AFA or Boolean automaton accepting L(A) has at least n states.

The DFAs An = ({q0, q1, . . . , qn−1}, {a, b}, δ, q1, F) witness the theorem for n ≥
2, where F = { qi | 0 ≤ i ≤ n− 1 and i even } and the transition function given
by

δ(qi, a) = q(i+1) mod n and δ(qi, b) =

{
qi for 0 ≤ i ≤ n− 3
qn−1 for i ∈ {n− 2, n− 1}.

Each DFA An has the property that any DFA A′
n accepting the reversal of L(A)

has at least 2n states. Moreover, An and A′
n both are minimal, complete and

do not have a rejecting sink state [50]. Assume that L(A) is accepted by some
AFA or Boolean automaton with m < n states. Then the reversal of L(A) would
be accepted by some DFA having at most 2m states by Theorem 4. This is a
contradiction since 2m < 2n.

Up to now we dealt with simulations whose costs optimality is witnessed by
regular languages which may be built over alphabets with two or more letters.
For the particular case of unary regular languages, that is, languages over a
single letter alphabet, the situation turned out to be significantly different. The
problem of evaluating the costs of unary automata simulations was raised in [61],
and has led to emphasize some relevant differences with the general case. So,
we next turn to draw a part of that picture, which is complemented by the
sophisticated studies in [55] which reveal tight bounds also for many other types
of finite automata and, in addition, is a valuable source for further references.
For state complexity issues of unary finite automata Landau’s function F (n) =
max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 and x1 + · · · + xk = n } plays a crucial
role. Here, lcm denotes the least common multiple. Since F depends on the
irregular distribution of the prime numbers, we cannot expect to express F (n)
explicitly by n. The following asymptotic tight bound on the unary NFA by DFA
simulation was presented in [13,14].

28 M. Holzer and M. Kutrib

Theorem 6 (Unary NFA by DFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).

In general, the deterministic simulation of AFAs may cost a double exponen-
tial number of states. The unary case is cheaper. Since every unary language
coincides trivially with its reversal, the upper bound of the following theorem
is immediately derived from Theorem 4. Interestingly, to some extend for unary
languages it does not matter in general whether we simulate an AFA determin-
istically or nondeterministically. The tight bounds differ at most by one state.
The upper bound of this claim follows since any DFA is also an NFA and NFAs
are not necessarily complete. The lower bounds can be seen by considering the
single word language Ln = {a2n−1}. For each n ≥ 1, the language Ln is accepted
by some minimal (2n + 1)-state DFA as well as by some minimal 2n-state NFA.

Theorem 7 (Unary AFA by DFA and NFA Simulation). Let n ≥ 1 and A
be an n-state AFA accepting a unary language. Then 2n + 1 states are sufficient
and necessary in the worst case for a DFA to accept L(A). If the minimal DFA
does not have a rejecting sink state, then 2n states are sufficient. Moreover, 2n

states are sufficient and necessary in the worst case for an NFA to accept L(A).

Theorem 5 revealed that alternation cannot help to reduce the number of states
of DFAs or NFAs in all cases. The same is true for nondeterministic simulations of
DFAs in general and in the unary case. However, for unary languages alternation
does help. By Theorem 7 we know already that any AFA simulating an n-state
DFA accepting a unary language has not less than �log2(n)� − 1 states. Once
more the unary single word languages Ln are witnesses that this saving can be
achieved. This gives rise to the next theorem.

Theorem 8 (Unary DFA by AFA Simulation). Let n ≥ 1 and A be an n-
state DFA accepting a unary language. Then �log2(n)� − 1 states are necessary
for an AFA to accept L(A). Moreover, there exists a minimal DFA A with n
states accepting a unary language such that any minimal AFA accepting L(A)
has exactly �log2(n)� − 1 states.

Finally, we derive the always possible savings for unary NFA by AFA simulations
as follows. Given some n-state NFA accepting a unary language, by Theorem 6
we obtain an equivalent DFA that has at most eΘ(

√
n·lnn) = 2Θ(

√
n·ln n) states.

Now Theorem 4 in combination with says essentially that there is an equivalent
AFA with Θ(

√
n · ln n) states. In order to see that these savings are optimal in

general, consider a unary n-state NFA such that any equivalent DFA must have
eΘ(

√
n·ln n) states. Since the bound of Theorem 6 is tight such automata exist.

Clearly, any equivalent AFA has at least Θ(
√

n · ln n) states. Otherwise there
would be an equivalent DFA with less than eΘ(

√
n·ln n) states by Theorem 7.

Theorem 9 (Unary NFA by AFA Simulation). Let n ≥ 1 and A be a
minimal n-state NFA accepting a unary language. Then Θ(

√
n · ln n) states are

Descriptional and Computational Complexity of Finite Automata 29

sufficient for an AFA to accept L(A). Moreover, there exists an n-state NFA
accepting a unary language such that any equivalent AFA requires Θ(

√
n · ln n)

states. If A is a unary n-state NFA such that any equivalent DFA has at least
eΘ(

√
n·ln n) states, then any AFA accepting L(A) has at least Θ(

√
n · ln n) states.

Concerning structural properties in [17] it is shown that negations in the Boolean
functions defining an AFA can be avoided at the cost of increasing the number
of states by factor of two. For the role played by the number of accepting states
the following is known. While the family of languages accepted by DFAs with
k accepting states is strictly contained in the family of languages accepted by
DFAs with k+1 accepting states, for k ≥ 0, it is known that for NFAs two states
are always sufficient. The situation for AFAs is in contrast to the situation for
DFAs but parallels the situation for NFAs. More precisely, in [17] it has been
shown that for every n-state AFA A accepting a λ-free regular language one
can construct an equivalent n-state AFA A′ without accepting state. If L(A)
contains the empty word, then A′ has one sole accepting state that coincides
with the start state.

3 Computational Complexity of Some Decision Problems
for Finite Automata

We recall what is known from the computational complexity point of view on
some standard problems for regular languages. The problems considered in this
section are all decidable, as most problems for finite automata, and they will be
grouped as mentioned in the abstract.

3.1 The Fixed and General Membership Problem

Our tour on problems for regular languages is started with the definition of the
fixed and general membership problem: The former problem is device indepen-
dent by definition and is commonly referred to in the literature as the fixed
membership problem for regular languages:

– Fix a finite automaton A. For a given word w, does the word w belong to
the language L(A), i.e., is w ∈ L(A)?

A natural generalization is the general membership problem, which is defined as
follows:

– Given a finite automaton A and a word w, i.e., a suitable coding1 〈A, w〉,
does the word w belong to the language L(A), i.e., is w ∈ L(A)?

1 A coding function 〈·〉 maps a finite automaton A and a string w to a word 〈A, w〉 over
a fixed alphabet Σ. We do not go into the details of 〈·〉, but assume it fulfills certain
standard properties; for instance, that the coding of the input alphabet symbols as
well as the coding of the states is of logarithmic length.

30 M. Holzer and M. Kutrib

Obviously, the fixed membership problem for regular languages reduces to the
general membership problem for any suitable class of automata, that describes
the family of regular languages. On the other hand, the complexity of the general
membership problem may depend on the given language descriptor. For instance,
it is easy to see that the general membership problem for DFAs is in L, and in fact,
complete for L under weak reductions. The problem is NL-complete for NFAs [47],
and becomes P-complete for AFAs as shown in [45]. These completeness results
even hold for finite automata accepting languages over a singleton, i.e., unary
languages. We summarize these results in the following theorem:

Theorem 10 (General Membership). The general membership problem for
DFAs is L-complete with respect to constant depth reducibilities. Moreover, the
problem is NL-complete for NFAs and becomes P-complete for AFAs. The results
remain valid for automata accepting unary languages.

For the fixed membership problem there is much more to tell, since there is a deep
and nice connection between this problem and circuit complexity theory. There
exist several characterizations, in terms of formal logic, semigroup theory, and
operations on languages, of the regular languages in the circuit complexity classes
AC0, ACC0, and NC1—see, e.g., [6,7,53]. Here AC0 (NC1, respectively) is the
class of languages accepted by uniform circuit families of constant (logarithmic,
respectively) depth, polynomial size, with AND- and OR-gates of unbounded
(bounded, respectively) fan-in and ACC0 is the class of languages accepted by
AC0 circuits with additional MODULO-gates. Hence AC0 ⊆ ACC0 ⊆ NC1 and
note that AC0 is distinct from NC1 by [3] and [18]. It is conjectured that ACC0

is a proper subset of NC1, too.
First, observe that by a divide and conquer approach it is easy to see that

regular languages in general belong to NC1. On the other hand, the NC1 lower
bound (under weak reductions such as, e.g., constant depth reducibilities) was
established in the landmark paper of Barrington [5], where it was shown that
bounded width polynomial size programs over finite monoids recognize exactly
the languages in NC1. To this end, it was shown how to simulate the AND-, OR-,
and NOT-gates of a NC1-circuit with programs over the symmetric group S5 on
five elements. Programs over monoids are a straightforward generalization of
the concept of of recognizability. Here language L ⊆ Σ∗ is recognizable if and
only if there exists a finite monoid M , a morphism ϕ : Σ∗ → M , and a subset
N ⊆ M such that L = ϕ−1(N). In other words an input word w = a1a2 . . . an

is translated via the morphism ϕ to the word ϕ(a1)ϕ(a2) . . . ϕ(an) of monoid
elements, that is evaluated in the monoid to yield a value whose N membership
is tested. A program over a monoid M , for short M -program, takes an input
word a1a2 . . . an of length n and transforms it into a word σ = σ1σ2 . . . σm, for
some m, over monoid elements by querying the input positions in arbitrary order
and transforming the read letter into a monoid element, which is multiplied in
the monoid to yield the value of the program. More formally, an M -program for
input of length n, is a sequence of instructions Pn = 〈i1, ϕ1〉〈i2, ϕ2〉 . . . 〈im, ϕm〉,
where for each j with 1 ≤ j ≤ m we have 1 ≤ ij ≤ n and ϕj : Σ → M , and an
accepting subset N ⊆ M . On input w = a1a2 . . . an, the program produces the

Descriptional and Computational Complexity of Finite Automata 31

word ϕ(w) = ϕ1(ai1)ϕ2(ai2) . . . ϕm(aim) of monoid elements, that is multiplied
out in M and whose N membership determines whether the input is recognized
or not, i.e., the word w is recognized if and only if ϕ(w) is in N . The words
recognized by the M -program Pn define a language L ⊆ Σn in the obvious way.
The result in [5] reads as follows:

Theorem 11 (Fixed Membership). The fixed membership problem for regu-
lar languages is NC1-complete with respect to constant depth reducibilities.

The strong algebraic background on this result has triggered further studies on
M -programs over monoids satisfying certain restrictions. For instance, one of
the best investigated restriction is aperiodicity. Here a monoid is aperiodic if
and only if all elements x from the monoid satisfy xt = xt+1, for some t ≥ 0.
It is well known that a language L has a aperiodic syntactic monoid if and
only if language L is star-free, i.e., it can be obtained from the elementary
languages {a}, for a ∈ Σ, by applying Boolean operations and finitely many
concatenations, where complementation is with respect to Σ∗. These languages
are exhaustively studied in, e.g., [54] and [60]. We mention in passing that first
it was shown in [63] that the aperiodicity problem (given a finite automaton
with input alphabet Σ, does it accept an aperiodic or star-free language?) for
DFAs is coNP-hard and belongs to PSPACE. Later this result was improved to
PSPACE-completeness [11]. In fact, using some algebraic background developed
in [67] on the parameterization of aperiodic and solvable monoids one can show
the following result [7].

Theorem 12 (Fixed Membership). (1) The fixed membership problem for
regular languages recognized by aperiodic monoids belongs to AC0. (2) The fixed
membership problem for regular languages recognized by solvable monoids be-
longs to ACC0.

A closer look reveals that one can obtain even more, namely a tight connec-
tion between the parameterization of AC0 in terms of circuit depth k and a
parameterization of aperiodic monoids, namely Brzozowski’s dot-depth hierar-
chy [15,16]. Instead of using a divide-and-conquer approach as for regular lan-
guages in general, the inductive definition of dot-depth k monoids or languages
allows a straightforward decomposition of language membership that gives a
one-to-one correspondence between dot-depth and circuit depth. In [7] it was
shown that the fixed membership problem for regular languages recognized by
dot-depth k monoids is solvable in AC0 by a family of depth k circuits.

3.2 Emptiness, Universality, Equivalence, and Related Problems

In this subsection we consider non-emptiness, universality, equivalence, and some
related problems such as, e.g., intersection emptiness or bounded universality
or equivalence, for finite automata in more detail. Obviously, these standard
problems are related to each other and we will briefly discuss their relations and
moreover some consequences to the complexity of some non-trivial properties for

32 M. Holzer and M. Kutrib

problems on DFAs, NFAs, and AFAs. The non-emptiness problem for NFAs is
defined as follows:

– Given a nondeterministic finite automaton A, is L(A) �= ∅?

Moreover, the universality problem for NFAs is:

– Given a nondeterministic finite automaton A with input alphabet Σ, is the
language L(A) universal, i.e., L(A) = Σ∗?

The equivalence problem for NFAs is defined for two devices as:

– Given two nondeterministic finite automata A1 and A2, is L(A1) = L(A2)?

This notation naturally generalizes to other types of finite automata.
Intuitively, the universality problem can be much harder than the correspond-

ing emptiness problem, which may also be true for the equivalence problem and
the universality problem. For instance, it is easy to see that emptiness reduces
to non-universality if the automata are logspace effectively closed under arbi-
trary homomorphism and concatenation with regular languages. Here a class
of automata C is logspace effectively closed under arbitrary homomorphism, if
for any automaton A from C with n states and any homomorphism h, one can
construct within deterministic logspace an automaton B from C that accepts
language h(L(A)). This implies that the number of states of B is bounded by
some polynomial pR(n). Similarly logspace effective closure under concatenation
with regular languages is defined. More general conditions for logspace many-one
reductions of universality or emptiness to equivalence, where one of the languages
is a fixed language, were studied in detail in a series of papers by Hunt III and
co-authors [37,38,39].

Now let us come to the complexity of the emptiness problem for finite au-
tomata. In general, if automata are logspace effectively closed under intersection
with regular sets, then the general membership logspace many reduces to the
non-emptiness problem for the same type of automata, because w ∈ L(A) if and
only if L(A)∩{w} �= ∅. Conversely, non-emptiness logspace many-one reduces to
general membership, if the automata are logspace effectively closed under homo-
morphism, since L(A) �= ∅ if and only if h(L(A)) �= ∅ if and only if λ ∈ h(L(A)),
where h(a) = λ, for a ∈ Σ. In [47] the following result on the non-emptiness
problem for NFAs was shown, which even holds for DFAs—since nondeterminis-
tic space complexity classes are closed under complementation [43,66] the result
also holds for the emptiness problem. Moreover, non-emptiness for AFAs was
considered in [45] and [28].

Theorem 13 (Non-Emptiness). The non-emptiness problem for NFAs and
DFAs is NL-complete, and it is PSPACE-complete for AFAs. The results remain
valid for automata accepting unary languages.

A natural variant of non-emptiness is intersection non-emptiness. This is the
problem to decide whether

⋂
1≤i≤n L(Ai) �= ∅, for given finite automata A1,

A2, . . . , An? If the number of automata in the input instance is bounded by

Descriptional and Computational Complexity of Finite Automata 33

some function g(n), then this problem is referred to as the g(n)-bounded inter-
section non-emptiness problem. For easier readability we abbreviate the former
problem by ∅ �=

⋂
C and the latter one by ∅ �=

⋂g(n)
C, where C is from

{DFA, NFA, AFA}. Trivially, non-emptiness logspace many-one reduces to inter-
section non-emptiness, even to k-bounded intersection non-emptiness for con-
stant k. The results on these problems read as follows: In [48] it was shown that
∅ �=

⋂
DFA is PSPACE-complete. Since ∅ �=

⋂
AFA can be decided within nonde-

terministic polynomial space, ∅ �=
⋂

NFA and ∅ �=
⋂

AFA are PSPACE-complete,
too. Recently it was shown in [4] that the infinite cardinality intersection prob-
lem, i.e., given automata A1, A2, . . . , An from C, does there exist infinitely many
words in

⋂
1≤i≤n L(Ai) is also PSPACE-complete, for DFAs. Further PSPACE-

complete problems on NFAs based on pattern and power acceptance were iden-
tified in [4].

For DFAs and NFAs these intractable intersection emptiness problems be-
come feasible, if the number of finite automata is bounded by some constant k,
but remains intractable for AFAs. More precisely, both the k-bounded intersec-
tion non-emptiness problems ∅ �=

⋂k DFA and ∅ �=
⋂k NFA are NL-complete,

for each k with k ≥ 1, by [19], and ∅ �=
⋂k AFA remains obviously PSPACE-

complete. Moreover, for the bounded intersection non-emptiness problem in gen-
eral it was shown in [49] that both ∅ �=

⋂g(n) DFA and ∅ �=
⋂g(n) NFA are

complete for NSPACE(g(n) · log n). In particular, both ∅ �=
⋂logk−1 n DFA and

∅ �=
⋂logk−1 n NFA are NSPACE(logk n)-complete, for k ≥ 1. Observe, that these

were the first natural complete problems for this complexity class. Finally, what
can be said about the (bounded) intersection non-emptiness problem for the
automata under consideration, when restricted to unary input alphabet? As a
consequence of [19] and [65] both ∅ �=

⋂
Tally-DFA and ∅ �=

⋂
Tally-NFA are

NP-complete, while ∅ �=
⋂

Tally-AFA again remains PSPACE-complete [28]—the
abbreviation of the problem instance are self-explaining. The latter result also
holds for the bounded variant, even for constant k. In [49] it is briefly mentioned
that ∅ �=

⋂k Tally-DFA is L- and ∅ �=
⋂k Tally-NFA is NL-complete. On the other

hand, completeness results for the bounded intersection non-emptiness problem
are not known for unary languages, as in the general case. Nevertheless, involved
upper and lower bounds by simultaneously bounded complexity classes (time,
space, and number of nondeterministic steps) were shown in [49].

Another problem closely connected to non-emptiness is the so-called short
word problem, which was investigated in [49], too. The main idea underlying
short words is that in general the shortest word accepted of an NFA can be
of exponential length in the coding of this automaton. Thus, the natural ques-
tion arises whether the automaton accepts words which are “short” in some
sense. Regarding words of linear length as short, we can define the short word
problem as follows: Given a finite automaton A, is there a word w of length
less or equal than the coding of A, such that w ∈ L(A)? We abbreviate this
problem by ∅ �= Clin and ∅ �= Tally-Clin when the automata accept unary
languages, where C ∈ {DFA, NFA, AFA}. Using standard methods one sees

34 M. Holzer and M. Kutrib

that ∅ �= DFAlin and ∅ �= NFAlin are NL-complete, while ∅ �= Tally-DFAlin

is L-complete and ∅ �= Tally-NFAlin is NL-complete. For AFAs it was shown
in [28] that ∅ �= AFAlin is NP- and ∅ �= Tally-AFAlin is P-complete. Con-
sidering the combination of the (bounded) intersection non-emptiness problem
with the short word restriction leads to more interesting results. We refer to
these problems as ∅ �=

⋂g(n)
Clin and ∅ �=

⋂g(n) Tally-Clin , respectively. The
problems ∅ �=

⋂g(n) DFAlin and ∅ �=
⋂g(n) NFAlin are complete for simul-

taneously time and space bounded classes between NTISP(pol n, log n) = NL
and NTISP(pol n, poln) = NP, namely for NTISP(pol n, g(n) · log n)—see [49].
For g(n) = logk n these classes are the nondeterministic counterparts of the
SCk-hierarchy. The restriction of these problems with respect to DFAs (NFAs,
respectively) to short words, always leads to L-complete (NL-complete, respec-
tively) sets, regardless of the function g(n). The corresponding problems for
AFAs, namely ∅ �=

⋂g(n) AFAlin and ∅ �=
⋂g(n) Tally-AFAlin are P-complete,

also regardless of g(n).
Now let us consider the next standard problem, the universality problem.

As previously mentioned, emptiness and universality are closely related to each
other by the complementation operation. The universality problem for DFAs was
shown to be NL-complete [12]. For NFAs and AFAs, respectively, the problem
under consideration was investigated in [1,57] and [28], respectively, in more
detail. For the results on automata accepting unary languages we refer to [65]
and [28]. We summarize these results in the following theorem.

Theorem 14 (Universality). The universality problem for DFAs is NL-com-
plete and for NFAs and AFAs it is PSPACE-complete. For automata accepting
unary languages, the universality problem isNL-complete forDFAs, coNP-complete
for NFAs, and PSPACE-complete for AFAs.

Next we consider two variants of universality. The first one is the union univer-
sality problem, that is to decide for given automata A1, A2, . . . , An, whether⋃

1≤i≤n L(Ai) = Σ∗? Trivially, universality logspace many-one reduces to the
union universality problem for any class of automata. For DFAs this problem is
readily seen to be PSPACE-complete by a reduction from the intersection empti-
ness problem for DFAs, which was discussed in detail earlier. For NFAs and
AFAs the union universality problem is PSPACE-complete, too, since it is al-
ready PSPACE-hard for a single automaton, and containment can easily be seen
since NFAs and AFAs are logspace effective closed under union. Thus, further
variants of this problem, comparable to variants of the intersection emptiness
problem, are not worth studying. Another, not to well-known generalization
of the universality problem is the bounded universality problem first studied
in [12]. The bounded universality problem is the problem of deciding for a given
finite automaton A and a unary integer n, whether L(A) ∩ Σ≤n = Σ≤n? The
bounded non-universality problem is defined accordingly. In [12] it was shown
that the bounded universality problem for NFAs is coNP-complete, while it is
NL-complete for DFAs. Thus, the complexity of non-bounded universality is sig-
nificantly lower than that of the equivalence problem, which is discussed below.

Descriptional and Computational Complexity of Finite Automata 35

Regarding the problem of computing the lexically first witness string that proves
bounded non-universality for NFAs, an ∆P

2 upper bound, and NP- and coNP-
hardness lower bounds were shown in [12]. Computing any witness string, thus
dropping the lexically first criterion, leads to a problem that is computational
equivalent to the bounded non-universality problem and, thus, is an NP-complete
problem for NFAs. For AFAs the bounded universality is seen to be coNP-
complete.

The last standard problem we are interested in, is the equivalence problem. Be-
sides the emptiness problem, the equivalence problem is certainly one of the most
important decision problems that has been investigated extensively in the litera-
ture. That equivalence is harder than emptiness is (partially) true for DFAs and
NFAs, because equivalence is NL-complete for deterministic [12] and PSPACE-
complete for NFAs. However, in case of AFAs equivalence remains as hard as
emptiness as shown in [45]. Automata on unary input alphabet were investigated
in [28,65]. As the reader may notice, universality and equivalence are computa-
tional equivalent with respect to logspace many-one reductions for the finite
automata types under consideration.

Theorem 15 (Equivalence). The equivalence problem for DFAs is NL-complete
and for NFAs and AFAs it is PSPACE-complete. For automata accepting unary
languages, the universality problem is NL-complete for DFAs, coNP-complete for
NFAs, and PSPACE-complete for AFAs.

Most of the presented results on emptiness, universality, and equivalence date
back to the pioneering papers [57,64,65] and [27,36,37,38,39,62], where mostly
problems on regular-like expressions were investigated. Obviously, a lower bound
on the computational complexity of a problem for ordinary regular expressions
implies the same lower bound for NFAs, since any regular expression of size n
can be converted into an equivalent (n+1)-state NFA [42]. Most of these results
on regular expressions are summarized in [20]—e.g., one can read the following
entry, literally taken from [20], on inequivalence for regular expressions:

“[The inequivalence for regular expressions r1 and r2, i.e., deciding
whether L(r1) �= L(r2), is . . .] PSPACE-complete, even if |Σ| = 2 and
L(r2) = Σ∗. In fact, PSPACE-complete if r2 is any fixed expression rep-
resenting an “unbounded” language [39]. NP-complete for fixed r2 rep-
resenting any infinite “bounded” language, but solvable in polynomial
time for fixed r2 representing any finite language. The general problem
remains PSPACE-complete if r1 and r2 both have “star-height” k for
fixed k ≥ 1 [39], but is NP-complete for k = 0 (“star-free”) [34,65].
Also NP-complete if one of both of r1 and r2 represent bounded lan-
guages (a property that can be checked in polynomial time) [39] or if
|Σ| = 1 [65]. For related results and intractable generalizations, see cited
references, [35], and [38].”

Here a language L is bounded if and only if there exist words w1, w2, . . . , wk,
for some k, such that L ⊆ w∗

1w∗
2 . . . w∗

k. In [41] it was shown that boundedness

36 M. Holzer and M. Kutrib

is a necessary and sufficient condition for context-free languages to be sparse.
A language L ⊆ Σ∗ is sparse, if there exists a polynomial p such that for all n
we have |L ∩ Σ≤n| ≤ p(n), where Σ≤n is the set of all words over Σ of length
at most n. While boundedness for languages specified by regular expressions
is easily shown to be solvable in polynomial time via an inductive proof [39],
it is not that clear, whether this also holds for NFAs. Here the equivalence
of boundedness and sparseness for context-free languages comes into play. The
sparseness problem, i.e., given an automaton A, is L(A) sparse?, was shown to be
NL-complete for both DFAs and NFAs [40], and for AFAs it is PSPACE-complete.
For automata accepting unary languages the problem under consideration is
trivial. Hence, the boundedness problem for NFAs is efficiently solvable.

Next we summarize some results on some problems related to universality and
equivalence, namely the segment equivalence and the closeness problem: (1) The
segment equivalence problem is defined as follows: Given two automata A1 and A2
and n, is L(A1) ∩ Σ≤n = L(A2) ∩ Σ≤n? If n is coded in binary, it is called
the binary-encoded segment equivalence problem. Segment and binary-encoded
segment equivalence were studied in [40]. There it was shown that segment equiv-
alence for DFAs is NL-complete, whereas for NFAs the problem becomes coNP-
complete. As in case of ordinary equivalence one can show that the complexity
of segment equivalence for AFAs is the same as for NFAs, hence coNP-complete,
if the input alphabet contains at least two letters. For automata accepting unary
languages it is easy to see that the segment equivalence problem is L-complete
for DFAs, NL-complete for NFAs, and P-complete for AFAs. Moreover, for the
binary-encoded segment equivalence problem it was shown that both NFAs and
AFAs induce a PSPACE-complete problem [40]. (2) The closeness problem mea-
sures the similarity of languages in terms of the density of their symmetric dif-
ference, i.e., two languages L1 and L2 are close if and only if (L1 \L2)∪(L2 \L1)
is sparse. Thus, the closeness problem is to decide whether for given two au-
tomata A1 and A2, the symmetric difference of L(A1) and L(A2) is sparse?
In [40] it was shown that the closeness problem for DFAs is NL-complete and
for NFAs it is PSPACE-complete. Moreover, PSPACE-completeness also holds for
the closeness problem for AFAs. Note, that the closeness problem for automata
accepting unary languages is trivial.

Along the lines of development in computational complexity theory, authors
began to study functional problems and classes, see, e.g., [2]. One of the most
easiest functional problems for finite state devices is census. Here for a given finite
automaton A and 1n, one asks how many words up to length n are accepted
by A? Other well known functional problems are census of the complement,
ranking, maximal word, and maximal relative word—for a precise definition of
these problems we refer to [2]. For DFAs and NFAs it was shown in [2] that
most of these problems are complete for logarithmic space bounded counting
classes like, e.g., #L, spanL, or optL, while for AFAs these problems turn out to
be complete for their polynomially time bounded counterparts #P or optP [28].

We have seen that most problems for NFAs and AFAs are intractable, while
some problem for DFAs are effectively solvable. In the remainder of this

Descriptional and Computational Complexity of Finite Automata 37

subsection we consider two results of Hunt III and co-authors [27,38], which
show that the above mentioned behavior on the computational complexity of
DFA and NFA based problems is not accidental. It thus explains in part, why
most problems for NFAs and AFAs are intractable. We feel that these nice results
demand more attention, therefore we present it here.

Theorem 16 (Hardness for DFAs and NFAs Problems). Let Σ be an
alphabet with |Σ| ≥ 2 and P : 2Σ∗ → {0, 1} be any non-trivial predicate on
the regular languages. Assume that the set Pleft of all languages δx(L), where L
is a regular language, P (L) is true, and x ∈ Σ∗, is not equal to the family
of all regular languages—here δx(L) = { y ∈ Σ∗ | xy ∈ L } refers to the left
quotient of L with respect to the word x from Σ∗. Then the P -problem for NFAs,
that is, to determine whether for a given nondeterministic finite automaton A
the predicate P on L(A) is true, is PSPACE-hard, assuming P (Σ∗) to be true.
Moreover, the corresponding P -problem for DFAs is at least NL-hard.

Finally, we summarize some results on the operation problem from the com-
putational complexity perspective. For a survey on the descriptional complex-
ity of the operation problem for DFAs and NFAs we refer to [68] and [29,30].
Let ◦ be a fixed operation on languages that preserves regularity. Then the ◦-
operation problem is defined as follows: Given finite automata A1, A2, and A3,
is L(A1) ◦ L(A2) = L(A3)? Obviously, this problem generalizes to unary lan-
guage operations. It turned out that both the concatenation operation problem
and the Kleene star operation for DFAs are PSPACE-complete [46]. A converse
problem to the ◦-operation problem is the minimum ◦-problem. That is, given
a finite automaton A and an integer k, are there finite automata A1 and A2 of
the same type with |A1|+ |A2| ≤ k such that L(A1) ◦L(A2) = L(A)? For DFAs
this problem is NP-complete for union and intersection, and PSPACE-complete
for concatenation and Kleene star. Interestingly, the minimum reverse-operation
problem is shown to be solvable in polynomial time if the integer k is given in
unary, although DFAs are not logspace effective closed under reversal.

3.3 Minimization of Finite Automata

The study of the minimization problem for finite automata dates back to the
early beginnings of automata theory. Here we focus mainly on some recent de-
velopments related to this fundamental problem—for further reading we refer
to [46] and references therein. The minimization problem is also of practical rele-
vance, because regular languages are used in many applications, and one may like
to represent the languages succinctly. The decision version of the minimization
problem, for short the NFA-to-NFA minimization problem, is defined as follows:

– Given a nondeterministic finite automaton A and a natural number k in
binary, that is, an encoding 〈A, k〉, is there an equivalent k-state nondeter-
ministic finite automaton?

This notation naturally generalizes to other types of finite automata, for exam-
ple, the DFA-to-NFA minimization problem. It is well known that for a given

38 M. Holzer and M. Kutrib

n-state DFA one can efficiently compute an equivalent minimal automaton in
O(n log n) time [32]. More precisely, the DFA-to-DFA minimization problem is
complete for NL, even for DFAs without inaccessible states [12]. This is contrary
to the nondeterministic case since the NFAs minimization problem is known to
be computationally hard [46], which is also true for AFAs. The PSPACE-hardness
result for NFAs was shown by a reduction from the union universality problem
to the NFA-to-NFA minimization problem. For some further problems related
to minimization we refer also to [24].

Theorem 17 (Minimization). The DFA-to-DFA minimization problem is
NL-complete, while the NFA-to-NFA minimization problem is PSPACE-complete,
even if the input is given as a deterministic finite automaton. The AFA-to-AFA
minimization problem is PSPACE-complete, too.

In order to better understand the very nature of nondeterminism one may ask
for minimization problems for restricted types of finite automata. Already in [46]
it was shown that for the restricted class of unambiguous finite automata (UFA)
some minimization problems remain intractable. To be more precise, the UFA-
to-UFA and the DFA-to-UFA minimization problems are NP-complete. We men-
tion in passing that in [12] necessary and sufficient conditions were provided to
distinguish between exponential, polynomial, bounded, and k-bounded ambigu-
ity, and it was shown that these ambiguity problems, i.e., determining whether
the degree of ambiguity of a given NFA is exponential, polynomial, bounded,
k-bounded, where k is a fixed integer, or unambiguous are all NL-complete.

Later in [52] it was shown that the minimization of finite automata equipped
with a very small amount of nondeterminism is already computationally hard.
To this end, a reduction from the NP-complete minimal inferred DFA prob-
lem [21,46] to the the minimization problems for multiple initial state determin-
istic finite automata with a fixed number of initial states (MDFA) as well as
for nondeterministic finite automata with fixed finite branching has been shown.
Prior to this, the MDFA-to-DFA minimization problem in general was proven
to be PSPACE-complete in [31]. Here the minimal inferred DFA problem [21] is
defined as follows: Given a finite alphabet Σ, two finite subsets S, T ⊆ Σ∗, and
an integer k, is there an k-state DFA that accepts a language L such that S ⊆ L
and T ⊆ Σ∗ \ L? Such an automaton can be seen as a consistent “implementa-
tion” of the sets S and T . Recently, the picture was completed in [8] by getting
much closer to the tractability frontier for nondeterministic finite automata min-
imization. There a class of NFAs is identified, the so called δ-nondeterministic
finite automata (δNFA), such that the minimization problem for any class of
finite automata that contains δNFAs is NP-hard, even if the input is given as a
DFA. Here the class of δNFAs contains all NFAs with the following properties:
(i) The automaton is unambiguous, (ii) the maximal product of the degrees of
nondeterminism over the states in a possible computation is at most 2, and (iii)
there is at most on state q and a letter a such that the degree of nondeterminism
of q and a is 2. It is worth mentioning that for every n-state δNFA there is an
equivalent DFA with at most O(n2) states.

Descriptional and Computational Complexity of Finite Automata 39

The situation for the minimization problem in general is, in fact, even worse.
Recent work [23] shows that the DFA-to-NFA problem cannot be approximated
within

√
n/polylogn for state minimization and n/polylogn for transition mini-

mization, provided some cryptographic assumption holds. Moreover, the NFA-
to-NFA minimization problem was classified to be inapproximable within o(n),
unless P = PSPACE, if the input is given as an NFA with n states [23]. That
is, no polynomial-time algorithm can determine an approximate solution of size
o(n) times the optimum size. Even the DFA-to-NFA minimization problem re-
mains inapproximable within a factor of at least n1/3−ε, for all ε > 0, unless
P = NP [26], for alphabets of size O(n), and not approximable within n1/5−ε for
a binary alphabet, for all ε > 0. Under the same assumption, it was shown that
the transition minimization problem for binary input alphabets is not approx-
imable within n1/5−ε, for all ε > 0. The results in [26] proved approximation
hardness results under weaker (and more familiar) assumptions than [23]. Fur-
ther results on the approximability of the minimization problem when the input
is specified as regular expression or a truth table can be found in [23,26].

The unary NFA-to-NFA minimization problem is coNP-hard [65], and simi-
larly as in the case of finite languages contained in ΣP

2 . The number of states
of a minimal NFA equivalent to a given unary cyclic DFA cannot be computed
in polynomial time, unless NP ⊆ DTIME(nO(log n)) [44]. Note that in the latter
case the corresponding decision version belongs to NP. Inapproximability results
for the problem in question have been found during the last years, if the input is
a unary NFA: The problem cannot be approximated within

√
n

ln n [22], and if one
requires in addition the explicit construction of an equivalent NFA, the inapprox-
imability ratio can be raised to n1−ε, for every ε > 0, unless P = NP [23]. On the
other hand, if a unary cyclic DFA with n states is given, the nondeterministic
state complexity of the considered language can be approximated within a factor
of O(log n). The picture on the unary NFA-to-NFA minimization problem was
completed in [25]. Some of the aforementioned (in)approximability results, which
only hold for the cyclic case, generalize to unary languages in general. In partic-
ular, it was shown that for a given n-state NFA accepting a unary language, it
is impossible to approximate the nondeterministic state complexity within o(n),
unless P = NP. Observe that this bound is tight. In contrast, it is proven that the
NFA-to-NFA minimization problem can be constructively approximated within
O(
√

n), where n is the number of states of the given DFA. Here by constructively
approximated we mean that we can build the nondeterministic finite automaton,
instead of only approximately determining the number of states needed. This
solves an open problem stated in [46] on the complexity of converting a DFA to
an approximately optimal NFA in the case of unary languages.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addision-Wesley, Reading (1974)

2. Álvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107, 3–30 (1993)

40 M. Holzer and M. Kutrib

3. Ajtai, M.: Σ1
1 formulae on finite structures. Ann. Pure. Appl. Logic 24, 1–48 (1983)

4. Anderson, T., Rampersad, N., Santean, N., Shallit, J., Loftus, J.: Detecting palin-
droms, patterns and borders in regular languages (2008) arXiv:0711.3183v2 [cs.CC]

5. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. System Sci. 38, 150–164 (1989)

6. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. System Sci. 41, 274–306 (1990)

7. Barrington, D.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.
ACM 35, 941–952 (1988)

8. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer,
Heidelberg (2008)

9. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980)

10. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 21, 114–133 (1981)
11. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theo-

ret. Comput. Sci. 88, 99–116 (1991)
12. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.

Inform. Comput. 97, 1–22 (1992)
13. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,

149–158 (1986)
14. Chrobak, M.: Errata to finite automata and unary languages. Theoret. Comput.

Sci. 302, 497–498 (2003)
15. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. System

Sci. 5, 1–16 (1971)
16. Eilenberg, S.: Automata, Languages, and Machines (Volume B), vol. 59-B. Aca-

demic Press, London (1976)
17. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.

Internat. J. Comput. Math. 35, 117–132 (1990)
18. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-

archy. Math. Systems Theory 17, 13–27 (1984)
19. Galil, Z.: Hierarchies of complete problems. Acta Inform. 6, 77–88 (1976)
20. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory

of NP-Completeness. Freeman, New York (1979)
21. Gold, E.M.: Complexity of automaton identification from given data. Inform. Con-

trol 37, 302–320 (1978)
22. Gramlich, G.: Probabilistic and nondeterministic unary automata. In: Rovan, B.,

Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg
(2003)

23. Gramlich, G., Schnitger, G.: Minimizing nFA’s and regular expressions. In: Diek-
ert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer,
Heidelberg (2005)

24. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

25. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: Language and Automata Theory and Applications (LATA
2007), pp. 261–272. Technical Report 35/07, Universitat Rovira i Virgili, Tarragona
(2007)

Descriptional and Computational Complexity of Finite Automata 41

26. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

27. Hartmanis, J., Hunt III, H.B.: The LBA problem and its importance in the theory
of computing. In: SIAM AMS. Complexity of Computing, vol. 7, pp. 1–26 (1974)

28. Holzer, M.: On emptiness and counting for alternating finite automata. In: De-
velopments in Language Theory II; at the Crossroads of Mathematics, Computer
Science and Biology, pp. 88–97. World Scientific, Singapore (1996)

29. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic
finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

30. Holzer, M., Kutrib, M.: Nondeterministic finite automata—recent results on the
descriptional and computational complexity. In: Ibarra, O., Ravikumar, B. (eds.)
CIAA 2008. LNCS, vol. 5148, pp. 1–16. Springer, Heidelberg (2008)

31. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Autom., Lang. Comb. 6, 453–466 (2001)

32. Hopcroft, J.: An n log n algorithm for minimizing the state in a finite automaton.
In: The Theory of Machines and Computations, pp. 189–196. Academic Press,
London (1971)

33. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

34. Hunt III, H.B.: On the time and tape complexity of languages. Ph.D. thesis, Cornell
University, Ithaca, New York, USA (1973)

35. Hunt III, H.B.: On the time and tape complexity of languages I. In: Symposium
on Theory of Computing (STOC 1973), pp. 10–19. ACM Press, New York (1973)

36. Hunt III, H.B.: Observations on the complexity of regular expressions problems. J.
Comput. System Sci. 19, 222–236 (1979)

37. Hunt III, H.B., Rosenkrantz, D.J.: On equivalence and contaiment problems for
formal languages. J. ACM 24, 387–396 (1977)

38. Hunt III, H.B., Rosenkrantz, D.J.: Computational parallels between the regular
and context-free languages. SIAM J. Comput. 7, 99–114 (1978)

39. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, contain-
ment, and covering problems for the regular and context-free languages. J. Comput.
System Sci. 12, 222–268 (1976)

40. Huynh, D.T.: Complexity of closeness, sparseness and segment equivalence for
context-free and regular languages. In: Informatik, Festschrift zum 60, Geburtstag
von Günter Hotz, Teubner, pp. 235–251 (1992)

41. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986.
LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)

42. Ilie, L., Yu, S.: Follow automata. Inform. Comput. 186, 140–162 (2003)
43. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.

Comput. 17, 935–938 (1988)
44. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal

NFAs over a unary alphabet. Internat. J. Found. Comput. Sci. 2, 163–182 (1991)
45. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems

for finite automata. Inform. Process. Lett. 40, 25–31 (1991)
46. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22,

1117–1141 (1993)
47. Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput.

System Sci. 11, 68–85 (1975)

42 M. Holzer and M. Kutrib

48. Kozen, D.: Lower bounds for natural proof systems. In: Foundations of Computer
Science (FOCS 1977), pp. 254–266. IEEE Society Press, Los Alamitos (1977)

49. Lange, K.J., Rossmanith, P.: The emptiness problem for intersections of regular
languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp.
346–354. Springer, Heidelberg (1992)

50. Leiss, E.: Succinct representation of regular languages by Boolean automata. The-
oret. Comput. Sci. 13, 323–330 (1981)

51. Leiss, E.: Succinct representation of regular languages by Boolean automata. II.
Theoret. Comput. Sci. 38, 133–136 (1985)

52. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-
put. Sci. 327, 375–390 (2004)

53. McKenzie, P., Péladeau, P., Thérien, D.: NC1: The automata-theoretical viewpoint.
Comput. Compl. 1, 330–359 (1991)

54. McNaughton, R., Papert, S.: Counter-free automata. Research monographs, vol. 65.
MIT Press, Cambridge (1971)

55. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

56. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: IEEE Symposium on Switching and Automata Theory (SWAT
1971), pp. 188–191. IEEE Society Press, Los Alamitos (1971)

57. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Symposium on Switching and Au-
tomata Theory (SWAT 1972), pp. 125–129. IEEE Society Press, Los Alamitos
(1972)

58. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Comput. 20, 1211–1214 (1971)

59. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

60. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform.
Control 8, 190–194 (1965)

61. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System
Sci. 21, 195–202 (1980)

62. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for un-
ambiguous regular expressions, regular grammars, and finite automata. SIAM J.
Comput. 14, 598–611 (1985)

63. Stern, J.: Complexity of some problems from the theory of automata. Inform.
Control 66, 163–176 (1985)

64. Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and
Logic. Ph.D. thesis, MIT, Cambridge, Massasuchets, USA (1974)

65. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Symposium on Theory of Computing (STOC 1973), pp. 1–9. ACM Press, New
York (1973)

66. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-
tomata. Acta Inform. 26, 279–284 (1988)

67. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Com-
put. Sci. 14, 195–208 (1981)

68. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234
(2001)

Hypothesis Spaces for Learning

Sanjay Jain�

Department of Computer Science,
National University of Singapore, Singapore 117590, Republic of Singapore

sanjay@comp.nus.edu.sg

Abstract. In this paper we survey some results in inductive inference
showing how learnability of a class of languages may depend on hy-
pothesis space chosen. We also discuss results which consider how learn-
ability is effected if one requires learning with respect to every suitable
hypothesis space. Additionally, optimal hypothesis spaces, using which
every learnable class is learnable, is considered.

1 Introduction

A learning scenario can be described as follows. Consider a learner (a computable
device) receiving data, one piece at a time, about some target concept (which
is from a class of possible concepts). As the learner is receiving its data, it
conjectures a possible description of the target concept. One may consider the
learner to be successful if its sequence of conjectures converges to a correct
description of the target concept.

In this paper we will be mostly concerned with language learning. A lan-
guage is some recursively enumerable (r.e.) subset of a universal set. By appro-
priate coding, one may take the universal set to be the set of natural numbers,
N = {0, 1, 2, . . .}. For learning languages, the data provided to the learner is usu-
ally the set of positive examples of the language, one element at a time, where
all the elements are eventually provided and no non-elements of the language are
provided. This form of data presentation is called a text for the language. This
model originates from the observation that in many natural situations, such as
language learning by children or in astronomy, one gets essentially only posi-
tive data. A related model of data presentation, called informant, is when the
learner is presented with all elements of the universal set, appropriately classified
as positive or negative with respect to the target language. The conjectures of
the learner take the form of a grammar from some hypothesis space (we always
assume that hypothesis space is an r.e. indexing of r.e. languages; in some cases
we additionally assume that membership question for hypothesis i is decidable
effectively in i — in these cases the hypothesis space is an indexed family of re-
cursive languages). A criterion of success, as considered above, is for the sequence
of grammars to converge to a grammar for the target language. This is essentially
the criterion of learning first considered by Gold [16], and commonly called ex-
planatory learning (abbreviated TxtEx-learning, for explanatory learning from
� Supported in part by NUS grant number R252-000-308-112.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 43–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

44 S. Jain

text, and InfEx-learning, for explanatory learning from informant). Note that
the learner is expected to succeed on all possible order of presentation of the
elements of the target language.

Learning of one language is usually not much interesting as some learner,
which always outputs the grammar for this language, will succeed. What is
more interesting is whether some learner can learn all the languages from a class
L of languages.

We now formally define the criterion described above. A sequence is a mapping
from N or an initial segment of N to N ∪ {#}. An information sequence is a
mapping from N or an initial segment of N to (N × {0, 1}) ∪ {#}. Content
of a (information) sequence σ, denoted content(σ), is range(σ) − {#} (# is
considered as a pause symbol, representing no data. This is useful when one
considers presenting data for empty language). Let SEQ denote the set of all
finite sequences. Let SEG denote the set of all finite information sequences
σ such that {(x, y), (x, z)} ⊆ content(σ) implies y = z (we only care about
consistent information sequences). An infinite sequence T is a text for a language
L iff content(T) = L. We let T (with or without subscripts/superscripts) range
over texts. An infinite information sequence I is an informant for a language L
iff content(I) = {(x, χL(x)) : x ∈ N}, where χL is the characteristic function for
the language L. We let I (with or without subscripts/superscripts) range over
informants. T [n] (respectively I[n]) denotes the finite sequence consisting of the
first n elements in the sequence T (respectively I).

A learning machine (also called a learner) is an algorithmic mapping (possibly
partial) from SEQ or SEG (depending on whether one is considering learning
from texts or informants) to N ∪ {?}. A learner M converges on a text T to i
(denoted M(T)↓ = i) iff for all but finitely many n, M(T [n]) = i. Convergence
on information sequence I is defined similarly.

Here one interprets the output of the learner as an index for some language
in a hypothesis space. Thus output i would represent the conjecture Hi, where
H0, H1, . . . is the hypothesis space used by the learner. The output of ? denotes
that the learner is not making a formal conjecture (this is useful when one
considers some special cases, such as bounding the number of mind changes
made by the learner).

Definition 1. [16] Fix a hypothesis space H = H0, H1,
(a) A learner M TxtExH-identifies a language L (written: L ∈ TxtExH(M))
iff for all texts T for L, (i) M(T [n]) is defined for all n, and (ii) there exists an
i such that M(T)↓ = i and Hi = L.
(b) A learner M TxtExH-identifies a class L of languages (written: L ⊆
TxtExH(M)) iff it TxtExH-identifies all languages in the class L.
(c) TxtExH = {L : (∃M)[M TxtExH-identifies L}.
One can similarly define InfExH-identification, where one replaces texts in the
above definition by informants.

As the learner has seen only finitely many inputs before it converges to its
final hypothesis, some form of learning must have taken place. We use the terms
identify, learn, infer as synonyms for this reason.

Hypothesis Spaces for Learning 45

Note that in the above model of learning, the learner does not know when
it has converged to its final hypothesis. If one additionally requires this kind
of ability from the learner, then the learning criterion is equivalent to finite
learning, where the learner is allowed to make only one conjecture.

Definition 2. [16] Fix a hypothesis space H = H0, H1,

(a) A learner M TxtFinH-identifies a language L (written: L ∈ TxtFinH(M))
iff for all texts T for L, there exist i, n such that (i) Hi = L, (ii) (∀m <
n)[M(T [m]) =?], and (iii) (∀m ≥ n)[M(T [m]) = i].
(b) A learner M TxtFinH-identifies a class L of languages (written: L ⊆
TxtFinH(M)) iff it TxtFinH-identifies all languages in the class L.
(c) TxtFinH = {L : (∃M)[M TxtFinH-identifies L}.

One can similarly define InfFinH-identification.
Since Gold [16], various other criteria of learning have been explored in the

literature, specially those which require some additional properties on the con-
jectures of the learner. We will consider some of them in Section 2. We refer the
reader to [3,6,11,19,38,40,43] for some literature on the topic.

Note that the hypothesis space chosen for interpreting the conjectures of the
learner may play a crucial role in whether the learner is successful in identify-
ing the language. A commonly used hypothesis space is the standard acceptable
programming system: W0, W1, . . . (see [34]). The class TxtEx does not depend
on the exact acceptable programming system chosen, as the acceptable pro-
gramming system can be translated effectively into each other. However, if one
considers other programming systems such as Friedberg numbering [13] as hy-
pothesis space or requires some other properties (such as membership question
about hypotheses being decidable, or whether the hypothesis space depends on
the class being learnt (for example, not allowing the hypothesis space to contain
languages other than those in the class of languages under consideration)), then
it may effect the classes which are learnable. This paper surveys some of the
results which show how learnability depends on the type of hypothesis spaces
allowed.

In Section 2 we define some commonly used criteria of learning. In section 3 we
consider the special case of learning indexed families, where often the hypothesis
space allowed depends on the class of languages being learnt. In section 4 we
consider hypothesis spaces being restricted programming systems, such as Fried-
berg numberings. In section 5 we consider whether learning is at all possible if
one requires learning in all (reasonable) possible hypothesis spaces. In section 6
we consider optimal hypothesis spaces in the sense that if learning a class is
possible using any hypothesis space, then the class can be learnt using the given
hypothesis space.

In the rest of the paper, for ease of notation, we will omit the hypothesis
space from the subscript of learning criteria, and it will be implicit (the allowed
hypothesis space may be constrained in some cases due to conventions of the
section).

46 S. Jain

2 Some Further Criteria of Learning

Below we consider the criteria mainly for learning from texts. Similar definitions
can be made for learning from informants also. Below, let H = H0, H1, . . . be
the hypothesis space used by the learner.

We first consider two generalizations of explanatory learning. The following
generalization considers semantic convergence rather than syntactic convergence
to the correct hypothesis by the learner. A learner M is said to behaviourally
correctly learn (abbreviated: TxtBc-learn) [5,10] a language L iff for all texts T
for L, for all but finitely many n, HM(T [n]) = L. One can similarly define TxtBc
learning of a class, and TxtBc the set of all behaviourally correctly learnable
classes. It can be shown that TxtBc is a strict generalization of TxtEx-learning
if one allows arbitrary hypothesis spaces [11,5].

The following criterion is somewhere between explanatory and behaviourally
correct learning. It allows the learner to eventually vacillate between finitely
many correct hypotheses. A learner M is said to vacillatory learn (abbreviated:
TxtFex-learn) [8] a language L iff it TxtBc-learns the language L and on all
texts T for L, it outputs at most finitely many distinct grammars (in other words,
the learner eventually vacillates between finitely many correct grammars for the
language). One can similarly define TxtFex learning of a class, and TxtFex the
set of all vacillatorily learnable classes.

We now turn our attention to requiring some properties that the learner (its hy-
potheses) must satisfy. A learner M is said to be conservative [2] on L if for all texts
T for L, for all m > n, if M(T [n]) �= M(T [m]), then content(T [m]) �⊆ HM(T [n]).
That is, M changes its hypothesis only if it finds evidence of inconsistency of its
earlier conjecture. Learner M conservatively learns (Conserv-identifies) L if it
TxtEx-identifies L and is conservative on L. Conserv-identification of a class of
languages and the class Conserv can be defined similarly. When using accept-
able numberings as hypothesis spaces, requiring learners to be conservative is a
restriction on the learning capabilities of the machines [2].

A learner M is said to be strong monotonic [17] on L if for all texts T for
L, for all m > n, HM(T [n]) ⊆ HM(T [m]. A learner M is said to be monotonic
[39] on L if for all texts T for L, for all m > n, HM(T [n]) ∩ L ⊆ HM(T [m] ∩ L.
A learner M is said to be weak monotonic [17] on L if for all texts T for L,
for all m > n, if content(T [m]) ⊆ HM(T [n]), then HM(T [n]) ⊆ HM(T [m] (that
is the learner behaves strong monotonically as long as the input data does not
contradict the hypothesis conjectured). The criteria of learning corresponding
to the above properties being satisfied by the learner, in addition to TxtEx-
learning the target language, are respectively called SMon, Mon and WMon.

Let L denote N − L, the complement of L. [31] considered the dual of above
monotonic requirements, where for dual strong monotonic learning of L one
requires that for all texts T for L, for all m > n, HM(T [n]) ⊆ HM(T [m]. Similarly,
for dual monotonic learning of L one requires that for all texts T for L, for all
m > n, HM(T [n]) ∩L ⊆ HM(T [m] ∩L, and for dual weak monotonic learning of L
one requires that for all texts T for L, for all m > n, if content(T [m]) ⊆ HM(T [n]),
then HM(T [n]) ⊆ HM(T [m]. The criteria of learning corresponding to the above

Hypothesis Spaces for Learning 47

properties being satisfied by the learner, in addition to TxtEx-learning the
target language, are respectively called DSMon, DMon and DWMon.

[31] explore the relationship between the above (dual) monotonic criteria of
learning.

A learner M is consistent [1,4] on L if for all texts T for L, for all n,
content(T [n]) ⊆ HM(T [n]). Consistency seems like a natural requirement, as if
the hypothesis is not consistent, then it is obviously wrong. However, when using
general hypothesis spaces such as acceptable numberings, it can be shown that
requiring consistency restricts learning capabilities of the machines [4]. A learner
M is confident [33] if it converges on every text, even if the text is for a language
outside the class of languages being learnt. Confidence is restrictive: it can be
shown that even simple classes, such as the class of all finite languages, cannot be
learnt confidently. One can define the corresponding learning criteria for learners
satisfying consistency and confidence properties (for I-learning) similarly. These
criteria are called respectively ConsI and ConfI.

A learner M is set-driven [36,32] if content(σ) = content(τ) implies M(σ) =
M(τ). That is the output of the learner depends only on the content of the
input, and not on its length or order. For acceptable programming systems as
hypothesis space, it can be shown that set drivenness restricts the learning ca-
pabilities of machines [35]. A learner M is rearrangement-independent [6,14] if
content(σ) = content(τ) and length(σ) = length(τ), implies M(σ) = M(τ).
That is the output of the learner depends only on the content and length of the
input, and not on the order of the elements in it. Unlike most other requirements
considered, rearrangement independence is not restrictive for explanatory learn-
ing [14], when one considers acceptable numberings as hypothesis spaces. One
can define the corresponding learning criteria for learners satisfying set driven-
ness and rearrangement independence (for I-learning) similarly. These criteria
are called s-I and r-I.

3 Learning Indexed Families

Angluin [2] considered learnability of indexed family of recursive languages. A
class of languages L consisting of languages L0, L1, . . . (with the corresponding
indexing) is said to be an indexed family iff there exists a recursive function
f such that f(i, x) = 1 iff x ∈ Li. Many of the commonly studied classes of
languages, such as the class of regular languages or context free languages, are
indexed families.

For learning indexed families, the hypothesis space is usually considered to be
an indexed family also. Additionally, one often considers the following require-
ments (see [25,27]):

(a) the hypothesis space is the class being learnt (with the corresponding index-
ing) itself; this is called exact learning;
(b) the hypothesis space is class preserving, that is {H0, H1, . . .} = {L0, L1, . . .};
this is called class preserving learning;

48 S. Jain

(c) the hypothesis space is class comprising, that is {H0, H1, . . .} ⊇ {L0, L1, . . .};
this is called class comprising learning.

Note that in (b) and (c), there are several possible hypothesis spaces that
might be used — if learning can be successfully done with respect to any of such
hypothesis spaces, then one considers the class to be learnable according to the
corresponding criterion.

We prefix E, ε or C (where ε denotes empty string) to the names of the criteria
of learning to denote whether we are considering exact, class preserving or class
comprising learning. This convention on criteria names is for this section only.

Lange and Zeugmann [25,27] showed that ETxtEx = TxtEx = CTxtEx
and ETxtFin = TxtFin = CTxtFin. Thus, for explanatory and finite learn-
ing, choosing an appropriate hypothesis space (in the sense of exact, class pre-
serving or class comprising) is not so crucial.

However, for monotonic learning, the choice of different kind of hypothesis
spaces makes a critical difference.

Theorem 3. The following relations hold:

(a) [25] ESMon ⊂ SMon ⊂ CSMon.
(b) [25] EWMon ⊂WMon ⊂ CWMon.
(c) [25] EDWMon ⊂ DWMon ⊂ CDWMon.
(d) [25] EDSMon = DSMon ⊂ CDSMon.
(e) [31,26] EMon ⊂Mon ⊂ CMon.
(f) EDMon ⊂ DMon ⊂ CDMon.

Proof of Theorem 4 in [26] shows that EDMon ⊂ DMon. We do not know if
anyone has explicitly shown that DMon ⊂ CDMon, but it can be shown as
follows. Here we do the diagonalization even against DMon learners using some
(class preserving) r. e. indexing of languages as hypothesis space. Thus, we can
consider the hypothesis of the learner as coming from an acceptable programming
system, where the learner only conjectures grammars for the languages in the
class being learnt. Let 〈·, ·〉 denote some computable bijective coding from N×N
to N. Similarly, 〈·, ·, ·〉 denotes some computable bijective coding from N×N×N
to N.

Let Li = {〈i, 0, x〉 : x ∈ N}, Li,j = {〈i, 0, x〉 : x ≤ j}, Xi,j,k = Li,j ∪ {〈i, 1, x〉 :
x ≥ k}, and Xi,j,k,k′ = Li,j ∪ {〈i, 1, x〉 : k ≤ x ≤ k′} ∪ {〈i, 2, k〉}.

Let M0, M1, . . . denote a recursive enumeration of all learning machines. Let Ti

be the canonical text for Li given by Ti(j) = 〈i, 0, j〉. Let si > 0 denote the first
s found, if any in some standard search, such that content(Ti[s]) ∪ {〈i, 0, s〉} ⊆
WMi(Ti[s]). Let ri denote the time needed to find si, if defined (where we assume
ri ≥ si).

Let L = {Li : i ∈ N and for all s, content(Ti[s]) ∪ {〈i, 0, s〉} �⊆ WMi(Ti[s])} ∪
{Li,ri : i ∈ N and si is defined} ∪ {Xi,si−1,ri : i ∈ N and si is defined} ∪
{Xi,si−1,ri,k : i ∈ N and si is defined, k ∈ N}.

It is easy to verify that L is an indexed family. Note that if si is defined then
Li,ri is the only language in L which contains 〈i, si〉. Thus, L cannot be DMon-
identified. (If si is not defined, then Mi does not TxtEx-identify Li ∈ L. If si is

Hypothesis Spaces for Learning 49

defined then Mi on input Ti[si] has already conjectured a language which omitted
every element in {〈i, 1, x〉 : x ∈ N}. Thus, it will fail to dual monotonically
learn {Xi,si−1,ri : i ∈ N and si is defined} ∪ {Xi,si−1,ri,k : i ∈ N and si is
defined, k ∈ N}.) On the other hand, with class comprising hypothesis space, one
can easily dual monotonically learn the above class: initial conjecture (on input
containing elements of form 〈i, ·, ·〉) would be Li∪(Xi,si−1,ri∪{〈i, 2, ri〉}) (where
(Xi,si−1,ri ∪ {〈i, 2, ri〉}) is taken to be empty set, if si does not get defined). If
and when si is defined, the learner waits until it gets 〈i, 0, si〉, 〈i, 1, ri〉, or 〈i, 2, k〉
in the input. At which point it can easily dual monotonically identify the input.

[42] gave some interesting characterization of classes which are (strong, weak)
monotonically learnable in dependence of hypothesis space.

Even though TxtEx does not depend on whether one chooses class preserv-
ing, exact or class comprising hypothesis space, if one considers restricting the
number of mind changes to a non-zero value, then learnability does depend on
what kind of hypothesis space one chooses. Let TxtExm (see [11]) denote the
criterion of learning where the learner is allowed at most m mind changes (here
a change from ? to a proper conjecture (member of N) is not counted as a mind
change).

Theorem 4. Suppose m ≥ 1.

(a) [27] ETxtExm ⊂ TxtExm.
(b) TxtExm ⊂ CTxtExm.

We do not know if anyone has explicitly shown that TxtExm ⊂ CTxtExm,
but it can be shown as follows. Let M0, M1, . . . denote a recursive enumeration
of all learning machines. Let Li = {〈i, x〉 : x ∈ N}, and LD

i,j = {〈i, x〉 : x ≤ j
or x ∈ D}. Let Ti be the canonical text for Li given by Ti(j) = 〈i, j〉. Let
si > 0 denote the first s found, if any, such that Mi(Ti[s]) outputs a conjecture
containing 〈i, 0〉. If si gets defined, then let ri be the number of steps needed to
find that si is defined (we assume ri ≥ si). If si is defined, then let wi denote the
least x ≥ ri + 1, if any, such that 〈i, x〉 ∈ WMi(Ti[si]). Let r′i denote the number
of steps needed to find wi, if defined.

If si is not defined, then let Li = {Li}. If si is defined, but wi does not
get defined, then let Li = {L{ri+1}

i,ri
}. If si and wi both get defined, then let

Li = {L{ri+1}
i,ri

}∪{LD
i,ri

: card(D) ≤ m+1, wi+r′i+1 = min(D)}. Let L =
⋃

i Li.
It is easy to verify that L is an indexed family, and L ∈ CTxtExm. However

L �∈ TxtExm (using a class preserving hypothesis space), as either si is not
defined (and thus Mi does not TxtEx-identify Li ∈ Li) or the conjecture output
by Mi on Ti[si] is not for any language in {LD

i,ri
: card(D) ≤ m+1, wi + r′i +1 =

min(D)}, which forces at least m + 1 mind changes to learn {LD
i,ri

: card(D) ≤
m + 1, wi + r′i + 1 = min(D)}.

If one considers iterative learning (where the learner’s hypotheses depend
only on its last hypothesis and current data, rather than all the data it has
seen so far) [37,28], then [28] showed that for certain classes and particular class
comprising hypothesis spaces iterative learning may outperform conservative

50 S. Jain

learning, though in general iterative learning is contained in conservative learning
(for class comprising hypothesis spaces).

[31] also studied how the structure of relationship between various versions
of monotonicity/dual monotonicity changes if one considers class comprising
hypothesis space as opposed to class preserving/exact hypothesis spaces. For
example, CTxtFin ⊂ CDMon, though TxtFin = DMon. Similarly,

– CDWMon = CTxtEx, though DWMon ⊂ TxtEx,
– and DSMon ⊂ SMon, though CDSMon and CSMon are incomparable.

Thus, not only do the classes learnable (under a learning criterion) depend on
the kind of hypothesis spaces that are allowed, but even the relationship among
the learning criteria depend on what kind of hypothesis spaces are allowed.

In [29] the authors study set driven and rearrangement independent learning
in dependence of hypothesis space for indexed families (hypothesis space being
indexed family too). They showed that for set driven and rearrangement inde-
pendent learning, the classes that can be finitely learnt does not depend on the
type of hypothesis spaces allowed (among the types, exact, class preserving and
class comprising).

Theorem 5. [29]
r-ETxtFin = s-ETxtFin = ETxtFin = TxtFin = CTxtFin.

For explanatory learning, set driven learning forms a hierarchy depending on
the type of hypothesis space allowed, whereas for rearrangement independent
learning, it does not depend on the type of hypothesis space allowed.

Theorem 6. [29]

(a) s-ETxtEx ⊂ s-TxtEx ⊂ s-CTxtEx ⊂ ETxtEx = TxtEx = CTxtEx.
(b) r-ETxtEx = r-TxtEx = r-CTxtEx = ETxtEx = TxtEx = CTxtEx.

For monotonic learning (all three types) we get a proper hierarchy for both set
driven as well as rearrangement independent learning.

Theorem 7. [29]

(a) s-ESMon ⊂ s-SMon ⊂ s-CSMon.
(b) s-EMon ⊂ s-Mon ⊂ s-CMon.
(c) s-EWMon ⊂ s-WMon ⊂ s-CWMon.
(d) r-ESMon ⊂ r-SMon ⊂ r-CSMon.
(e) r-EMon ⊂ r-Mon ⊂ r-CMon.
(f) r-EWMon ⊂ r-WMon ⊂ r-CWMon.

We refer the reader to [41] for several other results and characterizations for
learning indexed family in dependence on hypothesis spaces.

[30] considered the situation where the learner may make queries regard-
ing certain kind of relationship between a potential hypothesis and the input
language. The queries allowed are subset, superset or disjointness queries. The
learner, after making a finite number of such queries, outputs a single hypothesis

Hypothesis Spaces for Learning 51

which must be correct for languages in the class being learnt. They showed that
the learnability of a class depends very much on whether the hypothesis space
(query space) chosen is an indexed family, recursively enumerable (r.e.) family
or a limiting r. e. family. [18] extended above work to learning r.e. classes of r.e.
languages.

4 Special Hypotheses Spaces

In this section we revert back to learning recursively enumerable languages with
respect to some fixed hypothesis spaces. Criteria I (such as TxtEx, TxtBc,
TxtFin, or TxtFex) without a specified hypothesis space refers to using ac-
ceptable numbering as hypothesis space.

A universal numbering is a numbering which contains an index for every
recursively enumerable set. Friedberg numberings [13] are universal numberings
in which every r.e. language has exactly one index. Friedberg numberings can
in some sense be considered “efficient” as they do not have any redundancy.
Ke-numberings [21] are universal numberings for which grammar equivalence
problem for indices is limiting recursive.

Jain and Stephan [21] considered learning using Friedberg numberings or Ke-
numberings as hypothesis spaces. ([12] considered learning of functions using
Friedberg numberings as hypothesis spaces). For a criteria I of learning, let
FrI (KeI) denote the class of languages which can be learnt under the criteria
I using some Friedberg numbering (some Ke-numbering) as hypothesis space.
[21] showed that every TxtEx-learnable class can be learnt using some Fried-
berg numbering as hypothesis space. However, no single Friedberg numbering
is enough to be used as hypothesis space for all TxtEx-learnable classes. On
the other hand, for finite learning, there are classes of languages which can be
finitely learnt (using acceptable numbering as hypothesis spaces), but which can-
not be learnt using any Friedberg numbering as hypothesis space. On the other
hand, every finitely learnable class can be learnt using some Ke-numbering as
hypothesis space.

Theorem 8. [21] FrTxtEx = KeTxtEx = TxtEx.
FrTxtFin ⊂ KeTxtFin = TxtFin.

An interesting result shown by [21] is that a recursively enumerable class can be
finitely learnt using some Friedberg numbering as hypothesis space iff it is 1–1
recursively enumerable and finitely learnable.

On the other hand, the situation changes for vacillatory and behaviourally cor-
rect learning. There exist behaviourally correctly learnable classes which cannot
be behaviourally correctly learnt in any Friedberg numbering.

Theorem 9. [21] FrTxtBc ⊂KeTxtBc.

It is open at this point whether every behaviourally correctly learnable class is
behaviourally correctly learnable in some Ke numbering.

52 S. Jain

On the other hand, for vacillatory learning, there are vacillatorily learnable
classes which cannot be vacillatorily learnt in any Ke-numbering. In particular,
every class which can be vacillatorily learnt in some Ke-numbering is explana-
torily learnable!

Theorem 10. [21] FrTxtFex = KeTxtFex = TxtEx ⊂ TxtFex.

(Here TxtEx ⊂ TxtFex was shown by [8]).
Even though every TxtEx-learnable class is learnable using some Friedberg

numbering, the learner may not satisfy some desirable properties. For example,
consider non-U-shaped learning. Non-U-shaped learning requires that a learner
never abandons a correct hypotheses [7]. Every TxtEx-learnable class can also
be learnt in a non-U-shaped way using some acceptable numbering as hypothe-
sis space [7]. However, even some simple classes, such as the class of all finite
sets, cannot be learnt in non-U-shaped way using any Friedberg numbering as
hypothesis space. (However, one can do non-U-shaped learning of every TxtEx-
learnable class using some Ke-numbering as hypothesis space.) Similar results
hold if one considers conservative, monotonic or prudent learning (where in pru-
dent learning [33], the learner is allowed to output conjectures only for languages
which it learns).

However, for consistent learning [1,4] one can use Friedberg numbering as
hypothesis space for every class of languages which can be consistently learnt
using some hypothesis space.

In contrast to the power of using Friedberg numberings in general, there
are some Friedberg numberings which make learning almost impossible: only
TxtEx-learnable classes which contain finitely many infinite languages could be
(explanatorily, behaviourally correctly, or vacillatorily) learnt using such Fried-
berg numberings as hypothesis space. Similarly, there exist Friedberg numberings,
using which as hypothesis space, only inclusion free finite classes of languages can
be finitely learnt (a class is inclusion free if no language in the class is included in
another language in the class). We refer the reader to [21] for further results on
learning using a Friedberg or Ke-numbering as hypothesis spaces.

5 Prescribed Learning

Until now we have been mostly concentrating on learning using some suitable
hypothesis space, perhaps with some constraints such as being class preserving,
class comprising or being a Friedberg numbering. What if one requires that the
learning has to happen with respect to every suitable hypothesis space? This kind
of situation is useful if one expects that the seller provides a learner which works
based on the programming system used by any potential buyer, rather than
only with the programming system used by the seller. Here one may distinguish
between two cases, one where there exists a learner for each of the suitable
hypothesis spaces and where one expects the same learner (with hypothesis
space being a parameter) to work for all hypothesis spaces. The issue here is of
being able to effectively generate a learner given a description of the suitable
hypothesis space. Jain, Stephan and Ye [24,23] considered the above situation.

Hypothesis Spaces for Learning 53

We say that a class L is prescribed I learnable, if for every hypothesis space
H ⊇ L, L can be learnt according to the criterion I using H as hypothesis space.

We say that a class L is class-preserving-prescribed I learnable, if for every
class preserving hypothesis space H (that is H = L, set wise; the indexing may
be different), L can be learnt according to criterion I using H as hypothesis
space.

We say that L is uniformly I learnable, if there exists an effective listing
M0, M1, M2, . . . of learners such that given a program i describing the hypothe-
sis space H ⊇ L, L can be learnt by Mi according to criterion I using H as
hypothesis space. Here we say that the program i describes the hypothesis space
H if ϕi(j, x) = 1 iff x ∈ Hj (where, when considering indexed family as hypothe-
sis space, we require ϕi to be total). In above, ϕi denotes the function computed
by the i-th program in some standard acceptable programming system.

One can define uniformly class-preserving learning similarly.
For general learnability of r.e. languages, where hypothesis spaces are r.e.

classes (rather than indexed families) prescribed learning is quite weak as in
some Friedberg numberings only restricted classes can be learnt. Thus, for r.e.
languages one normally considers class-preservingly-prescribed (uniformly class-
preserving) learning only. Note that the concept class being considered here
would be r.e. classes of r.e. languages.

For finite and explanatory learning, uniform learning can very much be done.

Theorem 11. [23] Every TxtFin-learnable r.e. class of languages is also uni-
formly class-preservingly TxtFin learnable.

Theorem 12. [23] Every TxtEx-learnable r.e. class of languages is also uni-
formly class-preservingly TxtEx-learnable.

For confident learning, there are classes which are class comprisingly confidently
learnable but not class preservingly confidently learnable. So we have a restricted
version of the above theorems for confident learning.

Theorem 13. [23] Every class-preservingly confident learnable r.e. class of lan-
guages is also uniformly class-preservingly confidently learnable.

[23] also consider behaviourally correct learning and vacillatory learning. Though
these criteria are similar to explanatory learning (in semantic sense), it was
shown that there are classes behaviourally correctly learnable using class-
preserving hypothesis spaces but not class-preservingly-prescribed behaviourally
correctly learnable. It is open at this point whether uniform and non-uniform
prescribed version of class-preserving learning for behaviourally correct learning
are same. Similar question for vacillatory learning is also open.

On the other hand, for conservative learning, prescribed and uniform learning
are a restriction and are separated from each other.

Theorem 14. [23]

(a) The class {D : |D| ≤ 1} is class-preservingly-prescribed conservatively but
not uniformly class-preservingly conservatively learnable.

54 S. Jain

(b) The class {D : |D| < ∞} is class-preservingly conservatively but not class-
preservingly-prescribed conservatively learnable.
(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧D ⊆ K ′)} is class-comprisingly conser-
vatively but not class-preservingly conservatively learnable.

We now turn our attention to prescribed learning of indexed families. Rest of
the section considers learning of indexed families only. Thus, as in Section 3, the
hypothesis spaces are assumed to be indexed families.

For finite learning, prescribed and uniform learning are very restricted. How-
ever, uniform class-preserving learning can be done for all finitely learnable in-
dexed families.

Theorem 15. [24] Suppose L is a finitely learnable indexed family.

(a) Any non-empty L is not uniformly finitely learnable.
(b) L is uniformly class-preservingly finitely learnable.
(c) L is prescribed finitely learnable iff the class is finite and inclusion free (that
is, any two distinct languages in the class are incomparable by ⊆).

For conservative learning, uniform and prescribed learning imply that (almost)
all the languages in the class are cofinite.

Theorem 16. [24]

(a) If L is uniformly conservatively learnable then every L ∈ L is cofinite.
(b) If L is prescribed conservatively learnable then all but finitely many languages
L ∈ L are cofinite.

Furthermore, uniformly class-preserving conservative learning and prescribed
conservative learning are incomparable.

Theorem 17. [24]

(a) There exists a class L which is uniformly class-preservingly conservatively
learnable, but not prescribed conservatively learnable.
(b) There exists a class L which is prescribed conservatively learnable but not
uniformly class-preservingly conservatively learnable.

We now consider the effect of prescribing the hypothesis space for monotonic
learning.

Theorem 18. [24]

(a) Any non-empty L is not uniformly strong-monotonically learnable.
(b) L is prescribed strong-monotonically learnable iff L is finite.

On the other hand, the class L = {Li : i ∈ N}, where Li = {i}, is uniformly
monotonically learnable.

In contrast to conservative learning, for monotonic learning, uniform learn-
ability implies that the languages in the class are finite.

Hypothesis Spaces for Learning 55

Theorem 19. [24]

(a) If L is uniformly monotonically learnable, then L contains only finite sets.
(b) If L is prescribed monotonically learnable, then L contains only finitely many
infinite sets.

Theorem 20. [24]

(a) There exists a class L which is uniformly class-preservingly strong-
monotonically learnable but not prescribed monotonically learnable.
(b) There exists a class L which is prescribed monotonically learnable but not
uniformly class-preservingly monotonically learnable.
(c) Every prescribed strong-monotonically learnable class is also uniformly class-
preservingly strong-monotonically learnable.

6 Optimal Hypotheses Spaces

As we have seen, chosen hypothesis spaces play a crucial role in whether a learner
is able to learn the target class of languages. In this section we consider whether
there are hypothesis spaces H which are optimal, in the sense that any class
learnable using any hypothesis space is also learnable using the hypothesis space
H. This ofcourse depends on the criterion under investigation. Furthermore, we
consider whether an hypothesis space being optimal for a particular criterion
implies it being optimal for some other criterion. Such studies were done by [22].

For a criteria of learning I, an hypothesis space H is said to be optimal if any
class L, I-learnable using some hypothesis space, is also I learnable using H as
hypothesis space. The hypothesis space H is said to be effectively optimal for a
criteria I if given any learner M using hypothesis space H′, one can effectively
find a learner M ′ using H as hypothesis space (for the class of languages which
was I-learnt by M using H′ as hypothesis space).

Clearly, all acceptable numberings are optimal. Are there other optimal num-
berings?

Definition 21. [22] A numbering A0, A1, A2, . . . is called nearly acceptable iff
there is a recursive function f such that Af(d,e) = We whenever d ∈We.

The nearly optimal numberings are effectively optimal for explanatory, vacilla-
tory and behaviourally correct learning. They are also optimal for finite learning,
but not necessarily effectively optimal for finite learning. Note that one can easily
construct nearly acceptable numberings which are not acceptable.

The effectively optimal numberings for finite, explanatory and vacillatory
learning are easy to characterize. A numbering ψ is said to be K-acceptable
[9] iff for any further numbering η, there exists a limiting recursive compiler [25]
translating the indices of η to indices of ψ.

Theorem 22. [22] A hypothesis space H = H0, H1, H2, . . . of all r.e. sets is

(a) effectively optimal for finite learning iff H is acceptable;
(b) effectively optimal for explanatory learning iff H is K-acceptable;

56 S. Jain

(c) effectively optimal for vacillatory learning iff there is a limiting-recursive
function g such that, for all d, there is an e ≤ g(d) with He = Wd.

The following theorem gives the relation between optimal numberings for finite,
explanatory, behaviourally correct and vacillatory learning.

Theorem 23. [22]
(a) For each I ∈ {TxtEx,TxtFin,TxtBc,TxtFex}, there are numberings
which are optimal but not effectively optimal for I.
(b) For any two distinct I and J in {TxtEx,TxtFin,TxtBc,TxtFex}, there
is a numbering which is optimal for I but not optimal for J.

In (b) above, if I �= TxtFin and (I �= TxtEx or J �= TxtFex), then we can
even take the numbering to be effective optimal for I.

Another interesting result is that every (effectively) optimal numbering for
TxtEx is also (effectively) optimal for consistent learning. On the other hand
there are numberings which are effectively optimal for consistent learning but
not optimal for finite, explanatory, vacillatory or behaviourally correct learning.

In learning with additional information, in addition to text for the language,
learner is also provided with an upper bound on a grammar (in the hypothesis
space) for the target language [15,20]. [22] showed that the Ke-numberings are
exactly those hypothesis spaces which are optimal for learning with additional
information.

Acknowledgements. We thank Frank Stephan for helpful discussions and com-
ments.

References

1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences 21, 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

3. Angluin, D., Smith, C.: Inductive inference: Theory and methods. Computing Sur-
veys 15, 237–289 (1983)

4. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Pro-
ceedings of the 20th International Congress of Mathematicians, Vancouver, pp.
455–560 (1974); (in Russian) English translation in American Mathematical Soci-
ety Translations. Series 2 109, 107–112 (1977)

5. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. Theory of Algo-
rithms and Programs 1, 82–88 (1974) (in Russian)

6. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Infor-
mation and Control 28, 125–155 (1975)

7. Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearning
helps. Information and Computation 206(5), 694–709 (2008)

8. Case, J.: The power of vacillation in language learning. SIAM Journal on Comput-
ing 28(6), 1941–1969 (1999)

9. Case, J., Jain, S., Suraj, M.: Control structures in hypothesis spaces: The influence
on learning. Theoretical Computer Science 270(1–2), 287–308 (2002)

Hypothesis Spaces for Learning 57

10. Case, J., Lynes, C.: Machine inductive inference and language identification. In:
Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115.
Springer, Heidelberg (1982)

11. Case, V., Smith, C.: Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25, 193–220 (1983)

12. Freivalds, R., Kinber, E., Wiehagen, R.: Inductive inference and computable one-
one numberings. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 28, 463–479
(1982)

13. Friedberg, R.: Three theorems on recursive enumeration. Journal of Symbolic
Logic 23(3), 309–316 (1958)

14. Fulk, M.: Prudence and other conditions on formal language learning. Information
and Computation 85, 1–11 (1990)

15. Freivalds, R., Wiehagen, R.: Inductive inference with additional information. Jour-
nal of Information Processing and Cybernetics (EIK) 15, 179–195 (1979)

16. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

17. Jantke, K.: Monotonic and non-monotonic inductive inference. New Generation
Computing 8, 349–360 (1991)

18. Jain, S., Lange, S., Zilles, S.: A general comparision of language learning from
examples and from queries. Theoretical Computer Science A 387(1), 51–66 (2007);
Special Issue on Algorithmic Learning Theory (2005)

19. Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction
to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

20. Jain, S., Sharma, A.: Learning with the knowledge of an upper bound on program
size. Information and Computation 102, 118–166 (1993)

21. Jain, S., Stephan, F.: Learning in Friedberg numberings. Information and Compu-
tation 206(6), 776–790 (2008)

22. Jain, S., Stephan, F.: Numberings optimal for learning. In: Györfi, L., Freund, Y.,
Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 434–448.
Springer, Heidelberg (2008)

23. Jain, S., Stephan, F., Ye, N.: Prescribed learning of R.E. classes. In: Hutter, M.,
Servedio, R., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 64–78.
Springer, Heidelberg (2007)

24. Jain, S., Stephan, F., Ye, N.: Prescribed learning of indexed families. Fundamenta
Informaticae 83(1–2), 159–175 (2008)

25. Lange, S., Zeugmann, T.: Language learning in dependence on the space of hy-
potheses. In: Proceedings of the Sixth Annual Conference on Computational Learn-
ing Theory, pp. 127–136. ACM Press, New York (1993)

26. Lange, S., Zeugmann, T.: The learnability of recursive languages in dependence
on the space of hypotheses. Technical Report 20/93, GOSLER-Report, FB Math-
ematik und Informatik, TH Lepzig (1993)

27. Lange, S., Zeugmann, T.: Learning recursive languages with bounded mind
changes. International Journal of Foundations of Computer Science 4, 157–178
(1993)

28. Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Com-
puter and System Sciences 53, 88–103 (1996)

29. Lange, S., Zeugmann, T.: Set-driven and rearrangement-independent learning of
recursive languages. Mathematical Systems Theory 29, 599–634 (1996)

30. Lange, S., Zilles, S.: Comparison of query learning and gold-style learning in de-
pendence of the hypothesis space. In: Ben-David, S., Case, J., Maruoka, A. (eds.)
ALT 2004. LNCS (LNAI), vol. 3244, pp. 99–113. Springer, Heidelberg (2004)

58 S. Jain

31. Lange, S., Zeugmann, T., Kapur, S.: Monotonic and dual monotonic language
learning. Theoretical Computer Science A 155, 365–410 (1996)

32. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Information and Con-
trol 53, 32–51 (1982)

33. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

34. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967); reprinted by MIT Press (1987)

35. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzs-
trategien. PhD thesis, RWTH Aachen (1984)

36. Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT Press,
Cambridge (1980)

37. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK) 12, 93–99 (1976)

38. Wiehagen, R.: Zur Theorie der Algorithmischen Erkennung. Dissertation B, Hum-
boldt University of Berlin (1978)

39. Wiehagen, R.: A thesis in inductive inference. In: Dix, J., Jantke, K., Schmitt, P.
(eds.) NIL 1990. LNCS (LNAI), vol. 543, pp. 184–207. Springer, Heidelberg (1991)

40. Wiehagen, R., Zeugmann, T.: Learning and consistency. In: Jantke, K.P., Lange,
S. (eds.) GOSLER 1994. LNCS (LNAI), vol. 961, pp. 1–24. Springer, Heidelberg
(1995)

41. Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive
languages. In: Jantke, K., Lange, S. (eds.) GOSLER 1994. LNCS (LNAI), vol. 961,
pp. 190–258. Springer, Heidelberg (1995)

42. Zeugmann, T., Lange, S., Kapur, S.: Characterizations of monotonic and dual
monotonic language learning. Information and Computation 120, 155–173 (1995)

43. Zeugmann, T., Zilles, S.: Learning recursive functions: A survey. Theoretical Com-
puter Science A 397(1–3), 4–56 (2008); Special Issue on Forty Years of Inductive
Inference. Dedicated to the 60th Birthday of Rolf Wiehagen

State Complexity of Nested Word Automata�

Kai Salomaa

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We discuss techniques to establish lower bounds for the num-
ber of states of finite automata operating on nested words. To illus-
trate these methods we establish a lower bound for the state complexity
of Kleene star that is of a different order than the known tight state
complexity bound for the star of ordinary regular languages. We survey
known bounds on deterministic and nondeterministic state complexity
of basic operations on regular nested word languages and discuss open
problems.

1 Introduction

Finite automata operating on nested words have been introduced by Alur and
Madhusudan [4,5] as a natural extension of ordinary finite automata. The sym-
bols of a nested word are ordered in the standard way linearly, and additionally
there is a recursively defined matching of occurrences of special call and return
symbols. Automata on nested words provide a natural computational model
for applications like XML document processing, where data has a dual linear-
hierarchical structure. The class of regular nested word languages retains many
desrirable properties of classical regular languages, in particular, closure and
decision properties. More information on applications of nested word automata
and on related models can be found e.g. in [1,2,6].

The state complexity of basic operations on regular languages has been exten-
sively studied, see for example [15,17,19,21,22,29,31]. Generally when considering
various extensions of finite automata, naturally one of the first questions to be
answered could be which properties turn out to be significantly different for the
extended model. Tree automata [13] are another much studied model extend-
ing ordinary finite automata. As regards Boolean operations or the extension of
concatenation and Kleene star to trees, it can be expected that the state com-
plexity results for tree automata1 would be essentially similar as for ordinary
finite automata. Interestingly, for nested word automata the lower bounds for
deterministic state complexity of, for example, catenation and Kleene star turn
out to be of a different order than the corresponding results for ordinary regular

� Research supported by the Natural Sciences and Engineering Research Council of
Canada.

1 However, the author is not aware of work explicitly discussing the state complexity
of operations on regular tree languages.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 K. Salomaa

languages. It can be noted that (ranked or unranked) trees can be viewed as
special cases of nested words [5]. Recently, it has been established in [12] that
nested word automata are equivalent to pushdown forest automata [25].

It is shown in [5] that a deterministic nested word automaton equivalent to
a given nondeterministic automaton with O(n) states may need 2n2

states. The
fact that the state complexity blow-up is larger than in the case of ordinary
finite automata, intuitively, causes the possibility that the known upper bounds
for the state complexity of basic operations on regular languages [29] need not,
in general, hold for languages of nested words.

Even in the case of ordinary deterministic finite automata (DFA), worst-case
state complexity examples for various operations are often difficult to construct
and software tools, such as Grail+, are used for verifying worst-case exam-
ples [11,28,30]. The fact that DFAs can be minimized efficiently makes it possi-
ble to use software tools to find worst-case examples. The situation is essentially
different for nested word automata because a minimal deterministic automa-
ton need not be unique [3,5,24] and there is no known efficient minimization
algorithm, even for deterministic nested word automata. Basic operations and
determinization of visibly pushdown automata (that are essentially similar to
nested word automata) have been implemented in [26]. However, the usability
of the tools for verifying worst-case state complexity examples is limited due to
the lack of an efficient minimization algorithm.

In order to get a better quantitative understanding of regular languages of
nested words, the study of state complexity of basic regularity preserving op-
erations has been initiated in [18,24]. Here in Section 4 we will summarize the
known state complexity results for deterministic and nondeterministic nested
word automata. Many questions remain open. In particular, for the determinis-
tic state complexity of concatenation, Kleene star and reversal the known upper
and lower bounds remain far apart, and the same holds for the nondeterministic
state complexity of complementation.

We will discuss general techniques to establish lower bounds for the number
of states of a (non)-deterministic nested word automaton. The techniques are
inspired by the fooling set methods [7,14,20] used for ordinary nondeterminis-
tic finite automata (NFA). We will establish a new lower bound for the state
complexity of Kleene star of regular nested word languages that is of a different
order than the worst-case state complexity of Kleene star of ordinary DFAs.

2 Finite Automata on Nested Words

We assume that the reader is familiar with with finite automata and state com-
plexity, see [27,29,31]. Here we briefly recall the definitions associated with au-
tomata on nested words. More details on nested words and their applications
can be found in [4,5].

In the following Σ always denotes a finite alphabet. The tagged alphabet cor-
responding to Σ is Σ̂ = Σ ∪ 〈Σ ∪ Σ〉, where 〈Σ = {〈a | a ∈ Σ} is the set of
call symbols and Σ〉 = {a〉 | a ∈ Σ} is the set of return symbols. Elements of Σ

State Complexity of Nested Word Automata 61

are called internal symbols. A tagged word over Σ is a sequence of symbols of Σ̂,
w = u1 · · ·um, ui ∈ Σ̂, i = 1, ..., m. We define recursively a hierarchical match-
ing relation in a tagged word. For w as above, a call symbol ui ∈ 〈Σ matches
a return symbol uj ∈ Σ〉, i < j, if in the subsequence ui+1 · · ·uj−1 every call
symbol (respectively, return symbol) has a matching return symbol (respectively,
call symbol). Symbol occurrences ui ∈ 〈Σ that do not have a matching return,
1 ≤ i ≤ m, are pending calls , and ui ∈ Σ〉 that does not have a matching call is a
pending return. The above conditions define a unique matching relation between
the call-symbol occurrences and the return symbol occurrences in any tagged
word.

By a nested word we mean a tagged word that is associated with the usual
linear ordering of symbols and the hierarchical matching relation between oc-
currences of call and return symbols. The set of nested words over Σ is denoted
NW(Σ). A nested word language is any subset of NW(Σ). A nested word is well-
matched if every call symbol has a matching return. An example of a nested word
is ab〉a〈caa〈dc〉ad〉ab〉a〈b. Here all occurrences of a are linear, the call-symbol 〈c
(respectively, 〈d) matches return symbol d〉 (respectively, c〉), both occurences
of b〉 are pending returns and 〈b is a pending call. The word is not well-matched
since it has pending calls and/or returns.

Language operations such as concatenation, Kleene star and reversal are ex-
tended in the natural way for sets of nested words. For example, the catenation
of nested words w1 and w2 is the uniquely defined nested word where the under-
lying tagged word is the catenation of the tagged words corresponding to w1 and
w2. Note that in the catenation pending calls of w1 may match return symbol
occurrences in w2. When reversing a nested word, return symbols become call
symbols and vice versa, for more details see [5]. The number of symbols a ∈ Σ̂
occurring in a nested word w is denoted |w|a.

We recall the definition of nested word automata from [5]. This definition
explicitly distinguishes the linear states that the computation passes following
the linear ordering of the symbols and the hierarchical states that are passed
from a call symbol to a matching return symbol. The distinction will be useful for
obtaining precise bounds for state complexity. A simplified definition of nested
word automata was used in [4].

Definition 1. A nondeterministic nested word automaton, NNWA, is a tuple
A = (Σ, Q, Q0, Qf , P, P0, Pf , δc, δi, δr), where Σ is the input alphabet, Q is the
finite set of linear states, Q0 ⊆ Q is the set of initial linear states, Qf ⊆ Q is the
set of final linear states, P is the finite set of hierarchical states, Q∩P = ∅, P0 ⊆
P is the set of initial hierarchical states, Pf ⊆ P is the set of final hierarchical
states, δc : Q× 〈Σ −→ 2Q×P is the call transition function, δi : Q× Σ −→ 2Q

is the internal transition function, and δr : Q × P × Σ〉 −→ 2Q is the return
transition function.

For defining the computations of an NNWA it is convenient to view a nested
word u1 · · ·um as a directed graph where there is a linear edge from ui to ui+1,
i = 1, . . . , m−1, and additionally each pair of matching call and return symbols
is connected by a hierarchical edge.

62 K. Salomaa

An NNWA A begins a nondeterministic computation in some initial linear
state q0 ∈ Q0. It reads an internal symbol using the internal transition function
similarly as an ordinary NFA. When encountering a call symbol 〈a in a linear
state q, A sends along the linear edge a state q′ ∈ Q and along the hierarchical
edge a state p′ ∈ P where (q′, p′) ∈ δc(q, 〈a) is nondeterministically chosen.
When A encounters a return-symbol a〉 in a linear state state q and receives
state p ∈ P along the hierarchical edge, the computation continues in some
linear state of δr(q, p, a〉). If a〉 is a pending return, A uses an arbitrary initial
hierarchical state p0 ∈ P0 as the second argument for δr.

The frontier of a computation of A corresponding to a prefix w1 of the input
w is a tuple (p1, . . . , pk, q), where pi ∈ P , i = 1, . . . , k, k ≥ 0, are the states sent
along pending hierarchical edges and q ∈ Q is the linear state reached at the
end of w1. Here pending hierarchical edges refer to call symbols such that the
current prefix w1 does not have a matching return. Note that the frontier of the
computation completely determines how the computation can be continued on
the remainder of the input. The NNWA A accepts a nested word w if in some
nondeterministic computation it reaches the end of w in a final linear state and
all hierarchical states of the computation corresponding to pending calls are final,
that is, the frontier at the end of the computation is of the form (p1, . . . , pk, q),
q ∈ Qf , pi ∈ Pf , i = 1, . . . , k, k ≥ 0. The nested word language recognized
by A is denoted L(A). Two NNWAs are said to be equivalent if they recognize
the same language. A nested word language is regular if it is recognized by an
NNWA.

A nested word automaton A as given in Definition 1 is said to be deterministic
(a DNWA) if δc (respectively, δi, δr) is a partial function Q × 〈Σ → Q × P
(respectively, Q×Σ → Q, Q×P ×Σ〉 → Q). Note that we allow that a DNWA
is incomplete, that is, some values of the transition functions may be undefined.
Any DNWA as can be “completed”, that is, the transition functions can be made
to be total functions by adding at most one linear and one hierarchical state.

An extension of the subset construction allows a deterministic simulation of
an NNWA. An NNWA is said to be linearly accepting if all hierarchical states are
final. A linearly accepting NNWA decides whether or not to accept the input
based only on the linear state it reaches at the end of the computation. The
following result from [5], see also [4], gives an upper bound for the size blow-up
of determinizing an NNWA. The upper bound is tight within a multiplicative
constant.

Proposition 1. [5] A linearly accepting NNWA with k linear and h hierarchical
states can be simulated by a DNWA with 2k·h linear and 2h2

hierarchical states.
There exist languages of nested words Ln, n ≥ 1, recognized by an NNWA with
O(n) states such that any DNWA for Ln needs Ω(2n2

) states.

We define the deterministic (respectively, nondeterministic) state complexity of
a regular nested word language L, denoted sc(L) (respectively, nsc(L)), as the
smallest total number of states (linear states and hierarchical states) of any
DNWA (respectively, NNWA) recognizing L. Naturally, a more complete de-
scriptional complexity measure for nondeterministic automata would include

State Complexity of Nested Word Automata 63

the number of transitions [9,10,17], however, here we do not consider transition
complexity of NNWAs.

It should be noted that the roles played by the (numbers of) linear and hier-
archical states, respectively, are different and often state complexity bounds are
formulated separately for the numbers of linear and of hierarchical states. The
combined value, sc(L) or nsc(L), is a convenient approximation of the descrip-
tional complexity of L, especially in cases where precise upper and lower bounds
are not known.

3 State Complexity Lower Bounds

The closure properties of regular languages of nested words under operations
such as concatenation, Kleene star and reversal are established using nonde-
terministic nested word automata [5]. As indicated by Proposition 1, a DNWA
equivalent to an n state NNWA may require more than 2n states and, conse-
quently, it is not clear whether the known upper bounds for the state complexity
of basic operations on regular languages [29] hold for languages of nested words.
The answer seems to depend on particular properties of each operation.

The regularity of nested word languages can be characterized by the finiteness
of suitably defined congruence relations that extend the Myhill-Nerode right con-
gruence to nested words, however, the number of congruence classes does not, in
general, give the number of states of a minimal DNWA and the minimal DNWA
need not be unique [3,5]. Note that [3] deals with visibly pushdown automata
(VPA) and a state-minimal VPA corresponds to a DNWA that is minimized
only with respect to the number of linear states. However, using essentially the
same idea one can construct a nested word language that has two non-isomorphic
DNWAs with a minimal total number of states.

We can develop lower bound techniques for the number of states of a (non)-
deterministic nested word automaton that are inspired by the fooling set method
useds for NFAs [7,14,20]. In the case of DNWAs, instead of a set of pairs of words
we can use a set of nested words where each pair can be separated by a suitably
chosen suffix.

Definition 2. Let L be a nested word language over Σ.

(i) A finite set S ⊆ NW(Σ) is a separator set for L if every element of S is a
prefix of some word in L and for any two element set {u, v} ⊆ S, u �= v,
there exists x ∈ NW(Σ) such that ux ∈ L if and only if vx �∈ L.

(ii) A set of pairs of nested words F = {(xi, yi) | i = 1, . . . , m} is said to be a
fooling set for L if:
(iia) xiyi ∈ L, i = 1, . . . , m, and
(iib) for any 1 ≤ i < j ≤ m, xiyj �∈ L or xjyi �∈ L.

The set S is a k-separator set, k ≥ 0, if each word in S has exactly k pending
calls. The set F is a k-fooling set, k ≥ 0, if each xi has exactly k pending call
symbols.

64 K. Salomaa

Lemma 1. [18,24] Let A be a (deterministic or nondeterministic) nested word
automaton with a set of linear states Q and a set of hierarchical states P .

(i) If A is a DNWA and S is a k-separator set for L(A) then |P |k · |Q| ≥ |S|.
(ii) If L(A) has a k-fooling set F , then |P |k · |Q| ≥ |F |.

The use of Lemma 1 is restricted by the requirement that all words corresponding
to a k-separator or k-fooling set must have the same number of pending calls. A
modified lower bound technique involving additional conditions is used in [24] to
establish a tight state complexity lower bound for union and complementation.

Already in the case of ordinary regular languages it is known that the lower
bounds obtained by the fooling set methods may be far removed from the actual
nondeterministic state complexity of the language [16], and the same limitation
naturally carries over to NNWAs. It was left open in [24] how good estimates,
in the worst case, the k-separator sets provide for the size of DNWAs.

To illustrate the use of Lemma 1 we establish a lower bound for the state com-
plexity of Kleene star that is of a different order than the worst-case state com-
plexity of star of ordinary regular languages. (The state complexity of the Kleene
star operation for nested word languages was not considered in [24].) It is well
known that the state complexity of the Kleene star for DFAs is 2n−1 +2n−2 [29].
We construct nested word languages that give a lower bound of 2Ω(n·log n) for
the state complexity of star.

For w ∈ {0, 1}∗ we denote by num(w) the number represented by the binary
word w. Note that w may contain leading zeros. Let Σ = {0, 1, a, b} and let
n ∈ IN be arbitrary but fixed. We define

Ln = {0, 1, a}∗ ∪ L′
n (1)

where

L′
n = {w1au1〈bu2w2au3bw2b〉w1 | w1, w2 ∈ {0, 1}n, ui ∈ {0, 1, a}∗,

i ∈ {1, 3}, u2 ∈ {0, 1, a}∗a ∪ {ε}, |u2|a = num(w1) }. (2)

Lemma 2. The state complexity of Ln is O(2n).

Proof. We describe the construction of a DNWA A′ for the language L′
n. After-

wards we describe how the construction can be modified to obtain a DNWA for
Ln.

The following description assumes that the input for A′ is of the form z =
v1〈bv2bv3b〉v4, vi ∈ {0, 1, a}∗, i = 1, . . . , 4. If this is not the case, A′ can easily
be made to reject without exceeding the bound on the number of states. On an
input z, A′ checks that the prefix of z of length n + 1 is of the form

w1a, w1 ∈ {0, 1}n. (3)

If the prefix is not of this form, A′ rejects. When reading the prefix A′ stores w1
in the linear state, and after this the computation passes by symbols of {0, 1, a}
until it reaches a call symbol 〈b. From the call symbol the computation continues

State Complexity of Nested Word Automata 65

in a linear state qw1 and hierarchical state pw1 that both encode the binary string
w1 of length n.

The linear computation beginning in state qw1 reads symbols of {0, 1, a} and
counts num(w1) occurrences of a. After the num(w1)’th occurrence of a, the
automaton checks that the following subword is of the form w2a, w2 ∈ {0, 1}n,
and stores w2 in the linear state. The computation passes by symbols of {0, 1, a}
until it encounters a b. Now the computation checks that the following n symbols
equal w2 and are followed by a return symbol b〉. Finally, the last stage of the
computation verifies that the suffix following b〉 is equal to the word w1 that is
encoded by the hierarchical state pw1 received at the return symbol b〉.

The linear computation of A′ consists of a constant number of phases that each
either read a binary word w of length n and store it in the state, or compare w
symbol by symbol with some word stored in the state. This can be implemented
using O(2n) linear states. The number of hierarchical states of A′ is exactly 2n.

To conclude construction, we modify A′ as follows to obtain a DNWA A for
the nested word language Ln. If the input consists only of symbols 0, 1, a, the
DNWA A is made to accept. This case applies also when the prefix of length
n + 1 of the input is not of the form (3). This modification requires that A has
to remember whether or not it has seen symbols other than 0, 1, a, and hence
it is sufficient to double the number of states. ��

Lemma 3. Let Σ = {0, 1, a, b}. For nested word languages Ln ⊆ NW(Σ) as
in (1),

sc(L∗
n) ∈ Ω(2n·2n

).

Proof. We denote by xi, 1 ≤ i ≤ 2n, the unique word in {0, 1}n such that
num(xi) = i − 1. We denote by F2n the set of functions from {1, . . . , 2n} into
{0, 1}n. For f ∈ F2n , we define the nested word

vf = x1ax2 · · ·ax2na〈bf(1)af(2)a · · ·af(2n).

Consider an arbitrary y ∈ {0, 1}n. Since all the words xi, i = 1, . . . , 2n, are
distinct, it follows that for any xi, 1 ≤ i ≤ 2n,

vfbyb〉xi ∈ L∗
n iff xia · · ·x2na〈bf(1)a · · · f(2n)byb〉xi ∈ L′

n iff y = f(i).

For verifying the first “iff” statement, recall that the subset of Ln consisting of
words containing some call or return symbols is exactly the language L′

n (2).
Hence wb〉xi can be in L∗

n only if wb〉xi has a suffix in L′
n.

From the above it follows that the set S1 = {vf | f ∈ F2n} is a 1-separator
set for L∗

n. If Q and P are, respectively, the sets of linear and hierarchical states
of an arbitrary DNWA B recognizing L∗

n, we have by Lemma 1 (i) that

|Q| · |P | ≥ |S1| = 2n·2n

.

Now the number of states of B is greater than max(|Q|, |P |) ≥ 2n·2n−1
. ��

66 K. Salomaa

As a consequence of Lemmas 2 and 3 we get:

Theorem 1. For arbitrarily large n ∈ IN there exist regular nested word lan-
guages Mn such that

sc(Mn) ∈ O(n) and sc(M∗
n) ∈ 2Ω(n·log n).

The lower bound of Theorem 1 is greater than the state complexity of Kleene
star of ordinary regular languages, however, it is very far from the best known
upper bound. Proposition 1 and the upper bound for the nondeterministic state
complexity of star [18] give only an upper bound of the form 2c·n2

(for a suitable
constant c) for the state complexity of the star of an n state DNWA language.

4 Summary of State Complexity Results and Open
Problems

Deterministic and nondeterministic operational state complexity has been in-
vestigated in [24] and [18], respectively, and the known upper and lower bounds
are summarized in Table 1. The lower bound for the deterministic state com-
plexity of Kleene star was established in the previous section in Theorem 1. The
upper bounds for the deterministic state complexity of Kleene star and reversal
and the nondeterministic state complexity of complementation follow from the
construction converting an arbitrary NNWA to a DNWA [5].

When the lower and upper bounds do not coincide, in Table 1 the row element
for that operation is divided into two parts. In the table, ki, hi, i = 1, 2, refer
to the numbers of linear and hierarchical states, respectively, of the DNWAs (or

Table 1. Deterministic and nondeterministic state complexity. The entries (†) indicate
a tight bound within an additive constant. The lower bound (‡) can be reached by the
catenation of L1 and L2 where sc(L1) = 2 and sc(L2) = n2. The bound (�) is tight in
terms of the total number of states and max(h1, h2) is a lower bound for the number
of hierarchical states.

Deterministic s.c. Nondeterministic s.c.

Union (4k1k2, 4h1h2)(†) (k1 + k2, max(h1, h2) + 2)(�)

Intersection (k1k2, h1h2) (k1k2, h1h2)

Complement (l.b.) (2k1, 2h1)(†) Ω(
√

n1!)
(u.b.) O(2n2

1)

Concatenation (l.b.) 2Ω(n2 log n2) (‡) (k1 + k2, max(h1, h2))
(u.b.) O(n1 · 24n2

2) (k1 + k2, h1 + h2)

Kleene star (l.b.) 2Ω(n1 log n1) (k1, h1)
(u.b.) 2O(n2

1) (4k1, 4h1)

Reversal (l.b.) 2Ω(n1 log n1) (k1, h1)
(u.b.) 2n2

1

State Complexity of Nested Word Automata 67

NNWAs) recognizing the argument languages. The symbols ni, i = 1, 2, refer to
the total number of states used by the automata for the argument languages.

More specifically, in the deterministic (respectively, nondeterministic) state
complexity column of the table, a lower bound (respectively, an upper bound)
for a binary operation �, (f(k1, k2), g(h1, h2)) indicates that for nested word
languages Li recognized by a DNWA (resp. NNWA) with ki linear and hi hier-
archical states, i = 1, 2, a DNWA (resp. NNWA) for the language L1�L2 needs
in the worst-case at least (respectively, at most) f(k1, k2) linear and g(h1, h2)
hierarchical states. For a unary operation, k1 and h1 refer, respectively, to the
numbers of linear and hierarchical states of the DNWA (resp. NNWA) recogniz-
ing the single argument language.

For the deterministic state complexity of concatenation, Kleene star and re-
versal, as well as the nondeterministic state complexity of complementation the
bounds are stated simply in terms of the total number of states, where n1, n2
refer to the deterministic (or nondeterministic) state complexity of the argument
languages. For these operations the upper and lower bounds remain far apart
and detailed formulas in terms of the numbers of linear and hierarchical states
would appear unnecessarily complicated.

Table 1 gives tight results (within an additive constant) for union and inter-
section and for the deterministic state complexity of complement. The results
for intersection are perhaps “expected”, that is, they are similar to the case of
ordinary regular languages, with the only difference that we need to consider sep-
arately the sets of linear and hierarchical states, respectively. The upper bounds
for the deterministic state complexity of union and complement involve mul-
tiplicative constants that do not appear in corresponding bounds for ordinary
regular languages. Intuitively, the constants are needed because in a determin-
istic nested word automaton recognizing the union of languages recognized by
two different automata, the linear state has to remember (a constant amount
of) information propagated along the pending hierarchical states. It should be
emphasized that this is not simply a feature of a particular construction used to
handle union, and the upper bound can be reached at least within an additive
constant [24].

When constructing an NNWA to recognize the union of languages recognized
by two different automata, the hierarchical states can be reused in both “parts”
of the automaton whereas the same property does not hold for the linear states.
Thus the roles played by the numbers of linear and hierarchical states in the
upper bound for the nondeterministic state complexity of union appear to be
different. Again the bound is known to be tight [18].

When considering ordinary regular languages, the worst-case deterministic
state complexity of concatenation, Kleene star and reversal is exponential [29]
and the same holds for the nondeterministic state complexity of complemen-
tation [19,22]. Thus, concatenation, Kleene star and reversal can be viewed as
“hard” operations for deterministic automata while complementation is “hard”

68 K. Salomaa

for nondeterministic automata. The results summarized in Table 1 indicate that
for each of the “four hard operations” the best known lower bound for nested
word automata is of a different order than the worst-case state complexity of
the same operation for ordinary regular languages. Concerning the corresponding
upper bounds, the bound for concatenation [24] combines ideas of the optimal
DFA construction for the concatenation of two DFA languages [29] with the con-
struction that converts an arbitrary NNWA to a DNWA [4,5]. The remaining
three upper bounds for the “hard” operations are direct corollaries of Propo-
sition 1 from [5]. Likely the upper bounds could be slightly improved using a
detailed analysis.

The upper and lower bounds for the “four hard operations” given in Table 1
remain very far apart and, thus, the main open questions on operational state
complexity of nested word automata deal with closing the gaps between these
bounds. It remains to be seen whether we need stronger lower bound techniques
than Lemma 1, or whether up to now we have simply not been able to come up
with sufficiently clever worst-case examples.

Problem 1. What is the precise deterministic state complexity of concatenation,
Kleene star and reversal, and the precise nondeterministic state complexity of
complementation of nested word languages.

Besides the above mentioned operations, also some other state complexity results
in Table 1 are not tight. The upper and lower bound entries for the nondetermin-
istic state complexity of concatenation and Kleene star differ by a multiplicative
constant and, as discussed in [18], just by relying on Lemma 1 (ii) it seems diffi-
cult to get tight bounds for these operations. As regards nondeterministic state
complexity of reversal, differing from the case of ordinary NFAs [19] the result
of Table 1 does not need an additional state because the definition of NNWAs
allows the use of multiple initial states.

In this paper we have concentrated on state complexity of operations on reg-
ular nested word languages. Besides closure properties, the regular nested word
languages retain many of the nice decidability properties of regular languages.
As regards complexity of decision problems, it is shown in [5], for example, that
equivalence and inclusion of DNWAs can be decided in polynomial time and that
equivalence and inclusion of NNWAs are complete for exponential time. Recall
that equivalence and inclusion are PSPACE-complete for NFAs [29].

Since congruence based characterizations seem not sufficient to minimize
DNWAs [3,5], minimization becomes a combinatorial question. Minimization of
subclasses of visibly pushdown automata (VPA) has been investigated in [8,23].
The computation of a DNWA on a nested word can be viewed as a computation
of a deterministic VPA on the underlying tagged word [5], and the minimization
problems of DNWAs and VPAs are closely related. It remains open whether
general DNWAs can be minimized in polynomial time. On the other hand, there
is no known hardness result for the complexity of DNWA minimization.

State Complexity of Nested Word Automata 69

References

1. Alur, R.: Marrying words and trees. In: Proc. of 26th ACM Symposium on Prin-
ciples of Database Systems, PODS 2007, pp. 233–242 (2007)

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: Proc. of 22nd IEEE Symposium on
Logic in Computer Science, pp. 151–160 (2007)

3. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005)

4. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

5. Alur, R., Madhusudan, P.: Adding nesting structure to words. Full version of [4],
www.cis.upenn.edu/~alur/Stoc04Dlt06.pdf

6. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed
points, automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg
(2007)

7. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

8. Chervet, P., Walukiewicz, I.: Minimizing variants of visibly pushdown automata. In:
Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146. Springer,
Heidelberg (2007)

9. Domaratzki, M., Salomaa, K.: Lower bounds for the transition complexity of NFAs.
J. Comput. System. Sci. 74, 1116–1130 (2008)

10. Domaratzki, M., Salomaa, K.: Transition complexity of language operations. The-
oret. Comput. Sci. 387, 147–154 (2007)

11. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
Star of catenation and star of reversal. Fund. Inform. 83, 75–89 (2008)

12. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Inform. Proc.
Lett. 109, 13–17 (2008)

13. Gécseg, F., Steinby, M.: Tree languages. In: [27], vol. III, pp. 1–68
14. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic

finite automata. Inform. Process. Lett. 59, 75–77 (1996)
15. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:

Descriptional complexity of machines with limited resources. J. Universal Comput.
Sci. 8, 193–234 (2002)

16. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

17. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

18. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word au-
tomata (September 2008) (submitted for publication)

19. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Foundations of Comput. Sci. 14, 1087–1102 (2003)

20. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Hei-
delberg (1997)

www.cis.upenn.edu/~alur/Stoc04Dlt06.pdf

70 K. Salomaa

21. Hromkovič, J.: Descriptional complexity of finite automata: Concepts and open
problems. J. Automata, Languages and Combinatorics 7, 519–531 (2002)

22. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

23. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, learning, and confor-
mance testing of boolean programs. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidelberg (2006)

24. Piao, X., Salomaa, K.: Operational state complexity of nested word automata. In:
Câmpeanu, C., Pighizzini, G. (eds.) Descriptional Complexity of Formal Systems,
DCFS 2008, Charlottetown, Canada, pp. 194–206 (2008)

25. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,
V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 134–146. Springer,
Heidelberg (1998)

26. Nguyen, H.: VPAlib: Visibly pushdown automata library (2006),
http://www.emn.fr/x-info/hnguyen/vpa

27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III.
Springer, Heidelberg (1997)

28. Salomaa, K., Yu, S.: On the state complexity of combined operations and their
estimation. Internat. J. Foundations of Comput. Sci. 18, 683–698 (2007)

29. Yu, S.: Regular languages. In: [27], vol. I, pp. 41–110
30. Yu, S.: Grail+: A symbolic computation environment for finite-state machines,

regular expressions and finite languages (2002),
http://www.csd.uwo.ca/Research/grail

31. Yu, S.: State complexity: Recent results and open problems. Fund. Inform. 64,
471–480 (2005)

http://www.emn.fr/x-info/hnguyen/vpa
http://www.csd.uwo.ca/Research/grail

A Language-Based Comparison of Extensions of
Petri Nets with and without Whole-Place

Operations

Parosh Aziz Abdulla1, Giorgio Delzanno2, and Laurent Van Begin3

1 Uppsala University, Sweden
parosh@it.uu.se

2 Università di Genova, Italy
giorgio@disi.unige.it

3 Université Libre de Bruxelles, Belgium
lvbegin@ulb.ac.be

Abstract. We use language theory to study the relative expressiveness
of infinite-state models laying in between finite automata and Turing ma-
chines. We focus here our attention on well structured transition systems
that extend Petri nets. For these models, we study the impact of whole-
place operations like transfers and resets on nets with indistinguishable
tokens and with tokens that carry data over an infinite domain. Our
measure of expressiveness is defined in terms of the class of languages
recognized by a given model using coverability of a configuration as ac-
cepting condition.

1 Introduction

The class of well-structured transition systems (wsts) [1] includes several inter-
esting examples of infinite-state models whose expressiveness lay in between that
of finite automata and that of Turing machines. Some examples of wsts are Petri
nets [1], transfer and reset nets [2], lossy FIFO channel systems (LCS) [3,4], and
constrained multiset rewriting systems (CMRS) [5]. Petri nets are a widely used
model of concurrent computations. A Petri net is defined by a finite set of places
containing multisets of tokens and by a finite set of transitions that define the
flow of tokens among places. Each transition first consumes and then produces a
fixed number of tokens in each place. Transfer/reset nets extend Petri net with
whole-place operations, i.e., transitions that operate simultaneously on all tokens
in a given set of places. In a lossy FIFO channel system places are viewed instead
as unreliable FIFO channels. Finally, CMRS can be viewed as an extension of
Petri nets in which tokens carry natural numbers and transitions are guarded
by constraints on data attached to tokens. For all the above mentioned models,
the coverability problem is decidable [5,3,4,2]. This decision problem is of great
importance for verification of safety properties like mutual exclusion.

An interesting research question concerns the study of the relative expressive-
ness of well-structured models. For this purpose, it comes natural to use tools
from language theory to compare the languages generated by labelled transition

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 71–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

systems that describe the operational semantics of different models. Unfortu-
nately, a standard notion of acceptance like reachability of a configuration is
not adequate to obtain a fine-grained classification of wsts. For instance, with
this notion of acceptance transfer/reset nets are equivalent to Turing machines.
As shown in [6,7,8], a finer classification of wsts can be obtained by consid-
ering the class of languages recognized with coverability acceptance conditions
(c-languages for short). A classification of wsts based on c-languages is partic-
ularly interesting since it can be used to extend the applicability of a decision
procedure for coverability (e.g. the symbolic backward reachability algorithm in
[9]) from a particular wsts model to an entire class.

In this paper we use c-languages as a formal tool to study the impact of
whole-place operations on the expressiveness of Petri nets with black indistin-
guishable tokens and with tokens that carry data over an ordered domain. For
this purpose, we compare the expressiveness of Petri nets, LCS, and CMRS with
that of affine well-structured nets (AWNs) [10] and data nets [11]. AWNs are
a generalization of Petri nets and transfer/reset nets in which the firing of a
transition is split into three steps: subtraction, multiplication, and addition of
black tokens. Multiplication is a generalization of transfer and reset arcs. Data
nets can be viewed as a generalization of AWNs in which these steps are defined
on tokens that carry data taken from an infinite, ordered domain. Conditions
on data values can be used here to restrict the type of tokens on which apply
whole-place operations. Although presented in a different style, a data net can
be viewed as a CMRS enriched with whole-place operations.

For the above mentioned models, we prove the following results. We first
show that AWNs are strictly more expressive than Petri nets and strictly less
expressive than lossy FIFO channel systems. The proof of the second result
exploits a non-trivial property of the class of c-languages recognized by AWNs
based on Dickson’s lemma [12]. We then show that, differently from nets with
indistinguishable tokens, whole-place operations do not augment the expressive
power of models in which tokens carry data taken from an ordered domain. The
proof is based on a weak, effectively constructible encoding of data nets into
CMRS that can be used to reduce the coverability problem from one model to
the other. Weakness refers here to the fact that the CMRS encoding simulates a
lossy version of data nets, i.e., data nets in which tokens may get lost. However
this is enough to show that the two models define the same class of c-languages.

Our analysis has several interesting consequences. First, it can be used to give
a strict classification of the expressiveness of a large class of wsts models taken
from the literature. Furthermore, it shows that the symbolic backward reacha-
bility algorithm for solving the CMRS coverability problem given [5] can also
be applied in presence of whole-place operations like transfer and reset of col-
ored tokens. Finally, as discussed in the conclusions, our weak encoding of data
nets into CMRS can naturally be adapted to extend the decidability of cover-
ability to a more general definition of data nets transition than the one given in
[11]. Our extensions include, for instance, generation of fresh values, a feature
present in several models of concurrency like CCS and π-calculus.

A Language-Based Comparison of Extensions of Petri Nets 73

Related Work. In [7,8] the authors compare the relative expressiveness of Petri
nets with reset, transfer, and non-blocking arcs. A classification of infinite-state
systems in terms of decidable properties is presented in [13]. The classification is
extended to well-structured systems in [14]. Both classifications do not include
models like CMRS and data nets. A classification of the complexity of the deci-
sion procedures for coverability of different formulations of data nets is studied
in [11]. In [6] we have compared CMRS with lossy FIFO channel systems and
other weaker models like relational automata. However, we have not considered
whole-place operations like those in AWNs and data nets. We believe that a
comparative study of all these sophisticated models can be useful to find new
applications of the theory of well-structured transition systems.

Preliminary Notions. In this paper we consider extensions of finite automata
defined by using labelled transition systems. A transition system T = (S, R)
consists of a set S of configurations and of a set R of transitions, where a transi-
tion

ρ−→⊆ S × S. A transition system T is said to be well-structured (wsts) with
respect to a quasi ordering � on configurations iff the following conditions hold:
(i) � is a well-quasi ordering, i.e., for any infinite sequence of configurations
γ1γ2 . . . γi . . . there exist indexes i < j such that γi � γj ; (ii) T is monotonic,
i.e., for any

ρ−→∈ R, if γ1 � γ2 and γ1
ρ−→ γ3, then there exists γ4 s.t. γ3 � γ4

and γ2
ρ−→ γ4.

Given a wsts T , we label each transition in R either with a symbol � from
an alphabet Σ or with the empty word ε (silent transition). If we associate to
a wsts T an initial configuration γ0 and a final configuration γacc, the language
recognized by T with coverability acceptance (c-language for short) is defined as
follows:

Lc(T) = {w ∈ Σ∗ | γ0
w=⇒ γ and γacc � γ}

where γ0
w=⇒ γ denotes a finite sequence of application of transitions such that

the concatenation of their labels produces the word w. We use Lc(M) to denote
the class of c-languages recognized by instances T of a given modelM (e.g. Petri
nets, transfer nets, etc.), i.e., Lc(M) = {L | ∃S ∈M, L = Lc(S)}.

Given a wsts T = (S, R,�) with labels in Σ ∪ {ε}, a lossy version of T is
a wsts T ′ = (S, R′,�) for which there exists a bijection h : R !→ R′ such that
ρ−→∈ R and

h(ρ)−−−→ have the same label,
ρ−→⊆ h(ρ)−−−→ and if γ

h(ρ)−−−→ γ′, then γ
ρ−→ γ′′

with γ′ � γ′′. In a lossy version of a wsts, the set of reachable configurations
contains configurations that are smaller than those of the original model. The
following lemma then holds.

Lemma 1. For any lossy version T ′ of a wsts T , we have that Lc(T) = Lc(T ′).

2 Whole-Place Operations in Nets with Black Tokens

In this section we use c-languages as a formal tool to compare the expressiveness
of Petri nets, affine well-structured nets (AWNs) [10], and lossy FIFO channel

74 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

Ft =
(

p q
1 0

)
Gt =

⎛⎝ p q
p 1 0
q 0 0

⎞⎠ Ht =
(

p q
0 1

)

Fig. 1. An example of AWN transition

systems (LCS) [3,4]. AWNs are a generalization of Petri nets in which transitions
admit whole-place operations, i.e., operations that operate simultaneously on the
whole set of tokens in a given place. Examples of whole-place operations are reset
(all tokens in a place are consumed) and transfer arcs (all tokens in a place are
transferred to another place) [2]. Formally, an AWN consists of a finite set P of
places and of a finite set T of transitions. As in Petri nets, AWN-configurations,
called markings, are vectors in NP , i.e., finite multisets with symbols in P . A
marking counts the current number of tokens in a given place in P . In the rest
of the paper we use [a1, . . . , an] to indicate a multiset with elements a1, . . . , an.
Furthermore, for a marking M , we use M(a) to denote the number of tokens in
place a. Finally we use, − and + to denote multiset difference and union.

An AWN-transition t is defined by two vectors Ft and Ht in NP , and by a
NP × NP -matrix Gt. Intuitively, Ft defines a subtraction step (how many to-
kens to remove from each place), Gt defines a multiplication step (whole-place
operations), and Ht defines an addition step (how many tokens are added to each
place). t is enabled at marking M if Ft ≤M where ≤ denotes marking (multiset)
inclusion, i.e., M ≤ M ′ iff M(p) ≤ M ′(p) for each p ∈ P . The firing of t at a
marking M amounts to the execution of the three steps in sequence. Formally, it
produces a new marking M ′ = ((M−Ft) ·Gt)+Ht, where · denotes the multipli-
cation of vector (M−Ft) and matrix Gt. As an example, let P = {p, q} and con-
sider the transition t in Fig. 1. This transition removes a token from p and resets
the number of tokens in q to 1. For instance, from the marking M = [p, p, q, q, q],
i.e., the vector (2, 3) ∈ NP , we obtain the new marking M ′ = [p, q] defined by the
vector ((2, 3)− (1, 0)) ·Gt + (0, 1) = (1 ∗ 1 + 3 ∗ 0, 1 ∗ 0 + 3 ∗ 0) + (0, 1) = (1, 1).

As shown in [10], AWN are well-structured with respect to marking inclusion
≤. Petri nets are the subclass of AWNs in which Gt is the identity matrix, i.e.,
with no whole-place operations. In [7] the authors have shown that there exists a
c-language L ∈ Lc(Transfer nets) such that L �∈ Lc(Petri nets). Since transfer
nets are a special case of AWNs, we obtain the following property.

Proposition 1. Lc(Petri nets) ⊂ Lc(AWN).

To obtain a sort of upper bound on the expressive power of nets with whole-place
operations, we can consider nets in which places maintain some kind of order
between their tokens as in lossy FIFO channel systems (LCS). A LCS is a tuple
(Q, C, N, δ), where Q is a finite set of control states, C is a finite set of channels,
N is a finite set of messages, δ is a finite set of transitions, each of which is of
the form (q1, Op, q2) where q1, q2 ∈ Q, and Op is a mapping from channels to
channel operations. For any c ∈ C and a ∈ N , an operation Op(c) is either a send
operation !a, a receive operation ?a, the empty test ε?, or the null operation nop.
A configuration γ is a pair (q, w) where q ∈ Q, and w is a mapping from C to N∗

A Language-Based Comparison of Extensions of Petri Nets 75

giving the content of each channel. The initial configuration γinit of F is the pair
(q0, ε) where q0 ∈ Q, and ε denotes the mapping that assigns the empty sequence
ε to each channel. The (strong) transition relation (that defines the semantics of
machines with perfect FIFO channels) is defined as follows: (q1, w1)

σ−→ (q2, w2)
if and only if σ = (q1, Op, q2) ∈ δ such that, for all c ∈ C, if Op(c) =!a, then
w2(c) = w1(c) · a; if Op(c) =?a, then w1(c) = a · w2(c); if Op(c) = ε? then
w1(c) = ε and w2(c) = ε; if Op(c) = nop, then w2(c) = w1(c). Now let �l be the
well-quasi ordering on LCS configurations defined as: (q1, w1) �l (q2, w2) if and
only if q1 = q2 and ∀c ∈ C : w1(c) �w w2(c), where �w indicates the subword
relation. We introduce then the weak transition relation σ=⇒ that defines the
semantics of LCS: we have γ1

σ=⇒ γ2 iff there exists γ′
1 and γ′

2 s.t. γ′
1 �l γ1,

γ′
1

σ−→ γ′
2, and γ2 �l γ′

2. Thus, γ1
σ=⇒ γ2 means that γ2 is reachable from γ1

by first losing messages from the channels and reaching γ′
1, then performing a

transition, and, thereafter losing again messages from channels. As shown in
[3,4], LCS are well-structured w.r.t. �l. The following theorem then holds.

Theorem 1. Lc(AWN) ⊂ Lc(LCS).

Proof
(1) We first prove the inclusion Lc(AWN) ⊆ Lc(LCS). Assume an AWN

W = (P, T, F, G, H) with P = {p1, . . . , pn}. We build a LCS F = (Q, C, N, δ)
such that Lc(W) = Lc(F). W.l.o.g. we assume that channels can be non-empty
in the initial configuration of a LCS. The set of channels is defined as C = P ∪P ′

where P ′ (auxiliary channels) contains a primed copy of each element in P . The
set of messages N contains the symbol • (a representation of a black token).
Assume that q0 ∈ Q is the initial state of F . Then, a marking M is encoded as
a LCS configuration enc(M) with state q0 and in which channel pi ∈ P contains
the word •mi containing mi = M(pi) occurrences of symbol • for i ∈ n, and all
channels in P ′ are empty (we define n as [1, . . . , n]).

For each transition t with label �, we need to simulate the three steps (subtrac-
tion, multiplication, and addition) that correspond to Ft, Gt and Ht. Subtraction
and addition can be simulated in a straightforward way by removing/adding the
necessary number of tokens from/to each channel. The multiplication step is
simulated as follows. For each i ∈ n, we first make a copy of the content of chan-
nel pi in the auxiliary channel p′i. Each copy is defined by repeatedly moving a
symbol from pi to p′i and terminates when pi becomes empty. When the copy
step is terminated, we start the multiplication step. For each i ∈ n, we remove a
message • from p′i and add as many •’s to channel pj as specified by Gt(pi, pj)
for j ∈ n. This step terminates when the channels p′1, . . . , p′n are all empty. For
an accepting AWN-marking Mf , the accepting LCS-configuration is enc(Mf).

The following properties then hold: i) We first notice that M ≤ M ′ iff
enc(M) �l enc(M ′); ii) Furthermore, if M0

w=⇒ M1 in W , then enc(M0)
w=⇒

enc(M1) in F ; iii) Finally, since • symbols may get lost in F , if enc(M0)
w=⇒

enc(M1) then there exists M2 such that M0
w=⇒ M2 and M1 ≤ M2. Since we

consider languages with coverability acceptance, Lc(W) = Lc(F) immediately
follows from properties (i),(ii), (iii) and Lemma 1.

76 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

(2) We prove now that Lc(LCS) �⊆ Lc(AWN). For this purpose, we exhibit
a language in Lc(LCS) and prove that it cannot be recognized by any AWN.

Fix a finite alphabet Σ = {a, b, �} and let L = {w�w′| w ∈ {a, b}∗ and w′ �w

w}. It is easy to define a LCS that accepts the language L: we first put w in a
lossy channel and then remove one-by-one all of its messages. Thus, we have that
L ∈ Lc(LCS). We now prove that there is no AWN that accepts L. Suppose it
is not the case and there exists a AWN N , with (say) n places, that recognizes
L with initial marking Minit and accepting marking Mf .

For each w ∈ {a, b}∗, there is a marking Mw such that Minit
w	

=⇒Mw
w=⇒M

and Mf ≤ M (otherwise w�w would not be in Lc(N)). Consider the sequences
w0, w1, w2, . . . and Mw0 , Mw1 , Mw2 , . . . of words and markings defined as follows:

– w0 := bn;
– If Mwi = (m1, . . . , mn) then wi+1 := am1 b am2 b · · · b amn , for i = 0, 2, . . .

We observe that (a) w0 ��w wi for all i > 0, since w0 contains n occurrences of b,
while wi contains only n−1 occurrences of b; and (b) for any i < j, Mwi ≤Mwj iff
wi+1 �w wj+1. By Dickson’s lemma [12], there are i < j such that Mwi ≤Mwj .
Without loss of generality, we can assume that j is the smallest natural number
satisfying this property. Remark that we have that wi ��w wj . Indeed, w0 ��w wj

for any j > 0 by (a), and in the case of i > 0 we have by (b) that wi ��w wj

since Mwi−1 �≤ Mwj−1 . Since Mwi ≤ Mwj , by monotonicity of AWNs, we have
that Mwi

wi=⇒M with Mf ≤M implies that Mwj

wi=⇒M ′ with Mf ≤M ≤M ′.

Hence, Minit
wj	wi=⇒ M ′ and wj�wi ∈ Lc(N) = L, which is a contradiction. ��

By combining Prop. 1 and Theorem 1 we obtain the following strict classification.

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS)

As a corollary, we have that transfer/reset nets are strictly less expressive than
LCSs.

3 Whole-Place Operations in Nets with Colored Tokens

In this section we study the impact of whole-place operations on the expres-
siveness of well-structured colored Petri nets like CMRS [5] and data nets [11].
CMRS is an extension of Petri nets in which tokens are labelled with natural
numbers. For a fixed number of places P , we represent a token in place p with
value v as the term p(v). A CMRS configuration is a multiset of ground terms like
[p(1), p(3), q(4)] (we recall that markings are multisets over P , i.e., a special case
of CMRS configurations). We use P -terms to denote terms associated to colored
tokens. CMRS transitions are defined in terms of conditional multiset rewriting
rules of the form L � R : Ψ where L and R are terms with variables that de-
scribe colored tokens and Ψ is a condition over such variables. Conditions are
expressed by a finite conjunction of constraints in the following form: x + d < y,
x ≤ y, x = y, x < d, x > d, x = d where x, y are variables appearing in L and/or

A Language-Based Comparison of Extensions of Petri Nets 77

s =

⎛⎝ e1 e2 e3 e4

p q p q p q p q
3 2 5 1 2 10 2 2

⎞⎠ s′ =

⎛⎝ e1 e2 e3 e4

p q p q p q p q
29 28 5 1 25 1 2 2

⎞⎠

Ft =

⎛⎝ R0 S1 R1

p q p q p q
0 0 1 0 0 0

⎞⎠

Ht =

⎛⎝ R0 S1 R1

p q p q p q
0 0 0 1 0 0

⎞⎠
Gt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0 S1 R1

p q p q p q

R0
p 1 0 3 0 0 0
q 3 1 0 0 0 0

S1
p 0 0 1 0 0 0
q 2 0 0 0 0 0

R1
p 0 0 0 0 1 0
q 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 2. Two data net markings (s and s′) and a transition t with arity 1

R and d ∈ N is a constant. A rule r is enabled at a configuration c if there exists
a valuation of the variables V al (V al(x) ∈ N) such that V al(Ψ) is satisfied and
c ≥ V al(L). Firing r at c leads to a new multi-set c′ = c − V al(L) + V al(R),
where V al(L), resp. V al(R), is the multi-set of ground terms obtained from L,
resp. R, by replacing each variable x by V al(x). As an example, consider the
CMRS rule:

ρ = [p(x) , q(y)] � [q(z) , r(x) , r(w)] : {x + 2 < y , x + 4 < z , z < w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) =
8, and Val(w) = 10. Thus, to fire t on c = [p(1), p(3), q(4)] we first remove
p(1) and q(4) and then add the new tokens q(8), r(1), and r(1), producing the
configuration c′ = [p(3), q(8), r(1), r(10)].

The coverability problem for CMRS is decidable for an ordering �c that ex-
tends multi-set inclusion by taking into consideration the relative “gaps” among
the values on different tokens [5]. We come back to this point later.

It is important to remark that CMRS rules does not provide whole-place
operations (the semantics is defined using rewriting applied to sub-multisets
of tokens). Despite of it, in [6] we show that colors and gap-order conditions is
enough to obtain a model that is strictly more powerful than LCS. By combining
this property with Theorem 1, we have that

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS) ⊂ Lc(CMRS)

A natural research question now is whether whole-place operations add power
to models like CMRS or not. To answer this question, instead of defining a new
version of CMRS, we compare its expressiveness with that of data nets [11]. Data
nets are an extension of AWNs in which tokens are colored with data taken from
a generic infinite domain D equipped with a linear ordering ≺. As discussed in
[11], for coverability we can equivalently consider dense or discrete orderings. A
data net has a finite sets of places P and transitions T . A data net marking s
is a multiset of tokens that carry (linearly ordered) data in D, i.e., s is a finite
sequence of vectors in NP \{0}, where 0 is the vector that contains only 0’s. Each

78 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

index i in the sequence s corresponds to some di ∈ D (data values that occur
in some token) such that i ≤ j if and only if di ≺ dj ; s(i)(p) is the number of
tokens with data di in place p. In Fig. 2 we show two examples of configurations,
namely, s and s′, for a data net with places P = {p, q}. The data in D that
occur in tokens in s and s′ are e1 ≺ e2 ≺ e3 ≺ e4.

Transitions like that in Fig. 2 are defined by vectors (of vectors) Ft and Ht

and by a matrix Gt that define resp. subtraction, addition, and multiplication
of colored tokens. Vectors and matrices are indexed by regions defined by the
partitioning of the set of tokens R(αt) = (R0, S1, R1, . . . , Sk, Rk) associated to
the arity αt = k of the rule. The arity is used to select k data values d1, . . . , dk

either fresh or occurring in the current configuration. Region Si is defined as
{di}. Regions Ri’s are used to define whole-place operations (e.g. transfers) for
tokens whose data are not in {d1, . . . , dk}. R0 contains all data d : d ≺ d1 in s,
Ri contains all d : di ≺ d ≺ di+1 in s for i : 1, . . . , k − 1, and Rk contains all
d : dk ≺ d in s. To illustrate, consider the marking s and the rule t with has arity
1 both defined in Fig. 2. The partitioning is defined here as R(αt) = {R0, S1, R1}.
Let us assume that t (non-deterministically) partitions the data in s as follows
R0 = {e1, e2}, S1 = {e3}, and R1 = {e4}, its firing is defined as follows.

Subtraction. Ft specifies the number of tokens with data d1, . . . , dk that have to
be removed, for each place in P , from the current configuration s. t is enabled if
places have enough tokens to remove. In our example p contains two tokens with
value e3, and Ft specifies that one token with value e3 must be removed. Thus,
t is enabled in s. The subtraction step produces an intermediate configurations
s1 obtained from s by removing one token with data e3 from place p.

Multiplication. Gt specifies whole-place operations on the regions in R(αt). In
our example the third column of Gt defines the effect of multiplication on the
number of tokens with data e3 in place p in s1. Specifically, we add to the tokens
in place p with value e3 (1 in position S1, p, S1, p in Gt), three new tokens with
value e3 for each token with value in R0 that lay into place p in s1 (3 in position
R0, p, S1, p in Gt). Thus, the total number of tokens with value e3 in p becomes
(3 + 5) ∗ 3 + 1 = 25. Furthermore, since the fourth column has only zeroes, all
tokens with data e3 are removed from place q (a reset restricted to all tokens
with value e3 in q). The first column of Gt defines the effect on the tokens with
values in R0 in place p. Specifically, for each d ∈ R0, we add to place p three
tokens with value d for each token with the same value laying into q in s1 (3
in position R0, q, R0, p in Gt); two tokens with data d for each token with data
e3 in q (2 in position S1, q, R0, p in Gt). Thus, the total number of tokens with
value e1 in p is now 3 + 3 ∗ 2 + 2 ∗ 10 = 29 and that for value e2 in p is now
5 + 3 ∗ 1 + 2 ∗ 10 = 28. The other columns of Gt leave the same tokens as those
in the corresponding regions and places in s1. We use s2 to refer to the resulting
intermediate configuration.

Addition. Ht specifies the number of tokens that are added, for each place,
region, and data to the configuration s2 to obtain the successor configuration s′.

A Language-Based Comparison of Extensions of Petri Nets 79

In our example, we simply add one token with data e3 to place q. Finally, the
new configuration s′ is given in Fig. 2.

It is important to remark that whole-place operations are uniformly applied
to each data value in a region. Whole-place operations between region Ri and
Rj as well as subtractions from a region Ri are forbidden. Furthermore, in case
of whole-place operations from Ri to Sj (or vice versa) tokens may change data
value (e.g. all tokens with data d ∈ Ri in p are moved to place q with value dj),
whereas in operations within a single region Ri tokens do not change data value.

As proved in [11], data nets are well-structured with respect to the well-quasi
ordering �d defined on markings as follows. Let Data(s) be the set of data values
that occur in a marking s. Then, s1 �d s2 iff there exists an injective function
h : Data(s1) !→ Data(s2) such that (i) h is monotonic and (ii) s1(d)(p) ≤
s2(h(d))(p) for each d ∈ Data(s1) and p ∈ P . In other words we compose
subword ordering (condition (i)) with multiset inclusion (condition (ii)).

3.1 CMRS, Petri Data Nets, and Data Nets

Data nets without whole place operations (i.e. in which Gt is the identity matrix)
are called Petri data nets. Petri data nets defined on a domain with a single
data value d are equivalent to Petri nets. Furthermore, as discussed in [11], it is
possible to effectively build an encoding of CMRS into Petri data nets such that
coverability in CMRS can be reduced to coverability into Petri data nets. Indeed,
the well-quasi ordering �c used in CMRS is basically the same as that used in
Data nets (the only technical difference is due to the presence of constants in
conditions of CMRS rules). Thus, we have that

Lc(CMRS) = Lc(Petri data nets) ⊆ Lc(Data nets)

We show next that the inclusion is not strict, and that Petri data nets, CMRS,
and data nets have all the same expressive power. To prove this result, we have
to show that for each Data nets D we can effectively build a Petri data net or a
CMRS S such that Lc(S) = Lc(D). Since CMRS rules have a format similar to a
(logic) programming language, we find more convenient to describe the encoding
in CMRS.

Configurations. Given a multi-set M with symbols in P and a value or variable
x, we use Mx to denote the multi set of P -terms such that Mx(p(x)) = M(p)
(=number of occurrences of p in M) for each p ∈ P , and Mx(p(y)) = 0 for any
y �= x and p ∈ P .

Now assume an initial data net marking s0 with data d1 ≺ . . . ≺ dn. We
build a CMRS representation of s0 by non-deterministically selecting n natural
numbers v1 < . . . < vn strictly included in some interval [f, l]. P -terms with
parameter vi represent tokens with data di in place p. Formally, we generate the
representation of s0 by adding to S a rule that rewrites an initial zero-ary term
init as follows

[init] � [first(f), last(l)] +
∑

i:1,...,n Mxi

i : f < x1 < . . . < xn < l (init)

80 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

Here Mi is the multiset s0(di) for each i ∈ n. The non-determinism in the choice
of f, l, x1, . . . , xn makes the CMRS representation of s0 independent from specific
parameters assumed by terms.

Transitions are encoded by CMRS rules that operate on the values in [f, l]
used in the representation of a marking. Most of the CMRS rule are based on
left-to-right traversals of P -terms with parameters in [f, l].

Consider a transition t with αt = k. We first define a (silent) CMRS-rule that
implements the subtraction step of t:

[first(f), last(l)] + Ft(S1)x1 + . . . + Ft(Sk)xk � (subtract)
[ı0(f), ı1(x1),, ık(xk), ık+1(l), newt] : f < x1 < ... < xk < l

Here newt is a nullary predicate (with no data) that indicates the action to be
performed next. In the subtract rule we non-deterministically associate a value,
represented by variable xi in the above defined rule, to region Si. The selection
is performed by removing (from the current configuration) the multiset Ft(Si)xi

that contains Ft(Si, p) occurrences of p(xi) for each p ∈ P . The association be-
tween value xi and region Si is maintained by storing xi in a ıi-term (introduced
in the right-hand side of the rule). If Ft(Si, p) = 0 for any p ∈ P , then a value
xi may be associated to a data di not occurring in the current marking (i.e.
selection of fresh data is a special case). Furthermore, by removing both the
first- and the last-term, we disable the firing of rules that encode other data
net transitions. The values x1, . . . , xk stored in ı1-,. . . ,ık-terms play the role of
pointers to the regions S1, . . . , Sk. We refer to them as to the set of αt-indexes.
The parameters of terms in [f, l] associated to the other regions R0, . . . , Rk are
called region-indexes.

To simulate the multiplication step we proceed as follows. We first make a
copy of the multiset of P -terms with parameters v1, . . . , vn in [f, l] by copying
each p-term with parameter vi in a p-term with parameter wi such that f ′ <
w1 < . . . < wn < l′ and [f ′, l′] is an interval to the right of [f, l], i.e., l < f ′. The
newt-term in the subtract rule is used to enable a set of (silent) CMRS rules
(omitted for brevity) that create the copy-configuration. During the copy we add
a �-term for any visited region index. These terms are used to remember region
indexes whose corresponding P -terms are all removed in the multiplication step
(e.g. when all tokens with data d ∈ Ri are removed).

For instance, [p(v1), p(v2), p(v2), q(v3)] with f < v1 < v2 < v3 < l is copied as
[p(w1), �(w1), p(w2), p(w2), �(w2), q(w3)�(w3)] for some w1, w2, w3 such that
f < l < f ′ < w1 < w2 < w3 < l′. The copy process is implemented by a
left-to-right scan of the values that represent data. The scan uses a predicate
as a pointer to the current value to consider. The pointer is moved to the right
by non-deterministically jumping to a larger value (CMRS conditions cannot
specify the “next” value). Thus, during the traversal we may forget to copy
some token. This is the first type of loss we find in our encoding. Notice that
lost tokens have parameters strictly smaller that f ′.

The simulation of the multiplication step operates on the copy-configuration
only (with P -terms only). The intuition behind its definition is as follows. We
first consider all αt-indexes of P -terms from left to right. For each αt-index vi,

A Language-Based Comparison of Extensions of Petri Nets 81

we proceed as follows. We first select and remove a term p(vi) (encoding a given
token). We compute then the effect of the whole-place operation on the entire set
of αt-indexes (including vi itself). More specifically, for an αt-index vj we add
Gt(Si, p, Sj , q) occurrences of the term q(vj) to the current CMRS configuration.
The use of P - and P -terms with parameters in the same interval allows us to
keep track of tokens still to transfer (P -terms) and tokens already transferred
(P -terms). We then consider all remaining indexes by means of a left-to-right
traversal of region-indexes in the current configuration. During the traversal, we
add new P -terms with region-indexes as parameters as specified by Gt. During
this step, we may forget to transfer some P -term. This is the second type of loss
we find in the encoding. After this step we either consider the next token with
αt-index vi or we move to the next αt-index.

After the termination of the whole-place operations for terms with αt-indexes,
we have to simulate the transfer of P -terms with region-indexes. For each such
an index, we transfer tokens within the same region-index or to an αt-index.
To simulate these operations we scan region-indexes from left-to-right to apply
the matrix Gt. Furthermore, we mark visited region-indexes using �-terms. The
�-terms are used in the simulation of the addition step.

As a last step we add tokens to αt-indexes and visited region-indexes as spec-
ified by Ht. For αt-indexes, we need a single rule that applies the matrix Ht.
For region-indexes, we traverse from left-to-right the current configuration and
apply Ht to each marked (with a �-term) region-index w. As mentioned before,
the �-term allows us to apply Ht to regions emptied by the multiplication step.
All the rules are silent except the last rule used to encode addition whose label
is the same as that of t.

During the traversal, we may ignore some (marked) region-index. This is the
last type of loss in our encoding. The new configuration is the final result of the
simulation of the transition. Due to the possible losses in the different simulation
steps, we may get a representation of a data net configuration smaller than the
real successor configuration.

To formalize the relation between a data net D and its CMRS encoding E(D),
for a configuration s with data d1 ≺ . . . ≺ dk we use sv to denote the CMRS
representation with indexes v = (v1, . . . , vk). For configurations s0, s1, s, we have
that (i) if s0

w=⇒ s1 in D, then there exists v such that [init] w=⇒ s1
v in E(D).

Furthermore, (ii) if [init] w=⇒ c in E(D) and sv �c c for some v, then there exists
s1 such that s0

w=⇒ s1 in D with s �d s1. Finally, suppose that the accepting
data net marking is a sequence M1 . . .Mk of k vectors (multi-sets) over NP .
Then, we add a silent CMRS rule

[first(f), last(l)] +
∑

i∈{1,...,k}
Mxi

i � [acc] : f < x1 < x2 < . . . < xk < l, x = 0

where acc is a fresh (with arity zero) predicate. By adding this rule, the accept-
ing CMRS configuration can be defined as the singleton [acc]. From properties
(i), (ii) and Lemma 1, we have the following result.

Theorem 2. Lc(Data nets) = Lc(CMRS).

82 P. Aziz Abdulla, G. Delzanno, and L. Van Begin

4 Conclusions

By combining the results in the present paper with the relation between LCS and
CMRS describe in [6], we obtain the following classification of well-structured
extensions of Petri nets

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS) ⊂ Lc(CMRS) = Lc(Data nets)

This classification reveals a different impact of whole-place operations on nets
with black and colored tokens: they augment the expressive power of basic models
like Petri nets, but they can be simulated in extended models in which tokens
carry ordered data.

We believe that our analysis can also be applied to extend the scope of the
decidability results given in [11] to more general well-structured systems obtained
by relaxing some of the constraints in the definition of data nets transitions. We
plan to explore this research direction in future work.

References

1. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
TCS 256(1-2), 63–92 (2001)

2. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

4. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Information and Computation 124(1), 20–31 (1996)

5. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: Proc. AVIS 2006, an ETAPS 2006 workshop (2006)

6. Abdulla, P.A., Delzanno, G., Van Begin, L.: Comparing the expressive power of
well-structured transition systems. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007.
LNCS, vol. 4646, pp. 99–114. Springer, Heidelberg (2007)

7. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: On the ω-language expressive
power of extended petri nets. TCS 356, 374–386 (2006)

8. Geeraerts, G., Raskin, J.F., Van Begin, L.: Well-structured languages. Acta Infor-
matica 44(3-4), 249–288 (2007)

9. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proc. LICS 1996, pp. 313–321 (1996)

10. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
petri net extensions. Information and Computation 195(1-2), 1–29 (2004)

11. Lazić, R.S., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.B.: Nets with
tokens which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 301–320. Springer, Heidelberg (2007)

12. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math. 35, 413–422 (1913)

13. Henzinger, T.A., Majumdar, R., Raskin, J.F.: A classification of symbolic transition
systems. ACM Trans. Comput. Log. 44(1), 1–32 (2005)

14. Bertrand, N., Schnoebelen, P.: A short visit to the sts hierarchy. ENTCS 154(3),
59–69 (2006)

Minimal Union-Free Decompositions of Regular
Languages�

Sergey Afonin and Denis Golomazov

Lomonosov Moscow State University, Institute of Mechanics, Moscow, Russia
serg@msu.ru

Abstract. A regular language is called union-free if it can be repre-
sented by a regular expression that does not contain the union operation.
Every regular language can be represented as a finite union of union-free
languages (the so-called union-free decomposition), but such decomposi-
tion is not necessarily unique. We call the number of components in the
minimal union-free decomposition of a regular language the union width
of the regular language. In this paper we prove that the union width of
any regular language can be effectively computed and we present an al-
gorithm for constructing a corresponding decomposition. We also study
some properties of union-free languages and introduce a new algorithm
for checking whether a regular language is union-free.

1 Introduction

Regular expressions are a natural formalism for the representation of regular
languages. It is well known that there exist regular languages that can be rep-
resented by infinitely many equivalent regular expressions, and a number of
“canonical” forms of regular expressions representing a given regular language
have been proposed in the literature, such as concatenative decomposition [1,2]
and union-free decomposition (see e.g. [3]). This paper is devoted to the task of
finding a minimal union-free decomposition of a regular language. A language
is called union-free if it can be represented by a regular expression without the
usage of the union operation. For example, the language represented by the ex-
pression (a + b∗)∗ is union-free because there exists an equivalent expression
(a∗b∗)∗. Union-free languages have been introduced under the name “star-dot
regular” languages by J. Brzozowski in [4].

Every regular expression r can be transformed into a regular expression r′ in
which union operations appear only on the “top level” of the expression, i.e., it
takes the following form: r′ = r1 + . . .+ rm, and the regular expressions r1, . . . , rm

do not contain the “+” operator (see [3]). This means that every regular language
canbe represented as a finite union of union-free languages. But this decomposition
is not necessarily unique: for example, (a + b)∗ = (a∗b∗)∗ = {ε}+ a∗ba∗ + b∗ab∗,
and these are two different union-free decompositions of the language (a+ b)∗. We

� The research presented in this paper was partially supported by the RFBR grant
number 09-01-00822-a.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 83–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 S. Afonin and D. Golomazov

call the minimal number of components in such a representation the union width
of the regular language and a corresponding decomposition (that is not necessarily
unique) is called a minimal union-free decomposition of a regular language. In this
paper we present an algorithm that computes the union width and constructs a
minimal union-free decomposition of a regular language.

The union width of a regular language and corresponding decompositions
may be considered as canonical representations of a regular expression, as well
as a complexity measure of a regular language [5], similar to the restricted star
height.

Union-free decompositions play an important role in the algorithm for check-
ing membership of a regular language in a rational subset of a finitely generated
semigroup of regular languages with respect to concatenation as a semigroup
product. In order to check such membership one should verify that at least one
of the distance automata corresponding to the components of an arbitrary union-
free decomposition of a certain regular language is limited. We do not go into the
details here (see [6]). We will just mention that checking the limitedness property
is Pspace-complete [7], thus, the number of components in a union-free decom-
position is an important parameter influencing membership-checking complexity.

The problem of constructing union-free decompositions of regular languages
has also practical applications. In particular, regular languages can be used for
a description of the syntactic structure of a programming language [8]. The
concatenation operation corresponds to the sequential continuation, the Kleene
star corresponds to loops, and the union operation corresponds to branching. In
this context, union-free languages represent sequences of operators that do not
contain conditional transitions. Minimal union-free decompositions of regular
languages may be useful for simplifying and normalizing such descriptions.

The main result of the current paper is that the union width of a regular
language L can be effectively computed, and we present an algorithm that con-
structs the corresponding decomposition. This result is achieved by using the
combinatorial technique we have adopted from [2]. First we take the set C(L) of
all maximum finite concatenations of letters and certain star languages derived
from the automaton of L. We prove that C(L) is a finite set and that for every
union-free decomposition of L there exists a union-free decomposition of L of the
same number of elements that consists of languages from C(L). Consequently,
there exists a minimal union-free decomposition that consists of languages from
C(L). Thus we can obtain it by examining all the subsets of the finite set C(L).

We also present an algorithm for checking whether a given regular language is
union-free. This decidability result is already known (see Theorem 1 below) but
it is based on reduction to the computationally expensive problem of checking
limitedness of distance automata, which is Pspace-complete.

The paper has the following structure: Section 2 provides some basic defi-
nitions, Section 3 presents results concerning general properties of union-free
languages, Section 4 is devoted to the algorithm for finding a minimal union-free
decomposition of a regular language, and Section 5 contains conclusions and
ideas for the further work.

Minimal Union-Free Decompositions of Regular Languages 85

2 Preliminaries

Let Σ = {a1, . . . , an} be a finite alphabet, L ⊆ Σ∗ be a regular language and
V = 〈Σ, Q, q0, F, ϕ〉 be the corresponding minimal deterministic finite automa-
ton, where Q = {q1, . . . , qm} is the set of all states of V , q0 ∈ Q is the initial
state, F ⊆ Q is the set of final states and ϕ : Q × Σ → Q is the transition
function of the automaton. Let M ⊆ Σ∗, q1 ∈ Q. The definition of the func-
tion ϕ is extended as follows: ϕ(q1, M) = {q ∈ Q | ∃α = α1α2 · · ·αp ∈ M :
ϕ(· · ·ϕ(ϕ(q1, α1), α2), . . . , αp) = q}.

An ordered list of states {q1,. . . ,qm} (qi ∈ Q) is called a path marked with
a word w ∈ Σ∗ iff w = a1 · · ·am−1 and ϕ(qi, ai) = qi+1, i = 1, . . . , m − 1. A
path in an automaton is called cycle-free iff it starts at the initial state q0, ends
at a final state qf ∈ F and does not contain any cycles, i.e., there is no state
occurring in the list more than once. It should be noted that by “a cycle-free
path in a language” we actually mean a word in the language that is represented
by a cycle-free path in the minimal automaton associated with the language.

A language W ⊆ Σ∗ is called a star language iff W = V ∗ for some V ⊆
Σ∗. A language L is called union-free iff it can be represented by a regular
expression that contains the star and concatenation operations only, i.e., it takes
the following form:

L = S∗
01S

∗
02 · · ·S∗

0k0
u1S

∗
11 · · ·S∗

1k1
u2 · · ·S∗

l−1,1 · · ·S∗
l−1,kl−1

ulS
∗
l,1 · · ·S∗

l,kl
, (1)

where Sij are regular languages, u1, . . . , ul are non-empty words, and l � 0. We
call (1) a general form of a union-free language and denote it GF (L).

Let L be a union-free language. We denote tsw(L) the shortest word in L.
Proposition 1 shows that the definition is correct, i.e., there cannot exist two
different words of minimum length.

Definition 1. Let L be a regular language. Then a representation L = L1∪L2∪
· · · ∪Lk is called a union-free decomposition of L iff Li is a union-free language
for all i = 1, . . . , k. The decomposition is called minimal iff there is no other
union-free decomposition of L with fewer elements.

Theorem 1 (K. Hashiguchi [9]). Let L be a regular language, T ⊆ {·,∪, ∗}
be a subset of the rational language operations (concatenation, union, and star),
and M = {M1, . . . , Mn} be a finite set of regular languages. Then it is decid-
able whether L can be constructed from elements of M using a finite number of
operations from T .

As an immediate corollary we obtain that it is decidable whether a regular
language L is union-free, by taking singleton languages as M and T = {·, ∗}.

Let B be a subset of the set of states Q of the automaton V = 〈Σ, Q, q0, F, ϕ〉.
The set of words {x ∈ Σ∗ | ∀q ∈ B, ϕ(q, x) ∈ B} is denoted str(B).

Lemma 1 (J.A. Brzozowski, R. Cohen [2]). Let B ⊆ Q. Then str(B) is a
regular star language.

86 S. Afonin and D. Golomazov

3 Union-Free Languages

In this section some common properties of union-free languages are studied. In
particular, we present an algorithm for checking whether a regular language is
union-free.

First, we adduce an example of a union-free language. Its associated finite
automaton is shown in Fig. 1(a). We believe that it is not a simple task to
recognize a union-free language by looking at the automaton. For example, the
well-known Kleene algorithm constructs a regular expression that contains three
union operations on the top level. The language can be represented as M =
S∗

1bS∗
2aS∗

3 where S1, S2, and S3 are shown in Fig. 1(b),1(c), and 1(d), respectively
(the initial states of these automata are marked by 1).

In this section we assume that Σ = {a1, . . . , an} is a finite alphabet, L ⊆ Σ∗ is
a regular language and V = 〈Σ, Q, q0, F, ϕ〉 is its associated deterministic finite
automaton.

Proposition 1. Let L be a union-free language. Then tsw(L) is meaningfully
defined, i.e., if u and v are shortest words in L then u = v.

Proof. Suppose u = u1 · · ·ul, v = v1 · · · vl. Consider GF (L). It should have the
following form:

L = S∗
01S

∗
02 · · ·S∗

0k0
u1S

∗
11 · · ·S∗

1k1
u2 · · ·S∗

l−1,1 · · ·S∗
l−1,kl−1

ulS
∗
l,1 · · ·S∗

l,kl
.

Since v ∈ L and length of v is equal to that of u, vi = ui for i = 1, . . . , l, hence
u = v. ��

5

a

3

b

1

2a

b

4

a

b

a

b

a
b

(a) M

1

b

2a 3

b

4

a

b

5
a

b

a

b

a

(b) S1

1

2a

3
b

b

4

a

a

ba

b

(c) S2

1
2

a

3

b

a

4
b

5

a

6

b

b

a

a

b

a

b

(d) S3

Fig. 1. Example of the union-free language M = S∗
1bS∗

2aS∗
3

Minimal Union-Free Decompositions of Regular Languages 87

Remark 1. Obviously, the word u1 · · ·ul in the general form of a union-free lan-
guage L is equal to tsw(L).

Definition 2. Let 2Q = {B1, . . . , Bk}. We denote

B(L) = {str(B1), . . . , str(Bk)}.

By Lemma 1, B(L) is the finite set of regular star languages that can be con-
structed for every regular language. We now show that for every representation
of a subset of L as a product of a prefix language, a star language and a suffix
language the star language can be replaced with a language from B(L). Thus
we can extend every subset of L by replacing all star languages within it with
star languages from the fixed set B(L).

Lemma 2. Let M ⊆ L. Then for every representation M = PR∗T there exists
a language D ∈ B(L) so that M ⊆ PDT ⊆ L.

Proof. First it should be noted that we do not consider the automaton associated
with M and work only within the automaton for L.

Given a representation M = PR∗T we define

G = {q ∈ Q | ∃w ∈ P, ϕ(q0, w) = q}.

Then we denote Ĝ = {q ∈ Q | ∀w ∈ T ϕ(q, w) ∈ F}. Obviously, G ⊆ Ĝ ⊆ Q.
We define D = str(Ĝ). Taking any words p ∈ P and r ∈ R∗, we obtain that
ϕ(q0, p) ∈ G ⊆ Ĝ and ϕ(q0, pr) ∈ Ĝ, because ϕ(prt) ∈ F for all t ∈ T . This
means that ϕ(q, r) ∈ Ĝ for all q ∈ Ĝ, r ∈ R∗. Hence, R∗ ⊆ D ∈ B(L) and
M ⊆ PDT . PDT ⊆ L, because we extend the language R∗ to the language
D working within the same unmodified automaton for L and therefore cannot
obtain a language that contains more words than L does. ��

Corollary 1. For every representation L = PR∗T there exists a language D ∈
B(L) so that L = PDT .

Proof. We consider M = L and apply Lemma 2. Then L ⊆ PDT ⊆ L hence
L = PDT . ��

Definition 3. We denote C(L) a set of all maximal finite concatenations of
languages from B(L) and letters such that every concatenation is a subset of L.
Maximal means that if C1, C2 are such finite concatenations and C2 ⊆ C1 then
we include only the language C1 in C(L).

Lemma 3. Let M ⊆ L, B1 ⊆ Q, B2 ⊆ Q and M = P str(B1) str(B2)T , where
P and T are regular languages. Then ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B1) str(B2))
or there exists B3 ⊆ Q such that M ⊆ P str(B3)T ⊆ L.

Proof. We denote three sets of states: D1 = ϕ(q0, P), D2 = ϕ(q0, P str(B1)),
and D3 = ϕ(q0, P str(B1) str(B2)). Since str(B1) and str(B2) contain the empty
word, D1 ⊆ D2 ⊆ D3. We also obtain that str(B1) ⊆ str(D2), because the

88 S. Afonin and D. Golomazov

set ϕ(q0, P str(B1) str(B1)) = ϕ(q0, P str(B1)) = D2. Suppose D2 = D3. This
means that str(B2) ⊆ str(D2). Therefore, str(B1) str(B2) ⊆ str(D2) and M =
P str(B1) str(B2)T ⊆ P str(D2)T . Finally, we take B3 = D2. P str(B3)T ⊆ L
because we have not modified the automaton for L and still work within it. ��

Lemma 4. C(L) is a finite set.

Proof. Every element in C(L) is a concatenation of star languages and letters.
As already mentioned, all the letters concatenated form the shortest word in
the language represented by the concatenation. First we limit the number of
letters in every concatenation by |Q| − 1. We do that as follows: if a concate-
nation Li ∈ C(L) contains more than |Q| − 1 letters, we show that there is
a language Mi ∈ C(L) such that Li ⊆ Mi, and we come to a contradiction
with the definition of C(L). We show how to effectively construct the language
Mi given the language Li. Suppose Li ∈ C(L) and its general form contains
more than |Q| − 1 letters. This means that tsw(Li) contains cycles in the au-
tomaton for L. Then tsw(Li) = u1v1 · · ·uhvh, where uj ∈ Σ∗, vj ∈ Σ+ and
every vj = vj1 · · · vjlj

(j = 1, . . . , h) represents a cycle in the path u1v1 · · ·uhvh

in the minimal automaton for L (and every uj does not contain any cycles).
This means that Li = Lu1Lv1 · · ·Luh

Lvh
where languages Luj and Lvj are parts

of the general form of Li corresponding to the words uj, vj , respectively. For
example, Lv1 = v11Sp1 · · ·Spkpv12Sp+1,1 · · ·Sp+1,kp+1v13 · · · v1l1 . Then we define
the language Mi as Mi = Lu1(Lv1)∗ · · ·Luh

(Lvh
)∗. First, Li ⊂ Mi. Second,

tsw(Mi) = u1 · · ·uh and u1 · · ·uh represents a cycle-free path in L. Third,
Mi ⊆ L, because it has been constructed within the automaton for L. This
means that Li ⊂ Mi ⊆ L and we come to a contradiction, since C(L) contains
only maximal languages.

Now we prove that there is only a limited number of star languages be-
tween every pair of adjacent letters in every concatenation M ∈ C(L). For
every representation M = P str(B1) · · · str(Bk)T we apply Lemma 3 and ob-
tain that either ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B2)) ⊂ . . . ⊂ ϕ(q0, P str(Bk)) or
we can replace the language M with the language M ′ such that M ⊆ M ′ and
M ′ = P str(D1) · · · str(Dl)T and

ϕ(q0, P str(D1)) ⊂ ϕ(q0, P str(D2)) ⊂ . . . ⊂ ϕ(q0, P str(Dl)).

In this case M /∈ C(L). We conclude that every element in C(L) can be written
as a concatenation with not more than |Q|−1 star languages between every pair
of adjacent letters. These two limitations complete the proof. ��

Corollary 2. Let M ∈ C(L). Then tsw(M) represents a cycle-free path in the
automaton associated with L.

Proof. Since M ⊆ L, tsw(M) ∈ L. Suppose tsw(M) contains cycles in the
automaton associated with L. Then applying the procedure described in the
proof of Lemma 4 (which constructs the language Mi using the language Li), we
obtain a language M ′ ∈ C(L) such that M ⊂ M ′. This means that M /∈ C(L)
and we get a contradiction. ��

Minimal Union-Free Decompositions of Regular Languages 89

Corollary 3. |C(L)| � c|Q|
(
2|Q|)|Q|−1

, where c is the number of cycle-free
paths in the automaton associated with L.

Proof. First, we fix a cycle-free path in the automaton associated with L (c
possibilities). Then we fix a position of star languages: since there are not more
than |Q|−1 letters, we have |Q| possibilities (because star languages can appear
before the first letter and after the last one). Then we choose not more than
|Q|−1 languages from B(L) (every language can appear more than once), having(
2|Q|)|Q|−1

possibilities. Finally, we multiply all three expressions and come to
the statement of the corollary. ��
Remark 2. In order to construct C(L) given a language L, we simply take all pos-
sible concatenations that contain letters that being concatenated form cycle-free
paths in the automaton for L and that contain not more than |Q| − 1 languages
from B(L) between every pair of letters. Finally, we exclude the languages that
are not subsets of L and the languages that are subsets of other languages from
the set.

Lemma 5. Let L be a regular language and M ⊆ L be a union-free language.
Then there exists a language CM ∈ C(L) such that M ⊆ CM .

Proof. We take every star language S∗
i,j from the general form of M . Thus M =

PS∗
i,jT where

P = S∗
01 · · ·S∗

0k0
a1 · · ·S∗

i1 · · ·S∗
i,j−1

and T = S∗
i,j+1 · · ·Si,kiai+1 · · ·alS

∗
l,1S

∗
l,2 · · ·S∗

l,kl
. Then we apply Lemma 2 and

derive that M ⊆ P str(Bk)T where Bk ∈ B(L). Thus we extended the “un-
known” language S∗

i,j to the known language str(Bk) from the set B(L). After
applying the procedure of extension to each star language in the general form for
M , we get a language CM that is a finite concatenation of languages from B(L)
and letters and also an extension of M . Hence M ⊆ CM and CM ∈ C(L). ��
Theorem 2. Let L be a regular language. Then L is a union-free language iff
L ∈ C(L).

Proof

Necessity. We consider M = L and apply Lemma 5. Then there exists a language
CL ∈ C(L) such that L ⊆ CL. But since all languages from C(L) are subsets of
L, L = CL and hence L ∈ C(L).

Sufficiency. Suppose L ∈ C(L) and L is a non-union-free language. Then it
cannot be represented as a finite concatenation from C(L) because every con-
catenation from C(L) only consists of union-free languages (languages from B(L)
and letters), and we come to a contradiction. ��

4 Union-Free Decomposition

Theorem 3. Let L be a regular language. Then there exists an algorithm that
results in a minimal union-free decomposition of L: L = L1 ∪ L2 ∪ · · · ∪ Lk (the
algorithm is described within the proof).

90 S. Afonin and D. Golomazov

Proof. To construct a minimal union-free decomposition, we examine all the sub-
sets of C(L) and choose the subset containing a minimum number of languages
(among all the subsets) which being added up are equal to L. It should be noted
that there is at least one subset containing languages which being added up are
equal to L, because there exists at least one union-free decomposition of L and to
every component of the decomposition we can apply Lemma 5, thus obtaining a
decomposition of L into languages from C(L). The final step is to prove that the
decomposition obtained is minimal, i.e., there exists no decomposition contain-
ing fewer elements than the one we got. Suppose we have such a decomposition
L = N1∪N2∪· · ·∪Np, p < k. We take each language Ni (i = 1, . . . , p) and apply
Lemma 5 to it, getting a union-free language CNi ∈ C(L) such that Ni ⊆ CNi .
Thus we get the new decomposition L = CN1 ∪CN2 ∪· · ·∪CNp , p < k and every
language CNi belongs to the set C(L). But since we have already examined all
the subsets of C(L), we have examined the subset {CN1 , . . . , CNp} too, and we
must have chosen this subset for the minimal decomposition. This contradiction
completes the proof. ��

Unfortunately, the algorithm for constructing a minimal union-free decomposi-
tion of a given regular language L is computationally expensive since it requires
checking all the subsets of the set C(L), which can contain up to c|Q|

(
2|Q|)|Q|−1

elements, where c is the number of cycle-free paths in the automaton associated
with L (see Corollary 3). We believe that there exist more effective algorithms
that result in a minimal union-free decomposition of a given regular language.
Some ideas on creating such an algorithm are given below.

A promising way of constructing minimal union-free decompositions can be
developed using the technique of cutting maximum star languages introduced
in [2]. In short, the technique is as follows. Let L be a regular language. The
equation L = X∗L is proved to have the unique maximal solution X0 (w.r.t. in-
clusion). Moreover, the equation L = X∗

0Y is proved to have the unique minimal
solution Y0. To construct a minimal union-free decomposition of L we solve these
two equations and obtain the language Y0. Then we apply the same procedure to
the language Y0 and get the minimal language Y1 such that L = X∗

0X∗
1Y1. If the

process ends (and it is an open problem, see [10]) we either obtain the language
Ym = {ε} (and thus the union-free decomposition L = X∗

0X∗
1 · · ·X∗

m) or get a
language Ym such that the equation Ym = X∗Ym has no non-trivial solutions.
In the latter case we check whether all the words in the language Ym start with
the same letter. If it is the case and, for example, all the words in Ym start
with a, we write Ym = aY ′

m, L = X∗
0X∗

1 · · ·X∗
maY ′

m and apply the procedure
described above to the language Y ′

m (solve the equation Y ′
m = X∗Y ′

m etc.). If it
is not, and there are words in Ym that start with different letters, e.g. a1, . . . , an,
we can write Ym = Ym1 ∪ · · · ∪ Ymn so that every language Ym1 , . . . , Ymn con-
tains only words starting with the same letter ai, 1 � i � n. Then we write
L = X∗

0X∗
1 · · ·X∗

mYm1 ∪ X∗
0X∗

1 · · ·X∗
mYm2 ∪ · · · ∪ X∗

0X∗
1 · · ·X∗

mYmn and apply
the procedure described above to every language Ym1 , . . . , Ymn . If the process
ends, thus we obtain the union-free decomposition of the language L, which is
likely to be minimal, but this is yet to be proved. As already mentioned, an-

Minimal Union-Free Decompositions of Regular Languages 91

other open problem connected with this technique is that the described process
of “cutting stars” has not yet been proved to always be finite (see [10]).

5 Conclusions and Further Work

In this paper we have presented an algorithm for constructing a minimal union-
free decomposition of a regular language. The algorithm includes an exhaustive
search but we tend to think that there exist more effective algorithms that solve
the problem.

We have also studied some common properties of union-free languages. In
particular, we have presented the new algorithm for checking whether a given
language is union-free which can be more effective than the one existing in the
field (see [9,7]).

There are some other interesting questions connected with the problems con-
sidered. For instance, whether languages that form a minimal union-free decom-
position are pairwise disjoint (as sets of words). If it is not always the case, one
can consider minimal union-free decompositions that consist of pairwise disjoint
languages and ways of constructing them.

Another open problem is connected with star height. Given a star height of a
regular language is it possible to construct a minimal union-free decomposition
that consists of languages of the same star height?

Acknowledgements. The authors would like to thank the anonymous review-
ers for valuable comments. The first author would also like to thank Benedek
Nagy for drawing attention to the problem.

References

1. Paz, A., Peleg, B.: On concatenative decompositions of regular events. IEEE Trans-
actions on Computers 17(3), 229–237 (1968)

2. Brzozowski, J., Cohen, R.: On decompositions of regular events. Journal of the
ACM 16(1), 132–144 (1969)

3. Nagy, B.: A normal form for regular expressions. In: Eighth International Con-
ference on Developments in Language Theory, CDMTCS Technical Report 252,
CDMTCS, Auckland, pp. 51–60 (2004)

4. Brzozowski, J.: Regular expression techniques for sequential circuits. PhD thesis,
Princeton University, Princeton, New Jersey (1962)

5. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. In: STOC
1974: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
pp. 75–79. ACM, New York (1974)

6. Afonin, S., Khazova, E.: Membership and finiteness problems for rational sets of
regular languages. International Journal of Foundations of Computer Science 17(3),
493–506 (2006)

7. Leung, H., Podolskiy, V.: The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theoretical Computer Science 310(1–3), 147–158
(2004)

92 S. Afonin and D. Golomazov

8. Nagy, B.: Programnyelvek elemeinek szintaktikus lersa norml formban (syntactic
description of the elements of the programming languages in a normal form). In:
IF 2005, Conference on Informatics in Higher Education, Debrecen (2005)

9. Hashiguchi, K.: Representation theorems on regular languages. Journal of Com-
puter and System Sciences 27, 101–115 (1983)

10. Brzozowski, J.: Open problems about regular languages. In: Book, R.V. (ed.) For-
mal Language Theory, Santa Barbara, CA, Univ. of CA at Santa Barbara, pp.
23–47. Academic Press, New York (1980)

11. Nagy, B.: Union-free languages and 1-cycle-free-path-automata. Publicationes
Mathematicae Debrecen 68, 183–197 (2006)

Commutative Regular Shuffle Closed Languages,
Noetherian Property, and Learning Theory

Yohji Akama

Mathematical Institute, Tohoku University, Sendai Miyagi, Japan, 980-8578
(Japan Science and Technology Agency)

akama@m.tains.tohoku.ac.jp

Abstract. To develop computational learning theory of commutative
regular shuffle closed languages, we study finite elasticity for classes of
(semi)group-like structures. One is the class of ANd + F such that A is
a matrix of size e × d with nonnegative integer entries and F consists
of at most k number of e-dimensional nonnegative integer vectors, and
another is the class X d

k of AZd + F such that A is a square matrix of
size d with integer entries and F consists of at most k number of d-
dimensional integer vectors (F is repeated according to the lattice AZd).
Each class turns out to be the elementwise unions of k-copies of a more
manageable class. So we formulate “learning time” of a class and then
study in general setting how much “learning time” is increased by the
elementwise union, by using Ramsey number. We also point out that
such a standpoint can be generalized by using Noetherian spaces.

1 Introduction

For words u, v on an alphabet Σ, the shuffle product of u and v is, by definition,

u # v = {w : ∃n ≥ 1∃u1, u2, . . . , un, v1, v2, . . . , vn ∈ Σ∗

w = u1v1u2v2...unvn, u = u1u2 · · ·un and v = v1v2 · · · vn }

A language L is said to be shuffle closed if it is closed under shuffle product. L is
said to be commutative if xuvy ∈ L ⇐⇒ xvuy ∈ L for all u, v, x, y ∈ Σ∗. Let N
be {0, 1, 2, . . .}. Parikh mapping is Ψ : Σ∗ → N#Σ such that Ψ(w) = (n1, . . . , nr)
where ni is the number of occurrences of si in w. Ψ(L) is the set of Ψ(w) such that
w ∈ L. According to [1], for every commutative regular shuffle closed language
L, Ψ(L) ⊆ N#Σ is a semigroup 1, and if L moreover contains the empty word ε,
then

L = Ψ−1(
n⋃

i=1

AiN#Σ + fi) (1)

for some n ∈ N, some square matrices Ai’s of size #Σ with nonnegative integer
entries and some #Σ-dimensional nonnegative integer vectors fi’s. Thus com-
putational learning theory for commutative regular shuffle closed languages is
1 In this paper, semigroups are always understood commutative.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 93–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 Y. Akama

related to that for semigroups, and conditions where the learnabilities of each of
two classes C1, C2 implies that of their elementwise union

C1 ∪̃ C2 := {L1 ∪ L2 ; L1 ∈ C1, L2 ∈ C2}.

A typical learning process of semigroups is as follows: “Teacher” chooses a pos-
itive integer m and presents all the elements of a semigroup 〈m〉 := {nm ; n =
0, 1, 2, 3, . . .} one by one to “Learner”, where “Learner” submits a hypothesis for
m whenever he receives a number from “Teacher.” If the hypotheses h1, h2, . . .
converge to m, then we say that “Learner” learns m. But for each updating
of hypothesis, “Learner” cannot know whether his hypothesis is true or not.
If “Learner” always submits a hypothesis which respect all the numbers pre-
sented so far, then he learns m because an ascending chain 〈h1〉 ⊆ 〈h2〉 ⊆ · · ·
is eventually stationary (i.e. 〈ht〉 = 〈ht+1〉 = · · · for some t). In other words,
“Learner” can learn 〈m〉 because of Noetherian property and the “learning time”
t = #{i ; hi−1 �= hi} is bounded by the length of a strictly ascending chain from
〈m〉. However Noetherian property [2,3] for semigroups, which is defined af-
ter Noetherian property for semigroup-rings, happens to be unsatisfactory from
computational learning viewpoint, because it is satisfied by a semigroup (N2, +)
which turns out to have an infinite strictly ascending chain of subgroups in N2.
In computational learning theory, a property similar to Noetherian property was
independently introduced as a sufficient condition for a class of languages to be
learnable [4]. The property is called a finite elasticity. The computational learn-
ing theory for Noetherian rings and similar algebraic structures are developed
by Ventsov and Stephan [5]. We develop learning theory for algebraic structures
and language classes by taking following proposition seriously:

Proposition 1 (Motoki-Shinohara-Wright [4]). If two classes C1, C2 of sets
have finite elasticities, so does C1 ∪̃ C2.

By using the Proposition, the finite elasticity was proved for the class of extended
pattern languages (e.g. {ww ; w ∈ Σ∗} is an extended pattern language), and the
same property will be proved for the class of commutative regular shuffle closed
languages in this paper. Also we study finite elasticity for classes of (semi)group-
like structures, such as a class Latticed of d-dimensional integer lattices and a
class

X d
k := {M + F ; M ∈ Latticed, F ⊆ Zd, #F ≤ k} (k ≥ 1) (2)

of integer crystalline structures (F is repeated by a lattice M like a physical
crystalline material). The former class Latticed is studied from viewpoint of an-
other computational learning setting [6]. The latter class X d

k is a subclass of
the elementwise union of k-copies of more manageable classes. So we formulate
“learning time” and then evaluate from upward the “learning time” of the ele-
mentwise union in terms of those of the constituents classes, by using Ramsey
number R(l, m, 2). We also point out that such a standpoint can be generalized
by using Noetherian spaces.

Comm. Regular Sh-Closed Languages, Noetherian Properties and Learning 95

2 Commutative Regular Shuffle Closed Languages

For α, β, p ∈ Nr, we write α ≥ β if each component of α is not less than the
corresponding component of β, and we write α

→= β (mod p) if α ≥ β but each
component of α is congruent to the corresponding component of β modulo the
corresponding component of p.

Proposition 2 ([1, Proposition 5.3.4, 5.3.5]). Let L ⊆ Σ∗ such that L con-
tains the empty word ε. Then L is a commutative regular shuffle closed language
if and only if L is represented as

L =
⋃

u∈F

Ψ−1Ψ
(
u

(
aδu1p1
1

)∗
· · ·

(
aδurpr

r

)∗)
(3)

where

1. Y = {a1, . . . , ar} is an r-size subset of Σ for some positive integer r, F is a
finite language over Y with ε ∈ F , and δu = (δu1, . . . , δur) belongs to {0, 1}r
for any u ∈ F . Moreover,

2. p = (p1, . . . , pr) belongs to {1, 2,}r,
(a) there exists q ∈ Nr such that for all u ∈ F q ≥ p and q ≥ Ψ(u), and
(b) for any u, v ∈ F , there is w ∈ F such that δu, δv ≤ δw and Ψ(uv) →= Ψ(w)

(mod (δw1p1, . . . , δwrpr)).

For the class of commutative regular shuffle closed languages with the shuffle
base being finite, the characterization is similar but δu’s are always (1, . . . , 1).
Here shuffle base of L is defined as (L \ {ε}) \

(
(L \ {ε}) # (L \ {ε})

)
.

By above proposition, every commutative regular shuffle closed language is writ-
ten as (1), while every commutative regular shuffle closed languages with finite
shuffle base is written as Ψ−1(AN#Σ + F) for some square matrix A of size #Σ
with nonnegative integer entries and for some finite set F ⊂ N#Σ . Here ‘+’
stands for Minkowski sum(i.e., elementwise addition).

Definition 1. For any positive integer k, let CRSk be the class of commutative
regular shuffle closed languages L such that L % ε and #F of (3) is less than or
equal to k. Let fCRSk be the class of L ∈ CRSk such that the shuffle base of L
is finite.

3 Computational Learning Theory: Finite Elasticity and
Wright’s Theorems

In this section, we review finite elasticity, a sufficient condition for a class to be
learnable, formulate the “learning time,” and then evaluate how much “learning
time” is increased by elementwise union by using Ramsey numbers.

First of all, we review one of basic settings of computational learning theory.
An indexed family of recursive language(i.f.r.l.) is any C = {Li ; i ∈ N} such
that there is a computable function f : N × Σ∗ → {0, 1} where f(i, w) = 1 if

96 Y. Akama

Li % w and f(i, w) = 0 otherwise. We say that this i is a representative of Li

or i explains Li. For example, a class {L(G) ; G is a regular grammar} and the
class

{
{nm ; n ∈ N

}
; m ∈ N

}
are indexed families of recursive languages.

We say that an i.f.r.l. C is learnable from positive data by an algorithm A if for
any L ∈ C and for any enumeration x1, x2, . . . of L, the algorithm A computes a
hypothesis hn for L on each initial segment x1, . . . , xn (n ≥ 1) and the hypotheses
h1, h2, . . . tends to a representative of L in the limit of n. An algorithm said to
be consistent, if Lhn ⊇ {x1, . . . , xn} for every n.

The number of mind-changes taken by A with respect to the presentation
x1, x2, . . . is defined as #{i ; hi−1 �= hi}. The maximum over L and the presen-
tations of L is called the mind-change complexity of C by A, and the maximum
over any consistent algorithm that learns C is called the mind-change complexity
for C. For example, let us consider the case where “Teacher” teaches “Learner”
multiples but “Teacher” always begins with presenting a number x1 less than
n as an example of a multiple, while “Learner” always submits a hypothesis
consistent with numbers presented so far. Then the hypotheses h1, h2, . . . sub-
mitted by “Learner” are such that each hi divides hi+1, so the number of the
mind-change taken by “Learner” is at most log2 n. By a similar reasoning, the
mind-change complexity of {〈m〉 ∩ [0, n] ; m ∈ N} is at most log2 n. “Learner”
is said to be consistent, if every hypothesis “Learner” submits is consistent with
data presented so far.

Let N∗ = {0 < 1 < 2 < · · · < n < · · · < ∗}.

Definition 2 (finite elasticity, dimension). We say a class C of sets has
an elasticity of length α ∈ N∗, if

∃{Ln ∈ C ; 1 ≤ n < α} ∃{tγ ; 0 ≤ γ < α}
∀β. 1 ≤ β < α ⇒ {tγ ; 0 ≤ γ < β} ⊆ Lβ �% tβ .

We say C has an infinite elasticity, if α = ∗. Otherwise, we say C has a finite
elasticity. When and only when C has finite elasticity, we define the dimension
dim(C) ∈ N ∪ {∞} as the supremum of α such that C has an elasticity of length
α < ∗, that is,

dim(C) := sup
{

α ;
∃{Ln ∈ C ; 1 ≤ n < α} ∃{tγ ; 0 ≤ γ < α}
∀β. 1 ≤ β < α ⇒ {tγ ; 0 ≤ γ < β} ⊆ Lβ �% tβ

}
.

Remark 1. If C has a finite elasticity, then for any pair of “Teacher” and “Con-
sistent Learner,” in a following game between them, the “Consistent Learner”
always wins after submitting at most dim(C) numbers of elements of C.

In the course of the game, the “Teacher” presents a datum w while the “Con-
sistent Learner” chooses from C an element L that contains the data presented
so far. “Teacher” tries to present a datum that the “Consistent Learner” can no
more choose such an element from C. “Consistent Learner” wins if the “Teacher”
can no more present such a datum. We can easily see that C has a finite elasticity
if “Consistent Learner” can always win.

Comm. Regular Sh-Closed Languages, Noetherian Properties and Learning 97

“Teacher” t0 t1 t2 · · · tα−1
“Consistent Learner” L1 L2 · · · Lα−1

Clearly, if C has a finite elasticity then so does any subclass of C.
Proposition 3 ([4]). For every i.f.r.l. C, if C has a finite elasticity, it is learn-
able from positive data.

Theorem 1. For any i.f.r.l. C, if dim(C) <∞, then C is learnable from positive
data by a consistent learning algorithm and the mind-change complexity of C is
bounded from above by dim(C).
Now let us derive an upper bound of dim(C ∪̃ D) from a Ramsey-type proof of
Proposition 1. First recall Ramsey numbers.

Proposition 4 ([7, Section 4.2]). For every l, m ∈ Z≥1 there exists k such
that any edge-coloring with red and black for the complete graph of size k has
either a red complete subgraph of size l or a black complete subgraph of size m.
Such minimum k, denoted by R(l, m, 2), is called a Ramsey number of l, m, and

is bounded from above by
(

m + l − 2
l − 1

)
≤ c4max(l,m)(max(l, m))−1/2 for some

constant c.

Theorem 2. For any classes C and D, if dim(C) and dim(D) are finite, then

dim(C ∪̃ D) < dim(C) · dim(D) · R(dim(C) + 1, dim(D) + 1, 2).

Proof. Suppose there are a sequence t0, . . . , tn−1, a sequence L1, . . . , Ln−1 of C
and a sequence M1, . . . , Mn−1 of D such that

{t0, . . . , ti−1} ⊆ Li ∪Mi �% ti (1 ≤ ∀i < n). (4)

We have only to show that n < dim(C) · dim(D) ·R(dim(C) + 1, dim(D) + 1, 2).
It is easy to see:

Fact 1
1. Lν1 = · · · = Lνk

(1 ≤ ν1 < · · · < νk < n) ⇒ k ≤ dim(D).
2. Mν1 = · · · = Mνk

(1 ≤ ν1 < · · · < νk < n) ⇒ k ≤ dim(C).
Proof. The first assertion is proved as follows: By (4),

{tν1 , . . . , tνi−1} \ Lνi ⊆Mνi �% tνi (2 ≤ ∀i ≤ k).

The leftmost term {tν1 , . . . , tνi−1} \ Lνi is just {tν1 , . . . , tνi−1}. Otherwise there
is a positive integer j less than i such that tνj ∈ Lνi = Lνj , which contradicts
(4). The situation is illustrated as a following game between “Teacher” and
“Consistent Learner”:

“Teacher” tν1 tν2 · · · tνk−1 tνk

“Consistent Learner” Mν2 · · · Mνk

.

Therefore k ≤ dim(D). The second assertion is proved similarly as the first
assertion.

Fact 2. If Li(i = 1, . . . , n − 1) is pairwise distinct and Mi(i = 1, . . . , n − 1) is
pairwise distinct, then n < R(dim(C) + 1, dim(D) + 1, 2).

98 Y. Akama

Proof. Consider a complete graph G with the vertices being 0, . . . , n− 1. For
any edge {i, j}(i �= j), color it by red if 0 ≤ i < j ≤ n − 1 and ti ∈ Lj , while
color it by black otherwise.

Assume n ≥ R(dim(C)+1, dim(D)+1, 2). By Ramsey’s theorem, the colored
complete graph G has either a red clique of size dim(C) + 1 or a black clique of
size dim(D) + 1. When a red clique of size dim(C) + 1 exists, write it as {u0 <
· · · < udim(C)}. Then we have {tu0 , . . . , tui} ⊆ Lui+1 �% tui+1 (0 ≤ ∀i < dim(C)),
which contradicts the definition of dim(C).

Otherwise, a black clique of size dim(D)+1 exists, so we write it as {u0 < · · · <
udim(D)}. Then we have {tu0 , . . . , tui}∩Lui+1 = ∅ (0 ≤ ∀i < dim(D)). Because
(ui)i is in ascending order and (4) holds, we have {tu0 , . . . , tui} ⊆ Lui+1∪Mui+1 �%
tui+1 , so {tu0 , . . . , tui} ⊆ Mui+1 �% tui+1 (0 ≤ i < dim(D)), which contradicts
the definition of dim(D). This completes the proof of Fact 2.

By the previous Fact 1, in the sequence (4), each Li occurs at most dim(D) times
and each Mi occurs at most dim(C) times, so we have the desired consequence
of Theorem 2.

4 Finite Elasticity of Semigroups, Commutative Regular
Shuffle Closed Languages and Pattern Languages

In this section we give an elementary proof of the finite elasticity of CRSk

of Definition 1 and that of extended pattern languages, by considering Parikh
mapping and the class of finite generated semigroups of Ne.

A monoid (N2, +) does not have any infinite strictly ascending chain of sub-
monoideals, by Dickson’s Lemma. As a semigroup, (N2, +) is Noetherian in a
following sense:

Proposition 5 ([2],[3]). For every semigroup S, following two conditions are
equivalent: (a) S is finitely generated. (b) The lattice of congruences on S sat-
isfies ascending chain condition with respect to inclusion. I.e., any ascending
chain of congruences on S with respect to inclusion is eventually stationary.

S is said to be Noetherian if one of the two conditions (a) or (b) holds.

But (N2, +) has an infinite strictly ascending chain of sub-semigroups.

Theorem 3

1. For any positive irrational r, Mr :=
{

t(x, y)∈N2 ; y<rx
}

is a sub-semigroup
of (N2, +) but not finitely generated.

2. A semigroup (N2, +) has an infinite strictly ascending chain of finitely gen-
erated free sub-semigroups.

Proof

1. Assume Mr is finitely generated. Then it becomes

(
k

(1)
1 · · · k

(1)
n

k
(2)
1 · · · k

(2)
n

)
Nn for

some positive integer n and some k
(i)
j ∈ N (i = 1, 2; j = 1, . . . , n). So

Comm. Regular Sh-Closed Languages, Noetherian Properties and Learning 99

for any t(x, y) ∈ Mr with x �= 0, y/x is less than or equal to the q :=
max1≤j≤n,k

(1)
j
=0 k

(2)
j /k

(1)
j ∈ N. But because r is irrational, there exist two

positive integers x and y such that q < y/x < r, and (x, y) ∈ Mr. Contra-
diction.

2. Mr is written as an infinite set {ai}i ⊂ N2 and has an ascending chain of sub-
semigroups S1 ⊆ S2 ⊆ S3 ⊆ · · · where Si := 〈a0, a1, . . . , ai〉 (i = 1, 2, 3, . . .).
If Sn = Sn+1 = Sn+2 = · · · , then M becomes Sn which is finitely generated.
This contradicts the first assertion of the theorem.

We can easily construct a series of matrices An =

(
k

(1)
1 · · · k

(1)
n

k
(2)
1 · · · k

(2)
n

)
such that

AnNn � An+1Nn+1 from a continued fraction of an irrational number. However
if the number of columns(i.e., the number of generators) is bounded, then there
is no infinite strictly ascending chain of sub-semigroups of (N2, +), as we see
below.

Theorem 4. For all positive integers e and d,

SLe,d := {ANd ; A ∈Me,d(N)} (Nd := Nd−1 × {1})

has a finite elasticity.

Proof. Assume that the set has an infinite elasticity, that is,

∃A1, A2, . . . ∈ Me,d(N). ∃w0, w1, . . . ∈ Ne.

∀n ≥ 1.{w0, . . . , wn−1} ⊆ AnNd �% wn . (5)

For positive integers i, j and any matrix A and vector w, let (A)i,j be the i-th
row j-th column component and (w)i be the i-th component. Clearly

∀n ≥ 1. (An)1,d ≤ (w0)1 (6)

We will derive a contradiction by induction on d.
If d = 1, then AnNd is a singleton for every n, so w0 = w1 = · · · , which

contradicts (5).
Consider the case where d > 1. A matrix obtained from A ∈ Me,d(N) by

removing the j-th column is denoted by j(A) ∈ Me,d−1(N).

Fact 3. ∀k ∈ N∃ν(k) > k∃j(k) ∈ [1, d−1]. {w0, . . . , wk} ⊂ j(k)
(
Aν(k)

)
Nd−1.

(∵) Let m(k) := max
{
(wl)i ; 0 ≤ l ≤ k, 1 ≤ i ≤ e

}
+ 1. Then there is

n > (m(k))d×e such that

∃i ∈ [1, e]∃j ∈ [1, d]. m(k) ≤ (An)i, j . (7)

Otherwise there are at most (m(k))d×e number of An which components are all
less than m(k). But {A1, A2, A3, . . .} is infinite, a contradiction. We can easily
see that there are infinitely many n such that (7) holds.

100 Y. Akama

But by (6) and the definition of m(k), we have j ≤ d − 1. Let us choose
an n such that (7) and n > max

((
m(k)

)d×e
, k

)
, and denote it by ν(k) >

max
((

m(k)
)d×e

, k
)
.

For any l ∈ [0, k], if wl is Aν(k)u for some u ∈ Nd with (u)j �= 0, then by (7)
and the definition of m(k), we have (wl)i ≥ (Aν(k))i, j > (wl)i, a contradiction.
So (u)j = 0. This completes the proof of Fact 3.

Then we have a following contradiction to the induction hypothesis.

Fact 4. There are an infinite series of e-dimensional vectors wνi(0) (i ≥ 0) and

an infinite series of e×(d−1) integer matrices j
(

νn−1(0)
)(

Aνn(0)
)

(n ≥ 1) which

cause an infinite elasticity:
{
w0, . . . , wνn−1(0)

}
⊆ j

(
νn−1(0)

)(
Aνn(0)

)
Nd−1 �%

wνn(0). (n ≥ 1).

(∵) For n ≥ 1, because ν(x) > x and (5), we have
{
w0, . . . , wνn−1(0)

}
⊆

Aνn(0)Nd �% wνn(0). By Fact 3,
{
w0, . . . , wνn−1(0)

}
⊆ j

(
νn−1(0)

)(
Aνn(0)

)
Nd−1.

On the other hand, because j
(

νn−1(0)
)(

Aνn(0)
)

Nd−1 ⊆ Aνn(0)Nd, we have
j
(

νn−1(0)
)
Aνn(0) Nd−1 �% wνn(0). This completes the proof of Fact 4.

Now let us return to the proof of the theorem. By induction hypothesis,
SLe,d−1 has a finite elasticity, which contradicts Fact 4. So SLe,d has a finite
elasticity. Q.E.D.

Recall that CRSk is the class of commutative regular shuffle closed languages L
such that L % ε and #F of (3) is less than or equal to k.

Corollary 1. For any positive integer k, CRSk has a finite elasticity.

Proof. For any subclass C of the powerset of N#Σ, let Ψ−1(C) be {Ψ−1(L) ; L ∈
C}. Then CRS1 = Ψ−1(SL#Σ,#Σ+1). By the previous theorem, CRS1 has a
finite elasticity, because w ∈ L ⇐⇒ Ψ(w) ∈ Ψ(L) for any L ∈ Ψ−1(C). So the
elementwise union of k-copies of CRS1 has a finite elasticity by Proposition 1,
and contains CRSk. This prove the corollary.

The class SL1,v+1 of Theorem 4 is also important in establishing the finite
elasticity of extended pattern languages.

Definition 3. The extended pattern language of a pattern p ∈ PatvΣ :=
(
Σ ∪

{x1, . . . , xv}
)∗ is the set eLangΣ(p) of σ(p) with σ being any homomorphism

from PatvΣ to Σ∗ such that σ(s) = s for every s ∈ Σ. Then EPAT v
Σ is defined

as the class of eLangΣ(p) such that p ∈ PatvΣ.

For every p ∈ PatvΣ, the set of length of w’s in eLangΣ(p) belongs to SL1,v+1,
because pn induces a matrix An ∈ M1,v+1(N) such that (An)1,v+1 is the num-
ber of occurrences of non-variable symbols in pn while (An)1,j the number of
occurrences of xj in pn.

Comm. Regular Sh-Closed Languages, Noetherian Properties and Learning 101

Theorem 5 (Wright[8]). For any v ∈ N, EPAT v
Σ has a finite elasticity.

Proof. By induction on v ≥ 0. We derive a contradiction from an assumption

∃p1, p2, . . . ∈ PatdΣ ∃u0, u1, . . . ∈ Σ∗

∀n ≥ 1.{u0, . . . , un−1} ⊆ eLangΣ(pn) �% un .

We can prove that

3’ ∀k ∈ N ∃ν(k) > k ∃j(k) ∈ [1, , d]. {u0, . . . , uk} ⊆ eLangΣ(pν(k)[xj(k) := ε]).
4’ There are

{
uνi(0)

}
i≥0 ⊆ Σ∗ and

{
pνn(0)[xj(νn−1(0)) := ε]

}
n≥1 ⊆ Patd−1

Σ that
cause an infinite elasticity.

In this way, we can derive contradiction against the inductive hypothesis.

Proposition 6 ([9]). Let #Σ ≥ 2. Then eLangΣ(x1x1x2x2x3x3) does not have
tell-tale set with respect to EPAT ∞

Σ :=
⋃

v≥0 EPAT
v
Σ, so EPAT ∞

Σ is not learn-
able by Angluin [10]. Thus EPAT ∞

Σ has an infinite elasticity.

Interestingly, the class of finitely generated sub-semigroup of (N, +) has a finite
elasticity.

Theorem 6. For all positive integers e and d,
{
ANd\{0} ; A ∈Me,d(N), d ≥ 1

}
has a finite elasticity if and only if e = 1.

Proof. (If part) Assume the contrary. Then, there are infinite sequences {di ∈
N ; i > 0}, {Ai ∈ M1,di(N) ; i > 0} and {wi ∈ N ; i ≥ 0} such that each
AiNdi \ {0} contains w0, . . . , wi−1 but not wi. The free semigroup generated by
w0, w1, . . . will be written as 〈w0, w1, . . .〉.

We observe that

∀k > 0 ∀w > 0 ∃l > k.
(
〈w0, . . . , wk〉 ⊆ AlNdl �% wl and wl > w

)
. (8)

Consider a quotient set Q obtained from 〈w0, . . . , wk〉 ⊂ N by the congruence
modulo w0. Then the cardinality of the quotient set is

c(k) := # {i ∈ [0, w0) ∩ N ; (Nw0 + i) ∩ 〈w0, . . . , wk〉 �= ∅} .

Let {u1, . . . , uc(k)} = {min q ; q ∈ Q}. By (8) with k being a and w being
max1≤j≤c(k) uj , we have for any j, uj < wl �∈ 〈w0, . . . , wk〉 =

⋃c(k)
j=1(Nw0 + uj).

Because of the minimality of uj , classes Nw0 + wl, Nw0 + uj (1 ≤ j ≤ c(k))
are mutually disjoint. Thus c(k) < c(l) ≤ w0. By repeating this argument,
c(m) = w0 for some m. Because w0 ∈ 〈w0, . . . , wm〉, a set N \ 〈w0, . . . , wm〉 is
finite. But it should contain an infinite set {wi ; i > m}. Contradiction.

(Only if-part) When e = 2, then the class has an infinite elasticity, because of
the proof of Theorem 3. The infinite elasticity for e = 2 induces that for e > 2,
by considering matrices with the 3rd to e-th rows being all zero.

Actually, a semigroup generated from positive integers a and b has a following
structure:

Lemma 1. For all a, b ∈ N such that gcd(a, b) = d ≥ 1, if n ≥ n0 := ab/d −
(a+b)+d (actually, n0 ≥ ab/d− (a+b)+1) and d divides n then n ∈ Na+Nb.

102 Y. Akama

5 Integer Crystalline Structure: Learning Algorithm as
Geometric Algorithm

The class X d
k of integer crystalline structures, introduced in (2), has many ex-

amples.

– The arrangement of atoms in a body centered crystal, a face centered crys-

tal, and a diamond crystal are

⎛⎝−1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

−1
2

⎞⎠ Z3, K =

⎛⎝0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞⎠ Z3, K +{
0, t(1/4, 1/4, 1/4)}.

– The vertex sets of periodic tilings(e.g. Archimedean tilings [11]). For exam-
ple, the vertex set of Archimedean (3.6.3.6) tiling(i.e. the Kagome lattice) is

H(2Z2 + F) where H =
(

1 1/2
0
√

3/2

)
and F = { t(0, 0), t(0, 1), t(1, 0)}, while

the vertex set of Archimedean (34.6) tiling is the matrix H multiplied by

the Minkowski sum of
(

1 3
2 −1

)
Z2 and F , where F consists of t(1, 0), t(1, 1),

t(2, 0), t(2, 1), t(3, 0), and t(3, 1).

Theorem 7. X d
k has finite elasticity.

Proof. X d
1 has a finite elasticity. Otherwise ∃P1, P2, . . . ∈ X d

1 ∃w0, w1, . . .
∀n ≥ 1. {w0, . . . , wn−1} ⊆ Pn �% wn. So for each n ≥ 1 {0, w1−w0, . . . , wn−1−
w0} ∈ Pn − w0 �% wn−1 − w0. Because any translated lattice containing the
origin is actually a lattice, we have Pn−w0 is a lattice. Thus we have an infinite
strictly ascending chain of Z-submodules of a Z-modules Zd, which contradicts
that Zd is a Noetherian Z-module (It is well-known that for any Noetherian
ring A, M is a Noetherian A-modules if and only if M is finitely generated.) By
the finite elasticity of X d

1 , the elementwise union of k copies of X d
1 has a finite

elasticity, from which a subclass X d
k has too.

Theorem 8. The union X d
∞ of all X d

k over all k > 0 is not learnable from
positive data; hence has an infinite elasticity.

Proof. An infinite subset of Zd belongs to X d
∞, and any finite subset F of Zd

does so too because F = OZd + F ∈ X d∞ with O being the zero matrix. That
is, X d

∞ is superfinite. By [12], X d
∞ is not learnable from positive data. Thus X d

∞
cannot have finite elasticity.

A fast learning algorithm of X d
1 can be implemented by using a fast algorithm

to compute Hermite normal form.

Algorithm 1

– input: x1, x2, . . . ,
– procedure: From x2 − x1, x3 − x1, · · · , compute the Z-independent basis

a1, . . . , ad that spans {xi −x1 ; i ≥ 2}, by using Hermite normal form. Set
A by [a1, . . . , ad], and set f by x2 − x1.

Comm. Regular Sh-Closed Languages, Noetherian Properties and Learning 103

One of a learning algorithm of X 1
k is the following:

Algorithm 2. The input is the data x1, . . . , xn ∈ Z (n > 1) presented so far.
They are all in some D ∈ X 1

k . The output is a pair of a ∈ Z and a finite F ⊂ Z
such that aZ +F ∈ X 1

k is minimal among
{
C ∈ X 1

k ; C ⊇ {x1, . . . , xn}
}
. As the

hypothesis of a, the algorithm computes the maximum range of k + 1 adjacent
points bounded by the minimum range of k + 2 adjacent points.

An idea to generalize the algorithm for X d
k is consider the convex hull of k + 1

points, but it is a difficult problem in general to compute convex hull of points in
high dimension. We hope some geometric and combinatorial argument inherent
to X d

k helps.

6 Noetherian Spaces

We prove that if the dimension of a Noetherian space X is d, then any ascending
chain among unions of two irreducible closed sets has length at most d2 times
diagonal Ramsey number of d + 1.

We review a basic notions of Noetherian spaces according to [13]. A topological
space X is said to be irreducible if X �= ∅ and one of the following equivalent
conditions (1)–(4) holds, so that all of them hold: (1) X = F1 ∪ F2 for closed
sets F1 and F2 in X implies X = F1 or X = F2. (2) Every open set O �= ∅
in X is dense in X . (3) The intersection of a finite number of nonempty open
subsets in X is not empty. (4) Every open set in X is connected. A subset E of
a topological space X is irreducible if it is irreducible with the relative topology.
We say a topological space X is a Noetherian space if for every descending chain
F1 ⊇ F2 ⊇ · · · of closed subsets in X , there exists n such that Fn = Fn+1 = · · · ,
which is equivalent to the condition that every family of closed sets in X has
a minimal element with respect to inclusion. For example, for an algebraically
closed field Ω containing a field of characteristic 0, the n-fold direct product Ωn

with Zariski topology is a Noetherian space. For a Noetherian topological space
X , we define the dimension dimX to be the supremum of all integers n such
that there exists a sequence Z0 � Z1 � · · · � Zn of irreducible closed sets in X .

By the union of two topological spaces X = (X,O(X)) and Y = (Y,O(Y)),
we mean a topological space Z = (X ∪ Y,O(Z)) such that O(X) ∪ O(Y) is a
subbase of O(Z).

Let X1 and X2 be Noetherian spaces of dimensions dimX1, dimX2 < ∞.
Then we have following facts. If Z is the disjoint union of X1 and X2, then Z is
a Noetherian space of dimension max(dimX1, dimX2). If Z is the direct product
of X1 and X2, then Z is a Noetherian space of dimension dimX1 + dimX2. If
Z is the intersection of X1 and X2, then Z is a Noetherian space of dimension
min(dimX1, dimX2).

Proposition 7 (Irreducible component decomposition [13]). Let X be a
Noetherian space. For any closed set F in X there exist a positive integer r and
irreducible closed sets Z1, . . . , Zr such that F =

⋃r
i=1 Zi. The condition Zi �⊆

104 Y. Akama

Zj(i �= j) uniquely determines Z1, . . . , Zr, which are the totality of irreducible
components of F .

The situation of Theorem 2 also appears when we consider the length of ascend-
ing chain of closed sets with 2 irreducible components.

Theorem 9. Let X be a Noetherian space of dimension d. If Z1∪Z ′
1 � Z2∪Z ′

2 �
· · · � Zn ∪Z ′

n and all of Zi’s and Z ′
i’s are irreducible closed sets in X , then n is

less than or equal to d2R(d + 1, d + 1, 2).

The proof of previous Theorem also established a following version of Proposi-
tion 1.

Theorem 10. If neither X nor Y admits an infinite ascending chain of irre-
ducible closed subsets, then the union does not either.

References

1. Ito, M.: Algebraic theory of automata and languages. World Scientific Publishing
Co. Inc., River Edge (2004)

2. Gilmer, R.: Commutative semigroup rings. Chicago Lectures in Mathematics. Uni-
versity of Chicago Press, Chicago (1984)

3. Howie, J.M.: An introduction to semigroup theory. L.M.S. Monographs, vol. 7.
Academic Press [Harcourt Brace Jovanovich Publishers], London (1976)

4. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
corrigendum to identification of unions. In: COLT 1991: Proceedings of the fourth
annual workshop on Computational learning theory, p. 375. Morgan Kaufmann
Publishers Inc., San Francisco (1991)

5. Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoret. Com-
put. Sci. 268(2), 221–273 (2001); Algorithmic learning theory (Otzenhausen 1998)

6. Helmbold, D., Sloan, R., Warmuth, M.K.: Learning integer lattices. SIAM J. Com-
put. 21(2), 240–266 (1992)

7. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey theory, 2nd edn. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, Inc., New York
(1980); A Wiley-Interscience Publication

8. Wright, K.: Identification of unions of languages drawn from an identifiable class.
In: COLT 1989: Proceedings of the second annual workshop on Computational
learning theory, pp. 328–333. Morgan Kaufmann Publishers Inc., San Francisco
(1989)

9. Reidenbach, D.: A non-learnable class of e-pattern languages. Theor. Comput.
Sci. 350(1), 91–102 (2006)

10. Angluin, D.: Inductive inference of formal languages from positive data. Inform.
Control 45(2), 117–135 (1980)

11. Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the
Mathematical Sciences. W. H. Freeman and Company, New York (1989)

12. Gold, E.M.: Language identification in the limit. Inform. Control 10(5), 447–474
(1967)

13. Kimura, T.: Introduction to prehomogeneous vector spaces. Translations of Mathe-
matical Monographs, vol. 215. American Mathematical Society, Providence (2003);
Translated from the Japanese original by Makoto Nagura and Tsuyoshi Niitani and
revised by the author (2003)

Matching Trace Patterns with Regular Policies

Franz Baader1,�, Andreas Bauer2, and Alwen Tiu2

1 TU Dresden, Germany
baader@inf.tu-dresden.de

2 The Australian National University
{baueran,alwen.tiu}@rsise.anu.edu.au

Abstract. We consider policies that are described by regular expres-
sions, finite automata, or formulae of linear temporal logic (LTL). Such
policies are assumed to describe situations that are problematic, and
thus should be avoided. Given a trace pattern u, i.e., a sequence of ac-
tion symbols and variables, were the variables stand for unknown (i.e.,
not observed) sequences of actions, we ask whether u potentially violates
a given policy L, i.e., whether the variables in u can be replaced by se-
quences of actions such that the resulting trace belongs to L. We also
consider the dual case where the regular policy L is supposed to describe
all the admissible situations. Here, we want to know whether u always
adheres to the given policy L, i.e., whether all instances of u belong
to L. We determine the complexity of the violation and the adherence
problem, depending on whether trace patterns are linear or not, and on
whether the policy is assumed to be fixed or not.

1 Introduction

Regular languages (defined by regular expressions, finite automata, or temporal
logics such as LTL) are frequently used in Computer Science to specify the
wanted or unwanted behaviour of a system [1,8,3,4]. Such specifications are not
only employed in the design phase of the system, where one may try to verify that
every execution trace of the system respects the specification [5]. They can also
be used in the deployment phase to monitor the actual system trace and raise an
alarm if the specification is violated by the behaviour of the system [7,2]. In many
of these applications, one actually employs ω-regular languages to describe the
infinite behaviour of a reactive system, but in our intended application domain,
considering finite sequences of actions (called traces in the following) appears to
be more appropriate.

In online trading systems, like eBay, formal policies can be used to describe
sequences of actions that indicate potentially malicious, dishonest, or fraudulent
behaviour (see, e.g., [14]). Of course, it is not always easy to define potentially
problematic behaviour without creating too many false positives. But even if
such a definition is available, detecting that the actual trace indeed violates the
given policy is non-trivial due to the fact that the administrator of an online
� Supported by NICTA, Canberra Research Lab.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 105–116, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

106 F. Baader, A. Bauer, and A. Tiu

trading platform may not be able to observe all the relevant user actions. For
example, payments made through a third-party institution, shipments of goods,
etc., cannot be directly observed. Our approach for modelling this situation
is that we use regular languages to describe policies, but instead of traces we
consider trace patterns, i.e., traces with variables, where the variables stand for
unknown sequences of actions. More formally, assume that L is a policy (formally
defined as a regular language) describing undesirable sequences of actions.1 We
say that a given trace w violates the policy L if w ∈ L. Checking for a violation
is thus just an instance of the word problem for regular languages. If, instead
of a trace, we only have a trace pattern, then detecting violations of the policy
becomes more complicated. For example, consider the trace pattern abXaY ,
where a, b are action symbols and X, Y are variables. This trace pattern says:
all we know about the actual trace is that it starts with ab, is followed by some
trace u, which is followed by a, which is in turn followed by some trace v. Given
such a trace pattern, all traces that can be obtained from it by replacing its
variables with traces (i.e., finite sequences of actions) are possibly the actual
trace. The policy L is potentially violated if one of the traces obtained by such
a substitution of the variables by traces belongs to L. In our example, abXaY
potentially violates L = (ab)∗ since replacing X by ab and Y by b yields the trace
ababab ∈ L. The trace pattern abXaY is linear since every variable occurs at
most once in it. We can also consider non-linear trace patterns such as abXaX ,
where different occurrences of the same variable must be replaced by the same
trace. The underlying idea is that, though we do not know which actions took
place in the unobserved part of the trace, we know (from some source) that the
same sequence of actions took place. It is easy to see that the policy L = (ab)∗

is not potentially violated by abXaX .
In this paper, we will show that the complexity of deciding whether a given

trace pattern potentially violates a regular policy depends on whether the trace
pattern is linear or not. For linear trace patterns, the problem is decidable in
polynomial time whereas for non-linear trace patterns the problem is PSpace-
complete. If we assume that the policy is fixed, i.e., its size (more precisely, the
size of a finite automaton or regular expression representing it) is constant, then
the problem can be solved in linear time for linear trace patterns and is NP-
complete for non-linear trace patterns. We also consider the dual case where the
regular policy L is supposed to describe all the admissible situations. Here, we
want to know whether u always adheres to the given policy L, i.e., whether all
instances of u belong to L. For the case of a fixed policy, the adherence problem
is coNP-complete for arbitrary trace patterns and linear for linear trace patterns.
If the policy is not assumed to be fixed, however, then the adherence problem
is PSpace-complete both for linear and non-linear trace patterns. Finally, we
consider the case where the policy is given by an LTL formula. If the policy
is not assumed to be fixed, then the violation and the adherence problem are
PSpace-complete both for linear and non-linear trace patterns. For the case of a

1 Using regular languages of finite words to express policies means that we only mon-
itor safety properties [11]. For more general notions of policies, see [20].

Matching Trace Patterns with Regular Policies 107

fixed policy, the violation (adherence) problem is NP-complete (coNP-complete)
for non-linear patterns and it can be solved in linear time for linear patterns.

2 Preliminaries

In the following, we consider finite alphabets Σ, whose elements are called action
symbols. A trace is a (finite) word over Σ, i.e., an element of Σ∗. A trace pattern is
an element of (Σ∪V)∗, i.e., a finite word over the extended alphabet Σ∪V , where
V is a finite set of trace variables. The trace pattern u is called linear if every
trace variable occurs at most once in u. A substitution is a mapping σ : V → Σ∗.
This mapping is extended to a mapping σ̂ : (Σ ∪ V)∗ → Σ∗ in the obvious way,
by defining σ̂(ε) = ε for the empty word ε, σ̂(a) = a for every action symbol
a ∈ Σ, σ̂(X) = σ(X) for every trace variable X ∈ V , and σ̂(uv) = σ̂(u)σ̂(v) for
every pair of non-empty trace patterns u, v. A policy is a regular language over
Σ. We assume that such a policy is given either by a regular expression or by a
(non-deterministic) finite automaton. For our complexity results, it is irrelevant
which of these representations we actually use.

Definition 1. Given a trace pattern u and a policy L, we say that u potentially
violates L (written u � L) if there is a substitution σ such that σ̂(u) ∈ L. The
violation problem is the following decision problem:
Given: A policy L and a trace pattern u.
Question: Does u � L hold or not?
If the trace pattern u in this decision problem is restricted to being linear, then
we call this the linear violation problem.

We assume that the reader is familiar with regular expressions and finite au-
tomata. Given a (non-deterministic) finite automaton A, states p, q in A, and
a word w, we write p →w

A q to say that there is a path in A from p to q with
label w. The set of labels of all paths from p to q is denoted by Lp,q. The fol-
lowing problem turns out to be closely connected to the violation problem. The
intersection emptiness problem for regular languages is the following decision
problem:
Given: Regular languages L1, . . . , Ln.
Question: Does L1 ∩ . . . ∩ Ln = ∅ hold or not?
This problem is PSpace-complete [13,10], independent of whether the languages
are given as regular expressions, non-deterministic finite automata, or determin-
istic finite automata.

3 The Linear Violation Problem

Assume that u is a linear trace pattern and L is a regular language. Let the trace
pattern u be of the form u = u0X1u1 . . .Xmum where ui ∈ Σ∗ (i = 0, . . . , m)
and X1, . . . , Xm are distinct variables. Obviously, we have

u � L iff u0Σ
∗u1 . . . Σ∗um ∩ L �= ∅.

108 F. Baader, A. Bauer, and A. Tiu

a, b a, b

ba a

Fig. 1. A non-deterministic finite automaton accepting abΣ∗aΣ∗

If n is the length of u0u1 . . . um, then we can build a non-deterministic finite au-
tomaton A accepting the language u0Σ

∗u1 . . . Σ∗um that has n + 1 states. For
example, given the linear trace pattern abXaY from the introduction, we con-
sider the language abΣ∗aΣ∗, where Σ = {a, b}. Fig. 1 shows a non-deterministic
finite automaton with 4 states accepting this language. In addition, there is a
non-deterministic finite automaton B accepting L such that the number of states
� of B is polynomial in the size of the original representation for L.2 By con-
structing the product automaton of A and B, we obtain a non-deterministic
finite automaton accepting u0Σ

∗u1 . . .Σ∗um ∩ L with (n + 1) · � states. Thus,
emptiness of this language can be tested in time linear in (n + 1) · �, and thus
in time polynomial in the size of the input u, L of our linear violation problem.
If the policy is assumed to be fixed, then � is a constant, and thus emptiness of
the automaton accepting u0Σ

∗u1 . . . Σ∗um ∩ L can be tested in time linear in
the length of u.

Theorem 1. The linear violation problem can be solved in polynomial time. If
the policy is assumed to be fixed, it can even be solved in time linear in the length
of the input trace pattern.

4 The General Violation Problem

Allowing also the use of non-linear patterns increases the complexity.

Theorem 2. The violation problem is PSpace-complete.

Proof. PSpace-hardness can be shown by a reduction of the intersection empti-
ness problem for regular languages. Given regular languages L1, . . . , Ln, we con-
struct the trace pattern un := #X#X . . .#X# of length 2n + 1 and the policy
L(L1, . . . , Ln) := #L1#L2 . . . #Ln#. Here X is a variable and # is a new ac-
tion symbol not occurring in any of the words belonging to one of the languages
L1, . . . , Ln. Obviously, both un and (a representation of) L(L1, . . . , Ln) can be
constructed in time polynomial in the size of (the representation of) L1, . . . , Ln.
To be more precise regarding the representation issue, if we want to show PSpace-
hardness for the case where the policy is given by a regular expression (a non-
deterministic finite automaton, a deterministic finite automaton), then we assume
2 In fact, it is well-known that, given a regular expression r for L, one can construct a

non-deterministic finite automaton accepting L in time polynomial in the size of r.

Matching Trace Patterns with Regular Policies 109

that the regular languages L1, . . . , Ln are given by the same kind of representa-
tion. It is easy to see that the following equivalence holds:

L1 ∩ . . . ∩ Ln �= ∅ iff un � L(L1, . . . , Ln).

Thus, we have shown that the intersection emptiness problem for regular lan-
guages can be reduced in polynomial time to the violation problem. Since the
intersection emptiness problem is PSpace-complete [13] (independent of whether
the regular languages are given as regular expressions, non-deterministic finite
automata, or deterministic finite automata), this shows that the violation prob-
lem is PSpace-hard (again independent of the chosen representation).

To show membership of the violation problem in PSpace, consider the violation
problem for the trace pattern u and the policy L. Let n be the length of u and A
a non-deterministic finite automaton accepting L. For i ∈ {1, . . . , n}, we denote
the symbol in Σ ∪ V occurring at position i in u with ui, and for every variable
X occurring in u, we denote the set of positions in u at which X occurs with
PX , i.e., PX = {i | 1 ≤ i ≤ n ∧ ui = X}.

It is easy to see that u � L iff there is a sequence q0, . . . , qn of states of A
such that the following conditions are satisfied:

1. q0 is an initial state and qn is a final state;
2. for every i ∈ {1, . . . , n}, if ui ∈ Σ, then qi−1 →ui

A qi;
3. for every variable X occurring in u, we have

⋂
i∈PX

Lqi−1,qi �= ∅.3

Based on this characterisation of “u � L” we can obtain a PSpace deci-
sion procedure for the violation problem as follows. This procedure is non-
deterministic, which is not a problem since NPSpace = PSpace by Savitch’s
theorem [19]. It guesses a sequence q0, . . . , qn of states of A, and then checks
whether this sequence satisfies the Conditions 1–3 from above. Obviously, the
first two conditions can be checked in polynomial time, and the third condition
can be checked within PSpace since the intersection emptiness problem for reg-
ular languages is PSpace-complete [13]. ��

Alternatively, we could have shown membership in PSpace by reducing it to the
known PSpace-complete problem of solvability of word equations with regular
constraints [21,17]. Due to limited space and the fact that the algorithm for
testing solvability of word equations with regular constraints described in [17] is
rather complicated and “impractical,” we do not describe this reduction here.

Let us now consider the complexity of the violation problem for the case
where the policy is assumed to be fixed. In this case, the NPSpace algorithm
described in the proof of Theorem 2 actually becomes an NP algorithm. In fact,
guessing the sequence of states q0, . . . , qn can be realized using polynomially
many binary choices (i.e., with an NP algorithm), testing Conditions 1 and 2
is clearly polynomial, and testing Condition 3 becomes polynomial since the
size of A, and thus of non-deterministic finite automata accepting the languages
Lqi−1,qi , is constant.

3 Recall that Lp,q denotes the set of words labeling paths in A from p to q.

110 F. Baader, A. Bauer, and A. Tiu

Theorem 3. If the policy is assumed to be fixed, then the violation problem is
in NP.

The matching NP-hardness result of course depends on the fixed policy. For
example, if L = Σ∗, then we have u � L for all trace patterns u, and thus the
violation problem for this fixed policy can be solved in constant time. However,
we can show that there are policies for which the problem is NP-hard. Given a
fixed policy L, the violation problem for L is the following decision problem
Given: A trace pattern u.
Question: Does u � L hold or not?

Theorem 4. There exists a fixed policy such that the violation problem for this
policy is NP-hard.

Proof. To show NP-hardness, we use a reduction from the well-known NP-
complete problem 3SAT [10]. Let C = c1 ∧ . . . ∧ cm be an instance of 3SAT,
and P = {p1, . . . , pn} the set of propositional variables occurring in C. Every
3-clause ci in C is of the form ci = li,1 ∨ li,2 ∨ li,3, where the li,j are literals, i.e.,
propositional variables or negated propositional variables. In the correspond-
ing violation problem, we use the elements of V := {Pi | pi ∈ P} as trace
variables, and as alphabet we take Σ := {#,¬,∨,∧,&,⊥}. The positive lit-
eral pi is encoded as the trace pattern #Pi# and the negative literal ¬pi as
¬#Pi#. For a given literal l, we denote its encoding as a trace pattern by ι(l).
3-Clauses are encoded as “disjunctions” of the encodings of their literals, i.e.,
ci = li,1∨ li,2∨ li,3 is encoded as ι(ci) = ι(li,1)∨ι(li,2)∨ι(li,3), and 3SAT-problems
are encoded as “conjunctions” of their 3-clauses, i.e., if C = c1 ∧ . . . ∧ cm, then
ι(C) = ι(c1)∧ . . .∧ι(cm).

Our fixed policy describes all situations that can make a 3-clause true. To be
more precise, consider ι(c) = ι(l1)∨ι(l2)∨ι(l3) for a 3-clause c = l1 ∨ l2 ∨ l3. If
we replace the trace variables in c by either & or ⊥, then we get a trace of the
form w1∨w2∨w3 where each wi belongs to the set

K := {#&#, #⊥#, ¬#&#, ¬#⊥#}.

Intuitively, replacing the trace variable Pi by & (⊥) corresponds to replacing
the propositional variable pi by true (false). Thus, a substitution σ that replaces
trace variables by & or ⊥ corresponds to a propositional valuation vσ. The
valuation vσ makes the 3-clause c true iff σ̂(ι(c)) = w1∨w2∨w3 is such that
there is an i, 1 ≤ i ≤ 3, with wi ∈ {#&#,¬#⊥#}. For this reason, we define

T := {w1∨w2∨w3 | {w1, w2, w3} ⊆ K and there is an i, 1 ≤ i ≤ 3, with
wi ∈ {#&#,¬#⊥#}}.

To make a conjunction of 3-clauses true, we must make every conjunct true.
Consequently, we define our fixed policy L as L3SAT := (T∧)∗T. Since T is
a finite language, L3SAT is obviously a regular language. NP-hardness of the
violation problem for L3SAT is an immediate consequence of the (easy to prove)
fact that C is satisfiable iff ι(C) � L3SAT . ��

Matching Trace Patterns with Regular Policies 111

5 The Adherence Problem

Instead of using regular languages to describe traces that are viewed as being
problematic, one could assume that a regular policy L describes all the admissible
situations. In this case, we want to know whether u always adheres L.

Definition 2. Given a trace pattern u and a policy L, we say that u always
adheres to L (written u |= L) if σ̂(u) ∈ L holds for all substitutions σ. The
adherence problem is the following decision problem:
Given: A policy L and a trace pattern u.
Question: Does u |= L hold or not?
If the trace pattern u in this decision problem is restricted to being linear, then
we call this the linear adherence problem.

Obviously, we have u |= L iff not u � Σ∗ \ L, which shows that the adherence
problem and the complement of the violation problem can be reduced to each
other. If the policy L is assumed to be fixed, then these reductions are linear in
the length of u. Thus, we obtain the following corollary to our Theorems 1, 3,
and 4.

Corollary 1. Assume that the policy is fixed. Then, the linear adherence prob-
lem can be solved in time linear in the length of the input trace pattern. In
addition, the general adherence problem is in coNP, and there exists a policy
such that the general adherence problem for this policy is coNP-hard.

Another case for which the above reductions are linear is if the policy is given by
a deterministic finite automaton. Thus, our Theorems 1 and 2 yield the following
corollary.

Corollary 2. Assume that the policy is given by a deterministic finite automa-
ton. Then, the linear adherence problem can be solved in polynomial time, and
the general adherence problem is PSpace-complete.

If the policy is neither fixed nor given by a deterministic finite automaton, then
the reductions between the adherence problem and the complement of the vio-
lation problem are not polynomial since they involve the (potentially exponen-
tial) construction of the complement automaton for a non-deterministic finite
automaton. In fact, in this case there cannot be a polynomial time reduction
between the two problems since the adherence problem is intractable even for
linear trace patterns, for which the violation problem is tractable.

Lemma 1. The linear adherence problem is PSpace-hard if the policy is given
by a non-deterministic finite automaton or a regular expression.

Proof. Consider the linear trace pattern X and an arbitrary regular language
L over the alphabet Σ. Obviously, we have X |= L iff L = Σ∗. The problem
of deciding whether a regular language (given by a regular expression or a non-
deterministic finite automaton) is the universal language Σ∗ or not is PSpace-
complete [10]. Consequently, the adherence problem is PSpace-hard even for
linear trace patterns. ��

112 F. Baader, A. Bauer, and A. Tiu

Obviously, this PSpace lower bound then also holds for the general adherence
problem. Next, we show that a matching PSpace upper bound holds for the
general adherence problem, and thus for the linear one as well.

Lemma 2. The adherence problem is in PSpace if the policy is given by a non-
deterministic finite automaton or a regular expression.

Proof. Since PSpace is a deterministic complexity class, it is sufficient to show
that the complement of the adherence problem is in PSpace. Thus, given the
trace pattern u of length n and the policy L, we want to decide whether u |= L
does not hold. As noted above, this is the same as deciding whether u � Σ∗ \L.
Basically, we will use the PSpace decision procedure for the violation problem
described in the proof of Theorem 2 to decide this problem. However, we cannot
explicitly construct the automaton for Σ∗ \ L from the one for L since the size
of this automaton might be exponential in the size of the automaton (or regular
expression) for L. Instead, we construct the relevant parts of this automaton
on-the-fly.

Let A be a non-deterministic finite automaton accepting L that has k states,
and B the deterministic automaton for Σ∗ \L constructed in the usual way from
A, i.e., the states of B are all the subsets of the set of states of A, the initial
state of B is the set of initial states of A, the final states of B are the sets not
containing any final state of A, and P →a

B Q iff Q = {q | ∃p ∈ P : p →a
A q}.

Although the size of B is exponential in the size of A, every single state of B
can be represented using linear space. Also, deciding whether a given state of B
is the initial state or a final state requires only polynomial space, and the same
is true for constructing, for a given state P of B and a ∈ Σ, the unique state Q
such that P →a

B Q.
For i ∈ {1, . . . , n}, we again denote the symbol in Σ ∪V occurring at position

i in u with ui, and for every variable X occurring in u, we denote the set of
positions in u at which X occurs with PX , i.e., PX = {i | 1 ≤ i ≤ n ∧ ui = X}.
Then u � Σ∗ \ L iff there is a sequence Q0, . . . , Qn of states of B such that the
following conditions are satisfied:

1. Q0 is the initial state and Qn is a final state of B;
2. for every i ∈ {1, . . . , n}, if ui ∈ Σ, then Qi−1 →ui

B Qi;
3. for every variable X occurring in u, we have

⋂
i∈PX

LQi−1,Qi �= ∅.

Obviously, this characterisation yields the desired PSpace decision procedure
for u � Σ∗ \ L if we can show that, for each variable X , the non-emptiness of⋂

i∈PX
LQi−1,Qi can be decided by an NPSpace procedure.

Let PX = {i1, . . . , im}, and Ij := Qij−1, Fj := Qij for j = 1, . . . , m. Note that
m ≤ n where n is the length of the pattern u. To check

⋂
1≤j≤m LIj ,Fj �= ∅, we

proceed as follows.

1. Start with the m-tuple (T1, . . . , Tm) where Tj := Ij for j = 1, . . . , m.
2. Check whether (T1, . . . , Tm) = (F1, . . . , Fm). If this is the case, then termi-

nate successfully, i.e., with the result that the intersection
⋂

1≤j≤m LIj ,Fj is
non-empty. Otherwise, continue with 3.

Matching Trace Patterns with Regular Policies 113

3. Guess a letter a ∈ Σ, and replace (T1, . . . , Tm) by the corresponding tuple of
successor states in B, i.e., make the assignment Tj := {q | ∃p ∈ Tj : p→a

A q}.
Continue with 2.

Obviously, if this procedure terminates successfully, then
⋂

1≤j≤m LIj ,Fj is indeed
non-empty. In addition, if the intersection is non-empty, then there is a way
of guessing letters such that the procedure terminates successfully. However,
as described until now, the procedure does not terminate if the intersection is
empty. It is, however, easy to see that it is enough to guess a sequence of letters
of length at most 2k·m, which is the number of different tuples (T1, . . . , Tm) to be
encountered during a run of the procedure.4 In fact, if a tuple is reached more
than once in a run of our procedure, then we can cut out this cycle to get a
shorter run that achieves the same. Consequently, one can stop each run after
2k·m iterations. This can be realized using a binary counter that requires k ·m
bits, i.e., space polynomial in the size of the input. ��

The following theorem is an immediate consequence of the two lemmas that we
have just shown.

Theorem 5. Both the general and the linear adherence problem are PSpace-
complete if the policy is given by a non-deterministic finite automaton or a reg-
ular expression.

6 Policies Defined by LTL Formulae

In many applications, linear temporal logic (LTL) [18] is used to specify the
(wanted or unwanted) behaviour of a system [15]. LTL is usually interpreted in
temporal structures with infinitely many time points, but variants where tempo-
ral structures are finite sequences of time points have also been considered in the
literature [6,9]. Here, we consider the setting employed in [6], where an LTL for-
mula ϕ defines a regular language of finite words, which we denote by Lϕ in the
following. It is well-known that not all regular languages can be defined by LTL
formulae: the class of languages definable by LTL formulae is precisely the class
of star-free languages, which is a strict subclass of the class of all regular lan-
guages [6]. Given an LTL formula ϕ, one can construct a finite non-deterministic
automaton Aϕ that accepts Lϕ (by adapting the Vardi-Wolper construction [23]
to the finite case). Although the size of this automaton is exponential in the size
of ϕ, it satisfies properties similar to the ones mentioned for the automaton B in
the proof of Lemma 2: every single state of Aϕ can be represented using linear
space, deciding whether a given state of Aϕ is an initial state or a final state
requires only polynomial space, and the same is true for guessing, for a given
state p of Aϕ and a ∈ Σ, a state q such that p →a

Aϕ
q. We will also use that,

just as in the infinite case, the satisfiability problem for LTL over finite temporal
structures (i.e., for a given LTL formula ϕ, decide whether Lϕ is empty or not)

4 Recall that k is the number of states of A, and m ≤ n where n is the length of the
input pattern u.

114 F. Baader, A. Bauer, and A. Tiu

is PSpace-complete (this can be shown by a proof identical to the one in [22] for
the infinite case).

In this section, we consider the complexity of the violation (adherence) prob-
lem for the case where the policy Lϕ is given by an LTL formula ϕ. First, note
that the adherence and the violation problem can be reduced to each other in
linear time since LTL allows for negation:

u � Lϕ iff u �|= L¬ϕ and u |= Lϕ iff u �� L¬ϕ.

Theorem 6. Both the general and the linear violation (adherence) problem are
PSpace-complete if the policy is given by an LTL formula.

Proof. It is sufficient to show PSpace-completeness for the violation problem.
PSpace-hardness of the violation problem can be shown by a reduction of the

satisfiability problem: the LTL formula ϕ is satisfiable iff X � Lϕ.
Membership in PSpace can be shown just as in the proof of Lemma 2. We

apply the PSpace decision procedure described in the proof of Theorem 2 to the
automaton Aϕ, but without constructing this automaton explicitly. Instead, its
relevant parts are constructed on the fly. Again, the main fact to be shown is
that the induced intersection emptiness problems for the variable can be decided
within PSpace. This can be done just as in the proof of Lemma 2. The only
difference is that the automaton Aϕ is non-deterministic whereas the automaton
B considered in the proof of Lemma 2 was deterministic. However, this just means
that, instead of constructing the unique tuple of successors states in Step 3, we
guess such a successor tuple. ��

Let us now consider the case where the policy (i.e., the LTL formula) is assumed
to be fixed. This means that the size of the automaton Aϕ is a constant. For
the case of linear patterns, we can then decide the violation problem (and thus
also the adherence problem) in linear time (see the proof of the second part of
Theorem 1).

Theorem 7. Assume that the policy is fixed and given by an LTL formula.
Then, the linear violation problem and the linear adherence problem can be solved
in time linear in the length of the input trace pattern.

For non-linear trace patterns, the violation problem for fixed LTL policies has
the same complexity as in the case of fixed regular policies. The results for the
adherence problem then follow from the above reductions between the viola-
tion problem and the (complement of the) adherence problem. The proof of the
following theorem is identical to the one of Theorem 3.

Theorem 8. Assume that the policy is fixed and given by an LTL formula. Then
the violation problem is in NP and the adherence problem is in coNP.

In order to show NP-hardness of the violation problem for a fixed policy ϕ (which
then implies coNP-hardness of the adherence problem for the fixed policy ¬ϕ),
it is enough to show that the fixed policy (T∧)∗T used in the proof of Theorem 4

Matching Trace Patterns with Regular Policies 115

is star-free [6]. Since the star-free languages are closed under complement, it is
enough to show that the complement of this language is star-free. By definition,
finite languages (and thus also T) are star-free. In addition, star-free languages
are closed under all Boolean operations and concatenation. It is also well-known
(and easy to see) that Σ∗ as well as (Σ \ {a})∗ for any a ∈ Σ are star-free [16].
The language Σ∗ \ (T∧)∗T is the union of the following star-free languages:

– all words not containing ∧ and not belonging to T : (Σ∗ \ T) ∩ (Σ \ {∧})∗.
– all words not starting with an element of T before the first ∧: ((Σ∗ \ T) ∩

(Σ \ {∧})∗)∧Σ∗.
– all words not having a word of T between two consecutive occurrences of ∧:

Σ∗∧((Σ∗ \ T) ∩ (Σ \ {∧})∗)∧Σ∗.
– all words not ending with an element of T after the last ∧: Σ∗∧((Σ∗ \ T) ∩

(Σ \ {∧})∗).

This shows that (T∧)∗T is star-free and thus can be expressed by an LTL formula
ϕ. Thus, the proof of Theorem 4 yields the following results.

Theorem 9. There exists a fixed policy given by an LTL formula such that the
violation problem (adherence problem) for this policy is NP-hard (coNP-hard).

7 Future Work

One of the main tasks to be addressed in our future work is to investigate
which kinds of unwanted behaviour in online trading systems one can formally
describe using regular languages and LTL formulae. We also intend to consider
the problem of debugging policies as another application for our approach of
matching trace patterns with regular policies. The violation and the adherence
problem can be viewed as instances of the policy querying problem, which has
been introduced in [12] as a tool for the analysis of access control policies. The
main idea is that, while it may be quite hard for inexperienced users to correctly
define a policy using a regular expression or an LTL formula, it should be easier
to describe, using trace patterns, types of traces they want to allow or disallow.
Checking for violation/adherence can then be used to find potential errors in the
definition of the policy.

References

1. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A.,
Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec
temporal logic: A new temporal property-specification language. In: Katoen, J.-
P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 296. Springer, Heidelberg
(2002)

2. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer,
Heidelberg (2006)

116 F. Baader, A. Bauer, and A. Tiu

3. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775.
Springer, Heidelberg (2006)

4. Ben-David, S., Fisman, D., Ruah, S.: Embedding finite automata within regular
expressions. Theoretical Computer Science 404, 202–218 (2008)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

6. Cohen, J., Perrin, D., Pin, J.-E.: On the expressive power of temporal logic. J.
Comput. System Sci. 46, 271–294 (1993)

7. Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)

8. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems. Springer, Heidelberg (2006)

9. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (1979)

11. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 342. Springer, Heidelberg
(2002)

12. Kirchner, C., Kirchner, H., Santana de Oliveira, A.: Analysis of rewrite-based access
control policies. In: Proc. 3rd International Workshop on Security and Rewriting
Techniques (2008)

13. Kozen, D.: Lower bounds for natural proof systems. In: Proc. FOCS 1977. IEEE
Computer Society, Los Alamitos (1977)

14. Krukow, K., Nielsen, M., Sassone, V.: A framework for concrete reputation-systems
with applications to history-based access control. In: Proc. ACM Conference on
Computer and Communications Security. ACM, New York (2005)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

16. Perrin, D.: Finite Automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B. Elsevier, Amsterdam (1990)

17. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
Proc. FOCS 1999. IEEE Computer Society, Los Alamitos (1999)

18. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977. IEEE Computer
Society, Los Alamitos (1977)

19. Savitch, W.J.: Relationship between nondeterministic and deterministic tape com-
plexities. J. of Computer and System Sciences 4, 177–192 (1970)

20. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

21. Schulz, K.U.: Makanin’s algorithm for word equations - two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572. Springer,
Heidelberg (1992)

22. Prasad Sistla, A., Clarke, E.C.: The complexity of propositional linear temporal
logic. J. of the ACM 32(3), 733–749 (1985)

23. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. In: Proc. STOC 1984 (1984)

Absolute Convergence of Rational Series Is
Semi-decidable

Raphaël Bailly and François Denis�

Laboratoire d’Informatique Fondamentale de Marseille
CNRS, Aix-Marseille Université

{raphael.bailly,francois.denis}@lif.univ-mrs.fr

Abstract. We study real-valued absolutely convergent rational series,
i.e. functions r : Σ∗ → R, defined over a free monoid Σ∗, that can be com-
puted by a multiplicity automaton A and such that

∑
w∈Σ∗ |r(w)| < ∞.

We prove that any absolutely convergent rational series r can be com-
puted by a multiplicity automaton A which has the property that r|A|
is simply convergent, where r|A| is the series computed by the automa-
ton |A| derived from A by taking the absolute values of all its param-
eters. Then, we prove that the set Arat(Σ) composed of all absolutely
convergent rational series is semi-decidable and we show that the sum∑

w∈Σ∗ |r(w)| can be estimated to any accuracy rate for any r ∈ Arat(Σ).
We also introduce a spectral radius-like parameter ρ|r| which satisfies the
following property: r is absolutely convergent iff ρ|r| < 1.

1 Introduction

Given a finite alphabet Σ, we consider real formal power series defined over
the free monoid Σ∗, i.e. functions which map Σ∗ into R. More precisely, we
consider rational series, which admit several characterizations, one of which
being that they can be computed by multiplicity automata [1,2]. Given a ra-
tional series r : Σ∗ → R, we study whether r is absolutely convergent, i.e.∑

w∈Σ∗ |r(w)| < ∞. It is polynomially decidable whether a rational series r is
simply convergent, i.e. whether the sum

∑
n≥0

∑
w∈Σn r(w) converges to a limit

(see [3] for example). Since the Hadamard product r of two rational series s and
t, defined by r(w) = s(w)t(w), is rational, it is polynomially decidable whether a
rational series r converges in quadratic norm, i.e.

∑
w∈Σ∗ r2(w) <∞. However,

to our knowledge, it is still unknown whether it can be decided if a rational series
is absolutely convergent.

The motivation for the present work comes from a problem we have studied
in grammatical inference. A stochastic language over Σ∗ is a series p which
takes only non negative values and s.t.

∑
w∈Σ∗ p(w) = 11. A classical problem

in grammatical inference consists in inferring an estimate of a target stochastic
language p from a finite sample of words {w1, . . . , wn} independently drawn
according to p. In [4], we proposed an algorithm DEES which takes a sample
� This research was partially supported by the ANR project Marmota.
1 This definition differs from the one given in [2].

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 117–128, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 R. Bailly and F. Denis

as input and outputs a rational series r which simply converges to 1 but can
take negative values, and which satisfies the following property: with probability
one, there exists a sample size level from which the sum

∑
w∈Σ∗ |p(w) − r(w)|

is arbitrarily small, (which implies that r is absolutely convergent); moreover, a
stochastic language pr can be computed from r, that satisfies∑

w∈Σ∗
|pr(w)− r(w)| ≤

∑
w∈Σ∗

|r|(w) − 1.

In other words, we know that from some sample size, we will have a solution of
our problem. But we need to decide whether the series r output by DEES from
the working sample is absolutely convergent to ensure that r provides a solution
and we need to compute an estimate of

∑
w∈Σ∗ |r|(w) to bound the accuracy of

this solution.
A multiplicity automaton (MA) is a tuple A = 〈Σ, Q, ϕ, ι, τ〉, where Q is a

finite set of states, ϕ (resp. ι, τ) is a transition (resp. initialization, termination)
function, which can be used to compute a rational series rA. Any rational series
r can be computed by a MA. Given a MA A, we obtain a new MA |A| by taking
the absolute values of the functions ϕ, ι and τ . It is straightforward that rA is
absolutely convergent if r|A| is simply convergent. We prove that any absolutely
convergent rational series r can be computed by a multiplicity automaton A
which has the property that r|A| is simply convergent. Then, we provide an
algorithm which takes a multiplicity automaton B as input and halts if and
only if rB is absolutely convergent: when the algorithm halts, it outputs a MA
A equivalent to B, i.e. the series computed by A and B are equal, and such
that r|A| is convergent. So, we have proved that the set Arat(Σ) composed of all
absolutely convergent rational series is semi-decidable.

The sum
∑

w∈Σ∗ |r(w)| can be estimated from below by computing the sum∑
w∈Σ≤n |r(w)| for increasing integers n. We prove that our algorithm can be

used to provide convergent upper bounds. So, the sum
∑

w∈Σ∗ |r(w)| can be
estimated to any accuracy rate. As a consequence, if the L1-distance ||r− s||1 =∑

w∈Σ∗ |r(w) − s(w)| is finite, it can be estimated to any accuracy rate. It has
been proved in [5] that computing the L1-distance between two hidden Markov
models is NP -hard which implies that computing the L1-distance between two
MA is NP -hard too. Lp distances of two probabilistic automata have been stud-
ied in [6,7], where efficient algorithm have been provided when p is even. Our
algorithm can be used to estimate Lp distances between two rational series for
any odd values of p.

Finally, for any rational series r, we introduce a spectral radius-like parameter,
ρ|r| defined by ρ|r| = limsupn(|r|(Σn))1/n and we show that r is absolutely
convergent iff ρ|r| < 1.

We recall some properties on rational series and multiplicity automata in
Section 2. We study absolutely convergent series in Section 3; in particular, we
prove that any absolutely convergent rational series can be represented by a
MA A such that r|A| is convergent. We prove the semi-decidability of the class
Arat(Σ) in Section 4. We show how the sum

∑
w∈Σ∗ |r(w)| can be estimated in

Absolute Convergence of Rational Series Is Semi-decidable 119

Section 5. To conclude, we provide some comments and describe some conjectures
and future works in Section 6.

2 Preliminaries

2.1 Rational Series

Let Σ∗ be the set of words on the finite alphabet Σ. The empty word is denoted
by ε, and the length of a word u is denoted by |u|. For any integer k, we denote
by Σk the set {u ∈ Σ∗ | |u| = k} and by Σ≤k the set {u ∈ Σ∗ | |u| ≤ k}. A
subset S of Σ∗ is prefix-closed if for any u, v ∈ Σ∗ uv ∈ S ⇒ u ∈ S.

The general context is, for an alphabet Σ the set R 〈〈Σ〉〉 of all the mappings
from Σ∗ into R. An element of this set is called a formal power series. This set
is an R-vector space. For any series r and any word u ∈ Σ∗, we denote by u̇r
the series defined by u̇r(w) = r(uw). Let LH(r) denote the linear hull of r, i.e.
the vector subspace of R 〈〈Σ〉〉 spanned by {u̇r|u ∈ Σ∗}.

A multiplicity automaton (MA) is a tuple 〈Σ, Q, ϕ, ι, τ〉 where Q is a finite
set of states, ϕ : Q × Σ × Q → R is the transition function, ι : Q → R is
the initialization function and τ : Q → R is the termination function. Let
QI = {q ∈ Q|ι(q) �= 0} be the set of initial states and QT = {q ∈ Q|τ(q) �= 0}
be the set of terminal states. We extend the transition function ϕ to Q×Σ∗×Q
by ϕ(q, wx, q′) =

∑
q′′∈Q ϕ(q, w, q′′)ϕ(q′′, x, q′) and ϕ(q, ε, q′) = 1 if q = q′ and 0

otherwise, for any q, q′ ∈ Q, x ∈ Σ and w ∈ Σ∗. For any finite subset L ⊂ Σ∗

and any Q′ ⊆ Q, define ϕ(q, L, Q′) =
∑

w∈L,q′∈Q′ ϕ(q, w, q′). For any MA A =
〈Σ, Q, ϕ, ι, τ〉, we define the series rA by rA(w) =

∑
q,q′∈Q ι(q)ϕ(q, w, q′)τ(q′).

For any q ∈ Q, we define the series rA,q by rA,q(w) =
∑

q′∈Q ϕ(q, w, q′)τ(q′). The
support of a MA 〈Σ, Q, ϕ, ι, τ〉 is a non deterministic finite automaton (NFA)
〈Σ, Q, δ, QI, QF 〉 where the transition function is defined by δ(q, x) = {q′ ∈
Q|ϕ(q, x, q′) �= 0}.

We will say that a series r is rational if it satisfies one of the two following
equivalent conditions:

1. the dimension of LH(r) is finite;
2. r can be computed by a multiplicity automaton.

The family of all rational series is denoted by Rrat 〈〈Σ〉〉.

2.2 Prefixial Multiplicity Automata

Representation of rational series based on prefix sets has been introduced in [1].

Definition 1. Let A = 〈Σ, Q, ϕ, ι, τ〉 be a MA. We say that A is prefixial if:

– Q is non-empty prefix-closed finite subset of Σ∗

– ∀u ∈ Q, ι(u) �= 0 iff u = ε
– ∀x ∈ Σ, ∀u, v ∈ Q s.t. ux ∈ Q, ϕ(u, x, v) �= 0 iff v = ux.

120 R. Bailly and F. Denis

A transition (u, x, v) is called an inner transition if v = ux and a border tran-
sition otherwise. The set F = {ux|u ∈ Q, x ∈ Σ, ux �∈ Q} is called the frontier
set of A.

An NFA A = 〈Σ, Q, δ, I, F 〉 is prefixial if A is the support of a prefixial MA.

A prefix-closed subset Q of Σ∗ can be used as the set of states of a prefixial
automaton that computes a rational series r if and only if the set {u̇r|u ∈ Q}
spans LH(r). Let us make this statement precise.

Let r be a rational series and let Q be a prefix-closed subset such that {u̇r|u ∈
Q} spans LH(r). Let F = {ux|u ∈ Q, x ∈ Σ, ux �∈ Q}. Let f : Q → R and
g : F ×Q→ R be two mappings that satisfy:

1. f(u) �= 0 for every state u,
2. u̇xr =

∑
v∈Q g(ux, v)f(u)

f(v)
v̇r for every ux ∈ F where f is defined by f(ε) =

f(ε), where f(wx) = f(w)f(wx) for any w ∈ Σ∗ and x ∈ Σ and where the
top bar notation is meant to express that the “dot” applies to the element
under the bar. The function g expresses linear dependencies.

We define the prefixial automaton A(Σ, Q, f, g, r) = 〈Σ, Q, ϕ, ι, τ〉 by

– ι(ε) = f(ε),
– ∀u ∈ Q, x ∈ Σ s.t. ux ∈ Q, ϕ(u, x, ux) = f(ux),
– ∀u, v ∈ Q, x ∈ Σ s.t. ux ∈ F , ϕ(u, x, v) = g(ux, v),
– ∀u ∈ Q, τ(u) = r(u)

f(u)
.

Proposition 1. The automaton A(Σ, Q, f, g, r) computes r.

Proof. Let A(Σ, Q, f, g, r) = 〈Σ, Q, ϕ, ι, τ〉. Let us show, by induction on |w|,
that for any u ∈ Q and any w ∈ Σ∗, u̇r(w) = f(u)rA,u(w).

– Let u ∈ Q: u̇r(ε) = r(u) and f(u)rA,u(ε) = f(u)τ(u) = r(u).
– Let u ∈ Q, w ∈ Σ∗ and x ∈ Σ.

If ux ∈ Q, f(u)rA,u(xw) = f(u)ϕ(u, x, ux)rA,ux(w)

= f(ux)rA,ux(w) by definition of f

= f(ux)
u̇xr(w)
f(ux)

by induction hypothesis

= u̇xr(w).

If ux �∈ Q, f(u)rA,u(xw) = f(u)
∑
v∈Q

g(ux, v)rA,v(w) by definition of A

= f(u)
∑
v∈Q

g(ux, v)
v̇r(w)
f(v)

by induction hypothesis

= u̇xr(w) by definition of g.

Therefore, for any u ∈ Q, u̇r=f(u)rA,u and in particular, r=f(ε)rA,ε =rA. ��

Absolute Convergence of Rational Series Is Semi-decidable 121

3 On Representation of Absolutely Convergent Rational
Series

3.1 Absolutely Convergent Rational Series

Let r be a series and let Γ be a non-empty subset of Σ∗. We say that r is
convergent on Γ if the sum

∑
n≥0

∑
w∈Γ∩Σn r(w) is convergent; if so, we denote

the sum by r(Γ). Let |r| be the series defined by |r|(w) = |r(w)|. We say that r is
absolutely convergent if |r| is convergent. Note that when a series r is absolutely
convergent, it is convergent over any Γ ⊆ Σ∗.

We denote by A(Σ) (resp. by Arat(Σ)) the subspace of R 〈〈Σ〉〉 (resp. of
Rrat 〈〈Σ〉〉) composed of the series that are absolutely convergent.

Let r be a series, we denote by res(r) the following subset of Σ∗: res(r) =
{u ∈ Σ∗/∃w ∈ Σ∗, r(uw) �= 0}. For any absolutely convergent series r and any
word u ∈ res(r), we denote by u−1r the series defined by u−1r(w) = |r|(Σ∗)

|r|(uΣ∗) u̇r

and we call it the residual of r associated with u. The set of all the residuals of r
is denoted by Res(r). The vector subspace spanned by Res(r) is equal to LH(r).
Note that for any u ∈ res(r), |u−1r|(Σ∗) = |r|(Σ∗). The mapping r → |r|(Σ∗)
defines a norm ||·||1 on A(Σ). Let us denote by CH(r) the convex hull of Res(r):
CH(r) = {

∑n
i=1 αiu

−1
i r|n ∈ N, αi ≥ 0,

∑n
i=1 αi = 1, ui ∈ res(r)}. Let us denote

by CCH(r), the closed convex hull of Res(r), i.e. the closure of CH(r). Note
that when r ∈ Arat(Σ), || · ||1 is constant on CCH(r). In particular, CCH(r) is
a compact convex set.

Lemma 1. Let r ∈ Arat(Σ). Then ∀ε > 0, ∃k ∈ N such that ∀s ∈ CCH(r),
|s|(Σ>k) < ε. In particular, ∀ε > 0, ∃k ∈ N such that ∀u ∈ res(r), |r|(uΣ>k) <
ε|r|(uΣ∗).

Proof. For any integer k, let fk : CCH(r)→ R be defined by fk(s) = |s|(Σ>k).
For any s, t ∈ CCH(r), we have |fk(s)−fk(t)| ≤ ||s−t||1. Hence, fk is continuous
for any k. Moreover, limk→∞fk(s) = 0 for any s ∈ CCH(r). Since CCH(r) is
compact, (fk) converges uniformy to 0: for any ε > 0, there exists K ≥ 0 s.t. for
any k ≥ K and any s ∈ CCH(r), |fk(s)| < ε. Apply the result to s = u−1r and
ε/|r|(Σ∗) to obtain the second result. ��

Lemma 2. Let r ∈ Arat(Σ) and let d = dim(LH(r)). For all ε > 0, there exists
an integer N such that for any u ∈ res(r), there exists v1, . . . , vd ∈ res(r)∩Σ≤N

and α1, . . . , αd > −ε such that
∑

1≤i≤d αi < 1 + ε and u−1r =
∑

1≤i≤d αiv
−1
i r.

Proof. Suppose that there exists ε > 0 such that for any integer n, there exists
un ∈ res(r) such that for any v1, . . . , vd ∈ res(r) ∩ Σ≤n, u−1

n r =
∑d

i=1 αiv
−1
i r

implies that there exists an index i s.t. αi ≤ −ε, or
∑d

i=1 αi ≥ 1 + ε. Let nk

be a subsequence such that u−1
nk

r converges to an absolutely convergent series
s ∈ CCH(r).

Now, let v1, . . . , vd−1 be such that v−1
1 r, . . . , v−1

d−1r, s form a basis of LH(r).
For any integer k, let u−1

nk
r = α1,kv−1

1 r + . . . + αd−1,kv−1
d−1r + αd,ks. Since u−1

nk
r

converges to s, αi,k converges to 0 for i = 1, . . . , d − 1 and αd,k converges to 1

122 R. Bailly and F. Denis

when k tends to infinity. Therefore, there should exist an integer K such that for
any k ≥ K, each coefficient of this combination is strictly greater that −ε, and
the sum of all its coefficient is strictly lower than 1+ε, which is contradictory. ��

3.2 A Particular Representation of Absolutely Convergent Rational
Series

Let A = 〈Σ, Q, ϕ, ι, τ〉 be an MA. Let us denote by |A| the MA defined by
|A| = 〈Σ, Q, |ϕ|, |ι|, |τ |〉.

Lemma 3. |rA| ≤ r|A|. Hence, if r|A| is convergent, then rA is absolutely con-
vergent.

Proof. Indeed,

|rA(w)|= |
∑

q,q′∈Q

ι(q)ϕ(q, w, q′)τ(q′)|≤
∑

q,q′∈Q

|ι(q)ϕ(q, w, q′)τ(q′)|=r|A|(w). ��

Lemma 4. Let A = 〈Σ, Q, ϕ, ι, τ〉 be a MA. Suppose that ϕ takes only non
negative values and that there exists an integer k such that for any state q,
ϕ(q, Σk, Q) < 1. Then, the series r|A| is convergent.

Proof. Let R = sup{ϕ(q, Σh, Q)|q ∈ Q, h < k} and ρ = sup{ϕ(q, Σk, Q)|q ∈ Q}.
From the hypothesis, ρ < 1.

Since for any state q and any integers n > 0 and 0 ≤ h < k, ϕ(q, Σnk+h, Q) =∑
q′∈Q ϕ(q, Σ(n−1)k+k, q′)ϕ(q′, Σh, Q), it can easily be shown by induction on n

that ϕ(q, Σnk+h, Q) ≤ Rρn.
Let I = Sup{|ι(q)| for q ∈ Q} and T = Sup{|τ(q)| for q ∈ Q}. We have

|rA|(Σnk+h) ≤
∑

q,q′∈Q

|ι(q)|ϕ(q, Σnk+h, q′)|τ (q′)| ≤ IT
∑
q∈Q

ϕ(q, Σnk+h, Q) ≤ ITR|Q|ρn

Therefore, |rA|(Σ∗) =
∑
n≥0

k−1∑
h=0

|rA|(Σnk+h) ≤ ITR|Q|k
∑
h≥0

ρn =
ITR|Q|k

1− ρ
.

Note that if A is prefixial, there exists a unique state q such that ι(q) �= 0. So we
can take R = sup{ϕ(ε, Σh, Q)|q ∈ Q, h < k} and we have |rA|(Σnk+h) ≤ ITRρn.
and |rA|(Σ∗) ≤ ITRk

1−ρ . ��

Theorem 1. Let r ∈ Arat(Σ). Let ρ < 1. There exists an integer n, and
a prefixial MA A = 〈Σ, Q, ϕ, ι, τ〉 that computes r and such that ∀u ∈ Q,
|ϕ|(u, Σn, Q) < ρ. Hence, the series r|A| is convergent.

Proof. Let r ∈ Arat(Σ) and let d = dim(LH(r)). Let ρ < 1 and let ε = ρ/16.
From Lemma 1, let k be an integer such that ∀u ∈ res(r), |r|(uΣ≥k)

|r|(uΣ∗) < ε. Let
ε′ = (d|Σ|)−1. From Lemma 2, let N > k be an integer such that for all u ∈

Absolute Convergence of Rational Series Is Semi-decidable 123

ε

x

y

z

u ux
ϕ(u, x, ux)

ΣN ΣN+k

v

w1
w2

wd

α1

α2

αd

v
−1

r =
|r|(vΣ∗)
|r|(vxΣ∗)×∑d

i=1 αiw
−1
i

r

ϕ(u, x, ux)=
|r|(uxΣ∗)
|r|(uΣ∗)

Fig. 1. Automaton built in the proof of Theorem 1

res(r), there exists vu,1, . . . , vu,d ∈ res(r) ∩ Σ≤N and αu,1, . . . , αu,d > −ε′ such
that

∑d
i=1 αu,i < 1 + ε′ ≤ 2 and u−1r =

∑d
i=1 αu,iv

−1
u,ir.

Let Q = ΣN+k ∩ res(r). Let f : Q → R be defined by f(ε) = 1 and ∀ux ∈
Q, f(ux) = |r|(uxΣ∗)

|r|(uΣ∗) where u ∈ Σ∗ and x ∈ Σ. One can easily show that
f(u) = |r|(uΣ∗)/|r|(Σ∗).

Let F = {ux|u ∈ Q, x ∈ Σ, ux �∈ Q}. For any ux ∈ F ∩ res(r), there exist
coefficients (αux,v)v∈Σ≤N such that (i) at most d coefficients αux,v are not null;
(ii) (ux)−1r =

∑
v∈Σ≤N αux,vv

−1r; (iii) αux,v > −ε′; (iv)
∑

v∈Σ≤N αux,v < 1+ε′.
From (ux)−1r =

∑
v∈Σ≤N αux,vv

−1r, then u̇xr = |r|(uxΣ∗)
∑

v∈Σ≤N
αux,v

|r|(vΣ∗) v̇r.

Let g : Q × F → R be defined by g(ux, v) = αux,v
|r|(uxΣ∗)
|r|(uΣ∗) if ux ∈ F ∩

res(r) and 0 otherwise. One can check that the conditions on f and g stated in
Section 2.2 are satisfied. (see Fig. 1)

From the proposition 1, the MA A(Σ, Q, f, g, r) = 〈Σ, Q, ϕ, ι, τ〉 computes r.
Let us list below some properties of A:

1. ∀u ∈ Q ∩Σ<N+k and x ∈ Σ, ϕ(u, x, ux) = |r|(uxΣ∗)
|r|(uΣ∗) ≤ 1;

2. ∀u ∈ Q ∩Σ<N+k and h < N + k − |u|, ϕ(u, Σh, Q) = |r|(uΣ≥h)
|r|(uΣ∗) ≤ 1;

3. ∀u ∈ Q ∩Σ≤N , ϕ(u, Σk, Q) = |r|(uΣ≥k)
|r|(uΣ∗) < ε;

4. ∀u ∈ Q ∩ΣN+k and x ∈ Σ, ϕ(u, x, v) = αux,v
|r|(uxΣ∗)
|r|(uΣ∗) > −ε′;

5. ∀u ∈ Q ∩ΣN+k, ϕ(u, Σ, Q) < 1 + ε′ ≤ 2;
6. ∀u ∈ ΣN+k, (|ϕ|(u, Σ, Q)− ϕ(u, Σ, Q)) < 2d|Σ|ε′.

From these properties, one can deduce that:
a) For all u ∈ Σh, h ≤ N − k one have

|ϕ|(u, Σ2k, Q) =
∑

w∈Σk

ϕ(u, w, uw)ϕ(uw, Σk, Q) < ε2 < ρ (1)

by applying twice the property 3.

124 R. Bailly and F. Denis

b) For u ∈ ΣN−k+1 one have

|ϕ|(u, Σ2k, Q) < ε(2 + 2d|Σ|ε′) < ρ. (2)

Indeed, |ϕ|(u, Σ2k, Q) =∑
|w|=2k−1

ϕ(u, w, uw)[ϕ(uw, Σ, Q) + (|ϕ|(uw, Σ, Q)− ϕ(uw, Σ, Q))]

≤
∑

|w|=2k−1

ϕ(u, w, uw)[2 + 2d|Σ|ε′] from properties 5 and 6

≤ ε(2 + 2d|Σ|ε′) from properties 2 and 3.

c) For u ∈ Σh where N − k + 1 < h ≤ N one have

|ϕ|(u, Σ2k, Q) < ε(2 + 2d|Σ|ε′) < ρ. (3)

Indeed, |ϕ|(u, Σ2k, Q) =∑
|w|=N+k−h

ϕ(u, w, uw)
∑

|v|≤N

|ϕ|(uw, Σ, v)ϕ(v, Σk+h−N−1, Q)

≤
∑

|w|=N+k−h

ϕ(u, w, uw)
∑

|v|≤N

|ϕ|(uw, Σ, v) from property 2

≤
∑

|w|=N+k−h

ϕ(u, w, uw)[ϕ(uw, Σ, Q) + (|ϕ|(uw, Σ, Q)− ϕ(uw, Σ, Q))]

≤
∑

|w|=N+k−h

ϕ(u, w, uw)[2 + 2d|Σ|ε′] from properties 5 and 6

≤ ε(2 + 2d|Σ|ε′) from properties 2 and 3.

d) For u ∈ Σh, N < h ≤ N + k one have

|ϕ|(u, Σ2k, Q) < ε(2 + 2d|Σ|ε′)2 < ρ. (4)

Indeed,

|ϕ|(u, Σ2k, Q) <
∑

w∈ΣN+k−h

ϕ(u, w, uw)
∑

v∈Σ≤N

|ϕ|(uw, Σ, v)|ϕ|(v, Σh+k−N−1, Q).

If |v| ≤ 2N − h + 1, |v|+ h + k −N − 1 ≤ N + k, and from Property 3,

|ϕ|(v, Σh+k−N−1, Q) ≤ ε

If |v| > 2N − h + 1, |ϕ|(v, Σh+k−N−1, Q)

≤
∑

|w|=N+k−|v|
ϕ(v, w, vw)

∑
v′∈Σ≤N

|ϕ|(vw, Σ, v′)ϕ(v′, Σ|v|+h−2N−2, Q)

≤
∑

|w|=N+k−|v|
ϕ(v, w, vw)|ϕ|(vw, Σ, Q)

≤ (2 + 2d|Σ|ε′)ϕ(v, ΣN+k−|v|, Q)
≤ ε(2 + 2d|Σ|ε′).

Absolute Convergence of Rational Series Is Semi-decidable 125

That is, in all cases, |ϕ|(v, Σh+k−N−1, Q) ≤ ε(2 + 2d|Σ|ε′) and

|ϕ|(u, Σ2k, Q) < ε(2 + 2d|Σ|ε′)
∑

w∈ΣN+k−h

ϕ(u, w, uw)
∑

v∈Σ≤N

|ϕ|(uw, Σ, v)

≤ ε(2 + 2d|Σ|ε′)2

We have proved that for any u ∈ Q, |ϕ|(u, Σ2k, Q) < ρ. Hence, from lemma 4,
the series r|A| is convergent. ��

Spectral radius of a matrix, joint or generalized spectral radius of a set of ma-
trices are tools used to study asymptotic properties of powers or products of
matrices. A good introduction on spectral radii can be found in the first chap-
ters of [8].

Definition 2. Let r ∈ Rrat〈〈Σ〉〉. We define the absolute spectral radius

ρ|r| = lim sup
n

(|r|(Σn))1/n

Proposition 2. Let r ∈ Rrat〈〈Σ〉〉. r ∈ Arat(Σ) if and only if ρ|r| < 1.

Proof. Let r ∈ Rrat〈〈Σ〉〉. Suppose that ρ|r| < 1, then there exists ρ s.t. ρ|r| <
ρ < 1 and n ∈ N such that |r|(Σ≥n) <

∑∞
i=n ρi. Thus r is absolutely conver-

gent. Suppose now that r ∈ Arat(Σ). By the theorem 1, there exists a prefixial
automaton A = 〈Σ, Q, ϕ, ι, τ〉 that computes r, ρ < 1 and an integer n such that
for every state q, |ϕA|(q, Σn, Q) < ρ. Hence, from Lemma 4, |r|(Σm) = O(ρm/n)
and therefore, ρ|rA| ≤ ρ1/n < 1. ��

4 Decidability

We prove in this section that there exists an algorithm that takes a multiplicity
automaton A as input and halts iff rA is absolutely convergent. In other words,
the class A(Σ) is semi-decidable.

Theorem 2. The class Arat(Σ) is semi-decidable.

Proof. Let r be a rational series and let A be a MA that computes r. Queries
such as: What is the dimension d of LH(r)? Does the word u belongs to res(r)?
Given u1, . . . , ud ∈ res(r), is {u̇1r, . . . , u̇dr} a basis of LH(r)? can be answered
by using A.

We consider the countable class Sr composed of all the prefixial NFA 〈Σ, Q, δ,
I, T 〉 that satisfy the following properties:

– there exists two integers N and k such that Q = Σ≤N+k ∩ res(u);
– for any u ∈ Q and x ∈ Σ such that ux ∈ res(u)\Q, the set δ(u, x) is included

in Σ≤N and the set {v̇r|v ∈ δ(u, x)} forms a basis of LH(r). In particular,
δ(u, x) contains exactly d elements.

Let (Am)m∈N be an enumeration of Sr.

126 R. Bailly and F. Denis

Now let (fn)n∈N be a family of functions defined as follows: for any inte-
ger n, fn : res(r) → R, fn(ε) = 1 and for any x ∈ Σ and ux ∈ res(r),
fn(ux) = |r|(uxΣ≤n)

|r|(uΣ≤n+1) if |r|(uΣ≤n) �= 0 and fn(ux) = 1 otherwise. Note that

limn→∞ fn(ux) = |r|(uxΣ∗)
|r|(uΣ∗) .

Let m ∈ N. For any integer n, we define a MA Am,n whose support is equal
to Am = 〈Σ, Qm, δm, {ε}, Tm〉. Let f : Qm → R be defined by f(u) = fn(u).
Let Fm = {ux|u ∈ Qm, x ∈ Σ, ux �∈ Qm} and let g : Fm ×Qm → R be defined
by g(ux, v) = 0 if v �∈ δm(u, x) and u̇xr =

∑
v∈Q g(ux, v)f(u)

f(v)
v̇r : note that g is

completely determined by Am, fn and r since for any ux ∈ Fm, {v̇r|v ∈ δ(u, x)}
forms a basis of LH(r). We let Am,n = A(Σ, Qm, f, g, r).

Now, consider the following algorithm:

– enumerate (m, n, k) ∈ N
– for each tuple (m, n, k), build the MA Am,n = 〈Σ, Qm, ϕm,n, ιm,n, τm,n〉
– if Maxq∈Qm{|ϕm,n|(q, Σk, Qm)} < 1, halts.

If r is absolutely convergent, from Theorem 1, there exists a prefixial MA
A = 〈Σ, Qm, ϕ, ι, τ〉 that computes r, whose support is Am for some integer
m and such that Maxq∈Qm{ϕ(q, Σk, Qm)} < ρ for some integer k and some
ρ < 1. Since Maxq∈Qm{ϕ(q, Σk, Qm)} is a continuous function in the param-
eters of A, and since limn→∞ ϕm,n(q, x, q′) = ϕ(q, x, q′) for any states q, q′

and any letter x, for any ρ < ρ′ < 1, there exists an integer N such that
Maxq∈Qm{ϕm,n(q, Σk, Qm)} < ρ′ for any integer n ≥ N . Hence, the algorithm
halts on input r.

Clearly, from Lemma 3, since any MA Am,n computes r, the algorithm does
not halt if r is not absolutely convergent. ��

5 Approximation and L1-Distance

To our knowledge, the sum |r|(Σ∗) cannot be exactly computed. Nevertheless,
it is possible to estimate it by a lower bound since for any integer n, |r|(Σ≤n) ≤
|r|(Σ∗) and limn→∞ |r|(Σ≤n) = |r|(Σ∗). We will now define upper bounds of
|r|(Σ∗) which tend to |r|(Σ∗). Hence, it is possible to bound the error made by
the approximation to any accuracy rate.

We first give a variation of Theorem 1.

Lemma 5. Let r ∈ Arat(Σ). For any u ∈ res(r) and any x ∈ Σ, let fn(ux) =
|r|(uxΣ≤n)
|r|(uΣ≤n+1) if |r|(uΣ≤n+1) �= 0 and fn(ux) = 1 otherwise: limn→∞ fn(ux) =

f(ux) = |r|(uxΣ∗)
|r|(uΣ∗) . Let T > |r|(Σ∗).

For any integers N and k, let D : ΣN+k+1 → 2Σ≤N

be such that for any ux ∈
ΣN+k+1, {v̇r|v ∈ D(ux)} forms a basis of LH(r). In particular, |D(ux)| = d =
dim(LH(r)). Given N , k, D and fn, there exists a unique function g : ΣN+k+1×
Σ≤N → R such that g(ux, v) = 0 if v �∈ D(ux) and such that A(Σ, Q, fn, g, r)
computes r (see Proposition 1). Let us denote it by A(N, k, D, fn).

Now given ρ < 1, there exists k0, N0 such that ∀N > N0, ∀k > k0 there exists
n and D such that A = A(N, k, D, fn) satisfies:

Absolute Convergence of Rational Series Is Semi-decidable 127

– ϕ|A|(u, Σ2k, Q) < ρ

– ∀u ∈ ΣN+k, |τ(u)| < T

Proof. By considering the proof of Theorem 1, it can be proved that there exists
integers N0 and k0 such that ∀N > N0, ∀k > k0 there exists D : ΣN+k+1 →
2Σ≤N

such that A = A(N, k, D, f) satisfies ϕ|A|(u, Σ2k, Q) < ρ/2 and ∀u ∈
ΣN+k, |τ(u)| ≤ |r|(Σ∗). Since ϕ|A(N,k,D,fn)|(u, Σ2k, Q) and |τ|A(N,k,D,fn)|(u)|
are continuous relatively to the transition coefficients, there exists an integer n
such that the conclusion holds. ��

Proposition 3. Let r ∈ Arat(Σ). Let A = {A(N, k, D, fn)/N, k, n ∈ N, D ∈
P(ΣN)}. Then inf(r|A|(Σ∗))A∈A = |r|(Σ∗).

Proof. Let N0 and k0 be such as in Lemma 5. We define a sequence (Az)z∈N of
automata:

– Nz = N0 + z, kz = k0
– ∀z, nz and Dz are such as in Lemma 5, Az = A(Nz , kz, Dz, fnz).

As Nz grows, r|Az | converges pointwisely to |r|. We have ‖τz‖∞ < T by con-
struction. We have R = suph<2kz(|ϕz |(ε, Σ2kz , Q)) < 1, as |ϕz|(u, Σ, Q)) < 1 for
u ∈ Σ<Nz+kz . Applying Lemma 4, we have r|Az |(Σ

>n) < Tρn/2k0−1 and there-
fore |r|(Σ>n) < Tρn/2k0−1. Now, |r|Az|(Σ

∗) − |r|(Σ∗)| ≤
∑

w∈Σ∗ |r|Az |(w) −
|r|(w)| ≤

∑
w∈Σ≤Z1 |r|Az |(w) − |r|(w)| +

∑
w∈Σ>Z1 r|Az|(w) +

∑
w∈Σ>Z1 |r|(w).

For ε > 0, one can find Z1 such that both
∑

w∈Σ>Z1 r|Az |(w) < ε/3 and∑
w∈Σ>Z1 |r|(w) < ε/3. Finally, as r|Az| converges pointwisely to |r|(w), one

can find Z2 such that
∑

w∈Σ≤Z1 |r|Az |(w) − |r|(w)| < ε/3, and we can
conclude. ��

Proposition 4. Let AZ be an enumeration of the set {A(N, k, D, n)/N, k, n ∈
N, D ∈ P(ΣN)}. Let G0 = r|A(N0,k0,D0,fn0)|(Σ∗). Let Gz = r|Az|(Σ

∗) if it exists,
and if Gz < Gz−1, Gz = Gz−1 otherwise. Then limz→∞ Gz = |r|(Σ∗).

Proof. Straightforward from Proposition 3. ��

Theorem 3. Let r ∈ Arat(Σ). For any ε > 0, it is possible to compute an
estimate ̂|r|(Σ∗) of |r|(Σ∗) such that

∣∣∣ ̂|r|(Σ∗)− |r|(Σ∗)
∣∣∣ < ε. If the L1-distance

d of two rational series r and s is finite, for any ε > 0, it is possible to compute
an estimate d̂ of d such that |d̂− d| < ε.

Proof. Using Proposition 4, find Gz and n such that Gz − |r|(Σ≤n) < 2ε. For
the second part, apply the result to r − s. ��

6 Conclusion

In this paper, we have proved that it is semi-decidable whether a rational series
is absolutely convergent. Then, given an absolutely convergent rational series

128 R. Bailly and F. Denis

r, we have provided an algorithmic way to estimate the sum |r|(Σ∗) to any
accuracy rate. We do not know whether Arat(Σ) is decidable. We conjecture
that it should be decided that a rational series r is not absolutely convergent
when ρ|r| > 1 but the case ρ|r| = 1 is likely to be difficult. We intend to study the
links between the spectral radius we have defined and the joint or generalized
spectral radii. Finally, we are currently looking for more efficient algorithms and
heuristics than those we have described to approximate the L1 distance of two
rational series, even if there is no hope to find efficient algorithms in the worst
case.

References

1. Berstel, J., Reutenauer, C.: Noncommutative Rational Series With Applications.
Cambridge University Press, Cambridge (2008)

2. Salomaa, A., Soittola, M.: Automata: Theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

3. Denis, F., Esposito, Y.: On rational stochastic languages. Fundamenta Informati-
cae 86(1-2), 41–77 (2008)

4. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS, vol. 4005, pp. 274–288. Springer,
Heidelberg (2006)

5. Lyngsø, R.B., Pedersen, C.N.S.: The consensus string problem and the complexity
of comparing hidden markov models. J. Comput. Syst. Sci. 65(3), 545–569 (2002)

6. Cortes, C., Mohri, M., Rastogi, A.: On the computation of some standard distances
between probabilistic automata. In: H. Ibarra, O., Yen, H.-C. (eds.) CIAA 2006.
LNCS, vol. 4094, pp. 137–149. Springer, Heidelberg (2006)

7. Cortes, C., Mohri, M., Rastogi, A.: Lp distance and equivalence of probabilistic
automata. Int. J. Found. Comput. Sci. 18(4), 761–779 (2007)

8. Theys, J.: Joint Spectral Radius: theory and approximations. PhD thesis, UCL -
Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2005)

Non-solvable Groups Are Not in
FO+MOD+MÂJ2[REG]

Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid

WSI - University of Tübingen, Sand 13, 72076 Tübingen, Germany
{behlec,krebs,reiffers}@informatik.uni-tuebingen.de

Abstract. Motivated by the open question whether TC0 = NC1 we con-
sider the case of linear size TC0. We use the connections between circuits,
logic, and algebra, in particular the characterization of TC0 in terms of
finitely typed monoids. Applying algebraic methods we show that the
word problem for finite non-solvable groups cannot be described by a
FO+MOD+MAJ[REG] formula using only two variables. This implies a
separation result of FO[REG]-uniform linear TC0 from linear NC1.

1 Introduction

An outstanding problem in circuit complexity is that of understanding the re-
lation of the complexity classes ACC0, TC0 and NC1. While the containment
ACC0 ⊆ TC0 ⊆ NC1 is long known, attempts for separation results have had
only limited success. One strategy for attacking these problems is to use the
strong connection between circuit classes, logic, and algebra exhibited in [1] and
[2]. Since in the general case an answer to these questions seems to be out of
reach, the research has concentrated on more restricted settings, which also cor-
respond to meaningful restrictions in logic and algebra. For example restricting
the uniformity of circuit classes to a set of predicates yields logic classes with the
same set of predicates [1,3], or restricting to linear size circuits corresponds to
logic with only two variables [4]. On the algebraic side two-variable logic using
only the order predicate corresponds to weakly iterated block products [5,6,7] of
suitable monoids. Analogous results in the case of linear size TC0 , denoted by
LTC0, are shown in [8].

Extending the algebraic characterization of LTC0 we obtain a class powerful
enough to contain FO+MOD+MAJ2[REG] and FO[REG]-uniform LTC0, as well
as FO[REG]-uniform linear size ACC0. The main result of this paper is that the
word problem of any finite non-solvable group cannot be recognized by this class
and is hence not in FO[REG]-uniform LTC0, while it can be recognized by linear
FO[REG]-uniform NC1. The motivation for such a result is given by the result of
Barrington [9] that the word problem of any finite non-solvable group is complete
for NC1, thus a proof that the word problem of a non-solvable group is not in
TC0 would immediately yield a separation result of TC0 from NC1.

Limitating TC0 circuits to linear size is in this case not as severe as it might
seem. By the result of Allender and Koucký [10] any superlinear lower bound for
the word problem of the S5 (a non-solvable group), would separate TC0 from

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 129–140, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

130 C. Behle, A. Krebs, and S. Reifferscheid

NC1. Although our motivation is the separation of circuit classes, we choose an
algebraic approach, since groups are algebraic objects. This allows us to exploit
concepts like commutators and commutativity in our proofs.

2 Preliminaries

As usual N = {1, 2, 3, . . .} denotes the natural numbers whereas Z stands for all
integers. Further we denote by Z+, Z−

0 the partition of Z into the positive and
non positive integers respectively. For a Cartesian product M =

∏
i∈I Mi the

projection onto the i-th component is denoted by πi(M). Throughout this paper
we use Σ for a finite alphabet and a, b for elements of Σ. Moreover, the length
of a word w in Σ∗ is denoted by |w|.

Logic. We give a short introduction following the notation of Straubing [11]. The
reader familiar with this topic can skip this part and proceed to the definition
of the extended majority quantifier.

First we define the syntactic structure of a formula. A numerical predicate
of arity c consists of a symbol P c

i and a subset of Nc+1, the interpretation. To
ease notation we will identify a numerical predicate with its symbol and use
P c

i , or just Pi if the arity is clear, when referring to a predicate. Let V be a
set of variables and x, x1, . . . , xc ∈ V . The atomic formulas consist either of
P c

i (x1, . . . , xc) for a numerical predicate P c
i or Qa(x) for a ∈ Σ, x ∈ V . The

set of all first order formulas, denoted by FO, is defined recursively as follows:
Every atomic formula is a formula and if φ and ψ are formulas then φ∧ψ, φ∨ψ,
and ¬φ are formulas. Furthermore for a formula φ and a variable x also ∃x φ
and ∀x φ are formulas. For the class FO+MOD we admit the modulo quantifier
Modr

px φ, 0 ≤ r < p. The notions of bound and free variables are defined as
usual and we will write φ(x) to indicate that x is a free variable occurring in φ.

We define the semantics of logic formulas using V-structures. Let V be a finite
set of variables, a V-structure is a string w = (w1,V1)(w2,V2) . . . (wn,Vn) ∈
(Σ × 2V)∗, where the Vi, 1 ≤ i ≤ n are pairwise disjoint and

⋃n
i=1 Vi = V . One

can imagine a V-structure as a word with variables pointing to fixed positions.
For an alphabet Σ and a set of free variables V we denote the set of all V-
structures by Σ∗ ⊗ V . We use wx=i to denote a V-structure such that x ∈ Vi.

Let φ be a formula and w be a V-structure where V contains all free variables
of φ. We define now when w models φ, written w |= φ. w |= Qa(x) iff there
exists a letter (a,Vj) in w with x ∈ Vj. For n = |w| we set w |= P c

i (x1, . . . , xc)
iff (n, x1, . . . , xc) is contained in the interpretation of P c

i . Further w |= φ ∧ ψ
(w |= φ ∨ ψ) iff w |= φ and w |= ψ (w |= φ or w |= ψ) and w |= ¬φ iff w is not a
model for φ. Finally we define when w |= ∃x φ (w |= ∀x φ). If x is not contained
in one of the Vj then w |= ∃x φ (w |= ∀x φ) iff there exists some i, 1 ≤ i ≤ |w|
(iff for all i, 1 ≤ i ≤ |w|) (w1,V1)(w2,V2) . . . (wi,Vi ∪ {x}) . . . (wn,Vn) |= φ. Else
if x is contained in on of the Vj we remove x from Vj and proceed as in the case
if it is free. Likewise w |= Modr

px φ iff the number of positions that wx=i |= φ is
congruent to r modulo p.

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 131

The Extended Majority Quantifier. In addition to these well known quan-
tifiers we consider the extended majority quantifier M̂aj introduced in [8]. The
syntax for the extended majority quantifier is as follows: let φ1, . . . , φc be formu-
las, then M̂aj x〈φ1, . . . , φc〉 is a formula. The semantic meaning of this formula

is given by w |= M̂aj x 〈φ1, . . . , φc〉 ⇔ 0 <
∑n

i=1
∑c

j=1

{
1 if wx=i |= φj

−1 otherwise .

In this paper we use the the common numerical predicates: x < y is true if
x points to a position before y, the successor predicate x = y + 1, also referred
as succ, is defined by {(n, i, i + 1) ⊆ N × N × N | i < n}. The modulo predicate
modp(x) is defined by the set {(n, i) ⊆ N × N | i ≤ n and i ≡ 0 mod p} and
last(x) by {(n, n) | n ∈ N}. A c-ary numerical predicate P is called regular iff
the language LP = {w ∈ {a}∗ ⊗ {x1, . . . xc} | w |= P (x1, . . . xc)} is regular. We
denote by REG the set of regular predicates.

A numerical predicate P is said to be first order constructible from a set of
numerical predicates P if there exists a FO[<, P] formula φ such that for all
w, w |= P iff w |= φ. Furthermore for two c-ary numerical predicates P, P ′ we
call P a shifting predicate of P ′ if there exist integers v1, . . . , vc+1 such that
P = {(i1 + v1, . . . , ic+1 + vc+1) | (i1, . . . , ic+1) ∈ P ′).

We use FO+MOD+MÂJ2 to denote the set of formulas which can be writ-
ten with two variables (which can be used more than once) using first order,
modulo, and extended majority quantifiers. For a set of numerical predicates P
we use FO+MOD+MÂJ2[P] to denote all formulas in FO+MOD+MÂJ2 using
only numerical predicates in P. We will use this notations analogously for FO
and FO+MOD. As usual, for a logic class C we denote by L(C) the class of
languages describable in C.

In [8] the connections between logic, algebra, and circuits in the case of two
variables with special regards to the extended majority quantifier have been
studied. To apply these results for our setting we need the following lemma.

Lemma 1. L(FO+MOD+MÂJ2[REG]) = L(FO+MOD+MÂJ2[<, succ]).

It is also true that FO2[REG] = FO2[<, succ, mod] and FO+MOD2[REG] =
FO+MOD2[<, succ].

Monoids. The reader is assumed to be familiar with the basic algebraic concepts
as they are presented for instance in the first two chapters of Pin [12] or in [11],
Chapter 5. For an overview about the connections between two-variable logic
and algebra we refer the reader to [6]. In particular, we denote for a monoid M
by e the neutral element and we write eM to avoid ambiguity if necessary. An
important monoid is the monoid U1 with the elements {0, 1} and multiplication
given by 0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1.

Definition 1 (Word problem). For a finite group G the word problem LG ⊆
G∗ is the set of all words g1 . . . gn such that g1 · . . . · gn = e where e is the neutral
element in G.

Given a language L ⊆ Σ∗ we call e ∈ Σ a neutral letter (for L) if for all words
u, v ∈ Σ∗, uv ∈ L iff uev ∈ L. The word problem always has a neutral letter,
namely the letter corresponding to the neutral element eG.

132 C. Behle, A. Krebs, and S. Reifferscheid

Our separation results depends on showing that groups with a certain property
cannot be recognized by certain monoids. For this we need the concept of a
commutator. For a group G and g, h ∈ G we denote by [g, h] := g−1h−1gh the
commutator of g and h. The group generated by all commutators of G is called
the commutator subgroup G′ of G. A non-trivial group G is called perfect if
G = G′.

It is a well known fact that a group is non-solvable iff it possesses a perfect
subgroup. Recall that A5, the alternating group on five elements, is a perfect
group. As usual we denote by Gsolv the class of all finite monoids M such that
every group contained in M is solvable.

3 Semilinear Sets

Semilinear sets play a significant role in our work. We recall here the definition
and refer the reader to [13] for more details.

Definition 2 (Semilinear Sets). Let d ∈ N. A set S ⊆ Zd is linear iff there
are x, y1, . . . , yc ∈ Zd, such that S = {x +

∑c
i=1 kiyi | k1, . . . , kc ∈ N ∪ {0}}. In

the following we denote by 〈x, y1, . . . , yc〉 the set S. A set is semilinear iff it is a
finite union of linear sets.

The following two lemmas are simple observations and can be proved using
combinatorics.

Lemma 2. Let s1, t1, u1 ∈ N and N = lcm{t1, u1}. If there are l1, l2 ∈ N such
that s1 + l1t1 + l2u1 ≡ 0 mod N , then there are unique minimal k1, k2 ∈ N such
that s1 + k1t1 + k2u1 ≡ 0 mod N , and (N/t1)|(l1 − k1) and (N/u1)|(l2 − k2).

Lemma 3. Let S = 〈s, t, u〉 ⊆ N×N be a semilinear set, then there are numbers
N, γ ∈ N and (p1, q1), (p2, q2) ∈ [0, 1]Q × Z, where [0, 1]Q is the rational unit
interval, such that for all n1 ≡ n2 ≡ 0 mod N , and all i1 ∈ {1, . . . , n1} and
i2 ∈ {1, . . . , n2}: If {j | pj · n1 + qj ≤ i1} = {j | pj · n2 + qj ≤ i2} and i1 ≡ i2
mod γ then (n1, i1) ∈ S ⇔ (n2, i2) ∈ S.

The following proposition shows that unary semilinear sets can be split in a finite
partition such that every partition entry behaves like a mod predicate.

Proposition 1 (Semilinear Proposition). Let S ⊆ N×N be a semilinear set.
Then there are numbers N, γ ∈ N, and (p1, q1), . . . , (pc, qc) ∈ [0, 1]Q × Z, such
that for all n1 ≡ n2 ≡ 0 mod N , and all i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}
holds: If {j | pj · n1 + qj ≤ i1} = {j | pj · n2 + qj ≤ i2} and i1 ≡ i2 mod γ then
(n1, i1) ∈ S ⇔ (n2, i2) ∈ S.

Semilinear sets are in our setting of interest since they are connected to nu-
merical predicates. We call a numerical predicate semilinear if its associated
subset is semilinear. It has been shown in [14] that MAJ[<] can only express
semilinear predicates and for unary predicates we can now complement this re-
sult for FO+MOD+MÂJ2[REG]. We summarize these results in the following
proposition:

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 133

Proposition 2. The unary predicates that can be expressed by FO+MOD+
MÂJ2[REG] are exactly the unary semilinear predicates. Moreover all unary
semilinear predicates can be expressed by a FO+MOD+MÂJ2[<, last] formula of
quantifier depth 1.

4 Finitely Typed Monoids

In this section we introduce the algebraic counterpart of the class FO+MOD+
MÂJ2[REG], namely the class W consisting of certain so called finitely typed
monoids introduced in [2]. To obtain the characterization for the two variable
case we need to restrict the recognizing morphisms as in [8] (see below for the
exact definition). At the end of this section we prove the so called Commutator
Proposition stating that in our setting we may assume that the recognizing
morphism has a special form; here the non-solvability of the group is exploited.

Before giving the formal definition of a finitely typed monoid, we consider the
following example. Let Σ = {a, b} and L = {w | |w|a > |w|b} the set of words
where the majority of letters are a’s. Define a morphism into the additive group
of integers h : Σ∗ → Z by h(a) = 1 and h(b) = −1. Then obviously w ∈ L iff
h(w) > 0. Thus when recognizing L via the given morphism, the exact value of
h(w) is irrelevant, the important information however is whether h(w) is positive
or not. So, if we equip Z with the “types” Z+ and Z−

0 , then L is recognized by
(Z, {Z+, Z−

0 }) via h in the sense that L = h−1(Z+). A generalization of this idea
leads to the definition of finitely typed monoids and recognizability of languages
by these.

We call a monoid T finitely typed with type set T = {Ti | i ∈ I} iff T =
⋃̇

i∈ITi

for a finite set I. The pairwise disjoint sets Ti, i ∈ I, are called the types of T . We
call the elements of B(T), (the Boolean algebra generated by T), extended types
of T . If the type set T of T is understood we often simply write T instead of (T, T).
Note that a finite monoid T can be regarded as a finitely typed monoid equipped
with the discrete typeset {{t} | t ∈ T }. The direct product (S, S)× (T, T) of two
finitely typed monoids (S, S) and (T, T) is the usual Cartesian product equipped
with the type set S × T = {S × T | S ∈ S, T ∈ T}.

An important concept in the structure theory of finite monoids is the block
product introduced in [15]. Since the usual concept for finite monoids is too
powerful for our purposes we work with a restricted version of the block product.
Let (S, S), (T, T) be finitely typed monoids. We call a function f : (T, T) ×
(T, T) → S strongly type respecting if there are elements u, v such that the value
of the function at (t1, t2) depends only on the type of (T, T) × (T, T) to which
(t1u, vt2) belongs. We call f type dependent if there is a constant c such that
the value of the function at (t1, t2) depends only on the type the element t1ct2
belongs to. Finally, we call f type respecting (with respect to T and S) if it
can be written as finite product of strongly type respecting and type dependent
functions (as usual the product of two functions is the product of their values).
Now we are able to define the block product:

134 C. Behle, A. Krebs, and S. Reifferscheid

Definition 3 (Block Product). Let (S, S), (T, T) be finitely typed monoids
and let V be the set of all type respecting functions (with respect to T and S).
The finitely typed block product (X, X)=(S, S)� (T, T) of (S, S) with (T, T)
is defined as the bilateral semidirect product V ∗ ∗ T of V with T where the
right (respectively left) action of T on V is given by (f · t) (t1, t2) = f(t1, tt2)
(respectively (t · f) (t1, t2) = f(t1t, t2)), t, t1, t2 ∈ T, f ∈ V . The type set X of
X consists of all types XS = {(f, t) ∈ X | f(eT , eT) ∈ S}, where S ∈ S.

We say that a finitely typed monoid (T, T) recognizes the language L ⊆ Σ∗

if there is a morphism h : Σ∗ → T and an extended type T of T such that
L = h−1(T). Note that the only difference to the usual notion of language
recognition by a monoid is the limitation of the allowed accepting sets.

The algebraic class considered in this paper is defined by applying the direct
product and the block product to a set of special finitely typed semigroups.

Definition 4 (SL). Let SL be the set of all finite partitions of Z such that
all elements of the partition are semilinear sets. Let (Z, T) be a finitely typed
monoid. A type set T is called semilinear iff T ∈ SL. In the following we will
write (Z, Sl) to denote a finitely typed monoid equipped with a semilinear typeset.

In [8], for a binary predicate P a so called predicate monoid was introduced, that
is a finitely typed monoid (T, T) with distinguished element t, the incremental
element, such that there is a morphism h : ({a} × 2{x,y})∗ → T, h(a, ∅) = t
such that an

x=i,y=j |= P (x, y) iff h(an
x=i,y=j) ∈ T , and moreover, every predicate

being recognized in this sense by such morphism can be built by P via FO[<]-
constructions and shifting.

Lemma 4. Set (T<, T<) = ((U1, {0, 1})� (Z, {Z+, Z−
0)) and t< = (f<, 0), where

f< : Z × Z → U1, f<(z1, z2) = 1U1 if z1 ∈ Z−
0 and f<(z1, z2) = 0U1 else. Then

((T<, T<), t<) is a predicate monoid for < and a predicate monoid for successor.

In the following we use T< for ((T<, T<), t<) in Lemma 4.
We now proceed as in [8], and construct a class of finitely typed monoids that

corresponds to our logic. As in this paper we need to restrict the choice of the
recognizing morphisms in order to distinguish between numerical predicates and
quantifiers in the algebra.

Definition 5 (W). Let W =
⋃

d≥0 Wd, where

W0 = {(×i

j=1(Z, Slj)) � T k
< | i ∈ N, ∀j ≤ i : Slj ∈ SL, k ∈ N} and

Wd+1={T ′ � ((×i

j=1(Z, Slj)) � T k
<) | T ′∈Wd, i ∈ N, ∀j ≤ i : Slj ∈ SL, k ∈ N}.

As in [8] the construction of the class of monoids is not enough to exactly describe
a set of languages, we also need to define which are the restricted elements in
the monoids of our class. We do this by induction over the structure of monoids
in W.

Definition 6 (Restricted Element, Restricted Morphism). We define in-
ductively the set of restricted elements of monoids in W:

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 135

1. All elements of (Z, Sl) are restricted, with Sl ∈ SL.
2. For ((T<, T<), t<) only the incremental element t< is restricted.
3. An element x ∈ A × B is restricted iff π1(x) and π2(x) are restricted.
4. An element x ∈ A � B is restricted iff all elements in the image of π1(x)

are restricted and π2(x) is restricted.

A morphism h : Σ∗ → T ∈ W is restricted iff h(s) is restricted for all s ∈ Σ.

Note that if h : Σ∗ → T ∈ W is a restricted morphism then for any morphism
α : Σ′∗ → Σ∗, h ◦ α is also a restricted morphism. This is due to the fact that
the product of two restricted elements is restricted again, which follows since t<
is idempotent.

Definition 7 (H−1
R (W)). A language L ⊆ Σ∗ is in H−1

R (W) iff there is a
monoid (T, T) ∈ W and a restricted morphism h : Σ∗ → (T, T) such that
L = h−1(T) for some extended type T of T . In this case we say L is restrictively
recognized by T .

The following lemma shows that the recognizing power of finite direct products
of monoids in W is absorbed by a monoid in W of higher block depth. Thus the
reader familiar with varieties may notice that the languages being recognized by
W are exactly the languages being recognized by the variety generated by W.

Lemma 5. Let h : Σ∗ → T = (A � B) × (C � D) be a (restricted) morphism.
Then there is a (restricted) morphism h′ : Σ∗ → T ′ = (A×C) � (B ×D), such
that for every type T of T there is a type T ′ of T ′ with h−1(T) = h′−1(T ′) .

With the lemma above and Lemma 1 we can now use similar techniques as in
[8] to prove the following proposition.

Proposition 3. L(FO+MOD+MÂJ2[REG]) = H−1
R (W).

We will exploit the algebraic characterization to prove our results.

Lemma 6 (Commutator Lemma). Let G be a finite group and let LG be
recognized by a finitely typed monoid T and a restricted morphism h. Further
let K be a commutative monoid and k : h(G∗) → K be a monoid morphism.
Then LG′ can be recognized by h′ : (G′)∗ → T such that |k(h′(G′)| = 1, where
G′ denotes the commutator subgroup of G.

Applying Lemma 6 to our situation gives

Proposition 4 (Commutator Proposition). If LG is recognized by a (re-

stricted) morphism h : G∗ → T = T ′ � (×i

j=1(Z, Slj) � T k
<) ∈ W for a finite

group G. Then there is a (restricted) morphism h′ : (G′)∗ → T , recognizing the
language LG′ , such that |π2(h′(G′))| = 1.

By Proposition 4 holds in particular, that for perfect groups G, thus LG = LG′ ,
we may assume that there is a fixed element m ∈ (×i

j=1(Z, Slj) � T k
<) such

that for all s ∈ Σ we have π2(h(s)) = m.

136 C. Behle, A. Krebs, and S. Reifferscheid

5 Prefix/Suffix Mappings

In circuit theory there is the notion of circuits that recognize languages with
advice. In this section we define what it means that a language is recognized
by a morphism and given advice depending only on the length of the word.
The advice is realized via so called prefix/suffix functions. The main step of the
proof of Theorem 1 is that under certain circumstances we can reduce the block
depth of the recognizing finitely typed monoid by extending the advice in the
morphism; this is proved at the end of this section.

Definition 8. A function ν : N → Σ∗ is a semilinear prefix/suffix function iff
∀n : |ν(n)| = n and for each s ∈ Σ, the set χs = {(n, i) ∈ Z2 | 1 ≤ i ≤ n
and ν(n)i = s} is semilinear. The pair (ν, h) : N → T , where ν is a semilinear
prefix/suffix function, T is a monoid and h : Σ∗ → T is a monoid morphism, is
called a semilinear prefix/suffix mapping. Two semilinear prefix/suffix mappings
(ν1, h1) and (ν2, h2) are equivalent iff h1(ν1(n)) = h2(ν2(n)) for all n ∈ N.

It is not hard to see that prefix/suffix mappings are stable under the following
operations.

Lemma 7 (Concatenation). Let (ν, h), (ν1, h1) and (ν2, h2) be semilinear
prefix/suffix mappings into the finitely typed monoid T and let c ∈ N and r, l ∈ T .

(a) There is a prefix/suffix mapping ν′, h′ such that ∀n : h(ν(cn)) = h′(ν′(n)).
(b) There is a semilinear prefix/suffix mapping (ν, h) such that ∀n : h(ν(n)) =

h1(ν1(n)) · h2(ν2(n)).
(c) There is a semilinear prefix/suffix mapping (ν′, h′) such that ∀n : h′(ν′(n)) =

r · h(ν(n)) · l.

We will see in Lemma 9 that prefix/suffix functions in some sense also behave
well with respect to the block product.

Now we define the extended notion of accepting languages.

Definition 9. Let Σ be a finite alphabet, T be a finitely typed monoid, T be an
extended type of T , and h : Σ∗ → T be a morphism. Further let (λ, hλ), (ρ, hρ) be
semilinear prefix/suffix mappings, with λ : N → Σ∗

λ, ρ : N → Σ∗
ρ , where Σλ, Σρ

are possibly different alphabets than Σ, and let hλ : Σ∗
λ → T , hρ : Σ∗

ρ → T be
morphisms. A language L ⊆ Σ∗ is recognized by ((h, T, T), (λ, hλ), (ρ, hρ)) iff
for all w ∈ Σ∗ holds: w ∈ L ⇔ hλ(λ(|w|))h(w)hρ(ρ(|w|)) ∈ T . We say L
is restrictively recognized by ((h, T, T), (λ, hλ), (ρ, hρ)) iff the morphism h is a
restricted morphism.

Note that if a language L ⊆ Σ∗ can be recognized by a morphism h : Σ∗ → T ,
then it can be recognized by ((h, T, T), (λ, hλ), (ρ, hρ)) for suitable prefix/suffix
mappings. Note further that Proposition 4 can be applied in the presence of
prefix/suffix functions: With notations as in the proof of Lemma 6, let c = |wg|,
for g ∈ G′ then the assertion follows by Lemma 7 and Proposition 4.

The following lemma together with Proposition 2 shows that the class W can
exactly recognize the unary semilinear predicates.

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 137

Lemma 8. Let L ⊆ {a}∗ ⊗ {x} be a language recognized by the triple
((h, T, T), (λ, hλ), (ρ, hρ)), where T ∈ W, then for all n the set {(n, i) | an

x=i ∈ L}
is a semilinear set.

In an analogous manner, we can prove that prefix/suffix mappings behave nicely
with respect to the block product, which is needed in the following proposition.

Lemma 9. Let (ν, h) : N → T = T ′ � ((×i

j=1(Z, Slj)) � T k
<) ∈ W and

(νc, hc), (νd, hd) : N → (×i

j=1(Z, Slj)) � T k
< be prefix/suffix mappings. Then

there is a prefix/suffix mapping (ν′, h′) : N → T ′ such that
∀n : π1(h(ν(n)))(hc(νc(n), hd(νd(n)))) = h′(ν′(n))).

Now we can prove that we can reduce the block depth given that the last com-
ponent of the morphism is equal for each generator. Note that in case L = LG

for a perfect group G this assumption is given by Proposition 6.

Proposition 5 (Reduction Proposition). Let L ⊆ Σ∗ be restrictively recog-

nized by ((h, T, T), (λ, hλ), (ρ, hρ)), where T = T ′ � ((×i

j=1(Z, Slj)) � T k
<) ∈

W for some i ∈ N. Assume further the existence of a neutral letter e ∈ Σ (for
L) and that |π2(h(Σ))| = 1. Then there is ((h′, T ′, T ′), (λ′, hλ′), (ρ′, hρ′)), that
recognizes L restrictively with T ′ as above.

Proof. The proof of Proposition 5 is done in three steps. To state them we use
the following notation: We set M = (×i

j=1(Z, Slj)) � T k
< and h(s) = (fs, m)

for all s ∈ Σ, where m = ((g1, b), . . . , (gi, b)) ∈ M with b = (t<, . . . , t<). Further
set Ws = Im(fs) ⊆ T ′ for s ∈ Σ and hλ(λ(n)) = (fλ(n), mλ(n)), hρ(ρ(n)) =
(fρ(n), mρ(n)).

Step I: We show that we can find a natural number γ, such that for any word
w = w1 . . . wn of length n with n ≡ 0 mod γ there is an interval such that
at position i in that interval the corresponding value of fwi depends only on
the position modulo γ and the letter wi but not on the letters in the prefix
and suffix; that is: we have an interval [l(n), r(n)] such that for l(n) ≤ i, j ≤
r(n) holds: if i ≡ j mod γ and wi = wj , then fwi(mλ(n)m

i−1, mn−imρ(n)) =
fwj (mλ(n)m

j−1, mn−jmρ(n)).
Let s ∈ Σ and t ∈ Ws. Since |π2(h(Σ))| = 1 by Lemma 8 the set Ss,t =

{(n, i) ∈ N × N | i ≤ n}, fs(mλ(n)m
i−1, mn−imρ(n)) = t} is semilinear. Thus

Proposition 1 gives a finite partition of {(n, i) ∈ N × N | i ≤ n}, given by lines
(ps,t,1, qs,t,1), . . . , (ps,t,c, qs,t,c), a cycle length γs,t and a natural number Ns,t

such that for suitable numbers n1,n2 holds: If two tuples (n1, i1) and (n2, i2)
are in the same partition and the i’s have the same value modulo γs,t then both
tuples are in Ss,t or none. Σ is finite and so is Ws for every s, thus we can choose
a refinement of the partitions given as above. We pick a linear growing element
of this partition and call the corresponding bounding lines (p1, q1), (p2, q2). We
assume without loss in generality that q1 = q2 = 0 (otherwise we reduce this
partition element in a suitable way). Further we set γ = lcm(γs,t, Ns,t | s ∈
Σ, t ∈ Ws). Thus we have the assertion with l(n) = np1 and r(n) = np2. In the
following assume that np1, np2 ∈ N (otherwise pick a suitable multiple of γ).

138 C. Behle, A. Krebs, and S. Reifferscheid

Step II: We show, that we can find semilinear prefix/suffix mappings
(λ̃, hλ̃), (ρ̃, hρ̃) and a restricted morphism h̃ : Σ∗ → T such that the triple

((h̃, T, T), (λ̃, hλ̃), (ρ̃, hρ̃)) restrictively recognizes L and for all s ∈ Σ the func-

tion π1(h̃(s)) : M × M → T ′ is constant.
The idea is to extend each word w ∈ Σ∗ to a word w̃ ∈ Σ∗ by adding suitable

powers of the neutral word e (thus the new word is in L iff the old one is). To
do this we need the notation of Step I; further we set p2 − p1 = c1

c2
with natural

numbers c1, c2, 0 < c1 < c2 (thus we assume without loss in generality that
p2 − p1 ∈]0, 1[Q). First we extend w = w1 . . . wn to w = w1e

c1γ−1 . . . wnec1γ−1,
which ensures that every letter of Σ \{e} has the same position modulo γ. Since
we want the whole word w to be located in the above described interval of an
adequate bigger word , we add suitable powers of the neutral word to both sides
of w. For this we set ñ = nγc2 and w̃ = el(ñ)weñ−r(ñ). Note that |w̃| = ñ ≡ 0
mod γ and denote the letters of w̃ by w̃i, that is w̃ = w̃1, . . . , w̃ñ with w̃i ∈ Σ.
Since e is a neutral letter we have w ∈ L iff w̃ ∈ L.

We define the morphism h : Σ∗ → T by h(s) = h(seγc1−1). Since by Lemma
7 (a),(b) there are semilinear prefix/suffix mappings (λ̃, hλ̃), (ρ̃, hρ̃) such that
hλ(λ(ñ))h(e)l(ñ) = hλ̃(λ̃(n)) and h(e)ñ−r(ñ)hρ(ρ(ñ)) = hρ̃(ρ̃(n)) we have

w ∈ L ⇔ hλ(λ(|w̃|))h(w̃)hρ(ρ(|w̃|)) ∈ T ⇔ hλ̃(λ̃(|w|))h(w)hρ̃(ρ̃(|w|)) ∈ T .

Step I gives for l(ñ) ≤ i, j ≤ r(ñ): If i, j ≡ k mod γ and w̃i = w̃j = s
then fw̃i(mλ(ñ)m

i−1, mñ−imρ(ñ)) = fw̃j (mλ(ñ)m
j−1, mñ−jmρ(ñ)). We denote

this value by t̃
(k)
s)) where 0 ≤ k ≤ γ − 1. Thus for h̃ : Σ∗ → T defined by

h̃(s) = (f̃s, m
γc1) with f̃s : M × M → T ′, (m1, m2) �→ ts := t̃

(0)
s t̃

(1)
e . . . t̃

(γc1−1)
e

for all (m1, m2) ∈ M × M we have w ∈ L iff hλ̃(λ̃(|w|))h̃(w)hρ̃(ρ̃(|w|)) ∈ T and
hence the assertion.

Step III: The definition of ((h′, T ′, T ′), (λ′, hλ′), (ρ′, hρ′)).
We define h′ : Σ∗ → T ′ by setting h′(s) = ts for s ∈ Σ (notation as in Step II).
To ease notation set λ̃w = hλ̃(λ̃(|w|)) and ρ̃w = hρ̃(ρ̃(|w|)). Then by Step II w ∈
L ⇔ π1(λ̃wh̃(w)ρ̃w)(e, e) ∈ T ′. By the definition of the block product and h′ this
is equivalent to π1(λ̃w)(eM , mnγc1π2(ρ̃w))h′(w)π1(ρ̃w)(π2(λ̃w))mnγc1 , eM) ∈ T ′

and by Lemma 9 there exist prefix/suffix mappings (λ′, hλ′) and (ρ′, hρ′) such
that the latter holds iff hλ′(λ′(|w|)))h′(w)hρ′ (ρ′(|w|)) ∈ T ′. Hence the proof is
completed.

6 Results

We obtain now our separation results for logic and circuits by proving the the-
orem stating no finite non-solvable monoid can be recognized by W. The main
idea for the latter is the following: Every finite non-solvable monoid contains
a perfect group. For this we know by Proposition 4 (Commutator Proposition)
that the recognizing morphism is of a special form, thus we can use Proposition
5 (Reduction Proposition) to reduce the block depth of the recognizing monoid.

The implication in terms of logic follows from Proposition 3, and yields by [8]
also separation results for circuit classes.

Non-solvable Groups Are Not in FO+MOD+MÂJ2[REG] 139

Theorem 1. Every regular language L ∈ H−1
R (W) has a syntactic monoid in

Gsolv.

Since by Proposition 3 the regular languages in H−1
R (W) are exactly the regular

languages in FO+MOD+MÂJ2[REG] we obtain:

Theorem 2. Every regular language in L(FO+MOD+MÂJ2[REG]) has a syn-
tactic monoid in Gsolv.

Applying the main theorems of [8] we obtain the statement in terms of circuit
theory which is a separation of the following circuit classes from uniform linear
NC1, since any regular language can be recognized by a linear circuit in NC1.

Theorem 3. Every regular language in L(FO[REG] − uniform LTC0) has a
syntactic monoid in Gsolv.

Since the arguments in [8] can be transferred for the case of first order and
modulo logic we obtain a known statement for linear ACC0 (shortly LCC0):

Theorem 4. Every regular language in L(FO[REG] − uniform LCC0) has a
syntactic monoid in Gsolv.

7 Discussion

We have shown that the only groups being recognized by W are solvable. Al-
though our motivation is the separation of circuit classes, we choose the algebraic
approach, since by Barrington’s result [9] any finite non-solvable group is a nat-
ural candidate to show a separation, and groups are algebraic objects. Further,
concepts like commutators and commutativity are basic concepts in algebra.

Besides our main result we show that all binary semilinear predicates can be
expressed in FO + MOD + MÂJ2[REG] yielding the bound opposite to the one
in [14]. It is also interesting that similar to Lemma 1 we have that all regular
numerical predicates can be expressed by FO2[<, succ, mod] or FO+MOD2[<
, succ], thus the difference in predicates between two variables and unbounded
variables is exactly the successor predicate.

As mentioned before prefix/suffix functions correspond to advice in circuit
theory. Likewise we could have defined prefix/suffix functions of polynomial size
and used the same proofs but this would not have led to a more general result.

From the logical point of view there are two options for further research, first
extending the set of predicates, second extending the number of variables. The
second option seems to be more compelling towards a separation of TC0 from NC1,
but since the algebra would change drastically new approaches would be needed.

Interestingly the latter extension can be also achieved by extending the set of
predicates. Assume there exists a FO[REG]-uniform polynomial size TC0 circuit
recognizing LA5 , then we can define a language L̃ by padding LA5 with the
neutral letter, corresponding to polynomial suffix mappings. This allows that
L̃ can be recognized by a circuit of linear size, but this circuit is no longer
FO[REG]-uniform. Still it would be FO[<, +, ∗]-uniform, actually this would be

140 C. Behle, A. Krebs, and S. Reifferscheid

also true if we started with a FO[<, +, ∗]-uniform TC0 circuit. Hence if we could
extend the uniformity to FO[<, +, ∗] with the method presented in this paper,
we would get a separation result of uniform TC0 from NC1.

Also in case there is a non-uniform TC0 circuit recognizing LA5 , we could
find a polynomial advice encoding the connection predicate of the circuit, and
hence apply our method if we would allow arbitrary suffix mappings. This means,
by lifting the set of predicates, we could get around the limitation of two vari-
ables, and by allowing arbitrary suffix mappings one could even, at least hope
to separate non-uniform TC0 from NC1.

Acknowledgments. We thank Klaus-Jörn Lange for valuable discussions and
for many helpful comments. We also thank the anonymous referees for their
helpful comments to improve the quality of the paper.

References

1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci. 41, 274–306 (1990)

2. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite
groups. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 496–
507. Springer, Heidelberg (2005)

3. Behle, C., Lange, K.J.: FO[<]-uniformity. In: IEEE Conference on Computational
Complexity, pp. 183–189 (2006)

4. Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit lower bounds via
Ehrenfeucht-Fraisse games. In: IEEE Conference on Computational Complexity,
pp. 190–201 (2006)

5. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: STOC, pp. 234–240 (1998)

6. Straubing, H., Thérien, D.: Weakly iterated block products of finite monoids. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 91–104. Springer, Heidelberg
(2002)

7. Straubing, H., Thérien, D.: Regular languages defined by generalized first-order
formulas with a bounded number of bound variables. Theory Comput. Syst. 36(1),
29–69 (2003)

8. Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly
blocked monoids. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708,
pp. 147–158. Springer, Heidelberg (2007)

9. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

10. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility.
In: IEEE Conference on Computational Complexity, pp. 31–40 (2008)

11. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Basel (1994)

12. Pin, J.E.: Varieties of formal languages. Plenum, London (1986)
13. Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas, and languages. Pa-

cific journal of Mathematics 16, 285–296 (1966)
14. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-

plexity approach to LOGCFL. J. Comput. Syst. Sci. 62, 629–652 (2001)
15. Rhodes, J.L., Tilson, B.: The kernel of monoid morphisms. J. Pure Applied Alg. 62,

27–268 (1989)

Reoptimization of Traveling Salesperson
Problems:

Changing Single Edge-Weights

Tobias Berg and Harald Hempel

Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena, 07740 Jena, Germany

tberg@minet.uni-jena.de, hempel@informatik.uni-jena.de

Abstract. We consider the following optimization problem: Given an
instance of an optimization problem and some optimum solution for this
instance, we want to find a good solution for a slightly modified instance.
Additionally, the scenario is addressed where the solution for the original
instance is not an arbitrary optimum solution, but is chosen amongst all
optimum solutions in a most helpful way. In this context, we examine re-
optimization of the travelling salesperson problem, in particular MinTSP
and MaxTSP as well as their corresponding metric versions. We study
the case where the weight of a single edge is modified. Our main re-
sults are the following: existence of a 4/3-approximation for the metric
MinTSP-problem, a 5/4-approximation for MaxTSP, and a PTAS for
the metric version of MaxTSP.

1 Introduction

The travelling salesperson problem is one of the best known and best studied NP-
optimization problems. A lot is known about its approximability. For instance,
the minimization version of TSP (MinTSP) is known to be not efficiently approx-
imable, whereas its metric version allows an 1.5-approximation [1]. In contrast,
the maximization version of TSP (MaxTSP) has constant factor approximations
in both cases, namely a 4/3-approximation in the general case [2] and an 8/7
approximation in the metric case [3].

In this paper, we study reoptimization aspects of TSP. Here, reoptimization is
the problem, given an optimum solution to an original instance, of finding a good
solution for a slightly modified instance. The problem of reoptimizing MinTSP
and MaxTSP with respect to insertion or deletion of vertices has been considered
in [4]. We complement these results by considering another elementary modifi-
cation, namely the change of a single edge-weight. This reoptimization problem
has already been examined in [5]. There it is shown, that reoptimization allows a
7/5-approximation for the metric version of MinTSP. We improve on this result
by giving a 4/3-approximation. Furthermore, we are able to show several other
positive results, for example, a 5/4-approximation when increasing the weight of
an edge in a MaxTSP-instance and an PTAS for increasing or decreasing edge-
weights in the metric case of MaxTSP. Furthermore, we introduce for the first

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 141–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 T. Berg and H. Hempel

time in the context of reoptimization a stronger notion of hardness of a prob-
lem. That is, usually it is sufficient to show that there exist optimum solutions
of the original instance, that are not helpful for finding a good solution. In con-
trast, adopting ideas from [6], we prove in this paper that most reoptimization
problems are hard, for all choices of optimum solutions.

The paper is organized as follows. In the next section, we provide basic no-
tations and definitions. In Section 3, we present our results for the problem
MinTSP. The maximization version of TSP is examined in Section 4.

2 Preliminaries

For a graph G, let V (G) and E(G) denote the set of vertices and the set of edges
of G, respectively. The degree of a vertex u in a graph G, short degG(u), is the
number of edges that are incident to u. A weighted graph is a pair that consists
of a graph (V, E) and a weight function w : E → N. A weighted graph (G, w) is
said to satisfy the triangle inequality if and only if for all vertices s, u, v ∈ V (G)
it holds that w({s, u}) + w({u, v}) ≥ w({s, v}). For a graph G and a subset S
of its vertices, we denote the subgraph induced by S by G[S].

We now formally state one of our main problems, namely, finding a minimum
solution in a TSP instance in which the weight of an edge is increased (decreased).

Problem: inc-MinTSP (dec-MinTSP)

Instance: A complete graph G, two edge cost functions wo, wm : E(G) → N
that coincide for all but one edge e, where wo(e) ≤ wm(e) (resp.,
wo(e) ≥ wm(e)), and a minimum-cost Hamiltonian cycle in G
w.r.t. wo.

Solution: A Hamiltonian cycle T in G.

Measure: The length of the tour T w.r.t. wm, i.e., cost(G, T) =∑
e∈T wm(e).

If a weighted graph Go is modified to a graph Gm by increasing the weight
of an edge e by the amount of i we write Gm = inc(G, (e, i)). The cost of a
minimum weight Hamiltonian cycle in Gm will be denoted by opt(Gm).

Optimization problems inc-MaxTSP and dec-MaxTSP can be defined in the
same way. In this paper, we will also consider several reoptimization problems
c-A, where either c is a restricted form of inc or dec, or A is an optimization
problem whose inputs satisfy an additional condition, e.g., satisfy the triangle
inequality. We desist from giving formal definitions for all these problems c-A
and instead appeal to the reader’s intuition in defining these problems.

3 Minimum Travelling Salesperson (MinTSP)

In this section we study the problem of reoptimizing MinTSP with respect to inc
(increasing the weight of an edge) and dec (decreasing the weight of an edge).

Reoptimization of TSP: Changing Single Edge-Weights 143

vi
1 vi

2 vi
3

vi
4 vi

5

vi
6 vi

7 vi
8

vi
1 vi

2 vi
3

vi
4 vi

5

vi
6 vi

7 vi
8

vi
1 vi

2 vi
3

vi
4 vi

5

vi
6 vi

7 vi
8

Fig. 1. The graph gadget Hi and its two traversals

Theorem 1 ([7]). Let p be a polynomial. Unless P = NP, dec-MinTSP and
inc-MinTSP are not p(|V |)-approximable.

The proof is based on showing that there are original instances Go such that,
even if a selected optimum solution T o

opt of Go is given, a good approximation
of a solution in a slightly modified graph Gm makes the NP-complete problem
of finding a Hamiltonian cycle solvable in polynomial time. A close look at the
proof of Theorem 1 from [7] reveals that in fact a stronger statement can be
made. We are able to show that the nonapproximability of modified instances
of TSP is independent of the given optimum solution for the original instance.
Aside from that our modified construction yields a better nonapproximability
bound.

Theorem 2. Unless P = NP, the problems inc-MinTSP and dec-MinTSP are
not 2|V |-approximable, for any choice of given optimum solution.

Proof. (Sketch) We first consider the case inc: Before diving right into the proof,
we give a rough outline. We show that if inc-MinTSP is 2|V |-approximable, then
the NP-complete problem of finding a Hamiltonian cycle (HC) is in P. Given a
graph G, we construct from G a MinTSP instance Go with a known optimum
solution T o

opt, which is modified to Gm by increasing the weight of an edge. In
addition, the instance Go shall contain exactly one optimum solution, so that
this is the only choice for an optimum solution. Finally, we show that a 2|V |-
approximation for Gm can be used to decide if G ∈ HC.

In detail, the graph Go is constructed as follows. Let G = ({v1, ..., vn}, E) be
a graph. For each vertex vi of G we take into Go a copy of the graph gadget Hi

as depicted in Figure 1. This gadget has the useful property, that it only has
two Hamiltonian traversals, one that enters/leaves at vi

1 and vi
8, and another one

that enters/leaves at vi
3 and vi

6. We connect the gadgets among each other via
the edges {vi

8, v
i+1
1 }, 1 ≤ i ≤ n − 1. Furthermore, we add the edge {vn

8 , v1
1}. In

consequence, the resulting graph contains the Hamiltonian cycle

C = (v1
1 , v1

2 , v
1
3 , v1

5 , v
1
4 , v

1
6 , v1

7 , v
1
8 , v

2
1 , ..., vn−1

8 , vn
1 , vn

2 , vn
3 , vn

5 , vn
4 , vn

6 , vn
7 , vn

8 , v1
1).

Also, for every edge {vi, vj} ∈ E we add the edges {vi
3, v

j
6} and {vj

3, v
i
6}. Let G′

denote the graph constructed so far. It is not hard to verify that (a) G′ has a
Hamiltonian cycle different from C if and only if G ∈ HC and (b) every Hamilto-
nian cycle in G′ besides C uses the edge {v1

1 , v
1
4} but not the edge {v1

3 , v
1
5}. To get

144 T. Berg and H. Hempel

a MinTSP-instance Go we assign the weight 1 to all edges in G′, except the edge
{v1

1 , v
1
4} which gets weight 2. In order to make Go a complete graph we insert

into G′ all edges not mentioned so far and assign weight 28n(8n + 1) to them.
This completes the construction of the graph Go. The graph Gm is obtained
from Go by increasing the weight of the edge {v1

3 , v
1
5} from 1 to 28n(8n + 1).

Note that Go has exactly one optimum solution (minimum weight TSP-tour),
namely C with cost |V (G′)| = 8n. Also, the graph Gm has a TSP-tour of cost
8n + 1 only if G ∈ HC. Otherwise, the best TSP-tour in Gm has weight at least
28n(8n + 1)+1. Thus, a 2|V |-approximation for inc-MinTSP gives a solution of
size at most 28n(8n + 1) if and only if G ∈ HC. This yields a polynomial-time
algorithm to decide HC.

The proof for dec-MinTSP is similar. We use the same auxiliary graph G′ as
above, but assign the following weights to the edges of Go:

w(e) :=

⎧⎨⎩
1, if e ∈ E(G′) \ {{v1

1 , v
1
4}, {v1

3, v
1
5}},

28n(8n + 1), if e = {v1
3 , v

1
5},

28n(8n + 2), otherwise.

Note that any Hamiltonian tour through G′ has to use one of the edges {v1
1 , v

1
4}

or {v1
3 , v

1
5}. Consequently, C′ is the sole optimum tour in Go.

We modify Go to Gm by decreasing the weight of the edge {v1
1 , v

1
4} from

28n(8n + 2) to 1. Thus, if G ∈ HC then Gm has a tour of size 8n, otherwise a
tour in Gm has cost at least 28n(8n + 1). �
We have seen that the concept of reoptimization is not really beneficial for the
problem MinTSP. But this is not the case for all optimization problems. For
instance, we are able to improve on the best known upper approximation bound
of 1.5 for MinTSP∆ (see [1]), a subset of MinTSP that contains all instances that
satisfy the triangle inequality. Since changing the weight of a single edge may lead
to violation of the triangle inequality, we consider the following modifications
inc∆ and dec∆ for the problem MinTSP∆:

inc∆(G, (e, i)) :=

⎧⎨⎩
inc(G, (e, i)), if G and inc(G, (e, i)) satisfy

the triangle inequalilty,
((∅, ∅), ∅), otherwise.

The modification dec∆ is defined in the same way. It was shown in [5] that
dec∆-MinTSP∆ and inc∆-MinTSP∆ are 7/5-approximable. In the same paper
the authors established the following lemma.

Lemma 1 ([5]). Let Go be a weighted graph, e ∈ E(Go) be an edge of Go,
i ∈ N, c ∈ {dec∆, inc∆}, and Gm := c(Go, (e, i)). If Go and Gm satisfy the
triangle inequality, then every edge incident to e has cost at least i/2.

Using a different and refined analysis while applying Lemma 1 and drawing on
constructions already contained in [4] we improve the approximation factor of
7/5 for dec∆-MinTSP∆ and inc∆-MinTSP∆ given in [5].

Theorem 3. The problem dec∆-MinTSP∆ is 4/3-approximable.

Reoptimization of TSP: Changing Single Edge-Weights 145

Proof. Given an original graph Go, a modified graph Gm := dec∆(Go, (e, i)),
and an optimum tour T o

opt for Go, an algorithm A that approximates a tour
for Gm with a factor 4/3 works as follows. The case Gm = ((∅, ∅), ∅) is trivial.
Otherwise, A computes a solution T m

Chr for Gm using Christofides’ algorithm
[1]. We will now argue that the better of the both tours T o

opt and T m
Chr yields a

4/3-approximation.
Without going into detail, we state that in general the cost of T m

Chr in Gm,
cost(Gm, T m

Chr), can be bounded by the size of a minimum spanning tree of
Gm (short, MST (Gm)) added to the size of a minimum perfect matching M
between the vertices of odd degree in MST (Gm). Also, the size of M is bounded
by 1

2opt(Gm). For details see [1] or [8]. By Lemma 1, an optimum tour T m
opt in

Gm uses at least one edge of weight at least i
2 . Since T m

opt without that i/2-
weight edge is a spanning tree, we have that MST (Gm) ≤ opt(Gm) − i

2 . Thus,
cost(Gm, T m

Chr) ≤ 3
2opt(Gm) − i

2 .
For the tour T o

opt we have that cost(Gm, T o
opt) ≤ opt(Gm) + i, since other-

wise we would have a better tour than T o
opt for Go by taking a tour having length

opt(Gm) in Gm as a tour in Go. In case i ≤ 1
3opt(Gm) the tour T o

opt yields a 4/3-
approximation. In case i > 1

3opt(Gm) the tour T m
Chr is a 4/3-approximation. �

This proof translates mutatis mutandis to inc∆, resulting in a 4/3-approximation
for inc∆-MinTSP∆.

Theorem 4. The problem inc∆-MinTSP∆ is 4/3-approximable.

Proof. Let Gm := inc∆(Go, (e, i)). Obviously, opt(Go) ≤ opt(Gm). Also,

cost(Gm, T o
opt) =

{
opt(Go) + i, if e is part of T o

opt,
opt(Go), otherwise,

and therefore cost(Gm, T o
opt) ≤ opt(Go)+i. By combining the two inequalities we

get that cost(Gm, T o
opt) ≤ opt(Gm)+ i. The remaining part of the proof proceeds

in analogy to the proof of Theorem 3. �

We can generalize the above idea to the case in which the weights of k edges are
decreased (increased).

Theorem 5. The problems deck
∆-MinTSP∆ and inck

∆-MinTSP∆ are approx-
imable with ratio 3k+1

2k+1 , for any k ∈ N.

Proof. (Sketch) As in the proof of Theorem 3 we output the better one of the
old solution and the solution obtained by Christofides’ algorithm. Let i1, ..., ik
be the amounts by which the edge weights are decreased. The analysis relies on
the facts that

cost(Gm, T o
opt) ≤ opt(Gm) + k · max

1≤j≤k
ij , and

cost(T m
Chr) ≤

3
2
opt(Gm) − max

1≤j≤k

ij
2

.

146 T. Berg and H. Hempel

If max
1≤j≤k

ij ≤ opt(Gm)/(2k+1) then T o is a 3k+1
2k+1 -approximation, otherwise T m

Chr

yields such a bound. �

Besides these positive results, we can show the following lower bound.

Theorem 6. Unless P = NP, there exists no FPTAS for dec∆-MinTSP∆ and
inc∆-MinTSP∆, for any choice of the given optimum solution.

Proof. First, we show that dec∆-MinTSP∆ has no FPTAS. Assume to the con-
trary that there is an FPTAS for dec∆-MinTSP∆. Let A denote such an al-
gorithm that, given ε > 0 and a weighted graph G, outputs a tour T A with
cost(G, T A) ≤ (1 + ε) · opt(G) in time p(1/ε, |V (G)|), where p is a polynomial.
We show that under this assumption HC ∈ P.

Let G = (V, E) be a graph, |V | = n. We construct the graph G′ from G in the
same way as in the proof of Theorem 2. From G′ we construct an MinTSP∆-
instance Go by assigning cost 3 to the edge {v1

1 , v
1
4}, cost 2 to all other edges of

G′, and cost 3 to all edges in the complete graph Go that are not in G′. Note
that any graph with weights 2 and 3 satisfies the triangle inequality, and even
so if the weight of a single edge is reduced to 1.

Observe that |V (Go)| = 8n and note that the tour

T o
opt = (v1

1 , v1
2 , v

1
3 , v

1
5 , v1

4 , v
1
6 , v

1
7 , v1

8 , v
2
1 , ..., vn−1

8 , vn
1 , vn

2 , vn
3 , vn

5 , vn
4 , vn

6 , vn
7 , vn

8 , v1
1),

is the sole optimum tour in Go and has cost 16n. Now we modify the graph Go by
decrementing the cost of the edge {v1

1 , v
1
4} to 1. The resulting graph is called Gm.

Note that T o
opt still has cost 16n in Gm, therefore opt(Gm) ≤ 16n. In addition,

we claim that Gm has a tour with cost 16n−1 if and only if G has a Hamiltonian
cycle. For a proof of this fact, note that a tour with cost 16n− 1 has to use the
edge {v1

1 , v
1
4} and has to avoid all edges with cost 3. Consequently, it traverses

the gadget H1, and also all other gadgets Hi, via (vi
3, v

i
2, v

i
1, v

i
4, v

i
5, v

i
8, v

i
7, v

i
6),

1 ≤ i ≤ n. This is possible if and only if G itself is Hamiltonian.
Let ε = 1/(17n). For every tour T with cost(Gm, T) = opt(Gm) + 1 we have

cost(Gm, T) =
(

1 +
1

opt(Gm)

)
opt(Gm)

≥
(

1 +
1

16n

)
opt(Gm)

> (1 + ε)opt(Gm).

Consequently, the output T A of the algorithm A(Gm, ε) is an optimum so-
lution of Gm. Now, cost(T A) = 16n − 1 if and only if G ∈ HC. The asser-
tion follows from the fact that the running time of A(Gm, ε) is bounded by
p(1/ε, 8n) = p(17n, 8n).

The proof for inc∆-MinTSP∆ is essentially the same, but starting with the
edge {v1

1 , v
n
8 } having weight 1 and increasing the weight of this edge to 3. �

Reoptimization of TSP: Changing Single Edge-Weights 147

4 Maximum Travelling Salesperson (MaxTSP)

In this section we study the maximization version of the travelling salesperson
problem, also known as taxicab-ripoff problem. Without reoptimization, the best
known approximation result for MaxTSP is a 4/3-approximation [2]. In contrast
to MinTSP, the general MaxTSP problem benefits from reoptimization. In par-
ticular we will show that inc-MaxTSP is 5/4-approximable. Before we prove this
result, we introduce some additional notation.

Definition 1 ([9]). Let G be a graph and f : V (G) → N. An f -factor of G is a
subgraph H of G such that degH(v) = f(v) for all v ∈ V (G).

When f is a constant function, i.e., f(v) = k for all v ∈ V (G) and some fixed
k ∈ N ,we get the notion of a k-factor. Note that a 1-factor of G is a perfect
matching of G. A 2-factor of G is a partition of G into node disjoint cycles.

Lemma 2. Let G be a weighted graph and P = (p1, ..., pm), m ≥ 2, be a path in
G. There is a polynomial time algorithm that finds a maximum weight 2-factor
for G that contains the path P .

Proof. A maximum weight 2-factor for G that respects a given path (p1, ..., pm)
is induced by a maximum weight f -factor for G where

f(x) =

⎧⎨⎩
0, if x ∈ {p2, ..., pm−1},
1, if x ∈ {p1, pm},
2, if x ∈ V (G) \ {p1, ..., pm}.

Chapter 10.1. of [9] contains a reduction function, call it g, such that for any
graph G, G has an f -factor if and only if g(G) has a perfect matching. We can
alter this reduction to yield a similar statement for weighted graphs. Utilizing an
algorithm from [10] for finding a maximum weight perfect matching, we obtain
an O(n3) algorithm for finding a maximum weight f -factor of G. �

We are now prepared to prove our main result of this section. The proof is in
spirit similar to the proof of Theorem 5 in [4].

Theorem 7. The problem inc-MaxTSP is 5/4-approximable.

Proof. Let Go denote the original instance and let T o
opt be a maximum tour for

Go. Let Gm := inc(Go, (e, i)) denote the modified graph, e = {u, v}, and let T m
opt

be a maximum tour for Gm. Note that cost(Go, T o
opt) ≥ cost(Gm, T m

opt)− i, since
otherwise T o

opt was not an optimum tour for Go. Also, we assume that e /∈ T o
opt

and e ∈ T m
opt, otherwise T o

opt is an optimum tour in Gm and is chosen as output
when compared to other solutions that are obtained in the coming.

1. Case: |V (Go)| is even: From T o
opt we can obtain a perfect matching M with

cost(Go, M) ≥ cost(Go, T o
opt)/2 ≥ (cost(Gm, T m

opt) − i)/2. By adding the
edge e to M we obtain a set M ′ that contains a path of length 3 and with
cost(Gm, M ′) ≥ (cost(Gm, T m

opt) + i)/2.

148 T. Berg and H. Hempel

Now, consider a 2-factor F = (C1, ..., C�) of Gm such that (a) e is con-
tained in C1, (b) |C1| ≥ 5, and (c) is of maximum weight among all 2-factors
of Gm that satisfy (a) and (b). Such a 2-factor can be found in polynomial-
time by constructing a maximum weighted 2-factor for Gm that contains the
path (r, s, t, u, v) (see Lemma 2), for all possibilities of expanding e to a path
of length four, and selecting the costliest of these 2-factors. Since e ∈ T m

opt

we have that cost(Gm, F) ≥ cost(Gm, T m
opt).

Applying the method of Serdyukov [2] (see also [11]) we can iteratively,
for p = 1, ..., �, delete an edge from Cp and add this edge to M ′ such that
the modified set M ′ is still a union of paths. For C1 = (r, s, t, u, v, ...) this
is possible since r, s, t are endpoints of a path in M ′ (only u and v are no
endpoints) but only two of them can be endpoints of the same path. Hence,
one of {s, r} or {s, t} can be added to M ′. For all other cycles Cp this is
possible since only vertices from already processed cycles Cj , 1 ≤ j < p, can
have degree 2 in M ′. Thus, all (of at least 3) vertices of Cp are endpoints of
some path in M ′ but only two of them can be endpoints of the same path.

By this procedure, the 2-factor F and the set of edges M ′ are transformed
into two sets of paths P1 and P2 satisfying

cost(Gm, P1) + cost(Gm, P2) = cost(Gm, M ′) + cost(Gm, F)
≥ (cost(Gm, T m

opt) + i)/2 + cost(Gm, T m
opt).

By taking the costlier of P1 and P2 we get a set of paths with cost larger
than 3

4 (cost(Gm, T m
opt) + i

4 . Let T denote the completion of this partial tour
to a cycle in Gm, since Gm is a complete graph T always exists.

Now for i ≤ 1
5cost(Gm, T m

opt) the solution T o
opt yields a 5/4-approximation,

for i > 1
5cost(Gm, T m

opt) the tour T yields such a bound.
2. Case: |V (Go)| is odd: It is easy to obtain from T o

opt a set of paths M with
at most one path of length 2 such that (a) cost(Go, M) ≥ cost(Go, T o

opt)/2,
(b) inserting e into M prolongs the longest path in M , and (c) u and v are
no endpoints in M ∪ {e}. Thus, M ′ := M ∪ {e} only consists of paths of
length 1, with the exception of a single path of length at most 4 containing
u and v, and u, v being no endpoints of the path.

Now, consider a maximum cost 2-factor F = (C1, ..., C�) of Gm that
contains e as an edge in C1 and |C1| ≥ 8. Since M ′ contains at most 3
vertices that are not an endpoint of a path in M ′, the cycle C1 contains 3
consecutive vertices that are endpoints in M ′. The rest of the proof translates
mutatis mutandis from the case |V (Go)| is even. �

A similar result for dec has not yet been found. But it can be shown that both,
dec-MaxTSP and inc-MaxTSP, probably have no FPTAS.

Theorem 8. Unless P = NP, there is no FPTAS for inc-MaxTSP and dec-
MaxTSP, for any choice of a given optimum solution.

The Theorem follows immediately from the upcoming Theorem 11 in which it is
shown that already some restricted versions of dec-MaxTSP and inc-MaxTSP
have no FPTAS.

Reoptimization of TSP: Changing Single Edge-Weights 149

In analogy to MinTSP, we consider as special case of MaxTSP the problem
MaxTSP∆, where the input instances are required to satisfy the triangle inequal-
ity. The problem MaxTSP∆ is approximable with ratio 8

7 when no old solution is
given [3]. We can prove that there exists a PTAS for dec∆-MaxTSP∆ by showing
approximability of alternative solutions for MaxTSP∆ — a result interesting in
its own right.

Theorem 9. Let G be a MaxTSP∆-instance, Topt be a maximum tour in G,
and e be an edge of Topt. We can find a tour T ′ such that e does not belong to
T ′ and cost(G, T ′) ≥

(
1 − 2

|V (G)|−2

)
cost(G, Topt) in polynomial-time.

Proof. Let Topt = (v1, ..., vn) be a maximum tour of the complete graph G on
n vertices with weight function w. We assume without loss of generality that
e = {vn, v1}. There exist three consecutive vertices vi−1, vi, vi+1 on T o

opt, 2 ≤ i ≤
n − 1, such that w({vi−1, vi}) + w({vi, vi+1}) ≤ 2

n−2cost(G, Topt). To see this,
assume to the contrary that w({vi−1, vi}) + w({vi, vi+1}) > 2

n−2cost(G, Topt),
for all 2 ≤ i ≤ n − 1. But then, by summarizing the weights of the paths
(v2i−1, v2i, v2i+1), 1 ≤ i ≤ �(n−1)/2� in Topt we get that cost(G, Topt) > (n−1

2 −
1
2) · 2

n−2 · cost(G, Topt), a contradiction.
By deleting the edges {vn, v1}, {vi−1, vi}, and {vi, vi+1} from Topt and insert-

ing the edges {vn, vi}, {vi, v1}, and {vi−1, vi+1} we obtain a tour T ′ which does
not contain the edge e. Due to the triangle inequality the cost of the tour Topt

increases when taking the path (vn, vi, v1) instead of the shortcut (vn, v1). Thus,
T ′ is shortened by at most w({vi−1, vi}) + w({vi, vi+1}) compared to Topt. �

Corollary 1. The problem dec∆-MaxTSP∆ has a PTAS.

Proof. The only interesting case is that the modified edge e does belong to a
maximum tour T o

opt in the original graph Go. Let ε > 0. In case that ε ≥ 2
|V (G)|−2

Theorem 9 yields a solution T ′ with cost(Go, T ′) ≥ (1 − ε)cost(Go, T o
opt) that

does not contain e. The assertion follows from the facts that cost(Go, T o
opt) ≥

cost(Gm, T m
opt) and that cost(Go, T ′) = cost(Gm, T ′). In case that ε < 2

|V (G)|−2
we perform a brute force search for a maximum tour in Gm. �

The existence of a PTAS can also be shown when the modification is inc∆.

Theorem 10. The problem inc∆-MaxTSP∆ has a PTAS.

Proof. Let ε ≥ 0 and G be a MaxTSP∆-instance. If ε < 2
|V (G)|−2 we perform

a brute force search for an optimum solution in Gm. In the other case, ε ≥
2

|V (G)|−2 , we output the old solution T o
opt. This suffices since cost(Gm, T o

opt) ≥(
1 − ε)cost(Gm, T m

opt).
To see this, take an optimum tour T m

opt of Gm. If e is contained in T m
opt we use

Theorem 9 to get a tour T ′ that does not contain e and for which

cost(Gm, T ′) ≥
(

1 − 2
|V (G)| − 2

)
cost(Gm, T m

opt) ≥
(
1 − ε

)
cost(Gm, T m

opt).

150 T. Berg and H. Hempel

If e is not contained in T m
opt we set T ′ := T m

opt. Since the modified edge e is not
contained in T ′ and since T o

opt is a maximum in Go we have

cost(Gm, T ′) = cost(Go, T ′) ≤ cost(Go, T o
opt) ≤ cost(Gm, T o

opt).

The assertion follows immediately. �

Regarding hardness, we are able to prove the following.

Theorem 11. Unless P = NP, there is no FPTAS for inc∆-MaxTSP∆ and
dec∆-MaxTSP∆, for any choice of optimum solution.

Proof. The proof is similar to the proof of Theorem 6, except that we assign the
weights 2, 3, and 4 to the edges, in order to satisfy the triangle inequality.

In more detail, we use the auxiliary graph G′ from the proof of Theorem 2.
For the case that the modification is inc∆ we assign the weight 2 to the edge
{v1

1 , v
1
4} of G′, the cost 3 to all other edges of G′, and cost 2 to all edges missing

in G′. The resulting graph is Go, which clearly has a single maximum solution
of size 3n′. We modify Gm by increasing the weight of the edge {v1

2 , v
1
4} from 2

to 4. The resulting graph Gm has a solution of size 3n′ +1 if and only if G ∈ HC
the rest of the proof is similar to the proof of Theorem 6.

In case that the modification is dec∆ we assign the weight 4 to the edge
{v1

3 , v
1
5}, the weight 3 to all other edges of G′, and the weight 2 to all edges

missing in G′. We modify this graph by decreasing the weight of the edge {v1
3 , v

1
5}

from 4 to 2. The rest of the proof is as usual. �

Acknowledgements. We thank the anonymous referees for their valuable sug-
gestions.

References

1. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem, Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh (1976)

2. Serdyukov, A.I.: An algorithm with an estimate for the traveling salesman problem
of the maximum. Upravlyaemye Sistemy 25, 80–86 (1984)

3. Chen, Z.Z., Nagoya, T.: Improved approximation algorithms for metric MaxTSP.
J. Comb. Optim. 13(4), 321–336 (2007)

4. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum
and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT
2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

5. Böckenhauer, H.J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer,
Heidelberg (2008)

6. Liberatore, P.: The complexity of modified instances. arXiv.org cs/0402053 (2004)
7. Böckenhauer, H.J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,

Widmayer, P.: On the approximability of TSP on local modifications of optimally
solved instances. Algorithmic Oper. Res. 2(2), 83–93 (2007)

Reoptimization of TSP: Changing Single Edge-Weights 151

8. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Dover Publications Inc., Mineola (1998); corrected reprint of the 1982
original

9. Lovász, L., Plummer, M.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland, Amsterdam (1986)

10. Gabow, H.: Implementation of algorithms for maximum matching on nonbipartite
graphs, Ph.D. Thesis, Stanford University (1974)

11. Barvinok, A., Gimadi, E.K., Serdyukow, A.I.: The Maximum Traveling Salesman
Problem. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and
Its Variations, pp. 585–608. Kluwer Academic Publishers, Dordrecht (2002)

Refinement and Consistency
of Timed Modal Specifications�

Nathalie Bertrand1, Sophie Pinchinat2, and Jean-Baptiste Raclet3

1 INRIA Rennes, France
2 IRISA & Université Rennes 1, France

3 INRIA Rhône-Alpes, France

Abstract. In the application domain of component-based system design,
developing theories which support compositional reasoning is notoriously
challenging. We define timed modal specifications, an automata-based for-
malism combining modal and timed aspects. As a stepping stone to compo-
sitional approaches of timed systems, we define the notions of refinement
and consistency, and establish their decidability.

1 Introduction

The increasing complexity of computer systems has led to methodologies almost
universally based on component assembling. Because in the system development
process, some pieces may not be completed or are not yet available, analysis
methodologies must rely on an abstract description of the components behaviour.

Logic-based formalisms, such as modal and temporal logics, are robust formal
tools to express statements about the behaviours of computer systems. Unfor-
tunately, logics do not relate well in general to compositional approaches; the
description of a system as a collection of interacting components cannot be ex-
ploited. However, by conceding a loss of expressiveness, like confining attention
to safety properties, satisfactory frameworks can be developed.

A convincing proposal is the modal specification approach of [1]1, inspired by
[3]. Modal specifications are deterministic automata equipped with two types of
transitions: may-transitions, that are optional, as opposed to must-transitions,
that are obligatory. Arbitrary safety properties can be expressed, as well as some
elementary liveness ones by using must-transitions. Moreover, the formalism sub-
sumes interface automata of [4] as shown in [5]. The algebraic setting developed
by [1] has nice features that lead to effective methods, which we recall here.

The consistency of a modal specification, i.e. whether it has a model, is de-
cidable, and the finite model property holds. Inclusion of the sets of models can
also be decided since it coincides with the refinement preorder on modal spec-
ifications. Also, the greatest lower bound of two modal specifications, referred
to as shared refinement in [6], can be effectively computed. From a logic per-
spective, satisfiability, implication, and conjunction correspond to consistency,
refinement, and greatest lower bound, respectively.
� This research was supported by the European COMBEST project.
1 See [2] for a complete exposition.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 152–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Refinement and Consistency of Timed Modal Specifications 153

Moreover,modal specificationsbehavewellwith regard to compositional reason-
ing:Raclet in [1] has introducedaproduct combinator betweenmodal specifications
which reflects the parallel product of models. Furthermore, the dual quotient com-
binator is extremely relevant for the incremental design of component-based sys-
tems. Modal specification-based approaches seem thus very promising to develop
formal tools in this application domain. In particular, they should be amenable to
apply to the challenging domain of embedded systems, provided the framework can
take real-time aspects into account.

Towards this end, the present contribution extends the algebraic framework
of [1] to a timed setting. Timed modal specifications provide a logical formal-
ism which combines modal and timed statements. They generalize both modal
specifications and timed automata, just as timed automata generalize ordinary
automata, and modal specifications generalize ordinary automata, respectively.
Decision methods for refinement and consistency are achieved by bridging timed
modal specifications and (untimed) modal specifications, via a region-based con-
struction. These results are stepping stones to compositional reasoning on timed
systems, by validating a timed extension of the algebraic theory of Raclet [1].

The paper is organized as follows: we define timed modal specifications in
Sect. 2, and present their semantics in Sect. 3. Section 4 is dedicated to the
refinement preorder, and is followed by consistency issues in Sect. 5.

2 Timed Automata and Timed Modal Specifications

As a modal specification is a simple automaton with a distinction between may
and must transitions, a timed modal specification can be seen as a timed au-
tomaton equipped with may and must edges. In the following, we recall basics
on timed automata [7], and then introduce timed modal specifications.

2.1 Timed Automata

Let X be a finite set of clocks. A clock valuation over X is a mapping ν : X → IR+,
where IR+ is the set of nonnegative reals. By V , we represent the set of clock
valuations over X , and define 0 ∈ V by 0(x) = 0 for all x ∈ X . A guard over X
is a finite conjunction of expressions of the form x ∼ c where x ∈ X , c ∈ IN is a
constant, and ∼ ∈ {<,≤, =,≥, >}. We denote by ξ[X] the set of guards over X .
For some fixed N ∈ IN, ξN [X] represents the set of guards involving expressions
where the constants are smaller than or equal to N . The satisfaction relation
|=⊆ V×ξ[X] between clock valuations and guards is defined in a natural way: we
write ν |= g whenever ν satisfies g. In the following, we will often abuse notation
and write g to denote the set of valuations which satisfy the guard g.

We consider timed automata with possibly infinitely many states (also called
locations), and with a slight abuse of terminology we still call them timed
automata.

Definition 1. Given X a set of clocks, Σ an alphabet and N ∈ N, a timed
automaton (ta) is a structure C = (C, c0,X , Σ, δ) where C is a (possibly infinite)

154 N. Bertrand, S. Pinchinat, and J.-B. Raclet

set of states, c0 is the initial state, and δ ⊆ C×ξN [X]×Σ×2X×C is a transition
relation. We call (Σ,X , N) the signature of C.

From now on, we fix a signature (Σ,X , N). A region, denoted θ, is a set of clock-
valuations which satisfy exactly the same guards of ξN [X]. Given a region θ, we
write Succ(θ) for the union of all regions that can be obtained from θ by letting
time elapse. We let Θ be the set of all regions.

Definition 2. Given a timed automaton C = (C, c0,X , Σ, δ), we can build its
associated region automaton R(C) = (C × Θ, (c0, 0), ∆) over the alphabet Θ ×
Σ × 2X . The transitions in R(C) stem from those in C in the following way: for
all (c, g, a, r, c′) ∈ δ, for each region θ such that (c, θ) is reachable from (c0, 0),
for each region θ′′ ∈ Succ(θ)∩ g, there exists ((c, θ), θ′′, a, r, (c′θ′)) ∈ ∆, where θ′

is the region obtained from θ′′ by resetting clocks in r, which we write θ′′[r := 0].

Without loss of generality, we assume that any region automaton R(C) is pruned,
i.e. all its states are reachable. As an example, a ta C and its region automaton
R(C) are represented in the left part of Fig. 2, on page 159.

Note that any automaton over the alphabet Θ × Σ × 2X can be seen as
a timed automaton over the signature (Σ,X , N). We introduce the operator T
which transforms the former into the latter in a straightforward manner, in order
to distinguish the two distinct interpretations of the same syntactic object.

Definition 3. A ta C is in normal form if it is isomorphic to (the reachable
part) of (T ◦ R)(C).

A direct consequence of Definition 3 is the ability to associate a unique region to
any state of a ta in normal form. One can easily be convinced that given a timed
automaton C, (T ◦R)(C) is isomorphic to (T ◦R)2(C). As a consequence, any ta
C can be normalized by letting its normal form be C↓:= (T ◦R)(C). Notice that
normalizing a ta is safe with respect to its semantics, as stated by the following
proposition:

Proposition 1. Let C be a ta. The timed languages of C and C↓ coincide.

Proof. We prove that the configuration graphs of C and C↓ are bisimilar, the
above proposition is then a direct consequence. We recall that the configuration
graph of a ta C, defined in [7] is as follows. Vertices are configurations, and there
are two kinds of edges. For all d ∈ IR there is a delay-edge labeled by d between
configurations (c, ν) and (c′, ν′) whenever c = c′ and ν′ = ν + d (defined as
∀x ∈ X , (ν + d)(x) = ν(x) + d). There is an action edge labeled with a between
(c, ν) and (c′, ν′) if there exists c

g,a,r−−−→ c′ ∈ δC such that ν satisfies the guard g
and ν′ = ν[r := 0].

Given a valuation ν, we denote [ν] the region it belongs to. We define the
following binary relation between configurations of C and of (T ◦ R)(C):

∼:= {((c, ν), (c, [ν1]), ν) | ν ∈ Succ([ν1])}

and show that ∼ is a bisimulation. By definition, (c0, 0) ∼ ((c0, 0), 0). Assume
now (c, ν) ∼ ((c, [ν1]), ν).

Refinement and Consistency of Timed Modal Specifications 155

Any edge (c, ν) d−→ (c, ν + d) in the configuration graph of C can be simulated
by ((c, [ν1]), ν) d−→ (c, [ν1]), ν + d) in the configuration graph of R(C), and vice
versa. Moreover, we indeed have (c, ν +d) ∼ (c, [ν1]), ν +d), since [ν] ∈ Succ([ν′])
entails [ν + d] ∈ Succ([ν′]).

Assume (c, ν) a−→ (c′, ν′), because of some transition c
g,a,r−−−→ c′ ∈ δC . Neces-

sarily, ν ∈ g and ν′ = ν[r := 0]. Because [ν] is a time successor of [ν1], the

transition (c, [ν1])
[ν],a,r−−−−→ (c′, [ν′]) exists in the region graph R(C) and justifies

the transition ((c, [ν1]), ν)
[ν],a,r−−−−→ ((c′, [ν′]), ν′).

Reciprocally, assume ((c, [ν1]), ν) a−→ ((c′, θ′), ν′) in the configuration graph

of R(C). Then, there exists (c, [ν1])
θ,a,r−−−→ (c′, θ′) in R(C), such that (1) ν ∈ θ,

(2) ν′ = ν[r := 0] ∈ θ′, and (3) θ ⊆ Succ([ν1]).

Transition (c, [ν1])
θ,a,r−−−→ (c′, θ′) in R(C), stem from some c

g,a,r−−−→ c′ in C with
(4) θ′ = θ[r := 0] and (5) θ ⊆ g.

By (1) and (5), ν ∈ g. Since c
g,a,r−−−→ c′ is a transition in C, there must be an

edge (c, ν) a−→ (c′, ν[r := 0]) in C’s configuration graph.
(2), ν[r := 0] = ν′, showing that (c, ν) a−→ (c′, ν′). It remains to establish that

(c′, ν′) ∼ ((c′, θ′), ν′), that is [ν′] ∈ Succ(θ′), which is immediate by (4). ��

Even if this amounts to performing a normalization operation, we assume from
now on that every ta is in normal form.

2.2 Timed Modal Specifications

Definition 4. A timed modal specification (tms) over the signature (Σ,X , N)
is a structure S = (Q, q0,X , Σ, δm, δM), where

– Q is a finite set of states, and q0 ∈ Q is the unique initial state;
– δm, δM ⊆ Q × ξN [X] × Σ × 2X × Q are finite sets of transitions, with the

requirements δM ⊆ δm, and δm and δM are deterministic.
• δm is the set of may-transitions representing the allowed transitions.

Given a may-transition (q, g, a, r, q′) ∈ δm, q is the source state, q′ is
the destination state, g ∈ ξN [X] is the guard that specifies the valuations
for which the transition can be taken, a ∈ Σ is the action labeling the
transition and r ⊆ X is the set of clocks reset by the transition.

• δM is the set of must-transitions representing the required transitions.

Determinism of the transition relation means that for every state q, every action
a and every region θ, there exists at most one transition (q, g, a, r, q′) ∈ δm.
Assuming that modal specifications are deterministic is common in the untimed
case since it allows to relate refinement and inclusion of sets of models. This is
not the case when nondeterminism is allowed [8]. We will often write q

g,a,r−−−→ q′

to denote (q, g, a, r, q′) ∈ δM and q
g,a,r��	 q′ to denote (q, g, a, r, q′) ∈ δm.

In the next section, we give the semantics of tms in terms of a collection of
timed automata-like models.

156 N. Bertrand, S. Pinchinat, and J.-B. Raclet

3 Timed Modal Specification Semantics

3.1 Models of Timed Modal Specifications

Models of untimed modal specifications [1] are prefix-closed languages and can
be represented by (a priori infinite-state) automata. Given a tms S, its models
are ta which relate to S via a simulation-like relation. Formally,

Definition 5. Let C = (C, c0,X , Σ, δ) be a ta and S = (Q, q0,X , Σ, δm, δM)
be a tms. C is a model of S, written C |= S, if there exists a binary relation
ρ ⊆ C × Q such that (c0, q0) ∈ ρ, and for all (c, q) ∈ ρ, the following holds:

– for every q
g,a,r−−−→ q′ ∈ δM , and every region θ such that both (c, θ) and

(q, θ) are reachable (in C and S respectively), there exist n ∈ IN, states
c1 · · · cn ∈ C, and guards g1, · · · , gn ∈ ξ[X] with
• Succ(θ) ∩ g ⊆ Succ(θ) ∩

⋃n
i=1 gi,

• c
gi,a,r−−−→ ci ∈ δ, ∀1 ≤ i ≤ n, and

• (ci, q
′) ∈ ρ, ∀1 ≤ i ≤ n.

– for all c
g,a,r−−−→ c′ ∈ δ, there exist a state q′ ∈ Q and a guard g′ ∈ ξ[X] with

• g ⊆ g′,

• q
g′,a,r��	 q′ ∈ δm, and

• (c′, q′) ∈ ρ.

Intuitively, the first condition of Definition 5 ensures that any move required by
the specification (a must-transition) is reflected in the model, potentially split
in several transitions; the second condition guarantees that any transition of
the model is allowed in the specification (as a may-transition). In this latter
condition, notice that because C is in normal form, the guard g in the transition
c

g,a,r−−−→ c′ is necessarily a region. Let us illustrate Definition 5 on an example.

Example 1. Consider the tms S and ta C represented on Fig. 1, where dashed
arrows denote transitions in δm \ δM and plain arrows transitions in δM . Also,
the action alphabet Σ is left implicit, and transitions are just labeled by guards
and optional resets.

In order to show that C is a model of S we consider the intuitive simulation
relation that associates all pairs (ci, qi) and show that this relation satisfies the

c0 c1 c2

c3

0<x<1 0<x<1

x:=0

x=0

0<x<1

x:=0

C

q0 q1 q2

q3S

0≤x<1 0≤x<1

x:=0

x=0

0<x<1

x:=0

Fig. 1. A tms S and a ta C with C |= S

Refinement and Consistency of Timed Modal Specifications 157

conditions of Definition 5. We draw the reader’s attention to two arguments:
First, the transition c0 0<x<1−−−−→ c1 is justified in S by a may-transition with a

looser guard, namely q0 0≤x<1��	 q1. Second, the must-transition q1
0≤x<1,x:=0−→ q2

in S is correctly reflected in C since c1 is only reachable in C within region
(0, 1). Hence it suffices to consider the intersection of the must-transition guard
(0 ≤ x < 1) with the time-successors of the reachable region (0, 1) as guard for
the transition in the model C.

Let us now define the following particular tms S� that denotes the true formula
(i.e. for every ta C, C |= S�) by:

S� := ({q0}, q0, δm
� , δM

�) with δm
� = {(q0, true, a, ∅, q0) | a ∈ Σ} and δM

� = ∅

In the following, we write Mod(S) for the set of models of S and emphasize
the fact that only ta in normal form are considered.

3.2 The Region-Based Interpretation

We show here that the semantics of tms can be characterized by that of modal
specifications via the transformation from timed automata to region automata.
Modal specifications (ms), also called modal automata [3], correspond to the
untimed variant of tms. As we already dedicated significant space to tms, we
expect the reader to understand their untimed variants as objects like R =
(P, p0, Act, ∆m, ∆M), with an obvious interpretation of the components (states,
initial state, set of actions, may-transitions, must-transitions).

An automaton M = (M, m0, Act, ∆) is a model of a ms R = (P, p0, Act, ∆m,
∆M) (written M |= R) if there exists a binary relation ρ ⊆ (M × P) such that
(m0, p0) ∈ ρ, and for all (m, p) ∈ ρ, the following holds:

– for every p
a−→ p′ ∈ ∆M there is a transition m

a−→ m′ ∈ ∆ and (m′, p′) ∈ ρ;
– for every m

a−→ m′ ∈ ∆ there is a transition p
a−→ p′ ∈ ∆m and (m′, p′) ∈ ρ.

The natural untimed object associated with a tms S, is its region modal
automaton, which is obtained by generalizing the construction of the region au-
tomaton R(C) for a ta C (Definition 2). An example of S and R(S) is represented
in Fig. 2 on page 159.

Notice that for every ta C and tms S over the signature (Σ,X , N), the
automaton R(C) and the modal specification R(S) share alphabet Θ × Σ × 2X .

Proposition 2. Let M be an automaton over the alphabet Θ × Σ × 2X and S
be a tms. If M |= R(S) then T (M) is in normal form; moreover T (M) |= S.

Proof. Assume M is a model of the modal specification R(S) over the alphabet
Θ×Σ×2X : each state m in M can be decorated with a unique region θm reflect-
ing the valuation of the clocks when entering m. By definition of T , T (M) and
M have the same set of states. In order to distinguish between the set of states of
M and the one of T (M), we write the latter T (M). From the simulation relation
ρ′ between M and R(S), we define ρ ⊆ T (M)× Q by (T (m), q) ∈ ρ if there ex-
ists θ such that (m, (q, θ)) ∈ ρ′. Note that in this case, θ is uniquely determined.

158 N. Bertrand, S. Pinchinat, and J.-B. Raclet

Firstly, (T (m0), q0) ∈ ρ since (m0, (q0, 0̄)) ∈ ρ′. Let us pick (T (m), q) ∈ ρ. We
prove that all requirements of the specification S appear in T (M), and that all
transitions in T (M) are allowed in S:

For any transition q
g,a,r−→ q′ in S, for any region θ such that (q, θ) is reachable

in R(S), and any region θ′′ ∈ g ∩Succ(θ), there exists in R(S) a must-transition

(q, θ)
θ′′,a,r−→ (q′, θ′). Since M is a model of R(S), there must be some transition

m
θ′′,a,r−−−−→ m′ in M with (m′, (q′, θ′)) ∈ ρ′. Hence (m′, q′) ∈ ρ (by definition of ρ).

State m is solely reachable for a given clock region θ. Since the latter transition
in M exists for all regions θ′′ ∈ Succ(θ), we come with a collection of transitions
in M: m

gia,r−−−→ mi such that (mi, q
′) ∈ ρ, and Succ(θ) ∩ g = Succ(θ) ∩

⋃
i gi.

Any transition T (m)
g,a,r−−−→ T (m′) comes from some m

g,a,r−−−→ m′. Since M
is a model of R(S), there exists a may-transition (q, θ)

g,a,r��	 (q′, θ′) in R(S)
with (m′, (q′, θ′)) ∈ ρ′. Note that this implies that g is a region. This transition

appears in S under the form q
g′,a,r��	 q′, with g ⊆ g′ and (m′, q′) ∈ ρ. ��

Theorem 1. Let C be a ta (in normal form) and S be a tms. Then

C |= S if, and only if, R(C) |= R(S)

Proof. Let us first assume that C |= S. There exists a simulation relation ρ be-
tween C and S meeting requirements of Definition 5. We define ρ′ ⊆ (C × Θ) ×
(Q×Θ) by: ((c, θ), (q, θ′)) ∈ ρ′ if (c, q) ∈ ρ and θ = θ′. We show that ρ′ is a simu-
lation between R(C) and R(S), entailing R(C) |= R(S). First ((c0, 0̄), (q0, 0̄)) ∈ ρ′

by definition of ρ′ and since (c0, q0) ∈ ρ. Let us pick ((c, θ), (q, θ)) ∈ ρ′.

Any must-transition (q, θ)
θ′′,a,r−−−−→ (q′, θ′) in R(S) comes from some must-

transition in S: q
g,a,r−−−→ q′ with θ′′ ⊆ g. Note that θ′′ ∈ Succ(θ). Since C is

a model of S, and (c, q) ∈ ρ there are states c1, · · · , cn and regions θ1, · · · , θn

such that Succ(θ) ∩ g ⊆ Succ(θ) ∩
⋃

i θi, and for all i there is some transition

c
θi,a,r−−−→ ci with (ci, q

′) ∈ ρ. In particular, there is a transition in C of the form

c
g′,a,r−−−→ c′ with θ′′ ⊆ g′ and (c′, q′) ∈ ρ. Back to R(C), there must be a transition

(c, θ)
θ′′,a,r−−−−→ (c′, θ′) and ((c′, θ′), (q′, θ′)) ∈ ρ′.

Any transition (c, θ) θ′′,a,r−−−−→ (c′, θ′) in R(C), comes from some c
g,a,r−−−→ c′ in C

with θ′′ ⊆ g. Since C is a model for S, there must be several may-transitions in
S of the form q

gi,a,r��	 qi ∈ δm
S with g ⊆

⋃
i gi and (c′, qi) ∈ ρ. In particular, there

is a transition q
g′,a,r��	 q′ with θ′′ ⊆ g′ and (c′, q′) ∈ ρ. This transition appears in

R(S) as several transitions guarded by regions, one of which is (q, θ)
θ′′,a,r��	 (q′, θ′).

Since (c′, q′) ∈ ρ, it follows that ((c′, θ′), (q′, θ′)) ∈ ρ′.
Assume now R(C) is a model of the untimed modal specification R(S) over

the alphabet ξ[X] × Σ × 2X . By Proposition 2, (T ◦ R)(C) |= S. Since C is in
normal form, (T ◦ R)(C) and C are isomorphic, hence C |= S. ��
Note that Theorem 1 does not hold for arbitrary ta since its ‘if’-part relies on the
assumption that ta are in normal form. This assumption cannot be dispensed

Refinement and Consistency of Timed Modal Specifications 159

c0 c c′
0<x<1 x=0

0<x<1

x:=0

C

q0 q1 q2

q3

0≤x<1 0≤x<1

x:=0

x=0

0<x<1

x:=0

S

c0,0

c,(0,1)

c,0 c′,0

0<x<1
0<x<1

x:=0

x=0

0<x<1

x:=0

R(C)

q0,0 q1,0 q2,0

q3,0q1,(0,1)R(S)

0<x<1

0<x<1

x:=0
0<x<1

x:=0

x=0

x=0

0<x<1

x:=0

x=0

Fig. 2. A ta C, a tms S and their region automata

with altogether: the ta C of Fig. 2 is not in normal form, and is not a model
of the tms S. And yet R(C) is a model of R(S). Indeed, R(C) is obtained from

R(S) by cutting the may-transition (q0, 0)
x=0��	 (q1, 0), and keeping transition

(q0, 0)
x=0��	 (q1, (0, 1)).

Corollary 1. It is decidable, given a tms S and a ta C, whether C |= S.

Proof. This is an immediate consequence of Theorem 1 and the decidability
result in [1] for the model relation of untimed modal specifications. ��
Until now, tms are provided with a clear semantics. We now wish to provide the
framework with standard logic concepts. We successively define an implication-
like relation, the refinement, and a conjunction-like operation, the greatest lower
bound, that yield effective methods. Recall that we fixed a signature (Σ,X , N);
this is necessary when we want to talk about refinement and consistency of timed
modal specifications.

4 Refinement
Refinement is a preorder between specifications, and expresses that whenever S1
refines S2, S1 guarantees the properties S2 does, and maybe others. It happens
to correspond in the untimed case to the inclusion of sets of models [1]. We now
investigate the refinement preorder for tms.

Thanks to the semantics of tms, a good candidate for the refinement preorder
is the one naturally inherited from the refinement preorder between ms, which
we recall here.

Given two ms R1 = (P1, p
0
1, Act, ∆m

1 , ∆M
1) and R2 = (P2, p

0
2, Act, ∆m

2 , ∆M
2),

R1 is a refinement of (or refines) R2, written R1 � R2, if there exists a (simu-
lation) relation ρ ⊆ P1 × P2 such that (p0

1, p
0
2) ∈ ρ, and for all (p1, p2) ∈ ρ, the

following holds:

160 N. Bertrand, S. Pinchinat, and J.-B. Raclet

– for every p2
a−→ p′2 ∈ ∆M

2 there exists p1
a−→ p′1 ∈ ∆M

1 with (p′1, p
′
2) ∈ ρ;

– for every p1
a��	 p′1 ∈ ∆m

1 there exists p2
a��	 p′2 ∈ ∆m

2 with (p′1, p
′
2) ∈ ρ.

Definition 6. Given two tms S1 and S2, S1 refines S2, written S1 � S2, when-
ever R(S1) � R(S2). We write S1 ≡ S2 whenever S1 � S2 and S2 � S1.

Lemma 1. For every tms, S ≡ (T ◦ R)(S)

Proof. Lemma 1 relies on the observation that given a tms S, R(S) and R((T ◦
R)(S)) are isomorphic. Therefore, they are equivalent according to the refine-
ment preorder on (untimed) modal specifications. ��

Until now, we have required tms to be finite-state (Definition 4). Actually, the
framework smoothly extends to infinite-state tms, so that ta, which may have
infinitely many states, naturally embed into tms as follows: given a ta C =
(C, c0,X , Σ, δ), we define the tms C∗ := (C, c0,X , Σ, δ, δ).

Lemma 2. Let C be a ta and S a tms. Then C |= S if, and only if, C∗ � S.

Proof. By Theorem 1, since C is in normal form, C |= S is equivalent to R(C) |=
R(S). Moreover, according to [1] for the untime setting, R(C) |= R(S) is equiv-
alent to R(C) |= R(S), which by definition is equivalent to C∗ � S, since R(C)
R(C∗) are isomorphic. ��

Theorem 2. It is decidable whether, for any two tms S1 and S2, S1 � S2.
Moreover, S1 � S2 if, and only if, Mod(S1) ⊆ Mod(S2).

Proof. R(Si) are deterministic modal automata (that is, their may and must
transition functions are deterministic) thus the (untimed) refinement relation
coincide with the inclusion of models [1]. This entails the decidability of the
refinement relation for tms.

Let us prove now that S1 � S2 ⇔ Mod(S1) ⊆ Mod(S2). The ‘only if’-part
is easy: Assume S1 � S2, and consider C |= S1. Then by Lemma 2 C∗ � S1.
Therefore C∗ � S2, and again by Lemma 2 C |= S2.

For the ‘if’-part, assume it not the case that S1 � S2. By definition, R(S1) �
R(S2) does not hold either. Then there exists an automaton M with M |= R(S1)
but M �|= R(S2). By Proposition 2, T (M) is in normal form and T (M) |= S1.
However T (M) �|= S2, otherwise, (R ◦ T)(M) would be a model of R(S2). This
is impossible since (R ◦ T)(M) is isomorphic to M. Hence T (M) is a witness
for Mod(S1) �⊆ Mod(S2). ��

We extend the class of tms (over a fixed signature) with an extra object, written
S⊥, for which Definition 4 does not apply: S⊥ has an empty set of states, and
thus empty sets of transitions, and no initial state. By convention, Mod(S⊥) = ∅
and we extend the refinement preorder by letting S⊥ � S for every tms S. Note
that all the properties established so far remain valid for this slight extension.
Intuitively, with the logic point of view, S⊥ is meant to denote an antilogy, while
dually, S� (defined in Sect. 2) denotes a tautology.

Lemma 3. S⊥ � S � S�, for any tms S.

Refinement and Consistency of Timed Modal Specifications 161

5 Consistency

Consistency of a specification is a standard property in logic which expresses
the existence of a model. Notice that tms have the finite model property: indeed
given a tms S, we can decide whether R(S) has a model, and if so, effectively
synthesize an automaton M model of R(S). T (M) is then a ta (with finitely
many states), and by Proposition 2, T (M) is model of S.

Consistency between a pair of specifications can also be considered, with the
meaning that the specifications share a common model. In a pure logical setting,
consistency between two specifications reduces to the consistency of a single
one, by considering their conjunction. In this regard, we equip the tms with
a conjunction operator derived from the one originally proposed by [1] for the
untimed case. We recall this untimed-case construction.

A universal principle when operating a conjunction is to focus on the strongest
constraint in the operands. When the operands are untimed modal specifications,
constraints refer to the modal status (may or must) of transitions, and the con-
junction of two untimed modal specifications amounts to combine transitions in
the following manner (recall that dashed arrows are may-transitions and solid
arrows are must-transitions): for example, if p1

a−→ p′1 in the first (untimed)
modal specification and p2

a��	 p′2 in the second (untimed) modal specification,
then (p1, p2)

a−→ (p′1, p
′
2) is a transition of their conjunction.

Formalizing wholly this idea leads to the three following rules:

p1
a−→p′

1 p2
a���p′

2

(p1,p2)
a−→(p′

1,p′
2)

p1
a���p′

1 p2
a−→p′

2

(p1,p2) a−→(p′
1,p′

2)
p1

a���p′
1 p2

a���p′
2

(p1,p2)
a���(p′

1,p′
2)

Remark that constraints of each operand can be inconsistent, e.g. when p1
a−→ p′1

(a must occur) but there is no transition p2
a��	 p′2 (written p2

a� and meaning
that a is forbidden in p2). In that case, the product state (p1, p2) is inconsistent,
and it is modeled by the ability from the compound state (p1, p2) to reach the
particular state ⊥ which precisely denotes inconsistency. Hence the two following
additional rules.

p1
a−→p′

1 p2
a
�

(p1,p2)−→⊥
p2

a−→p′
2 p1

a
�

(p1,p2)−→⊥
By the five rules above, we obtain a structure where the inconsistent state ⊥
may be reachable. The conjunction of the two untimed modal specifications is
the greatest sub-structure closed by must transitions and which does not contain
the state ⊥. Notice that this sub-structure may be empty. As proved by [1], the
resulting delivers indeed the conjunction of the two specifications in the sense
that it denotes the intersection of their models.

Definition 7. The conjunction of the tms S1 and S2, denoted S1 ∧ S2 is the
tms T (R(S1) ∧ R(S2)). If R(S1) ∧ R(S2) is empty then S1 ∧ S2 is S⊥.

Corollary 2. S1 ∧ S2 is the �-greatest lower bound of S1 and S2.

Proof. Write Ri := R(Si). By [1], R1 ∧ R2 � Ri. Moreover, since S1 ∧ S2 =
T (R1 ∧ R2) and T is monotonic, we have S1 ∧ S2 � T (Ri). Finally because

162 N. Bertrand, S. Pinchinat, and J.-B. Raclet

T (Ri) ≡ Si (Lemma 1), S1 ∧ S2 � Si. We now show it is the greatest element
under S1 and S2. Assume that there exists S such that S � Si. Therefore,
by definition of �, R(S) � Ri which entails R(S) � R1 ∧ R2. Now, we have
S ≡ T (R(S)) � T (R1 ∧ R2) since T is monotonic; as S1 ∧ S2 = T (R1 ∧ R2) by
definition, we conclude. ��

Corollary 3. Mod(S1 ∧ S2) = Mod(S1) ∩ Mod(S2)

Proof. From Corollary 2 we have S1∧S2 � Si. Then Theorem 2 entails, Mod(S1∧
S2) ⊆ Mod(Si). Thus Mod(S1 ∧ S2) ⊆ [Mod(S1) ∩ Mod(S2)]. Let C be a ta
such that C ∈ [Mod(S1) ∩ Mod(S2)]. By Lemma 2, C∗ � S1 and C∗ � S2.
By Corollary 2, C∗ � S1 ∧ S2 and by Lemma 2, C |= S1 ∧ S2. As a result
[Mod(S1) ∩ Mod(S2)] ⊆ Mod(S1 ∧ S2). ��

6 Conclusion

We introduced timed modal specifications as a logical formalism to combine
modal and timed statements, and provided them with a decidable notion of
refinement and a computable conjunction operator.

Regarding related work, timed interfaces have been proposed in [9] as a timed
extension of interface automata from [4]. This framework explicitly distinguishes
between the output actions (from the components of the system) and the input
actions (from the environment). A decidable test of compatibility is developed
between, on the one hand, the respective assumptions made by each individual
component on its environment and, on the other hand, the guarantees that each
component provides. However, no refinement preorder is considered. We also
mention the work from [10], in which so-called timed modal specifications are
introduced as well. Essentially, these are obtained as modal extensions of config-
uration graphs of timed automata, but presented instead as enriched CCS-like
processes with durations and modalities. Because, the authors do not explicitly
adopt a logical-based setting, their study of several types of refinement relations
does not lead to addressing the corresponding lower-bound operators, thereby
the work misses the crucial discussion about consistency.

In future work, we will extend product and quotient of [1] to timed modal spec-
ifications, borrowing know-hows from the untimed setting. Also, timed interfaces
should be embeddable into timed modal specifications, via a construction in the
line of [5] for the untimed setting. The main difficulty would be to establish that
the compatibility relation of [9] is hereditary with respect to the present notion
of refinement preorder; as a consequence, two compatible components could be
implemented independently.

References

1. Raclet, J.B.: Residual for component specifications. In: Proceedings of FACS 2007
(2007)

2. Raclet, J.B.: Quotient de spécifications pour la réutilisation de composants. PhD
thesis, Université de Rennes I (December 2007) (in French)

Refinement and Consistency of Timed Modal Specifications 163

3. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) Automatic Verification
Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer, Hei-
delberg (1990)

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of FSE 2001,
pp. 109–120 (2001)

5. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

6. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: de Alfaro, L., Palsberg, J. (eds.) EMSOFT 2008, pp. 79–88.
ACM Press, New York (2008)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

8. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

9. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

10. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and
tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 253–267. Springer,
Heidelberg (1993)

Nondeterministic Instance Complexity and
Proof Systems with Advice

Olaf Beyersdorff1, Johannes Köbler2, and Sebastian Müller2,�

1 Institut für Theoretische Informatik, Leibniz-Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
{koebler,smueller}@informatik.hu-berlin.de

Abstract. Motivated by strong Karp-Lipton collapse results in bounded
arithmetic, Cook and Kraj́ıček [1] have recently introduced the notion
of propositional proof systems with advice. In this paper we investigate
the following question: Given a language L, do there exist polynomially
bounded proof systems with advice for L? Depending on the complexity
of the underlying language L and the amount and type of the advice used
by the proof system, we obtain different characterizations for this prob-
lem. In particular, we show that the above question is tightly linked with
the question whether L has small nondeterministic instance complexity.

1 Introduction

The classical Cook-Reckhow Theorem states that NP = coNP if and only if the
set of all tautologies TAUT has a polynomially bounded proof system, i.e., there
exists a polynomial p such that every tautology ϕ has a proof of size ≤ p(|ϕ|)
in the system. Consequently, showing super-polynomial lower bounds to the
proof size in propositional proof systems of increasing strength provides one way
to attack the P/NP problem. This approach, also known as the Cook-Reckhow
program, has lead to a very fruitful research on the length of propositional proofs.

Motivated by strong Karp-Lipton collapse results in bounded arithmetic,
Cook and Kraj́ıček [1] have recently introduced the notion of propositional proof
systems using advice. This model seems to be strictly more powerful than clas-
sical proof systems, as long-standing open problems, such as the existence of
optimal proof systems, receive affirmative answers in this setting [1,2].

In the present paper we focus on the question whether there exist polynomially
bounded proof systems with advice. We do not only consider propositional proof
systems, but investigate this question for arbitrary proof systems and languages.
As in the Cook-Reckhow Theorem above, we obtain a series of results which
provide a complete complexity-theoretic characterization for this question.

In particular, we show a tight connection of this problem to the notion of non-
deterministic instance complexity. Similarly as Kolmogorov complexity, instance
complexity measures the complexity of individual instances of a language [3]. In

� Supported by DFG grant KO 1053/5-2.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 164–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Nondeterministic Instance Complexity and Proof Systems with Advice 165

its nondeterministic version, Arvind, Köbler, Mundhenk, and Torán [4] used
this complexity measure to show that, under reasonable complexity-theoretic
assumptions, there are infinitely many tautologies that are hard to prove in
every propositional proof system. In the light of our present contribution, this
connection between nondeterministic instance complexity and proof complexity
is strengthened by results of the following form: all elements of a given language
L have small instance complexity if and only if L has a proof system with advice
such that every x ∈ L has a short proof.

To achieve these results, we start in Sect. 3 by reviewing the notion of nonde-
terministic instance complexity of [4]. Instance complexity is measured by two
parameters: the size of the machine and its running time. The most interesting
choice for these parameters seems to allow logarithmic size programs with poly-
nomial running time. We combine all languages admitting such programs in the
class NIC[log, poly]. Using a proof idea from [3], we show the class NIC[log, poly]
to lie properly between the nonuniform classes NP/log and NP/poly.

In Sect. 4, we generalize the notion of propositional proof systems with advice
of Cook and Kraj́ıček [1] to arbitrary languages. For functional proof systems
we consider three types of advice selectors: those that match the input length,
those that match the output length, and arbitrary. Input advice turns out to
be not really restrictive. Similarly as in [1], we show that for every language L,
the class of all proof systems for L using logarithmic input advice contains an
optimal proof system.

Our main results follow in Sects. 5 and 6 where we consider the plausibility of
various languages having polynomially bounded proof systems with advice. In
Sect. 5 we investigate this problem for arbitrary languages, whereas in Sect. 6
we focus on TAUT which presents the most interesting case for practical ap-
plications. At this point, instead of providing a comprehensive account, we will
just explain a few central results from Sects. 5 and 6.

For output advice, the classical Cook-Reckhow Theorem generalizes in a
straightforward manner, and thus a language L has a polynomially bounded
proof system with logarithmic output advice if and only if L ∈ NP/log.

For input advice, which yields a strictly more powerful model, this question
is more intricate. Here we establish the connection to nondeterministic instance
complexity: a language L has a polynomially bounded proof system with loga-
rithmic input advice if and only if L ∈ NIC[log, poly]. While NIC[log, poly] and
NP/log are different classes, we prove that they do not differ on sets from coNP.
Thus, for any language L ∈ coNP, the notion of a polynomially bounded proof
system with logarithmic advice is the same when considering advice in terms of
per proof length or per instance length.

While this result also holds for a polynomial amount of advice, it appears
to fail when reducing the amount of advice to constantly many bits, as unlikely
collapse consequences would follow. Finally, we summarize the relative strengths
of various proof systems by showing that the actual existence of polynomially
bounded advice proof systems for TAUT produces different collapses of the poly-
nomial hierarchy.

166 O. Beyersdorff, J. Köbler, and S. Müller

2 Preliminaries

We assume familiarity with standard complexity classes. In the following we
just mention a few classes which occur in this paper. The Boolean hierarchy
BH is the closure of NP under union, intersection, and complementation. The
levels of BH are denoted BHk, where BH2 is also known as Dp. The Boolean
hierarchy coincides with PNP[O(1)] consisting of all languages which can be solved
in polynomial time with constantly many queries to an NP oracle. If we allow
O(log n) adaptive queries we get the presumably larger class PNP[log].

Complexity classes with advice were first considered by Karp and Lipton [5].
For each function h : N → Σ∗ and each language L we let L/h = {x | 〈x, h(|x|)〉 ∈
L}. If C is a complexity class and F is a class of functions, then C/F = {L/h |
L ∈ C, h ∈ F}.

Cook and Reckhow [6] defined the notion of a proof system for an arbitrary
language L quite generally as a partial polynomial-time computable function f
with range L. A string w with f(w) = x is called an f -proof for x ∈ L.

Proof systems are compared according to their strength by simulations as
introduced in [6] and [7]. If f and g are proof systems for L, we say that g
simulates f (denoted f ≤ g), if there exists a polynomial p such that for all
x ∈ L and f -proofs w of x there is a g-proof w′ of x with |w′| ≤ p (|w|). If
such a proof w′ can even be computed from w in polynomial time, we say that
g p-simulates f and denote this by f ≤p g. If the systems f and g mutually
(p-)simulate each other they are called (p-)equivalent. A proof system for L is
(p-)optimal if it (p-)simulates all proof systems for L. For a function t : N → N,
a proof system f for L is t-bounded if for all x ∈ L there exists an f -proof of size
at most t(|x|). If t is a polynomial, then f is called polynomially bounded.

3 Nondeterministic Instance Complexity

While Kolmogorov complexity studies the hardness of individual strings, the
notion of instance complexity was introduced by Orponen, Ko, Schöning, and
Watanabe [3] to measure the hardness of individual instances of a given lan-
guage. The deterministic instance complexity of [3] was later generalized to the
nondeterministic setting by Arvind, Köbler, Mundhenk, and Torán [4].

As required for Kolmogorov complexity and instance complexity, we fix a
universal Turing machine U(M, x) which executes nondeterministic programs
M on inputs x. In the sequel, we refrain from always mentioning U explicitly.
Thus we simply write statements like “M is a t-time bounded Turing machine”
with the precise meaning that U always spends at most t(n) steps to simulate M
on inputs of length n. Likewise, to “simulate a machine M on input x” always
means executing U(M, x).

A nondeterministic Turing machine M is consistent with a language L (or
L-consistent), if L(M) ⊆ L. We can now give the definition of nondeterministic
instance complexity from [4].

Nondeterministic Instance Complexity and Proof Systems with Advice 167

Definition 1 (Arvind et al. [4]). For a set L and a time bound t, the t-time-
bounded nondeterministic instance complexity of x with respect to L is defined as

nict(x : L) = min{ |M | : M is an L-consistent t-time-bounded nondeter-
ministic machine, and M decides correctly on x } .

Similarly as in the deterministic case in [3], we collect all languages with pre-
scribed upper bounds on the running time and nondeterministic instance com-
plexity in a complexity class.

Definition 2. Let F1 and F2 be two classes of functions. We define

NIC[F1, F2] = {L : there exist s ∈ F1 and t ∈ F2 such that for all x ∈ Σ∗

nict(x : L) ≤ s(|x|)} .

A particularly interesting choice for the classes F1 and F2 is to allow polynomial
running time, but only logarithmic descriptions for the machines. This leads to
the class NIC[log, poly] which plays a central role in this paper. Similarly as in
the deterministic case (cf. [3]), the next proposition locates this class between
the nonuniform classes NP/log and NP/poly.

Proposition 3. NP/log ⊆ NIC[log, poly] ⊆ NP/poly.

Proof. For the first inclusion, let L ∈ NP/log. Let M be a nondeterministic
Turing machine with logarithmic advice that decides L and let an be the advice
given to M for inputs of length n. We define a collection of programs Mn,an for
L as follows. On input x the machine Mn,an first checks, whether the length of
the input is n. For this we need to code the number n into Mn,an . If |x| �= n,
then Mn,an rejects. Otherwise, Mn,an simulates M on input x with advice an

which is also coded into Mn,an . Essentially, the machines Mn,an are constructed
by hardwiring n and an into M , and thus the size of Mn,an is logarithmic in n.
Therefore L ∈ NIC[log, poly].

For the second inclusion, let L ∈ NIC[log, poly]. Then there exist a constant c
and a polynomial p such that for all x we have nicp(x : L) ≤ c log |x| + c. We
construct a nondeterministic Turing machine M with polynomial advice that
accepts exactly L. The advice of M for length n consists of all nondeterministic
Turing machines M1, . . . , Mm of size at most c log n + c which are consistent
with L. Note that for each input length n, there are only polynomially many
machines of the appropriate size ≤ c logn + c. Hence polynomial advice suffices
to encode the whole list M1, . . . , Mm. On input x, the machine M simulates each
Mi on x for at most p(|x|) steps. If any of the Mi accepts, then M accepts as
well, otherwise it rejects.

We claim, that L(M) = L. For, if x ∈ L, then there is a nondeterministic L-
consistent Turing machine Mi such that Mi(x) accepts and |Mi| ≤ c log |x| + c.
Thus, also M(x) accepts. If, on the other hand, M accepts x, then so does some
Mi which is consistent with L. Therefore, x ∈ L because L(Mi) ⊆ L. ��

In fact, the inclusions in Proposition 3 are proper as we will show in Theorem 5
below. For the proof we need the following notion:

168 O. Beyersdorff, J. Köbler, and S. Müller

Definition 4 (Buhrman, Fortnow, Laplante [8]). For a time bound t, the
nondeterministic decision complexity of x, denoted CND t(x), is the minimal size
of a t-time-bounded nondeterministic Turing machine M with L(M) = {x}.
As already noted in [4], the CND measure provides an upper bound to the nic
measure, i.e., for any language L and time bound t there is a constant c > 0
such that nict(x : L) ≤ CND t(x) + c for all x ∈ Σ∗. By a simple counting
argument, it follows that for any length n there exist strings x of length n with
CND(x) ≥ n, where CND(x) is the minimal size of a nondeterministic Turing
machine M with L(M) = {x} (i.e., the time-unbounded CND measure).

Inspired by a similar result in [3], we now prove the following separations:

Theorem 5

1. For every constant c > 0, NP/nc �⊇ NIC[log, poly].
2. NIC[log, poly] �⊇ P/lin.

Proof. For the first item, let 0 < c < d be natural numbers. Diagonalizing
against all NP machines and all advice strings, we inductively define a set A
with A ∈ NIC[log, poly], but A �∈ NP/nc. Let (Ni)i∈N be an enumeration of
all NP machines, in which every machine occurs infinitely often. In step n we
diagonalize against the machine Nn and every advice string of length ≤ nc which
Nn might use for length n. Let x1, . . . , x2n be the lexicographic enumeration of
all strings in Σn and let Sn = {x1, . . . , xnd} ⊆ Σn. For each string w of length
at most nc, let Aw = {x ∈ Sn : Nn(x) accepts under advice w}. Since there
are only 2nc

such sets, but 2nd

subsets of Sn, there must be one which is not
equal to any Aw. For every n, let An be one such set, and let A =

⋃
n An. By

construction, A �∈ NP/nc.
We still have to show A ∈ NIC[log, poly]. For each string s, let s̃ be the

substring of s which has all leading zeros deleted. For each n and each a ∈ An,
let Mn,ã be the following machine: on input x, the machine Mn,ã checks whether
|x| = n and x̃ = ã. If this test is positive, then Mn,ã accepts, otherwise it rejects.
The machine Mn,ã is of size O(log n), as both n and ã are of length O(log n)
(Observe that the first nd elements in the lexicographic order of Σn have no 1’s
appearing before the last log nd bits). Thus A ∈ NIC[log, poly].

For the second item, let A be a set that contains exactly one element x per
length with CND(x) ≥ |x|. Obviously, A ∈ P/lin because A contains exactly one
string per length and this element can be given as advice. On the other hand,
A �∈ NIC[log, poly]. Assume on the contrary, that A ∈ NIC[log, poly]. Then there
are a constant c and a polynomial p, such that for each x ∈ A, there is an A-
consistent p-time-bounded machine Mx of size ≤ c log |x|+c which accepts x. We
modify Mx to a machine M ′

x such that L(M ′
x) = {x} and |M ′

x| ≤ c′ log |x|+c′ for
some constant c′. This machine M ′

x works as follows: on input y, the machine M ′
x

first checks, whether |y| = |x|. If not, it rejects. Otherwise, it simulates Mx(y).
Thus for all x ∈ A, CND(x) ≤ c′ log |x| + c′, contradicting the choice of A. ��

From Theorem 5 we infer that both inclusions in Proposition 3 are strict:

Corollary 6. NP/log � NIC[log, poly] � NP/poly.

Nondeterministic Instance Complexity and Proof Systems with Advice 169

4 Proof Systems with Advice

Our general model of computation for proof systems f with advice is a poly-
nomial-time Turing transducer with several tapes: an input tape containing the
proof π, possibly several work tapes for the computation of the machine, an
output tape where we output the proven element f(π), and an advice tape
containing the advice. We start with a quite flexible definition of proof systems
with advice for arbitrary languages, generalizing the notion of propositional proof
systems with advice from [1] and [2].

Definition 7. Let k : N → N be a function on natural numbers. We say that
a proof system f for L uses k bits of advice, abbreviated f is a ps/k for L,
if there exists an advice function h : N → Σ∗ and an advice selector function
� : Σ∗ → 1∗ such that

1. � is computable in polynomial time,
2. f(π) is computable in polynomial time with advice h(|�(π)|), i.e., for some

fixed polynomial-time computable function g, f(π) = g(π, h(|�(π)|)), and
3. for all π, the length of the advice h(|�(π)|) is bounded by k(|π|).

For a class F of functions, we denote by ps/F the class of all ps/k with k ∈ F .

We say that f uses k bits of input advice if � has the special form �(π) = 1|π|.
On the other hand, in case �(π) = 1|f(π)|, then f is said to use k bits of output
advice. The latter notion is only well-defined if we assume that the length of the
output f(π) (in case f(π) is defined) does not depend on the advice.

We note that proof systems with advice are a quite powerful concept, as for
every language L ⊆ Σ∗ there exists a proof system for L with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.

The above definition of a proof system with advice allows a very liberal use of
advice, in the sense that for each input, the advice string used is determined by
the advice selector function �. For L = TAUT this general definition coincides
with our definition of propositional proof systems with advice from [2]. In [1]
and [2], concrete proof systems arising from extensions of EF were investigated,
which indeed require this general framework with respect to the advice.

In the next proposition we observe that proof systems with input advice are
already as powerful as our general model of proof systems with advice.

Proposition 8. Let k : N → N be a monotone function, L ⊆ Σ∗, and f be a
ps/k for L. Then there exists a proof system f ′ for L with k bits of input advice
such that f and f ′ are p-equivalent.

Proof. We choose a polynomial-time computable bijective pairing function 〈·, ·〉
on N such that 〈n1, n2〉 ≥ n1 + n2 for all numbers n1 and n2. Let f be a ps/k
for L with advice function h and advice selector �. We define a proof system f ′

for L with input advice as follows: on input π′ of length n the function f ′ first
computes the two unique numbers n1 and n2 such that n = 〈n1, n2〉. It then

170 O. Beyersdorff, J. Köbler, and S. Müller

interprets the first n1 bits π′
1 . . . π′

n1
of π′ as an f -proof π and checks whether

�(π) = 1n2 . If this is the case, f ′(π′) = f(π), otherwise f ′ outputs a fixed
element x0 ∈ L. Obviously, f ′(π′) is computable with advice h(|�(π)|) = h(n2)
whose length is bounded by k(n1) ≤ k(n). This shows that f ′ is a ps/k for L
with input advice.

The p-simulation of f by f ′ is computed by the function π �→ π′ = π1m where
m = 〈|π|, |�(π)|〉 − |π|. The converse simulation f ′ ≤p f is given by

π′ �→
{

π = π′
1 . . . π′

n1
if |π′| = 〈n1, n2〉 and �(π) = 1n2

π0 otherwise,

where π0 is a fixed f -proof of x0. ��

Cook and Kraj́ıček [1] showed, that TAUT has a ps/1 with input advice which
p-simulates every ps/log for TAUT, where the p-simulation is computed by a
polynomial-time algorithm using O(log n) bits of advice. The proof of this result
easily generalizes to arbitrary languages L, thus yielding:

Theorem 9. For every language L there exists a proof system P with 1 bit of
input advice such that P simulates all ps/log for L. Moreover, P p-simulates all
advice-free proof systems for L.

Proof. Let 〈·, . . . , ·〉 be a polynomial-time computable tupling function on Σ∗

which is length injective, i.e., |〈x1, . . . , xn〉| = |〈y1, . . . , yn〉| implies |xi| = |yi| for
i = 1, . . . , n. We define the proof system P as follows. P -proofs are of the form
w = 〈π, 1T , 1a, 1m〉 with π, T, a ∈ Σ∗ and m ∈ N (here 1T and 1a denote unary
encodings of T and a, respectively).

The proof system P uses one bit h(|w|) of advice, where h(|w|) = 1 if and
only if the transducer T with advice a only outputs elements from L for inputs
of length |π|. Note that by the length injectivity of 〈·, . . . , ·〉, the advice bit can
in fact refer to T , a, and |π|. Now, if h(|w|) = 1 and T on input π with advice a
outputs y after at most m steps, then P (w) = y. Otherwise, P (w) is undefined.

In case Q is a proof system computed by some polynomial-time transducer T
without (i.e. zero bits of) advice, then Q is p-simulated by P via the polynomial-
time computable function π �→ 〈π, 1T , 1ε, 1p(|π|)〉, where p is a polynomial bound
for the running time of T (and ε is the empty string). On the other hand, if T
uses advice h(|�(π)|) of at most logarithmic length, then Q is simulated by P
via the function π �→ 〈π, 1T , 1h(|�(π)|), 1p(|π|)〉. ��

In contrast, it seems unlikely that a similar result holds for output advice (cf. [2]
where we investigated this problem for propositional proof systems).

5 Polynomially Bounded Proof Systems with Advice

For any language L, we now investigate the question whether L has a polynomi-
ally bounded proof systems with advice. We obtain different characterizations
of this question, depending on

Nondeterministic Instance Complexity and Proof Systems with Advice 171

– whether we use input or output advice,
– which amount of advice the proof system may use, and
– the complexity of the proven language L.

We first consider proof systems with output advice. Similarly as in the classical
result by Cook and Reckhow [6], we obtain the following equivalence:

Theorem 10. Let L ⊆ Σ∗ be a language and let k : N → N be a function. Then
L has a polynomially bounded ps/k with output advice if and only if L ∈ NP/k.

Proof. For the forward implication, let P be a polynomially bounded ps/k with
output advice for L and let p be a bounding polynomial for P . We construct
an NP/k machine M which uses the same advice as P and decides L. On input
x, the machine M guesses a P proof w of size ≤ p(|x|) and checks whether
P (w) = x. If so, M accepts, otherwise M rejects.

For the backward implication, let N be an NP/k machine deciding L with
advice function h. We define a proof system P for L with k bits of output
advice. Again, both P and N use the same advice. On input π = 〈w, x〉 the
proof system P checks, whether w is an accepting computation of N on input x
with advice h(|x|). If so, then P (π) = x. Otherwise, P (π) is undefined. ��
Given this result, we can now concentrate on input advice. In view of Theorem 9,
input advice appears to be a stronger concept than output advice (as we probably
cannot expect a similar result as Theorem 9 for output advice, cf. [2] and also
Corollary 14 and Proposition 18 below for further results supporting this claim).
Surprisingly, the advantage of input advice seems to vanish when we allow a
polynomial amount of advice.

Theorem 11. Let L ⊆ Σ∗ be any language. Then L has a polynomially bounded
ps/poly with output advice if and only if L has a polynomially bounded ps/poly
with input advice.

Proof. The forward direction is a simple application of Proposition 8.
For the backward implication, let fin be a ps/poly with input advice for L

bounded by some polynomial p. Let an be the polynomially length-bounded
advice used by fin on inputs of length n.

We define a polynomially bounded ps/poly fout for L with output advice as
follows. Inputs x for fout are interpreted as pairs x = 〈π, y〉. If |π| ≤ p(|y|) and
fin(π) = y, then fout(x) = y. Otherwise, fout is undefined. The computation of
fout uses all advice strings for fin up to length p(|y|) as advice. This still results
in polynomial-size output advice for fout.

The system fout is correct, because fin is correct. It is complete, because every
y ∈ L has a proof πy with |πy| ≤ p(|y|), implying that fout(〈πy, y〉) = y. Hence,
fout is a polynomially bounded ps/poly with output advice. ��
By Theorems 10 and 11, the existence of polynomially bounded ps/poly with in-
put advice for L is equivalent to L ∈ NP/poly. Next, we consider proof systems
with only a logarithmic amount of advice. In this case, we get a similar equiva-
lence as before, where the class NP/poly is replaced by the instance complexity
class NIC[log, poly].

172 O. Beyersdorff, J. Köbler, and S. Müller

Theorem 12. For every language L the following conditions are equivalent:

1. L has a polynomially bounded ps/1 with input advice.
2. L has a polynomially bounded ps/log with input advice.
3. L ∈ NIC[log, poly].

Proof. The implication 1 ⇒ 2 follows by definition.
To prove the implication 2 ⇒ 3, let f be a polynomially bounded ps/log with

input advice and bounding polynomial p. For each x we have to construct a
program M which is consistent with L and correctly decides x. If x �∈ L, then
M can just always reject. If x ∈ L, then there exists an f -proof π of x of length
≤ p(|x|). Let a be the advice for f on inputs of length |π|. To construct the
machine M for x, we hardwire the values of |x|, |π|, and a into M . On input y
the machine M checks, whether |y| = |x|. If not, it rejects. Otherwise M guesses
an f -proof π′ of length |π| for y and verifies that f(π′) = y using the advice a.
If this test is positive, then M accepts, otherwise M rejects. Clearly, M accepts
exactly all elements from L of length |x| which have f -proofs of length |π|. In
particular, M accepts x. Additionally, M is a polynomial-time nondeterministic
program of length at most c+log |x|+log |π|+ |a| for some constant c. Therefore
L ∈ NIC[log, poly].

For the remaining implication 3 ⇒ 1, let us assume that there are a polynomial
p and a constant c, such that for every x, nicp(x : L) ≤ c·log(|x|)+c. We define a
polynomially bounded ps/1 f for L with input advice as follows. Proofs in f take
the form π = 〈x, w, 1M 〉, where 〈·, . . . , ·〉 is a polynomial-time computable and
length-injective tupling function. The advice for f certifies whether or not M is
a polynomial-time Turing machine that is consistent with L. If this is the case
and w is an accepting computation of M on input x, then f(π) = x. Otherwise,
f(π) is undefined. Note that in the proof π we described the machine M in tally
form. Together with the length-injectivity of the tupling function this allows the
advice to refer to the machine M (but not to the input x which is given in binary
notation).

Now, since L ∈ NIC[log, poly], for every x ∈ L there is an L-consistent Turing
machine Mx with running time p which accepts x and |Mx| ≤ c · log |x|+c. Thus
every element x ∈ L has a polynomial-size f -proof 〈x, w, 1Mx〉 where w is an
accepting path of Mx(x). ��

In fact, we can prove a more general version of the preceding theorem, where
we replace polynomial upper bounds for the proof length by arbitrary upper
bounds. In this way we obtain:

Theorem 13. For any language L and any function t : N → N, t ∈ nΩ(1), the
following conditions are equivalent:

1. L has an O(t)-bounded ps/1 with input advice.
2. L has an O(t)-bounded ps/O(log t) with input advice.
3. L ∈ NIC[O(log t), O(t)].

Nondeterministic Instance Complexity and Proof Systems with Advice 173

For a language L we now consider the following three assertions:

A1: L has a polynomially bounded ps/log with output advice.
A2: L has a polynomially bounded ps/log with input advice.
A3: L has a polynomially bounded ps/poly with output advice.

By our results so far, assertions A1, A2, and A3 are equivalent to the statement
that L is contained in the classes NP/log, NIC[log, poly], and NP/poly, respec-
tively. As these classes form a chain of inclusions by Proposition 3, we get the
implications A1 ⇒ A2 ⇒ A3 for every L. Moreover, by Corollary 6, the inclusions
NP/log � NIC[log, poly] � NP/poly are proper. Hence we obtain:

Corollary 14. There exist languages L for which A2 is fulfilled, but A1 fails.
Likewise, there exist languages L for which A3 is fulfilled, but A2 fails.

6 Polynomially Bounded Proof Systems for TAUT

From a practical point of view, it is most interesting to investigate what precisely
happens for L = TAUT (or more generally for problems in coNP). Even though
by Corollary 6, NP/log and NIC[log, poly] are distinct, they do not differ inside
coNP, as the next theorem shows.

Theorem 15. Let L ∈ coNP. Then L ∈ NP/log if and only if L ∈ NIC[log, poly].
Moreover, if L ∈ NP/log, then the advice can be computed in FPNP[log].

Proof. By Proposition 3 we only have to prove the backward implication. For
this let L be a language from coNP. Assuming L ∈ NIC[log, poly], there exists
a polynomial p and a constant c such that nicp(x : L) ≤ c log |x| + c for all
x ∈ Σ∗. Let Πn be the set of all p-time bounded nondeterministic machines
M with |M | ≤ c log n + c. Let further an be the number of machines from Πn

that are not consistent with L∩Σ≤n. As the cardinality of Πn is bounded by a
polynomial in n, the length of the number an is logarithmic in n.

We now construct a nondeterministic Turing machine N that uses c log n +
c + 1 bits of advice for inputs of length n and decides L. The advice of N for
input length n will be the number an. On input x of length n, the machine N
nondeterministically chooses an pairwise distinct machines M1, . . . , Man ∈ Πn

and strings x1, . . . , xan ∈ Σ≤n. Next, N verifies that x1, . . . , xan do not belong
to L. As L ∈ coNP, this can be done in nondeterministic polynomial time. Then
N checks whether for each i = 1, . . . , an the machine Mi accepts the input xi. If
any of the tests so far failed, N rejects. Otherwise, if all these tests were positive,
we know that every machine in Πn \ {M1, . . . , Man} is consistent with L∩Σ≤n.
After this verification has successfully taken place, N simulates all remaining
machines M ∈ Πn \ {M1, . . . , Man} on input x. If one of these simulations
accepts, then also N accepts x, otherwise N rejects.

Since there are only consistent machines left after an machines have been
deleted, N never accepts any x �∈ L. On the other hand, the assumption L ∈
NIC[log, poly] guarantees that for every x ∈ L there is a machine in Πn which

174 O. Beyersdorff, J. Köbler, and S. Müller

is consistent with L and accepts x. Therefore N correctly decides L, and thus
L ∈ NP/log, as claimed.

For the additional claim in the theorem, it suffices to observe that using
binary search we can compute the advice an with at most logarithmically many
queries of the form “Do there exist at least m logarithmic-size machines which
are inconsistent with L ∩ Σ≤n?” As this is an NP question, the advice can be
computed in FPNP[log]. ��

By Theorem 11 we already know that TAUT has a polynomially bounded ps/poly
with input advice if and only if it has a polynomially bounded ps/poly with
output advice. As a corollary to Theorem 15 we obtain the same equivalence for
logarithmic advice.

Corollary 16. TAUT has a polynomially bounded ps/log with input advice if
and only if TAUT has a polynomially bounded ps/log with output advice.

Descending to constant advice, this equivalence seems to fail, as we show below.
For this we use a result of Buhrman, Chang, and Fortnow [9]:

Theorem 17 (Buhrman, Chang, Fortnow [9]). For every constant k ≥ 1,
coNP ⊆ NP/k if and only if PH ⊆ BH2k .

Using this result we conclude that the assertions of the existence of polynomially
bounded proof systems with input and output advice appear to be of different
strength, as otherwise the equivalence of two collapses of PH of presumably
different strength follows.

Proposition 18. Assume that TAUT having a polynomially bounded ps/1 with
input advice implies that TAUT has a polynomially bounded ps/1 with output
advice. Then PH ⊆ BH already implies PH ⊆ Dp.

Proof. If the polynomial hierarchy collapses to the Boolean hierarchy, then PH in
fact collapses to some level BHk of BH. By Theorem 17, this means that coNP ⊆
NP/k′ for some constant k′. Hence by Theorem 10, TAUT has a polynomially
bounded ps/k′ P with output advice. By Theorem 9, this proof system P is
simulated by a proof system P ′ which only uses 1 bit of input advice. As P is
polynomially bounded, this is also true for P ′. By our assumption, TAUT also
has polynomially bounded ps/1 with output advice. By Theorem 10 this implies
coNP ⊆ NP/1 and therefore PH ⊆ Dp by Theorem 17. ��

So far we have provided different characterizations of the question whether poly-
nomially bounded proof systems with advice exist. At this point it is natural
to ask, how likely these assumptions actually are, i.e., what consequences follow
from the assumption that such proof systems exist. For TAUT we obtain a series
of collapse consequences of presumably different strength as shown in Table 1.

The first line in Table 1 follows from Theorems 10 and 11 and a result of
Cai, Chakaravarthy, Hemaspaandra, and Ogihara [10], who have shown that
coNP ⊆ NP/poly implies PH ⊆ SNP

2 . For the second line, the distinction between
input and output advice is again irrelevant (Corollary 16). Here we use a re-
sult of Arvind, Köbler, Mundhenk, and Torán [4], who showed that TAUT ∈

Nondeterministic Instance Complexity and Proof Systems with Advice 175

Table 1. Consequences of the existence of polynomially bounded proof systems

Assumption Consequence
if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP
2 ⊆ Σp

3

ps/log (input or output advice) PNP[log]

ps/O(1) (input advice) PNP[log]

ps/O(1) (output advice) PNP[O(1)] = BH

ps/0 (no advice) NP

NIC[log, poly] implies PH ⊆ PNP[log]. Finally, the constant-advice case (lines 3
and 4), follows from Theorem 17 in conjunction with Theorems 10 and 12.
In comparison, the classical Cook-Reckhow Theorem states that TAUT has an
advice-free polynomially bounded proof system if and only if PH ⊆ NP (line 5).

Acknowledgements. We thank the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.

References

1. Cook, S.A., Kraj́ıček, J.: Consequences of the provability of NP ⊆ P/poly . The
Journal of Symbolic Logic 72(4), 1353–1371 (2007)

2. Beyersdorff, O., Müller, S.: A tight Karp-Lipton collapse result in bounded arith-
metic. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 199–214.
Springer, Heidelberg (2008)

3. Orponen, P., Ko, K., Schöning, U., Watanabe, O.: Instance complexity. Journal of
the ACM 41(1), 96–121 (1994)

4. Arvind, V., Köbler, J., Mundhenk, M., Torán, J.: Nondeterministic instance com-
plexity and hard-to-prove tautologies. In: Reichel, H., Tison, S. (eds.) STACS 2000.
LNCS, vol. 1770, pp. 314–323. Springer, Heidelberg (2000)

5. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Proc. 12th ACM Symposium on Theory of Computing, pp.
302–309. ACM Press, New York (1980)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

7. Kraj́ıček, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54(3),
1063–1079 (1989)

8. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complex-
ity revisited. SIAM Journal on Computing 31(3), 887–905 (2001)

9. Buhrman, H., Chang, R., Fortnow, L.: One bit of advice. In: Alt, H., Habib, M.
(eds.) STACS 2003. LNCS, vol. 2607, pp. 547–558. Springer, Heidelberg (2003)

10. Cai, J.Y., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing
provers yield improved Karp-Lipton collapse results. Information and Computa-
tion 198(1), 1–23 (2005)

How Many Holes Can an Unbordered
Partial Word Contain?�

Francine Blanchet-Sadri1, Emily Allen2, Cameron Byrum3,
and Robert Mercaş4

1 University of North Carolina, Department of Computer Science,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Carnegie Mellon University, Department of Mathematical Sciences,

5032 Forbes Ave., Pittsburgh, PA 15289, USA
3 University of Mississippi, Department of Mathematics,

P.O. Box 1848, University, MS 38677, USA
4 GRLMC, Universitat Rovira i Virgili, Plaça Imperial Tárraco, 1,

Tarragona, 43005, Spain
robertmercas@gmail.com

Abstract. Partial words are sequences over a finite alphabet that may
have some undefined positions, or “holes,” that are denoted by �’s. A
nonempty partial word is called bordered if one of its proper prefixes
is compatible with one of its suffixes (here � is compatible with every
letter in the alphabet); it is called unbordered otherwise. In this paper,
we investigate the problem of computing the maximum number of holes
a partial word of a fixed length can have and still fail to be bordered.

1 Introduction

Motivated by a practical problem in gene comparison, Berstel and Boasson intro-
duced the notion of partial words, or sequences over a finite alphabet that may
contain some “holes” denoted by ’s [1]. For instance, a bca b is a partial word
with two holes over the three-letter alphabet {a, b, c}. Several interesting com-
binatorial properties of partial words have been investigated, and connections
have been made with problems concerning primitive sets of integers, partitions
of integers and their generalizations, vertex connectivity in graphs, etc [2].

An unbordered word is a word such that none of its proper prefixes is one
of its suffixes. Unbordered partial words were defined in [3], and two types of
borders were identified: simple and nonsimple. In this paper, we investigate the
maximum number of holes an unbordered partial word of length n over a k-letter
alphabet can have.
� This material is based upon work supported by the National Science Foundation

under Grant No. DMS–0754154. We thank the referees of a preliminary version of this
paper for their very valuable comments and suggestions. A World Wide Web server
interface has been established at www.uncg.edu/cmp/research/countingpwords for
automated use of the program. This work was done during the fourth author’s stay
at the University of North Carolina at Greensboro.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 176–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

How Many Holes Can an Unbordered Partial Word Contain? 177

The contents of our paper are as follows: In Section 2, we compute the max-
imum number of holes a nonsimply bordered partial word of length n over a
k-letter alphabet may have, and show that this maximum number is constant
over all integers k ≥ 2. In Section 3, we investigate the maximum number of
holes an unbordered partial word of length n over a k-letter alphabet may have,
obtaining an upper bound. An exact formula for k = 2 and lower bounds for
k ≥ 3 are also derived. Experimental evidence suggests that for k ≥ 4, the num-
bers are constant. In Section 4, we conclude with some remarks. We end this
section with an overview of basic concepts of combinatorics on partial words.

Let A be a nonempty finite set of symbols called an alphabet. Each element
a ∈ A is called a letter. A full word u over A is a finite sequence of letters from
A. A partial word u over A is a finite sequence of symbols from A
 = A ∪ { },
the alphabet A being extended with the “hole” symbol (a full word is a partial
word that does not contain the symbol). We will denote by ui the symbol at
position i of the partial word u.

The length of a partial word u is denoted by |u| and represents the total
number of symbols in u. The empty word is the sequence of length zero and is
denoted by ε. For a partial word u, the powers of u are defined recursively by
u0 = ε and for n ≥ 1, un = uun−1. The set of all words over the alphabet A is
denoted by A∗, while the set of all partial words over A is denoted by A∗

.
If u and v are two partial words of equal length, then u is said to be contained

in v, denoted u ⊂ v, if ui = vi, whenever ui ∈ A. Partial words u and v are
compatible if there exists a partial word w such that u ⊂ w and v ⊂ w. This is
denoted by u ↑ v. A partial word u is a factor of a partial word v if there exist
partial words x, y such that v = xuy. The factor u is proper if u �= ε and u �= v.
We say that u is a prefix of v if x = ε and a suffix of v if y = ε.

A partial word u is called unbordered if no nonempty partial words x1, x2, v, w
exist such that u = x1v = wx2 and x1 ↑ x2. If such nonempty words exist, then
there exists a partial word x such that x1 ⊂ x and x2 ⊂ x. In this case, we call
u bordered and call x a border of u. A border x of u is called minimal if |y| < |x|
implies that y is not a border of u. We have two distinct types of borders: For a
partial word u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x, we say that x is a simple
border if |x| ≤ |v|, and a nonsimple border otherwise. A bordered partial word
u is called simply bordered if a minimal border x exists such that |u| ≥ |2x|.
For example, the word a b bb has the simple and minimal border abb and the
nonsimple border abbbb, and thus it is simply bordered.

2 Simply Bordered Partial Words

Once the number of holes in a partial word of a fixed length reaches a certain
bound, the word will have a simple border. In this section, we give a closed
formula for that bound and show that it is constant over all alphabets of size at
least two.

Let us first recall a result regarding bordered partial words.

178 F. Blanchet-Sadri et al.

Proposition 1 ([4]). Suppose that u is a nonempty partial word that is bor-
dered. Let x be a minimal border of u. Say u = x1v = wx2, where x1 ⊂ x and
x2 ⊂ x. Then (1) the partial word x is unbordered, and (2) in the case where x1
is unbordered, u = x1u

′x2 ⊂ xu′x for some u′.

It follows from Proposition 1 that if u is a full bordered word, then x1 = x is
unbordered. In this case, x is the minimal border of u and u = xu′x. Thus, a
bordered full word is always simply bordered and has a unique minimal border.
Since borders for partial words are defined using containment, it is possible to
have numerous borders having the same length. Thus, a partial word does not
necessarily have a unique minimal border.

In [5], an open problem related to borderedness in the context of partial
words was suggested by the fact that every partial word of length five that has
more than two holes is simply bordered. The partial word aa b shows that
this bound on the number of holes for length five is tight. For length six, every
partial word with more than two holes is simply bordered as well. What is the
maximum number of holes mk(n) a partial word of length n over an alphabet
of size k can have and still fail to be simply bordered? Some values for small n
follow: m2(5) = 2, m2(6) = 2, m2(7) = 3, m2(8) = 4, m2(9) = 5, m2(10) = 5,
m2(11) = 6, m2(12) = 7, m2(13) = 8, m2(14) = 8, and m2(15) = 9. We end this
section by answering this open problem.

Theorem 1. For k ≥ 2 and l ≥ 1, the following equalities hold: mk(1) = 1,

mk(2l) = 2l − (
⌊√

l
⌋

+
⌈

l

�√l�

⌉
) and mk(2l + 1) = mk(2l) + 1.

Proof. Let A be a k-letter alphabet where k ≥ 2, and let a, b be two distinct
letters of A. We prove the lower bound by constructing a partial word w(n) of
length n over A with mk(n) holes, that is not simply bordered. Take w(1) = ,
and for l ≥ 1,

w(2l) = (a �
√

l�−1)
l

�√l l−�√l�b�
√

l�

w(2l + 1) = (a �
√

l�−1)
l

�√l l+1−�√l�b�
√

l�

where a fractional power of the form (a0 . . . ai−1)
mi+j

i with 0 ≤ j < i is equal to
(a0 . . . ai−1)ma0 . . . aj−1. It is easy to check that for this construction we never
have a prefix of w(n) of length at most

⌊
n
2

⌋
= l compatible with a suffix. For

n ≥ 4, this is due to the fact that no factor of length �
√

l� + 1 of the prefix is
compatible with the suffix b�

√
l, since each such factor has an a among its last

�
√

l� positions.
Now, we prove the upper bound. Let us observe that the simply bordered

words of odd length are not influenced by the middle character. Hence, this
character can always be replaced by a hole so that the number of holes is maxi-
mal. Because of that we can only look at the even length case. Let us consider
a partial word w = a0 . . . a2l−1 of length n = 2l ≥ 4 that is not simply bor-
dered. Obviously both a0 and a2l−1 are distinct letters of the alphabet A in

How Many Holes Can an Unbordered Partial Word Contain? 179

order to avoid a trivial one-letter border. Note that any two factors a0 . . . ai−1
and a2l−i . . . a2l−1 differ in at least one position for any 0 < i ≤ l. In order to
avoid having the second half of w formed only of letters, we need in the first
half at least two occurrences of letters. Let us suppose that ai is the second
occurrence of a letter in the first half of w (the first occurrence is a0, that is,
a0 and ai are letters and between them there are only holes). This implies that
a2l−i . . . a2l−1 ∈ A∗. In other words, the suffix of length l of the word ends with
a word of length i over A, since otherwise we again would get compatibility for a
shorter factor. Now if we look at the prefix of length 2i, we observe that we need
a second incompatibility relation with the suffix of the same length. This implies
that there exists another occurrence of a letter either in the prefix at a position
j, with j ≤ 2i, or in the suffix at position j, with j > n − 2i. Continuing the
reasoning, and looking at the problem for the following occurrences of letters in
each half, we will finally get an expression of the form i+ l

i for which we have to
find the minimum value, for 0 < i ≤ l. Calculating the first derivative of i+ l

i and
equating to zero, we get that i =

√
l. Hence the minimum number of letters (it

is the number of holes that we wish to be maximized) is
⌊√

l
⌋
+
⌈

l

�√l�

⌉
, i.e., the

number of consecutive occurrences of letters from the end of the word plus the
number of occurrences of letters in the first half of the word. Furthermore, we
observe that the upper bound coincides with the lower bound and the obtained
computer values. ��

Note that Theorem 1 implies that the equality mk(n) = m2(n) holds for all
k ≥ 2, n ≥ 1.

3 Bordered Partial Words

The previously defined concept of the maximum number of holes a “nonsimply
bordered” partial word may have can be extended to an “unbordered” partial
word. Let m̂k(n) be the maximum number of holes a partial word of length n
over a k-letter alphabet can have and still fail to be bordered. For all integers
k ≥ 2 and n ≥ 1, the inequality

m̂k(n) ≤ m2(n) (1)

holds. To see this, consider a partial word u of length n over a k-letter alphabet
with more than mk(n) holes. The word u necessarily has a simple border, so u is
bordered and m̂k(n) cannot be greater than mk(n). The inequality then follows
by Theorem 1 which implies that mk(n) = m2(n).

We now give an interval of values for m̂k(n) for k ≥ 3 and n ≥ 1. We start
with two lemmas.

Lemma 1. The inequality m̂k(st) ≥ (s − 1)(t − 1) holds for all integers k ≥ 3
and s, t ≥ 1.

180 F. Blanchet-Sadri et al.

Proof. Let a, b, c be distinct letters of an alphabet of size at least three. For
all integers i, j ≥ 0, (a i)jbci is an unbordered word of length (i + 1)(j + 1).
Indeed, assume that i, j ≥ 1 (the case where i = 0 or j = 0 is similar). For a
border of length l with 1 ≤ l ≤ i, the prefix a l−1 will correspond to the suffix
cl. If i + 1 ≤ l ≤ j(i + 1), an a will appear within the last (i + 1) positions
of the prefix, and the corresponding position in the suffix will be b or c. If
(i+1)j+1 ≤ l ≤ (i+1)j+i, the prefix will end with bci′ for some 0 ≤ i′ < i. Since
the suffix will end with ci, the b in the prefix will not agree with the corresponding
letter of the suffix. An unbordered word of length st can be constructed as
described above with i = s − 1 and j = t − 1 with (s − 1)(t − 1) holes. ��

Lemma 2. The equality m̂k(s2) = (s − 1)2 holds for all integers k ≥ 3 and
s ≥ 1.

Proof. To demonstrate the lower bound m̂k(s2) ≥ (s − 1)2, construct a word as
in the proof of Lemma 1 with i = j = s − 1. This unbordered word will have
length s2 and (s−1)2 holes. To demonstrate the upper bound m̂k(s2) ≤ (s−1)2,
assume u is an unbordered word with h = (s− 1)2 holes. It suffices to show that
the length of u is at least s2, which is equivalent to showing that u has at least
2
√

h + 1 = 2(s− 1) + 1 = 2s− 1 letters. Without loss of generality, assume that
u begins with an a. In order for u to be constructed such that the number of
holes is maximized, we can assume that the a is followed by a string of ’s of
length l and then another letter. Thus, if we look at the last l + 1 symbols in
the word u, they must all be letters different from a. Otherwise, we would be
able to construct a suffix of length at most l which would be compatible with
the corresponding prefix. Repeating this procedure, the next letter is going to
appear at most every l + 1 symbols. In order to maximize the number of holes
in u with respect to its length, u must be constructed so each repetition of holes
has the same length. Thus, if there are r repetitions of the l holes, then there are
at most rl total holes, and at least r + l + 1 letters, since there is one letter for
every repetition of holes and l +1 letters at the end. If we minimize the function
r+ l+1 with respect to rl = h we get r+ l+1 ≥

√
h+

√
h+1 = 2

√
h+1. Hence,

there are at least 2s − 1 letters, and there are (s − 1)2 holes. So the length of u
is at least s2, and m̂k(s2) ≤ (s − 1)2. ��

Theorem 2. The inequalities (�
√

n� − 1)2 ≤ m̂k(n) ≤ ($
√

n% − 1)2 hold for all
integers k ≥ 3 and n ≥ 1.

Proof. The fact that m̂k(n) is increasing is straightforward, since creating a word
of length n+1 that is unbordered and has as many holes as the word of length n
is easily done just by adding at the end of the word of length n a letter different
from the one at the first position. Obviously, the newly created word will be
bordered only if the word of length n is bordered. The bounds are an immediate
consequence of Lemma 2. ��

We end this section by refining the upper bound (1).

How Many Holes Can an Unbordered Partial Word Contain? 181

Proposition 2. For all integers k ≥ 2 and n ≥ 2, we have the upper bound

m̂k(n) ≤
⌊
n −

√
2k

k − 1
(n − 1)

⌋
Proof. Consider a partial word u of length n over a k-letter alphabet. Say u =
x1v = wx2, for some partial words x1, x2, v and w with x1, x2 of length i. For u
not to have a border of length i, there must exist a pair of corresponding positions
from x1, x2 whose letters are noncompatible. Since there exist n − 1 possible
border lengths for u, there must exist at least n− 1 such pairs of noncompatible
letters for u to be unbordered.

For a given number of letters n− h, the maximum number of noncompatible
pairs will occur when each symbol of the alphabet appears equally, which would
be n−h

k times. Thus, the maximum number of noncompatible pairs is bounded
above by(

n − h

k

)2

(k − 1 + k − 2 + · · · + 1) =
(

n − h

k

)2(
k(k − 1)

2

)
If there are strictly less than n− 1 noncompatible pairs of letters in u, then u

is necessarily bordered. So when n − 1 > (n−h)2(k−1)
2k holds, u will be bordered.

Thus, a word with h > n −
√

2k
k−1 (n − 1) holes is necessarily bordered. So we

have m̂k(n) ≤ �n −
√

2k
k−1 (n − 1)�, for all integers k ≥ 2 and n ≥ 2. ��

3.1 A Formula for m̂2(n)

First, we consider the 2-letter alphabet {a, b}. For n ≥ 1, the upper bound

m̂2(n) ≤ �n − 2
√

n − 1� (2)

follows from Proposition 2 by letting k = 2 (note that the case when n = 1 is
trivial since is an unbordered word of length one with one hole). We will show
that this upper bound is also a lower bound.

Proposition 3. For all integers i, j, k ≥ 0 where k ≤ i, the partial word given
by (a i)ja kabi+1 is an unbordered word of length (i + 1)(j + 1) + k + 2.

Proof. Assume that i, j ≥ 1 (the other cases are similar). Consider a prefix of
length l with 1 ≤ l < (i+1). This gives us the prefix a l−1 and the corresponding
suffix bl. Thus, there is no border of this length. Next, consider a prefix of length
l with (i + 1) ≤ l < (i + 1)j + k + 2. Since an a will appear within at least the
last i + 1 letters of the prefix and the corresponding position in the suffix will
be b, there cannot be a border of this length. Now, consider a prefix of length l
with (i + 1)j + k + 2 ≤ l ≤ (i + 1)(j + 1) + k + 1. The prefix ends with abi′ with
i′ ≤ i. Since the suffix ends with bi+1, the last a in the prefix does not agree
with the corresponding b in the suffix. ��

182 F. Blanchet-Sadri et al.

Proposition 4. For all integers n ≥ 5, we have the lower bound

m̂2(n) ≥ �n − 2
√

n − 1�

Proof. First, assume there exists an integer l ≥ 2 such that n = l2 + 1. We
construct the binary word (a l−1)l−1abl of length l2 +1 which is unbordered for
all integers l ≥ 2 by Proposition 3. This word has (l − 1)2 holes. Making the
substitution n = l2 + 1 we have

�n − 2
√

n − 1� = �l2 + 1 − 2
√

l2� = l2 + 1 − 2l = (l − 1)2

Thus, there exists an unbordered word of length n with �n − 2
√

n − 1� holes.
Now, assume n cannot be written in the form l2 + 1 for any integer l. Let

i =

⌊
−1 +

√
1 + 4(n − 2)
2

⌋
+ 1, j = $

√
n% − 3, k = n − (i + 1)(j + 1) − 2

Let u = (a i)ja k abi+1 whose length is given by (i + 1)(j + 1) + k + 2 which
is equivalent to (i + 1)(j + 1) + n − (i + 1)(j + 1) − 2 + 2 = n. The number of
holes in u is given by ij + k = ij + n − (i + 1)(j + 1) − 2 = n − i − j − 3 =

n −
⌊

−1+
√

1+4(n−2)
2

⌋
− $

√
n% − 1. In order to show that u has �n − 2

√
n − 1�

holes, it suffices to show
⌊

−1+
√

1+4(n−2)
2

⌋
+ $

√
n% + 1 = $2

√
n − 1%. First we

note that for any integer n ≥ 5, there exists a unique integer m ≥ 2 such that
(m − 1)2 < n ≤ m2. The next four bounds will be useful:

First, for (m − 1)(m − 2) + 2 ≤ n < m(m − 1) + 2, we have that 0 ≤
4(m − 1)(m − 2) ≤ 4(n − 2) < 4m(m − 1). Thus, after adding 1 to, taking the
square root of, subtracting 1 from, and dividing by 2 each part of the inequality

yields m − 2 ≤ −1+
√

1+4(n−2)
2 < m − 1, and we get

⌊
−1+

√
1+4(n−2)
2

⌋
= m − 2.

Second, for (m − 1)2 < n ≤ m2, we have that (m − 1) <
√

n ≤ m and so
$
√

n% = m.
Third, for (m− 1)2 + 1 < n ≤ m(m− 1) + 1, we have 0 ≤ (m− 1)2 + 1 < n ≤

m(m− 1) + 1.25. Thus, after subtracting 1 from, taking the square root of, and
multiplying by 2 each part of the inequality, this yields 2m − 2 < $2

√
n − 1% ≤

2m − 1. Hence, we have $2
√

n − 1% = 2m − 1.
Fourth, for m(m−1)+2 ≤ n ≤ m2+1, we have m(m−1)+1.25 < n ≤ m2+1.

Thus, after subtracting 1 from, taking the square root of, and multiplying by 2
each part of the inequality, this yields 2m − 1 < 2

√
n − 1 ≤ 2m. Thus, we have

$2
√

n − 1% = 2m.

Now, if (m − 1)2 + 1 < n ≤ m(m − 1) + 1, then
⌊
−1+

√
1+4(n−2)
2

⌋
= m −

2, $
√

n% = m, and $2
√

n − 1% = 2m − 1. If m(m − 1) + 2 ≤ n ≤ m2, then⌊
−1+

√
1+4(n−2)
2

⌋
= m − 1, $

√
n% = m, and $2

√
n − 1% = 2m.

How Many Holes Can an Unbordered Partial Word Contain? 183

Finally we claim that u is unbordered. By Proposition 3, it suffices to show
that k ≤ i. This is equivalent to demonstrating

n ≤ 2$
√

n% −
⌊
−1 +

√
1 + 4(n − 2)
2

⌋
+ $

√
n%
⌊
−1 +

√
1 + 4(n − 2)
2

⌋
− 1

Again, let m be the unique integer such that (m−1)2 < n ≤ m2. If (m−1)2+1 <

n ≤ m(m − 1) + 1, then
⌊
−1+

√
1+4(n−2)
2

⌋
= m − 2 and $

√
n% = m. So we have

n ≤ m(m − 1) + 1 = 2m − (m − 2) + m(m− 2)− 1. If m(m − 1) + 1 < n ≤ m2,

then
⌊
−1+

√
1+4(n−2)
2

⌋
= m − 1 and $

√
n% = m. We get n ≤ m2 = 2m − (m −

1) + m(m − 1) − 1. ��

Theorem 3. For any integer n ≥ 1, m̂2(n) = �n − 2
√

n − 1�.

Proof. For n = 1, the result is trivial as mentioned earlier. For n = 2, note
that a word with at least one hole necessarily has a border of length one. An
unbordered word of length two with no hole is ab, and m̂2(2) = 0 = �2 − 2

√
1�.

For n = 3, m̂2(3) = 0 = �3 − 2
√

2�, and an example of an unbordered word of
length three with no hole is abb. As in the case of words of length two, a word
that has one hole will be bordered. For n = 4, we can argue similarly. Thus, we
have as example abbb, and m̂2(4) = 0 = �4 − 2

√
3�. For n ≥ 5, the result follows

from (2) and Proposition 4. ��

3.2 A Lower Bound for m̂3(n)

Now, we consider the 3-letter alphabet {a, b, c}. For n ≥ 2, the upper bound

m̂3(n) ≤
⌊
n −

√
3(n − 1)

⌋
(3)

follows from Proposition 2 by letting k = 3. We will give a lower bound for
m̂3(n).

Proposition 5. For all integers i, j, k ≥ 0 with k ≤ i, the partial word given by
(a i)ja kcib is an unbordered word of length (i + 1)(j + 1) + k + 1.

Proof. Assume that i, j, k > 0 (the other cases are similar). Consider a possible
border length l with 1 ≤ l ≤ i + 1. This yields a prefix that begins with a and
a suffix which begins in b or c, so there is no border of length l. If i + 2 ≤ l ≤
j(i+1)+1, we have the letter a within the last i+1 positions of the prefix which
will correspond with c or b in the last i + 1 positions of the suffix, so there is no
border of this length. If j(i + 1) + 2 ≤ l ≤ j(i + 1) + 1 + k, we have a appearing
within the last k+1 positions of the prefix, and since k ≤ i, the last k+1 positions
of the suffix are c’s and b’s. Finally, if j(i + 1) + k + 2 ≤ l ≤ (j + 1)(i + 1) + k,
we have a prefix that ends in c and a suffix which ends in b. ��

184 F. Blanchet-Sadri et al.

Proposition 6. For all integers i, j ≥ 2 and k ≥ 0, the partial word given by
(a i)j(b i+1)kcib is an unbordered word of length (i + 1)(j + k + 1) + k.

Proof. Assume that i ≥ 2, j ≥ 2, k ≥ 1 (the case where k = 0 is similar).
Consider a possible border length l with 1 ≤ l ≤ i + 1. Our prefix will begin
with a which is not equal to the corresponding b or c in the suffix. For i + 2 ≤
l ≤ j(i + 1), we have a within the last i + 1 positions of the prefix, and the
last i + 1 positions of the suffix are cib. So there is no border of length l. For
j(i + 1) + 1 ≤ l ≤ j(i + 1) + k(i + 2), we have one of the following three cases:

If our prefix ends in b, then we have l = j(i+1)+m(i+2)+1 for some integer
m with 0 ≤ m < k. In this case, the a at position l − 1 − m(i + 2) − 2(i + 1)
of the prefix will correspond with b at this position of the suffix. So there is no
border of length l. If our prefix ends with b i′ such that 1 ≤ i′ ≤ i, then our
prefix contains the letter b within the last i + 1 positions, but not at the last
position. However, the suffix will have c’s in all of these positions. If our prefix
ends with b i+1 so that we have l = j(i + 1) + m(i + 2) where 1 ≤ m ≤ k, then
the a at position l − m(i + 2) − (i + 1) of the prefix will correspond with b at
this position of the suffix. So there is no border of length l.

Finally, consider the case where j(i+1)+k(i+2)+1 ≤ l ≤ j(i+1)+k(i+2)+i.
We will have a prefix which ends with c and a suffix which ends with b, so we
have no border for this length. ��

Proposition 7. For any integer n > 9, we have the lower bound m̂3(n) ≥
n −

⌈
2
√

n + 3
⌉

+ 2.

Proof. Let l = $
√

n%, so that l ≥ 4 and (l − 1)2 < n ≤ l2. To show that
m̂3(n) ≥ n −

⌈
2
√

n + 3
⌉

+ 2 is equivalent to showing that

m̂3(n) ≥

⎧⎪⎨⎪⎩
n − 2$

√
n% + 1 if l2 − 2 ≤ n ≤ l2

n − 2$
√

n% + 2 if l(l − 1) − 2 ≤ n ≤ l2 − 3
n − 2$√n% + 3 if (l − 1)2 + 1 ≤ n ≤ l(l − 1) − 3

We consider the following five cases, and in each case demonstrate that there
exists an unbordered word of length n with the required number of holes. Note
that in each of the cases we have l = $

√
n%.

First, if (l − 1)2 + 1 ≤ n ≤ l(l − 1) − 3, then let u = (a i)j(b i+1)kcib
where i = l − 2, j = (l − 1)l − (n + 1), and k = n − (l − 1)2. The length of u is
(i+1)(j+k+1)+k = (l−1)((l−1)l−(n+1)+n−(l−1)2+1)+n−(l−1)2 = n. The
number of holes in u is ij+(i+1)k = (l−2)(l(l−1)−(n+1))+(l−1)(n−(l−1)2) =
n− 2l+3. By Proposition 6, to show u is unbordered it suffices to show i, j ≥ 2.
This case only holds for l ≥ 4, so i ≥ 2. Since n ≤ l(l − 1) − 3, we have
2 ≤ l(l− 1)−n− 1 = j. Thus, there exists an unbordered word of length n with
n − 2$

√
n% + 3 holes.

Second, if l(l−1)−2 ≤ n ≤ l(l−1), then let u = (a i)ja kcib where i = l−1,
j = l − 3, and k = n − (l − 1)2. The length of u is (i + 1)(j + 1) + k + 1 =
l(l − 2) + n − l2 + 2l − 1 + 1 = n, and the number of holes in u is ij + k =
(l− 1)(l− 3) + n− l2 + 2l− 1 = n− 2l + 2. By Proposition 5, u is unbordered if

How Many Holes Can an Unbordered Partial Word Contain? 185

k ≤ i. Since n ≤ l(l − 1), we have n − l2 + 2l − 1 = k ≤ l − 1 = i. Thus, there
exists an unbordered word of length n with n − 2$

√
n% + 2 holes.

Third, if l(l−1)+1 ≤ n ≤ l2−4, then let u = (a i)j(b i+1)kcib where i = l−1,
j = l2 − 2 − n, and k = n − l(l − 1). The length of u is (i + 1)(j + k + 1) + k =
l(l2 − 2 − n + n− l2 + l + 1) + n − l(l − 1) = n, and the number of holes in u is
ij + (i + 1)k = (l− 1)(l2− 2−n)+ l(n− l(l− 1)) = n− 2l+ 2. By Proposition 6,
u is unbordered if i, j ≥ 2. Since n ≥ 7, it must be that l ≥ 3, and so i ≥ 2.
Since n ≤ l2 − 4, we have 2 ≤ l2 − 2 − n = j. Thus, there exists an unbordered
word of length n with n − 2$√n% + 2 holes.

Fourth, if n = l2−3, then let u = (a i)2(b i+1)kcib where i = l−2, j = 2, and
k = l−3. The length of u is (i+1)(j +k+1)+k = (l−1)(2+ l−3+1)+ l−3 =
l2−3 = n, and the number of holes in u is ij+(i+1)k = (l−2)(2)+(l−1)(l−3) =
l2 − 2l− 1 = l2 − 3− 2l +2 = n− 2l +2. By Proposition 6, u is unbordered since
j = 2 and i ≥ 2, because n ≥ 7 and l ≥ 4. Thus, there exists an unbordered
word of length n with n − 2$

√
n% + 2 holes.

Fifth, if l2 − 2 ≤ n ≤ l2, then let u = (a i)ja kcib where i = l − 1, j = l − 2,
and k = n−l(l−1)−1. The length of u is (i+1)(j+1)+k+1 = l(l−1)+n−l(l−
1)−1+1 = n. The number of holes in u is ij+k = (l−1)(l−2)+n−l(l−1)−1 =
n − 2l + 1. By Proposition 5, u is unbordered if k ≤ i. Since n ≤ l2, we have
n − l2 + l − 1 = k ≤ l − 1 = i. Thus, there exists an unbordered word of length
n with n − 2$

√
n% + 1 holes. ��

Note that our upper bound and lower bound for m̂3(n) are equal for n ≤ 27. We
believe that our lower bound is tight and have the following conjecture.

Conjecture 1. The equality m̂3(n) = n −
⌈
2
√

n + 3
⌉

+ 2 holds for all n ≥ 6.

3.3 A Lower Bound for m̂4(n)

Finally, we consider the 4-letter alphabet {a, b, c, d}. By letting k = 4 in Propo-
sition 2, we have the upper bound

m̂4(n) ≤
⌊
n −

√
8
3
(n − 1)

⌋
(4)

for n ≥ 2. We will give a lower bound for m̂4(n).

Proposition 8. The partial word a i(b i+1)jcid is an unbordered word of length
(i + 2)(j + 1) + i, for all i, j ≥ 0 and distinct letters a, b, c, d.

Proof. We assume that i, j ≥ 1 (the other cases are similar). Consider a border
length l. If 1 ≤ l ≤ i + 1, then we have a prefix which begins with a and a suffix
which begins with c or d. If i+2 ≤ l < (j+1)(i+2), then the prefix ends in either
b i′ or b i+1, where 0 ≤ i′ ≤ i. If the prefix ends with b i′ , then we have the letter
b appearing within the last i+1 positions of the prefix which will correspond with
either c or d in the suffix. If the prefix ends with b i+1, then our prefix will begin
with a, and our suffix will begin with b. If (j + 1)(i + 2) ≤ l ≤ 2i + 1 + j(i + 2),
then our prefix ends with the letter c while our suffix ends with the letter d. In
each case, there is no border of length l. ��

186 F. Blanchet-Sadri et al.

Proposition 9. For integers n ≥ 7, we have the lower bound

m̂4(n) ≥

⎧⎪⎨⎪⎩
l(l − 2) if n = l2 − 2 for some integer l

l2 − l − 1 if n = l2 + l − 2 for some integer l

m̂3(n) otherwise

Proof. First, suppose that n = l2 − 2 for some integer l. Let i = j = l − 2. The
word a i(b i+1)jcid is unbordered by Proposition 8. The length of this word is
2i + 2 + j(i + 2) = 2(l − 2) + 2 + (l − 2)l = l2 − 2 = n. The number of holes in
the word is i + j(i + 1) = l − 2 + (l − 2)(l − 1) = l(l − 2).

Next, suppose that n = l2+ l−2 for some integer l. Now let i = l−2, j = l−1.
We have the word a i(b i+1)jcid, which is unbordered by Proposition 8. The
length of this word is 2i + 2 + j(i + 2) = 2(l − 2) + 2 + (l − 1)l = l2 + l − 2 = n.
The number of holes in this word is i+ j(i+1) = l−2+(l−1)(l−1) = l2− l−1.

For all other n, consider an unbordered word with m̂3(n) holes, which is still
unbordered over an alphabet of size 4. ��

Note that our lower bound can be improved when n = 24, 35, 48, 63, 80 and 99.
For instance, m̂4(24) = 16 > m̂3(24) = 15.

m̂4(24) = 16 a 1b 2c 2c 3b 8add
m̂4(35) = 25 a 2a 2b 3c 3c 4b 11addd

a 2d 2d 3b 3b 4a 11cccd
m̂4(48) = 36 a 1b 2b 2c 3c 3c 3a 4a 18bddd

a 1d 2a 2a 3b 3b 3b 4c 18dcdd
a 1d 2d 2b 3b 3b 3a 4a 18cccd

m̂4(63) ≥ 49 a 2a 3b 3b 3b 3b 4c 4a 5c 22dcddd
a 2a 3b 3b 3b 3c 4c 4a 5c 22bdddd
a 2a 3d 3a 3d 3d 4b 4b 5a 22ccccd

m̂4(80) ≥ 64 a 1b 2b 2c 3c 3c 3c 3c 3c 3c 3a 4a 34bddd
a 1d 2a 2a 3b 3b 3b 3b 3b 3b 3b 4c 34dcdd
a 1d 2d 2b 3b 3b 3b 3b 3b 3b 3a 4a 34cccd

m̂4(99) ≥ 81 a 2a 2b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 4b 43addd
a 2d 2d 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 4a 43cccd

This leads us to the following conjecture.

Conjecture 2. The equality m̂4(l2 − 1) = (l − 1)2 holds for all l > 2.

4 Conclusion

The following conjecture is somehow natural, since increasing the length of a
partial word by one is possible through the addition of at most one hole.

Conjecture 3. The inequalities m̂k(n) ≤ m̂k(n + 1) ≤ m̂k(n) + 1 hold for all
k ≥ 2, n ≥ 1.

How Many Holes Can an Unbordered Partial Word Contain? 187

Proposition 10. If Conjecture 3 holds, then for all k ≥ 3 and n ≥ 2:

m̂k(n) ≤ min(

⌊
n −

√
2k

k − 1
(n − 1)

⌋
, n + 1 − 2�

√
n�) (5)

Proof. Using Proposition 2 we have the first bound. Now, from Lemma 2 and
Theorem 2 we have that m̂k(�√n�2) = (�√n� − 1)2. Since Conjecture 3 holds,
it follows that m̂k(n) ≤ m̂k(�

√
n�2) + n − �

√
n�2 = (�

√
n� − 1)2 + n − �

√
n�2 =

n + 1 − 2�
√

n�. ��

Furthermore, we notice that for k = 4 and n ≥ 64, the first bound in (5) is always
greater than the second one. This implies that for n ≥ 64, m̂4(n) is bounded by
n + 1 − 2�

√
n�). Moreover, if Conjecture 3 is true, then this bound should be

increasing. It follows that the upper bound for m̂4(l2) equals the upper bound
for m̂4(l2 − 1), for any l > 2, and, if Conjecture 2 holds, the bound is sharp in
these cases.

Let us denote by UB(n) the upper bound (4) if Conjecture 3 does not hold,

and the upper bound min(
⌊
n −

√
8
3 (n − 1)

⌋
, n + 1 − 2�

√
n�) otherwise, and

by LB(n) the lower bound of Proposition 9. Computer obtained data on all
unbordered words of length n ≤ 1, 000, 000 shows that LB(n) differs from UB(n)
by at most 1 when Conjecture 3 holds. For instance, if n ≤ 10, 000, LB(n) and
UB(n) differ for 5, 131 + 93 lengths (the 93 disappearing when Conjecture 2
holds). Note that the percentage of mismatches between LB(n) and UB(n) is
actually decreasing, the more words we consider.

N = 10, 000 N = 100, 000 N = 1, 000, 000
maxN

n=1(UB(n) − LB(n)) = 38 114 366
If Conjecture 3 holds, then∑N

n=1(UB(n) − LB(n)) = 5,224 50,692 502,474
If Conjectures 2 and 3 hold, then∑N

n=1(UB(n) − LB(n)) = 5,131 50,383 501,481

Conjecture 4. The equality m̂k(n) = m̂4(n) holds for all k ≥ 4, n ≥ 1.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science 218, 135–141 (1999)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press (2007)

3. Blanchet-Sadri, F.: Primitive partial words. Discrete Applied Mathematics 148, 195–
213 (2005)

4. Blanchet-Sadri, F., Davis, C., Dodge, J., Mercaş, R., Moorefield, M.: Unbordered
partial words. Discrete Applied Mathematics (2008), doi:10.1016/j.dam.2008.04.004

5. Blanchet-Sadri, F.: Open problems on partial words. In: Bel-Enguix, G., Jiménez-
López, M., Mart́ın-Vide, C. (eds.) New Developments in Formal Languages and
Applications, pp. 11–58. Springer, Berlin (2007)

An Answer to a Conjecture on Overlaps in
Partial Words Using Periodicity Algorithms�

Francine Blanchet-Sadri1, Robert Mercaş2, Abraham Rashin3,
and Elara Willett4

1 Department of Computer Science, University of North Carolina, P.O. Box 26170,
Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 GRLMC, Universitat Rovira i Virgili, Plaça Imperial Tárraco, 1,

Tarragona, 43005, Spain
robertmercas@gmail.com

3 Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854–8019, USA

4 Department of Mathematics, Oberlin College, 10 North Professor St., King 205,
Oberlin, OH 44074-1019, USA

Abstract. We propose an algorithm that given as input a full word
w of length n, and positive integers p and d, outputs (if any exists) a
maximal p-periodic partial word contained in w with the property that
no two holes are within distance d. Our algorithm runs in O(nd) time
and is used for the study of freeness of partial words. Furthermore, we
construct an infinite word over a five-letter alphabet that is overlap-
free even after the insertion of an arbitrary number of holes, answering
affirmatively a conjecture from Blanchet-Sadri, Mercaş, and Scott.

1 Introduction

In [1], Manea and Mercaş extend the concept of repetition-freeness of full words
to partial words which are sequences over a finite alphabet that may contain some
“do not know” symbols called “holes.” There, several problems regarding cube-
freeness are investigated. Following the same lines, in [2], Blanchet-Sadri, Mercaş
and Scott consider the concepts of square- and overlap-freeness. In these papers,
the authors investigate the existence of infinite full words into which arbitrarily
many holes can be inserted without introducing repetitions (inserting a hole is
defined as replacing a letter with a hole in a fixed position of a word, the length
of the word remaining the same). A constraint that no two holes can be placed
one or two positions apart is needed, to avoid trivial squares and cubes. This
� This material is based upon work supported by the National Science Founda-

tion under Grant No. DMS–0754154. We thank the referees of a preliminary
version of this paper for their very valuable comments and suggestions. This
work was done during the second author’s stay at the University of North Car-
olina at Greensboro. A World Wide Web server interface has been established at
www.uncg.edu/cmp/research/freeness2 for automated use of the program.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 188–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Answer to a Conjecture on Overlaps in Partial Words 189

problem is equivalent to determining whether an infinite partial word w can be
found such that, none of its factors of length kp, for any positive integer p and
rational k ≥ 2, is 2-valid and p-periodic. A partial word is called d-valid if any
positions i, j satisfying 0 < |i − j| ≤ d are not both holes.

A well-known result of Thue states that over a binary alphabet there exist
infinitely many overlap-free infinite full words [3,4]. In [1], the question was raised
as to whether there exist overlap-free infinite partial words, and to construct
them over a binary alphabet if such exist. In [2] and [5], the authors settle
this question by showing that over a two-letter alphabet there exist overlap-free
infinite partial words with one hole, and none exists with more than one hole.
Moreover, in [2] it is shown that there exist infinitely many overlap-free infinite
partial words with an arbitrary number of holes over a three-letter alphabet.
There, it is also proved that there exists an infinite overlap-free word over a
six-letter alphabet that remains overlap-free after an arbitrary selection of its
letters are changed to holes, and none exists over a four-letter alphabet. The
case of a five-letter alphabet remained open.

Conjecture 1 ([2]). There exists an infinite word over a five-letter alphabet that
remains overlap-free after an arbitrary 2-valid insertion of holes.

In this paper, we investigate the question of which finite full words can be made
periodic by insertion of holes, with the restriction that no two holes be too
close together. More precisely, we present an algorithm that determines whether
a finite full word w of length n contains a d-valid p-periodic partial word, in
O(nd) time. As a consequence, we give a positive answer to Conjecture 1. An
overview of basic concepts of combinatorics on partial words follows.

Let A be a nonempty finite set of symbols called an alphabet. Each element
a ∈ A is called a letter. A full word over A is a finite sequence of letters from
A. A partial word over A is a finite sequence of letters from A
 = A ∪ { }, the
alphabet A extended with the hole symbol (a full word is a partial word that
does not contain the symbol). A partial word u of length n over A can be
viewed as a function u : {0, . . . , n − 1} → A
. The length of a partial word u
is denoted by |u| and represents the total number of symbols in u. The empty
word is the sequence of length zero and is denoted by ε. The powers of a partial
word u are defined recursively by u0 = ε and for n ≥ 1, un = uun−1. The set
containing all finite full words over the alphabet A is denoted by A∗, while the
set of all finite partial words over the alphabet A is denoted by A∗

.
A strong period of a partial word u over A is a positive integer p such that

u(i) = u(j) whenever u(i), u(j) ∈ A and i ≡ j mod p. In such a case, we say
u is strongly p-periodic. A weak period of u is a positive integer p such that
u(i) = u(i + p) whenever u(i), u(i + p) ∈ A. In such a case, we say u is weakly
p-periodic. The word abba bacb is weakly 3-periodic, but not strongly 3-periodic.

If u and v are two partial words of equal length, then u is said to be contained
in v, denoted u ⊂ v, if u(i) = v(i), for all u(i) ∈ A. Partial words u and v are
compatible, denoted by u ↑ v, if there exists w such that u ⊂ w and v ⊂ w.
A partial word u is a factor of a partial word v if v = xuy for some x, y. The
factor u is proper if u �= ε and u �= v. We say that u is a prefix of v if x = ε

190 F. Blanchet-Sadri et al.

and a suffix of v if y = ε. A full word u is said to contain an overlap if it
contains a factor avava (two overlapping occurrences of the word ava) with a a
letter and v a word [6]. In [1], this definition was extended to partial words, an
overlap being considered a factor a0v0a1v1a2 with v0 ↑ v1, and a0, a1, a2 pairwise
compatible letters (a0v0a1v1a2 ⊂ avava, for some letter a and word v), and it
can be generalized as follows: A partial word a0v0a1v1a2, where v0 ↑ v1, is a
weak overlap if a0 ↑ a1 and a1 ↑ a2 (because a0v0a1 ↑ a1v1a2), and a strong
overlap if a0, a1, a2 are pairwise compatible symbols. Note that a strong overlap
is also a weak overlap. A partial word is weakly overlap-free (respectively, strongly
overlap-free) if none of its factors is a weak (respectively, strong) overlap.

2 Periodic Partial Words with No Two Holes within a
Fixed Distance

We say two positions i, j in a partial word u are d-proximal if 0 < |j − i| ≤ d,
where d denotes a positive integer. We say that u obeys the hole constraint d
(or u is d-valid) if no two holes in u are d-proximal. When the value of d is
clear from context, we may suppress reference to it, simply referring to the “hole
constraint” or to “proximal” positions.

Let w be a length n full word defined over an alphabet A of size k. In this
section, we present an O(nd) time algorithm, which finds, for given positive
integers d and p both less than n, a d-valid p-periodic partial word contained
in w, if any exists. In other words, it determines whether it is possible to insert
holes into w with no two holes within distance d, such that the resulting partial
word has strong period p. If this is possible, such a word is returned.

In order to work with words of length n more easily, we write them in rows of
length p. For a partial word u and for an integer x, 0 ≤ x < p, we will call column
x the sequence of positions (or letters at these positions) x, x + p, . . . , x + lp,
where l is the maximal integer such that x + lp < n. For example in Figure 1, if
w = abadecabbdeeaba, p = 6, and d = 2, then u = abadecab de aba is obtained
using our algorithm. For an integer x, 0 ≤ x < p, let Sx = {w(i) | 0 ≤ i < n, i ≡
x mod p} be the set of distinct letters appearing in column x of w. We construct
a new set of partial words Ω = {ω | ω(i) ∈ Si}, and call u ⊂ w a partial word
induced by the choice ω ∈ S0 × S1 × · · · × Sp−1, if u ⊂ ωl, for some rational l.
Now, u, induced by ω, is d-valid if and only if for any two proximal positions i
and j (0 ≤ i, j < n, 0 < |i − j| ≤ d), it is not the case that u(i) = = u(j).

Remark 1. The choice of letters ω ∈
∏p−1

x=0 Sx induces a d-valid word if and only
if for every two proximal positions i, j, u(i) = ω(i mod p) or u(j) = ω(j mod p).

Fig. 1. The words w and u with columns 2 and 5 highlighted

An Answer to a Conjecture on Overlaps in Partial Words 191

This suggests a geometric approach for determining which choices of letters do
not cause a hole constraint violation. For (a0, b0) ∈ A2, let the cross centered
at (a0, b0) be the set +(a0, b0) = {(a, b) ∈ A2 | a = a0 or b = b0}. Then,
the choices of letters a for column x and b for column y that do not cause any
hole constraint violations, are precisely those in the intersection of the crosses
centered at (w(i), w(j)), for i, j proximal positions in columns x, y.

The subsets of A2 formed by intersecting crosses, however, are of special forms.
The following theorem describes these forms, and shows that they can be deter-
mined in l-linear time, where l is the number of crosses that need to be intersected
(the number of distinct ordered pairs (i, j) where i, j are proximal positions in
columns x, y, respectively).

Theorem 1. Considered as a set of entries in a k×k matrix, any set T formed
by intersecting crosses must be either: (1) FULL: A2; (2) CROSS(a0, b0): a cross
+(a0, b0); (3) ROW(a0): a row of the matrix {(a0, b) | b ∈ A}; (4) COL(b0): a
column of the matrix {(a, b0) | a ∈ A}; (5) TWO((a1, b1), (a2, b2)): a set of two
points (a1, b1) and (a2, b2) in neither the same row nor column; (6) ONE(a0, b0):
a singleton set {(a0, b0)}; or (7) NULL: the null set ∅.

Proof. Let m be the number of crosses that are intersected: T =
⋂m

s=1 +(as, bs).
If m = 0, then T = A2 is FULL. The form FULL is only possible for m = 0. If
m = 1, then T = +(a1, b1) is CROSS(a1, b1). Now suppose that m > 1 and let
T ′ =

⋂m−1
s=1 +(as, bs). We consider what happens when we intersect +(am, bm)

with T ′, for T ′ in each of the above forms.
Let T ′ = CROSS(a0, b0). If (am, bm) = (a0, b0), then T ′ = +(am, bm), so

T = T ′. If am = a0 and bm �= b0, then T = ROW(a0). If bm = b0 and am �= a0,
then T = COL(b0). If am �= a0 and bm �= b0, then T = TWO((a0, bm), (am, b0)).
Therefore, intersecting +(am, bm) with a CROSS matrix results in a CROSS,
ROW, COL, or TWO matrix, as depicted in Figure 2. a). If T ′ = ROW(a0)
and am = a0, then T = T ′ ⊂ +(am, bm). Otherwise, T = ONE(a0, bm). If T ′ =
COL(b0) and bm = b0, then T = T ′ ⊂ +(am, bm). Otherwise, T = ONE(am, b0).

Now, let T ′ = TWO((a, b), (a′, b′)). If (am, bm) is equal to (a, b′) or to (a′, b),
then T = T ′ ⊂ +(am, bm). Now, if a = am or b = bm then (a, b) ∈ +(am, bm),

Fig. 2. Intersection of different matrices

192 F. Blanchet-Sadri et al.

but (a′, b′) /∈ +(am, bm), and so T = ONE(a, b). Similarly, if a′ = am or b′ = bm

then T = ONE(a′, b′). Finally, if a �= am, b �= bm, a′ �= am and b′ �= bm, then
(a, b), (a′, b′) /∈ +(am, bm), so T = NULL. Therefore, intersecting +(am, bm)
with a TWO matrix results in a TWO, ONE, or NULL matrix, as depicted in
Figure 2. b). If T ′ = ONE(a0, b0) and am = a0 or bm = b0, then T ′ ⊂ +(am, bm),
so T = T ′. Otherwise, T = NULL. Finally, if T ′ = NULL, then T = NULL. ��
Now, returning to the question of which ω ∈

∏p−1
x=0 Sx induce d-valid partial

words, for two columns x, y < p, we define the constraint matrix Mxy, to be
a k × k matrix such that, for all a, b ∈ A, Mxy(a, b) is ∗ if for every pair of
proximal positions i, j in columns x, y, (a, b) ∈ +(w(i), w(j)), and 0 otherwise.
Note that, trivially, the constraint matrix from x to y is the transpose of the
constraint matrix from y to x, and that ω ∈

∏p−1
x=0 Sx induces a d-valid partial

word if and only if for every x, y ∈ {0, . . . , p − 1}, Mxy(ω(x), ω(y)) = ∗.
The result of Theorem 1 is that the constraint matrices can be classified into a

few simple types. Therefore, in practice, we store constraint matrices as objects
that encode the form of the matrix (FULL, CROSS, TWO, etc.), and at most
four characters to denote rows and columns (querying the position of stars in
row a0 of the object < TWO, (a, b), (a′, b′) > yields b if a0 = a, b′ if a0 = a′ and
NONE otherwise). These can be constructed and read in constant time.
Remark 2. If columns x, y are proximal, that is x, y contain proximal positions,
then 0 < |x − y| ≤ d or 0 < p − |x − y| ≤ d.
Fix some variables that will be shared by the algorithms: a table of constraint
matrices, M ; sets FROW, FONE, FTWO and FCROSS, where FFORM con-
tains (x, y) for which Mxy is of form FORM; a list of letters ω, where ω(x) is
the letter chosen for column x. The following lemmas will be useful in proving
the validity of our algorithms.

Lemma 1. If 0 ≤ x, y < p with 0 < |x − y| ≤ d, then Mxy is not FULL.

Proof. The positions x and y in w are proximal since 0 < |x− y| ≤ d. Therefore
at least one cross (namely, that centered at (w(x), w(y)) is used in the creation
of the matrix Mxy, so it cannot be FULL. ��
Furthermore, it follows from Theorem 1 that the types of constraints that one
column can exert on another are limited.

Lemma 2. If two columns x, y with 0 ≤ x < y < p, contain each at least two
different letters, and Mxy is a CROSS matrix, then |x− y| ≥ max{p− d, d+1}.
Proof. Since Mxy is not a FULL matrix, by Remark 2, we have that |x− y| ≤ d
or that p − d ≤ |x − y|. Suppose that |x − y| ≤ d, and let y + sp be a position
in column y, where y ≤ y + sp < n. Thus, x + sp is a position in column x,
since 0 ≤ x ≤ x + sp < y + sp < n. Furthermore, every position in column y
is proximal to some position in column x. Since Mxy is a CROSS matrix, all
ordered pairs (w(i), w(j)), for i, j proximal positions in columns x, y, must be
equal. Therefore all letters in column y of w are equal, a contradiction. Therefore
|x − y| > d and |x − y| ≥ p − d, so |x − y| ≥ max{p − d, d + 1}. ��
There exist even more restrictions regarding CROSS matrices.

An Answer to a Conjecture on Overlaps in Partial Words 193

Algorithm 1. Initalizing the matrices
1: for (x, y) columns within d do
2: Mxy := FULL
3: for i = 0 to n − y step p do
4: intersect Mxy with cross centered at (w(x + ip), w(y + ip))

Lemma 3. Let x1, x2, x3 be distinct columns with at least two different letters
each. If Mx2x3 and Mx1x3 are CROSS matrices, then Mx1x2 is neither a FULL
nor a CROSS matrix.

Henceforth, by columns within d we mean columns x, y such that 0 < |x−y| ≤ d
or 0 < p − |x − y| ≤ d. Any other pair of columns is necessarily related by a
FULL constraint matrix and therefore can be ignored. Algorithm 1 computes
all non-FULL constraint matrices of w in O(nd) time.

Corollary 1. The forms (as per Theorem 1) of all the non-FULL constraint
matrices for w can be determined in O(nd) time via Algorithm 1.

Note that given two proximal columns x and y, and a letter a chosen for column
x, there are either zero, one, or ‖Sy‖ choices of a letter for column y that do not
conflict with the choice of letter a for column x. This observation suggests an
algorithm for labeling multiple columns. Let us now construct a directed graph
G that has vertex set {0, . . . , p−1} and edge set consisting of edges (x, y) labelled
by Mxy when columns x, y are within d.

Theorem 2. For a column x and a letter a ∈ Sx, Algorithm 2 correctly chooses
letters for some additional columns such that, after the completion of this algo-
rithm no undetermined column is constrained by an already determined column.
Additionally, if the constraint matrices have already been computed, the running-
time of Algorithm 2 is O(m), where m is the number of edges that are traversed.

Proof. The problem of finding a choice of letters for the columns is equivalent
to finding a labeling of the vertices of G, such that every vertex x is labeled
with a letter ω(x) that occurs in column x of w, and for any two columns x and
y within d, the (ω(x), ω(y))-entry of Mxy is a ∗. If such a labeling exists, then
it induces a p-periodic d-valid partial word contained in w, by replacing every
non-ω(x) letter in each column x with a hole.

The algorithm starts by assuming a labeling of vertex x by the letter a, and
then performs a breadth-first search on the graph G, starting at x. This is
implemented using a queue. Suppose that a vertex y has been marked by letter
b and that we are now traversing an edge from y to z. Then the constraint matrix
Myz either uniquely determines the label c on the sink vertex z, or it imposes no
constraint at all, or there are no choices, in which case the algorithm immediately
fails. In the former case, either the unique label is applied (ω(z) is set to c) and
vertex z is added to the queue for later traversal, or if ω(z) has already been set
to a different value, the algorithm fails because there cannot be any labeling of
G with ω(x) = a and ω(z) with its original value. In the case when no constraint

194 F. Blanchet-Sadri et al.

Algorithm 2. Fill(x, a)
1: initialize Q to be an empty queue accepting columns
2: choose letter a for column x
3: add x to Q
4: while dequeue y from Q do
5: let b = ω(y)
6: for z a neighbor of y do
7: let row be the b row of the matrix Myz

8: remove edges between y and z
9: if row has all ∗’s then

10: next (go to line 4)
11: else if row has exactly one ∗, say at position c then
12: if letter c has already been chosen for column z then
13: next (go to line 4)
14: else if column z is unlabeled then
15: choose letter c for column z
16: add z to Q
17: next (go to line 4)
18: undo all recent labelings and edge erasures
19: return false
20: return true

is imposed (the b row is filled with ∗’s), this matrix is ignored, since for any value
of ω(z) the matrix will not cause a contradiction. In all cases, the edge (y, z)
and its opposite (z, y) are marked as having been traversed, so that they will
not be visited again. In conclusion, an undetermined column is marked exactly
when it is constrained by an already determined column, thus, ensuring that at
the end of the algorithm no determined column will constrain an undetermined
column. This algorithm visits m edges, no more than once each. On each edge,
it performs a constant time operation. Thus, Algorithm 2 runs in O(m) time.

Please note that undoing all recent labelings and edge erasures, while keeping
the algorithm’s runtime within O(m), is solved in constant time by implementing
data structures that could be “marked” in a particular state, and reset to this
state later on. These data structures are used for the sets of neighbors of a
vertex, the sets FFORM (of edges of each type), and the set of labeled vertices.
While, all the FFORM’s and labelings can be reset in constant time, the vertex
neighbor sets can be reset in O(l) time, where l is the number of vertices visited
during this run of the algorithm. Since the number of vertices visited is less than
the number of edges visited, l < m, the overall algorithm runs in O(m) time. ��

The next lemma will help us prove that we never need to run Algorithm 2
(“Fill(x, a)”) on a vertex more than twice.

Lemma 4. Suppose that x and y are vertices of G such that Mxy = TWO
((a, b), (a′, b′)), Fill(x, a) returns true, and ω ∈

∏p−1
z=0 Sz induces a d-valid partial

word u with ω(x) = a′. Then, there exists a choice ω′ of letters for the columns,
that induces a d-valid partial word with ω′(x) = a.

An Answer to a Conjecture on Overlaps in Partial Words 195

Algorithm 3. Traversing the entire graph
1: initialize matrices
2: for (x, y) columns within d do
3: if Mxy = NULL then
4: return false
5: add (x, y) to FFORM
6: for column x do
7: if ‖Sx‖ = 1 then
8: Fill(x, w(x))
9: while exists (x, y) with Mxy of form ROW(a), in FROW do

10: if not Fill(x, a) then return false
11: while exists (x, y) with Mxy of form ONE(a, b), in FONE do
12: if not Fill(x, a) then return false
13: while exists (x, y) with Mxy of form TWO((a, b), (a′, b′)), in FTWO do
14: if not Fill(x, a) and not Fill(x, a′) then return false
15: for column x do
16: if column x is unlabeled then
17: choose w(x) for column x
18: for i from 0 to n − 1 do
19: let u(i) be w(i) if w(i) = ω(i mod p) and � otherwise
20: return u

Proof. Let T be the set of vertices of G that are labeled by Fill(x, a), and Q
be the labeling of T . For every vertex x of G, let ω′(x) = Q(x) if x ∈ T and
ω′(x) = ω(x) otherwise. Since the labeling Q of T was generated by Fill(x, a),
we know that no letter choice for a vertex outside T is constrained by any of
the letter choices specified in Q. Furthermore, since ω induced a d-valid partial
word, we know that no constraint matrix is violated by two letter choices in ω.
Therefore the letter choices in ω′ do not violate any constraint matrices, so ω′

induces a d-valid partial word. Also, clearly ω′(x) = a, so we have our result. ��

The next algorithm traverses all edges corresponding to non-FULL matrices and
finds a consistent labeling of the vertices of G if any exists.

Theorem 3. Algorithm 3 returns a d-valid p-periodic partial word contained in
w, unless no such word exists. The running-time of the algorithm is O(nd).

Proof. If there is a NULL matrix between two columns, then no consistent la-
beling of the vertices exists, so the algorithm fails. If any column in w has all
letters equal, then that letter must be assigned for the column, and Fill(x, w(x))
ran. There can only be one consistent labeling of all vertices if it succeeds (note
that the determination of whether a column has only one character can be per-
formed in O(n

p) time, and thus, it can be performed for all columns in O(n)
time). Similarly, if there is a ROW or ONE matrix Mxy with a ∗ in row a, then
a must be chosen for column x. We run Fill(x, a), and it must succeed for there
to be a consistent labeling of the vertices of G.

If Mxy = TWO((a, b), (a′, b′)) then we know that any consistent labeling
of the vertices of G must have column x labeled with either a or a′. But by

196 F. Blanchet-Sadri et al.

Lemma 4, if some consistent labeling of G exists and Fill(x, a) returns true, then
there exists a consistent labeling of G that agrees on all choices of letters made
by Fill(x, a). Therefore in this case we can simply continue. Otherwise we try
Fill(x, a′). If this fails, then we return false.

At this point in the algorithm, any unlabeled vertices x, y are related by
either a FULL or CROSS matrix, since all other types of matrices have already
been taken into account. Consider a graph T ′ with the so-far unlabeled vertices
of G as the vertex set, and an edge between x and y if and only if Mxy is a
CROSS matrix. We can satisfy all remaining constraints (the CROSS matrices)
by considering every connected component of T ′ separately. But, by Lemma 3,
this graph has no connected components of size greater than two (since only
crosses are left, connecting more than two of them falls in Lemma 3).

We claim that we can label any remaining vertex x with w(x) (the first let-
ter appearing in column x) without introducing any new contradictions. This
is clearly true for any isolated vertex in T ′, since these are unconstrained. Now
consider x, y vertices in T ′ related by CROSS(a, b). Every proximal pair of po-
sitions i, j in columns x, y must have w(i) = a and w(j) = b. But between any
two columns that have proximal pairs, at least one of them has its first (top)
position proximal to some position in the other column. Therefore w(x) = a or
w(y) = b (or both). Therefore these choices satisfy the constraint matrix. If the
algorithm reached this step, then there exists a p-periodic d-valid partial word
contained in w, namely the one induced by ω.

Each matrix is visited at most twice (this worst case scenario is achieved
precisely if the edge is examined twice in the loop starting on line 13). There are
at most 2pd matrices in question, and analyzing a row of a matrix takes constant
time. Thus, the running-time is O(pd) plus the running-time of checking which
columns are uniform, and of constructing the constraint matrices (O(nd) by
Corollary 1). Therefore, the total running-time of Algorithm 3 is O(nd). ��

3 Short Factors in the Images of Morphisms

Let β : A∗ → A∗ be a non-erasing prolongable morphism on z0 ∈ A. For m ≥ 0,
let zm+1 = β(zm), and w = lim

m→∞ zm the fixed point of β. Let Fm(y) denote the
set of length m factors of y. Since zm is a proper prefix of zm+1, for any n ≥ 1:

Fn(z0) ⊆ Fn(z1) ⊆ Fn(z2) ⊆ · · · ⊆
⋃

m≥0

Fn(zm) = Fn(w)

But since Fn(w) is finite, having at most |A|n elements, using the pigeonhole
principle, the chain must become constant after finitely many steps.

Lemma 5. Let m ≥ 0, n ≥ 1 be such that ∅ �= Fn(zm) = Fn(zm+1). Then
Fn(zm) = Fn(w).

Suppose now, that q = min{|β(a)| | a ∈ A} ≥ 2 and F2(zm) = F2(w). In other
words, β maps every letter of the alphabet to a word of length at least two, and

An Answer to a Conjecture on Overlaps in Partial Words 197

all length two factors of w are factors of zm. For all i ≥ 0, it can be shown that
Fqi+1(zm+i) = Fqi+1(w). Moreover, let s = max{|β(a)| | a ∈ A}. Then it can
also be shown that the set of length n factors of w can be computed in O(nlogq s)
time. Hence, for any n ≥ 2, zm+�logq(n−1)� has all length n factors of w, and
this set can be computed in polynomial time. Furthermore, if β is a uniform
morphism, we have q = s and Fn(w) is computable in O(n) time. Note that in
some cases we can discard the requirement q ≥ 2, by taking a higher iteration
of the morphism (for µ : a �→ abc, b �→ ac, c �→ b, the square µ2 : a �→ abcacb,
b �→ abcb, c �→ ac, can be used in the above theorems, since it generates the same
fixed point).

4 An Overlap-Free Word over an Alphabet of Size Five

Note that the definition of weak overlap generalizes the overlap definitions used
in [2] and [5], since here a factor is considered to be an overlap of length 2p+1 if
it has p as a weak period, while in [2,5], the factor had to have a strong period p.
In this section, we generate an infinite full word over a 5-letter alphabet, which
remains weakly overlap-free after any 2-valid insertion of holes. First, define a
morphism γ : {a, b, c, d}∗ → {a, b, c, d}∗ with γ(a) = ad, γ(b) = ac, γ(c) = cb,
and γ(d) = ca. Since a is a prefix of γ(a), γ is prolongable. Thus, we define the
fixed point of γ, Γ = lim

i→∞
γi(a). Consider some properties of Γ .

Remark 3. Both γ3(a) = adcacbad and γ4(a) = adcacbadcbacadca have only
ac, ad, ba, ca, cb and dc as their length two factors. Thus, by Lemma 5, these are
the only length two factors of Γ .

Lemma 6. The infinite full word Γ is square-free.

Proof. It suffices to show that every γn(a) is square-free. Clearly γ0(a) = ε is
square-free. Now let n ≥ 0 and assume that γn(a) is square-free. Suppose, for
contradiction, that γn+1(a) has a square factor of length 2p starting at position
i. Since the letters b and d appear only at odd positions of γn+1(a), hence, if p
is odd, the factor would be in {a, c}∗. Since all binary words of length 4 contain
squares, it must be that p = 1, which is a contradiction according to Remark 3
(p = 1 in order to avoid the contradiction of having squares).

Therefore p must be even. If i is even, since γn+1(a) = γ(γn(a)) it follows
that γn(a) contains a square, contradicting the initial assumption. Hence, i is
odd. Since, γ(f) ends in a different letter for all f ∈ {a, b, c, d}, it follows that
we have a factor that is a square starting at position i − 1, which is an even
position. Following the previous reasoning we again reach a contradiction. ��

Now let δ : {a, b, c, d}∗ → {f, g, h, i, j}∗ be a morphism defined by δ(a) = fgifh,
δ(b) = fghij, δ(c) = jigjh, and δ(d) = jihgf . We claim that δ(Γ) is overlap-free
after an arbitrary (2-valid) insertion of holes.

Proposition 1. There are no factors of δ(Γ) of length ≤ 21 that can be turned
into weak overlaps by any 2-valid insertion of holes.

198 F. Blanchet-Sadri et al.

Proof. Using a variant of Algorithm 3, we checked that for p ≤ 10, there is no
factor of δ(Γ) of length 2p+1 that contains a 2-valid weakly-p-periodic word. ��

Recall the following result from [2].

Remark 4. [2] Full words t = t0t1t2 and s = s0s1s2 contain compatible 2-valid
partial words if and only if for some i, ti = si.

Lemma 7. In δ(Γ), any two length seven sequences starting with the same char-
acter will contain at least three consecutive mismatches if they are not identical.

Proof. According to Remark 3 the only length two factors of Γ are ac, ad, ba,
ca, cb and dc. We prove the lemma for sequences starting with letter f , the other
cases being similar. If a sequence starts with f , then it must be either fgifhji,
a prefix of both δ(ac) and δ(ad), fghijfg, prefix of δ(ba), fjigjhf , first factor
starting with f in both δ(dca) and δ(dcb), or, fhjigjh and fhjihgf , suffixes of
δ(ac) and δ(ad). It is easy to check that each two of these blocks contain three
consecutive mismatches once aligned. ��

Proposition 2. No factor of δ(Γ) of length 2p + 1 > 21 with p not divisible by
5 can be turned into a weak overlap by a 2-valid insertion of holes.

Proof. Assume that there exists a0v0a1v1a2, a factor that can be transformed
into a weak overlap after insertion of holes, where each vi is a word of length p−1
and the aj ’s are letters. Since p is not divisible by 5, it follows that the images
of δ in a0v0 and a1v1 will not be aligned. If the second letters of a0v0 and a1v1
are equal, then we get a contradiction by Lemma 7 (here no two corresponding
length seven subwords in each half starting with the same character can be
identical). If the two positions do not match, following Remark 4 it must be that
either the first or the third positions must match. Using the same technique we
get a contradiction in both these cases. Therefore, no factor of δ(w) of length
2p + 1 > 21 with p not divisible by 5 can be turned into a weak overlap. ��

Proposition 3. No factor of δ(Γ) of length 2p + 1 > 21 with p divisible by 5
can be turned into a weak overlap.

Proof. Assume towards a contradiction that a factor a0v0a1v1a2 can be trans-
formed into a weak overlap after insertion of holes. Since |a0v0| = 5k, for some
k > 2, it follows that the images of δ will be aligned in a0v0 and a1v1. By looking
at the blocks of δ we see that only the images of b and d do not contain three con-
secutive mismatches once aligned. Hence, we will consider the case when these
two images are aligned, the other cases being straightforward by Remark 4.

Note that the only character preceding d in Γ is a, and the only character
preceding b is c, while the only character following d in Γ is c, and the only
character following b is a. Assume that the block determined by δ(d) ends before
the last position in aivi with i ∈ {0, 1}. The character following this block is j,
while the one following the block δ(b) is f . Note that this letter together with
the last two characters of the block gives us the sequences gfj and ijf , that will
not match after a valid insertion of holes, by Remark 4.

An Answer to a Conjecture on Overlaps in Partial Words 199

If the block δ(d) starts at a position greater than 5, it follows that it is
preceded by δ(a). Since δ(a) will align with a block δ(c) according to the previous
observations, by Remark 4 we conclude that a matching is impossible. ��

Theorem 4. The infinite word δ(Γ) over a 5-letter alphabet is weakly overlap-
free after an arbitrary insertion of holes.

Proof. This follows directly from Propositions 1, 2, and 3. ��

Since strong periodicity implies weak periodicity, the theorem answers an open
problem of [2] regarding how large an alphabet must be to create an infinite
word that is strongly overlap-free despite arbitrary insertions of holes.

Corollary 2. The infinite word δ(Γ) over a 5-letter alphabet is strongly overlap-
free after an arbitrary insertion of holes.

Please note that the lower bound of five letters presented in [2] stands, since for
alphabets of size smaller than five, all infinite words contain factors of length
2p + 1 that are strongly p-periodic, and therefore weakly p-periodic. Also note
that the use of the terms weakly and strongly overlap-free word comes from the
concepts of weak- and strong-periodicity (when looking at overlaps from this
point of view, the terminology comes naturally).

References

1. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Science 389,
265–277 (2007)

2. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science (2008), doi:10.1016/j.tcs.2008.11.006

3. Thue, A.: Uber unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.
Christiana 7, 1–22 (1906)

4. Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912)

5. Halava, V., Harju, T., Kärki, T.: Overlap-freeness in infinite partial words. Technical
Report 888, Turku Centre for Computer Science (2008)

6. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

Partial Projection of Sets Represented by Finite
Automata, with Application to State-Space

Visualization�

Bernard Boigelot and Jean-François Degbomont

Institut Montefiore, B28
Université de Liège, B-4000 Liège, Belgium

{boigelot,degbomont}@montefiore.ulg.ac.be

Abstract. This work studies automata-based symbolic data structures
for representing infinite sets. Such structures are used in particular by
verification tools in order to represent the sets of configurations han-
dled during symbolic exploration of infinite state spaces. Our goal is to
develop an efficient projection operator for these representations. There
are several needs for such an operator during state-space exploration; we
focus here on projecting the set of reachable configurations obtained at
the end of exploration. An interesting application is the state-space visu-
alization problem, which consists in providing the user with a graphical
picture of a relevant fragment of the reachable state space.

For theoretical reasons, the projection of automata-represented sets
is inherently costly. The contribution of this paper is to introduce an
improved automata-based data structure that makes it possible to reduce
in several cases the effective cost of projection. The idea is twofold. First,
our structure allows to apply projection to only a part of an automaton,
in cases where a full computation is not necessary. Second, the structure
is able to store the results of past projection operations, and to reuse
them in order to speed up subsequent computations. We show how our
structure can be applied to the state-space visualization problem, and
discuss some experimental results.

1 Introduction

State-space exploration is a powerful technique for analyzing the properties of
computerized systems. It is not restricted to finite models: infinite state spaces
can be explored symbolically, with the help of suitable data structures for rep-
resenting the sets of configurations that have to be handled [Boi98, BJNT00].
Concretely, if a system undergoing symbolic state-space exploration is controlled
by n variables defined over the respective domains D1, D2, . . . , Dn, then one
needs a data structure suited for representing subsets of D1 × D2 × · · · × Dn.
This structure must be closed under all operations to be performed during
exploration.
� This work is supported by the Interuniversity Attraction Poles program MoVES of

the Belgian Federal Science Policy Office, and by the grant 2.4530.02 of the Belgian
Fund for Scientific Research (F.R.S.-FNRS).

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 200–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Partial Projection of Automata-Represented Sets 201

1.1 Automata-Based Representations

A simple approach consists in representing sets as finite automata: given a fixed
alphabet Σ, one considers an encoding relation that maps every value in a do-
main D onto words over Σ. Such a relation thus encodes subsets S of D as
languages. Whenever such languages are regular, they can be accepted by finite
automata, which then provide symbolic representations of the sets S. The advan-
tages are that automata are easily manipulated algorithmically, and that most
usual operations on sets (such as intersection, union, . . .) reduce to carrying out
the same operations on the languages accepted by automata [Boi98].

Consider for instance the important case of programs relying on integer vari-
ables. Using the positional notation, an integer number can be encoded as a finite
word over the alphabet {0, 1, . . . , r−1}, where r > 1 is an arbitrarily chosen base.
It has been established that, in this setting, every subset of Z that is definable
in Presburger arithmetic, i.e., the first-order theory 〈Z, +,≤〉, is encoded by a
regular language, and is thus automata-representable [BHMV94]. Interestingly,
Presburger-definable sets are those that can be expressed as combinations of lin-
ear constraints and discrete periodicities [Pre29], which matches quite well the
requirements of infinite state-space exploration applications [WB95, SKR98].

In order to represent multidimensional sets, i.e., subsets of D = D1 × D2 ×
· · ·×Dn, one needs an encoding relation suited for the global domain D. Such a
relation can be obtained by combining together encoding relations suited for each
individual domain Di. Several types of combinations are possible. A first strategy
consists in encoding a value (v1, v2, . . . , vn) ∈ D by concatenating the individual
encodings of v1, v2, . . . , vn, expressed over distinct alphabets. This method is
more suited for domains such as communication channel contents [BG96] than
for integer variables. Indeed, with this scheme, the Presburger-definable subsets
of Zn are generally not encoded by regular languages1.

Another approach is to interleave the encodings of the individual values
v1, v2, . . . , vn, by reading repeatedly and successively one symbol in words w1, w2,
. . . , wn encoding those values. This requires these words to share the same length,
which can always been achieved by appending a suitable number of padding sym-
bols. In the case of integer numbers encoded positionally, padding is not neces-
sary, since every integer admits encodings of any sufficiently large length. It is
known that this composite encoding relation maps every Presburger-definable
subset of Zn onto a regular language [BHMV94, WB95, Boi98].

In this work, we restrict ourselves to multidimensional encoding relations ob-
tained by the interleaving method. Our motivation stems from the case of pro-
grams manipulating integer variables, which is probably the most relevant one in
actual applications. Nevertheless, the techniques developed in this paper extend
naturally to other domains for which interleaved encodings are also applicable.

1.2 Set Projection and State-Space Visualization

This paper studies the projection operation, which intuitively consists in dis-
carding a given subset of variables from a multidimensional set. Formally, given
1 A simple example is given by the set {(x1, x2) ∈ Z2 | x1 = x2}.

202 B. Boigelot and J.-F. Degbomont

a set S ⊆ D1 × D2 × · · · × Dn and a set C = {i1, i2, . . .} ⊆ {1, 2, . . . , n} of
components, the projection of S over C is given by the set S′ = {(ui1 , ui2 , . . .) ∈
Di1 × Di2 × · · · | ∃(v1, v2, . . . , vn) ∈ S : ∀j : uij = vij}.

During symbolic state-space exploration, the projection operationhas to be car-
ried out in several forms. The first one, local projection, is needed when one needs to
compute the image of a subset of configurations by an operation that discards the
current value of some variables. For instance, the effect of an assignment instruc-
tion such as x1 := 2 amounts to first projecting the current set of configurations
onto all variables but x1, and then inserting the constant 2 in the first component
of all tuples in the resulting set. A different application, global projection, corre-
sponds to projecting the whole set of reachable configurations obtained at the end
of state-space exploration. This makes it possible to reason on the properties of the
reachable set without being hampered by the presence of non-relevant variables.

The aim of this work is to develop an efficient implementation of global projec-
tion operations. Our main motivation is the state-space visualization problem for
programsmanipulating integer variables, definedas follows.Thegoal of state-space
exploration is to compute the set of reachable configurations of the system under
analysis, in the form of a symbolically-represented set of vectors with integer com-
ponents. The visualization problem then consists in producing a two-dimensional
image of the values taken by a pair of specified variables. Such an image can be ob-
tained by projecting the original set over the selected variables, and then enumer-
ating the values in the resulting set, within given bounds. The aim of visualization
is to provide the user with a synthetic and global view of the reachable configura-
tions, so as to draw quickly attention towards erroneous behaviors (which can then
be the subject of more focused investigations), or modeling errors.

In order for state-space visualization to be helpful during the software develop-
ment process, it has to be reasonably efficient. Of course, state-space exploration
in itself is usually a quite costly procedure, but that has only to be carried out once
for a given system. Having obtained a (typically large) symbolic representation of
the reachable set, the problem is thus to visualize it as efficiently as possible, with
respect to different choices of variables or viewing parameters (in particular, one
should be able to move at will the visualization window, as well as change the zoom
factor). This requires an efficient implementation of the projection operator.

1.3 Projecting Sets Represented by Automata

In the case of automata-based representations of multidimensional sets, projection
is seemingly a simple operation. Indeed, assuming an interleaved encoding scheme,
one can locate in linear time the automaton transitions associated with the vari-
ables discarded by the projection, and simply relabel them with the empty word.
The drawback of this approach is that it gives out non-deterministic automata.

For state-space exploration however, using non-deterministic representations
is problematic. First, during exploration, working systematically with determin-
istic automata makes it possible to minimize them into a canonical form [Hop71].
This makes the representation of sets independent from their construction, which
often helps to keep the size of the representations under control. Another problem

Partial Projection of Automata-Represented Sets 203

is that testing inclusion between sets, which is needed for checking that a fixed
point has been reached during exploration, can only be implemented with a
reasonable cost on deterministic automata. Furthermore, visualizing a set with
respect to a given pair of variables requires to check for each pixel of the dis-
play window whether it has to be lit or not. For a given pixel, this amounts to
checking whether the projection of the underlying automaton over the selected
variables accepts or not an encoding of the coordinates of the corresponding
point. With non-deterministic automata, this procedure requires to check a pro-
hibitively large number of paths. Finally, it is worth mentioning that the worst-
case exponential cost of the determinization operation is seldom observed in
practice; for automata produced by state-space exploration tools, determiniza-
tion usually remains an efficient operation [BW02].

The implementation of a usable state-space visualization tool is thus faced
with the problem of computing as efficiently as possible a deterministic au-
tomaton representing the projection of a given set. This problem is inherently
difficult. Indeed, one can easily build families of deterministic automata whose
determinized projection is exponentially larger. A possible workaround could be
to limit the expressiveness of the symbolic representations. Assuming that only
Presburger-definable sets have to be represented, a potential strategy could be
to exploit the known structure of the automata representing such sets [Lat05,
Ler05]. Unfortunately, this approach is not feasible, for a polynomial algorithm
for the projection operator would lead to a polynomial decision procedure for
Presburger arithmetic, which does not exist [Opp78].

In spite of these theoretical limitations, it is nevertheless possible to reduce the
effective cost of projection in some applications. The approach we propose is based
on two ideas. First, projection does not always have to be applied to whole au-
tomata. In particular, we show that state-space visualization can be speeded up
by only projecting subsets of the transition graph of the original automaton (we
name this operation partial projection). Second, some projection computations can
reuse the results of previous computations. For instance, projecting a set over {x1}
becomes simpler if the projection of that set over {x1, x2} is already available.

The contributions of this paper are the definition of an original data structure
allowing the computation of partial projections as well as the efficient reuse of
the results of past computations. We also show how this data structure can
be exploited for implementing state-space visualization, and then discuss some
experimental results.

2 Basic Notions

2.1 Automata-Based Representations of Sets

In order to represent subsets of a domain D by finite automata, one needs an
encoding relation E ⊆ D×Σ∗ mapping the elements of D onto finite words over
a finite alphabet Σ. A word can only encode one value, hence the relation E
must be such that ∀(v1, w1), (v2, w2) ∈ E : v1 �= v2 ⇒ w1 �= w2. Moreover, each
element of D must be encoded by at least one word.

204 B. Boigelot and J.-F. Degbomont

For a set S ⊆ D, we define its encoding as the language E(S) = {w ∈ Σ∗ | ∃v ∈
S : (v, w) ∈ E}. If this language is regular, then any finite automaton that accepts
E(S) is a representation of S. We denote finite automata by tuples (Q, Σ, δ, q0, F),
where Q is a finite set of states, Σ the alphabet, δ a transition relation, with δ ⊆
Q × (Σ ∪ {ε}) × Q for non-deterministic automata, and δ : (Q × Σ) → Q for
deterministic ones, q0 ∈ Q an initial state, and F ⊆ Q a set of accepting states.

2.2 Multidimensional Domains

A domain D is multidimensional if it can be expressed as the Cartesian product
D = D1 × D2 × · · ·Dn of simpler domains Di, where n ≥ 0 is the dimension.
Assuming that encoding relations Ei have been defined for the domains Di, for
i = 1, 2, . . . , n, we build an encoding relation E suited for D in the following
way. First, for simplicity’s sake, we assume that the relations Ei are defined
over the same alphabet, i.e., Ei ∈ Di × Σ∗. Then, we require each Ei to be
such that, for every value vi ∈ Di and sufficiently large integer N , there exists
wi such that |wi| = N and (vi, wi) ∈ Ei. In other words, every value in Di

must admit encodings of any sufficiently large length. Note that any relation
can be turned into one that satisfies this requirement, by appending appropriate
padding symbols to the encodings of values.

In order to encode a multidimensional value v = (v1, v2, . . . , vn) ∈ D, we first
consider individual encodings w1, w2, . . . , wn ∈ Σ∗ of v1, v2, . . . , vn, such that
|w1| = |w2| = · · · = |wn|. Then, we build the word w = a1a2 . . . an b1b2 . . . bn . . .,
where wi = aibi . . . for each i = 1, 2, . . . , n. In other words, w is constructed
by reading repeatedly one symbol in w1, w2, . . . , wn, in fixed order. By mapping
every value v ∈ D onto the words w obtained in this way, we get an encoding
relation E ⊆ D×Σ∗ suited for D. Note that a value may admit several distinct
encodings, and that the length of encodings is restricted to integer multiples of
the domain dimension n. Hence, we have E ⊆ D × (Σn)∗ [Boi98].

2.3 Projection

Let S be a subset of a multidimensional domain D = D1 × D2 × · · ·Dn, and
C ⊆ {1, 2, . . . , n} be a set of components . The projection of S over C is defined
as the set πC(S) = {(ui1 , ui2 , ui3 , . . .) ∈ Di1 ×Di2 ×Di3 ×· · · | ∃(v1, v2, . . . , vn) ∈
S : ∀j : uij = vij}, where C = {i1, i2, i3, . . .} with i1 < i2 < i3, · · ·. In other
words, projecting S over C amounts to removing from every element of S the
components that do not belong to C.

A similar operator can also be defined over words that encode multidimen-
sional values. Given a dimension n and a nonempty set of components C ⊆
{1, 2, . . . , n}, the projection of a word a = a1a2 · · · an over C, with ∀i : ai ∈ Σ,
is given by πC(a) = ai1ai2ai3 . . ., where C = {i1, i2, i3, . . .} with i1 < i2 < i3, · · ·.
For an empty set of components C = { }, we define πC(a) = α, where α
is a distinguished symbol2. Then, the projection of a word w = w1w2 · · ·wq,
2 The motivation behind this definition is to keep track of the length of a word in all

its projections, even those over the empty set of components.

Partial Projection of Automata-Represented Sets 205

with |wi| = n for each i ∈ {1, . . . , q}, over C is then defined as πC(w) =
πC(w1)πC(w2) · · ·πC(wq). Finally, the projection of a language of encodings
L ⊆ (Σn)∗ over C is given by πC(L) = {πC(w) | w ∈ L}.

Note that the projection operator preserves the regularity of languages: an
automaton accepting πC(L) can easily be built from one accepting L. This is done
by first unrolling the transition graph of the automaton so that each transition
corresponds to one individual component. Then, the transitions associated with
the components that do not belong to C are relabeled with the empty word.
This procedure gives out a non-deterministic automaton.

Let S ⊆ D be a set represented by an automaton A. The projection πC(S) of
S over some set of components C cannot be simply computed by constructing
an automaton accepting πC(L(A)), where L(A) denotes the language accepted
by A. Indeed, although each word in πC(L(A)) encodes correctly the projection
of some element of S, this language may not necessarily contain all such encod-
ings. The solution to this problem depends on the encoding relation used, and
consists in first applying the language projection operator, and then performing
a domain-specific saturation operation that adds to the resulting language the
missing encodings of the represented values [Boi98].

2.4 Application to Sets of Integers

Consider the domain Z of integer numbers. Choosing a base r ∈ N \ {0}, the
positional notation encodes a number z ∈ N as a word dp−1dp−2 . . . d1d0 over
the finite alphabet {0, 1, . . . , r − 1}, such that z =

∑
0≤i<p dir

i. This encoding
relation generalizes to numbers in Z by encoding negative numbers by their r-
complement [WB95]. The length p of encodings is not fixed. This implies that
every number has encodings of any sufficiently large length. One can then apply
the technique outlined in Section 2.2 so as to obtain a positional encoding relation
suited for subsets of Zn, for any dimension n ≥ 0.

The resulting automata-based representation for sets of vectors in Zn is called
the Number Decision Diagram (NDD) [WB95, Boi98]. It is known that all sub-
sets of Zn that are definable in Presburger arithmetic, i.e., the first-order theory
〈Z, +,≤〉, can be represented by NDDs [Büc62, BHMV94]. In order to project
a set represented by an NDD A, one simply projects the language L(A) ac-
cepted by A, and then applies the saturation algorithm developed in [BL04].
Automata-based representations of numbers have been extended to sets of vec-
tors with mixed integer and real components, by moving to infinite-word au-
tomata [BJW05].

3 State-Space Visualization

3.1 Problem Statement

Let n ≥ 2 be a dimension, and S ⊆ Zn be a set of vectors represented by a NDD
A in a base r > 1. In our intended application, S is the set of reachable config-
urations of a program controlled by n integer variables, and its representation

206 B. Boigelot and J.-F. Degbomont

A is produced by a symbolic state-space exploration algorithm [Boi98]. In this
setting, r is typically equal to 2.

The visualization problem consists in extracting from A a two-dimensional
picture of some fragment of S that is relevant to the user. More precisely, the
user provides two components i1, i2 ∈ {1, 2, . . . , n}, with i1 �= i2, a center position
(x, y) ∈ Z2, a zoom factor f ∈ N, with f > 0, and a window size (W, H) ∈
N2 with W > 0 and H > 0. The idea is that each pixel in the visualization
window corresponds to a square region of size f × f in the domain Z2, with the
window centered on the point of coordinates (x, y). The goal of the visualization
procedure is to light up the pixels corresponding to regions that contain at least
one value in π{i1,i2}(S).

3.2 Visualization and Projection

Visualization can thus be achieved by first computing a NDD representing the
set π{i1,i2}(S), and then scanning its accepting paths for values that fit in the
visualization window. In order to speed up the latter operation, which has to
be carried out for each pixel in the window, a good strategy is to determinize
the automaton representing π{i1,i2}(S). Then, whether a value (v1, v2) belongs
or not to this set can be checked by examining a single automaton path.

Even with a deterministic automaton, the number of paths to be checked can
become prohibitive for large zoom factors f , since each pixel covers f2 distinct
points of Z2. A solution is to restrict the allowable values of f to be equal to
powers rk, with k ∈ N, of the representation base r, and to align the pixel
boundaries on coordinates that are exact multiples of f (this is not problematic
in actual applications). With those restrictions, the values covered by a single
pixel correspond to a square region of the form [v1r

k, (v1 +1)rk−1]× [v2r
k, (v2 +

1)rk − 1], with v1, v2 ∈ Z and k ∈ N. It is then sufficient to check whether the
automaton admits a accepting path that reads an encoding of (v1, v2) followed
by 2k arbitrary symbols.

In a deterministic automaton, following a given prefix is a simple operation.
Checking whether, from a given state q, there exists an accepting path of given
length l is more problematic, since it may require to examine a large number
of paths. Remark that this operation is actually equivalent to projecting the
language L(q) accepted from q over the empty set of components, determinizing
the resulting automaton, and then checking whether one has αl ∈ π{ }(L(q)),
which can then be done efficiently.

3.3 Avoiding Redundant Computations

Explicitly carrying out a projection followed by a determinization for each con-
sidered pixel would however lead to redundant computations. First, some au-
tomata states are reached by different prefixes, hence the number of distinct
states from which a projection needs to be performed can actually be smaller
than the total number of pixels. Second, when the user moves the visualiza-
tion window, some pixels may correspond to coordinates that have already been
checked in previous computations.

Partial Projection of Automata-Represented Sets 207

Our solution for curbing redundant computations is based on an original data
structure, the Partially Projected Automaton (PPA), in which projection and
determinization operations can be applied to sub-automata, with their results
stored in order to be subsequently reusable. For visualization, the idea is thus
to use PPA mainly in order to project efficiently the languages accepted from
automaton states over the empty set of components. Interestingly, it turns out
that the computation of π{i1,i2}(S), i.e., the projection of the whole reachable set
over the pair of selected components, can also benefit from such a data structure.

Indeed, for a regular language L ⊆ (Σn)∗ and a set of components C ∈
{1, 2, . . . , n}, there are several ways of computing a deterministic automaton
accepting πC(L) from one accepting L. A first technique is to build a non-
deterministic automaton accepting πC(L), and then determinize it at once. An
alternative approach is to extract the components i1, i2, . . . , im that do not be-
long to C, i.e., such that {i1, i2, . . . , im} = {1, 2, . . . , n} \C, and to project them
out one by one, in some given order, determinizing the resulting automaton after
each projection. In the context of symbolic state-space exploration of programs
relying on integer variables, we have observed experimentally that the latter
solution is more efficient in practice (see Section 5).

With this solution, the results of past projection operations can in some situ-
ations be reused in order to speed up new computations. Consider for instance a
5-dimensional domain. Assuming that components are projected out individually
in increasing order, the computations of π{2,3}(L) and π{2,5}(L) will respectively
be decomposed into π{1,2} π{1,2,4} π{2,3,4,5}(L) and π{1,3} π{1,2,4} π{2,3,4,5}(L). In
this case, the intermediate result π{1,2,4} π{2,3,4,5}(L) can be reused across both
computations.

4 Partially Projected Automata

4.1 Definition

A Partially Projected Automaton (PPA) A is a tuple (Q, Σ, δ, δD, dim , q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : (Q × Σ) → Q is
a (deterministic) transition relation, δD : (Q × 2N) → Q is a decomposition
relation, dim : Q → N is a dimension function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states.

In order for a PPA to be well formed, its components have to satisfy some
constraints. The language L(A) accepted by A is defined as being equal to
the language accepted by the finite automaton (Q, Σ, δ, q0, F). This language is
supposed to encode some set of vectors from a n-dimensional domain D. This
implies that all words in L(A) have a length that is an integer multiple of n.
In order to enforce this constraint, the function dim associates each state of A
with a dimension, which intuitively corresponds to the dimension of the vectors
recognized from that state. For all states q visited by the paths of (Q, Σ, δ, q0, F),
one thus has dim(q) = dim(q0) = n.

The purpose of the decomposition relation δD is to provide redundant in-
formation, corresponding to the results of language projection operations that

208 B. Boigelot and J.-F. Degbomont

have previously been carried out from automaton states. For states q, q′ ∈ Q
and a subset of components C ⊆ N such that q′ = δD(q, C), we must have
C ⊂ {1, . . . , dim(q)} and dim(q′) = |C|. The language accepted from the state
q′ is then equal to πC(L(q)), where L(q) denotes the language accepted from
q. The paths of (Q, δ) that can be followed from q′ must thus only visit states
q′′ such that dim(q′′) = dim(q′) = |C|. Each such path σ reads a word w that
belongs to π(C,|w|)(L(q)) iff σ ends in an accepting state.

In summary, a PPA accepting a language encoding a set of n-dimensional
vectors can be seen as n distinct finite-state automata, each of them recognizing
sets with a specific dimension in {1, . . . , n}, linked together by the decomposition
relation. Decompositions can be nested, in the sense that from the destination
of a decomposition transition, one may reach states from which other decompo-
sition transitions are defined. The advantage of PPA is that they provide a way
of storing and reusing the results of previous projection operations carried out
from automaton states. These stored results do not have to be kept indefinitely,
since decomposition transitions can always be removed from a PPA without af-
fecting its accepted language. Procedures for constructing well-formed PPA and
manipulating them are discussed in the next section.

4.2 Algorithms

Let L ⊆ Σ∗ be a regular language encoding the n-dimensional set S ⊆ D.
A well-formed PPA A representing S can simply be constructed by associat-
ing a deterministic finite-state automaton (Q, Σ, δ, q0, F) accepting L with an
empty decomposition relation, i.e., by defining A = (Q, Σ, δ, { }, dim, q0, F), with
dim(q) = n for all q ∈ Q.

After obtaining such a PPA, projecting the language accepted from one of
its states may result in adding decomposition transitions, in order to remember
the result of this operation so as to be able to reuse it later. The size of a
PPA thus grows with projection operations. At any time, one may choose to
curb this growth by removing arbitrary decomposition transitions, as well as
the states and transitions that then become unreachable. Different heuristics
can be used for selecting the decomposition transitions to be removed: bounding
the total memory footprint of the structure, discarding the last recently or the
least frequently followed decomposition transition, . . . In all cases, removing
decomposition transitions has no influence on the language accepted by the PPA.

We now sketch the algorithm computing the projection πC(L(q)) of the lan-
guage accepted from some state q of a PPA A = (Q, Σ, δ, δD, dim , q0, F), with
respect to a set of components C ⊂ {1, . . . , dim(q)}.

If δD = { }, then the projection is carried out by composing the automaton
(Q, Σ, δ, q, F) with a finite-state transducer, constructed with a transition re-
lation that takes the form of a single cycle of length dim(q). Each transition
in this cycle thus corresponds to one vector component in {1, . . . , dim(q)}. The
transitions corresponding to components in C are designed so as to give out a
copy of their input symbol, the other transitions producing an empty word (or,
in a case of a projection over { }, one occurrence of the distinguished symbol

Partial Projection of Automata-Represented Sets 209

α). The result takes the form of a non-deterministic automaton A′, that can
be determinized into an automaton A′′ using the classical subset construction.
Finally, a decomposition transition δD(q, C) = q′′ is added to A, where q′′ is
the initial state of A′′. Note that each state q′ of the determinized projected
automaton thus corresponds to a subset Qq′ of states of A.

If, on the other hand, δD �= { }, the construction is similar but it may then
become possible to reuse the results of earlier projections. This happens when
a state q′ of the projected automaton is such that all the states in Qq′ admit
outgoing decomposition transitions with the same destination q′′ and subset C′

of components, such that C ⊆ C′. In this case, the computation of the projection
can be continued by exploring the successors of q′′ instead of those of q.

Finally, the automaton obtained after a projection operation are minimized,
by merging states that are known to accept identical languages. This is done by
partitioning the states of the automaton according to their dimension, and then
applying classical finite-state machine minimization [Hop71] to each part.

5 Experimental Results

The data structure and the algorithms outlined in Section 4 have been im-
plemented in a prototype tool for visualizing NDDs. Our evaluation considers
random NDDs generated by the same method as the one used in [BW02], and
measures the time needed for displaying them in a 512× 512 window, changing
the zoom factor from 1 to 256, and moving the view from (0, 0) to (216+1, 216+1).
The results are given in Figure 1. Those results demonstrate that, although the
inherent cost of projection is not avoided, reusing previous results is useful, es-
pecially for translating efficiently the visualization window.

NDD size without PPA with PPA
|Q| tdisp tzoom tmove tdisp tzoom tmove

N1 621 0.01 0.85 2.33 0.01 0.07 0.04
N2 755 0.03 2.56 7.63 0.03 0.12 0.12
N3 1938 0.14 15.98 12.06 0.14 0.64 0.28
N4 13944 0.15 15.26 11.58 0.15 11.44 0.84

Fig. 1. Time cost of visualization operations (in seconds)

n |Q| tat-once tincr n |Q| tat-once tincr
S1 4 434 0.02 0.03 S7 7 50135 240.86 9.30
S2 5 224 0.04 0.01 S8 5 4474 1.70 0.50
S3 4 15272 154.15 0.80 S9 7 99169 176.29 100.07
S4 5 915 0.80 0.06 S10 7 132709 243.52 109.94
S5 4 3446 0.30 0.30 S11 6 63410 71.50 2.90
S6 3 1279 0.08 0.10 S12 6 66330 > 1000 5.50

Fig. 2. At-once vs incremental projection (in seconds)

210 B. Boigelot and J.-F. Degbomont

We also evaluated experimentally the benefits of projecting and determinizing
a NDD incrementally instead of at once, as discussed in Section 3.3. Figure 2
gives the time spent by both methods for projecting the family of sets described
in [Lat05] over two components. The incremental approach clearly stands out.

6 Conclusions

In this paper, we have introduced a simple yet powerful data structure for storing
and reusing the results of partial projections of finite automata, i.e., projection
operations carried out from a given state. We have applied our results to the
problem of visualizing a part of the set of reachable configurations produced by
a state-space exploration tool. In this setting, the advantage of our approach
is not to reduce the inherent cost of projection, but rather to avoid performing
redundant computations. This makes the procedure efficient when only slight
modifications are applied to the value of parameters, such as the zoom factor or
the coordinates of the visualization window. A prototype implementation of the
proposed method has been developed, showing that the approach provides clear
benefits. Although the focus of this paper was on sets on integers represented
by finite-word automata, it is worth mentioning that our technique straightfor-
wardly generalizes to mixed integer and real sets represented by weak infinite-
word automata [BJW05]. Future work will address the problem of making PPA
compatible with efficient representations of automata, such as [Cou04].

Acknowledgments

We would like to thank Louis Latour and Laetitia Smisdom for their contribution
to the investigation of the visualization problem.

References

[BG96] Boigelot, B., Godefroid, P.: Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg
(1996)

[BHMV94] Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-
recognizable sets of integers. Bulletin of the Belgian Mathematical Soci-
ety 1(2), 191–238 (1994)

[BJNT00] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model check-
ing. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 403–418. Springer, Heidelberg (2000)

[BJW05] Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure
for linear arithmetic over the integers and reals. ACM Trans. Comput.
Logic 6(3), 614–633 (2005)

[BL04] Boigelot, B., Latour, L.: Counting the solutions of Presburger equations
without enumerating them. Theoretical Computer Science 313, 17–29
(2004)

Partial Projection of Automata-Represented Sets 211

[Boi98] Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, University of Liége, Belgium (1998)

[BW02] Boigelot, B., Wolper, P.: Representing arithmetic constraints with fi-
nite automata: An overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS,
vol. 2401, pp. 1–19. Springer, Heidelberg (2002)

[Büc62] Büchi, J.R.: On a decision method in restricted second order arithmetic.
In: Proc. International Congress on Logic, Methodoloy and Philosophy
of Science, pp. 1–12. Stanford University Press, Stanford (1962)

[Cou04] Couvreur, J.-M.: A BDD-like implementation of an automata package.
In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004.
LNCS, vol. 3317, pp. 310–311. Springer, Heidelberg (2005)

[Hop71] Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite
automaton. Theory of Machines and Computation, 189–196 (1971)

[Lat05] Latour, L.: Presburger Arithmetic: From Automata to Formulas. PhD
thesis, University of Liége, Belgium (2005)

[Ler05] Leroux, J.: A polynomial time Presburger criterion and synthesis for
number decision diagrams. In: Proc. 20th LICS, pp. 147–156. IEEE Com-
puter Society, Los Alamitos (2005)

[Opp78] Oppen, D.C.: A 222pn

upper bound on the complexity of Presburger
arithmetic. Journal of Computer and System Sciences 16, 323–332 (1978)

[Pre29] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Op-
eration hervortritt. In: Comptes Rendus du Premier Congrès des
Mathématiciens des Pays Slaves, Warsaw, pp. 92–101 (1929)

[SKR98] Shiple, T.R., Kukula, J.H., Ranjan, R.K.: A comparison of presburger
engines for EFSM reachability. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 280–292. Springer, Heidelberg (1998)

[WB95] Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger
arithmetic constraints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983,
pp. 21–32. Springer, Heidelberg (1995)

Larger Lower Bounds on the OBDD Complexity
of Integer Multiplication�

Beate Bollig

LS2 Informatik, TU Dortmund,
44221 Dortmund, Germany

Abstract. Integer multiplication as one of the basic arithmetic func-
tions has been in the focus of several complexity theoretical investiga-
tions. Ordered binary decision diagrams (OBDDs) are one of the most
common dynamic data structures for Boolean functions. Only recently it
has been shown that the OBDD complexity of the most significant bit of
integer multiplication is exponential, answering an open question posed
by Wegener (2000). In this paper a larger lower bound is presented, using
a simpler proof. Moreover, the best known lower bound on the OBDD
complexity for the so-called graph of integer multiplication is improved.

1 Introduction and Results

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms
and small circuits and in determining its complexity. Ordered binary decision
diagrams (OBDDs) are one of the most common dynamic data structures for
Boolean functions. Although many exponential lower bounds on the OBDD size
of Boolean functions are known and the lower bound methods are simple, it is
often a more difficult task to prove large lower bounds for some predefined and
interesting functions. Despite the well-known lower bounds on the OBDD size
of the so-called middle bit of multiplication ([1], [2]), only recently it has been
shown that the OBDD complexity of the most significant bit of multiplication is
also exponential [3] answering an open question posed by Wegener [4]. Here, we
present a simpler proof that lead to a larger lower bound. As a by-product the
known lower bound on the OBDD complexity of the so-called graph of integer
multiplication is improved.

1.1 Ordered Binary Decision Diagrams

Boolean circuits, formulae, and binary decision diagrams (BDDs), sometimes
called branching programs, are standard representations for Boolean functions.
(For a history of results on binary decision diagrams see, e.g., the monograph
of Wegener [4]). Besides the complexity theoretical viewpoint people have used
� Ideas presented in this paper were obtained during the Dagstuhl seminar 08381 on

computational complexity of discrete problems.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 212–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 213

restricted binary decision diagrams in applications. Bryant [5] has introduced
ordered binary decision diagrams (OBDDs) which have become one of the most
popular data structures for Boolean functions. Among the many areas of applica-
tion are verification, model checking, computer-aided design, relational algebra,
and symbolic graph algorithms.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able order π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable order π is sometimes identified with the corresponding
order xπ(1), . . . , xπ(n) of the variables if the meaning in clear from the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose
sinks are labeled by Boolean constants and whose non sink (or inner) nodes are
labeled by Boolean variables from Xn. Each inner node has two outgoing edges
one labeled by 0 and the other by 1. The edges between inner nodes have to
respect the variable order π, i.e., if an edge leads from an xi-node to an xj-node,
π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v represents a
Boolean function fv : {0, 1}n → {0, 1} defined in the following way. In order
to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node choose the
outgoing edge with label bi until a sink is reached. The label of this sink defines
fv(b). The size of the π-OBDD G is equal to the number of its nodes and π-
OBDD(f) denotes the size of the minimal π-OBDD representing f .

The size of the minimal π-OBDD representing a Boolean function f on n vari-
ables, i.e., f ∈ Bn, is described by the following structure theorem [6].

Theorem 1. The number of xπ(i)-nodes of the π-OBDD for f is the number
si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1}, essen-
tially depending on xπ(i) (a function g depends essentially on a variable z if
g|z=0 �= g|z=1).

The following simple observation is helpful in order to prove lower bounds. Given
an arbitrary variable order π the number of nodes labeled by a variable x in the
minimal π-OBDD representing a given function f is not smaller than the number
of x-nodes in a minimal π-OBDD representing any subfunction of f .

It is well known that the size of an OBDD representing a function f depends
on the chosen variable order. Since in applications the variable order is not given
in advance we have the freedom (and the problem) to choose a good or even an
optimal order for the representation of f .

Definition 3. The OBDD size or OBDD complexity of a function f (denoted
by OBDD(f)) is the minimum of all π-OBDD(f).

1.2 Integer Multiplication and Ordered Binary Decision Diagrams

In the last years a new research branch has emerged which is concerned with
the theoretical design and analysis of so-called symbolic algorithms for classical

214 B. Bollig

graph problems on OBDD-represented graph instances (see, e.g., [7,8], [9], and
[10]). Symbolic algorithms have to solve problems on a given graph instance by
efficient functional operations offered by the OBDD data structure. Therefore,
at the beginning the OBDD-based algorithms have been justified by analyzing
the number of executed OBDD operations (see, e.g., [7,8]). Newer research tries
to analyze the over-all runtime of symbolic methods including the analysis of
all OBDD sizes occurring during such an algorithm (see, e.g., [10]). In order
to investigate the limits of symbolic graph algorithms for the all-pairs shortest
paths problem Sawitzki [9] has investigated the graph of integer multiplication.

Definition 4. TheBoolean function MUL-Graphn ∈ B4n maps twon-bit integers
x = xn−1 . . . x0 and y = yn−1 . . . y0, and a 2n-bit integer z = z2n−1 . . . z0 to 1 iff
the product of x and y equals z, where x0, y0, z0 denote the least significant bits.

Sawitzki [9] has shown that the OBDD size for MUL-Graphn is at least
Ω(2n/768). Recently, in [11] this lower bound has been improved up to Ω(2n/24).
Here, we present a further simplification of the lower bound proof and present a
lower bound of Ω(2n/8).

Lower bounds for integer multiplication are also motivated by the general
interest in the complexity of important arithmetic functions.

Definition 5. The Boolean function MULi,n ∈ B2n maps two n-bit integers
x = xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product , i.e., we
write MULi,n(x, y) = zi, where x · y = z2n−1 . . . z0 and x0, y0, z0 denote the least
significant bits.

The first nontrivial upper bound on the OBDD complexity for the so-called
middle bit of integer multiplication MULn−1,n has been shown in [2]. In [12]
upper bounds on the OBDD size for all functions MULi,n have been investigated.
Recently, the best known upper bound on the OBDD complexity for the most
significant bit of integer multiplication MUL2n−1,n has been proved in [13].

The first exponential lower bound has also been proved for MULn−1,n. Bryant
[1] has presented a lower bound of 2n/8. Progress in the analysis of the middle bit
of integer multiplication has been achieved by an approach using universal hash-
ing and as a result Woelfel [2] has improved Bryant’s lower bound up to Ω(2n/2).
In the meantime exponential lower bounds for the middle bit of multiplication
have also been proved for more general binary decision diagram models (see,
e.g., [14] and [15]). Only recently it has been shown that the OBDD complexity
of the most significant bit of multiplication is exponential [3] and a lower bound
of Ω(2n/720) has been proved. Here, we present a simpler proof that lead to a
lower bound of Ω(2n/72). Since it has been noted before that the lower bound
in [3] can be improved up to Ω(2n/288) [16], the merit of the new result is a
simplified proof. As a result we gain more insight into the structure of the most
significant bit of integer multiplication.

Our results can be summarized as follows.

Theorem 2. OBDD(MUL-Graphn) = Ω(2n/8).

Theorem 3. OBDD(MUL2n−1,n) = Ω(2n/72).

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 215

In Section 2 we define some notation and present some basics concerning com-
munication complexity. Moreover, to the best of our knowledge we present the
first fooling set of exponential size for a certain Boolean function obtained by the
composition of three simpler functions. As a warm-up in Section 3 the known
lower bound for the graph of integer multiplication is improved by a reduction
from the function equality, the test whether two n-bit numbers are identical, to
the graph of integer multiplication. Section 4 contains the main result of the pa-
per, a simpler proof of an exponential lower bound on the OBDD complexity of
MUL2n−1,n. The idea is to reduce the Boolean function investigated in Section 2
to the most significant bit of integer multiplication in an appropriate way. Here,
also the reduction presented in Section 3 will be helpful.

2 Preliminaries

2.1 Notation

In the rest of the paper we use the following notation.
Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number

x = (xn−1, . . . , x0). For the ease of description we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}.
Sometimes, we identify [x]lr with z if the meaning is clear from the context. We
use the notation (z)l

r for an integer z to identify the bits at position l, . . . , r in
the binary representation of z.

Let � ∈ {0, . . . , 2m − 1}, then � denotes the number (2m − 1) − �. For a
binary number x = (xn−1, . . . , x0) we use the notation x for the binary number
(xn−1, . . . , x0).

2.2 Communication Complexity

In order to obtain lower bounds on the size of OBDDs one-way communication
complexity has become a standard technique (see Hromkovič [17] and Kushile-
vitz and Nisan [18] for the theory of communication complexity and the results
mentioned below).

The main subject is the analysis of the following (restricted) communication
game. Consider a Boolean function f ∈ Bn which is defined on the variables in
Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn. Assume that
Alice has only access to the input variables in XA and Bob has only access to the
input variables in XB. In a one-way communication protocol, upon a given input
x, Alice is allowed to send a single message (depending on the input variables
in XA) to Bob who must then be able to compute the answer f(x). The one-
way communication complexity of the function f denoted by C(f) is the worst
case number of bits of communication which need to be transmitted by such a
protocol that computes f . It is easy to see that an OBDD G with respect to
a variable order where the variables in XA are tested before the variables in
XB can be transformed into a communication protocol and C(f) ≤ $log |G|%.
Therefore, linear lower bounds on the communication complexity of a function

216 B. Bollig

f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} lead to exponential lower bounds on the size
of π-OBDDs where the XA-variables are before the XB-variables in π.

One central notion of communication complexity are fooling sets which play
an important role for the lower bound proof used later on.

Definition 6. Let f : {0, 1}|XA| × {0, 1}|XB| → {0, 1}. A set S ⊆ {0, 1}|Xa| ×
{0, 1}|XB| is called fooling set for f if f(a, b) = c for all (a, b) ∈ S and some
c ∈ {0, 1} and if for different pairs (a1, b1), (a2, b2) ∈ S at least one of f(a1, b2)
and f(a2, b1) is unequal to c.

Theorem 4. If f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} has a fooling set of size t,
the communication complexity of f is bounded below by $log t%.

Because of our considerations above, the size t of a fooling set for f is a lower
bound on the size of OBDDs representing f with respect to a variable order
where the variables XA are tested before the variables XB. Because of the sym-
metric definition of fooling sets, t is also a lower bound on the size of OBDDs
representing f with respect to a variable order where the variables XB are tested
before the variables XA. The crucial thing to prove large lower bounds on the
OBDD complexity of a function is to obtain for all partitions of the variables
large lower bounds on the size of fooling sets for subfunctions of the given func-
tion (best case communication complexity).

Now we take a look at known results about the communication complexity of
some functions. Let EQn : {0, 1}n×{0, 1}n → {0, 1} be defined by EQn(a, b) = 1
iff the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are equal. It is well-known
and easy to prove that C(EQn) = n. Obviously the same results can be obtained
if Alice gets exactly one of the variables ai and bi, 1 ≤ i ≤ n. Similar results
can be obtained for the functions GTn : {0, 1}n × {0, 1}n → {0, 1} and GTn :
{0, 1}n×{0, 1}n → {0, 1}, where GTn(a, b) = 1 iff [a]n1 > [b]n1 and GTn(a, b) = 1
iff [a]n1 ≤ [b]n1 .

In the rest of the section we investigate the following function f ∈ B3n which
is defined on the variables a = (a1, . . . , an), b = (b1, . . . , bn), and c = (c1, . . . , cn):

fn(a, b, c) := (EQn(a, c) ∧ GTn(a, b)) ∨ GTn(a, c)

Our aim is to prove that there exists a fooling set with at least 2n elements
for the function fn if Alice gets the a- and Bob the b-variables. With other
words the communication complexity of f is not smaller than the communication
complexity of GTn and the distribution of the c-variables does not simplify the
task.

Proposition 1. Let S := {(α, α, α) | α ∈ {0, 1}n}, where the first component of
a triple in S is an assignment to the a-variables, the second to the b-variables,
and the third to the c-variables. S is fooling set of size 2n for the function fn.

Proof. Obviously f(α, α, α) = 1 for α ∈ {0, 1}n. Let (α1, α1, α1) and (α2, α2, α2)
be two different elements in S, w.l.o.g. [α1]n−1

0 > [α2]n−1
0 . Let i be the most

significant bit position where [α1]i �= [α2]i.

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 217

Case 1: The variable ci belongs to Bob.
Let α be the composition of the partial assignment of α2 to Alice’s c-variables

and the partial assignment of α1 to Bob’s c-variables.
The function value f(α2, α1, α) is 0 since GTn(α, α2) = 1.
Case 2: The variable ci belongs to Alice.
Let D be the set of all indices j where [α1]j �= [α2]j .
Case 2.1: All variables cj, j ∈ D, belong to Alice.
Let α be the composition of the partial assignment of α1 to Alice’s c-variables

and the partial assignment of α2 to Bob’s c-variables.
The function value f(α1, α2, α) is 0 since GTn(α1, α2) = 0 and EQn(α1, α) =

1, therefore GTn(α1, α) = 0.
Case 2.2 There are variables cj , j ∈ D, that belong to Bob.
Let D′ ⊆ D be the set of indices j, where cj belong to Bob and i′ := max{j |

j ∈ D′}.
Case 2.2.1 [α1]i′ = 0 and [α2]i′ = 1
Let α be the composition of the partial assignment of α1 to Alice’s c-variables

and the partial assignment of α2 to Bob’s c-variables.
The function value f(α1, α2, α) is 0 since GTn(α1, α2)=0 and GTn(α1, α)=0.
Case 2.2.2 [α1]i′ = 1 and [α2]i′ = 0
Let α be the composition of the partial assignment of α2 to Alice’s c-variables

and the partial assignment of α1 to Bob’s c-variables.
The function value f(α2, α1, α) is 0 since GTn(α, α2) = 1. �

The same result can be obtained if Alice gets exactly one of the variables ai

and bi for all i ∈ {0, . . . , n − 1}. In this case it is not important whether the
investigated c-variables belong to Alice or Bob but whether the considered a-
and c-variables or b- and c-variables are tested together.

Using Theorem 4 we obtain the following result.

Corollary 1. The communication complexity of the function fn is at least n.

3 A Larger Lower Bound on the OBDD Complexity of
the Graph of Integer Multiplication

In this section we prove Theorem 2 and show that the OBDD size for the rep-
resentation of MUL-Graphn is at least 2n/8. The crucial thing is to choose an
appropriate subset of the input variables in order to show that there exists a
large fooling set. Besides the larger lower bound the improvement to the result
in [11] is that no case inspection is necessary.

Let π be an arbitrary variable order. We consider the set of the variables
S := {xn−1, . . . , xn/2, zn−1+n/2, . . . , zn}. Let T be the set of the first |T | variables
according to π, where there are n/2 variables from S, and B be the set of the
remaining variables. Let XS,T be the x-variables in S ∩ T , XS,B the x-variables
in S ∩ B. Similar the sets ZS,T and ZS,B are defined. Using simple counting
arguments we can prove that there exists a distance parameter d such that there
exist at least n/8 pairs (xi, zi+d) in XS,T × ZS,B ∪ XS,B × ZS,T (for a similar

218 B. Bollig

proof see, e.g., [1]). Let I be the set of indices i, n/2 ≤ i < n, where xi belongs
to such a pair.

Now we replace some of the variables in the following way:

- yd is replaced by 1 and the remaining y-variables are replaced by 0,
- the variables xi, i /∈ I, are replaced by 0, and
- the variables zj , 0 ≤ j ≤ 2n − 1 and j − d /∈ I, are replaced by 0.

The effect of these replacements is that the corresponding subfunction of
MUL-Graphn is equal to the function EQm, m ≥ n/8, where for each pair
(xi, zi+d), i ∈ I, there is exactly one variable in T . Therefore, the OBDD size is
at least 2n/8.

We only want to mention here that d has to be at least n/8 since there are at
least n/8 pairs. In the next section this observation will be helpful in order to
improve the lower bound on the OBDD complexity of MUL2n−1,n.

4 A Larger Lower Bound on the OBDD Complexity of
the Most Significant Bit of Integer Multiplication

In this section we prove Theorem 3 and determine the lower bound of Ω(2n/72)
on the size of OBDDs for the representation of the most significant bit of in-
teger multiplication. We start to prove a lower bound of Ω(2n/96) and present
afterwards the idea how to improve this lower bound up to Ω(2n/72).

In the following for the sake of simplicity we do not apply floor or ceiling
functions to numbers even when they need to be integers whenever this is clear
from the context and has no bearing on the essence of the proof.

We start with a (simplified) presentation of our main proof idea. Our aim is to
show for an arbitrary variable order π that a π-OBDD for MUL2n−1,n contains
in a certain way a π-OBDD for the Boolean function fn presented in Section 2:

fn(a, b, c) = (EQn(a, c) ∧ GTn(a, b)) ∨ GTn(a, c),

where the length of the inputs a, b, and c is Θ(n) and the a-variables are before
the b-variables in π. Therefore, there exists a large fooling set and as a conse-
quence also the size of the π-OBDD for MUL2n−1,n has to be large. The vectors
a is a subvector of one of the inputs x and y for MUL2n−1,n, the vectors b and
c of the other input.

Besides the idea of the lower bound proof presented in Section 3 we use the
idea of the following reduction from multiplication to squaring presented by
Wegener [19], where squaring computes the square of an m-bit input. For two
m-bit numbers u and w the number z := u · 22m + w is defined. Then

z2 = u2 · 24m + u · w22m + w2.

Since w2 and u · w are numbers of length 2m, the binary representation of the
product uw can be found in the binary representation of z2. (See Figure 1 shows
the bit composition of the number z2.)

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 219

0

u2 u · w w2

6m − 1 4m − 1 2m − 1

Fig. 1. The bit composition of the number z2

A key observation is the following one.
MUL2n−1,n answers the question whether the product of two numbers is at

least 22n−1. For a number 2n−1 + �2n/2, the corresponding smallest number
such that the product of the two numbers is at least 22n−1 is 2n − �2n/2+1 +
4�2 −

⌊
4�3

2n/2−1+�

⌋
. The number

⌊
4�3

2n/2−1+�

⌋
is smaller than � if � ≤ 2n/4−3/2. As a

consequence if b� is the binary representation of �, b�2 is the binary representation
of �2, L the length of b�, and if there exists j, where j ≥ L − 2, and [b�2]j = 1,
there is no difference in the upper half of the binary representations of the
numbers 4�2 and 4�2 −

⌊
4�3

2n/2−1+�

⌋
. More precisely, in this case if b′ is the binary

representation of 4�2 and b′′ is the binary representation of 4�2 −
⌊

4�3

2n/2−1+�

⌋
,

then [b′]2L+1
j+1 = [b′′]2L+1

j+1 .
Next, we investigate requirements that have to be fulfilled for inputs x and

y, where MUL2n−1,n(x, y) = 1. If x represents a number 2n−1 + �2n/2, 1 ≤ � ≤
2n/4−3/2, the upper half of y has to represent a number of at least 2n/2 − 2�,
i.e., [y]n−1

n/2 ≥ 2n/2 − 2�. If the upper half of y represents a number greater than
2n/2−2�, the function value MUL2n−1,n(x, y) is 1. Let j be the minimum number
of the set {i | n/2 ≤ i < (3/4)n− 2 and xi = 1}. If [y]n−1

i+2 > [x]n−1
i+1 , the function

value MUL2n−1,n is 0. If [y]n−1
i+2 < [x]n−1

i+1 , the function value MUL2n−1,n is 1. If
yi+1 = 1, [y]n−1

i+2 = [x]n−1
i+1 , and [y]in/2 = 0, [y]n/2−1

0 has to represent a number of

at least 4�2 −
⌊

4�3

2n/2−1+�

⌋
.

In order to use Wegener’s observation on squaring mentioned above combined
with our lower bound proof presented in Section 3, we only consider integers �
where � = u22m + w, u, w < 2m and m = n/12 − 1. (Later on we show that m
can be enlarged up to n/9 − 2/3 which leads to a larger lower bound.) For this
reason we replace the variables xn/2+m, . . . , xn/2+2m−1 by 0. (See Figure 2 for
the composition of the number x.) Afterwards we replace some of the x-variables
and the corresponding y-variables by constants, where yi+1 is the corresponding
y-variable to xi, such that a certain part of u ·w is equal to a certain part of 2d ·w
for d appropriately chosen. Furthermore, we choose w in such a way that the
assignments to the variables at position 3m + 2, . . . , 6m + 1 are the same in the
binary representations of 4�2 and 4�2 −

⌊
4�3

2n/2−1+�

⌋
. Furthermore, for different

numbers �1 and �2 (which means different assignments to the w-variables) the
assignments to the variables at position 3m + 2, . . . , (7/2)m + 1 in the binary

220 B. Bollig

x

0

0 0 0 0.

u w

. . . 0

�

3
4
n − 3

2
n
2
− 1n − 1

1 0

Fig. 2. The composition of the input x

1 . . . 1 . . .00 1 1

w′

yu2 . . .

3m + 16m + 1 4m + 1 7
2
m + 1 02m + 1

Fig. 3. The effect of the replacements of some of the y-variables, where u = [u]m−1
0 (w′

has to be at least (2d · w)(3/2)m−1
m)

representations of 4�2
1 and 4�2

2 are different. (Figure 3 illustrates some of the
replacements of the y-variables.)

Now we make our proof idea more precise. We rename [x]n/2+(n/12)−2
n/2 by

[w]m−1
0 and [x]n/2+n/4−4

n/2+n/6−2 by [u]m−1
0 . If � = u · 22m + w the product u · w can be

found at position 2m + 2, . . . , 4m + 1 in the binary representation of 4�2. Our
goal is to adapt the lower-bound proof for the graph of integer multiplication
from Section 3 to the variables S := {wm/2, . . . , wm−1, y3m+2, . . . , y(7/2)m+1}.
Let T be the set of the first |T | variables according to π where there are m/2
variables from S. There exists a distance parameter d such that there are at least
m/8 pairs (wi, y2m+2+i+d), where there is exactly one variable of each pair in T .
Let I be the set of indices, where wi belongs to such a pair. We replace the u-
variables such that yields [u]m−1

0 = 2d; similarly, the variables y4m+2, . . . , y6m+1
are replaced such that [y]6m+1

4m+2 = 22d).
The variables xn/2+i, i ∈ I, are called free x-variables, the variables yn/2+i+1

and y2m+2+i+d, i ∈ I, free y-variables. The free x-variables will play the role
of the a-variables, the free variables yn/2+i+1, i ∈ I, the role of the c-, and
the remaining free y-variables the role of the b-variables in the reduction from
the function fn mentioned above to MUL2n−1,n. Now we present the reduction.
(Figure 4 shows some of the replacements to the inputs x and y of MUL2n−1,n.)

- The variables yn−1 and xn−1 are set to 1,
- xn/2+m−d−1 (which corresponds to wm−d−1) and yn/2+m−d are set to 1,
- xn/2+2m+d (which corresponds to ud) is set to 1, the corresponding variable

yn/2+2m+d+1 is set to 0, y4m+2+2d to 1, the variables y(7/2)m+2, . . . , y4m+1+2d

and y4m+3+2d, . . . , y6m+1 to 0 (as a result [y]6m+1
4m+2 = 22d).

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 221

y

0

11 1

x

0

0 0. . .10 . . . 2d0 . . .0 0

. . . 1 1 1. . . 1 . . .0...022d2d

3m + 1

n
2
− 1

0...0

0...0

3
4
n − 1

4
n
2
− 1

3
4
n − 3

4
n − 1

n − 1

n
4

+ m
4
− 1

Fig. 4. A (simplified) presentation of replacements to some of the x- and y-variables.
The shaded areas contain the free variables (and possibly other variables).

- The variables yn/2, . . . , yn/2+m−d−1 are set to 0.
- Besides the free x-variables the remaining x-variables are replaced by 0.
- Besides the free y-variables the remaining y-variables are replaced by 1.

What is the effect of the replacements?

- The inputs x and y represent numbers that are at least 2n−1, since otherwise
the function value MUL2n−1,n(x, y) is 0.

- Since wm−d−1 = 1 and [u]m−1
0 = 2d, 4�2 and 4�2 −

⌊
4�3

2n/2−1+�

⌋
, where � =

u · 22m + w, do not differ in one of the bits at position 3m + 2, . . . , 6m + 1
of their binary representations.

- Since xn/2+m−d−1 = 1 and yn/2+m−d = 1, xn/2 = . . . = xn/2+m−d−2 = 0
and yn/2 = . . . = yn/2+m−d−1 = 0, [x]n−2

n/2+m = [y]n−2
n/2+m, [x]n/2+m−1

n/2+m−d has to

be at least [y]n/2+m
n/2+m−d+1 for inputs x and y, where MUL2n−1,n(x, y) = 1. If

[x]n/2+m−1
n/2+m−d > [y]n/2+m

n/2+m−d+1, MUL2n−1,n(x, y) = 1.
- Since [y]6m+1

4m+2 = 22d = u2 and because of the other replacements, [y]4m+1
3m+2 has

to be at least (u ·w)2m−1
m for inputs x and y, where MUL2n−1,n(x, y) = 1, if

[y]n−1
n/2 = 2n/2 − 2� and [x]n−1

n/2 = 2n/2−1 + �.

Therefore, the correctness of our reduction follows from our considerations
above. Using Proposition 1 we obtain a fooling set of at least 2m/8 elements.
Considering the fact that m = n/12 − 1, we get the result that the OBDD
complexity of MUL2n−1,n is at least Ω(2n/96).

Finally, we present the idea how to improve the lower bound on the OBDD
complexity of MUL2n−1,n up to Ω(2n/72). Up to now we have considered numbers
�, where � = u·22m+w and u, w < 2m with m = (n/12)−1. Using the fact that in
our lower bound proof only the upper half of the bits in the binary representation
of u ·w is important, u ·w div 2(3/2)m = 0, and u2 mod 2m/4 = 0, we can choose
� = u·2(5/4)m+w and u, w < 2m. As a result we can enlarge m up to (n/9)−2/3.

222 B. Bollig

5 Concluding Remarks

We only want to mention here that similar to the results presented in [20] the
results presented in Section 3 and 4 can be extended to arbitrary oblivious binary
decision diagrams of linear length.

The next challenge is to improve the lower bound on the OBDD complexity of
MUL2n−1,n. The method presented in this paper seems to be not strong enough
to enlarge the lower bound furthermore. Moreover, the complexity of MUL2n−1,n

for more general models than OBDDs is open.

References

1. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of boolean functions with application to integer multiplication. IEEE Trans.
Computers 40(2), 205–213 (1991)

2. Woelfel, P.: Bounds on the OBDD-size of integer multiplication via universal hash-
ing. J. Comput. Syst. Sci. 71(4), 520–534 (2005)

3. Bollig, B.: On the OBDD complexity of the most significant bit of integer multi-
plication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

4. Wegener, I.: Branching programs and binary decision diagrams: theory and appli-
cations. Society for Industrial and Applied Mathematics, Philadelphia (2000)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

6. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 3, 3–12 (1993)

7. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proc. SODA, pp. 573–582 (2003)

8. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: Linear solutions to con-
nectivity related problems. Algorithmica 50(1), 120–158 (2008)

9. Sawitzki, D.: Lower bounds on the OBDD size of graphs of some popular functions.
In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005.
LNCS, vol. 3381, pp. 298–309. Springer, Heidelberg (2005)

10. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discrete Algorithms 4(1),
51–71 (2006)

11. Bollig, B.: A note on the size of OBDDs for the graph of integer multiplication.
Inf. Process. Lett. 109(2), 41–43 (2008)

12. Amano, K., Maruoka, A.: Better upper bounds on the QOBDD size of integer
multiplication. Discrete Applied Mathematics 155(10), 1224–1232 (2007)

13. Bollig, B., Klump, J.: New results on the most significant bit of integer multipli-
cation. In: Proc. ISAAC, pp. 883–894 (2008)

14. Bollig, B., Waack, S., Woelfel, P.: Parity graph-driven read-once branching pro-
grams and an exponential lower bound for integer multiplication. Theor. Comput.
Sci. 362(1-3), 86–99 (2006)

15. Sauerhoff, M., Woelfel, P.: Time-space tradeoff lower bounds for integer multipli-
cation and graphs of arithmetic functions. In: Proc. STOC, pp. 186–195 (2003)

Larger Lower Bounds on the OBDD Complexity of Integer Multiplication 223

16. Bollig, B.: On the OBDD complexity of the most significant bit of integer multi-
plication (full version). Theoretical Computer Science (invited to special issue)

17. Hromkovič, J.: Communication complexity and parallel computing. Springer, Hei-
delberg (1997)

18. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, New York (1997)

19. Wegener, I.: Optimal lower bounds on the depth of polynomial-size threshold cir-
cuits for some arithmetic functions. Inf. Process. Lett. 46(2), 85–87 (1993)

20. Gergov, J.: Time-space tradeoffs for integer multiplication on various types of input
oblivious sequential machines. Inf. Process. Lett. 51(5), 265–269 (1994)

Picture Languages Generated by
Assembling Tiles

Paola Bonizzoni, Claudio Ferretti, Anthonath Roslin Sagaya Mary,
and Giancarlo Mauri

Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi
di Milano – Bicocca, Viale Sarca 336, 20126 Milano, Italy

{anthonath,bonizzoni,ferretti,mauri}@disco.unimib.it

Abstract. We propose a new formalism for generating picture lan-
guages based on an assembly mechanism of tiles that uses rules having
a context and a replacement site. More precisely, a picture language will
be generated from a finite set of initial pictures by iteratively applying
rewriting rules from a given finite set of rules, called a tiling rule system
(TRuS system). We prove that the TRuS systems have a greater gener-
ative capacity than the tiling systems of Giammarresi and Restivo, even
in the case of one-letter alphabet picture languages. This is due mainly
to the use of the notion of replacement.

1 Introduction

Recently the investigation of two dimensional (picture) languages has moved
towards the definition of formal models capable of characterizing special classes
of languages that are not included in the family of recognizable languages gen-
erated by tiling systems of Giammaresi and Restivo [10]. An example of such
models is tile rewriting grammars (TRG) defined in [7] and further investigated
in [6]. Indeed, while tiling systems represent an extension to the two dimen-
sional case of regular string grammars, TRG provide an analogue of context-free
grammars in the two dimensions, thus showing the capability of this approach
of generating interesting picture languages that generalize context-free string
languages, including for example Dyck languages. Grammar approaches, besides
tiling systems and cellular automata (see [10] for a complete survey) reflect the
efforts done towards a generalization of classical formal language theory to the
two dimensional case. This research direction is now a rich field of investigation
(see [1], [2], [11] and [3] as an example).

In this paper, our investigation of picture languages goes in a different direc-
tion, since we propose new operations that are not generalization of classical for-
mal language concepts, but are instead inspired by operations used in modelling
DNA self assembly [12]. More precisely, our approach for generating pictures
is based on a notion of tiling rule system, consisting of an initial finite set of
pictures and a set of rules that can be iteratively applied to the initial language
to generate a picture language.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 224–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Picture Languages Generated by Assembling Tiles 225

A rule consists of a pair of tiles: a context site and a replacement site tile.
Context site is used to specify where the rule can be applied, while the replace-
ment site is used to change part of the context site. This type of rule generalizes
to the 2-dimensional case a typical behavior of rules acting on DNA strings, i.e.
a context is needed to allow the applications of rules, while replacement specifies
how the context will be modified.

In a tiling rule system, at each step a set of rules is simultaneously applied
to a picture from the initial language or assembled in a previous computation
step. The effect of the simultaneous application of rules is the replacement and
insertion of a row or column, respectively, so allowing the growth of a new picture
according to the rule system.

Formally a tiling rule system, TRuS system in short, is a triple (I, R, Σ),
where I is an initial finite set of pictures, R is a finite set of tiling rules and Σ
is the alphabet of the generated pictures.

Observe that our notion of tiling rule system is different from tiling systems,
but also from Wang systems [8], which model DNA self assembly by pure growth
and which are proved to be equivalent to tiling systems. In tiling systems by
Giammaresi and Restivo (see Section 2), picture languages are defined by a
projection function applied to a local language defined by a set of tiles.

We show that TRuS systems have greater generative capacity than the tiling
systems, even in the case of systems generating one-letter alphabet picture lan-
guages. More precisely, the constructive proof of a TRuS system that simulates
a tiling system shows that recognizable languages are generated by rules that
act always by growing pictures along their borders. On the contrary the class of
languages generated by TRuS systems includes languages that seem to strictly
require rules acting on specific positions inside the pictures in order to grow the
language. This is for example the case of the language of palindromic columns,
that has been proved not being a recognizable language in [7].

The paper is organized as follows. In Section 2 preliminaries on pictures lan-
guages are given, while in Section 3 tiling rule systems are introduced. Then
Section 4 is devoted to the investigation of the computational power of tiling
rule systems and to a comparison with recognizable picture languages.

2 Preliminaries

Let Σ be a finite alphabet, let ∆ = {#, } be a set containing two special
boundary symbols and such that Σ ∩ ∆ = ∅.

A picture p over Σ is a rectangular array of elements in Σ. The size of the
picture p is a pair (n, m) where n is the number of rows and m the number of
columns of p. The i-th row, the j-th column and the element belonging to both
of them in picture p will be denoted by pr[i], pc[j] and p[i, j] (or pij) respectively.
Moreover, by pr[i..i + k] (pc[i..i + k], respectively) we denote the sub-array of p
consisting of the rows (columns, respectively) of p from index i to i + k.

The only picture of size (0, 0) is the empty picture, denoted by λ. Then Σ++

denotes the set of all nonempty pictures over Σ, and define Σ∗∗ = Σ++ ∪ {λ}.

226 P. Bonizzoni et al.

The bordered version of a picture p of size (n, m) is the array p̂ of size (n +
2, m+2) obtained by surrounding p with special symbols in ∆. Since the alphabet
∆ consists of two symbols, we call canonical pictures those bordered uniquely
with the boundary symbol #.

Given a picture p of size (n, m), a partial bordered version of p, or simply
a partial picture, is the picture p̄ of size either (n′, m + 2) or (n + 2, m′) for
n′ = n + 1, m′ = m + 1, obtained from p by adding borders partially along the
picture (see Example 1).

In the paper by pseudo-canonical picture we mean a picture that is completely
bordered using also the symbol or is partially bordered obtained by a picture
p(without border). The notation p̂ will be used for pseudo-canonical or canonical
pictures that are obtained from picture p and partially bordered pictures p̄.
Moreover, observe that the size of a pseudo-canonical picture is the size of the
array over the extended alphabet ∆ ∪ Σ.

Example 1. Pseudo-canonical pictures : partially bordered pictures over one
letter alphabet and (b) a completely bordered picture including the symbol:

#
a a a
a a a

 a a a #

#
a a a
a a a
a a a
#

a a a
a a a
a a a
#

#
a a a #
a a a #
a a a #
#

(b)

#
a a a
a a a

a a a
#

A sub-picture p̂′ of a (pseudo-canonical) picture p̂ is a picture that is a sub-
array of p̂. Given picture p̂ then Bh,k(p̂) denotes the set of sub-pictures of size
(h, k). A tile is a (2, 2) picture over the alphabet Σ ∪ ∆, where tiles containing
symbols from alphabet ∆ are called border tiles. In this paper a tile is denoted
by t = a b

c d.
A picture language L consists of a subset of Σ∗∗. L is local if there exists a

finite set Θ of tiles over alphabet Σ ∪ {#} such that L = {p ∈ Σ∗∗|B2,2(p̂) ⊆
Θ where p̂ are canonical pictures }. Then L is the local language defined by Θ.

Let us now recall the notion of a tiling system and language generated by
such system [10].

Definition 1 (Tiling System). A tiling system is a 4-tuple τ = (Σ, Γ, Θ, π),
where Σ and Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet
Γ ∪ {#} and π : Γ → Σ is a projection.

Given system τ , the language defined by the system, denoted L(τ), is the
projection by π of the local language defined by Θ.

In the paper we denote by L(TS) the class of languages defined by tiling sys-
tems, known as the class of recognizable languages that has been deeply inves-
tigated [10].

3 Tiling Rule Systems

In this section, we define the notion of tiling rule and tiling rule system.

Picture Languages Generated by Assembling Tiles 227

A general tiling rule r over a set Θ of tiles is defined by a pair t1, t2 of tiles in
Θ, where t1 is the context site of rule r, while t2 is the replacement site of rule
r. Then r is denoted as r = t1 → t2. We distinguish two types of rules: row and
column rules. The context site of a row rule is denoted by a tile t = a b

c d , while
the context site of column rules is denoted by a tile t = a

c |bd.
When a row rule r is applied, then t2 replaces the bottom row domino of

tile t1. Similarly, when a column rule is applied then t2 replaces the rightmost
column domino of tile t1. A rule acts together with other rules to enlarge a
picture: this fact is formalized by the notion of rule sequence defined below.

Definition 2 (row rule sequence). A sequence S = r1 · r2 · ... · rm of rules is
a row rule sequence, in short r-sequence, iff for each j, 1 ≤ j ≤ m, it holds that
rj = aj aj+1

bj bj+1
→a′

j a′
j+1

b′j b′j+1
.

Given a row rule sequence S in the above definition 2, the application of rules
in S defines the pseudo-pictures p(S,r) and q(S,r) consisting of 2 rows and m + 1
columns called the context site and replacement site of S respectively, such that
p(S,r)[1, j] = aj , p(S,r)[2, j] = bj , while q(S,r)[1, j] = a′

j and q(S,r)[2, j] = b′j for
each column j.

Definition 3 (column rule sequence). A sequence S = r1 · r2 · ... · rn of rules
is a column rule sequence, in short c-sequence, iff for each i, 1 ≤ i ≤ n, it holds
that ri =ai

ai+1
|bi

bi+1
→a′

i b′i
a′

i+1b′i+1
.

Given a column rule sequence S in the above definition 3, the application of
S produces the pseudo-pictures p(S,c) and q(S,c) consisting of n + 1 rows and 2
columns called the context site of S and replacement site of S respectively, such
that p(S,c)[i, 1] = ai, p(S,c)[i, 2] = bi, while q(S,c)[i, 1] = a′

i, q(S,c)[i, 2] = b′i for
each row i.

Example 2. Let r1 = a b
e f →a′ b′

e′ f ′ , r2 = b c
f g →b′ c′

f ′ g′ and r3 = c d
g h →c′ d′

g′ h′ be row

rules. Then S = r1 · r2 · r3 is a r-sequence, picture p(S,r) = a b c d
e f g h

is the context

site of S, while picture q(S,r) = a′ b′ c′ d′

e′ f ′ g′ h′ is the replacement site of S.

Example 3. Let r1 =a
b |ef →a′ e′

b′ f ′ , r2 =b
c |fg →b′ f ′

c′ g′ , and r3 =c
d |gh →c′ g′

d′ h′ be
column rules. Then S = r1 · r2 · r3 is a c-sequence, such that the context site of

S is p(S,c) =

a e
b f
c g
d h

and the replacement site of S is q(S,c) =

a′ e′

b′ f ′

c′ g′

d′ h′
.

Now rule sequences can be applied to canonical or pseudo-canonical pictures, i.e.
pictures either bordered or bordered with special symbol or partially bordered.

Definition 4 (application of row rule sequences). Let S = r1 · r2 · ... · rm+1
be a r-sequence having context site p(S,r) and replacement site qr

(S,r)[1] = [a′
1...

a′
m+2], qr

(S,r)[2] = [b′1...b
′
m+2]. Then S can be applied to the picture p̂ obtained

from pictures p, p̄, of sizes (n, m), (n + 1, m + 2) respectively, at the i-th row of
p̂, where 1 ≤ i ≤ n iff the following holds:

228 P. Bonizzoni et al.

1. p̂r[i..i + 1] = p(S,r) and
2. [a′

2...a
′
m+1] is over Σ for row index i, with 1 ≤ i ≤ n, while [b′2...b

′
m+1] is

over Σ when 1 ≤ i < n.

Definition 5 (application of column rule sequences). Let S = r1 · r2 · ... ·
rn+1 be a c-sequence having context site p(S,c) and replacement site qc

(S,r)[1] =
[a′

1...a
′
n+2], qc

(S,r)[2] = [b′1...b′n+2]. Then S can be applied to the picture p̂ obtained
from pictures p, p̄ of sizes (n, m), (n + 2, m + 1) respectively, at the i-th column
of p̂, where 1 ≤ i ≤ m iff the following holds:

1. p̂c[i..i + 1] = p(S,c) and
2. [a′

2...a
′
n+1] is over Σ for row index i, with 1 ≤ i ≤ m, while [b′2...b

′
n+1] is

over Σ when 1 ≤ i < m.

Observe that condition 2 in the above definitions 4 and 5 is given to forbid the
insertion of border special symbols inside a picture. The effect of the application
of S to picture p̂ is specified by the replacement site q(S,r) of S as shown in
Figure 1 and 2.

Let’s formally define picture q̂ obtained by the application of rule sequences
S to p̂.

Definition 6 (row derived picture). Let S be a r-sequence such that S can
be applied at the i-th row of a picture p̂ of size n′′×m′′ obtained from the pictures
p, p̄ of sizes (n, m), (n + 1, m + 2) respectively. Then the picture q̂ derived from
p̂ by S is such that:

q̂r[1..i] = p̂r[1..i], q̂r[i + 1..i + 2] is equal to the replacement site q(S,r) of S,
and q̂r[i + 3..n′′ + 1] = p̂r[i + 2..n′′].

p̂

| | | | |
| | | | |

ai,1 ai,2 · · · ai,m+1 ai,m+2

ai+1,1 ai+1,2 · · · ai+1,m+1 ai+1,m+2

− − − − −
− − − − −

→

| | | | |
| | | | |

ai,1 ai,2 · · · ai,m+1 ai,m+2

a′
1 a′

2 · · · a′
m+1 a′

m+2

b′1 b′2 · · · b′m+1 b′m+2

− − − − −
− − − − −

Fig. 1. Application of S to the i-th row of p̂

p̂

/ / a1,i a1,i+1 ∼ ∼
/ / a2,i a2,i+1 ∼ ∼

/ /
...

... ∼ ∼
/ / an+1,i an+1,i+1 ∼ ∼
/ / an+2,i an+2,i+1 ∼ ∼

→

/ / a1,i a′
1 b′1 ∼ ∼

/ / a2,i a′
2 b′2 ∼ ∼

/ /
...

...
... ∼ ∼

/ / an+1,i a′
n+1 b′n+1 ∼ ∼

/ / an+2,i a′
n+2 b′n+2 ∼ ∼

Fig. 2. Application of S to the i-th column of p̂

Picture Languages Generated by Assembling Tiles 229

Similarly, we define:

Definition 7 (column derived picture). Let S be a c-sequence such that S
can be applied to a picture p̂ of size n′′ × m′′ obtained from the pictures p, p̄ of
sizes (n, m), (n + 2, m + 1) respectively. Then the picture q̂ derived from p̂ by S
is such that:

q̂c[1..i] = p̂c[1..i], q̂c[i + 1..i + 2] is equal to the replacement site q(S,c) of S,
and q̂c[i + 3..m′′ + 1] = p̂c[i + 2..m′′].

The application of S to p̂ to derive picture q̂ is denoted by p̂ →S q̂. The i-
iterated application of S over a picture p̂ to generate picture q̂ is denoted by
p̂ →i

S q̂. A picture p̂′ is derived from a picture p̂, denoted by p̂ ⇒R p̂′, iff there
exist rule sequences S1, · · · , Sk such that p̂ →S1 p̂1 →S2 p̂2... →Sk

p̂′. Then
p̂ →S1 p̂1 →S2 p̂2... →Sk

p̂′ is called derivation of p̂′ from p̂, while d = S1, · · · , Sk

is the derivation sequence applied to derive p̂′ from p̂.
A derivation sequence d = S1, · · · , Sk is called unambiguous iff for each i,

with 1 ≤ i < k, the context site of Si+1 is the replacement site of Si. A deriva-
tion sequence is deterministic if given sequence Si it can be only followed by
sequence Si+1.

Given an initial finite set of pictures and a finite set of rules, then rules can be
combined to produce c-sequences or r-sequences that can be applied iteratively
to the initial pictures to generate an infinite language of pictures. This process
of generating pictures is described by the notion of a tiling rule system and
language generated by such type of systems.

Definition 8 (Tiling Rule System (TRuS)). A tiling rule system, in short
TRuS system, is a quadruple T = (I, R, Σ, ∆) where I is a finite set of canonical
pictures, called initial set and R is a set of rules over alphabet Σ ∪ ∆, where ∆
is a special two symbols alphabet disjoint from Σ.

Thus let us define the language generated by a TRuS system.

Definition 9 (language). Given a TRuS system T , then the language gener-
ated by T , denoted by L(T) is the set {p : p̂ ∈ L}, where L = I ∪ {p̂1 : p̂ ⇒R

p̂1, p̂ ∈ I, p̂1 is canonical }. Language L is the canonical language generated by
the system.

Then L(TRuS) denotes the class of languages generated by TRuS systems.

Remark 1. Assume that p′ ∈ L(T), p̂ →S1 p̂1 →S2 p̂2 → ... →Sk−1 p̂k−1 →Sk

p̂′, where p̂ ∈ I. Observe that by definition 9, the intermediate pictures p̂i, with
1 ≤ i < k are not necessarily canonical pictures, but are pseudo-canonical ones.

4 Computational Power of TRuS Systems

In this section we investigate the computational power of TRuS system. Now,
the class of languages generated by TRuS system properly includes the one of

230 P. Bonizzoni et al.

recognizable languages. Indeed, we first show by Theorem 1 that recognizable
languages are generated by TRuS systems.

Then we show that the generative capacity of tiling rule systems is greater
than the tiling systems of Giammarresi and Restivo even in the unary case.
Indeed, the unary language L consisting of pictures of size (n, n!) is generated
by tiling rule systems, while, as stated in [9], language L is not recognizable. A
proof of this result is given in Proposition 1.

The strict inclusion also follows by the fact that it has been proved in [7]
that the language of palindromic columns is not in the class L(TS) while it is
generated by TRuS systems (the proof of this proposition can be found in [4]).
This example of language L has been given to show the more powerful generative
capacity of Tiling Rewriting Grammars (TRG) w.r.t. tiling systems.

Theorem 1. L(TS) ⊆ L(TRuS) .

Proof. Let L be a recognizable language and let τ = (Σ, Γ, Θ, π) be a tiling
system for L where Σ, Γ are finite alphabets, Θ is a set of tiles over (Γ ∪#) and
π : Γ −→ Σ is a projection. Let us define the following binary relations =r and
=c over pairs of tiles in Θ: t1 =c t2 iff t1 =a1a2

a3a4
, t2 =b1b2

b3b4
where a2 = b1, a4 = b3,

t1 =r t2 iff t1 =b1b2
b3b4

, t2 =c1c2
c3c4

where b3 = c1, b4 = c2.
In the following we define a TRuS -system T = (I, R, A, ∆) for generating L,
where I consists of the empty picture # #

and alphabet A consists of Σ∪Γ ∪A′,
being A′ = {[a b] : a, b ∈ Γ}.

Now, the set R of rules are listed below and are grouped according to the pair
of tiles in Θ related by the relations =c and =r, respectively. Indeed, rules should
reproduce the tiling of a local picture and at the same time the projection of the
local language. In order to do so, given a pair of tiles t1, t2 such that t1 =r t2,
we build a row rule r having the replacement site given by tile t such that the
upper row of t (i.e. tr[1]) will project the upper row domino of tile t2, while the
bottom row of t (i.e. tr[2]) “memorizes” by using symbols in A′ the tile t2 that
will have the upper row projected. Similarly, for the context-site of rule r. More
precisely, given a pair of tiles where ab

cd =r
cd
ef then we should build a row rule of

the form π(a)π(b)
[a c][b d] →

π(c)π(d)
[c e][d f]. Similarly we build rules for pair of tiles related by

the =c relation. Clearly, when tiles have border symbols then the construction
of rules will be specific, as described below.

In the following column rules are grouped into the set Rc,U = Rc,U,1∪Rc,U,2∪
Rc,U,3 ∪ Rc,U,4 of column rules that are derived by every pair of border tiles in
Θ related by the binary relation =c.

Rc,U,1 = {#
#|## → ##

a # : ##
a =c

#
a # },

Rc,U,2 = {#
#|## → # �

a [a b]
: ##

a =c
##
a b },

Rc,U,3 = {#
a |�[a b] →

�
b [b c] : ##

a b =c
##
b c },

Rc,U,4 = {#
a |�[a b] → ##

b # : ##
a b =c

##
b #},

Rr,L,1 = {##
#a

→ #π(a)
:

#a =r
#a
##},

Rr,L,2 = {##
#a

→ #π(a)

� [a b]
: ##

#a =r
#a
#b},

Rr,L,3 = { #π(a)
� [a b]

→ #π(b)
� [b c] : #a

#b =r
#b
#c},

Rr,L,4 = { #π(a)
� [a b]

→ #π(b)
: #a

#b =r
#b
##},

Picture Languages Generated by Assembling Tiles 231

Rr,R,1= { ##
a #

→ π(a)#
:

a# =r
a#
##},

Rr,R,2= { ##
a #

→ π(a)#
[a b] # : ##

a# =r
a#
b#},

Rr,R,3= { π(a)#
[a b] #

→ π(b)#
[b c] # : a#

b# =r
b#
c#},

Rr,R,4= { π(a)#
[a b] #

→ π(b)#
: a#

b# =r
b#
##},

Rr,M,1= {##
ab

→ π(a)π(b)
:

ab =r
a b
##},

Rr,M,2= {##
ab

→ π(a)π(b)
[a c] [b d] : ##

ab =r
a b
c d},

Rr,M,3= { π(a)π(b)
[a c] [b d]

→ π(c)π(d)
[c e] [d f] : ab

cd =r
c d
e f},

Rr,M,4= { π(a)π(b)
[a c] [b d]

→ π(c)π(d)
: ab

cd =r
c d
##}.

Note that rules in Rc,U only form c-sequences of length one that can be
combined to form derivation sequences that apply to the initial empty picture
to reproduce the tiling of the uppermost rows of a picture in L.

Then row rules are grouped into three sets. The set Rr,L = Rr,L,1 ∪ Rr,L,2 ∪
Rr,L,3∪Rr,L,4 groups rules, called l-type rules, that are based on pair of left most
column (bordered) tiles , while set Rr,R = Rr,R,1∪Rr,R,2∪Rr,R,3∪Rr,R,4 groups
rules, called r-type rules, that are based on rightmost pairs of (bordered) tiles
in Θ. Finally, set Rr,M = Rr,M,1 ∪ Rr,M,2 ∪ Rr,M,3 ∪ Rr,M,4 groups rules, called
intermediate rules or m-type rules, that are based on tiles that are non bordered
on the left and right column dominoes and that form r-sequences starting with
a l-type rule and ending with a r-type rule.

Now, assume that p ∈ L is a picture of size (n, m) that is the projection of a
local picture q. Then we show how the picture is generated by the iterations of
the above defined rules.

Assume first that n = m = 1. Assume that p = π(a), for a ∈ Γ . Then, there
exists a rule r0, with r0 ∈ Rc,U,1 that applies to the empty picture to generate the
pseudo-canonical picture q̂r[1..2] with the single element a. Then, there exists
a r-sequence r1 · r2 with r1 ∈ Rr,L,1 and r2 ∈ Rr,R,1 such that is applied at
the context site given by the pseudo-canonical picture q̂r[1..2] producing the
canonical picture p̂.

Assume now that n = 1 and m > 1. We first prove the generation of the
pseudo-canonical picture q̂r[1..2] (the picture made by the first 2 rows of q̂).
In the following define tile ti,j as the sub-picture of q̂ of size (2, 2) with the
first element consisting of q̂i,j . Clearly, it holds that t1,j =c t1,j+1 for each j,
1 ≤ j < m + 2 and thus there exists a column rule rj ∈ Rc,U corresponding
to this pair of tiles, where rj ∈ Rc,U,2 if j = 1 and rj ∈ Rc,U,4 if j = m + 1,
otherwise rj ∈ Rc,U,3. It follows that the derivation sequence d consisting of the
c-sequences S1, S2, ..., Sm+1, where Sj = rj will produce the tiling of q̂r[1..2] as
required.

Once q̂r[1..2] is generated, then it is easy to verify the existence of rules
r0
j ∈ Rr,M,1 for 1 < j < m + 1, based on the pair of tiles t2,j =r t3,j that will

produce the projection of symbols in tile t2,j . Similarly, there is a rule r0
1 ∈ Rr,L,1

based on the pair of tiles t2,1 =r t3,1 and rule r0
m+1 ∈ Rr,R,1 corresponding to

the pair of tiles t2,m+1 =r t3,m+1 that will produce the projection of the first
and last symbol of the picture q̂r[1..2].

Then the r-sequence r0
1 · r0

2 · r0
j · r0

m+1 is applied to picture q̂r[1..2] having the
required context site, thus producing the canonical picture p̂r[1..3].

Assume now that n > 1 and m ≥ 1. We first list the rule sequences that will
be used to generate the rows from 1 to n − 1 of picture p̂. Let us recall that

232 P. Bonizzoni et al.

for each indexes i, j, with 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ m + 1 there are tiles
tij =r ti+1,j . Then, we distinguish two cases.

Case 1: assume i = 1. Then by construction there exists rule r1
j in Rr,M,2 corre-

sponding to such pair of tiles for j �= 1 and j �= m + 1 and rules r1
1 , r

1
m+1 respec-

tively in Rr,L,2 and Rr,R,2, such that the r-sequence S2,m = r1
1 · r1

2 · · · r1
j · · · r1

m+1
will produce the context site picture consisting of q̂r[1..2] and the replacement
site consisting of the two rows [#, π(q11), · · · , π(q1m), #] and [, [q11 q21], · · · ,
[q1m q2m], #].

Case 2: assume that 1 < i < n. Recalling that for each index j, 1 ≤ j ≤ m + 1
there are tiles tij =r ti+1,j , by construction there exists a m-type rule ri

j in Rr,M,3
corresponding to such pair of tiles for j �= 1 and j �= m + 1. Moreover, there
exists a l-type rule ri

1 ∈ Rr,L,3 and a r-type rule ri
m+1 ∈ Rr,R,3 corresponding to

the above pair of tiles for j = 1 and j = m + 1, respectively.
It is immediate to verify that the r-sequence S3,i,m = ri

1 ·ri
2 · · · ri

j · · · ri
m+1 pro-

duces the context site picture with rows [#, π(qi1), · · · , π(qim), #], [, [qi1 qi+1,1],
· · · , [qim qi+1,m], #] and the replacement site picture with rows [#, π(qi+1,1), · · · ,
π(qi+1,m), #], [, [qi+1,1 qi+2,1], · · · , [qi+1,m qi+2,m], #].

Now, let us show the construction of p̂ using the above specified rule sequences
S2,m and S3,i,m.

The first step will consist of the generation of the pseudo-picture p̂0 = q̂r[1..2]
which has been detailed above for the case n = 1, m > 1. Then, as a second
step, the r-sequence S2,m is applied to picture p̂0 to generate picture p̂1. The
derivation p̂1 →S3,1,m→S3,2,m · · · →S3,i,m · · · →S3,n−1,m p̂n will produce the
picture p̂n such that p̂n[1..n] = p̂[1..n], that is p̂n and p̂ have the same n rows.
By the property stated above picture p̂n will have last two rows consisting of
[#, π(qn−1,1), · · · , π(qn−1,m), #], [, [qn−1,1 qn,1], · · · , [qn−1,m qnm], #].

Finally, the last step consists of applying the r-sequence S4,m = rn
1 · rn

2 · · · rn
j

· · · rn
m+1, where rules rn

1 ∈ Rr,L,4, rn
m+1 ∈ Rr,R,4 and rn

j ∈ Rr,M,4 are based on
pairs of tiles tnj =r tn+1,j . Applying S4,m to p̂n will produce the picture p̂ as
required.

Let us now show that L(T) ⊆ L. We prove the equivalent statement that
for any canonical picture q̂ ∈ L(T) there exists a picture p̂ such that B2,2(p̂) ⊆
Θ
∧

q̂ = π(p̂) (“full property”). Here, for the sake of simplicity, we consider π
extended by the mapping # → #.

The proof will focus on the case when n, m > 1. It will be by induction on the
number of rows, showing that q̂ is built by growing a series of pseudo-canonical
pictures, where each pseudo-canonical picture qi with i rows generates i−1 rows
of the projection of p̂ i.e. there exists pi such that B2,2(pi) ⊆ Θ ∧ qr

i [1..i − 1] =
π(pi)(“weak property”). We finally state that the target full property is obtained
when eventually producing q̂ by applying the r-sequence adding the bottom
border.

The base case of induction, and the only possible starting steps in T , is the
building of qi having i = 3 rows, obtained by starting from the empty picture in
I and by applying rules in two phases:

Picture Languages Generated by Assembling Tiles 233

– a derivation sequence of c-sequences over the empty picture ; S1 → S2,1 →
S2,2 · · · → S2,m → S3 where rules of S1 are in Rc,U,2, rules of S2,k in Rc,U,3
and rules of S3 are in Rc,U,4, producing the pseudo-canonical picture q0.

– then a r-sequence over picture qo where combining rules of the r-sequence
are from Rr,L,2, Rr,M,2, Rr,R,2, in that order.

The definition of rule sets involved with the second phase, and the requirement
of combining of rules in row sequences, imply that qr

i [1..2] is the projection of
a two rows partial picture covered by tiles from Θ, thus satisfying the (weak)
property being induced.

Over pictures with such 3 rows, or more rows, only rules from Rr,{L,M,R},3
may be applied (before adding bottom border with rules from Rr,{L,M,R},4).
This is our induction step: applying a row sequence of rules from Rr,{L,M,R},3
to a picture qi with i rows, we obtain a picture qj with j = i + 1 rows, where
qr
i [1..i− 1] = qr

j [1..i− 1] satisfies the property, while the bottom qr
i [i] is replaced

in qj by two new rows. qr
j [1..j − 1] satisfies the property because the added set

of tiles B2,2(qr
j [i− 1..j − 1]) on it are the projection of two rows covered by tiles

from Θ, as a consequence of the definition of the applied rules.
A similar reasoning goes when instead we may apply a rule sequence from

Rr,{L,M,R},4, obtaining a canonical picture q̂j with j = i+1 rows from a picture
qi with i rows. This time, the definition of the rules being applied shows that
the added set of tiles B2,2(q̂r

j [i − 1..j]), which includes the bottom border, are
projection of a picture covered by tiles from Θ, while by induction the same
holds for q̂r

j [1..i − 1], therefore completing our proof. �

Proposition 1. The picture language L consisting of one-letter alphabet pic-
tures of dimension (n, n!) is generated by TRuS systems.

Proof. We construct a TRuS system T = (I, R, Σ, ∆) generating language L,
where Σ = {a, b, c} is a finite set of symbols, ∆ = {#, } is a set of border
symbols and I contains the canonical pictures having non bordered versions of
size (n, n!) in L with n ≤ 3. We define R consisting of the set of rules defined
below, that is R = Rr ∪ Rc,INIT1 ∪ Rc,INTER ∪ Rc,END ∪ Rc,INIT2.

Rr =
{

r1 = #a
##

→#b
#�, r2 = aa

##
→bb

��, r3 = a#
##

→b#
�# .

Rc,INIT1 =

{
r4 = #

#|#a →#�
ac , r5 = #

#|aa →ac
ac, r6 = #

#|aa →ac
ab,

r7 = #
#|ab →ab

ab, r8 = #
#|b� →

#a
#b ,

Rc,INTER =

{
r9 = #

a |�c →#�
ac , r10 = a

a|cc →ac
ac, r11 = a

a|cc →ac
ab,

r12 = a
a|cb →ab

ab, r13 = a
a|bb →ab

ab, r14 = a
#|b# →ab

##,

Rc,END =

{
r15 = #

a |�c →##
aa , r16 = a

a|cb →aa
aa, r17 = a

a|bb →aa
aa,

r18 = a
#|b# →aa

##,

234 P. Bonizzoni et al.

Rc,INIT2 =

{
r19 = #

a |#a →#�
ac , r20 = a

a|aa →ac
ac, r21 = a

a|aa →ac
ab,

r22 = a
a|ab →ab

ab, r23 = a
#|b� →ab

.

By definitions 2, 3 we can see that only rules in the same set X with X ∈
{Rr, Rc,INIT1, Rc,INTER, Rc,END, Rc,INIT2} can be combined to form specific
α-sequences, with α ∈ {c, r}, the rules in distinct sets either cannot be combined
or they cannot join rule sequences that can be applied to the picture.

Now, we denote the r-sequence produced by the rules in Rr as S1,j =r1.(r2)j .r3
where for any integer j, r2 can be iterated j times. Similarly, we denote the
only c-sequences produced by the rules in Rc,INIT1, Rc,INTER, Rc,END and
Rc,INIT2 by S2,i = r4.(r5)i.r6.r7.r8, S3,h,k = r9.(r10)h.r11.r12.(r13)k.r14, S4,l =
r15.r16.(r17)l.r18 and S5,m = r19.(r20)m.r21.r22.r23 respectively.

Now, let us show by induction on n ≥ 1 that picture (n, n!) is generated by
the system i.e. L ⊆ L(T). Since the pictures in L of size n ≤ 3 are in I (initial
language) it follows that I ⊆ L(T). Given the unary picture p of size (n, n!) in
L(T) in the following we show that rules in R can generate the unary picture of
size (n + 1, (n + 1)!).

Given the picture p̂ ∈ I such that p is of size (n, n!), it can be easily verified
that the unique α-sequence that can be applied to p̂ is the r-sequence S1,n!−1 =
r1.(r2)n!−1.r3 i.e. the rule r2 in the sequence is iterated n! − 1 times generating
p̂1. Now, given the picture p̂1 only the unique unambiguous derivation d1 is
applicable to p̂1. More precisely:

d1 = p̂1 →S2,n−2 p̂2 →1
S3,n−3,1

→2
S3,n−4,2

· · · →n−3
S3,1,n−3

→n−2
S3,0,n−2

p̂3 →S4,n−1 p̂4.
Once p̂4 is generated then the only possible derivation that can be applied to p̂4
consists of d2:

d2 = p̂4 →S5,n−2 p̂5 →1
S3,n−3,1

→2
S3,n−4,2

· · · →n−3
S3,1,n−3

→n−2
S3,0,n−2

p̂6 →S4,n−1 p̂7.
Now, d2 can be still applied to p̂7 and indeed d2 can be iterated more times.

Observe that the first application of d1 and each iteration of d2 replaces a
column [#, a, a · · · , b,] with (n + 1) new columns. Since there are n! columns
with symbol b and special symbol in the first pseudo-canonical picture p̂1,
totally (n+1)n! columns will replace the n! columns of the non-bordered picture
p1, thus generating the picture p′ ∈ L of size (n + 1, (n + 1)!). To complete the
proof, we have to show that L(T) ⊆ L, which easily follows by construction of
unambiguous and deterministic derivations. �

5 Conclusions and Open Problems

Tiling rule systems provide a new formalism for defining picture languages that
is based on rules to assemble tiles. Pictures of the language are generated by
iteratively applying rules: they grow a picture of size (n, m) by locating a (2, m)
row (or (n, 2) column) context site picture where the bottom row is replaced and
and a new row (or column) is added. Now, tiling rule systems generate a class
of languages that properly includes the class of recognizable picture languages.
Actually, the proof of the inclusion shows that pictures of a recognizable language
are assembled by growing them along a border, that is by adding new rows and

Picture Languages Generated by Assembling Tiles 235

columns. On the contrary, pictures of TRuS languages that are not recognizable
languages (see Proposition 1), can only be assembled by adding rows or columns
properly inside pictures of smaller size. Moreover, it is proved in [4] that any
TRuS system is equivalent to one with the initial language consisting of the
empty picture.

Several questions concerning the notion of tiling rule system such as closure
properties remain to be investigated, as well as the comparison of this new
approach with other language classes like Tiling Rewriting Grammars (TRG)
formalism [5].

Acknowledgments. Partially supported by MIUR project “Mathematical as-
pects and emerging applications of automata and formal languages” (2007).

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expres-
sions for two-dimensional languages over one-letter alphabet. Theoretical Com-
puter Science 340, 408–431 (2005)

2. Anselmo, M., Madonia, M.: Deterministic two-dimensional languages over one-
letter alphabet. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728,
pp. 147–159. Springer, Heidelberg (2007)

3. Bertoni, A., Goldwurm, M., Lonati, V.: On the complexity of unary tiling-
recognizable picture languages. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 381–392. Springer, Heidelberg (2007)

4. Bonizzoni, P., Ferretti, C., Mary, A.R.S., Mauri, G.: Picture languages generated
by assembling tiles (extended version, 2008) (2008),
http://openit.disco.unimib.it/assemblingTRF.pdf

5. Cherubini, A., Crespi Reghizzi, S., Pradella, M.: Regional languages and tiling: A
unifying approach to picture grammars. In: Ochmański, E., Tyszkiewicz, J. (eds.)
MFCS 2008. LNCS, vol. 5162, pp. 253–264. Springer, Heidelberg (2008)

6. Cherubini, A., Crespi Reghizzi, S., Pradella, M., San Pietro, P.: Picture langugages:
Tiling system versus Tile rewriting grammars. Theoretical Computer Science 356,
90–103 (2006)

7. Crespi Reghizzi, S., Pradella, M.: Tile rewriting grammars and picture languages.
Theoretical Computer Science 340, 257–272 (2005)

8. De Prophetis, L., Varricchio, S.: Recognizability of Rectangular Pictures by Wang
Systems. Journal of Automata, Languages and Combinatorics 2, 4, 269–288 (1997)

9. Giammarresi, D.: Two-dimensional languages and recognizable functions. In:
Procs. DLT 1993. World Scientific Publishing Co., Singapore (1994)

10. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
Heidelberg (1997)

11. Kari, J., Moore, C.: New results on alternating and non-deterministic two-
dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

12. Winfree, E.: Algorithmic self-assembly of DNA: theoretical motivations and 2D
assembly experiments. Journal of Biomol. Str. and Dynamics 11, 263–270 (2000)

http://openit.disco.unimib.it/assemblingTRF.pdf

Undecidability of Operation Problems for T0L
Languages and Subclasses

Henning Bordihn1, Markus Holzer2,�, and Martin Kutrib2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de
2 Institut für Informatik, Universität Giessen,

Arndtstraße 2, 35392 Giessen, Germany
{holzer,kutrib}@informatik.uni-giessen.de

Abstract. We investigate the decidability of the operation problem for
T0L languages and subclasses: Fix an operation on formal languages.
Given languages from the family considered (0L languages, T0L lan-
guages, or their propagating variants), is the application of this operation
to the given languages still a language that belongs to the same language
family? Observe, that all the Lindenmayer language families in question
are anti-AFLs, that is, they are not closed under homomorphisms, in-
verse homomorphisms, intersection with regular languages, union, con-
catenation, and Kleene closure. Besides these classical operations we also
consider intersection and substitution, since the language families under
consideration are not closed under these operations, too. We show that
for all of the above mentioned language operations, except for the Kleene
closure, the corresponding operation problems of 0L and T0L languages
and their propagating variants are not even semidecidable.

1 Introduction

Elementary undecidable questions for formal language families appeared first
in [1], where it was shown that the family of languages defined by context-free
grammars is too wide to admit a decidable theory for language equivalence. The
same holds true for the family of 0L (E0L) languages generated by (extended)
context independent Lindenmayer systems (L systems for short). These grammar
formalism has been introduced in order to describe the development of lower
organism [5,6]. One of the main reasons why L systems are interesting is that
they form a parallel counterpart to sequential rewriting mechanisms such as
context-free grammars. Moreover, they can be considered as finite substitutions
over a free monoid, which are iteratively applied to a designated element of the
monoid, the so-called axiom of the system. The basic properties of the derivation
in L systems in contrast to sequential rewriting mechanisms can be summarized
as follows:
� Most of the work was done while the author was at Institut für Informatik,

Technische Universität München, Boltzmannstraße 3, 85748 Garching bei München,
Germany.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 236–246, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Undecidability of Operation Problems for T0L Languages and Subclasses 237

– In every derivation step, all symbols in the sentential form have to be rewrit-
ten (in parallel).

– There is no distinction between terminal and nonterminal symbols. There-
fore, we call those systems pure L systems which is in line with the theory
of pure grammars [7].

– L systems have a word as axiom instead of a symbol as in the case of Chomsky
grammar, or instead of a set of words as in the case of pure grammars.

It is known that for 0L and T0L languages, for example, inclusion, finiteness,
and regularity are undecidable [3,9]. The family of T0L languages is generated by
context independent tabled L systems. Roughly speaking, these are 0L systems
with several production sets, which are also called tables, see, e.g., [9]. On the
other hand, some related questions such as membership are decidable.

Another important class of decision problems can be stated as follows. Fix a
family of languages and operations thereon. Given languages from this family, is
it decidable or semidecidable whether or not the application of the operation to
the given languages leads out of this family? In the forthcoming this problem is
referred to as the operation problem. From an implementation point of view, the
operation problem is related to the question whether, for example, a parser or
acceptor for a given language can be decomposed into several simpler parsers.
Advantages of simpler parsers, whose combination according to the operation
is equivalent to the given device, are obvious. For example, the total size of
the simpler devices could be smaller than the given parser, the verification is
easier, etc. So, there is a natural interest in efficient decomposition algorithms.
From this point of view, the complexity of the converse question, whether the
composition of languages yields a given language, is interesting. The operation
problem can be seen as a weaker class of such problems. Of course, the operation
problem makes only sense for language operations under which the family under
consideration is not closed, since the aforementioned problem becomes trivially
decidable otherwise.

The operation problem for families of languages generated by L systems has
been investigated only for the union of 0L and propagating (that is, non-erasing)
0L languages [4]. Other operations as well as tabled L systems have not been
considered yet. The aim of the present paper is to investigate the operation
problem for the families of 0L and T0L languages and their propagating variants
to a large extent. The notation on 0L and T0L systems and their propagating
variants is introduced in Section 2. Besides AFL operations, except the Kleene
closure, we also consider intersection and substitution by languages from the
families in question. For all of the above mentioned operations we prove non-
semidecidability. The results on the Boolean operations can be found in Section 3,
while the remaining operations are treated in Section 4. Similarly to the approach
in [4], we show how to reduce Post’s Correspondence Problem (PCP) to the
problem in question [8]. Compared to some other proofs in the literature the
constructions presented here and the argumentation are more involved. This is
due to the fact that we have to deal with pure language families, which do not
allow to hide any sentential form during the derivation process, as in context-free

238 H. Bordihn, M. Holzer, and M. Kutrib

grammars or extended context-independent L systems. Finally, we summarize
our results and state some open problems in the last section.

2 Preliminaries and Definitions

The reader is assumed to be familiar with the basic notions of formal language
theory as contained, for example, in [9,10]. In the present paper we will use the
following notational conventions. An alphabet is any finite set, its elements are
called letters or symbols. For an alphabet V let V + and V ∗ denote the free semi-
group and free monoid, respectively, generated by V . The unit element of V ∗

is the empty word denoted by λ. The reversal of a word w ∈ V ∗ is denoted
by wR, and for the length of w we write |w|. For the number of occurrences of
a symbol a in w we use the notation |w|a. Generally, for a singleton set {a} we
simply write a. We use ⊆ for inclusions and ⊂ for strict inclusions. The powerset
of a set S is denoted by 2S .

Let U and V be two alphabets and σ be a mapping from V into 2U∗
, that is,

σ(a) ⊆ U∗, for all a ∈ V . The extension of σ to domain V ∗ defined by σ(λ) = {λ}
and σ(w1 · w2) = σ(w1) · σ(w2), for w1, w2 ∈ V ∗, is called a substitution. If σ(a)
is a finite set for all a ∈ V , then σ is a finite substitution. If U = V , then σ is
called substitution over V .

Now we give the formal definition of the L systems which will be considered
in this paper.

Definition 1

1. A T0L system is a tuple G = (V, P1, P2, . . . , Pr, ω), where r is a positive
integer, V is an alphabet, ω ∈ V + is the axiom, and Pi, for 1 ≤ i ≤ r, is a
finite subset of V × V ∗ such that for every a ∈ V , there is a word v ∈ V ∗

with (a, v) ∈ Pi. The sets Pi are called the tables of G.
2. A T0L system is propagating (a PT0L system) if all tables of G are finite

subsets of V × V +.
3. An 0L system is a T0L system with only one table, that is, r = 1.
4. An 0L system is propagating (a P0L system) if the only table of G is a finite

subset of V × V +.

The elements of the tables are called rules and define how a symbol of the
current sentential form may be rewritten. Such as in the case of phrase structure
grammars we usually write a → v for (a, v) in P . Since in a single step of a
T0L system all symbols are rewritten in parallel according to one of its tables,
any table of a T0L system can be viewed as a finite substitution over V . More
precisely, with every table P ⊆ V × V ∗ we associate the finite substitution σP

defined by σP (a) = { v | (a, v) ∈ P }. Now, we can define the language generated
by a T0L system.

Definition 2. Let r ≥ 1 and G = (V, P1, P2, . . . , Pr, ω) be a T0L system. A
word x ∈ V + directly derives a word y ∈ V ∗ if there is i with 1 ≤ i ≤ r, such
that y ∈ σPi (x). We write x ⇒ y in this case. The language L(G) generated
by G is defined to be the set L(G) = {w ∈ V ∗ | ω ⇒∗ w }, where ⇒∗ refers to
the reflexive, transitive closure of the derivation relation ⇒.

Undecidability of Operation Problems for T0L Languages and Subclasses 239

For X ∈ {P0L, 0L, PT0L, T0L}, a language is said to be an X language if there is
an X system generating it. Let V be an alphabet and σ a substitution over V . If,
for all a ∈ V , the set σ(a) is an X language, then σ is called an X substitution.
By definition, every P0L language is also a 0L, PT0L as well as a T0L language,
and both every 0L and every PT0L language is also a T0L language.

In the remainder of this section we introduce the necessary notation from
computability theory. A problem is called decidable, if there is a Turing ma-
chine, that will halt on all inputs and, given an encoding of any instance of the
question, will compute the correct answer “yes” or “no” for the instance. Oth-
erwise the problem is undecidable. The problem is semidecidable or recursively
enumerable, if the Turing machine halts on all instances for which the answer is
“yes.” Otherwise the problem is non-semidecidable. For example, the well-known
halting problem is undecidable. But it is easy to see that it is semidecidable.

We will prove the non-semidecidability of operation problems for T0L systems
and subclasses thereof by reduction of Post’s Correspondence Problem (PCP)
to the problem in question. Formally, the definition of PCP reads as follows, see,
e.g., [10]: Let n be a positive integer, V be an alphabet containing at least two
letters, and

I = {(u1, v1), (u2, v2), . . . , (un, vn)}
be a finite set of pairs from V ∗×V ∗. As n and V are implicitly specified when I
is given, the set I determines an instance of the PCP. The PCP I has a solution
if and only if there is a sequence of integers i1, i2, . . . , ik with k ≥ 1, 1 ≤ ij ≤ n,
for 1 ≤ j ≤ k, such that

ui1ui2 . . . uik
= vi1vi2 . . . vik

.

As an example, assume that V = {0, 1} and furthermore, let the PCP instance
be I = {(1, 111), (10111, 10), (10, 0)}. A solution to this instance of the PCP is
the sequence 2, 1, 1, 3 obtaining 10111 · 1 · 1 · 10 = 10 · 111 · 111 · 0. It is well-
known that the PCP is undecidable [8]. Simply by enumerating all possibilities
it is easy to see that it is still semidecidable. On the other hand, the problem to
determine whether a PCP has no solution cannot be semidecidable. Otherwise
the PCP would be decidable. So, to be more precise, we will prove our results
by reduction of the question whether a PCP has no solution to the operation
problem.

Our results (for binary operations) read as follows, where ◦ refers to the
operation in question:

Let X and Y be in {P0L, 0L, PT0L, T0L}. Given two X systems G1
and G2, it is non-semidecidable whether L(G1) ◦L(G2) is a Y language.

More precisely, we show that the semidecidability of the operation problem under
consideration would imply the semidecidability of the question whether a PCP
has no solution. Because of the aforementioned inclusion structure of L language
families it suffices to prove that, given an instance of the PCP, we can construct
two P0L systems G1 and G2, such that the language L(G1) ◦ L(G2) is P0L if
the PCP has no solution for the given instance, and if the PCP does have a

240 H. Bordihn, M. Holzer, and M. Kutrib

solution, the resulting language is not even a T0L language. The results and
proof structures for unary operations are given analogously.

3 Boolean Operations

In this section we consider the operation problem of the family of T0L languages
and subclasses with respect to Boolean operations. Since there are regular lan-
guages which are not generated by any T0L system, in addition we consider the
intersection with regular languages. First we consider the union operation prob-
lem with respect to the four classes of L systems defined in the previous section.

Theorem 1. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given two X sys-
tems G1 and G2, it is non-semidecidable whether the union L(G1) ∪ L(G2) is
a Y language.

Proof. We prove the non-semidecidability by reducing Post’s corresponding
problem. Let I = {(u1, v1), (u2, v2), . . . , (un, vn)} be a finite set of pairs from
{a, b}∗ × {a, b}∗, an instance of the PCP, and let Σ = {a, b, c}. For technical
reasons, we assume (x, x) be not contained in I, that is, we exclude instances
for which the PCP is trivially decidable. We consider the P0L system

G1 = ({S, A, B, C, D,#} ∪ Σ, P1, S),

where P1 is the union of the following sets of rules:

R1 = {S → ##, S → a3b3c3, S → A},
R2 = {A → xAx | x ∈ Σ },
R3 = {A → xBy | x, y ∈ Σ, x �= y } ∪ {B → xBy | x, y ∈ Σ },
R4 = {A → xC | x ∈ Σ } ∪ {B → xC | x ∈ Σ } ∪ {C → xC | x ∈ Σ },
R5 = {A → Dx | x ∈ Σ } ∪ {B → Dx | x ∈ Σ } ∪ {D → Dx | x ∈ Σ },
R6 = {B → #, C → #, D → #, # → # },

and
R7 = { x → x | x ∈ Σ }.

The derivation process starts necessarily with an application of a rule from R1.
As only upper case letters can be replaced non-identically, the derivation can be
continued only by rewriting A. As long as only rules from R2 are used, strings
in the set

K1 = {wAwR | w ∈ Σ∗ }
are obtained, and any string in K1 can be generated. After the symbol A is
rewritten by some rule in R3, R4, or R5, the sets

K2 = {wBw′ | w, w′ ∈ Σ∗, |w| = |w′|, w′ �= wR },
K3 = {wCw′ | w, w′ ∈ Σ∗, |w| > |w′| },

and
K4 = {wDw′ | w, w′ ∈ Σ∗, |w| < |w′| }

Undecidability of Operation Problems for T0L Languages and Subclasses 241

are generated by further applications of R3, R4, or R5, respectively. Finally, with
the help of R6 we obtain

K5 = {w#w′ | w, w′ ∈ Σ∗, w′ �= wR }.

Since no further sentential forms can be derived, we have

L1 = L(G1) =
5⋃

i=1

Ki ∪ {##, a3b3c3, S}.

Next, we construct a P0L system G2 dependent on the given instance of the
PCP:

G2 = ({S, #, a, b}, P2, S),

with

P2 = {S → ui#vR
i | 1 ≤ i ≤ n } ∪ {# → ui#vR

i | 1 ≤ i ≤ n } ∪ {a → a, b → b},

and set L2 = L(G2).
Now we consider the language L1 ∪ L2 in more detail, and distinguish two

cases, namely whether the PCP used in the construction of the L systems G2
has a solution or not.

Case 1. The PCP has no solution for the instance I. Then L2 ⊂ L1, hence
L1 ∪ L2 = L1 is a P0L language.

Case 2. If the PCP has a solution for the instance I, then we claim that L1∪L2
cannot be generated by any T0L system. Assume the contrary and let G =
(V, P, ω) be some T0L system with L(G) = L1 ∪ L2.

First, we observe that ## is the only word in L1 ∪ L2 which is of the
form zz, for some word z. Therefore, in any table # → # is the only rule
in P for the symbol #. (The rule # → λ would imply that λ belongs to
L1 ∪ L2, a contradiction.)

As a3b3c3 is contained in L1 ∪ L2, in any table for any x ∈ Σ, the rules
x → v are so that |v|X = 0, for all X ∈ {S, A, B, C, D,#}. Otherwise a word
with at least three occurrences of X could be derived, which contradicts the
structure of the words in L1 ∪ L2. Next, a3b3c3 is the only word in L1 ∪ L2
over the alphabet Σ. In conclusion, x → x is the only possible rule, for any
x ∈ Σ.

Now, let i1, i2, . . . , ik be a solution of the PCP for the instance I, and let
y = ui1ui2 . . . uik

. Then L0 = { ym#(yR)m | m ≥ 1 } ⊆ L2. Therefore, for all
long enough v ∈ L0, there are words z, z′, and a derivation ω ⇒∗ zT z′ ⇒ v
(recall that # → # is the only rule in P for the symbol #) according to G
such that zT z′ ∈ L1 with T ∈ {S, A, B, C, D}. Clearly, T �= B since otherwise
zBz′ ∈ L1 implies |z| = |z′| and z′ �= zR. So, zBz′ ⇒ v is impossible.
Let T ∈ {A, C, D}. As czT z′c is an element of L1 either, also the derivation

ω ⇒∗ czT z′c ⇒ cym#(yR)mc

is possible according to G, but cym#(yR)mc belongs neither to L1 nor to L2,
which is a contradiction to our assumption L(G) = L1 ∪L2. Hence, L1 ∪L2
is not generated by any T0L system.

242 H. Bordihn, M. Holzer, and M. Kutrib

The systems G1 and G2 are P0L systems and, thus, of any type from
{P0L, 0L, PT0L, T0L}. We have shown that the union L(G1) ∪ L(G2) is of any
type from {P0L, 0L, PT0L, T0L}, if and only if the PCP has no solution. We
conclude that it is non-semidecidable whether the union L(G1)∪L(G2) is a lan-
guage of any type from {P0L, 0L, PT0L, T0L}. This proves the theorem. ��

We continue our investigation with the intersection operation and base our con-
struction on that of Theorem 1, thus reducing the intersection problem to the
undecidability problem of the union problem.

Theorem 2. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given two X sys-
tems H1 and H2, it is non-semidecidable whether the intersection L(H1)∩L(H2)
is a Y language.

Proof. Let I = {(u1, v1), (u2, v2), . . . , (un, vn)} be a finite set of pairs from
{a, b}∗×{a, b}∗, an instance of the PCP, and let G1 and G2 be the P0L systems
as in the proof of Theorem 1. Let P1 be the sole table of G1. We construct the
P0L system

H1 = ({S, A, B, C, D, E,#, a, b, c}, P ′
1, S),

where P ′
1 = P1 ∪ R8 with

R8 = {S → uiEvR
i | 1 ≤ i ≤ n } ∪ {E → uiEvR

i | 1 ≤ i ≤ n } ∪ {E → #}.

Then

L(H1) = L(G1)

∪ { ui1ui2 . . . uij #vR
ij

. . . vR
i2v

R
i1 | 1 ≤ j, 1 ≤ i1, i2, . . . , ij ≤ n }

∪ { ui1ui2 . . . uij EvR
ij

. . . vR
i2v

R
i1 | 1 ≤ j, 1 ≤ i1, i2, . . . , ij ≤ n }.

Since

L(G2) = {S} ∪ { ui1ui2 . . . uij #vR
ij

. . . vR
i2v

R
i1 | 1 ≤ j, 1 ≤ i1, i2, . . . , ij ≤ n },

where G2 is the P0L system from Theorem 1, we can alternatively write lan-
guage L(H1) as follows, taking into account that S ∈ L(G1):

L(H1) = L(G1) ∪ L(G2)

∪ { ui1ui2 . . . uij EvR
ij

. . . vR
i2v

R
i1 | 1 ≤ j, 1 ≤ i1, i2, . . . , ij ≤ n }.

Further, let H2 be a P0L system generating the set {S, A, B, C, D,#, a, b, c}+.
As L(H1) ∩ L(H2) = L(G1) ∪ L(G2), and it is non-semidecidable whether
L(G1) ∪ L(G2) is a language of any type from {P0L, 0L, PT0L, T0L}, the proof
is complete. ��

It is known that there are regular languages which are not generated by any T0L
system [9]. However since semi-groups like {S, A, B, C, D,#, a, b, c}+ belong to
all language families in question, we immediately obtain the following corollary.

Undecidability of Operation Problems for T0L Languages and Subclasses 243

Corollary 1. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given an X system G
and a regular language R, it is non-semidecidable whether the intersection
L(G) ∩ R is a Y language. ��

Whether the only remaining Boolean operation, the complementation, also yields
a non-semidecidable operation problem for the four L language families is left
open.

4 Non-erasing Homomorphism, Substitution, and
Concatenation

Here we consider the operation problem for non-erasing homomorphism, substi-
tution, and finally for concatenation. We start with non-erasing homomorphisms.
Observe, that the stated theorem even holds in case of letter-to-letter homomor-
phisms.

Theorem 3. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given an X system G
and a (non-erasing) homomorphism h, it is non-semidecidable whether h(L(G))
is a Y language.

Proof. Consider the P0L system H1 over V = {S, A, B, C, D, E,#, a, b, c} of the
proof of Theorem 2, and let h : V ∗ → V ∗ be the homomorphism defined by
h(x) = x, for x ∈ V \ {E} and h(E) = #. Then h(L(H1)) = L(G1) ∪ L(G2),
where G1 and G2 are the P0L systems of the proof of Theorem 1. Since it
is non-semidecidable whether L(G1) ∪ L(G2) is a language of any type from
{P0L, 0L, PT0L, T0L}, the assertion follows. ��

For inverse homomorphisms we obtain the following result:

Theorem 4. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given an X system G,
a (non-erasing) homomorphism h, it is non-semidecidable whether h−1(L(G)) is
a Y language.

Proof. We argue as in the previous proof, again by considering the P0L sys-
tem H1 over V = {S, A, B, C, D, E,#, a, b, c} of the proof of Theorem 2. Then
we define the homomorphism h : (V \ {E})∗ → V ∗ by h(x) = x, for x ∈ V \ {E}
and note that h−1(L(H1)) = L(G1) ∪ L(G2), where G1 and G2 are the P0L
systems of the proof of Theorem 1. Thus, the non-semidecidability of the inver-
sion homomorphism operation problem for the languages families in question is
immediate. ��

For substitutions, whose languages are certain L languages, we find a similar
result.

Theorem 5. Let X, Y and Z be in {P0L, 0L, PT0L, T0L}. Given an X sys-
tem G and a Z substitution σ, it is non-semidecidable whether σ(L(G)) is a
Y language.

244 H. Bordihn, M. Holzer, and M. Kutrib

Proof. Consider the P0L language {a, b} and the P0L substitution σ defined by
σ(a) = L(G1) and σ(b) = L(G2), where G1 and G2 are the P0L systems of the
proof of Theorem 1. Then the undecidability of the union problem reduces to
the substitution problem, and the assertion follows. ��
In the remainder of this section we consider the concatenation.

Theorem 6. Let X and Y be in {P0L, 0L, PT0L, T0L}. Given two X sys-
tems H0 and H1, it is non-semidecidable whether the concatenation L(H0)·L(H1)
is a Y language.

Proof. Given a PCP instance I = {(u1, v1), (u2, v2), . . . , (un, vn)} over the al-
phabet {a, b}. Let H0 = ({E, a, b, #, $}, P0, ##E$$), where

P0 = {E → uiEvR
i | 1 ≤ i ≤ n } ∪ {a → a, b → b, # → #, $ → $},

such that

L(H0) = {##}·{ ui1ui2 . . . uij EvR
ij

. . . vR
i2v

R
i1 | 1 ≤ j, 1 ≤ i1, i2, . . . , ij ≤ n }·{$$}.

Furthermore, let H1 be taken from the proof of Theorem 2. This completes the
description of the P0L systems.

Next we consider the language L(H0) · L(H1) in more detail. We distinguish
two cases, namely whether the PCP used in the construction of the L systems
has a solution or not:

Case 1. The PCP has no solution for the instance I. Then the rule E → #
can be omitted from the set of rules of H1 without changing the generated
language L(H1).

We construct a P0L system H from H0 and H1 as follows:

H = ({S, A, B, C, D, E, a, b, c,#, $}, P, ##E$$S),

where P = P ′
1 ∪ P0 ∪ {X → X | X ∈ {S, A, B, C, D, E} }. It is easy to see

that L(H) = L(H0) · L(H1).
Case 2. The PCP has a solution for the given instance, say j1j2 . . . jk. Let

w = (uj1uj2 . . . ujk
)m

with m sufficiently large. Then any word in L(H0) ·w#w is in L(H0) ·L(H1).
Assume there is a T0L system H ′ with L(H ′) = L(H0) · L(H1). As every
word in L(H ′) begins with ##, in any table the only rule replacing # is
→ #.

Next, by arguments similar to the ones given in the proof of Theorem 1
one shows that in any table, x → x are the only rules for the symbols
x ∈ {a, b, c}. Since w is long, we conclude that in order to derive the suffix
w#w the symbol # has to be derived from symbol E. But then the corre-
sponding rule can be applied to the left occurrence of E in any word of the
language, yielding a word of the form ##u#v$$y which does not belong to
L(H0) · L(H1). Hence, the words in L(H0)·w#w cannot be generated by H ′,
a contradiction. In conclusion, L(H0) · L(H1) is not a T0L language.

This proves the assertion. ��

Undecidability of Operation Problems for T0L Languages and Subclasses 245

5 Conclusions

We have investigated the operation problem for T0L languages and subclasses,
that is, we fix an operation on formal languages, and consider the question:
Given languages from the language family under consideration, is it decidable
or at least semidecidable whether or not the application of the operation to
the languages leads out of this family? For the AFL operations, except Kleene
closure, we have shown that the considered problem is non-semidecidable, even
already for P0L systems. Since we were dealing with pure language families some
of our constructions and arguments were slightly more involved than usual.

Nevertheless, some interesting problems remain open:

1. Where are the borderlines between decidability, undecidability, and non-
semidecidability of the operation problems for T0L languages and subclasses
exactly? Are there some nontrivial operations for which the problem is de-
cidable? Can we characterize these cases?

2. What about the operation problems for deterministic T0L languages and
subclasses? A T0L system G = (V, P1, P2, . . . , Pr, ω) is deterministic if all
tables Pi ⊆ V × V ∗ with 1 ≤ i ≤ r are such that σPi(a) = { v | (a, v) ∈ Pi }
is a singleton set for every letter a ∈ V . In particular, for the most simple
L systems, namely propagating D0L systems, which are nothing other than
iterated non-erasing homomorphisms, decidability of the union problem has
been shown [4]. But the decidability status of the operation problem with
respect to other operations is unknown.

3. Determine the decidability status of the operation problem with respect to
complementation and Kleene closure for the L systems in question.

We have seen that all studied question are non-semidecidable, but what is
their exact status of unsolvability? To this end, one has to consider the arithmetic
hierarchy, which is defined as follows:

Σ1 = {L | L is recursively enumerable },
Σn+1 = {L | L is recursive enumerable in some A ∈ Σn },

and Πn is the class of all complements of languages in Σn, that is, define Πn =
{L | L ∈ Σn }, for n ≥ 1. Here, a language L is said to be recursively enumerable
in some B if there is a Turing machine with oracle B that semi-decides L.
Alternatively, a more revealing characterization of the arithmetic hierarchy can
be given in terms of alternation of quantifiers. More precisely, a language L is
in Σn, for n ≥ 1, if and only if there exists a decidable (n + 1)-ary predicate R
such that

L = {w | ∃y1∀y2∃y3 . . . Qyn R(w, y1, y2, . . . , yn) },

where Q = ∃ if n is odd and Q = ∀ if n is even. Thus, the non-semidecidability
implies that the problems in question are at least on level Π1 of the arithmetic
hierarchy, but what is their precise level? As the reader may easily verify, the
upper bound on the operation problems under consideration is Σ2, although

246 H. Bordihn, M. Holzer, and M. Kutrib

we have to leave open whether the problems are complete for this class, but
we conjecture it to be so. This conjecture is based on the fact that recently it
was shown that for certain operations, under which the families of linear and
deterministic context-free languages are not closed, the corresponding operation
problems are Σ2-complete [2].

References

1. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung 14, 143–172 (1961)

2. Bordihn, H., Holzer, M., Kutrib, M.: Unsolvability levels of operation problems for
subclasses of context-free languages. Int. J. Found. Comp. Sci. 16, 423–440 (2005)

3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

4. Dassow, J., Păun, G., Salomaa, A.: On the union of 0L languages. Inform. Process.
Letters 47, 59–63 (1993)

5. Lindenmayer, A.: Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. J. Theor. Biol. 18, 280–299 (1968)

6. Lindenmayer, A.: Mathematical models for cellular interactions in development II.
Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18, 300–315
(1968)

7. Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars. Inform. Control 44, 47–72
(1980)

8. Post, E.L.: A variant of a recursively unsolvable problem. Bull. AMS 52, 264–268
(1946)

9. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, London (1980)

10. Salomaa, A.: Formal Languages. Academic Press, London (1973)

Decision Problems for Convex Languages

Janusz Brzozowski, Jeffrey Shallit, and Zhi Xu

David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, Canada N2L 3G1

{brzozo,shallit,z5xu}@uwaterloo.ca

Abstract. We examine decision problems for various classes of convex
languages, previously studied by Ang and Brzozowski under the name
“continuous languages”. We can decide whether a language L is prefix-,
suffix-, factor-, or subword-convex in polynomial time if L is represented
by a DFA, but the problem is PSPACE-hard if L is represented by an
NFA. If a regular language is not convex, we prove tight upper bounds
on the length of the shortest words demonstrating this fact, in terms of
the number of states of an accepting DFA. Similar results are proved
for some subclasses of convex languages: the prefix-, suffix-, factor-, and
subword-closed languages, and the prefix-, suffix-, factor-, and subword-
free languages.

1 Introduction

A word x is a factor of a word w if w = uxv for some words u and v. A word
x is a subword of w if x is a subsequence of w. Thierrin [1] introduced convex
languages with respect to the subword relation, and Ang and Brzozowski [2]
generalized this concept to arbitrary relations.

A language L is prefix-convex if u, w ∈ L with u a prefix of w implies that
any word v must also be in L if u is a prefix of v and v is a prefix of w. L is
prefix-free if w ∈ L implies that no proper prefix of w is in L. L prefix-closed if
w ∈ L implies that every prefix of w is also in L.

Similar definitions hold for suffix-, factor-, and subword-convex languages,
and suffix-, factor-, and subword-free and closed languages. Prefix-free languages
(prefix codes) were studied by Berstel and Perrin [3]. Han has recently consid-
ered X-free languages for various values of X , such as prefix, suffix, factor and
subword [4]. A factor-closed language is often called factorial .

We consider the computational complexity of testing whether a given lan-
guage is prefix-convex, suffix-convex, etc., prefix-closed, suffix-closed, etc., for a
total of 12 different problems. The computational complexity of these decision
problems depends on how the language is represented. If it is specified by a
DFA, the decision problem is solvable in polynomial time. If it is represented as
a regular expression or an NFA, the decision problem is PSPACE-complete. We
also consider the following question: given that a language is not prefix-convex,
suffix-convex, etc., what is a good upper bound on the length of the shortest
words (witnesses) demonstrating this fact?

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 247–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

248 J. Brzozowski, J. Shallit, and Z. Xu

In Section 2 we study the complexity of testing for convexity for languages
represented by DFA’s, and include testing for closure and freeness as special
cases. In Section 3 we exhibit shortest witnesses to the lack of convexity. Convex
languages specified by NFA’s and context-free grammars are briefly studied in
Section 4. Section 5 concludes the paper. Owing to the space constraints, we
have had to omit many results and proofs; they can be found in the full version
of our paper [5].

2 Decision Problems for Languages Specified by DFA’s

We will show that, if a regular language L is represented by a DFA M with n
states, it is possible to test the property of prefix-, suffix-, factor-, and subword-
convexity efficiently, in fact, in O(n3) time.

Let
 be one of the four relations prefix, suffix, factor, or subword. The basic
idea is as follows: L is not
-convex if and only if there exist words u, w ∈ L,
v �∈ L, such that u
 v
 w. Given M , we create an NFA-ε M ′ with O(n3)
states and transitions that accepts the language {w ∈ L(M) : there exist u ∈
L(M), v �∈ L(M) such that u
 v
 w}. Then L(M ′) = ∅ if and only if L(M)
is
-convex. We can test the emptiness of L(M ′) using depth-first search in
time linear in the size of M ′. This gives an O(n3) algorithm for testing the

-convexity.

Since the constructions for all four properties are similar, we handle the hard-
est case (factor-convexity) in detail, and refer the reader to [5] for the rest.

Factor-convex languages. Suppose M = (Q, Σ, δ, q0, F) is a DFA accepting
the language L = L(M), and suppose M has n states. We construct an NFA-ε
M ′ such that L(M ′) is the set of words w ∈ Σ∗ such that there exist u, v ∈ Σ∗

such that u is a factor of v, v is a factor of w, and u, w ∈ L, v �∈ L. Clearly
L(M ′) = ∅ if and only if L(M) is factor-convex.

States of M ′ are quadruples, where components 1, 2, and 3 keep track of
where M is upon processing w, v, and u (respectively). The last component is
a flag indicating the present mode of the simulation process. Formally, M ′ =
(Q′, Σ, δ′, q′0, F ′), where Q′ = Q × Q × Q × {1, 2, 3, 4, 5}, q′0 = [q0, q0, q0, 1],
F ′ = F × (Q − F) × F × {5}, and

1. δ′([p, q0, q0, 1], a) = {[δ(p, a), q0, q0, 1]}, for all p ∈ Q, a ∈ Σ;
2. δ′([p, q0, q0, 1], ε) = {[p, q0, q0, 2]}, for all p ∈ Q;
3. δ′([p, q, q0, 2], a) = {[δ(p, a), δ(q, a), q0, 2]}, for all p, q ∈ Q, a ∈ Σ;
4. δ′([p, q, q0, 2], ε) = {[p, q, q0, 3]}, for all p, q ∈ Q;
5. δ′([p, q, r, 3], a) = {[δ(p, a), δ(q, a), δ(r, a), 3]}, for all p, q, r ∈ Q, a ∈ Σ;
6. δ′([p, q, r, 3], ε) = {[p, q, r, 4]}, for all p, q, r ∈ Q;
7. δ′([p, q, r, 4], a) = {[δ(p, a), δ(q, a), r, 4]}, for all p, q, r ∈ Q, a ∈ Σ;
8. δ′([p, q, r, 4], ε) = {[p, q, r, 5]}, for all p, q, r ∈ Q;
9. δ′([p, q, r, 5], a) = {[δ(p, a), q, r, 5]}, for all p, q, r ∈ Q, a ∈ Σ.

Decision Problems for Convex Languages 249

One can verify that the contruction is correct, and that the NFA-ε M ′ has
3n3 + n2 + n states and (3|Σ|+ 2)n3 + (|Σ| + 1)(n2 + n) transitions, where |Σ|
is the cardinality of Σ [5]. In other words, the following theorem holds:

Theorem 1. If M is a DFA with n states, there exists an NFA-ε M ′ with O(n3)
states and transitions such that M ′ accepts the language L(M ′) = {w ∈ Σ∗ :
there exist u, v ∈ Σ∗ such that u is a factor of v, v is a factor of w, and u, w ∈
L, v �∈ L}.
Corollary 1. We can decide if a given regular language L accepted by a DFA
with n states is factor-convex in O(n3) time.

Factor-closed languages. The language L is not factor-closed if and only if
there exist words v, w such that v is a factor of w, and w ∈ L, while v �∈ L.
Given a DFA M accepting L, we construct an NFA-ε M ′ such that L(M ′) =
{w ∈ Σ∗ : there exists v ∈ Σ∗ such that v is a factor of w, and w ∈ L, v �∈ L}.
Then L(M ′) = ∅ if and only if L(M) is factor-closed. The size of M ′ is O(n2).

States of M ′ are triples, where components 1 and 2 keep track of where M is
upon processing w and v (respectively). The last component is a flag as before.
Formally, M ′ = (Q′, Σ, δ′, q′0, F

′), where Q′ = Q × Q × {1, 2, 3}; q′0 = [q0, q0, 1];
F ′ = F × (Q − F) × {3}; and

1. δ′([p, q0, 1], a) = {[δ(p, a), q0, 1]} for p ∈ Q, a ∈ Σ.
2. δ′([p, q0, 1], ε) = {[p, q0, 2]}, for all p ∈ Q;
3. δ′([p, q, 2], a) = {[δ(p, a), δ(q, a), 2]}, for all p, q ∈ Q;
4. δ′([p, q, 2], ε) = {[p, q, 3]}, for all p, q ∈ Q;
5. δ′([p, q, 3], a) = {[δ(p, a), q, 3]}, for p, q ∈ Q, a ∈ Σ.

M ′ has 2n2 + n states and (2|Σ| + 1)n2 + (|Σ| + 1) transitions. Thus we have
Theorem 2. (This result was previously obtained by Béal et al. [6, Prop. 5.1, p.
13] through a slightly different approach.)

Theorem 2. We can decide if a given regular language L accepted by a DFA
with n states is factor-closed in O(n2) time.

The converse of the relation “u is a factor of v” is “v contains u as a factor”.
This relation and similar converse relations derived from the prefix, suffix, and
subword relations, lead to “converse-closed languages” [2]. Subword-closed and
converse-subword-closed languages were characterized by Thierrin [1]. It has
been shown by de Luca and Varricchio [7] that a language L is factor-closed
(factorial, in their terminology) if and only if it is a complement of an ideal, that
is, if and only if L = Σ∗KΣ∗ for some K ⊆ Σ∗. Ang and Brzozowski [2] noted
that a language is an ideal if and only if it is converse-factor-closed, that is, if, for
every u ∈ L, each word of the form v = xuy is also in L. Thus, to test whether
L is converse-factor-closed, we must check that there is no pair (u, v) such that
u ∈ L, v �∈ L, and u is a factor of v. This is equivalent to testing whether L is
factor-closed. Then the following is an immediate consequence of Theorem 1:

Corollary 2. We can decide if a given regular language L accepted by a DFA
with n states is an ideal in O(n2) time.

250 J. Brzozowski, J. Shallit, and Z. Xu

Factor-free languages. Factor-free (also known as infix-free) languages have
been studied recently by Han et al. [8], who gave efficient algorithms for de-
termining if the language accepted by an NFA is prefix-, suffix-, or factor-free.
We can decide whether a DFA language is factor-free in O(n2) time with the
automaton we used for testing factor-closure, except that the set of accepting
states is now F ′ = F × F × {3}.

3 Minimal Witnesses

Let
 represent one of the four relations: factor, prefix, suffix, or subword. A nec-
essary and sufficient condition that a language L be not
-convex is the existence
of a triple (u, v, w) of words, where u, w ∈ L, v �∈ L, u
 v, and v
 w. We call
such a triple a witness to the lack of
-convexity. A witness (u, v, w) is minimal
if every other witness (u′, v′, w′) satisfies |w| < |w′|, or |w| = |w′| and |v| < |v′|,
or |w| = |w′|, |v| = |v′|, and |u| < |u′|. The size of a witness is |w|.

Similarly, if L is not
-closed, then (v, w) is a witness if w ∈ L, v �∈ L, and
v
 w. A witness (v, w) is minimal if there exists no witness (v′, w′) such that
|w′| < |w|, or |w′| = |w| and |v′| < |v|. The size is again |w|. For
-freeness,
witness, minimal witness, and size are defined as for
-closure, except that both
words are in L.

Suppose we are given a regular language L specified by an n-state DFA M ,
and we know that L is not
-convex (respectively,
-closed or
-free). A natural
question then is, what is a good upper bound on the size of the shortest witness
that demonstrates the lack of this property?

3.1 Factor-Convexity

From Theorem 1, we deduce Corollary 3, which gives an O(n3) upper bound
for the length of a witness to the lack of factor-convexity. This bound is best
possible, as is shown in Theorem 3, whose proof appears in Section 3.3.

Corollary 3. Suppose L is accepted by a DFA with n states and L is not factor-
convex. Then there exists a witness (u, v, w) such that |w| ≤ 3n3 + n2 + n − 1.

Theorem 3. There is a class of non-factor-convex regular languages Ln, ac-
cepted by DFA’s with O(n) states, such the size of the minimal witness is Ω(n3).

Factor-closure. Theorem 2 gives us a O(n2) upper bound on the length of a
witness to the failure of the factor-closed property:

Corollary 4. If L is accepted by a DFA with n states and L is not factor-closed,
then there exists a witness (v, w) such that |w| ≤ 2n2 + n − 1.

This O(n2) upper bound is best possible. Let M = (Q, Σ, δ, q0, F) be a DFA,
where Q = {q0, q1, · · · , qn, qn+1, p0, p1, · · · , pn, pn+1}, Σ = {0, 1}, and F = Q \
{qn+1}. The transition function is δ(q0, 0) = q0, δ(q0, 1) = q1, δ(qn+1, 0) = qn+1,
δ(qn+1, 1) = qn+1,

Decision Problems for Convex Languages 251

δ(qi, 0) =

{
qi+1, if 0 < i < n;
q1, if 0 < i = n,

δ(qi, 1) =

⎧⎪⎨⎪⎩
q1, if 0 < i < n − 1;
p0, if 0 < i = n − 1;
qn+1, if 0 < i = n;

δ(pj , 0) =

{
pj+1, if 0 ≤ j < n;
q0, if 0 ≤ j = n;

δ(pj , 1) =

{
qn+1, if 0 ≤ j < n;
pn+1, if 0 ≤ j = n;

and δ(pn+1, 0) = qn+1, δ(pn+1, 1) = qn+1. The DFA M has 2n + 4 states. The
following theorem holds [5]:

Theorem 4. For the DFA M above, let L = L(M). For any witness (u, v) to
the lack of factor-closure we have |v| ≥ (n+1)2−1, and this bound is achievable.

Factor-freeness. From the remarks at the end of Section 2, we get

Corollary 5. If L is accepted by a DFA with n states and L is not factor-free,
then there exists a witness (v, w) such that |w| ≤ 2n2 + n − 1.

Up to a constant, Corollary 5 is best possible, as the following theorem shows.

Theorem 5. There is a class of languages accepted by DFA’s with O(n) states,
such that the smallest witness to the lack of factor-freeness is of size Ω(n2).

Proof. Let L = bb(an)+b ∪ b(an+1)+b. This language can be accepted by a
DFA with 2n + 6 states. However, the shortest witness to lack of factor-freeness
is (ban(n+1)b, bban(n+1)b), which has size n2 + n + 3. ��

3.2 Prefix-Convexity

For prefix-convexity, we have the following theorem.

Theorem 6. Let M be a DFA with n states. If L(M) is not prefix-convex, there
is a witness (u, v, w) with |w| ≤ 2n− 1. Furthermore, this bound is best possible,
as for all n ≥ 2, there exists a unary DFA with n states that achieves this bound.

Proof. If L(M) is not prefix-convex, then such a witness (u, v, w) exists. Without
loss of generality, assume that (u, v, w) is minimal. Now write w = uyz, where
v = uy and w = vz.

Let δ(q0, u) = p, δ(p, y) = q, and δ(q, z) = r. Let P be the path from q0 to r
traversed by uvw, and let P1 be the states from q0 to p (not including p), P2 be
the states from p to q (not including q), and P3 be the states from q to r (not
including r); see Figure 1. Since (u, v, w) is minimal, we know that every state of

252 J. Brzozowski, J. Shallit, and Z. Xu

q0 p q r

u y z

all states non-accepting all states non-accepting

P2

all states accepting

P3P1

Fig. 1. The acceptance path for w

P3 is rejecting, since we could have found a shorter w if there were an accepting
state among them. Similarly, every state of P2 must be accepting, for, if there
were a rejecting state among them, we could have found a shorter y and hence
a shorter v. Finally, every state of P1 must be rejecting, since, if there were an
accepting state, we could have found a shorter u.

Let ri = |Pi| for i = 1, 2, 3. There are no repeated states in P3, for if there
were, we could cut out the loop to get a shorter w; the same holds for P2 and
P1. Thus ri ≤ n − 1 for i = 1, 2, 3. Now P1 and P2 are disjoint, since all the
states of P1 are rejecting, while all the states of P2 are accepting. Similarly, the
states of P3 are disjoint from P2. So r1 + r2 ≤ n and r2 + r3 ≤ n. It follows that
r1 + r2 + r3 ≤ 2n− r3. Since r3 ≥ 1, it follows that |w| ≤ 2n − 1.

To see that 2n − 1 is optimal, consider the DFA of n states accepting the
unary language L = an−1(an)∗. Then L is not prefix-convex, and the shortest
witness is (an−1, an, a2n−1). ��

Prefix-closure. For prefix-closed languages we can get an even better bound.

Theorem 7. Let M be an n-state DFA, and suppose L = L(M) is not prefix-
closed. Then the minimal witness (v, w) showing L is not prefix-closed has |w| ≤
n, and this is best possible.

Proof. Assume that (v, w) is a minimal witness. Consider the path P from q0 to
q = δ(q0, w), passing through p = δ(q0, v). Let P1 denote the part of the path
P from q0 to p (not including p) and P2, the part of the path from p to q (not
including q). Then all the states traversed in P2 must be rejecting; otherwise, we
would get a shorter w. Similarly, all the states traversed in P1 must be accepting,
because otherwise we could get a shorter v. Neither P1 nor P2 contains a repeated
state, because if they did, we could “cut out the loop” to get a shorter v or w.
Furthermore, the states in P1 are disjoint from P2. So the total number of states
in the path to w (not counting q) is at most n. Thus |w| ≤ n.

The result is best possible, as the example of the unary language L = (an)∗

shows. This language is not prefix-closed, can be accepted by a DFA with n
states, and the smallest witness is (a, an). ��

Prefix-freeness. For the prefix-free property we have:

Theorem 8. If L is accepted by a DFA with n states and is not prefix-free, then
there exists a witness (v, w) with |w| ≤ 2n − 1. The bound is best possible.

Decision Problems for Convex Languages 253

Proof. The proof is similar to that of Theorem 6. The bound is achieved by a
unary DFA accepting an−1(an)∗. ��

3.3 Suffix-Convexity

For the suffix-convex property, the cubic upper bound implied by Corollary 3 is
best possible, up to a constant factor.

Theorem 9. There is a class of non-suffix-convex regular languages Ln, ac-
cepted by DFA’s with O(n) states, such the size of the minimal witness is Ω(n3).

Proof. Let L = bbb(an−1)+ ∪ bb(a+ aa+ · · ·+ an−1)(an)∗ ∪ b(an+1)+. Then
L can be accepted by a DFA with 3n + 5 states, as illustrated in Figure 2.

a

b
b

a

aaa
a

a
aaa

a

aaa

a

b

Fig. 2. Example of the construction in Theorem 9 for n = 4. All unspecified transitions
go to a rejecting “dead state” d that cycles on all inputs.

It can be verified that L is not suffix-convex and the shortest witness is
(bai, bbai, bbbai), where i = lcm(n − 1, n, n + 1) ≥ (n − 1)n(n + 1)/2. ��

A similar technique can be used for non-factor-convex languages. This allows us
to prove Theorem 3 in the same way Theorem 9, except we use the language Lb
instead.

Suffix-closure. Obviously, a witness to the failure of suffix-closure is also a
witness to the failure of factor-closure. So the proof of Theorem 4 shows that
the bound (n + 1)2 − 1 also holds for suffix-closed languages.

Ang and Brzozowski pointed out [2] that a language L is factor-closed if and
only if L is both prefix-closed and suffix-closed. The next result [5] shows that a
long minimal witness for factor-closure must also be a witness for suffix-closure.

Proposition 1. Let M be a DFA of n states, and L = L(M). Let v be the
shortest word such that there is u �∈ L, v ∈ L, |v| > n and u is a factor of v.
Then u is a suffix of v.

254 J. Brzozowski, J. Shallit, and Z. Xu

Suffix-freeness

Theorem 10. There exists a class of languages accepted by DFA’s with O(n)
states, such that the smallest witness to the lack of suffix-freeness is of size
Ω(n2).

Proof. Let L = bb(an)+ ∪ b(an+1)+. This language is accepted by a DFA
with 2n + 5 states. However, the shortest witness to the lack of suffix-freeness
(ban(n+1), bban(n+1)) has size n2 + n + 2. ��

3.4 Subword-Convexity

We now turn to subword properties. First, we recall some facts about the pump-
ing lemma. If w = a1 · · · am with ai ∈ Σ for 1 ≤ i ≤ m, we write w[i, j] for the
factor ai · · · aj . Assume that M = (Q, Σ, δ, q0, F) is an n-state DFA, m ≥ n, let
q ∈ Q, and consider the state sequence S(q, w) = (δ(q, w[1, 0]), . . . , δ(q, w[1, m])).
We know that some state in S(q, w) must appear more than once, because there
are only n distinct states in M . Let δ(q, w[1, i]) be the first state that appears
more than once in S, and let x = w[1, i]. Moreover, let δ(q, w[1, j]) be the
first state in S(q, w) equal to δ(q, w[1, i]), and let y = w[i + 1, j]. Finally, let
z = w[j + 1, m]. Then w = xyz, where |xy| ≤ n, |y| > 0, and |z| ≥ m − n,
and δ(q, x) = δ(q, xy). By the pumping lemma, xy∗z ⊆ L. By the definition of
x and y, all the states in the sequence S(q, w[1, j − 1]) are distinct. For a word
w with |w| = m ≥ n, we refer to the factorization w = xyz as the canonical
factorization of w with respect to q.

Subword-closure. Here v
 w means v is a subword of w. If L = L(M) is not
subword-closed, then (v, w) is a witness if w ∈ L, v �∈ L, and v
 w.

Lemma 1. Let M be a DFA with n ≥ 2 states such that L(M) is not subword-
closed. For any witness (v, w), there exists a witness (v′, w′) with |w′| ≤ n and
w′
 w.

Proof. We will show that, for any witness (v, w) with |w| ≥ n + 1, we can find a
witness (v′, w′) with |w′| < |w| and w′
 w. The lemma then follows.

Suppose that (v, w) is a minimal witness, and |w| = m ≥ n + 1. Then the
canonical factorization of w is w = xyz, where |xy| ≤ n, |y| > 0, and |z| ≥
m − n > 0.

If there is a z′ such that z′
 z and xyz′ �∈ L, then xz′ �∈ L, since xyz′ and
xz′ lead to the same state in M . Then (xz′, xz) is a witness with |xz| < |w| and
xz
 w. Thus we can assume that

z′
 z implies xyz′ ∈ L. (1)

Since v
 w = xyz, we can write v = vxvyvz, where vx
 x, vy
 y, and vz
 z.
Clearly, v
 xyvz . If vz �= z, then by (1), we have xyvz ∈ L, and (v, xyvz) is a
witness with |xyvz | < |w| and xyvz
 w. Thus we may assume that our witness
has the form (vxvyz, xyz).

Decision Problems for Convex Languages 255

In the particular case that z′ = ε, (1) implies that xy ∈ L. If y′
y and xy′ �∈ L,
then (xy′, xy) is a witness with |xy| < |w| and xy
w. Thus y′
y implies xy′ ∈ L.

Finally, if x′
 x and x′ �∈ L, then (x′, x) is a witness with |x| < |w| and
x
 w. Thus x′
 x implies x′ ∈ L. Altogether, we may assume that all the
states along the path spelling w in M are accepting. We know that the states
in S = (δ(q0, w[1, 0]), . . . , δ(q0, w[1, |xy| − 1])) are all distinct. Also, the states in
S′ = (δ(q0, vxvyz[1, 1]), . . . , δ(q0, vxvyz[1, |z|−1])) are all accepting and distinct;
otherwise, v would not be shortest.

We now claim that no state can be in both S and S′. For suppose that
δ(q0, w[1, i]) = δ(q0, vxvyz[1, k]), for some 0 ≤ i ≤ |x|, 0 < k < |z|. Then
(w[1, i]z[k + 1, |z|], xz) is a witness with |xz| < |w| and xz
 w, since w[1, i] =
x[1, i], and x[1, i]z[k + 1, |z|]
 xz. Next, if δ(q0, xy[1, j]) = δ(q0, vxvyz[1, k]), for
some 0 < j < |y|, 0 < k < |z|, then (xy[1, j]z[k + 1, |z|], xyz[k + 1, |z|]) is a
witness with |xyz[k + 1, |z|]| < |w| and xyz[k + 1, |z|]
 w, since xy[1, j]z[k +
1, |z|]
 xyz[k + 1, |z|], and xyz[k + 1, |z|] ∈ L by (1).

Under these conditions M must have |xy| + (|z| − 1) = |xyz| − 1 distinct
accepting states, and at least one rejecting state. Hence |xyz| = |w| ≤ n and we
have found a witness with the required properties. ��

Corollary 6. Let M be a DFA with n ≥ 2 states. If L(M) is not subword-closed,
there exists a witness (v, w) with |w| ≤ n. Furthermore, this is the best possible
bound, as there exists a unary DFA with n states that achieves this bound.

For n = 1, L is either ∅ or Σ∗, and these languages are subword-closed.

Subword-freeness

Lemma 2. Let M be a DFA with n ≥ 2 states such that L(M) is not subword-
free. For any witness (u, w), there exists a witness (u′, w′) with |w′| ≤ 2n − 1,
and w′
 w.

Corollary 7. Let M be a DFA with n ≥ 2 states. If L(M) is not subword-free,
there exists a witness (u, w) with |w| ≤ 2n − 1. This is the best possible bound,
as there exists a unary DFA with 2n − 1 states that achieves this bound.

Subword-Convexity

Lemma 3. Let M be a DFA with n ≥ 2 states such that L(M) is not subword-
convex. For any witness (u, v, w), there exists a witness (u′, v′, w′) with w′
 w,
and |w′| ≤ 3n − 2.

Proof. We will show that, for any witness (u, v, w) with |w| ≥ 3n − 1, we can
find a witness (u′, v′, w′) with |w′| < |w| and w′
 w. The lemma then follows.

We assume without loss of generality that v is a shortest possible word cor-
responding to the given w, and u is a shortest word corresponding to v and w.

First, consider the witness (u, v) to the lack of subword-closure of the language
L. By Lemma 1, there exists a witness (u′, v′) to the failure of subword-closure
of L such that v′
 v and |v′| ≤ n. Therefore we can assume that we have a
witness (u, v, w) to the failure of subword-convexity such that |v| ≤ n.

256 J. Brzozowski, J. Shallit, and Z. Xu

Suppose that (u, v, w) is a minimal witness, and |w| ≥ 3n − 1. Then the
canonical factorization of w is w = x1y1z1, where |x1y1| ≤ n, |y1| > 0, and
|z1| ≥ 2n− 1 ≥ n > 0. Consider the states

p0 = δ(q0, x1y1), p1 = δ(q0, x1y1z1[1, 1]), · · · , p|z1| = δ(q0, x1y1z1).

Since |z1| ≥ n, there must be at least one pair (pi, pj) of states such that pi = pj .
If p0 is the state that is repeated, let i be the greatest index such that p0 = pi,
and let x2 = ε, y2 = z1[1, i], and z2 = z1[i + 1, |z1|]. If pi is the first state that
is repeated, let j be the greatest index such that pi = pj, and let x2 = z1[1, i],
y2 = z1[i+1, j], and z2 = z1[j+1, |z1|]. If δ(q0, x1y1x2y2), δ(q0, x1y1x2y2z2[1, 1]),
. . . , δ(q0, x1y1x2y2z2) has no repeated states, we stop. Otherwise, we apply the
same procedure to z2, and so on. In any case, eventually we reach a zk for which
no repeated states exist. Then we have the factorization w = x1y1x2y2 · · ·xkykzk,
where x1y

∗
1x2y

∗
2 · · ·xky∗

kzk ⊆ L, |x2 · · ·xkzk| < n (otherwise, there would be
repeated states), |yi| > 0, for i = 1, . . . , k, and k ≥ 2.

For any y′
2
 y2, · · · , y′

k
 yk, we have x1y1x2y
′
2 · · ·xky′

kzk ∈ L. Otherwise,
the triple (x1x2 · · ·xkzk, x1x2y

′
2 · · ·xky′

kzk, x1x2y2 · · ·xkykzk) is a witness with
|x1x2y2 · · ·xkykzk| < |w|, and x1x2y2 · · ·xkykzk
 w.

Since v
 w, we can now write v = vx1vy1vx2vy2 · · · vxk
vyk

vzk
, where vx1
 x1,

etc. If there is a yi with i ≥ 2, such that vyi = ε, then we can replace that yi by
ε in w and obtain a smaller witness. Hence each vyi must be nonempty. By the
same argument, if there is a letter in yi, for i ≥ 2, that is not used in vyi , then
that letter can be removed, yielding a smaller witness. Therefore yi = vyi for
i = 2, . . . , k. We claim that |y2 · · · yk| < |v|; otherwise v = vy2 · · · vyk

= y2 · · · yk

and (u, v, x1x2y2 · · ·xkykzk) is a witness with |x1x2y2 · · ·xkykzk| < |w|. Thus
|y2 · · · yk| < |v| ≤ n, and |w| = |x1y1| + |x2 · · ·xkzk| + |y2 · · · yk| ≤ n + (n − 1) +
(n − 1) = 3n − 2. ��

Corollary 8. Let M be a DFA with n ≥ 2 states. If L(M) is not subword-
convex, there exists a witness (u, v, w) with |w| ≤ 3n − 2.

We do not know whether 3n−2 is the best bound. The unary language an−1(an)∗

is accepted by a DFA with n states and has a minimal witness (an−1, an, a2n−1),
showing that 2n − 1 is achievable.

4 Languages Specified by Other Means

4.1 Languages Specified by NFA’s

Some of our decision problems become PSPACE-complete if M is represented
by an NFA. Our fundamental tool is the following classical lemma [9]:

Lemma 4. Let T be a one-tape deterministic Turing machine and p(n) a poly-
nomial such that T never uses more than p(|x|) space on input x. Then there is
a finite alphabet ∆ and a polynomial q(n) such that we can construct a regular
expression rx in q(|x|) steps, such that L(rx) = ∆∗ if T doesn’t accept x, and

Decision Problems for Convex Languages 257

L(rx) = ∆∗ − {w} for some nonempty w (depending on x) otherwise. Simi-
larly, we can construct an NFA Mx in q(|x|) steps, such that L(Mx) = ∆∗ if T
doesn’t accept x, and L(Mx) = ∆∗ − {w} for some nonempty w (depending on
x) otherwise.

Theorem 11. The problem of deciding whether a given regular language L,
represented by an NFA or regular expression, is prefix-convex (resp., suffix-,
factor-, subword-convex), or prefix-closed (resp., suffix-, factor-, subword-closed)
is PSPACE-complete.

For the properties of prefix-, suffix, and factor-closed properties, this result was
essentially already proved by Hunt and Rosenkrantz [10, Thm. 3.4].

The situation is different for deciding the property of prefix-freeness, suffix-
freeness, etc., for languages represented by NFA’s, as the following theorem
shows. This was proved by Han et al. [8] through a different approach.

Theorem 12. Let M be an NFA with n states and t transitions. Then we can
decide in O(n2 + t2) time whether L(M) is prefix-free (resp., suffix-free, factor-
free, subword-free).

Minimal Witnesses for NFA’s. We have already seen that the length of the
minimal witness for the lack of convexity or closure is polynomial in the size of
the DFA. For the case of NFA’s, however, this bound no longer holds.

Theorem 13. There is a class of NFA’s with O(n) states such that the shortest
witness to the lack prefix-convexity (resp., suffix-, factor-, subword-convexity) or
prefix-closure (resp., suffix-, factor-, subword-closure) is of length 2Ω(n).

Theorem 14. There exists a class of languages, accepted by NFA’s with O(n)
states and O(n) transitions, such that the minimal witness for the lack of prefix-
freeness is of length Ω(n2).

For the lack of subword-freeness, we cannot improve the bound we obtained for
DFA’s in Corollary 7, as the proof we presented there also works for NFA’s.

4.2 Languages Specified by Context-Free Grammars

If L is represented by a context-free grammar, then the decision problems cor-
responding to convex and closed languages become undecidable. This follows
easily from a well-known result that the set of invalid computations of a Tur-
ing machine is a CFL [11, Lemma 8.7, p. 203]. Similarly, the decision problems
corresponding to the properties of prefix-free, suffix-free, and factor-free become
undecidable for CFL’s, as shown by Jürgensen and Konstantinidis [12, Thm. 9.5,
p. 581]. However, testing subword-freeness is still decidable for CFL’s:

Theorem 15. There is an algorithm that, given a context-free grammar G, will
decide if L(G) is subword-free.

258 J. Brzozowski, J. Shallit, and Z. Xu

5 Conclusions

We have shown that we can decide in O(n3) time whether a language specified by
a DFA is prefix-, suffix-, factor-, or subword-convex, and that the corresponding
closure and freeness properties can be tested in O(n2) time. If L is specified by
an NFA or a regular expression, these problems are PSPACE-complete.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

References

1. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages, and
Programming, pp. 481–492. North-Holland, Amsterdam (1973)

2. Ang, T., Brzozowski, J.: Continuous languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.)
Proc. 12th International Conference on Automata and Formal Languages, pp. 74–
85. Computer and Automation Research Institute, Hungarian Academy of Sciences
(2008)

3. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)
4. Han, Y.S.: Decision algorithms for subfamilies of regular languages using state-pair

graphs. Bull. European Assoc. Theor. Comput. Sci. (93), 118–133 (2007)
5. Brzozowski, J.A., Shallit, J., Xu, Z.: Decision problems for convex languages

(preprint, 2008), http://arxiv.org/abs/0808.1928
6. Béal, M.P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing

forbidden words of regular languages. Fund. Inform. 56, 121–135 (2003)
7. de Luca, A., Varricchio, S.: Some combinatorial properties of factorial languages.

In: Capocelli, R. (ed.) Sequences, pp. 258–266. Springer, Heidelberg (1990)
8. Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages. In-

ternat. J. Found. Comp. Sci. 17, 379–393 (2006)
9. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading (1974)
10. Hunt III, H.B., Rosenkrantz, D.J.: Computational parallels between the regular

and context-free languages. SIAM J. Comput. 7, 99–114 (1978)
11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
12. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 1, pp. 511–607. Springer, Heidelberg (1997)

http://arxiv.org/abs/0808.1928

On a Family of Morphic Images of
Arnoux-Rauzy Words

Michelangelo Bucci and Alessandro De Luca

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli Federico II, via Cintia, Monte S. Angelo

80126 Napoli, Italy
{micbucci,alessandro.deluca}@unina.it

Abstract. In this paper we prove the following result. Let s be an infi-
nite word on a finite alphabet, and N ≥ 0 be an integer. Suppose that
all left special factors of s longer than N are prefixes of s, and that s has
at most one right special factor of each length greater than N . Then s
is a morphic image, under an injective morphism, of a suitable standard
Arnoux-Rauzy word.

1 Introduction

Factor complexity is a common theme in the combinatorial analysis of finite
and infinite words. Being the function counting distinct blocks (factors) of each
length, it is one of the most natural measures of complexity of a word. A famous
theorem by Morse and Hedlund [1] characterizes ultimately periodic sequences
as the ones having bounded complexity.

Sturmian words have the lowest possible unbounded complexity (n+1 factors
of each length n). They make up one of the most studied family of infinite words,
not just because of their theoretical interest (see [2] for a general introduction,
or [3] for a recent survey). From the definition, it follows that Sturmian words
are on a binary alphabet, and have exactly one left special factor of each length
n (a factor is left special if it is a suffix of at least two distinct factors of length
n + 1).

As is well known, a first natural generalization of Sturmian words for alphabets
with an arbitrary number of letters was introduced by Arnoux and Rauzy [4]. An
infinite word s is Arnoux-Rauzy (or strict episturmian, see below) if it is recurrent
(i.e., all factors of s occur infinitely often) and it has exactly one left special factor
and one right special factor per length, that appear in s immediately preceded
(resp. followed) by all letters occurring in s. More detailed definitions will be
given in Sect. 2.

A remarkable property of Sturmian words, shared by Arnoux-Rauzy words,
is their closure under reversal : if w = a1a2 · · · an is a factor of an Arnoux-Rauzy
word s with ai ∈ A for i = 1, . . . , n, then w̃ = anan−1 · · · a1 is a factor of s too.
This led Droubay, Justin, and Pirillo [5] to a generalization: an infinite word is
episturmian if it has at most one left special factor per length, and is closed

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 259–266, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

260 M. Bucci and A. De Luca

under reversal. Episturmian words are recurrent, but have no restriction on the
number of letters immediately preceding left special factors. Thus the family of
episturmian words strictly contains the one of Arnoux-Rauzy words.

The class of ϑ-episturmian words is a further generalization, recently intro-
duced in [6] by substituting the reversal operator with any involutory antimor-
phism ϑ of A∗. Generalizing even more, by requiring the condition on special
factors only for sufficient lengths, ϑ-words with seed are obtained (see [6]).

All such words have a standard counterpart, where the unique left special
factors correspond to prefixes of the infinite word. For instance, a ϑ-standard
word with seed is any infinite word s which is closed under ϑ and such that any
sufficiently long left special factor of s is a prefix of it. For all the above classes,
standard words are good representatives, in the sense that an infinite word s
belongs to one of such classes if and only if s has the same set of factors as some
standard word of that class (see [5,6]).

Our main result shows that, in the standard case, even when the further step
of dropping the “closure under some ϑ” requirement is made, the large class
of words thus obtained retains a strong link with Arnoux-Rauzy words. More
precisely, we will prove the following.

Theorem 1. Let s ∈ Aω satisfy the following two conditions for all n ≥ N ,
where N ≥ 0:

1. any left special factor of s having length n is a prefix of s,
2. s has at most one right special factor of length n.

Then there exists B ⊆ alph(s) and a standard Arnoux-Rauzy word t ∈ Bω such
that s is a morphic image (under an injective morphism) of t.

In the next section we shall give all the formal definitions and preliminary results
needed for our proof, which will be given in Sect. 3. For more basics about
combinatorics on words, we refer to [7]. For more details on episturmian words
and their generalizations, see [3,5,8,9,6,10,11].

2 Basic Definitions and Results

In the following, A will denote a finite alphabet, A∗ the free monoid of words
over A, and Aω the set of infinite words over A. The identity element of A∗ is
the empty word ε.

Let s be a finite or infinite word. The set of letters occurring in s is denoted
by alph(s). A factor of s is any finite word w such that s = uwv for suitable
words u, v; if u (resp. v) is the empty word we call w a prefix (resp. suffix) of
s. A border of s ∈ A∗ is a word which is both a prefix and a suffix of s. If s is
nonempty, we denote by sf its first letter, and if s is also finite we denote by s�

its last letter1. With Fact(s), Pref(s), and Suff(s) we denote respectively the set

1 This notation should not be confused with powers of a word; no such power occurs
in this paper.

On a Family of Morphic Images of Arnoux-Rauzy Words 261

of factors, prefixes, and suffixes of s. The factor complexity of s is the function
cs : IN → IN defined by cs(n) = #(An ∩ Fact(s)) for all n ≥ 0. We remark that
the complexity of an infinite word s is a nondecreasing function.

Let w ∈ Fact(s). A factor v of s is called a right (resp. left) extension of w in
s if w is a proper prefix (resp. suffix) of v. If |w| = n, the right (resp. left) degree
of w in s is the number of its distinct right (resp. left) extensions of length n+1.
For all n ≥ 0, any factor of s of length n + 1 is uniquely determined by its first
letter and by its suffix of length n, or by its last letter and by its prefix of length
n. An immediate consequence is the following well-known identity:∑

w∈Fs(n)

deg−(w) = cs(n + 1) =
∑

w∈Fs(n)

deg+(w) , (1)

in which the operators deg− and deg+ denote the left and right degree respec-
tively, and Fs(n) = An ∩ Fact(s).

We recall that w is called a right (resp. left) special factor of s if its right
(resp. left) degree is at least 2, i.e., if there exist two distinct letters a and b such
that wa and wb (resp. aw and bw) are factors of s. If a factor of s is both left
and right special, then it is called bispecial.

A complete return to w in s is any factor of s containing exactly two occur-
rences of w, one as a prefix and the other as a suffix. If z = vw is a complete
return to w, then v is called a return word to w (cf. [12]).

An infinite word s is recurrent if each of its factors has infinitely many occur-
rences in s; it is uniformly recurrent if the gaps between consecutive occurrences
of any factor are bounded. Equivalently, s is uniformly recurrent if for all factors
w there are finitely many distinct return words to w in s.

Given any prefix p of an infinite word s, there exists a unique factorization
of s by means of the return words to p in s. By mapping each return word to a
different letter of a suitable alphabet, and then applying such a map to s thus
factorized, we obtain a derivated word of s with respect to p (cf. [12]). Clearly,
s is a morphic image of its derivated words.

The following simple lemma is the first basic ingredient needed for our main
result.

Lemma 1. Let s be an infinite word such that any sufficiently long left special
factor of s is a prefix of it. Then s is recurrent.

Proof. By contradiction, suppose there exists a factor w of s having only finitely
many occurrences in s, and let λw be the prefix of s ending with the rightmost
occurrence of w in s. Then all prefixes of s from length |λw| onward do not
reoccur in s, and so have left degree 0.

We claim that this implies that s has also at least one left special factor for
each length n ≥ |λw|. Indeed, for all such n the left sum in (1) has cs(n) =
Fs(n) terms. Since the prefix has left degree 0, there must be a term greater
than 1 in order to have cs(n + 1) ≥ cs(n) (which is true as s is infinite). By
definition, a factor with left degree greater than 1 is a left special factor.

For sufficiently large n, such a factor should be a prefix of s by hypothesis.
We have reached a contradiction. ��

262 M. Bucci and A. De Luca

An infinite word s is periodic if it can be written as s = vvv · · · = vω for some
finite word v. An ultimately periodic word is an infinite word of the form uvω

for some u, v ∈ A∗. As is well known (see for instance [13, Lemma 1.4.4]), a
recurrent ultimately periodic word is necessarily periodic.

We need one of the most well-known and useful restatements of the theorem
of Morse and Hedlund (cf. [1, Theorem 7.3]):

Theorem 2. An infinite word s is ultimately periodic if and only if cs(n) =
cs(n + 1) for some n ≥ 0.

As a consequence of Lemma 1, we obtain the following specialization.

Proposition 1. An infinite word s is (purely) periodic if and only if it has no
left special factor of some length n.

Proof. If s = pω with p ∈ A∗, then s has no left special factors of length |p|.
Conversely, assume that s has no left special factor of length n. This implies

#(An ∩ Fact(s)) = #(An+1 ∩ Fact(s)) ,

so that by Theorem 2, s is ultimately periodic. Clearly s has no left special
factor of any length k ≥ n, thus it trivially satisfies the hypothesis of Lemma 1.
Therefore s is recurrent, and hence periodic. ��

The following proposition was proved in [10, Lemma 7] under different hypothe-
ses. We report an adapted proof for the sake of completeness.

Proposition 2. Let s be a recurrent aperiodic infinite word. Then every factor
w of s is contained in some bispecial factor of s.

Proof. Since s is recurrent, we can consider a complete return z to w in s.
Writing z = vw, it cannot happen that the factor w is always preceded by v in
s, otherwise s would be periodic. Thus some suffix of z of length at least |w|
must be a left special factor of s. Let x ∈ A∗ be of minimal length such that
xw is a left special factor of s. Such a word is trivially unique, and w is always
preceded in s by x. In a similar way, there exists a unique y ∈ A∗ of minimal
length such that wy is right special in s, and w is always followed by y.

Since xw is left special in s and xw is always followed by y one has that xwy
is also left special. Similarly, since wy is right special and always preceded by
x, xwy is right special. Hence every factor w of s is contained in some bispecial
factor W = xwy of s. ��

A recurrent word s is an Arnoux-Rauzy word if it has exactly one left special
factor and one right special factor of each length, all of degree # alph(s). It is
natural to extend this definition to the case of a unary alphabet A = {a}; the
word aω is considered an Arnoux-Rauzy word, since it has a unique factor of
each length, clearly not special but of degree 1 = #A.

Thus we can reformulate the definition as follows: a recurrent word s is
Arnoux-Rauzy if for all n ≥ 0, all factors of length n have minimum left de-
gree (i.e. 1) except one whose left degree is maximum(# alph(s)), and the same

On a Family of Morphic Images of Arnoux-Rauzy Words 263

occurs for right degrees (but the two special factors may be different). By (1),
this implies cs(n + 1) = cs(n) + alph(s) − 1 and then, as cs(0) = 1,

cs(n) = 1 + (# alph(s) − 1)n for all n ∈ IN .

Arnoux-Rauzy words are uniformly recurrent (cf. [5]); this was part of the
definition in [4]. An Arnoux-Rauzy word s is standard if its left special factors
are prefixes of s.

Example 1. A well-known standard Arnoux-Rauzy word is the so-called Tri-
bonacci (or Rauzy) word

τ = abacabaabacababacabaabacabacabaabacabab · · ·

which can be obtained as a fixed point of the morphism a → ab, b → ac, c → a
(see [4,5]).

Remark 1. In order to show that a given infinite word s is a standard Arnoux-
Rauzy word, it is sufficient to prove the following two conditions:

1. s has exactly one factor of right degree # alph(s) for each length,
2. every left special factor of s is a prefix of it.

Indeed, under such hypotheses s is recurrent by Lemma 1. Moreover, in view
of (1), by the first condition we derive

cs(n + 1) ≥ # alph(s) + cs(n) − 1 (2)

for all n ≥ 0; by condition 2, all factors which are not prefixes have left degree 1,
so that equality holds in (2) and there is one factor of left degree # alph(s). In
conclusion, all factors of length n have left degree 1, except one which has left
degree # alph(s), and the same occurs for right degrees, for all n; hence s is an
Arnoux-Rauzy word (standard by condition 2).

3 Proof of Theorem 1

Suppose first that s has no left special factor of some length n. Then s is periodic
by Proposition 1, so that it is trivially a morphic image of xω for any x ∈ alph(s).

Now let us assume that s has at least one left special factor of each length –
exactly one, from length N on. By Lemma 1, s is recurrent, so that by Propo-
sition 2 it has infinitely many bispecial factors, which we denote by W0 =
ε, W1, . . . , Wn, . . ., where |Wi| ≤ |Wi+1| for all i ≥ 0. Let j be the least index
such that |Wj | ≥ N . Since prefixes (resp. suffixes) of left (resp. right) special
factors are left (resp. right) special themselves, by conditions 1 and 2 it follows
that Wi is a border of Wi+1 for all i ≥ j, and the sequence whose n-th term is
the (right) degree of Wn for all n ≥ j is then non-increasing. Hence there exists
k ≥ j such that Wn has the same degree of Wk for all n ≥ k, that is, the above
considered sequence is constant from its k-th term on. We set

B = {x ∈ A | Wkx ∈ Fact(s)} ⊆ alph(s) ,

so that #B is, by definition, the degree of Wk.

264 M. Bucci and A. De Luca

We now consider the return words to w = Wk in s. Let u1w = wv1 and
u2w = wv2 be any two distinct complete returns to w in s, and let us show that
vf
1 �= vf

2 . Indeed, let p be the longest common prefix of v1 and v2. If p = v1,
then |v2| > |v1| as v1 �= v2; since wv1 = u1w, there is an internal occurrence of
w in wv2, contradicting the definition of complete return. The same argument
applies if p = v2. Thus p is a proper prefix of both v1 and v2, so that wp is a
right special factor of s. Since |w| ≥ N , and w is a right special factor of s, by
condition 2 it follows that w is a suffix of wp. This implies p = ε, since otherwise
there would be an internal occurrence of w in wv1 and wv2. Hence vf

1 �= vf
2 as

desired. Since w is also left special in s, using a symmetric argument one can
prove that u�

1 �= u�
2.

From this it follows that for each x ∈ B, there exists a unique complete return
uxw = wvx to w in s, such that vf

x = x. We define a morphism ϕ : B∗ → A∗

by ϕ(x) = ux. Note that ϕ is injective, as ϕ(B) is a suffix code having the same
cardinality as B.

By definition, we have s = ϕ(t), where t ∈ Bω is a derivated word of s with
respect to its prefix w. We note that, as a consequence of the definition of return
words, one has

z ∈ Fact(t) ⇔ ϕ(z)w ∈ Fact(s) , z ∈ Pref(t) ⇔ ϕ(z)w ∈ Pref(s) . (3)

We will prove that t is a standard Arnoux-Rauzy word; it suffices (see Remark 1)
to show that t has exactly one right special factor of each length, that each right
special factor has degree #B, and finally that all left special factors of t are
prefixes of it.

Clearly t is not periodic, as s = ϕ(t) and s is not periodic. Hence t has right
special factors of any length. Let z1 and z2 be any two right special factors
of t having the same length. Thus there exist distinct letters x1, y1, x2, y2 ∈ B
such that xi �= yi and zixi, ziyi ∈ Fact(t) for i = 1, 2. By (3), this implies
ϕ(zixi)w, ϕ(ziyi)w ∈ Fact(s). For α ∈ {xi, yi} and i = 1, 2 we have

ϕ(ziα)w = ϕ(zi)uαw = ϕ(zi)wvα ∈ Fact(s)

with vf
xi

�= vf
yi

, so that ϕ(z1)w and ϕ(z2)w are right special factors of s. By
condition 2, either ϕ(z1)w ∈ Suff(ϕ(z2)w), or vice versa. The word w has |z1|+
1 = |z2|+1 occurrences in both ϕ(z1)w and ϕ(z2)w, and it is a prefix of both, by
the definition of return word. Hence we derive ϕ(z1)w = ϕ(z2)w, so that z1 = z2
by the injectivity of ϕ.

If z is a right special factor of t, by the above argument ζ := ϕ(z)w is right
special in s. As |ζ| ≥ |w|, the word ζ is a suffix of some Wn with n ≥ k, so that
ζx = ϕ(z)wx ∈ Fact(s) for all x ∈ B. Since the only complete return to w in s
starting with wx is wvx, it follows that

ϕ(z)wvx = ϕ(z)uxw = ϕ(zx)w ∈ Fact(s) ,

so that zx ∈ Fact(t) for all x ∈ B, proving that z has right degree #B.
Let now z′ be a left special factor of t, and let xz′, yz′ ∈ Fact(t) for some

distinct letters x, y ∈ B. Then ϕ(xz′)w, ϕ(yz′)w ∈ Fact(s). As ϕ(x)� = u�
x �=

On a Family of Morphic Images of Arnoux-Rauzy Words 265

u�
y = ϕ(y)�, ϕ(z′)w is a left special factor of s. By condition 1, it follows ϕ(z′)w ∈

Pref(s) and then z′ ∈ Pref(t) by (3). ��

4 Concluding Remarks

Theorem 1 shows that what seems to be a natural (though very wide) gener-
alization of the standard episturmian words, retains a strong connection with
Arnoux-Rauzy words.

One could ask whether such result could be improved to obtain a full char-
acterization of morphic images of standard Arnoux-Rauzy words. However, the
converse of Theorem 1 is false; a simple counterexample is given by the image
s of the Tribonacci word under the episturmian morphism (cf. [5,8]) f : a → a,
b → ba, c → ca. Indeed,

s = f(τ) = abaacaabaaabaacaabaabaacaabaaabaacaabaa · · ·

does not satisfy condition 1 of Theorem 1 for any N , as aa is a left special factor
of s which is not a prefix of it. Nevertheless, this counterexample suggests that
the situation could be better in the general (non-standard) case, since the word
s, being episturmian, does have only one left special factor and one right special
factor of each length.

By modifying the proof of Theorem 1 suitably, it is not difficult to show the
following:

Theorem 3. If s ∈ Aω is recurrent and has at most one left special factor
and one right special factor for all lengths k ≥ N , then there exist B ⊆ A, an
injective morphism ϕ : B∗ → A∗, and an Arnoux-Rauzy word t ∈ Bω such that
s ∈ Suff(ϕ(t)).

This is somehow weaker than the original Theorem 1, as we only get that s
is a suffix of a morphic image of an Arnoux-Rauzy word. Therefore, any im-
provement of Theorem 3 would be welcome, as well as any step towards the
converse (what can be said about special factors of morphic images of Arnoux-
Rauzy words?). Having a simple characterization could help in a more general
classification of infinite words with low factor complexity.

References

1. Morse, M., Hedlund, G.A.: Symbolic dynamics. American Journal of Mathemat-
ics 60, 815–866 (1938)

2. Berstel, J., Séébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combi-
natorics on Words. Cambridge University Press, Cambridge (2002)

3. Berstel, J.: Sturmian and episturmian words. In: Bozapalidis, S., Rahonis, G. (eds.)
CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer, Heidelberg (2007)

4. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bulletin de la Société Mathématique de France 119, 199–215 (1991)

266 M. Bucci and A. De Luca

5. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoretical Computer Science 255, 539–553 (2001)

6. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On different generalizations
of episturmian words. Theoretical Computer Science 393, 23–36 (2008)

7. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
8. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoretical

Computer Science 276, 281–313 (2002)
9. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.

Theoretical Computer Science 362, 282–300 (2006)
10. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On θ-episturmian words.

European Journal of Combinatorics 30, 473–479 (2009)
11. Fischler, S.: Palindromic prefixes and episturmian words. Journal of Combinatorial

Theory, Series A 113, 1281–1304 (2006)
12. Durand, F.: A characterization of substitutive sequences using return words. Dis-

crete Mathematics 179, 89–101 (1998)
13. de Luca, A., Varricchio, S.: Finiteness and regularity in semigroups and formal lan-

guages. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Berlin (1999)

Monadic Datalog Tree Transducers

Matthias Büchse and Torsten Stüber�,��

Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
{buechse,stueber}@tcs.inf.tu-dresden.de

Abstract. We introduce a tree transducer model combining aspects of
both attributed tree transducers and monadic datalog, thereby allowing
to specify in one rule information transport for non-adjacent nodes. We
show that our model is strictly more powerful than attributed tree trans-
ducers, and we identify a large syntactic subclass which is as powerful as
attributed tree transducers. This is shown by an effective construction.

1 Introduction

In [1], (nondeterministic) attributed tree transducers, an abstract form of at-
tribute grammars [2,3], are introduced as a formal model of syntax-directed
semantics [4], that is, a model for specifying tree transformations. Monadic dat-
alog [5], a syntactically restricted fragment of standard datalog [6], is a means
of formally specifying node selection queries on trees.

We roughly sketch the underlying ideas of both formalisms: First, a set of
(property) names is defined, called attributes and predicates, respectively. For a
given tree t, these names are instantiated for every node of t, yielding attribute
instances and atom instances. A finite set of rules is then used to restrict the
set of interpretations, that is, mappings from these instances to some semantic
domain. In the case of attributed tree transducers, the semantic domain is the set
of trees languages over an output alphabet, for monadic datalog, this is the set
of Boolean values. If necessary, one interpretation is chosen according to criteria
specific to the respective model, and the semantics associated with t is the value
of some designated name instance.

Rules of attributed tree transducers allow to specify the relationship of the
values of attributes at nodes which are within the same fork, that is, some node
together with its direct descendants. An example of a rule is

Rσ : a(π) → γ(a(π2)) .

The symbol π represents the position of the root of a fork. Here, the value of
the attribute a at any node w is obtained by putting a γ atop the value of a

� Corresponding author.
�� The work of this author was partially supported by Deutsche Forschungsgemein-

schaft, project DFG VO 1011/4-1.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 267–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

268 M. Büchse and T. Stüber

at the second descendant of w, given that w is labeled by σ. (Note that the
arrow is pointing in the direction opposite of information transport because
the rule is understood as a term-rewriting rule.) Obviously, every rule of an
attributed tree transducer contains exactly one free variable, and this variable
is only constrained by the label restriction.

In contrast, rules of monadic datalog programs have an arbitrary number of
free variables and constraints, thus specifying atom instance relationships much
more freely. Consider the example rule

p(x) ← q(x1), child1(x, x1), child2(x, x2), labelσ(x2), labelα(z) .

The comma is interpreted as conjunction. When instantiating the variables with
nodes of t, we see that the value of the predicate p at any node w is determined
by the value of the predicate q at the first descendant of w, given that the second
descendant is labeled by σ and there is a node in t labeled by α.

In this paper, we introduce monadic datalog tree transducers, combining as-
pects of both approaches (under monadic datalog nomenclature)—the semantic
domain of attributed tree transducers and the liberal style rules of monadic data-
log. Attributed tree transducers can be described in our model without difficulty;
the example rule mentioned above can be transferred as follows:

a(x) ← γ(a(y)) ; {child2(x, y), labelσ(x)} .

As opposed to monadic datalog, structural predicates—which are used to place
constraints on the variables—and user-defined predicates have to be handled
separately because the former are interpreted over the set of Booleans and the
latter are interpreted over sets of output trees.

In the literature, different technical tools are known to define semantics for the
formalisms we deal with here. Term rewriting [7] is usually used for attributed
tree transducers [4]. In this approach, semantics can be evaluated in finite time
exactly for a decidable subclass called noncircular. On the other hand, least
fixpoint semantics is used for both attribute grammars [8] and monadic datalog.
We define semantics for monadic datalog tree transducers in the latter way.

We give a coarse intuition. By computing all rule instances which are valid
wrt an input tree t, we obtain a system of inequalities. The semantics associated
with t is then obtained from the least interpretation satisfying the inequalities,
where interpretations are ordered by the usual extension of the subset relation.
Technically, the semantics is defined as the least fixpoint of an immediate con-
sequence operator over the set of interpretations.

In Theorem 1, we will see that the semantics of a monadic datalog tree trans-
ducer can be evaluated in finite time iff the set of output trees is finite for ev-
ery input tree. As a consequence, every semantics-preserving transformation on
monadic datalog tree transducers automatically preserves computability. How-
ever, we do not know whether it is decidable for every monadic datalog tree
transducer if its semantics can be evaluated in finite time.

Moreover, we will see in Theorem 2 that the class of tree transformations
induced by monadic datalog tree transducers is a proper superclass of those

Monadic Datalog Tree Transducers 269

induced by attributed tree transducers. We establish a syntactic property called
restricted which guarantees that the semantics can be computed by some at-
tributed tree transducer (Theorem 3); this is shown by giving an effective con-
struction. While restrictedness is not a necessary condition, we conjecture that
it is the most general sufficient condition which only relies on the syntax of
individual rules.

2 Preliminaries

We use IN to denote the set of non-negative integers and IN+ to denote IN \ {0}.
For n ∈ IN we abbreviate {i ∈ IN+ | i ≤ n} by [n]. We denote the power set of a
set A by P(A) and the set of finite subsets of A by Pfin(A).

Alphabets and ranked alphabets are defined as usual. We denote the set of
strings over an alphabet ∆ by ∆∗. We use Σ(k) to denote the set of k-ary symbols
of a ranked alphabet Σ and write σ(k) for σ ∈ Σ to indicate that the rank of σ
is k. We call Σ monadic iff Σ = Σ(0) ∪ Σ(1). Let H be a set. The set TΣ(H) of
Σ-trees indexed by H is defined as usual. We abbreviate TΣ(∅) by TΣ. Moreover,
we define Σ(H) = {σ(h1, . . . , hk) | k ∈ IN, σ ∈ Σ(k), h1, . . . , hk ∈ H} ⊆ TΣ(H).

Let t ∈ TΣ . By pos(t) ⊆ IN∗ we denote the set of positions of t and by ind(t) ⊆
H the set of indices occurring in t; e.g. t = δ(σ(h1), α, h2) and H = {h1, h2, h3}
yield pos(t) = {ε, 1, 11, 2, 3} and ind(t) = {h1, h2}. For w, w′ ∈ pos(t) we
write w ≤ w′ iff w is a prefix of w′. For every w ∈ pos(t) and t′ ∈ TΣ we
write t(w), rkt(w), t|w, and t[t′]w for the symbol that occurs at position w in t,
the rank of t(w), the subtree of t rooted at w, and the tree obtained from t by
replacing the subtree rooted at w by t′, respectively. The height height(t) of t is
defined as usual, where height(σ) = 0 for every σ ∈ Σ(0).

3 Monadic Datalog Tree Transducers

In this section we define the syntactic structure of monadic datalog tree trans-
ducers. Throughout this work, we fix an infinite set V , the elements of which
being called variables. Moreover, we fix two ranked alphabets Σ and ∆ (of input
symbols and output symbols, respectively). Let maxrk(Σ) denote the maximal
rank of symbols in Σ. We define a ranked alphabet spΣ by letting

spΣ = {root(1), leaf(1)} ∪ {label(1)σ | σ ∈ Σ} ∪ {child(2)
i | i ∈ [maxrk(Σ)]} .

We refer to the elements of spΣ as structural predicates over Σ.

Definition 1. A triple (P, R, q) is called a monadic datalog tree transducer (for
short: mdtt) over Σ and ∆ iff

– P is a monadic ranked alphabet (of user-defined predicates),
– R ⊆ P (V) × T∆(P (V)) × Pfin(spΣ(V)) is a finite set (of rules),
– q ∈ P (1) (called query predicate).

270 M. Büchse and T. Stüber

A rule r = (h, b, G) ∈ R is denoted by h ← b ; G and h, b, and G are called
head, body, and guard of r, and are denoted by rh, rb, and rG, respectively. We
refer to the elements in P (V) ∪ spΣ(V) as atoms.

Now we define the semantics of mdtts. As a technical tool we will use com-
mon order theoretic concepts. An introduction into order theory can be found,
e.g., in [9]. In the sequel let M = (P, R, q) be an mdtt over Σ and ∆. Let t ∈ TΣ .
We refer to the elements in P (pos(t)) ∪ spΣ(pos(t)) as atom instances (over t).
The tree t constitutes a set Bt ⊆ spΣ(pos(t)) of atom instances compatible with t
defined as:

Bt = {root(ε)} ∪ {leaf(w) | w ∈ pos(t), rkt(w) = 0}
∪ {childi(w, wi) | w ∈ pos(t), i ∈ [rkt(w)]}
∪ {labelσ(w) | w ∈ pos(t), t(w) = σ} .

Let r ∈ R. We put var(r) = var(rh) ∪ var(rb) ∪ var(rG), where var(rh) de-
notes the set of variables that occur in rh, and likewise for rb and rG. An r, t-
variable assignment is a mapping ρ : var(r) → pos(t). We lift ρ to T∆(P (var(r)))
and P(spΣ(var(r))) in an obvious manner; e.g. ρ(v1) = 1 and ρ(v2) = ε yield
ρ(δ(p(v1), q(v2))) = δ(p(1), q(ε)). We call ρ valid iff ρ(rG) ⊆ Bt. For every a ∈
P (pos(t)) we denote by Φr,t,a the set of valid r, t-variable assignments ρ such
that ρ(rh) = a.

An interpretation over M and t is a mapping I : P (pos(t)) → P(T∆). We
denote the set of all interpretations over M and t by IM,t. We define a partial
order ≤ on IM,t as follows for every I1, I2 ∈ IM,t: I1 ≤ I2 iff I1(a) ⊆ I2(a) for
every a ∈ P (pos(t)). The resulting poset (IM,t,≤) is ω-complete. Let I ∈ IM,t.
We extend I to T∆(P (pos(t))) in the following sense: the I-instance b[I] ∈ P(T∆)
for b ∈ T∆(P (pos(t))) is defined for every δ(b1, . . . , bk) ∈ T∆(P (pos(t))) by

δ(b1, . . . , bk)[I] = {δ(t1, . . . , tk) | t1 ∈ b1[I], . . . , tk ∈ bk[I]} .

We define the immediate consequence operator TM,t : IM,t → IM,t over M and t
by letting for every I ∈ IM,t and a ∈ P (pos(t)):

TM,t(I)(a) =
⋃

r∈R

⋃
ρ∈Φr,t,a

ρ(rb)[I] .

We use T n
M,t to denote the n-fold composition of TM,t for n ∈ IN. Obviously, TM,t

is ω-continuous and, thus, monotone wrt ≤. Hence, T n
M,t(I∅) ≤ T n+1

M,t (I∅) for ev-
ery n ∈ IN, where I∅ denotes the minimal element of IM,t. Therefore, the fixpoint
theorem of Knaster-Tarski [9, Theorem 1.5.7] yields that the least fixpoint of the
mapping TM,t is sup{T n

M,t(I∅) | n ∈ IN}, which we denote by T ω
M,t.

Definition 2. The tree transformation [[M]] : TΣ → P(T∆) computed by M is
defined for every t ∈ TΣ by [[M]](t) = T ω

M,t(q(ε)). The set of tree transformations
computed by mdtts over Σ and ∆ is denoted by MDTT(Σ, ∆).

Now we consider a simple example mdtt Mex = (P, R, q) over Σ = {α(0), γ(1)}
and ∆ = Σ ∪ {δ(4)}, where P = {q(1), r(1)} and R contains the rules

Monadic Datalog Tree Transducers 271

q(x) ← δ(r(y), r(z), r(y), r(z)) ; ∅
r(x) ← α ; {labelα(x)}
r(x) ← γ(x1) ; {labelγ(x), child1(x, x1)}

Then [[Mex]](t) = {δ(t|w, t|v, t|w, t|v) | w, v ∈ pos(t)} for every t ∈ TΣ.
If there is an n ∈ IN with T n

M,t(I∅)(q(ε)) = [[M]](t), then [[M]](t) is obviously
finite. It is easy to see that the converse holds as well because TM,t is monotone
wrt ≤. We show that in order to determine whether [[M]](t) is finite it suffices
to consider n = |P (pos(t))|.

Theorem 1. Let t ∈ TΣ. Then [[M]](t) is finite iff [[M]](t) = T n
M,t(I∅)(q(ε)),

where n = |P (pos(t))|.

Corollary 1. Let hm = max{height(rb) | r ∈ R}. Then for every t ∈ TΣ either
the height of trees in [[M]](t) is unbounded or bounded by hm · |P (pos(t))|.

We call M executable iff [[M]](t) is finite for every t ∈ TΣ .
Let M ′ = (P ′, R′, q′) be an mdtt over Σ and ∆. We call M and M ′ equivalent

iff [[M]] = [[M ′]]. The following lemma provides a method for proving that M
and M ′ are equivalent.

Lemma 1. If for every t ∈ TΣ there is a fixpoint I of TM,t and a fixpoint I ′

of TM ′,t such that I(q(ε)) = [[M ′]](t) and I ′(q′(ε)) = [[M]](t), then [[M]] = [[M ′]].

4 Comparison to Attributed Tree Transducers

We define attributed tree transducers according to [10, Sect. 2.3]. For the remain-
der of this paper, let M = (P, R, q) be an mdtt over Σ and ∆. As a prerequisite,
we fix an injective mapping x : IN∗ → V ; we denote x(IN∗) by X, x(w) by xw,
and {x1, . . . , xk} by Xk for every w ∈ IN∗ and k ∈ IN.

Definition 3. The mdtt M is an attributed tree transducer (for short: att)
over Σ and ∆ iff there are disjoint sets Asyn and Ainh such that P = P (1) =
Asyn ∪ Ainh, q ∈ Asyn, and the following holds for every r ∈ R:

– either there are k ∈ IN, σ ∈ Σ(k), a ∈ Asyn({xε}) ∪ Ainh(Xk) and b ∈
T∆(Asyn(Xk) ∪ Ainh({xε})) such that

r = a ← b ; {labelσ(xε), child1(xε, x1), . . . , childk(xε, xk)}

– or there are a ∈ Ainh({xε}) and b ∈ T∆(Asyn({xε})) such that

r = a ← b ; {root(xε)} .

The class of all tree transformations computed by attributed tree transducers
over Σ and ∆ is denoted by ATT(Σ, ∆).

The class ATT(Σ, ∆) defined here can be best compared with the class T A
from [1], which differs from ATT(Σ, ∆) in that it only takes noncircular atts

272 M. Büchse and T. Stüber

into account, a decidable syntactic subclass which guarantees that the semantics
can be evaluated in finite time in their framework.

If M is an att, then for every rule r ∈ R and every pair of variables x, y ∈
var(r), x and y are directly or indirectly connected by the child relation. In con-
trast, the mdtt Mex does not have this property. We define a syntactic property
based on variable connections which is satisfied by every att and show that it
imposes a restriction on semantics.

Definition 4. Let r ∈ R. We define the variable connection relation ∼r of r as
the reflexive-transitive closure of {(v1, v2) ∈ var(r)×var(r) | ∃ a ∈ rG : {v1, v2} ⊆
var(a)}. We call r restricted iff for every w1, w2 ∈ pos(rb), we have: if ∅ �=(
var(rb|w1)× var(rb|w2)

)
⊆ ∼r, then var(rb|w)× var(rb|w) ⊆ ∼r, where w is the

longest common prefix of w1 and w2. Moreover, we call M restricted if every r ∈
R is restricted. The class of all tree transformations computed by restricted mdtts
over Σ and ∆ is denoted by RMDTT(Σ, ∆).

Theorem 2. There are Σ and ∆ such that MDTT(Σ, ∆) �⊆ RMDTT(Σ, ∆).

Theorem 3. RMDTT(Σ, ∆) = ATT(Σ, ∆).

In the rest of this section, we prove this theorem by introducing three syntactic
properties for mdtts such that we obtain a sequence P1 ⊃ . . . ⊃ P5 of syntactic
classes where P1 and P5 are restricted and att, respectively, and for every i ∈ [4]
and M ∈ Pi there is effectively an equivalent M ′ ∈ Pi+1. Hence, att is a normal
form for restricted mdtts.

We note that restrictedness is no necessary condition for an mdtt to have
a semantics in ATT(Σ, ∆). However, we conjecture that it is the most general
sufficient condition which only relies on the syntax of individual rules.

4.1 Connected

The first syntactic property is inspired by [5, Theorem 4.2]. A rule r ∈ R is
called connected iff ∼r = var(r) × var(r). We call M connected iff every r ∈ R
is connected.

In the following, we motivate informally the constructions involved in giving
a connected mdtt equivalent to M . To this end, consider the rule

r = p(x) ← δ(q(x), p(y)) ; {labelγ(z)} .

Let t ∈ TΣ . We can make two observations: First, the variable z is not connected
(i.e., related by ∼r) to any variable occurring in rh or rb. Thus, if t contains a
node labeled γ, we can omit the guard, and otherwise, we can omit the whole rule,
each time preserving semantics for t. This idea can be used for a construction
which does not depend on t, but suffice it to say that this involves duplication of
all the remaining rules. Therefore, in order to have a terminating procedure, our
construction deals with all rules at once. Second, the variable y, while trivially
connected to some variable in the body, is not connected to the variable in

Monadic Datalog Tree Transducers 273

the head. In this case, we may replace p(y) by p′(), where p′ is a new nullary
predicate, adding a rule p′() ← p(y) ; ∅.

We define for every r ∈ R the set of independent guards I(r) = {a ∈ rG |
∀v ∈ var(a) : ∀v′ ∈ var(rh) ∪ var(rb) : v �∼r v′} and for every R′ ⊆ R the set
I(R′) =

⋃
r∈R′ I(r). We call M semiconnected iff r is connected or I(r) = ∅ for

every r ∈ R.

Lemma 2. There is a semiconnected mdtt M ′ equivalent to M such that M ′ is
restricted if so is M .

Proof. Without loss of generality, we assume that var(r1) ∩ var(r2) �= ∅ implies
r1 = r2 for every r1, r2 ∈ R. For every G ⊆ spΣ(V) we define the language
accepted by G by L(G) = {t ∈ TΣ | ∃ρ : var(G) → pos(t) : ρ(G) ⊆ Bt}. Observe
that var(G1) ∩ var(G2) = ∅ implies L(G1 ∪ G2) = L(G1) ∩ L(G2) for every
G1, G2 ⊆ spΣ(V).

Let R′ ⊆ R. We construct the semiconnected mdtt τR′
1 (M) = (P, R1, q) where

R1 = {rh ← rb ; rG \ I(r) | r ∈ R′}. Note that the construction preserves
restrictedness. If t ∈ L(I(R′)), then [[τR′

1 (M)]](t) ⊆ [[M]](t). This holds because t
satisfies all the guards which were omitted. If t ∈ L(I(R′)) \

⋃
r∈R\R′ L(I(r)),

then we even have equality for then we have indeed only removed rules which
have no valid assignments.

Let G ⊆ spΣ(V) be finite. We construct an mdtt τG
2 (M) such that the fol-

lowing holds: [[τG
2 (M)]](t) = [[M]](t) if t ∈ L(G), and [[τG

2 (M)]](t) = ∅ otherwise.
Thus, [[τI(R′)

2 (τR′
1 (M))]](t) ⊆ [[M]](t) for every t ∈ TΣ. We define ∼G as the

reflexive-transitive closure of {(a1, a2) ∈ G × G | var(a1) ∩ var(a2) �= ∅}.
Let {G1, . . . , Gk} = G/∼G . We construct τG

2 (M) = (P ∪P ′, R∪R′, p0) where
P ′ = {p(1)

0 } ∪ {p(0)
1 , . . . , p

(0)
k } is disjoint from P and (setting pk+1 = q) R′ =

{p0(x) ← p1() ; ∅} ∪ {pi() ← pi+1() ; Gi | i ∈ [k]}. Note that this construction
preserves semiconnectedness and restrictedness.

Finally, let J be a finite set and (Mi | i ∈ J) a family of mdtts over Σ
and ∆ such that Mi = (Pi, Ri, qi) for every i ∈ J . The union mdtt of (Mi | i ∈
J) is defined by

⊎
i∈J Mi = (P ′, R′, q′) where P ′ = {q′} ∪

⋃
i∈J Pi × {i} and

R′ = {q′(x) ← (qi, i)(x) ; ∅ | i ∈ J} ∪
⋃

i∈J R′
i where R′

i is obtained from Ri

by replacing every occurrence of every p ∈ Pi by (p, i). Clearly, [[
⊎

i∈J Mi]](t) =⋃
i∈J [[Mi]](t) for every t ∈ TΣ, and

⊎
i∈J Mi is semiconnected (restricted) iff for

every i ∈ J , so is Mi.
Now we are able to construct M ′ =

⊎
R′⊆R τ

I(R′)
2 (τR′

1 (M)). Clearly, M ′ is
semiconnected, and M ′ is restricted if so is M . We show that [[M ′]] = [[M]].
Let t ∈ TΣ and R′ = {r ∈ R | t ∈ L(I(r))}. Then it is easy to see that
t ∈ L(I(R′)) \

⋃
r∈R\R′ L(I(r)). Hence, [[M ′]](t) = [[M]](t). ��

Lemma 3. Let M be restricted and semiconnected. Then there is a connected
mdtt M ′ equivalent to M .

Proof. Let r ∈ R, C ∈ var(r)/∼r an equivalence class disjoint from var(rh),
and G = {a ∈ rG | var(a) ⊆ C}. Since M is semiconnected, C ∩ var(rb) �= ∅.
Since M is restricted, there is a position w ∈ pos(rb) such that for every w′ ∈

274 M. Büchse and T. Stüber

pos(rb) with rb(w) ∈ P (V), we have w ≤ w′ iff rb(w′) ∈ P (C). Our construction
replaces the subtree rb|w by an atom p() (where p is a new predicate), removes
from the guard of r the atoms in G, and adds a rule p() ← rb|w ; G. Clearly,
this construction preserves semantics, semiconnectedness, and restrictedness. It
is easy to see that applying it finitely often yields the desired result. ��

We make an observation concerning connected mdtts which makes it possible to
simplify further considerations significantly. Consider the rule

r = p(x) ← δ(q(x), p(y)) ; {child1(z, x), child2(z, y)} .

For every t ∈ TΣ and valid r, t-variable assignment ρ, we obtain ρ(x) = ρ(z)1
and ρ(y) = ρ(z)2. Hence, we may reflect this fact in syntax by rephrasing r to

p(x1) ← δ(q(x1), p(x2)) ; {child1(xε, x1), child2(xε, x2)} .

Now we generalize this. The mdtt M is called positional iff M is connected and
for every r ∈ R, we have that var(r) ⊆ X, xε ∈ var(r), and for every w, w′ ∈ IN∗

and i ∈ IN+, if childi(xw, xw′) ∈ rG, then w′ = wi.

Lemma 4. Let M be connected. There is a positional mdtt M ′ equivalent to M .

Proof. Let r ∈ R. A mapping τ : var(r) → IN∗ is called r-position mapping iff
for every v, v′ ∈ var(r) and i ∈ IN+, if childi(v, v′) ∈ rG, then τ(v)i = τ(v′). It
can be shown that, if var(r) �= ∅, there is at most one r-position mapping τ such
that τ(v) = ε for some v ∈ var(r), which we denote by τr. If var(r) = ∅, we define
τr to be the empty mapping. If τr does not exist, then Φr,t,a is empty for every t
and a. It is decidable whether τr exists, and if it does, it can be computed. We
construct M ′ = (P, R′, q) where R′ = {τr(r) | ∃r ∈ R : τr exists} and τr(r) is
obtained from r by replacing every occurrence of every v ∈ var(r) by xτr(v). ��

4.2 Proper

The mdtt M is called proper iff all predicates in P are unary, i.e. P (0) = ∅. In
this section we show how to construct an equivalent mdtt M ′ that is proper.
This construction maintains the positional property.

Lemma 5. There is a proper mdtt M ′ equivalent to M such that M ′ is positional
if so is M .

Proof. The idea of our construction is to replace every p ∈ P (0) by a unary
variant p̄ of p. More precisely, we have to replace every occurrence of the atom p()
by the atom p̄(xε); this guarantees that M ′ is positional if M is positional.
Additionally we add rules that ensure that the value of the atom instance p̄(w)
is equal for every position w ∈ pos(t).

We define M ′ = (P ′, R′, q) as follows: P ′ = P (1) ∪ {p̄(1) | p ∈ P (0)} and
R′ = {r̄ | r ∈ R} ∪ {rup

p,i, r
down
p,i | p ∈ P (0), i ∈ [maxrk(Σ)]}, where r̄ is obtained

Monadic Datalog Tree Transducers 275

from r by replacing for every p ∈ P (0) every occurrence of p() by p̄(xε), and for
every p ∈ P (0) and i ∈ [maxrk(Σ)] we let

rup
p,i = p̄(xε) ← p̄(xi) ; childi(xε, xi) ,

rdown
p,i = p̄(xi) ← p̄(xε) ; childi(xε, xi) .

Let p ∈ P (0). Then we have T ω
M ′,t(p̄(w)) = T ω

M,t(p()) for every w ∈ pos(t). Then
it is easy to see that M ′ is equivalent to M . Moreover, M ′ is obviously proper
and it is positional if M is so. ��

4.3 Local

If M is positional, then the set var(r) can be an arbitrary finite subset of X
for every r ∈ R. However, for atts, var(r) must be a subset of Xε, where Xε =
{xε}∪{xi | i ∈ IN+}. Therefore, the rules of an att take effect only on a local part
of the input tree. Formalizing this, we define an order ≤ on X by letting xw ≤ xw′

iff w is a prefix of w′ for every w, w′ ∈ IN∗. We let var1(a) = min(var(a)) for
every a ∈ spΣ(X), and call an r ∈ R local iff var1(a) = xε for every a ∈ rG. The
mdtt M is called local iff it is proper, positional, and every rule in R is local.

In this section we show that for every proper and positional mdtt there is an
equivalent local one. First we give a brief explanation of our construction. Let r
be the rule q(xε) ← p(x21) ; {child2(xε, x2), child1(x2, x21), labelσ(x2)}. In order
to make r local we split it into local components while introducing an auxiliary
predicate p′; hence, we obtain two rules

q(xε) ← p′(x2) ; {child2(xε, x2)} ,

p′(xε) ← p(x1) ; {child1(xε, x1), labelσ(xε)} .

Special care has to be taken if both the head and the body of the given rule belong
entirely to one of the local components: consider the rule r′ which originates from
r by replacing the variable x21 in the body by xε. In this case we have to make
a detour and construct three rules

q(xε) ← p′(x2) ; {child2(xε, x2)} ,

p′(xε) ← p′′(xε) ; {child1(xε, x1), labelσ(xε)} ,

p′′(x2) ← p(xε) ; {child2(xε, x2)} .

Lemma 6. Let M be positional and proper. Then there is a local mdtt Mloc
equivalent to M .

Proof. We do not construct the mdtt Mloc at once. Rather we give a construction
of a positional and proper mdtt M1 and argue that a finite number of applications
of this construction leads to Mloc. Assume that M is not yet local. Select a
rule r ∈ R that is not local and select a maximal x in the set {var1(a) | a ∈ rG}.
Then x �= xε.

276 M. Büchse and T. Stüber

We let A = {a ∈ {rh} ∪ ind(rb) | ∃ v ∈ var(a) : v > x} and G = {a ∈
rG | var1(a) = x}. We define an intermediate mdtt M0 = (P0, R0, q) by case
distinction.

Case 1: A = ∅. Then P0 = P ∪ {p1, p2} and R0 = (R \ {r}) ∪ {r1, r2, r3}:

r1 = rh ← p1(x) ; rG \ G ,

r2 = p1(x) ← p2(x) ; G ,

r3 = p2(x) ← rb ; rG \ G .

Case 2: A �= ∅. Then P0 = P ∪ {ā | a ∈ A} where ā is a new predicate for
every a ∈ A, and R0 = (R \ {r}) ∪ {r̄} ∪ R′, where r̄ is obtained from r by
replacing every occurence of every a ∈ A by ā(x) and replacing rG by rG \ G,
and R′ is the smallest set such that for every a ∈ A:

– if a = rh, then R′ contains the rule a ← ā(x) ; G
– if a ∈ ind(rb), then R′ contains the rule ā(x) ← a ; G

The mdtt M1 is obtained from M0 by making it positional.
Obviously, every rule r′ that is added in this construction is either local or

satisfies r′G ⊂ rG. Since a multiset order is terminating whenever it is defined
based on a terminating strict order (see Theorem 2.5.5 in [7]) we obtain that a
finite number of applications of this construction leads to a local mdtt Mloc.

4.4 Attributed Tree Transducers

In this section we show that we can transform every local mdtt M into an
equivalent attributed tree transducer.

Lemma 7. Let M be local. There is an att M ′ equivalent to M .

Proof (Sketch). First let us list the syntactic differences between local mdtts and
atts:

1. for atts certain atoms are mandatory in guards, e.g. labelσ(xε) or root(xε),
and certain atoms are not allowed to occur, e.g. leaf(xε),

2. the set of user-defined predicates is partitioned into inherited and synthesized
attributes,

3. rules whose guard contains root(xε) have to be of a very restricted form.

Our construction of M ′ is divided into three phases, each of which dealing with
one of the syntactic differences in the order listed above.

Phase 1. This construction is split into five steps. In the first step we drop all
rules r such that there are distinct σ, σ′ ∈ Σ with {labelσ(xε), labelσ′ (xε)} ⊆ rG,
since these rules are obviously inconsistent. In the second step we take care of
all rules whose guard does not yet contain labelσ(xε) for any σ ∈ Σ. For such a
rule r we add for every σ ∈ Σ a copy of r that additonally contains labelσ(xε)

Monadic Datalog Tree Transducers 277

γ p q

γ p q

α p q

(p, inh) γ (p, syn) q

(p, inh) γ (p, syn) q

(p, inh) α (p, syn) q

Fig. 1. Illustration of the construction of Phase 2

in the guard. Afterwards we remove r. In the resulting mdtt we have that
for every rule r′ there is a unique σ ∈ Σ with labelσ(xε) ∈ r′G; we denote
this σ by σr′ . In the third step we add to the guard of every rule r the atoms
child1(xε, x1), . . . , childk(xε, xk) where k = rk(σr).

In the fourth step we remove all rules that are obviously inconsistent; these
are all rules r such that (i) rk(σr) > 0 and leaf(xε) ∈ rG or (ii) childi(xε, xi) ∈ rG
for some i > rk(σr). In the fifth step we consider all rules r whose guard con-
tains leaf(xε): by the construction in the fourth step it is obvious that rk(σr) = 0.
Therefore leaf(xε) is redundant in rG and we can simply drop it. The construc-
tions that are carried out in each step yield an mdtt equivalent to the original
one. Note that we deal with all rules that contain root(xε) in Phase 3.

Phase 2. Suppose that M has already passed Phase 1. We give an intuitive
description of our construction. Assume that P = {p, q} and consider the input
tree γ(γ(α)). Furthermore assume that R determines data transport from p(ε)
to p(1), p(11) to p(1), p(1) to q(ε), and p(1) to q(11). This situation is depicted
on the left-hand side of Fig. 1, where the data transport is represented by dashed
arrows. Obviously, p behaves both like a synthesized and an inherited attribute.
Thus, we have to replace p by a predicate (p, syn) (simulating its synthesizing
behavior, i.e., transporting data bottom-up) and a predicate (p, inh) (simulating
its inheriting behavior, i.e., transporting data top-down). Since (p, syn) should
also receive all the data that p receives from the top part of the tree, we need
to introduce a rule which transports data from (p, inh) to (p, syn). The same
holds for (p, inh): here we need to add a rule for transporting data from (p, syn)
to (p, inh) (note that we need to take special care for the root of the tree). This
is illustrated on the right-hand side of Fig. 1.

Phase 3. Suppose that M has already passed Phases 1 and 2. If M is not already
an att, then there is a rule r containing root(xε). We remove this rule from M ,
add two new user-defined predicates (r, syn) and (r, inh), and add the rules

rh ← (r, inh)(xε) ; rG \ {root(xε)} ,

(r, inh)(xε) ← (r, syn)(xε) ; {root(xε)} ,

(r, syn)(xε) ← rb ; rG \ {root(xε)} .

278 M. Büchse and T. Stüber

Obviously, these three new rules comply with the definition of atts. Thus, by
doing this construction for every non-compliant rule we will eventually obtain
an att equivalent to M . ��

4.5 Open Problems

We did not yet address the following problems. (1) Is the subclass of executable
mdtts decidable? (2) Do executable atts have the same computational power as
noncircular atts [4]? (3) Characterizing the class MDTT(Σ, ∆)\RMDTT(Σ, ∆).

Acknowledgements. The authors are grateful to Heiko Vogler for helpful discus-
sions and valuable suggestions.

References

1. Fülöp, Z.: On attributed tree transducers. Acta Cybernet 5, 261–279 (1981)
2. Knuth, D.: Semantics of context–free languages. Math. Systems Theory 2, 127–145

(1968)
3. Deransart, P., Jourdan, M., Lorho, B.: Attribute Grammars - Definitions, Sys-

tems and Bibliography. In: Deransart, P., Lorho, B., Jourdan, M. (eds.) Attribute
Grammars. LNCS, vol. 323. Springer, Heidelberg (1988)

4. Fülöp, Z., Vogler, H.: Syntax-directed semantics — Formal Models Based on Tree
Transducers. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, Heidelberg
(1998)

5. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. J. ACM 51(1), 74–113 (2004)

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

8. Chirica, L.M., Martin, D.F.: An Order-Algebraic Definition of Knuthian Semantics.
Math. Systems Theory 13, 1–27 (1979)

9. Wechler, W.: Universal Algebra for Computer Scientists, 1st edn. Monogr. Theoret.
Comput. Sci. EATCS Ser., vol. 25. Springer, Heidelberg (1992)

10. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. J. Comput. System Sci. 61, 1–50
(2000)

On Extended Regular Expressions

Benjamin Carle and Paliath Narendran

Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222

Abstract. In this paper we extend the work of Campeanu, Salomaa
and Yu [1] on extended regular expressions featured in the Unix utility
egrep and the popular scripting language Perl. We settle the open issue
of closure under intersection and provide an improved pumping lemma
that will show that a larger class of languages is not recognizable by ex-
tended regular expressions. We also investigate some questions regarding
extended multi-pattern languages introduced by Nagy in [2].

1 Introduction

Grep, a well-known command line search utility, is used regularly on Unix and
other operating systems to find matching lines in files or standard input. Grep
uses regular expressions to match patterns, thereby allowing a user to quickly find
important data in very large files or command output. Egrep, a variant of grep,
uses extended regular expressions1 to increase the set of languages recognizable
by the utility. Because the set of languages recognized by egrep is larger than that
of theoretical regular expressions, it is important to understand the expressive
power of this utility.

In this paper we extend the pioneering work of [1]; we show that the family
of languages recognizable by extended regular expressions is not closed under
intersection, thereby settling an open problem. Furthermore, we introduce a
different pumping lemma and use that lemma to show a class of languages that
satisfy the pumping property of [1] but are not expressible by extended regular
expressions. We also investigate some decidability and complexity issues.

We also consider the work of Nagy [2] which extends the multi-pattern lan-
guages (MPL) defined by Kari, Mateescu, Paun and Salomaa [3]. We show that
the class Nagy defines, which we call extended multi-pattern languages (EMPL),
is a strict subclass of the family of languages recognized by egrep. We also settle
some questions that are left open in [2].

2 Definitions

The syntax of extended regular expressions as in egrep and Perl is defined
in [1]. Standard regular expressions, as specified in formal language theory, are
1 Note our definition of extended regular expressions includes backreferences unlike

the definition given in some other sources.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 279–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 B. Carle and P. Narendran

extended using backreferences. The backreference \n stands for the string previ-
ously matched by the regular expression between the nth left parenthesis and the
corresponding right parenthesis. As is well-known, this significantly increases ex-
pressive power; for instance, the expression ((aa)+a)\1* specifies the language

{ ai | i > 0 and i is not a power of 2}

which is not even context-free. Similarly (a+)(b+)\1\2 specifies

{ aibjaibj | i, j > 0}

which is not context-free either.
For clarity, let us number left parentheses, starting with 1, from the left. Give

the same numbers to the corresponding (matching) right parentheses.

(
1
. . . (

2
. . .)

2
. . . (

3
. . .)

3
. . .)

1

As in [1] we assume that any occurrence of a backreference \m in an extended
regular expression is preceded by)

m
.

Matching a string with an extended regular expression (eregex-matching) is
often defined as follows (paraphrasing [4]):

1. If a is a symbol in the alphabet, then a matches a.
2. if r matches a string x, then (

i

r)
i

matches x and the value x is assigned to

\i.
3. \j matches the string that has been assigned to it.
4. if r1 and r2 are eregexes, then r1 ∪ r2 matches any string matched by either

r1 or r2.
5. if r1 and r2 are eregexes, then r1r2 matches any string of the form xy where

r1 matches x and r2 matches y.
6. if r is an eregex, then r∗ matches any string of the form x1 . . . xn, n ≥ 0,

where r matches each xi (1 ≤ i ≤ n).

A more precise definition of a match is given in [1] using ordered trees. We
give below that definition too, with a slight modification. Positions in an ordered
tree are denoted by sequences of positive integers, with the empty sequence
denoting the root position. (See [5] for a formal definition.) Note that left-to-right
lexicographic order ≺lex among positions corresponds to pre-order traversal.

An ordered tree T is a valid match-tree for w and α if and only if:

1. The root of T has the label (w, α).
2. For every node u ∈ dom(T),

(a) if T (u) = (w, a) for some a ∈ Σ, then u is a leaf node and w = a.
(b) if T (u) = (w, β1β2), then u has two children labeled, respectively, by

(w1, β1) and (w2, β2) where w1w2 = w.
(c) if T (u) = (w, β1|β2), then u has one child labeled by either (w, β1) or

(w, β2).

On Extended Regular Expressions 281

(d) if T (u) = (w, β∗), then either u is a leaf node and w = λ or u has
k ≥ 1 children labeled by (w1, β), . . . , (wk, β) where each wi ∈ Σ+,
and w = w1 . . . wk.

(e) if T (u) = (w, (
i

γ)
i

), then it has one child labeled by (w, γ).

(f) if T (u) = (w, \m), then u is a leaf node, (
m

β)
m

is a subexpression of α,

and there is a node v to the left of u such that T (v) = (w, (
m

β)
m

) and

no node between v and u has (
m

β)
m

in its label. In other words, w is the

string previously (in the left-to-right pre-order) matched by (
m

β)
m

.

The difference between this definition and the one in [1] is that unassigned
backreferences are not set to the empty string λ as default in our definition.
Thus there is no valid match-tree for b and ((aa)|\2b).

The language denoted by an extended regular expression α is defined as

L(α) = {w ∈ Σ∗ | (w, α) is the label at the root of a valid match-tree }.

Let EREG be the family of languages defined by extended regular expressions.
A language L is an EREG language if and only if there is an extended regular
expression α such that L = L(α). In relation to the regular languages (REG), it
can be seen that

REG ⊂ EREG.

3 The Results on EREG Languages

Campeanu, Salomaa and Yu [1] proved the following pumping lemma for EREG
languages. To the best of our knowledge, this is the only pumping lemma of its
kind.

Lemma 1. (The CSY Pumping Lemma) [1] Let α be an extended regular
expression. Then there is a constant N > 0 such that if w ∈ L(α) and |w| > N ,
then there is a decomposition w = x0yx1y · · · yxm, for some m ≥ 1, such that

1. |x0y| < N ,
2. |y| ≥ 1, and
3. x0y

jx1y
j · · · yjxm ∈ L(α) for all j > 0.

Lemma 2. The language

S = { aibai+1bak | k = i(i + 1)k′ for some k′ > 0, i > 0 }

is not an EREG language.

Proof: Assume S is expressed by an eregex and let N be the constant given
by the CSY pumping lemma. Consider w = aNbaN+1baN(N+1). Then there is
a decomposition w = x0yx1y . . . yxm for some m ≥ 1 and from the pumping

282 B. Carle and P. Narendran

lemma y = ap for some p ≥ 1. Since |x0y| < N there must be at least one
occurrence of y in aN . Assume there are q ≥ 1 occurrences of y in aN . By (3)
from the CSY pumping lemma there must also be q occurrences of y in aN+1

as otherwise x0y
2x1y

2 . . . y2xm /∈ S. Let r be the number of occurrences of y in
aN(N+1) and note that N(N + 1) ≥ rp ≥ 0. Now consider x0y

2x1y
2 . . . y2xm =

aN+qpbaN+1+qpbaN(N+1)+rp ∈ S. Then

k2(N + qp)(N + 1 + qp) = N(N + 1) + rp

for some k2. Since rp ≤ N(N + 1), N(N + 1) + rp ≤ 2(N(N + 1)). Since qp ≥ 1,
(N+qp)(N+1+qp) ≥ (N+1)(N+2) > N(N+1). Thus k2(N+qp)(N+1+qp) ≥
k2(N + 1)(N + 2) > k2N(N + 1). k2N(N + 1) < 2(N(N + 1)) is only true for
k2 = 1. Thus we have (N + qp)(N + 1 + qp) = N(N + 1) + rp, so

rp = q2p2 + qp(2N + 1) (1)

Now consider x0y
3x1y

3 . . . y3xm = aN+2qpbaN+1+2qpbaN(N+1)+2rp ∈ S. Then it
must be that

k3(N + 2qp)(N + 1 + 2qp) = N(N + 1) + 2rp

for some k3. But note that (N + 2qp)(N + 1 + 2qp) = N(N + 1) + 4q2p2 +
2qp(2N + 1), whereas N(N + 1) + 2rp = N(N + 1) + 2q2p2 + 2qp(2N + 1)
by (1). Hence such a k3 cannot exist. �

Theorem 1. EREG languages are not closed under intersection.

Proof: The language S of the previous lemma is the intersection of

L((a+)b(\1a)b\1+) and L((a+)b(\1a)b\2+). �

We can show, by a reduction from the membership problem for phrase structured
grammars, that

Theorem 2. The following problem is undecidable:

Emptiness of Intersection of Extended Regular Expressions (EIERE):

Instance: Two eregexes α and β.
Question: Is L(α) ∩ L(β) empty?

Proof: The reduction is from the membership problem for phrase-structure
grammars (MPSG), a known undecidable problem, as mentioned earlier. A
phrase structure grammar is specified as G = (V, Σ, P, S) where V is a finite
nonempty set called the total vocabulary, Σ ⊆ V is a finite nonempty set called
the terminal alphabet , N = V − Σ is the nonterminal alphabet, S ∈ N is the
start symbol and P is a finite set of rules (or productions) of the form l → r
where l ∈ V ∗NV ∗ and r ∈ V ∗. The membership problem MPSG is defined as
follows:

Instance: Phrase-structure grammar G = (V, Σ, P, S) and a string w ∈ Σ∗

Question: Is w ∈ L(G)?

On Extended Regular Expressions 283

Given an instance of MPSG, we construct an instance of EIERE as follows:
For each production li → ri ∈ P let αi = #((Σ)∗) li ((Σ)∗)#\1 ri \3, for some
/∈ V , for 1 ≤ i ≤ |P |. Let α = (α1|α2| . . . |αn)∗. Note that the backreferences
will have to be renumbered, replacing each \j in αi with \j′ where j′ = 4(i −
1) + j + 1.

So, L(α) is the language of sequences of derivation steps (though not neces-
sarily continuous).

#w1#w′
1︸ ︷︷ ︸#w2#w′

2︸ ︷︷ ︸#w3#w′
3︸ ︷︷ ︸ . . . #wn#w′

n︸ ︷︷ ︸
αi1 αi2 αi3 αin

where each wi = xly and w′
i = xry for 1 ≤ i ≤ n for some x, y ∈ Σ∗ and some

l → r ∈ P .
We now define β to enforce derivation continuity. Consider

β0 = #((Σ)∗)# \1 which matches strings of the form #wi#wi for wi ∈ Σ∗. Let
β = #S(#((Σ)∗)# \2) ∗ #w. Then L(β) contains all strings of the form

#S #w1#w1︸ ︷︷ ︸#w2#w2︸ ︷︷ ︸ . . . #wn#wn︸ ︷︷ ︸#w for some n ≥ 0

where each underbraced segment matches β0.
Thus L(β) is the language of all continuous steps. (Not necessarily derivation

steps from G.)
Finally, if we take the intersection of the two languages, namely L(α)∩L(β),

we get strings of the form

#S #w1#w1︸ ︷︷ ︸#w2#w2︸ ︷︷ ︸ . . . #wn−1#wn−1︸ ︷︷ ︸#wn

where wi = xly and wi+1 = xry for each 1 ≤ i < n; x, y ∈ Σ∗; and l → r ∈ P
and S → w1 ∈ P , wn = w. That is, we get sequences of continuous derivation
steps beginning at S and ending in w.

Therefore, w ∈ L(G) iff L(α) ∩ L(β) �= φ �

Lemma 3. Let α be an eregex. Then for any k > 0 there are positive integers
N(k) and m such that if w ∈ L(α) and |w| > N(k) then w has a decomposition
w = x0yx1y · · · yxm′ (m′ < m) such that

1. |y| ≥ k, and
2. x0y

jx1y
j · · · yjxm′ ∈ L(α) for all j > 0.

Proof: Let N(k) = |α|2tk where t is the number of backreferences in α. Then
if |w| > N there is a substring of w of length ≥ k that matches a Kleene star in
α. (Each backreference can at most double the length of the word it matches.)
Let m = t + 1.

Let w = x0yz where y is the rightmost largest substring of w that matches a
Kleene star. Then clearly |y| ≥ k. Let t′ equal the number of (direct or indirect)
backreferences to any expression that contains this star. Let m′ = t′ + 1. Let
z = x1yx2yx3 . . . xm′ where the multiple instances of y correspond to these back-
references. Then w = x0yx1yx2y . . . yxm′ and clearly x0y

jx1y
jx2y

j . . . yjxm′ ∈
L(α) for all j ≥ 1. �

284 B. Carle and P. Narendran

Lemma 4. The language P = {wcwR | w ∈ {a, b}∗ } satisfies the CSY pump-
ing property. (wR stands for the reverse of w.)

Lemma 5. The language P = {wcwR | w ∈ {a, b}∗ } is not an EREG lan-
guage.

Proof: Assume P is an EREG language. Let k = 5. Let N(k) and m be the
constants given by Lemma 5. Consider w = (abaabb)N(k)c(bbaaba)N(k). Then
there is a decomposition w = x0yx1y · · · yxm′ for some m′ < m. By Lemma 3,
|y| ≥ 5. (k = 5) Observe that (abaabb)N(k) and (bbaaba)N(k) do not share any
common substrings of length ≥ 5. Therefore, y must occur to the left or the
right of c, but not both. Consequently, x0y

2x1y
2 . . . y2xm′ /∈ P . �

We now consider the Matching Problem for Extended Regular Expressions
(MERE):

Instance: An eregex α and a string w ∈ Σ∗.
Question: Is (w,α) the label at the root of a valid match tree?

This has been shown to be NP-complete [4]. It turns out that the problem is
NP-complete even if the target alphabet is unary:

Theorem 3. The matching problem for extended regular expressions is NP-
complete even when the target (subject) string is over a unary alphabet.

Proof: Membership in NP follows from the earlier result. NP-hardness can be
proved by a reduction from the vertex cover problem.
Vertex Cover (VC)

Instance: A graph G = (V, E) and a positive integer k ≤ |V |.
Question: Is there a V ′ ⊆ V such that |V ′| ≤ k and

∀(u, v) ∈ E : u ∈ V ′ ∨ v ∈ V ′?

Given an instance of VC, construct an instance of MERE as follows: Define n =
|V | and m = |E|. Without loss of generality, assume the vertices are numbered
from 2 to n + 1, so V = {2,3,. . . n+1} and E ⊆ {(i, j) | 2 ≤ i ≤ n + 1, 2 ≤ j ≤
n + 1}. (Note: The n vertices are numbered from 2 to n + 1 to account for the
shifting of backreferences caused by the outer parenthesis of α0, defined below.)
Let Σ = {a}. Let w = ak+|E| = ak+m.

Vertex Component: Construct α as follows:

Let α0 = (
1

(
2
a)

2
| (

3
a)

3
| (

4
a)

4
| . . . | (

n
a)

n
| (

n+1
a)

n+1
)
1
∗

That is, α0 is n copies of (a) connected by or , and then starred. Note that α0
can be constructed in O(|V |) time.

Edge Component: Assume the edges are ordered from 1 to m: et ∈ E for 1 ≤
t ≤ m. For each et = (i, j) ∈ E, let αt = (\i | \j). That is, each αt represents
the tth edge via backreferences, with the backreference incremented by one to
account for the outer parenthesis in α0. Note that this can be done in O(|E|)
time.

On Extended Regular Expressions 285

Finally, let α = α0α1α2 . . . αm. Note that α can be constructed in O(|V |+|E|)
time. We now show that α matches w iff G has a vertex cover of size ≤ k. Suppose
V ′ ⊆ V is a vertex cover for G with |V ′| ≤ k. Then we can find a valid match
tree for (w, α) as follows: We can safely assume that |V ′| = k, since additional
vertices from V can always be added to make this true. Let us start by matching
k iterations of α0, one for each v ∈ V ′. For each v ∈ V ′ ⊆ {2,3,. . . ,n+1} match
the vth option of the or in α0 on a different iteration. More specifically, if we let
V ′ = {v1, v2, . . . , vk} ⊆ {2, 3, . . . , n + 1} then on the vth

i iteration of α0 match
the vth

i option of the or in α0, which will assign a to \vi. Thus, α0 matches
ak. Recall that each αt = (\i | \j) for 1 ≤ t ≤ m represents edge et = (i, j).
Since V ′ is a vertex cover for G, at least one of {i, j} is in V ′. Therefore, at least
one of {\i, \j} is already defined in our match tree. If \i is defined, match it.
Otherwise match \j. Furthermore, any defined backreference \2, \3, . . .\n + 1
can only match a single a, so α1α2 . . . αm matches am.

Therefore, α = α0α1α2 . . . αm matches akam = ak+m = w.
Conversely, suppose (w, α) = (ak+m, α) is the root of a valid match tree. Then

we can find a vertex cover V ′ ⊆ V for G with |V ′| ≤ k as follows: To begin,
let V ′ = φ. Since there is a match for α, each of α1α2 . . . αm must be defined.
Thus, each αt for 1 ≤ t ≤ m matches a single a. For each αt = (\i | \j), if \i is
matched, let V ′ = V ′ ∪ {i}, else if \j is matched, let V ′ = V ′ ∪ {j}. Recall that
α1α2 . . . αm matches am. Thus, V ′ is a vertex cover for G since it contains one
vertex from each edge (from each corresponding αi).

Then α0 must match the remaining ak. Therefore, there can be at most k
unique backreferences defined, which means there can be at most k distinct
vertices in V ′. Therefore, |V ′| ≤ k and G has a vertex cover of size ≤ k.

Thus α matches w iff G has a vertex cover of size ≤ k. Furthermore, the
reduction can be done in O(|V | + |E|) = O(|V |2) time. Therefore, MERE is
NP-complete. �

Remark: Notice that this proof crucially uses the (semantic) assumption that
unassigned backreferences are not set to the empty string. The result can also be
proved without using this ‘feature’. However, the proof is a bit more complicated
and we omit it here.

4 Extended Multi-Pattern Languages (EMPL)

Let Σ be a finite set of terminals {a1, . . . , an} and V = {x1, x2, . . .} be an infinite
set of variables (Σ∩V = ∅). Then a pattern is a non-null finite string over Σ∪V .
We use the terms erasing (E) and non-erasing (NE) pattern languages in the
following sense. Let HΣ,V be the set of morphisms h : (Σ, V)∗ → (Σ, V)∗. The
E pattern language generated by a pattern π is defined as

LE(π) = {w ∈ Σ∗ | ∃h ∈ HΣ,V ((∀a ∈ Σ : h(a) = a) ∧ w = h(π))}
The NE pattern language generated by a pattern π is defined as

{w ∈ Σ∗ | ∃h ∈ HΣ,V ((∀a ∈ Σ : h(a) = a) ∧ (¬∃v ∈ V : h(v) = λ) ∧ w = h(π))}
and denoted as LNE(π).

286 B. Carle and P. Narendran

Given a set of patterns {π1, π2, . . . , πn}, the E-multi-pattern language (MPL-

E) they define is
n⋃

i=1
LE(πi). Similarly, the NE-multi-pattern language (MPL-NE)

defined by {π1, π2, . . . , πn} is
n⋃

i=1
LNE(πi).

This notion was extended by Nagy [2] to that of EMP expressions in the
following way:

Let {π1, π2, . . . , πn} be a set of patterns. Each pattern πi (1 ≤ i ≤ n) is an
EMP expression. If γ and δ are EMP expressions then

γ ∨ δ is also an EMP expression (using the operation union),
γ · δ is also an EMP expression (using the operation concatenation),
γ∗ is also an EMP expression (using the operation Kleene star).

In other words, extended multi-pattern (EMP) expressions are obtained from
the patterns π1, . . . , πn by using finitely many regular operators. The EMP ex-
pressions which can be obtained without using union (∨) are called star-pattern
expressions (EMSP expressions).

The erasing extended multi-pattern language defined by an EMP expression
can be obtained from the E pattern languages in the following way:

LE(γ ∨ δ) = LE(γ) ∪ LE(δ) (using the operation union),
LE(γ · δ) = LE(γ) · LE(δ) (using the operation concatenation),
LE(γ∗) = (LE(γ))∗ (using the operation Kleene star).

We then define EMPL-E (Extended Multi-Pattern Languages – Erasing) to
be the family of erasing extended multi-pattern languages 2.

The non-erasing extended multi-pattern language defined by an EMP expres-
sion can be obtained from the NE pattern languages in the following way:

LNE(γ ∨ δ) = LNE(γ) ∪ LNE(δ) (using the operation union),
LNE(γ · δ) = LNE(γ) · LNE(δ) (using the operation concatenation),
LNE(γ∗) = (LNE(γ))∗ (using the operation Kleene star).

Let EMPL-NE (Extended Multi-Pattern Languages – Non-Erasing) stand for
the family of non-erasing extended multi-pattern languages.

It is not hard to see that EMPL-E (resp. EMPL-NE) is the regular closure [7,8]
of the family of E pattern (resp. NE pattern) languages.

If γ is an EMSP expression then LE(γ) is an erasing extended multi-star-
pattern language. Let EMSPL-E be the family of erasing extended multi-star-
pattern languages. Similarly, if γ is an EMSP expression then LNE(γ) is a
non-erasing extended multi-star-pattern language. Let EMSPL-NE be the family
of non-erasing extended multi-star-pattern languages.

Finally, let EMPL = EMPL-E ∪ EMPL-NE, and likewise, let EMSPL =
EMSPL-E ∪ EMSPL-NE. Now two questions arise:

Question 1: Does EMPL-E = EMPL-NE (= EMPL)?

Question 2: Does EMSPL-E = EMSPL-NE (= EMSPL)?
2 Note that this is not the same as the family PL(REG, REG) defined in [6].

On Extended Regular Expressions 287

We answer Question 1 affirmatively and Question 2 negatively.

Lemma 6. The language L = { xbx | x ∈ {a, b}∗ } ∈ EMSPL-E.

Proof: Let Σ = {a, b} and v ∈ V . Then α = vbv is an EMSP expression and
LE(α) = L. �

Lemma 7. The language L = { xbx | x ∈ {a, b}∗ } /∈ EMSPL-NE.

Proof: (by contradiction). Assume L is an NE star-pattern language. Then there
is an NE star-pattern expression α such that LNE(α) = L. α cannot contain the
union operator since it is an NE star-pattern expression.

Clearly α cannot have a star as its outer-most operator. Otherwise, α would
match λ, which is not in L. Define a language to be non-trivial if and only if it
is neither empty nor the singleton set {λ}.

Claim: L is not the concatenation of two non-trivial languages.

Proof: Assume the contrary and let L = A ◦ B with A and B non-trivial.
Without loss of generality assume that b ∈ B. Hence every non-empty string in
A must be of the form ubbu for some u ∈ {a, b}∗. Now consider the string aba
which belongs to L. aba has to be in B since no non-empty prefix of it can be
in A. But then the word equation ubbuaba =? xbx has no solution. �

Since α cannot be a single pattern either, the result follows3.

Lemma 8. EMSPL-E �= EMSPL-NE.

Proof: The language L of Lemma 6 (and 7) is in EMSPL-E, but is not in
EMSPL-NE. �

Lemma 9. EMPL-NE = EMPL-E.

Proof: This follows from the results of [3]. We omit the proof. �

Lemma 10. Every EMPL language is semi-linear.

Proof-sketch: Every language in MPL is semi-linear [3]. The family of semi-
linear languages is closed under union, concatenation and star. �

Lemma 11. The EREG language L((a*)b(\1)) = {aibai | i ≥ 0} is not an
EMPL.

Proof-idea: If any of the patterns used in the defining expression contains a
variable, then it can be replaced with bb. �

Theorem 4. EMPL ⊂ EREG.
3 Thus without backreferences the analogous result to Theorem 17 of [2] does not hold.

288 B. Carle and P. Narendran

Proof-idea: EREG �⊆ EMPL follows from the previous lemma. EMPL ⊆ EREG
can be shown as follows: Given an EMP expression γ over terminal alpha-
bet Σ = {a1, . . . , an}, we can construct an equivalent EREG pattern α. Let
{π1, π2, . . . , πn} be the set of patterns that occur within γ. For each pattern
πi (1 ≤ i ≤ n), replace the first occurrence of a variable within πi with
((a1|a2| . . . |an)∗), where k is the index of the outer left parenthesis we are adding.
Replace each subsequent occurrence of the same variable with \k. �

Lemma 12. The following problem is undecidable:

Instance: Two sets of patterns P1 and P2.
Question: Is (LE(P1))∗ ⊆ (LE(P2))∗?

Proof idea: The problem of deciding, given two patterns α and β, whether
LE(α) ⊆ LE(β) is known to be undecidable [9]. Let # be a new symbol, not
present in the alphabet Σ of α and β. Let Ω = Σ ∪ {#}. Now form the sets of
patterns

Γ = {#α#} and ∆ = {#β#, #x1#x2#}.

Claim 1: (LE(Γ))∗ ⊆ (LE(∆))∗ over Ω if and only if LE(α) ⊆ LE(β) over Σ.

Claim 2: (LE(Γ))∗ ⊆ (LE(∆))∗ if and only if (LE(Γ ∪ ∆))∗ = (LE(∆))∗.

Thus the equivalence problem for EMSPL-E is undecidable. �

The same technique will work for EMSPL-NE, except that ∆ will have to be
defined a little differently, as {#β#, #x1#x2#, ##x2#, #x1##, ###}. It
can also be shown that

Lemma 13. For every EMP of the form α∗ (i.e., with star as the outermost
operator), there is an EMSP γ such that LNE(γ) = LE(α∗).

Proof-sketch: Since the families EMPL-E and EMPL-NE are the same, there
must be an EMP β such that LNE(β) = LE(α). It can be shown (see e.g., [10])
that an expression equivalent to β∗ that does not use ∨ can be found. �

Theorem 5. The equivalence problem for EMSPL-NE is undecidable.

This settles an open problem given in [2].

Acknowledgements. We thank Colin Scheriff for work on an earlier version of
the paper [11] and in particular on the proof of Lemma 3. We also thank the
referees for their insightful comments.

References

1. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14, 1007–1018 (2003)

2. Nagy, B.: On the language equivalence of NE star-patterns. Inf. Process. Lett. 95,
396–400 (2005)

On Extended Regular Expressions 289

3. Kari, L., Mateescu, A., Paun, G., Salomaa, A.: Multi-pattern languages. Theor.
Comput. Sci. 141, 253–268 (1995)

4. Aho, A.V.: Algorithms for finding patterns in strings. In: Handbook of Theoretical
Computer Science. Algorithms and Complexity (A), vol. A, pp. 255–300. MIT
Press, Cambridge (1990)

5. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row (1986)

6. Dumitrescu, S., Păun, G., Salomaa, A.: Languages associated to finite and infinite
patterns. Rev. Roum. Math. Pures Appl. 41, 607–625 (1996)

7. Bertsch, E., Nederhof, M.J.: Regular closure of deterministic languages. SIAM J.
Comput. 29, 81–102 (1999)

8. Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free
languages. Discrete Applied Mathematics 155, 2152–2164 (2007)

9. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J.
Comput. Syst. Sci. 50, 53–63 (1995)

10. Nagy, B.: A normal form for regular expressions. In: Eighth International Confer-
ence on Developments in Language Theory (DLT 2004), Auckland, New Zealand
(2004), www.cs.auckland.ac.nz/CDMTCS/researchreports/252dlt04.pdf

11. Carle, B., Narendran, P., Scheriff, C.: On extended regular expressions. In: Twenty-
first International Workshop on Unification (UNIF 2007), Paris, France (June 2007)

www.cs.auckland.ac.nz/CDMTCS/researchreports/252dlt04.pdf

Multi-tilde Operators and Their Glushkov
Automata

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot

LITIS, University of Rouen, France
{pascal.caron,jean-marc.champarnaud}@univ-rouen.fr,

ludovic.mignot@etu.univ-rouen.fr

Abstract. Classical algorithms convert arbitrary automata into regular
expressions that have an exponential size in the size of the automaton.
There exists a well-known family of automata, obtained by the Glushkov
construction (of an automaton from an expression) and named Glushkov
automata, for which the conversion is linear. Our aim is to extend the
family of Glushkov automata. A first step for such an extension is to
define a new family of regular operators and to check that the associated
extended expressions have good properties: existence of normal forms,
succinctness with respect to equivalent simple expressions, and compati-
bility with Glushkov functions. This paper addresses this first step and
investigates the case of multi-tilde operators.

1 Introduction

The framework of this paper is the translation from a regular expression into
a finite automaton as well as the inverse translation. Numerous studies have
been devoted to this topic, leading to polynomial algorithms for both sides of
the conversion (the first ones are due to McNaughton and Yamada [1] for both
constructions, to Glushkov [2] for constructing an automaton, and to Brzozowski
and McCluskey [3] for constructing an expression).

Many research works have focused on producing a small automaton (as effi-
ciently as possible). For example there exist quadratic algorithms1 for converting
an expression into its Glushkov automaton [6], its Antimirov automaton [7] or
its follow automaton [8]. Moreover, the Glushkov automaton of an expression
with n occurences of symbols (we say that its alphabetic width is equal to n)
has only n + 1 states; the Antimirov automaton and follow automaton (that are
quotients of the Glushkov automaton) have at most n + 1 states.

On the other hand, classical algorithms compute expressions the size of which
is exponential with respect to the number of states of the automaton and stu-
dies that address the problem of producing a short expression are not so many.
Let us cite the heuristic-based approaches presented in [9] and in [10] that both
1 The fastest conversion from an expression into an automaton is the O(n(log(n))2)

algorithm [4] based on the Common Follow Sets introduced by [5]. The number of
states of the resulting automaton is a polynomial of n.

A.H. Dediu, A.M. Ionescu, and C. Martín-Vide (Eds.): LATA 2009, LNCS 5457, pp. 290–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Multi-tilde Operators and Their Glushkov Automata 291

aim at reducing the size of the expression computed by the state elimination
algorithm [3]. Recently, several questions were raised in [11] concerning the des-
criptional complexity of regular expressions and more precisely the effect of reg-
ular operations on this complexity. An answer is given in [12], concerning the
operation of removing the empty word that is proved to incur at most a quasi-
linear increase in regular expressions. More recently, exponential lower bounds
have been provided for the intersection and shuffle operations as well as a doubly-
exponential lower bound for the complementation [13], [14]. In [15] it is shown
that quadratic size expressions can be computed for language quotient operations
and cubic size expressions for circular shift operation.

In this paper, we also address the problem of computing short expressions,
and we focus on a specific kind of conversion based on Glushkov automata.
Actually the particularity of Glushkov automata is the following: any regular
expression of width n can be turned into its Glushkov (n + 1)-state automaton;
if a (n + 1)-state automaton is a Glushkov one, then it can be turned into an
expression of width n. The latter property is based on the characterization of
the family of Glushkov automata presented in [16]. Our aim is to extend this
family according to the following schema. In a first step, we design new families of
regular operators supporting Glushkov computation and we check that they lead
to extended expressions significantly shorter than equivalent simple expressions.
In a second step, we give an algorithm to turn a Glushkov (n+1)-state automaton
into an extended expression of width n.

Presently, we have completed the study of two new families of operators:
multi-bars and multi-tildes. The first step includes a large amount of techni-
cal work, in particular for investigating the properties of extended expressions
and for determining normal forms. It is the reason why multi-bar presentation
in [17] and multi-tilde presentation in this paper only address this first step.
Notice that although multi-bar and multi-tilde operators are based on dual ele-
mentary operations: eliminating (resp. adding) the empty word from (resp. to)
the language of an expression, there exists no obvious way allowing to go from
multi-bar properties to multi-tilde ones and respective proofs are quite different.
It is the reason why two separate studies have been presented. Let us point out
that it is necessary to consider extended expressions mixing operators from both
of these families for investigating the second step.

The following section recalls fundamental notions concerning regular expres-
sions and finite automata. In Section 3 we introduce the family of multi-tilde
operators and we study their properties in Section 4. In Section 5 we introduce
the notion of an expression in tilde normal form and we compute the Glushkov
functions of multi-tilde operators in Section 6.

2 Preliminaries

Let us first review basic notions concerning regular expressions and finite au-
tomata. For a comprehensive treatment of this domain, references [18], [19] can
be consulted.

292 P. Caron, J.-M. Champarnaud, and L. Mignot

Let Σ be an alphabet and ε be the empty word. Let E be a regular expression
over Σ. The language denoted by the expression E is L(E). The expression E is a
simple regular expression if the only operators used are union (+), concatenation
(·) and Kleene closure (∗). The alphabetical width |E| of an expression E is the
number of occurences of symbols in E. An expression in which every symbol
occurs only once is called a linear expression. The expression E is nullable if its
language contains the empty word. Let P = E1 · · ·En be a concatenation of n
expressions. We will denote by Ei,j the factor Ei · · ·Ej of P and we will assume
that L(Ei,j) = {ε} when i > j. Two factors Ei,j and Ei′,j′ of P overlap if and
only if 1 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n. We will denote by E1:n the list (E1, . . . , En).
Given a set S, we denote by Card(S) the number of elements of S.

In the following, we will focus on new operators fitting with the Glushkov
automaton computation. The main interest of the Glushkov automaton of a li-
near expression E is to provide a one-to-one mapping from the set of symbols
of the expression onto the set of states of the automaton. Glushkov [2] and Mc-
Naughton and Yamada [1] have defined independently the Glushkov automaton
of an expression E and proved that it recognizes the language L(E). We recall
here this definition.

In order to specify their position in the expression, symbols are subscripted
following the order of reading. For example, starting from E = (a + b)a∗, one
obtains the linear expression E = (a1 + b2)a∗

3. The set of positions of the ex-
pression is denoted by Pos(E). The mapping h: Pos(E) → Σ gives the symbol
that is at a given position. In the previous example, we have h(2) = b. Four
functions are defined in order to compute an automaton: First(E) is the set of
initial positions of words of L(E), Last(E) is the set of final positions of words of
L(E) and Follow(E, k) is the set of positions immediately following the position
k in a word of L(E). The Null(E) function is defined as {ε} if E is nullable,
∅ otherwise. These four functions allow us to define the Glushkov automaton
ME of E as follows: ME = (Σ, Q, {0}, F, δ) where Q = Pos(E) ∪ {0} is the
set of states and 0 is not in Pos(E). The set of final states is F = Last(E) if
Null(E) = ∅, F = Last(E) ∪ {0} otherwise, and the set of transitions is defined
by δ = {(x, h(y), y) | x ∈ Pos(E) and y ∈ Follow(E, x)} ∪ {(0, h(y), y) | y ∈
First(E)}.

3 The Family of Multi-tilde Operators

Given a list E1:n of regular expressions, we study the family of languages denoted
by the expressions obtained from the expression P = E1,n by simultaneously
adding the empty word to several (and possibly overlapping) factors Ei,f of P .
Throughout this paper we will assume that for all 1 ≤ k ≤ n the expression Ek

is not equal to the empty word nor to the empty set.

3.1 Multi-tilde Definition

We first define a new operator, called tilde, that can be applied to any regular
expression and that is such that L(E) = L(E) ∪ {ε}. A multi-tilde operator

Multi-tilde Operators and Their Glushkov Automata 293

applies to a list E1:n of regular expressions and allows us to apply the tilde
operator to several factors of the expression E1,n. The position of these factors
is retrieved from a set of couples T = ((ik, fk))1≤k≤Card(T) such that for all
k ∈ �1, Card(T)�, 1 ≤ ik ≤ fk ≤ n. Such an operator based on a list T is
denoted by PT and a couple in T is called a tilde. By convention, the list T is
finite and ordered according to the lexicographic order over N2 and, if empty,
we assume that PT (E1:n) = E1,n. For example, if T =

(
(1, 2)(2, 3)

)
, the effect of

the operator PT on the list (E1, E2, E3) is to add the empty word to the factors
E1 · E2 and E2 · E3.

We first examine a basic case where the language L(PT (E1:n)) is easily defined.

Definition 1. A finite list of couples S is said to be free if and only if, ∀(i, f),
(i′, f ′) ∈ S, we have �i, f� ∩ �i′, f ′� = ∅.
In the case where a multi-tilde is defined by a free list S, all the factors defined
by the list can simultaneously be made nullable (by adding the empty word to
each of them) and thus the language is defined as follows:

Definition 2. Let E1:n be a list of expressions. Let S = ((ik, fk) | ∀k, 1 ≤ ik ≤
fk ≤ n)1≤k≤s=Card(S) be a free list of couples. The language L(PS(E1:n)) is
defined as follows:

L(PS(E1:n)) = L(E1,i1−1) · (L(Ei1,f1) ∪ {ε}) · L(Ef1+1,i2−1)
· · · (L(Eis,fs) ∪ {ε}) · L(Efs+1,n)

The case of a non-free list can be illustrated by the following example.

Example 1. We consider the list T =
(
(1, 2)(2, 3)(3, 4)

)
and the expression E =

PT (a, b, c, d), that can be represented by a b c d .
Since the sublist S =

(
(1, 2)(3, 4)

)
is a free one, the factors ab and cd can

simultaneously be made nullable by adding the empty word to each of them.
On the other hand, it is not possible to simultaneously substitute ab + ε to the
factor ab and bc+ε to the factor bc. The same reasoning applies to the factors bc
and cd. Therefore we consider all the free sublists of T and define the language
L(E) as the union of their languages.

i

1

2

3

4
a

c

b d

c d

Fig. 1. An automaton recognizing the language L
(
P(

(1,2)(2,3)(3,4)
)(a, b, c, d)

)

In our example, we get: L(E) = L(a · b ·c ·d) ∪L(a · b · c ·d) ∪L(a ·b · c · d)

∪L(a · b · c · d) and thus L(E) = {abcd, cd, ab, ad, ε}.

294 P. Caron, J.-M. Champarnaud, and L. Mignot

Finally, for an arbitrary list T of couples, L(PT (E1:n)) is defined as follows:

Definition 3. Let E1:n be a list of expressions. Let T = ((ik, fk) | ∀k, 1 ≤ ik ≤
fk ≤ n)1≤k≤Card(S) be a list of couples. Let T be the set of all the free sublists of
T . Then the language L(PT (E1:n)) is defined as follows:

L
(
PT (E1:n)

)
=
⋃

T ′∈T
L(PT ′(E1:n))

This new family of multi-tilde operators leads us to consider the following ex-
tension of regular expressions.

Definition 4. An extended to multi-tilde regular expression (EMTRE) is in-
ductively defined by:

E = ∅ E = F + G where F and G are two EMTREs
E = ε E = F ·G where F and G are two EMTREs
E = a with a ∈ Σ E = F∗ where F is an EMTRE

E = PT(E1:n) where E1:n is a list of (not equal to ∅ nor ε) EMTREs

3.2 Reduction Power of Multi-tildes

Multi-tildes, similarly to multi-bars [17] lead to a reduction of the alphabetic
width that is generally more important than by a straightforward factorization
of an equivalent simple regular expression. This fact is illustrated by Example 2.

Example 2. Let E = a b c be an EMTRE, with |E| = 3.
The language L(E) is recog-
nized by the automaton of Fig-
ure 2. Any equivalent simple
regular expression is wider than
E; for example, the width of the
expression E′ = a(bc + ε) + c is
equal to 4.

i 1 2 3
a

c

b c

Fig. 2. An automaton recognizing the lan-
guage L

(
P(

(1,2)(2,3)
)(a, b, c)

)
Example 2 can be generalized by considering the language Ln denoted by the
EMTRE En = PTn(a1, . . . , an), with Tn =

(
(1, 2)(2, 3) . . . (n − 1, n)

)
. The im-

portance of the multi-tilde operators can be shown by comparing the width of
the generalized expression En (that is equal to n) and the minimal width of an
equivalent simple expression E′

n. It is well known that there exists no polynomial
algorithm for computing a regular expression of minimal width denoting a given
regular language [20], even if this language is a finite one. Therefore we proceed
as follows: we start from E′

3 = a1(a2a3 + ε)+ a3 (that can be easily shown to be
an expression of minimal width), and we apply a specific procedure to construct
E′

n from E′
n−1. Although it is not proved that the alphabetic width of E′

n is
minimal, this expression seems to be a good candidate for minimality. Moreover,
it can be shown that the expression E′

n has an exponential width with respect
to n. Let us remark that the alphabet of the languages (Ln)n≥3 does not have a
constant size.

Multi-tilde Operators and Their Glushkov Automata 295

4 Properties of Multi-tildes

In this section we first introduce some notation and then state properties of
multi-tilde operators that will be useful in the next sections.

4.1 Definitions and Notation

Let E = PT (E1:n) be an EMTRE. Let t = (i, f) ∈ T ; we set Ranks(t) = �i, f�.
Let k ∈ �i, f�; we set Tildes(k) = {(i, f) ∈ T | i ≤ k ≤ f}. A tilde (i, f) ∈ T
is overlapping if and only if there exists (i′, f ′) ∈ T such that i′ < i ≤ f ′ < f
or i < i′ ≤ f < f ′. A tilde t = (i, f) ∈ T is included if and only if there exists
a tilde (i′, f ′) ∈ T \ {t} such that i′ ≤ i ≤ f ≤ f ′. A tilde in T is overhanging
if and only if it is not overlapping. We say that T is overlapping if and only if
every tilde of T is overlapping. We say that T is continuous if and only if for all
k ∈ �1, n− 1�, Tildes(k)∩Tildes(k + 1) �= ∅. We say that T has a minimal arity
if and only if ∀k ∈ �1, n − 1�, Tildes(k) �= Tildes(k + 1).

Definition 5. Let i, f ∈ �1, n� | i ≤ f . The linear EMTRE E = PT (E1:n) is
said to be (i, f)-nullable if and only if L(E1,i−1) · L(Ef+1,n) ⊂ L(E). Let S be
a list of couples. The expression E is said to be S-nullable if and only if it is
(i, f)-nullable for all (i, f) ∈ S.

Definition 6. A tilde t = (i, f) ∈ T is useful for a linear EMTRE E = PT (E1:n)
if and only if the languages L(PT (E1:n)) and L(PT\{t}(E1:n)) are different. The
list T is useful if and only if every tilde of T is useful.

Let us consider a linear EMTRE E = PT (E1:n). Let w = w1 · · ·wn be a word
such that for all k ∈ �1, n�, wk ∈ L(Ek)∪ {ε}. Let us suppose that there exists a
factor wi · · ·wf = ε. This factor has a left (resp. right) ε-extension in w if there
exists k = i − 1 (resp. k = f + 1) such that wk = ε. If a factor of w has no
ε-extension, then, it is ε-maximal in w.

4.2 Nullability Properties

Lemma 1. Let E = PT (E1:n) be a linear EMTRE and w ∈ L(E). Then there
exists a unique decomposition w = w1 · · ·wn such that ∀k ∈ �1, n�, wk ∈ L(Ek)∪
{ε}.

Lemma 2. Let E = PT (E1:n) be a linear EMTRE. Let i, f ∈ �1, n� | i ≤ f . The
expression E is (i, f)-nullable if and only if there exists a free list S =

(
(ik, fk) |

k ∈ �1, Card(S)�
)

of couples satisfying the following conditions:

- i1 = i, fCard(S) = f and ∀k ∈ �1, Card(S) − 1�, fk = ik+1 − 1,
- ∀(ik, fk) ∈ S, we have: (ik, fk) ∈ T or Eik ,fk

is nullable.

Proof. We set L′ = L(E1,i−1) · L(Ef+1,n).

(1) ⇐ (2) : let S be a list satisfying the previous conditions. We consider the
partition (S1 = S ∩ T, S2 = S \ S1) of S. Since S is free, S1 is a free sublist of

296 P. Caron, J.-M. Champarnaud, and L. Mignot

T . By Definition 3 it holds that L(PS1(E1:n)) ⊂ L(E). Moreover since for every
couple (ik, fk) in S2 the expression Eik ,fk

is nullable, we have L(PS1∪S2(E1:n)) =
L(PS1(E1:n)). Finally, L′ ⊂ L(PS(E1:n)) and the expression E is (i, f)-nullable.

(1) ⇒ (2) : we suppose that E is (i, f)-nullable. By Definition 5, L′ = L(E1,i−1)·
L(Ef+1,n) ⊂ L(E). Let w = w1 · · ·wi−1 · wf+1 · · ·wn be a word in L′ such that
for all k ∈ �1, i−1�∪�f +1, n�, wk ∈ L(Ek)\{ε}. Since L′ ⊂ L(E), there exists a
free subslist S of T such that w ∈ L(PS(E1:n)). Let (i1, f1) (resp. (is, fs)) be the
least (resp. the greatest) element in the ordered list S and (ik+1, ifk+1) be the
least element greater than (ik, fk). Let us consider the set V of couples defined
by: V = {(i, i1 − 1), (fs + 1, n)} ∪ {(fk + 1, i′k+1 − 1) | (ik, fk), (ik+1, fk+1) ∈ T }.
If S = ∅ we set V = V ∪ {(i, f)}. There exists no couple (i′, f ′) in V satisfying
i ≤ i′ ≤ f ′ ≤ f and ε /∈ L(Ei′,f ′). Otherwise, by Definition 3 the word w
would not be in L(PS(E1:n)). Therefore there exist only two cases: either Ei′,f ′

is nullable for any couple in V , or for all k ∈ �1, Card(S) − 1�, fk = ik+1, i1 = i
and fCard(S) = f . In these two cases, we can construct a list of couples satisfying
the conditions of the lemma. ��
Proposition 1. Let E = PT (E1:n) be a linear EMTRE. Let w = w1 · · ·wn

be a word such that for all j ∈ �1, n�, wj ∈ L(Ej) ∪ {ε}. Let S =
(
(ik, fk) |

k ∈ �1, Card(S)�
)

be a free list such that ∀k ∈ �1, Card(S)�, wik
· · ·wfk

is an
ε-maximal factor in w. Then the three following conditions are equivalent:

(1) L(PS(E1:n)) ⊂ L(E),
(2) E is S-nullable,
(3) w ∈ L(E).

Proof. (1) ⇒ (2) : according to Definition 2, ∀(i, f) ∈ S, L(P((i,f))(E1:n)) ⊂
L(PS(E1:n)) ⊂ L(E). Thus, for each (i, f) of S, E is (i, f)-nullable and then by
definition E is S-nullable.

(2) ⇒ (3) : according to Lemma 2, for each couple (ik, fk) of S, there exists a
list Sk and a partition (S1k, S2k) of Sk such that S1k = Sk∩T and S2k = Sk\S1k.
Since S is free, the list S′ =

⋃
k∈�1,Card(S)�

S1k is free too and S′ ⊂ T . Following

Definition 3, L(PS′(E1:n)) ⊂ L(E). Moreover, since for every couple (ik, fk)
of S′′ =

⋃
k∈�1,Card(S)�

S2k, the factor Eik,fk
is nullable and since ∀(ik′ , fk′) ∈

S′, �ik′ , fk′� ∩ �ik, fk� = ∅, we have L(PS′∪S′′(E1:n)) = L(PS′(E1:n)). Finally we
get L(PS(E1:n)) ⊂ L(E) and then w ∈ L(E).

(3) ⇒ (1) : we suppose that w ∈ L(E). Since for all k ∈ �1, Card(S)�, wik
· · ·wfk

is an ε-maximal factor in w, we have w ∈ L(PS(E1:n)). By Definition 2, there
exists a free sublist S′ of T such that w ∈ L(PS′(E1:n)). Let w′ = w′

1 · · ·w′
n

be a word in L(PS(E1:n)) such that w′ /∈ L(PS′(E1:n)). It implies that there
exists an ε-maximal w′

i · · ·w′
f in w′, such that PS′(E1:n) is not (i, f)-nullable.

By hypothesis, there exists k ∈ �1, Card(S)�
)

such that ik ≤ i ≤ f ≤ fk and thus
PS′(E1:n) is not (ik, fk)-nullable. Contradiction with w ∈ L(PS′(E1:n)). Finally,
L(PS(E1:n)) ⊂ L(PS′(E1:n)) ⊂ L(E). ��

Multi-tilde Operators and Their Glushkov Automata 297

Corollary 1. Let E = PT (E1:n) be a linear EMTRE. Let i, f ∈ �1, n� with
f ≥ i. Let w = w1 · · ·wi−1 · wf+1 · · ·wn with for all k ∈ �1, i − 1� ∪ �f + 1, n�,
wk ∈ L(Ek) \ {ε}. The following two conditions are equivalent:

(1) w ∈ L(E),
(2) E is (i, f)-nullable.

The following lemma will be useful to construct a normal form for E.

Lemma 3. Let E = PT (E1:n) be a linear EMTRE. A tilde t = (i, f) ∈ T is
useful for E if and only if PT\{t}(E1:n) is not (i, f)-nullable.

5 Definition of Multi-tildes in Tilde Normal Form

Two multi-tilde operators operating on a same list of expressions with distinct
lists of couples can recognize the same language. This fact can be illustrated by
the following example.

Example 3. Let E1 = a b c d and E2 = a b c d , that are respectively
based on the set of tildes:

{(1, 2)(2, 2)(2, 3)(3, 3)(3, 4)} and {(1, 2)(2, 2)(3, 3)(3, 4)}.

It can be checked that the languages L(E1) and L(E2) are equal.

We define a set of necessary and sufficient conditions that allow us to define a
normal form for multi-tilde operators.

Definition 7. Let E = PT (E1:n) be a linear EMTRE. The expression E is said
to be in tilde normal form (TNF) if and only if the following properties are
checked:

- T is useful for E,
- either T is overlapping or Card(T) = 1,
- T is continuous,
- the arity of T is minimal.
An expression satisfying these conditions is denoted by E = PT (E1:n).

Example 4. The syntax tree of the expression E3 = (a · b) · (c · d) is rep-
resented by Figure 3.

It can be checked that this
expression satisfies each condi-
tion of Definition 7 and that it
is equivalent to the expressions
E1 and E2 of Example 3. Let us
remark that the graphical repre-
sentations of E2 and E3 are very
close, although the syntax trees
are different.

·

P(1,1) P(1,1)

· ·

P(1,1) P(1,1)a

b c

d

Fig. 3. The expression E3 is in TNF

298 P. Caron, J.-M. Champarnaud, and L. Mignot

An EMTRE is said to be in TNF if and only if its linearized version E is in TNF.

Definition 8. An extended to normal tilde regular expression(ETRE) is in-
ductively defined as follows:

E = ∅ E = F + G with F and G two ETREs
E = ε E = F · G with F and G two ETREs
E = a with a ∈ Σ E = F∗ with F an ETRE

E = PT (E1:n) where E1:n is a list of (not equal to ∅ nor ε) ETREs

We now prove that the set of conditions of Definition 7 allow us to define a
normal form.

Lemma 4. Let E = PT (E1:n) be an ETRE. Then L(E)
= ∅ and L(E)
= {ε}.

Proposition 2. Let E1 = PT1 (E1:n) and E2 = PT2 (E1:n) be two linear
ETREs. The two following conditions are equivalent:

(1) L(E1) = L(E2),
(2) T1 = T2.

Proof
(1) ⇒ (2) : Let t = (i, f) ∈ T1 � T2 such that the length lt = f − i + 1 of t be
minimal. Let us suppose that t ∈ T1. Then, E1 is (i, f)-nullable. Let us suppose
that E2 is (i, f)-nullable. If t ∈ T2, we have a contradiction with t ∈ T1 � T2. If
ε ∈ L(Ei,f), we have a contradiction with the utility of t for E1 (see Lemma 3).
If there exist several couples allowing E2 to be (i, f)-nullable, and if there exists
no tilde (i′, f ′) ∈ T2 such that i ≤ i′ ≤ f ′ < f or i < i′ ≤ f ′ ≤ f , the situation is
similar as in the previous case. If there exists a tilde, then we can choose it not
to be in T1 (if there does not exist such a tilde, then the combination of tildes
and of nullable factors of E2 make the tilde t useless for E1). Contradiction with
the minimality of lt. And then, as the expression E1 is (i, f)-nullable while the
expression E2 is not, their languages are disjoint.

(1) ⇐ (2) : Trivial. ��

Proposition 3. Let E = PT (E1:n) be an EMTRE. Then, there exists an ETRE
E′ such that L(E) = L(E′).

6 Glushkov Functions

Definition 9. Let E = PT (E1:n) be an ETRE with Card(T) = m and T =(
(ik, fk)

)
k∈�1,m�

. The Glushkov functions associated to the PT operator are
defined as follows:

(9.1) Pos(E)=
n⋃

k=1

Pos(Ek)

Multi-tilde Operators and Their Glushkov Automata 299

(9.2) Null(E)=
{

ε if E is (1, n)-nullable
∅ otherwise

(9.3) First(E)=First(E1) ∪
⋃

k s.t. E is (1,k-1)-nullable

First(Ek)

(9.4) Last(E)=Last(En) ∪
⋃

k s.t. E is (k+1,n)-nullable

Last(Ek)

(9.5) ∀x ∈ Pos(E), ∃k ∈ �1, n� | x ∈ Pos(Ek). Then:

Follow(x, E)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Follow(x, Ek) if x /∈ Last(Ek)

or if x ∈ Pos(En)
Follow(x, Ek) ∪ Follow(x, Ek+1)∪⋃
k′ s.t. E is (k+1,k’-1)-nullable

First(Ek′) otherwise

Proposition 4. Let E = PT (E1:n) be an ETRE and let GE be its Glushkov
automaton. Then, we have L(E) = L(GE).

Proof. The definition of Glushkov functions for +, · and ∗ operators induces that:

(P1) ax ∈ ΣE ⇔ x ∈ Pos(E)

(P2) Null(E) =
{
{ε} if and only if ε ∈ L(E)
∅ otherwise

(P3) ∃w = ax · w′ ∈ L(E) ⇔ x ∈ First(E)
(P4) ∃w = w′ · ax ∈ L(E) ⇔ x ∈ Last(E)
(P5) ∃w = w′ · · · ax · ax′ · · ·w′′ ∈ L(E) ⇔ x′ ∈ Follow(E, x).

Let us prove that Propositions (P1) to (P5) are still true when extending
Glushkov functions to the PT operator.

(P1) Pos(E): ax ∈ ΣE ⇔ ∃k ∈ �1, n� | ax ∈ ΣEk
⇔ x ∈ Pos(E).

(P2) Null(E): According to Corollary 1, we have: ε ∈ L(E) ⇔ E is (1, n)-
nullable. Thus, the extension of the Null(E) function is correct.

(P3) First(E):
(⇒) According to Lemma 4, we have L(E)
= ∅ and L(E)
= ε. Let w = ax ·
w′ ∈ L(E) with ax ∈ ΣE . Let k be such that ax ∈ ΣEk

, which means that
x ∈ Pos(Ek). Then, there exists ax · w′

k ∈ L(Ek). Thus, we have x ∈ First(Ek).
If k = 1, following Definition 9.3, x ∈ First(E). Otherwise, it implies that w =
w1 · · ·wk−1 · wk · wk+1 · · ·wn with wk = ax · w′

k and w1 · · ·wk−1 = ε, then
w1 · · ·wk
= ε. According to Proposition 1 and as w1 · · ·wk−1 is ε-maximal, there
exists a free list S which contains the couple (1, k−1) such that E is S-nullable.
Thus, E is (1, k − 1)-nullable and following Definition 9.3, x ∈ First(E).

(⇐) Suppose that x ∈ First(E) and let k ∈ �1, n� such that x ∈ First(Ek). We
know that ∀i ∈ �1, n�, L(Ei)
= ∅ and L(Ei)
= {ε} according to Definition 8.
Suppose that w = wk · · ·wn with ∀i ∈ �k, n�, wi ∈ L(Ei) and wi
= ε. If k = 1,
w ∈ L(E1 · · ·En) and following Definition 3, L(E1 · · ·En) ⊂ L(E) and then

300 P. Caron, J.-M. Champarnaud, and L. Mignot

w ∈ L(E). If k
= 1, then, according to Definition 9.3, E is (1, k − 1)-nullable,
and according to Corollary 1, w ∈ L(E).

(P4) Last(E): The proof is similar to (P3) reasoning on last symbols of a word.

(P5) Follow(E, x):

(⇒) Let x′ ∈ Follow(E, x). Then ∃k′ ∈ �1, n� | x′ ∈ Pos(E′
k). (1) Suppose that

k = k′. Then ∃wk = w′
k · ax · ax′ · w′′

k ∈ L(Ek). If w = w1 · · ·wk · · ·wn with ∀i ∈
�1, n�\{k}, wi ∈ L(Ei)\{ε} (this decomposition exists according to Definition 8),
we have following Definition 3, w ∈ L(E1,n) ⊂ L(E), and then w ∈ L(E). (2)
Let us suppose k
= k′. According to Definition 9.5, x ∈ Last(Ek), k
= n and
x′ ∈ First(Ek′). Thus, ∃wk = w′

k · ax ∈ L(Ek) and ∃wk′ = ax′ · w′′
k′ ∈ L(Ek′).

Let w = w1 · · ·wk · w′
k · · ·wn with ∀i ∈ �1, n� \ �k, k′�, wi ∈ L(Ei) \ {ε} (this

decomposition exists according to Definition 8). (a) Suppose that k′ = k + 1.
According to Definition 3, w ∈ L(E1 · · ·Ek ·Ek+1 · · ·En) ⊂ L(E), and w ∈ L(E).
(b) Suppose that k′ > k + 1. If x′ ∈ Follow(E, x), then, we know, according to
Definition 9.5 that E is (k+1, k′−1)-nullable, and then according to Corollary 1,
w ∈ L(E).

(⇐) Suppose that ∃w = w′ ·ax ·ax′ ·w′′ ∈ L(E). There exists k′ | n > k′ ≥ k > 1
such that x′ ∈ Pos(Ek′). (1) Suppose that k = k′. According to Lemma 1, w is
equal to w1 · · ·wk · · ·wn with ∀i ∈ �1, n�, wi ∈ L(Ei) and wk = w′

k · ax · ax′ ·w′′
k .

Thus, x′ ∈ Follow(Ek, x) and then x′ ∈ Follow(E, x). (2) Suppose that k
= k′.
According to Lemma 1, w = w1 · · ·wk · wk′ · · ·wn with ∀i ∈ �1, n�, wi ∈ L(Ei),
wk = w′

k · ax and wk′ = ax′ · w′′
k′ . (a) If k′ = k + 1, as x′ ∈ First(Ek+1), we

have x′ ∈ Follow(E, x). (b) If k′ > k + 1, according to Proposition 1, there
exists a free list S =

(
(i, f)j

)
j∈�1,Card(S)� such that for all (i, f) ∈ S, the factor

wi · · ·wf is ε-maximal, and E is S-nullable. As wk+1 · · ·wk′−1 is ε-maximal,
(k + 1, k′− 1) ∈ S and then E is (k + 1, k′− 1)-nullable. Thus, x′ ∈ Follow(E, x)
following Definition 9.5.

7 Conclusion

Adding multi-tilde operators to the set of regular operators allow us to provide
shorter expressions for denoting a given regular language. Given an extended ex-
pression, it is always possible to compute an equivalent expression in tilde normal
form. Such expressions are compatible with Glushkov functions, and thus, any
extended expression can still be turned into an equivalent Glushkov automaton.
The same properties have been proved for multi-bar operators [17]. In order
to achieve the second step of our programme we have considered expressions
that are augmented by both multi-bar and multi-tilde operators and we have
made use of the properties of the associated tilde normal form to recover an
extended expression from a given Glushkov automaton. This result should be
communicated shortly.

Multi-tilde Operators and Their Glushkov Automata 301

References

1. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers 9, 39–57 (1960)

2. Glushkov, V.M.: On a synthesis algorithm for abstract automata. Ukr. Matem.
Zhurnal 12(2), 147–156 (1960) (in Russian)

3. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers EC-12(2) (1963)

4. Hagenah, C., Muscholl, A.: Computing epsilon-free nfa from regular expressions in
O(n log2(n)) time. ITA 34(4), 257–278 (2000)

5. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-
free nondeterministic finite automata. J. Comput. Syst. Sci. 62(4), 565–588 (2001)

6. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 120(2), 197–213 (1993)

7. Champarnaud, J.M., Ziadi, D.: From c-continuations to new quadratic algorithms
for automata synthesis. Internat. J. Algebra Comput. 11(6), 707–735 (2001)

8. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
9. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a

given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005)

10. Han, Y.S., Wood, D.: Obtaining shorter regular expressions from finite-state au-
tomata. Theor. Comput. Sci. 370(1-3), 110–120 (2007)

11. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results
and open problems. Journal of Automata, Languages and Combinatorics 10(4),
407–437 (2005)

12. Ziadi, D.: Regular expression for a language without empty word. Theor. Comput.
Sci. 163(1&2), 309–315 (1996)

13. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. In: Albers, S., Weil, P. (eds.) STACS. Dagstuhl Seminar Proceedings,
vol. 08001, pp. 325–336 (2008)

14. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expres-
sion size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfs-
dóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50.
Springer, Heidelberg (2008)

15. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. In: Câmpeanu, C. (ed.) 10th International Workshop on Descriptional
Complexity of Formal Systems (DCFS 2008), Charlottetown, Canada, pp. 182–193
(2008)

16. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1–2), 75–90 (2000)

17. Caron, P., Champarnaud, J.M., Mignot, L.: A new family of regular operators
fitting with the position automaton computation. In: et al. (eds.) International
Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM 2009), S̋pindleruv Mýn, Czech Republic. LNCS (2009)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

19. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages. Word, Language, Grammar, vol. I, pp. 41–110. Springer, Berlin
(1997)

20. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall, Boca Raton
(1971)

Non-uniform Cellular Automata�

Gianpiero Cattaneo1, Alberto Dennunzio1, Enrico Formenti2,��,
and Julien Provillard3

1 Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Viale Sarca 336, 20126 Milano, Italy
{cattang,dennunzio}@disco.unimib.it

2 Université de Nice-Sophia Antipolis, Laboratoire I3S,
2000 Route des Colles, 06903 Sophia Antipolis, France

enrico.formenti@unice.fr
3 Ecole Normale Supérieure de Lyon,
46, Allée d’Italie, 69364 Lyon, France
julien.provillard@ens-lyon.fr

Abstract. In this paper we begin the study the dynamical behavior
of non-uniform cellular automata and compare it to the behavior of
“classical” cellular automata. In particular we focus on surjectivity and
equicontinuity.

1 Introduction and Motivations

Cellular automata (CA) are a well-known formal model for complex systems
that is used in many scientific fields [1,2,3]. Uniformity is one of the main
characteristics of this model. Indeed, a cellular automaton is made of identi-
cal finite automata arranged on a regular lattice. The state of each automaton
is updated by a local rule on the basis of the state of the automaton itself
and of the one of a fixed set of neighbors. At each time-step, the same (here
comes uniformity) local rule is applied to all finite automata in the lattice.
For recent results on CA dynamics and an up-to-date bibliography see for in-
stance [4,5,6,7,8,9,10,11,12,13,14,15,16].

In this paper we study a more general setting relaxing the uniformity con-
straint. Assume to use CA for simulating a physical or natural phenomenon.
Relaxing the uniformity constraint can be justified in several situations:

Generality. In many phenomena, each individual locally interacts with others
but maybe these interactions depend on the individual itself or on its position
in the space.
� This work has been supported by the Interlink/MIUR project “Cellular Automata:

Topological Properties, Chaos and Associated Formal Languages”, by the ANR
Blanc “Projet Sycomore” and by the PRIN/MIUR project “Formal Languages and
Automata: Mathematical and Applicative Aspects”.

�� Corresponding author.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 302–313, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Non-uniform Cellular Automata 303

Structural stability. Assume that we are investigating the robustness of a system
w.r.t. some specific property P . If some individuals change their “standard”
behavior does the system still have property P? What is the “largest” number
of individuals that can change their default behavior so that the system does
not change its overall evolution?

Reliability. CA are more and more used to perform (fast parallel) computations
(see for example [2]). Each cell of the CA is implemented by a simple electronic
device (FPGAs for example). Then, how reliable are computations w.r.t. failure
of some of these devices? (Here failure is interpreted as a device which behaves
differently from its “default” way).

Finally, remark that the study of these generalizations has an interest in its
own since the new model coincides with the set of continuous functions in Cantor
topology.

2 Non-uniform Cellular Automata ν-CA
In the present paper we focus on the one-dimensional case (i.e. the lattice is Z).
Remark that most of the following definitions can be easily extended to higher
dimensions. Before introducing the formal definition of ν-CA, one should recall
the definition of cellular automaton.

Let A be a finite set describing the possible states of any cell. A configuration
is a snapshot of the states of all cells in the CA, i.e., a function from Z to A.
Given a configuration x, we denote by xi ∈ A the state of the cell in position
i ∈ Z. For a fixed state a ∈ A, a configuration is a-finite if only a finite number
of automata in the CA are in a state different from a.

A (one-dimensional) CA is a structure 〈A, r, f〉, where A is the above intro-
duced finite set of states, also called the alphabet, and f : A2r+1 → A is the local
rule whose radius is r. The global rule induced by a CA 〈A, r, f〉 is the map
F : AZ → AZ defined by

∀x ∈ AZ, ∀i ∈ Z, F (x)i = f(xi−r, . . . , xi+r) . (1)

This rule describes the global evolution of the CA from the generic configuration
x ∈ AZ at time-step t ∈ N to the configuration F (x) at the next time-step t + 1.

The configuration set AZ is equipped with the distance d(x, y) = 2−n where
n = min{i ≥ 0 : xi �= yi or x−i �= y−i}. With respect to the topology induced by
d, the configuration set is a Cantor space and F is continuous. Hence, (AZ, F)
is a discrete (time) dynamical system.

Notation. Given a configuration x ∈ AZ, for any pair i, j ∈ Z, with i ≤ j, we
denote by x[i,j] the word xi · · ·xj ∈ Aj−i+1, i.e., the portion of the configuration
x inside the interval [i, j] = {k ∈ Z : i ≤ k ≤ j}. A cylinder of block u ∈ Ak and
position i ∈ Z is the set [u]i = {x ∈ AZ : x[i,i+k−1] = u}. Cylinders are clopen
sets w.r.t. the metric d.

304 G. Cattaneo et al.

The meaning of (1) is that the same local rule f is applied to each site of
the CA. Relaxing this last constraint gives us the definition of a ν-CA. More
formally one can give the following.

Definition 1 (Non-Uniform Cellular Automaton (ν-CA)). A non-uniform
Cellular Automaton (ν-CA) is a structure 〈A, {hi, ri}i∈Z〉 defined by a family of
local rules hi : A2ri+1 → A of radius ri all based on the same set of states A.

Similarly to CA, one can define the global rule of a ν-CA as the map H : AZ → AZ

given by the law

∀x ∈ AZ, ∀i ∈ Z, H(x)i = hi(xi−ri , . . . , xi+ri) .

From now on, we identify a ν-CA (resp., CA) with the discrete dynamical system
induced by itself or even with its global rule H (resp., F).

It is well known that the Hedlund’s Theorem [17] characterizes CA as the
class of continuous functions commuting with the shift map σ : AZ → AZ, where
∀x ∈ AZ, ∀i ∈ Z, σ(x)i = xi+1. It is possible to give a characterization also of
the class of ν-CA since it is straightforward to prove the following.

Proposition 1. A function H : AZ → AZ is the global map of a ν-CA iff it is
continuous.

The previous proposition gives the important information that the pair (AZ, H)
is a discrete dynamical system, but in many practical cases this setting is by far
too general to be useful. Therefore, we are going to focus our attention only over
two special subclasses of ν-CA.

Definition 2 (dν-CA). A ν-CA H is a dν-CA if there exist two natural k, r
and a rule h : A2r+1 → A such that for all integers i with |i| > k it holds that
hi = h. In this case, we say that H has default rule h.

Definition 3 (rν-CA). A ν-CA H is a rν-CA if there exists an integer r such
that any local rule hi has radius r. In this case, we say that H has radius r.

The first class restricts the number of positions at which non-default rules can
appear, while the second class restricts the number of different rules but not the
number of occurrences nor it imposes the presence of a default rule. Some easy
examples follow.

Example 1. Consider the ν-CA H(1) : AZ → AZ defined as ∀x ∈ AZ, H(1)(x)i = 1
if i = 0; 0 otherwise. Remark that H(1) is a dν-CA which cannot be a CA since
it does not commute with σ. So the class of ν-CA is larger than the original class
of all CA.

Example 2. Consider the ν-CA H(2) : AZ → AZ defined as ∀x ∈ AZ, H(2)(x)i = 1
if i is even; 0 otherwise. Remark that H(2) is a rν-CA but not a dν-CA.

Example 3. Consider the ν-CA H(3) : AZ → AZ defined as ∀x ∈ AZ, H(3)(x)i =
x0. Remark that H(3) is a ν-CA but not a rν-CA.

Focusing the study on dν-CA and rν-CA is not a great loss in generality since
(at some extent) each ν-CA can be viewed as the limit of a sequence of dν-CA.

Non-uniform Cellular Automata 305

Proposition 2. CA � dν-CA � rν-CA � ν-CA, where CA is the set of all CA.

Proof. The inclusions ⊆ easily follow from the definitions. For the strict inclu-
sions refer to Examples 1 to 3. ��

Similarly to what happens for CA one can prove the following.

Proposition 3. For every rν-CA H on the alphabet A there exists a radius 1
rν-CA H ′ and a bijective continuous mapping φ such that H ◦ φ = φ ◦H ′. That
is, H is topologically conjugated to H ′.

Proof. Let H be a rν-CA. If H has radius r = 1 then this result is trivially
true using the identity as a conjugacy map. If r > 1, let B = Ar and define
φ : AZ → BZ as ∀i ∈ Z, φ(x)i = x[ir,(i+1)r). Then, it is not difficult to see
that the rν-CA (BZ, H ′) of radius 1 defined as ∀x ∈ AZ, ∀i ∈ Z, H ′(x)i =
h′

i(xi−1, xi, xi+1) is topologically conjugated to H via φ, where ∀u, v, w ∈ B, ∀i ∈
Z, ∀j ∈ {0, . . . , r − 1}, (h′

i(u, v, w))j = hir+j(u[j,r)vw[0,j]). ��

Finally, the following result shows that every rν-CA is a subsystem of a suitable
CA. Therefore, the study of rν-CA dynamics might reveal new properties for CA
and vice-versa.

Theorem 1. Any rν-CA H : AZ → AZ of radius r is a subsystem of a CA,
i.e., there exist a CA F : BZ → BZ on a suitable alphabet B and a continuous
injection φ : AZ → BZ such that φ ◦ H = F ◦ φ.

Proof. Consider a rν-CA H : AZ → AZ of radius r. Remark that there are only
n = |A||A|2r+1

distinct functions hi : A2r+1 → A. Take a numbering (fj)1≤j≤n

of these functions and let B = A×{1, . . . , n}. Define the mapping φ : AZ → BZ

such that ∀x ∈ AZ, ∀i ∈ Z, φ(x)i = (xi, k), where k is the integer for which
H(x)i = fk(xi−r , . . . , xi+r). Clearly, φ is injective and continuous. Now, define
a CA F : BZ → BZ using the local rule f : B2r+1 → B such that

f((x−r, k−r), . . . , (x0, k0), . . . , (xr, kr)) = (fk0(x−r , . . . , xr), k0) .

It is not difficult to see that φ ◦ H = F ◦ φ. ��

3 CA vs. ν-CA
In this section, we investigate some differences in dynamical behavior between
CA and ν-CA. As we are going to see, many characteristics which are really
specific to the whole class of CA are lost in the larger class of ν-CA. This will be
explored by showing via counter-examples that these properties are not satisfied
by the whole class of ν-CA.

First of all, let us recall that given a ν-CA H , a configuration x ∈ AZ is an
ultimately periodic point of H if there exist p, q ∈ N such that Hp+q(x) = Hq(x).
If q = 0, then x is periodic, i.e., Hp(x) = x. The minimum p for which Hp(x) = x

306 G. Cattaneo et al.

holds is called period of x. A ν-CA is surjective (resp. injective) if its global rule
is surjective (resp. injective).

It is well known that in the case of CA the collection of all ultimately periodic
configurations is dense in the configurations space AZ. This property is not true
in the general case of ν-CA. We will show this result making reference to the
following interesting example of ν-CA.

Example 4. Let A = {0, 1} and define the following dν-CA H(4) : AZ → AZ as

∀x ∈ AZ, ∀i ∈ Z, H(4)(x)i =

{
xi if i = 0
xi−1 otherwise .

The first no–go result is relative to the above example.

Proposition 4. The set of ultimately periodic points of H(4) is not dense.

Proof. Let H = H(4). Denote by P and U the sets of periodic and ultimately
periodic points, respectively. Let E = {x ∈ AZ : ∀i ∈ N, xi = x0}. Take x ∈ P
with Hp(x) = x. Remark that the set Bx = {i ∈ N : xi �= x0} is empty. Indeed,
by contradiction, assume that B �= ∅ and let m = min B. It is easy to check that
∀y ∈ AZ, ∀i ∈ N, Hi(y)[0,i] = y0

i+1, hence xm = Hpm(x)m = x0, contradiction.
Thus x ∈ E and P ⊆ E.

Let y ∈ H−1(E). We show that By = ∅. By contradiction, let n = min By.
Since H(y)n+1 = yn �= y0 = H(y)0, then H(y) /∈ E. Contradiction, then y ∈ E
and H−1(E) ⊆ E. So ∀n ∈ N, H−n(E) ⊆ E. Moreover, U =

⋃
n∈N H−n(P) ⊆⋃

n∈N H−n(E) ⊆ E and E is not dense. ��

The following proposition proves that H(4) is not surjective, despite it is based
on two local rules each of which generates a surjective CA (namely, the identity
CA and the shift CA). Moreover, unlike the CA case (see [17]), H(4) has no
configuration with an infinite number of pre-images although it is not surjective.

Proposition 5. The dν-CA H(4) is not surjective and any configuration has
either 0 or 2 pre-images.

Proof. Since ∀x ∈ AZ, H(4)(x)0 = H(4)(x)1, configurations in the set B = {x ∈
AZ : x0 �= x1} have no pre-image. Then any x ∈ AZ \ B has 2 pre-images y and
z such that ∀i /∈ {−1, 0}, yi = zi = xi+1, y0 = z0 = x0, y−1 = 0; z−1 = 1. ��

In order to explore some other no-go results, we introduce an other example.

Example 5. Let A = {0, 1} and define a ν-CA H(5) : AZ → AZ by

∀x ∈ AZ, ∀i ∈ Z, H(5)(x)i =

{
0 if i = 0
xi−1 ⊕ xi+1 otherwise ,

where ⊕ is the xor operator.

The following results show that in the case of ν-CA, the Moore-Myhill theorem
on CA [18,19] is no more true.

Non-uniform Cellular Automata 307

Proposition 6. The ν-CA H(5) is injective on the finite 0-configurations but it
is not surjective.

Proof. It is evident that H(5) is not surjective. Let x, y be two finite configura-
tions such that H(5)(x) = H(5)(y). By contradiction, assume that xi �= yi, for
some i ∈ Z. Without loss of generality, assume that i ∈ N. Since xi ⊕ xi+2 =
H(5)(x)i+1 = H(5)(y)i+1 = yi ⊕ yi+2, it holds that xi+2 �= yi+2 and, by induc-
tion, ∀j ∈ N, xi+2j �= yi+2j . We conclude that ∀j ∈ N, xi+2j = 1 or yi+2j = 1
contradicting the assumption that x and y are finite. ��

A ν-CA H is positively expansive if there exists ε > 0 such for any pair of distinct
x, y ∈ AZ, d(Hn(x), Hn(y)) > ε for some n ∈ N. A ν-CA H is transitive if for
any distinct pair of non-empty open sets U, V ⊂ AZ, there exists n ∈ N such that
Hn(U)∩V �= ∅. Both of these properties are considered as standard indicators of
chaotic behavior. We will show now that, unlike the CA case, positively expansive
ν-CA are not necessarily transitive nor surjective.

Proposition 7. The ν-CA H(5) is positively expansive but it is neither transi-
tive nor surjective.

Proof. Let H = H(5). By Proposition 6, H is not surjective and hence it is not
transitive. Let x and y be two distinct configurations. Without loss of generality,
one can assume that there exists k = min{i ∈ N, xi �= yi}. If k ≤ 1, we have
d(H0(x), H0(y)) ≥ 1

2 . Otherwise, H(x)k−1 = xk−2 ⊕ xk �= yk−2 ⊕ yk = H(y)k−1
and H(x)[0,k−2] = H(y)[0,k−2]. By induction on k ∈ N, it is easy to see that
Hk−1(x)1 �= Hk−1(y)1. Hence d(Hk−1(x), Hk−1(y)) ≥ 1

2 . Thus H is positively
expansive with expansivity constant 1

2 . ��

Example 6. Let A = {0, 1} and define the ν-CA H(6) : AZ → AZ as follows

∀x ∈ AZ, ∀i ∈ Z, H(6)(x)i =

⎧⎪⎨⎪⎩
xi+1 if i < 0
x0 if i = 0
xi−1 otherwise.

Recall that for CA, the compactness of AZ and the uniformity of the local rule
allow one to prove that injective CA are surjective. The following result shows
that this does not hold in the case of ν-CA.

Proposition 8. The ν-CA H(6) is injective but not surjective.

Proof. Let H = H(6). Concerning non-surjectivity, just remark that only con-
figurations x such that x−1 = x0 = x1 have a pre-image. Let x, y ∈ AZ with
H(x) = H(y). Then, we have ∀i > 0, xi−1 = yi−1 and ∀i < 0, xi+1 = yi+1. So
x = y and H is injective. ��

4 Surjectivity

In the context of (1D) CA, the notion of De Bruijn graph is very handy to find
fast decision algorithms for surjectivity, injectivity and openness. Here, we extend

308 G. Cattaneo et al.

this notion to work with dν-CA and find decision algorithm for surjectivity. We
stress that surjectivity is undecidable for two (or higher) dimensional dν-CA,
since surjectivity is undecidable for 2D CA [20].

Definition 4. Consider a dν-CA H of radius r and let f be its default rule. Let
k ∈ N be the largest integer such that hk �= f or h−k �= f . The De Bruijn graph of
H is the pair (V, E) where V = A2r×{−k−1, . . . , k+1} and E is the set of pairs
((a, i), (b, j)) with label in A×{0, 1} and such that ∀i ∈ {0, . . . , 2r−1}, ai = bi+1
and one of the following condition is verified

a) i = j = −k − 1; in this case the label is (f(a0b), 0)
b) i + 1 = j; in this case the label is (hk(a0b), 0)
c) i = j = k + 1; in this case the label is (f(a0b), 1)

By this graph, a configuration can be seen as a bi-infinite path on vertexes
which passes once from a vertex whose second component is in [−k + 1, k − 1]
and infinite times from other vertices. The second component of vertices allows
to single out the positions of local rules different from the default one. The image
of a configuration is the sequence of first components of edge labels.

Theorem 2. Surjectivity is decidable for dν-CA.

Proof. We show that a dν-CA H is surjective iff its De Bruijn graph G recognizes
the language (A×{0})∗(A×{1})∗ when it is considered as the graph of a finite
state automaton. Denote by (a1, a2) any word of (A × {0, 1})∗. Let k be as in
Definition 4.

Assume that H is surjective and take u ∈ (A×{0})∗(A×{1})∗. Let n be the
number of 0’s appearing in u (in the second component). We have three cases:

1. If n = 0 then there exists v ∈ A∗ such that f(v) = u and we can construct
u by the sequence of vertices (v[0,2r), k + 1), . . . , (v[|v|−2r,|v|), k + 1).

2. If 0 < n < |u| then there exists v ∈ A∗ such that hk+1−n(v) = u. We can con-
struct u by the sequence of vertices (v[0,2r), u0), . . . , (v[|v|−2r,|v|), u|v|−2r−1)
where

uj =

⎧⎨⎩
−k − 1 if k + 1 − n + j < k
k + 1 if k + 1 − n + j > k

k + 1 − n + j otherwise

3. If n = |u| then there exists v ∈ A∗ such that f(v) = u and we can construct
u by the sequence of vertices (v[0,2r),−k − 1), . . . , (v[|v|−2r,|v|),−k − 1).

For the opposite implication, assume that G recognizes (A × {0})∗(A × {1})∗.
Take y ∈ AZ and let n > k. Since G recognizes (y[−n,n], 0n+k+11n−k), there exists
v ∈ A∗ such that H(v)[−n,n] = y[−n,n]. Set Xn =

{
x ∈ AZ, x[n,n] = y[−n,n]

}
. For

any n ∈ N, Xn is non-empty and compact. Moreover, Xn+1 ⊆ Xn. Therefore,
X =

⋂
n∈N Xn �= ∅ and H(X) = {y}. Hence, H is surjective. ��

Non-uniform Cellular Automata 309

5 More on Dynamical Properties

5.1 Equicontinuity

Let H be a ν-CA. A configuration x ∈ AZ is an equicontinuity point for H if
∀ε > 0 there exists δ > 0 such that for all y ∈ AZ, d(y, x) < δ implies that
∀n ∈ N, d(Hn(y), Hn(x)) < ε. A ν-CA is said to be equicontinuous if the
set E of all its equicontinuous points is the whole AZ, while it is said to be
almost equicontinuous if E is residual (i.e., E can be obtained by a countable
intersection of dense open subsets). A word u ∈ Ak is s-blocking (s ≤ k) for a
CA F if there exists an offset j ∈ [0, k − s] such that for any x, y ∈ [u]0 and
any n ∈ N, Fn(x)[j,j+s−1] = Fn(y)[j,j+s−1] . In [21], Kůrka proved that a CA is
almost equicontinuous iff it is non-sensitive iff it admits a blocking word.

We now introduce a class of ν-CA which will be useful in the sequel. It is an
intermediate class between dν-CA and rν-CA.

Definition 5 (n-compatible rν-CA). A rν-CA H is n-compatible with a local
rule f if for any k ∈ N, there exist two integers k1 > k and k2 < −k such that
∀i ∈ [k1, k1 + n) ∪ [k2, k2 + n), hi = f .

In other words, a ν-CA is n-compatible with f if, arbitrarily far from the center
of the lattice, there are intervals of length n in which the local rule f is applied.

The notion of blocking word and the related results cannot be directly restated
in the context of ν-CA because some words are blocking just thanks to the
uniformity of CA. To overcome this problem we introduce the following notion.

Definition 6 (Strongly blocking word). A word u ∈ A∗ is strongly s-
blocking for a CA F of local rule f if there exists an offset p ∈ [0, |u| − s]
such that for any ν-CA H with ∀i ∈ {0, . . . , |u| − 1}, hi = f it holds that

∀x, y ∈ [u]0, ∀n ≥ 0, Hn(x)[p,p+s) = Hn(y)[p,p+s) .

Roughly speaking, a word is strongly blocking if it is blocking whatever be the
perturbations involving the rules in its neighborhood. The following extends
Proposition 5.12 in [22] to strongly r-blocking words.

Proposition 9. Any r radius CA F is equicontinuous iff there exists k > 0
such that any word u ∈ Ak is strongly r-blocking for F .

Proof. If any word is strongly blocking then F is obviously equicontinuous. For
the opposite implication, by [22, Prop. 5.12], there exist p > 0 and q ∈ N such
that F q+p = F q. As a consequence, we have that ∀u ∈ A∗, |u| > 2(q + p)r ⇒
fp+q(u) = f q(u)[pr,|u|−(2q+p)r). Let H be a ν-CA such that hi = f for each
i ∈ {0, . . . , (2p + 2q + 1)r− 1}. For any x ∈ AZ and i ≥ 0, consider the following
words: s(i) = Hi(x)[0,qr), t(i) = Hi(x)[qr,(q+p)r), u(i) = Hi(x)[(q+p)r,(q+p+1)r),
v(i) = Hi(x)[(q+p+1)r,(q+2p+1)r), w(i) = Hi(x)[(q+2p+1)r,(2q+2p+1)r). For all i ∈
0, . . . , q + p, u(i) is fully determined by s(0)t(0)u(0)v(0)w(0) = x[0,(2q+2p+1)r).
Moreover, for any natural i, we have u(i+q+p) = f q+p(s(i)t(i)u(i)v(i)w(i)) =

310 G. Cattaneo et al.

f q(s(i)t(i)u(i)v(i)w(i))[pr,(p+1)r) = (t(i+q)u(i+q)v(i+q))[pr,(p+1)r) = u(i+q). Sum-
marizing, for all i ∈ N, u(i) is determined by the word x[0,(2q+2p+1)r) which
is then strongly r-blocking. Since x had been chosen arbitrarily, we have the
thesis. ��
Theorem 3. Let F be a CA with local rule f admitting a strongly r-blocking
word u. Let H be a rν-CA of radius r. If H is |u|-compatible with f then H is
almost equicontinuous.

Proof. Let p and n be the offset and the length of u, respectively. For any k ∈ N,
consider the set Tu,k of configurations x ∈ AZ having the following property
P : there exist l > k and m < −k such that x[l,l+n) = x[m,m+n) = u and
∀i ∈ [l, l + n) ∪ [m, m + n) hi = f . Remark that Tu,k is open, being a union of
cylinders. Clearly, each Tu,k is dense, thus the set Tu =

⋂
k≥n Tu,k is residual.

We claim that any configuration in Tu is an equicontinuity point. Indeed, choose
arbitrarily x ∈ Tu. Set ε = 2−k, where k ∈ N is such that x ∈ Tu,k. Then, there
exist k1 > k and k2 < −k − n satisfying P . Fix δ = min{2−(k1+n), 2−k2} and
let y ∈ AZ be such that d(x, y) < δ. Then y[k2,k1+|u|) = x[k2,k1+|u|). Since u is r-
blocking, ∀t ∈ N, Ht(x) and Ht(y) are equal inside the intervals [k1+p, k1+p+r]
and [k2 + p, k2 + p + r], then d(Ht(x), Ht(y)) < ε. ��
In a similar manner one can prove the following.

Theorem 4. Let F be an equicontinuous CA of local rule f . Let k ∈ N be as in
Proposition 9. Any rν-CA k-compatible with f is equicontinuous.

5.2 Sensitivity to the Initial Conditions

Recall that a CA F is sensitive to the initial conditions (or simply sensitive) if
there exists a constant ε > 0 such that for any configuration x ∈ AZ and any δ >
0 there is a configuration y ∈ AZ such that d(y, x) < δ and d(Fn(y), Fn(x)) ≥ ε
for some n ∈ N.

Example 7. Let A = {0, 1, 2} and consider the CA whose local rule f : A3 → A
is defined as follows: ∀x, y ∈ A, f(x, 0, y) = 1 if x = 1 or y = 1, 0 otherwise;
f(x, 1, y) = 2 if x = 2 or y = 2, 0 otherwise; f(x, 2, y) = 0 if x = 1 or y = 1, 2
otherwise.

Proposition 10. The CA defined in Example 7 is almost equicontinuous.

Proof. Just remark that the number of 0s inside the word 20i2 is non-decreasing.
Thus 202 is a 1-blocking word. ��
The following example defines a ν-CA which is sensitive to the initial conditions
although its default rule give rise to an almost equicontinuous CA.

Example 8. Consider the dν-CA H(8) : AZ → AZ defined as follows

∀x ∈ AZ, ∀i ∈ Z, H(8)(x)i =

{
1 if i = 0
f(xi−1, xi, xi+1) otherwise ,

where f and A are as in Example 7.

Non-uniform Cellular Automata 311

Remark that positive and negative cells do not interact each other under the
action of H(8). Therefore, in order to study the behavior of H(8), it is sufficient
to consider the action of H(8) on AN.

Lemma 1. For any u ∈ A∗, ∃n0 ∈ N such that ∀n > n0, (H(8))n(u0∞)1 = 1.

Lemma 2. ∀u ∈ A∗, ∀n0 ≥ 0, ∃n > n0, (H(8))n(u2∞)1 = 2.

Proposition 11. The dν-CA H(8) is sensitive.

Proof. Let H = H(8) and F be the set of all a-finite configurations for a ∈ {0, 2}.
By a theorem of Knudesen [23], we can prove the statement w.r.t. F . Then, for
any u ∈ A∗. Build x = u0∞ and y = u2∞. By Lemma 1 and 2, there exists n
such that 1 = Hn(x)1 �= Hn(y)1 = 2. And hence H is sensitive with sensitivity
constant ε = 1/2. ��
The following example shows that default rules individually defining almost
equicontinuous CA can also constitute ν-CA that have a completely different
behavior from the one in Example 8.

Example 9. Let A = {0, 1, 2} and define the local rule f : A3 → A as: ∀x, y, z ∈
A, f(x, y, z) = 2 if x = 2 or y = 2 or z = 2, z otherwise. The CA F of local
rule f is almost equicontinuous since 2 is a blocking word. The restriction of F
to {0, 1}Z gives the shift map which is sensitive. Thus F is not equicontinuous.
Define now the following dν-CA H(9):

∀x ∈ AZ, ∀i ∈ Z, H(9)(x)i =

{
2 if i = 0
f(xi−1, xi, xi+1) otherwise .

Proposition 12. The dν-CA H(9) is equicontinuous.

Proof. Let n ∈ N, x, y ∈ AZ be such that x[−2n,2n] = y[−2n,2n]. Since H is of
radius 1, ∀k ≤ n, Hk(x)[−n,n] = Hk(y)[−n,n] and ∀k > n, Hk(x)[−n,n] = 22n+1 =
Hk(y)[−n,n]. So, H is equicontinuous. ��

5.3 Expansivity and Permutivity

Recall that a rule f : A2r+1 is leftmost (resp., rightmost) permutive if ∀u ∈
A2r, ∀b ∈ A, ∃!a ∈ A, f(au) = b (resp., f(ua) = b). This definition can be easily
extended to ν-CA. Indeed, we say that a rν-CA is leftmost (resp. rightmost)
permutive if all hi are leftmost (resp. rightmost) permutive. A ν-CA is permutive
if it is leftmost or rightmost permutive.

In a very similar way to CA, given a ν-CA H and two integers a, b ∈ N with
a < b, the column subshift (Σ[a,b], σ) of H is defined as follows Σ[a,b] = {y ∈
(Ab−a+1)N : ∃x ∈ AZ, ∀i ∈ N, yi = Hi(x)[a,b]}. Consider the map I[a,b] : AZ →
Σ[a,b] defined as ∀x ∈ AZ, ∀i ∈ N, I[a,b](x)i = Hi(x)[a,b]. It is not difficult to see
that I is continuous and surjective. Moreover H ◦I[a,b] = I[a,b] ◦σ. Thus (ΣI , σ)
is a factor of the ν-CA (AZ, H) and we can lift some properties from (Σ[a,b], σ)
to (AZ, H). The following result tells that something stronger happens in the
special case of leftmost and rightmost permutive rν-CA.

312 G. Cattaneo et al.

Theorem 5. Any leftmost and rightmost permutive rν-CA of radius r is conju-
gated to the full shift ((A2r)N, σ).

Proof. Just remark that the map I[1,2r] : AZ → (A2r)N is bijective. ��

The requirements of the previous theorem are very strong. Indeed, there exist
ν-CA which are topologically conjugated to a full shift but that are not permu-
tive. As an example, consider the ν-CA H defined as follows

∀x ∈ AZ, ∀i ∈ Z, H(x)i =
{

xi−1 if i ≤ 0
xi+1 otherwise .

Then, Σ[0,1] = (A2)N et I[0,1] is injective.

6 Conclusions

In this paper we started exploring the dynamical behavior of ν-CA. Many specific
properties for CA are no longer true for ν-CA. However, under certain conditions,
some stability forms turned out to be quite robust when altering a CA to obtain a
ν-CA. Despite of the many no-go results proved in this paper, we strongly believe
that ν-CA can be useful for many practical applications and hence deserve further
studies.

References

1. Farina, F., Dennunzio, A.: A predator-prey ca with parasitic interactions and en-
vironmentals effects. Fundamenta Informaticae 83, 337–353 (2008)

2. Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular
Automata Theory and Applications, vol. 1. IEEE Press, Los Alamitos (1997)

3. Chopard, B.: Modelling physical systems by cellular automata. In: Rozenberg, G.,
et al. (eds.) Handbook of Natural Computing: Theory, Experiments, and Applica-
tions. Springer, Heidelberg (to appear, 2009)

4. Formenti, E., Kůrka, P.: Dynamics of cellular automata in non-compact spaces.
In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

5. Kůrka, P.: Topological dynamics of one-dimensional cellular automata. In: Meyers,
B. (ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and
System Science. Springer, Heidelberg (2008)

6. Cervelle, J., Dennunzio, A., Formenti, E.: Chaotic behavior of cellular automata.
In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

7. Kari, J.: Tiling problem and undecidability in cellular automata. In: Meyers, B.
(ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and
System Science. Springer, Heidelberg (2008)

8. Di Lena, P., Margara, L.: Undecidable properties of limit set dynamics of cellu-
lar automata. In: 26th Symposium on Theoretical Aspects of Computer Science
(STACS 2009). LNCS. Springer, Heidelberg (to appear, 2009)

Non-uniform Cellular Automata 313

9. Di Lena, P., Margara, L.: Computational complexity of dynamical systems: the
case of cellular automata. Information and Computation 206, 1104–1116 (2008)

10. Dennunzio, A., Formenti, E.: Decidable properties of 2D cellular automata. In:
Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 264–275. Springer,
Heidelberg (2008)

11. Dennunzio, A., Formenti, E., Kůrka, P.: Cellular automata dynamical systems. In:
Rozenberg, G., et al. (eds.) Handbook of Natural Computing: Theory, Experiments,
and Applications. Springer, Heidelberg (to appear, 2009)

12. Dennunzio, A., Formenti, E.: 2D cellular automata: new constructions and decid-
able properties (submitted, 2009)

13. Acerbi, L., Dennunzio, A., Formenti, E.: Conservation of some dynamcal properties
for operations on cellular automata. Theoretical Computer Science (to appear,
2009)

14. Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: On the directional dynamics
of additive cellular automata. Theoretical Computer Science (to appear, 2009)

15. Dennunzio, A., Masson, B., Guillon, P.: Sand automata as cellular automata (sub-
mitted, 2009)

16. Dennunzio, A., Guillon, P., Masson, B.: Stable dynamics of sand automata. In:
Fifth IFIP Confercence on Theoretical Computer Science (TCS 2008). IFIP,
vol. 273, pp. 157–179. Springer, Heidelberg (2008)

17. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Mathematical System Theory 3, 320–375 (1969)

18. Moore, E.F.: Machine models of self-reproduction. In: Proceedings of Symposia in
Applied Mathematics, vol. 14, pp. 13–33 (1962)

19. Myhill, J.: The converse to Moore’s garden-of-eden theorem. Proceedings of the
American Mathematical Society 14, 685–686 (1963)

20. Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of
Computer and System Sciences 48, 149–182 (1994)

21. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory & Dynamical Systems 17, 417–433 (1997)

22. Kůrka, P.: Topological and Symbolic Dynamics. Cours Spécialisés, vol. 11. Société
Mathématique de France (2004)

23. Knudsen, C.: Chaos without nonperiodicity. American Mathematical Monthly 101,
563–565 (1994)

A Cryptosystem Based on the Composition of
Reversible Cellular Automata

Adam Clarridge and Kai Salomaa

Queen’s University, Kingston, Canada
{adam,ksalomaa}@cs.queensu.ca

Abstract. We present conditions which guarantee that a composition
of marker cellular automata has the same neighbourhood as each of the
individual components. We show that, under certain technical assump-
tions, a marker cellular automaton has a unique inverse with a given
neighbourhood. We use these results to develop a working key genera-
tion algorithm for a public-key cryptosystem based on reversible cellular
automata originally conceived by Kari. We conclude with a discussion
on security and practical considerations for the cryptosystem and give
several ideas for future work.

1 Introduction

Cryptography has been a part of our everyday lives for some time now. Most
widely-used public-key encryption algorithms rely on advanced number theoretic
results to achieve a high level of security, such as RSA, whose security is believed
to rely on the hardness of the integer factorization problem. These systems tend
to have relatively slow implementations [1], and since we will always want more
efficient and secure encryption algorithms, it makes sense to consider alternate
techniques. Cellular automata (CA) as a medium for encryption is an attractive
idea in theory because most CA can be implemented on very fast hardware
[2,3,4], hence a CA-based scheme may have the potential to encrypt and decrypt
messages faster than existing techniques.

Most investigations into CA-based cryptosystems have been aimed at tradi-
tional secret-key systems [5,6,7,8,9,10]. There appear to be very few CA-based
public-key cryptosystems in the literature; one is the Finite Automata Public-
Key Cryptosystem, or Tao-Chen cryptosystem [1], although it uses nonhomoge-
neous CA. Kari’s paper [11] outlines an idea for a public-key cryptosystem based
on reversible cellular automata, and poses the question of how to implement the
key generation algorithm. We now review this paper in some detail, as it is the
main reference for our work.

The general objective of a public-key cryptosystem based on reversible cellular
automata (RCA) is to design an RCA that is very hard to invert without some
secret knowledge. That way, the RCA can be published and its inverse can be
kept as the private key. Kari emphasizes the importance that the RCA be at least
two-dimensional, since there exist algorithms to invert any one-dimensional RCA
[12], and also because of the following theorem.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 314–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Cryptosystem Based on the Composition of Reversible Cellular Automata 315

Theorem 1. [13] It is undecidable if a given two-dimensional CA is reversible.
This is true even when restricted to CA using the von Neumann neighbourhood.

This theorem provides a sound theoretical basis for the security of Kari’s public-
key cryptosystem [11]. The basic idea outlined in the paper was to compose
together several simple and reversible ’marker’ CA (which we define in Section 2)
in order to form a more complex cellular automaton C = Cn ◦ Cn−1 ◦ · · · ◦ C1,
with inverse

C−1 = C1
−1 ◦ C2

−1 ◦ · · · ◦ Cn
−1.

Encryption occurs by encoding the message as the initial configuration of the
CA, then evolving the composed CA for some k generations to obtain the
ciphertext. The inverse automaton does not need to be computed explicitly;
one need only apply each component of the composition in succession. The in-
verse is then applied for k iterations to decrypt the ciphertext. The composition
Cn◦Cn−1◦· · ·◦C1 is the public key, and each of the inverse automata of the com-
position (C1

−1, C2
−1, . . . , Cn

−1) are kept as the private key. A well-constructed
public key should be very hard to invert without knowledge of the components
C1, C2, . . . , Cn because the neighbourhood size of the inverse automaton would
be quite large.

Kari’s paper [11] includes an example of a marker RCA composition with a
2-dimensional neighbourhood of 4 cells, and whose inverse has a 2-dimensional
neighbourhood of 9 cells. The composition is made up of 5 very simple reversible
marker CA. This is of course just an illustrative example, and Kari points out
that longer and more complex (more states and a less restricted form) compo-
sitions would be needed in order to ensure security against brute force attacks.
However, a public key with s states and neighbourhood size n requires sn entries
in its local rule table, so it is essential to try to keep n small so that the public
key can be stored in reasonably sized memory.

The main issue preventing the practical implementation of Kari’s cryptosys-
tem is the question of how to choose (or randomly generate) reversible marker
CA such that the neighbourhood size of the composition remains small. In this
paper, we give one possible answer to this question and investigate the resulting
working cryptosystem.

We will state some preliminary assumptions and definitions before discussing
our results concerning the composition of a class of marker CA in Sections 2
and 3. We give an algorithm1 for generating public and private keys in Section 4,
and discuss practical implementation issues, security considerations, and ideas
for future research in Section 5.

2 Preliminaries

In this paper we assume that in a cellular array containing M1M2 · · ·Md cells,
where Mi is the number of cells of each dimension for i = 1, . . . , k, the neigh-
bours of cells near the edge of the cellular array are determined by adding the
1 Email the first author for a working software prototype.

316 A. Clarridge and K. Salomaa

component indices cyclically (modulo Mi). This is simply the toroidal boundary
condition. The term ’neighbourhood’ in this paper refers to either the pattern
of cells around a cell, or the states themselves in the pattern, depending on the
context.

A ’marker’ CA is defined by a permutation φ of the state set, and a finite
collection of patterns P1, P2, . . . , Pk around the origin. For each cell c, the local
rule of the marker CA checks if any of the patterns P1, P2, . . . , Pk is present
as the neighbourhood of c. If so, the permutation φ is applied to c’s state, and
if not, then c’s state does not change. Marker CA are also known as ’marker
automorphisms of the one-sided d-shift’ [14] in the dynamical systems literature.

We define a ’fixed-domain’ marker cellular automaton (or FDM CA) to be
a five-tuple (d,S,N ,A,f) with dimension d, state set S, neighbourhood vector
N = (n̄1, n̄2, . . . , n̄k), n̄i ∈ Zd for i = 1, 2, . . . , k, acting set A ⊆ Sk with entries
corresponding to the positions defined by N , and a function f : S → S. The
local rule of an FDM CA acts on a cell c (in state s) in the following simple way:
if the neighbours of c are in a state configuration corresponding to an element
of A, then the state of c on the next generation is f(s). Otherwise, the state of
c does not change. An FDM CA is just a special type of marker CA where all
of the patterns are mappings from N to S, hence the term ’fixed-domain’. Note
that, conversely, an arbitrary marker CA can be represented as an FDM CA by
choosing N to be sufficiently large.

In this paper, we use the terms ‘invertible’ and ‘reversible’ interchangeably
when referring to cellular automata. Also we define compositions of cellular
automata in the following way: for any two cellular automata C1 and C2 acting on
the same cellular grid, one generation of the CA C2 ◦C1 refers to the application
of one generation of C1 followed by one generation of C2.

3 Theoretical Results

3.1 Neighbourhood Size of Compositions

As we have noted above, for implementing a public-key cryptosystem based
on compositions of RCAs, a desirable property is that the composition should
have a small neighbourhood size. After defining some terms, we give necessary
and sufficient conditions that characterize the effect on neighbourhood size of
composing an FDM CA with an arbitrary CA.

Let B be an arbitrary cellular automaton with state set S, neighbourhood
NB = (n̄1, n̄2, . . . , n̄k), n̄i ∈ Zd, d ≥ 1, and local transition function hB : Sk → S
(hB maps the neighbourhood of a cell to its next state).

Denote the set of all possible configurations of the neighbourhood NB =
(n̄1, n̄2, . . . , n̄k) of a cell c by

SNB (c) = {(sn̄1 , sn̄2 , . . . , sn̄k
) | sn̄i ∈ S for i = 1, . . . , k},

where each sn̄i refers to the state of the cell in position n̄i.
The neighbourhood of the neighbourhood of a cell c contains any cell that is

a neighbour to one of c’s neighbours. Let us refer to this set as the second order

A Cryptosystem Based on the Composition of Reversible Cellular Automata 317

neighbourhood of c. We will assume without loss of generality that each cell is a
neighbour to itself, so each cell in the neighbourhood of c belongs to its second
order neighbourhood as well.

Denote the collection of all second order neighbourhoods of a cell c with
neighbourhood s = (sn̄1 , sn̄2 , . . . , sn̄k

) ∈ SNB (c) by

S̄NB (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

tn̄1+n̄1 tn̄1+n̄2 . . . tn̄1+n̄k

tn̄2+n̄1 tn̄2+n̄2 . . . tn̄2+n̄k

...
tn̄k+n̄1 tn̄k+n̄2 . . . tn̄k+n̄k

⎤⎥⎥⎥⎦ ∈ Sk×k ∀n̄ ∈ NB, tn̄ = sn̄

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The rows of each matrix in S̄NB (s) are the neighbourhoods of each of the cells
in s. The states in positions n̄1, n̄2, . . . , n̄k are fixed (they are the states of s),
while the rest of the second order neighbourhood is arbitrary.

The automaton B’s neighbourhood state changes for a cell c with neighbour-
hood s can be described by a function h̄B : S̄NB (s) → SNB (c) which maps a
second order neighbourhood to the next neighbourhood of c. The second order
neighbourhood contains all the information needed in order to determine the
next neighbourhood of c.

For the neighbourhood s ∈ SNB (c) we denote the set of all possible next
neighbourhoods by

next neighbourhoodB(s) = {h̄B(r̄) | r̄ ∈ S̄NB (s)}.

Now we can state conditions which characterize change in neighbourhood size
due to composition.

Proposition 1. Let B be an arbitrary CA with dimension d, state set S, neigh-
bourhood NB, and local state transition function hB. Let D be an FDM CA
(d,S,NB,AD,fD).

The composition D ◦ B has neighbourhood equal to NB if and only if for all
s ∈ SNB (c),

fD(hB(s)) �= hB(s) ⇒ next neighbourhoodB(s) ⊆ AD or
next neighbourhoodB(s) ∩ AD = ∅ (1)

Proof. Suppose that condition (1) holds. We want to show that for all s ∈
SNB (c), where c is some cell, we do not need any more information than the
neighbourhood s to compute the transition of D ◦ B. For neighbourhoods s ∈
SNB (c) such that the left hand side of condition (1) is false, D always maps
hB(s) to itself. Clearly in this case D does not create a dependence on a larger
neighbourhood. Now consider neighbours s ∈ SNB (c) such that both sides of
the implication (1) are true. The right side of (1) means that all next possible
neighbourhoods of s must either be contained in the acting set of D, or com-
pletely separate from the acting set of D. So the particular neighbourhood that
s actually gets mapped to by B is not important, since D already knows from s
whether or not it will act. If next neighbourhoodB(s) ⊆ AD, then D will apply

318 A. Clarridge and K. Salomaa

fD to hB(s), and if next neighbourhoodB(s) is disjoint from AD, then D will
apply the identity map to hB(s). Thus, we can compute the transition of D ◦B
at a cell c knowing just the current states of its neighbours, s.

Conversely, assume that (1) does not hold. This means that for some s ∈
SNB (c) there exist r̄1, r̄2 ∈ S̄NB (s) such that h̄B(r̄1) ∈ AD and h̄B(r̄2) �∈ AD,
and that fD(hB(s)) �= hB(s). Recall that r̄1 and r̄2 agree on the states of s,
and that h̄B denotes that function that maps a second order neighbourhood to
a neighbourhood of B.

Consider a collection of cells in the configuration of r̄1. When we apply D ◦B,
the B automaton changes the states of s to a neighbourhood which is in AD.
The D automaton is then applied. So the next state of the cell c is fD(hB(s)).

On the other hand, consider a collection of cells in the configuration of r̄2.
When we apply D ◦B, the B automaton changes the states of s to a neighbour-
hood which is not in AD. The D automaton applies the identity map. So the
next state of the cell c is hB(s).

Since fD(hB(s)) �= hB(s), this means that the CA D ◦ B cannot have the
neighbourhood NB, since it depends on one or more of the states of r̄1 and r̄2
which differ and are outside of NB. ��

The condition of Proposition 1 can be used to inductively define a sequence of
FDM CAs C1, C2, . . . , Cn such that C1◦C2◦· · ·◦Cn has the same neighbourhood
as each of its components.

One interesting property of FDM CAs is that a carefully chosen composition
can represent any cellular automaton.

Proposition 2. Every cellular automaton C with neighbourhood NC of size k
and state space S can be represented exactly by a composition of |S|k + 1 FDM
CAs with the same neighbourhood, if the FDM CAs are allowed |S|+ |S|k states.

The proof is a fairly straightforward construction and is omitted for brevity, but
can be found in [15]. Note that the upper bounds on the number of FDM CA
required in the composition and the number of extra states required are not
meant to be tight.

3.2 Reversibility

We now discuss the reversibility of FDM CA. In the following text we use the
notation s[0] to refer to the state in the ‘zero’ position of a neighbourhood vector
s ∈ SN .

Lemma 1. Let C = (d, S, N, AC , f) be an FDM CA, and assume the cell itself
is part of N (0 ∈ N) without loss of generality. Denote

B = {a ∈ AC | f(a[0]) �= a[0]}.

Then (d, S, N, B, f) is equivalent with C.

A Cryptosystem Based on the Composition of Reversible Cellular Automata 319

Fig. 1. An example of an (N, N ′)-neighbourhood mapping to an N ′ neighbourhood

Proof. The proof is immediate because tuples of AC not in B do not affect the
computation in any way. ��
We say that an FDM CA C with acting set AC is reduced if for every a ∈ AC ,
f(a[0]) �= a[0]. By Lemma 1, without loss of generality we can assume that an
arbitrary FDM CA is reduced.

We now generalize some of the definitions from Proposition 1 for an arbitrary
FDM CA C=(d,S,N ,AC ,f).

Let an arbitrary neighbourhood be denoted by N ′. Then let the (N, N ′)-
neighbourhood of a neighbourhood s ∈ SN be the configuration containing the
N neighbours of each of the elements in the N ′ neighbourhood. Let the set
of all (N, N ′)-neighbourhoods of s be denoted by S̄(N,N ′)(s). Note that an N -
neighbourhood of an N ′-neighbourhood is the same as an N ′-neighbourhood of
an N -neighbourhood, which can be more formally stated as follows. Let r be a
vector in S̄(N,N ′)(s) and let rN ′ be the ‘restriction’ of r to the neighbourhood
N ′, that is, rN ′ is an N ′-neighbourhood around the zero-position. Then the
(N ′, N)-neighbourhood of rN ′ equals r.

Let the transition function of C from (N, N ′)-neighbourhoods to N ′ neigh-
bourhoods be denoted by h̄C , which takes an (N, N ′)-neighbourhood configu-
ration and the neighbourhood N ′ as input, and outputs C’s action with that
configuration on the neighbourhood of size N ′. An illustration of an (N, N ′)-
neighbourhood and how it maps to an N ′ neighbourhood is given in Figure 1.

Let the transition function from neighbourhoods to sets of possible output
neighbourhoods be denoted by

next neighbourhoodC(s, N ′) = { h̄C(r̄, N ′) | r̄ ∈ S̄(N,N ′)(s) }.

The following result characterizes when a given FDM CA with neighbourhood
N has an FDM CA inverse with neighbourhood N ′.

Proposition 3. Let C be a reduced FDM CA (d,S,N ,AC ,f). Denote

X =
⋃

a∈AC

next neighbourhoodC(a, N ′). (2)

320 A. Clarridge and K. Salomaa

Then C has an FDM CA inverse with state set S and neighbourhood N ′ if and
only if

(∀ a /∈ AC) f(a[0]) �= a[0] ⇒ next neighbourhoodC(a, N ′) ∩ X = ∅. (3)

Proof. Assume condition (3) holds. Let us choose C−1 = (d, S, N ′, AC−1 , f−1)
where AC−1 = X , and show that it inverts C. Consider an arbitrary r̄ ∈
S̄(N,N ′)(a) of a neighbourhood a ∈ SN , such that h̄C(r̄, N ′) = b (∈ SN ′). If
a ∈ AC , then we know that b ∈ AC−1 so C−1 will map b[0] to f−1(b[0]) = a[0].
Now consider the case where a /∈ AC . In this case we know that a[0] = b[0].
If f(a[0]) = a[0](= b[0]), then C−1 correctly maps b[0] back to itself since
f−1(b[0]) = b[0]. On the other hand, if f(a[0]) �= a[0], then from (3) we know
that b /∈ AC−1 , and again C−1 must map b[0] to itself.

Conversely, assume that C has an inverse FDM CA D with neighbourhood
N ′ and let AD be the active set of D. Since D must correctly ‘map back’ all
states where C applied the function f , it is clear that X (as defined in (2)) is a
subset of AD.

It remains to show that (3) holds. For the sake of contradiction assume that
b = h̄C(r̄, N ′) ∈ X , where r̄ is an (N, N ′)-neighbourhood of a neighbourhood
a �∈ AC , and f(a[0]) �= a[0]. Since a �∈ AC , we know that a[0] = b[0]. Since D is
an inverse of C, the function used by D must be f−1. Since b ∈ X ⊆ AD, the
FDM CA D applies the function f−1 to b[0], but the result cannot be a[0] since
that would imply f(a[0]) = b[0] = a[0], a contradiction. ��

The following corollary addresses the uniqueness of FDM CA inverses.

Corollary 1. Let C and X be as defined in Proposition 3, and let C have some
inverse C−1 with neighbourhood N ′. Then C−1 is the only reduced FDM CA
with neighbourhood N ′ that inverts C.

Proof. Any inverse of C must have function f−1. Assume for the sake of con-
tradiction that there exists an FDM CA D with neighbourhood N ′ that inverts
C and has acting set AD �= X . In the proof of Proposition 3 we have observed
that X must be a subset of AD. Thus it is sufficient to show that there cannot
be an element b ∈ AD with b /∈ X .

Let b = h̄C(r̄, N ′), where r̄ ∈ S̄(N,N ′)(a), a /∈ AC since b /∈ X . Then D
cannot be the inverse of C because C maps a[0] to itself, but D maps b[0] = a[0]
to f−1(b[0]), which cannot be equal to b[0] since b ∈ AD and D is reduced. ��

4 A Public-Key Cryptosystem

We want to use the idea of composing together many simple RCAs to form a
complex RCA that is hard to invert, as outlined in the paper by Kari [11]. In
order to make this idea work, we need to have some way to randomly generate
a sequence of simple CAs such that the neighbourhood size of their composition
remains small (or constant), and each CA in the composition is reversible.

A Cryptosystem Based on the Composition of Reversible Cellular Automata 321

We will demand that the neighbourhood size of each cellular automaton in
the composition is the same, and that the entire composition has the same
neighbourhood as any of the components. The components will all be FDM CAs.
Since the neighbourhood, state set, and dimension are fixed, we must design an
algorithm which generates acting sets and transition functions for each of the
n components C1, C2, . . . , Cn. From the theory in the previous section, we can
now state some requirements for such an algorithm.

To maintain neighbourhood size during composition, the FDM CA Cj must
have an acting set Aj and transition function fj such that the composition
Cj ◦ (Cj−1 ◦Cj−2 ◦ · · · ◦C1) has the same neighbourhood, for all j ∈ {2, . . . , n}.
Referring to the condition from Proposition 1, we need to guarantee that for
each neighbourhood, the next neighbourhood set of Cj−1 ◦ Cj−2 ◦ · · · ◦ C1 is
either completely contained in Aj or is disjoint from Aj . Denote by T ⊆ S the
“change set”, that is, the set of all states that the composition Cj−1 ◦Cj−2 · · · ◦
C1 can possibly change. One way we can be sure to retain neighbourhood size
during composition is by setting Aj equal to the set of all neighbourhoods which
contain a state in T . The condition from Proposition 1 is satisfied since all
neighbourhoods containing states in T will certainly be mapped (by Cj−1 ◦
Cj−2 ◦ · · · ◦ C1) to neighbourhoods which also contain states in T (assuming
f1, f2, . . . , fj−1 are one-to-one mappings), and neighbourhoods which do not
contain any states in T will clearly be mapped to neighbourhoods which do not
contain any states in T . We use a less restricted version of this principle (which
still satisfies the neighbourhood size preservation condition) in our algorithm to
determine the acting set of each FDM CA in a composition.

The need for each of the FDM CAs in the composition to be invertible puts
additional restrictions on their form. In order to be sure that the FDM CA is
invertible, the set T which is used to find the acting set of each FDM CA must
contain all states that the function f can change. The functions f1, f2, . . . , fn

must also be permutations (one-to-one mappings). We discuss the key generation
algorithm in more detail in Section 4.1.

Once the component FDM CAs are generated, the public key is determined
by sequentially applying C1, C2, . . . , Cn to each possible neighbourhood (using
the neighbourhood as the starting configuration). The final state of the cell is
recorded, and the public key is this mapping of neighbourhoods to states. The
private key is not calculated explicitly; the CAs C−1

1 , C−1
2 , . . . , C−1

n are simply
applied sequentially for decryption. The message is encoded in a d dimensional
grid and is evolved for a fixed number of iterations of the public key to produce
the ciphertext. The ciphertext and number of iterations are sent as the encrypted
message.

4.1 The Key Generation Algorithm

Our key generation scheme is given in Algorithm 1. We should note that in this
algorithm, the random element function returns a random element from a given
set, the random function returns a floating point number between 0.0 and 1.0,
the random permutation function returns a random permutation mapping of a

322 A. Clarridge and K. Salomaa

given set, and the random binary function returns a random binary string of a
given length. Also, the get all possible neighbourhoods function returns all
possible neighbourhoods given a state set S and neighbourhood N .

Input: State space S, Neighbourhood N , Number of FDM CA n, 0 < p, q < 1
Output: Set of reversible FDM CAs C1, C2, . . . , Cn

Initialization
T ←− ∅
T.add (random element (S))
T.add (random element (S−T))
all possible neighbourhoods ←− get all possible neighbourhoods (S,N)

for i ← 1 to n do
The following code determines fi
if random () < p and T �= S then

T.add (random element (S−T))
end
fi ←− random permutation (T)

The following code determines Ai

binary string ←− random binary (|N |)
Ai ←− ∅
for neighbourhood ∈ all possible neighbourhoods do

unchanging neighbourhood ←− True
for j ← 1 to |N | do

if neighbourhood [j] ∈ T then
unchanging neighbourhood ←− False
if binary string [j] = 1 then

Ai.add (neighbourhood)
break

end

end

end
if unchanging neighbourhood = True and random () < q then

Ai.add (neighbourhood)
end

end
Ci ←− { S,N ,Ai,fi }

end

Algorithm 1. The public-key generation algorithm, discussed in Section 4.1

Initially T is a set T ⊆ S of two random elements of S. The FDM CAs in the
composition are then constructed in order from C1 to Cn. Before choosing each
Ci, with probability p a new element of S is added to the set T , and otherwise
T stays the same. The function fi is chosen for each FDM CA to be a random
permutation of the set T , and fi applies the identity map to states in S − T .

The only remaining task is to select the acting set. For each FDM CA in
the composition, a random binary string of length |N | is chosen. Every possible

A Cryptosystem Based on the Composition of Reversible Cellular Automata 323

neighbourhood is then considered as a candidate element of the acting set. If
the candidate neighbourhood has a state which is an element of T and is also
in a position corresponding to a ‘1’ of the binary string, then it is added to
the acting set. Also, if the neighbourhood contains only states which are not in
T , then the neighbourhood is added to the acting set with probability q. For
example, consider the case where S = {a, b, c}, N = {−1, 1}, T = {a, b}, and
the random binary string is 01. Then the neighbourhood ca is a member of
the acting set while ac is not, and cc will become a member of the acting set
with probability q. Note that if the neighbourhood N contains the zero element,
then clearly the case where the neighbourhood is added to the acting set with
probability q is irrelevant since not even the state of the cell can change.

We now discuss the correctness of this algorithm, and begin by showing that
the condition for constant neighbourhood size during composition holds. Assume
we are attempting to determine the acting set of the ith FDM CA in the compo-
sition, Ai, and let us first consider neighbourhoods which have at least one state
in T . If a neighbourhood is in Ai, then at least one element of T occurring in the
neighborhood corresponds to a ‘1’ in the binary string. Since Ci ◦Ci−1 ◦ · · · ◦C1
is T -invariant (states in T are mapped to states in T), the neighbourhood will
certainly be mapped to a neighbourhood in Ai. On the other hand, if a neigh-
bourhood is not in Ai, then all occurrences of states in T correspond to ‘0’
elements of the binary string. This neighbourhood is mapped to a neighbour-
hood where states in T also correspond to ‘0’ elements of the binary string, and
hence it is mapped to a neighbourhood which is not in Ai. Finally, a neighbour-
hood which contains no elements of T satisfies the condition of Proposition 1
since it must map to itself.

It remains to show that the condition for FDM CA reversibility holds for each
Ci. Rather conveniently, the previous conditions actually allow (or demand) that
Ai is also the acting set of the inverse FDM CA. Since any addition to the set T
during the construction of each FDM CA happens before we choose Ai, we are
guaranteed that elements of Ai will be mapped to elements of Ai, and elements
not in Ai will not be mapped to Ai. So the condition from Proposition 3 also
holds. We could not be sure of this if Ai was constructed with some T that did
not correspond with the states that fi changes.

Note that Algorithm 1 has running time exponential in neighbourhood size.

4.2 Security Concerns and Practical Considerations

Since the FDM CA compositions follow a specific form and are not general two-
dimensional RCA, we cannot directly use Kari’s result [13] to justify the security
of the system, and hence the security of this cryptosystem is largely unknown
to us. However, we do not believe that straightforward brute force attacks will
work. If one attempted to guess at a composition of FDM CAs which resulted in
the same public key, there are many choices for each CA and there are n! ways
to arrange them, since n is the number of CAs in the composition. One could
also attempt to keep track of all global inputs and outputs for a fixed grid size
in order to invert the composed CA. In this case the number of possible global

324 A. Clarridge and K. Salomaa

configurations is |S|(g) where g is the number of grid cells, so as long as the grid
(the message) is relatively large this method will not work.

We also do not believe that the inverse C−1
1 ◦C−1

2 ◦ · · · ◦C−1
n can be guessed

very easily. Although we do not calculate it explicitly, this CA must have a fairly
large neighbourhood because for each composition in the sequence, the condition
from Proposition 1 does not hold in general. Each time T changes during the
generation of the FDM CA, the inverse automaton’s neighbourhood size may
increase, and this can happen at most |S| − 2 times. So there is a computable
upper bound for the neighbourhood size of the inverse, given C1, C2, . . . , Cn, but
for reasonably large S and d > 1 this probably does not pose a security threat.

A user must choose the parameters of our algorithm with some care in or-
der to prevent these brute force attacks and also to be able to encrypt and
decrypt within a reasonable amount of time on a normal computer. An example
is N = {(0, 1), (1, 0)} (the top and right neighbours), |S| ≈ 25, grid size g ≈ 500,
number of FDM CA in the composition n ≈ 100, p = q = 0.5, and number of
iterations ≈ 100. These sizes can probably be increased significantly if the al-
gorithm were implemented on specialized parallel hardware (especially the grid
size and number of iterations). We should note that the expected number of CA
needed in the composition to just achieve T = S is (|S|−2) ·1/p, and so n should
be chosen so that it is significantly larger than this quantity. If n is too small,
then the composition will only change states in T , and all elements in S−T that
occur in the original message will occur in the same places in the ciphertext.

One security issue related to the last point is that with our key generation
algorithm as written, it is very easy for an attacker to determine which state
was last added to T . The public key will map this state to some other state
regardless of the neighbourhood. Not much can be immediately done with this
information, but perhaps it could be a starting point for a clever cryptanalytic
algorithm to find each of the FDM CA in the composition in backwards order.

5 Conclusion and Future Work

We presented conditions which guarantee that compositions of fixed-domain
marker cellular automata have the same neighbourhood as each of the individ-
ual components. We showed that, under certain technical assumptions, an FDM
CA has a unique inverse with a given neighbourhood. We used these results to
design, present, and show the correctness of a working key generation algorithm
for a public-key cryptosystem originally conceived by Kari [11]. We also provided
some preliminary cryptanalysis and gave some practical implementation notes.

This work provides several avenues for further research. We have given perhaps
a more manageable definition of marker cellular automata, which could facilitate
or help with additional theoretical development in related areas. The security
of the cryptosystem presented in this work is currently unknown, and serious
cryptanalysis is needed before more can be said in this regard. When generating
the public key, there may be some alternate or more general way to choose the
component CAs to produce a more efficient or secure system. If the cryptosystem

A Cryptosystem Based on the Composition of Reversible Cellular Automata 325

does not break easily then it would make sense to try to design an optimal
hardware implementation and to do a corresponding feasibility analysis for real-
world applications.

References

1. Tao, R., Chen, S.: On finite automaton public-key cryptosystem. Theoretical Com-
puter Science 226(1-2), 143–172 (1999)

2. Charbouillot, S., Perez, A., Fronte, D.: A programmable hardware cellular automa-
ton: Example of data flow transformation. In: 13th IEEE International Conference
on Electronics, Circuits and Systems, pp. 1232–1235 (2006)

3. Franti, E., Slav, C., Balan, T., Dascalu, M.: Design of cellular automata hardware
for cryptographic applications. In: CAS 2004 Int. Semiconductor Conference, vol. 2,
pp. 463–466 (2004)

4. Zheng, Y., Imai, H.: A cellular automaton based fast one-way hash function suitable
for hardware implementation. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS,
vol. 1431, pp. 217–234. Springer, Heidelberg (1998)

5. Anghelescu, P., Ionita, S., Sofron, E.: Block encryption using hybrid additive cel-
lular automata. In: HIS 2007: Proceedings of the 7th International Conference on
Hybrid Intelligent Systems, Washington, DC, USA, pp. 132–137. IEEE Computer
Society, Los Alamitos (2007)

6. Gutowitz, H.: Cryptography with dynamical systems. In: Goles, E., Boccara, N.
(eds.) Cellular Automata and Cooperative Phenomena, pp. 237–274 (1993)

7. Gutowitz, H.: Method and apparatus for encryption, decryption, and authentica-
tion using dynamical systems. U.S. Patent 5365589 (1994)

8. Seredynski, M., Bouvry, P.: Block cipher based on reversible cellular automata.
Congress on Evolutionary Computation 2, 2138–2143 (2004)

9. Srebrny, M., Such, P.: Encryption using two-dimensional cellular automata with
applications. Artificial intelligence and Security in Computing Systems, 203–215
(2003)

10. Wolfram, S.: Random sequence generation by cellular automata. Advances in Ap-
plied Mathematics 7(2), 163–169 (1986)

11. Kari, J.: Cryptosystems based on reversible cellular automata (manuscript, 1992)
12. Amoroso, S., Patt, Y.: Decision procedures for surjectivity and injectivity of parallel

maps for tesselation structures. J. Comput. System Sci. 6, 448–464 (1972)
13. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.

System Sci. 48, 149–182 (1994)
14. Ashley, J.: Marker automorphisms of the one-sided d-shift. Ergodic Theory Dynam.

Systems 10(2), 247–262 (1990)
15. Clarridge, A., Salomaa, K.: A cryptosystem based on the composition of reversible

cellular automata. Technical Report 2008-549, Queen’s University, School of Com-
puting (2008)

Grammars Controlled by Special Petri Nets

Jürgen Dassow1 and Sherzod Turaev2

1 Otto-von-Guericke-Universität Magdeburg
PSF 4120, D-39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de
2 GRLMC, Universitat Rovira i Virgili

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
sherzod.turaev@urv.cat

Abstract. A Petri net controlled grammar is a context-free grammar
with a control by a Petri net whose transitions are labeled with rules of
the grammar or the empty string and the associated language consists
of all terminal strings which can be derived in the grammar and the se-
quence of rules in a derivation is in the image of a successful occurrence
of transitions of the net. We present some results on the generative ca-
pacities of such grammars that Petri nets are restricted to some known
structural subclasses of Petri nets.

1 Introduction

A Petri net controlled grammar is a context-free grammar with a control by a
Petri net whose transitions are labeled with rules of the grammar or the empty
string and the associated language consists of all terminal strings which can
be derived in the grammar and the sequence of rules in a derivation is in the
image of a successful occurrence of transitions of the net. In [1] we investigated
arbitrary Petri net controlled grammars in dependence on the type of labeling
(a bijection, coding and weak coding) and on the use of final markings (a finite
set of final markings and the set of all reachable markings).

In this paper we investigate grammars controlled by some special subclasses
of Petri nets, which corresponds to investigations in grammars with controlled
derivations where arbitrary regular sets are substituted by some special sub-
regular sets, e.g. in case of regularly controlled grammars and tree controlled
grammars, see [2] and [3].

The paper is organized as follows. In Section 2 we give some notions and
definitions from the theories of formal languages and Petri nets. In Section 3
we introduce the concept of a control of derivations in context-free grammars by
special Petri nets. In Section 4 we investigate the effect of labeling on the power of
the introduced families of languages. In Section 5 we discuss the effect of different
types of final markings on the generative power and give some characterizations
by other regulated grammars.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 326–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Grammars Controlled by Special Petri Nets 327

2 Definitions

Throughout the paper, we assume that the reader is familiar with the basic
concepts of the theories of formal languages and Petri nets; for details we refer
to [4,5,6,7].

Let Σ be an alphabet. A string over Σ is a sequence of symbols from the
alphabet. The set of all strings over the alphabet Σ is denoted by Σ∗. A subset
L of Σ∗ is called a language. A string u = u1u2 · · ·un, u1, u2, . . . , un ∈ Σ is a
scattered substring of v ∈ Σ∗ if v = v1u1v2 · · ·unvn+1 for some v1, v2, . . . , vn+1 ∈
Σ∗ with n ≥ 1. The length of a string w is denoted by |w|, and the number of
occurrences of a symbol a in a string w by |w|a. The empty string is denoted by
λ which is of length 0.

A string u1v1u2v2 · · ·unvn is called a shuffle of strings u = u1u2 · · ·un and
v = v1v2 · · · vn where ui, vi ∈ Σ∗, 1 ≤ i ≤ n. A shuffle of u and v is proper if it is
not a concatenation of u and v or v and u. A shuffle of u1, u2, . . . , un, n ≥ 3 is a
shuffle of a shuffle of u1, u2, . . . , un−1 and un. A shuffle of u1, u2, . . . , un, n ≥ 2,
is semi if for some 1 ≤ i < j ≤ n, ui = uj, then a proper shuffle of ui and uj

is not its scattered substring, in words, a semi-shuffle string does not contain
self-shuffled scattered substrings.

A context-free grammar is a quadruple G = (V, Σ, S, R) where V and Σ are
the disjoint finite sets of nonterminal and terminal symbols, respectively, S ∈ V
is the start symbol and the finite set R ⊂ V × (V ∪Σ)∗ is the set of (production)
rules. Usually, a rule (A, x) is written as A → x. A rule of the form A → λ is
called an erasing rule. The word x ∈ (V ∪ Σ)+ directly derives y ∈ (V ∪ Σ)∗,
written as x ⇒ y, iff there is a rule r = A → α ∈ R such that x = x1Ax2
and y = x1αx2. The reflexive and transitive closure of ⇒ is denoted by ⇒∗. A
derivation using the sequence of rules π = r1r2 · · · rn is denoted by π=⇒ or r1r2···rn=====⇒.
The language generated by G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

A regularly controlled grammar is a quintuple G = (V, Σ, S, R, K) where
V, Σ, S, R are specified as in a context-free grammar and K is a regular set
over R. The language generated by G consists of all words w ∈ Σ∗ such that
there is a derivation S

r1r2···rn=====⇒ w where r1r2 · · · rn ∈ K.
A matrix grammar is a quadruple G = (V, Σ, S, M) where V, Σ, S are defined

as for a context-free grammar, M is a finite set of matrices which are finite
strings over a set of context-free rules. The language generated by the grammar
G consists of all strings w ∈ Σ∗ such that there is a derivation S

r1r2···rn=====⇒ w
where r1r2 · · · rn is a concatenation of some matrices mi1 , mi2 , . . . , mik

∈ M .
A vector grammar is a quadruple G = (V, Σ, S, M) whose components are

defined as for a matrix grammar. The language generated by the grammar G
consists of all strings w ∈ Σ∗ such that there is a derivation S

r1r2···rn=====⇒ w where
r1r2 · · · rn is a shuffle of some matrices mi1 , mi2 , . . . , mik

∈ M .
A semi-matrix grammar is a quadruple G = (V, Σ, S, M) whose components

are defined as for a matrix grammar. The language generated by the grammar
G consists of all strings w ∈ Σ∗ such that there is a derivation S

r1r2···rn=====⇒ w
where r1r2 · · · rn is a semi-shuffle of some matrices mi1 , mi2 , . . . , mik

∈ M .

328 J. Dassow and S. Turaev

A matrix (semi-matrix, vector) grammar G is called without repetitions, if
each rule r occurs in M = {m1, m2, . . . , mn} only once, i.e., |m1m2 · · ·mn|r = 1.
For each matrix grammar, by adding chain rules, one can construct an equivalent
matrix grammar without repetitions.

The families of languages generated by regularly controlled, matrix, vector
and semi-matrix grammars (with erasing rules) are denoted by rC, MAT, V
and sMAT (rCλ, MATλ, Vλ and sMATλ), respectively. It is known that
rC = MAT ⊆ V and rCλ = MATλ = Vλ = sMATλ (see [8], [9]).

A Petri net (PN) is a construct N = (P, T, F, ϕ) where P and T are disjoint
finite sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the
set of directed arcs, ϕ : F → {1, 2, . . .} is a weight function.

A Petri net can be represented by a bipartite directed graph with the node set
P ∪ T where places are drawn as circles, transitions as boxes and arcs as arrows
with labels ϕ(p, t) or ϕ(t, p). If ϕ(p, t) = 1 or ϕ(t, p) = 1, the label is omitted.

A mapping µ : P → {0, 1, 2, . . .} is called a marking. For each place p ∈ P , µ(p)
gives the number of tokens in p. Graphically, tokens are drawn as small solid dots
inside circles. •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are called pre-
and post-sets of x ∈ P ∪ T , respectively. For X ⊆ P ∪ T , define •X =

⋃
x∈X

•x
and X• =

⋃
x∈X x•. The elements of •t (•p) are called input places (transitions)

and the elements of t• (p•) are called output places (transitions) of t (p).
A sequence of places and transitions ρ = x1x2 · · ·xn is called a path if and

only if no place or transition except x1 and xn appears more than once, and
xi+1 ∈ x•

i for all 1 ≤ i ≤ n − 1. A path ρ = x1x2 · · ·xn is a cycle if x1 = xn. By
Pρ, Tρ, Fρ the sets of places, transitions, and arcs of a path ρ are denoted. The
sequence of transitions in a path ρ is denoted by tr(ρ).

A transition t ∈ T is enabled by marking µ iff µ(p) ≥ ϕ(p, t) for all p ∈ P .
In this case t can occur (fire). Its occurrence transforms the marking µ into the
marking µ′ defined for each place p ∈ P by µ′(p) = µ(p) − ϕ(p, t) + ϕ(t, p). A
finite sequence t1t2 · · · tk of transitions is called an occurrence sequence enabled
at a marking µ if there are markings µ1, µ2, . . . , µk such that µ

t1−→ µ1
t2−→ . . .

tk−→
µk. In short this sequence can be written as µ

t1t2···tk−−−−−→ µk or µ
ν−→ µk where

ν = t1t2 · · · tk. For each 1 ≤ i ≤ k, the marking µi is called reachable from the
marking µ.

A marked Petri net is a system N = (P, T, F, ϕ, ι) where (P, T, F, ϕ) is a Petri
net, ι is the initial marking. Let M be a set of markings, which will be called
final markings. An occurrence sequence ν of transitions is called successful for
M if it is enabled at the initial marking ι and finished at a final marking τ of M .

An ordinary net (ON) is a Petri net N = (P, T, F, ϕ, ι) where ϕ(x, y) = 1 for
all (x, y) ∈ F . We omit ϕ from the definition of an ordinary net.

We regard the following main structural subclasses of Petri nets.

A state machine (SM) is an ordinary Petri net such that |•t| = |t•| = 1 for all
t ∈ T .

A marked graph (MG) is an ordinary Petri net such that |•p| = |p•| = 1 for
all p ∈ P .

Grammars Controlled by Special Petri Nets 329

SM

MG

CN

GSM

GMG

FC EFC AC ON PN

Fig. 1. The hierarchy of Petri net classes

A generalized state machine (GSM) is an ordinary Petri net such that |•t| ≤ 1
and |t•| ≤ 1 for all t ∈ T .

A generalized marked graph (GMG) is an ordinary Petri net such that |•p| ≤ 1
and |p•| ≤ 1 for all p ∈ P .

A casual net (CN) is a generalized marked graph each subgraph of which is
not a cycle.

A free-choice net (FC) is an ordinary Petri net such that if p•1 ∩ p•2 �= ∅ then
|p•1| = |p•2| = 1 for all p1, p2 ∈ P .

An extended free-choice net (EFC) is an ordinary Petri net such that if p•1 ∩
p•2 �= ∅ then p•1 = p•2 for all p1, p2 ∈ P .

An asymmetric choice net (AC) is an ordinary Petri net such that if p•1∩p•2 �= ∅
then p•1 ⊆ p•2 or p•1 ⊇ p•2 for all p1, p2 ∈ P .

The hierarchy of the introduced subclasses of Petri nets is shown in Fig. 1
where the arrows denote proper inclusions of the left families into the right
families.

3 Grammars and Their Languages

We introduce the concept of control by special Petri nets.

Definition 1. A Petri net controlled grammar (in short a PN controlled gram-
mar) is a tuple G = (V, Σ, S, R, N, γ, M) where V , Σ, S, R are defined as for
a context-free grammar, N = (P, T, F, ι) is a Petri net, γ : T → R ∪ {λ} is a
transition labeling function and M is a set of final markings.

If a Petri net is a (generalized) state machine, (generalized) marked graph, causal
net, (extended) free-choice net, asymmetric choice net or ordinary net, then
we call a (generalized) state machine, (generalized) marked graph, causal net,
(extended) free-choice net, asymmetric choice net or ordinary net controlled
grammar, respectively. We also use the common name a special Petri net (sPN)
when we refer to each sub-class.

Definition 2. The language generated by a PN controlled grammar G consists
of all strings w ∈ Σ∗ such that there is a derivation S

π=⇒ w ∈ Σ∗, π = r1r2 · · · rk,
and a successful occurrence sequence ν = t1t2 · · · ts for M such that π = γ(ν).

330 J. Dassow and S. Turaev

•

p′

S → AB

A → aA B → aB

A → bA B → bB

A → λ B → λ

λ

λ

Fig. 2. A state machine N1

(This definition uses the extended form of the transition labeling function γ :
T ∗ → R∗; this extension is done in the usual manner.)

Different labeling strategies and different definitions of the set of final mark-
ings result various types of Petri net controlled grammars. In this paper we
consider the following types of Petri net controlled grammars.

A Petri net controlled grammar is called free (abbreviated by f), λ-free (ab-
breviated by −λ) or extended (abbreviated by λ) if γ is a bijection (the labels
of the transitions are distinct and non-null), a coding (different transitions may
be labeled with the same symbol) or a week coding (transitions may be labeled
with λ), respectively.

A Petri net controlled grammar is of r-type, t-type or g-type if M is the set
of all reachable markings, the finite set of markings or a set of any markings
which is greater or equal to an element of a given finite set M0 of markings,
respectively.

We use the notation a (x, y)-PN controlled grammar where x ∈ {f,−λ, λ}
shows the type of a labeling function and y ∈ {r, t, g} shows the type of a set of
final markings.

We denote the families of languages generated by grammars controlled by
state machines, generalized state machines, marked graphs, generalize marked
graphs, causal nets, free-choice nets, extended free-choice nets, asymmetric nets,
ordinary nets and petri nets (with erasing rules) by SM(x, y), GSM(x, y),
MG(x, y), GMG(x, y), CN(x, y), FC(x, y), EFC(x, y), AC(x, y), ON(x, y),
PN(x, y) (SMλ(x, y), GSMλ(x, y), MGλ(x, y), GMGλ(x, y), CNλ(x, y),
FCλ(x, y), EFCλ(x, y), ACλ(x, y), ONλ(x, y), PNλ(x, y)), respectively,
where x ∈ {f,−λ, λ} and y ∈ {r, t, g}.

We use bracket notation Y[λ] for a language family Y in order to say that a
statement holds both in case of with erasing rules and in case of without erasing
rules.

Grammars Controlled by Special Petri Nets 331

λ

S → AB

A → aA B → aB

A → bA B → bB

A → λ B → λ

Fig. 3. A marked graph N2

For x ∈ {f,−λ, λ} and y ∈ {r, t, g}, the inclusion Y(x, y) ⊆ Yλ(x, y) is
obvious where Y ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON}.
Example 1. Let G1 = ({S, A, B}, {a, b}, S, R, N1, γ1, M1) be a state machine
controlled grammar where R = {S → AB, A → aA|bA|λ, B → aB|bB|λ}, N1
which is illustrated in Fig. 2 is a state machine and M1 = {µ} where µ(p′) = 1
and µ(p) = 0 for all p ∈ P − {p′}, then L(G1) = {ww | w ∈ {a, b}∗}.

Example 2. Let G2 = ({S, A, B}, {a, b}, S, R, N2, γ2, M2) be a marked graph
controlled grammar where R is the same as in Example 1, a marked graph
N2 is illustrated in Fig. 3 and M1 = {µ} where µ(p) = 0 for all p ∈ P . Then
L(G2) = {ww′ | w ∈ {a, b}∗ and w′ ∈ Perm(w)}.

4 Results: Labeling Strategies

In this section we investigate the effect of the labeling of transitions on the
generative capacities of the introduced families of languages.

From the definition, the next statement follows immediately.

Lemma 1. For Y ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and
y ∈ {r, t, g},

Y[λ](f, y) ⊆ Y[λ](−λ, y) ⊆ Y[λ](λ, y).

Further, we show that the reverse inclusions also hold.
For each sPN, one can easily construct a net of the same type in which the

transitions have different labels, by “splitting” each transition into two, i.e., by
replacing a transition t with label A → α by new transitions t′, t′′ with labels
A → A′, A′ → α, respectively, where t′ receives all incoming arcs of t and t′′

receives all outgoing arcs of t, and a new place pt from transition t′ and to
transition t′′.

Lemma 2. For Y ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and
y ∈ {r, t, g},

Y[λ](−λ, y) ⊆ Y[λ](f, y).

332 J. Dassow and S. Turaev

For each (λ, y)-sPN controlled grammar, if we label each λ-transition with X →
X , start each derivation with S′ → SX and erase X with rule X → λ at the end
of the derivation, then we get the same derivation in a (−λ, y)-sPN controlled
grammar, i.e.,

Lemma 3. For Y ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and
y ∈ {r, t, g},

Yλ(λ, y) ⊆ Yλ(−λ, y).

It is known that by structure state machines and finite automata are the same.
We can remove λ-transitions of a state machine by using an analogous method
to λ-transition removal operation in finite automata.

Lemma 4. For y ∈ {r, t, g} and Y ∈ {SM,GSM}, Y(λ, y) ⊆ Y(−λ, y).

Lemma 5. For x ∈ {f,−λ, λ} and y ∈ {r, t, g}, GMG[λ](x, y) ⊆ MG[λ](x, y).

Proof. Let G = (V, Σ, S, R, N, γ, M) be a (x, y)-GMG controlled grammar (with
or without erasing rules) where N = (P, T, F, ι) is a generalized marked graph.
Let P−

∅ = {p ∈ P | •p = ∅} and P+
∅ = {p ∈ P | p• = ∅}. Without loss of

generality we can assume that P−
∅ ∩ P+

∅ = ∅ (if place p ∈ P is isolated, i.e.,
|•p| = |p•| = 0, it can be eliminated since isolated places do not effect any
derivation of the grammar).

Let Q− = {qp | p ∈ P−
∅ } and Q+ = {qp | p ∈ P+

∅ } be the sets of new places,
T− = {tp | p ∈ P−

∅ } and T + = {tp | p ∈ P+
∅ } be the sets of new transitions and

F− = {(tp, qp), (qp, tp), (tp, p) | p ∈ P−
∅ } and F+ = {(p, tp), (tp, qp), (qp, tp) | p ∈

P+
∅ } be the sets of new arcs.
We construct a MG N ′ = (P ∪Q−∪Q+, T ∪T−∪T +, F ∪F−∪F+, ι′) where

ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if p ∈ Q− ∪ Q+.
We set V ′ = V ∪ {B} and R′ = R ∪ {B → B} where B is a new nonterminal

symbol, and define a MG controlled grammar G′ = (V ′, Σ, S, R′, N ′, γ′, M ′)
where the labeling function γ′ is defined by γ′(t) = γ(t) if t ∈ T and γ′(t) =
B → B if t ∈ T− ∪ T +. For each τ ′ ∈ M ′, τ ′(p) = τ(p) if p ∈ P and τ ′(p) = 0 if
p ∈ Q− ∪ Q+.

By construction of N ′, any transition t ∈ T− ∪ T + never occurs and the
production rule B → B is never applied in any derivation of G′. Thus it is not
difficult to see that L(G) = L(G′). ��

We state the following lemma without proof.

Lemma 6. For y ∈ {r, t, g} and Y ∈ {MG,CN}, Y(λ, y) ⊆ Y(−λ, y).

Using the same arguments of the proof of Lemma 7 in [1] we can show that the
next statement holds.

Lemma 7. Y(λ, y) ⊆ Y(−λ, y) for Y ∈ {EFC,AC,ON} and y ∈ {r, t, g}.

Lemma 8. PN[λ](λ, y) ⊆ FC[λ](λ, y) for y ∈ {r, t, g}.

Grammars Controlled by Special Petri Nets 333

Proof. Let G = (V, Σ, S, R, N, γ, M) be a Petri net controlled grammar (with
or without erasing rules) where N = (P, T, F, ϕ, ι). For each arc (p, t) ∈ F ,
we introduce new places pi[p, t], new transitions ti[p, t] and new arcs (p, ti[p, t]),
(ti[p, t], pi[p, t]), (pi[p, t], t) whose weights are 1’s, 1 ≤ i ≤ ϕ(p, t), and for each arc
(t, p) ∈ F , we introduce new places pj [t, p], new transitions tj [t, p] and new arcs
(t, pj [t, p]), (pj [t, p], tj[t, p]), (tj [t, p], p) whose weights are 1’s, 1 ≤ j ≤ ϕ(t, p).
Let

PF ={pi[p, t] | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)} ∪ {pj[t, p] | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)},
TF ={ti[p, t] | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)} ∪ {tj[t, p] | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)},
F ′ ={(p, ti[p, t]), (ti[p, t], pi[p, t]), (pi[p, t], t) | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)}

∪ {(t, pj[t, p]), (pj [t, p], tj [t, p]), (tj [t, p], p) | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)}.

We construct a net N ′ = (P ∪ PF , T ∪ TF , F ′, ι′) where the initial marking ι′

is defined by ι′(p) = ι(p) for all p ∈ P and ι′(p) = 0 for all p ∈ PF .
Let •t = {p1, p2, . . . , pk} for a transition t ∈ T in N . Then for this transition

in N ′ we have •t =
⋃k

i=1{pj[pi, t] | 1 ≤ j ≤ ϕ(pi, t)} and (pj [pi, t])• = {t} for all
1 ≤ i ≤ k and 1 ≤ j ≤ ϕ(pi, t). It follows that N ′ is a free-choice net.

We define a free-choice net controlled grammar G′ = (V, Σ, S, R, N ′, γ′, M ′)
where the components V, Σ, S, R are defined as for the grammar G, the free-
choice net N ′ is constructed above. We set γ′(t) = γ(t) if t ∈ T and γ′(t) = λ
if t ∈ TF ; for each τ ′ ∈ M ′, τ ′(p) = τ(p) if p ∈ P , and for p ∈ PF , τ ′(p) = 0 if
y ∈ {g, t}, otherwise 0 ≤ τ ′(p) ≤ τ ′(p′) where p′ ∈ •(•p).

Let D : S
r1r2···rm=====⇒ w ∈ Σ∗ be a derivation in G. Then there is a suc-

cessful occurrence sequence of transitions ν = t1t2 · · · tn for M in N such that
γ(ν) = r1r2 · · · rm. We replace ν by ν′ = ν1t1ν2 · · · νntn in N ′ where for all
1 ≤ i ≤ n, νi ∈ Perm(•(•ti)) where •(•ti) = {tj[pil

, ti] | 1 ≤ j ≤ ϕ(pil
, ti), 1 ≤

i ≤ n, 1 ≤ l ≤ s}.
In order to fire each ti, 1 ≤ i ≤ n, in N ′, we need to fire all transitions of

•(•ti) at least once, therefore, ν′ is successful for M ′ and r1r2 · · · rm = γ′(ν′),
i.e., D is a derivation in G′.

Let t1t2 · · · tn be a successful occurrence sequence for M ′. By construction,
each occurrence of ti, 1 ≤ i ≤ n, needs at least one occurrence of all transitions of
•(•ti). Without loss of generality we can assume that ν = νλ

1 σλ
1 t1ν

λ
2 · · ·σλ

ntnνλ
n+1

where σλ
i =

∏s
l=1
∏ϕ(pil

,ti)
j=1 tj [pil

, ti], 1 ≤ i ≤ n, and νλ
i ∈ T ∗

F , 1 ≤ i ≤ n + 1.

We replace
∏s

l=1
∏ϕ(pil

,ti)
j=1 tj [pil

, ti]ti by ti, 1 ≤ i ≤ n, and erase νλ
i , 1 ≤ i ≤

n + 1. The obtained occurrence sequence ν′ = t1t2 · · · tn is successful for M in
N . Then a derivation S

r1r2···rn=====⇒ w ∈ Σ∗ in G′ where r1r2 · · · rn = γ′(ν) is also
a derivation in G and r1r2 · · · rn = γ′(ν′). ��

The immediate consequence of this lemma is

Corollary 1.
Y[λ](λ, y) ⊆ FC[λ](λ, y)

where Y ∈ {EFC,AC,ON} and y ∈ {r, g, t}.

334 J. Dassow and S. Turaev

Lemma 9. For y ∈ {r, t, g}, FC(λ, y) ⊆ FC(−λ, y).

From the presented lemmas above, we can conclude that the labeling strategies
of transitions of special Petri nets do not effect on the generative powers of the
families of languages generated by grammars controlled by these nets.

Theorem 1. For Y ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON},

Y[λ](f, y) = Y[λ](−λ, y) = Y[λ](λ, y) where y ∈ {r, t, g}.

5 Results: Final Markings

In this section, we give some characterizations of the classes of languages gener-
ated by sPN controlled grammars by other classes of regulated languages.

From the structural properties of special Petri nets and Lemmas 5, 8, the next
statement follows immediately

Theorem 2. For Y ∈ {FC,EFC,AC,ON} and x ∈ {f,−λ, λ}, y ∈ {r, g, t},

SM(x, y) ⊆ GSM(x, y) ⊆ Y(x, y) ⊆ Yλ(x, y),

CN(x, y) ⊆ MG(x, y) = GMG(x, y) ⊆ Y(x, y) ⊆ Yλ(x, y).

Lemma 10. SM[λ](λ, r) ⊆ SM[λ](λ, t).

Proof. Let G = (V, Σ, S, R, N, γ, M) be a state machine controlled grammar
(with or without erasing rules) where N = (P, T, F, ι).

Since the firing of a transition in a state machine moves one token from the
input place to the output place, the number of tokens in the net remains the
same in any firing of a transition. It follows that the set M of all reachable
markings is finite, i.e.,

|M | ≤
(

n + k − 1
k − 1

)
where n =

∑
p∈P ι(p) and k = |P | (

(
n+k−1

k−1

)
is the number of solutions in non-

negative integers to the equation x1 + x2 + · · · + xk = n, see [10]). ��

From Lemma 10 the next statements follow immediately

Corollary 2. SM[λ](λ, r) ⊆ SM[λ](λ, g) and SM[λ](λ, g) ⊆ SM[λ](λ, t).

We state the following lemma without proof.

Lemma 11. SM[λ](λ, t) ⊆ SM[λ](λ, r).

Lemma 12. MAT[λ] ⊆ SM[λ](f, t).

Proof. Let G = (V, Σ, S, M) be a matrix grammar (with or without erasing
rules) and M = {m1, m2, . . . , mn} where mi = ri1ri2 · · · rik(i), 1 ≤ i ≤ n.
Without loss of generality we can assume that G is without repetitions. Let

Grammars Controlled by Special Petri Nets 335

R = {rij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)}. We define a (f, t)-SM controlled grammar
G′ = (V, Σ, S, R, N, γ, {µ}) where the sets of places, transitions and arcs of the a
SM N = (P, T, F, ι) are defined by P = {p0}∪{pij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)−1},
T = {tij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)} and

F ={(p0, ti1), (tik(i), p0) | 1 ≤ i ≤ n} ∪ {(pik(i)−1, tik(i)) | 1 ≤ i ≤ n}
∪ {(tij , pij) | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i) − 1}.

The initial marking is defined by ι(p0) = 1, and ι(p) = 0 for all P − {p0}.
The bijection γ : T → R is defined by γ(tij) = rij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)

and the final marking µ is the same as the initial marking ι.
Let S = w0

mi1==⇒ w1
mi2==⇒ · · ·

mil==⇒ wl = w ∈ Σ∗ be a derivation in G, where

mij ∈ M , 1 ≤ j ≤ l, and wj−1
mij==⇒ wj : wj−1

rij1rij2···rijk(ij)
===========⇒ wj . By definition

of γ, γ−1(mij) = σj where σj = tij1tij2 · · · tijk(ij) for all 1 ≤ j ≤ l. Then the
occurrence sequence of transitions ι

σ1σ2···σl−−−−−−→ ι is a successful for {µ}. Therefore,

S
mi1mi2 ···mil========⇒ wl ∈ Σ∗ is a derivation in G′.
The inverse inclusion can also be shown using the same arguments. ��

Lemma 13. For y ∈ {r, g, t}, SM[λ](λ, y) ⊆ rC[λ].

Proof. Let G = (V, Σ, S, R, N, γ, M) be a SM controlled grammar (with or with-
out erasing rules) where N = (P, T, F, ι). We construct a (deterministic) finite
automaton A whose states are the markings of the net N (since the set of all
reachable markings of a state machine is finite, it can be considered as a set of
states) and there is an arc from state µ to state µ′ with label t iff marking µ′ is
obtained from marking µ by firing transition t. The initial marking is considered
as the initial state and the set of final markings M as a set of final states.

Formally, A = (M ′, T, ι, δ, M) where M ′ is the set of all reachable markings
of the net N and the state-transition function δ : M ′ × T → M ′ is defined by
δ(µ, t) = µ′ iff µ

t−→ µ′. It is not difficult to see that σ = t1t2 · · · tn ∈ L(A) iff σ is
a successful occurrence sequence of transitions of N . Therefore, L(G) = L(G′)
where G′ = (V, Σ, S, R, L(A)) is a regularly controlled grammar. ��

For each vector grammar, if we define an ordinary net as a union of disjoint
pathes of the form ρ = t1p1t2p2 · · · pn−1tn for each matrix m = r1r2 · · · rn where
ti labeled with ri, 1 ≤ i ≤ n, then it is not difficult to see that an grammar
controlled by this net generates the same language as the vector grammar.

Lemma 14. V[λ] ⊆ MG[λ](f, t) ∩ CN[λ](f, t) ∩ GSM[λ](f, t).

For each semi-matrix grammar, if an ordinary net is defined as a union of disjoint
cycles of the form ρ = p1t1p2t2 · · · pntnp1 for each matrix m = r1r2 · · · rn where
ti labeled with ri, 1 ≤ i ≤ n, then it is not difficult to see that an grammar
controlled by this net generates the same language as the semi-matrix grammar.

Lemma 15. sMAT[λ] ⊆ SM[λ](f, t) ∩ MG[λ](f, t).

336 J. Dassow and S. Turaev

CF

CN(x, r)

sMAT

CN(x, g)

SM(x, y) = MAT

CN(x, t)

GSM(x, r)

GSM(x, t)

V GSM(x, g)

MG(x, g) = GMG(x, g)

MG(x, r) = GMG(x, r)

MG(x, t) = GMG(x, t)

PN(x, r) = X(x, r) PN(x, g) = X(x, g)

PN(x, t) = X(x, t)

MATλ = PNλ(x, y) = Yλ(x, y) = Zλ(x, t)

Fig. 4. The hierarchy of language families generated by Petri net controlled grammars

Now we summarize our results in the following theorem.

Theorem 3. The relations in Figure 4 hold where x ∈ {f,−λ, λ}, y ∈ {r, g, t},
X ∈ {FC, EFC, AC, ON}, Y ∈ {SM, GSM, FC, EFC, AC, ON} and
Z ∈ {MG,GMG,CN}; the lines (arrows) denote (proper) inclusions of the
lower families into the upper families.

Proof. The relations of the language families generated by sPN controlled gram-
mars follow from Theorem 2. From Theorem 2.1.2 in [8], Theorem 12 in [9] and
above presented lemmas we get sMAT ⊆ SM(x, y) = MAT ⊆ V ⊆ CN(x, t) ⊆
MG(x, t) = GMG(x, t) and V ⊆ GSM(x, t).

The inclusion X(x, r) ⊆ X(x, t), X ∈ {FC, EFC,AC,ON}, follows from
Theorem 13 in [1] and Lemma 8. Again from Theorem 13 in [1] we have
PNλ(x, r) = MATλ ⊆ PNλ(x, t). If we define erasing matrices in the proof
of Lemma 11 in [1] for each τ ∈ M as

mτ = (B → λ, p̄1 → λ, . . . , p̄1 → λ︸ ︷︷ ︸
τ(p1)

, . . . , p̄n → λ, . . . , p̄n → λ︸ ︷︷ ︸
τ(pn)

)

Grammars Controlled by Special Petri Nets 337

where P = {p1, p2, . . . , pn}, then we also get PNλ(x, t) ⊆ MATλ. If we consider
erasing matrices of the form mλ = (p̄ → λ) for each p ∈ P together with the
matrices defined above then it is easy to see that PNλ(x, g) ⊆ MATλ.

The equalities SMλ(x, y) = GSMλ(x, y) = MGλ(x, t) = GMGλ(x, t) =
CNλ(x, t) = FCλ(x, y) = EFCλ(x, y) = ACλ(x, y) = ONλ(x, y) =
PNλ(x, y) = MATλ follows from the fact that sMATλ = Vλ = MATλ (The-
orem 2.1.2, [8] and Theorem 12, [9] and the above-presented lemmas). ��

References

1. Dassow, J., Turaev, S.: Arbitrary petri net controlled grammars. In: Enguix, G.,
Jiménez-López, M. (eds.) The Second International Workshop on Non-classical
Formal Languages in Linguistics, Forling 2008, Tarragona, Spain, pp. 27–39 (2008)

2. Dassow, J.: Subregularly controlled derivations: Context-free case. Rostock. Math.
Kolloq. 34, 61–70 (1988)

3. Dassow, J., Truthe, B.: Subregularly tree controlled grammars and languages. In:
Csuhaj-Varjú, E., Esik, Z. (eds.) The 12th Inernational Conference AFL 2008,
Balatonfured, Hungary, pp. 158–169 (2008)

4. Baumgarten, B.: Petri-Netze. Grundlagen und Anwendungen. Wissensschaftverlag,
Mannheim (1990)

5. Desel, J., Esparsa, J.: Free-Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 10. Cambridge University Press, Cambridge (1995)

6. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III.
Springer, Berlin (1996)

7. Reisig, W., Rozenberg, G. (eds.):Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

8. Dassow, J., Pǎun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

9. Turaev, S.: Semi-matrix grammars. In: The Second Doctoral Workshop on Mathe-
matical and Engineering Methods in Computer Science, MEMICS 2006, Mikulov,
Czech Republic, pp. 245–252 (2006)

10. Graham, R., Lovász, M.G. (eds.): Handbook of Combinatorics, vol. I–II.
Elsevier(North-Holland), Amsterdam and MIT Press, Cambridge (1996)

Nested Counters in Bit-Parallel String Matching

Kimmo Fredriksson1 and Szymon Grabowski2

1 Department of Computer Science, University of Kuopio,
P.O. Box 1627, 70211 Kuopio, Finland

fredriks@cs.uku.fi
2 Computer Engineering Department, Technical University of �Lódź,

Al. Politechniki 11, 90–924 �Lódź, Poland
sgrabow@kis.p.lodz.pl

Abstract. Many algorithms, e.g. in the field of string matching, are
based on handling many counters, which can be performed in paral-
lel, even on a sequential machine, using bit-parallelism. The recently
presented technique of nested counters (Matryoshka counters) [1] is to
handle small counters most of the time, and refer to larger counters peri-
odically, when the small counters may get full, to prevent overflow. In this
work, we present several non-trivial applications of Matryoshka counters
in string matching algorithms, improving their worst- or average-case
time complexities. The set of problems comprises (δ, α)-matching, match-
ing with k insertions, episode matching, and matching under Levenshtein
distance.

1 Introduction

A word RAM is a random-access machine with unit-cost operations for operands
of w bits, and having instruction set similar to modern computers. An especially
practical variant of word RAM is transdichotomous RAM [2]. This model as-
sumes that w = Ω(log(n)), where n is the “input size” (or simply w ≥ log2(n); we
also sometimes distinguish between a weaker assumption, that w = Θ(log(n)),
and the more general case). Note that the word RAM model allows e.g. to sort
n integers in o(n log n) time, which is impossible in the comparison model.

Bit-parallelism [3] is now an established and highly successful algorithmic
technique, useful especially in the field of string matching. Basically, it makes
use of wide machine words (CPU registers) to parallelize the work of other algo-
rithms, e.g., filling the matrix in a dynamic programming algorithm or simulating
a non-deterministic automaton.

Most interesting string matching problems can be classified as approximate
string matching [4] of some sort. There is a plethora of approximate matching
models, with applications in natural language processing, computational biology,
music information retrieval, image processing and other areas. Many approxi-
mate matching problems can be stated like that. Given a text T = t0 . . . tn−1,
a pattern P = p0 . . . pm−1, over some alphabet Σ, and a threshold k, we want
to find all the text positions where the pattern matches the text with at most k
errors. How the error measure is calculated constitutes the actual problem.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 338–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Nested Counters in Bit-Parallel String Matching 339

Bit-parallel solutions to approximate string matching problems often deal
with counters. The counters are bit-fields storing the total errors for individual
states of the problem, e.g., for every pattern prefix. Many such counters, each
of size e.g. O(log(k)) bits, are updated in parallel, which makes the respective
algorithms efficient in practice.

In a recent work [1], we showed a simple technique to decrease the worst-
case time complexity of one of the best known bit-parallel algorithms based on
counters, Shift-Add [3], from O(n�m log(k)/w�) to O(n�m/w�). The underlying
observation was that the counter values grow by at most one per read text
character, hence most of the time the algorithm could update much smaller
counters, and only when they can overflow, at periodical moments, their content
could be added (and then flushed) to a high-level counters, occupying more
bits. This idea was generalized to many counter levels, and dubbed Matryoshka
counters, to reflect their nested nature.

The current work presents several non-trivial applications of Matryoshka
counters in string matching algorithms, improving their time complexities in
the worst or average case.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be strings
over alphabet Σ = {0, 1, . . . , σ − 1}. The pattern has an exact occurrence in
some text position j, if pi = tj−m+1+i for i = 0 . . .m−1. If pi �= tj−m+1+i for at
most k positions, then the pattern has an approximate occurrence with at most
k mismatches. The number of mismatches is called Hamming distance. We want
to report all text positions j where the Hamming distance is at most k.

To present our algorithms, some extra notation is needed. We number the
bits from the least significant (right-most) bit (0) to the most significant (left-
most) bit (w − 1). Bit-wise operations are denoted like in C language: & is
bit-wise and, | is or, ∧ is xor, ∼ negates all bits, << and >> are shift to
left and to right, with zero padding. Exponentiation denotes bit repetition, as
in (1(10)2)2 = 1101011010. In general, all formulas of the above form will be
(run-time) constants that can be precomputed. The notation V[i]� denotes the
ith �-bit field of the bit-vector V .

Shift-Add algorithm. To be able to describe our new algorithms we need to
briefly cover some previous work. Shift-Add [3] is a bit-parallel algorithm for
approximate searching under Hamming distance. It reserves a counter of � =
�log2(k + 1)� + 1 bits for each pattern character in a bit-vector D of length m�
bits. This bit-vector denotes the search state: the ith counter tells the number of
mismatches for the pattern prefix p0 . . . pi for some text substring tj−i . . . tj . If
the (m − 1)th counter is at most k at any time, i.e. D[m−1]� ≤ k, then we know
that the pattern occurs with at most k mismatches in the current text position
j. The preprocessing algorithm builds an array B of bit-vectors. More precisely,
we set B[c][i]� = 0 iff pi = c, else 1. Then we can accumulate the mismatches as
D ← (D << �)+B[tj]. I.e. the shift operation moves all counters at position i to

340 K. Fredriksson and S. Grabowski

position i+1, and effectively clears the first counter. The + B[tj] operation then
adds 0 or 1 to each counter, depending on whether the corresponding pattern
characters match tj . Note that the number of mismatches can be as large as m,
i.e., the counters in D can overflow. The solution is to store the highest bits of
the fields in a separate computer word o, and keep the corresponding bits cleared
in D. Shift-Add works in O(n�m log(k)/w�) time in the worst case.

Counter-splitting. In [1] it was shown how the number of bits for Shift-Add
can be reduced. To this end, we use two levels of counters. The top level is
as in plain Shift-Add, i.e. we use � = O(log(k)) bits. For the bottom level
we use only �′ = log2(log2(k + 1) + 1) bits. The basic idea is then to use
a bit-vector D′ of m�′ bits, and accumulate the mismatches as before. How-
ever, these counters may overflow every 2�′ steps. We therefore add D′ to D
at every 2�′ − 1 steps, and clear the counters in D′. The counters in D have
� = �log2(k + 2�′)� + 1 = O(log(k)) bits each. The result is that updating D′

takes only O(�m log log(k)/w�) worst case time per text character, and updat-
ing D takes only O(�m log(k)/w�/2�′) = O(m/w) amortized worst case time.
The total time is then dominated by computing the D′ vectors, leading to
O(n�m log log(k)/w�) total time.

Now adding the two sets of counters can be done without causing an overflow,
but the problem is how to add them in parallel. The difficulty is that the counters
have different number of bits, and hence are unaligned. The vector D′ must
therefore be expanded so that we insert �−�′ zero bits between all counters prior
to the addition, i.e. we must obtain a bit-vector x, so that x[i]� = D′

[i]�′ . Then we
need to effectively add the counters in D and D′ as D +x, i.e. D +Expand(D′).
The function Expand(·) can be computed in o(1) amortized time [1].

Note that we cannot shift the vector D at each step as this would cost
O(�m�/w�) time. Instead, we shift it only each 2�′ − 1 steps in one shot prior to
adding the two counter sets: D ← D << (2�′ − 1)�. As in plain Shift-Add, we
take care not to overflow the counters (see [1] for details).

The final issue is the detection of the occurrences. At each step j, we just add
D′

[m−1]�′ and D[m−i]�, in the ith bottom level iteration (i = 1 . . . 2�′ − 1). This
constitutes the true sum of mismatches for the whole pattern at text position j.
If this sum is at most k, we report an occurrence. This takes only a constant time
since we only add up two counters, one from each of the two vectors (the whole
counter sets are added only each 2�′ − 1 steps). The vector D is not shifted at
each step, but we simulate the shift by selecting the (m− i)th field when detect-
ing the possible occurrences. Summing up, we have O(n�m log log(k)/w�) worst
case time algorithm for string matching under Hamming distance. The above
scheme can be improved by using more counter levels. We call these Matryoshka
counters, to reflect their nested nature. The basic ideas remain the same, but
the some details become more involved, see [1] for details. The end result is an
algorithm with total worst case time of O(n�m/w�).
Contracting counters. In what follows, we will need the inverse of Expand(·),
i.e. we need to compute x′

[i]�′ ← y[i]� for all i efficiently. We call this function
Contract(·). Note that this is not possible in general, as the value of y[i]� may not

Nested Counters in Bit-Parallel String Matching 341

fit into �′ bits. However, in our application we have a guarantee that �′ bits will
suffice. In general, we may assume that we want to compute x′

[i]�′ ← y[i]� & 1�′

for all i. It is easy to see that this can be computed in parallel just by inverting
and doing in opposite order all the steps required for expanding the counters
(or by using precomputed tables, which makes the task trivial). Hence the time
bound remains also the same, including the amortized o(1) time, as we will be
doing this operation only in the companion of Expand.

Space complexities. In all our algorithms, the most space consuming structure
used is the array of bit-vectors B. The preprocessing cost, in space and time, of
B is bounded by O(mσ), for all the algorithms. In some cases (see Sec. 4), we
may need a look-up table of size e.g. O(

√
n) words. For large σ we can either (1)

in O(n+σ) time and O(σ) space remap T and P to a new alphabet of size O(m),
or (2) if O(σ) is too large, or the actual values of the symbols are of importance,
as e.g. with the δ-relaxation (see Sec. 3), we can consider the resulting O(m)
equivalence classes for the alphabet symbols and still map the alphabet to O(m)
symbols in O(n log m) (or e.g. O(n logw(m)) [5]) time and O(m) space.

3 (δ, α)-Matching

In (δ, α)-matching the pattern matches the text substring tj0tj1tj2 . . . tjm−1 if
|pi − tji | ≤ δ, and ji < ji+1 and ji+1 − ji ≤ α + 1. In other words, there
can be α non-matching text symbols between each matching pattern symbol.
There are many efficient solutions to this problem, see e.g. [6] for some recent
results and review of the problem. The first bit-parallel algorithm [7] solves the
problem in O(n�mα/w�) worst case time. This algorithm is based on simulating
non-deterministic finite automata. A different solution [8], loosely based on Shift-
Add, solves the problem in O(n�m log(α)/w�) worst case time. Below we review
this approach and improve it to take only O(n�m log log(α)/w�) time.

At a high level, the algorithm can be seen as a combination of Shift-And and
Shift-Add algorithms [3]. The ‘automaton’ has two kinds of states: Shift-And
and Shift-Add ones. The Shift-And states (vector D) keep track of the pattern
symbols, while the Shift-Add states (vector C) keep track of the gap length
between the symbols. The result is a systolic array rather than automaton; a
high level description of a building block for symbol pi is shown in Fig. 1. The
final array is obtained by concatenating one building block for each pattern
symbol. The building blocks are the counters. Only � = �log2(α + 1)� + 1 bits
are reserved for each counter. The value 2�−1 − (α + 1) is used to initialize the
counters, i.e. to represent the value 0. This means that the highest bit (�th bit)
of the counter becomes 1 when the counter has reached a value α + 1, i.e. the
gap cannot be extended anymore. Hence, line 1 of the algorithm in Fig. 1 can
be computed bit-parallelly as

C ← C + ((∼C >> (� − 1)) & (0�−11)m). (1)

That is, we negate and select the highest bit of each counter (shifted to the low
bit positions), and add the result to the original counters. If a counter value is

342 K. Fredriksson and S. Grabowski

1 if c < α + 1 then c ← c + 1

3 if c < α + 1 and tmp then activate output

4 if tmp then c ← 0

... ...2 tmp ← input activated and tj ∈ [pi − δ, pi + δ]

Fig. 1. A building block for a systolic array detecting δ-matches with α-bounded gaps

less than α + 1, then the highest bit position is not activated, and hence the
counter gets incremented by one. If the bit was activated, we effectively add 0.

To detect the δ-matching characters we need to preprocess a table B, so that
B[c] has i�th bit set to 1, iff |pi − c| ≤ δ. We can then use a Shift-And step:

tmp ← ((D << �) | 1) & B[ti], (2)

where we have reserved � bits per character in D as well. Only the lowest bit of
each field has any significance, the rest are only for aligning D and C appropri-
ately. The reason is that a state in D may be activated also if the corresponding
gap counter has not exceeded α+1. In other words, if the highest bit of a counter
in C is not activated (the gap condition is not violated), then the corresponding
bit in D should be activated:

D ← tmp | ((∼C >> (� − 1)) & (0�−11)m) (3)

The only remaining difficulty to solve is how to reinitialize (parallelly) some
subset of the counters to zero, i.e. how to implement line 4 in Fig. 1. The bit-
vector tmp has value 1 in every field position that survived the Shift-And step,
i.e. in every field position that needs to be initialized in C. Then

C ← (C & ∼(tmp × 1�)) | (tmp × (2�−1 − (α + 1))) (4)

first clears the corresponding counter fields, and then copies the initial value
2�−1 − (α + 1) to all the cleared fields. This completes the algorithm. Clearly, it
runs in O(n�m log(α)/w�) worst case time.

3.1 Two-Level Solution

Let us now improve this algorithm. We use the two-level variant. Basically,
�′ = O(log log(α)) bits per counter is enough for the bottom level. However,
the solution is somewhat more complicated than for the previous algorithm.
The reason is that we need to know for each step of the algorithm if any of the
counters have reached the value α + 1 or not, since this information is used to
compute the next value of the counters at each step. I.e. it is not enough to detect
this for the last counter, which was easy. Again, we use � = �log2(α + 2�′)� + 1,
just as in the Shift-Add algorithm (now k is just called α). However, for the
bottom level we add one additional bit per field. This new highest bit will be
used to signal whether the corresponding counter has exceeded the value α + 1.
The two counter levels are added after each 2�′−1−1 steps, so the highest bits of
the bottom level counters never get activated if the counters started from zero.

Nested Counters in Bit-Parallel String Matching 343

The above base-line algorithm is used as is for the bottom level counters (we just
replace � with �′ everywhere), with the following modification: the initial values
copied to the counters are 0. The bottom and top level counters are denoted as
C′ and C, respectively.

The first modification needed is handling the zeroing of the counters. If a
bottom level counter gets zeroed, it should be done for the corresponding top
level counter as well. But we cannot afford doing it in every step, since the cost
would be too high. Instead, we introduce new bit-vector Z, which is initialized
to all zeroes after each top level update. For each bottom level step we record
the counters that should be zeroed for the top level as well:

Z ← Z | tmp, (5)

where tmp is as in Eq. (2). In other words, Z gets bit 1 to every “counter” field
that is zeroed. This is then used in each top level step to clear the corresponding
fields of the top level counter. This is done as in Eq. (4):

Z ← Expand(Z) (6)
C ← (C & ∼((Z << �) − Z)) | (Z × (2�−1 − (α + 1))). (7)

Note that we expanded Z first. Adding the two counter sets is straightforward;
C′ is expanded and added to C, taking care (with the standard technique) not
causing an overflow:

C ← ((C & ∼((10�−1)m)) + Expand(C′)) | (C & (10�−1)m). (8)

After adding the two counter levels, we must bring some information from the
top level back to the bottom level. Consider the top level counter C[i]�. Three
cases can occur:

1. C[i]� > α+1 (the highest bit of the counter is set): the counter has overflowed.
In this case we set C′

[i]�′ = 2�′−1, i.e. activate the overflow bit of the bottom
level counter.

2. C[i]� ≤ α + 1− (2�′−1 − 1): the counter cannot overflow in the next 2�′−1 − 1
steps, and we can safely set C′

[i]�′ to 0.

3. α + 1 ≥ C[i]� > α + 1 − (2�′−1 − 1): the counter may or may not overflow in
the next 2�′−1 − 1 steps. In other words, if the counter C′

[i]�′ has the value
v, where v > α + 1 − C[i]�, the sum of the two counters has overflowed. Let
v = α+1−C[i]�. By the assumption of this case, v < 2�′−1. Let u = 2�′−1−v.
If the counter C′

[i]�′ is initialized to u, the highest bit will be activated as soon
as α-gap condition is violated. To keep the true sum of the counter levels
correct, we also subtract u from the top level counter, i.e. set C[i]� ← C[i]�−u.

The implementation of the cases 1 and 2 are easy. The case 2 is handled implicitly,
i.e. all fields not touched by case 1 or 3 are left to zero. The first case is sim-
ple. The highest bits are extracted from C, and shifted to the �′-th positions. The

344 K. Fredriksson and S. Grabowski

result can be contracted to fit into the bottom level counters, activating the
corresponding highest bits:

C′ ← Contract((C & (10�−1)m) >> (� − �′)). (9)

The case 3 is slightly trickier. First, those � bit fields of C that have not the
highest bit set are selected, in vector x:

o ← C & (10�−1)m (10)
x ← C & ∼((o << 1) − (o >> (� − 1))). (11)

We then add 2�′−1 − 1 to every field of x, again select the highest bits of the
result, signaling the fields that may reach α + 1, and form a new mask selecting
these fields:

y ← (x + (2�′−1 − 1) × (0�−11)m) & (10�−1)m (12)
o ← (y << 1) − (y >> (� − 1)) (13)

Then, the value of v can be computed as described above. Note that for C
counters the value of zero is represented as 2�−1 − (α + 1), which must be taken
into account:

v ← (((α + 1 + 2�−1 − (α + 1)) × (0�−11)m) & o) − (C & o). (14)

However, this simplifies to: v ← ((10�−1)m & o)−(C & o). Similarly, we compute
the value for u (note that now zero is represented as 0):

u ← ((2�′−1 × (0�−11)m) & o) − v, (15)

which again simplifies to: u ← ((0�−�′10�′−1)m & o) − v. Finally, the values are
subtracted from C, and added to C′, so that C + Expand(C′) will be correctly
maintained:

C ← C − u (16)
C′ ← C′ | Contract(u) (17)

Following the Shift-Add analysis, it is easy to find the O(n�m log log(α)/w�)
time complexity. Note that we can easily replace all the multiplications in the
search code with precomputed masks and bitwise operations, and thus the anal-
ysis is valid even in AC0 RAM model (as detailed in [1] and Sec. 2, Expand()
and Contract() can be implemented efficiently without multiplications).

4 Intrusion Detection and Episode Matching

A close relative to α-matching is searching allowing k insertions of symbols into
the pattern. In other words, we want to find all minimal length text substrings
t, such that id(P, t) ≤ k, where id(P, t) is the minimum number of symbols

Nested Counters in Bit-Parallel String Matching 345

inserted to P , to convert it to t. It follows that if P is a subsequence of t, then
id(P, t) = |t| − |P | = |t| − m, and ∞ otherwise, and that m ≤ |t| ≤ m + k
if t matches P with at most k insertions. This matching model has important
applications in intrusion detection [9]. The problem can be solved using dynamic
programming [9]. We define a vector C of counters: Ci = id(p0...i, th...j), for
i = 0 . . .m and some h. The initial values are C0 = 0, and Ci>0 = ∞. (The value
∞ can be represented as any value > k in practical implementation.) Therefore,
the goal is to report all j such that Cm ≤ k. The computation of the new values
of C, given the old values Co, is based on the following recurrence:

Ci = Co
i−1, if pi = tj , and Co

i + 1 otherwise. (18)

The obvious implementation of the recurrence leads to O(mn) worst case time.
It was then shown by Kuri et al. [9] how to compute Ci using bit-parallelism,
which resulted in an O(n�m log(k)/w�) worst case time algorithm. We briefly
present the Kuri et al. algorithm as this is the starting point of our solution.

The Ci counters are packed into machine words. Only error counts up to k+1
are interesting, so any Ci value above k could be replaced by k+1, and a similar
effect is achieved using overflow bits, a technique known from Shift-Add. In this
way, the counters occupy � = �log2(k + 1)� bits each. A table B storing σ bit-
vectors of length m(� + 1) is built in the preprocessing. Each (� + 1)-bit field
of B[c] is set to 01� if c = pi, and 0�+1 otherwise. Note that the highest bit in
each field is 0. Also the state vector D has m(� + 1) bits, initialized to 0s. If the
counters could use O(log(k)) bits, the update formula (invoked once per text
character) could be simply

Dnew = (B[tj] & (D << (� + 1))) | (∼B[tj] & (D + (0�1)m)), (19)

but the real algorithm is somewhat more complicated due to handling the counter
overflows in the usual way, see [9] for details. Let us only note for the formula
above that each field of B[tj] selects between (D << (� + 1)) operation, which
corresponds to Ci ← Co

i−1 assignment in the plain dynamic programming for-
mula, and (D + (0�1)m), which replaces Ci ← Co

i + 1 assignment.
It might seem that nested counters could be used for this algorithm just

as easily as with Shift-Add, but there is actually a new problem. As seen in
Eq. 18, the new values Ci depend on the old values of C in less “predictable”
way than it was in Shift-Add. In Shift-Add the counter values are simply shifted
left (i.e., to the next position) with each text character (and then their counts
possibly increased by 1), while here they depend on a condition. Let us assume
a two-level counter scheme. The manipulations on counters should be done both
in the bottom level and the top level. The top level updates should be done
infrequently, and here is where the problem lies, as it seems difficult to delay
such operations and then perform a bulk update in constant time. We found a
compromise solution though.

Our algorithm gives an improvement over the Kuri et al. algorithm if log(k) =
ω(log(w)). This may seem quite restrictive but for the intrusion detection

346 K. Fredriksson and S. Grabowski

problem large values of k (exceeding m) are quite typical. The basic observation
is that during the inner loop the set of distinct values in the top level counters
is never extended, as the counter values are simply copied from one to another
(Ci ← Ci−1 operations). So, we do not need to know their actual values, only
we need to distinguish those m counters somehow. To this end, just before the
inner loop we label the top level counters. Fortunately, we do not need to give
them truly unique labels (which would imply log(m) bits per label) but only
choose from a smallest set of labels which prevents from losing identity of any
counter during the inner loops. Since the copy operations always involve only
adjacent counters, it is enough to assign label i mod 2�′ to a counter at position
i. In this way, we need �′ bits per label. Now, for every text character also the
upper level may change, but all the copy operations on labels are performed in
parallel, with O(m�′/w) time per character.

When the inner loop is over, we need to get back the true top level counters, to
increase their counts with values from the bottom level. This requires remapping
with the labels mentioned above, reflecting the actual label arrangement. A
brute-force rearrangement takes O(m) time, after which we we can update the
top level counters with the respective counts from the bottom level, in O(m�/w)
time. The total time spent on bottom level operations is O(n�m�′/w�). The total
time spent for the top level is O(n�m�′/w�+n/2�′(m+�m�/w�)). The sum of the
above is optimized for �′ = log(w), which gives O(n�m log(w)/w�) overall worst-
case time complexity. Finally, assuming that w = Θ(log(n)), we can improve the
brute-force counter rearrangement to take just O(m/w) amortized time per text
character, by using look-up tables. In this case we can use �′ = Θ(log log(k)),
and � = Θ(log(k)), achieving O(n�m log log(k)/ log(n)�) total time.

We note that for the opposite scenario, i.e., for small k, a theoretical O(nk)-
time algorithm may be of lower complexity. We mean an application of the classic
technique of Landau and Vishkin [10], where they build a suffix tree with LCA
(lowest common ancestor) support over the concatenated sequence P#T (# is
a unique separator), in linear time, and then, for every text character, jump
between matching subsequences of P in constant time using LCA queries, hence
finding a match or resolving a mismatch in O(k) time per text position. Trans-
lating to our problem, after finding each pair of equal substrings, the position
in the pattern is shifted by one, while in the text the position is shifted by two,
i.e., a single (mismatching) character is skipped.

A similar problem to matching with k-insertions is episode matching, which
can be stated like that: Find the shortest text substring(s) that contain P as a
subsequence. Using our technique, for k = n−m, and keeping track of the min-
imum values, immediately gives O(n�m log(w)/w�) time complexity as above.
This is not always better than the best known algorithms for this problem [11],
working in O(nm/ log(m)) and O(n + s + nm log log(s)/ log(s/m)) time, using
O(s) additional space, but our algorithm dominates over the former result if m
is small enough, namely if log(m) = o(w/ log(w)), and either uses less time or
less space than the latter algorithm.

Nested Counters in Bit-Parallel String Matching 347

5 Improved ABNDM

We would like to point out that Matryoshka counters can be useful not only for
improving the worst cases. To this end, note that in case of a long pattern, a typical
implementation of a bit-parallel algorithm searches only for its prefix, such that
fits a single computer word, and whenever the prefix is found, the pattern suffix
is verified, e.g., with brute-force. For example, this strategy can be used for Shift-
Add if m� > w. For small k and typical texts this results in an O(n) average
time algorithm. The same idea can be used together with the technique presented
in this paper. Although we do not expect our algorithm for Hamming distance
to be competitive in practice, we note that this trick is now usable for larger k
values, when we can search for longer prefixes (the � parameter is constant in our
algorithm, with no dependence on k), decreasing thus the number of verifications
and false positives. The same applies to our (δ, γ)-matching and (δ, α)-matching
algorithms, and in general to all the forward-matching algorithms.

However, some algorithms scan the text backwards, using windows of m charac-
ters. The text windows are only partially examined on average, and then the win-
dow is shifted to the right, in the best case as much as m characters (the maximum
shift depending on the actual problem). In this case, cutting the pattern to
w/��
characters limits the maximum shift to
w/�� as well. Using more computer words
will not improve the overall complexity. Hence using our techniques can improve
the average case as well, as we can use longer patterns and obtain longer shifts.

Consider now the Levenshtein distance. In this case we are interested in find-
ing all occurrences of the pattern permitting up to k edit operations, that is,
insertions, deletions or substitutions of characters. The average case lower bound
of the problem is Ω(n(k + logσ(m))/m), and an algorithm with matching upper
bound was obtained in [12].

We will improve a bit-parallel algorithm, ABNDM (Approximate Backward
Nondeterministic DAWG Matching) [13] that achieves O(�m

w �·n(k+log(m))/m)
average time. Assuming m = O(w), this is optimal up to a O(log(σ)) factor
and truly optimal if k = Ω(log(m)) as well. The analysis holds for k/m <
1/2 − O(1/

√
σ). We show that using our two-level counter splitting we can

obtain O(�m
w � · n(k + log log(m) + logσ(m))/m) average time, optimal if k =

Ω(log log(m)) or log σ = Ω(log(m)/ log log(m)).
The ABNDM algorithm is based on combining the well-known BNDM algo-

rithm [7] and (modified) Myers’ bit-parallel dynamic programming algorithm
[14]. ABNDM works with text windows of m − k characters. For each window
position i, it computes two bit-vectors (among others), V +

i and V −
i , of length

m bits. These define an integer vector Ci,j , whose values are defined to be

Ci,j ← Ci−1,j + ((V +
i >> j) & 1) − ((V −

i >> j) & 1). (20)

However, the values of Ci,j can grow large, and cannot (all) be efficiently main-
tained explicitly. Still, one of the key ingredients of ABNDM boils down to de-
tecting as soon as possible the situation when all the values in Ci have exceeded
k. The solution presented in [13] uses bit-parallel witnesses. A witness is some ex-
plicitly maintained value of Ci, needing only � = O(log(m)) bits. Hence a single

348 K. Fredriksson and S. Grabowski

bit-vector of w bits can pack O(w/ log(m)) witnesses. These are distributed uni-
formly, i.e. every �-th value of Ci is explicitly maintained (and Ci,m is always
maintained). The values can be easily updated in parallel, by masking the V +

and V − vectors appropriately. The particularities of the problem guarantee that:

1. No value can be negative.
2. If all values of Ci have reached a certain threshold, then they cannot anymore

be decreased below that threshold, i.e. every value of Ci+1 is at least that
threshold.

3. The values of two neighboring witnesses can differ by at most
�/2�;

The two last properties can be used to bound the actual values of Ci: if all
witnesses have exceeded k +
�/2�, then all values of Ci have surely exceeded
k. The first two properties can be used to obtain efficient bit-parallel algorithm,
also in our case. From the analysis point of view, this is effectively the same
as searching with k′ = k + O(�) errors, and the time bound becomes O(n(k +
log(m) + logσ(m))/m), for m = O(w).

The O(log(m)) term can be relaxed by using more witnesses, and we can afford
using more witnesses by using more counter levels. The solution is similar to that
of used for (δ, α)-matching. The main difference is that the counter (witness)
values can also decrease. Let us again consider the two level counter splitting.
For the bottom level we use �′ = Θ(log log(m)) bits per counter, and hence

w/�′� witnesses. Obviously, the top level needs � = Θ(log(m)) bits per counter,
and Θ(w�/�′) in total. More precisely, we use �′ = �log(log(m + 1) + 1)�+ 2 bits
per counter in the bottom level, and � = �log2(m + 2�′−1)�+ 1 for the top level.
We note that these could be improved a bit (see the formulas in [13]), but not
asymptotically. Consider a bottom level (witness) counter W ′

[i]�′ and a top level
counter W[i]�. Call k′ = k +
�′/2�. Then we can proceed as follows:

1. Initialize W ′
[i]�′ to 0. This is safe at first, since no counter can have a negative

value. Initialize W[i]� to 2�−1 − (k′ + 1), which is used to represent 0.
2. Bottom level phase: update the counter W ′

[i]�′ . This is repeated 2�−2 − 1
times. Check if the highest bit of W ′

[i]�′ is activated, for all i. If so, terminate
the text window scan.

3. Top level phase: Compute x = W ′
[i]�′−(2�′−2−1). If x > 0, add x to W[i]�, and

subtract x from W ′
[i]�′ (i.e. initialize it to 2�′−2 − 1). Otherwise, do nothing.

This ensures that the counter cannot underflow (nor overflow) in the next
bottom level phase.

4. Adjust W ′
[i]�′ and W[i]�, as described shortly.

5. Go to step 2.

The above scheme correctly maintains the counter values, taking care no under-
flow or overflow can happen. However, in step 2 we check the highest bits of the
bottom level counters, but these never get activated (as step 3 prevents that),
unless step 4 adjusts the values appropriately. Step 4 is similar to the cases 1–3
in Sec. 3.1, i.e. the bottom level counters are initialized differently, if the sum of

Nested Counters in Bit-Parallel String Matching 349

the two counter levels have exceeded k′, or are 2�′−2 − 1 steps away from doing
so. The technique is precisely the same as before. Note that even if the highest
bit of W ′

[i]�′ is activated, the counter still cannot overflow in 2�′−2 − 1 steps.
Given the tools we have developed, all the steps can be easily performed bit-

parallelly. The actual implementation is similar to that of (δ, α)-matching, hence
we do not give the details. The analysis is the same as for the original algorithm,
the only difference is that the threshold k′ is now k+
�′/2�, instead of k+
�/2�.
Hence the algorithm runs in O(n(k + log log(m)+ logσ(m))/m) average time for
m = O(w).

Acknowledgments

We thank an anonymous referee for insightful comments helping to improve the
original paper version.

References

1. Grabowski, S., Fredriksson, K.: Bit-parallel string matching under Hamming dis-
tance in O(n�m/w�) worst case time. IPL 105(5), 182–187 (2008)

2. Pǎtraşcu, M.: Predecessor search. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms.
Springer, Heidelberg (2008)

3. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Communica-
tions of the ACM 35(10), 74–82 (1992)

4. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1), 31–88 (2001)

5. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. System Sci. 47, 424–436 (1993)

6. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes and transposition invariance. Information Re-
trieval 11(4), 335–357 (2008)

7. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-
line search algorithms for texts and biological sequences, 280 pages. Cambridge
University Press, Cambridge (2002)

8. Fredriksson, K., Grabowski, S.: Efficient bit-parallel algorithms for (δ, α)-matching.
In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 170–181.
Springer, Heidelberg (2006)

9. Kuri, J., Navarro, G., Mé, L.: Fast multipattern search algorithms for intrusion
detection. Fundamenta Informaticae 56(1–2), 23–49 (2003)

10. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theoret-
ical Computer Science 43(2-3), 239–249 (1986)

11. Das, G., Fleischer, R., Ga̧sieniec, L., Gunopulos, D., Kärkkäinen, J.: Ga̧sieniec,
L., Gunopulos, D., Kärkkäinen, J.: Episode matching. In: Hein, J., Apostolico, A.
(eds.) CPM 1997. LNCS, vol. 1264, pp. 12–27. Springer, Heidelberg (1997)

12. Chang, W., Marr, T.: Approximate string matching with local similarity. In:
Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 259–273.
Springer, Heidelberg (1994)

13. Hyyrö, H., Navarro, G.: Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica 41(3), 203–231 (2005)

14. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46(3), 395–415 (1999)

Bounded Delay and Concurrency for
Earliest Query Answering

Olivier Gauwin1,2,3, Joachim Niehren1,3, and Sophie Tison2,3

1 INRIA, Lille
2 University of Lille 1

3 Mostrare project, INRIA & LIFL (CNRS UMR8022)

Abstract. Earliest query answering is needed for streaming XML pro-
cessing with optimal memory management. We study the feasibility of
earliest query answering for node selection queries. Tractable queries are
distinguished by a bounded number of concurrently alive answer candi-
dates at every time point, and a bounded delay for node selection. We
show that both properties are decidable in polynomial time for queries
defined by deterministic automata for unranked trees. Our results are ob-
tained by reduction to the bounded valuedness problem for recognizable
relations between unranked trees.

1 Introduction

Streaming algorithms are relevant for XML databases and data exchange, when-
ever large data collections that cannot be stored in main memory are to be pro-
cessed. Instead data is communicated over streams and processed incrementally.
Recently, XML streaming algorithms were proposed for schema validation [1]
(membership in tree languages), one-pass typing [2] (annotating nodes of trees
by types), and query answering [3,4,5].

The space complexity of streaming algorithms for answering node selection
queries in XML trees depends on the size of the call stack (bounded by the
depth of the tree) and on the number of concurrently alive answer candidates
that are kept in main memory at every time point [6]. The purpose of earliest
query answering (EQA) is to minimize the second number. Selection and uns-
election of answer candidates need to be decided as early as possible, so that
selected candidates can be output and unselected candidates discarded as early
as possible. In both cases they are removed from main memory.

EQA is the objective of various streaming algorithms for Forward XPath and
its fragments [6,7,8], and has been studied for automata defined queries too [9,10].
In the latter paper, it is shown how to obtain a correct EQA algorithm for a frag-
ment of Forward XPath under schema assumptions, by a P-time translation to
deterministic streaming tree automata (dSTAs) [11], or equivalently determinis-
tic nested word [12], visibly pushdown [13] or pushdown forest automata [14].

Whether EQA is tractable depends on two properties of the considered query
Q and schema S, both of which are independent of the concrete algorithm. The
first restriction is bounded delay of selection, which requires a bound for all trees
t ∈ S on the number of events between the first visit of a selected node π ∈ Q(t)

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 350–361, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bounded Delay and Concurrency for Earliest Query Answering 351

and the earliest event that permits its selection. This limits the waiting time for
the answer. The second restriction is bounded concurrency of alive candidates,
which imposes a bound on the number of concurrently alive answer candidates
for Q wrt. S for all trees of S at all time points. This limits the maximal number
of candidates that need to be memoized simultaneously by every EQA algorithm.

In this paper, we show that bounded delay and bounded concurrency are
decidable in P-time for n-ary queries and schemas defined by deterministic au-
tomata for unranked trees. Our result holds for dSTAs, as well as for bottom-
up deterministic tree automata that operate on binary encodings of unranked
trees [15], either firstchild-nextsibling based or Curried [16]. When restricting
databases to words instead of trees, decision procedures for bounded delay and
concurrency for queries defined by dFAs can be obtained quite easily by reduc-
tion to bounded ambiguity of nFAs. The algorithm for words, however, cannot
be lifted to trees in any straightforward manner. In order to solve this problem,
we propose another solution by reduction to the bounded valuedness problem of
recognizable relations between unranked trees. As we show, this problem can be
reduced to bounded valuedness of bottom-up tree transducers, which can be de-
cided in P-time (Theorem 2.8 of [17]). All reductions are in P-time since we start
from deterministic automata. Omitted proofs can be found in the long version.

2 Queries in Words

We recall definitions of schemas and queries for tuples of positions in words by
dFAs, and the concept of bounded ambiguity for nFAs.

Words, Positions, and Events. Let an alphabet Σ be a finite set with elements
ranged over by a, b, c and N the set of natural numbers n ≥ 1. We will consider
words w ∈ Σ+ as databases. The set of all words Σ∗ is closed under concatena-
tion ww′ and contains the empty word ε. The set of positions of a word w ∈ Σ∗

is pos(w) = {1, . . . , |w|} where |w| is the number of letters of w. For all w ∈ Σ+

and positions π ∈ pos(w) we define labw(π) ∈ Σ to be the π-th letter of word w
and say that position π is labeled by labw(π).

One-way finite automata process words letter by letter from the left to the
right, equally to streaming algorithms for words. We define the set of events
for a word w ∈ Σ+ by adding the start event 0 to the set of all positions
eve(w) = {0}∪ pos(w). For all events e ∈ eve(w), we define w≤e ∈ Σ∗ to be the
prefix of w with exactly e letters. We say that two words coincide until event e
if w≤e = w′≤e and write eqe(w, w′) in this case.

Queries and Schemas. An n-ary query Q selects a set of n-tuples of positions
for every word w ∈ Σ+. It is a function which maps words w to sets of tuples
of positions Q(w) ⊆ pos(w)n. A schema S ⊆ Σ+ restricts the set of permitted
databases. We say that a word w ∈ Σ+ satisfies a schema S if and only if w ∈ S.

Automata, Ambiguity, and Determinism. A finite automaton (nFA) over Σ
is a tuple A = (stat , init , rul ,fin) where init ,fin ⊆ stat are finite sets and
rul ⊆ stat2 × (Σ ∪ {ε}) contains rules that we write as q

a→ q′ or q
ε→ q′

352 O. Gauwin, J. Niehren, and S. Tison

where q, q′ ∈ stat and a ∈ Σ. Whenever necessary, we will index the components
of A by A. Let the size of A count all states and rules, i.e., |A| = |statA|+ |rulA|.

A run of A on a word w is a function r : eve(w) → statA so that r(0) ∈ initA

and r(π−1) ε ∗→ a→ ε ∗→ r(π) is justified by rul for all π ∈ pos(w) with a = labw(π).
A run is successful if r(|w|) ∈ finA. The language L(A) ⊆ Σ∗ is the set of all
words that permit a successful run by A. An nFA is called productive, if all its
states are used in some successful run. This is the case if all states are reachable
from some initial state, and if for all states, some final state can be reached.

The ambiguity ambA(w) is the number of successful runs of A on w. The
ambiguity of A is k-bounded if ambA(w) ≤ k for all w ∈ Σ∗. It is bounded, if it
is bounded by some k. An nFA is deterministic or a dFA if it has at most one
initial state and at most one rule for all left hand sides, including letters. Clearly
the ambiguity of dFAs is 1-bounded.

Stearns and Hunt [18] present a P-time algorithm for deciding k-bounded
ambiguity of nFAs. Let us write p

w→ q by A if there exists a run of A[init = {p}]
(the automaton obtained from A by setting its initial states to {p}) on w that
ends in q. Weber and Seidl [19] show that an nFA A has unbounded ambiguity
iff there exists a word w ∈ Σ+ and distinct states p �= q such that p

w→ p, p
w→ q,

q
w→ q by A. This can be tested in O(|A|3) as shown very recently by [20].

Canonicity and Types. Let B = {0, 1} be the set of Booleans. For words
w ∈ Σ∗ and tuples τ = (π1, . . . , πn) ∈ pos(w)n, let w ∗ τ be the annotated
word in (Σ × Bn)∗ obtained from w by relabeling all positions π ∈ pos(w) to
(labw(π), b1, . . . , bn), where bi = 1 if π = πi and bi = 0 otherwise. The canonical
language of an n-ary query Q is canQ = {w ∗ τ | τ ∈ Q(w)}. The type of a word
v ∈ (Bn)∗ is an element of (N∪ {0})n defined by

∑
π∈pos(v) labv(π). The type of

a word in (Σ×Bn)∗ is the type of its projection in (Bn)∗. All words over Σ×Bn

of type 1n have the form w ∗ τ , and vice versa. An nFA A over Σ ×Bn is called
canonical if all words of L(A) have type 1n. For productive canonical dFAs A,
every state q ∈ stat has a unique type in Bn, which is the type of all words with
runs by A ending in q (e.g., Lemma 3 of [21]).

3 Earliest Query Answering for Words

We recall the framework of EQA for XML databases from [10], but restricted to
the case of words, and show for queries defined by dFAs that bounded concur-
rency and delay can be reduced in P-time to bounded ambiguity for dFAs.

An EQA algorithm decides selection and failure of answer candidates at every
time point (without knowing the rest of the stream). This way, it needs to keep
in main memory only alive candidates, which are neither safe for selection nor
failure. As an example, consider the monadic query Q that selects all positions
in words w that are labeled by a and followed by bb. When applied to w =
aabbabbcabab, this query returns Q(w) = {(2), (5)}. A streaming algorithm can
enumerate these answers by using a sliding window of length 3. Position 1 for
instance can be refused when having seen the labels of positions 1, 2, while
position 2 can be selected when having seen the labels of positions 2, 3, 4.

Bounded Delay and Concurrency for Earliest Query Answering 353

Schema assumptions are relevant to EQA since restricting the remainder of
the stream. The schema (a|b)∗c(ab)∗, for instance, excludes all positions from
Q(w) that are on the right of the c letter in w. This allows to exclude positions
8, . . . , 12 to belong to the answer set Q(w) immediately at the respective position.

Earliest Selection and Bounded Delay. The delay of a selected position is the
number of subsequent events before selection can be safely decided. More for-
mally, let Q be an n-ary query in words w ∈ Σ+ satisfying a schema S ⊆ Σ+.
We define a relation selSQ(w) that links tuples τ ∈ pos(w)n to events e ∈ eve(w)
that are sufficient for selection, i.e., where τ will be selected in all possible con-
tinuations of the stream beyond e. Only those continuations are allowed, which
extend the current prefix of the word to a member of S:

(τ, e) ∈ selSQ(w) ⇔ τ ∈ {1, . . . , e}n ∧ ∀w′ ∈ S. eqe(w, w′) ⇒ τ ∈ Q(w′)

Note that the initial event 0 may be sufficient to select the empty tuple () in
Boolean queries where n = 0, while it is never sufficient for selection if n ≥ 1
since otherwise τ �∈ {1, . . . , e}n.

Let latest((π1, . . . , πn)) = max1≤i≤nπi be the latest position of the tuple. The
delay of an n-ary query Q for a tuple τ ∈ pos(w) is the number of events e
following latest(τ) such that e is insufficient for selection, i.e., (τ, e) �∈ selSQ(w).

delayS
Q(w, τ) = |{e ∈ eve(w) | latest(τ) ≤ e, (τ, e) �∈ selSQ(w)}|

Query Q with schema S has k-bounded delay if delayS
Q(w, τ) ≤ k for all w ∈ S

and τ ∈ Q(w). It has bounded delay if it has k-bounded delay for some k ≥ 0.
Having bounded delay means that every EQA algorithm will output selected
tuples a constant time after completion.

Deciding Bounded Delay. We start with the case without schemas. Let A be
a canonical and productive dFA over Σ × Bn and QA the n-ary query that it
defines. We call a state q ∈ statA of type 1n safe for selection if (Σ × {0}n)∗ ⊆
L(A[init = {q}]). Since A is canonical and deterministic, this is the case if and
only if all states reachable from q are final and have outgoing transitions for all
letters in Σ × {0}n. Thus, the set of states of A that are safe for selection can
be computed in time O(|A| + |Σ| + n).

Lemma 1. If the run r of a canonical dFA A on w ∗ τ exists then it satisfies
for all e ∈ pos(w) that r(e) is safe for selection if and only if (τ, e) ∈ selQA(w).

We define an nFA D(A) such that ambD(A)(w ∗ τ) = delayQA
(w, τ) for all

τ ∈ QA(w). D(A) has the same states as A except for one additional state ok,
which is the only final state of D(A). All transitions of A are preserved by D(A).
In addition to simulating A, automaton D(A) has ε transitions into the state
ok from all states q of type 1n of A that are unsafe for selection. State ok has
transitions into itself for all letters in Σ × {0}n.

Proposition 1. For w ∈ Σ∗, τ ∈ QA(w): delayQA
(w, τ) = ambD(A)(w ∗ τ).

Proof. Consider a run of D(A) on a canonical word w ∗ τ . The only ambiguity
of D(A) is introduced by the ε-transitions, by which to exit from A at positions

354 O. Gauwin, J. Niehren, and S. Tison

between the last component of τ (included) and the earliest event that is safe
for the selection of τ . The number of such positions is precisely delayQA

(w, τ).

Theorem 1. Bounded delay for queries QA and schemas L(B) defined by dFAs
A, B can be decided in time O(|A| · |B|), and k-bounded delay in P-time.

Proof. We sketch the proof for bounded delay without schemas, where L(B) =
Σ∗. By Proposition 1, it is sufficient to decide whether D(A) has bounded ambi-
guity. By Weber and Seidl’s characterization, this holds if the subautomaton of
A containing only unsafe states for selection of type 1n, has no loop. Acyclicity
of this subautomaton can be tested in time O(|A|).
Earliest Failure and Bounded Concurrency. The space complexity of EQA al-
gorithms depends on the concurrency of a query, which is the maximal number
of concurrently alive answer candidates at every time point [6,7], since these are
to be kept in main memory. In order to formalize this for n-ary queries, we have
to deal with partial answer candidates for a given word w. We fix a constant •
that represents unknown components, and define partial tuples τ of positions un-
til e ∈ pos(w) as members of ({1, . . . , e} � {•})n. So far, we have only studied
complete answer candidates, which do not contain any unknown component. We
write compl(τ, w, e) for the set of complete candidates, in which all unknown com-
ponents of τ have been instantiated with nodes π ∈ pos(w) such that e ≤ π. Given
a query Q, schema S, and word w ∈ S, we call a partial candidate τ failed at event
e ∈ eve(w), if no completion of τ by nodes in the future of e is selected by Q.

(τ, e) ∈ failSQ(w) ⇔
{

τ ∈ ({1, . . . , e} � {•})n ∧
∀w′ ∈ S. eqe(w, w′) ⇒ ∀τ ′ ∈ compl (τ, w′, e). τ ′ /∈ Q(w′)

A partial candidate τ ∈ ({1, . . . , e} ∪ {•})n is alive at e if it is neither failed nor
selected at e. The concurrency of a query schema pair on a word w ∈ Σ+ at
position e ∈ eve(w) is the number of alive candidates at time point e, so that e
is neither sufficient for selection or failure:

(τ, e) ∈ aliveS
Q(w) ⇔ (τ, e) �∈ failSQ(w) and (τ, e) �∈ selSQ(w)

concurS
Q(w, e) = |{τ ∈ ({1, . . . , e} ∪ {•})n | (τ, e) ∈ aliveS

Q(w)}|

We say that the concurrency of a query schema pair is bounded if there exists
k ≥ 0 such that concurS

Q(w, e) ≤ k for all words w ∈ S and e ∈ pos(w).

Deciding Bounded Concurrency. We start with queries without schemas. So let
A be a canonical productive dFA over Σ×Bn and QA the query it defines. Recall
that all states of A have a unique type v ∈ Bn. We call a state q of type v safe
for failure, if no final states can be reached from q by words of complementary
type 1n − v. By canonicity, this is the case if no final states can be reached from
q at all. We can thus compute the set of safe states for failure in time O(|A|).
Lemma 2. If the unique run r of a canonical dFA A on some w ∗ τ exists, then
all e ∈ pos(w) satisfy that r(e) is safe for failure if and only if (τ, e) ∈ failQA

(w).

We define an nFA C(A) such that ambC(A)(w ∗ e) = concurQ(w, e) for all e ∈
pos(w). The situation is a little different than for D(A) since C(A) runs on words

Bounded Delay and Concurrency for Earliest Query Answering 355

annotated by events rather than tuples. So the alphabet of C(A) is Σ × B. The
nFA C(A) guesses all partial candidates with positions until e, tests whether
they are alive at e, and accepts in this case and only this case.

Proposition 2. For all e ∈ pos(w): concurQA(w, e) = ambC(A)(w ∗ e).

Theorem 2. Bounded and k-bounded concurrency for queries and schemas de-
fined by canonical dFAs can be decided in P-time for any fixed k ≥ 0.

4 Earliest Query Answering for Unranked Trees

We extend EQA from words to unranked trees. We then lift our P-time decision
results to tree automata for unranked trees, and argue why the proofs for words
cannot be lifted in any straightforward manner.

The set of unranked trees TΣ is the least set that contains all (k+1)-tuples
a(t1, . . . , tk) where k ≥ 0, a ∈ Σ and t1, . . . , tk ∈ TΣ. Positions of words corre-
spond to nodes of trees, defined by nod(a(t1, . . . , tk)) = {ε}∪{iπ | π ∈ nod(ti)}.
The word w = abaca, for instance, can be encoded by the tree t = r(a, b, a, c, a),
where r ∈ Σ is an arbitrary symbol. Note that nod(t) = {ε} ∪ pos(w). Queries
Q in unranked trees select tuples of nodes Q(t) ⊆ nod(t)n for all trees t ∈ TΣ .
Events are produced by preorder traversals:

eve(t) = {start} ∪ ({open, close} × nod(t))

There is an initial event start and an opening and a closing event per node. Let
≤ be the total order on eve(t) induced by preorder traversals over trees t ∈ TΣ ,
and let pred(e) be the immediate predecessor of event e ∈ eve(t) − {start}.
For all e ∈ eve(t) − {start}, we define the prefix t≤e of t to be the tree which
contains the part of t with all nodes opened before e, i.e., nod(t≤e) = {π ∈
nod(t) | (open, π) ≤ e}, and labt≤e

(π) = labt(π) for all π ∈ nod(t≤e). Note
that t≤(close,π) contains all proper descendants of π in t, while t≤(open,π) does
not. As before, we can define eqe(t, t′) by e = start or t≤e = t′≤e. The notion
t ∗ τ ∈ TΣ×Bn extends straightforwardly from words to trees. The canonical
language of an n-ary query Q thus has type canQ ⊆ TΣ×Bn . The definitions of
selSQ, failSQ, delayS

Q and concurS
Q extend literally, except that the set {1, . . . , e}

needs to be replaced by nod(t≤e).
Tree automata for unranked trees are often obtained from standard tree au-

tomata for binary trees. A binary signature is a finite set Γ = Γ2 �Γ0 with con-
stants in Γ0 and binary function symbols in Γ2. The set of binary trees T bin

Γ is the
least set containing all c ∈ Γ0 and triples f(t1, t2) where f ∈ Γ2 and t1, t2 ∈ T bin

Γ .
A tree automaton (TA) for binary trees in T bin

Γ is a tuple A = (stat ,fin, rul)
consisting of finite sets fin ⊆ stat and a set rul ⊆ ∪i∈{0,2}stat i+1×Γi, that we de-
note as f(q1, q2) → q and c → q where q1, q2, q ∈ stat , f ∈ Γ2 and c ∈ Γ0. A run
of A on t ∈ T bin

Γ is a function r : nod(t) → stat such that f(r(π1), r(π2)) → r(π)
belongs to rulA for all nodes π of t with labt(π) = f ∈ Γ2, and r(π) → c in
rulA for all nodes π of t with labt(π) = c ∈ Γ0. The language Lbin(A) is the set

356 O. Gauwin, J. Niehren, and S. Tison

a

b c d

e

fcns⇒

Fig. 1. Binary encoding

a

b

⊥ c

⊥ d

e

⊥ ⊥

⊥

⊥

a

b c
�

d

e

f

=

(a, d)

(b, e)

(⊥, f)

(c,⊥)

Fig. 2. Example for overlays

of all binary trees over Γ that permit a successful run by A, where r(ε) ∈ fin.
A (bottom-up) deterministic TA (dTA) is a TA of which no two rules have the
same left hand side.

We can encode unranked trees t ∈ TΣ into binary trees by applying Rabin’s
firstchild-nextsibling encoding fcns : TΣ → T bin

Σ⊥ where Σ⊥ = Σ � {⊥}. The
definition is recalled by example in Fig. 1. A TA over TΣ⊥ defines the language
of unranked trees L(A) = {t ∈ TΣ | fcns(t) ∈ Lbin(A)}.

Operationally, however, dTAs fail to operate in streaming manner on unranked
trees, so that the previous decision algorithms cannot be lifted to queries defined
by dTAs. Streaming tree automata (STAs) [11] operate in the proper order.
They are a reformulation of nested word automata [12,13] and shown equivalent
to pushdown forest automata [14]. Deterministic STAs (dSTAs) can perform
one-pass typing for extended DTDs with restrained competition [2] as well as
EQA [10] for queries defined by dSTAs. Furthermore, deterministic stepwise tree
automata [16] can be converted in dSTAs in linear time.

Proposition 3 (Closure properties). The classes of TAs (wrt. the fcns en-
coding) and STAs permit determinization, and recognize the same languages of
unranked trees modulo P-time automata translations (not preserving determin-
ism). Recognizable languages are closed under Boolean operations, projection and
cylindrification. All corresponding operations on TAs (resp. STAs) can be per-
formed in P-time and preserve determinism except for projection.

Even with STAs, it remains difficult to lift our P-time algorithms for words to
trees, since the notion of safe states becomes more complex. Given a canonical
dSTA A for query QA, one can define another dSTA E(A) for which appropriate
notions of safe states wrt. QA exist [10]. The size of E(A), however, may grow
exponentially in |A|. Therefore, we cannot use E(A) to construct polynomially
sized counterparts of D(A) and C(A) in the case of unranked trees. Nevertheless:

Theorem 3 (Main). Bounded delay is decidable in P-time for n-ary queries
and schemas in unranked trees defined by dTAs (wrt. the fcns or Curried en-
coding) or dSTAs, where n may be variable. Bounded concurrency is decidable
in P-time for fixed n. For fixed k and n, k-bounded delay and concurrency are
decidable in NP-time.

Bounded Delay and Concurrency for Earliest Query Answering 357

a

a

b

b

(a) Tree t

a

a

b

a

a

(b) Tree s

0

close

0

0

(c) Tree se

0

0

0

open

(d) Tree se′

Fig. 3. (t, s, se) ∈ Eq but (t, s, se′) /∈ Eq

Our proof will be based on the powerful notion of recognizable relations between
unranked trees (see [15] for ranked trees). Bounded delay and concurrency are
reduced to bounded valuedness of recognizable relations, which in turn is reduced
to bounded valuedness of tree transducers for binary trees [17].

5 Recognizable Relations between Unranked Trees

We extend the theory of recognizable relations from ranked to unranked trees.
We show that FO-formulas over recognizable relations with n free variables define
recognizable relations between n unranked trees (so that satisfiability is decid-
able), and that bounded valuedness of recognizable relations can be decided in
P-time by reduction to bounded valuedness of tree transducers (for binary trees).

Recognizable Relations. In this section, we assume an arbitrary class of tree
automata, that satisfy the properties of STAs in Proposition 3. This includes
TAs modulo the fcns encoding, STAs, and stepwise tree automata [16] (but not
deterministic hedge automata with dFAs for horizontal languages [15]).

The overlay of k unranked trees ti ∈ TΣi is the unranked tree t1 � . . . � tk
in TΣ1

⊥×...×Σk
⊥

obtained by superposing these k trees top-down and left-to-right;
the ⊥ symbol represent missing children where the structures of the trees differ.
This is illustrated in Fig. 2. Overlays of ranked trees can be obtained this way
too [15], except that overlayed symbols need to inherit the maximal arity. A
k-ary relation R between unranked trees is recognizable iff the language of its
overlays ovl(R) = {t1 � . . . � tk | (t1, . . . , tk) ∈ R} is recognizable by a tree
automaton. We say that R is recognized by the automaton A if ovl(R) = L(A).
We also say that R can be computed in time k if an automaton recognizing R
can be computed in time k.

The prime example is the relation Eq ⊆ TΣ × TΣ × T{0,open,close}. Here, we
map event e = (α, π) ∈ eve(t) to trees rene(t) ∈ T{0,open,close} obtained by
relabeling t, such that π is relabeled to α and all other nodes to 0. We then
define Eq = {(t, s, rene(t)) | eqe(t, s)}. See Fig. 3 for an example.

Lemma 3. Given a signature Σ, a deterministic automaton recognizing relation
Eq ⊆ TΣ × TΣ × T{0,open,close} can be computed in time O(|Σ|2).
An STA recognizing ovl(Eq) with O(1) states is easy to define. It can be con-
verted into a TA by Proposition 3 and from there to a deterministic automaton
of the class under consideration by assumption. The resulting automaton still
has O(1) states, and thus an overall size of O(|Σ|), if we assume in addition a
function ψ such that |A| ≤ |Σ| ·ψ(|statA|) for all automata A with signature Σ.

358 O. Gauwin, J. Niehren, and S. Tison

FO Logic. Let Ω be a collection of unranked disjoint signatures and � a set of
recognizable relations between unranked trees, so that each relation R ∈ � has
a type R ⊆ TΣR

1
× . . . × TΣR

ar(R)
where ΣR

1 , . . . , ΣR
ar(R) ∈ Ω and ar(R) ≥ 0. We

fix an infinite set of variables V ranging over unranked trees. A FO formula over
recognizable relations in � and signatures in Ω has the abstract syntax:

φ ::= R(X1, . . . , Xar(R)) | φ ∧ φ′ | ¬φ | ∃X∈TΣ. φ

where R ∈ �, X1, . . . , Xar(R) ∈ V , and Σ ∈ Ω. We assume that all formulas
are well-typed, i.e., that the types of variables are compatible with those of the
relations in which they appear. A formula φ with m free variables X1, . . . , Xm

of types TΣ1 , . . . , TΣm defines an m-ary relation Rφ(X1,...,Xm) ⊆ TΣ1 × . . . ×
TΣm . The closure properties of tree automata ensure that all such relations are
recognizable. Let FO∃[�] be the set of formulas where existential quantifiers are
restricted to occur outermost (and Ω is the set of signatures appearing in the
types of relations in �). The size |φ| is the number of nodes of φ.

Proposition 4. Let � be a finite set of relations recognized by deterministic
automata {AR}R∈	. Then there exists a polynomial p such that for all formulas
φ in FO∃[�], an automaton recognizing the relation defined by φ can be computed
in time p(|φ|, (|AR|)R∈).

Bounded Valuedness. Let R ⊆ TΣ1 × TΣ2 be a recognizable binary relation.
For every s1 ∈ TΣ1, the number #R(s1) = |{s2 | (s1, s2) ∈ R}| counts the
trees in TΣ2 in relation to it. The valuedness of R is the maximal such number
val(R) = maxs∈TΣ1

#R(s). We call R bounded if val(R) ≤ k for some k ≥ 0.

Lemma 4. A relation R between unranked trees is recognizable iff the corre-
sponding relation between binary trees fcns(R) is, and val(fcns(R)) = val(R).

Theorem 4. For every automaton A recognizing a binary relation R between
unranked trees, i.e., L(A) = ovl(R):

1. val(R) < ∞ can be decided in P-time in |A|.
2. val(R) < k (for a fixed k) can be decided in NP-time in |A|.

Proof. It is sufficient to prove the theorem for TAs over binary trees by Lemma
4. We start with recognizable relabeling relations, and lift the result to recog-
nizable relations in the long version of the paper. A relabeling relation R ⊆
TΣ1 × . . .×TΣn is a relation between trees of the same structure, i.e., whenever
(s1, . . . , sn) ∈ R then nod(s1) = . . . = nod(sn). In other words, the overlays in
ovl(R) do not contain any place holder ⊥.

So let R ⊆ TΣ × T∆ be a relabeling relation for binary signatures, and A a
TA for trees in TΣ×∆ that recognizes R, i.e., Lbin(A) = ovl(R). We transform
A into a bottom-up tree transducer T for defining the relation R as in [22]. The
rules of T are infered as follows where x1, x2 are variables:

(f, g)(p1, p2) → p ∈ rul(A)
f(p1(x1), p2(x2)) → p(g(x1, x2)) ∈ rul(T)

(a, b) → p ∈ rul(A)
a → p(b) ∈ rul(T)

Bounded Delay and Concurrency for Earliest Query Answering 359

This transducer T has the same valuedness as R. Theorem 2.8 of [22] shows that
it can be decided in polynomial time whether T is finite-valued, i.e., whether
R is bounded. Concerning k-valuedness, it can be decided in non-deterministic
polynomial time according to Theorem 2.2 of [22].

The polynomials for testing bounded valuedness of tree transducers are much
higher than for testing bounded ambiguity for tree automata [23].

Using the above constructions and Theorem 2.7 of [22], we can build an algo-
rithm for computing the exact value of val (R), if it exists. We can proceed by
dichotomy, starting from 22P(|A|)

, for a fixed polynomial P .
From Proposition 4, we get in P-time a non-deterministic automaton recog-

nizing a relation defined by an FO∃[�] formula, and then apply Theorem 4:

Corollary 1. Let � be a finite set of relations and AR deterministic automata
recognizing R ∈ �. Then there exists a polynomial p such that for formulas φ
in FO∃[�], the bounded valuedness val(Rφ) < ∞ of the relation Rφ defined by φ
can be decided in time p(|φ|, (|AR|)R∈).

6 Deciding Bounded Delay and Concurrency

We prove the main Theorem 3 on deciding bounded delay and concurrency by
reduction to Corollary 1 on recognizable relations.

Let Q be an n-ary query for trees in TΣ and S ⊆ TΣ a schema. We define a
relation CanQ = {(t, renτ (s)) | t ∗ τ ∈ canQ ∧ Eq(t, s, ren latest(τ)(t))}, where
renτ (s) is the projection of s∗τ to Bn. The relation Bef = {(t, renτ (t), rene(t)) |
τ ∈ nod(t≤e)n} is recognizable by a dTA of size O(2n), so we cannot use this re-
lation for P-time algorithms without fixing n. By using the relation Bef&CanQ =
{(t, sτ , se) | CanQ(t, sτ) and Bef (t, sτ , se)}, the problem can sometimes be cir-
cumvented. Given a deterministic automaton defining Q (it can be a TA on
fcns encoding, a stepwise tree automaton or an STA), one can construct an
automaton of polynomial size recognizing the relation Bef&CanQ.

Our objective is to define the formulas delayS
Q and concurS

Q in the logic
FO∃(Eq ,CanQ, S,Bef ,Bef&CanQ), preferably without using Bef . We start with
defining relation SelSQ = {(t, renτ (t), rene(t)) | (τ, e) ∈ selSQ(t)} by an FO formula
SelSQ(Xt, Xτ , Xe) with three free variables:

SelSQ(Xt, Xτ , Xe) =df S(Xt) ∧ Bef (Xt, Xτ , Xe)
∧ ∀X ′

t ∈ TΣ . (S(X ′
t) ∧ Eq(Xt, X

′
t, Xe)) ⇒ CanQ(X ′

t, Xτ)

Given automata defining Q and schema S, we can thus define an automaton
recognizing SelSQ(Xt, Xτ , Xe). This yields an algorithm for deciding judgments
(τ, e) ∈ selSQ(t). It may be unefficient, though, since the automaton obtained
this way may be huge, given that formula SelSQ(Xt, Xτ , Xe) uses full FO-logic of
recognizable relations without restriction to some FO∃.

Bounded Delay. We define the relation DelayS
Q = {(t, renτ (t), rene(t)) | e ∈

delayS
Q(t, τ)} by the following formula of FO∃(Eq ,Bef&CanQ, S):

360 O. Gauwin, J. Niehren, and S. Tison

DelayS
Q(Xt, Xτ , Xe) =df ∃X ′

t ∈ TΣ. S(Xt) ∧ Bef&CanQ(Xt, Xτ , Xe)
∧ S(X ′

t) ∧ Eq(Xt, X
′
t, Xe) ∧ ¬CanQ(X ′

t, Xτ)

All base relations can be defined by deterministic automata of polynomial size
when leaving n variable (since we don’t need relaton Bef here). Given determi-
nistic automata A and B defining query Q and schema S = L(B), we can thus
define a possibly nondeterministic automaton recognizing DelayS

Q(Xt, Xτ , Xe)
in P-time from A and B. Let 2DelayS

Q = {(t � sτ , se) | DelayS
Q(t, sτ , se)}. Both

relations are recognized by the same automaton. This relation exactly captures
the delay: val(2DelayS

Q) = |delayS
Q|. Applying Corollary 1 to 2DelayS

Q proves
that bounded delay is decidable in P-time.

Bounded Concurrency. For concurrency, we proceed in a similar manner. The
relation AliveS

Q = {(t, renτ (t), rene(t)) | τ ∈ aliveS
Q(t, e)} can be defined by the

following formula of FO∃:

AliveS
Q(Xt,Xe,Xτ) = ∃X ′

t∈TΣ .∃X ′′
t ∈TΣ .∃X ′

τ ∈TBn .∃X ′′
τ ∈TBn . S(X ′

t)∧S(X ′′
t)

∧ CanQ(X ′
t, X

′
τ) ∧ EqΣ(Xt, X

′
t, Xe) ∧ EqBn(Xτ , X ′

τ , Xe) ∧ Bef •(Xτ , Xe)
∧ ¬CanQ(X ′′

t , X ′′
τ) ∧ EqΣ(Xt, X

′′
t , Xe) ∧ EqBn(Xτ , X ′′

τ , Xe) ∧ CBn(X ′′
τ)

Here, Bef • is like Bef but for partial tuples, and CBn ⊆ TBn is the set of trees
of type 1n. Let 2AliveS

Q be the binary version of AliveS
Q, then val(2AliveS

Q) =
|concurS

Q|. Automata for CBn and EqBn are necessarily of size O(2n), which
cannot be avoided by embedding them inside other relation like ¬CanQ. But for
a fixed n, all these automata can be computed in P-time, so that Corollary 1
applied to 2AliveS

Q proves that bounded concurrency can be decided in P-time.

Conclusion. In this paper we proved that bounded delay and (for fixed n)
bounded concurrency are both computable in P-time, for queries defined by
dSTAs. This was obtained by studying some properties of recognizable relations
on unranked trees, and combining them with prior results on the valuedness of
tree transducers [17]. Considering the P-time translation of a fragment of XPath
to dSTAs proposed in [10], we get the same complexity results for this fragment
of XPath.

Some questions are left open in the present paper. For fixed k and n, deciding
k-boundedness for delay and concurrency for n-ary queries defined by dSTAs is
known to be in NP-time. However, NP-hardness is still open. We also chose to
define the delay for selection from the time point where the tuple gets complete.
An alternative could be to define the ith delay, that starts when i components
of the tuple are filled.

Acknowledgments. This work was partially supported by the Enumeration project
ANR-07-blanc.

References

1. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: ACM PODS,
pp. 53–64 (2002)

2. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML schema. ACM Transactions of Database Systems 31(3), 770–813 (2006)

Bounded Delay and Concurrency for Earliest Query Answering 361

3. Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In:
ACM SIGMOD, pp. 419–430 (2003)

4. Fernandez, M., Michiels, P., Siméon, J., Stark, M.: XQuery streaming á la carte.
In: 23nd International Conference on Data Engineering, pp. 256–265 (2007)

5. Benedikt, M., Jeffrey, A.: Efficient and expressive tree filters. In: Arvind, V., Prasad,
S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 461–472. Springer, Heidelberg (2007)

6. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: Buffering in query evaluation over
XML streams. In: ACM PODS, pp. 216–227 (2005)

7. Olteanu, D.: SPEX: Streamed and progressive evaluation of XPath. IEEE Trans.
on Know. Data Eng. 19(7), 934–949 (2007)

8. Gou, G., Chirkova, R.: Efficient algorithms for evaluating XPath over streams. In:
ACM SIGMOD, pp. 269–280 (2007)

9. Berlea, A.: Online evaluation of regular tree queries. Nordic Journal of Comput-
ing 13(4), 1–26 (2006)

10. Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic
streaming tree automata and a fragment of XPath (2009)

11. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Information Process-
ing Letters 109(1), 13–17 (2008)

12. Alur, R.: Marrying words and trees. In: ACM PODS, pp. 233–242 (2007)
13. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium

on Theory of Computing, pp. 202–211 (2004)
14. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,

V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 134–146. Springer,
Heidelberg (1998)

15. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: (1997) (revised October 12th, 2007),
http://tata.gforge.inria.fr

16. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004)

17. Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time.
Theoretical Computer Science 106, 135–181 (1992)

18. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing 14(3), 598–611 (1985)

19. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. In: Wieder-
mann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 620–629.
Springer, Heidelberg (1986)

20. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity
of finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
108–120. Springer, Heidelberg (2008)

21. Carme, J., Lemay, A., Niehren, J.: Learning node selecting tree transducer from
completely annotated examples. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004.
LNCS (LNAI), vol. 3264, pp. 91–102. Springer, Heidelberg (2004)

22. Seidl, H.: Ambiguity, valuedness and costs, Habilitation Thesis (1992)
23. Sakarovitch, J., de Souza, R.: Decidability of bounded valuedness for transducers.

In: Mathematical Foundations of Computer Science (2008)

http://tata.gforge.inria.fr

Learning by Erasing in Dynamic Epistemic Logic

Nina Gierasimczuk

Institute for Logic, Language, and Computation, University of Amsterdam
Institute of Philosophy, University of Warsaw

n.gierasimczuk@uva.nl

Abstract. This work provides a comparison of learning by erasing [1]
and iterated epistemic update [2] as analyzed in dynamic epistemic logic
(see e.g. [3]). We show that finite identification can be modelled in dy-
namic epistemic logic and that the elimination process of learning by
erasing can be seen as iterated belief-revision modelled in dynamic dox-
astic logic.

1 Introduction

There have been many formal attempts to grasp the phenomenon of epistemic
change. In this paper we will discuss two of them. On the one hand we have the
formal learning theory (LT) framework (see e.g. [4]), with its direct implications
for analysis of scientific discovery, on the other — belief-revision theory in its in-
terrelation with dynamic epistemic logic (DEL). In learning theory, the classical
framework of identification in the limit [5] was motivated mostly by the problem
of language acquisition. It turned out to be very useful for modelling the process
of grammar inference, and found numerous applications in the area of syntax.
Initially the idea of identification was unappreciated in semantic considerations,
but eventually also this direction has started to be developed resulting in appli-
cations to the acquisition of semantics of natural language [6,7,8] as well as in
modelling the process of scientific inquiry [9]. The serious step towards involving
more semantics was coupled with the design of model-theoretic learning [10] and
its application to belief-revision theory [11].

Other, very prominent directions that explicitly involve notions of knowledge
and belief have been developed in the area of epistemology. First, a precise
language to discuss epistemic states of agents has been established in [12]. After
that the need of formalizing dynamics of knowledge emerged. The belief-revision
AGM framework [13] constitutes an attempt to talk about the dynamics of
epistemic states. Belief-revision policies thus explained have been successfully
modelled in dynamic epistemic logic (see [3]) and in the above-mentioned model-
theoretic learning [11].

In the present paper we show how those two important traditions, LT and
DEL, can be merged. We explain this connection by joining iterated epistemic
� The author is a receiver of the Foundation for Polish Science Award for Young

Researchers (START Programme 2008).

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 362–373, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Learning by Erasing in Dynamic Epistemic Logic 363

update as modelled in DEL with a special case of learning in the limit — learning
by erasing [14,1].

We will proceed according to the following plan. First we explain the ideas
of dynamic epistemic logic (DEL) from a strictly semantic point of view. We
will also mention an important modification of DEL, namely dynamic doxastic
logic (DDL). As we will see the part ‘dynamic’ in those names refers to the
fact that those logics include operators which modify models. With respect to
those modifications we discuss the notions of epistemic and doxastic update. In
particular, we focus on public announcement as a special case. Then we leave
this logical subject and move to briefly recall the basics of formal learning theory
in its set-theoretical version. After that the definition of learning by erasing is
provided. The last two parts present a way to model finite identification in DEL
and learning by erasing in DDL.

2 Dynamic Epistemic Logic – Semantic Perspective

In general, dynamic epistemic logic has been introduced to formalize knowledge
change. In this section basic notions of DEL will be provided. The definitions
are based on [15]. Let us take Atom to be a set of atomic propositions and A —
a set of agents.

Definition 1 (Epistemic Model). Epistemic model M is a triple 〈W,
{∼i}i∈A, V 〉, where W is a set of possible worlds, for each i ∈ A, ∼i⊆ W × W
is an indistinguishability relation and V : Atom → ℘(W) is a valuation.

Intuitively speaking, M formalizes the epistemic situation of all agents from A.
The indistinguishability relation models their uncertainty about which of the
possible worlds is the actual one.

Definition 2 (Event Model). An event model E is a triple 〈S, {→i}i∈A, pre〉,
where S is a set of worlds, for each i ∈ A, →i⊆ S ×S, and pre : S → Atom is a
pre-condition function which indicates what pre-condition a world has to satisfy
to enable the event to take place.

Event model describes the epistemic content of the event. Relation →i directly
corresponds to the indistinguishability relation ∼i of epistemic model.

Definition 3 (Product Update). Let M = 〈W, {∼i}i∈A, V 〉 and E = 〈S,
{→i}i∈A, pre〉. The product update M ⊗ E is the epistemic model M ′ = 〈W ′,
{∼′

i}i∈A, V ′〉 such that:

– W ′ = {(w, s)|w ∈ W, s ∈ S and M, w |= pre(s)},
– (w, s) ∼i (w′, s′) iff w ∼i w′ and s →i s′,
– V ′((w, s)) = V (w).

Definition 4 (Public Announcement [16]). The public announcement of a
formula ϕ is the event model Eϕ = 〈S, {→i}i∈A, pre〉, such that S = {e} and for
each i ∈ A, e →i e and pre(e) = ϕ.

364 N. Gierasimczuk

The major result of updating an epistemic model M with public announcement
of ϕ is a submodel of M containing only the states that satisfy ϕ.

Example 1. Let us take the set of agents A = {a (Anne), b (Bob), c (Carl)}
and the deck of cards consisting of: 1, 2, 3. Each person gets one card. We can
represent the situation after dealing as a triple xyz, where x, y, z are cards and
the first position in the triple assigns the value to a (Anne), second to b (Bob),
etc. For instance, 231 means that Anne has 2, Bob has 3 and Carl has 1. All
possible situations after a deal are: 123, 132, 213, 231, 312, 321. We assume
that all the players are witnessing the fact of dealing but they do not know the
distribution of the cards. The epistemic model M of this situation is illustrated
in the figure.

213

123

312

132

321

231

c

b

a

a

b c

a

b

c

Let us then assume that as a result the actual world is 231. Obviously each
player’s knowledge does not allow certainty about which is the actual world. In
the model the uncertainty of the agent x about the worlds w and w′ is symbolized
by the following: w ∼x w′ (in the Figure this relation is depicted by two states
being joined by a line labeled with x).

Let us now assume that Anne shows her card to all the players publicly, i.e.,
all the players see her card and all of them know that all of them see it. This
event is modelled by E = (S, {→i}i∈A, pre), where S = {s}, for each x ∈ A,
s →x s and pre(s) = 2 (‘Anne has 2’).

2

a, b, c

The public announcement of ‘Anne has 2’ results in the epistemic situation,
which can be presented as M ′ = M ⊗ E (depicted below).

213 231a

Event E is an example of a public announcement, in this case: ‘Anne has
2’. In dynamic epistemic logic the public announcement of ϕ is represented by
‘!ϕ’ and corresponds to the elimination of all those possible worlds that do not
satisfy ϕ. In other words, public announcement works as relativization of the
model to those worlds that satisfy the content of the announcement.

Learning by Erasing in Dynamic Epistemic Logic 365

3 Dynamic Doxastic Logic

The objective of dynamic doxastic logic (DDL) is to formalize the notion of
belief change. This is usually done by introducing preference relations over the
possible worlds. Each agent has his own preference relation. Belief of agent a is
determined by the set of his most preferred states.

Definition 5 (Epistemic Plausibility Model). Let Atom be a set of atomic
propositions and A — a set of agents. Epistemic plausibility model E is a quadru-
ple: 〈W, {∼i}i∈A, {≤i}i∈A, V 〉 , where W is a set of possible worlds, for each
i ∈ A, ∼i⊆ W × W is an indistinguishability relation, ≤i⊆ W × W is a prefer-
ence relation and V : Atom → ℘(W) is a valuation.

Definition 6 (Plausibility Event Model). An event model E is a quadruple:
〈S, {→i}i∈A, {�i}i∈A, pre〉 , where S is a set of worlds, for each i ∈ A, →i⊆
S × S, �i⊆ S × S and pre : S → Atom is a pre-condition function.

For completeness’ sake we add the definition of priority update.

Definition 7 (Priority Update). The priority update works analogously to
the epistemic update. The additional condition is for the ≤i relation:

– for w ∈ W and s ∈ S, (w, s)≤′
i(w′, s′) iff s ≺i s′, or s �i s′ and w ≤i w′,

where s �i s′ iff s �i s′ and s′ �i s.

4 Learning Theory

4.1 Identification in the Limit

Learning theory is concerned with the process of inductive inference [5]. We can
think of it as of a game between Scientist and Nature. In the beginning we have a
class of possible worlds together with a class of hypotheses (possible descriptions
of worlds). Different hypotheses may describe the same world. We assume that
both Scientist and Nature know what all the possibilities are, i.e., they both have
access to the initial classes. Nature chooses one of those possible worlds to be the
actual one. Scientist has to guess which it is. Scientist receives information about
the world in an inductive manner. The stream of data is infinite and contains
only and all the elements from the chosen reality. Each time Scientist receives
a piece of information he answers with one of the hypotheses from the initial
class. We say that Scientist identifies Nature’s choice in the limit if after some
finite number of guesses his answers stabilize on a correct hypothesis. Moreover,
to discuss more general identifiability, we require that the same is true for all
the possible worlds from the initial class, i.e., regardless of which element from
the class is chosen by Nature to be true, Scientist can identify it in the limit on
the basis of data about the actual world.

To formalize this simple setting we need to make the notion of stream of data
clear. In learning theory such streams are often called ‘environments’1.
1 We are concerned here only with sequences of positive information (texts).

366 N. Gierasimczuk

Let us consider E — the set of all computably enumerable sets. Let C ⊆ E
be some class of c.e. sets. For each S in C we consider Turing machines hn

which generate S and in such a case we say that n is an index of S. The Turing
machines will function as the conjectures that Scientist makes. It is well-known
that each S has infinitely many indices. Let us take IS to be the set of all indices
of the set S, i.e, IS = {n|hn generates S}.

Definition 8 (Environment). By environment of S, ε, we mean any infinite
sequence of elements from S such that:

1. ε enumerates all the elements from S;
2. ε enumerates only the elements from S;
3. ε allows repetitions.

Definition 9 (Notation). We will use the following notation:

• εn is the n-th element of ε;
• ε|n is a sequence (ε0, ε1, . . . , εn−1);
• SEQ denotes the set of all finite initial segments of all environments;
• set(ε) is a set of elements that occur in ε;
• hn will refer to a hypothesis, i.e., a finite description of a set, a Turing

machine generating S;
• L is a learning function — a map from finite data sequences to indices of

hypotheses, L : SEQ → IHC .

The structure of the identifiability in the limit can be formulated by the following
chain of definitions:

Definition 10 (Identification in the limit, LIM). We say that a learning
function L:

1. identifies S ∈ C in the limit on ε iff there is a number k, such that for
co-finitely many m, L(ε|m) = k and k ∈ IS;

2. identifies S ∈ C in the limit iff it identifies S in the limit on every ε for S;
3. identifies C in the limit iff it identifies in the limit every S ∈ C.

The notion of identifiability can be strengthened in various ways. One radical
case is to introduce a finiteness condition for identification.

Definition 11 (Finite identification, FIN). We say that a learning func-
tion L:

1. finitely identifies S ∈ C on ε iff, when successively fed ε, at some point L
outputs a single k, such that k ∈ IS , and stops;

2. finitely identifies S ∈ C iff it finitely identifies S on every ε for S;
3. finitely identifies C iff it finitely identifies every S ∈ C.

Learning by Erasing in Dynamic Epistemic Logic 367

4.2 Learning by Erasing

Learning by erasing [1,17] is an epistemologically intuitive modification of iden-
tification in the limit. Very often the cognitive process of converging to a correct
conclusion consists of eliminating those possibilities that are falsified during the
inductive inquiry. Accordingly, in the formal model the outputs of the learning
function are negative, i.e., the function each time eliminates a hypothesis, in-
stead of explicitly guessing one that is supposed to be correct. A special case of
learning by erasing is co-learning [14]. The set S ∈ C is co-learnable iff there is
a function which stabilizes by eliminating all indices from IHC except just one
from IS . The difference between this approach and the usual identification is in
the interpretation of the positive guess of the learning function. In learning by
erasing there is always some ordering of the initial hypothesis space. This allows
to interpret the actual positive guess of the learning-by-erasing function to be
the least hypothesis (in a given ordering) not yet eliminated.

Let us give now the two definitions that explain the notion of learning by
erasing.

Definition 12 (Function Stabilization). In learning by erasing we say that
a function stabilizes to number k on environment ε if and only if for co-finitely
many n ∈ N:

k = min{N − {L(ε|0), . . . , L(ε|n)}}.

Definition 13 (Learning by Erasing, E-learning). We say that a learning
function, L:

1. learns S ∈ C by erasing on ε iff L stabilizes to k on ε and k ∈ IS ;
2. learns S ∈ C by erasing iff it learns by erasing S from every ε for S;
3. learns C by erasing iff it learns by erasing every S ∈ C.

A variety of additional conditions for learning can be defined. Let us mention
the following conditions on e-learning function L [1].

1. L erases all but one, correct hypothesis (co-learning, e-ALL);
2. L erases only hypotheses that are incorrect (e-SUB);
3. L erases exactly all hypotheses that are incorrect (e-EQ);
4. L erases all hypotheses that are incorrect but may also erase some that are

correct (e-SUPER);

Let us cite two theorems [1] that establish the relationships between various
types of learning: e-learning, finite identifiability and identifiability in the limit.

Theorem 1. FIN ⊂ e-EQ ⊂ e-SUB ⊂ LIM

Theorem 2. e-ALL, e-SUPER = LIM

368 N. Gierasimczuk

5 Finite Identification in DEL

The word ‘learning’ is used in epistemology to cover a variety of epistemic pro-
cesses. One of them is the epistemic update in the form of one-step learning
that ϕ, followed by a direct modification of the set of beliefs, as we have seen
in sections 2 and 3. In the learning-theoretic setting the incoming information
is of a different nature than the actual thing being learned. This feature has an
important consequence for modelling learning in DEL. We are forced to provide
two-sorted models, with one sort for pieces of incoming information and another
for the hypotheses. To establish a bridge between those two different ontologies
we treat a hypothesis as the set of events that it predicts, e.g., if we take a
hypothesis h to be ‘There are all natural numbers except 3’ it predicts that the
environment will enumerate all the natural numbers except 3.

The possible worlds in our epistemic model are identified with hypotheses.
Unlike in the classical DEL approach, the event models are announcements of
data corresponding to elements of the sets being learned, and not hypotheses
themselves.

A further difference is in the number of agents. In sections 2 and 3 we provided
definitions for multi-agent epistemic cases. Although science as well as learning
seem to be at least a two-player game, in the present paper we are concerned
only with the role of Scientist (Learner). By implication, we assume Nature
(Teacher) to be an objective machine that makes an arbitrary choice and gives
out random data, she does not have any particular strategy, is neither helping
the learner, nor obstructing his attempts to identify a correct hypothesis. We
recognize the possibility and potential of analyzing two or more agents in the
contexts of inductive inference. However, for the sake of simplicity our DEL and
DDL models are going to account only for one agent.

Let us again fix C to be a class of sets, and for each Sn ∈ C we consider hn to
be a hypothesis that describes Sn. In learning by erasing we can take the initial
epistemic model to represent the background knowledge of Scientist together with
his uncertainty aboutwhich world is the actual one. Let us take the initial epistemic
frame to be

M = 〈HC ,∼〉 ,

where HC is a possibly infinite2 set of worlds (hypotheses that are considered pos-
sible) and ∼⊆ HC × HC is an uncertainty relation for Scientist. Since we assume
that the initial hypothesis space is arbitrary, we also do not require any particular
preference of the scientist over HC . Hence, we take the relation∼ to be a universal,
equivalence binary relation over HC . The initial epistemic state of the Scientist is
depicted in Figure 1. This model corresponds to the starting point of the scientific
discovery process. Each world represents a hypothesis from the initial set deter-
mined by the background knowledge. In the beginning Scientist considers all of
them possible. The model also reflects the fact that Scientist is given the class of
hypotheses HC . In other words he knows what the alternatives are.
2 We can effectively deal with the epistemic update and identification in infinite domains

by using special enumeration strategies (for explanation and examples see [18]).

Learning by Erasing in Dynamic Epistemic Logic 369

h0 h1 h2 h3 h4 h5
. . .∼ ∼ ∼ ∼ ∼ ∼

Fig. 1. Initial epistemic model

Next, Nature decides on some state of the world by choosing one possibility
from C. Let us assume that as a result h3 correctly describes the chosen world.
Then, she decides on some particular environment ε, of the elements from the
world. We picture this enumeration in Figure 2 below.

. . .

ε0

ε1

ε2

ε3

Fig. 2. Environment ε consistent with h3

The sequence ε is successively given to Scientist. Let us focus now on the first
step of the procedure. We have the uncertainty range of Scientist, it runs through
the whole set of hypotheses HC . A piece of data ε0 is given to Scientist. This
fact can be represented by the event model E0 = 〈{e},→, pre〉, where e → e and
pre(e) = ε0 (see Figure 3).

ε0

Fig. 3. Event model E0 of the announcement of ε0

Scientist, when confronted with the announcement of ε0 updates his epis-
temic state accordingly. We will represent the process formally by the product
update M ⊗ E0. The result of the product update is again an epistemic model
M ′ =

〈
HC

′,∼′〉, where:

1. HC
′ = {(hn, e)|hn ∈ HC & pre(e) ∈ Sn)};

2. ∼′=∼ |HC
′.

We use here event models similar in spirit to those of public announcement
[16]. They consist in only one state with a pre-condition determined by the piece
of data that is given. In Figure 4 Scientist’s confrontation with ε0 is depicted.

Scientist tests each hypothesis with ε0. If a hypothesis is consistent with it,
it remains as a possibility, if it is not consistent, it is eliminated (see figure 5).
Let us assume that ε0 is not consistent with h2.

370 N. Gierasimczuk

h0 h1 h2 h3 h4 h5
. . .

ε0

Fig. 4. Confrontation with data

h0 h1 h2 h3 h4 h5
. . .

h0 h1 x h3 h4 h5
. . .

ε0

Fig. 5. Epistemic update

This epistemic update can be iterated infinitely many times along ε resulting
in an infinite sequence of models which according to the lines of DEL can be
called ε-generated epistemic model (see e.g. [15]).

Definition 14 (Generated Epistemic Model). The generated epistemic
model (M)ε, with ε = ε0, ε1, ε2, . . ., is the result of epistemic update M ⊗ E0 ⊗
E1 ⊗E2 ⊗ . . ., where for each n, the event En corresponds to the announcement
of εn.

Let us now see a simple example of finite identification of a single hypothesis.

Example 2. Let us take HC = {h0, h1, h2}, such that hn = {0, ..., n}. Nature
makes her choice regarding what the world is like. We assume that as a result
h2 holds. Then, Nature chooses an enumeration ε = 0, 1, 0, 2, 1, After the
first piece of data, 0, the uncertainty range of Scientist includes the whole HC .
After the second, 1, Scientist eliminates h0 since it does not contain the event
1 and now he hesitates between h1 and h2. The third piece, 0, does not change
anything, however the next one, 2, eliminates h1. Uncertainty is eliminated as
well. He knows that the only hypothesis that can be true is h2. Therefore, we
can say that he learned it conclusively, with certainty.

The above discussion suggests the following thesis.

Thesis 1. Finite identifiability can be modelled within the DEL framework, using:

– epistemic states for hypotheses;
– infinite sequences of announcements for environments;
– epistemic update for the progress in eliminating uncertainty over hypothesis

space.

Scientist succeeds in finite identification of S from ε if and only if there is a
finite initial segment of ε, ε|n, such that the domain of the ε|n-generated model
contains only one hypothesis hk and k ∈ IS. In other words, there is a finite step
of the iterated epistemic update along ε, that eliminates Scientist’s uncertainty.

Learning by Erasing in Dynamic Epistemic Logic 371

6 Learning by Erasing in DDL

From Scientist’s point of view the process of learning has a few components
that are very important in logical modelling. The first is of course the current
conjecture — a hypothesis that is considered appropriate in a given step of the
procedure. The second is the set of those hypotheses that were used in the past
and have already been discarded. The third part is the set of hypotheses that
are still considered to be possible, but for some reasons less probable than the
chosen one.

Let us consider the following example of a learning scenario, in which the
uncertainty is never eliminated.

Example 3. As you probably observed, in the Example 2 Scientist was very lucky.
Let us assume for a moment that nature had chosen h1, and had fixed the
enumeration ε = 0, 1, 0, 1, 1, 1, 1, . . . In this case Scientist’s uncertainty can never
be eliminated.3

This example indicates that the central element of the identification in the limit
model is the unavoidable presence of uncertainty. The limiting framework al-
lows however the introduction of some kind of operational knowledge, which is
uncertainty-proof.

To model the algorithmic nature of the learning process that includes actual
guess and other not-yet-eliminated possibilities, we enrich the epistemic model
with some preference relation ≤: HC ×HC . The relation ≤ represents some pref-
erence over the set of hypotheses, e.g., if Scientist is an occamist, the preference
would be defined according to the simplicity of hypotheses. In the initial epis-
temic state the uncertainty of the scientist again ranges over all of HC . This time
however the class is ordered and Scientist current belief is the most preferred
hypothesis. Therefore, we consider the initial epistemic state of Scientist to be:

M = 〈HC ,∼,≤〉 .

The procedure of erasing hypotheses that are inconsistent with successively in-
coming data is the same as in the previous section. This time however let us
introduce the current-guess state which is interpreted as the actual guess of the
Scientist. It is always the one that is most preferred — the smallest one accord-
ing to ≤. In doxastic logic a set of most preferred hypotheses is almost invariably
interpreted as the one that the agent believes in. Let us go back to Example 2,
where Nature chose a world consistent with h1. After seeing 1 and eliminating
h0, Scientist’s attention focuses on h1, then h1 is his current belief. It is the most
preferred hypothesis, and as such it can be reiterated as long as it is consistent
with ε. In this particular case, since Nature chose a world consistent with h1,

3 As we are interested here in learning by erasing, we assume a suitable underlying
ordering of hypothesis space. In this case it is: h0, h1, h2. However, note that this
type of identification is not order-independent. If the initial ordering was: h0, h2, h1,
then Scientist would not stabilize on the correct hypothesis.

372 N. Gierasimczuk

it will never be contradicted, so Scientist will always be uncertain between h1
and h2. However, his preference directs him to believe in the correct hypothesis,
without him being aware of the correctness. Therefore, we claim the following.

Thesis 2. Learning by erasing can be modelled within the DDL framework, using:

– epistemic states for hypotheses;
– infinite sequences of announcements for environments;
– epistemic update for the progress in eliminating uncertainty over the hypoth-

esis space;
– preference relation for the underlying hypothesis space;
– in each step of the procedure, the most preferred hypothesis for the actual

positive guess of the learning function.

Scientist learns S by erasing from ε if and only if there is n such that for every
m > n, the most preferred state of the domain of the ε|m-generated epistemic
model is hk, and k ∈ IS .

7 Conclusions and Further Work

In this paper we argued that the process of inductive inference can be modelled
in dynamic epistemic logic and dynamic doxastic logic. To support our claim we
provided a translation of the components of learning into a two-sorted semantics
for DEL and DDL. In particular, we see DEL as an appropriate framework to
analyze the notion of finite identifiability. Learning by erasing, a special case of
identifiability in the limit, is based on the existence of an underlying ordering
of hypothesis space. Therefore, in logical modelling it requires adding to the
epistemic model a preference relation over possible worlds. This indicates that it
should be formalized in DDL, where the preference relation is a standard element
of any model.

The above-presented conceptual work has many implications and possible
continuations. After establishing a correspondence on the semantic level, it is
possible to formulate axioms of epistemic logic for inductive inference. We find
this project promising and potentially fruitful for both DEL and LT. Moreover,
modal analysis of the process of learning can be continued in the following di-
rections:

– formulating LT theorems as validities in epistemic and temporal logic;
– analyzing the inductive inference process in game-theoretical terms, and dis-

cussing strategies for learning and teaching;
– studying the notion of non-introspective operational knowledge and uncer-

tainty that are involved in the process of inductive inference;
– comparing formal learning theory and belief-revision theory in a systematic

way.

Learning by Erasing in Dynamic Epistemic Logic 373

References

1. Lange, S., Wiehagen, R., Zeugmann, T.: Learning by erasing. In: Arikawa, S.,
Sharma, A.K. (eds.) ALT 1996. LNCS (LNAI), vol. 1160, pp. 228–241. Springer,
Heidelberg (1996)

2. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

3. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Heidelberg (2007)

4. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn. MIT Press,
Cambridge (1999)

5. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

6. Tiede, H.J.: Identifiability in the limit of context-free generalized quantifiers. Jour-
nal of Language and Computation 1, 93–102 (1999)

7. Costa Florêntio, C.: Learning generalized quantifiers. In: Proc. 7th ESSLLI Student
Session (2002)

8. Gierasimczuk, N.: The problem of learning the semantics of quantifiers. In: ten
Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 117–
126. Springer, Heidelberg (2007)

9. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)
10. Osherson, D., de Jongh, D., Martin, E., Weinstein, S.: Formal learning theory. In:

van Benthem, J., Ter Meulen, A. (eds.) Handbook of Logic and Language, pp.
737–775. MIT Press, Cambridge (1997)

11. Martin, E., Osherson, D.: Elements of Scientific Inquiry. MIT Press, Cambridge
(1998)

12. Hintikka, J.: Knowledge and Belief. An Introduction to the Logic of the Two No-
tions. Cornell University Press (1962)

13. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. The Journal of Symbolic Logic 50(2),
510–530 (1985)

14. Freivalds, R., Zeugmann, T.: Co–learning of recursive languages from positive data.
In: Bjorner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp. 122–
133. Springer, Heidelberg (1996)

15. van Benthem, J., Gerbrandy, J., Pacuit, E.: Merging frameworks for interaction:
DEL and ETL. In: Proc. TARK 2007, pp. 72–81 (2007)

16. Batlag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common
knowledge and private suspicions. In: Proc. TARK 1998, pp. 43–56 (1998)

17. Freivalds, R., Karpinski, M., Smith, C., Wiehagen, R.: Learning by the process of
elimination. Information and Computation 176(1), 37–50 (2002)

18. Gierasimczuk, N.: Identification through inductive verification. Application to
monotone quantifiers. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007.
LNCS, vol. 5422, pp. 193–205. Springer, Heidelberg (2009)

The Fault Tolerance of NP-Hard Problems

Christian Glaßer1, A. Pavan2,
, and Stephen Travers1

1 Julius-Maximilians-Universität Würzburg, Germany
{glasser,travers}@informatik.uni-wuerzburg.de

2 Iowa State University, USA
pavan@cs.iastate.edu

Abstract. We study the effects of faulty data on NP-hard sets. We
consider hard sets for several polynomial time reductions, add corrupt
data and then analyze whether the resulting sets are still hard for NP. We
explain that our results are related to a weakened deterministic variant
of the notion of program self-correction by Blum, Luby, and Rubinfeld.
Among other results, we use the Left-Set technique to prove that m-
complete sets for NP are nonadaptively weakly deterministically self-
correctable while btt-complete sets for NP are weakly deterministically
self-correctable. Our results can also be applied to the study of Yesha’s
p-closeness. In particular, we strengthen a result by Ogiwara and Fu.

1 Introduction

Even small amounts of faulty data can obscure reasonable information. For in-
stance, by filling more and more whitespaces of a printed text with arbitrary
letters, it can become quite difficult to understand the original meaning of the
text.

The same holds true for NP-complete sets. Take for instance SAT, the set of
all satisfiable formulas. By adding false positives to SAT, i.e., some unsatisfiable
formulas, we can actually lose information: If we overdo it, we end up with
SAT ∪ SAT = Σ∗, and by this definitely lose NP-completeness. But how much
false positive data can NP-hard sets handle, i.e., how many false positives can we
add such that the resulting set stays NP-hard? Alternatively, how much effort
is needed to extract the original information?

In this paper, we investigate how polynomial time reductions can cope with
false positives. More precisely, we consider NP-hard sets for several polynomial
time reductions and add false positives to the sets.

Moreover, we study the effects of more general kinds of faulty data. We inves-
tigate how polynomial time reductions can handle combinations of both, false
positives and false negatives. This relates our research to the notion of program
self-correction which was introduced by Blum, Luby, and Rubinfeld [1]. That
notion addresses a fundamental question regarding software reliability: Can one
increase the reliability of existing software without understanding the way it

� Research supported in part by NSF grant CCF-0430807.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 374–385, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Fault Tolerance of NP-Hard Problems 375

works? More precisely, let P be a program that is designed to solve a problem
L. However, we do not know whether P is correct. Is it possible to write an
auxiliary program M that uses P such that if P errs only on a small fraction of
the inputs, then with high probability M corrects the errors made by P? So M
has to find the right answer with high probability by calling P on several inputs.

Our investigations of the consequences of faulty data are related to a consid-
erably weakened deterministic variant of self-correction. In this case, the error
probability of the polynomial-time wrapping machine M must be 0, i.e., M must
achieve certainty about the question of whether the input belongs to L. However,
we only require M to correct very few errors (i.e., p(n) errors for some polyno-
mial p). For probabilistic self-correction however, a probabilistic polynomial-time
corrector must be able to correct up to 2n/p(n) errors for some polynomial p.
We prove that

– The symmetric difference of m-hard sets and sparse sets is always tt-hard.
This implies that m-complete sets for NP are nonadaptively weakly deter-
ministically self-correctable.

– The symmetric difference of btt-hard sets and arbitrary sparse sets is always
T-hard. This implies that btt-complete sets are weakly deterministically self-
correctable.

– The union of dtt-hard sets and arbitrary sparse sets is always T-hard.

These results show that ≤p
m-hard, ≤p

btt-hard, and ≤p
dtt-hard sets do not be-

come too easy when false positives are added (as they stay NP-hard with respect
to more general reducibilities). On the other hand, we show that unless P = NP,
there exist sparse sets S1, S2 such that SAT ∪ S1 is not ≤p

btt-hard for NP, and
SAT ∪ S2 is not ≤p

dtt-hard for NP.
Furthermore, we explain that one of our results about btt-reducibility is re-

lated to the notion of p-closeness which was introduced by Yesha [2]. We show
that no ≤p

btt-hard set for NP is p-close to P, unless P = NP. This strengthens
a result by Ogiwara [3] and Fu [4] who proved that no ≤p

m-hard set for NP is
p-close to P, unless P = NP.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters,
Σ∗ denotes the set of all words, and |w| denotes the length of a word w. For
n ≥ 0, Σn denotes the set of all words of length n. A set A ⊆ Σ∗ is nontrivial if
A �= ∅ and A �= Σ∗. A tally set is a subset of 0∗. The census function of a set S
is defined as censusS(n) df= |S∩Σn|. A set S is sparse if there exists a polynomial
p such that for all n ≥ 0, censusS(n) ≤ p(n). The symmetric difference of sets A
and B is defined as A"B = (A − B) ∪ (B − A).

The language accepted by a machine M is denoted by L(M). The characteris-
tic function of a set A is denoted by cA. L denotes the complement of a language
L and coC denotes the class of complements of languages in C. FP denotes the
class of functions computable in deterministic polynomial time.

376 C. Glaßer, A. Pavan, and S. Travers

We recall standard polynomial-time reducibilities [5]. A set B many-one-
reduces to a set C (m-reduces for short; in notation B≤p

mC) if there exists a
total, polynomial-time-computable function f such that for all strings x, x ∈
B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if

there exists a deterministic polynomial-time-bounded oracle Turing machine M
such that for all strings x, x ∈ B ⇔ M with C as oracle accepts the input x.

A set B truth-table-reduces to a set C (tt-reduces for short; in notation B≤p
ttC)

if there exists a deterministic polynomial-time-bounded oracle Turing machine
M that queries nonadaptively such that for all strings x,
x ∈ B ⇔ M with C as oracle accepts the input x.

A set B disjunctively truth-table-reduces to a set C (dtt-reduces for short; in
notation B≤p

dttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → P(Σ∗) such that for all strings x, x ∈ B ⇔ f(x) ∩ C �= ∅.

A set B conjunctively truth-table-reduces to a set C (ctt-reduces for short; in
notation B≤p

cttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → P(Σ∗) such that for all strings x, x ∈ B ⇔ f(x) ⊆ C.

A set B bounded truth-table-reduces to a set C (btt-reduces for short; in nota-
tion B≤p

bttC) if there exists a k ≥ 1, a k-ary Boolean function α, and g1, . . . , gk ∈
FP such that for all x x ∈ B ⇔ α(cC(g1(x)), cC(g2(x)), . . . , cC(gk(x))) = 1.

A set B is many-one-hard (m-hard for short) for a complexity class C if every
B ∈ C m-reduces to B. If additionally B ∈ C, then we say that B is many-
one-complete (m-complete for short) for C. Similarly, we define hardness and
completeness for other reducibilities. We use the term C-complete as an abbre-
viation for m-complete for C.

A set L is paddable [6] if there exists f(·, ·), a polynomial-time computable,
injective polynomial-time invertible function such that for all x and y, x ∈
L ⇐⇒ f(x, y) ∈ L.

2.1 Weak Deterministic Self-correction

We introduce the notion of weak deterministic self-correction which is a deter-
ministic variant of (probabilistic) self-correction [1]. The prefix weak indicates
that our notion of deterministic self-correction does not necessarily imply prob-
abilistic self-correction in the sense of Blum, Luby, and Rubinfeld [1]. The differ-
ence is as follows: For weak deterministic self-correction, we require that a sparse
amount of errors can be corrected by a deterministic polynomial-time corrector.
For probabilistic self-correction however, a probabilistic polynomial-time correc-
tor must be able to correct up to 2n/p(n) errors for some polynomial p.

Definition 1. L is weakly deterministically self-correctable if for every poly-
nomial q there exists a polynomial-time machine M such that L≤p

TP via M
whenever the census of L"P is bounded by q. If M queries nonadaptively, then
L is nonadaptively weakly deterministically self-correctable.

The set P in the definition formalizes a program for L that errs on at most
q(n) inputs of length n. So L is weakly deterministically self-correctable if there

The Fault Tolerance of NP-Hard Problems 377

exists an auxiliary machine M that corrects all programs that err on at most
q(n) inputs of length n. The next theorem shows that such a universal M sur-
prisingly exists already if the single programs can be corrected with possibly
different machines. This establishes the connection between weak deterministic
self-correction and the robustness against false positives.

Theorem 1. L is weakly deterministically self-correctable ⇔ L≤p
TL"S for all

sparse S.

Proof
⇒: This is a direct consequence of Definition 1.

⇐: Assume that L is not weakly deterministically self-correctable. So there
exists a polynomial q such that

∀polynomial-time machine M, ∃T ⊆ Σ∗ [censusT ≤ q and L �= L(ML
T)].
(1)

We construct a sparse S such that L �≤p
TL"S. The construction is stagewise

where in step i we construct a finite set Si such that S1 ⊆ S2 ⊆ · · · and
S

df=
⋃

i≥1 Si.
Let M1, M2, . . . be an enumeration of all deterministic, polynomial-time Tur-

ing machines such that Mi runs in time ni + i. Let S0 = ∅. For i ≥ 1, the set Si

is constructed as follows:
Choose n large enough such that Si−1 ⊆ Σ<n and changing the oracle with

respect to words of length ≥ n will not affect the computations that were sim-
ulated in earlier steps. Choose a finite Ti ⊆ Σ≥n and an xi ∈ Σ∗ such that
censusTi ≤ q and

xi ∈ L ⇔ xi /∈ L(ML
(Si−1∪Ti)
i). (2)

Let Si
df= Si−1 ∪ Ti. We argue that the choice of Ti is possible. If not, then for all

finite Ti ⊆ Σ≥n where censusTi ≤ q and all xi ∈ Σ∗ it holds that

xi ∈ L ⇔ xi ∈ L(ML
(Si−1∪Ti)
i).

Let M be the polynomial-time machine obtained from Mi when queries of length
< n are answered according to (L"Si−1)∩Σ<n (which is a finite set). So for all
T where censusT ≤ q and all xi ∈ Σ∗ it holds that

xi ∈ L(ML
T) ⇔ xi ∈ L(ML
(Si−1∪(T∩Σ≥n))
i) ⇔ xi ∈ L(ML
(Si−1∪T ′)

i)
⇔ xi ∈ L,

where T ′ = T ∩Σ≥n∩Σ≤|xi|i+i. Hence L = L(ML
T) for all T where censusT ≤
q. So M contradicts (1). It follows that the choice of Ti is possible and hence
also the construction of S.

The equivalence (2) makes sure that ∀i ≥ 1 [xi ∈ L ⇔ xi /∈ L(ML
S
i)] and

hence L �≤p
TL"S. $%

Corollary 1. L is nonadaptively weakly det. self-correctable ⇔ L≤p
ttL"S for

all sparse S.

378 C. Glaßer, A. Pavan, and S. Travers

3 Partly Corrupt NP-Hard Sets

We investigate how polynomial reductions can cope with sparse amounts of
false data in sets that are hard for NP with respect to various reducibilities. In
section 3.1 we show that altering sparse information in m-hard sets results in sets
that are at least tt-hard. In particular, all m-complete sets are nonadaptively
weakly deterministically self-correctable. Similarly, in section 3.2 we obtain that
btt-hardness softens at most to T-hardness, if sparse information is altered.
In particular, all btt-complete sets are weakly deterministically self-correctable.
Moreover, we improve results by Ogiwara [3] and Fu [4], and show that no btt-
hard set is p-close to P, unless P = NP. In section 3.3 we prove that adding
a sparse amount of false positives to dtt-hard sets results in sets that are at
least T-hard. However, it remains open whether dtt-complete sets are weakly
deterministically self-correctable. At the end of section 3.3, we give evidence
that this open problem is rather difficult to solve.

Finally, in subsection 3.4 we show that many-one reductions, bounded truth-
table reductions, and disjunctive truth-table reductions are provably too weak
to handle false positives in SAT.

3.1 Many-One Reductions

Here we alter sparse information in m-hard sets for NP. Under the assumption
P �= NP, the resulting sets are still ctt-hard. Without the assumption, we can
show that the resulting sets are at least tt-hard.

On the technical side we extend an idea from [7] which shows how many-one
queries to NP-hard sets can be reformulated. In this way, for a given query we can
generate a polynomial number of different, but equivalent queries (Lemma 1).
From this we easily obtain the conditional ctt-hardness and the unconditional
tt-hardness of the altered NP-hard set. As a corollary, all m-complete sets for
NP are nonadaptively weakly deterministically self-correctable.

Lemma 1. Let L be ≤p
m-hard for NP and let B ∈ NP. Then there exists a poly-

nomial r such that for every polynomial q there is a polynomial-time algorithm
A such that A on input x,

– either correctly decides the membership of x in B
– or outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for

all i ∈ [1, k],
x ∈ B ⇔ yi ∈ L.

Proof. Choose R ∈ P and a polynomial p such that x ∈ B if and only if there ex-
ists a w ∈ Σp(|x|) such that (x, w) ∈ R. For x ∈ B, let wx be the lexicographically
greatest such witness. The following set is in NP.

Left(B) = {(x, y)
∣∣ x ∈ B, |y| = p(|x|), y ≤ wx}.

So there is a many-one reduction f from Left(B) to L. In particular, there exists
a polynomial r such that for all x ∈ Σ∗ and all y ∈ Σp(|x|), |f(x, y)| ≤ r(|x|).
Choose a polynomial q. We now describe the algorithm A.

The Fault Tolerance of NP-Hard Problems 379

1 // input x, |x| = n
2 m := p(n)
3 if (x, 1m) ∈ R then accept
4 l := 0m

5 if f(x, l) = f(x, 1m) then reject
6 Q = {f(x, l)}
7 while |Q| ≤ q(r(n)) do
8 choose a ∈ Σm such that l ≤ a ≤ 1m, f(x, a) ∈ Q, f(x, a + 1) /∈ Q
9 l := a + 1
10 if (x, a) ∈ R then accept
11 if f(x, l) = f(x, 1m) then reject
12 Q = Q ∪ {f(x, l)}
13 end while
14 output Q

Observe that the algorithm places a string f(x, l) in Q only if f(x, l) �=
f(x, 1m). Thus f(x, 1m) is never placed in Q. So in step 8, f(x, l) ∈ Q and
f(x, 1m) /∈ Q. Therefore, with binary search we find the desired a in polynomial
time. Every iteration of the while loop adds a new string to Q or decides the
membership of x in B. Thus the algorithm works in polynomial time and when
it outputs some Q, then |Q| = q(r(|x|)) and words in Q have lengths ≤ r(n).

Claim 1. If the algorithm outputs some Q, then for all y ∈ Q, x ∈ B ⇔ y ∈ L.

Proof of the claim. If x /∈ B, then for all c ∈ [0m, 1m], (x, c) /∈ Left(B). Observe
that the algorithm places a string y in Q only if y = f(x, a) where a ∈ [0m, 1m].
Since f is a many-one reduction from Left(B) to L, no string from Q belongs
to L.

From now on we assume x ∈ B. We prove the claim by induction. Initially,
Q = {f(x, 0m)}. Clearly, x ∈ B ⇔ (x, 0m) ∈ Left(B). Since f is a many-one
reduction from Left(B) to L, the claim holds initially. Assume that the claim
holds before an iteration of the while loop. The while loop finds a node a such
that f(x, a) ∈ Q, but f(x, a + 1) /∈ Q. From f(x, a) ∈ Q and x ∈ B it follows
(by induction hypothesis) that f(x, a) ∈ L. Thus (x, a) ∈ Left(B) which implies
a ≤ wx. At this point the algorithm checks whether a is a witness of x. If so, then
it accepts and halts. Otherwise, we have a + 1 ≤ wx. Thus (x, a + 1) ∈ Left(B)
and f(x, a + 1) ∈ L. So the claim also holds after the iteration of the while
loop. �

Claim 2. If the algorithm accepts x (resp., rejects x), then x ∈ B (resp., x /∈ B).

Proof of the claim. The algorithm accepts x only if it finds a witness of x. Thus
if the algorithm accepts, then x ∈ B. The algorithm rejects only if f(x, l) =
f(x, 1m). Note that f(x, l) ∈ Q, so by the previous claim, x ∈ B ⇔ f(x, l) ∈
L. Observe that (x, 1m) /∈ Left(B). Thus f(x, l) = f(x, 1m) /∈ L and hence
x /∈ B. �

This finishes the proof of the lemma. $%

380 C. Glaßer, A. Pavan, and S. Travers

Theorem 2. The following statements are equivalent.

1. P �= NP
2. If L is ≤p

m-hard for NP and S is sparse, then L ∪ S is ≤p
ctt-hard for NP.

Proof
2 ⇒ 1: If P = NP, then L=Σ∗ − {0} and S ={0} are counter examples for 2.

1 ⇒ 2: Assume P �= NP and let L and S be as in statement 2. If L is sparse,
then there exist sparse coNP-hard sets and hence P = NP [8]. So it follows that
L is not sparse and L ∪ S �= Σ∗. Hence there exist elements x0 /∈ L ∪ S and
x1 ∈ L ∪ S.

Let B ∈ NP; we show B≤p
cttL∪S. First, choose the polynomial r according to

Lemma 1. Let q be a polynomial such that |S ∩Σ≤n| < q(n). Lemma 1 provides
an algorithmA that on input x either correctly decides the membership of x in B,
or outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all
i ∈ [1, k], (x ∈ B ⇔ yi ∈ L). Define the following polynomial-time-computable
function.

g(x) df=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 : if A(x) rejects

x1 : if A(x) accepts

(y1, . . . , yk) : if A(x) returns Q = {y1, . . . , yk}

Note that in the last case, k = q(r(|x|)) and the yi have lengths ≤ r(|x|). So at
least one of the yi does not belong to S. From A’s properties stated in Lemma 1
it follows that B≤p

cttL ∪ S via g. $%

Theorem 3. If L is ≤p
m-hard for NP and S is sparse, then L"S is ≤p

tt-hard
for NP.

Proof. For B ∈ NP we show B≤p
ttL"S. First, choose the polynomial r according

to Lemma 1. Let q be a polynomial such that 2 · |S ∩ Σ≤n| < q(n). Lemma 1
provides an algorithm A that on input x either correctly decides the membership
of x in B, or outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such
that for all i ∈ [1, k], (x ∈ B ⇔ yi ∈ L). We describe a polynomial-time oracle
machine M on input x: If A(x) accepts, then M accepts. If A(x) rejects, then
M rejects. Otherwise, A(x) returns elements y1, . . . , yk ∈ Σ≤r(|x|). M queries
all these elements and accepts if and only if at least k/2 of the answers were
positive.

Clearly, if A(x) accepts or rejects, then (x ∈ B ⇔ M(x) accepts). So assume
that A(x) returns elements yi. S contains less than q(r(|x|))/2 = k/2 words of
length ≤ r(|x|). So more than k/2 of the yi do not belong to S. Hence, for more
than k/2 of the yi it holds that

x ∈ B ⇔ yi ∈ L ⇔ yi ∈ L"S.

Therefore, x belongs to B if and only if at least k/2 of the yi belong to L"S.
This shows that B≤p

ttL"S via M . $%

The Fault Tolerance of NP-Hard Problems 381

Corollary 2. If L is ≤p
m-hard for NP and S is sparse, then L ∪ S is ≤p

tt-hard
for NP.

Corollary 3. All ≤p
m-complete sets for NP are nonadaptively weakly determin-

istically self-correctable.

3.2 Bounded Truth-Table Reductions

We show that altering sparse information in btt-hard sets for NP results in sets
that are still T-hard for NP. Our proof builds on techniques by Ogihara and
Watanabe [9] and Ogiwara and Lozano [10]. First, in Lemma 2 we isolate the
combinatorial argument for the case that a Turing machine has oracle access
to the symmetric difference of a btt-hard set B and a sparse set S. Then, with
this argument at hand, we perform an Ogihara-Watanabe-tree-pruning in the
computation tree of a given NP-machine (Theorem 4). Finally this shows that
the acceptance of the latter machine can be determined in polynomial time with
access to the oracle B"S. As a corollary we obtain that all btt-complete sets
in NP are weakly deterministically self-correctable (Corollary 4). Moreover, we
obtain the following improvement of results by Ogiwara [3] and Fu [4]: No btt-
hard set for NP is p-close to P, unless P = NP.

For our combinatorial argument we need to define the following polynomials
rk for k ≥ 0.

r0(n) df= 2
rk(n) df= 2k(2kn + 2)(rk−1(n))k for k ≥ 1

Lemma 2. For every k ≥ 0 there exists a polynomial-time oracle transducer
Mk with the following properties: For every input (0n, V) where V = (vi,j) ∈
(Σ≤n)k×rk(n) and for all sets B, S ⊆ Σ≤n where |S| ≤ n the computation
MB
S

k (0n, V) outputs some b ∈ (1, rk(n)] such that

∃a, c ∈ [1, rk(n)] such that a < b ≤ c and ∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B).

Theorem 4. If B is ≤p
btt-hard for NP and S is sparse, then B"S is ≤p

T-hard
for NP.

Corollary 4. All ≤p
btt-complete sets for NP are weakly deterministically self-

correctable.

Yesha [2] defined two sets A and B to be close if the census of their symmetric
difference, A"B, is a slowly increasing function. Accordingly, A and B are p-
close, if the census of A"B is polynomially bounded. A is p-close to a complexity
class C, if there exists some B ∈ C such that A and B are p-close.

Yesha [2] poses the question of whether ≤p
m- or ≤p

T-hard sets for NP can be
p-close to P (assuming P �= NP). Schning [11] showed that no ≤p

T-hard set for
NP is p-close to P, unless PH = ∆P

2 . Ogiwara [3] and Fu [4] proved that no
≤p

m-hard set for NP is p-close to P, unless P = NP.
We can strengthen the latter result as follows.

Corollary 5. No ≤p
btt-hard set for NP is p-close to P, unless P = NP.

382 C. Glaßer, A. Pavan, and S. Travers

3.3 Disjunctive Truth-Table Reductions

In this section we analyze how disjunctive truth-table reductions can handle false
positives. We show that the union of dtt-hard sets with arbitrary sparse sets is
always T-hard.

Theorem 5. Let L be ≤p
dtt-hard for NP, and let S be a sparse set. Then L∪ S

is ≤p
T-hard for NP.

Contrary to sections 3.1 and 3.2, we do not know how dtt-reductions react to-
wards false negatives. For that reason, we cannot deduce that dtt-complete sets
are weakly deterministically self-correctable. We can provide evidence that the
question is indeed difficult. We explain that it is related to the longstanding
open question [12] of whether the existence of sparse dtt-complete sets implies
P = NP.

Corollary 6. If dtt-complete sets for NP are weakly deterministically
self-correctable, then the existence of sparse dtt-complete sets for NP implies
P = NP.

Proof. We assume that dtt-complete sets for NP are weakly deterministically
self-correctable and that there exists a sparse set L such that L is dtt-complete
for NP. Since L is weakly deterministically self-correctable, it follows from The-
orem 1 that for all sparse sets S, L≤p

TL"S. It follows that L≤p
TL"L and hence

L≤p
T∅. This implies P = NP. $%

3.4 Non-robustness against Sparse Sets of False Positives

So far we concentrated on reductions strong enough to manage partly corrupt
NP-hard sets. Now we ask for reductions that are provably too weak to handle
such corrupt information. Under the assumption P �= NP we show that many-one
reductions, bounded truth-table reductions, and disjunctive truth-table reduc-
tions are weak in this sense. More precisely, altering sparse information in SAT
can result in sets that are not ≤p

m-hard, not ≤p
btt-hard, and not ≤p

dtt-hard for
NP. On the other hand, Corollary 7 shows that similar results for ≤p

ctt, ≤
p
tt, and

≤p
T would imply the existence of NP-complete sets that are not paddable. This

explains that such results are hard to obtain.

Theorem 6. The following statements are equivalent.

1. P �= NP
2. There exists a sparse S such that SAT ∪ S is not ≤p

btt-hard for NP.
3. There exists a sparse S such that SAT ∪ S is not ≤p

dtt-hard for NP.

Proof
1 ⇒ 2: Assume P �= NP and let M1, M2, . . . be an enumeration of polynomial-
time oracle Turing machines such that Mi runs in time ni+i and queries at most
i strings (so the machines represent all ≤p

btt-reduction functions). We construct
an increasing chain of sets S1 ⊆ S2 ⊆ · · · and finally let S

df=
⋃

i≥1 Si. Let S0
df={ε}

and define Sk for k ≥ 1 as follows:

The Fault Tolerance of NP-Hard Problems 383

1. let n be greater than k and greater than the length of the longest word in
Sk−1

2. let T
df=(SAT ∩ Σ≤n) ∪ Sk−1 ∪ Σ>n

3. choose a word x such that MT
k (x) accepts if and only if x /∈ SAT

4. let Q be the set of words that are queried by MT
k (x) and that are longer

than n
5. let Sk

df=Sk−1 ∪ Q

We first observe that the x in step 3 exists: If not, then L(MT
k) = SAT and

T is cofinite. Hence SAT ∈ P which is not true by assumption. So the described
construction is possible.

If a word w of length j is added to S in step k (i.e., w ∈ Sk − Sk−1), then
in all further steps, no words of length j are added to S (i.e., for all i > k,
Si ∩ Σj = Sk ∩ Σj). In the definition of Sk it holds that |Q| ≤ k ≤ n. So in
step 5, at most n words are added to S and these words are of length greater
than n. Therefore, for all i ≥ 0, |S ∩ Σi| ≤ i and hence S is sparse.

Assume SAT ∪ S is ≤p
btt-hard for NP. So there exists a k ≥ 1 such that

SAT≤p
bttSAT ∪ S via Mk. Consider the construction of Sk and let n, T , x, and

Q be the corresponding variables. In all steps i ≥ k, S will be only changed
with respect to words of lengths greater than n. Therefore, S ∩Σ≤n = Sk−1 and
hence

∀w ∈ Σ≤n, (w ∈ SAT ∪ S ⇔ w ∈ T). (3)

If q is an oracle query of MT
k (x) that is longer than n, then q ∈ Q and hence

q ∈ Sk ⊆ S. So q ∈ SAT ∪ S and q ∈ T . Together with (3) this shows that the
computations MT

k (x) and MSAT∪S
k (x) are equivalent. From step 3 it follows that

MSAT∪S
k (x) accepts if and only if x /∈ SAT. This contradicts the assumption that

Mk reduces SAT to SAT ∪ S. Hence SAT ∪ S is not ≤p
btt-hard for NP.

2 ⇒ 1: If P = NP, then for all sparse S, SAT ∪ S is trivially ≤p
m-complete for

NP.

1 ⇔ 3: Analogous to the equivalence of 1 and 2; we only sketch the differ-
ences. We use an enumeration of ≤p

dtt-reduction machines (i.e., machines that
nonadaptively query an arbitrary number of strings and that accept if at least
one query is answered positively). Moreover, we change the definition of Sk in
step 5 such that

Sk
df=

⎧⎨⎩ Sk−1 : if Q = ∅

Sk−1 ∪ {q} : if Q �= ∅, where q = max(Q).

This makes sure that S is sparse.
Assume SAT≤p

dttSAT∪S via Mk. If no query of MT
k (x) is longer than n, then

MT
k (x) and MSAT∪S

k (x) are equivalent computations and hence L(MSAT∪S
k) �=

SAT by step 3. Otherwise, there exists a query that is longer than n. Let q be the
greatest such query and note that q ∈ Sk ⊆ S. This query gets a positive answer
in the computation MT

k (x). So the computation accepts and by step 3, x /∈ SAT.

384 C. Glaßer, A. Pavan, and S. Travers

In the computation MSAT∪S
k (x), the query q also obtains a positive answer and

hence the computation accepts. So also in this case, L(MSAT∪S
k) �= SAT. This

shows that SAT ∪ S is not ≤p
dtt-hard for NP. $%

Theorem 6 tells us that while ≤p
m-hard, ≤p

btt-hard, and ≤p
dtt-hard sets do not

become too easy when false positives are added (as they stay NP-hard with
respect to more general reducibilities, confer sections 3.1, 3.2, and section 3.3),
they are not robust against sparse sets of false positives. The next result says
that this is different for hard sets which are paddable.

Proposition 1. Let L be paddable and let S be sparse.

1. If L is ≤p
tt-hard for NP, then L ∪ S is ≤p

tt-hard for NP.
2. If L is ≤p

T-hard for NP, then L ∪ S is ≤p
T-hard for NP.

3. If L is ≤p
ctt-hard for NP, then L ∪ S is ≤p

ctt-hard for NP.

In Theorem 6 we have seen that ≤p
m-complete, ≤p

btt-complete, and ≤p
dtt-complete

sets are not robust against sparse sets of false positives. The following corollary
of Proposition 1 explains the difficulty of showing the same for ≤p

ctt-complete,
≤p

tt-complete, and ≤p
T-complete sets.

Corollary 7

1. If there exists a ≤p
tt-complete set L in NP and a sparse S such that L∪ S is

not ≤p
tt-hard for NP, then there exist ≤p

tt-complete sets in NP that are not
paddable.

2. If there exists a ≤p
T-complete set L in NP and a sparse S such that L∪S is

not ≤p
T-hard for NP, then there exist ≤p

T-complete sets in NP that are not
paddable.

3. If there exists a ≤p
ctt-complete set L in NP and a sparse S such that L ∪ S

is not ≤p
ctt-hard for NP, then there exist ≤p

ctt-complete sets in NP that are
not paddable.

References

1. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences 47(3), 549–595
(1993)

2. Yesha, Y.: On certain polynomial-time truth-table reducibilities of complete sets
to sparse sets. SIAM Journal on Computing 12(3), 411–425 (1983)

3. Ogiwara, M.: On P-closeness of polynomial-time hard sets (manuscript, 1991)
4. Fu, B.: On lower bounds of the closeness between complexity classes. Mathematical

Systems Theory 26(2), 187–202 (1993)
5. Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time re-

ducibilities. Theoretical Computer Science 1, 103–123 (1975)
6. Berman, L., Hartmanis, J.: On isomorphism and density of NP and other complete

sets. SIAM Journal on Computing 6, 305–322 (1977)

The Fault Tolerance of NP-Hard Problems 385

7. Glaßer, C., Pavan, A., Selman, A.L., Zhang, L.: Redundancy in complete sets.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 444–454.
Springer, Heidelberg (2006)

8. Fortune, S.: A note on sparse complete sets. SIAM Journal on Computing 8(3),
431–433 (1979)

9. Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility
of NP sets to sparse sets. SIAM Journal on Computing 20(3), 471–483 (1991)

10. Ogiwara, M., Lozano, A.: On sparse hard sets for counting classes. Theoretical
Computer Science 112(2), 255–275 (1993)

11. Schöning, U.: Complete sets and closeness to complexity classes. Mathematical
Systems Theory 19(1), 29–41 (1986)

12. Hemachandra, L.A., Ogiwara, M., Watanabe, O.: How hard are sparse sets? In:
Structure in Complexity Theory Conference, pp. 222–238 (1992)

Termination of Priority Rewriting

Isabelle Gnaedig

INRIA & LORIA
BP 101, 54602 Villers-lès-Nancy Cedex France

Abstract. Introducing priorities in rewriting increases the expressive
power of rules and helps to limit computations. Priority rewriting is used
in rule-based programming as well as in functional programming. Termi-
nation of priority rewriting is then important to guarantee that programs
give a result. We describe an inductive proof method for termination of
priority rewriting, relying on an explicit induction on the termination
property and working by generating proof trees, which model the rewrit-
ing relation by using abstraction and narrowing.

1 Introduction

In [1,2], priority rewriting systems (PRSs in short) have been introduced. A PRS
is a term rewrite system (TRS in short) with a partial ordering on rules, deter-
mining a priority between some of them. Considering priorities on the rewrite
rules to be used can be very useful for an implementation purpose, to reduce the
non-determinism of computations or to enable divergent systems to terminate,
and for a semantical purpose, to increase the expressive power of rules. Priority
rewriting is enabled in rule-based languages like ASF+SDF [3] or Maude [4].
It is also used as a computation model for functional programming [5], and is
underlying in the functional strategy, used for example in Lazy ML [6], Clean [7],
or Haskell [8]. Let us also cite recent works on specification and correctness of
security policies using rewriting with priorities [9,10].

But priority rewriting is delicate to handle. First, the priority rewriting rela-
tion is not always decidable, because a term rewrites with a given rule only if in
the redex, there is no reduction leading to another redex, reducible with a rule of
higher priority. A way to overcome the undecidability can be to force evaluation
of the terms in reducing subterms to strong head normal form via some strat-
egy [5], or to use the innermost strategy [11]. But in these cases, normalization
can lead to non-termination.

Second, the semantics of a PRS is not always clearly defined. In [1], a semantics
is proposed, relying on a notion of unique sound and complete set of closed
instances of the rules of the PRS, and it is shown that bounded -the bounded
property is weaker than termination- PRSs have a semantics. In [12], a fixed
point based technique is proposed to compute the semantics of a PRS. It is also
proved that for a bounded PRS with finitely many rules, the set of successors
of any term is finite and computable. In [11], a logical semantics of PRSs based
on equational logic is given. A particular class of PRSs is proved sound and

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 386–397, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Termination of Priority Rewriting 387

complete with respect to the initial algebra, provided every priority rewriting
sequence from every ground term terminates.

Then the termination problem of the priority rewriting relation naturally
arises, either to guarantee that it has a semantics, or to ensure that rewriting
computations always give a result. Surprisingly, it seems not to have been much
investigated until now. Let us cite [13], discussing a normalizing strategy of
PRSs i.e., a strategy giving only finite derivations for terms having a normal form
with usual rewriting, and [14], where it is proved that termination of innermost
rewriting implies termination of generalized innermost rewriting with ordered
rules. But to our knowledge, the problem of finding a specific termination proof
technique has only been addressed in [11], where the use of reduction orderings is
extended with an instantiation condition on rules linked with the priority order.

Our purpose here is to consider the termination proof of priority rewriting
from an operational point of view, with the concern of guaranteeing a result for
every computation. So it seems interesting to focus on the innermost priority
rewriting of [11], because it is decidable, easy to manipulate, and the innermost
strategy is often used in programming contexts where priorities on rules are con-
sidered. The previously cited works on rule-based security policies also generated
a need of specific termination tools: the specifications given in [9] have indeed
been executed in TOM [15] with an innermost evaluation mechanism.

We use an inductive approach, whose principle has already been applied for
termination of rewriting under strategies [16]. The idea is to prove, in developing
proof trees simulating the rewriting trees, that every derivation starting from any
term terminates, supposing that it is true for terms smaller than the starting
terms. We then introduce the priority notion in the generation mechanism of the
proof trees, and show how to optimize the technique in this new case.

2 Priority Rewriting

We assume that the reader is familiar with the basic definitions and notations
of term rewriting given for instance in [17,18]. The ones needed in the paper
can also be found in [19]. We just recall that T (F ,X) is the set of terms built
from a given finite set F of function symbols f , and a set X of variables denoted
by x, y T (F) is the set of ground terms (without variables). Positions in a
term are represented as sequences of integers. The empty sequence ε denotes the
top position. For a position p of a term t, we denote by t|p the subterm of t
at position p, and by t[s]p the term obtained by replacing in t the subterm t|p
by s. A substitution is an assignment from X to T (F ,X), written σ = (x1 =
t1, . . . , xn = tn) whose domain, denoted by Dom(σ), is {x1, . . . , xn}. It uniquely
extends to an endomorphism of T (F ,X). Its application to a term t ∈ T (F ,X)
is written σt. An instantiation or ground substitution is an assignment from X
to T (F). Id denotes the identity substitution. Given a term rewrite system R, a
function symbol in F is called a constructor iff it does not occur in R at the top
position of a left-hand side (lhs in short) of rule, and is called a defined function
symbol otherwise. The set of defined function symbols is denoted by D.

388 I. Gnaedig

A priority term rewrite system is a pair (R, �) of a term rewrite system R
(always considered as finite here) and a partial ordering � on the rules of R. A
rule r1 has a higher priority than a rule r2 iff r1 � r2, which is also written ↓r1

r2
.

Definition 1 ([11]). Let R be a PRS on T (F ,X). A term s is IP -reducible
and (IP -) rewrites to t at position p with the rule l → r, and the substitution σ
which is written s →IP

p,l→r,σ t iff:
• s rewrites into t : t = s[σr]p with s|p = σl,
• no proper subterm of the redex s|p is IP−reducible,
• s|p is not IP−reducible by any rule in R of higher priority than l → r.

Example 1. With the PRS {f(g(x)) → b, g(a) → c � g(a) → d}, on f(g(a)), the
first rule should apply, but this would not be an innermost rewrite step. So the
second rule applies, but the third one does not, because g(a) → c � g(a) → d.

A PRS R IP -terminates if and only if every IP -rewriting chain (IP -derivation)
of the rewriting relation induced by R is finite. If t′ is in an IP -derivation issued
from t and t′ is IP -irreducible, then t′ is called a(n) (IP -)normal form of t and
is denoted by t↓. Note that given t, t↓ may be not unique.

3 Inductively Proving Termination of IP-Rewriting

We prove termination of IP -rewriting by induction on the ground terms. Work-
ing on ground terms is appropriate, since most of the time, the algebraic seman-
tics of rule-based languages is initial. Moreover, in [11], to guarantee stability
by substitution of the innermost rewriting relation, the rules without highest
priority only can reduce ground terms. Finally, there are TRSs which are non-
innermost terminating on T (F ,X) and innermost terminating on T (F). A ter-
mination proof method working on T (F ,X) could not handle them.

For proving that a PRS on T (F) IP -terminates, we reason with a local notion
of termination on terms: a term t of T (F) is said to be IP -terminating for a
PRS R if every IP -rewriting chain starting from t is finite.

For proving that a term t of T (F) is IP -terminating, we then proceed by
induction on T (F) with a noetherian ordering ', assuming the property for
every t′ such that t ' t′. To guarantee non emptiness of T (F), we assume that
F contains at least one constructor constant.

Rewriting derivations are simulated, using a lifting mechanism, by proof trees
developed from initial patterns tref = g(x1, . . . , xm) on T (F ,X), for every g ∈ D,
by alternatively using narrowing and an abstraction mechanism. For a term t of
T (F ,X) occurring in a proof tree,

– first, some subterms θt|j of θt are supposed to be IP -terminating for every
instantiation θ by the induction hypothesis, if θtref ' θt|j for the induction
ordering '. So the t|j are replaced in t by abstraction variables Xj represent-
ing respectively any of their normal forms. Reasoning by induction allows
us to only suppose the existence of the normal forms without explicitly com-
puting them. Obviously, the whole term t can be abstracted. If the ground

Termination of Priority Rewriting 389

instances of the resulting term are IP -terminating (either if the induction
hypothesis can be applied to them, or if they can be proved IP -terminating
by other means presented later), then the ground instances of the initial
term are IP -terminating. Otherwise,

– the resulting term u = t[Xj]{i1,...,ip} (i1, . . . , ip are the abstraction positions
in t) is narrowed in all possible ways into terms v, with an appropriate
narrowing relation corresponding to IP -rewriting u according to the possible
instances of the Xj.

The process is iterated on each v, until we get a term t′ such that either
θtref ' θt′, or θt′ can be proved IP -terminating.

This technique was inspired from the one we proposed for proving the inner-
most termination of classical rewrite systems in [16]. We now give the concepts
needed to formalize and automate it.

4 Abstraction, Narrowing, Constraints

Ordering Constraints. The induction ordering is not defined a priori but is
constrained along the proof by inequalities between terms that must be compa-
rable, called ordering constraints, each time the induction hypothesis is used for
abstraction. More formally, an ordering constraint is a pair of terms of T (F ,X)
denoted by (t > t′). It is said to be satisfiable if there is an ordering ', such
that for every instantiation θ whose domain contains Var(t) ∪ Var(t′), we have
θt ' θt′. We say that ' satisfies (t > t′). A conjunction C of ordering con-
straints is satisfiable if there is an ordering satisfying all conjuncts. The empty
conjunction, always satisfied, is denoted by (.

Satisfiability of a constraint conjunction of this form is undecidable. But a
sufficient condition for C to be satisfiable is to find a simplification ordering '
such that t ' t′ for every constraint t > t′ of C. The constraints generated by our
approach are often satisfiable by a Recursive Path Ordering or a Lexicographic
Path Ordering. Otherwise, automatic constraint solvers can provide adequate
polynomial orderings. See [16] for experiments.

Abstraction. Let N be a set of variables disjoint from X . Symbols of N are
called abstraction variables. Substitutions and instantiations are extended to
T (F ,X ∪N) so that for every substitution σ (resp. instantiation θ) such that
Dom(σ) (resp. Dom(θ)) contains a variable X ∈ N , σX (resp. θX) is in IP -
normal form. The formal definition of a term abstraction can be found in [16].

IP -termination on T (F) is in fact proved by reasoning on terms with abstrac-
tion variables i.e., on terms of T (F ,X ∪ N). Ordering constraints are extended
on T (F ,X ∪N). When a subterm t|j is abstracted by Xj, we state an abstrac-
tion constraint t|j↓ = Xj where t ∈ T (F ,X ∪N) and X ∈ N , to express that
its instances can only be normal forms of the corresponding instances of t|j .

Narrowing. After abstracting the current term t into t′ = t[Xj]j∈{i1,...,ip}, we
test whether the possible ground instances of t′ are reducible, according to the
possible values of the instances of the Xj , by narrowing t′ with the PRS.

390 I. Gnaedig

To schematize innermost rewriting on ground terms, in [16], we introduced
a specific narrowing definition involving constrained substitutions. The problem
here is to see how to express priorities in the narrowing mechanism and how
to integrate them in the previous constraint based definition. In [16], the usual
notion of narrowing was refined as follows. With the usual innermost narrowing
relation, if a position p in a term t is a narrowing position, no suffix position of p
can be a narrowing position as well. However, if we consider ground instances of
t, we can have rewriting positions p for some instances, and p′ for other instances,
such that p′ is a suffix position of p. So, when using the narrowing relation to
schematize innermost rewriting of ground instances of t, the narrowing positions
p to consider depend on a set of ground instances of t, which is defined by
excluding the ground instances of t that would be narrowable at some suffix
position of p. For instance, with the TRS R = {g(a) → a, f(g(x)) → b}, the
innermost narrowing positions of the term f(g(X)) are 1 with the narrowing
substitution σ = (X = a), and ε with any σ such that σX �= a. This leads us to
introduce constrained substitutions.

Let σ be a substitution on T (F ,X ∪N). In the following, we identify σ =
(x1 = t1, . . . , xn = tn) with the equality formula

∧
i(xi = ti), with xi ∈ X ∪N ,

ti ∈ T (F ,X ∪N). Similarly, we call negation σ of the substitution σ the formula∨
i(xi �= ti). The negation of Id means that no substitution can be applied.

Definition 2 ([16]). A substitution σ is said to satisfy a constraint
∧

j

∨
ij

(xij

�= tij), iff for every ground instantiation θ,
∧

j

∨
ij

(θσxij �= θσtij). A constrained
substitution σ is a formula σ0 ∧

∧
j

∨
ij

(xij �= tij), where σ0 is a substitution,
and

∧
j

∨
ij

(xij �= tij) the constraint to be satisfied by σ0.

Definition 3 (Innermost narrowing [16]). Let R be a TRS. A term t ∈
T (F ,X ∪N) innermost narrows into a term t′ ∈ T (F ,X ∪N) at the non-
variable position p of t, using the rule l → r ∈ R with the constrained substitution
σ = σ0 ∧

∧
j∈[1..k] σj , which is written t Inn

p,l→r,σ t′, iff t′ = σ0(t[r]p), where σ0

is the most general unifier (mgu) of t|p and l and σj , j ∈ [1..k] are all mgus of
σ0t|p′ and a lhs l′ of a rule of R, for all suffix position p′ of p in t.

It is always assumed that there is no variable in common between the rule and
the term i.e., that V ar(l) ∩ V ar(t) = ∅. In the following, we are only interested
in the restriction of the narrowing substitution applied to the current term t.
We then omit its definition on the variables of the lhs of rules.

Now, we have to see how to simulate the IP -rewriting steps of a given
term following the possible instances of its variables, by narrowing it with the
rules, considering their priority. Unlike for simulating rewriting without prior-
ities, where the narrowing process only depends on the term to be rewritten
and of the rule considered, simulating IP -rewriting of ground instances of a
term with a given rule requires to take into account the narrowing steps with
the rules having a higher priority. Like for the innermost mechanism of Defini-
tion 3, this requires to use negations of substitutions. Let us consider the PRS
{f(g(x), y) → a � f(x, h(y)) → b � f(x, y) → c}. The term f(x, y) inner-
most narrows into a with the first rule and the mgu σ1 = (x = g(x′)), into b

Termination of Priority Rewriting 391

with the second rule, the mgu σ2 = (y = h(y′)) and the constraint x �= g(x′)
(which is the negation of the mgu of σ2f(x, y) with the lhs of the first rule),
and finally into c with the third rule, the mgu σ3 equal to Id and the constraint
x �= g(x′) ∧ y �= h(y′) (which is the negation of the mgu of σ3f(x, y) with the
first rule and of the mgu of σ3f(x, y) with the second rule).

So, applying the rules one after the other on t, with the current mgu σ, we have
to accumulate the negation of the mgus of σt and the previous rules, without
their constraint part. We have now to see how to manage together the constraints
due to the innermost mechanism and those due to the priority mechanism.

If the narrowing substitutions are in their full form σ0 ∧
∧

j∈[1..k] σj with
a constraint part coming from the innermost mechanism of Definition 3, this
constraint part is also ignored by the priority mechanism. Indeed, it is defined
from σ0, and has no meaning for the negation of σ0. With the PRS {f(g(h(x))) →
a � h(a) → b � f(g(x)) → c}, the term f(x) innermost narrows into with a
the first rule and σ1 = (x = g(h(x′)) ∧ x′ �= a), the second rule does not
apply, and the third rule applies with σ3 = (x = g(x′) ∧ x′ �= h(x′′)) (where
(x′ = h(x′′)∧x′′ �= a) is the narrowing substitution of σ3f(x) with the first rule.

Also, if the constraint part of a substitution is due to the priority mechanism,
the negation of this substitution by the innermost mechanism also only considers
the mgu of the substitution. With the PRS {f(g(h(x, y)), z) → a � f(x, y) → b,
h(a, x) → a � h(x, b) → b}, the term f(x, y) innermost narrows into a with
the first rule and σ1 = (x = g(h(x′, y′)) ∧ x′ �= a ∧ y′ �= b), because h(x′, y′)
narrows with the third rule and σ = (x′ = a), and with the fourth rule and
σ = (y′ = b ∧ x′ �= a). Note that the term f(x, y) also innermost narrows into b
with the second rule and σ2 = (Id ∧ x �= g(h(x′, y′))).

Definition 4 (Innermost priority narrowing). Let R be a PRS. A term
t ∈ T (F ,X ∪N) IP -narrows into t′ ∈ T (F ,X ∪N) at the non-variable position
p of t, using the rule l → r ∈ R with the constrained substitution σ = σ0 ∧∧

j∈[1..k] σj

∧
i∈[1..n] σ

i
0, which is written t IP

p,l→r,σ t′, iff t′ = σ0(t[r]p), where σ0

is the mgu of t|p and l, σj , j ∈ [1..k] are all mgus of σ0t|p′ and a lhs l′ of a rule
of R, for all suffix position p′ of p in t, and σi

0, i ∈ [1..n] are the mgus of σ0t|p
with the lhs of the rules having a greater priority than l → r.

The following lifting lemma ensures that the previously defined narrowing rela-
tion simulates IP -rewriting on ground terms.

Lemma 1 (Priority Innermost Lifting Lemma). Let R be a PRS. Let s ∈
T (F ,X), α a ground substitution such that αs is IP -reducible at a non variable
position p of s, and Y ⊆ X a set of variables such that Var(s) ∪ Dom(α) ⊆ Y.
If αs →IP

p,l→r t′, then there exist a term s′ ∈ T (F ,X) and substitutions β, σ =
σ0 ∧

∧
j∈[1..k] σj

∧
i∈[1..n] σ

i
0. such that:

1. s IP
p,l→r,σ s′,

2. βs′ = t′,
3. βσ0 = α[Y ∪ V ar(l)]
4. β satisfies

∧
j∈[1..k] σj

∧
i∈[1..n] σ

i
0

392 I. Gnaedig

where σ0 is the mgu of s|p and l and σj , j ∈ [1..k] are all mgus of σ0s|p′ and a
lhs l′ of a rule of R, for all suffix position p′ of p in s, and σi

0, i ∈ [1..n] are the
mgus of σ0s|p with the lhs of the rules having a greater priority than l → r.

Accumulating Constraints. Abstraction constraints have to be combined
with the narrowing substitutions to characterize the ground terms schematized
by the current term t in the proof tree. Indeed, a narrowing step on the current
term u with narrowing substitution σ represents a rewriting step for any ground
instance of σu. So σ, considered as the narrowing constraint attached to the
narrowing step, is added to the abstraction constraint, or in practice, propagated
into it by applying its substitution part to the variables of the constraint.

Note that if σ does not satisfy the abstraction constraint, the narrowing step
is meaningless: it does not correspond to any rewriting step of the considered
ground instances.

This leads to the introduction of abstraction constraint formulas.

Definition 5. An abstraction constraint formula (ACF in short) is a formula∧
i(ti↓ = t′i) ∧

∧
j(xj = uj), where xj ∈ X ∪ N , ti, t

′
i, uj,∈ T (F ,X ∪N). It

is satisfiable iff there is at least one instantiation θ such that
∧

i(θti↓ = θt′i) ∧∧
j(θxj = θuj); θ is then said to satisfy the ACF A and is called solution of A.

An ACF A is attached to each term u in the proof trees; the ground substitutions
solutions of A define the instances of the current term u, for which we are
observing IP -termination. When A has no solution, the current node of the
proof tree represents no ground term. Such nodes are then irrelevant for the
proof. Detecting and suppressing them during a narrowing step allows us to
control the narrowing mechanism, well known to easily diverge. So, we have the
choice between generating only the relevant nodes of the proof tree, by testing
the satisfiability of A at each step, or stopping the proof on a branch on an
irrelevant node, by testing the unsatisfiability of A.

The satisfiability of A is in general undecidable, but it is often easy in prac-
tice to exhibit an instantiation satisfying it: most of the time, solutions built
on constructor terms can be synthesized in an automatic way. Other automat-
able sufficient conditions, relying in particular on the characterization of normal
forms [20], are also under study. The unsatisfiability of A is also undecidable
in general, but here also, simple automatable sufficient conditions can be used.
In Sect. 5, we present the procedure exactly simulating the rewriting trees i.e.,
dealing with the satisfiability of A. In Sect. 6, we give the alternative approach
dealing with the unsatisfiability, present the sufficient conditions to test it, and
show why it is particularly advantageous for IP -rewriting.

5 The IP-Termination Procedure

We are now ready to describe the inference rules defining our proof mechanism.
They transform a set T of 3-tuples (U, A, C) where U = {t} or ∅, t is the

Termination of Priority Rewriting 393

current term whose ground instances have to be proved IP -terminating, A is an
abstraction constraint formula, C is a conjunction of ordering constraints.

Before to give the inference rules, let us note that the inductive reasoning can
be completed as follows. When the induction hypothesis cannot be applied to a
term u, it may be possible to prove IP -termination of every ground instance of u
in another way. Let IPT (u) be a predicate that is true iff every ground instance
of u is IP -terminating. In the first and third inference rules, we then associate
the alternative predicate IPT (u) to the condition t > u.

To establish IPT (u), decidable sufficient conditions exist, applicable in prac-
tice, because the predicate is only considered for particular terms introduced
along the proof, and not for any term. Simple cases often arise like non narrow-
able terms of T (F ,N). The notion of usable rules [21,16], is also suitable for
proving termination of u and can also be adapted to IP -rewriting.

The inference rules are given in Table 1. For a detailed explanation as well as
considerations about the predicate IPT and the usable rules, see [19].

We generate the proof trees of R by applying, for each symbol g ∈ D, the
inference rules on the initial 3-tuple ({tref = g(x1, . . . , xm)},(, () (if g is a
constant, then tref = g), with a specific strategy S−RULES:

repeat∗(try−skip(Abstract), try−stop(Narrow), try−skip(Stop)).

”repeat∗(T1, . . . , Tn)” repeats the control strategies T1, . . . , Tn until none of
them is applicable anymore, try−skip(T) expresses that T is tried and skipped
when it cannot be applied, try−stop(T) stops S−RULES if T cannot be applied.

The process may not terminate if there is an infinite number of applications
of Abstract and Narrow on the same branch of a proof tree. It may stop on

Table 1. Inference rules for IP-termination

Abstract:
{t}, A, C

{u}, A ∧
∧

j∈{i1,...,ip}
t|j↓ = Xj , C ∧

∧
j∈{i1,...,ip}

HC(t|j)

where t is abstracted into u at positions i1, . . . , ip �= ε

if C ∧ HC(t|i1) . . . ∧ HC(t|ip) is satisfiable

Narrow:
{t}, A, C

{vi}, A ∧ σ, C
if t IP

σ vi and A ∧ σ is satisfiable

Stop:
{t}, A, C

∅, A ∧ HA(t), C ∧ HC(t) if (C ∧ HC(t)) is satisfiable.

——————————————–

HA(t) =

⎧⎨⎩
� if t is in T (F ,N)

and is not narrowable
t↓ = X otherwise.

HC(t) =
{
� if IPT (t)
tref > t otherwise.

394 I. Gnaedig

Abstract (resp. Narrow) when the ordering (resp. abstraction) constraints
cannot be proved satisfiable. Nothing can be said in these cases about IP -
termination. The good case is when all branches of the proof trees end with
an application of Stop: then IP -termination is established.

A finite proof tree is said to be successful if its leaves are states of the
form (∅, A, C). We write SUCCESS (g, ') if the application of S−RULES on
({g(x1, . . . , xm)},(,() gives a successful proof tree, whose sets C of ordering
constraints are satisfied by the same ordering '.

Theorem 1. Let R be a priority term rewrite system on T (F ,X) having at
least one constructor constant. Every term of T (F) is IP -terminating iff there
is a noetherian ordering ' such that for each g ∈ D, we have SUCCESS (g,').

Examples using the rules of Table 1 can be found in [19], as well as the proofs
of Lemma 1 and Theorem 1.

6 Abstraction Constraints for Priority Rewriting

We present in this section an alternative approach to our procedure, dealing
with the unsatisfiability of A instead of the satisfiability, and show in comparison
why it is suitable for IP -termination. As explained in Sect. 4, instead of testing
whether each node generated in the proof tree is relevant i.e., whether A is
satisfiable, we test whether we have generated irrelevant nodes, and stop the
proof process on the irrelevant nodes.

For this, we just have to suppress the satisfiability test of A∧σ in the condition
of Narrow, and to add the condition “A is unsatisfiable” as an alternative
condition of Stop. Narrow is then applied with try−skip instead of try−stop.

In [16], we give automatable sufficient conditions for the unsatifiability of an
abstraction constraint t↓ = t′, often applicable in practice. As these conditions
only work on the equalities of A, dealing with the unsatisfiability of A instead of
the satisfiability is of particular interest when A involves many negations of sub-
stitutions. Testing the satisfiability instead requires to verify that the solutions
of the equational part of A verify its disequality part.

Testing the unsatisfiability is precisely advantageous for a succession of pri-
ority rules involving more than two or three rules, since narrowing with the nth
rule requires to accumulate the negation of n − 1 narrowing substitutions.

Moreover, since the unsatisfiability test is an alternative condition of Stop,
dealing with the unsatisfiability of A instead of the satisfiability is obviously
interesting when Stop applies with the first condition ((C∧HC(t)) is satisfiable).
Analyzing A can then be completely avoided. It is immediate when rules have
constant right-hand sides: Narrow then generates constant terms, for which the
predicate IPT trivially holds.

As said in the introduction, rewriting-based specifications with priorities on
rules have recently been used to specify security policies, with a concern of

Termination of Priority Rewriting 395

verification of consistency, termination and completeness. They often have the
two characteristics enlightened above. The example we give below has been pro-
posed in [9], for a conference management system described in [22]. Its termina-
tion, due to priority arguments, could not be formally proved until now.

Example 2. If we do not consider priorities, the following rewrite system is di-
vergent, because of the eighth rule. Let us prove that it is IP -terminating.⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐;

aut(q(author(x), SP, pap(x, z)), SUBMIS, u) → PERMIT
aut(q(author(x), SP, pap(x, z)), v, u) → DENY
aut(q(author(x),RSC, pap(x, z)), v, u) → DENY
aut(q(rev(x), w, p), v, conf(x, p)) → DENY
aut(q(rev(x), SR, pap(y, z)), REV, ass(x, pap(y, z))) → PERMIT
aut(q(rev(x), SR, pap(y, z)), v, ass(x, pap(y, z))) → DENY
aut(q(rev(x),RSC, pap(y, z)),MEE, ass(x, pap(y, z))) → PERMIT
aut(q(rev(x), w, pap(x, z)), v, u) → aut(q(rev(x), w, pap(x, z)), v, conf(x, pap(x, z)))
aut(x, y, z) → NAPPLIC .

We apply the strategy S−RULES on the initial pattern tref = aut(x, y, z).
The proof tree is given in Fig. 1. We first have an Abstract step. Then, a
Narrow step gives 9 branches, following the 9 above rules. With the constrained
narrowing substitutions σ1, (σ2∧σ1

2), . . . (σ7∧σ1
7 ∧ . . .∧σ6

7) (where σj
i is the mgu

of σiaut(X, Y, Z) with the jth rule), the first seven ones give respectively the
states PERMIT, DENY, DENY, DENY, PERMIT, DENY, PERMIT ,
on which Stop then applies. Indeed, we have IPT (PERMIT) and IPT (DE-
NY) since PERMIT and DENY are constructor constants. The ninth branch
gives the state NAPPLIC, on which Stop applies too.

tref = aut(x, y, z)
A = �, C = �

Abstract
��

aut(X, Y, Z)
A = (x↓ = X, y↓ = Y, z↓ = Z), C = (aut(x, y, z) > x, y, z)

Narrow
Rule 8

σ8∧σ1
8∧...σ7

8
��

aut(q(rev(X ′), w, pap(X ′, Z′)), Y, conf(X ′, pap(X ′, Z′)))
A = (x↓ = X, y↓ = Y, z↓ = Z

∧X = q(rev(X ′), w, pap(X ′, Z′)) ∧σ1 . . . σ7)

Narrow
Rule 4

σ10=Id

��
DENY

Stop
��
∅

Fig. 1. Proof tree for symbol aut

396 I. Gnaedig

The interesting branch is the eighth one, giving the state aut(q(rev(X ′), w,
pap(X ′, Z ′)), Y, conf(X ′, pap(X ′, Z ′))) with the substitution σ8 =
(X = q(rev(X ′), w, pap(X ′, Z ′))) constrained by σ1

8 ∧ . . . σ7
8 . To lighten the

figure, we only specify this branch in the proof tree.
From this last state, we still apply Narrow, with three narrowing possibilities:

one, with the fourth rule and the substitution σ9 = Id, gives the state DENY ,
on which Stop then applies, because we have IPT (DENY). The two other ones
are not valid: using the eighth and the ninth rules, we also have the narrowing
substitution Id , which becomes empty once constrained by σ9.

Applying the inference rules dealing with the satisfiability of A would have re-
quired to perform the satisfiability test for the nine branches of the first Narrow
step, which is avoided here.

As one can see, the rule Stop applies on all branches of the proof tree thanks
to the predicate IPT . So, on this example, we do not even need to consider
A. To satisfy the ordering constraints, any simplification ordering holds. So this
example can be treated in a completely automatic way.

7 Conclusion

In this paper, we have proposed an inductive method for proving termination
of the decidable innermost priority rewriting relation of C.K. Mohan [11]. This
work is an extension to priority rewriting of an inductive approach given in [16]
for proving innermost termination of rewriting.

In our termination proof technique, the priority mechanism localizes in the
specific narrowing relation used to model the rewriting relation on ground terms.
Moreover, it can be expressed through negations of substitutions, then intro-
ducing constraints similar to those already required to model ground innermost
rewriting. We then have generalized the innermost narrowing relation introduced
in [16], to model the IP -rewriting relation on ground terms and have given a
lifting lemma ensuring the correctness of this modelization.

Constraints are crucial in our approach: ordering constraints guarantee the
applicability of the induction principle, abstraction constraints define the ground
terms considered at each step of the proof, and help to contain the narrowing
mechanism. When the treatment of the constraints is automatable – sufficient
conditions for ordering constraints as well as for abstraction constraints can
be given for this – the proof procedure is completely automatable. Considering
unsatisfiability of abstraction constraints instead of satisfiability is, in general,
particularly suitable for priority rewriting and more precisely for rule-based se-
curity policies.

As termination of the original priority rewriting relation of [2] guarantees
a semantics for this relation, one can think that IP -termination guarantees a
semantics for the IP -rewriting relation. This has to be investigated. We also plan
to generalize our technique to the termination proof of other priority rewriting
relations, in particular for specifying security policies.

Termination of Priority Rewriting 397

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Term rewriting systems with priorities.
In: Lescanne, P. (ed.) RTA 1987. LNCS, vol. 256, pp. 83–94. Springer, Heidelberg
(1987)

2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W., Weijland, W.P.: Term-rewriting sys-
tems with rule priorities. Theoretical Computer Science 67(2-3), 283–301 (1989)

3. van den Brand, M.G., Klint, P., Verhoef, C.: Term Rewriting for Sale. In: WRLA
1998. ENTCS, vol. 15, pp. 139–161. Elsevier, Amsterdam (1998)

4. Marti-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
In: WRLA 2004. ENTCS, vol. 117, pp. 417–441. Elsevier, Amsterdam (2004)

5. Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading (1993)

6. Augustsson, L.: A compiler for lazy ML. In: LFP 1984, pp. 218–227. ACM, New
York (1984)

7. Home of Clean, http://clean.cs.ru.nl/index.html
8. Wiki homepage of Haskell, http://www.haskell.org/haskellwiki/Haskell
9. de Oliveira, A.S.: Réécriture et Modularité pour les Politiques de Sécurité. PhD

thesis, Univesité Henri Poincaré, Nancy, France (2008)
10. de Oliveira, A.S., Wang, E.K., Kirchner, C., Kirchner, H.: Weaving rewrite-based

access control policies. In: FMSE 2007, pp. 71–80. ACM, New York (2007)
11. Mohan, C.K.: Priority rewriting: Semantics, confluence, and conditionals. In: Der-

showitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 278–291. Springer, Heidelberg
(1989)

12. van de Pol, J.: Operational semantics of rewriting with priorities. Theoretical Com-
puter Science 200(1-2), 289–312 (1998)

13. Sakai, M., Toyama, Y.: Semantics and strong sequentiality of priority term rewrit-
ing systems. Theoretical Computer Science 208(1–2), 87–110 (1998)

14. van de Pol, J., Zantema, H.: Generalized innermost rewriting. In: Giesl, J. (ed.)
RTA 2005. LNCS, vol. 3467, pp. 2–16. Springer, Heidelberg (2005)

15. Moreau, P., Ringeissen, C., Vittek, M.: A Pattern Matching Compiler for Multi-
ple Target Languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 61–76.
Springer, Heidelberg (2003)

16. Gnaedig, I., Kirchner, H.: Termination of rewriting under strategies. ACM Trans-
actions on Computational Logic (to appear, 2008),
tocl.acm.org/accepted/315gnaedig.ps

17. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
Cambridge (1998)

18. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

19. Gnaedig, I.: Termination of Priority Rewriting - Extended Version. HAL-INRIA
Open Archive Number inria-00349031 (2008)

20. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007) (release
October 12th, 2007), http://www.grappa.univ-lille3.fr/tata

21. Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Comon, H.
(ed.) RTA 1997. LNCS, vol. 1232, pp. 157–171. Springer, Heidelberg (1997)

22. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS, vol. 4130, pp. 632–646. Springer, Heidelberg (2006)

http://clean.cs.ru.nl/index.html
http://www.haskell.org/haskellwiki/Haskell
tocl.acm.org/accepted/315gnaedig.ps
http://www.grappa.univ-lille3.fr/tata

State Complexity of Combined Operations for
Prefix-Free Regular Languages

Yo-Sub Han1, Kai Salomaa2, and Sheng Yu3

1 Intelligence and Interaction Research Center, KIST
P.O.BOX 131, Cheongryang, Seoul, Korea

emmous@kist.re.kr
2 School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

3 Department of Computer Science, University of Western Ontario
London, Ontario N6A 5B7, Canada

syu@csd.uwo.ca

Abstract. We investigate the state complexity of combined operations
for prefix-free regular languages. Prefix-free minimal deterministic finite-
state automata have a unique structural property that plays an impor-
tant role to obtain the precise state complexity of basic operations. Based
on the same property, we establish the precise state complexity of four
combined operations: star-of-union, star-of-intersection, star-of-reversal
and star-of-catenation.

1 Introduction

Regular languages are widely used in many applications such as text searching,
speech processing or software engineering [1,2,3]. Given a regular language L,
researchers often use the number of states in the minimal DFA for L to represent
the complexity of L. Based on this notation, we, then, define the state complex-
ity of an operation for regular languages to be the number of states that are
necessary and sufficient in the worst-case for the minimal DFA that accepts the
language obtained from the operation [4]. The state complexity of an operation
is calculated based on the the structural properties of given regular languages
and the function of a given operation. Recently, due to large amount of memory
and fast CPUs, many applications using regular languages require huge size of
finite-state automata (FAs). This makes the estimated upper bound of the state
complexity useful in practice since it is directly related to the efficient resource
management in applications. Moreover, it is a challenging quest to verify whether
or not an estimated upper bound can be reached.

Yu [5] gave a comprehensive survey of the state complexity of regular lan-
guages. Salomaa et al. [6] studied classes of languages for which the reversal
operation reaches the exponential upper bound. As special cases of the state
complexity, researchers examined the state complexity of finite languages [7,8],

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 398–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SC of Combined Operations for Prefix-Free Regular Languages 399

the state complexity of unary language operations [9] and the nondetermin-
istic descriptional complexity of regular languages [10]. For regular language
codes, Han et al. [11] studied the state complexity of prefix-free regular lan-
guages. They tackled the problem based on the structural property of prefix-free
DFAs: A prefix-free DFA must be non-exiting assuming all states are useful [11].
Similarly, based on suffix-freeness, Han and Salomaa [12] looked at the state
complexity of suffix-free regular languages. There are several other results with
respect to the state complexity of different operations [13,14,15,16,17,18].

While people mainly looked at the state complexity of single operations
(union, intersection, catenation and so on), Yu and his co-authors [19,20,21]
recently started investigating the state complexity of combined operations (star-
of-union, star-of-intersection and so on). They showed that the state complexity
of a combined operation is usually not equal to the composition of the state
complexities of the participating individual operations. On the other hand, they
also observed that in a few cases, the state complexity of a combined operation
is very close to the composition of the state complexities. This leads us to study
the state complexity of combined operations and examine the cases that give a
similar state complexity to the composition of the state complexities of single
operations.

We choose prefix-free regular languages for the state complexity of combined
operations. Note that state complexity of prefix-free regular languages is very
different from the state complexity of regular languages because prefix-freeness
gives a unique structural property in a prefix-free minimal DFA [11,22]. More-
over, prefix-free languages are used in many coding theory applications (Huffman
coding is an example), and for this reason results on state complexity of combined
operations for prefix-free regular languages may be useful. Furthermore, deter-
mining the state complexity of combined operations on fundamental subfamilies
of the regular languages can provide valuable insights on connections between
restrictions placed on language definitions and descriptional complexity.

In Section 2, we define some basic notions. Then, we present the state com-
plexities of four combined operations in Section 3. We compare the state com-
plexity of basic operations and the state complexity of combined operations for
prefix-free regular languages, and conclude the paper in Section 4.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is
any subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. For strings x, y and z, we say that x is a prefix of y if
y = xz. We define a (regular) language L to be prefix-free if for any two distinct
strings x and y in L, x is not a prefix of y. Given a string x in a set X of strings,
let xR be the reversal of x, in which case XR = {xR | x ∈ X}.

An FA A is specified by a tuple (Q, Σ, δ, s, F), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is the

400 Y.-S. Han, K. Salomaa, and S. Yu

start state and F ⊆ Q is a set of final states. If F consists of a single state f ,
then we use f instead of {f} for simplicity. Given a DFA A, we assume that A is
complete; namely, each state has |Σ| out-transitions and, therefore, A may have
a sink state. We assume that A has a unique sink state since all sink states are
equivalent and can be merged into a single state. Let |Q| be the number of states
in Q. The size |A| of A is |Q|. For a transition δ(p, a) = q in A, we say that p has
an out-transition and q has an in-transition. Furthermore, p is a source state of
q and q is a target state of p. We say that A is non-returning if the start state
of A does not have any in-transitions and A is non-exiting if all out-transitions
of any final state in A go to the sink state.

A string x over Σ is accepted by A if there is a labeled path from s to a final
state such that this path reads x. We call this path an accepting path. Then,
the language L(A) of A is the set of all strings spelled out by accepting paths
in A. We say that a state of A is useful if it appears in an accepting path in A;
otherwise, it is useless . Unless otherwise mentioned, in the following we assume
that all states are useful.

A regular expression E is prefix-free if L(E) is prefix-free and an FA A is
prefix-free if L(A) is prefix-free. Moreover, if L(A) is prefix-free, then A must be
non-exiting. We recall that an arbitrary minimal DFA recognizing a prefix-free
language has exactly one final state and all of its out-transitions go to the sink
state [11].

For complete background knowledge in automata theory, the reader may refer
to the textbook [23].

3 State Complexity of Combined Operations

We consider four combined operations of prefix-free regular languages: star-
of-union, star-of-reversal, star-of-catenation and star-of-intersection. For each
operation, we compare the state complexity of a combined operation and the
composition of the state complexities of two individual operations. In the fol-
lowing section, let SC(L) denote the state complexity of L.

3.1 Star of Union

First we give an upper bound construction for the state complexity of star-of-
union of two prefix-free languages. Let Ai = (Qi, Σ, δi, q0,i, fi), |Qi| = mi, i =
1, 2 be arbitrary minimal DFAs recognizing prefix-free languages. Here fi ∈ Qi

is the unique final state and we can assume that fi �= qi,0. (If the final state is
the start state, Ai must recognize {λ}.) We denote by di ∈ Qi the sink state of
Ai, Q′

i = Qi \ {fi, di} is the set of states of Ai excluding the final state and the
sink state. Without loss of generality we assume that Q1 ∩ Q2 = ∅.

We construct a DFA

A = (Q, Σ, δ, {q0, q0,1, q0,2}, F) (1)

SC of Combined Operations for Prefix-Free Regular Languages 401

for the language (L(A1) ∪ L(A2))∗. We choose Q to be the collection of subsets
of P ⊆ {q0} ∪ Q′

1 ∪ Q′
2 such that

if q0 ∈ P, then q0,1, q0,2 ∈ P. (2)

The set of final states F consists of all elements of Q that contain q0 and the
transition function δ is defined as follows. Let P = X ∪ P1 ∪ P2, where Pi ⊆ Q′

i,
i = 1, 2, X is {q0} or ∅, and c ∈ Σ. Then we define:

δ(P, c) =
{

δ1(P1, c) ∪ δ2(P2, c), if f1 �∈ δ1(P1, c) and f2 �∈ δ2(P2, c),
δ1(P1, c) ∪ δ2(P2, c) ∪ {q0,1, q0,2, q0}, otherwise.

The transitions defined above clearly preserve the property (2), that is, for any
P ∈ Q, δ(P, c) ∈ Q.

The construction of A can be viewed as constructing an NFA for the star-
of-union of the original languages, and performing a subset construction on the
NFA. In the subset construction, we can merge the final states of the original
DFAs. The construction is illustrated in Fig. 1.

A1

A2

q0,1

q0,2

f1

f2

A1

A2

q0,1

q0,2

d1

d2

Σ

Σ

Σ

Σ d1

d2

Σ

Σ

Σ

Σ

q0

Fig. 1. Construction of an NFA for the star-of-union. Note that the merged state q0,
which is a final state as well, is the start state.

The DFA A uses the symbol q0 to represent the merging of the two final states
f1 and f2 of the original DFAs. The start state of A is {q0, q0,1, q0,2} which means
that the computation begins by simulating both the computation of A1 and the
computation of A2. Whenever one of the simulated computations enters the final
state, the computation of A adds both q0,1 and q0,2 to the current set of states
and begins new computations simulating A1 and A2. Namely, q0 in the current
set indicates that the previously simulated computation step is accepted either
in A1 or in A2. Note that the presence of q0,1 or q0,2 in the current state of A is
not sufficient to guarantee this property. The choice of the final states guarantees
that A recognizes exactly the language (L(A1) ∪ L(A2))∗.

Assuming, q0,i, fi, and di are all distinct, for i = 1, 2, the set Q of states
defined by (2) contains 2m1+m2−4 subsets of Q′

1 ∪ Q′
2 that do not contain the

402 Y.-S. Han, K. Salomaa, and S. Yu

merged final state q0. Additionally, Q contains 2m1+m2−6 subsets of the form
{q0, q0,1, q0,2}∪P where P ⊆ (Q1 \ {q0,1, f1, s1})∪ (Q2 \ {q0,2, f2, s2}). Note that
if q0,i, fi and di, i ∈ {1, 2}, are not distinct, then Ai recognizes one of the trivial
languages {λ} or ∅.

Now we obtain the following upper bound for the state complexity of star-of-
union of prefix-free regular languages from the construction.

Lemma 1. Let Li be a prefix-free regular language with SC(Li) = mi, mi ≥ 3,
i = 1, 2. Then

SC((L1 ∪ L2)∗) ≤ 5 · 2m1+m2−6.

In the following, we give a worst-case construction that reaches the upper bound
of Lemma 1. Let Σ = {a, b, c, d, e} and m, n ≥ 3. We define

A1 = (R, Σ, δ1, r0, {rm−2}), (3)

where R = {r0, . . . , rm−1}, and the transitions of δ1 are defined as:

– δ1(ri, a) = ri+1, i = 0, . . . , m − 4, δ1(rm−3, a) = r0.
– δ1(ri, b) = δ1(ri, d) = ri, i = 0, . . . , m − 3.
– δ1(r0, c) = rm−2, δ1(ri, c) = ri, i = 1, . . . , m − 3.

The state rm−1 is the sink state of A1 and above all undefined transitions go to
rm−1. In particular, note that all transitions of A1 on input symbol e go to the
sink state. The language L(A1) is prefix-free since all out-transitions from the
final state rm−2 go to the sink state.

We define the second DFA as

A2 = (S, Σ, δ2, s0, {sn−2}), (4)

where S = {s0, . . . , sn−1}, and δ2 is defined by setting:

– δ2(si, b) = si+1, i = 0, . . . , n − 4, δ2(sn−3, b) = s0.
– δ2(si, a) = δ2(si, e) = si, i = 0, . . . , n − 3.
– δ2(s0, c) = sn−2, δ2(si, c) = si, i = 1, . . . , n − 3.

Again, sn−1 is the sink state of A2 and all above undefined transitions go to the
sink state. In particular, any state of A2 transitions with input symbol d to the
sink state.

The DFAs A1 and A2 are depicted in Fig. 2.
We show that the DFAs in Fig. 2 reach the upper bound of Lemma 1 when

m, n ≥ 3. Note that any complete DFA recognizing a prefix-free language that
is not {λ} or ∅ has to have at least three states.

Lemma 2. Let m, n ≥ 3 and let A1 and A2 be DFAs as defined in (3) and (4),
respectively.

We claim that SC((L(A1) ∪ L(A2))∗) is 5 · 2m+n−6.

By Lemmas 1 and 2 we get a precise bound for the state complexity of star-of-
union of prefix-free regular languages.

SC of Combined Operations for Prefix-Free Regular Languages 403

b, c, d b, c, d

b, c, d

b, d

r0

r1 r2

rm−3

rm−2

c

a
a

a

a
a

a, c, e a, c, e

a, c, e

a, e

s0

s1 s2

sn−3

sn−2

c

b
b

b

b
b

Fig. 2. The DFAs A1 and A2. The figure does not show the sink states rm−1 and sn−1

and their in-transitions.

Theorem 1. The worst-case state complexity of the star-of-union of an m1-
state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
5 · 2m1+m2−6, where |Σ| ≥ 5.

Theorem 1 implies that the upper bound can be reached for all values m1, m2 ≥
3. If, for example, m2 = 2, the state complexity is m1. The result follows from
the state complexity of star for prefix-free languages [11] because with m2 =
2, the worst-case example corresponds to the case where L(A2) = {λ} and
(L(A1) ∪ L(A2))∗ = L(A1)∗.

Note that the state complexity of the union of two prefix-free regular languages
is m1m2 − 2 [11] and the state complexity of the star of an m-state regular
language is 3 ·2m−2 [4]. Thus, the composition of two complexities is 3 ·2m1m2−4.
Therefore, the state complexity of the star-of-union is much lower (one has a
linear exponent and the other has a quadratic exponent) than the composition
of two complexities.

The lower bound construction of Lemma 2 uses an alphabet of size five. It
remains an open question whether the worst-case bound can be reached by prefix-
free regular languages over alphabets of size 2, 3 or 4.

3.2 Star of Reversal

Let A be a minimal DFA for a regular language and |A| = m. Since the state
complexity of L(A) is m, the reversal L(A)R of L(A) can be accepted by an
NFA AR with m states, where AR can have multiple start states. We, then, use
the subset construction on AR and the resulting DFA can have at most 2m states.
Thus, the upper bound for the reversal of regular languages is 2m. Leiss [24]
demonstrated that some classes of languages can reach the upper bound. Later,
Salomaa et al. [6] showed the conditions for such regular languages and obtained
the following result.

Proposition 1 (Salomaa et al. [6]). Let Σ be an alphabet with at least 2
characters. There exists a minimal DFA A that has a maximal blow-up, 2m,
in the transition to its reversal L(A)R, where the transition function of A is
functionally complete, L(A) �= ∅, Σ∗ and m = |A|.

404 Y.-S. Han, K. Salomaa, and S. Yu

Given a minimal prefix-free DFA A = (Q, Σ, δ, s, f), we can obtain an FA for
L((A)R)∗ as follows: We first flip all transition directions in A such that f is the
start state and s is the final state. Then, the resulting FA AR = (Q, Σ, δR, f, s)
is the reversal of A; L(A)R = L(AR). The sink state d of A is now unreachable
from f in AR and, thus, we remove it. Next, we add all out-transitions of f to s
and make f to be final in AR. Note that we keep original out-transition of s in
AR as well. Therefore, we have an FA A′ = (Q \ {d}, Σ, δ′, f, {s, f}), where

δ′(q, a) =
{

δR(q, a) if q �= s,
δR(q, a) ∪ δR(f, a) otherwise.

It is clear from the construction that L(A′) = L((A)R)∗. Note that A′ is not
necessarily deterministic since we have flipped transition directions. Fig. 3 illus-
trates this construction.

s f

d

Σ

Σ d

Σ

Σ

s f

Fig. 3. Construction of an NFA for the star-of-reversal

Lemma 3. Let L be a prefix-free regular language with SC(L) = m. Then,

SC((LR)∗) ≤ 2m−2 + 1.

Next, we demonstrate that 2m−2 + 1 states are necessary for the star-of-reversal
of an m-state prefix-free regular language L. Given a (regular) language L over
Σ, L# is prefix-free if the character # is not in Σ. Our approach is an extension
of the method used by Han et al. [11] for computing the reversal of prefix-free
minimal DFAs.

Let A = (Q, Σ, δ, s, F) be a minimal DFA in Proposition 1 over Σ, which
is not prefix-free in general. We construct a prefix-free minimal DFA A# =
(Q′, Σ ∪ {#}, δ′, s, f ′) that requires m states as follows:

Q′ = Q ∪ {d, f ′},
for q ∈ Q and a ∈ Σ ∪ {#},

δ′(q, a) =

⎧⎨⎩
δ(q, a) if q ∈ Q and a �= #,
f ′ if q ∈ F and a = #,
d otherwise.

Namely, we introduce a new final state f ′ and connect all states in F of A
to f ′ with label #. We also introduce a sink state d. Since A is functionally

SC of Combined Operations for Prefix-Free Regular Languages 405

complete, that is, the transition function of A consists of all mappings from Q
to Q, A cannot have a sink state, and consequently, d is not equivalent with
any of the states of A. Note that by the construction, A# is deterministic and
minimal. Furthermore, L(A#) is prefix-free. Thus, if A has m − 2 states, then
A# has m states.

Proposition 2 (Han et al. [11]). Given a prefix-free minimal DFA A# as
constructed above, 2m−2+1 states are necessary for the minimal DFA of L(A#)R,
where m = |A#| and # /∈ Σ.

s′ s′s′′
#

minimal DFA for L(AR) minimal DFA for L(A#)R

Fig. 4. Construction of the minimal DFA for L(A#)R from the minimal DFA for L(AR).
Note that the left DFA is defined over Σ and the right DFA is defined over Σ ∪ {#}.

The brief sketch of Proposition 2 is that we flip the transition directions of A and
apply the subset construction on AR. Let s′ be the start state of the resulting
DFA. Then, we introduce a new start state s′′ and connect s′′ to s′ with label #.
Then, the new FA is the minimal DFA for L(A#)R and the number of states is
2m−2 + 1 if |A| = m − 2. See Fig. 4.

We are ready to compute the star-of-reversal for A#. From the minimal
DFA M = (Q, Σ, δ, s′′, F) for L(A#)R as depicted in Fig. 4, we add #-transitions
from all final states in F to s′, which is the only target state of s′′ except for the
sink state d. We also make s′′ to be a final state. Let M# be the resulting FA.
It is easy to verify that L(M#) = (L(A#)R)∗. We only need to show that M#
is a minimal DFA. Since δ(f, #) = d for f ∈ F in M , M# is deterministic.

We show that all states of M# are pairwise inequivalent. First consider two
nonfinal states of M#, r1 and r2. Now since r1 and r2 are inequivalent as states
of M , there exists w ∈ Σ∗ such that δ(r1, w) ∈ F and δ(r2, w) /∈ F . Note that
since r1 and r2 are distinct from s′′, we can assume that w does not contain
occurrences of #, and the same string w distinguishes r1 and r2 as states of M#.

Next, consider two final states of M#. If they are both also final states in M ,
then we can use the same argument as above. It remains to show that s′′ is not
equivalent with any other final state r of M#. We note that since the original
DFA A is functionally complete, r must have an out-transition on a symbol of Σ
to some state of Q. On the other hand, the only out-transition from s′′ (either in
M or M#) whose target state is not the sink state d is on the input symbol #.
This means that s′′ and r are inequivalent. Therefore, M# is minimal.

406 Y.-S. Han, K. Salomaa, and S. Yu

Note that, from M , we have constructed the minimal DFA for the star-of-
reversal of A# without adding new states. This implies that we get a precise
bound for the state complexity of star-or-reversal of prefix-free regular languages.

Theorem 2. The worst-case state complexity of the star-of-reversal of an m-
state prefix-free regular language is precisely 2m−2 + 1, where |Σ| ≥ 3.

Note that the state complexity of the reversal of an m-state prefix-free regular
language is 2m−2+1 [11] and the state complexity of the star of an m-state suffix-
free regular language is 2m−2 +1 [12]. Thus, the composition of two complexities
is 22m−2+1−2 + 1. Therefore, the state complexity of the star-of-reversal is much
lower than the composition of two complexities.

3.3 Star of Catenation and Intersection

We examine two operations, star-of-catenation and star-of intersection, based on
the following observations:

1. Prefix-freeness is preserved by catenation and intersection.
2. Given an m-state prefix-free DFA A, SC(L(A)∗) = m [11].

Theorem 3. The worst-case state complexity of the star-of-catenation of an
m1-state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
m1 + m2 − 2.

Theorem 3 shows that the state complexity of the star-of-catenation is equal
to the state complexity calculated by the composition of state complexities of
star and catenation. This is due to the fact that prefix-freeness is closed under
catenation. Since prefix-freeness is also closed under intersection, we expect to
see a similar case for the state complexity of the star-of-intersection.

Theorem 4. The worst-case state complexity of the star-of-intersection of an
m1-state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
m1m2 − 2(m1 + m2) + 6, where |Σ| ≥ 4.

Proof. Han et al. [11] gave a construction for the intersection of two prefix-free
DFAs based on the Cartesian product of states. The main idea of the construction
is to remove unreachable states and merge equivalent states that are identified
based on the structural properties of prefix-free DFAs. Based on the construction,
they showed that m1m2−2(m1+m2)+6 states are sufficient for the intersection of
an m1-state prefix-free minimal DFA and an m2-state prefix-free minimal DFA.
Since prefix-freeness is closed under intersection, the resulting minimal DFA is
also prefix-free. Therefore, m1m2 − 2(m1 + m2) + 6 states are sufficient for the
star-of-intersection since the state complexity of the Kleene star is m for an
m-state prefix-free minimal DFA [11].

We only need to prove the necessary part. Assume that Σ = {a, b, c, d}. Given
a string w over Σ, let |w|a denote the number of a’s in w. Let A1 be the minimal
DFA for

L(A1) = {wc | |w|a ≡ 0 (mod m1 − 2), for w ∈ {a, b}∗}

SC of Combined Operations for Prefix-Free Regular Languages 407

and A2 be the minimal DFA for

L(A2) = {wc | |w|b ≡ 0 (mod m2 − 2), for w ∈ {a, b}∗}.

It is easy to verify that L(A1) and L(A2) are prefix-free and |A1| = m and
|A2| = n. Let L = (L(A1)∩L(A2))∗. We claim that the minimal DFA for L needs
mn− 2(m + n) + 6 states. To prove the claim, it is sufficient to show that there
exists a set R of mn−2(m+n)+6 strings over Σ that are pairwise inequivalent
modulo the right invariant congruence of L, ≡L.

Let R = R1 ∪ R2, where

R1 = {λ, d},
R2 = {aibj | 1 ≤ i ≤ m1 − 2 and 1 ≤ j ≤ m2 − 2}.

Any string aibj from R2 cannot be equivalent with λ since aibj ·λ /∈ L but λ·λ ∈
L. Similarly, aibj cannot be equivalent with d since aibj · am1−2−ibm2−2−jc ∈ L
but d · am1−2−ibm2−2−jc /∈ L. Note that λ and d are not equivalent as well.

Next, consider two distinct strings aibj and akbl from R2. Since aibj �= akbl,
aibj · am1−2−ibm2−2−jc ∈ L but akbl · am1−2−ibm2−2−jc /∈ L. Therefore, any two
distinct strings from R2 are pairwise inequivalent.

Therefore, all mn− 2(m + n) + 6 strings in R are pairwise inequivalent. This
concludes the proof. $%

4 Conclusions

Recently, researchers started looking at state complexity of combined operations
[19,25,26]. Usually, we can obtain a much lower state complexity for combined op-
erations compared with the composition of state complexities of individual oper-
ations. However, in a few cases, the state complexity of combined operations and
the composition of state complexities are similar. We have examined prefix-free
regular languages and computed the state complexity of combined operations.

operation complexity operation complexity
L1 ∪ L2 m1m2 − 2 (L1 ∪ L2)∗ 5 · 2m1+m2−6

L1 ∩ L2 m1m2 − 2(m1 + m2) + 6 (L1 ∩ L2)∗ m1m2 − 2(m1 + m2) + 6
L1 · L2 m1 + m2 − 2 (L1 · L2)∗ m1 + m2 − 2

LR
1 2m1−2 + 1 (LR

1)∗ 2m1−2 + 1
L∗

1 m1 (L∗
1)

∗ = L∗
1 m1

The table summaries the state complexity of basic operations and the state
complexity for combined operations of prefix-free regular languages. Note that
prefix-freeness is closed under both intersection and catenation and both oper-
ations have the same state complexity. On the other hand, for union, the state
complexity of the star-of-union is much lower. An interesting case is the reversal
case. We know that prefix-freeness is not closed under reversal since the reversal
of a prefix-free language is suffix-free. However, the complexities of single and
combined operations are the same. We think this is because suffix-free minimal

408 Y.-S. Han, K. Salomaa, and S. Yu

DFAs preserve a certain structural property. Therefore, natural future work is
to examine the state complexity of combined operations for suffix-free regular
languages.

References

1. Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly & Associates, Inc., Se-
bastopol (2002)

2. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The Statemate
Approach. McGraw-Hill, New York (1998)

3. Karttunen, L.: Applications of finite-state transducers in natural language process-
ing. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 34–46. Springer,
Heidelberg (2001)

4. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

5. Yu, S.: State complexity of regular languages. Journal of Automata, Languages
and Combinatorics 6(2), 221–234 (2001)

6. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoretical Computer Science 320(2-3), 315–329 (2004)

7. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

8. Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. International Journal of Foundations of Computer Science 19(3), 581–595
(2008)

9. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. International Journal of Foundations of Computer Science 13(1),
145–159 (2002)

10. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. International Journal of Foundations of Computer Science 14(6), 1087–1102
(2003)

11. Han, Y.S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-
guages. In: Proceedings of DCFS 2006, pp. 165–176 (2006); Full version is submit-
ted for publication

12. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp.
501–512. Springer, Heidelberg (2007)

13. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shuffle of regular languages. Journal of Automata, Languages and Combina-
torics 7(3), 303–310 (2002)

14. Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455–468 (2002)

15. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal
of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)

16. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181 (2005)

17. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation of regular languages. In: Domaratzki, M., Okhotin, A., Salomaa, K.,
Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)

SC of Combined Operations for Prefix-Free Regular Languages 409

18. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

19. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89
(2008)

20. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oretical Computer Science 383(2-3), 140–152 (2007)

21. Salomaa, K., Yu, S.: On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science 18, 683–698
(2007)

22. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Inc., London (1985)
23. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York (1987)
24. Leiss, E.L.: Succinct representation of regular languages by boolean automata.

Theoretical Computer Science 13, 323–330 (1981)
25. Ellul, K., Krawetz, B., Shallit, J., Wang, M.W.: Regular expressions: New results

and open problems. Journal of Automata, Languages and Combinatorics 9, 233–
256 (2004)

26. Rampersad, N.: The state complexity of L2 and Lk. Information Processing Let-
ters 98(6), 231–234 (2006)

Towards a Taxonomy for ECFG and RRPG
Parsing

Kees Hemerik

Dept. of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
c.hemerik@tue.nl

Abstract. Extended Context-Free Grammars (ECFGs) and Regular
Right-Part Grammars (RRPGs) have many applications, but they are
sparsely covered in the vast literature on parsing and grammars. This
paper presents first steps towards a taxonomy of parsers for ECFGs and
RRPGs, in order to make this subject more accessible.

1 Introduction

Extended Context-Free Grammars (ECFGs) and Regular Right-Part Grammars
(RRPGs) are two common extensions of Context-Free Grammars (CFGs) with
many applications. In computer science they are quite popular as formalisms
for describing programming languages, often in the forms of EBNF (Extended
Backus-Naur Form) [1] and syntax diagrams. There even exists an ISO stan-
dard for EBNF [2]. In computational linguistics, they often appear in the form
of transition networks [3,4,5,6]. In spite of their importance for practical lan-
guage definitions and tools, they are but sparsely covered in the vast literature
on grammars and parsing. To the best of our knowledge, there does not ex-
ist a uniform, coherent treatment of the subject of ECFGs, RRPGs, and their
parsers.

Taxonomies, in a precise technical sense, are an effective means of presenting
such a subject. A taxonomy is a systematic classification of problems and solu-
tions in a particular (algorithmic) problem domain.Taxonomies also are a good
starting point for the construction of highly coherent algorithm toolkits. In the
past, taxonomies and/or toolkits of this kind have been constructed for sorting
[7,8], garbage collection [9], string pattern matching, finite automata construc-
tion and minimization [10,11], and, recently, acceptors and pattern matchers for
regular trees [12,13].

In this paper we present first steps towards a taxonomy of parsers for ECFGs
and RRPGs. Roughly, the field can be subdivided into four subfields, viz. re-
cursive descent, LL-like, LR-like, and tabular parsing. We outline a taxonomy
of recursive descent parsing for ECFGs, present a literature overview for LR-
parsing of ECFGs and RRPGs, and briefly comment on the other two sub-
fields. In doing so, we hope to make the subject more accessible to interested
readers.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 410–421, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards a Taxonomy for ECFG and RRPG Parsing 411

2 Definitions

We only outline definitions of some of the main notions.
An extended context-free grammar (ECFG) is a 4-tuple (N, P, T, S), where N

and T are finite sets of nonterminals and terminals, S ε N is the start symbol,
and P (the productions) is a map from N to regular expressions over alphabet
N∪T . Similarly, a Regular Right Part Grammar (RRPG) is a 4-tuple (N, P, T, S),
where P is a map from N to finite automata over alphabet N ∪ T . Both gram-
mar kinds have productions with right parts which are regular languages over
N ∪ T . The language generated by such a grammar can be defined in different
ways:

– Using the standard derivation notions for CFGs, but with the possibly infi-
nite sets of production rules of the ECFG or RRPG;

– Defining a rewrite system for regular expressions, with expressions in T ∗ as
normal forms [14];

– Defining ECFG trees (i.e. trees in which each node is labeled with a subex-
pression of the ECFG and has a number of sons matching the label), and
taking the frontiers of these trees [15];

– By interpreting the ECFG as a set of regular language equations and taking
the least solution w.r.t. the pointwise subset ordering.

It is obvious that each ECFG or RRPG can be transformed into a CFG
by transforming each right part to a context-free sub-grammar. Heilbrunner [16]
defines two such transformations - called LL(1) transformation and unambiguous
right-linear transformation - and uses these to define the ELL(k) and ELR(k)
grammars as follows:

– An ECFG is an ELL(k) grammar if there is an LL(1) transformation yielding
an LL(k) grammar;

– An ECFG is an ELR(k) grammar if there is an unambiguous right-linear
transformation yielding an LR(k) grammar.

3 Recursive Descent

Recursive descent is a technique for implementing a parser in the form of a
recursive program. Taking a few notational shortcuts, the most basic recursive
descent scheme can be described as follows.

Let G = (N, T, P, S) be an ECFG, with P = {A1 = e1, · · · , An = en}. P is
mapped to the following set of procedure declarations:

proc A1 = E [[e1]]
...

proc An = E [[en]]

412 K. Hemerik

where the function E , which maps regular expressions over N ∪T to statements,
is defined recursively as:

re E [[re]]
ε skip
a term(a)
A A

e1 • · · · • en E [[e1]]; · · · ; E [[en]]
e1 | · · · | en if sym ε LA(e1) → E [[e1]] [] · · · [] sym ε LA(en) → E [[en]] fi

e∗ do sym ε FIRST (e) → E [[e]] od

In this scheme, variable sym is the lookahead symbol, procedure term(a) checks
whether sym equals terminal a and, if so, advances sym to the next input sym-
bol, and functions LA and FIRST yield ELL(1) first sets and lookahead sets
respectively.

Recursive descent is a well-known and popular technique. Its origins are hard
to trace. One of the oldest written accounts is given by Lucas in [17]. Conway
[3] seems to have been the first to apply it to transition networks, which are
essentially RRPGs. Recursive descent occurs in many textbooks on compilers,
usually in the form of examples, but there exist only few publications describing
general schemes. The most notable are:

– Wirth describes in several places (e.g.[18], ch.5) how syntax diagrams can
be mapped to Pascal programs;

– Lewi and his co-workers [19,15] give detailed accounts of translation schemes
(some of them including error recovery) from ECFGs to Ada-like code;

– Wilhelm and Maurer ([14], ch.8) give translation schemes for ECFGs, based
on dotted rules.

3.1 Sub-taxonomy for Recursive Descent

Although the basic scheme for recursive descent is well-understood, in practice
there exist many variations, depending a.o. on which of the following aspects are
taken into account:

Grammar processing. We can distinguish between interpreting parsers –
which are fixed recursive procedures that take a grammar element as a pa-
rameter and try to recognize a terminal production of that grammar element
– and generated parsers, which are sets of grammar specific recursive proce-
dures, generated by a parser generator. The choice between the two kinds is
one of flexibility vs. speed.

Handling of alternatives. We distinguish various strategies:
Deterministic. In this case the grammar should satisfy the ELL(k) con-

dition, which allows choices to be resolved by k-symbol lookahead;
Limited backtrack. In this case all alternatives are pursued, but the

parser stops at the first success;

Towards a Taxonomy for ECFG and RRPG Parsing 413

Full backtrack. In this case all alternatives are pursued completely, result-
ing in sets of solutions.

Additional tasks. Parsing is rarely done for its own sake. Usually it is com-
bined with other tasks, such as tree construction or transduction from input
to output language.

Error handling. Some options are: abortion, graceful termination, error recov-
ery, and error correction.

Optimizations. E.g. memoization to make backtracking practically feasible.

Based on these details, it is possible to develop a sub-taxonomy for recursive
descent parsing of ECFGs. We are currently working on this sub-taxonomy. Some
results have been reported in [20,21]. Figure 1 shows the taxonomy graph. All
parsers in this taxonomy have been described in an abstract notation of the kind
commonly found in texts on algorithms or programming methods. An example
of this style is given in Appendix A.

Fig. 1. A taxonomy diagram of the family of recursive descent parsers. The diagram
has been taken from [20]. The numbers in the diagram refer to corresponding sections
in that document.

4 LL-Like Parsers

Little has been published about LL-like push-down automata for ECFGs. A
classical LL-parser for an ordinary CFG (N, T, P, S) is a push-down automaton
with a stack alphabet corresponding (roughly) to N ∪ T . A terminal on top of
the stack is matched away against the lookahead symbol; a nonterminal on top
of the stack is replaced by one of its right-hand sides. The actions are deter-
mined by a parse-table indexed by the top-of-stack symbol and the lookahead
symbol.

414 K. Hemerik

This model can simply be generalized to ECFGs by using stack symbols which
are dotted production rules, and modifying the transition relation accordingly.
Wilhelm and Maurer ([14], ch.8) give the construction in full detail.

A somewhat different approach is taken by Brüggemann-Klein and Wood
[22,23]. In their proposal the stack is not present explicitly, but represented by
the list of uncompleted subtrees of the partial parse tree that is being built up.

5 LR-Like Parsers

In this section we consider parsing methods for RRPGs which are adaptations
or generalizations of LR-like parsers for CFGs. Conventional LR-like parsers are
of the shift-reduce type; they work on a stack and an input stream by means of
two operations: a shift operation, which removes a symbol from the input and
pushes a state on the stack, and a reduce operation by a specified production,
which pops a number (dependent on the production) of states from the stack and
pushes a new state on the stack. The top state and lookahead symbols determine
which action to take. The actions are encoded in parse tables indexed by states
and lookahead symbols.

Because RRPGs may lead to derivations with production right parts of un-
bounded lengths, determining the number of states to pop (the length of the
handle) becomes a problem. In the literature the following main approaches to
this problem can be distinguished:

1. Transform the RRPG to an equivalent CFG and apply standard techniques
for constructing an LR parser [24,16,25];

2. Use the RRPG directly to construct an LR-like parser, extended with a
mechanism to read back into the stack to determine the left end of the
handle [26,27,28,29,25];

3. Use the RRPG to construct a shift-reduce parser which only pushes a state
if it may correspond to the beginning of a production and only pops one
state upon reduction [30,31,32,33,34,35];

4. Embedding of some of the techniques mentioned above in different frame-
works for LR-like parsing [36,37].

In the following four subsections we will elaborate these approaches.

5.1 Transformation of RRPG to CFG

As already indicated in Section 2, any RRPG can be transformed into a CFG
by replacing each right part by a context-free sub-grammar. This suggests one
way of solving the parsing problem for RRPGs: first transform to an equivalent
CFG, and then use any parsing method for CFGs. There are some disadvantages
to such an approach, however: choosing an unsuitable transformation may result
in a CFG with undesirable parsing properties. Also, it may be difficult to relate
the structure of the input under the new CFG to the structure according to the
original ECFG. The following papers discuss some transformations:

Towards a Taxonomy for ECFG and RRPG Parsing 415

– Heilbrunner [16] is concerned with the definition of the notions of ELL(k)
and ELR(k) grammar. To this end he uses certain transformations from
ECFG to CFG, as we have already outlined in Section 2.

– Madsen and Christensen [25] transform an ECFG to a CFG by replacing
each right part by an equivalent right-linear subgrammar. They use this
transformation to define their ELR(k) notion. Heilbrunner [16] shows that
an ECFG is ELR(k) according to this notion iff it is unambiguous and
ELR(k) according to his own notion.

– Celentano [24] gives a transformation from an ECFG to an equivalent CFG
and uses this transformation as the basis for describing the construction of
an LR-like parser for an ECFG, which simulates a conventional LR parser
for an equivalent CFG.

5.2 LR-Parsers with Readback

The main problem with LR-like parsers for RRPGs is to locate the left end of the
handle on the stack. It is not sufficient to construct a DFA (deterministic finite
automaton) for each production A → e to recognize the reverse of the language
of e. Instead, the LR-parser can be extended with readback automata, which can
be constructed to recognize the reverse of the sequences of states entered by the
LR-automaton as it reads strings in the language of e. These states distinguish
between different contexts in which a symbol appears, so they can be used to
find the context corresponding to the first symbol of a handle.

– LaLonde was the first to elaborate the idea of recognizing handles in the
way just outlined [28,29]. LaLonde mentions that his parse tables can be
divided into essentially two classes (readahead and readback), but this is not
so evident from the way he describes the parsing algorithm.

– Chapman [26,27] gives a simpler construction for the readback automata,
derived from a particular algorithm for computing LALR(1) lookahead sets.
The construction may yield readback automata that are non-deterministic.
Chapman restricts his method to grammars for which this is not the case.
Chapman clearly distinguishes readahead and readback automata and de-
scribes the parsing algorithm as a piece of program in which the forward and
backward phases can easily be recognized.

– Madsen and Christensen [25] base their method on ECFGs rather than
RRPGs. They present an LR(0) construction based on sets of items which
are rules of the ECFG with markers. In order to determine the left end of
the handle they use a recursive algorithm which matches the actual handle
with the possible forms of the production right part subexpressions.

In order to give an impression of the way a parser with readback automata
works, we present below a somewhat polished version of Chapman’s algorithm
in [27]. The components have the following meanings: Q normal parser states,
q0 initial state, δ : Q × T → Q forward transitions, R readback states, F ⊆ R
accepting readback states, ρ : R × Q → R readback transitions, I : Q × P → R
initial readback states.

416 K. Hemerik

con G = (N, T,
P, S) : RRPG; { G is the given grammar}
con LRB=(Q, N ∪ T, P, q0, δ, R, ρ, I, F); {LRB is LR(1) automaton with

readback for G}

var
in : T ∗; {input sequence}
sym : T ; {lookahead symbol}
q : Q; {current state}
σ : stack of Q; {parse stack}

in := INPUT ⊕ 〈,〉;
q := q0;
σ := 〈q〉;
nextsym;
do δ(q, sym) :: shift(s) → q := s;

σ.push(q);
nextsym

[] δ(q, sym) :: reduce(A → α) → |[var r : R;
r := I(q, A → α); {initial readback state}
do r �ε F →r :=ρ(r, σ.top); {readback loop}

σ.pop
od ;
let s ε Q s.t. δ(σ.top, A) :: shift(s);
q := s;
σ.push(q)

]|
od ;
if δ(q, sym) :: accept → skip
[] δ(q, sym) :: error → errormessage(σ, sym)
f i

5.3 Purdom and Brown’s Technique

Purdom and Brown [32] start out with an RRPG where each right part is a DFA.
To this grammar they apply a construction which is very similar to the standard
LALR(k)-construction for CFGs. The main difference with the approaches in
the previous subsection is in the handling of the stack. A state is stacked only
when the symbol being processed indicates the beginning of a new right side.
When the end of the production is found, exactly one entry is popped from the
stack.

This approach does not work for every ELR(k) grammar because for some
(state, symbol) pairs it may not be possible to tell whether the parser is starting a
new right side without seeing more of the input. In this situation the construction
produces a parser with a stacking conflict.

Towards a Taxonomy for ECFG and RRPG Parsing 417

Purdom and Brown also present an algorithm for transforming any ELR(k)
grammar whose grammar has stacking conflicts into one whose parser has none.
They claim that this transformation permits to parse any ELR(k) grammar with
their method.

Several variations on the basic scheme by Purdom and Brown have been
published, which differ mainly in the way stacking conflicts are handled:

– Nakata and Sassa [31] use lookback states at reduction if stacking conflicts
occur;

– Shin and Choe [34] improve on the storage requirements of Nakata and Sassa
[31] by using only kernel items in the construction and by allowing NFAs
rather than DFAs in the right parts of productions;

– Fortes Gálvez [38] points out some errors in [31,34] by means of a counter-
example.

– Sassa and Nakata [33] use counters at reduction if stacking conflicts occur.
– Zhang and Nakata [35] use path numbers at reduction if stacking conflicts

occur;
– Morimoto and Sassa [30] additionally put production symbols on the stack

during shift actions in order to reduce the work needed during reduce actions.

5.4 Embedding in Different LR-Like Frameworks

– Colby and Bermudez [36] generalize the counters of Sassa and Nakata [33]
and embed the resulting parser in a general theory of LR-like parsers devel-
oped by Bermudez.

– Kannapinn’s dissertation [37] consists of two parts. In the first part he studies
how redundancy may be eliminated from LR parsers. In the second part
he uses his framework to design an LR-parser for ECFGs. He first gives a
very critical review of many existing publications on the same subject and
then presents his own constructions, which are essentially as follows: right
parts of ECFGs are mapped to equivalent FAs; these in turn are mapped
to equivalent right-linear subgrammars. This way, the construction of ELR-
parsers for ECFGs and for RRPGs can be unified and both can be reduced to
the construction of LR-parsers for pure CFGs. It is a pity that this thorough
and critical work, published in German, has not received a wider readership.

6 Tabular Parsers

Classical tabular parsers like Earley’s method [39] can handle arbitrary CFGs,
even ambiguous ones. Usually, they are presented in the form of a subject string
w ε T ∗ and a matrix M , where Mij contains a set of elements related to all deriva-
tions of substring wij . The matrix is filled by a kind of dynamic programming
algorithm, and eventually M0n holds information about all derivations of w.

418 K. Hemerik

Not much literature can be found on extending tabular methods to ECFGs:

– Leermakers [40] presents a formalism for Earley-like parsers, which accomo-
dates the simulation of non-deterministic pushdown automata. In particular,
the theory is applied to non-deterministic LR-parsers for Recursive Transi-
tion Networks, which are equivalent to RRPGs.

– Schneider [41] shows how ECFGs can be embedded in a more general for-
malism called state transition grammars (STG), and presents an Earley-like
parser schema for STGs.

– Spanbroek [42] gives full formal derivations of ECFG versions of the Cocke-
Younger-Kasami algorithm and the bottom-up Earley algorithm.

7 Concluding Remarks

The picture of parsing ECFGs and RRPGs emerging from the survey above is:

– Recursive descent parsing is so simple to use that not many feel tempted to
publish about its theory;

– What has been published about LR-like parsing theory is so complex that
not many feel tempted to use it;

– LL-like parsing seems to have little theoretical or practical relevance;
– Tabular parsing seems feasible, but is largely unexplored.

Of course, such a simplistic resumé does not do justice to the great efforts that
have gone into research and implementation of the methods described. But it
is a striking phenomenon that the ideas behind recursive descent parsing of
ECFGs can be grasped and applied immediately, whereas most of the literature
on LR-like parsing of RRPGs is very difficult to access. Given the developments
in computing power and software engineering, and the practical importance of
ECFGs and RRPGs, a uniform and coherent treatment of the subject seems in
order. We hope that this paper is a useful step towards that goal.

Acknowledgments. Mark van den Brand, Loek Cleophas and an anonymous
referee gave many useful comments on an earlier version of this paper. Due to
space limitations they could not all be taken into account.

References

1. Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic
definitions? CACM 20, 822–823 (1977)

2. ISO/IEC: International Standard EBNF Syntax Notation. 14977 edn. (1996),
http://www.iso.ch/cate/d26153.html

3. Conway, M.E.: Design of a separable transition-diagram compiler. CACM 6, 396–
408 (1963)

4. Lomet, D.B.: A formalization of transition diagram systems. JACM 20, 235–257
(1973)

http://www.iso.ch/cate/d26153.html

Towards a Taxonomy for ECFG and RRPG Parsing 419

5. Perlin, M.: LR recursive transition networks for Earley and Tomita parsing. In:
Procs. 29th Annual Meeting on Association for Computational Linguistics (ACL),
Berkeley, California, pp. 98–105 (1991)

6. Woods, W.A.: Transition network grammars for natural language analysis.
CACM 13, 591–606 (1970)

7. Broy, M.: Program construction by transformations: a family tree of sorting
programs. In: Biermann, A.W., Guiho, G. (eds.) Computer Program Synthesis
Methodologies, pp. 1–49. Reidel (1983)

8. Darlington, J.: A synthesis of several sorting algorithms. Acta Inf. 11, 1–30 (1978)
9. Jonkers, H.: Abstraction, specification and implementation techniques, with an

application to garbage collection. PhD thesis, Technische Univ. Eindhoven (1983)
10. Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. PhD

thesis, Technische Universiteit Eindhoven (1995)
11. Watson, B.W.: Implementing and using finite automata toolkits. In: Kornai, A.

(ed.) Procs. 12th European Conference on Artificial Intelligence, Budapest, Hun-
gary, pp. 97–100 (1996)

12. Cleophas, L.: Tree Algorithms - Two Taxonomies and a Toolkit. PhD thesis, Tech-
nische Universiteit Eindhoven (2008)

13. Cleophas, L.: Forest FIRE and FIRE Wood - tools for tree automata and tree
algorithms. In: FSMNLP (2008)

14. Wilhelm, R., Maurer, D.: Compiler Design. Addison-Wesley, Reading (1995)
15. Lewi, J., de Vlaminck, K., Steegmans, E., Horebeek, I.V.: Software Development

by LL(1) Syntax Description. Wiley, Chichester (1992)
16. Heilbrunner, S.: On the definition of ELR(k) and ELL(k) grammars. Acta Infor-

matica 11, 169–176 (1979)
17. Lucas, P.: The structure of formula-translators. ALGOL Bulletin 16 (1961)
18. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood

Cliffs (1975)
19. Lewi, J., Vlaminck, K.D., Huens, J., Huybrechts, M.: The ELL(l) parser generator

and the error recovery mechanism. Acta Informatica 10, 209–228 (1978)
20. Keim, E.: Theory and implementation of a family of parser components. Master’s

thesis, Dept. of Math. and Comp.Sci., Technische Universiteit Eindhoven (2007)
21. Ssanyu, J., Hemerik, K.: Algorithms for recursive descent parsing of ECFGs. (in

preparation, 2008)
22. Brüggemann-Klein, A., Wood, D.: On predictive parsing and extended context-

free grammars. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 239–247. Springer, Heidelberg (2003)

23. Brüggemann-Klein, A., Wood, D.: The parsing of extended context-free grammars.
HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-
2002-08, Hong Kong University (2002)

24. Celentano, A.: An LR parsing technique for extended context-free grammars. Com-
puter Languages 6, 95–107 (1981)

25. Madsen, O.L., Kristensen, B.B.: LR-parsing of extended context free grammars.
Acta Informatica 7, 61–73 (1976)

26. Chapman, N.P.: LALR(1,1) parser generation for regular right part grammars.
Acta Informatica 21, 29–45 (1984)

27. Chapman, N.P.: LR Parsing - Theory and Practice. Cambridge Univ. Press, Cam-
bridge (1987)

28. LaLonde, W.R.: Regular right part grammars and their parsers. CACM 20, 731–
741 (1977)

420 K. Hemerik

29. LaLonde, W.R.: Lalonde: Constructing LR parsers for regular right part grammars.
Acta Informatica 11, 177–193 (1979)

30. Morimito, S.I., Sassa, M.: Yet another generation of LALR parsers for regular right
part grammars. Acta Informatica 37, 671–697 (2001)

31. Nakata, I., Sassa, M.: Generation of efficient LALR parsers for regular right part
grammars. Acta Informatica 23, 149–162 (1986)

32. Purdom, P.W., Brown, C.A.: Parsing extended LR(k) grammars. Acta Informat-
ica 15, 115–127 (1981)

33. Sassa, M., Nakata, I.: A simple realization of LR-parsers for regular right part
grammars. Information Processing Letters 24, 113–120 (1987)

34. Shin, H.C., Choe, K.M.: An improved LALR(k) parser generation for regular right
part grammars. Inf. Proc. Lett. 47, 123–129 (1993)

35. Zhang, Y., Nakata, I.: Generation of path directed LALR(k) parsers for regular
right part grammars. J. Inf. Process. 14, 325–334 (1991)

36. Colby, J.E., Bermudez, M.E.: Lookahead LR parsing with regular right part gram-
mars. Intern. J. Computer Math. 64, 1–15 (1997)

37. Kannapinn, S.: Eine Rekonstruktion der LR-Theorie zur Elimination von Redun-
danz mit Anwendung auf den Bau von ELR-Parsern. PhD thesis, Technische Uni-
versität Berlin (2001) (in German)

38. Fortes Gálvez, J.: A note on a proposed LALR parser for extended context-free
grammars. Inf. Proc. Lett. 50, 303–305 (1994)

39. Earley, J.C.: An efficient context-free parsing algorithm. CACM 13, 94–102 (1970)
40. Leermakers, R.: How to cover a grammar. In: Procs. 27th Ann. Meeting of Asso-

ciation for Computational Linguistics, Vancouver, Canada, pp. 135–142 (1989)
41. Schneider, K.M.: Parsing schemata for grammars with variable number and order

of constituents. In: Procs. 18th Conf. on Comp. Linguistics, vol. 2, pp. 733–739
(2000)

42. Spanbroek, M.: Towards a unification of regular and context-free recognition. Mas-
ter’s thesis, Dept. of Math. and Comp. Sci., Technische Universiteit Eindhoven
(2005)

A Interpreting Limited Backtrack Recursive Descent
Parser Scheme

As an example of the way the parsing algorithms are described in the taxonomy,
we show the abstract code for one of the algorithms. The parser is a limited back-
track recursive descent parser which interprets the grammar and which makes
use of a scanner sc and a tree builder tb. The parser is coded as a recursive
procedure T (↓ e, ↑ r, ↑ t), where input parameter e is a regular expression over
terminals and nonterminals; boolean output parameter r indicates whether the
parse was successful. If so, output parameter t holds the constructed tree. The
characteristics of the algorithm and the corresponding code are given below:

grammar kind ECFG

grammar conditions no left recursion, no Nullable(e) for expressions of the form e∗

grammar processing interpreted
architecture recursive descent procedure with scanner sc and tree builder tb

strategy limited backtrack, no lookahead, success boolean, no memo
scanner operations sym, nextsym, mark, reset

tree builder actions mkeps, mkterm, mkprod, mkdot, mkstick, mkstar

Towards a Taxonomy for ECFG and RRPG Parsing 421

proc T (↓ e : SE; ↑ r : bool; ↑ t : Tree) =
if e :: φ → r, t := false, nil
[] e :: ε → r, t := true, tb.mkeps(ẽ)
[] e :: term(a) → if sc.sym = a → sc.nextsym;

r, t := true, tb.mkterm(ẽ, a)
[] sc.sym �= a → r, t := false, nil
f i

[] e :: nonterm(A) → |[var b : bool; t′ : Tree
� T (↓ P (A); ↑ b; ↑ t′);
if b → t := tb.mkprod(ẽ, A, t′)
[] ¬b → t := nil
f i ;
r := b

]|
[] e :: (e0· . . . ·el−1) → |[var j : nat; b : bool; t′ : Tree; s : seq of Tree

� j, b, s := 0, true, 〈〉;
do (j �= l) ∧ b → T (↓ ej ; ↑ b; ↑ t′);

s := s ⊕ 〈t′〉
j := j + 1

od ;
if b → t := tb.mkdot(ẽ, s)
[] ¬b → t := nil
f i ;
r := b;

]|
[] e :: (e0 | . . . | el−1) → |[var m, j : nat; b : bool; t′ : Tree

� m := sc.mark;
j, b, t := 0, false, nil;
do (j �= l) ∧ ¬b → T (↓ ej ; ↑ b; ↑ t′);

if b → t := tb.mkstick(ẽ, j, t′)
[] ¬b → sc.reset(m)
f i ;
j := j + 1

od ;
r := b;

]|
[] e :: f∗ → |[var m : nat; b : bool; t′ : Tree; s : seq of Tree

� b, s := true, 〈〉;
do b → m := sc.mark;

T (↓ f ; ↑ b; ↑ t′);
if b → s := s ⊕ 〈t′〉
[] ¬b → sc.reset(m)
f i ;

od ;
r, t := true, tb.mkstar(ẽ, s)

]|
f i

Counting Parameterized Border Arrays
for a Binary Alphabet

Tomohiro I1, Shunsuke Inenaga2, Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University
2 Graduate School of Information Science and Electrical Engineering,

Kyushu University
744 Motooka, Nishiku, Fukuoka, 819–0395 Japan
{tomohiro.i,bannai,takeda}@i.kyushu-u.ac.jp,

inenaga@c.csce.kyushu-u.ac.jp

Abstract. The parameterized pattern matching problem is a kind of
pattern matching problem, where a pattern is considered to occur in a
text when there exists a renaming bijection on the alphabet with which
the pattern can be transformed into a substring of the text. A param-
eterized border array (p-border array) is an analogue of a border array
of a standard string, which is also known as the failure function of the
Morris-Pratt pattern matching algorithm. In this paper we present a lin-
ear time algorithm to verify if a given integer array is a valid p-border
array for a binary alphabet. We also show a linear time algorithm to
compute all binary parameterized strings sharing a given p-border array.
In addition, we give an algorithm which computes all p-border arrays of
length at most n, where n is a a given threshold. This algorithm runs in
time linear in the number of output p-border arrays.

1 Introduction

1.1 Parameterized Matching and Parameterized Border Array

The parameterized matching (p-matching) problem [1] is a kind of string match-
ing problem, where a pattern is considered to occur in a text when there exists a
renaming bijection on the alphabet with which the pattern can be transformed
into a substring of the text. A parameterized string (p-string) is formally an
element of (Π ∪ Σ)∗, where Π is the set of parameter symbols and Σ the set of
constant symbols. The renaming bijections used in p-matching are the identity
on Σ, that is, every constant symbol X ∈ Σ is mapped to X, while symbols in
Π can be interchanged. Parameterized matching has applications in software
maintenance [2,1], plagiarism detection [3], and RNA structural matching [4],
thus it has been extensively studied in the last decade [5,6,7,8,9,10,11,12].

Of various efficient methods solving the p-matching problem, this paper fo-
cuses on the algorithm of Idury and Schäffer [13] that solves the p-matching
problem for multiple patterns. Their algorithm modifies the Aho-Corasick au-
tomata [14], replacing the goto and fail functions with the pgoto and pfail func-
tions, respectively. When the input is a single pattern p-string of length m, the

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 422–433, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Counting Parameterized Border Arrays for a Binary Alphabet 423

pfail function can be implemented by an array of length m, and we call the array
the parameterized border array (p-border array) of the pattern p-string, which
is the parameterized version of the border array [15]. The p-border array of a
given pattern can be computed in linear time [13].

1.2 Reverse and Enumerating Problems on Strings

The reverse problem for standard border arrays [15] was first introduced by
Franěk et al. [16]. They proposed a linear time algorithm to verify if a given
integer array is the border array of some string. Their algorithm works for both
bounded and unbounded alphabets. Duval et al. [17] proposed a simpler algo-
rithm to solve the same problem in linear time for bounded alphabets.

Moore et al. [18] presented an algorithm to enumerate all border arrays of
length at most n, where n is a given positive integer. They proposed a notion
of b-equivalence of strings such that two strings are b-equivalent if they have
the same border array. The lexicographically smallest one of each b-equivalence
class is called b-canonical string of the class. Their algorithm is also able to
output all b-canonical strings of length up to a given integer n. Franěk et al. [16]
pointed out that the time complexity analysis of [18] is incorrect, and showed a
new algorithm which solves the same problem in O(bn) time using O(bn) space,
where bn denotes the number of border arrays of length at most n.

The reverse problem for some other string data structures, such as suffix ar-
rays [19], directed acyclic word graphs [20], directed acyclic subsequence
graphs [21] have been solved in linear time [22,23]. The problem of enumerating
all suffix arrays was considered in [24]. An algorithm to enumerate all p-distinct
strings was proposed in [18], where two strings are said to be p-distinct if they
do not parameterized-match.

1.3 Our Contribution

This paper considers the reversal of the problem of computing the p-border array
of a given pattern p-string. That is, given an integer array α, determine if there
exists a p-string whose p-border array is α. In this paper, we present a linear
time algorithm which solves the above problem for a binary parameter alphabet
(|Π | = 2). We then consider a more challenging problem: given a positive integer
n, enumerate all p-border arrays of length at most n. We propose an algorithm
that solves the enumerating problem in O(Bn) time for a binary parameter
alphabet, where Bn is the number of all p-border arrays of length n for a binary
parameter alphabet. We also give a simple algorithm to output all strings which
share the same p-border array.

A p-border is a dual concept of a parameterized period of a p-string. Apostolico
and Giancarlo [11] showed that a complete analogy to the weak periodicity
lemma [25] stands for p-strings over a binary alphabet. Our result reveals yet
another similarity of p-strings over a binary alphabet and standard strings in
terms of periodicity.

424 T. I et al.

2 Preliminaries

2.1 Parameterized String Matching

Let Σ and Π be two disjoint finite sets of constant symbols and parameter
symbols, respectively. An element of (Σ ∪ Π)∗ is called a p-string. The length
of any p-string s is the total number of constant and parameter symbols in s
and is denoted by |s|. For any p-string s of length n, the i-th symbol is denoted
by s[i] for each 1 ≤ i ≤ n, and the substring starting at position i and ending
at position j is denoted by s[i : j] for 1 ≤ i ≤ j ≤ n. In particular, s[1 : j]
and s[i : n] denote the prefix of length j and the suffix of length n − i + 1 of s,
respectively.

Any two p-strings s and t of the same length m are said to parameterized match
if s can be transformed into t by applying a renaming function f from the symbols
of s to the symbols of t, such that f is the identity on the constant alphabet.
For example, let Π = {a, b, c}, Σ = {X, Y}, s = abcXabY and t = bcaXbcY. We
then have s � t with the renaming function f such that f(a) = b, f(b) = c,
f(c) = a, f(X) = X, and f(Y) = Y. We write s � t when s and t p-match.

Amir et al. [5] showed that we have only to consider p-strings over Π when
considering p-matching.

Lemma 1 ([5]). The p-matching problem on alphabet Σ ∪ Π is reducible in
linear time to the p-matching problem on alphabet Π.

2.2 Parameterized Border Arrays

As in the case of standard string matching, we can define the parameterized
border (p-border) and the parameterized border array (p-border array).

Definition 1. A parameterized border (p-border) of a p-string s of length n is
any integer j such that 0 ≤ j < n and s[1 : j] � s[n − j + 1 : n].

For example, the set of p-borders of p-string aabbaa is {4, 2, 1, 0}, since aabb �
bbaa, aa � aa, a � a, and ε � ε.

Definition 2. The parameterized border array (p-border array) βs of any p-
string s of length n is an array of length n such that βs[i] = j, where j is the
longest p-border of s[1 : i].

For example, the p-border array of p-string aabbaa is [0, 1, 1, 2, 3, 4].
When it is clear from the context, we abbreviate βs as β.
The p-border array βs of p-string s was first explicitly introduced by Idury and

Schäffer [13] as the pfail function, where the pfail function is used in their Aho-
Corasick [14] type algorithm that solves the p-matching problem for multiple
patterns. Given a pattern p-string p of length m, the p-border array βp can be
computed in O(m log |Π |) time, and the p-matching problem can be solved in
O(n log |Π |) time for any text p-string of length n.

Counting Parameterized Border Arrays for a Binary Alphabet 425

2.3 Problems

This paper deals with the following problems.

Problem 1 (Verifying valid p-border array). Given an integer array α of length
n, determine if there exists a p-string s such that βs = α.

Problem 2 (Computing all p-strings sharing the same p-border array). Given an
integer array α which is a valid p-border array, compute every p-string s such
that βs = α.

Problem 3 (Computing all p-border arrays). Given a positive integer n, compute
all p-border arrays of length at most n.

In the following section, we give efficient solutions to the above problems for a
binary alphabet, that is, |Π | = 2.

3 Algorithms

This section presents our algorithms which solve Problem 1, Problem 2 and
Problem 3 for the case |Π | = 2.

We begin with the basic proposition on p-border arrays.

Proposition 1. For any p-border array β[1..i] of length i ≥ 2, β[1..i − 1] is a
p-border array of length i − 1.

Proof. Let s be any p-string such that βs = β. It is clear from Definition 2 that
βs[1..i − 1] is the p-border array of the p-string s[1 : i − 1]. $%

Due to the above proposition, given an integer array α[1..n], we can check if it
is a p-border array of some string of length n by testing each element of α in
increasing order (from 1 to n). If we find any 1 ≤ i ≤ n such that α[1..i] is not
a p-border array of length i, then α[1..n] can never be a p-border of length n.
In what follows, we show how to check each element of a given integer array in
increasing order.

For any p-border array β of length n and any integer 1 ≤ i ≤ n, let

βk[i] =

{
β[i] if k = 1,

β[βk−1[i]] if k > 1 and βk−1[i] ≥ 1.

It follows from Definition 2 that the sequence i, β[i], β2[i], . . . is monotone de-
creasing to zero, hence finite.

Lemma 2. For any p-string s of length i, {β1
s [i], β2

s [i], . . . , 0} is the set of the
p-borders of s.

Proof. First we show by induction that for every k, 1 ≤ k ≤ k′, βk
s [i] is a p-

border of s, where k′ is the integer such that βk′
s [i] = 0. By Definition 2, β1

s [i]
is the longest p-border of s. Suppose that for some k, 1 ≤ k < k′, βk

s [i] is a

426 T. I et al.

p-border of s. Here βk+1
s [i] is the longest p-border of βk

s [i]. Let f and g be the
bijections such that

f(s[1])f(s[2]) · · ·f(s[βk
s [i]]) = s[i − βk

s [i] + 1 : i],
g(s[1])g(s[2]) · · · g(s[βk+1

s [i]]) = s[βk
s [i] − βk+1

s [i] + 1 : βk
s [i]].

Since

f(g(s[1]))f(g(s[2])) · · · f(g(s[βk+1
s [i]]))

= f(s[βk
s [i] − βk+1

s [i] + 1])f(s[βk
s [i] − βk+1

s [i] + 2]) · · · f(s[βk
s [i]])

= s[i − βk+1
s [i] + 1 : i],

we obtain s[1 : βk+1
s [i]] � s[i − βk+1

s [i] + 1 : i]. Hence βk+1
s [i] is a p-border of s.

We now show any other j is not a p-border of s. Assume for contrary that j,
βk+1

s [i] < j < βk
s [i], is a p-border of s. Let q be the bijection such that

q(s[i − j + 1])q(s[i − j + 2]) · · · q(s[i]) = s[1 : j].

Since

q(f(s[βk
s [i] − j + 1]))q(f(s[βk

s [i] − j + 2])) · · · q(f(s[βk
s [i]]))

= q(s[i − j + 1])q(s[i − j + 2]) · · · q(s[i])
= s[1 : j],

we obtain s[1 : j] � s[βk
s [i] − j + 1 : βk

s [i]]. Hence j is a p-border of s[1 : βk
s [i]].

However this contradicts with the definition that βk+1
s [i] is the longest p-border

of s[1 : βk
s [i]]. $%

Lemma 3. For any p-string s of length i ≥ 1 and a ∈ Π, every p-border of sa
is an element of the set {β1

s [i] + 1, β2
s [i] + 1, . . . , 1}.

Proof. Assume for contrary that sa has a p-border j + 1 /∈ {β1
s [i] + 1, β2

s [i] +
1, . . . , 1}. Since s[1 : j + 1] � s[i − j + 1 : i]a, we have s[1 : j] � s[i − j + 1 : i]
and j is a p-border of s. It follows from Lemma 2 that j ∈ {β1

s [i], β2
s [i], . . . , 0}.

This contradicts with the assumption. $%

Based on Lemma 2 and Lemma 3, we can efficiently compute the p-border array
βs of a given p-string s. Also, our algorithm to solve Problem 1 is based on these
lemmas. Note that Proposition 1, Lemma 2 and Lemma 3 hold for p-strings over
Π of arbitrary size.

In the sequel we show how to select m ∈ {β1
s [i] + 1, β2

s [i] + 1, . . . , 1} such that
βs[1..i]m is a valid p-border array of length i + 1. The following proposition,
lemmas and theorems hold for a binary parameter alphabet, |Π | = 2.

For p-border arrays of length at most 2, we have the next proposition.

Proposition 2. For any p-string s of length 1, βs[1] = 0. For any p-string s′

of length 2, βs′ [2] = 1.

Counting Parameterized Border Arrays for a Binary Alphabet 427

f

fg

s
i
a

β [i]+1h

β [i]+1h-1

Fig. 1. Illustration for Lemma 5

Proof. Let Π = {a, b}. It is clear that the longest p-border of a and b is 0.
The p-strings of length 2 over Π are aa, ab, ba, and bb. Obviously the longest
p-border of each of them is 1. $%

For p-border arrays of length more than 2, we have the following lemmas.

Lemma 4. For any p-string s ∈ Π∗, if j ≥ 2 is a p-border of sa with a ∈ Π,
then j is not a p-border of sb, where b ∈ Π − {a}.

Proof. Assume for contrary that j is a p-border of sb. Then, let f and g be the
bijections on Π such that

f(s[1])f(s[2]) · · · f(s[j]) = s[i − j + 2 : i]a,

g(s[1])g(s[2]) · · · g(s[j]) = s[i − j + 2 : i]b.

We get from f(s[1])f(s[2]) · · · f(s[j−1]) = s[i−j+2 : i] = g(s[1])f(s[2]) · · · g(s[j−
1]) that f and g are the same bijections. However, f(s[j]) = a �= b = g(s[j])
implies that f and g are different bijections, a contradiction. Hence j is not a
p-border of sb. $%

Lemma 5. For any p-string s of length i, if βs[βh−1
s [i] + 1] = βh

s [i] + 1 and
βh−1

s [i] + 1 is a p-border of sa with a ∈ Π, then βh
s [i] + 1 is a p-border of sa.

(See also Fig. 1.)

Proof. Let f and g be the bijections on Π such that

f(s[1])f(s[2]) · · · f(s[βh−1
s [i] + 1]) = s[i − βh−1

s [i] + 1 : i]a,

g(s[1])g(s[2]) · · · g(s[βh
s [i] + 1]) = s[βh−1

s [i] − βh
s [i] + 1 : βh−1

s [i] + 1].

Since

f(g(s[1]))f(g(s[2])) · · · f(g(s[βh
s [i] + 1]))

= f(s[βh−1
s [i] − βh

s [i] + 1])f(s[βh−1
s [i] − βh

s [i] + 2]) · · · f(s[βh−1
s [i] + 1])

= s[i − βh
s [i] + 1 : i]a,

we obtain s[1 : βh
s [i] + 1] � s[i − βh

s [i] + 1 : i]a. Hence βh
s [i] + 1 is a p-border of

sa. $%

428 T. I et al.

f

fq

s
i
a

β [i]h

β [i]+1h-1

a
fq

fq
b

Fig. 2. Illustration for Lemma 6

Lemma 6. For any p-string s of length i, if βs[βh−1
s [i] + 1] �= βh

s [i] + 1 and
βh−1

s [i]+1 is a p-border of sa with a ∈ Π, then βh
s [i]+1 is a p-border of sb such

that b ∈ Π − {a}. (See also Fig. 2.)

Proof. Let f and g be the bijections on Π such that

f(s[1])f(s[2]) · · · f(s[βh−1
s [i] + 1]) = s[i − βh−1

s [i] + 1 : i]a,

q(s[1])q(s[2]) · · · q(s[βh
s [i]]) = s[βh−1

s [i] − βh
s [i] + 1 : βh−1

s [i]].

Because βs[βh−1
s [i]+1] �= βh

s [i]+1, we know that q(s[βh
s [i]+1]) �= s[βh−1

s [i]+1].
Since f(s[βh−1

s [i]+1]) = a and Π = {a, b}, f(q(s[βh
s [i]+1])) = b. Hence βh

s [i]+1
is a p-border of sb. $%

The following is a key lemma to solving our problems.

Lemma 7. For any p-border array β of length i ≥ 2, β[1..i]m1 and β[1..i]m2
are the p-border arrays of length i + 1, where m1 = β[i] + 1 and

m2 =

⎧⎪⎨⎪⎩βl[i] + 1
if β[βl−1[i] + 1] �= βl[i] + 1 for some 1 < l < k′ and
β[βh−1[i] + 1] = βh[i] + 1 for any 1 < h < l,

1 otherwise,

where k′ is the integer such that βk′
[i] = 0.

Proof. Consider any p-string s of length i such that βs = β. By definition, there
exists a bijection f on Π such that f(s[1])f(s[2]) · · · f(s[β[i]]) = s[i−β[i]+1 : i].
Let a = f(s[β[i]+1]). Then f(s[1])f(s[2]) · · · f(s[β[i]])f(s[β[i]+1]) = s[i−β[i]+1 :
i]a. Note that β[1..i](β[i] + 1) is the p-border array of sa because sa can have
no p-borders longer than β[i] + 1.

It follows from Lemma 5 that βh[i]+1 is a p-border of sa. Then, by Lemma 6,
βl[i] + 1 is a p-border of sb. Since βh[i] ≥ 1, by Lemma 4, βh[i] + 1 is not a p-
border of sb. Hence βl[i] + 1 is the longest p-border of sb. $%

Counting Parameterized Border Arrays for a Binary Alphabet 429

Algorithm 1. Algorithm to solve Problem 1
Input: α[1..n] : a given integer array
Output: return whether α is a valid p-border array or not
if α[1..2] �= [0, 1] then return invalid;1

for i = 3 to n do2

if α[i] = α[i − 1] + 1 then continue;3

d′ ← α[i − 1];4

d ← α[d′];5

while d > 0 & d + 1 = α[d′ + 1] do6

d′ ← d;7

d ← α[d′];8

if α[i] = d + 1 then continue;9

return invalid;10

return valid;11

We are ready to state the following theorem.

Theorem 1. Problem 1 can be solved in linear time for a binary parameter
alphabet.

Proof. Algorithm 1 describes the operations to solve Problem 1. Given an integer
array of length n, the algorithm first checks if α[1..2] = [0, 1] due to Proposition 2.
If α[1..2] = [0, 1], then for each i = 3, . . . , n (in increasing order) the algorithm
checks whether α[i] satisfies one of the conditions of Lemma 7.

The time analysis is similar to that of Theorem 2.3 of [16]. In each iteration
of the for loop, the value of d′ increases by at most 1. However, each execution
of the while loop decreases the value of d′ by at least 1. Hence the total time
cost of the for loop is O(n). $%

Theorem 2. Problem 2 can be solved in linear time for a binary parameter
alphabet.

Proof. It follows from Proposition 2 that the p-border array of all p-string of
length 2 (aa, ab, ba, and bb) is [0, 1]. By Proposition 1, for any p-border array
β[1..n] with n ≥ 2, we have β[1..2] = [0, 1]. Hence each p-border array β[1..n]
with n ≥ 2 corresponds to exactly four p-strings each of which begins with
aa, ab, ba, and bb, respectively. Algorithm 2 is an algorithm to solve Problem 2.
Technically xaa can be computed by saa[β[i]] xor saa[β[i]+1] xor saa[i] on binary
alphabet Π = {0, 1}. Hence this counting algorithm works in linear time. $%

We now consider Problem 3. By Proposition 1 and Lemma 7, computing all
p-border arrays of length at most n can be accomplished using a rooted tree
structure Tn of height n − 1. Each node of Tn of height i − 1 corresponds to an
integer j such that j is the longest p-border of some p-string of length i over
a binary alphabet, hence the path from the root to that node represents the
p-border array of the p-string. Fig. 3 represents T4.

430 T. I et al.

Algorithm 2. Algorithm to compute all p-strings sharing the same p-border
array
Input: β[1..n] : a p-border array
Output: all p-strings sharing the same p-border array β[1..n]
saa ← aa; sab ← ab; sbb ← bb; sba ← ba;1

for i = 3 to n do2

Let f be the bijection on Π s.t. f(saa[β[i]]) = saa[i];3

Let g be the bijection on Π s.t. g(sab[β[i]]) = sab[i];4

xaa ← f(saa[β[i] + 1]); xab ← g(sab[β[i] + 1]);5

xaa ← y ∈ Π − {xaa}; xab ← z ∈ Π − {xab};6

if β[i] = β[i − 1] + 1 then7

saa[i] ← xaa; sab[i] ← xab;8

sbb[i] ← xaa; sba[i] ← xab;9

else10

saa[i] ← xaa; sab[i] ← xab;11

sbb[i] ← xaa; sba[i] ← xab;12

end13

Output: saa[1 : n], sab[1 : n], sbb[1 : n], sba[1 : n]14

(0)

(1) (2)

(1)

(1) (2) (1) (3)

Fig. 3. The tree T4 which represents all p-border arrays of length at most 4 for a binary
alphabet

Theorem 3. Problem 3 can be solved in O(Bn) time for a binary parameter
alphabet, where Bn denotes the number of p-border arrays of length n.

Proof. Proposition 2 and Lemma 7 imply that every internal node of Tn of height
at least 1 has exactly two children. Hence the total number of nodes of Tn is
O(Bn). We compute Tn in a depth-first manner. Algorithm 3 shows a function
that computes the children of a given node of Tn. It is not difficult to see that
each child of a given node can be computed in amortized constant time. Hence
Problem 3 can be solved in O(Bn) time for a binary parameter alphabet. $%

We remark that if each p-border array in Tn can be discarded after it is gener-
ated, then we can compute all p-border arrays of length at most n using O(n)
space. Since every internal node of Tn of height at least 1 has exactly two children

Counting Parameterized Border Arrays for a Binary Alphabet 431

Algorithm 3. Function to compute the children of a node of Tn

Input: i : length of the current p-border array, 2 ≤ i ≤ n
Result: compute the children of the current node
// β[1..n] is allocated globally and β[1..i] represents the current

p-border array.

function getChildren(i)1

if i = n then return;2

β[i + 1] ← β[i] + 1;3

report β[i + 1];4

getChildren(i + 1);5

d′ ← β[i];6

d ← β[d′];7

while d > 0 & d + 1 = β[d′ + 1] do8

d′ ← d;9

d ← β[d′];10

β[i + 1] ← d + 1;11

report β[i + 1];12

getChildren(i + 1);13

return;14

and the root has one child, Bn = 2n−2 for n ≥ 2. Thus the space requirement
can be reduced to O(log Bn).

4 Conclusions and Open Problems

A parameterized border array (p-border array) is a useful data structure for
parameterized pattern matching. In this paper, we presented a linear time algo-
rithm which tests if a given integer array is a valid p-border array for a binary
alphabet. We also gave a linear time algorithm to compute all binary p-strings
that share a given p-border array. Finally, we proposed an algorithm which com-
putes all p-border arrays of length at most n, where n is a given threshold. This
algorithm works in O(Bn) time, where Bn denotes the number of p-border arrays
of length n for a binary alphabet.

Problems 1,2, and 3 are open for a larger alphabet. To see one of the reasons
of why, we show that Lemma 4 does not hold for a larger alphabet. Consider
a p-string s = abac over Π = {a, b, c}. Observe that βs = [0, 1, 2, 2]. Although
βs[4] = 2 is a p-border of abac, it is also a p-border of another p-string abab
since ab � ab. Hence Lemma 4 does not hold if |Π | ≥ 3.

Our future work also includes the following:

– Verify if a given integer array is a parameterized suffix array [12].
– Compute all parameterized suffix arrays of length at most n.

In [12], a linear time algorithm which directly constructs the parameterized suffix
array for a given binary string was proposed. This algorithm might be used as
a basis for solving the above problems regarding parameterized suffix arrays.

432 T. I et al.

References

1. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52(1), 28–42 (1996)

2. Baker, B.S.: A program for identifying duplicated code. Computing Science and
Statistics 24, 49–57 (1992)

3. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Informa-
tion Processing Letters 100(3), 91–96 (2006)

4. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1–19 (2004)

5. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3), 111–115 (1994)

6. Baker, B.S.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
Proc. 6th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995),
pp. 541–550 (1995)

7. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees.
In: Proc. 36th Annual Symposium on Foundations of Computer Science (FOCS
1995), pp. 631–637 (1995)

8. Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching.
In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537,
pp. 266–279. Springer, Heidelberg (2005)

9. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM
Transactions on Algorithms 3(3), Article No. 29 (2007)

10. Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mis-
matches. Journal of Discrete Algorithms 5(1), 135–140 (2007)

11. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discrete Applied Mathematics 156(9), 1389–1398 (2008)

12. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: Proc. The Prague Stringology Conference 2008
(PSC 2008), pp. 84–94 (2008)

13. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theo-
retical Computer Science 154(2), 203–224 (1996)

14. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Communications of the ACM 18(6), 333–340 (1975)

15. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Report
Report 40, University of California, Berkeley (1970)

16. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Ver-
ifying a border array in linear time. J. Combinatorial Math. and Combinatorial
Computing 42, 223–236 (2002)

17. Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. Journal
of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

18. Moore, D., Smyth, W., Miller, D.: Counting distinct strings. Algorithmica 23(1),
1–13 (1999)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

20. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40, 31–55 (1985)

21. Baeza-Yates, R.A.: Searching subsequences (note). Theoretical Computer Sci-
ence 78(2), 363–376 (1991)

Counting Parameterized Border Arrays for a Binary Alphabet 433

22. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
Theoretical Informatics and Applications 36, 249–259 (2002)

23. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003)

24. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Com-
puter Science 395(2-1), 220–234 (2008)

25. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9(4), 289–298 (1962)

Bounded Hairpin Completion

Masami Ito1, Peter Leupold1,
, and Victor Mitrana2,

1 Department of Mathematics, Faculty of Science
Kyoto Sangyo University, Department of Mathematics

Kyoto 603-8555, Japan
{ito,leupold}@cc.kyoto-su.ac.jp

2 University of Bucharest, Faculty of Mathematics and Computer Science
Str. Academiei 14, 010014, Bucharest, Romania

and
Department of Information Systems and Computation

Technical University of Valencia,
Camino de Vera s/n. 46022 Valencia, Spain

mitrana@fmi.unibuc.ro

Abstract. We consider a restricted variant of the hairpin completion
called bounded hairpin completion. The hairpin completion is a formal
operation inspired from biochemistry. Applied to a word encoding a sin-
gle stranded molecule x such that either a suffix or a prefix of x is com-
plementary to a subword of x, hairpin completion produces a new word
z, which is a prolongation of x to the right or to the left by annealing.

The restriction considered here concerns the length of all prefixes and
suffixes that are added to the current word by hairpin completion. They
cannot be longer than a given constant. Closure properties of some classes
of formal languages under the non-iterated and iterated bounded hairpin
completion are investigated. We also define the inverse operation, namely
bounded hairpin reduction, and consider the set of all primitive bounded
hairpin roots of a regular language.

1 Introduction

This paper is a continuation of a series of works started with [4] (based on
some ideas from [3]), where a new formal operation on words inspired by the
DNA manipulation called hairpin completion was introduced. That initial work
has been followed up by a several related papers ([11,12,13,14]), where both the
hairpin completion as well as its inverse operation, namely the hairpin reduction,
were further investigated.

Several problems remained unsolved in these papers. This is the mathematical
motivation for the work presented here. By considering a weaker variant of the
hairpin completion operation, called here the bounded hairpin completion, we
� This work was done, while the author was funded as a post-doctoral fellow by the

Japanese Society for the Promotion of Science under number P07810.
�� Work supported by the Grant-in-Aid No. 19-07810 by Japan Society for the Promo-

tion of Science.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 434–445, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bounded Hairpin Completion 435

hope to be able to solve some of the problems in this new setting that remained
unsolved in the aforementioned papers. Another motivation is a practical one,
closely related to the biochemical reality that inspired the definition of this
operation. It seems more practical to consider that the prefix/suffix added by
the hairpin completion cannot be arbitrarily long. In a laboratory every step of
a computation will have to make do with a finite amount of resources and finite
time; thus the length of the added string would be bounded by both the amount
of additional nucleic acids in the test tube and the time given for one step of
computation.

We briefly highlight some of the biological background that inspired the defini-
tion of the Watson-Crick superposition in [3]. The starting point is the structure
of the DNA molecule. It consists of a double strand, each DNA single strand
being composed by nucleotides which differ from each other in their bases: A
(adenine), G (guanine), C (cytosine), and T (thymine). The two strands which
form the DNA molecule are kept together by relatively weak hydrogen bonds
between the bases: A always bonds with T and C with G. This phenomenon
is usually referred to as Watson-Crick complementarity. The formation of these
hydrogen bonds between complementary single DNA strands is called annealing.

A third essential feature from biochemistry is the PCR (Polymerase Chain
Reaction). From two complementary, annealed strands, where one is shorter
than the other, it produces a complete double stranded DNA molecule as follows:
enzymes called polymerases add the missing bases (if they are available in the
environment) to the shorter strand called primer and thus turn it into a complete
complement of the longer one called template.

We now informally explain the superposition operation and how it can be
related to the aforementioned biochemical concepts. Let us consider the following
hypothetical biological situation: two single stranded DNA molecules x and y are
given such that a suffix of x is Watson-Crick complementary to a prefix of y or a
prefix of x is Watson-Crick complementary to a suffix of y, or x is Watson-Crick
complementary to a subword of y. Then x and y get annealed in a DNA molecule
with a double stranded part by complementary base pairing and then a complete
double stranded molecule is formed by DNA polymerases. The mathematical
expression of this hypothetical situation defines the superposition operation.
Assume that we have an alphabet and a complementary relation on its letters.
For two words x and y over this alphabet, if a suffix of x is complementary to a
prefix of y or a prefix of x is complementary to a suffix of y, or x is complementary
to a subword of y, then x and y bond together by complementary letter pairing
and then a complete double stranded word is formed by the prolongation of x
and y. Now the word obtained by the prolongation of x is considered to be the
result of the superposition applied to x and y. Clearly, this is just a mathematical
operation that resembles a biological reality considered here in an idealized way.

On the other hand, it is known that a single stranded DNA molecule might
produce a hairpin structure, a phenomenon based on the first two biological
principles mentioned above. Here one part of the strand bonds to another part
of the same strand. In many DNA-based algorithms, these DNA molecules often

436 M. Ito, P. Leupold, and V. Mitrana

cannot be used in the subsequent steps of the computation. Therefore it has been
the subject of a series of studies to find encodings that will avoid the formation
of hairpins, see e.g. [5,6,7] or [10] and subsequent work for investigations in
the context of Formal Languages. On the other hand, those molecules which
may form a hairpin structure have been used as the basic feature of a new
computational model reported in [18], where an instance of the 3-SAT problem
has been solved by a DNA-algorithm whose second phase is mainly based on the
elimination of hairpin structured molecules.

We now consider again a hypothetical biochemical situation: we are given
one single stranded DNA molecule z such that either a prefix or a suffix of z is
Watson-Crick complementary to a subword of z. Then the prefix or suffix of z and
the corresponding subword of z get annealed by complementary base pairing and
then z is lengthened by DNA polymerases up to a complete hairpin structure.
The mathematical expression of this hypothetical situation defines the hairpin
completion operation. By this formal operation one can generate a set of words,
starting from a single word. This operation is considered in [4] as an abstract
operation on formal languages. Some algorithmic problems regarding the hairpin
completion are investigated in [11]. In [12] the inverse operation to the hairpin
completion, namely the hairpin reduction, is introduced and one compares some
properties of the two operations. This comparison is continued in [13], where
a mildly context-sensitive class of languages is obtained as the homomorphic
image of the hairpin completion of linear context-free languages. This is, to our
best knowledge, the first class of mildly context-sensitive languages obtained in
a way that does not involve grammars or acceptors.

In the aforementioned papers, no restriction is imposed on the length of the
prefix or suffix added by the hairpin completion. This fact seems rather unrealis-
tic though this operation is a purely mathematical one and the biological reality
is just a source of inspiration. On the other hand, several natural problems
regarding the hairpin completion remained unsolved in the papers mentioned
above. A usual step towards solving them might be to consider a bit less general
setting and try to solve the problems in this new settings. Therefore, we con-
sider here a restricted variant of the hairpin completion, called bounded hairpin
completion. This variant assumes that the length of the prefix and suffix added
by the hairpin completion is bounded by a constant.

2 Basic Definitions

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly the notions of grammar and
finite automaton [16] and basics from the theory of abstract families of lan-
guages [19].

An alphabet is always a finite set of letters. For a finite set A we denote by
card(A) the cardinality of A. The set of all words over an alphabet V is denoted
by V ∗. The empty word is written λ; moreover, V + = V ∗ \ {λ}. Two languages

Bounded Hairpin Completion 437

are considered to be equal if they contain the same words with the possible
exception of the empty word.

A concept from the theory of abstract families of languages that we will refer
to is that of a trio. This is is a non-empty family of languages closed under non-
erasing morphisms, inverse morphisms and intersection with regular languages.
A trio is full if it is closed under arbitrary morphisms.

Given a word w over an alphabet V , we denote by |w| its length, while |w|a
denotes the number of occurrences of the letter a in w. If w = xyz for some
x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix, respectively, of w. For
a word w, w[i..j] denotes the subword of w starting at position i and ending at
position j, 1 ≤ i ≤ j ≤ |w|. If i = j, then w[i..j] is the i-th letter of w which is
simply denoted by w[i].

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe
of the alphabets in this paper, i.e., all words and languages are over alphabets
that are subsets of Ω. An involution over a set S is a bijective mapping σ :
S −→ S such that σ = σ−1. Any involution σ on Ω such that σ(a) �= a for
all a ∈ Ω is said to be a Watson-Crick involution. Despite the fact that this
is nothing more than a fixed point-free involution, we prefer this terminology
since the hairpin completion defined later is inspired by the DNA lengthening
by polymerases, where the Watson-Crick complementarity plays an important
role. Let · be a Watson-Crick involution fixed for the rest of the paper. The
Watson-Crick involution is extended to a morphism from Ω to Ω∗ in the usual
way. We say that the letters a and a are complementary to each other. For an
alphabet V , we set V = {a | a ∈ V }. Note that V and V can intersect and they
can be, but need not be, equal. Recall that the DNA alphabet consists of four
letters, VDNA = {A, C, G, T }, which are abbreviations for the four nucleotides
and we may set A = T , C = G.

We denote by (·)R the mapping defined by R : V ∗ −→ V ∗, (a1a2 . . . an)R =
an . . . a2a1. Note that R is an involution and an anti-morphism ((xy)R = yRxR

for all x, y ∈ V ∗). Note also that the two mappings · and ·R commute, namely,
for any word x, (x)R = xR holds.

The reader is referred to [4] or any of the subsequent papers [11,12,13,14] for
the definition of the (unbounded) k-hairpin completion; it is essentially the same
as for the bounded variant defined below, only without the bound |γ| ≤ p. Thus
the prefix or suffix added by hairpin completion can be arbitrarily long. By the
mathematical and biological reasons mentioned in the introductory part, in this
work we are interested in a restricted variant of this operation that allows only
prefixes and suffixes of a length bounded by a constant to be added. Formally,
if V is an alphabet, then for any w ∈ V + we define the p-bounded k-hairpin
completion of w, denoted by pHCk(w), for some k, p ≥ 1, as follows:

pHC �k (w) = {γRw|w = αβαRγ, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}
pHC �k (w) = {wγR|w = γαβαR, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}

pHCk(w) = HC �k (w) ∪ HC �k (w).

438 M. Ito, P. Leupold, and V. Mitrana

This operation is schematically illustrated in Figure 1.

α

βαRγ
γR α

βαRγR

γ

Fig. 1. Bounded hairpin completion

The p-bounded hairpin completion of w is defined by

pHC(w) =
⋃
k≥1

pHCk(w).

As above, the p-bounded hairpin completion operation is naturally extended to
languages by

pHCk(L) =
⋃

w∈L

pHCk(w) pHC(L) =
⋃

w∈L

pHC(w).

The iterated version of the p-bounded hairpin completion is defined in a similar
way to the unbounded case, namely:

pHC0
k(w) = {w}, pHC0(w) = {w},

pHCn+1
k (w) = pHCk(pHCn

k (w)), pHCn+1(w) = pHC(pHCn(w)),
pHC∗

k(w) =
⋃

n≥0 pHCn
k (w), pHC∗(w) =

⋃
n≥0 pHCn(w),

pHC∗
k(L) =

⋃
w∈L pHC∗

k(w), pHC∗(L) =
⋃

w∈L pHC∗(w).

3 The Non-iterated Case

The case of bounded hairpin completion is rather different in comparison to the
unbounded variant considered in [11,12,13,14]. As it was expected, the closure
problem of any trio under bounded hairpin completion is simple: every (full) trio
is closed under this operation.

Proposition 1. Every (full) trio is closed under p-bounded k-hairpin comple-
tion for any k, p ≥ 1.

Proof. It is sufficient to consider a generalized sequential machine (gsm) that
adds a suffix (prefix) of length at most p to its input provided that its prefix
(suffix) satisfies the conditions from the definitions. As every trio is closed under
gsm mappings, see [19], we are done. �

We recall that neither the class of regular languages nor that of context-free lan-
guages is closed under unbounded hairpin completion. By the previous theorem,
both classes are closed under bounded hairpin completion.

On the other hand, in [11] it was proved that if the membership problem for
a given language L is decidable in O(f(n)), then the membership problem for
the hairpin completion of L is decidable in O(nf(n)) for any k ≥ 1. Further,

Bounded Hairpin Completion 439

the factor n is not needed for the class of regular languages, but the problem
of whether or not this factor is needed for other classes remained open in [11].
An easy adaption of the algorithm provided there shows that this factor is never
needed in the case of bounded hairpin completion and thus membership is always
decidable in O(f(n)); presenting the adapted algorithm would exceed the scope
of this work, though.

4 The Iterated Case

As in non-iterated case, the iterated bounded hairpin completion offers also a
rather different picture of closure properties in comparison to the unbounded
variant considered in the same papers cited above. We start with a general
result.

Theorem 1. Let p, k ≥ 1 and F be a (full) trio closed under substitution.
Then F is closed under iterated p-bounded k-hairpin completion if and only if
pHC∗

k(w) ∈ F for any word w.

Proof. The “only if” part is obvious as any trio contains all singleton languages.
For the “if” part, let L ∈ F be a language over the alphabet V . We write

L = L1 ∪ L2, where

L1 = {x ∈ L | |x| < 2(k + p) + 1},
L2 = {x ∈ L | |x| ≥ 2(k + p) + 1}.

Clearly, pHC∗
k(L) = pHC∗

k(L1) ∪ pHC∗
k(L2). As any trio contains all finite

languages, it follows that any trio closed under substitution is closed under
union. Therefore, as L1 is a finite language, we conclude that pHC∗

k(L1) ∈ F .
Consequently, it remains to show that pHC∗

k(L2) ∈ F .
Let α, β ∈ V + be two arbitrary words with |α| = |β| = k + p. We define

L2(α, β) = L2 ∩ {α}V +{β}. We have that

L2 =
⋃

|α|=|β|=k+p

L2(α, β) and pHC∗
k(L2) =

⋃
|α|=|β|=k+p

pHC∗
k(L2(α, β)).

On the other hand, it is plain that pHC∗
k(L2(α, β)) = s(pHC∗

k(αXβ)), where
X is a new symbol not in V and s is a substitution s : (V ∪ {X})∗ −→ 2V ∗

defined by s(a) = {a} for all a ∈ V and s(X) = {w ∈ V + | αwβ ∈ L2(α, β)}.
The language {w ∈ V + | αwβ ∈ L2(α, β)} is in F (even F is not full) as it
is the image of a language from F , namely L2(α, β), through a gsm mapping
that deletes both the prefix and suffix of length k + p of the input word. By the
closure properties of F , it follows that pHC∗

k(L2(α, β)) is in F for any α, β as
above, which completes the proof. �

We recall that none of the families of regular, linear context-free, and context-
free languages is closed under iterated unbounded hairpin completion. Here the
bounded hairpin completion is much more tractable.

440 M. Ito, P. Leupold, and V. Mitrana

Corollary 1. The family of context-free languages is closed under iterated p-
bounded k-hairpin completion for any k, p ≥ 1.

Proof. By the previous result, it suffices to prove that pHCk(w) is context-free
for any word w. Given w ∈ V +, we construct the arbitrary grammar G =
({S, X}, V ∪ {#}, S, P), where the set of productions P contains the following
rules:

P = {S → yXz | w = zy} ∪ {zRyXz → zRyXyRz | 1 ≤ |y| ≤ p, |z| = k}
∪ {zRXyz → zRyRXyz | 1 ≤ |y| ≤ p, |z| = k} ∪ {X → #}.

By a result of Baker (see [1]), the language generated by G is context-free.
Further we have that pHC∗

k(w) = h(cp(L(G)) ∩ V +{#}). Here cp maps every
word in the set of all its circular permutations and every language in the set of
all circular permutations of its words, while h is a morphism that erases # and
leaves unchanged all letters of V . As the class of context-free languages is closed
under circular permutation [17], we infer that pHC∗

k(w) is context-free. �

The above argument does not work for the class of linear context-free languages
as this class is known not to be closed under circular permutation. However, also
this family is closed under iterated bounded hairpin completion.

Theorem 2. The family of linear context-free languages is closed under iterated
p-bounded k-hairpin completion for any k, p ≥ 1.

Proof. Let L be a language generated by the linear grammar G = (N, T, S, P).
We construct the linear grammar G′ = (N ′, T, S′, P ′), where

N ′ = N ∪ {S′} ∪ {[α, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α, A, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p, A ∈ N},

and the set of productions P ′ is defined by (in the definition of every set α, β ∈
T ∗, 0 ≤ |α|, |β| ≤ k + p, A ∈ N holds):

P ′ = P ∪ {S′ → S} ∪ {S′ → [α, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α, β] → [α′, β′]yR | α = α′ = yvw, β = uvRyR, |v| = k, |y| ≤ p,

β′ = xuvR, x ∈ T ∗, |β′| ≤ k + p}
∪ {[α, β] → y[α′, β′]yR | α = yvw, β = β′ = uvRyR, |v| = k, |y| ≤ p,

α′ = vwx, x ∈ T ∗, |α′| ≤ k + p}
∪ {[α, β] → [α, S, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α, A, β] → x[α′, B, β′]y | A → xBy ∈ P, α = xα′, β = β′y, α′, β′ ∈ T ∗}
∪ {[α, A, β] → αx[λ, B, β′]y | A → αxBy ∈ P, β = β′y, β′ ∈ T ∗}
∪ {[α, A, β] → x[α′, B, λ]yβ | A → xByβ ∈ P, α = xα′, α′ ∈ T ∗}
∪ {[λ, A, λ] → A | A ∈ N}.

Bounded Hairpin Completion 441

It is rather easy to note that we have the derivation

S′ =⇒∗ x[α, β]y =⇒ x[α, S, β]y =⇒∗ xαwβy

in G′ if and only if S =⇒∗ αwβ in G and xαwβy ∈ pHC∗
k(αwβ). This concludes

the proof. �

The problem of whether or not the iterated unbounded hairpin completion of a
word is context-free is open. By the previous result, it follows that the iterated
bounded hairpin completion of a word is always linear context-free. We do not
know whether this language is always regular. More generally, the status of
the closure under iterated bounded hairpin completion of the class of regular
languages remains unsettled.

We finish this section with another general result.

Theorem 3. Every trio closed under circular permutation and iterated finite
substitution is closed under iterated bounded hairpin completion.

Proof. We take two positive integers k, p ≥ 1. Let F be a family of languages
with the above properties and L ⊆ V ∗ be a language in F . Let L1 be the circular
permutation of L{#}, where # is a new symbol not in V . Clearly, L1 still lies
in F . We consider the alphabet W = {[x#y] | x, y ∈ V ∗, 0 ≤ |x|, |y| ≤ p + k}
and define the morphism h : (W ∪ V)∗ −→ (V ∪ {#}∗ by h([x#y]) = x#y, for
any [x#y] ∈ W , and h(a) = a, for any a ∈ V . We now consider the language
L2 ∈ F given by L2 = h−1(L1). By the closure properties of F , the language
L3 = s∗(L2) is in F , where s is the finite substitution s : (W ∪V)∗ −→ 2(W∪V)∗

defined by s(a) = {a}, a ∈ V, and s([x#y]) = {x#y} ∪ R with

R = {[x#uRy] | x = vzu, y = zRw, u, v, z, w ∈ V ∗, |z| = k,

|uRy| ≤ p + k, |u| ≤ p} ∪
{[x#uRy′]y′′ | x = vzu, y = zRw = y′y′′, u, v, z, w, y′, y′′ ∈ V ∗, |z| = k,

|uRy′| = p + k, |u| ≤ p}} ∪
{[xuR#y] | x = wzR, y = uzv, u, v, z, w ∈ V ∗, |z| = k,

|xuR| ≤ p + k, |u| ≤ p}} ∪
{x′′[x′uR#y] | x = wzR = x′′x′, y = uzv, u, v, z, w, x′, x′′ ∈ V ∗, |z| = k,

|x′uR| = p + k, |u| ≤ p}}.

Finally, let L4 be the circular permutation of h(L3). Then we obtain that
pHC∗

k(L) = g(L4 ∩ V ∗{#}), where g is a morphism that removes # and leaves
unchanged all symbols from V . �

5 An Inverse Operation: The Bounded Hairpin Reduction

We now define the inverse operation of the bounded hairpin completion, namely
the bounded hairpin reduction in a similar way to [13], where the unbounded
hairpin reduction is introduced. Let V be an alphabet, for any w ∈ V + we define

442 M. Ito, P. Leupold, and V. Mitrana

the p-bounded k-hairpin reduction of w, denoted by pHRk(w), for some k, p ≥ 1,
as follows:

pHR �k (w) = {αβαRγR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +, 1 ≤ |γ| ≤ p},
pHR �k (w) = {γαβαR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +, 1 ≤ |γ| ≤ p}.

pHRk(w) = pHR �k (w) ∪ pHR � (w).

The p-bounded hairpin reduction of w is defined by

pHR(w) =
⋃
k≥1

pHRk(w).

The bounded hairpin reduction is naturally extended to languages by

pHRk(L) =
⋃

w∈L

pHRk(w) pHR(L) =
⋃

w∈L

pHR(w).

The iterated bounded hairpin reduction is defined analogously to the iterated
bounded hairpin completion.

We recall that the problem of whether or not the iterated unbounded hairpin
reduction of a regular language is recursively decidable is left open in [13]. The
same problem for the iterated bounded hairpin reduction is now completely
solved by the next more general result. Before stating the result, we need to recall
a few notions about string-rewriting systems. To this aim, we follow the standard
notations for string rewriting as in [2]. A string-rewriting system (SRS) over an
alphabet V is a finite relation R ⊂ V ∗×V ∗, and the rewrite relation induced by
R is denoted by −→R. That is, we write x −→R y if x = uvw, y = uzw, for some
u, v, z, w ∈ V ∗, and (v, z) ∈ R. As usual every pair (v, z) ∈ R is referred to as a
rule v → z. The reflexive and transitive closure of −→R is denoted by −→∗

R. We
use R∗(L) for the closure of the language L under the string-rewriting system R.
Formally, R∗(L) = {w | x −→∗

R w, for some x ∈ L}. A rule v → z is said to be
monadic if it is length-reducing (|v| > |z|) and |z| ≤ 1. A SRS is called monadic
if all its rules are monadic. A class of languages F is closed under monadic SRS
if for any language L ∈ F over some alphabet V and any monadic SRS R over
V , R∗(L) ∈ F holds.

Theorem 4. Every trio closed under circular permutation and monadic string-
rewriting systems is closed under iterated bounded hairpin reduction.

Proof. Let F be a trio and k, p be two positive integers. The central idea of the
proof is as follows. We permute every word of a language in F in a circular way.
Then the last and first letters are next to each other. Thus the hairpin reduction
becomes a local operation and can be simulated by monadic string-rewriting
rules. By our hypothesis, these are known to preserve the membership in F .

To start with, we attach a new symbol X to the end of every word of a
given L ∈ F , L ⊆ V ∗. Then we obtain the language L′ by doing a circular
permutation to all words in L{X}. Note that X marks the end and beginning of

Bounded Hairpin Completion 443

the original words. On this language we apply a gsm-mapping g that introduces
redundancy by adding to every letter information about its neighboring letters
in the following way:

1. The letter containing the X contains also the k + p letters to the left and to
the right of X in order.

2. Every letter left of X contains the letter originally at that position and the
k + p letters left of it in order.

3. Every letter right of X contains the letter originally at that position and the
k + p letters right of it in order.

At the word’s end and its beginning, where there are not enough letters to fill the
symbols, some special symbol signifying a space is placed inside the compound
symbols.

Now we can simulate a step of p-bounded k-hairpin reduction by a string-
rewriting rule with a right-hand side of length one, i.e. a monadic one. A straight-
forward approach would be to use rules of the form uvRXvuR → uXvuR. But
we see that u and XvuR are basically not changed, they only form a context
whose presence is necessary. Through our redundant representation of the word,
their presence can be checked by looking only at the corresponding image of
X under g. Further, since the symbols of the image of u under g contain only
information about symbols to their left, they do not need to be updated after
the deletion of vR to preserve the properties 1 to 3. The same is true for vuR.
Only in the symbol corresponding to X some updating needs to be done and
thus it is the one that is actually rewritten. So the string rewriting rules are

gleft(z0z1uv)[1 . . . |v|][z1uvXvuz2] → [z0z1uXvuz2],

where gleft does the part of g described by property 2, and where z0, z1 ∈ V ∗,
u, v ∈ V +, |u| = k, |v| ≤ p, |z0z1u| = p+k. Analogously, rules that delete symbols
to the right of X are defined. Let R be the string-rewriting system consisting of all
such rules. It is immediate that w′ ∈ pHRk(w) ⇔ g(cp(wX)) →R g(cp(w′X))
and by induction w′ ∈ pHR∗

k(w) ⇔ g(cp(wX)) →∗
R g(cp(w′X)).

Therefore, at this point we have all circular permutations of words that can
be reached by p-bounded k-hairpin reduction from words in L coded under g.
To obtain our target language we first undo the coding of g by the gsm-mapping
g′ that projects all letters to the left of X to their last component, all letters
to the right of X to their first component, and the symbol containing X to just
X . This mapping is letter-to-letter, the gsm only needs to remember in its state
whether is has already passes over the symbol containing X . Of the result of this
we take again the circular permutation.

Now we filter out the words that have X at the last position and therefore
are back in the original order of L and delete X . By the closure properties of F ,
the result of this process lies in F , which completes the proof. �

As monadic SRSs are known to preserve regularity (see [8]) we immediately infer
that

444 M. Ito, P. Leupold, and V. Mitrana

Theorem 5. The class of regular languages is closed under iterated bounded
hairpin reduction.

In [12] one considers another concept that seems attractive to us, namely the
primitive hairpin root of a word and of a language. Given a word x ∈ V ∗ and a
positive integer k, the word y is said to be the primitive k-hairpin root of x if
the following two conditions are satisfied:

(i) y ∈ HR∗
k(x)(or, equivalent, x ∈ HC∗

k(y)),
(ii) HRk(y) = ∅.

Here HR∗
k(z) delivers the iterated unbounded hairpin reduction of the word z. In

other words, y can be obtained from x by iterated k-hairpin reduction (maybe in
zero steps) and y cannot be further reduced by hairpin reduction. The primitive
bounded hairpin root is defined analogously. Clearly, a word may have more than
one primitive bounded hairpin root; the set of all primitive p-bounded k-hairpin
roots of a word x is denoted by pHkroot(x). Naturally, the primitive p-bounded
k-hairpin root of a language L is defined by pHkroot(L) =

⋃
x∈L

pHkroot(x).

Clearly, to see whether a word is reducible, one has to look only at the first
and last k + p symbols. By Theorem 5 we have:

Theorem 6. pHkroot(L) is regular for any regular language L and any p, k ≥ 1.

Proof. For the regular language L′ ⊆ V ∗ obtained in the proof of Theorem 5 it
suffices to consider the language

{w ∈ L | |w| ≤ 2k+2}∪ (pHR∗
k(L)∩{αxβ | |α| = |β| = k+1, α �= β

R
, x ∈ V +})

which is regular and equals pHkroot(L). �

6 Final Remarks

We have considered a restricted version of the hairpin completion operation by
imposing that the prefix or suffix added by the hairpin completion are bounded
by a constant. In some sense, this is the lower extreme case the upper extreme
being the unbounded case that might be viewed as a linearly bounded variant.
We consider that bounded variants by other sublinear mappings would be of
theoretical interest.

Last but not least we would like to mention that hairpin completion and
reduction resemble some language generating mechanisms considered in the lit-
erature like external contextual grammars with choice [15] or dipolar contextual
deletion [9], respectively.

References

1. Baker, B.S.: Context-sensitive grammars generating context-free languages. In: Au-
tomata, Languages and Programming ICALP 1972, pp. 501–506. North-Holland,
Amsterdam (1972)

2. Book, R., Otto, F.: String-Rewriting Systems. Springer, Heidelberg (1993)

Bounded Hairpin Completion 445

3. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-
Crick-like complementarity. Theory of Computing Systems 39, 503–524 (2006)

4. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested by
DNA biochemistry: hairpin completion. In: Transgressive Computing, pp. 216–228
(2006)

5. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good
encodings for DNA-based solutions to combinatorial problems. In: Proc. of DNA-
based computers II. DIMACS Series, vol. 44, pp. 247–258 (1998)

6. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens,
S.E.: On the encoding problem for DNA computing. In: The Third DIMACS Work-
shop on DNA-Based Computing, pp. 230–237. Univ. of Pennsylvania (1997)

7. Garzon, M., Deaton, R., Nino, L.F., Stevens, S.E., Wittner, M.: Genome encoding
for DNA computing. In: Proc. Third Genetic Programming Conference, Madison,
MI, pp. 684–690 (1998)

8. Hofbauer, D., Waldmann, J.: Deleting string-rewriting systems preserve regularity.
Theoretical Computer Science 327, 301–317 (2004)

9. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Infor-
mation and Computation 131, 47–61 (1996)

10. Kari, L., Konstantinidis, S., Sośık, P., Thierrin, G.: On hairpin-free words and
languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
296–307. Springer, Heidelberg (2005)

11. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems re-
garding the hairpin completion. Discrete Applied Mathematics (in press),
doi:10.1016/j.dam.2007.09.022

12. Manea, F., Mitrana, V.: Hairpin completion versus hairpin reduction. In: Cooper,
S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer,
Heidelberg (2007)

13. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired
by the DNA hairpin formation: completion and reduction. Theoretical Computer
Science (in press), doi:10.1016/j.tcs.2008.09.049

14. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion.
In: Proc. 12th International Conference on Automata and Formal Languages, pp.
302–313 (2008)

15. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534
(1969)

16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997)

17. Ruohonen, K.: On circular words and (ω∗ + ω)-powers of words. Elektr. Inform.
und Kybern. E.I.K. 13, 3–12 (1977)

18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,
Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–
1226 (2000)

19. Salomaa, A.: Formal Languages. Academic Press, London (1973)

Rigid Tree Automata�

Florent Jacquemard1, Francis Klay2, and Camille Vacher3

1 INRIA Saclay & LSV (CNRS/ENS Cachan)
florent.jacquemard@inria.fr
2 FT/RD/MAPS/AMS/SLE

francis.klay@orange-ftgroup.com
3 FT/RD & LSV (CNRS/ENS Cachan)

vacher@lsv.ens-cachan.fr

Abstract. We introduce the class of Rigid Tree Automata (RTA), an
extension of standard bottom-up automata on ranked trees with dis-
tinguished states called rigid. Rigid states define a restriction on the
computation of RTA on trees: RTA can test for equality in subtrees
reaching the same rigid state. RTA are able to perform local and global
tests of equality between subtrees, non-linear tree pattern matching, and
restricted disequality tests as well. Properties like determinism, pump-
ing lemma, boolean closure, and several decision problems are studied
in detail. In particular, the emptiness problem is shown decidable in lin-
ear time for RTA whereas membership of a given tree to the language
of a given RTA is NP-complete. Our main result is the decidability of
whether a given tree belongs to the rewrite closure of a RTA language
under a restricted family of term rewriting systems, whereas this closure
is not a RTA language. This result, one of the first on rewrite closure of
languages of tree automata with constraints, is enabling the extension
of model checking procedures based on finite tree automata techniques.
Finally, a comparison of RTA with several classes of tree automata with
local and global equality tests, and with dag automata is also provided.

Introduction

Tree automata (TA) are finite representations of infinite sets of terms. In system
and software verification, TA can be used to represent infinite sets of states of
a system or a program (in the latter case, a term can represent the program
itself), messages exchanged by a protocol, XML documents... In these settings,
the closure properties of TA languages permit incremental constructions and
verification problems can be reduced to TA problems decidable in polynomial
time like emptiness (is the language recognized by a given TA empty) and mem-
bership (is a given term t recognized by a given TA).

Despite these nice properties, a big limitation of TA is their inability to test
equalities between subterms during their computation: TA are able to detect
linear patterns like fst(pair(x1, x2)) but not a pattern like pair(x, x). Several
extensions of TA have been proposed to overcome this problem, by addition

� This work was partly supported by the ANR Sesur 07 project AVOTÉ.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 446–457, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Rigid Tree Automata 447

of equality and disequality tests in TA transition rules (the classes [1,2] have
a decidable emptiness problem), or an auxiliary memory containing a tree and
memory comparison [3]. However, they are all limited to local tests, at a bounded
distance from the current position.

In this paper, we define the rigid tree automata (RTA) by the identification
of some states as rigid, and the condition that the subterms recognized in one
rigid state during a computation are all equal. With such a formalism, it is
possible to check local and global equality tests between subterms, and also the
subterm relation or restricted disequalities. In Sections 2 and 3 we study issues
like determinism, closure of languages under Boolean operations, comparison
with related classes of automata and decision problems for RTA. RTA are a
particular case of the more general class Tree Automata with General Equality
and Disequality constraints (TAGED [4]). The study of the class RTA alone is
motivated by the complexity results and applications mentioned below. But our
most original contribution is the study of the rewrite closure of RTA languages.

Combining tree automata and term rewriting techniques has been very suc-
cessful in verification see e.g. [5,6]. In this context, term rewriting systems (TRS)
can describe the transitions of a system, the evaluation of a program [5], the
specification of operators used to build protocol messages [7] or also the trans-
formation of documents. In these approaches, the rewrite closure R∗(L(A)

)
of

the language L(A) of a TA A using R represents the set of states reachable
from states described by L(A). When R∗(L(A)

)
is again a TA language, the

verification of a safety property amounts to check for the existence of an error
state in R∗(L(A)

)
(either a given term t or a term in a given regular language).

This technique, sometimes referred as regular tree model checking, has driven
a lot of attention to the rewrite closure of tree automata languages. However,
there has been very few studies of this issue for constrained TA (see e.g. [8]).

In Section 4, we show that it is decidable whether a given term t be-
longs to the rewrite closure of a given RTA language for a restricted class of
TRS called linear invisibly, whereas this closure is generally not a RTA lan-
guage. Linear invisibly TRS can typically specify cryptographic operators like
decrypt(encrypt(x, pk(A)), sk(A)) → x.

Using RTA instead of TA in a regular tree model checking procedure per-
mits to handle processes with local and global memories taking their values in
infinite domains and which can be written only once. For instance, our initial
motivation for studying RTA was the analysis of security protocols in a model
where a finite number of processes exchange messages (following a protocol)
asynchronously over an insecure network controlled by an attacker who is able
to tamper the messages. The messages are terms build over cryptographic oper-
ators and are interpreted modulo an invisibly TRS R with rules like the above
one for decrypt [7]. It is possible to built a RTA A recognizing exactly the set
of messages that can be exchanged by executing the protocol in presence of the
active attacker. The RTA A models both the honest processes and the attacker,
and uses one rigid state to memorize each message sent by an honest process In
these settings, it is possible to express confidentiality problems as membership

448 F. Jacquemard, F. Klay, and C. Vacher

modulo R (does t ∈ R∗(L(A)
)
), and authentication like problems as emptiness

of intersection with a TA (does L(A) ∩ L(B) = ∅ for a TA B recognizing error
traces). All the details and proofs omitted in this extended abstract due to space
restrictions can be found in the long version [9].

1 Preliminaries

A signature Σ is a finite set of function symbols with arity. We write Σm for the
subset of function symbols of Σ of arity m. Given an infinite set X of variables,
the set of terms built over Σ and X is denoted T (Σ,X), and the subset of
ground terms (terms without variables) is denoted T (Σ). The set of variables
occurring in a term t ∈ T (Σ,X) is denoted vars(t). A term t ∈ T (Σ,X) is called
linear if every variable of vars(t) occurs at most once in t. A substitution σ is a
mapping from X to T (Σ,X).The application of a substitution σ to a term t is
the homomorphic extension of σ to T (Σ,X).

A term t can be seen as a function from its set of positions Pos(t) into function
symbols of variables of Σ ∪X . The positions of Pos(t) are sequences of positive
integers (ε, the empty sequence, is the root position). Position are compared
wrt the prefix ordering: p1 < p2 iff there exists p �= ε such that p2 = p1.p. In
this case, p is denoted p2 − p1. A subterm of t at position p is written t|p, and
the replacement in t of the subterm at position p by u is denoted t[u]p. The
depth d(t) of t is the length of its longest position. A n-context is a linear term
of T (Σ, {x1, . . . , xn}). The application of a n-context C to n terms t1, . . . , tn,
denoted by C[t1, . . . , tn], is defined as the application to C of the substitution
{x1 .→ t1, . . . , xn .→ tn}.

Term Rewriting. A term rewrite system (TRS) over a signature Σ is a finite
set of rewrite rules � → r, where � ∈ T (Σ,X) (it is called the left-hand side (lhs)
of the rule) and r ∈ T (Σ, vars(�)) (it is called right-hand-side (lhs)). A term
t ∈ T (Σ,X) rewrites to s by a TRS R (denoted t −−→R s) if there is a rewrite
rule � → r ∈ R, a position p ∈ Pos(t) and a substitution σ such that t|p = σ(�)
and s = t[σ(r)]p. In this case, t is called reducible. An irreducible term is also
called an R-normal-form. The transitive and reflexive closure of −−→R is denoted
−−→∗R . Given L ⊆ T (Σ,X), we note R∗(L) = {t

∣∣ ∃s ∈ L, s −−→∗R t}. A TRS is
called linear if all the terms in its rules are linear and collapsing if every rhs of
rule is a variable.

Tree Automata. A tree automaton (TA) A on a signature Σ is a tuple 〈Q, F, ∆〉
where Q is a finite set of nullary state symbols, disjoint from Σ, F ⊆ Q is the
subset of final states and ∆ is a set of transition rules of the form: f(q1, . . . , qn) →
q where n ≥ 0, f ∈ Σn, and q1, . . . , qn, q ∈ Q. The size of A is the number of
symbols in ∆. A run of the TA A on a term t ∈ T (Σ) is a function r : Pos(t) → Q
such that for all p ∈ Pos(t) with t(p) = f ∈ Σn (n ≥ 0), f

(
r(p.1), . . . , r(p.n)

)
→

r(p) ∈ ∆. We will sometimes use term-like notation for runs. For instance, a run
{ε .→ q, 1 .→ q1, 2 .→ q2} will be denoted q(q1, q2).

Rigid Tree Automata 449

The language L(A, q) of a TA A in state q is the set of ground terms for which
there exists a run r of A such that r(ε) = q. If q ∈ F then this run r is called
successful. The language L(A) of A is

⋃
q∈F L(A, q), and a set of ground terms

is called regular if it is the language of a TA.
A TA A = 〈Q, F, ∆〉 on Σ is deterministic (DTA), resp. complete, if for every

f ∈ Σn, and every q1, . . . , qn ∈ Q, there exists at most, resp. at least, one rule
f(q1, . . . , qn) → q ∈ ∆. In the deterministic (resp. complete) cases, given a tree
t, there is at most (resp. at least) one run r of A on t.

2 RTA: Definition and First Properties

2.1 Definition and Examples

Definition 1. A rigid tree automaton (RTA) A on a signature Σ is a tuple
〈Q, R, F, ∆〉 where 〈Q, F, ∆〉 is a tree automaton denoted ta(A) and R ⊆ Q is
the subset of rigid states.

A run of the RTA A on a term t ∈ T (Σ) is a run r of the underlying TA
ta(A) on t with the additional condition that: for all positions p1, p2 ∈ Pos(t),
if r(p1) = r(p2) ∈ R then t|p1 = t|p2 . Languages of RTA are defined the same
way as for TA. Note that with these definitions, every regular language is a RTA
language. We shall write below TA and RTA for the classes of TA and RTA
languages.

Example 1. Let Σ = {a : 0, b : 0, f : 2}. The set {f(t, t) | t ∈ T (Σ)} is recognized
by the RTA on Σ A =

〈
{q, qr, qf}, {qr}, {qf}, {a → q|qr, b → q|qr, f(q, q) →

q|qr, f(qr, qr) → qf}
〉
, where a → q|qr is an abbreviation for a → q and a → qr.

A successful run of A on f(f(a, b), f(a, b)) is qf

(
qr(q, q), qr(q, q)

)
. �

Note that the above RTA language is not regular; RTA generalize to non-linear
pattern the (linear) pattern matching ability of TA.

Example 2. Let us extend the RTA of Example 1 with the transitions rules
f(q, qf) → qf , f(qf , q) → qf ensuring the propagation of the final state qf up to
the root. The RTA obtained recognizes the set of terms of T (Σ) containing the
pattern f(x, x). �

Proposition 1. For all term t ∈ T (Σ,X), there exists a RTA recognizing the
terms of T (Σ) which have a ground instance of t as a subterm.

But RTA are not limited to testing equalities. Using rigid states permits to test
disequality and inequality as well, like the subterm relation.

Example 3. Let Σ = {a : 0, b : 0, f : 2, < :2}. The set of terms <(s, t) such
that s, t ∈ T

(
Σ \ {<}

)
and s is a subterm of t is recognized by the RTA

on Σ 〈{q, qr, q
′, qf}, {qr}, {qf}, ∆〉 with ∆ = {a → q|qr, b → q|qr, f(q, q) →

q|qr, f(q, qr) → q′, f(qr, q) → q′, f(q, q′) → q′, f(q′, q) → q′, <(qr, q
′) → qf}.

For instance, a successful run on <
(
a, f(a, b)

)
is qf

(
qr, q

′(qr, q)
)
. The idea is that

450 F. Jacquemard, F. Klay, and C. Vacher

in a successful run, the rigid state qr identifies (by a non-deterministic choice)
the subterm s on the left side of <, and the state q′ is reached immediately above
qr and propagated up to the root, in order to express that the right side t of <
is a superterm of s. �

RTA can also test disequalities between subterms built only with unary and
constant symbols.

Example 4. Let Σ = {c : 0, a : 1, b : 1, �= :2}. The set of terms of T (Σ) of the
form �= (s, t), where s, t ∈ T

(
Σ \ {�=}

)
and s is distinct from t is recognized

by the RTA 〈Σ, {q, qr, qa, qb, qf}, {qr}, {qf}, ∆〉 with ∆ = {c → q|qr, a(q) →
q|qr, b(q) → q|qr, a(qr) → qa, b(qr) → qb} ∪

{
a(qx) → qx, b(qx) → qx | qx ∈

{qa, qb}
}
∪
{
�= (q1, q2) → qf | q1, q2 ∈ {qa, qb, qr}, q1 �= q2

}
. A successful run on

�=
(
a(a(c)), b(a(c))

)
is qf

(
qa(qr(q)), qb(qr(q))

)
. The rigid state qr will be placed

at the position of the largest common postfix of s and t and qa or qb are used to
memorize the letters immediately above this position (in order to check that s
and t differ when reaching the symbol �=). �

2.2 Pumping Lemma

We propose here a weak form, adapted to RTA, of the pumping (or iteration)
lemma for TA. Pumping on runs of RTA is not as easy as for standard TA.
Indeed, we must take care of the position of rigid states in order to preserve
recognizability. For this reason, the transformation of a subterm must be per-
formed in several branches in parallel (instead of one single branch for TA) in
order to preserve the equality condition for rigid states. Moreover, we cannot
repeat a term containing a rigid state, because the same rigid state cannot label
two different positions on the same branch. The proof of the following lemma
can be found in [9].

Lemma 1. For all RTA A = 〈Q, R, F, ∆〉, for all term t ∈ L(A) such that
d(t) > (|Q| + 1)|R|, there exist a context C, two 1-contexts C′ and D, with D
non-trivial (non-variable), and a term u such that t = C

[
C′[D[u]], . . . , C′[D[u]]

]
and for all n ≥ 0, C

[
C′[Dn[u]], . . . , C′[Dn[u]]

]
∈ L(A).

Example 5. The set B of balanced binary trees built over the signature {a :
0, f : 2} is not a RTA language. Assume indeed that it is recognized by a
RTA A = 〈Q, R, F, ∆〉 and let t ∈ L(A) such that d(t) > (|Q| + 1)|R| and
C, C′, D, u be as in Lemma 1. By hypothesis, C′[D[u]] is balanced, but for any
n > 1, C′[Dn[u]] is not balanced since C′ and D are not trivial. It contradicts
C
[
C′[Dn[u]], . . . , C′[Dn[u]]

]
∈ L(A). �

2.3 Related Classes of Tree Automata

We shall briefly present below some classes of extended TA and compare them
to RTA. The decidability and complexity results presented in Section 3 and
summarized in Table 1 also offer a base of comparison.

Rigid Tree Automata 451

TAGED [4] were introduced in the context of spatial logics for XML query-
ing [10]. They are defined, like RTA, by an underlying TA, but instead of having
simply a set of rigid state for testing equality, they have two binary relations on
states: R= for testing equalities and R�= for disequalities. More precisely, a run r
of a TAGED on a term t is a run of the underlying TA on t with the additional
condition that for all p1, p2 ∈ Pos(t), if 〈r(p1), r(p2)〉 ∈ R= then t|p1 = t|p2 and
if 〈r(p1), r(p2)〉 ∈ R�= then t|p1 �= t|p2 . TAGED are strictly more general than
RTA. The decidability of the emptiness problem is open for the whole TAGED
class. A decidable subclass of TAGED is identified in [10] where the number
of equality tested in every run is bounded. The fragment of positive TAGED
(with R�= = ∅, denoted TAGED+) has the same expressiveness as RTA. This is
shown in [4] where a TAGED+ is transformed implicitely into a RTA in order
to decide emptiness, at the price of an exponential blowup. The emptiness is
EXPTIME-complete for TAGED+, and PTIME for RTA (see Section 3). To our
knowledge, the rewrite closure of TAGED has not been studied so far.

TA with equality constraints (TAC) are TA whose transitions can perform local
equality and disequality tests on the subterms of the term in input (e.g. [1,2]).
In contrast, the equality tests of RTA can be global. For instance, the language
of terms t over {f : 2, g : 1, a : 0} such that s1 = s2 for every two subterms g(s1),
g(s2) of t is recognizable by a RTA, but not by a TAC. The RTA language of
Examples 1 and 2 are recognizable by TAC, but not the one of Example 3. The
language B of Example 5, which is not recognizable by RTA, is recognizable by
TAC.

DAG automata (DA) [11] are defined as TA computing on DAG representation
of terms with maximal sharing. Somehow, DA are the dual of RTA in the sense
that in their runs, a unique state is associated to equal subtrees (which are
rooted by the same node in the DAG representation) whereas for RTA, a unique
subtree is associated to every occurrence of the same rigid state. However, the
classes of languages defined by these two formalisms are orthogonal. On one
hand, one can observe that the RTA language of Example 1 (terms f(t, t)) is
not recognizable by a DA. On the other hand, the emptiness problem is PTIME
for RTA and NP-complete for DA [12]. Actually, DA and RTA are defined for
different purposes: DA are proposed for computing on compressed trees, and
not for checking equalities like RTA. Moreover, deterministic DA coincide with
DTA, and, as we show in Section 2.4, it is not the case for DRTA.

2.4 Determinism and Completeness

A deterministic rigid tree automaton (DRTA) (resp. complete RTA) on a signa-
ture Σ is a RTA A whose underlying TA ta(A) is deterministic (resp. complete).

Like standard TA, every RTA can be completed into a complete RTA, by the
addition of a trash state. Unlike standard TA, it is not true in general that for a
complete RTA A, for every term t there exists at least one run of A on t. Indeed,
a given run of ta(A) on t might not be a run of A on t because of the rigidity
condition.

452 F. Jacquemard, F. Klay, and C. Vacher

Example 6. The RTA A =
〈
{q, qr}, {qr}, {q}, {a → q, g(q) → qr, g(qr) → q}

〉
,

is deterministic and complete. The term t = g(g(g(a))) is in L
(
ta(A), qr

)
, with

a unique run r = qr(q(qr(q))). However, r is not a run of A, because the two
subterms at the positions of qr are distinct. �

It is well-known that DTAs are as expressive as TAs. We show below that it is
not the case for RTA.

Theorem 1. DRTA � RTA and TA � DRTA.

Proof. We show in [9] that the language of Example 1 is not recognized by a
DRTA. The inclusion TA ⊂ DRTA is immediate since DTA ≡ TA and DTA are
particular cases of DRTA. Let Σ = {f :2, g :1, a :0}. The language

{
f(g(t), g(t)) |

t ∈ T (Σ \ {g}
}

is recognized by a DRTA but not by a TA. $%

2.5 Boolean Closure

We show below that the class of RTA languages is closed under union and inter-
section but not under complement.

Theorem 2. Given two RTA A1 and A2, there exist two RTAs of respective
sizes O(|A1|+ |A2|) and O(2|A1||A2|) recognizing respectively L(A1)∪L(A2) and
L(A1) ∩ L(A2).

Proof. Let Ai = 〈Qi, Ri, Fi, ∆i〉 with i = 1, 2. For L(A1) ∪ L(A2), we do a
classical disjoint union of automata. For L(A1) ∩ L(A2), it is easy to construct
a positive TAGED B recognizing L(A1) ∩ L(A2) by a product operation like
for standard TA. The state set of B is Q1 × Q2, its final state set F1 × F2
and its transition rules {f

(
〈q11, q21〉, . . . , 〈q1n, q2n〉

)
→ 〈q1, q2〉 | qi1 . . . qin, qi ∈

Qif(qi1, . . . , qin) → qi ∈ ∆i, i = 1, 2}. Moreover, the equality relation of B
is R= =

{〈
〈qr1 , q2〉, 〈qr1 , q

′
2〉
〉
| qr1 ∈ R1, q2, q

′
2 ∈ Q2

}
∪
{〈

〈q1, qr2〉, 〈q′1, qr2〉
〉
|

q1, q
′
1 ∈ Q1, qr2 ∈ R2

}
. A construction is proposed in [4] for transforming any

positive TAGED into an RTA (i.e. a TAGED with a reflexive state relation).
This transformation causes an exponential blowup. It cannot be described here.
Combining the two above steps results in an exponential construction for the
intersection of RTA. $%

Note that the construction for the intersection of RTA preserves determinism
but not for the union. The following lemma (its proof can be found in [9]) shows
that the exponential time complexity for the construction of the intersection
automaton constructed in Theorem 2 is a lower bound, by a reduction of the
EXPTIME-complete problem of the non-emptiness of the intersection of n TA.

Lemma 2. Given n RTA A1, . . . ,An on Σ, we can compute in polynomial time
two RTA A× and Ar, both of size O

(
‖A1‖+ . . .+‖An‖

)
, and such that L(A1)∩

. . . ∩ L(An) = ∅ iff L(A×) ∩ L(Ar) = ∅.

Theorem 3. The class of RTA languages is not closed under complement.

Rigid Tree Automata 453

Proof. We have seen in Example 5 that the set B of balanced binary trees
over Σ := {a : 0, f : 2} is not a RTA language. We show that its comple-
ment B in T (Σ) is an RTA language. The idea is similar to the construction
for the subterm relation in Example 3: one rigid state qr is used to choose
non-deterministically a subterm, and it is checked that the sibling of qr con-
tains qr at depth more than one (such subterms are characterised by the
state q′ below). More precisely, the RTA for B is 〈{q, qr, q

′, qf}, {qr}, {qf}, ∆〉
with ∆ = {a → q|qr, f(q, q) → q|qr, f(q, qr) → q′, f(qr, q) → q′, f(q, q′) →
q′, f(q′, q) → q′, f(qr, q

′) → qf , f(q′, qr) → qf , f(qf , q) → qf , f(q, qf) → qf}. The
last two transition rules ensure the propagation of the final state qf up to the
root, like in Example 2. $%

3 Decision Problems

We study in this section several decision problems for RTA; emptiness : given a
RTA A on Σ, does L(A) = ∅, universality: does L(A) = T (Σ), finiteness : is
L(A) finite, membership: given additionally t ∈ T (Σ), is t in L(A); inclusion:
given two RTA A1 and A2, does L(A1) ⊆ L(A2), equivalence: does L(A1) =
L(A2), and intersection emptiness : given n RTA A1, . . .An, does L(A1) ∩ . . . ∩
L(An) = ∅. Table 1 provides a summary of closure and decision results and a
comparison with other classes of extended TA mentioned in Section 2.3.

Table 1. Summary of closure and decision results

TA RTA TAGED+ DA

∪ PTIME PTIME PTIME PTIME
∩ PTIME EXPTIME EXPTIME not [12]
¬ EXPTIME not not not

emptiness linear-time linear-time EXPTIME-complete NP-complete
membership PTIME NP-complete NP-complete NP-complete
∩-emptiness EXPTIME-complete EXPTIME-complete EXPTIME-complete
universality EXPTIME-complete undecidable undecidable undecidable
inclusion EXPTIME-complete undecidable undecidable undecidable
finiteness PTIME PTIME

Theorem 4. The emptiness problem is decidable in linear time for RTA.

Proof. We show [9] that the emptiness of L(A) and L
(
ta(A)

)
are equivalent.

The latter problem (emptiness for standard TA) is known to be decidable in
linear-time (see e.g. [13]). The idea is that if L(ta(A)) is not empty, then the
classical “state marking” algorithm builts a witness which respects the rigidity
condition for all states, and is therefore a witness for L(A) non-emptiness. $%

Theorem 5. Membership is NP-complete for RTA (PTIME for DRTA).

Proof. A non-deterministic algorithm for this problem consist in, given a RTA A
and a term t, guessing a labelling of the nodes of t with states of A and checking

454 F. Jacquemard, F. Klay, and C. Vacher

that this labelling is a run of A on t. The checking operation can be performed
in polynomial time. In the deterministic case, there is at most one labelling of
the term t compatible with the transition rules.

In order to show NP-hardness, we propose [9] a reduction from 3-SAT for a
formula φ into the membership to an RTA A of a term tφ representing φ. Each
variable x of φ is represented in tφ by a subterm x(0, 1), where x is a binary
symbol and 0, 1 constants. The most important transitions of A are 0, 1 → qx|q¬x

for each variable x of φ and x(qx, q¬x) → q0, x(q¬x, qx) → q1, where the states qx

and q¬x are rigid. The states q0 and q1 represent the value associated to x (they
are propagated bottom-up along tφ) and the rigidity condition ensures that the
same value is associated to all occurrences of the variable x in φ. $%

Theorem 6. Intersection non-emptiness is EXPTIME-complete for RTA.

Proof. The upper-bound is a consequence of Lemma 2 and Th. 2 & 4. The lower-
bound follows from the EXPTIME-hardness of the problem for TA [14]. $%

Theorem 7. Universality is undecidable for RTA.

Proof. In [9] we reduce the non-existence of a solution of an instance P of the
Post Correspondence Problem to the universality of a RTA. This RTA recognizes
the set of terms which do not represent a solution of P . It is defined as a disjoint
union of RTAs, one for each case. Some cases involve the construction of a RTA
testing disequalities between unary subterms like in Example 4. $%

Theorem 8. Inclusion and equivalence are undecidable for RTA.

Proof. The equivalence problem is reducible to inclusion. Hence both are unde-
cidable as universality is a particular case of equivalence. $%

For an RTA A, the finiteness of L(ta(A)) implies the finiteness of L(A), but
the converse is not true: the language of the RTA of Example 6 is {a, g(g(a))}
whereas the language of its underlying TA is {a, g2(a), g4(a), . . .}.

Theorem 9. Finiteness is decidable in PTIME for RTA.

Like for TA, checking finiteness amounts to detect (in PTIME) some loops and
paths in the accessibility graph of an RTA (see [9] for details).

4 Rewrite Closure

The closure of a RTA language under rewriting is unfortunately not a RTA
language, even for a TRS as simple as R = {f(g(x)) → x}. Let Σ = {h : 2, f :
1, g :1, 0:0}, and let A = 〈Q, R, ∆〉 be the RTA on Σ with Q = {q0, q1, q2, qr, qf},
R = {qr}, F = {qf}, and ∆ = {0 → q0, g(q0) → q0|qr, f(qr) → q1, f(q1) →
q1, h(qr, q1,2) → qf , h(q1,2, q1,2) → q2, h(qf , q1,2) → qf , } where q1,2 is either q1 or
q2. Every term of L(A) has the form H

[
gm(0), f∗(gm(0)), . . . , f∗(gm(0))

]
where

H is a k-context made of the symbol h only, and gm and f∗ represent nesting
of m symbol g and an arbitrary number of f , respectively. The rigid state qr

Rigid Tree Automata 455

enforces that each argument has the same number of g. The terms of the closure
R∗(L(A)

)
of L(A) by R have a similar form except that the number of g in the

different arguments might not be equal. They only have to be all less than or
equal to the number of g on the leftmost argument. We show in [9] that it is
not a RTA language, with arguments similar to those of Section 2.2. The rewrite
closure of a RTA under a linear collapsing TRS is even not recursive.

Theorem 10. The problem to know whether t ∈ R∗(L(A)) or not given a RTA
A, a collapsing and linear TRS R and a term t, is undecidable.

Proof. Let u1, v1 . . . un, vn be words on an alphabet Γ seen as a PCP instance P .
Let us consider the signature Σ = {gi : 1, fi : 1 | i ≤ n}∪{a : 1 | a ∈ Γ}∪{0 :0, k :
1, h : 2}, and L = {h(s, k(s)) | s = fi1(gi1(. . . fim(gim(w(0))))), m > 0, w ∈ Γ ∗}1

where 1 ≤ i1, . . . , im ≤ n. Let R be a TRS on Σ with the rules fi(gi(ui(x))) → x
(i ≤ n), gi(x) → x (i ≤ n), gj(fi(vi(x))) → x (i, j ≤ n), and k(fi(vi(x))) → x
(i ≤ n). The tree language L is recognizable by a RTA on Σ and we show [9]
that h(0, 0) ∈ R∗(L) iff P has a solution. $%

The problem of Theorem 10, membership modulo, becomes decidable with some
further syntactical restrictions on R based on the theory of visibly pushdown
automata (VPA) [15]. VPA define a subset of context-free languages closed under
intersection, and were generalized to tree recognizers in [16,17]. The idea in these
works is that the signature Σ is partitioned into Σ = Σc � Σr � Σ� and the
operation performed by the VPA on the stack depends on the current symbol
in input: if it is a call symbol of Σc, the VPA can only do a push, for a return
symbol of Σr it can do a pop and it must leave the stack untouched for a local
symbol of Σ�.

In [16], Chabin and Rety show that the class of visibly pushdown tree au-
tomata (VPTA) languages is closed under rewriting with so called linear context-
free visibly TRS. We use a similar definition in order to characterize a class of
TRS for which membership modulo is decidable.

Definition 2. A collapsing TRS R is called inverse-visibly (invisibly) if for
every rule � → x ∈ R, d(�) ≥ 1, x occurs once in �, and if x occurs at depth 1
in � then � ∈ T (Σ�,X), otherwise, �(ε) ∈ Σc, the symbol immediately above x is
in Σr and all the other symbols of � are in Σ�.

Example 7. The TRS R = {fst(pair(x1, x2)) → x1, snd(pair(x1, x2)) →
x2, decrypt(encrypt(x, pk(A)), sk(A)) → x} is linear and invisibly with Σc =
{fst, snd, decrypt} and Σr = {pair, encrypt}, Σ� = {pk, sk, A}. �

The TRS {f(g(x)) → x} is invisibly but not the one for Theorem 10.

Theorem 11. The problem to know whether t ∈ R∗(L(A)) or not, given a RTA
A, a linear and invisibly TRS R and a term t, is decidable.

Proof. The proof [9] is long and technical, and due to space restrictions, we only
sketch it below for a TRS R containing the two first rewrite rules of Example 7.
1 For all w = a1, . . . , ap ∈ Γ ∗, the term a1(. . . ap(t)) is written w(t).

456 F. Jacquemard, F. Klay, and C. Vacher

Let A = 〈Q, R, F, ∆〉 be a RTA on Σ = {f : 2, fst : 1, snd : 1, pair : 2, 0 : 0}
with Q = {q0, qr, q1, qf}, R = {qr}, F = {qf}, and ∆ = {0 → q0, pair(q0, q0) →
q0|qr, fst(qr|q1) → q1, snd(qr |q1) → q1, f(q1, q1) → qf} and let t = f(pair(0, 0), 0).
Very roughly, the decision algorithm guesses the existence of one tree t′ ∈ L(A)
such that t′ −−→∗R t, by application of R backwards starting from t, expanding
subterms into lhs of rules. In order to ensure that t′ ∈ L(A), we consider pairs
of states qε

qx
which intuitively correspond to a run r of A on � (for � → x ∈ R)

such that qε = r(ε) and qx = r(px) where �(px) = x (this position px is unique
by hypothesis). If qε = qx, the pair is simply denoted qε. In a first step, we label
the lhs of R with such pairs. For both fst(pair(x1, x2)) and snd(pair(x1, x2)), the
only possible labelling is �1 := q1(q1

q0
(q0, q0)). The condition for such a labelling

is indeed that there exists a transition in A from the first components of labels
at sibling positions into the second component of the label at the father position,
like fst(q1) → q1 and pair(q0, q0) → q0 for �1 above. Intuitively, �1 describes a
nesting of runs on lhs of R which permits to recover a run r′ of A′ on t′. In other
terms, t′ can be generated by a context-free tree grammar with non-terminals
from Q (nullary) or of the form qε

qx
(unary). For instance, the production rule

q1
q0

(x) := fst(q1
q0

(pair(x, q0)
)

corresponds to fst(pair(x1, x2)) → x1. The grammar
generates a visibly pushdown tree language, thanks to the hypotheses on R.

Next, in order to guess t′, we label the positions of t by pairs of states. We
obtain qf(p(q0, q0), q1

q0
) where p is either qr or q1

q0
. We can observe that the rigid

state qr occurs, possibly at nested depth bigger than one, in both cases for p. The
tricky part of the algorithm it to check that there exists at least one term in the
intersection of the languages (generated by grammars as above) corresponding to
the distinct occurrences of qr. We use the fact that the emptiness of intersection
is decidable for visibly context free tree grammars. $%

5 Conclusion and Further Work

We want to use RTA for the automatic verification of traces or equivalence prop-
erties of security protocols, using regular tree model checking like techniques. In
this context, we are planning to extend the result of Theorem 11 to invisibly
(non-linear) TRS, in order to handle axioms as decrypt(encrypt(x, y), y) = x. We
are also interested about the symmetric form of the TRS of [16], whose rhs are
not single variables but have the form f(x1, . . . , xn).

One may also study the extension of RTA to equality tests modulo equational
theories like in [8], or the addition of disequality constraints in order to obtain
closure under complement and correspondence with logics.

References

1. Bogaert, B., Tison, S.: Equality and Disequality Constraints on Direct Subterms
in Tree Automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 161–171. Springer, Heidelberg (1992)

2. Dauchet, M., Caron, A.C., Coquidé, J.L.: Automata for Reduction Properties Solv-
ing. Journal of Symbolic Computation 20(2), 215–233 (1995)

Rigid Tree Automata 457

3. Comon, H., Cortier, V.: Tree automata with one memory, set constraints and
cryptographic protocols. Theoretical Computer Science 331(1), 143–214 (2005)

4. Filiot, E., Talbot, J.M., Tison, S.: Tree automata with global constraints. In: Ito,
M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 314–326. Springer, Heidel-
berg (2008)

5. Bouajjani, A., Touili, T.: On computing reachability sets of process rewrite systems.
In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 484–499. Springer, Heidelberg
(2005)

6. Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In:
McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831. Springer, Heidelberg (2000)

7. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, pp. 104–115 (2001)

8. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality con-
straints modulo equational theories. Journal of Logic and Algebraic Program-
ming 75(2), 182–208 (2008)

9. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata. Technical Report
RRLSV-0827, Laboratoire Spécification et Vérification (2008)

10. Filiot, E., Talbot, J.M., Tison, S.: Satisfiability of a spatial logic with tree variables.
In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 130–145.
Springer, Heidelberg (2007)

11. Charatonik, W.: Automata on dag representations of finite trees. Technical
Report Technical Report MPI-I-99-2-001, Max-Planck-Institut für Informatik,
Saarbrücken, Germany (1999)

12. Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and deci-
sion problems of dag automata. Inf. Process. Lett. 94(5), 231–240 (2005)

13. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://tata.gforge.inria.fr

14. Seidl, H.: Haskell overloading is DEXPTIME-complete. Information Processing
Letters 52(2), 57–60 (1994)

15. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th Annual ACM
Symposium on Theory of Computing, STOC, pp. 202–211. ACM, New York (2004)

16. Chabin, J., Réty, P.: Visibly pushdown languages and term rewriting. In: Konev, B.,
Wolter, F. (eds.) FroCos 2007. LNCS, vol. 4720, pp. 252–266. Springer, Heidelberg
(2007)

17. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Tree automata with memory,
visibility and structural constraints. In: Seidl, H. (ed.) FOSSACS 2007. LNCS,
vol. 4423, pp. 168–182. Springer, Heidelberg (2007)

http://tata.gforge.inria.fr

Converting Self-verifying Automata into
Deterministic Automata

Galina Jirásková1,� and Giovanni Pighizzini2,��

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
2 Dipartimento di Informatica e Comunicazione,

Università degli Studi di Milano
via Comelico 39, I-20135 Milano, Italy

pighizzini@dico.unimi.it

Abstract. Self-verifying automata are a special variant of finite au-
tomata with a symmetric kind of nondeterminism. In this paper, we
study the transformation of self-verifying automata into deterministic
automata from a descriptional complexity point of view. The main result
is the exact cost, in terms of the number of states, of such a simulation.

1 Introduction

In automata theory and theoretical computer science, several kinds of devices
able to recognize formal languages have been proposed and investigated.

Different classes of devices can be compared, first of all, from the point of
view of their recognition powers. We mention just two examples of classical re-
sults in this area: the equivalence between deterministic and nondeterministic
finite automata, and the fact that deterministic pushdown automata are strictly
less powerful than nondeterministic ones. With a deeper investigation, classes
of devices can be compared from the point of view of their descriptional com-
plexity [1]. The classical example is the simulation of n-state nondeterministic
automata by deterministic automata that can be done using 2n states [2], and
cannot be done, in the worst case, with less than 2n states [3,4,5].

In this paper, we continue this line of research, by considering self-verifying
automata, a special kind of finite automata, introduced in [6], with a symmetric
form of nondeterminism, called self-verifying nondeterminism [7]. This kind of
nondeterminism was mainly considered in connection with randomized Las Vegas
computations, but as pointed out in [8], it is interesting also per se.

Roughly speaking, in self-verifying nondeterminism, computation paths can
give three types of answers: yes, no, and I do not know. On each input string,

� Supported by VEGA grant 2/0111/09.
�� Partially supported by MIUR under the project PRIN “Aspetti matematici e ap-

plicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici e
combinatori in ambito di linguaggi formali”.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 458–468, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Converting Self-verifying Automata into Deterministic Automata 459

at least one path must give answer “yes” or “no”. Furthermore, on the same
string, two paths cannot give contradictory answers, namely both the answers
“yes” and “no” are not possible.

It is not difficult to observe that self-verifying automata are as powerful as
deterministic automata. In particular, the standard subset construction can be
used to convert them to deterministic automata. Hence, the question arises of
investigating this equivalence from the descriptional point of view.

This problem was previously considered by Assent and Seibert in [9], who
proved that in the deterministic automaton obtained by applying the standard
subset construction to a self-verifying automaton certain states must be equiv-
alent. As a consequence, they were able to show that each n-state self-verifying
automaton can be simulated by a deterministic automaton with O(2n√

n
) states.

In this paper, we further deepen this investigation by showing that such an
upper bound can be lowered to a function g(n) which grows like 3

n
3 (we give

the exact value of g(n) in the paper). In particular, we associate with each n-
state self-verifying automaton A a certain graph with n vertices, and we prove
that there exists a deterministic automaton equivalent to A whose state set is
isomorphic to the set of the maximal cliques of such a graph. Using a result from
graph theory stating the number of possible maximal cliques in a graph [10], we
get the upper bound g(n).

In the second part of the paper, we prove the optimality of such an upper
bound. In fact, we are able to show that for each positive integer n, there exists
a binary language L accepted by an n-state self-verifying automaton, such that
the minimal equivalent deterministic automaton must have exactly g(n) states.

We conclude the paper with some considerations concerning the cases of au-
tomata defined over a one-letter alphabet and of automata with multiple initial
states.

2 Preliminaries

We fix an alphabet Σ. Given a language L ⊆ Σ∗, we denote by Lc the comple-
ment of L, namely the set Σ∗ − L.

We assume that the reader is familiar with the notions of deterministic and
nondeterministic finite automata (denoted respectively as dfa’s and nfa’s, for
short).

Definition 1. A self-verifying finite automaton (svfa) A is a 6-tuple
(Q, Σ, δ, q0, F

a, F r), where Q, Σ, δ, q0 are defined as for standard nondetermin-
istic automata, F a, F r ⊆ Q are, respectively, the sets of accepting and rejecting
states, while the remaining states, namely the states belonging to Q− (F a ∪F r),
are called neutral states.

It is required that for each input string w in Σ∗, there exists at least one
computation ending in an accepting or in a rejecting state, that is, δ(q0, w) ∩
(F a ∪ F r) �= ∅, and there are no strings w such that both δ(q0, w) ∩ F a and
δ(q0, w) ∩ F r are nonempty.

460 G. Jirásková and G. Pighizzini

The language accepted by A, denoted as La(A), is the set of all input strings
having a computation ending in an accepting state, while the language rejected by
A, denoted as Lr(A), is the set of all input strings having a computation ending
in a rejecting state.

It follows directly from the definition that La(A) = (Lr(A))c for each svfa A.
Hence, when we will say that an svfa A recognizes a language L, we will mean
that L = La(A) and Lc = Lr(A).

From an svfa A recognizing a language L, we can immediately get two nfa’s
accepting, respectively, L and Lc. These automata are defined like the svfa A,
except that the sets of final states are replaced, respectively, by F a and F r.
Hence, svfa’s can be seen as a special case of nfa’s.

On the other hand, having two nfa’s accepting languages L and Lc, respec-
tively, we can construct an svfa for the language L by adding a new initial state
connected via ε-transitions to the initial states of the two nfa’s. The set of ac-
cepting states of this svfa consists of all final states of the nfa for L, while the
set of rejecting states contains all final states of the nfa for Lc.

The above observations give the following relationships between the sizes of
svfa’s and nfa’s recognizing the same language.

Theorem 1 ([8, Observation 4.2]). For each regular language L, let ns(L)
and svs(L) denote, respectively, the minimum number of states of any nfa and of
any svfa recognizing L. Then max {ns(L), ns(Lc)} � svs(L) � 1+ns(L)+ns(Lc).

Let G = (V, E) be an undirected graph. We recall that each complete subgraph
of G is called a clique. We also say that a subset α ⊆ V forms a clique if the
subgraph of G induced by α, namely the graph (α, E ∩ (α × α)), is a clique.
Furthermore, a clique α ⊆ V is maximal if each subset properly containing α
does not form a clique. In [10], Moon and Moser stated the following exact bound
for the number of maximal cliques in a graph.

Theorem 2 (Moon, Moser [10]). Let f(n) denotes the maximum number of
possible maximal cliques in a graph with n nodes. If n � 2, then

f(n) =

⎧⎨⎩
3�

n
3 �, if n ≡ 0 (mod 3),

4 · 3�n
3 �−1, if n ≡ 1 (mod 3),

2 · 3�n
3 �, if n ≡ 2 (mod 3).

3 Conversion of svfa’s into dfa’s

Self-verifying automata are a special case of nondeterministic automata. Hence,
the standard simulation of nfa’s by dfa’s given by the subset construction can be
used also to simulate svfa’s. In this section, by investigating some properties of
svfa’s and of the corresponding subset automata, we will show how it is possible
to reduce the number of states of resulting dfa’s. More precisely, the main result
of this section is an upper bound on the number of states of minimal dfa’s
equivalent to n-state svfa’s.

Converting Self-verifying Automata into Deterministic Automata 461

Throughout the section, consider a fixed svfa A = (Q, Σ, δ, q0, F
a, F r) with

n states. Given a state q ∈ Q, we denote by La
q and Lr

q, respectively, the set of
strings accepted and the set of strings rejected starting from q, that is, La

q =
{x ∈ Σ∗ | δ(q, x) ∩ F a �= ∅} and Lr

q = {x ∈ Σ∗ | δ(q, x) ∩ F r �= ∅}. We observe
that as a consequence of the definition of svfa’s, the following statements hold
for the initial state q0:

• La
q0
∪Lr

q0
= Σ∗, namely the automaton A must give an answer on each string

(completeness).
• La

q0
∩ Lr

q0
= ∅, namely the automaton A cannot give two contradictory

answers on the same string (consistency).

Note that the conjunction of the two statements is equivalent to La
q0

= (Lr
q0

)c.
If q ∈ Q is a reachable state of A, namely there exists a string x in Σ∗

such that q ∈ δ(q0, x), then La
q ∩ Lr

q = ∅. Otherwise, if q is not reachable, it is
possible that the languages La

q and Lr
q are not disjoint. However, we can remove

all unreachable states from A, without affecting the accepted and the rejected
languages. Hence, in the following we assume that each state q of A is reachable
and so La

q ∩ Lr
q = ∅.

Applying the standard subset construction to the svfa A, we get an equivalent
dfa. Such a dfa, restricted to its reachable states, i.e., to states α ⊆ Q such that
there is at least one string x ∈ Σ∗ with δ(q0, x) = α, will be called in the
following the subset automaton associated with A.

While for a state q �= q0 of an svfa it can happen that starting from q and
reading a string x neither accepting nor rejecting states are reachable, that is,
x /∈ La

q ∪Lr
q, for the states of the subset automaton we can prove a completeness

condition. In particular, for each α ⊆ Q, we consider the languages accepted
and rejected starting from α given by La

α =
⋃

q∈α La
q and Lr

α =
⋃

q∈α Lr
q, and

we prove the following lemma.

Lemma 1. Let α ⊆ Q be a state of the subset automaton. Then La
α ∩ Lr

α = ∅
and La

α ∪ Lr
α = Σ∗, i.e., La

α = (Lr
α)c.

Proof. Since α is a state of the subset automaton, it must be reachable. Let
x be a string in Σ∗ such that δ(q0, x) = α. Suppose that y ∈ La

α ∩ Lr
α. Then

δ(q0, xy) ∩ F a �= ∅ and δ(q0, xy) ∩ F r �= ∅, which is a contradiction.
In a similar way, if y /∈ La

α ∪ Lr
α, then we get that xy /∈ La

q0
∪ Lr

q0
, which is a

contradiction. $%

In order to state an upper bound on the number of states of the minimal dfa
equivalent to A, it is useful to count how many reachable subsets of Q, repre-
senting different languages, are possible, or to find equivalence conditions for the
states of the subset automaton.

In [9] it was shown that given two reachable states α, β ⊆ Q of the subset
automaton, α ⊆ β implies that α and β are equivalent. In light of Lemma 1,
this is due to the fact that α ⊆ β implies that La

α ⊆ La
β and Lr

α ⊆ Lr
β , which

combined with the completeness conditions of the lemma, gives La
α = La

β and

462 G. Jirásková and G. Pighizzini

Lr
α = Lr

β . In the following, we will show that actually in the subset automaton
the state equivalence is implied by a weaker condition.

To this aim, we introduce a compatibility relation on the state set Q. In-
tuitively, two states q, p ∈ Q are compatible if and only if two computations
starting from q and p cannot give contradictory answers on the same string. We
now define this notion formally.

Definition 2. Two states q, p ∈ Q are compatible if and only if (La
q ∪ La

p) ∩
(Lr

q ∪ Lr
p) = ∅.

The compatibility graph of A is the undirected graph whose vertex set is Q,
and which contains an edge {q, p} if and only if states q and p are compatible.

By the above discussion, it is immediate to observe that if α is a state of the
subset automaton, then all q, p ∈ α must be compatible. Hence, each reachable
state of the subset automaton is represented by a clique in the compatibility
graph. The following lemma allows us to restrict our attention only to maximal
cliques.

Lemma 2. Let α, β ⊆ Q be two states of the subset automaton such that α ∪ β
is a clique in the compatibility graph of the svfa A. Then α and β are equivalent.

Proof. Before proving the lemma, we notice that at the first glance the statement
seems to be very close to Claim 3.2 in [9]. However, that claim does not apply
when α ∪ β is not a reachable state of the subset automaton.

By contradiction, assume that there is a string x in Σ∗ which is accepted by
the subset automaton from state α and rejected from state β. It follows that
there is a state q in α and a state p in β such that the string x is accepted by
the svfa A from state q and rejected from state p. This means that states q and
p are not compatible, which contradicts our assumption that α∪β is a clique in
the compatibility graph of A. $%
Now we are able to state our upper bound.

Theorem 3. For each svfa A with n states, there exists an equivalent dfa with
at most 1 + f(n − 1) states, where f(n) is the maximum number of possible
maximal cliques in a graph with n nodes.

Proof. We have already observed that each state of the subset automaton as-
sociated with A is a clique in the compatibility graph of A. Furthermore, by
Lemma 2, if two states form cliques that are contained in the same maximal
clique, then they are equivalent. Hence, the subset automaton can be reduced
to an equivalent dfa with at most one state for each maximal clique of the com-
patibility graph.

To complete the proof, we count the number of such cliques.
First of all, we observe that since La

q0
= (Lr

q0
)c, two states q and p that are

compatible with the initial state q0 are compatible with each other. Hence, in
the compatibility graph there is exactly one maximal clique containing state q0,
while the other maximal cliques can involve the remaining n − 1 states. Hence,
using Theorem 2, we get that the minimal dfa equivalent to A can have at most
1 + f(n − 1) states. $%

Converting Self-verifying Automata into Deterministic Automata 463

4 Optimality

In this section, we study the optimality of the simulation of svfa’s by dfa’s
presented in Section 3. We prove that for each n, there exists a binary svfa An

with n states whose equivalent minimal dfa has 1 + f(n − 1) states, showing in
this way a lower bound exactly matching the upper bound stated in Theorem 3.

For the sake of simplicity, let us start by considering the case n = 1 + 3m,
with m � 2. In the last part of the section, we will discuss how to extend our
argument to the other values of n.

Let An = (Q, {a, b}, δ, q0, F
a, F r) be the automaton depicted in Figure 1 and

defined as follows:

• Q = {q0} ∪ {(i, j) | 0 � i � 2, 1 � j � m},
• δ(q0, a) = δ(q0, b) = {(0, 1), (0, 2), . . . , (0, m)},

and for all i, j with 0 � i � 2 and 1 � j � m,

δ((i, j), a) =
{
{(i, j + 1)}, if j < m,
{(0, 1)}, otherwise,

δ((i, j), b) = {((i + 1) mod 3, j)},
• F a = {q0, (0, m)}, F r = {(1, m), (2, m)}.

�
�

�
�(0, 1)

�
�

�
�(0, 2)

�
�

�
�(0, m)

�
�

�
�(1, 1)

�
�

�
�(1, 2)

�
�

�
�(1, m)

�
�

�
�(2, 1)

�
�

�
�(2, 2)

�
�

�
�(2, m)

�a �a

�a �a

�a �a

�
b

�
b

�
b

�
b

�
b

�
b

�

��

� �
a

�

��

��

a

�

��

��

a

��

��

b ��

��

b ��

��

b

����
�

�
�q0����������

a, b �
�

��

a, b

	
	

	
	

		

a, b

���yes

���
yes

���no

���no

Fig. 1. The self-verifying finite automaton An

464 G. Jirásková and G. Pighizzini

We claim that An is self-verifying. To prove this, and also for the subsequent
discussion, it is useful to consider the following family Q′ of subsets of Q:

Q′ = {{(x1, 1), . . . , (xm, m)} | x1, . . . , xm ∈ {0, 1, 2}}.

Note that in Figure 1, the states other than q0 are represented by a grid, accord-
ing to the two components in their names. Each set belonging to Q′ corresponds
to the choice of one element in each column of such a grid. Notice that after
applying a transition by the same letter to all the states in a set belonging to
Q′, we reach a set of states which still belongs to Q′. Extending this argument
to strings we get the following remark.

Remark 1. For each α ∈ Q′ and each w ∈ Σ∗, the set δ(α, w) belongs to Q′.

Furthermore, from the initial state (accepting the empty string), by reading a or
b, we reach the set {(0, 1), . . . , (0, m)} belonging to Q′. Hence, for each x ∈ Σ+,
the set δ(q0, x) contains exactly one of the final states (0, m), (1, m), (2, m). Thus,
for each string, the automaton reaches a final state, and it cannot give two
different answers on the same string. This permits us of concluding that An is
self-verifying.

We now closely study the properties of the computations of the svfa An. As
a consequence of the previous discussion and of Remark 1, it turns out that in
the subset automaton associated with An, all states that can be reached besides
the initial state {q0} belong to Q′. We will show that all the elements of Q′ are
reachable.

In the following, an element {(x1, 1), . . . , (xm, m)} belonging to Q′ will be de-
noted simply as the vector (x1, . . . , xm) in {0, 1, 2}m. With a small abuse of nota-
tion, for (x1, . . . , xm) and (y1, . . . , ym) in {0, 1, 2}m, we will write (y1, . . . , ym) =
δ((x1, . . . , xm), w), if by reading the string w ∈ Σ∗ from the state set corre-
sponding to the vector (x1, . . . , xm), the state set corresponding to the vector
(y1, . . . , ym) is reached.

Hence, for each (x1, . . . , xm) in {0, 1, 2}m, the following holds:

• δ((x1, . . . , xm), a) = (0, x1, . . . , xm−1),
• δ((x1, . . . , xm), b) = ((x1 + 1) mod 3, . . . , (xm + 1) mod 3).

From the first equality, we can see that the string am can be used to “reset”
the “grid part” of the automaton, that is, δ((x1, . . . , xm), am) = (0, . . . , 0) for
each (x1, . . . , xm) in {0, 1, 2}m. Hence, the state (0, . . . , 0) is reachable from each
state belonging to Q′. We now prove the converse.

Lemma 3. For each (z1, . . . , zm) in {0, 1, 2}m, the state set corresponding to
the vector (z1, . . . , zm) is reachable.

Proof. Notice that (z1, . . . , zm) = δ((0, z2 − z1, . . . , zm − z1), bz1), where sub-
traction is modulo 3. So, it is enough to prove that all states corresponding to
vectors (0, y1, . . . , ym−1) with yi in {0, 1, 2} are reachable.

Converting Self-verifying Automata into Deterministic Automata 465

Let y = y1 · · · yk be a string over {0, 1, 2} of length k, 0 � k � m− 1, and let
us show by induction on k that for each x in {0, 1, 2}, the state corresponding
to the vector (0, y1, . . . , yk, x, x, . . . , x) is reachable.

The basis, k = 0, holds true since for each x, state (0, x, x, . . . , x) can be
reached from state (0, . . . , 0) by bxa. For the induction step, let y = y1 · · · yk

be any string of length k. Then state (0, y2 − y1, . . . , yk − y1, x − y1, . . . , x − y1),
with subtraction modulo 3, is reachable by induction hypothesis, and
it goes to state (0, y1, . . . , yk, x, . . . , x) by the string by1a. Hence state
(0, y1, . . . , yk, x, . . . , x) is reachable, which completes our proof. $%

As a consequence of Remark 1 and Lemma 3, it turns out that in the subset
automaton Asub associated with the svfa An, the set of reachable states coincides
with {q0} ∪ Q′. Hence, its cardinality is 1 + 3m = 1 + 3

n−1
3 . Now we prove that

the automaton Asub is minimal.
To this aim, given two different states x = (x1, . . . , xm) and y = (y1, . . . , ym)

in Q′, we consider an index j, 1 � j � m, such that xj �= yj. We remind
that xj , yj ∈ {0, 1, 2}. The states (0, j), (1, j) of the svfa An are not compatible
because, for instance, the string am−j is accepted by a computation starting
from (0, j), but rejected by a computation starting from (1, j). The same string
can be used to show that even the states (0, j) and (2, j) are not compatible,
while the string am−jb can be used to prove that the states (1, j) and (2, j) are
not compatible. Hence, in all possible cases we conclude that there exists a string
z witnessing the fact that the states (xj , j) and (yj , j) of An are not compatible.
By the standard properties of subset automata, it follows that the same string
z distinguishes x and y. Since the initial state {q0} of the subset automaton is
accepting, it cannot be equivalent to any subset of Q′ that contains either state
(1, m) or state (2, m). A subset of Q′ that contains state (0, m) is distinguishable
with {q0} by the string b. Hence, we get the following result.

Lemma 4. The minimal dfa equivalent to the given n-state svfa An is the subset
automaton Asub associated with An and it has 1 + 3

n−1
3 states.

Now we consider the other values of n.
For n = 3m + 2, m � 2, we modify the definition of An, by introducing

the extra state (3, 1). Furthermore, δ((2, 1), b) = {(3, 1)}, δ((3, 1), b) = {(0, 1)},
and δ((3, 1), a) = δ((2, 1), a) = {(2, 2)}. The other transitions are unchanged.
With respect to the automaton depicted in Figure 1, the modified An has one
extra state in the first column. This new state is inserted in the loop joining, by
transitions labeled with the letter b, the states of the first column, i.e., such a
loop has length 4. Furthermore, the only transition from the new state on the
letter a reaches the last state of the second column.

After this change, all the states in the first column are still not compatible with
each other. Along the same lines of the previous proof, in particular of Remark 1
and Lemma 3, it can be proved that the set of reachable states in the subset
automaton obtained from An corresponds to {q0} plus (an isomorphic copy of)
the set {0, 1, 2, 3} × {0, 1, 2}m−1. All these states are pairwise distinguishable.
Hence the minimal dfa equivalent to An has 1 + 4 · 3m−1 states.

466 G. Jirásková and G. Pighizzini

For n = 3m, m � 2, the original definition of An is changed, by removing
the state (2, 1) and the outgoing transitions. Furthermore, a transition on the
letter b from (1, 1) to (0, 1) is added. Hence the loop on letters b in the first
column is of length 2. In this case, we prove that the set of states of the minimal
dfa equivalent to the given svfa is isomorphic to {q0} ∪ {0, 1} × {0, 1, 2}m−1.
We have to modify the proof of reachability in Lemma 3. The basis holds true
since (0, . . . , 0) goes to (0, 1, 1, . . . , 1) by ba, and to (0, 2, 2, . . . , 2) by bb. The
induction step is the same as in Lemma 3, if y1 = 0 or y1 = 1. In the case of
y1 = 2, state (0, 2, y2, . . . , yk, x, . . . , x) can be reached by the string ab2 from
state (0, y2 − 2, . . . , yk − 2, x − 2, . . . , x − 2), which is reachable by induction.
Hence the number of states is 1 + 2 · 3m−1.

With the above considered cases, we get the optimality for each n � 6. We
can also prove, using the same examples, the optimality for n ∈ {3, 4, 5}. In
particular, for these values of n, we get that n = 1 + f(n − 1) and the svfa An

coincides with the minimal dfa.
Finally, we consider n = 1 and n = 2. All the transitions in an svfa with

only one state must be self-loops. Hence the svfa is already a dfa accepting or
rejecting all Σ∗.

On the other hand, if an svfa has two states and both are accepting or both are
rejecting, then they can be merged, obtaining a one-state svfa (previous case).
Hence the only remaining case is that of an svfa consisting of one accepting
and one rejecting state. We observe that a nondeterministic choice in such an
automaton should imply both the acceptance and the rejection of the same
string. Hence, also in this special case the svfa coincides with the minimal dfa.

By summarizing we have proved the following result.

Theorem 4. For each integer n � 1 and each n-state self-verifying finite au-
tomaton, there exists an equivalent deterministic finite automaton with g(n)
states, where

g(n) =

⎧⎪⎪⎨⎪⎪⎩
1 + 3

n−1
3 , if n ≡ 1 (mod 3) and n � 4,

1 + 4 · 3 n−2
3 −1, if n ≡ 2 (mod 3) and n � 5,

1 + 2 · 3 n
3 −1, if n ≡ 0 (mod 3) and n � 3,

n, if n � 2.

Furthermore, for each integer n � 1, there exists a binary n-state svfa An such
that the minimal dfa equivalent to An has exactly g(n) states.

5 Conclusions

We conclude the paper with some considerations concerning our main result.
Theorem 4 gives a tight bound on the number of states of a dfa equivalent to a
given n-state svfa. The optimality of this bound has been proved by considering a
family of automata with a two-letter input alphabet. Hence, one can immediately
ask whether or not the optimality holds in the case of unary automata, namely
automata with a one-letter alphabet.

Converting Self-verifying Automata into Deterministic Automata 467

It is not difficult to give a negative answer to this question. In fact, as
proved by Chrobak [11], the cost, in term of the number of states, of the op-
timal transformation of nfa’s into dfa’s is given by a function F (n), such that
F (n) = eΘ(

√
n log n). Since this function grows slowly than the bound g(n) given

in Theorem 4 and svfa’s are special nfa’s, it turns out that F (n) is a better upper
bound for the conversion of unary n-state svfa’s into dfa’s.

Hence, the next natural question is whether or not this upper bound F (n)
is tight. Even in this case, the answer is negative. We can prove this by con-
tradiction. Suppose that a language L is accepted by an n-state svfa A and
the minimal dfa accepting L has F (n) states. By Theorem 1, both L and Lc

are accepted by n-state nfa’s. However, in [12] it was proved that if a unary
language L is accepted by an n-state nfa and the minimal dfa accepting L has
F (n) states, that is, the language L is a worst case for the determinization, then
each nfa accepting Lc should have at least F (n) states, which implies that the
nondeterminism is useless in order to recognize Lc. This gives a contradiction.
Hence, we have proved the following theorem.

Theorem 5. For each unary n-state self-verifying finite automaton, there exists
an equivalent deterministic finite automaton with less than F (n) states.

We can increase the nondeterministic capabilities of svfa’s by adding the possi-
bility of multiple initial states. In this case, at the beginning of the computation,
the starting state is chosen from a set of possible initial states. The same require-
ments apply to this kind of automata, namely for each string, the automaton
should have a computation reaching an accepting or a rejecting state, and the
automaton cannot give two different answers. By the arguments in Section 3,
we can prove that each n-state svfa with multiple initial states can be simulated
by a dfa whose number of states is given by the function f(n) = g(n + 1) − 1.
We can prove that this bound is optimal, by making just a small change to
the automata An considered in Section 4. For each integer n � 1, we define an
automaton Bn by removing from An+1 the initial state q0 and by considering
the set {(0, 1), (0, 2), . . . , (0, m)} of possible initial states. By our results in Sec-
tion 4, it turns out that the minimal dfa equivalent to the svfa Bn must have
f(n) states.

We also notice that the transition diagram of the svfa Bn is deterministic. The
only nondeterministic step is at the beginning of the computation for choosing
the initial state. Hence, we actually proved that the tight cost of the simulation
of n-state multiple initial state svfa’s by dfa’s is f(n), even if the only nonde-
terministic step is at the beginning of the computation and all the transitions
of the automaton are deterministic. A similar phenomenon happens for deter-
ministic automata with multiple initial state. In [13] it has been proved that
for each integer n, there exists a language accepted by an n-state deterministic
automaton with multiple initial states such that the minimal equivalent dfa has
2n − 1 states.

468 G. Jirásková and G. Pighizzini

Acknowledgments

We would like to thank the anonymous referees of LATA 2009 for their valuable
comments and suggestions that help us to improve the presentation of our results.

References

1. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

2. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

3. Lupanov, O.: A comparison of two types of finite automata. Problemy Kibernet 6,
321–326 (1963) (in Russian); German translation: Über den Vergleich zweier Typen
endlicher Quellen, Probleme der Kybernetik 6, 329–335 (1966)

4. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

5. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proc. 12th Ann. IEEE Symp. on Switching and Automata
Theory, pp. 188–191 (1971)

6. Ďurǐs, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism
for one-way communication complexity, finite automata, and polynomial-time com-
putations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp.
117–128. Springer, Heidelberg (1997)

7. Hromkovič, J., Schnitger, G.: Nondeterministic communication with a limited num-
ber of advice bits. SIAM J. Comput. 33(1), 43–68 (2003)

8. Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way commu-
nication complexity, OBDDs, and finite automata. Information and Computa-
tion 169(2), 284–296 (2001)

9. Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata
into deterministic ones. Theoretical Informatics and Applications 41(3), 261–265
(2007)

10. Moon, J., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
11. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-

ence 47, 149–158 (1986); Corrigendum. ibid 302, 497–498 (2003)
12. Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. The-

oretical Computer Science 330(2), 349–360 (2005)
13. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic

finite automata. Journal of Automata, Languages and Combinatorics 6(4), 453–466
(2001)

Two Equivalent Regularizations for Tree
Adjoining Grammars

Anna Kasprzik

Informatik FB IV, University of Trier, D-54286 Trier

Abstract. We present and compare two methods of how to make deriva-
tion in a Tree Adjoining Grammar a regular process (in the Chomsky
hierarchy sense) without loss of expressive power. One regularization
method is based on an algebraic operation called Lifting, while the other
exploits an additional spatial dimension by transforming the components
of a TAG into three-dimensional trees. The regularized grammars gener-
ate two kinds of “encoded” trees, from which the intended ones can be re-
constructed by a simple decoding function. We can show the equivalence
of these two two-step approaches by giving a direct translation between
lifted and three-dimensional trees and proving that via this translation
it is possible to switch between the encodings without losing the infor-
mation necessary for the reconstruction of the intended trees.

Keywords: Tree Adjoining Grammar, Multi-Dimensional Trees, Lifting,
Regularization.

1 Introduction

A Tree Adjoining Grammar (TAG) is a special kind of tree grammar which has
been developed by Joshi et al. [1] in connection with studies on the formal treat-
ment of natural languages. Joshi et al. [1] claimed the least class of formal lan-
guages containing all natural languages to be situated between the context-free
and the context-sensitive languages in the Chomsky Hierarchy, and introduced
the notion of mild context-sensitivity. The string language classes associated with
TAGs are all situated in the family of mildly context-sensitive language classes,
which became an important concept for computational linguistics.

As mild context-sensitivity represents a relatively high degree of complexity
already, it would be of considerable use if there were a way to simplify derivation
without giving up any of the expressive power. One of the simplest modes of
derivation is the regular one where only the outermost components of an object
(e.g. the last symbol of a string) may be rewritten. Regularizing a formalism
has the obvious advantage that it makes the whole range of finite-state methods
applicable ([2]), which is of interest for most areas based on formal language
theory, e.g. natural language processing or grammatical inference ([3]), especially
when more complex objects than strings are involved. As a matter of fact, for
TAGs at least two such regularization methods exist, and the presentation and
comparison of these two approaches constitute the main part of this work.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 469–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

470 A. Kasprzik

2 Preliminaries

We presuppose some familiarity with classical formal language theory and trees.
The necessary preliminaries can be found for example in [4], [5], and also [6].

Definition 1. A TAG is a 5-tuple 〈Σ, N, I, A, S〉, where Σ is the (non-ranked)
terminal labeling alphabet, N is the (non-ranked) nonterminal labeling alphabet
with N ∩ Σ = ∅, S is the start symbol with S ∈ N , I is a finite set of initial
trees where the root is labeled with S, and A is a finite set of auxiliary trees.

Nonterminals label inner nodes and, in auxiliary trees, exactly one leaf which
is referred to as the foot node and must carry the same symbol as the root. All
other leaves are labeled by terminals or the empty word ε. New trees can be built
by adjunction: A node in a tree is replaced by an auxiliary tree and the subtree
formerly rooted at that node is attached to the foot node of the auxiliary tree.

A TAG can be enriched by associating a pair of constraints with every node,
stating if adjunction is required or not (obligatory adjunction (OA) constraint),
and which auxiliary trees may be adjoined at that node (selective adjunction
(SA) constraint). These constraints obliterate the roles of nonterminal and ter-
minal symbols and the start symbol, and hence the distinction between initial
and auxiliary trees as well. Rogers [7] defines non-strict TAGs:

Definition 2. A non-strict TAG is a pair 〈E, I〉 where E is a finite set of
elementary trees in which each node is associated with a label from some alphabet,
an SA constraint (a subset of E), and an OA constraint (Boolean valued). I ⊆ E
is a distinguished non-empty subset. Every elementary tree has a foot node.

β =

S

ε

α =

S

a

S̄

d

b S̄ c

Fig. 1. A TAG generating the (non-context-free) string language {anbncndn|n ≥ 0}

S da

S̄ da

S̄ cb

S̄ cb

S

ε

ε

S̄

=⇒

ε

S

b

=⇒ a d

S̄ c

S̄

Fig. 2. A derivation of the word aabbccdd

Two Equivalent Regularizations for Tree Adjoining Grammars 471

Non-strict TAGs are equivalent to TAGs with adjunction constraints. We give
an example for a non-strict TAG generating the language {anbncndn|n ≥ 0}:

Example 1. Let G with G = 〈{α, β}, {α}〉 be a non-strict TAG (over the al-
phabet {a, b, c, d, S}). The only initial tree α and the only auxiliary tree β
are given in Figure 1. Constraints at the inner nodes and the foot node are:
OA = 0 and SA = {β} for the ones without a bar, and OA = 0 and SA = ∅
for the ones labeled with ‘S̄’. The bar stands for null adjunction, i.e., no adjunc-
tion is allowed at these nodes. A derivation of the word aabbccdd is shown in
Figure 2.

3 Lifted Trees

The technique of Lifting belongs to the realm of treating formal language classes
with algebraical means. For the necessary preliminaries concerning universal
algebra (esp. many-sorted algebras) and trees as terms, see [8,9].

Definition 3. Let Σ be a ranked alphabet. The derived (N∗ × N)-indexed al-
phabet of Σ, denoted by D(Σ), is defined as follows. Let, for each n ≥ 0,
Σ′

n = {f ′|f ∈ Σn} be a new set of symbols; let for each n and each i, 1 ≤ i ≤ n,
πn

i be a new symbol (the ith projection symbol of sort n); and let, for each
n, k ≥ 0, cn,k be a new symbol (the (n, k)th composition symbol). Then

– D(Σ)ε,0 = Σ′
0 ;

– for n ≥ 1, D(Σ)ε,n = Σ′
n ∪ {πn

i |1 ≤ i ≤ n} ;
– for n, k ≥ 0, D(Σ)nkn,k = {cn,k} , and
– D(Σ)w,s = ∅ for w ∈ N∗, s ∈ N otherwise.

Note that all operators in Σ are treated as constants in D(Σ). Lifting a term
over some Σ just means translating it into a corresponding term over D(Σ):

Definition 4 ([6]). Let Σ be a ranked alphabet. For k ≥ 0, LIFTΣ
k : TΣ(Xk) −→

T k
D(Σ) (with TΣ(Xk) the set of terms over Σ∪{x1, . . . , xk}) is defined as follows:

LIFTΣ
k (xi) = πk

i

LIFTΣ
k (f) = c0,k(f ′) for f ∈ Σ0

LIFTΣ
k (f(t1, . . . , tn)) = cn,k(f ′, LIFTΣ

k (t1), . . . , LIFTΣ
k (tn))

for n ≥ 1, f ∈ Σn and t1, . . . , tn ∈ T (Σ, Xk) .

Lifting has a very useful side effect: If you note a term as a tree and lift it,
all inner nodes become leaves. This obviously makes the operation of replacing
those nodes by bigger structures a much “simpler” process – speaking in terms
of formal language theory, a regular process. Consequently any context-free tree
grammar (CFTG, based on the rewriting of inner nodes) over a signature Σ
can be translated into a regular tree grammar (RTG, rewriting of leaves only)
over the signature D(Σ) by lifting the trees on the right hand sides of the pro-
ductions and, since all nonterminals have become constants (i.e., leaf labels), by

472 A. Kasprzik

deleting the variables representing daughters on the left hand sides. The intended
trees over the original signature can then be reconstructed using the information
contained in the “encoded” trees the RTG generates via the following function:

rec(f ′) = f(x1, . . . , xn) for f ∈ Σn

rec(πn
i) = xi

rec(c(t, t1, . . . , tn)) = rec(t)[rec(t1), . . . , rec(tn)] .

The proof of the following lemma (contained implicitly in [8]) is given in [10]:

Lemma 1. Suppose Γ = (Σ, F, S, X, P) is a CFTG and L(Γ) the tree language
it generates. Then there is a derived regular tree grammar Γ L = (D(Σ), D(F), S′,
PL) such that L(Γ) is the image of L(Γ L) under the mapping rec.

The individual derivation steps also correspond:

Lemma 2. A tree t′ is derived in Γ L from t in k steps, i.e., t ⇒ t′ via the
productions pL

1 , . . . , pL
k in PL if and only if there are corresponding productions

p1, . . . , pk in P such that rec(t′) is derived in Γ from rec(t) via those productions.

Morawietz [6] has collected some properties of trees generated by a lifted CFTG
over some signature D(Σ): a) All inner nodes are and no leaf is labeled by some
composition symbol cn,k, b) any node labeled with a symbol in Σ′

n, n ≥ 1, is on
a leftmost branch, and c) for any node p labeled with some projection symbol
πn

i there is a unique node µ which properly dominates p and whose ith sister
will eventually evaluate to the value of πn

i under the mapping rec. Moreover, µ
will be the first node properly dominating p on a left branch. We will call lifted
trees that fulfil condition c) closed lifted trees.

Lifting can be used to regularize TAGs as well. However, since TAGs function
a little differently from CFTGs (which is linked to the fact that TAG trees are
labeled by non-ranked symbols), this is not possible without some transforma-
tion. It has been proven by Fujiyoshi and Kasai [11] that every TAG can be
translated into a spine grammar, which is a special kind of CFTG, where in
the tree on the right-hand side of every production there exists a path from the
root to a variable-labeled leaf and every other variable is the child of a node
on that path. See [11] for the exact definition, construction, and proof of weak
equivalence to TAGs. Their method can be easily adapted to non-strict TAGs
as well. Example 2 shows the result of applying the translation of Fujiyoshi and
Kasai [11] to the TAG of Example 1, and its lifted version.

Example 2. The new CFTG G′ = (Σ0∪Σ1∪Σ3, F0∪F1∪F3, S
′, X, P) obtained

from the TAG G in Example 1 is defined as follows: Σ0 = {ε, a, b, c, d}, Σ1 =
{s1}, Σ3 = {s3}, X = {x1, x2, x3}, F0 = {S′}, F1 = {S1}, F3 = {S3}, and

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S′ −→ s1(ε)
S′ −→ S1(ε)

S1(x1) −→ s3(a, s3(b, s1(x1), c), d)
S1(x1) −→ s3(a, S3(b, s1(x1), c), d)

S3(x1, x2, x3) −→ s3(a, s3(b, s3(x1, x2, x3), c), d)
S3(x1, x2, x3) −→ s3(a, S3(b, s3(x1, x2, x3), c), d)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Two Equivalent Regularizations for Tree Adjoining Grammars 473

s3

a s3 d

b c

b c

c

s′3 a′ d′

c b′ c′

s′1 π1s′3 a′ c d′

s′3 b′ c c′

s′3 π1 π2 π3

a ds3

s3

s1

ε

c

c

c

ε

Fig. 3. Two trees, generated via corresponding rules of G′ and G′L

In lifted form, this grammar then looks like this: G′L = (D(Σ), D(F), S′′, PL)
with D(Σ)ε,0 = {ε, a′, b′, c′, d′}, D(Σ)ε,1 = {s′1}, D(Σ)ε,3 = {s′3, π3

1 , π
3
2 , π3

3},
D(Σ)nkn,k = {c}, D(F)ε,0 = {S′′}, D(F)ε,1 = {S′

1}, D(F)ε,3 = {S′
3}, and

PL =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S′′ −→ c(s′1, ε)
S′′ −→ c(S′

1, ε)
S′

1 −→ c(s′3, a
′, (s′3, b

′, c(s′1, π1), c′), d′)
S′

1 −→ c(s′3, a
′, (S′

3, b
′, c(s′1, π1), c′), d′)

S′
3 −→ c(s′3, a

′, (s′3, b
′, c(s′3, π1, π2, π3), c′), d′)

S′
3 −→ c(s′3, a

′, (S′
3, b

′, c(s′3, π1, π2, π3), c′), d′)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Figure 3 shows two corresponding trees generated by G′ and G′L – note how
the elementary trees of the original TAG are still distinguishable. In fact we can
state the following: In a tree generated by a lifted TAG the elementary trees
are represented by the tree parts between one composition symbol on a leftmost
branch and the next, and the expanded nodes correspond to the mother nodes
of these composition symbols. In order to see this, consider the following obser-
vations: a) An adjunction operation in a TAG corresponds to the rewriting of
an inner node in the corresponding CFTG, and consequently to the rewriting of
a leaf in the corresponding lifted CFTG (see Lemma 2) and b) a composition
symbol on a leftmost branch is certain evidence that at this node a produc-
tion of the lifted CFTG has been applied.1 It follows from this that the parts
1 This can be explained as follows: Lifting a CFTG comprises lifting all the trees

on the right-hand sides of the rules. In such a lifted tree all leftmost daughters of
any node are labeled with symbols in Σ′

n (for some n), and never by composition
symbols. Consequently, a composition symbol on a leftmost branch indicates that
the tree cannot be contained as a whole in the rules of the grammar (i.e., as the
right-hand side of a rule starting with ‘S′ −→ . . .’) but that some production must
have been applied that licenses the rewriting of a leaf by the subtree now rooted at
the node in question (which, however, can contain other rewritings itself).

474 A. Kasprzik

separated by composition symbols on leftmost branches must match the ele-
mentary components of the original TAG. Foot nodes are represented by nodes
whose children except the leftmost are all labeled by projection symbols.

4 Three-Dimensional Trees and Their Yields

In this section we will consider a method based on a generalization by Rogers
[12,7] of the concept of trees. Starting from ordinary trees based on two-
dimensional tree domains Rogers extends the concept both downwards (to strings
and points) and upwards and defines labeled multi-dimensional trees:

Definition 5. Let d1 be the class of all dth-order sequences of 1s: 01 := {1}, and
n+11 is the smallest set satisfying (i) 〈〉 ∈ n+11, and (ii) if 〈x1, . . . , xl〉 ∈ n+11
and y ∈ n1, then 〈x1, . . . , xl, y〉 ∈ n+11. Let T0 := {∅, {1}} (point domains). A
(d+1)-dimensional tree domain is a set of hereditarily prefix closed (d+1)st-order
sequences of 1s, i.e., T ∈ Td+1 iff

– T ⊆ d+11,
– ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,
– ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ Td .

A Σ-labeled Td (d-dimensional tree) is a pair (T, τ) where T is a d-dimensional
tree domain and τ : T −→ Σ is an assignment of labels in the (non-ranked)
alphabet Σ to nodes in T . We will denote the class of all Σ-labeled Td as Td

Σ.

Every d-dimensional tree can be conceived to be built up from d-dimensional
local trees, that is, trees of depth at most one in their major dimension. Each of
these smaller trees consists of a root and an arbitrarily large (d−1)-dimensional
“child tree” consisting of the root’s children. Composite trees can then be built
from local ones by identifying the root of one local tree with a node in the child
tree of another (see Figure 4 for an illustration). Rogers [7] also defines automata
for multi-dimensional trees based on the notion of local trees.

For this paper, the most important concept to adapt to multi-dimensionality
is that of the yield of a tree. The yield of a two-dimensional tree is the string
formed by its leaf labels. In Rogers’ words, it is a projection of the tree onto the
next lower level, i.e., its dimensions are reduced by one. So d-dimensional trees
with d ≥ 3 have several yields, one for each dimension that is taken away, down
to the one-dimensional string yield. Note that when taking the yield of a tree
with d ≥ 3, some thought has to go into the question of how to interweave the
child trees of its local components to form a coherent (d − 1)-dimensional tree,
since there are often several possibilities. Rogers solves this by a construction
quite similar to foot nodes in TAGs. See [7] for the exact definition.

Rogers [7] has established a link between three-dimensional trees and TAGs
– he has proven the equivalence of T3 recognizing automata and non-strict
TAGs:

Two Equivalent Regularizations for Tree Adjoining Grammars 475

Fig. 4. Adjunction in TAG expressed via three-dimensional trees

Theorem 1. A set of Σ-labeled two-dimensional trees is the yield of a recogniz-
able set of Σ-labeled T3 trees iff it is generated by a non-strict TAG.

From a certain perspective, trees accepted by a T3 automaton derived from a
non-strict TAG can be seen as a special sort of derivation trees for that TAG in
which one does not have to resort to tree names as node labels since both the
elementary trees in question and the way they are combined can be displayed
explicitly in the same object. Their direct yield is the set of the trees generated
by that TAG, their one-dimensional yield is the corresponding string language.

The representation of a TAG via three-dimensional trees obviously also con-
stitutes a regularization: Trees are now constructed by adding local trees at the
frontier of another tree (see Figure 4), which is a regular process, instead of in-
serting trees at the interior. As stated above, the trees generated by the original
TAG can be extracted from the three-dimensional trees via the yield function.
We have thus described the second regularization method for TAG.

We introduce an a bit more “term-like” representation for three-dimensional
trees, which will include the concept of rank (in the second dimension), in or-
der to facilitate the comparison to lifted trees. Let Σ be an arbitrary ranked
alphabet. We define the set 3DΣ of three-dimensional trees over Σ:

Definition 6. (f, t) ∈ 3DΣ if f ∈ Σ0 (f is the root label) and t ∈ 3D+
Σ (t

is the structure formed by the nodes properly dominated by the root in the third
dimension). 3D+

Σ is the set of antitrunks (three-dimensional trees without a root):

– (f, t, 〈t1, . . . , tn〉) ∈ 3D+
Σ if f ∈ Σn, t ∈ 3D+

Σ and ti ∈ 3D+
Σ for 0 ≤ i ≤ n

(the ti are the daughter antitrunks of f in the second dimension).
– (f, 〈t1, . . . , tn〉) ∈ 3D+

Σ if f ∈ Σn and ti ∈ 3D+
Σ for 0 ≤ i ≤ n.

In addition, we use a binary feature to indicate if a node is a foot node or
not. For example, (f, 〈〉, 1) for some label f ∈ Σ and t ∈ 3D+

Σ is a foot node,
(f, t, 〈t1, t2〉, 0) for t1, t2 ∈ 3D+

Σ is not, and (f, t, 〈t1, t2〉, 1) is not well-formed.
We postulate the following conditions for foot nodes: a) Foot nodes are leaves in
the second and third dimension, b) every contiguous two-dimensional tree in an
antitrunk has to contain exactly one foot node, c) leaves in the second dimension
are also leaves in the third dimension.

We will now define our own yield function ydΣ : 3D+
Σ × N → TΣ0 where Σ0

is a ranked alphabet with Σ0
n = Σn ∪ Σ0 for every n ≥ 0 and TΣ0 is the set of

all two-dimensional trees over Σ0. Let x1, . . . , xl be elements of a countable set
of variables. Let tv, t1, . . . , tm ∈ 3D+

Σ. The function grk : Σ0 × N → Σ0 takes a

476 A. Kasprzik

label of rank 0 and yields another label consisting of the same symbol, but with
the rank given in the second argument.

ydΣ(t, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(ydΣ(t1, l), . . . , ydΣ(tm, l)) if f ∈ Σm, m ≥ 0,
t = (f, (t1, . . . , tm), 0)

ydΣ(tv, m)[(ydΣ(t1, l), . . . , ydΣ(tm, l)] if f ∈ Σm, m ≥ 1, t =
(f, tv, (t1, . . . , tm), 0)

fl(x1, . . . , xl) if t = (f, (), 1) and
for fl = grk(f, l) f ∈ Σ0

The function has three cases because we have to distinguish between foot nodes
and non-foot nodes, and among the latter between nodes that have an extension
in the third dimension and nodes that do not. The second argument keeps track
of the number of daughters of the roots in the third dimension so that when a
foot node is reached the correct number of variables can be attached (which are
then substituted by the direct subtrees of the corresponding root). The function
yd works on antitrunks. In order to obtain the yield of a T3 tree we first have to
apply a function ydpre

Σ : 3DΣ → TΣ0 to detach the root and initialize the second
argument: ydpre

Σ (ta) = ydΣ(t, 0) for a tree ta = (f, t) with f ∈ Σ and t ∈ 3D+
Σ .

5 Equivalence

We would like to establish the equivalence of the two regularizations for TAGs
presented above, based on either the transformation into a lifted spine gram-
mar or into a T3 automaton. In order to do this, it is important to note several
structural similarities between the tree-like objects defined by these devices:
Both types of objects still include two kinds of information about the originally
intended trees, namely which individual components, i.e., elementary trees they
are composed of, and how these are put together, which is precisely the infor-
mation needed to reconstruct the intended trees from the “encoded” ones.

With the T3 method the elementary trees are the child structures of the local
trees of the T3 tree, and the points where the local trees are joined together are
the nodes that are expanded by these child structures. In a tree generated by a
lifted TAG the elementary trees are represented by the tree parts between one
composition symbol on a leftmost branch and the next, and the expanded nodes
correspond to the mother nodes of these composition symbols (see Section 3).

We will give a direct formal translation between lifted and T3 trees that
exploits these structural similarities by finding corresponding points and making
them match. Let us start by giving the function hli translating lifted into T3
trees. For this, let LD(Σ) be a set of trees over D(Σ) characterized by:

–
⋃

n≥0
D(Σ)ε,n ∈ LD(Σ) .

– c(f, t1, . . . , tn) ∈ LD(Σ) if f ∈ Σn
′ and t1, . . . , tn ∈ LD(Σ) \ {πn

i |1 ≤ i ≤ n} .
– c(f, π1, . . . , πn) ∈ LD(Σ) if f ∈ Σ′

n and n ≥ 1 .

Two Equivalent Regularizations for Tree Adjoining Grammars 477

– c(t, t1, . . . , tn) ∈ LD(Σ) if n ≥ 1, t, t1, . . . , tn ∈ LD(Σ) \ {πn
i |1 ≤ i ≤ n} and t

contains projection symbols π1, . . . , πn that are not dominated by more than
one composition symbol on a leftmost branch in t.

It is clear that all trees generated by a lifted CFTG derived from a TAG via
the algorithm from [11] and all their subtrees are contained in LD(Σ). We will
therefore take LD(Σ) as the domain of hli. The range will be the set 3D+

Σ.
Let in the following be tv, t1 . . . , tn, q1, . . . , qm ∈ LD(Σ) for all n, m ≥ 0, and

tv, t1 . . . , tn /∈ {πi|i ≥ 1}. The function gze :
⋃

n≥0
Σ′

n → Σ0 takes a label and

yields another label consisting of the same symbol, but with rank 0.

hli(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f, (hli(t1), . . . , hli(tn)), 0) if t = c(f, t1, . . . , tn)
with f ∈ Σ′

n and n ≥ 0
(♦, hli(tv), (hli(t1), . . . , hli(tn)), 0) if t = c(tv, t1, . . . , tn),

n ≥ 1, tv = c(q1, . . . , qm)
and m ≥ 1

(f, (), 1) with f = gze(f0) if t = c(f0, π1, . . . , πn)
with f0 ∈ Σ′

n and n ≥ 1.

Like our yield function from the previous section, this function is subdivided
into three cases. Here we distinguish between nodes that have projection sym-
bols as daughters (future foot nodes) and nodes that do not, and among those
between nodes whose leftmost daughter is a symbol in Σ′

n and nodes whose
leftmost daughter is the root of another complex term (which is translated into
an extension in the third dimension). As the function does not depend on the
subscripts of the composition symbols (cn,k for some n and k), they are left
out. The function hli yields antitrunks. In order to translate the elements of
LD(Σ) into T3 trees we have to apply the function pli : LD(Σ) → 3DΣ first with
pli(t) = (♦, hli(t)) that attaches a three-dimensional root and then recurs to the
actual translation function. The symbol ♦ is a special placeholder for labelling
three-dimensional roots, since the lifted trees do not contain the information
about the labels they should have, i.e., the ones the nodes have in the original
TAG before their expansion. It can have any rank (♦ ∈ Σn for all n ≥ 0).

The function h3d : 3D+
Σ × N → LD(Σ) translates antitrunks into lifted trees.

Let tv, t1, . . . , tm ∈ 3D+
Σ. The function grk(ε) : Σ0 × N →

⋃
n≥0

Σ′
n takes a label of

rank 0 and yields another label consisting of the same symbol, but of type 〈ε, n〉,
where n is fixed by the second argument.

h3d(t, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm(f, h3d(t1, n), . . . , h3d(tm, n)) if m ≥ 0, f ∈ Σm,
t = (f, (t1, . . . , tm), 0)

cm(h3d(tv, m), if m ≥ 1, f ∈ Σm and
h3d(t1, n), . . . , h3d(tm, n)) t = (f, tv, (t1, . . . , tm), 0)

cn(f, π1, . . . , πn) if n ≥ 1, f0 ∈ Σ0

with f = grk(ε)(f0, n) and t = (f0, (), 1).

478 A. Kasprzik

TAG

regularization
derivation/licensing

translation
between encodings

decoding

lifted spine grammar T3 automaton

3DΣ

TΣ

LD(Σ)

Fig. 5. Equivalence of Lifting and three-dimensional trees as TAG regularizations

The cases for this function are identical to the ones for the yield function. Com-
position symbols on left branches are translated into extensions in the third
dimension, and foot nodes are translated into nodes with the right number of
sisters (i.e., the number of daughters of the node that was expanded by the cor-
responding elementary tree in the original TAG) labeled by projection symbols.
Of the composition symbols cn,k only the index n is given (the value of k is
not as immediate as the one of n but can be easily inferred from the lifted tree
afterwards). The function h3d takes antitrunks as its input. If we want to use
h3d to translate a T3 tree ta = (f, t) with f ∈ Σ and t ∈ 3D+

Σ , we first have to
apply a function p3d : 3DΣ → LD(Σ) with p3d(ta) = h3d(t, 0) that detaches the
root of ta and initializes the second argument of the translation function.

Formally, the equivalence of Lifting and of T3 trees as regularization methods
for TAG can be shown by proving that the direct decoding of an “encoded”
tree and its translation into the other encoding and the decoding of the result
yield exactly the same originally intended tree (see Figure 5 for a diagram of
the relevant connections). We therefore state the following theorem – a detailed
(very technical) proof can be found in [13]:2

Theorem 2. For all closed lifted trees tl ∈ LD(Σ) generated by the lifted version
of some TAG (over the alphabet Σ) and all trees ts ∈ 3DΣ generated by the T3
tree version of the same TAG,

– rec(ts) = ydpre(pli(ts)) , and
– ydpre(ts) = rec(p3d(ts)) .

Figure 6 shows two encoded trees and the intended tree, which can be generated
by the TAG from Example 1 (see Figure 2). The lifted tree in the lower right

2 We also believe an even stronger equivalence in the sense of a bijection to hold: Let
A be the set of trees generated by a lifted spine grammar that is the regularized
version of a TAG, and let B be the set accepted by a T3 automaton that has been
extracted from the same TAG. Then pli(A) = B and p3d(B) = A, and even, for
some tree t1 ∈ A, p3d(pli(t1)) = t1 as well as pli(p3d(t2)) = t2 for some tree t2 ∈ B.

Two Equivalent Regularizations for Tree Adjoining Grammars 479

p3d pli

S′
3 a′ c d′

c b′ c c′

d′ S′
1 π1

c′

π2

c

c

π3

S′
3 a′

S′
3 b′

S′
3 π1

c ε

c

c

b

S
b

a

S
yd

rec

S

S

S

S

S

d

d

c

c

ε

a

a

b

b

ε

S

a

S
d

S

d
Sc

S

♦

Fig. 6. Two encoded trees and the corresponding intended tree

corner can be generated by the regularized version of that TAG (see Example 2),
and in the upper right corner is the matching three-dimensional tree.

6 Conclusion

In this paper, we have presented two regularization methods for TAGs. Regu-
larized TAGs of both kinds define sets of “encoded” trees, which, however, still
contain the necessary information to reconstruct the intended trees defined by
the original TAG. Both methods operate by transforming the components of a
TAG in a way that turns all inner nodes into leaves, thus making it possible
to expand these nodes by means of a regular mechanism. Both methods exploit
a side effect of the theoretical concepts they are based on – algebraic Lifting
and the notion of multi-dimensional trees – since neither was developed with the
primary intention of regularizing the grammar formalism TAG.

However, the methods described here have even more in common: The two
different kinds of objects generated by regularized TAGs exhibit a number of
structural similarities, which we exploited in order to show their direct trans-
latability. Objects of both kinds can be seen as a special sort of derivation tree for
the originally intended tree, and it is only natural that this should be somehow
related to regularization in that derivation trees, which are composed starting
from a root and adding every further step of the derivation somewhere at the
leaves, are a special sort of regular trees – recall that regularity in general rep-
resents a mode of constructing an object where one element after the other is

480 A. Kasprzik

added at the frontier of that object, and not somewhere in between. By letting
us find different kinds of derivation trees for a formalism, in addition to gaining
knowledge about how the properties of derivation as such can be modified, the
study of regularization may thus perhaps give further insight about derivation
in the formalism in particular as well.

A possible continuation of this work could be to search for more regularization
methods for TAGs and determine if the structure of the objects created in the
process resembles the structure of the objects treated here. One could even
conjecture that every similar effort to reduce the complexity of derivation must
result in similar properties, i.e., in objects that are directly translatable into
lifted or three-dimensional trees as well.

References

1. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree Adjunct Grammars. Journal of Com-
puter and System Sciences 10(1), 136–163 (1975)

2. Kasprzik, A.: Making Finite-State Methods Applicable to Languages Beyond
Context-Freeness via Multi-dimensional Trees. In: Piskorski, J., Watson, B., Yli-
Jyrä, A. (eds.) Post-proc. 7th Int. Workshop on Finite-State Methods and NLP.
IOS Press, Amsterdam (2009), www.uni-trier.de/index.php?id=18342

3. Kasprzik, A.: A Learning Algorithm for Multi-dimensional Trees, or: Learning
beyond Context-Freeness. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008.
LNCS, vol. 5278, pp. 111–124. Springer, Heidelberg (2008),
www.uni-trier.de/index.php?id=18342

4. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading (1979)

5. Gécseg, F., Steinby, M.: Tree automata. Akademiai Kiado (1984)
6. Morawietz, F.: Two-Step Approaches to Natural Language Formalisms. Studies in

Generative Grammar, vol. 64. Mouton de Gruyter, Berlin (2003)
7. Rogers, J.: wMSO Theories as Grammar Formalisms. TCS 293, 291–320 (2003)
8. Engelfriet, J., Schmidt, E.: IO and OI (I). J. Comp. & Sys. Sci. 15, 328–353 (1977)
9. Engelfriet, J., Schmidt, E.: IO and OI (II). J. Comp. & Sys. Sci. 16, 67–99 (1978)

10. Mönnich, U.: On cloning contextfreeness. In: Kolb, H.P., Mönnich, U. (eds.) Studies
in Generative Grammar, vol. 44, pp. 195–229. Mouton de Gruyter, Berlin (1999)

11. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of Com-
puting Systems 33, 59–83 (2000)

12. Rogers, J.: Syntactic Structures as Multi-dimensional Trees. Research on Language
and Computation 1, 265–305 (2003)

13. Kasprzik, A.: Two Equivalent Regularizations for Tree Adjoining Grammar. M.A.
thesis (2007), http://www.uni-trier.de/index.php?id=18342

www.uni-trier.de/index.php?id=18342
www.uni-trier.de/index.php?id=18342
http://www.uni-trier.de/index.php?id=18342

Self-overlapping Occurrences and
Knuth-Morris-Pratt Algorithm for Weighted

Matching

Aude Liefooghe1,2, Hélène Touzet1,2, and Jean-Stéphane Varré1,2

1 LIFL - UMR CNRS 8022 - Université des Sciences et Technologies de Lille, 59655
Villeneuve d’Ascq Cedex, France

2 INRIA Lille Nord-Europe, 59650 Villeneuve d’Ascq, France
firstname.lastname@lifl.fr

Abstract. Position Weight Matrices are broadly used probabilistic mo-
tif models. In this paper, we address the problem of identifying and
characterizing potential overlaps between occurrences of such a motif.
It has useful applications to the statistics of the number of occurrences,
and to weighted pattern matching with an extension of the well-known
Knuth-Morris-Pratt algorithm.

1 Introduction

Position Weight Matrices (PWMs for short) are probabilistic approximate pat-
terns. They are popular in computational biology, because they can depict subtle
signals in genomic or peptidic sequences. For example, transcription factor bind-
ing sites are commonly modeled by such motifs. PWMs are also used to represent
splice sites in messenger RNAs [1] or signatures in amino acid sequences [2].

Given a finite alphabet Σ and a positive integer m, a PWM M is a function
from Σm to IR that associates a score to each word of Σm. It has one row for
each symbol of the alphabet, and one column for each position in the pattern.
The coefficient M(p, x) gives the score at position p for the letter x in Σ. Given
a string u in Σm, the score of M on u is defined as the sum of the scores of each
character symbol of u:

Score(u, M) =
m−1∑
p=0

M(p, up),

where up denotes the character symbol at position p in u. Let α be a score
threshold. We say that M has an occurrence in the text T at position k if
Score(Tk . . . Tk+m−1, M) ≥ α.

In this paper, we investigate the self-overlapping properties of PWMs. The
propensity of a motif to have overlapping occurrences in a text has many conse-
quences. It can be used for computing the statistics of the number of occurrences
in a random text, since occurrences of a self-overlapping motif are not indepen-
dent [3,4]. It is also crucial in pattern matching. Among ideas that allow to speed

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 481–492, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

482 A. Liefooghe, H. Touzet, and J.-S. Varré

up pattern searching, many of them exploits a preprocessing of the pattern that
takes advantage of internal overlaps inside the pattern. Famous examples are
Knuth-Morris-Pratt [5] and Boyer-Moore [6] algorithms. In the case of multiple
exact pattern matching, the same idea gives rise to the Aho-Corasick automa-
ton [7].

The contributions of this paper are the following. In Section 2, we provide
a formal characterization of self-overlapping PWMs, as well as an algorithm to
efficiently compute the borders of a PWM. In Section 3, we show how to use this
result to express the covariance and the variance of the number of occurrences of
a PWM in a text. In Section 4, we explain how to adapt the Knuth-Morris-Pratt
paradigm to PWMs on the basis of borders for PWMs. This last point gives rise
to three pattern matching algorithms, that we have experimentally evaluated on
PWMs from the Jaspar database [8].

2 Analysis of Self-overlapping Occurrences of a PWM

We consider throughout a text T of length n on a finite alphabet Σ, and we
assume that the character symbols at various positions are independent. Each
character symbol x of Σ is assigned a probability µx. We also consider a PWM
M of length m on Σ, whose indices range from 0 to m − 1.

2.1 Definitions

The “self-overlapping” property of a word u gives rise to several definitions. The
terms may be different in each application field, but the concept is the same.
In statistics, this property is usually handled with an indicator function, that is
equal to 1 if the first � letters of u are the same, and in the same order as the
last � letters of u, and 0 otherwise. In stringology, this property is captured with
the notion of border. A border of u of length � is a prefix of length � which is
also a suffix of u. We extend this definition to motifs modeled by PWMs.

Definition 1 (Matrix border). Let M be a PWM of length m and let α be a
score threshold for M . A border for M and α is a word u of Σ�, with � < m,
such that there exist v, w ∈ Σm−� satisfying:

1. Score(M, uv) ≥ α, and
2. Score(M, wu) ≥ α.

It is easy to see that this definition coincides with the definition of border in the
case of exact strings. We introduce an equivalent characterization, that relies on
the definition of the maximal score of a matrix, and the greatest lower bound of
the score of a given position.

Definition 2 (Maximal score). Let M be a PWM of length m, and let M [i..j]
be a slice of M (0 ≤ i ≤ j < m). The maximal score of M [i..j], denoted
MaxSc(M [i..j]), is

MaxSc(M [i..j]) =
j∑

k=i

max
x∈Σ

M(k, x)

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm 483

Definition 3 (Greatest Lower Bound). Let M be a PWM of length m, α a
score threshold, and p a position of M (0 ≤ p < m). The Greatest Lower Bound
of M , p and α, denoted, GLB(M, p, α), is defined as

GLB(M, p, α) = α − MaxSc(M [p + 1..m − 1])

The greatest lower bound score was originally introduced in [9]. It can be shown
that a word u is an occurrence for M and α if, and only if, for each position p
of u, Score(M, u0..up) ≥ GLB(M, p, α).

Lemma 1. Let M be a PWM of length m, and let α be a score threshold. The
word u of length � is a border of M and α if, and only if, u fulfills the two
following properties:

1. Score(M [0..� − 1], u) ≥ GLB(M, � − 1, α), and
2. Score(M [m − �..m − 1], u) ≥ α − MaxSc(M [0..m − � − 1]).

Proof
(⇒) Let u be a border of length �. By Definition 1, there exist two words v
and w such that Score(M, uv) ≥ α and Score(M, wu) ≥ α. From the first
inequality, it follows that Score(M [0..�− 1], u) ≥ α− Score(M [�..m− 1], v) and
then Score(M [0..� − 1], u) ≥ GLB(M, � − 1, α). From the second inequality, it
follows that Score(M [m − �..m − 1], u) ≥ α − Score(M [0..m − � − 1], w) and
then Score(M [m − �..m − 1], u) ≥ α − MaxSc(M [0..m − � − 1]).

(⇐) Assume that u satisfies statements 1. and 2. of the Lemma. By Definition 3,
this implies that there exists a word v such that Score(M, uv) ≥ α, and by Def-
inition 2 that there exists a word w such that Score(M, wu) ≥ α. Subsequently,
u is a border of M and α. $%

Definition 4 (c(M, p, α)). Define the predicate c(M, p, α) as true if, and only
if, there exists a border of length m − p for M and α.

2.2 How to Compute c

We introduce b, that will serve as an auxiliary function to compute c.

Definition 5. Let M be a PWM of length m, and let p, i be two positions of M
(0 ≤ p ≤ i ≤ m − 1). We define the function b as

b(M, p, i, β, δ) = ∃u ∈ Σi−p+1(Score(M [p..i], u) = β∧Score(M [0..i−p], u) = δ)

Lemma 2

c(M, p, α) = ∃ β ≥ α − MaxSc(M [0..p − 1]) ∃ δ ≥ GLB(M, m − 1 − p, α)
such that b(M, p, m− 1, β, δ)

Proof. By Definition 4 and Lemma 1, c(M, p, α) is true if, and only if, there
exists a word u of length m − p such that

1. Score(M [0..m − p − 1], u) ≥ GLB(M, m − p − 1, α), and
2. Score(M [p..m − 1], u) ≥ α − MaxSc(M [0..p − 1]

484 A. Liefooghe, H. Touzet, and J.-S. Varré

Set β = α − MaxSc(M [0..p − 1]) and δ = GLB(M, m − 1 − p, α). This concludes
the proof. $%

Lemma 2 implies that it is sufficient to be able to compute b to deduce c. We
now explain how to compute b efficiently.

Lemma 3⎧⎨⎩
b(M, p, i, 0, 0) = 1, whenever i < p
b(M, p, i, β, δ) = 0, whenever i < p, β �= 0 or δ �= 0
b(M, p, i, β, δ) = ∨x∈Σ b(M, p, i − 1, β − M(i, x), δ − M(i − p, x)) otherwise

Proof. When i < p, the results comes from the definition of b. For the general
case, b(M, p, i, β, δ) is true if, and only if, there exists a letter x of Σ satisfying
the following property: there exists v in Σi−p such that Score(M [p..i − 1], v) =
β −M(i, x) and Score(M [0..i− p− 1], v) = δ −M(i− p, x), which is equivalent
to b(M, p, i − 1, β − M(i, x), δ − M(i − p, x)).

So for each p, b(M, p, i, β, δ) can be computed by lazy dynamic programming
from smaller values of i, β and δ. A useful remark is that it is not necessary to
consider all possible parameters for the final value of c. This is the goal of the
next lemma.

Lemma 4. c(M, p, α) is true if, and only if, for each value i ranging from p to
m − 1, there exist β and δ, such that

1. b(M, p, i, β, δ) = 1, and
2. β ≥ GLB(M, i, α) − MaxSc(M [0..p− 1]), and
3. δ ≥ GLB(M, i − p, α).

Proof
(⇒) If c(M, p, α) is true, then we know from Definition 5 and Lemma 2 that
there exists a word u of Σm−p such that

Score(M [p..m − 1], u) ≥ α − MaxSc(M [0..p − 1])
Score(M [0..m − 1 − p], u) ≥ GLB(M, m − 1, α)

Consider now a position i in p..m − 1. The values β = Score(M [p..i], u0..ui−p)
and δ = Score(M [0..i − p], u0..ui−p) fulfills the conditions of the Lemma, by
definition of GLB.

(⇐) Straightforward. $%

The implementation can use a hashtable to store the set of pairs of scores (β, δ)
satisfying the conditions of Lemma 4 for given values of i and p: c(M, p, α) is
true if, and only if, Sp

m−1 is not empty.

3 Application to Counting Occurrences in a Text

In this section, we are interested in the number of occurrences of a PWM in a
text T . We define Y as the random number of occurrences of M and α in T .
Our aim is to find the mean and the variance of Y .

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm 485

3.1 Probability of Observing Two Overlapping Occurrences

We first study the probability to observe two overlapping occurrences for M and
α. For that purpose, define the indicator variable Yk by Yk = 1 if M occurs in
position k in the text T with score greater than α, Yk = 0 if it does not. It is
routine to verify that

E[Yk] = Pv(M, α)
V [Yk] = Pv(M, α)(1 − Pv(M, α))

where Pv(M, α) denotes the P-value of the score α for M , that is the probability
of the set of words that are recognized by M and α:

Pv(M, α) = IP ({u ∈ Σm; Score(M, u) ≥ α})

The computation of Pv(M, α) can be performed efficiently by dynamic program-
ming [10,11]. We are interested in the probability of having Yk = 1 and Yk+p = 1,
for some 1 ≤ p ≤ m − 1. This event is true if there exist β and δ such that

1. Score(M [0..p − 1], Tk..Tk+p−1) ≥ α − β,
2. Score(M [p..m − 1], Tk+p..Tk+m−1) = β and

Score(M [0..m − p − 1], Tk+p..Tk+m−1) = δ,
3. Score(M [m − p..m − 1], Tk+m..Tk+p+m−1) ≥ α − δ.

Since positions in the text are independent, this decomposition gives rise to three
mutually independent events, whose probabilities are respectively Pv(M [0..p −
1], α − β), B(M, p, m − 1, β, δ) and Pv(M [m − p..m − 1]), α − δ) where:
B(M, p, i, β, δ) =

IP
({

u ∈ Σi−p+1; Score(M [p..i], u) = β ∧ Score(M [0..i − p], u) = δ
})

It follows that

IP (Yk = 1, Yk+p = 1) =
∑

β,δ Pv(M [0..p − 1], α − β)
×B(M, p, m − 1, β, δ)
×Pv(M [m − p..m − 1]), α − δ)

The computation of B is similar to the computation of b.

3.2 Mean, Covariance and Variance

Lemma 5. E[Y] = (n − m + 1)Pv(M, α).

Lemma 6. Cov[Yk, Yk+p] =
∑

β,δ Pv(M [0..p−1], α−β)×B(M, p, m−1, β, δ)×
Pv(M [m − p..m − 1]), α − δ) − Pv(M, α)2

Proof. By definition of the covariance, we have

Cov[Yk, Yk+p] = E[Yk, Yk+p] − E[Yk]E[Yk+p]

Since Yk and Yk+p are indicator functions, E[Yk, Yk+p] equals IP (Yk = 1, Yk+p =
1), which has been calculated in the preceding paragraph. E[Yk] and E[Yk+p]
both equal Pv(M, α). $%

486 A. Liefooghe, H. Touzet, and J.-S. Varré

Lemma 7. V [Y] = Pv(M, α)((n − m + 1)(1 − Pv(M, α)) − Pv(M, α))
+2
∑

β,δ Pv(M [0..p−1], α−β)×B(M, p, m−1, β, δ)×Pv(M [m−p..m−1]), α−δ)

Proof. By property of a variance, we have

V [Y] =
n−m∑
k=0

V [Yk] +
n−m∑
k=0

n−m∑
j=0

Cov[Yk, Yj]

In the sum
∑n−m

k=0
∑n−m

j=0 Cov[Yk, Yj], we only have to consider positions k and
j such that k − m < j < k + m. Other covariances equal 0. Applying Lemma 6
yields the expected result. $%

4 Application to Text Searching and the
Knuth-Morris-Pratt Algorithm

4.1 Previous Work Related to PWM Pattern Matching

The problem of efficiently finding occurrences of a PWM in a text has recently
attracted a lot of interest. Wu et al. were the first ones to propose an improve-
ment of the naive algorithm with the lookahead strategy [9]. They used the fact
that one can determine in advance whether a prefix of a word may potentially
lead to an occurrence or not, using the greatest lower bound of Definition 3.
In [12], Liefooghe et al. combined this lookahead strategy with the additivity
property of the scoring function to implement a solution based on a multi-table
index. This index pre-compute scores for slices of the given matrices and stores
them in an optimized way.

Other authors proposed to adapt methods that were initially designed for
exact string matching and that are proven to be efficient in this context. The
first possibility is to preprocess the text. Beckstette et al. proposed in [13] to
build a suffix array and took advantage of the lookahead strategy to improve the
size of the index. Pizzi et al.[14] introduced a filtration technique that is based
onto a preprocessing of the text for which the computation of the occurrences
of an automaton that contains at least all occurrences of the matrix are com-
puted. Lastly, Salmela et al. proposed an expansion of the well-known Shift-Add
algorithm to PWMs [15]. The principle of Shift-Add approaches is to use bit-
wise computation during the searching phase. The complexity of the algorithm
depends on the score threshold and the rounding of the scores of the matrix.

Another idea is to preprocess the pattern in order to maximise the length of
the shift of the pattern after a mismatch occurs during the scan of the text.
This is implemented in the Morris-Pratt and Knuth-Morris-Pratt algorithms
for exact string matching. The method computes a table that gives the next
position of the text that has to be tested when an attempt fails. The searching
phase consists in jumping from a current position to the next position using the
value stored in the table. In [14], Pizzi et al. studied the construction of the Aho-
Corasick automaton [7] for PWMs, which is a generalization of Knuth-Morris-
Pratt for multi-pattern matching. It appears that the Aho-Corasick automaton

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm 487

is very large if the PWM is long or if the score threshold is low. In practice, this
method is not suitable for matrices of length greater than fifteen. The advantage
of Morris-Pratt and Knuth-Morris-Pratt tables is that their size equals the length
of the motif. We recall the way the algorithm works on exact string motifs and
we then extend it to PWMs.

4.2 The Original Morris-Pratt and Knuth-Morris-Pratt Algorithms

The Morris-Pratt and Knuth-Morris-Pratt algorithms search for occurrences of
a word u within a text T by employing the observation that when a mismatch
occurs, the word itself embodies some information to determine where the next
match could begin. This information is used to improve the length of the shift
of the pattern against the text.

Morris-Pratt Algorithm. The shift of the Morris-Pratt algorithm is based on the
longest border. Let mpNext[i] be the length of the longest border of u0..ui−1 for
0 < i ≤ m. When an attempt fails at position i in the pattern and j in the text,
then the comparison can resume between characters i − mpNext[i] in u and j in
T without missing any occurrence.

Knuth-Morris-Pratt Algorithm. The additional idea of the Knuth-Morris-Pratt
algorithm is that if we want to avoid another immediate mismatch, the character
following the prefix in the pattern must be different from the current symbol.
For that, the shift rule uses tagged borders, instead of borders. Given a border
v of length � of the prefix u0 . . . up−1 of length of u, v is a tagged border if the
character symbol up is different from u�. kmpNext[i] is the length of the longest
tagged border of u0..ui−1.

4.3 Expansion to Position Weight Matrices

In the context of exact string matching, a failure comes from a mismatch between
the motif and the text. An attempt at position k in the text stops at position
i if Tk..Tk+i−1 = u0..ui−1 and Tk+i �= ui. When the motif is a PWM, this rule
depends on the score of the prefix of the motif. An attempt stops as soon as the
running score is too low: Score(M [0..i], Tk..Tk+i) < GLB(M, i, α). By Definition
3, we know that there is no occurrence of M and α starting at position k in the
text. We now explain how to construct the mpNext and kmpNext tables.

Morris-Pratt Algorithm. The extension to PWMs is straightforward. We denote
Border(M, α) the length of the longest border of M and α, according to Defini-
tion 1. mpNext is a vector of size m + 1 whose elements are defined as follows:

mpNext[0] = −1
mpNext[i] = Border(M [0..i − 1], GLB(M, i − 1, α)), 1 ≤ i ≤ m

The computation of each element of mpNext is done using Definition 4: mpNext[i]
equals i−p, where p is the lowest value such that c(M [0..i−1], p, GLB(M, i−1, α))
is true. All necessary values of c(M [0..i−1], p, GLB(M, i−1, α)) can be efficiently
computed using Lemma 4.

488 A. Liefooghe, H. Touzet, and J.-S. Varré

Knuth-Morris-Pratt Algorithm. We first need to extend the notion of tagged
border to position weight matrices.

Definition 6. Let M be a PWM, i a position of M and α a score threshold. u
is a tagged border for M , i and α, if u is a border of M [0..i] and GLB(M, i, α),
and there exists a letter x of Σ such that

1. Score(M [0..�], ux) ≥ GLB(M, �, α), and
2. Score(M [i − �..i], ux) < GLB(M, i, α) − MaxSc(M [0..i − � − 1]).

where � is the length of u.

We write TaggedBorder(M, i, α) for the length of the longest tagged border of
M , i and α. By convention, TaggedBorder(M, i, α) equals -1 if a suitable u does
not exist. We now define the table kmpNext as follows:

kmpNext[0] = −1
kmpNext[i] = TaggedBorder(M, i − 1, α), 1 ≤ i ≤ m

We introduce a new predicate to compute kmpNext.

Definition 7 (c′(M, p, i, α)). Define the predicate c′(M, p, i, α) as true if, and
only if, there exists a tagged border of length i − p for M , i − 1 and α.

kmpNext[i] equals i− p, where p is the lowest value such that c′(M, p, i− 1, α) is
true. The effective computation of c′ is done with the next lemma, that shows
that c′ can be deduced from b.

Lemma 8. c′(M, j, i, α) is true if, and only if, there exist two scores β, δ and
a letter x of Σ such that

1. b(M, j, i − 1, β, δ) = 1, and
2. GLB(M, i − 1, α)− MaxSc(M [0..j − 1]) ≤ β < GLB(M, i, α) − MaxSc(M [0..j −

1]) − M(i, x), and
3. δ ≥ GLB(M, i − j, α) − M(i − j, x).

4.4 The kmpNextΣ Table

We propose here a variation of the Knuth-Morris-Pratt algorithm, that imple-
ments a shift which depends on the failure letter. Instead of computing the
longest tagged border, we compute for each letter x of Σ the longest border
which is not followed by x. We will see in Section 4.6 that it gives rise to better
shifts and then to a better running time.

Definition 8 (x-tagged border). Let M be a PWM, i a position of M , α a
score threshold and x a letter of Σ. u is a x-tagged border for M , i, and α, if
u is a border of M [0..i] and GLB(M, i, α) such that

1. Score(M [0..�], ux) ≥ GLB(M, �, α), and
2. Score(M [i − �..i], ux) < GLB(M, i, α) − MaxSc(M [0..i − � − 1]),

where � is the length of u.

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm 489

We write Σ-TaggedBorder(M, i, α, x) the length of the longest x-tagged border
of M , i, and α. The shift rule associated to x-tagged borders is specified by a
two-entry table: one for the position, and one for the current character symbol.
The table kmpNextΣ is defined as follows:

kmpNextΣ [0][x] = −1
kmpNextΣ [i][x] = Σ-TaggedBorder(M, i, α, x), 1 ≤ i ≤ m

Lemma 9. kmpNext[i] = minx∈Σ kmpNextΣ [i][x]

Proof. kmpNextΣ [i][x] gives the length of the longest border u which fulfills the
two conditions of Definition 8. Hence, � = minx∈Σ kmpNextΣ [i][x] implies that
there exists a border u of length � and there exists a letter y in Σ such that
the two conditions of Definition 8 are fulfilled. This is exactly the definition of
kmpNext[i]. $%

As we have done previously, we define a predicate that tells whether a x- tagged
border exists or not. The difference compared to c′ is that the letter x is a
parameter of the predicate.

Definition 9 (c′′(M, p, i, α, x)). Define the predicate c′′(M, p, i, α, x) as true if,
and only if, there exists a fixed letter tagged border of length i − p for M , i − 1,
α and x.

kmpNextΣ [i][x] equals i − p, where p is the lowest value such that c′′(M, p, i −
1, α, x) is true.

Lemma 10. c′′(M, p, i, α, x) is true if, and only if, there exist two scores β, δ
such that

1. b(M, j, i − 1, β, δ) = 1, and
2. GLB(M, i − 1, α)− MaxSc(M [0..j − 1]) ≤ β < GLB(M, i, α) − MaxSc(M [0..j −

1]) − M(i, x), and
3. δ ≥ GLB(M, i − j, α) − M(i − j, x).

4.5 Looking for Occurrences Using mpNext, kmpNext or kmpNextΣ

We now give the proof that the shifts induced by the mpNext, kmpNext or
kmpNextΣ tables are safe: they do not allow to miss occurrences in the text.

Lemma 11. Let M a PWM, α be a score threshold, T be a text, k be a position
of T and i be a position of M . If the attempt k fails at position i of M , we know
there is no occurrence for M and α for any position k+ j of T such that 1 ≤ j ≤
i − mpNext[i], or 1 ≤ j ≤ i − kmpNext[i], or 1 ≤ j ≤ i − kmpNextΣ[i][T [k + i]].

Proof. We give the proof for mpNext. The two other cases are similar. Suppose
that there exists a position k+j, 1 ≤ j ≤ i−mpNext[i] such that Tk+j ..Tk+j+m−1
is an occurrence. Then Score(M, Tk+j ..Tk+j+m−1) ≥ α and thus Score(M [0..i−
j], Tk+j ..Tk+i−j) ≥ GLB(M, i − j, α). But necessarily Score(M [j − 1..i − 1],

490 A. Liefooghe, H. Touzet, and J.-S. Varré

Tk+j ..Tk+i−j) < α − MaxSc(M [0..j − 2]). Otherwise Tk+j ..Tk+i−j would be a
border of length i− j +1 of M [0..i−1], which is impossible because mpNext[i] <
i − j + 1. This second inequality contradicts the fact that an attempt fails at
position i of M . $%

Contrarily to the original Knuth-Morris-Pratt searching phase, we cannot avoid
to re-compute the score of the prefix against the text when shifting. This leads
to a time complexity in O(mn) in the worst case, instead of O(m + n) for exact
pattern matching. Nevertheless, there is still a strict improvement compared to
the lookahead strategy algorithm.

4.6 Experimental Results

As mentioned in the introduction of this paper, PWMs are commonly used to
model transcription factor binding sites. We measured the impact of the shifting
rules on the Jaspar database [8]. Jaspar contains 123 PWMs that are derived
from experimentally validated binding sites. The length of the PWMs ranges
from 4 to 30. We computed the occurrences of each matrix from a random
DNA sequence of 50 megabases. We used several P-values to define several score
thresholds (see Section 3.1). Only matrices whose length allows to have at least
one occurrence, 4m × p ≥ 1, for a given P-value p are used for each experiment
in order to not artficially reduce the average running time.

We compared the running times of the naive algorithm (NA), the lookahead
stategy algorithm (LSA), the expansions of the Knuth-Morris-Pratt algorithm
using the kmpNext table (KMP) and the kmpNextΣ table (KMB-AB). The algo-
rithms have been implemented in C++ and a computer with a 2.33GHz Intel
Core 2 Duo processor with 2 gigabytes of main memory has been used.

Table 1 gives the average searching phase running time for the four algorithms
and the average preprocessing running time for KMP and KMP-AB. Figure 1
gives the total running time per matrix for P-value 10−4. Algorithm KMP-AB
achieves the best running time, outperforming the algorithm using the looka-
head strategy. As we could expect, the running time increases when the P-value
increases (the score threshold decreases) because the shifts become smaller. If
one removes the longest matrix (of length 30) from the experiments, the prepro-
cessing running time is almost the same for computing the kmpNext table or the

Table 1. Average running times of the searching and preprocessing phases per matrix
(in seconds) for several P-values

p-value p = 10−7 p = 10−5 p = 10−3

nb. of matrices 45 86 122
NA 3.80 3.22 2.81

Searching LSA 1.41 1.86 2.62
phase KMP 0.95 1.13 1.35

KMP-AB 0.71 0.86 1.34

Preprocessing KMP 0.019 0.023 0.043
phase KMP-AB 0.956 0.513 0.418

Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm 491

 0

 1

 2

 3

 4

 5

 6

 7
9 10 11 12 13 14 15 16 17 18 20 22 30

T
im

e
(in

 s
ec

on
ds

)

Matrices (grouped by length)

NA
LSA
KMP

KMP-AB

Fig. 1. Running times per matrix (in seconds) for P-value 10−5

Table 2. Average searching plus preprocessing running times per matrix (in seconds)
with the filtration technique

p = 10−7 p = 10−5 p = 10−3

KMP 0.48 0.63 0.79
KMP-AB 0.54 0.65 0.82

kmpNextΣ table. Without this matrix, the average preprocessing running time
for computing kmpNextΣtables becomes respectively 0.009s, 0.014s and 0.062s
for P-values 10−7, 10−5 and 10−3. The preprocessing running time increases with
the P-value and the length of the matrices. The sum of the preprocessing and
searching phase running times is almost always less than the LSA running time.
Moreover, as the patterns used for finding transcription factor binding sites are
permanent objects stored into databases, the computation need to be done only
once.

When the shift computed thanks to the next tables equals 1, KMP and KMP-
AB do not increase the efficiency of the searching phase. Let r be the rightmost
position of a matrix such that all shifts between 0 and r equal 1. Instead of
computing iteratively the score from 0 to r, we can directly compute the score
of the prefix of length r + 1. This can be done thanks to a preprocessing phase
which computes the scores for all words of length r + 1 and stores them into
a table [12]. If r is not too large, the running time and the amount of memory
used are small. Table 2 gives the average running time when we applied this
refinement with r limited to 7 (preprocessing running time is less than 0.01s).
KMP is the fastest algorithm, with a gain of almost 50% compared to KMP
without filtration. KMP gives better results compared to KMP-AB because the
value of r is lower with KMP-AB.

5 Conclusion

We extended the definition of a border for PWMs. This allowed to devise two
algorithms directly derived from the Morris-Pratt and Knuth-Morris-Pratt algo-
rithms and a new algorithm (KMP-AB). We then proposed to use a refinement

492 A. Liefooghe, H. Touzet, and J.-S. Varré

which, at the cost of a little amount of memory and preprocessing time, allows
to get the best of the shifts and leads to a speed-up of almost three in practice
compared to the LSA algorithm.

References

1. Mount, S.: A catalogue of splice junction sequences. Nucleic Acids Research 10,
459–472 (1982)

2. Hulo, N., Sigrist, C., Saux, V.L., Langendijk-Genevaux, P., Bordoli1, L., Gattiker,
A., Castro, E.D., Bucher, P., Bairoch, A.: Recent improvements to the PROSITE
database. Nucleic Acids Research 32, D134–D137 (2004)

3. Ewens, W., Grant, G.: Statistical Methods in Bioinformatics. Springer, Heidelberg
(2005)

4. Pape, U., Rahmann, S., Sun, F., Vingron, M.: Compound poisson approximation of
the number of occurrences of a position frequency matrix (PFM) on both strands.
Journal of Computation Biology 15, 547–564 (2008)

5. Knuth, D., Morris Jr., J., Pratt, V.: Fast pattern matching in strings. SIAM Journal
on Computing (1977)

6. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20,
762–772 (1977)

7. Aho, A., Corasick, M.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM (1975)

8. Sandelin, A., Alkema, W., Engström, P., Wasserman, W.: Jaspar: an open-access
database for eukaryotic transcription factor binding profiles. Nucleic Acids Re-
search (2004)

9. Wu, T.D., Nevill-Manning, C.G., Brutlag, D.L.: Fast probabilistic analysis of se-
quence function using scoring matrices. Bioinformatics 16, 233–244 (2000)

10. Staden, R.: Methods for calculating the probabilities of finding patterns in se-
quences. Comput. Appl. Biosci. 5, 89–96 (1989)

11. Touzet, H., Varré, J.S.: Efficient and accurate p-value computation for position
weight matrices. Algorithms for Molecular Biology 2 (2007)

12. Liefooghe, A., Touzet, H., Varré, J.S.: Large scale matching for position weight
matrices. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp.
401–412. Springer, Heidelberg (2006)

13. Beckstette, M., Homann, R., Giegerich, R., Kurtz, S.: Fast index based algorithms
and software for matching position specific scoring matrices. BMC Bioinformatics
(2006)

14. Pizzi, C., Rastas, P., Ukkonen, E.: Fast search algorithms for position specific
scoring matrices. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI),
vol. 4414, pp. 239–250. Springer, Heidelberg (2007)

15. Salmela, L., Tarhio, J.: Algorithms for weighted matching. In: Ziviani, N., Baeza-
Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 276–286. Springer, Heidelberg
(2007)

Membership Testing: Removing Extra Stacks
from Multi-stack Pushdown Automata

Nutan Limaye and Meena Mahajan

The Institute of Mathematical Sciences, Chennai 600 113, India
{nutan,meena}@imsc.res.in

Abstract. We show that fixed membership testing for many interesting
subclasses of multi-pushdown machines is no harder than for pushdowns
with single stack. The models we consider are MVPA, OVPA and MPDA,
which have all been defined and studied in the past.

Multi-stack pushdown automata, MPDA, have ordered stacks with
pop access restricted to the stack-top of the first non-empty stack. The
membership for MPDAs is known to be in NSPACE(n) and in P. We
show that the P-time algorithm can be implemented in the complexity
class LogCFL; thus membership for MPDAs is LogCFL-complete.

It follows that membership testing for ordered visibly pushdown au-
tomata OVPA is also in LogCFL.

The membership problem for multi-stack visibly pushdown automata,
MVPA, is known to be NP-complete. However, many applications focus
on MVPA with O(1) phases. We show that for MVPA with O(1) phases,
membership reduces to that in MPDAs, and so is in LogCFL.

1 Introduction

Pushdown machines are the machines having a finite control and access to a
stack. The languages accepted by such machines are called context-free lan-
guages, CFLs. For a fixed machine M , given a string w, the membership problem
asks whether w ∈ L(M). It is of interest due to its implications for parsing and
model checking problems. The first polynomial time algorithm for the mem-
bership problem for CFLs was given by Cocke, Kasami, and Younger (see for
instance [1]).

Let us denote the membership problem for the class of languages L by
MEM(L). If A is a class of automata accepting the language class L, then we
use MEM(L) and MEM(A) interchangeably.

The problems log-space many-one reducible to MEM(CFL) define a complexity
class called LogCFL [2]. LogCFL is a subclass of P and is also known to be
contained in NC, i.e. efficiently parallelizable.

The membership problem for many subclasses of CFLs has been studied rigor-
ously. The set of languages log-space many-one reducible to MEM(DCFL), where
DCFL denotes deterministic context-free languages, define the complexity class
LogDCFL which is a subclass of LogCFL [2]. It is also known that the membership
problems for linear and deterministic linear context-free languages, MEM(LIN)

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 493–504, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

494 N. Limaye and M. Mahajan

and MEM(DLIN), are complete for the complexity classes nondeterministic and
deterministic log-space, NL and Log respectively [3,4]. Another interesting sub-
class of CFLs is visibly pushdown languages, VPLs ([5,6]). These are the lan-
guages accepted by visibly pushdown automata (VPA) which are ε-moves-free
pushdown automata whose stack behaviour is dictated solely by the input letter
under consideration. They are also referred to as input-driven PDA. MEM(VPL)
is known to be complete for the class NC1 [7] of languages accepted by families
of polynomial-size log-depth bounded fan-in circuits.

A natural generalisation of pushdown machines is pushdown machines with
more than one stack. This generalisation, unfortunately, is not smooth in terms
of the power of these machines: A pushdown automaton with two or more stacks
is known to recognise all recursively enumerable languages. The model in its full
generality is thus intractable. However, for certain model checking applications,
pushdown automata with two or more stacks are useful. Hence, some restrictions
of multi-stack machines have been considered in the literature.

One possible restriction is a 2-stack VPA. One can consider various models
depending on whether to allow simultaneous stack changes or depending on the
order of accessing the stacks. Such models indeed have been considered recently
(see e.g. [8,9]). A language-theoretic study, as well as the membership problem
complexity for these models, are important.

Here we focus on the membership problem for three different models which
have been defined and studied in the literature.

The first model is one recently considered by La Torre et al. [9]: a pushdown
machine equipped with two stacks where the access to both the stacks is com-
pletely dictated by the input alphabet. This is a natural generalisation of VPLs
and a proper restriction of general pushdown automaton having more than one
stack. They call such machines multi-stack visibly pushdown machines, MVPA.
In their definition, these machines cannot simultaneously access both stacks. On
reading any input letter, the MVPA either pushes on one of the stacks or pops
from one of the stacks. A phase of the input string is a substring such that while
reading it, all the pop moves of the machine are on the same stack. In [9], it is
shown that MEM(MVPL), where MVPL denotes the class of languages accepted
by MVPA, is NP-complete. The proof of NP hardness is a reduction from an in-
stance of SAT. For a fixed MVPA M , a string w is constructed from an n-variable
formula such that it has n phases. That the number of phases depends on the
input formula is important for the proof of hardness.

In this paper, we consider a restriction of the above problem, where the number
of phases is a constant. We define another version of the membership problem,
MEM(MVPLk). For a fixed MVPA M and fixed positive integer k, the problem
MEM(MVPLk) is to decide whether a given w ∈ Σ∗ is in Lk(M), where Lk(M)
denotes the language {w ∈ Σ∗ | w is accepted by M with ≤ k phases }.

This restriction of MVPA, where the number of phases is bounded, is also
useful for many applications and has been defined and considered in [9]. The
class is known to generalise VPLs and is properly contained in context-sensitive
languages. In this paper, we show that the problem MEM(MVPLk) is in LogCFL.

Membership Testing: Removing Extra Stacks 495

In order to show this, we need another model of multi-pushdown machines
defined by Cherubini et al. [10]. They define a restriction of multi-pushdown
machines wherein there is an order given to the stacks of the machine. The
machine is allowed to push on any stack. However, pop moves are allowed only
on the first non-empty stack. We denote such machines by PDn, where n is the
number of stacks in the machine. We denote the class of languages accepted by
these as LPDn

. A restriction of PDn, namely PD2, was studied in [11], where
it was shown that MEM(PD2) is in P. Later, in [12], a P-time upper bound
for MEM(PDn) was established. We give a reduction from MEM(MVPLk) to
MEM(PDk).

We then prove a LogCFL upper bound for MEM(PDk). This improves the P-
time upper bound of [12]. Also, combined with our previous reduction, this gives
a LogCFL upper bound for the problem MEM(MVPLk). The languages accepted
by MVPA within two phases are a proper subclass of context sensitive languages,
a proper generalisation of VPLs, and are incomparable with CFLs. Hence, this
implies the same upper bound as for CFLs for an incomparable class. However,
we do not know if MEM(MVPAk) for any fixed k is hard for LogCFL.

Recently, Carotenuto et al. [8] defined another class of two-stack pushdown
machines, 2-OVPA. Like MVPAs, these machines have a visible access to their
stacks, i.e. the stack movement is completely dictated by the input alphabet.
There is also an order among the stacks and the second stack is popped only if
the first is empty. This model is interesting because emptiness and inclusion are
decidable, and languages accepted by such machines form a Boolean algebra [8].
The generalisation where the number of stacks is k, k-OVPA, is also considered in
[8]. The language class accepted is contained in LPDk

. Thus, the LogCFL upper
bound we prove also applies to this language class.

The main results of our paper can be summarised as follows:

Theorem 1. For every fixed k ≥ 1, MEM(MVPLk) ≤ MEM(PDk).

Theorem 2. For every fixed k ≥ 1, MEM(PDk) is in LogCFL.

Corollary 1. ∀k ≥ 1, MEM(MVPLk) and MEM(k-OVPA) are in LogCFL.

2 Preliminaries

Circuits and Complexity. A Boolean circuit Cn on n inputs is a directed
acyclic graph, with a designated sink (out-degree zero vertex) called the output
gate. All the vertices except sources (in-degree zero vertices) are labelled by ∨
and ∧. Sources are labelled by {0, 1} or by predicates of the form [xi, a, 1, 0]
where i ∈ [n]. Such a predicate takes the value 1 if xi = a and 0 otherwise1.

A Boolean circuit C can be unwound into a tree TC (by duplicating nodes).
A proof tree T ′ of C on input w is a subtree of TC with the following properties:
(1) The output gate is in T ′. (2) For every ∨-gate in T ′, one of its children is in
1 This convention of labelling leaves with predicates is used, for e.g. , in [13], to deal

with languages over non-binary alphabets.

496 N. Limaye and M. Mahajan

T ′. (3) For every ∧-gate in T ′, all its children are in T ′. (4) All the nodes in T ′

evaluate to 1 on input w.
A proof tree exists if and only if Cn accepts w. In general the proof tree could

be of size exponential in n. C is said to have poly-proof-tree-size if whenever a
string w is accepted by C, there is a proof tree on w of size poly(|w|).

The complexity class LogCFL is the class of languages log-space many-one
reducible to some CFL, and is known to be equivalent to the class of languages
accepted by circuits having polynomial sized proof trees. See e.g. [2,14,15].

Visible two stack machines ([9]). An MVPA M is a pushdown machine
having two stacks, where the access to the stacks is restricted in the following
way: The input alphabet Σ is partitioned into 5 sets. A letter from Σj

c causes a
push move on stack j, that from Σj

r forces a pop move on stack j, and both the
stacks are left unchanged on letters from Σi. (The subscripts c, r, i denote call,
return and internal respectively.) Formally, an MVPA M = (Q, Σ, Γ, δ, q0, F) is
a two-stack nondeterministic pushdown machine where Q is a set of finite states,
Σ is the finite alphabet which is a union of 5 disjoint sets Σ0

c , Σ0
r , Σ1

c , Σ1
r , Σi, q0

is the initial state, F ⊆ Q is a set of final states, Γ is the finite stack alphabet
containing a special bottom-of-stack symbol ⊥ that is never pushed or popped,
and δ has the following structure: δi ⊆ Q × Σi × Q, and for j ∈ {0, 1}, δj

c ⊆
Q × Σj

c × Q × Γ \ {⊥} and δj
r ⊆ Q × Σj

r × Γ × Q.
The machine is allowed to pop on an empty stack; that is, on reading a letter

from Σj
r and seeing ⊥ on the jth stack top, the machine can proceed with a

state change leaving the ⊥ untouched.
A phase is a substring of the input string w ∈ Σ∗ during which pop moves

happen only on one of the stacks. Define the set

PHASEk = {w | w ∈ Σ∗, number of phases in w ≤ k}

Clearly, for any fixed partition of Σ, PHASEk is a regular set.
Let M be a fixed MVPA M and k a fixed positive integer. Its k-phase language

Lk(M) is defined as Lk(M) = L(M) ∩ PHASEk. By taking a direct product of
a finite state automaton accepting PHASEk with MVPA M , we can obtain an
MVPA M ′ = 〈M, k〉 such that L(M ′) = Lk(M ′) = Lk(M). In Section 3, we
assume that the given MVPA M satisfies L(M) = Lk(M).

Ordered multi-stack machines and grammars ([10,11,12]). A PDk M =
(Q, Σ, Γ, δ, q0, Z0, F) is a k-stack pushdown machine where Q, Σ, q0, Z0, F are as
usual, and the transition function δ is of the form δ ⊆ Q×(Σ∪ε)×Γ×Q×(Γ ∗)k.

A configuration is a (k + 2)-tuple, 〈q, w, γ1, . . . , γk〉 where q ∈ Q, w ∈ Σ∗,
and γi ∈ Γ ∗ for each i represents the contents of the ith stack. The initial
configuration on word x is 〈q0, x, Z0, ε, . . . , ε〉. A configuration is called a final
configuration if q ∈ F .

If there is a transition (q′, α1, . . . , αk) ∈ δ(q, a, A), the machine in state
q can read a letter a from the input tape, pop A from the first non-empty
stack, push αi on stack i for each i ∈ [k], and move to state q′. Formally,
〈q, aw, ε, . . . , ε, Aγi, . . . , γk〉 1 〈q′, w, α1, . . . , αi−1, αiγi, . . . , αkγk〉.

Membership Testing: Removing Extra Stacks 497

If (q′, α1, . . . , αk) ∈ δ(q, ε, A) then 〈q, w, ε, . . . , ε, Aγi, . . . , γk〉 1 〈q′, w, α1, . . . ,
αi−1, αiγi, . . . , αkγk〉.

The PDk M accepts a string w if it can move from 〈q0, w, Z0, ε, . . . , ε〉 to some
〈q, ε, γ1, . . . , γk〉 where q ∈ F . The set of all the strings accepted by M is the
language accepted by M , denoted L(M).

Theorem 3. ([12]) For a fixed PDk, given an input string w ∈ Σ∗, checking if
w ∈ L(M) is in P. i.e. MEM(PDk) ∈ P.

In [11], PDk are characterized by grammars. We describe the D2-grammars that
correspond to languages accepted by PD2. A D2-grammar G is a 4-tuple G =
(N, Σ, P, S) where N, Σ, S are as usual, and P has productions of the form:
A → w(α)(β) where A ∈ N , w ∈ Σ∗ and α, β ∈ N∗.

Sentential forms in a derivation are of the form x(α)(β) where x ∈ Σ∗, α, β ∈
N∗. The initial sentential form is (S)(ε). If A → w(α)(β) is a production rule,
then w′(Aα′)(β′) ⇒ w′w(αα′)(ββ′) and w′(ε)(Aβ′) ⇒ w′w(α)(ββ′) are the only
valid derivations using this rule. Note that only leftmost derivations are allowed.
We say that A ⇒∗ w(α)(β) if (A)(ε) ⇒∗ w(α)(β) and that A ⇒∗ w if (A)(ε) ⇒∗

w(ε)(ε). The language generated is the set L(G) = {w | S ⇒∗ w}.

Theorem 4. ([11]) Every D2-grammar G has an equivalent normal form D2-
grammar G′ where each production is of one of the following types:

– A → (BC)(ε); A, B, C ∈ N (branching production)
– A → (ε)(B); A, B ∈ N (chain production)
– A → a; A ∈ N, a ∈ Σ. (terminal production).

A derivation in such a grammar is said to be a normal form derivation if when-
ever a non-terminal A is rewritten by a chain production, say A → (ε)(B), then
that occurrence of B is eventually rewritten by either a branch production or
a terminal production. That is, no variable participates in two chain rules. For
every derivation, there is an equivalent normal form derivation [11].

A typical derivation in this grammar arising from the use of a branching
production produces non-contiguous substrings. Say A → (BC)(ε) ∈ P . Also
say B ⇒∗ β1(ε)(β) ⇒∗ β1β2(ε)(ε) and C ⇒∗ γ1(ε)(γ) ⇒∗ γ1γ2(ε)(ε). Then A ⇒
(BC)(ε) ⇒∗ β1(C)(β) ⇒∗ β1γ1(ε)(γβ) ⇒∗ β1γ1γ2(ε)(β) ⇒∗ β1γ1γ2β2(ε)(ε).
Thus, we say that in the string β1γ1γ2β2, the substring β1β2 is produced by B
with a gap, and the gap is filled by C with the substring γ1γ2.

A chain production does not explicitly give rise to a gap in the string. How-
ever, the application of a chain production swaps the order of substrings being
produced by the non-terminals in the first list. Say A → (ε)(B) and B ⇒∗ β; i.e.
A produces a string β via a chain rule. Also say C ⇒∗ γ. Consider a sentential
form w(AC)(δ). The string β produced by A appears in the final string after
the string γ that is produced by C. That is, we get w(AC)(δ) ⇒ w(C)(Bδ) ⇒∗

wγ(ε)(Bδ) ⇒∗ wγβ(ε)(δ). Hence when A produces a string via a chain produc-
tion, we assume that β has a gap (of length 0) at the beginning (before β). Thus,
a chain rule always results in a gap at the beginning.

498 N. Limaye and M. Mahajan

Consider a terminal rule A → a. Say A appears in some list in a sentential
form. The terminal a produced by A appears before all the strings produced by
all the non-terminals that follow A in its list. Consider sentential form w(AC)(δ).
Then we get w(AC)(δ) ⇒ wa(C)(δ) ⇒∗ waγ where C ⇒∗ γ. Thus, a terminal
production produces a gap (of length 0) at the end (i.e. after the terminal).

Ordered, visible two stacks machines ([8]). 2-OVPA are pushdown ma-
chines with two stacks, access to both of which is dictated by the input alphabet.
The input alphabet Σ is a union of 8 disjoint finite sets: except for simultaneous
pops on both stacks, all other combinations are allowed. Also the stacks are ac-
cessed in an ordered manner i.e. a pop is allowed on the second stack only if the
first stack is empty. k-stack versions, k-OVPA, are defined similarly [8]. k-OVPA
are essentially restrictions of PDk, with the exception that they can also make
moves when their stacks are empty. See [8] for formal definitions.

3 Reduction from MEM(MVPLk) to MEM(PDk)

In this section, we consider the problem MEM(MVPLk) and establish Theorem 1.
The simplest case is when k = 1; for all fixed MVPA M , L1(M) ∈ VPL. Since
VPLs are known to be in NC1 [7], for which membership in a fixed regular
language is complete [16], MEM(MVPL1) reduces to MEM(NFA), where NFA are
nondeterministic finite-state automata. But a PD0 is precisely an NFA. Hence
MEM(MVPL1) reduces to MEM(PD0).

For k > 1, we reduce this problem to MEM(PDk). As described in Section 2,
we assume that Lk(M) = L(M). We convert M into a multi-pushdown machine
N having k stacks, called Maini for 1 ≤ i ≤ k, and show that L(M) reduces to
L(N) (via logspace many-one reductions).

Consider a phase i in which stack-j (j ∈ {0, 1}) of machine M is being popped.
The PD works in two stages – mimic stage and buffer stage. (Exception: phase
k has only a mimic stage.)

In the Mimic stage, Maini and Maini+1 contain the contents of stack j and
1 − j respectively and mimic the moves of machine M on these two stacks.
The rest of the stacks are empty. (In particular for all l < i, Mainl are empty.)
In the Buffer stage, Maini+1 is marked with a special symbol. The contents of
Maini are popped and are pushed onto top of the special symbol (in reversed
order), and then popped and pushed into Maini+2. Thus, the contents of Maini

are transferred into Maini+2 in the same order. Note that, the contents of Maink

need not be popped at all since there is no subsequent phase, and hence k stacks
suffice in N .

To carry out these phases, the input string is padded with some new extra
letters by a function f . On reading these letters, N does the necessary transfers.
As the next phase expects to pop stack Maini+1, after such a transfer all the
stacks are ready for next processing step. More formally,

Lemma 1. Fix a MVPA M and an integer k. There exist a PD2k+2 N and a
function f ∈ Log, such that ∀w ∈ Σ∗, w ∈ Lk(M) ⇔ f(w) ∈ L(N).

Membership Testing: Removing Extra Stacks 499

A small technical difficulty is that MVPAs are allowed pop operations on empty
stacks, but PDs cannot make any move if all stacks are empty. If a prefix of an
input string has unmatched pop letters (pops on empty stack), then during the
mimic phase the simulating machine N may get stuck. To prevent this, we pad
the input string with a suffiently long prefix that causes push moves on both
the stacks. This boosts the heights of the stacks and ensures that the resulting
string has no unmatched pop move. Formally, we show the following:

Lemma 2. Fix a MVPA M . There exists another MVPA M ′ and a function
g ∈ Log such that for every string w ∈ Σ∗, w ∈ L(M) ⇔ g(w) ∈ L(M ′), M
on w and M ′ on g(w) have the same number of phases, and M ′ never pops or
pushes on empty stack.

We will call strings obtained by reduction g as extended strings and machine M ′

thus obtained a good MVPA. By Lemma 2, we assume that we have a good MVPA
M that never uncovers the bottom-of-stack marker (except at the beginning) on
either stack on the inputs that it receives.

For an extended string w, let htj(w) denote the height of stack-j of a good
MVPA M after having processed the string w. Here, j ∈ {0, 1}. To compute the
function f in Lemma 1, we need the values htj(x) for each prefix x of w. These
values are easy to compute:

Proposition 1. For any extended input string w, computation of htj(w) and
demarcation of the string into its first k phases can be done in Log.

Suppose we have the extended string w = w1w2...wk (on the extended alphabet
Σ) already marked with the phases. That is, wi is the string processed in the
ith phase, and the individual strings w1, w2, . . . , wk are known. Let ki denote
the height of the stack that was popped in phase i, after having processed the
ith phase. We have ensured that ki ≥ 1 for all i. Let U, V, W, Z, # be new letters
not in Σ. Then f is defined as below. (No padding is needed after wk.) f(w) =
Zw1#Uk1+1V k1+1#Ww2#Uk2+1V k2+1#W . . . wi#Uki+1V ki+1#W . . . wk.

For the PDk N = (Q′, Σ′, Γ ′, δ′, q′0, F
′), Q′ consists of 3k copies of the states

of M , 3 copies for each phase. The first copy is used during the mimic stage and
the second and third copies are used for the first and the second steps in the
buffer stage respectively. The padding symbol # is used in order to mark the
stack Maini+1 with a special marker before the buffer-stage begins and then to
pop the marker after the contents on top of it are moved into Maini+2. Also Γ ′

consists of k copies of Γ , with the i-th copy used as the stack alphabet for Maini.
Formally, the invariant maintained with respect to M can be stated as follows:

Lemma 3. Machine M on input w has a non-deterministic path ρ in which for
each i ∈ [k], after phase i (where phase i pops stack j) βi is on stack j, αi is on
stack 1− j and M is in state q if and only if machine N has a non-deterministic
path ρ′ along which for each i ∈ [k], after reading the prefix up to and including
wi in f(w), (1) βiZ0 is on Maini, (2) αiZ0 is on Maini+1, (3) all the other stacks
are empty, and (4) the state reached is [q(1), i].

That is, the runs of machines M and N are in one-to-one correspondence.

It follows that, M accepts w if and only if N accepts f(w); hence Lemma 1.

500 N. Limaye and M. Mahajan

4 The LogCFL Upper Bound for MEM(PDk)

In this section, we show that membership testing for a fixed PDk is in LogCFL.
The main structure of our LogCFL algorithm closely follows that of the P-

time algorithm for membership testing for PD2 as given in [11]. So we first
describe it in some detail (Section 4.1), following the presentation from [17]. We
then give (Section 4.2) a different implementation of the same algorithm and
improve the upper bound to LogCFL, thus establishing Theorem 2 for k = 2.
A P-time algorithm for MEM(PDk) is given in [12]. It is very similar to the
algorithm from [11]. In Section 4.3, we discuss the changes needed to be made
in our implementation for the LogCFL bound to hold for all fixed k, thereby
establishing Theorem 2.

4.1 Outline of the P-Time Algorithm of [11,17]

The P-time algorithm uses the characterization of PD2 via D2 grammars in
normal form, and normal-form derivations, as described in Section 2. Given
an input w ∈ Σ∗, the algorithm needs to keep track of substrings of w being
produced with gaps. This is done as follows: A table T in constructed such that
any entry in the table is indexed by four indices, T (i, j, r, s). The algorithm fills
entries in the table with subsets of N . A non-terminal A is in T (i, j, r, s) if and
only if A generates the string wi+1 . . . wj with a gap of length s at position
i + 1 + r. Here r is the offset from i + 1 where the gap begins. The table entry
T (i, j, r, s) deals with the interval inv = [i + 1, j] modulo the gap interval gap =
[i + r + 1, i + r + s]. Let l = j − i denote the total length of the interval and
l′ = j − i − s denote the actual length of the interval under consideration i.e.
length of the interval without the gap. The table is filled starting from smaller
values of l. Further, the table entries with intervals of the same length l are filled
starting from l′ = 1 going up to l′ = l. All entries are first initialized to contain
the empty set.

For fixed values of l and l′, we call a tuple 〈i, j, r, s〉 valid for l and l′ if and
only if j = i + l, s = l − l′ and i + r + s ≤ j (i.e. r ≤ l′).

For l = 1 all the entries are filled by the following two rules, using information
from the input and the fixed grammar.

1. T (i, i + 1, 1, 0) = {A | A → wi+1}
2. T (i, i + 1, 0, 0) = {A | A → (ε)(B), B → wi+1}

In the first (second) rule, the table entries correspond to intervals of size 1, where
the zero-length gap is at the end (beginning, respectively). It contains the non-
terminals that produce the terminal wi+1 using a terminal (chain, respectively)
production.

As the value of l increases, depending on the position and size of the gap,
various rules are used to fill up the table. For l > 1, the following rules are
applied to fill the table entries corresponding to valid tuples:

Rule 1: This rule is applied provided the interval size is at least 2, and values
of r′, s′ satisfy r′ < r, s < s′ < j − i = l.

Membership Testing: Removing Extra Stacks 501

T (i, j, r, s) = T (i, j, r, s) ∪

⎧⎨⎩A
A → (BC)(ε),
B ∈ T (i, j, r′, s′),
C ∈ T (i + r′, i + r′ + s′, r − r′, s)

⎫⎬⎭
For this update, the algorithm uses values from T (i, j, r′, s′) and T (i + r′, i +

r′ + s′, r − r′, s). These values are already available. To see this, note that for
T (i, j, r′, s′), the actual interval length is j − i − s′ which is strictly less than l′

as s′ > s, and for T (i + r′, i + r′ + s′, r − r′, s), the interval length is s′ where
s′ < l.

Rule 2: T (i, j, 0, s) = T (i, j, 0, s)∪{A | A ∈ T (i+s, j, 0, 0)}. This rule is applied
when the offset r is zero, i.e. when the gap is on the left. Note that this rule
makes no update when the length s of the gap is zero.

For this update, the algorithm uses values from T (i + s, j, 0, 0) (for which
length of the interval j − i − s < l). This value is already available.

Rule 3: T (i, j, r, s) = T (i, j, r, s)∪{A | A ∈ T (i, j− s, r, 0)}. This rule is applied
when the gap of length s is on the right. This happens when the gap stretches
all the way till j, i.e. i + r = j − s. Note that this rule makes no update when
the length s of the gap is zero.

For this update, the algorithm uses values from T (i, j − s, r, 0) (for which
length of the interval is j − s − i < l). These values are already available.

Rule 4: T (i, j, 0, 0) = T (i, j, 0, 0)∪{A | A → (ε)(B), B ∈ T (i, j, r′, 0)}. This rule
is applied when s and r are both zero. And 0 ≤ r′ ≤ j − i.

For this update, the algorithm uses values from T (i, j, r′, 0) checking if A →
(ε)(B) and B ∈ T (i, j, r′, 0) for some 0 ≤ r′ ≤ j − i. Now for T (i, j, r′, 0), the
l and l′ values are the same as that for T (i, j, 0, 0). So we cannot immediately
conclude that the required values are already available. However, for fixed l, l′,
the P-time algorithm performs steps 1, 2, 3 before the step 4. Steps 2, 3 leave
entries unchanged if s = 0. It is sufficient to argue that step 1 in fact puts
B in T (i, j, r′, 0), which is then used in step 4. Suppose not. i.e. suppose B is
written in T (i, j, r′, 0) by rule 4. Let r′ = 0, as rule 4 cannot have been applied
if r′ �= 0. Also as B is written in T (i, j, r′, 0) by rule 4, there exists a C ∈ N
and a rule B → (ε)(C) such that B ⇒ (ε)(C) ⇒∗ wi+1 . . . wj . But then the
complete derivation is A ⇒ (ε)(B) ⇒ (ε)(C) ⇒∗ wi+1 . . . wj . This contradicts
the assumption that we have a normal form derivation. Hence, the required
values are already available even for this step.

After a systematic looping through these indices, finally the entry of interest
T (0, n, 0, 0) is filled. If S ∈ T (0, n, 0, 0), then the algorithm returns ‘yes’, else it
returns ‘no’. The time complexity of the algorithm is O(n6).

4.2 The LogCFL Algorithm (k = 2)

We now give a top-down algorithm to fill up the table T . We will see that it can
be implemented by a poly sized circuit having ∧ and ∨ gates and having poly
sized proof trees. From [14,2] it follows that this algorithm is in LogCFL.

The polynomial time algorithm that fills up the table can be viewed as a
polynomial sized circuit. However, this circuit need not have polynomial size

502 N. Limaye and M. Mahajan

proof trees. In particular, the index computations may blow up the proof-tree
size. We note that these index computations are independent of the input, and
give a way to build a circuit with small proof-trees.

For each l′ ≤ l ≤ n, for all valid tuples corresponding to these values of
l, l′, and for each A ∈ N , we introduce 5 gates: an OR gate 〈A, i, j, r, s〉 called
a main gate, and 4 intermediate gates X1

A,i,j,r,s, X2
A,i,j,r,s, X3

A,i,j,r,s, X4
A,i,j,r,s

called auxiliary gates. We design the circuit in such a way that 〈A, i, j, r, s〉 = 1
if and only if A ∈ T (i, j, r, s). The root of the circuit is labelled 〈S, 0, n, 0, 0〉.
The circuit connections are as follows:

〈A, i, j, r, s〉 =
∨

k∈[4]

Xk
A,i,j,r,s

X1
A,i,j,r,s =

∨
r′ < r

s < s′ < j − i − r + 1
{B, C| A → (BC)(ε)}

(
〈B, i, j, r′, s′〉

∧
〈C, i + r′, i + r′ + s′, r − r′, s〉

)

X2
A,i,j,r,s =

{
〈A, i + s, j, 0, 0〉 if r = 0
0 otherwise

X3
A,i,j,r,s =

{
〈A, i, j − s, r, 0〉 if i + r = j − s
0 otherwise

X4
A,i,j,r,s =

{∨
0≤r′≤j−i,{B| A→(ε)(B)} X1

B,i,j,r′,0 if r, s = 0
0 otherwise

This finishes the description of all the non-leaf gates. The input gates are
predicates and their values are propagated via the following depth-1 circuit.

〈A, i, i + 1, 1, 0〉 =
∨

{a| (A→a∈P)}
[i, a, 1, 0]

〈A, i, i + 1, 0, 0〉 =
∨

{a| ∃B(B→a∈P)∧(A→(ε)(B)∈P)}
[i, a, 1, 0]

Note that the above connections give an acyclic digraph of depth O(n2).
It is now easy to see the following claim, and hence the correctness of the

above circuit follows from the correctness of P-time algorithm.

Lemma 4. 〈A, i, j, r, s〉 = 1 if and only if A ∈ T (i, j, r, s).

The LogCFL bound for MEM(PD2) now follows from the following claim:

Claim. The circuit constructed above has polynomial-size proof-trees.

4.3 The LogCFL Algorithm for MEM(PDk)

The grammars [10] corresponding to PDk have rules with a single non-terminal
belonging to one of the k lists on the left hand side and at most k lists of non-
terminals on the right hand side. The normal form of the grammar is as follows:

Membership Testing: Removing Extra Stacks 503

– (A)h → (BC)1; k ≥ h ≥ 1 (branch production; always expands into list 1)
– (A)h → (B)g; k ≥ g > h ≥ 1 (chain production; from list h to a later list g)
– (A)h → a; a ∈ T ; k ≥ h ≥ 1 (terminal production)

Now, any typical string derived by a non-terminal can have as many as 2k−1

gaps; see [12]. If (A)h → (BC)1 is a branch rule, and B, C derive strings γ and δ
respectively, then the string derived from A is a systematic merge of γ and δ. In
the case when k = 2, only one gap was possible, whereas here we need to keep
track of 2k−1 gaps to interleave γ and δ properly. Arrays r̃ and s̃, of length 2k−1

each, keep track of the off-sets and the lengths of the gaps.
Each table entry is indexed by i, j, r̃, s̃, as in the case k = 2. But now the tables

are 2k +2 dimensional (as each r̃ and s̃ are 2k−1 length arrays). The table entries
contain non-terminals and they are filled in such a way that a non-terminal A
belongs to a certain entry Ti,j,r̃,s̃ if and only if the string wi . . . wj with gap
off-sets as in r̃ and gap sizes as in s̃ can be obtained from A. The rules for filling
up the table are slightly more complicated. However, they simply involve some
index manipulations. These can be implemented as we did for k = 2. Once these
rules are established, the order of filling up the entries and hence the rest of the
algorithm is exactly the same. Thus, we obtain Theorem 2.

4.4 Bounds for MVPA and OVPA

From Theorems 1 and 2, it follows that MEM(MVPAk) is in LogCFL.
To see this bound for MEM(k-OVPA), Theorem 2 should suffice, since as

claimed in [8], k-OVPA are a special case of PDk. However, there is a slight
subtlety here. k-OVPA are allowed to “pop” on an empty stack: if all stacks are
empty (they contain only the special letter ⊥), then the k-OVPA can still proceed
with its computation even on a return letter. However, a PDk in a similar config-
uration is stuck and cannot make any move. So it is technically not completely
correct to say that k-OVPA are PDk. However, we can handle this exactly as we
did for MVPA in Lemma 2, reducing MEM(k-OVPA) to MEM(PDk).

5 Discussion

Our results show that adding more stacks to a PDA does not make the fixed
membership problem harder than that for ordinary pushdown automata if stack
access is restricted to visible behaviour with O(1) phases, or if the the stacks are
ordered and the stack pop access is restricted to the first non-empty stack.

Some interesting questions remain unanswered: What complexity classes are
characterized by MEM(MVPAk) and MEM(OVPA)? These problems lie some-
where between NC1 and LogCFL. And what is the complexity of the general
membership problem for these models, where the machine and the word are
both part of the input?

Acknowledgments. The authors are grateful to the referees for presentation-
related comments, and for noting that Theorem 1 needs only k stacks, not 2k−2.

504 N. Limaye and M. Mahajan

References

1. Hopcroft, A., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading (2001)

2. Sudborough, I.H.: On the tape complexity of deterministic context-free language.
Journal of Association of Computing Machinery 25(3), 405–414 (1978)

3. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-
free languages. Journal of Association of Computing Machinery 22, 499–500 (1975)

4. Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars.
In: 9th International Symposium on Fundamentals of Computation Theory FCT,
London, UK, pp. 299–308. Springer, Heidelberg (1993)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium
on Theory of Computing (STOC 2004), pp. 202–211 (2004)

6. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recognition.
In: 7th International Colloquium on Automata, Languages and Programming, pp.
422–432 (1980)

7. Dymond, P.W.: Input-driven languages are in log n depth. Information Processing
Letters 26, 247–250 (1988)

8. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144.
Springer, Heidelberg (2007)

9. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: 22nd Symposium on Logic in Computer Science, pp. 161–170 (2007)

10. Cherubini, A., Breveglieri, L., Citrini, C., Crespi Reghizzi, S.: Multipushdown
languages and grammars. International Journal of Foundations of Computer Sci-
ence 7(3), 253–292 (1996)

11. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for a class of
non-deterministic two-stack automata. In: 4th Italian Conference on Theoretical
Computer Science, pp. 150–164 (1992)

12. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for k-depth lan-
guages. Journal of Computer and System Sciences 52(1), 61–79 (1996)

13. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic cir-
cuits: depth reduction and size lower bounds. Theoretical Computer Science 209,
47–86 (1998)

14. Ruzzo, W.: Tree-size bounded alternation. Journal of Computer and System Sci-
ences 21, 218–235 (1980)

15. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer,
New York (1999)

16. Barrington, D.: Bounded-width polynomial size branching programs recognize ex-
actly those languages in NC1. Journal of Computer and System Sciences 38, 150–
164 (1989)

17. Pietro, P.S.: Two-stack automata. Rapporto Interno n. 92-073, Dipartimento
Di Elettronica e Informazione, Politecnico di Milano, Milano (October 1992),
http://home.dei.polimi.it/sanpietr/pubs/twostack92.ZIP

http://home.dei.polimi.it/sanpietr/pubs/twostack92.ZIP

Automata on Gauss Words

Alexei Lisitsa, Igor Potapov, and Rafiq Saleh

Department of Computer Science,
University of Liverpool, Ashton Building,

Ashton St, Liverpool L69 3BX, UK

Abstract. In this paper we investigate the computational complexity of
knot theoretic problems and show upper and lower bounds for planarity
problem of signed and unsigned knot diagrams represented by Gauss
words. Due to the fact the number of crossing in knots is unbounded,
the Gauss words of knot diagrams are strings over infinite (unbounded)
alphabet. For establishing the lower and upper bounds on recognition
of knot properties we study these problems in a context of automata
models over infinite alphabet.

1 Introduction

Algorithmic and computational topology is a new growing branch of modern
topology. Much of the recent effort has focused on classifying the inherent com-
plexity of topological problems. In this paper we investigate the computational
complexity of knot theoretic problems and show upper and lower bounds for pla-
narity problem of signed and unsigned knot diagrams. The main goal of proposed
approach is to give a new insight on knot problems and characterise knot prob-
lems according to their computational complexity. The results presented in this
paper were achieved by a combination of methods from knot theory, automata
theory and computational complexity.

Knot theory is the area of topology that studies mathematical knots and
links. A knot (a link) is an embedding of a circle (several circles) in 3-dimensional
Euclidean space, R3, considered up to a smooth deformation of an ambient space.
It is well established and exciting area of mathematical research with strong
connections with topology, algebra and combinatorics. Examples of interactons
between knot theory and computer science include works on formal language
theory [1], quantum computing [2,3,4] and computational complexity [5].

Knots can be described in various ways, including various discrete representa-
tions. For example, a common method of describing a knot is a planar diagram
called a knot diagram. A knot diagram is a projection of the knot onto a plane,
where at each crossing we must indicate which section is ”over” and which is
”under”, so as to be able to recreate the original knot. As an additional informa-
tion we can also add a label (“‘+“ or “-“) to each of the crossing for representing
orientation of its strands.

A knot diagram can be encoded as a string of symbols Oi’s (over) and Ui’s
(under) also known as Gauss word. The procedure of writing a Gauss word can
be described as follows: Starting from a base point on the circle, write down the

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 505–517, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

506 A. Lisitsa, I. Potapov, and R. Saleh

labels of the crossings in the counterclockwise direction, e.g. the trefoil K can
be defined by a Gauss word U1

+O2
+U3

+O1
+U2

+O3
+, where indices indicate

an (arbitrary) order of the crossings in the knot diagram and signs stand for
orientation of each crossing. Likewise, links can be represented by several Gauss
words - one for each component of the link.

As you can see the construction of the Gauss word is quite straightforward
by reading visited crossings travelling along a circle. The inverse problem of
constructing a knot from some strings of symbols from the set of Oi’s and Ui’s
is harder and it is not always possible. It may happen that some Gauss words
would not correspond to any classical (planar) diagrams. In such case we say that
a Gauss word corresponds to a non-planar knot where any of its diagram should
contain virtual crossings (i.e. which are not listed in the Gauss word). Most of
the problems of recognising knots properties (such as virtuality, unknottedness,
equivalence) are known to be decidable, with different time complexity. However
their complexity in terms of computational power of devices needed to recognise
the knot properties was not studied yet. In this paper we address this problem
and provide first known bounds for some knot problems in this context.

The central problem which we are studying in this paper is to determine
whether a given Gauss word corresponds to planar or non-planar knot. Due
to the fact the number of crossing in knots is unbounded, the Gauss words of
knot diagrams are strings over infinite (unbounded) alphabet. In this context
we cannot estimate computational complexity in terms of classical models over
finite alphabets and need to consider a new hierarchy of languages and models
over infinite alphabet. Such models were recently introduced in [6,7].

In Section 2 we describe and extend the models of automata over infinite
alphabet that we used for establishing the lower and upper bounds on recognition
of knot properties. Then in Section 3 we show that the language of planar (non-
planar) signed Gauss words can be recognised by deterministic two-way register
automata by simulation of recently discovered linear time algorithm proposed in
[8]. Due to the fact that the algorithm presented in [8] allows to check planarity
property not only for knots but also for links we think that the proposed idea
of recognising planarity by register automata can be extended for links after
some minor modification. The result is final in a sense that the power of non-
deterministic one-way register automata is not even enough to recognise whether
an input is a Gauss word. We also conjecture that planarity problem for unsigned
Gauss words is harder than the the same problem for signed Gauss words and
cannot be solved by register or k-pebble automata over infinite alphabet. For
the case of unsigned Gauss words we provide the upper bound by showing that
planarity can be checked by deterministic linearly bounded memory automata.

2 Automata over Infinite Alphabets

Let D be an infinite set called an alphabet. A word, or a string over D, or shortly,
D-word or D-string is a finite sequence d1, . . . dn where di ∈ D, i = 1, . . . , n. A
language over D (D-language) is a set of D-words. For a word w and a symbol

Automata on Gauss Words 507

d denote by | w |d the number of occurrences of d in w. As usual | w | denotes
the length of the word w. A language L over an infinite alphabet D is called
n-bounded if and only if there is a constant n ∈ N such that for any w ∈ L and
for any d ∈ D | w |d≤ n. All languages we consider are bounded languages.

2.1 Register Automata

Register automata are finite state machines equipped with a finite number of
memory cells called registers which may hold values from an infinite alphabet.
It is one of the weakest models of automata over infinite alphabets introduced
in [6] and studied further in [7].

Definition 1 ([7]). A non-deterministic two-way k-register automaton over an
infinite alphabet D is a tuple (Q,q0,F,τ 0 ,P) where Q is a finite set of states, q0

∈ Q is the initial state,F ⊆ Q is the set of final states, τ 0 : {1,...,k}→ D ∪
{�,� }is the initial register assignment and P is a finite set of transitions of the
forms:

1) (i, q) → (q′, d) (If a current state is q and the observed symbol on the tape
equals to a value in the register i then enter the state q′ and move along the
string according to specified direction d;)

2) q → (q′, i, d) (If a current state is q and the observed symbol on the tape
does not equal to any value held in registers then enter the state q′, copy
the current symbol to a specified register i and move along the string ac-
cording to the specified direction d, where i ∈ {1, .., k}, q, q′ ∈ Q and d ∈
{stay, left, right}.)

Given a D-word d delimited by symbols �,� on the input tape an automaton
starts in a state q0 and in the position of the first letter of d and applies non-
deterministically any applicable rules. As usual, if automaton is able ever to reach
a state q ∈ F it accepts the word, otherwise the word is rejected. The set of all
accepted words forms a language recognisable by an automaton. An automaton
is deterministic if in each configuration at most one transition applies.

For the purpose of this paper we modify the definition of register automata
from [7] by allowing more general transition rules that allows replication of the
same value in different registers. This does not affect the computational power of
the model (see Lemma 1 below), but makes the design of such automata for var-
ious recognition problems much more natural and easier. Similar modifications
(in more general setting) have appeared in [9,10].

We define modified two-way k-register automata by adding to the definition
above two extra types of transitions rules:

3) (i, q) → (q′, j, d) If a current state is q and the observed symbol equals to a
value in the register i then enter the state q′, copy the current symbol to a
register j and move along the string according to specified direction d;

4) q → (q′, d) If a current state is q and the observed symbol does not equal
to any value held in registers then enter the state q′ and move along the
string according to specified direction d, where i, j ∈ {1, .., k}, q, q′ ∈ Q and
d ∈ {stay, left, right}.

508 A. Lisitsa, I. Potapov, and R. Saleh

Lemma 1. The models of original register automaton and modified register
automaton over an infinite alphabet are equivalent.

Proof. We show that two extra types of rules of the modified model can be
simulated by the original automata. The rule of type 4 is simulated by adding
one extra dummy register k + 1 and replacement of rules of modified automata
of the form q → (q′, d) by a pair of rules (k +1, q) → (q′d) and q → (q′, k +1, d).
If a value of the register k + 1 is equal to the observed symbol then the rule
(k + 1, q) → (q′d) is applicable otherwise the rule q → (q′, k + 1, d) is applicable.
Also we replace the rule q → (q′, i, d) of type 2 in the modified automata model by
a pair of rules; original type 2 rule q → (q′, i, d) and type 3 rule (k+1, q) → (q′d).

The rule of type 3 (i, q) → (q′, j, d) of the modified model that allows storing
the same value in different registers, can be simulated in original model by using
the following construction.

The state of the registers of the modified automaton, that is a sequence of not
necessarily different values R = [r1, r2, . . . , rk+1] is represented in the simulating
automaton as a pair:

– the set of unique values U = {r1, r2, . . . , rk+1}, and
– the surjective mapping φ : {1, . . . , k + 1} → U

The content of U is kept in the registers and since the mapping φ is finite, it
can be kept in the finite state control. Now it is straightforward to simulate the
effects of all possible types of rules, including the type 3, in terms of pairs U, φ.
We omit obvious details. $%

Pebble Automata. As an alternative model of automata over infinite alphabet,
pebble automata(PA) was introduced in [11] and further studied in [7]. We follow
the definitions in [7]. In this model, instead of registers, finite state machines are
equipped with the finite set of pebbles which can be placed on the input string
and later lifted following the stack discipline. That means pebbles are numbered
from 1 to k and pebble i + 1 can only be placed when pebble i has already been
placed on the string and vice-versa, pebble i can only be lifted if i + 1 is not
on the string. Further assumption is that the pebble with the highest number
acts as a head, so an automaton has an access to the symbol of the string under
such a pebble and to the information on which other pebbles are located at
the same position. The transition of pebble automata depends on the following:
the current state, the pebbles placed on the current position of the head, the
pebbles that see the same symbol as the top pebble. The effect of the transition
is the change of a state, movement of the head and, possibly, removal of the
head pebble, or placement of the new pebble. As usual acceptance of a word is
defined as reachability of one of the final states.

As expressive power concerned, in general pebble automata are incomparable
with register automata [7]. We will show, however, in the Section 3 that over
a class of bounded languages, including all languages of our interest, PA can be
effectively simulated by RA.

Automata on Gauss Words 509

Linearly Bounded Memory Automata. In all models above the input can
be thought of as given on the input tape which can only be read, but not written
on. Linearly bounded automata (LBMA) is an extension of register automata
with the input tape. The automaton can read and write in the tape cells the
symbols of an infinite alphabet. The input is given on the initial part of the tape
and for the input size n, the size of the tape is assumed to be O(n), i.e. linearly
bounded. Types of rules of LBMA include all types of rules of (modified) RA
and additional rules allowing to write on the tape. For every form L → (. . .)
of rules of the (modified) RA model the following is a form of rule for LBA:
L → (. . . , i), where i ∈ {1, . . . k}. The effect of application of the latter is the
same as of the former, plus the automaton writes the content of the register i in
the current position on the tape before possible head movement.

Words and Data Words. In previous works on the computational models on
infinite alphabets it has been acknowledged that in many situations it is natural
to consider infinite alphabets as the subsets of Σ×∆ where Σ is a finite set and ∆
is an infinite set. Thus, the symbol here is an ordered pair (a, b). The words over
such alphabets are called data words [12]. In the definition of automata over data
words, it is sensible to assume that when an automaton reads a symbol (a, b) it
has a direct access to both components of the pair. For this purpose, the form of
transition rules can be adapted to include one extra argument on the left-hand
sides. For example, the rule (c, i, q) → (q′, d) is read as ”if an automaton is in a
state q and observes the symbol (c, a) and a is the content of the register i then
the automaton can change the state to q′ and move the head along the direction
d.” It should be clear now how to modify the definitions of all above models to
work over data words.

3 Recognisability of Knot Properties

3.1 The Language of Gauss Words

Knots which are defined as embeddings of a circle in 3-dimensional Euclidean
space can be faithfully represented by finite structures, such as graphs or words.
One of such discrete representations is a Gauss code, which is a word of crossing
labels O (”over”) and U (”under”) with appropriate indices, which can be read
of the projection of the knot on the plane. Given orientation of the plane one
can distinguish between left and right-handed crossings (see Figure 1) which are
labelled by signs − and +, respectively.

Definition 2. An unsigned Gauss word w is a data word over the alphabet Σ×N
where Σ = {U, O}, such that for every n ∈ N either

– |w|(U,n) = |w|(O,n) = 0, or
– |w|(U,n) = |w|(O,n) = 1

Definition 3. A signed Gauss word w is a data word over the alphabet Σ × N
where Σ = {U+, O+, U−, O−}, such that for every n either

510 A. Lisitsa, I. Potapov, and R. Saleh

– |w|(U+,n) = |w|(O+,n) = |w|(U−,n) = |w|(O−,n) = 0, or
– |w|(U+,n) = |w|(O+,n) = 1 and |w|(U− ,n) = |w|(O−,n) = 0, or
– |w|(U−,n) = |w|(O−,n) = 1 and |w|(U+,n) = |w|(O+,n) = 0,

Definition 4. A shadow Gauss word w is a word over alphabet N (i.e. finite
sequence of natural numbers) such that for every n ∈ N either |w|n = 0 or
|w|n = 2

Shadow Gauss words can be seen as the projections of (un)signed Gauss words
on the second components of their symbols. A (unsigned, signed, shadow) Gauss
language is an arbitrary set of (unsigned, signed, shadow) Gauss words.

We denote the data language of all unsigned Gauss words by LGW and the
language of all signed Gauss words by LSGW .

Proposition 1. The languages LGW and LSGW are recognisable by determin-
istic 2-way register automata.

Proof. We explain only the construction of a 2-way deterministic register au-
tomaton A which recognises LGW . With obvious modifications the automaton
can be adapted to the case of LSGW . Let w be a data word (a1, b1)...(an, bn) such
that a ∈ Σ = {U, O} and b ∈ N = {1, ..., n}. The automaton A reads the first
symbol (ai, bi) and stores the value of bi in some register, then it moves right
then left along the word to compare the current symbol (aj , bj) with the value
of bi held in some register. If the symbol (aj , bj) where bi = bj and ai �= aj is
found and there are no further occurrences of bi then automaton A moves right
along the word and checks next symbol. If next symbol is equal to end symbol
then A moves to an accepting state.

Proposition 2. The languages LGW and LSGW are not recognisable by non-
deterministic one-way register automata.

Proof. We show the argument only for the case of LGW . With obvious modifi-
cations it works for LSGW as well. The argument is not new and was used e.g.
in [12] to show non-recognizability of some data languages by one-way register
automata. Assume that language L is recognisable by some one-way register
automaton A with n registers. Consider the word w = (U, 1)(U, 2) . . . (U, n +
1)(O, 1)(O, 2) . . . (O, n + 1) ∈ L. The automaton A accepts this word. After

Fig. 1. Example of a knot diagram with its corresponding Gauss words(signed and
unsigned)

Automata on Gauss Words 511

Fig. 2. Example of a virtual knot

reading first n + 1 positions there is at least one index value i ∈ {1, . . . , n + 1}
which does not appear in any register of R. That means that automaton A also
accepts a word w′ �∈ L which obtained from w by replacing (U, i) with (U, i+1).
That is in contradiction with an assumption on A.

3.2 Planar and Non-planar Gauss Words

Every knot can be represented by a Gauss word but not every Gauss word
represents a knot. For example, any attempt to reconstruct a knot diagram
from the Gauss word O−

1 O−
2 U−

1 O+
3 U−

2 U+
3 will lead to new (virtual) crossings

which are not present in the Gauss word (see Figure 2). Such an observation was
one of the motivations for introducing virtual knot theory [13]. The Gauss word
which represents a classical knot diagram, that is a diagram embeddable into
a plane without virtual crossings, is called classical or planar. The problem of
recognition of planar Gauss words have been formulated by Gauss himself and
recently several algorithmic solutions for both signed and unsigned case have
been proposed, e.g. in [14,15,13,8].

In this section we address the question of recognisability of planarity of Gauss
words by automata models and consider unsigned and signed case separately.

Signed Gauss Words. In this subsection we will show that a language of
planar signed Gauss words can be recognised by two-way deterministic register
automata. The design of automata will be based on a linear time algorithm,
presented by V. Kurlin in [8]. The main idea of the algorithm is computing the
least genus of the surface to which a knot diagram is embeddable without virtual
crossings. For this purpose the Euler characteristics χ of the combinatorial cell
complex (Carter surface) [16] associated with the knot diagram is computed.
Computation of the Euler characteristics χ requires counting the number of
faces (cycles), edges and vertices of a combinatorial cell complex (Carter surface)
associated with a knot diagram. In the context of Gauss word, the number of
edges corresponds to the length of the word, the number of vertices corresponds
to the number of crossings (that is half the length of the word) and the number
of faces can be determined by implementing a set of traversal rules.

Lemma 2. Two-way deterministic register automaton can traverse all faces of
(a complex associated with) a knot diagram which are adjacent to a crossing i.

512 A. Lisitsa, I. Potapov, and R. Saleh

−+

Fig. 3. Automaton moves

Proof. The traversal of adjacent face to a crossing i in the knot diagram can be
done by choosing initial direction and turning left on each consecutive visited
crossing staring from i. This global property of “turning left” can be defined
by deterministic set of traversal rules which will take into account only local
property of the current crossing and a finite information about previously visited
one. In general we have 8 cases since there are two types of crossings (with a sign
“+” and with a sign “-”) and four directions from which we can approach each
crossing, see Figure 3. We follow interpretation of the local rules for selecting
cycles defined in [8], but present them here in slightly different notation, which
is more appropriate for the design of a register automaton. A register automaton
that is observing a current symbol S, needs to choose a correct symbol which
correspond to the next crossing after turning (geometrically) to the left on a
knot diagram. In fact on the Gauss code it will correspond to finding S′ which
is the counterpart of S and then choosing a symbol which is either left or a
right neighbour of S′. For example, if S is Oi (Ui) then we need to choose a
neighbour of Ui (Oi) in the Gauss word. In order to define whether we need a
symbol from the left or from the right side we need to know the current type
of the crossing which is S and the information about the previous choice of
direction, i.e. whether S was chosen as a left or a right symbol. Now we define
eight rules in the form (D, S) → (S′, D′) where D, D′ ∈ {Right, Left} and
S, S′ ∈ {U, O}×N×{+,−}where N ∈{1,2. . . ,n}. Each rule can be read as follows:
if the current symbol S is reached via direction D then find S′ (counterpart of
S) and move one step to the specified direction.

(Right, Oi
+)→ (Ui

+, Right) (Right, Ui
+)→ (Oi

+, Left)
(Left, Oi

+)→ (Ui
+, Left) (Left, Ui

+)→ (Oi
+, Right)

(Right, Ui
−)→ (Oi

−, Right) (Right, Oi
−)→ (Ui

−, Left)
(Left, Ui

−)→ (Oi
−, Left) (Left, Oi

−)→ (Ui
−, Right)

Following above rules we can design a register automata that will keep the finite
information about its previous choice of direction (Right or Left) in its state
space and which will choose the Right or Left symbol of S′ observing the symbol
S. It can also keep records on which rule was applied to the starting symbol S
and will terminate the traversal of a face if the same rule will be applied for S
again. The fact of the repetition corresponds to the completion of a cyclic path.
In order to traverse all faces which are adjacent to a crossing i we need to start
from two different initial conditions associated with labels (Oi or Ui) and two
different initial direction (Left or Right). $%

Automata on Gauss Words 513

Lemma 3. Two-way register automata with k registers on the input with t dis-
tinct symbols can simulate a counter machine with k counters bounded by t.

Proof. Let us assume that a word on an input tape has at least t distinct symbols.
The value of a counter stored in register i corresponds to the number of distinct
symbols from the beginning of the word till the position of the first appearance
of symbol stored in the register. Then we can increase (decrease) the value by
looking for the next (previous) symbol on the string that will appear for the first
time. Counter i is equal to zero if the value stored in the register i is the first
symbol on the input tape. If we use k registers then we can store k counters
bounded by t, where t is a number of distinct symbols on the input tape. $%

Lemma 4. Two-way deterministic register automata can compute the Euler
characteristics of a signed Gauss word.

Proof. In order to compute Euler characteristics we need to count the number of
faces in a degree 4 graph G represented by a signed Gauss word, the number of
edges and the number of vertices in G. The number of vertices in G is a number
of distinct symbols, and the number of edges is the number of symbols in the
Gauss word. Both values can be counted in a straightforward way. The number
of faces can be counted by traversal of G in the following way. The automaton
goes sequentially through the list of vertices. For each vertex i it traverses (as
described in Lemma 2) all adjacent faces and increases a counter by one for
every face F in which there are no vertices of smaller than i labels. Also the
automaton counts how many times a crossing i is met during the traversal of
faces adjacent to i. As soon as the value reaches 4 the automaton starts the
traversal for the next crossing. The computation of the Euler characteristics χ is
done by counting the values for edges, vertices and faces in individual counters
and then by subtracting number of edges from the sum of the numbers of vertices
and faces. Since the number of each value in counters is bounded by the number
of distinct symbols the computation can be done by the two-way deterministic
register automaton. $%

Theorem 1. A language of planar signed Gauss words can be recognised by
two-way deterministic register automata.

Proof. Compute the Euler characteristics by the two-way deterministic register
automaton. If the Euler characteristics χ is equal to 2 then a signed Gauss word
is planar [16,8]. $%

Unsigned Gauss Words. As for signed words, an unsigned Gauss word w is
called planar if there is a knot diagram such that w is a Gauss word read off
this diagram. Before discussing the recognisability of this property by automata
we briefly present an algorithm for recognition of planar unsigned Gauss word
proposed by L. Kauffman in [13]. In fact, planarity here does not depend on
first components of Gauss data words, i.e. on information whether particular
crossing is under- or over-crossing. Because of that the input for the algorithm is

514 A. Lisitsa, I. Potapov, and R. Saleh

Fig. 4. Not dually paired word and the corresponding graph

a shadow Gauss word, i.e a sequence of labels (=natural numbers), where each
label in the sequence occurs twice. We assume the labels in the input word w
are 1, 2, . . . , n and they first occur in w in that order. The algorithm proceeds
in three stages:

1. The input word is checked on whether there is even number of labels in
between two appearances of any label. If ”yes” the algorithm proceeds to
the second stage, if ”no” the algorithm stops with the result ”no, the input
word is non-planar”.

2. Starting with i = 1, the order of labels occurrence between two occurrences
of i is reversed. The process is repeated successively using i = 1, 2, . . . , n.
Let w∗ is a resulting word.

3. w∗ is checked on whether it is a dually paired word. If ”yes” the algorithm
stops with the result ”yes, the input word is planar”. If ”no” the algorithm
stops with the result ”no, the input word is non-planar”.

To complete the algorithm description we explain what is a dually paired
word [13].

Definition 5. For a shadow Gauss word w two labels i and j are called inter-
laced in w iff w = w1 i w2 j w3 i w3 j w4 or w = w1 j w2 i w3 j w3 i w4.

Definition 6. A shadow Gauss word w is called dually paired iff the set of all
labels of w can be partitioned into two subsets such that no two labels in the same
subset are interlaced.

An example of the shadow word which is not dually paired is shown in
Figure 4(a).

Returning to the question on lower and upper bounds for the planarity of un-
signed Gauss words problem one may notice that the first stage of the Kauffman
algorithm is obviously implementable on the deterministic register automata.
The second stage looks problematic, for to implement reversing the finite mem-
ory appears to be insufficient. We do not have a proof though, neither we know
a better method to check planarity, so we propose the following

Conjecture 1. Planarity of unsigned Gauss words is not recognisable by (non)-
deterministic register automata.

The next proposition will be used later to show upper bound for planarity of
unsigned Gauss words problem.

Automata on Gauss Words 515

Proposition 3. The shadow Gauss language of not dually paired words is recog-
nisable by a non-deterministic two-ways register automaton.

Proof. Given a shadow Gauss word w define an undirected graph gw as follows.
The vertices of qw are labels in w and there is an edge (i, j) in gw iff i and j
are interlaced. Figure 4(b) demonstrates the graph gw for the word w shown in
Figure 4(a). Now it is straightforward to verify that w is dually paired iff gw is a
bipartite graph. The graph is bipartite iff it does not contain the cycle of the odd
size. Required register automaton given a word w simulates non-deterministic
traversal of the graph gw. At the beginning it picks up non-deterministically a
vertex i of gw by moving its head to the first occurrence of the label i in w,
stores the label i in the register and starts the traversal of the graph moving
along the edges of gw. The parity of the length of the path is stored in the finite
state control of the automaton. If during traversal the automaton arrives at the
vertex stored in the register it checks the parity of the path covered so far and
if it is odd the word is accepted. $%

We conjectured earlier that planarity of unsigned Gauss words is not recognisable
by register automata. In order to get an upper bound one may try to extend
the register automata with pebbles. However as the following proposition shows
over Gauss words register automata are capable to model effects of adding any
finite number of pebbles.

Proposition 4. If an n-bounded language over infinite alphabet A can be recog-
nised by a k-pebble automaton, then it is also recognised by a k-register
automaton.

Proof. Assume that we have to place a pebble on the symbol x ∈ A from the
word u · x · v, u, v ∈ A∗. The position of this pebble can be uniquely represented
by a pair (x, lx), where x is a symbol with a pebble and lx = |u|x, i.e. the number
of occurrences of a symbol x in a word u. Thus, in order to simulate a pebble
we need one register (for storing x) and a finite number of states (for keeping lx
in a state space) since lx is bounded by a constant n. To simulate LIFO stack
discipline by the register automaton one may use resister i to store a symbol
which has a pebble i placed on it and the finite state structure of the automaton
to store a reference to the register which corresponds to the current top of the
stack. $%

Theorem 2. Planarity of unsigned Gauss words is recognisable by deterministic
linearly bounded memory automata

Proof. The proof consists in showing that the Kauffman algorithm is imple-
mentable on LBMA.

Indeed, the first stage of the algorithm is implementable with the finite mem-
ory. Also, it is straightforward to implement the second stage (reversing) on the
linear memory. Proposition 3 states that the third stage of the algorithm, that
is the search for the cycles of odd size on the graph associated with the Gauss
word, can be done non-deterministically using only the finite memory. Notice,

516 A. Lisitsa, I. Potapov, and R. Saleh

that if the cycle of odd size exists in the graph, then necessarily the odd cycle
of the size no more than n also exists, where n is the length of the input word.
Deterministic automaton may iterate then over all paths of the length up to n
and check the odd cycle condition. The linear order on the input Gauss word
induces the linear order on the vertices of the associated graph. It is clear that
this order as well as the relation ”next” with respect to the order are computable
using only finitely many registers. The linear order on vertices is extended lexi-
coraphically on paths in the graph. Deterministic automaton iterates over paths
along this order. No more than O(n) memory is needed. $%

4 Conclusion

We have applied automata over infinite alphabets for studying complexity of
problems related to knots. We have shown that the language of the signed Gauss
words can be recognized by deterministic two-way register automata, while for
the same problem for unsigned words we demonstrated an upper bound in terms
of automata with linearly bounded memory. The obvious next step is to try to
establish a lower and better upper bound for the latter problem. More generally,
automata based approach opens new perspectives for studying more complex
knot problems, like unknotedness or equivalence. Non-trivial lower bounds for
such problems are unknown and weak automata models are plausible candidates
here to try. In opposite direction, knot theory provides a reach supply of natural
problems formulated in terms of languages over infinite alphabets, and that, one
may expect, will influence the development of the theory of such languages and
related computational models.

References

1. Kari, J., Niemi, V.: Morphic Images of Gauss Codes. In: Developments in Language
Theory, pp. 144–156 (1993)

2. Abramsky, S.: Temperley-Lieb Algebra: From Knot Theory to Logic and Com-
putation via Quantum Mechanics. Mathematics of Quantum Computation and
Quantum Technology (2007)

3. Freivalds, R.: Knot Theory, Jones Polynomial and Quantum Computing. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 15–25.
Springer, Heidelberg (2005)

4. Lomonaco Jr., S., Kauffman, L.: Topological Quantum Computing and the Jones
Polynomial. Arxiv Preprint Quant-ph/ 0605004 (2006)

5. Hass, J., Lagarias, J., Pippenger, N.: The computational complexity of knot and
link problems. Journal of the ACM (JACM) 46(2), 185–211 (1999)

6. Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings of 31st An-
nual Symposium on Foundations of Computer Science, pp. 683–688 (1990)

7. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infi-
nite alphabets. ACM Transactions on Computational Logic (TOCL) 5(3), 403–435
(2004)

8. Kurlin, V.: Gauss phrases realizable by classical links. Arxiv Preprint Math. GT/
0610929 (2006)

Automata on Gauss Words 517

9. David, C.: Mots et données infinies. Master’s thesis, LIAFA (2004)
10. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. In:

LICS, vol. 6, pp. 17–26 (2006)
11. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. Journal of

Computer and System Sciences 66(1), 66–97 (2003)
12. Bjorklund, H., Schwentick, T.: On Notions of Regularity for Data Languages. In:

Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 88–99. Springer,
Heidelberg (2007)

13. Kauffman, L.: Virtual knot theory. Arxiv Preprint Math. GT/ 9811028 (1998)
14. Cairns, G., Elton, D.: The planarity problem for signed Gauss words. Journal of

Knot Theory and its Ramifications 2(4), 359–367 (1993)
15. Cairns, G., Elton, D.: The Planarity Problem II. Journal of Knot Theory and its

Ramifications 5, 137–144 (1996)
16. Carter, J.: Classifying immersed curves. Proc. Amer. Math. Soc. 111, 281–287

(1991)

Analysing Complexity in Classes of Unary
Automatic Structures

Jiamou Liu1 and Mia Minnes2

1 Department of Computer Science, University of Auckland, New Zealand
jliu036@aucklanduni.ac.nz

2 Department of Mathematics, MIT, USA
minnes@math.mit.edu

Abstract. This paper addresses the time complexity of several queries
(including membership and isomorphism) in classes of unary automatic
structures and the state complexity of describing these classes. We focus
on unary automatic equivalence relations, linear orders, trees, and graphs
with finite degree. We prove that in various senses, the complexity of
these classes is low: (1) For the isomorphism problem, we either greatly
improve known algorithms (reducing highly exponential bounds to small
polynomials) or answer open questions about the existence of a decision
procedure; (2) for state complexity, we provide polynomial bounds with
respect to natural measures of the sizes of the structures.

1 Introduction

A (relational) structure is automatic if its elements can be coded in a way such
that the domain and all the relations of the structure are recognized by finite
automata (precise definitions are in Section 2). Automatic structures form a
large class of infinite structures with finite representations and effective seman-
tics. In particular, for any automatic structure A and first-order query ϕ, one
can effectively construct an automaton that recognizes all elements of A that
satisfy ϕ. Such useful algorithmic and model-theoretical properties of automatic
structures have led to extensive work in the area in recent years.

The field of automatic structures can be viewed as an extension of finite model
theory in which one studies the interaction between logical definability and com-
putational complexity. As finite model theory has found applications in databases
[1] automatic structures have been used in relational databases and computer-
aided verifications [2,3]. However, this approach has limitations. In particular,
since the configuration space of a Turing machine can be coded by a finite au-
tomaton [4], reachability is undecidable for automatic structures in general. On
the other hand, unary automatic structures, those recognized by automata over
a unary alphabet, have decidable monadic second-order theories. Any automatic
structure has an isomorphic copy over the binary alphabet [5]; the intermediate
class of structures whose domain elements are encoded as finite strings over 1�2�

reachability is no longer decidable because the grid can be coded.
Much is known about the complexity of automatic structures. Algebraic char-

acterizations have been given for automatic Boolean algebras [4] and finitely

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 518–529, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Analysing Complexity in Classes of Unary Automatic Structures 519

generated automatic groups [6]. Some of these results give information about
computational content: the isomorphism problem of automatic Boolean alge-
bras is decidable. However, the full class of automatic structures has significant
underlying complexity. From a computability theoretic point of view, the isomor-
phism problem and the embedding problem for automatic structures are both
Σ1

1 -complete [4,7]. Model theoretically, we also find richness: [8] shows that the
Scott ranks of automatic structures can be as high as possible, up to the succes-
sor of the first non-computable ordinal. Finally, the resource-bounded complexity
of automatic structures has been studied. For a fixed automaton, the complexity
of model-checking for quantifier-free formulas is LOGSPACE-complete and for
existential formulas it is NPTIME-complete [9]. On the other hand, there are
automatic structures whose first-order theories are nonelementary [10].

In this paper we consider classes of unary automatic structures and show they
are simple with respect to two notions of complexity. First, we study the time
complexity of natural decision problems in a fixed class K of structures. The
membership problem asks, given a unary automatic presentation of A, decide if
A ∈ K. The isomorphism problem asks, given unary automatic presentations of
A and B from K, decide if A ∼= B. For each class of unary automatic structures
we consider, we give low polynomial time solutions to its membership prob-
lem. For unary automatic equivalence relations, linear orders, and trees we solve
the isomorphism problem in low polynomial time; the isomorphism problem for
graphs with finite degree is decidable with elementary time bound.

State complexity measures the descriptive complexity of regular languages,
context-free grammars, and other classes of languages with finite representa-
tions. The state complexity of a regular language L is defined as the size of the
smallest automaton recognizing L. It has been studied since the 1950s [11,12,13]
and motivated, in part, by the relationship between the runtime of realtime com-
putations running on automata and the size of their state space. We generalize
state complexity to structures (rather than sets): the state complexity of an auto-
matic structure A is defined to be the number of states in an optimal automaton
presentation of a structure isomorphic to A. For unary automatic structures, we
require that the presentation witnessing the state complexity also be a unary
automatic structure. We prove that the state complexity of unary automatic
equivalence relations, linear orders, and trees are each polynomial with respect
to a natural representation of the structures. The study of state complexity of
automatic structures which we hope will continue to be fruitful.

Paper organization. Section 2 introduces the terminology and notation used
throughout the paper. In particular, it recalls the definitions of automatic struc-
tures and unary automatic structures and makes precise the definition of state
complexity for unary automatic structures. Sections 3, 4, 5 and 6 discuss lin-
ear orders, equivalence relations, trees and graphs of finite degree (respectively).
Due to space considerations, this paper is an extended abstract and so we omit
many proofs.

520 J. Liu and M. Minnes

2 Preliminaries

We assume the basic terminology and notation from automata theory (see [14] for
example). For a fixed alphabet Σ, a finite automaton is a tuple A = (S, ∆, ι, F)
where S, ∆, ι, F are (respectively) the state space, transition function, initial
state, and accepting states. In particular, if A is a finite automaton over the
unary alphabet {1} it is called a unary automaton. We use synchronous n-tape
automata to recognize n-ary relations. Such automata have n input tapes, each
of which contains one of the input words. Bits of the n input words are read
in parallel until all input strings have been completely processed. Formally,
let Σ� = Σ ∪ {2} where 2 is a symbol not in Σ. Given an n-tuple of words
w1, w2, . . . , wn ∈ Σ�, we convert them to a word over the alphabet (Σ�)n with
length max{|w1|, . . . , |wn|} whose kth symbol (σ1, . . . , σn) where σi is the kth

symbol of wi if k ≤ |wi|, and is 2 otherwise. An n-ary relation R is FA recogniz-
able if the set of words obtained in this way is a regular subset of (Σn�)�.

A relational structure S consists of a countable domain D and atomic relations
on D. A structure is called automatic over Σ if it is isomorphic to a structure
whose domain is a regular subset of Σ� and each of whose atomic relations is
FA recognizable. A structure is called unary automatic if it is automatic over
the alphabet {1}. The structures (N; s) and (N;≤) are both unary automatic
structures. On the other hand, (Q;≤) and (N; +) are automatic over {0, 1} but
are not unary automatic. The structure (N;×) is not automatic over any finite
alphabet. For proofs of these facts, see the survey papers [15,16].

Consider FO+∃∞+∃k,l, the first-order logic extended by quantifiers for there
exist infinitely many and there exist k many mod l (k, l ∈ N). The following
theorem from [9,17,18,5] connects this extended logic with automata.

Theorem 1. For an automatic structure, A, there is an algorithm that, given
a formula ϕ(x̄) in FO + ∃∞ + ∃k,l, produces an automaton whose language is
those tuples ā from A that make ϕ true.

We study automatic structures (D; R) where R is a binary relation over D.
Theorem 1 can be used to give decision procedures for some properties of binary
relations. Table 1 lists the complexity of the associated algorithms if AD (m
states) and AR (n states) are deterministic FA recognizing D and R, respectively.
Note that if (D; R) is automatic over Σ and D = Σ�, then m = 1.

We use x to denote the string 1x and N for the set of all such strings {1}∗. In
[19], Blumensath shows that a structure is unary automatic if and only if it is

Table 1. Deciding properties of binary relations in automatic structures

Property First-order definition Time complexity
Reflexivity ∀x (R(x, x)) O(mn)
Symmetry ∀x, y (R(x, y) =⇒ R(y, x)) O(n2)
Antisymmetry ∀x, y (R(x, y) ∧ R(y, x) =⇒ x = y) O(n2)
Totality ∀x, y (R(x, y) ∨ R(y, x)) O(m2n2)
Transitivity ∀x, y, z (R(x, y) ∧ R(y, z) =⇒ R(x, z)) O(n3)

Analysing Complexity in Classes of Unary Automatic Structures 521

first-order interpretable in U = (N; 0, <, s, {modj}j>1), where s is the successor
relation and modj(x, y) holds if and only if x ≡ y mod j, and therefore proves
the following.

Theorem 2. The monadic second order (MSO) theory of a unary automatic
structure is decidable.

We need to understand the structure of regular subsets and relations of {1}�.

Lemma 1 ([19]). A set L ⊆ N is unary automatic if and only if there are
tL, �L ∈ N such that L = L1 ∪ L2 with L1 ⊆ {0, 1, . . . , tL − 1} and L2 is a finite
union of sets in the form {j + i�L}i∈N where tL ≤ j < tL + �L.

A 2-tape unary automaton may be described as follows.States reachable from the
initial state by reading inputs of type (1, 1) are called (1, 1)-states and form a dis-
joint union of a tail and a loop. We label the (1, 1)-tail states as q0, . . . , qt−1; the
(1, 1)-loop states as qt, . . . , qt+�−1. States reachable from a (1, 1)-state by read-
ing inputs of type (1, 2) are called (1, 2)-states. The set of (1, 2)-states reachable
from any given qi consist of a tail and a loop, called the (1, 2)-tail and loop from
qi; the (2, 1)-tails and loops are defined similarly.

Khoussainov and Rubin [20] and Blumensath [19] gave a characterization of
all unary automatic binary relations on N. Let B = (B, EB) and D = (D, ED)
be finite graphs. Let R1, R2 be subsets of D×B, and R3, R4 be subsets of B×B.
Consider the graph D followed by countably infinitely many copies of B, ordered
as B0,B1,B2, We define the infinite graph unwind(B,D, R̄) as follows. Its
vertex set is D∪B0 ∪B1 ∪B2 ∪ . . . and its edge set contains ED ∪E0 ∪E1 ∪ . . .
as well as the following edges, for all a, b ∈ B, d ∈ D, and i, j ∈ ω:

– (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,
– (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+j) when (a, b) ∈ R4.

Theorem 3 ([19,20]). A graph is unary automatic if and only if it is isomor-
phic to unwind(B,D, R̄) for some parameters B,D, R̄.

The state complexity of a regular language L is the number of states of the
minimal deterministic finite automaton that recognizes L [12].

Definition 1. The state complexity of an (unary) automatic structure A is
the size of the smallest (unary) automaton M (optimal automaton) such that
M recognizes a structure B ∼= A. If K is a class of automatic structures with
associated finite isomorphism invariant RA, the state complexity of K is f such
that for A ∈ K, if |RA| ≤ n, the state complexity of A is less than f(n).

Note that this is a worst-case complexity measure: if a class of structures has state
complexity f , there may still be a particular member of the class whose state
complexity is much smaller. We look at the state complexity of three classes of
unary automatic structures: equivalence relations, linear orders, and trees. We
define natural isomorphism invariants for each class and show that the state
complexity for each class is polynomial with respect to these invariants.

522 J. Liu and M. Minnes

In the sequel, we make the following assumptions without loss of general-
ity. All structures are infinite with domain N. All automata are deterministic.
Algorithms on unary automatic structures (N; R) have as input a synchronous
2-tape automaton recognizing R. The size of the input is the size of this input
automaton. The sets of (1,1)-, (2, 1)-, and (1, 2)- states are pairwise disjoint.

3 Linear Orders

A linear order is L = (N;≤L) where ≤L is total, reflexive, antisymmetric, and
transitive. Table 1 immediately gives that the membership problem for automatic
linear orders is decidable in time O(n3). Blumensath [19] and Khoussainov and
Rubin [20] characterized unary automatic linear orders. We use ω, ω∗, ζ, and
n to denote the order types of the positive integers, the negative integers, the
integers, and the finite linear order of length n (respectively).

Theorem 4 ([19,20]). A linear order is unary automatic if and only if it is
isomorphic to a finite sum of linear orders of type ω, ω∗ or n.

Corollary 1. The isomorphism problem for unary automatic linear orders is
decidable.

This corollary is proved by defining, for each unary automatic linear order L, a
sentence ϕL such that for any L′, L ∼= L′ if and only if L′ � ϕL; this yields a
triply exponential decision procedure. We improve this bound, giving a quadratic
time algorithm for the isomorphism problem for unary automatic linear orders.

3.1 Efficient Solution to the Isomorphism Problem

Theorem 5. The isomorphism problem for unary automatic linear orders is
decidable in quadratic time in the sizes of the input automata.

We use the notation from Section 2: given a unary automaton A it has param-
eters t, � which are the lengths of its (1, 1)-tail and -loop.

Lemma 2. Suppose A is a unary automaton that represents a linear order L =
(N;≤L). For any t ≤ j < �, the sequence (j + i�)i∈N is either an increasing chain
in a copy of ω in L or a decreasing chain in a copy of ω∗ in L.

Proof (of Theorem 5). Suppose L = (N; <L) is a unary automatic linear order
represented by a unary automaton A with parameters t, �. We will extract its
canonical word αL ∈ {ω, ω∗,n}� by determining the relative ordering of the at
most � many copies of ω and ω∗ given by Lemma 2 and the elements 0, . . . , t−1.

For t ≤ j < t + �, we decide in linear time whether the sequence (j + i�)i∈N is
in a copy of ω or ω∗. Two sequences (j + i�)i∈N and (k+ i�)i∈N (j < k) interleave
if they belong to the same copy of ω or ω∗ in L. We check this by reading the
(2, 1)-loops at most � many times. These loops also specify the relative order
of (j + i�)i∈N and (k + i�)i∈N if they do not interleave. Thus, in O(n2) time,

Analysing Complexity in Classes of Unary Automatic Structures 523

we compute descriptions of the predecessors of each (j + i�)i∈N in L and an
equivalence relation on {t, . . . , t+ �− 1} based on interleaving. Similarly, we can
compute the predecessors of each j, 0 ≤ j < t in O(n) time. To extract αL from
A, it remains to iterate through states according to their L-predecessors, and
decided if they belong to a finite block, a copy of ω, or a copy of ω2. This can
be done in O(n2). $%

3.2 State Complexity

The order type of a unary automatic linear order L = (N;≤L) is specified by
αL ∈ {ω, ω∗, {n}n∈N}�. Let mL be the number of copies of ω or ω∗ in αL and let
kL be the sum of all n such that n appears in wL. Define |αL| = max{mL, kL}.

Theorem 6. The state complexity of the class of unary automatic linear orders

– with mL = 0, kL > 0 is 1
2 (k2

L + kL); with mL > 0, kL = 0 is 2m2
L + mL; and

– with mL > 0, kL > 0 is k2
L + 2m2

L + 2mLkL + mL.

Proof. Lemma 2 implies the optimal automaton has mL + kL (1, 1)-states. $%

Corollary 2. The (unary) state complexity for the class of unary automatic
linear orders is quadratic in the size of the associated parameter, |αL|.

4 Equivalence Relations

A structure E = (N; E) is an equivalence structure if E is an equivalence rela-
tion (reflexive, symmetric, and transitive). Table 1 immediately gives that the
membership problem for automatic equivalence structures is decidable in time
O(n3). Blumensath [19] and Khoussainov and Rubin [20] classified unary auto-
matic equivalence structures.

Theorem 7 ([19,20]). An equivalence structure has a unary automatic presen-
tation if and only if it has finitely many infinite equivalence classes and there is
a finite bound on the sizes of the finite equivalence classes.

The height of an equivalence structure E is a function hE : N∪ {∞} → N∪ {∞}
where hE(x) is the number of E-equivalence classes of size x. Two equivalence
structures E1 and E2 are isomorphic if and only if hE1 = hE2 . By Theorem 7, if
E is unary automatic then hE is finitely nonzero.

Corollary 3. The isomorphism problem for unary automatic equivalence struc-
tures is decidable.

We may define an extended first order sentence which describes the height
function hE and leads to doubly exponential runtime for deciding whether two

524 J. Liu and M. Minnes

equivalence structures are isomorphic. We significantly improve this bound by
giving a quadratic time algorithm for the isomorphism problem.

4.1 Efficient Solution to the Isomorphism Problem

Theorem 8. The isomorphism problem for unary automatic equivalence struc-
tures is decidable in quadratic time in the sizes of the input automata.

Proof. Suppose E is recognized by a unary automaton A with n states. Recall
the definitions of t, �, and qj from Section 2. Observe that each j < t+ � belongs
to an infinite equivalence class if and only if there is an accepting state on the
(2, 1) loop from qj . Let t ≤ j < t + �. If j belongs to an infinite equivalence
class then the set {j + i�}i∈N is partitioned into c infinite equivalence classes
for some c > 0. It takes O(n2) time to compute the total number of infinite
equivalence classes. Each 0 ≤ j < t + � such that qj has no accepting state on
its (2, 1)-loop may be responsible for infinitely many finite equivalence classes of
the same size and finitely many other equivalence classes. We can find all k such
that hE(k) = ∞ in O(n) time. It remains to compute the sizes of equivalence
classes for elements represented on the (1, 1)-loop but such that hE(k) < ∞.
This can be done by reading through the (2, 1)-tails off the (1, 1)-tail and has
runtime O(n). This algorithm takes O(n2). $%

4.2 State Complexity

The height function hE is a finite isomorphism invariant for unary automatic
equivalence structures. We will express the state complexity in terms of the
height function hE ; let hinf = hE(∞) and ninf =

∑
n:hE(n)=∞ n. Define

|hE | =

⎛⎝ ∑
n<∞:hE (n)<∞

nhE

⎞⎠+ ninf + hinf .

Theorem 9. The state complexity of unary automatic equivalence structure

E = (N; E) is at least

⎛⎝ ∑
n<∞:hE(n)<∞

n2hE(n)

⎞⎠+ 2hinf(ninf + 1) + ninf + 1 and

at most

⎛⎝ ∑
n<∞:hE(n)<∞

n2hE(n)

⎞⎠+

⎛⎝ ∑
n<∞:hE(n)=∞

n2

⎞⎠+ 2hinf(ninf + 1) + 1.

Proof. The upper bound is obtained by analysing the relationship between in-
finite equivalence classes, finite equivalence classes that occur infinitely often,
and the (1, 1)-loop of the optimal automaton. The lower bound is computed by
overlapping (1, 1)-states so they correspond to multiple equivalence classes. $%

Corollary 4. The (unary) state complexity for the class of unary automatic
equivalence structure is quadratic in the height function.

Analysing Complexity in Classes of Unary Automatic Structures 525

5 Trees

5.1 Characterizing Unary Automatic Trees

A tree is T = (N;≤T) where ≤T is a partial order (reflexive, antisymmetric, and
transitive) with a root (the least element) and the set of ancestors of any node
x, {y : y ≤T x}, is a finite linear order. Two nodes x, y are incomparable, x|T y,
if x �T y and y �T x; an anti-chain of T is a set of nodes which are pairwise
incomparable. Table 1 gives an O(n3) algorithm to check if a given automatic
relation is a partial order. Checking if ≤T is total on every set of predecessors
takes time O(n4). There is an O(n) time algorithm checking if a unary automatic
partial order (N;≤T) has a least element. Thus, the membership problem for
unary automatic trees is decidable in time O(n4).

As we saw in previous sections, a good characterization of a class of unary au-
tomatic structures may lead to a better understanding of its complexity bounds.
We present such a characterization of unary automatic trees. A parameter set Γ
is a tuple (T0, T1, . . . , Tm, σ, X) where T0, . . . , Tm are finite trees (with disjoint
domains Ti), σ : {1, . . . , m} → T0 and X : {1, . . . , m} → {∅} ∪

⋃
i Ti such that

X(i) ∈ Ti ∪ {∅}.

Definition 2. A tree-unfolding of a parameter set Γ is the tree UF(Γ) defined
as follows:

– UF(Γ) contains one copy of T0 and infinitely many copies of each Ti (1 ≤
i ≤ m), (T j

i)j∈ω. If x ∈ Ti, its copy in T j
i is denoted by (x, j)

– For 1 ≤ i ≤ m, if X(i) �= ∅, the root of T 0
i is a child (immediate descendent)

of σ(i), and the root of T j+1
i is a child of (X(i), j) for all j.

– For 1 ≤ i ≤ m, if X(i) = ∅, the root of T j
i is a child of σ(i) for all j.

Theorem 10. A tree T is unary automatic if and only if there is a parameter
set Γ = (T0, T1, . . . , Tm, σ, X) such that T ∼= UF(Γ).

Suppose T = (N;≤T) is recognized by a unary automaton A with n states
and parameters t, �. We say that two disjoint sets X and Y of nodes in T are
incomparable if (∀x ∈ X)(∀y ∈ Y)(x|T y). We sketch the proof of Theorem 10.

Lemma 3. For t ≤ j < t + l, the set (j + i�)i∈N forms either an anti-chain or
finitely many pairwise incomparable infinite chains in T .

Let A = {j : (j + i�)i∈N is an anti-chain, t ≤ j < t + �} and C = {t, . . . , t + � −
1} − A. For each j ∈ C, let nj be the number of infinite chains in (j + i�)i∈N.
For 0 ≤ m < nj , we denote the infinite chain formed by (j + (m + inj)�)i∈N by
Wj,m. Wj,m and Wk,m′ may belong to the same infinite path in T (interleave in
the sense of Section 3); if they do, then nj = nk. Any infinite path through T
must be given by element(s) in C. Hence, T contains only finitely many infinite
paths. We define a component of T to be a connected subgraph of T which
contains exactly one infinite path and such that all the elements in the subgraph
are greater than or equal to t. For j ∈ C and k ∈ A, we can decide if any

526 J. Liu and M. Minnes

element in (k + i�)i∈N belongs to a component of T intersecting with (j + i�)i∈N;
if some element does, then (k + i�)i∈N belongs to the same components as the
class (j + i�)i∈N. If j, k ∈ A and neither (j + i�)i∈N nor (k+ i�)i∈N intersects with
any component of T , we check if the union (j + i�)i∈N ∪ (k + i�)i∈N is a subset
of infinitely many disjoint finite subtrees in T , each of which contains the nodes
j + i� and k +(i+m)� for some i. We call these disjoint finite trees independent.

The above argument facilitates the definition of an equivalence relation ∼ on
{t, . . . , t + � − 1} as j ∼ k if and only if j ∈ C (or k ∈ C) and {j + i�}i∈N and
{k + i�}i∈N belong to the same nj (or nk) components in T ; or, j, k ∈ A and
there is h ∈ C such that j ∼ h and k ∼ h; or j, k ∈ A and {j + i�}i∈N and
{k + i�}i∈N belong to the same collection of independent trees in T . We use [j]
to denote the ∼-equivalence class of j.

Proof (of Theorem 10). We show that any unary automatic tree is isomorphic
to the tree-unfolding UF(Γ) of some parameter set Γ = (T0, T1, . . . , Tm, σ, X).
Each ∼-equivalence class [j] either represents infinitely many independent trees
or finitely many components of T . Components of T represented by [j] are
pairwise isomorphic and can be described by “unfolding” a finite graph of size
|[j]|. In either case, the set of ancestors of [j] in T is finite. This description
may be translated to a parameter set for Γ . Conversely, suppose that Γ =
(T0, T1, . . . , Tm, σ, X) is a parameter set. Let t = |T0|, � = Σm

r=1|Tr| and αr =
Σr−1

i=1 |Ti| for r = 1, . . . , m. We consider the isomorphic copy (N;≤T) ∼= UF(Γ)
where T0 .→ {0, . . . , |T0|} and the jth copy of Tr maps to {t+(j−1)�+αr, . . . , t+
(j − 1)� + αr+1 − 1}. The unary automaton recognizing UF(Γ) has parameters
t, �; the other states and F can be deduced from σ and X . $%

5.2 Efficient Solution to the Isomorphism Problem

Two tree-unfoldings may be isomorphic even if the associated parameter sets are
not isomorphic term-by-term. We define an isomorphic invariant: a restricted
parameter set. Fix a computable linear order � on the set of finite trees.

Definition 3. The canonical parameter set of a unary automatic tree T =
(N;≤T) is the parameter set Γ = (T0, T1, . . . , Tm, σ, X) such that UF(Γ) ∼= T
and which is minimal in the following sense:

1. As finite trees, T1 � . . . � Tm.
2. If Ti

∼= Tj, σ(i) = σ(j), and X(i) = X(j) = ∅ then i = j.
3. Each Ti (1 ≤ i ≤ m) is minimal: If X(i) �= ∅ then if y1 ≤T y2 ≤T X(i) the

subtree with domain {z : y1 ≤T z∧y2 �T z} is not isomorphic to the subtree
with domain {z : y2 ≤T z ∧ X(i) �T z}.

4. T0 is minimal: T0 has the fewest possible nodes and for all 1 ≤ i ≤ m where
X(i) �= ∅, there is no y ∈ T0 such that y ≤T σ(i) and the subtree with domain
{z : y ≤T z ∧ σ(i) ≮T z} is isomorphic to Ti.

Lemma 4. Suppose T , T ′ are unary automatic trees with canonical parameter
sets Γ, Γ ′. Then, T ∼= T ′ if and only if Γ, Γ ′ have the same number (m) of finite
trees, (T0, σ) ∼= (T ′

0 , σ′), and for 1 ≤ i ≤ m, (Ti, X(i)) ∼= (T ′
i , X ′(i)). $%

Analysing Complexity in Classes of Unary Automatic Structures 527

The canonical parameter set can be used to define an extended first-order formula
ϕT which specifies the isomorphism type of T ; hence, the isomorphism problem
for unary automatic trees is decidable. We now improve this result by reducing
the time complexity of the associated decision procedure.

Theorem 11. The isomorphism problem for unary automatic trees is decidable
in time O(n4) in the sizes of the input automata.

It is sufficient to compute the canonical parameter set; then, Lemma 4 and
a decision procedure for isomorphism on finite trees solves the isomorphism
problem on unary automatic trees. We omit the (long) proof of Lemma 5.

Lemma 5. If ≤T is recognized by unary automaton with n states, there is an
O(n4) time algorithm that computes the canonical parameter set of T

Proof (Theorem 11). Suppose T1, T2 are presented by unary automata A1,A2
with n1, n2 states (respectively). Let n = max{n1, n2} By Theorem 10 and
Lemma 5, deciding if T1 ∼= T2 reduces to checking finitely many isomorphisms
of finite trees. The appropriate canonical parameter sets are built in O(n4) time
and each have O(n2) finite trees, each of size O(n). $%

5.3 State Complexity

Suppose T = UF(Γ) and Γ = (T0, T1, . . . , Tm, σ, X) is the canonical parameter
set of T . Let t = |T0| and � =

∑m
i=1 |Ti|.

Theorem 12. The state complexity of unary automatic tree T is less than (t +
�)2 − t� + t + � and greater than �2.

Proof. Theorem 10 gives the upper bound. The lower bound is obtained when
T1, . . . , T� are pairwise nonisomorphic. $%

Corollary 5. The (unary) state complexity of a unary automatic tree T is
quadratic in the parameters t, � of its canonical parameter set.

6 Graphs of Finite Degree

A graph G = (N; R) is of finite degree if (∀x)(¬∃∞y)(R(x, y) ∨ R(y, x)). If R is
recognized by a unary automaton, G is of finite degree if and only if there is no
accepting state on any (2, 1)- or (1, 2)-loops. Therefore, the membership problem
is decidable in linear time. In [21], Khoussainov, Liu, and Minnes investigated
a range of algorithmic properties of unary automatic graphs of finite degree.
For example, they showed that the reachability problem for unary automatic
graphs of finite degree can be decided in polynomial time in the sizes of the
input vertices and the automaton. We will make use of the following.

Theorem 13 ([21]). For a unary automatic graph G of finite degree, we can
construct a unary automaton that recognizes the reachability relation on G in
polynomial time; connectedness of G is decidable in O(n3) time.

528 J. Liu and M. Minnes

However, [21] left open the decidability of the isomorphism problem. We now
settle this question and provide an algorithm deciding the isomorphism problem
for unary automatic graphs of finite degree.

Theorem 14. The isomorphism problem for unary automatic graphs of finite
degree is decidable in elementary time.

For brevity, we assume G is undirected and sketch the proof We use the following
characterization from [21]. Given a finite graph F = (VF ; EF) and a map σ :
VF → P(VF), Fσω is the disjoint union of infinitely many copies of F with an
edge between x ∈ Fi and y ∈ Fi+1 if and only if y ∈ σ(x).

Theorem 15 ([21]). A graph of finite degree G = (N; R) is unary automatic if
and only if there are finite graphs D,F and a map σ : VF → P (VF) such that
G ∼= G′ and G′ is a disjoint union of D and Fσω with possible additional edges
between D and F0. Furthermore, the parameters D,F , σ can be extracted in time
O(n2) from a unary automaton recognizing R.

A component of G is the transitive closure of a vertex under the edge relation. By
Theorem 15, any infinite component in G has nonempty intersection with almost
all Fi. Therefore, G has at most |VF | many infinite components. Also, any finite
component of G has size at most |VD+VF |. Let GFin be the subset of G containing
only its finite components. By Theorem 15, if C is any finite component of G
then either C∩Fj �= ∅ for some j < � or C has infinitely many isomorphic copies
in G. Moreover, there are finitely many isomorphism classes of finite components
of G, and we can tell which of these correspond to infinitely many components
in G. Hence, given two graphs G,G′ we can decide if GFin ∼= G′

Fin.
It remains to prove that it is decidable whether two infinite components of

unary automatic graphs are isomorphic. It suffices to prove that we can decide
whether two infinite connected unary automatic graphs are isomorphic. We will
give sufficient MSO conditions which guarantee that an infinite connected graph
H is isomorphic to G. For a partition of H into 3k sets Pi, a subgraph M of 3k ver-
tices in H is an F×3-type if M intersects with each Pi at exactly one vertex, and
if we let vi = M∩Pi, then the three sets of vertices {v1, . . . , vk}, {vk+1, . . . , v2k},
{v2k+1, . . . , v3k} respectively form three copies of F , with vi, vk+i, v2k+i corre-
sponding to the same vertex in F . Also, the edge relation between these three
copies of F must respect the mapping σ. Then an isomorphism between H and
G is guaranteed by the following (MSO-expressible) conditions. Each vertex v
in H belongs to a unique subgraph that is an F×3-type; and, for each F×3-type
M, there is a unique F×3-type N that is a successor of M (all edges between
M and N are from the last copy of F in M to the first copy of F in N and
respect the mapping σ). Also, there is a unique F×3-type M0 which is not the
successor of any other F×3-types and any other F×3-type is the successor of a
unique F×3-type. The isomorphism maps M0 to the first 3 copies of F in G,
and then map the other vertices according to the successor relation and σ. By
Theorem 2, satisfiability of an MSO sentence is decidable for unary automatic
graphs. Therefore the isomorphism problem for unary automatic graphs of fi-
nite degree is decidable. Note that formalizing the conditions on H requires only

Analysing Complexity in Classes of Unary Automatic Structures 529

finitely many alternations of quantifiers (regardless of the size of the automaton
presenting it) and so the decision procedure is elementary in terms of the size of
the input automaton.

References

1. Libkin, L.: Elements of Finite Model Theory. EATCS. Springer, Heidelberg (2004)
2. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification (preliminary report). In: Proceedings of the First Annual IEEE Sym-
posium on Logic in Computer Science (LICS 1986), pp. 332–344. IEEE Computer
Society Press, Los Alamitos (1986)

3. Vardi, M.: Model checking for database theoreticians. In: Eiter, T., Libkin, L. (eds.)
ICDT 2005. LNCS, vol. 3363, pp. 1–16. Springer, Heidelberg (2004)

4. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: Richness
and limitations. In: Proc. 19th LICS, pp. 44–53. IEEE Computer Society, Los
Alamitos (2004)

5. Rubin, S.: Automatic Structures. PhD thesis, University of Auckland (2004)
6. Olver, G., Thomas, R.: Automatic presentation for finitely generated groups. In:

Proc. 5th DLT. LNCS, pp. 130–144. Springer, Heidelberg (2002)
7. Vinokurov, N.: Complexity of some natural problems in automatic structures.

Siberian Mathematical Journal 46, 56–61 (2005)
8. Khoussainov, B., Minnes, M.: Model theoretic complexity of automatic structures

(Extended abstract). In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC
2008. LNCS, vol. 4978, pp. 520–531. Springer, Heidelberg (2008)

9. Blumensath, A., Grädel, E.: Automatic structures. In: Proc. 15th LICS, pp. 51–62.
IEEE Computer Society, Los Alamitos (2000)

10. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata
and interpretations. Theory of Computing Systems 37, 641–674 (2004)

11. Campeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages, automata implementation. In: Boldt, O., Jürgensen, H.
(eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

12. Yu, S.: Regular languages. Handbook of Formal Languages, ch. 2 (1997)
13. Yu, S.: State complexity: recent results and open problems. Fundamenta Informat-

icae 64(1-4), 471–480 (2005)
14. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, Reading (2001)
15. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proc. LC

2007. Cambridge University Press, Cambridge (2008)
16. Rubin, S.: Automata presenting structures: A survey of the finite string case. Bul-

letin of Symbolic Logic 14(2), 169–209 (2008)
17. Hodgson, B.: On direct products of automaton decidable theories. Theoretical

Computer Science 19, 331–335 (1982)
18. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,

D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)
19. Blumensath, A.: Automatic Structures. Diploma thesis, RWTH Aachen (1999)
20. Khoussainov, B., Rubin, S.: Graphs with automatic presentations over a unary

alphabet. J. of Automata, Languages and Combinatorics 6(4), 467–480 (2001)
21. Khoussainov, B., Liu, J., Minnes, M.: Unary automatic graphs: An algorithmic

perspective. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 548–559. Springer, Heidelberg (2008)

An Application of Generalized Complexity
Spaces to Denotational Semantics via the

Domain of Words

Jordi Llull-Chavarŕıa and Oscar Valero�

Departamento de Ciencias Matemáticas e Informática, Universidad de las Islas
Baleares, 07122, Baleares, Spain

o.valero@uib.es

Abstract. In 1995 M. Schellekens introduced the theory of complex-
ity spaces as a part of the development of a mathematical (topological)
foundation for the complexity analysis of programs and algorithms [Elec-
tronic Notes in Theoret. Comput. Sci. 1 (1995), 211-232]. This theory
is based on the structure of quasi-metric spaces which allow to measure
relative progress made in lowering the complexity when a program is re-
placed by another one. In his paper, Schellekens showed the applicability
of the theory of complexity spaces to the analysis of Divide & Conquer
algorithms. Later on, S. Romaguera and Schellekens introduced the so-
called dual (quasi-metric) complexity space in order to obtain a more
robust mathematical structure for the complexity analysis of programs
and algorithms [Topology Appl. 98 (1999), 311-322]. They studied some
properties of the original complexity space, which are interesting from
a computational point of view, via the analysis of the dual ones and
they also gave an application of the dual approach to the complexity
analysis of Divide and Conquer algorithms. Most recently, Romaguera
and Schellekens introduced and studied a general complexity framework
which unifies the original complexity space and the dual one under the
same formalism [Quaestiones Mathematicae 23 (2000), 359-374]. Moti-
vated by the former work we present an extension of the generalized com-
plexity spaces of Romaguera and Schellekens and we show, by means of
the so-called domain of words, that the new complexity approach is suit-
able to provide quantitative computational models in Theoretical Com-
puter Science. In particular our new complexity framework is shown to
be an appropriate tool to model the meaning of while-loops in formal
analysis of high-level programming languages.

2000 AMS Classification: 54E50, 54F05, 54C35, 68Q55, 68Q45, 68Q25.

� Corresponding author. The first author has been supported by a grant from the
Technical College of the Balearic Islands University. The second author thanks
the support of the Spanish Ministry of Education and Science, and FEDER, grant
MTM2006-14925-C02-01.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 530–541, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Application of Generalized Complexity Spaces to Denotational Semantics 531

1 Introduction and Preliminaries

Throughout this paper the letters R+, N, Z and ω will denote the set of nonneg-
ative real numbers, the set of natural numbers, the set of integer numbers and
the set of nonnegative integer numbers, respectively.

Next we give some pertinent concepts on quasi-metric spaces. Our basic ref-
erence is [4].

Following the modern terminology, by a quasi-metric on a (nonempty) set X
we mean a function d : X × X → R+ such that for all x, y, z ∈ X : (i) d(x, y) =
d(y, x) = 0 ⇔ x = y; (ii)d(x, z) ≤ d(x, y) + d(y, z).

Each quasi-metric d on a set X induces a T0 topology T (d) on X which has
as a base the family of open d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) =
{y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d
is a quasi-metric on X.

If d is a quasi-metric on a set X , then the function ds defined on X × X by
ds(x, y) = max{d(x, y), d(y, x)} is a metric on X.

A quasi-metric is called bicomplete if ds is a complete metric.
According to [5] a quasi-metric on X is said to be weightable if there is a

function w : X → R+ such that d(x, y) + w(x) = d(y, x) + w(y) for all x, y ∈ X.
The function w is said to be a weight function for the quasi-metric space (X, d).

An interesting example of a bicomplete weightable quasi-metric space is given
by the pair (R+, u) where the function u : R+×R+ → R+ is defined by u(x, y) =
(y − x) ∨ 0 for all x, y ∈ R+. The pair ((0, +∞], u−1), where the function u−1 :
(0, +∞] × (0, +∞] → R+ is given by u−1(x, y) = (1

y − 1
x) ∨ 0 for all x, y ∈

(0, +∞] (we adopt the convention that 1
+∞ = 0), is another interesting example

of bicomplete weightable quasi-metric space . Both quasi-metric spaces play a
central role in the theory of complexity spaces such as we will state later on (see
also [12,10,9] for more details).

As usual a partial order (or simply an order) on a (nonempty) set X is a
reflexive, transitive and antisymmetric binary relation ≤ on X . A set X equipped
with an order is said to be an ordered set. Our basic references for Order Theory
are [2] and [1].

A paradigmatic and well-known example of ordered set is the set of partial
mappings. Let us recall that, given a nonempty set X , a mapping from X to X
is a partial (total) mapping if dom(f) ⊂ X (dom(f) = X). Where we denote
by dom(f) the domain of f. The set of partial mappings from Z to Z, denoted
by [Z → Z], becomes an ordered set endowed with the extension order 3 given
by f 3 g ⇔dom(f) ⊆dom(g) and f = g on dom(f).

The least upper bound of a subset S of (X,≤) is denoted by lub(S) if it exists.
We say that a sequence (xn)n∈N in an ordered set (X,≤) is ascending if

xn ≤ xn+1 for all n ∈ N.
It is well-known that a quasi-metric space (X, d) can be endowed with an

order ≤d which is defined by x ≤d y ⇔ d(x, y) = 0.
In [12], M. Schellekens introduced the (quasi-metric) complexity space as a

part of the development of a topological foundation for the complexity analysis

532 J. Llull-Chavarŕıa and O. Valero

of programs and algorithms. In particular, he presented some applications of
this theory to the complexity analysis of Divide & Conquer algorithms. More
concretely he gave a novel proof, based on fixed point arguments, of the well-
known fact that the mergesort algorithm has optimal asymptotic average running
time.

The complexity space is the pair (C, dC), where

C = {f : ω → (0, +∞] :
∞∑

n=0

2−n 1
f(n)

< +∞},

and dC is the quasi-metric on C defined by dC(f, g) =
∑∞

n=0 2−n[(1
g(n) −

1
f(n))∨0].

According to Section 4 of [12], the intuition behind the complexity distance
between two functions f, g ∈ C is that dC(f, g) measures relative progress made in
lowering the complexity by replacing any program P with complexity function f
by any program Q with complexity function g. Therefore, if f �= g, the condition
dC(f, g) = 0 can be interpreted as f is “more efficient” than g. In fact f ≤dC g ⇔
f(n) ≤ g(n) for all n ∈ ω. Moreover, the quasi-metric space (C, dC) is bicomplete
and weightable with weight function WdC defined by WdC(f) =

∑∞
n=0 2−n 1

f(n)
for all f ∈ C.

Later on, S. Romaguera and Schellekens ([10]) introduced the so-called dual
complexity space and obtained several quasi-metric properties of the complexity
space that are interesting from a computational point of view, such as the Smyth
completeness, via the analysis of its dual.

Recall that the dual complexity space is the pair (C∗, dC∗), where

C∗ = {f : ω → R+ :
∞∑

n=0

2−nf(n) < +∞},

and dC∗ is the quasi-metric on C∗ given by dC∗(f, g)=
∑∞

n=0 2−n[(g(n)−f(n))∨0].
A motivation for the use of the dual complexity space is given by the fact that

Romaguera and Schellekens proved that the complexity analysis of algorithms
can be carried out by means of techniques based on the dual complexity space
when the considered complexity measure is the running time of computing. In
this case the computational interpretation of the condition dC∗(f, g) = 0 is pro-
vided by the fact f ≤dC∗ g ⇔ g(n) ≤ f(n) for all n ∈ ω. Thus dC∗(f, g) = 0
provides that g is more efficient than f . Moreover, the dual complexity space has
an advantage with respect to the original one. In the dual context, and contrary
to the case of the complexity space, there is a minimum which corresponds to the
minimum of semantic domains. Let us recall that the minimum plays a central
role in domain theory in order to model in an appropriate way the mathematical
meaning of recursive definitions of procedures. Furthermore, the dual complexity
space admits a more robust mathematical structure than the original complexity
space. In particular, the dual complexity space has a cone structure while that of
the complexity space is only a semigroup without neutral element (for a detailed
discussion we refer the reader to [7]). As in the case of the complexity space, the

An Application of Generalized Complexity Spaces to Denotational Semantics 533

quasi-metric space (C∗, dC∗) is bicomplete and weightable with weight function
WdC∗ defined by WdC∗ (f) =

∑∞
n=0 2−nf(n) for all f ∈ C∗.

Most recently, Romaguera and Schellekens presented a general theory of com-
plexity spaces which unifies in a same framework the theory of the original
complexity space and the dual one (see [9]).

Following [9], given a quasi-metric space (X, d) and a fixed x0 ∈ X, the (gen-
eralized) complexity space of (X, d, x0) is the quasi-metric space (Cω

X,x0
, dCω

X,x0
),

where

Cω
X,x0

= {f : ω → X :
∞∑

n=0

2−nds(x0, f(n)) < +∞}

and the quasi-metric dC∗
X,x0

on Cω
X,x0

is defined by

dCω
X,x0

(f, g) =
∞∑

n=0

2−nd (f(n), g(n))

for all f, g ∈ Cω
X,x0

.
Notice that if we take in the preceding definition the base quasi-metric space

(X, d) with X = (0, +∞], x0 = +∞ and d = u−1, then the complexity space
(C∗

X,x0
, dC∗

X,x0
) is exactly (C, dC). Moreover, when X = R+, x0 = 0 and d = u

we retrieve the dual complexity space (C∗, dC∗) as a particular case of the above
construction.

For the purpose of our work in this paper we need to consider a more general
structure. We will replace the set of nonnegative integer numbers ω by the set of
integer numbers Z in the definition of Cω

X,x0
above. In particular given a quasi-

metric space (X, d) and x0 ∈ X we define the complexity space of (X, d, x0) as
the pair (CX,x0 , dCX,x0

), where

CX,x0 = {f : Z → X :
∞∑

n=0

2−n[ds(x0, f(n)) + ds(x0, f(−n))] < +∞}

and dCX,x0
is the nonnegative real valued function defined on CX,x0 × CX,x0 by

dCX,x0
(f, g) =

∞∑
n=0

2−n[d (f(n), g(n)) + d (f(−n), g(−n))]

A trivial verification shows that the pair (CX,x0 , dCX,x0
) is a quasi-metric space.

Of course Cω
X,x0

⊂ CX,x0 , since each mapping g ∈ Cω
X,x0

can be identified with
a mapping fg ∈ CX,x0 given by fg(n) = g(n) and fg(−n) = x0 for all n ∈ ω.
Furthermore, dCω

X,x0
|CX,x0

(f, g) = dCω
X,x0

(f, g) for all f, g ∈ Cω
X,x0

.
In [9] the authors studied from a theoretical point of view several properties of

the mathematical structure of the generalized complexity spaces (Cω
X,x0

, dCω
X ,x0)

as, for instance and among others, the bicompleteness and the Smyth complete-
ness. Although these new structures are inspired by computational topics they
did not apply them to Computer Science. Motivated by this fact, our aim in

534 J. Llull-Chavarŕıa and O. Valero

this paper is to show that the generalized complexity structures are a suitable
framework to model several processes that arise in a natural way in Computer
Science. In particular we show in Section 3 that the new complexity spaces
(CX,x0 , dCX ,x0) are an appropriate theoretical tool to formal analysis and spec-
ification of the semantical aspects of high-level programming languages in the
spirit of semantics theory developed by D.S. Scott. Some advantages of the use of
our new approach with respect to the use of the classical one are shown. Section
2 is devoted to present the mathematical results which play a fundamental role
in order to develop the mentioned application.

2 The Mathematical Results

The next result was proven by Romaguera and Schellekens in [9].

Theorem 1. Let (X, d) be a bicomplete quasi-metric space and let x0 ∈ X.
Then the complexity space (Cω

X,x0
, dCω

X,x0
) is bicomplete.

Next we extend the preceding result to the context of our new complexity spaces.
We omit the proof because of it can be obtained following similar arguments to
those given in [9].

Theorem 2. Let (X, d) be a bicomplete quasi-metric space and let x0 ∈ X.
Then the complexity space (CX,x0 , dCX,x0

) is bicomplete.

The next result will play a fundamental role in our later work.

Proposition 1. Let (X, d) be a weightable quasi-metric space with weight func-
tion w and let x0 ∈ X. Then the complexity space (CX,x0 , dCX,x0

) is weightable
with weight function WCX,x0

given for all f ∈ CX,x0 by
WCX,x0

(f) =
∑∞

n=0 2−n[w(f(n)) + w(f(−n))].

Proof. Since (X, d) is a weightable quasi-metric space there exists a weight func-
tion w : X → R+ such that d(x, y) + w(x) = d(y, x) + w(y) for all x, y ∈ X.
So d(x0, x) + w(x0) = d(x, x0) + w(x) for all x ∈ X. Consequently w(x) =
d(x0, x)+w(x0)−d(x, x0) ≤ d(x0, x)+w(x0) for all x ∈ X. Thus, given f ∈ CX,x0 ,
we have that

∞∑
n=0

2−n[w(f(n)) + w(f(−n)] ≤

∞∑
n=0

2−n[d(x0, f(n)) + d(x0, f(−n))] + 4w(x0) < +∞.

Define WCX,x0
: CX,x0 → R+ by WCX,x0

(f) =
∑∞

n=0 2−n[w(f(n)) + w(f(−n))].
Obviously, from the preceding inequality WCX,x0

is well-defined.
A straightforward computation shows that

dCX,x0
(f, g) + WCX,x0

(f) = dCX,x0
(g, f) + WCX,x0

(g).

The proof is complete. $%

An Application of Generalized Complexity Spaces to Denotational Semantics 535

Corollary 1. Let (X, d) be a weightable quasi-metric space and let x0 ∈ X.
Then the complexity space (Cω

X,x0
, dCω

X,x0
) is weightable with weight function

WCω
X,x0

given by WC∗
X,x0

(f) =
∑∞

n=0 2−nw(f(n)) for all f ∈ Cω
X,x0

.

In Computer Science when a program uses a recursion to find the solution of
a problem in each step of the computation we obtain an approximation of the
mentioned solution which is better than the approximations obtained in the
preceding steps and, in addition, the computing process must always obtain as
“limit” the final approximation of the problem solution. A mathematical theory
of computation which provides a satisfactory model to this sort of situations was
developed by D.S. Scott which is based on ideas from order theory and topol-
ogy (see, for instance, [13] and [14]). In particular the order represents some
notion of information in such a way that each step of the computation is identi-
fied with an element of the mathematical model which is greater than (or equal
to) the other ones associated to the preceding steps, since each approximation
gives more information about the final solution than the those computed before.
The final output of the computational process is seen as the limit of the suc-
cessive approximations. Thus the recursion processes are modeled as increasing
sequences of elements of the ordered set which converge to its least upper bound
with respect the given topology. From an information theory point of view the
least upper bound captures the amount of information defined by the increasing
sequence, i.e. the least upper bound gives the total information provided by the
elements of the increasing sequence, and it does not contain more information
than can be obtained from the elements of the increasing sequence.

In [5], S.G. Matthews introduced the notion of Scott-like topology as a math-
ematical framework to model increasing information content sequences in Com-
puter Science.

According to [5], a weakly order consistent topology over an ordered set (X,≤)
is a topology T over X such that x ≤ y ⇔ x ∈ cl(y) for all x, y ∈ X , where
by cl(y) we denote the closure of y with respect to T . Moreover, a Scott-like
topology over an ordered set (X,≤) is a weakly consistent topology T over X
satisfying the following properties:

(a) every increasing sequence (xn)n∈N in (X,≤) has least upper bound
lub((xn)n∈N).

(b) for every O ∈ T with lub((xn)n∈N) ∈ O there exists n0 ∈ N such that xn ∈ O
for all n > n0.

The next result was given by Matthews in [5].

Proposition 2. Let (X, d) be a bicomplete weightable quasi-metric space with
weight function w. Then the topology T (d) is a Scott-like toplogy over (X ≤d),
and thus every ascending sequence (xn)n∈N in X has a least upper bound x ∈ X
with limn→+∞xn = x in (X, d) and limn→+∞w(xn) = w(x).

Remark 1. Note that the fact that the sequence (xn)n∈N is ascending with least
upper bound x provides that d(xn, x) = 0. So in the preceding proposition we
actually have that limn→+∞xn = x in (X, ds).

536 J. Llull-Chavarŕıa and O. Valero

Proposition 3. Let (X, d) be a bicomplete weightable quasi-metric space with
weight function w. If (xn)n∈N is an ascending sequence in (X,≤d) and x ∈ X is
its least upper bound, then w(x) =infn∈N(w(xn)).

Proof. Since d(xn, xn+1) = 0 for all n ∈ N we have that w(xn+1) − w(xn) =
−d(xn+1, xn) ≤ 0. Whence we deduce that w(xn+1) ≤ w(xn) for all n ∈ N. So
the sequence (w(xn))n∈N is a decreasing sequence in (R+, | · |) with lower bound.
It immediately follows that there exists a ∈ R+ such that a =infn∈Nw(xn) and
limn→+∞w(xn) = a. By Proposition 2 we have that limn→+∞w(xn) = w(x).
Therefore w(x) = a. $%

From Theorem 2, Proposition 1, Proposition 2, Remark 1 and Proposition 3 we
immediately deduce the following result.

Theorem 3. Let (X, d) be a bicomplete weightable quasi-metric space and let
x0 ∈ X. The every ascending sequence (fn)n∈N in (CX,x0 ,≤dCX,x0

) has least
upper bound f ∈ CX,x0 satisfying:

(1) limn→+∞fn = f in (CX,x0 , d
s
CX,x0

).
(2) WCX,x0

(f) =infn∈NWCX,x0
(fn).

(3) limn→+∞WCX,x0
(fn) = WCX,x0

(f).

Corollary 2. Let (X, d) be a bicomplete weightable quasi-metric space and let
x0 ∈ X. The every ascending sequence (fn)n∈N in (Cω

X,x0
,≤dω

CX,x0
) has least

upper bound f ∈ Cω
X,x0

satisfying:

(1) limn→+∞fn = f in (Cω
X,x0

, ds
Cω

X,x0
).

(2) WCω
X,x0

(f) =infn∈NWCω
X,x0

(fn).
(3) limn→+∞WCω

X,x0
(fn) = WCω

X,x0
(f).

Remark 2. Notice that the preceding theorem guarantees that the topologies
T (dCX,x0

) and T (dCω
X,x0

) are Scott-like over (CX,x0 ,≤dCX,x0
) and (Cω

X,x0
,≤dω

CX,x0
),

respectively.

In [5] it has been pointed out that the weight w of a weightable quasi-metric space
(X, d) can be used as a tool to describe the amount of information contained in
an element of the quasi-metric space. In particular if x, y ∈ X with d(x, y) = 0
(x ≤d y) then w(x) ≥ w(y), i.e. if y has at least as much information as x then
w(x) ≥ w(y). So the numerical value w(x) can be considered as the information
content in the element x ∈ X.

Consider the dual complexity space (C∗, dC∗) (see Section 1). It is clear that

f ≤dC∗ g ⇔ dC∗(f, g) = 0 ⇔ g(n) ≤ f(n) for all n ∈ ω.

So the relation f ≤dC∗ g can be interpreted as an information order where
the information content is identified with the “degree” of complexity. In fact,
f ≤dC∗ g can be interpreted as “all the information contained in f is contained in

An Application of Generalized Complexity Spaces to Denotational Semantics 537

g” in the sense that the complexity associated to g is less than the associated one
to f . Furthermore, the value WdC∗ (f) =

∑∞
n=0 2−nf(n) gives a global measure

of the complexity of a program with associated complexity function f (actually
it is a kind of distance from f to the ideal complexity function 0, with 0(n) = n
for all n ∈ ω). In addition if f ≤d∗

C
g then WdC∗ (g) ≤ WdC∗ (f). Consequently

the value WdC∗ (f) can be used to describe the amount of information contained
in f when we interpreted it as the mentioned degree of complexity. A similar
reasoning can be made for the case of the original complexity space (C, dC)
where f ≤dC g ⇔ f(n) ≤ g(n) for all n ∈ N and WdC(f) =

∑∞
n=0 2−n 1

f(n) for
all f ∈ C. Note that WdC(f) is the distance from f to the complexity function
∞ with ∞(n) = +∞ for all n ∈ N, and that f ≤dC g implies WdC(g) ≤ WdC (f).

From information viewpoint, our new framework (CX,x0 , dCX,x0
) preserves the

spirit of increasing information processes. More concretely, statement (1) in The-
orem 3 (and also in Corollary 2) allows us to see the least upper bound of an
ascending sequence as its limit. Note that the mentioned limit is unique. Further-
more, if we take, similarly to the case of (C, dC) and (C∗, dC∗), the numerical value
WCX,x0

(f) (WCω
X,x0

(f)) as a measure of the information content of f ∈ CX,x0

(f ∈ Cω
X,x0

), then statements (2) and (3) in Theorem 3 (and in Corollary 2)
ensure that the information content of the least upper bound of an ascending se-
quence is exactly the information content that can be derived from each element
of the sequence but that it does not contain more.

3 Complexity Spaces in Denotational Semantics

In Denotational Semantics one of the aims consists of giving mathematical mod-
els of programming languages in such a way that the meaning of a procedure
can be obtained as an element of the constructed model. In particular most
programming languages allow to construct procedures by means of recursive
definitions in such a way that the meaning of such definition is employed in its
own definition. In order to analyse if a such recursive definition of a procedure is
meaningful it is necessary to make use of a mathematical approach in which the
meaning of such denotational specification is obtained as the least upper bound
of a sequence of generated approximations in which each one of approximations
gives more information about the meaning of the procedure than the preceding
ones.

Below we give a typical example of the mentioned situation. Consider a while-
loop, i.e. “while B do C”. It is obvious that its denotation 〈while B do C〉 ,
expressed by means of sequential composition of commands, should satisfy the
next equation:

〈while B do C〉 = 〈if B then C; (while B do C) else skip〉

Of course the preceding denotational specification presents a handicap because
to define 〈while B do C〉 we need to use in both sides of the above equation
the same “object” whose meaning we are trying to define. In order to avoid

538 J. Llull-Chavarŕıa and O. Valero

this disadvantage is constructed a sequence of partial mappings (wn(B, C))n∈N,
where wn(B, C) coincides with the computation of “while B do C” involving
fewer than n iterations of the loop and is undefined otherwise. So we obtain an
increasing (with respect the order of partial mappings) information sequence of
approximations of the meaning of the while-loop in which each one of them can be
specified without recursion. Moreover, the least upper bound of (wn(B, C))n∈N

matches up with a mapping (partial or total) that can been identified with the
meaning of the while-loop.

In order to show that our developed theory is useful to model while-loop de-
notational specification processes following the successive approximation scheme
explained in Section 2, we apply it to a particular case of the preceding general
problem.

Let us consider the following while-loop:

while X > 0 do (Y := X ∗ Y ; X := X − 1), (1)

where the storage variables X and Y take a nonnegative integer value and an
integer one, respectively. Notice that the input values of X and Y are different
in general. It is obvious that the output of (1) is exactly (0, (x!) ∗ y) for all
x ∈ ω and for all y ∈ Z, where x and y stand for the input values of X and Y ,
respectively.

3.1 The Classical Approach

The classical technique that solves the while-loop problem is based on the so-
called “fixed point induction”whose spirit has been explained above. Next we
recall what it involves from a mathematical viewpoint.

Consider the usual order 3 defined on the set of total and partial mappings
[Z×Z → Z×Z]. We assume, as usual, that [Z×Z → Z×Z] contains the totally
undefined partial mapping ⊥ . Obviously ⊥3 w for all w ∈ [Z × Z → Z × Z].

The denotation of (1) is defined to be an element of [Z×Z → Z×Z] that we
will denote by v∞ and that is a fixed point of the below equation

f(v)(x, y) =
{

(x, y) if x < 1
v(x − 1, x ∗ y) if x ≥ 1 , (2)

where f : [Z × Z → Z × Z] → [Z × Z → Z × Z].
Define the sequence (vn)n∈N in [Z × Z → Z × Z] given by

vn(x, y) =

⎧⎨⎩
(x, y) if x < 1
(0, (x!) ∗ y) if 1 ≤ x < n
undefined if x ≥ n

for all n ∈ N. The sequence (vn)n∈N is clearly increasing, i.e. vn 3 vn+1 for all
n ∈ N. Moreover, the least upper bound of (vn)n∈N with respect to 3 is exactly

v∞(x, y) =
{

(x, y) if x < 1
(0, (x!) ∗ y) if x ≥ 1 .

Observe that f(v∞) = v∞.

An Application of Generalized Complexity Spaces to Denotational Semantics 539

Note that in this approach the sequence (vn)n∈N is built up applying the
iterations of the mapping f over the undefined symbol ⊥, i.e. vn = fn(⊥).

3.2 Our Approach

In this subsection we show that the context of complexity spaces is useful to
model the meaning of (1) in the spirit of the classical approach of successive
approximations.

Let Σ = Z × Z. Denote by Σω the set of all finite and infinite sequences
(words) over Σ. We assume that the empty sequence ∅ is an element of Σω.
Denote by 3 the prefix order on Σω, i.e. x 3 y ⇔ x is a prefix of y. The empty
word ∅ is considered as a prefix of the rest of words in Σω (see [2], page 16).
The pair (Σω,3) is known as the domain of words over the alphabet Z × Z.

On the other hand, given x, y ∈ Σω, we denote by x $ y the longest common
prefix of x and y. Moreover, for each x ∈ Σω the length of x will be denoted by
�(x). Thus, �(x) ∈ [1, +∞] whenever x ∈ Σω with x �= ∅, and �(x) = 0 if x = ∅.

Following [5] and [4] we define on Σω the function dΣω : Σω × Σω → R+ by
dΣω(x, y) = 2−�(x�y) − 2−�(x). It is well-known that (Σω, dΣω) is a bicomplete
weightable quasi-metric space with weight function w : Σω → R+ given by
w(x) = 2−�(x) for all x ∈ Σω, where we adopt the convention that 2−�(+∞) = 0.
Furthermore, x 3 y ⇔ dΣω(x, y) = 0. So the order ≤dΣω coincides with the
prefix order on Σω. Note that ∅ ≤dΣω x for all x ∈ Σω. Recent works, with
applications to Symbolic Computation and Complexity Theory, related to the
former framework can be found in ([3], [8], [11], [6]).

Now for each n ∈ N define fn : Z → Σω by

fn(k) =

⎧⎨⎩
(k, y) if k < 1
(k − 1, k ∗ y)(k − 2, k ∗ (k − 1) ∗ y)...(0, (k!) ∗ y) if 1 ≤ k < n
∅ if k ≥ n

.

Hence the sequence (fn)n∈N is in CΣω,∅, since

∞∑
k=0

2−k[ds
Σω(∅, fn(k)) + ds

Σω (∅, fn(−k))] =
n−1∑
k=1

(1 − 2−k)2−k +
3
2

< +∞.

Moreover dCΣω,∅
(fn, fn+1) = 0 for all n ∈ N, since fn(k) 3 fn+1(k) for

all k ∈ Z and n ∈ N. It follows that the sequence (fn)n∈N is increasing in
(CΣω,∅,≤dCΣω,∅

). Applying statement (1) in Theorem 3 we have that there exists
a unique f ∈ CΣω,∅ such that limn→+∞fn = f in (CΣω,∅, ds

CΣω,∅
). Furthermore f

is the least upper bound of (fn)n∈N. So fn ≤dCΣω,∅
f for all n ∈ N. Consequently

fn(k) 3 f(k) for all k ∈ Z and n ∈ N.
The function f∞ given by

f∞(k) =
{

(k, y) if k < 1
(k − 1, k ∗ y)(k − 2, k ∗ (k − 1) ∗ y)...(0, (k!) ∗ y) if k ≥ 1

540 J. Llull-Chavarŕıa and O. Valero

is an element of CΣω,∅ because of

∞∑
k=0

2−k[ds
Σω(∅, f∞(k)) + ds

Σω (∅, f∞(−k))] ≤ 5
2
.

On the other hand, it is clear that fn ≤dCΣω,∅
f∞ from dCΣω,∅

(fn, f∞) = 0
for all n ∈ N. It follows that f ≤dCΣω,∅

f∞, and hence dCΣω,∅
(f, f∞) = 0.

Next we show that limn→+∞fn = f∞ in (CΣω,∅, ds
CΣω,∅

). Indeed, given ε > 0

there exists n0 ∈ N such that
∑+∞

k≥n0
2−k < ε. Thus we have that

dCΣω,∅
(f∞, fn) ≤

+∞∑
k≥n

2−k ≤
+∞∑

k≥n0

2−k < ε

for all n ≥ n0. Since dCΣω,∅
(fn, f∞) = 0 for all n ∈ N we deduce immediately the

desired conclusion. Taking into account that limn→+∞fn = f in (CΣω,∅, ds
CΣω,∅

)
we conclude that f = f∞.

Observe that in the classical context each vn gives only the output values
of the storage variables X and Y at the final state of the while-loop (1) after
n−1 iterations. However, in our new context every complexity function fn gives,
contrarily to the classical context, the information of the all intermediate steps of
the computation of the while-loop (1) involving fewer than n iterations of itself.
In addition, the complexity function f∞ is exactly the meaning of the while-loop
(1) matching up with the total computation (not only with the final output)
of ((x!) ∗ y) for all x ∈ ω and y ∈ Z. Furthermore, we point out that in the
classical approach the meaning of the (1), v∞ is taken as the least upper bound
of the iterations sequence, which coincides with the least fixed point of equation
(2). This is done because in general one can find while-loops whose associated
fixed point equation has not a unique solution. Note that this is not the case
of (2). However in our context of generalized complexity spaces (incorporating
topology) the increasing sequence of iterations has always a unique limit, say f∞,
which will be the natural candidate for the solution of the fixed point equation
that will provide the meaning of the while-loop.

Finally we remark that

WCΣω,∅
(f∞) =

∞∑
k=0

2−k[2−�(f∞(k)) + 2−�(f∞(−k))] =
3
2

+
∞∑

k=1

2−2k,

and that

WCΣω ,∅
(fn) =

∞∑
k=0

2−k[2−�(fn(k)) + 2−�(fn(−k))] =
3
2

+
n−1∑
k=1

2−2k +
∞∑

k=n

2−k−1

for all n ∈ N. Of course note that WCΣω,∅
(fn+1) ≤ WCΣω,∅

(fn) for all n ∈ N,
WCΣω,∅

(f∞) =infn∈NWCΣω ,∅
(fn) and that WCΣω ,∅

(f∞) =limn→+∞WCΣω,∅
(fn)

such as we have established in Theorem 3. Moreover WCΣω,∅
(fn) measures the

An Application of Generalized Complexity Spaces to Denotational Semantics 541

information content of the function fn in the sense that the smaller WCΣω,∅
(fn)

the more information fn contains about f∞ (the meaning of the while-loop).
Thus the preceding equalities guarantee that f∞ captures the amount of infor-
mation of the sequence (fn)n∈N but f∞ does not contain more information that
can be derived from each fn.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. III, Oxford
University Press, Oxford (1994)

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)

3. Kahn, G.: The semantics of a simple language for parallel processing. In: Proc.
IFIP Congress, vol. 74, pp. 471–475. Elsevier, North-Holland, Amsterdam (1974)

4. Künzi, H.P.A.: Nonsymmetric topology. In: Proc. Colloquium on topology,
Szekszárd, Hungary (1993); Colloq. Math. Soc. János Bolyai Math. Studies 4, 303-
338 (1995)

5. Matthews, S.G.: Partial metric topology. In: Proc. 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci., vol. 728, pp. 183-
197 (1994)

6. Rodŕıguez-López, J., Romaguera, S., Valero, O.: Denotational semantics for pro-
gramming languages, balanced quasi-metrics and fixed points. Internat. J. Comput.
Math. 85, 623–630 (2008)

7. Romaguera, S., Sánchez-Pérez, E.A., Valero, O.: Computing complexity distances
between algorithms. Kybernetika 39, 569–582 (2003)

8. Romaguera, S., Sapena, A., Tirado, P.: The Banach fixed point theorem in fuzzy
quasi-metric spaces with application to the domain of words. Topology Appl. 154,
2196–2203 (2007)

9. Romaguera, S., Schellekens, M.: The quasi-metric of complexity convergence.
Quaestiones Mathematicae 23, 359–374 (2000)

10. Romaguera, S., Schellekens, M.: Quasi-metric properties of complexity spaces.
Topology Appl. 98, 311–322 (1999)

11. Romaguera, S., Valero, O.: On the structure of the space of complexity partial
functions. Internat. J. Comput. Math. 85, 631–640 (2008)

12. Schellekens, M.: The Smyth completion: a common foundation for the denota-
tional semantics and complexity analysis. In: Proc. MFPS 11, Electronic Notes in
Theoret. Comput. Sci., vol. 1, pp. 211-232 (1995)

13. Scott, D.S.: Outline of a mathematical theory of computation. In: Proc. 4th Annual
Princeton Conference on Information Sciences and Systems, pp. 169–176 (1970)

14. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.
(eds.) ICALP 1982. LNCS, vol. 140, pp. 577–613. Springer, Heidelberg (1982)

Segmentation Charts for Czech – Relations
among Segments in Complex Sentences�

Markéta Lopatková and Tomáš Holan

Charles University in Prague, Czech Republic
lopatkova@ufal.mff.cuni.cz,
Tomas.Holan@mff.cuni.cz

Abstract. Syntactic analysis of natural languages is the fundamental
requirement of many applied tasks. We propose a new module between
morphological and syntactic analysis that aims at determining the overall
structure of a sentence prior to its complete analysis.

We exploit a concept of segments, easily automatically detectable and
linguistically motivated units. The output of the module, so-called ‘seg-
mentation chart’, describes the relationship among segments, especially
relations of coordination and apposition or relation of subordination.

In this text we present a framework that enables us to develop and test
rules for automatic identification of segmentation charts. We describe two
basic experiments – an experiment with segmentation patterns obtained
from the Prague Dependency Treebank and an experiment with the seg-
mentation rules applied to plain text. Further, we discuss the evaluation
measures suitable for our task.

1 Motivation

Syntactic analysis of natural languages is the fundamental requirement of many
applied tasks. The solution of this complex task is not satisfactory yet, espe-
cially for languages with free word order. Long-term efforts of many researchers
brought parsers, which are quite reliable for relatively short and simple sentences.
However, their reliability is significantly lower for long and complex sentences
(see e.g. [1] for more citations).

A new module between morphological and syntactic analysis is a natural step
capable to reduce the complexity of this task. Let us mention at least the idea
of chunking [2] and cascaded parsing [3–5]. Roughly speaking, these approaches
group individual tokens into more complex structures (as e.g. nominal or prepo-
sitional phrases). We propose another approach that aims at determining the
overall structure of a sentence, i.e. a hierarchy of sentence segments, prior to its
complete analysis. The advantage of having the estimation of sentence structure
(especially for long and complex sentences) is quite obvious – it allows us to

� This paper presents the results of the project supported by the GAČR grant
No. 405/08/0681 and partially also by the IS program No. 1ET100300517. The
research is carried out within the project of MŠMT No. MSM0021620838.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 542–553, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Segmentation Charts for Czech – Relations among Segments 543

exclude inappropriate relations in syntactic trees and thus the complexity of the
task is substantially reduced and the parsing process is speeded up.

We exploit a concept of segments, easily automatically detectable and lin-
guistically motivated units. Firstly, individual segments are identified; then their
mutual relationship is determined. So-called ‘segmentation chart’ describes the
relationship among segments, especially relations of coordination and apposition
or relation of subordination, i.e. the relation between governing and subordinated
parts of sentence; parentheses are also identified.

We slightly modify and exploit the concept of segments which has been origi-
nally proposed in [6] and modified in [7]. The initial set of rules for segmentation
of Czech sentences has also been introduced there. These rules serve for iden-
tification of (nondeterministic) segmentation charts showing the relationship of
individual segments in sentences.

Let us demonstrate the basic idea of segmentation on an example of Czech
sentence from the news (1). At first, the sentence is split into individual seg-
ments. We consider the punctuation marks , , the coordinating conjunction a,
the brackets (,) and the full stop . as boundaries of segments. Then we deter-
mine mutual relations of these units – we distinguish coordination, parenthesis
and subordination. Thus we obtain segmentation chart, which allows us to
identify the overall structure of the sentence.

(1) S t́ım byly trochu problémy , protože starosta v řeči rád zd̊urazňoval své
vzděláńı (však studoval až v Klatovech a v Roudnici), a Vı́̌ta tedy občas
nutně trochu tápal .
[There was a bit problem with it , as the mayor liked to stress his education
in his talk (after all he studied in Klatovy and Roudnice), and thus Vı́̌ta
was occasionally a bit confused .]

The first segment consists of the main clause of the complex sentence (no sub-
ordinating expression appears in this segment and there is the finite verb byly
[were] there). This segment is placed on the basic layer (layer 0) of the segmenta-
tion chart. The second segment is introduced by the subordinating conjunction
protože [because] and it contains the finite verb zd̊urazňoval [(he) emphasized].
This segment is identified as a segment subordinated to the first one and thus it
is placed on the lower layer (layer 1) in the chart. The opening bracket follows,
which is interpreted as a beginning of a parenthesis. Thus the third segment
belongs to another lower layer (layer 2). The fourth segment is separated by
the coordinating conjunction a [and], therefore it should be at the same layer as
the third segment. The third segment contains a finite verb studoval [studied],
contrary to the fourth segment – it implies with high probability that we have
the case of coordination of sentence members. Embedded parenthesis ends with
the closing bracket; we climb up in the segmentation chart. The last segment
contains the word tedy [therefore] – the triplet , a tedy [(comma) and therefore] is
considered as a characteristic of coordination. Thus the fifth segment is analyzed
as a segment coordinated to either the first or the second segment.

544 M. Lopatková and T. Holan

The segmentation chart can be expressed graphically (Fig. 1 shows one of the
possible charts for the sentence (1)), or as a vector of layers (e.g., two vectors
reflecting two segmentation charts (01220) and (01221) for the sentence (1)).

Fig. 1. Segmentation chart (01221)

Note that segmentation and analysis of segmented sentences can be formally
modeled, e.g., by Parallel Communicating Grammar Systems (PCGS) and Freely
Rewriting Restarting [8].

The capability to determine (reliably enough) the mutual relationship among
segments and subsequently the possible structure of clauses in complex sentences
prior to their full analysis would simplify the task of syntactic analysis / parsing
of natural language sentences. Moreover, it appears that in a number of impor-
tant application – such as information retrieval, determining the structure of
documents and their main and secondary themes – there is no explicit need for
full syntactic analysis. It would be of great interest to examine to which extent we
can limit ourselves to the ‘upper’ layers of sentence structure (and ignore deeply
nested segments) for such applied tasks. The achievements of similar methods
for the analysis of different type of languages, e.g. [9] or [10], encourage further
research in this area.

The main goal of this text is to present a framework which enables us to
further develop, test and evaluate rules for automatic identification of segmenta-
tion charts. After the definition of segments and segmentation charts (Section 2),
we describe two basic experiments – the experiment with obtaining segmenta-
tion patterns from tree structures stored in the Prague Dependency Treebank
(Section 3.1) and the experiment with the segmentation rules applied to plain
text (Section 3.2). We conclude with Section 4 where we introduce and discuss
the appropriate measures for evaluating the segmentation rules. We compare
segmentation charts obtained by these two sets of rules with the manually anno-
tated sample of complex sentences and we show their limits for selected language
phenomena.

2 Segment Boundaries, Segments and Segmentation
Chart

An (input) sentence is understood here as a sequence of tokens w1w2 . . . wn, when
each token wi represents either one word (lexical form of a given language) or one
punctuation mark (comma, full stop, question mark, exclamation mark, dash,
colon, semicolon, quotation marks, brackets, . . .).

Segmentation Charts for Czech – Relations among Segments 545

We do not care about dividing the text into sentences here as we dispose of
tools reliable enough for sentence identification for Czech; in our experiments,
we adopt it from the Prague Dependency Treebank. We also presuppose full
morphological analysis of the text, i.e. we expect that each token bears its full
morphological analysis.

Based on their morphological characteristics, all tokens are disjunctively di-
vided into two groups — ordinary words and segment boundaries. After identifi-
cation of boundaries, the input sentence is partitioned into individual
segments.

Segment Boundaries
Boundaries are tokens and their sequences that divide a sentence into individual
units referred to as segments.

In the following experiments we consider the following tokens as elementary
boundaries:

– punctuation marks: comma, colon, semicolon, question mark, exclamation
mark, dash (all types), opening and closing bracket (all kinds), vertical bar,
quotation mark (all types), i.e. symbols , : ; ? ! - () [] | { } ‘ ’ “ ” , ‘ ,, “

– punctuation ending a sentence
– coordinating conjunctions: morphological tag starting with the pair

J∧ [11].

Several elementary boundaries may appear in a sentence following immedi-
ately one after another (as the sequence), a in sentence (1)). We consider a max-
imum sequence of such elementary boundaries as a (compound) boundary.

Segment S is then understood as the maximal non-empty sequence of tokens
w1w2 . . . ws that does not contain any boundary.

When determining the individual segments we presuppose that every sentence
begins and ends with a boundary (if there is no boundary at the beginning or
at the end of the sentence, we add the empty boundary there).

Let us point out that the boundaries specified on the basis of morphological
analysis are not necessarily unambiguous. Punctuation marks are not ambigu-
ous but this is not true for coordinating conjunctions (e.g. the wordform ale is
either coordinating conjunctions [but] or it is a wordform belonging to three sub-
stantive lemmas ala). Thus we admit ambiguous segmentation of the sentence
in general. However, there are highly reliable taggers for Czech (i.e., automated
tools that are able to select exactly one morphological tag per token; the highest
published accuracy for the first two positions of morphological tag is 99.36%
[12]). Therefore, we disregard possible ambiguity of morphological analysis and
we presuppose a unique morphological tag for each token (in the experiments
described below, we take over the morphological tags from the Prague Depen-
dency Treebank). It implies that boundaries and individual segments are defined
unambiguously.

546 M. Lopatková and T. Holan

Segment Flags
Morphological analysis of the text contains a lot of more or less reliable in-
formation that can be used for identification of relationship among individual
segments. This information is stored in a form of specific flags that are assigned
to individual segments. In our experiments, we use only subordination flag, other
flags as coordination flag or flag for finite verb are foreseen [6].

Subordination flag (SF). A subordination flag is assigned to a particular
segment either if this segment contains any wordform with the morphological tag
that begins with the following pair (for conjunctions, pronouns, and numerals
[11]), or if this segment contains one of the listed pronominal adverbs:

– subordinating conjunction: J,
– interrogative / relative pronoun: P4, PE, PJ, PK, PQ, PY
– numeral: C?, Cu, Cz
– pronominal adverb: jak, kam, kde, kdy, proč, kudy

Segmentation Chart
The segmentation of a particular sentence can be represented by one or more
segmentation charts that describe the mutual relationship of individual seg-
ments with regard to their coordination or subordination. A segmentation chart
captures the layer of embedding for individual segments. The basic idea of
the segmentation chart is very simple:

– Segments forming all main clauses of a complex sentence belong to the basic
layer (layer 0);

– Segments forming clauses that depend on the clauses at the k-th layer obtain
layer of embedding k+1 (i.e., layer of embedding for subordinated segments
is higher than layer of segments forming their governing clause);

– Segments forming coordinated segments or segments in apposition have the
same layer;

– Segments forming parentheses (e.g., sequence of wordforms within brackets)
obtain layer k + 1 compared to the layer k of their adjacent segments

3 Experiments with Automatic Identification of
Segmentation Charts

3.1 How to Obtain Segments from Syntactic Tree?

This chapter explains the possible algorithm producing segmentation charts for
individual sentences from their analytical trees in the Prague Dependency Tree-
bank1 (PDT [13]). Analytical layer of PDT captures the surface syntax. In
principle, it contains the same information that may be directly used for the
identification of segment layers.
1 http://ufal.mff.cuni.cz/pdt2.0/

Segmentation Charts for Czech – Relations among Segments 547

A sentence at the analytical layer is represented as a dependency-based tree,
i.e., a connected acyclic directed graph in which no more than one edge leads
from a node. The nodes – labeled with complex symbols (sets of attributes) –
represent individual tokens (wordforms or punctuation marks); one token of the
sentence is represented by exactly one node of the tree. The edges represent
syntactic relations in the sentence (the dependency relation and the relation
of coordination and apposition being the basic ones). The actual type of the
relation is given as a function label of the edge, so-called analytical function. In
addition, linear ordering of the nodes corresponds to the sentence word order. In
particular, there are no nonterminal nodes in PDT representing more complex
sentence units – such units are expressed as (dependency) subtrees.

In order to be able to present a basic set of rules, it is necessary to introduce
the concept of a path between the segments and the concept of a group of
segments. For the sentence W , there is an edge from the segment Si to the
segment Sj (Si, Sj ⊂ W) iff there exists a pair of words u ∈ Si and v ∈ Sj such
that there exists a path from u to v in the dependency tree T of the sentence W .

A path from the segment Si to the segment Sj of the sentence W
(Si, Sj ⊂ W) exists iff there exists a sequence of segments Si = Sp1 , . . . , Spm =
Sj , Spk

⊂ W (k = 1 . . .m) such that for every k = 1 . . .m − 1 there is an edge
from the segment Spk

to the segment Spk+1 .
A set of segments of the sentence W is said to be a group of segments G

iff for each pair of segments Si, Sj ∈ G holds that there is a path from Si to Sj

(symmetrically, also a path from the Sj to the Si must exist).
We use the following algorithm for obtaining the segmentation chart for indivi-

dual sentences of PDT.

Determination of segments: The first step for obtaining the segmentation
chart consists in the determination of boundaries; based on the boundaries,
individual segments are identified.

Groups of segments: Groups of segments are identified.
Zero Layer: The segments which are connected by some path (either direct,

i.e. edge, or via nodes representing elementary boundaries only) with the
root node of the dependency tree T are identified; these segments as well as
all segments belonging to the same groups are assigned layer 0.

Coordination and apposition: If there is a segment Si with already assigned
layer k and its adjacent segment Sj has unknown layer and, moreover, the
boundary between these two segments consists of some coordinating expres-
sion or expression introducing an apposition (e.g., the node representing the
elementary boundary has an analytical function Coord or Apos), then the
segment Sj gets the same layer as the segment Si has.

Deeper embedded segments: All segments with unknown layer connected
by some path (either direct, i.e. edge, or via nodes representing elementary
boundaries only) with segments of the layer k are assigned the layer k + 1;
the same holds for all segments belonging to the same group of segments.

548 M. Lopatková and T. Holan

Coordination and apposition: Again all segments adjacent to the segments
with already known layers are checked (see above).

This process is repeated until all segments get their layer.
The proposed algorithm assigns exactly one segmentation chart (not neces-

sarily the correct one) to any input sentence represented by the analytical tree.
Let us demonstrate it on a sentence (2); the analytical tree is in Fig. 2.

(2) Po rozhovorech s majiteli našich soukromých firem a nakonec i předsta-
viteli firem zahraničńıch mám dojem , že v této republice nejsou schopńı
lidé .
[After the discussions with the owners of our private companies and
after all even with the representatives of foreign companies I have an idea
, that there aren’t clever people in this republic .]

Sentence (2) consists of four segments (the boundaries are underlined in the sen-
tence whereas they are separated by vertical lines in Fig. 2). The first and the
third segment form a group (there is an edge from the node po [after] to the node
mám [(I) have] and at the same time a path leads from the node představiteli
[representatives] to the node s [with], see the arrows). These two segments obtain
the zero layer as there is the edge from the node mám [(I) have] to the root of the
tree. The second segment also gets the zero layer as its boundary with the first
segment is the coordination conjunction a [and]. The fourth segment obtains
layer 1 since there is an edge leading from this segment to the third segment
with already known zero layer. Therefore, the segmentation chart assigned to
the sentence is (0001) (the correct segmentation chart in this case).

Fig. 2. Analytical tree of the sentence (2) with highlighted segments

3.2 How to Obtain Segments from Plain Text?

The basic set of (heuristic) segmentation rules for plain text was published in [7].
We have specified these rules more precisely and implemented them. That allows

Segmentation Charts for Czech – Relations among Segments 549

us to compare the results of these rules with the results of segmentation based
on the analytical trees from PDT.

When processing an input sentence, we start at its beginning; we move right,
identify individual boundaries and segments and determine their appropriate
layers of embedding.

The following rules define the layer of embedding that is assigned to the
first segment. They also determine how this layer may change when crossing
the elementary boundaries. Let us point out that the rules do not always give
a single unambiguous answer (e.g., comma may be considered as coordinating
expression – then the layer should be preserved – or as the end of embedding
segment – then it should raise the layer). Thus each segment is not assigned a
single number but an interval of possible layers.

The adjacent segments may be separated by compound boundaries, i.e. by
sequences of elementary boundaries. In such a case, the rules are applied to
individual elementary boundaries. The segment is assigned the layer which is
obtained after processing the last elementary boundary preceding this segment.

The following list introduces the rules for elementary boundaries.2

Beginning of the sentence: If subordination flag (SF, see Section 2) is not
assigned to the first segment, then this segment gets the basic zero layer.
Otherwise, it gets layer 1.

Comma: If SF is not assigned to the subsequent segment, then the lower limit
of the interval of layers does not change, the upper limit is set to 0 (i.e.,
the case of end of any number of embedded clauses). Otherwise, the layer of
embedding is increased by 1 (i.e., the beginning of embedded clause or its
part).

Opening bracket (of any kind): If SF is not assigned to the subsequent seg-
ment, then the layer (or interval of possible layers) of embedding is increased
by 1 (i.e., the beginning of parenthesis). Otherwise, the layer is increased by
2 (i.e., parenthesis with a deeply embedded unit).

Closing bracket (of any kind): If it is preceded by the opening bracket of
the same kind, then the layer of embedding is set to the same value(s) as the
segment preceding the opening bracket has. Otherwise, the layer does not
change (this condition handles the cases of the list a)... b)...).

Coordinating conjunction: The layer remains unchanged.
Colon: If SF is not assigned to the subsequent segment, then the upper limit

remains unchanged (i.e., coordination or apposition); the lower limit is in-
creased by 1 (i.e., the beginning of (a part of) embedded clause or beginning
of direct speech (together with a quotation mark)). Otherwise, the upper
limit is increased by 1 and the lower limit is increased by 2 (i.e., deeper
embedded (part of) clause).

Question mark, exclamation mark: The lower limit is decreased by 1, the
upper limit is set to 0 (i.e., the end of any number of embedded clauses).

2 Let us repeat that we assume the input text being already divided into sentences.

550 M. Lopatková and T. Holan

Semicolon: The lower limit of the interval of layers remains unchanged, the
upper limit is set to 0.

Vertical bar, dash, quotation marks: The layer remains unchanged.3

These rules define a set of segmentation charts for each morphologically ana-
lyzed input sentence.

4 Evaluation and Analysis of the Results

4.1 Evaluation Data and Possible Evaluation Measures

In the previous sections, we have described the basic experiments with the auto-
matic identification of segmentation charts from plain texts and from trees from
PDT. For further development and improvement of these rules, we had to create
a test set of sentences with correctly identified segmentation charts.

We chose a set of suitable sentences from development data of PDT 2.0 (the
‘dtest’ data, 5228 sentences) – we focused only on such sentences that contain at
least five segments (707 sentences). Then we manually determined a segmenta-
tion chart for every tenth sentence from the set. Thus we received 71 relatively
structurally complex sentences with attached segmentation charts.

Let us emphasize that the selection of such complex sentences (in average
6.49 segments per sentence) made the measured results significantly worse in
comparison with random sample of sentences (the average number of segments
per sentence in the full dtest data is 2.72).

Note also that many of the testing sentences are ambiguous, i.e. they have
more (potential) syntactic trees. However, sentences in PDT are disambiguated,
only one of all possible structures is stored there. When identifying the ap-
propriate segmentation chart we consider only the structure captured in PDT.
Every sentence has been assigned a single chart (e.g., sentence (1) got the only
segmentation chart (01221)).

There are several possibilities how to evaluate the proposed rules. The sim-
plest measure consists in counting the cases of correct assignment of layers to
individual segments. We call this basic measure ρ.

When looking at the results of experiments, we have found out that in many
cases the wrong assignment of a layer for one segment has resulted in incorrectly
identified layers of other segments. However, the relationship among individ-
ual segments may be recognized correctly. For example, the sentence (3) has a
correct segmentation chart (2233110). The algorithm for PDT yields the chart
(1122000); although almost all relations between segments are identified cor-
rectly, there is only one correctly assigned layer and ρ = 1/7.

(3) ,, Když to odečtete od výplaty spolu se ztrátou při výměně slovenských
korun za české a za pojǐstěńı , které se muśı platit tam i u nás , nezbude
manželovi z výplaty ani polovina ,“ zlob́ı se pańı Krajčová .

3 Quotation marks are used in Czech either for direct speech – then they are accom-
panied with other boundary as comma or colon (which ensures the lower layer) or
they are use for emphasizing, where the layer should stay unchanged.

Segmentation Charts for Czech – Relations among Segments 551

[,, When you deduct this from your earnings together with the losses when
exchanging Slovak crowns for Czech crowns and for insurance , which must
be paid there as well as here , less then half of the sum will remain from
my husband’s salary ,“ says Mrs. Krajčová with angry .]

This drawback of the basic measure may be eliminated if we allow ‘shifting’
of the whole resulting segmentation chart. E.g., if we shift the vector for the
sentence (3) by +1 we get (2233111) – the layers of six segments (out of seven)
are identified correctly. The measure with optimal shifting will be called σ (thus
σ = 6/7 for the sentence (3)).

As we are primarily interested in the relationship among segments we con-
sider also the measure evaluating the correctness of the proposed relationship of
two adjacent segments. E.g., charts (101) and (211) have the same relationship
between the first and second segment (difference -1), but different relationship
between the second and third segment). We call this measure δ.

4.2 Evaluation of Rules for Syntactic Trees

The proposed set of segmentation rules from PDT identifies exactly one seg-
mentation chart for each input sentence. When evaluating these rules, we adopt
only accuracy measure (standard recall and precision measures are equal). The
results are summarized in Table 1.

Table 1. The evaluation of the proposed set of rules for segmentation charts from the
trees from PDT

accuracy: basic measure measure with ‘shifting’
of segments # correct ρ # correct σ

461 264 0,57 335 0,73

When evaluating the proposed relationship of two adjacent segments, the rules
are reaching δ = 0.70 (274 of 390 relations among segments have been proposed
correctly).

Let us mention three main problems that decrease the success of the proposed
rules for determining segmentation charts from the analytical trees.

1. The sentence member forming a separate segment is assigned a higher layer
(by 1) than the segments with its governing member. E.g., the sentence
Včera , kdy tak pršelo , přǐsli . [Yesterday , when it rained so much , they

came.] with the correct segmentation chart (010) gets incorrect segmentation
chart (120).

2. We postponed special (but relatively frequent) Czech construction with two
subordinating expressions (underlined) appearing in one segment just one
after another, as e.g. Nevěděl, že když jsem se probral, zavolal jsem policii.
[He didn’t know that when I woke up, I called the police.]

3. Coordination (and apposition) are another widespread phenomena which
deserve a special treatment, especially those of more than two members.

552 M. Lopatková and T. Holan

4.3 Evaluation of Rules for Plain Text

The evaluation of rules for assigning segmentation chart to plain text consists
in testing whether the resulting interval for individual segments contains the
correct layer of embedding of this segment (thus we measure only recall), see
Table 2.

Table 2. The evaluation of the proposed set of rules for charts from plain text

recall: basic measure measure with ‘shifting’
of segments # correct ρ # correct σ

461 302 0,66 354 0,77

The average number of segmentation charts per sentence from our testing
data is 2.17 whereas the average number of ambiguity for the entire dtest data
is 1.32.

Let us mention here at least two phenomena that the proposed set of rules
does not solve adequately. These phenomena have to be a subject of more precise
specifications (which would require detailed linguistic examination).

1. We have not specified the segmentation rules for direct and semidirect
speech. E.g., the layers of the first four segments of sentence (3) are not
deep enough in all assigned segmentation charts (these segments get (1122)
instead of the correct (2233) segmentation vector).

2. The case of several coordinated clauses with repeated subordinating expres-
sions is not treated correctly yet. E.g., Jak účelně větrat, jak nepřetápět, jak
spotřebu měnit a podle toho účtovat. [How to ventilate effectively, how to
not overheat, how to change the consumption and pay according to it.] This
sentence obtains the wrong chart (0122) instead of the correct one (0000).)

5 Conclusions

Segments are easily automatically detectable and linguistically motivated units
that form (complex) sentences. Their mutual relationship – especially relations
of coordination and apposition, relation of subordination as well as parenthesis –
is captured in a form of a segmentation chart. The segmentation chart describes
the overall structure of a sentence prior to its complete syntactic analysis.

We focused on the description of a framework that allows us to formulate
and refine linguistically motivated rules for automatic detection of segmentation
charts for given sentences. We have also introduced appropriate measures for
evaluating segmentation analysis.

At this stage, two sets of rules were implemented, rules operating on analytical
trees from the Prague Dependency Treebank and rules operating on plain text
enriched with morphological analysis. We have compared the results reached
with those rules using the manually annotated sample of sentences from PDT.

The experiments brought clear specification of segmentation charts and exact
rules for manual annotation. The results show that for further research it is

Segmentation Charts for Czech – Relations among Segments 553

necessary to work with a large set of reliably annotated data. It turns out that
these data cannot be obtained without extensive (semi)manual annotation of a
large set of sentences. Such data would also allow us to adopt machine learning
techniques for automatic identification of segmentation charts.

References

1. Holan, T.: O složitosti Vesmı́ru. In: Obdržálek, D., Štanclová, J., Plátek, M. (eds.)
Malý informatický seminář MIS 2007, pp. 44–47. MatFyz Press, Praha (2007)

2. Abney, S.: Parsing By Chunks. In: Berwick, R., Abney, S., Tenny, C. (eds.)
Principle-Based Parsing, pp. 257–278. Kluwer Academic Publishers, Dordrecht
(1991)

3. Abney, S.: Partial Parsing via Finite-State Cascades. Journal of Natural Language
Engineering 2, 337–344 (1995)

4. Brants, T.: Cascaded Markov Models. In: Proceedings of EACL 1999, pp. 118–125.
University of Bergen (1999)

5. Ciravegna, F., Lavelli, A.: Full Text Parsing using Cascades of Rules: An Informa-
tion Extraction Procedure. In: Proceedings of EACL 1999, pp. 102–109. University
of Bergen (1999)

6. Kuboň, V.: Problems of Robust Parsing of Czech. Ph.D. Thesis, MFF UK, Prague
(2001)

7. Kuboň, V., Lopatková, M., Plátek, M., Pognan, P.: A Linguistically-Based Segmen-
tation of Complex Sentences. In: Wilson, D.C., Sutcliffe, G.C.J. (eds.) Proceedings
of FLAIRS Conference, pp. 368–374. AAAI Press, Menlo Park (2007)

8. Pardubská, D., Plátek, M.: On Parallel Communicating Grammar Systems and
Correctness Preserving Restarting Automata. In: Dediu, A.H., Ionescu, A.M.,
Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 1–18. Springer, Heidelberg
(2009)

9. Jones, B.E.M.: Exploiting the Role of Punctuation in Parsing Natural Text. In:
Proceedings of the COLING 1994, Kyoto, pp. 421–425 (1994)

10. Ohno, T., Matsubara, S., Kashioka, H., Maruyama, T., Inagaki, Y.: Dependency
Parsing of Japanese Spoken Monologue Based on Clause Boundaries. In: Proceed-
ings of COLING and ACL, pp. 169–176 (2006)

11. Hajič, J.: Disambiguation of Rich Inflection (Computational Morphology of Czech),
UK, Nakladatelstv́ı Karolinum, Praha (2004)

12. Spoustová, D., Hajič, J., Votrubec, J., Krbec, P., Květoň, P.: The Best of Two
Worlds: Cooperation of Statistical and Rule-Based Taggers for Czech. In: Proceed-
ings of Balto-Slavonic NLP Workshop, pp. 67–74. ACL, Prague (2007)

13. Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Pajas, P., Štěpánek, J., Havelka, J.,
Mikulová, M.: Prague Dependency Treebank 2.0. LDC, Philadelphia (2006)

A Note on the Generative Power of Some Simple
Variants of Context-Free Grammars Regulated

by Context Conditions

Tomáš Masopust

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, Brno 61266, Czech Republic

masopust@fit.vutbr.cz

Abstract. This paper answers three open questions concerning the gen-
erative power of some simple variants of context-free grammars regu-
lated by context conditions. Specifically, it discusses the generative power
of so-called context-free semi-conditional grammars (which are random
context grammars where permitting and forbidding sets are replaced
with permitting and forbidding strings) where permitting and forbid-
ding strings of each production are of length no more than one, and of
simple semi-conditional grammars where, in addition, no production has
attached both a permitting and a forbidding string. Finally, this paper
also presents some normal form results, an overview of known results,
and unsolved problems.

1 Introduction

It is well-known that context-free languages play an important role in the theory
and practice of formal languages in computer science. However, there is a lot of
interesting and simple languages that are not context-free. According to the
Chomsky hierarchy, such languages are treated as being context-sensitive. On
the other hand, in the theory of regulated rewriting, many of these languages
can be generated by regulated grammars using the benefits of applying only
context-free productions.

The present paper discusses two simple variants of context-free grammars
regulated by context conditions; both variants are special cases of so called
context-free random context grammars (defined and studied by van der Walt
in [1]), which are context-free grammars where two sets of symbols (conditions)
are attached to each production—a permitting and a forbidding set. In addi-
tion, the grammars studied in this paper require that both the permitting and
the forbidding sets contain no more than one symbol. A production of such a
grammar is applicable to a sentential form provided that the symbol from the
attached permitting set (the permitting condition) occurs in the sentential form
while, simultaneously, the symbol from the attached forbidding set (the forbid-
ding condition) does not. These grammars were defined by Păun [2] in 1985 and
called semi-conditional grammars of degree (1, 1). In general, semi-conditional

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 554–565, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generative Power of Some Variants of Grammars with Context Conditions 555

grammars are defined to be of any degree (i, j), for i, j ≥ 0, where the degree
(i, j) means that all permitting and forbidding conditions (that are strings, in
general, not only symbols) are of length no more than i and j, respectively. In
addition, semi-conditional grammars where each production has no more than
one condition in the union of its permitting and forbidding sets are referred to
as simple semi-conditional grammars (see [3]).

Since their introduction, it has been an open problem whether every semi-
conditional grammar can be converted to an equivalent simple semi-conditional
grammar (of the same degree); cf. [4, page 90]. This paper answers this ques-
tion so that it demonstrates how to convert any semi-conditional grammar to
an equivalent simple semi-conditional grammar of the same degree. In fact, this
demonstration is given for both semi-conditional grammars with and without
erasing productions. In addition, this paper also shows that semi-conditional
grammars of degree (1, 1) characterize the family of recursively enumerable lan-
guages, which is a question left unsolved in [2] and still formulated as open
in [4]. As an immediate consequence of these two results, it follows that simple
semi-conditional grammars of degree (1, 1) characterize the family of recursively
enumerable languages, too. Furthermore, this paper presents three normal form
results. Specifically, it proves that (i) for any (simple) semi-conditional grammar,
there is an equivalent simple semi-conditional grammar of the same degree with
the property that its (core context-free) productions can be decomposed into two
disjoint sets in such a way that in one set, all productions have attached only
permitting conditions, while in the other set, all productions have attached only
forbidding conditions; it means that if u1, u2, . . . , uk are all conditions attached
to a production A → α, then all of them are either permitting or forbidding; (ii)
for any context-sensitive language, there is a simple semi-conditional grammar
of degree (i, j), i, j ∈ {1, 2}, i �= j, without erasing productions and without
conditions containing terminal symbols that satisfies the property from (i); and
(iii) for any recursively enumerable language, there is a simple semi-conditional
grammar of degree (1, 1) without conditions containing terminal symbols that
satisfies the property from (i).

In its conclusion, this paper gives an overview of known results concerning the
generative power of discussed grammars, including the results concerning the
descriptional complexity, presents a simple semi-conditional grammar of degree
(1, 1) without erasing productions that generates a nontrivial context-sensitive
language, and discusses open problems.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with formal language theory
and with the theory of regulated rewriting (see [5,6]). For an alphabet (finite
nonempty set) V , V ∗ represents the free monoid generated by V . The unit of
V ∗ is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| denotes the length of
w, and sub(w) = {u : u is a substring of w}.

556 T. Masopust

Let RE, REC, CS, CF denote the families of recursively enumerable, re-
cursive, context-sensitive, and context-free languages, respectively. In addition,
let RCac, RC, and fRC denote the families of languages generated by random
context grammars with appearance checking, random context grammars where
each forbidding set is empty (permitting grammars), and random context gram-
mars where each permitting set is empty (forbidding grammars), respectively.
Moreover, superscript ε is added if erasing productions are allowed.

A semi-conditional grammar (see [2]) is a quadruple G = (N, T, P, S), where
N and T are the alphabets of nonterminals and terminals, respectively, such
that N ∩ T = ∅, V = N ∪ T , S ∈ N is the start symbol, and P is a finite set
of productions of the form (X → α, u, v) such that X → α is a context-free
production and u, v ∈ V + ∪ {0}, where 0 �∈ V is a special symbol. If for each
production (X → α, u, v) ∈ P , u �= 0 implies that |u| ≤ i and v �= 0 implies that
|v| ≤ j, then G is said to be of degree (i, j). G is said to be simple if for each
production (X → α, u, v) ∈ P we have 0 ∈ {u, v}.

For x1, x2 ∈ V ∗, x1Xx2 ⇒ x1αx2 provided that

1. (X → α, u, v) ∈ P ,
2. u �= 0 implies that u ∈ sub(x1Xx2), and
3. v �= 0 implies that v �∈ sub(x1Xx2).

As usual, ⇒ is extended to ⇒i, for i ≥ 0, ⇒+, and ⇒∗. The language of G is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}. The family of languages generated by
semi-conditional grammars of degree (i, j) is denoted by SCε(i, j), or SC(i, j)
if erasing productions are not allowed. Analogously, the family of languages
generated by simple semi-conditional grammars of degree (i, j) is denoted by
SSCε(i, j), or SSC(i, j) if erasing productions are not allowed.

3 Main Results

As stated above, this paper concentrates its attention on language families
SSCε(1,1) and SSC(1,1). First, it answers three questions formulated as open
in [4] (see also [2]) concerning the relations among the families SSCε(1,1),
SCε(1,1), and RE (Theorems 3 and 2 and Corollary 1), and between the families
SSC(1,1) and SC(1,1) (Theorem 1). Then, it gives an overview of known re-
sults, demonstrates the generative power of non-erasing simple semi-conditional
grammars, and discusses open problems.

Theorem 1. For any i, j ≥ 1, SSC(i, j) = SC(i, j).

Proof. Let L ∈ SC(i, j), for some i, j ≥ 1. Then, there is a semi-conditional
grammar G = (N, T, P, S) of degree (i, j) without erasing productions such that
L(G) = L. Construct a simple semi-conditional grammar G′ = (N ′, T, P ′, S1),
where S1 is a new start symbol, N ′ = N ∪ {S1} ∪ {[A] : A ∈ V } ∪ {A′, A′′ : A ∈
N} ∪ {[pA], [p0A], [p1A], [p2A], [p3A], [p′A], [p′′A] : p = (A → α, u, v) ∈ P}, P ′ =
{(S1 → [S], 0, 0)}∪ {([a] → a, 0, 0) : a ∈ T }, and for each p = (A → α, u, v) ∈ P ,
the following productions are added to P ′:

Generative Power of Some Variants of Grammars with Context Conditions 557

Case 1: For B ∈ V
1. ([B] → [pB], u, 0),
2. ([B] → [pB], [B]u′, 0), for u = Bu′,
3. ([pB] → [p0B], 0, v),

4. ([p0B] → [p1B], 0, γ), where γ =
{

[p0B]v′ if v = Bv′

0 otherwise
5. (A → A′, [p1B], 0),
6. (A′ → A′′, 0, A′′),
7. ([p1B] → [p2B], A′′, 0),
8. ([p2B] → [p3B], 0, A′),
9. (A′′ → α, [p3B], 0),

10. ([p3B] → [B], 0, A′′).

Case 2: The first nonterminal of a sentential form is replaced.
11. ([A] → [p′A], u, 0),
12. ([A] → [p′A], [A]u′, 0), for u = Au′,
13. ([p′A] → [p′′A], 0, v)

14. ([p′′A] → [B]β, 0, γ), where α = Bβ, B ∈ V , γ =
{

[p′′A]v′ if v = Av′

0 otherwise.

To prove that L(G) ⊆ L(G′), consider a derivation of G. Such a derivation
is of the form S ⇒∗ Bw1Aw2 ⇒ Bw1αw2, where the last derivation step is
made by a production p = (A → α, u, v) ∈ P , and B ∈ V . Then, G′ derives as
follows (numbers in square brackets denote (classes of) productions applied in
given derivation steps):

S1 ⇒ [S]
⇒∗ [B]w1Aw2

⇒ [pB]w1Aw2 [1 or 2]
⇒ [p0B]w1Aw2 [3]
⇒ [p1B]w1Aw2 [4]
⇒ [p1B]w1A

′w2 [5]
⇒ [p1B]w1A

′′w2 [6]
⇒ [p2B]w1A

′′w2 [7]
⇒ [p3B]w1A

′′w2 [8]
⇒ [p3B]w1αw2 [9]
⇒ [B]w1αw2 [10].

If the derivation is of the form S ⇒∗ Aw ⇒ αw = Bβw in G, B ∈ V , i.e., the
first nonterminal of the sentential form is replaced, then G′ derives

S1 ⇒ [S]
⇒∗ [A]w
⇒ [p′A]w [11 or 12]
⇒ [p′′A]w [13]
⇒ [B]βw [14].

The proof now proceeds by induction.

558 T. Masopust

On the other hand, to prove that L(G′) ⊆ L(G), consider a sentential form
[A]w and assume that a production constructed in 11 or 12 is applied. Then, the
only derivation is

[A]w ⇒ [p′A]w [11 or 12]
⇒ [p′′A]w [13]
⇒ [B]βw [14],

where p = (A → Bβ, u, v) ∈ P , B ∈ V . From this, by a production constructed
in 11 or 12, it follows that u (different from 0) is a substring of Aw, and, by
productions constructed in 13 and 14, v is not a substring of Aw. Thus, Aw ⇒
Bβw by (A → Bβ, u, v) ∈ P in G.

Now, assume that a production constructed in 1 or 2 is applied to a sentential
form [B]w1Aw2. Then, the only derivation is of the form

[B]w1Aw2 ⇒ [pB]w1Aw2 [1 or 2]
⇒ [p0B]w1Aw2 [3]
⇒ [p1B]w1Aw2 [4]
⇒ [p1B]w1A

′w2 [5]
⇒ [p1B]w1A

′′w2 [6]
⇒ [p2B]w1A

′′w2 [7]
⇒ [p3B]w1A

′′w2 [8]
⇒ [p3B]w1αw2 [9]
⇒ [B]w1αw2 [10],

where p = (A → α, u, v) ∈ P . Surely, by a production constructed in 1 or 2, it
follows that u (different from 0) is a substring of Bw1Aw2, and, by productions
constructed in 3 and 4, it follows that v is not a substring of Bw1Aw2. Moreover,
by a production constructed in 6, only one A′ can be replaced with A′′, and a
production constructed in 8 can be applied only if there is no A′. Therefore, only
one A is replaced with A′ by a production constructed in 5 (the one later replaced
with A′′). Thus, only one A is replaced with α, i.e., Bw1Aw2 ⇒ Bw1αw2 by
(A → α, u, v) ∈ P in G.

We have proved that SC(i, j) ⊆ SSC(i, j). The other inclusion follows imme-
diately from the definition. Hence, the theorem holds. $%

Considering Case 2 of the previous construction, it is not hard to see that this
construction is not valid for grammars with erasing productions; by an erasing
production, the special first nonterminal of the form [A] would be eliminated and
the derivation would be blocked. However, a simple modification of the previous
construction proves the following theorem.

Theorem 2. For any i, j ≥ 1, SSCε(i, j) = SCε(i, j).

Proof. Let L ∈ SCε(i, j), for some i, j ≥ 1. Then, there is a semi-conditional
grammar G = (N, T, P, S) of degree (i, j) such that L(G) = L. Construct a

Generative Power of Some Variants of Grammars with Context Conditions 559

simple semi-conditional grammar G′ = (N ′, T, P ′, S1), where N ′ = N∪{S1, X}∪
{A′, A′′ : A ∈ N} ∪ {[p], [p0], [p1], [p2] : p = (A → α, u, v) ∈ P}, S1 and X are
new symbols not in N , P ′ = {(S1 → XS, 0, 0), (X → ε, 0, 0)}, and for each
p = (A → α, u, v) ∈ P , the following productions are added to P ′:

1. (X → [p], u, 0),
2. ([p] → [p0], 0, v),
3. (A → A′, [p0], 0),
4. (A′ → A′′, 0, A′′),
5. ([p0] → [p1], A′′, 0),
6. ([p1] → [p2], 0, A′),
7. (A′′ → α, [p2], 0),
8. ([p2] → X, 0, A′′).

The rest of the proof is analogous to the proof of Theorem 1 and is left to the
reader. $%

The following theorem answers the question left unsolved in [2] of what is the
relation between the families SCε(1,1) and RE?

Theorem 3. SCε(1,1) = RE.

Proof. The proof is a straightforward consequence of the proof given in [7, Sec-
tion 3.2], where for each recursively enumerable language L, a random context
grammar G is given such that L(G) = L and each of permitting and forbidding
sets contains no more than one symbol. The main idea of the proof is based on
the fact that any recursively enumerable language can be generated by an un-
ordered scattered context grammar. Then, such an unordered scattered context
grammar in a special normal form generating L is consider and transformed into
a random context grammar. For more details, the reader is referred to Lemma
6 in [7].

Thus, we obtain the required semi-conditional grammar by replacing one-
element sets with their elements and empty sets with 0. $%

As an immediate consequence, we have the following result.

Corollary 1. SSCε(1,1) = RE.

As no context-free production in the constructions of Theorems 1 and 2 has
attached both a permitting and a forbidding condition, the following corollary
holds. It says that the core context-free productions can be decomposed into two
disjoint sets of productions—the productions with only permitting conditions
(permitting productions) and the productions with only forbidding conditions
(forbidding productions). Note that in case of erasing productions, such systems
have been studied (using a different technique) in [8] (cf. Corollary 4). Thus, the
following consequences of the previous results of this paper complement [8] in
case of non-erasing productions, and, in addition, use much simpler proofs than
used in [8].

560 T. Masopust

Corollary 2. For any semi-conditional grammar G′ of degree (i, j) without
erasing productions, i, j ≥ 1, there is an equivalent simple semi-conditional gram-
mar G = (N, T, P, S) of the same degree without erasing productions such that
(A → α, u, 0) ∈ P and (A → α, 0, v) ∈ P imply that 0 ∈ {u, v}.
In addition, by a standard technique, it can be proved that conditions u and v
contain only nonterminals, i.e., u, v ∈ N+ ∪ {0}, so that each production (A →
α, u, v) is replaced with (A → h(α), h(u), h(v)), where h is a homomorphism
defined as h(A) = A, for A ∈ N ∪ {0}, and h(a) = a′, for a ∈ T , where
a′ is a new nonterminal, and ([a] → a, 0, 0) is replaced with ([a] → ta, 0, 0) and
(ta → a, 0, 0), where ta is a new nonterminal for all a ∈ T . Finally, (a′ → a, tb, 0),
for b ∈ T , are added for all a ∈ T . In case of erasing productions, Theorem 2,
(X → ε, 0, 0) is replaced with (X → Y, 0, 0) and (Y → ε, 0, 0), where Y is a new
nonterminal, and (a′ → a, Y, 0) are added for all a ∈ T .

By 4 of Theorem 5, we have the following normal form theorem.

Corollary 3. For any context-sensitive language L, there is a simple semi-
conditional grammar G = (N, T, P, S) of degree (i, j), for i, j ∈ {1, 2}, i �= j,
without erasing productions such that L(G) = L and

1. (A → α, u, v) ∈ P implies that u, v ∈ N+ ∪ {0}, and
2. (A → α, u, 0) ∈ P and (A → α, 0, v) ∈ P imply that 0 ∈ {u, v}.

In addition, by Theorem 3, Corollary 3 can be modified to obtain the following
normal form theorem.

Corollary 4. For any recursively enumerable language L, there is a simple
semi-conditional grammar G = (N, T, P, S) such that L(G) = L and

1. (A → α, u, v) ∈ P implies that u, v ∈ N ∪ {0} (i.e., G is of degree (1, 1)),
and

2. (A → α, u, 0) ∈ P and (A → α, 0, v) ∈ P imply that 0 ∈ {u, v}.

4 Overview of Results and Open Problems

This section presents an overview of results concerning simple semi-conditional
grammars known so far. In addition, it also presents an overview of open prob-
lems.

Theorem 4. The following holds for grammars with erasing productions.

1. SSCε(0,0) = CF.
2. CF ⊂ SSCε(0,1) ⊆ fRCε ⊂ REC.
3. CF ⊂ SSCε(1,0) ⊆ RCε ⊂ REC.
4. SSCε(1,1) = SCε(1,1) = RE.

Proof. The inclusions in 2 and 3 are straightforward; the proofs of the proper
inclusions can be found, e.g., in [4] and [9], respectively. $%
Theorem 5. The following holds for grammars without erasing productions.

1. SSC(0,0) = CF.
2. CF ⊂ SSC(0,1) ⊆ fRC ⊂ CS.

Generative Power of Some Variants of Grammars with Context Conditions 561

3. CF ⊂ SSC(1,0) ⊆ RC ⊂ CS.
4. SSC(2,1) = SSC(1,2) = CS.
5. SSC(1,1) = SC(1,1) ⊆ RCac ⊂ CS.

Proof. The inclusions in 2 and 3 are straightforward; the proofs of the proper
inclusions can be found, e.g., in [10] and [11], respectively. Results of 4 are proved
in [4]. $%

Note that the generative power of simple semi-conditional grammars of degree
(0, i) and (i, 0) (with or without erasing productions), for i ≥ 2, are not known.
However, if more than one forbidding string is allowed to be attached to a produc-
tion (i.e., there are sets of forbidding conditions instead of only one condition),
it is known that such grammars (referred to as generalized forbidding grammars)
are computationally complete. In addition, it is sufficient to have no more than
four forbidding conditions each of which is of length no more than two to charac-
terize the family of recursively enumerable languages (see [12, Corollary 6]). On
the other hand, however, the question of what is the generative power of gener-
alized permitting grammars (defined in the same manner) is an open problem.

Note also that the precise relation between SSC(1,1) and RCac is not known.
However, the following theorem illustrates the generative power of simple semi-
conditional grammars so that it shows that they are powerful enough to gener-
ate nontrivial languages, such as prime numbers, i.e., the language P = {ap :
p is a prime number}.

Theorem 6. P ∈ SSC(1,1).

Proof. Let G = (N, {a}, P, S′) be a simple semi-conditional grammars, where N
follows from P that is constructed as follows:

1. (S′ → a2, 0, 0)
2. (S′ → S, 0, 0)
3. (S → SCC, 0, 0)
4. (S → AAX, 0, 0)

5. (A → Ā, X, 0)
6. (C → C̄, X, 0)

7. (Ā → A′, 0, A′)
8. (C̄ → C′, 0, C′)

9. (X → Z1, A
′, 0)

10. (X → Y1, 0, A)
11. (X → Q1, 0, C)
12. (X → F, 0, C)

13. (Z1 → Z2, C
′, 0)

14. (Z2 → Z3, 0, Ā)
15. (Z3 → Z, 0, C̄)
16. (A′ → B, Z, 0)
17. (C′ → D, Z, 0)
18. (Z → Z4, 0, A′)
19. (Z4 → X, 0, C′)

20. (Y1 → Y2, 0, Ā)
21. (Y2 → Y, 0, A′)
22. (B → A, Y, 0)
23. (Y → X, 0, B)

24. (Q1 → Q2, 0, C̄)
25. (Q2 → Q3, 0, C′)
26. (Q3 → Q4, 0, Ā)
27. (Q4 → Q5, A

′, 0)
28. (Q5 → Q, A, 0)

29. (D → D̄, Q, 0)
30. (D → C, Q, 0)
31. (B → A, Q, 0)
32. (A′ → A, Q, 0)
33. (D̄ → D1, 0, D1)
34. (Q → Q6, 0, D)
35. (Q6 → Q7, 0, D̄)
36. (Q7 → Q8, D1, 0)
37. (D1 → A, Q8, 0)
38. (Q8 → Q9, 0, D1)
39. (Q9 → Q10, 0, B)
40. (Q10 → X, 0, A′)

41. (A → a, F, 0)
42. (F → a, 0, A)

562 T. Masopust

We prove that L(G) = P. Clearly, a2 is in P. Thus, consider a terminal
derivation beginning by an application of production 2. Then, only productions 3
and 4 are applicable, generating the sentential form AAX(CC)n, for some n ≥ 0,
i.e., from now on, any sentential form is of length 2k + 1, for some k ≥ 1.

Now, only productions 5, 6, 9, 10, 11, and 12 are applicable; of course, if
productions 5 and 6 are applicable, then they are applied before any of produc-
tions 9, 10, 11, or 12.

A. Let production 9 be applied. Then, clearly, productions 7 and 8 had to
be applied before productions 13 and 9, respectively. Then, by productions 13
to 19, the derivation continues according to these productions as follows:

AqBmCrDmX ⇒∗ Aq−1Bm+1Cr−1Dm+1X .

(Note that symbols of sentential forms are written in the alphabetic order, rather
than in the actual possible order, because the order is not important.) Informally,
this phase of the derivation replaces one A with B and one C with D, respectively.

B. Let production 10 be applied. Then, by productions 20 to 23, the derivation
replaces each B with A, i.e.,

BnCrDtnX ⇒∗ AnCrDtnX .

Together with the previous phase, these two phases try to divide 2k + 1 by n,
where n ≥ 2.

C. Let production 11 be applied. Then, by productions 24 to 40, the derivation
continues so that it verifies that there is no C (including C′ and C̄) and Ā and
that there is A′ and A in the current sentential form. Then, precisely one D1 is
generated from D, and each other D is replaced with C. Finally, it verifies that
all symbols B and A′ are replaced with A. Thus, we have

An−mBmDtn+mX ⇒∗ An+1Ctn+m−1X .

This phase verifies that n does not divide 2k+1 so that it requires the reminder
to be at least one (symbols A and A′ are required to be in the sentential form; one
of them is compared against the symbol X , the other is the nonzero remainder).
More precisely, if there were m ≥ 2 such that 2k + 1 = mn, then

AnCn−1D(m−2)nX ⇒∗ A′Bn−1Dn−1D(m−2)nQ5

and the derivation would be blocked (see production 28).
D. Let production 12 be applied. Then, by productions 41 and 42, the deriva-

tion continues according to these productions as follows:

A2kX ⇒ A2kF ⇒∗ a2k+1 ,

where 2k + 1 is a prime number because the derivation has verified that there is
no n ∈ {2, 3, . . . , 2k − 1} such that n divides 2k + 1.

Generative Power of Some Variants of Grammars with Context Conditions 563

Thus, the whole derivation is of the form

A2C2(k−1)X ⇒∗ B2C2(k−2)D2X

⇒∗ B2D2(k−1)X

⇒∗ A2D2(k−1)X

⇒∗ A3C2(k−1)−1X

⇒∗ A4C2(k−2)X

⇒∗ A2kX

⇒∗ a2k+1 ,

where 2k +1 is a prime number, i.e., L(G)={ap : p is a prime number}=P. $%

5 Conclusion

From both theoretical and practical points of view, it is of a great interest to know
the amount of resources needed to characterize any recursively enumerable lan-
guage by (simple) semi-conditional grammars. This section summarizes results
concerning the descriptional complexity of (simple) semi-conditional grammars
known so far.

Let (A → α, u, v) be a production of a semi-conditional grammar. If u =
v = 0, then the production is said to be context-free; otherwise, it is said to be
conditional.

Theorem 7 ([13]). Every recursively enumerable language is generated by a
simple semi-conditional grammar of degree (3, 1) with no more than eight con-
ditional productions and eleven nonterminals.

Theorem 8 ([14]). Every recursively enumerable language is generated by a
simple semi-conditional grammar of degree (2, 1) with no more than nine condi-
tional productions and ten nonterminals.

In case of semi-conditional grammars that are not simple, the previous result
can be improved as follows.

Theorem 9 ([15]). Every recursively enumerable language is generated by a
semi-conditional grammar of degree (2, 1) with no more than seven conditional
productions and eight nonterminals.

Finally, note that Example 4.1.1 in [5] shows that there is no bound for the
number of nonterminals for (simple) semi-conditional grammars of degree (1, 1)
if terminal symbols are not allowed to appear in the conditions. More specifi-
cally, the example shows that any (simple) semi-conditional grammar of degree
(1, 1) generating the language Tn =

⋃n
i=1{a

j
i : j ≥ 1}, where conditions are

nonterminal symbols, requires, in the nonerasing case, exactly n+1 nonterminal
symbols, and, in the erasing case, at least f(n) nonterminal symbols, for some
unbounded mapping f : IN → IN. In general, however, as terminal symbols are

564 T. Masopust

allowed to appear in the conditions, and G = ({S, A}, {a1, a2, . . . , an}, {(S →
aiA, 0, 0), (S → ai, 0, 0), (A → aiA, ai, 0), (A → ai, ai, 0) : 1 ≤ i ≤ n}, S) is a
simple semi-conditional grammar of degree (1, 1) that generates Tn, the question
of whether analogous descriptional complexity results can be achieved for gen-
eral (simple) semi-conditional grammars of degree (1, 1) is open. Furthermore,
other cases not presented above are open, too.

To summarize the main results, this paper has answered three questions for-
mulated as open in [4, page 90] (see also [2], where semi-conditional grammars
were introduced and studied). Specifically, it has proved that

1. every semi-conditional grammar (with or without erasing productions) can
be converted to an equivalent simple semi-conditional grammar (with or
without erasing productions, respectively) of the same degree,

2. semi-conditional grammars of degree (1, 1) characterize the family of recur-
sively enumerable languages,

3. and, as a consequence, simple semi-conditional grammars of degree (1, 1)
characterize the family of recursively enumerable languages.

In addition, it has also presented some normal form results and an overview
of known results, demonstrated the generative power of simple semi-conditional
grammars of degree (1, 1) without erasing productions, and discussed open
problems.

Acknowledgments

The author thanks the anonymous referees for their helpful suggestions.
This work was supported by the Czech Ministry of Education under the Re-

search Plan No. MSM 0021630528 and, partially, by the Czech Grant Agency
project No. 201/07/0005.

References

1. van der Walt, A.P.J.: Random context grammars. In: Proceedings of the Sympo-
sium on Formal Languages (1970)

2. Păun, G.: A variant of random context grammars: Semi-conditional grammars.
Theoretical Computer Science 41, 1–17 (1985)

3. Gopalaratnam, A., Meduna, A.: On semi-conditional grammars with productions
having either forbidding or permitting conditions. Acta Cybernetica 11(4), 307–324
(1994)

4. Meduna, A., Švec, M.: Grammars with Context Conditions and Their Applications.
John Wiley & Sons, New York (2005)

5. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

6. Salomaa, A.: Formal languages. Academic Press, New York (1973)
7. Mayer, O.: Some restrictive devices for context-free grammars. Information and

Control 20, 69–92 (1972)
8. Masoput, T., Meduna, A.: On context-free rewriting with a simple restriction and

its computational completeness. In: RAIRO-ITA (to appear)

Generative Power of Some Variants of Grammars with Context Conditions 565

9. Bordihn, H., Fernau, H.: Accepting grammars and systems. Technical Report 9/94
(1994)

10. van der Walt, A.P.J., Ewert, S.: A shrinking lemma for random forbidding context
languages. Theoretical Computer Science 237(1-2), 149–158 (2000)

11. Ewert, S., van der Walt, A.P.J.: A pumping lemma for random permitting context
languages. Theoretical Computer Science 270(1–2), 959–967 (2002)

12. Masopust, T., Meduna, A.: Descriptional complexity of generalized forbidding
grammars. In: Proceedings of 9th International Workshop on Descriptional Com-
plexity of Formal Systems, High Tatras, Slovakia, pp. 170–177 (2007)

13. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theoretical Computer Science 330, 361–373 (2005)

14. Masopust, T., Meduna, A.: Descriptional complexity of grammars regulated by
context conditions. In: Pre-proceedings of 1st International Conference on Lan-
guage and Automata Theory and Application (LATA 2007), Tarragona, Spain, pp.
403–411 (2007)

15. Masopust, T., Meduna, A.: Descriptional complexity of semi-conditional grammars.
Information Processing Letters 104(1), 29–31 (2007)

Efficiency of the Symmetry Bias
in Grammar Acquisition

Ryuichi Matoba, Makoto Nakamura, and Satoshi Tojo

School of Information Science,
Japan Advanced Institute of Science and Technology,

1–1, Asahidai, Nomi, Ishikawa, 923–1292, Japan
{r-matoba,mnakamur,tojo}@jaist.ac.jp

Abstract. It is well known that the symmetry bias much accelerates
the vocabulary learning. In particular, the bias helps infants to connect
objects with their names easily. However, grammar learning is another
important aspect of language acquisition. In this study, we propose that
the symmetry bias also would help to acquire grammar rules faster. We
employ Iterated Learning Model, and revise it to include the symme-
try bias. The result of the experiments shows that infants could abduce
the meanings from incomprehensible utterances using the symmetry bias,
and acquire the compositional grammar from a reduced amount of learn-
ing data.

1 Introduction

It is well known that infants under 17 months old only slowly acquire lexical
items, and these lexicons are hardly fixed. Also, infants in these ages tend to
misapply words to objects. On the other hand, infants over 18 months old can
acquire new words very rapidly, e.g. 7∼15 words a day, and such lexical misap-
plication subsides [1]. We cannot explain this phenomenal learning, considering
that infants cannot take account of all possible meanings from an utterance
and they learn meanings of words only from a few limited examples. For this
problem, several studies have suggested that infants infer meanings efficiently to
limit possibilities in a situation using constraints called cognitive biases [2,3]D
A simple expression of lexical acquisition is a mapping between an object and
a lexical label. This mapping is considered to be generally difficult as is well
known as ‘gavagai problem’ [4], though infants achieve this operation.

It has been reported that various kinds of cognitive biases work for infants to
limit the possible word meanings [2,5,6,7,8,9], and among which, the symmetry
bias is said to be saliently effective. The bias says, if infants are taught an object
P has a lexical label Q, then they apply the label Q to the object P without
being taught. This tendency is said to be one of the peculiar human skills,
and many experiments have endorsed that other animals cannot do this reverse
implication [10,11,12].

Our study is based on the Iterated Learning Model (ILM, hereafter) by
Kirby [13], who introduced the notion of compositionality and recursion as funda-
mental features of grammar, and showed that they made it possible for a human

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 566–577, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficiency of the Symmetry Bias in Grammar Acquisition 567

to acquire compositional language without LAD (Language Acquisition Device),
opposing to Chomsky’s idea [14]. Also, he adopted the idea of two different do-
mains of language [15,14,16,17], namely, I–language and E–language; I–language
is the internal language corresponding to speaker’s intention or meaning, while
E–language is the external language, that is, utterances [16]. In his model, he
regarded that a parent is a speaker agent and her infant is a listener agent.
The speaker agent gives the listener agent a pair of a string of symbols as an
utterance (E–language), and a predicate–argument structure (PAS) as its mean-
ing (I–language). A number of utterances would form compositional grammar
rules in listener’s mind, being substrings are chunked. This process is iterated
generation by generation, and finally, a certain generation would acquire a com-
pact, limited number of grammar rules. We include the symmetry bias into this
process. We implement agents with the bias in a virtual world, and make them
learn a grammar by computer simulation.

This paper is organized as follows: in Section 2 we explain Kirby’s ILM [13]
and revise it to include the symmetry bias. Section 3 presents the details of our
experimental model, and gives specific experiment designs. We analyze our ex-
perimental results in Section 4, and conclude and discuss our issues in Section 5.

2 Iterated Learning Model with the Symmetry Bias

2.1 Utterance Rule of Kirby’s Model

According to Kirby’s model, we show a pair of I–language and E-language as
follows.

S/eat(john , apple) → eatjohnapple

where a speaker’s intention is a PAS ‘eat(john , apple)’ and its utterance becomes
‘eatjohnapple’; the symbol ‘S’ stands for that they belong to category Sentence.
Thus, as far as a listener is given an utterance paired with its meaning (PAS),
the listener can understand the speaker’s intention precisely at all times. How-
ever, compared to the actual situation, it seems a very strong assumption. In
our model, we loosen this assumption and regard that some utterances lack
meanings, to show the efficacy of the cognitive bias.

2.2 Rule Subsumption

The listener agent has an ability to change his knowledge with learning. The
learning algorithm consists of the following three operations such as chunk,
merge, and replace [13].

Chunk. This operation takes pairs of rules and looks for the least–general
generalization. For example,{

S/read(john , book) → ivnre
S/read(mary , book) → ivnho ⇒

⎧⎨⎩
S/read(x , book) → ivnN /x
N /john → re
N /mary → ho

568 R. Matoba, M. Nakamura, and S. Tojo

Merge. If two rules have the same meanings and strings, replace their nonter-
minal symbols for one common symbol.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S/read(x , book) → ivnA/x
A/john → re
A/mary → ho
S/eat(x , apple) → aprB/x
B/john → re
B/pete → wqi

⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S/read(x , book) → ivnA/x
A/john → re
A/mary → ho
S/eat(x , apple) → aprA/x
A/pete → wqi

Replace. If a rule is embeddable in another rule, replace the latter for a com-
positional rule with variables.{

S/read(pete, book) → ivnwqi
B/pete → wqi ⇒

{
S/read(x , book) → ivnB/x
B/pete → wqi

2.3 Abductive Reasoning

An utterance lacking its meaning (PAS) corresponds to the following situations.

– A listener cannot understand what the intention of a speaker’s utterance is.
– The listener fails to communicate with the speaker because of lacking other

modalities, like finger pointing.

Even such cases, the listener attempts to complement the speaker’s intention
by using his own previously acquired knowledge. We define this notion as the
symmetry bias. For example, if the listener cannot get the meaning of the left-
hand side of ‘→’ in

S/p(a, b) → fjaljla,

The listener guesses its meaning backward, namely:

??? ← fjaljla.

This backward directional guess is regarded as the effect of the symmetry bias,
and we build this process into our model. In ordinary circumstances, this abduc-
tive reasoning can be a mistake though there is a possibility to accelerate the
language acquisition.

2.4 Extensional Model by the Symmetry Bias

The relation between an utterance and a meaning is not only one–to–one map-
ping, but also one–to–many or many–to–one. However, from the viewpoint of our
linguistic performance, our language strongly favors one–to–one mapping. Thus,
it can be reasonably expected that infants use the symmetric bias to obtain
a meaning of the utterance if the infants possess a certain level of grammati-
cal/lexical knowledge. Now, we summarize our intuition which we mentioned so
far, as a policy of our study.

Efficiency of the Symmetry Bias in Grammar Acquisition 569

1. In the actual world, a listener cannot always understand a speaker’s intention
from an utterance.

2. However, the listener accepts this utterance as a reasonable linguistic repre-
sentation, and he has an ability to understand it using his own knowledge.

3. An utterance is composed by the speaker’s intention, and the utterance re-
flects the speaker’s intention.

4. The process inferring the meaning from an utterance has the reverse direction
of the utterance generation.

5. We regard this inference is caused by the symmetry bias in language acqui-
sition.

6. If most of meaning/utterance pairs are one-to-one, the symmetry bias must
work effectively.

For verifying the above intuition, we have the following conjectures.

Conjecture 1. If a listener receives only an utterance, he looks for similar ut-
terances that he has once received. If the utterance is new, he has to generate
an appropriate meaning. In terms of computer simulation, this may increase
computational time due to the addition of learning process, compared with
Kirby’s model.

Conjecture 2. However, if the listener’s partial grammatical/lexical knowledge
is sufficient, he may be able to complement meanings of incomprehensible
utterances. Thus, the learning process saves memory space.

In the next section, we show the adequacy of these conjectures by computer
simulation.

3 Experiments in Symmetry Bias Model

In this section, we show the procedure and the result of our experiment. The
purpose of the experiment is to demonstrate acquisition of compositional gram-
mar, even in a case that a listener agent may not always understand the meaning
of an utterance. In order to examine the efficacy of our model, we compare our
symmetry bias model to the original model.

First of all, we reiterate the experiment of Kirby’s model as a pilot one, to
grasp the features of the original model; how many generations are needed to
organize a compositional grammar, when an agent acquires a grammar that can
represent the whole meaning space, how many grammar rules the agent acquires,
and so on.

After the pilot experiment, we examine the following three strategies when a
listener cannot understand the meaning of an utterance.

(I) The listener ignores such utterances, and does not use them in his learning.
(II) The listener complements meanings of such utterances, randomly assigning

his previous meanings.
(III) The listener applies the symmetry bias to such utterances to complement

their meanings, and uses them in his learning.

570 R. Matoba, M. Nakamura, and S. Tojo

The purpose of experiment (I) is to observe differences of acquired grammar,
dependent on the data amount for learning, by comparison with the pilot exper-
iment. Also, we compare experiment (I) to experiment (III) to observe the effect
of complemental process. Next, we compare experiment (II) to experiment (III)
to observe the superiority of the symmetry bias to the mere simple meaning
complementation.

3.1 Experimentation Environment

In our model, we have employed the following five predicates and five object
words, which are the same as Kirby’s experiment [13].

predicates: admire, detest, hate, like, love
objects: gavin, heather, john, mary, pete

The arguments of a predicate must not be identical, i.e., representations like
love(pete, pete) are prohibited. This implies that there are 100 distinct mean-
ings (5 predicates × 5 possible first arguments × 4 possible second arguments).
Algorithm 1 is the procedure of the simulation.

generation := 0;
repeat

a speaker := a parent;
a listener := an infant;
for 1 to 50 do

the speaker chooses a meaning (PAS) from the whole meaning space;
the speaker generates an utterance by her own grammar rules;
if the speaker could not generate one then

attach random string to the meaning (PAS);
put the rule into her grammar set;

end
give string–PAS to the listener;
the listener guesses grammar rules in his own mind;

end
discard the speaker, together with her grammar;
a parent := the listener; /*the infant becomes a new parent*/
an infant is created;
generation ++;

until the grammar converges ;

Algorithm 1. The simulation algorithm

Because the number of utterances is limited to 50 times, the listener cannot
learn the whole meaning space, the size of which is 100. To obtain the whole
meaning space, the listener has to generalize his own knowledge by learning.

To evaluate the accomplishment of the learning, we investigate expressivity
and compositional level in the following definitions, as well as the number of
grammar rules.

Efficiency of the Symmetry Bias in Grammar Acquisition 571

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

R
an

ge
 o

f e
xp

re
ss

ib
le

 m
ea

ni
ng

s[
%

]

N
um

be
r

of
 r

ul
es

Generation

Expressible meanings[%]

Number of rules

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

R
an

ge
 o

f e
xp

re
ss

ib
le

 m
ea

ni
ng

s
[%

]

N
um

be
r

of
 r

ul
es

Generation

Expressible meanings[%]

Number of rules

20%
16%
12%
8%
4%
0%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

R
an

ge
 o

f e
xp

re
ss

ib
le

 m
ea

ni
ng

s
[%

]

N
um

be
r

of
 r

ul
es

Generation

Expressible meanings[%]

Number of rules

20%
16%
12%
8%
4%
0%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

R
an

ge
 o

f e
xp

re
ss

ib
le

 m
ea

ni
ng

s
[%

]

N
um

be
r

of
 r

ul
es

Generation

Expressible meanings[%]

Number of rules

20%
16%
12%
8%
4%
0%

(A) (B)

(C) (D)

Fig. 1. The movement of the number of rules and expressivity per generation. (A).The
result of Kirby(2002). (B).Result of experiment (I). (C). Result of experiment (II).
(D).Result of experiment (III).

Definition 1 (Compositional rule, Holistic rule, and Lexical rule). A
grammar rule including non-terminal symbols for categories is called a composi-
tional rule while the others holistic rules. Also, a rule which consists of a monadic
terminal constant is called a lexical rule1.

Definition 2 (Compositional level and Expressivity). Compositional
level is the number of variables included in a compositional rule. Expressivity
is the ratio of the utterable meanings against the whole meaning space.

The experiment was carried out until the 100th generation. In fact, we have
carried out until the 1000th generation; however, both of expressivity and the
number of rules converged until the 100th generation, and thus we discuss the
result derived by the 100th generation.

3.2 Pilot Experiment: Kirby’s Model

Figure 1(A) is the result of the average of 100 trials, and shows the tendency
of the number of rules and expressivity per generation. In the early stages, the
language has low expressivity and a large size of grammar rules; however, through
1 E.g., N/john → j.

572 R. Matoba, M. Nakamura, and S. Tojo

the generations, the language universally acquires higher expressivity and the
number of grammar rules subsides.

In the early stages, the increase of holistic rules leads the growth of expres-
sivity, and the acceleration of generalization. This process leads the grammar to
be compositional, so most of the rules in the later stages become compositional.

In fact, we have found a grammar with 100% of expressivity consisting of
11 rules, consisting of ten lexical rules and one level–3 compositional rule (see
Definition 2).

3.3 Experiment (I): Listener Ignores Incomprehensible Utterances

In this experiment, the listener does not use incomprehensible utterances for
learning, i.e., the experimental setting is the same as the pilot experiment, except
that the number of available utterances is reduced.

Figure 1(B) is the result of the average of 100 trials. Each line denotes the rate
of the incomprehensible utterances to the received utterances (50 times), that is,
0%, 4%, 8 %, 12%, 16%, and 20%.

From Figure 1(B), we can observe that the grammars anyhow converge re-
gardless of the incomprehensible rate, and there is not a significant difference in
the number of rules. However, there is a difference in convergence generation.
When the incomprehensible rate is 0%, the number of grammar rules converges
around the 30th generation, but when the rate is 20%, it becomes around the
50th generation and the expressivity does not converge until around the 80th
generation. This indicates that the listener with more amount of learning data
can acquire the higher expressivity and the smaller grammar rules in a shorter
period.

3.4 Experiment (II): Listener Arbitrarily Interprets
Incomprehensible Utterances

In this experiment, the listener chooses a meaning from the meaning space ar-
bitrarily, and puts it to an incomprehensible utterance.

Figure 1(C) is the result of the average of 100 trials. Each line denotes the
rate of the incomprehensible utterances to the received utterances as 0%, 4 %,
8%, 12%, 16%, 20%, as Figure 1(B).

As compared to experiment (I) (Figure 1(B)), the result of experiment (II)
(Figure 1(C)) shows high expressivity in shorter period. Complementing mean-
ings to incomprehensible utterances, the listener can superficially increase his
grammar knowledge. However, these ungrounded rules become noise to gener-
alize the knowledge, and thus the size of the grammar rules becomes larger. In
terms of expressivity, there is an insignificant difference between experiment (I)
and experiment (II) after convergence.

3.5 Experiment (III): Listener Applies the Symmetry Bias to
Interpret Incomprehensible Utterances

If the listener receives incomprehensible utterances, he follows Algorithm 2.

Efficiency of the Symmetry Bias in Grammar Acquisition 573

if there is a string among compositional level 0 rules which exactly matches the
utterance then

apply the meaning of this rule;
else

if the listener can derive the same string as the utterance using rules whose
compositional levels are greater than or equal to 1 then

apply the meaning derived from these rules;
else

Decompose the string to substrings;
Search lexical rules which match longest to any one of the substrings;
if there exists such lexical rules then

The listener chooses utterances which include any one of such words;
From the chosen utterances, the listener picks out utterances as
candidates which are uttered most frequently;
if the candidate is only one then

apply the meaning of this candidate to the incomprehensible
utterance;

else
Among the other substrings, search lexical rules which correspond
to one of the substrings longest;
Choose the most frequent candidates;
if such candidate is only one then

apply the meaning of this candidate to the incomprehensible
utterance;

else
Choose one from the candidates;

end

end

else
Choose a meaning from the meaning space randomly, and apply it to
the incomprehensible utterance.

end

end

end

Algorithm 2. The bias algorithm

Similar to the previous three experiments, the incomprehensible rates are
set to 0 %, 4 %, 8 %, 12%, 16%, and 20%. However, different from previous
three experiments, incomprehensible utterances are given at the tail of the 50
utterances, e.g., in case of 20%̇, the first 40 sentences are paired with PAS while
the rest 10 utterances are meaningless. This is because Algorithm 2 must be
evoked after a certain accumulation of grammar knowledge. Namely, the listener
could consider in such a way that the intention of the speaker was not clear
but referring back to the previous knowledge the listener could partially guess
what the speaker had said. We contend that this is exactly the inference by the
symmetry bias.

574 R. Matoba, M. Nakamura, and S. Tojo

Figure 1(D), the result of the average of 100 trials, shows that the expressivity
is higher when the listener does not understand all the utterances, since the
listener augments the number of grammar rules as experiment (II).

4 Comparison of Experimental Results

In this chapter, we compare the result of experiment (I) to that of experi-
ment (III) and the result of experiment (II) to that of experiment (III), where
we use the results of incomprehensible rate is 20% as prominent examples.
Table 1 shows the average number of rules at the 100th generation.

Firstly, we compare experiment (I) to experiment (III). By the effect of infer-
ence, the listener can get more learning data excluding noise data for leaning.
This is why we can observe the expressivity of experiment (III) converges faster
than experiment (I), i.e., inferring the meanings of incomprehensible utterances
is more efficient in terms of convergence speed.

Here, we show how the symmetry bias works to construct compositional gram-
mars using a concrete example from experiment (III) where the incomprehensible
rate is 20%, and the speaker’s 45th utterance is ‘esk’. The listener has the fol-
lowing lexical rule:

A/love → s

The utterance ‘esk’ being decomposed to substrings, ‘s’ corresponds to the lexical
rule, so the listener infers as follows:

love(???, ???) ← esk

Investigating the frequency of the words which co-occur with the word love from
the speaker’s utterances up to this time, the listener finds gavin has occurred
three times, john has occurred twice, and heather , mary , pete has occurred once,
respectively. Thus, the listener chooses gavin . Next, the listener chooses either
one of the followings based on frequency:

love(gavin , ???)

love(???, gavin)

Table 1. Average number of rules: Generation 100

experiment (I) experiment (II) experiment (III)

0% 21.1 22.1 22.1
4% 22.3 24.9 24.0
8% 20.9 28.0 26.8
12% 22.6 29.6 29.7
16% 20.0 33.6 31.3
20% 20.5 34.1 31.8

Efficiency of the Symmetry Bias in Grammar Acquisition 575

Looking back to the log, mary has occurred once in the form of love(mary , gavin)
and the others have not occurred. Thus, the listener adds the following rule to
his knowledge:

love(mary , gavin) → esk

This enables the listener to learn a lexical rule ‘A/love → s’, so his grammar
changes as follows: {

A/love → s
S/p(mary , gavin) → ekA/p

Thus, the listener acquires the compositional rule. Since the compositional level
of the added rules is higher, the language necessarily has higher expressivity.
Therefore, compared experiment (I) to experiment (III), the expressivity of the
latter converges in shorter period.

When the complement of meanings by inference is incomplete, the listener
acquires rules which were originally not included in the speaker’s grammars,
so the listener cannot generalize such rules well. Thus, there remains low level
compositional rules in the listener’s grammar. This is why Table 1 shows that
the number of rules of experiment (I) is less than that of experiment (III) as 20.5
versus 31.8.

The listener’s strategy of experiment (I) which does not treat incomprehen-
sible utterances to learning, decrease data for learning. On the other hand, the
listener’s strategy of experiment (III) keeps the same amount of data for learn-
ing. The symmetry bias being applied, the grammar converges in shorter period,
although the number of rules increases. In terms of convergence speed, it is
efficient to apply the symmetry bias to learning.

Next, we compare experiment (II) to experiment (III) under the incomprehen-
sible rate is 20%. There are not so much of differences in convergence speed and
the expressivity between these experiments. On the other hand, there is a dif-
ference in the number of rules between them, as 34.1 and 31.8. This difference
indicates the efficiency of the symmetry bias in learning.

Figure 2 shows the number of guessed meanings by the symmetry bias under the
rate is 20% by the average of 100 trials. In early stages, because of the failure of the

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
um

be
r

of
 r

ul
es

Generation

Derived from inference

Generated from random application

Fig. 2. The number of rules which are derived from inference vs. random application

576 R. Matoba, M. Nakamura, and S. Tojo

inference, the listener has applied meanings to the incomprehensible utterances
randomly. In later generations, the listener becomes to be able to apply a meaning
by the inference. From Figure 2, we can observe that the number of rules with
random PAS decreases, while those which own correct PAS increases. Also, from
figure 1(D), we can see that the expressivity and the number of rules converges
around the 20th generation. Thus, we can observe that the inference failure had
steadily decreased after the agent acquired a certain level of grammar knowledge.

If some rules are added to the grammar knowledge by the symmetry bias, the
compositional rules are inevitably generated. On the other hand, in the case of
random meaning application, it is not always true that the learning produces
compositional rules.

5 Conclusion

In this paper, we verified the efficacy of the symmetry bias not only in the
lexical acquisition, but also in the grammar acquisition. For this purpose, we have
revised Kirby’s model [13], and have built the symmetry bias into our model. In
the simulation, the listener received utterances without the speaker’s intention at
a certain rate, and the listener interpreted such incomprehensible utterances with
three kinds of strategies such as (I) ignoring, (II) attaching meanings randomly,
and (III) attaching meanings by the symmetry bias. For each of the strategies,
we observed expressivity, number of rules, and compositional level. As a result
of the experiments, the listener who has employed strategy (III),

– could acquire high expressivity faster than those who took the strategy (I).
– could construct his grammar with a higher compositional level, i.e., the num-

ber of rules was smaller than that of the listener who employed strategy (II).

Our future works are summarized as follows. Firstly, we should consider to
include other cognitive biases than the symmetry bias. Secondly, we should ex-
pand the meaning space and grammars of our model and restudy the effective-
ness, since the effect of the bias was not so prominant at the current simple and
limited language. Thirdly, what happens if we attach incorrect PASs intention-
ally? If infants are much more versatile in learning language, they also may be
able to learn a grammar robustly.

Acknowledgment

The authors would like to thank Shoki Sakamoto of JAIST who contributed to
implement our experimental system.

References

1. Schafer, G., Plunkett, K.: Rapid word learning by 15-month-olds under tightly
controlled conditions. Child Development 69, 309–320 (1998)

2. Imai, M., Gentner, D.: Children’s theory of word meanings: The role of shape
similarity in early acquisition. Cognitive Development 9(1), 45–75 (1994)

Efficiency of the Symmetry Bias in Grammar Acquisition 577

3. Markman, E.M.: Categorization and naming in children: Problems of induction.
MIT Press, Cambridge (1989)

4. Quine, W.V.O.: Word and Object. MIT Press, Cambridge (1960)
5. Imai, M., Gentner, D.: A crosslinguistic study of early word meaning: Universal

ontology and linguistic influence. Cognition 62(2), 169–200 (1997)
6. Landau, B., Smith, L.B., Jones, S.S.: The importance of shape in early lexical

learning. Cognitive Development 3(3), 299–321 (1988)
7. Landau, B., Smith, L.B., Jones, S.S.: Syntactic context and the shape bias in

children’s and adult’s lexical learning. Journal of Memory and Language 31(6),
807–825 (1992)

8. Markman, E.M.: Constraints children place on word meanings. Cognitive Science:
A Multidisciplinary Journal 14(1), 57–77 (1990)

9. Markman, E.M., Wasow, J.L., Hansen, M.B.: Use of the mutual exclusivity as-
sumption by young word learners. Cognitive Psychology 47(3), 241–275 (2003)

10. Hattori, M.: Adaptive Heuristics of Covariation Detection: A Model of Causal In-
duction. In: Proceedings of the 4th International Conference on Cognitive Sci-
ence and the 7th Australasian Society for Cognitive Science Joint Conference
(ICCS/ASCS 2003), vol. 1, pp. 163–168 (2003)

11. Sidman, M., Rauzin, R., Lazar, R., Cunningham, S., Tailby, W., Carrigan, P.: A
search for symmetry in the conditional discriminations of rhesus monkeys, baboons,
and children. Journal of the Experimental Analysis of Behavior 37(1), 23–44 (1982)

12. Yamazaki, Y.: Logical and illogical behavior in animals. Japanese Psychological
Research 46(3), 195–206 (2004)

13. Kirby, S.: Learning, bottlenecks and the evolution of recursive syntax. In: Linguistic
Evolution through Language Acquisition. Cambridge University Press, Cambridge
(2002)

14. Chomsky, N.: Knowledge of Language. Praeger, New York (1986)
15. Bickerton, D.: Language and Species. University of Chicago Press (1990)
16. Hurford, J.: Language and Number: the Emergence of a Cognitive System. Black-

well, Oxford (1987)
17. Kirby, S.: Function, Selection, and Innateness: The Emergence of Language Uni-

versals. Oxford University Press, Oxford (1999)

A Series of Run-Rich Strings

Wataru Matsubara1, Kazuhiko Kusano1, Hideo Bannai2,
and Ayumi Shinohara1

1 Graduate School of Information Science, Tohoku University,
Aramaki aza Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan

{matsubara@shino.,kusano@shino.,ayumi@}ecei.tohoku.ac.jp
2 Department of Informatics, Kyushu University,
744 Motooka, Nishiku, Fukuoka 819-0395 Japan

bannai@i.kyushu-u.ac.jp

Abstract. We present a new series of run-rich strings, and give a new
lower bound 0.94457567 of the maximum number of runs in a string. We
also introduce the general conjecture about a asymptotic behavior of the
numbers of runs in the strings defined by any recurrence formula, and
show the lower bound can be improved further to 0.94457571235.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of
strings. It was shown in [1] that when considering maximal repetitions, or runs, the
maximum number of runs ρ(n) in any string of length n is O(n), leading to a lin-
ear time algorithm for computing all the runs in a string. Although they were not
able to give bounds for the constant factor, there have been several works to this
end [2,3,4,5,6,7,8]. The currently known best upper bound1 is ρ(n) ≤ 1.029n, ob-
tained by calculations based on the proof technique of [5,8]. The technique bounds
the number of runs for each string by considering runs in two parts: runs with
long periods, and runs with short periods. The former is more sparse and easier
to bound while the latter is bounded by an exhaustive calculation concerning how
runs of different periods can overlap in an interval of some length.

On the other hand, an asymptotic lower bound on ρ(n) was first presented
in [9], where it is shown that for any ε > 0, there exists an integer N > 0 such
that for any n > N , ρ(n) ≥ (α− ε)n, where α = 3

1+
√

5
≈ 0.927. Although it was

conjectured in [10] that this bound is optimal, a new bound was shown in [11],
improving the lower bound to α = 174719/184973 ≈ 0.944565. The bound was
obtained by considering the runs of an infinite series of strings w, w2, w3, . . .,
based on a run-rich string w. To the best of our knowledge, the current best
lower bound is α = 27578248/29196442 ≈ 0.9445756438404378 achieved by a
run-rich string discovered by Simon Puglisi and Jamie Simpson2.

In this paper, we design a new series of run-rich strings defined by a simple
recurrence formula, and improve the bound further to 0.94457567. We give a
1 Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html
2 Personal communication.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 578–587, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.csd.uwo.ca/faculty/ilie/runs.html

A Series of Run-Rich Strings 579

conjecture for the exact number of runs contained in each string of the series,
and show that the series improves the bound further to α ≈ 0.94457571235.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said
to be a prefix, substring, and suffix of the string w = xyz, respectively.

The length of a string w is denoted by |w|. The i-th symbol of a string w is
denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of w that begins at position i
and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has
period p if w[i] = w[i + p] for 1 ≤ i ≤ |w| − p. A string w is called primitive if w
cannot be written as uk, where k is a positive integer, k ≥ 2.

A string u is a run if it is periodic with (minimum) period p ≤ |u|/2. A
substring u = w[i : j] of w is a run in w if it is a run of period p and neither
w[i − 1 : j] nor w[i : j + 1] is a run of period p, that means the run is maximal.
We denote the run u = w[i : j] in w by the triple 〈i, j−i+1, p〉 consisting of the
begin position i, the length |u|, and the minimum period p of u. For a string w,
we denote by run(w) the number of runs in w.

For example, the string aabaabaaaacaacac contains the following 7 runs:
〈1, 2, 1〉 = a2, 〈4, 2, 1〉 = a2, 〈7, 4, 1〉 = a4, 〈12, 2, 1〉 = a2, 〈13, 4, 2〉 = (ac)2,
〈1, 8, 3〉 = (aab)

8
3 , and 〈9, 7, 3〉 = (aac)

7
3 . Thus run(aabaabaaaacaacac) = 7.

We are interested in the behavior of the maxrun function defined for all n > 0
by

ρ(n) = max{run(w) | w is a string of length n}.
Franěk, Simpson and Smyth [10] showed a beautiful construction of a series of

strings which contain many runs, and later Franěk and Qian Yang [9] formally
proved a family of true asymptotic lower bounds arbitrarily close to 3

1+
√

5
n as

follows.

Theorem 1 ([9]). For any ε > 0 there exists a positive integer N so that
ρ(n) ≥

(
3

1+
√

5
− ε
)

n for any n ≥ N .

3 A New Series of Run-Rich Strings

In this section, we show a construction of a series of run-rich binary strings, and
we give new lower bound of the number of runs in string. The series {tn} of
strings is defined by

t0 = 0110101101001011010,

t1 = 0110101101001,

t2 = 011010110100101101011010,

tk =

{
tk−1tk−2 (if k mod 3 = 0),
tk−1tk−4 (otherwise),

(1)

for any integer k > 2.

580 W. Matsubara et al.

Table 1 shows the length of {tn} and the number of runs in {tn} for i =
0, 1, . . . , 44. We actually counted the number of runs by implementing the linear-
time algorithm proposed by Kolpakov and Kucherov [1] combined with the
space-effiecient algorithm to compute Lempel Ziv Factorization proposed by
Crochemore et al. [12]. In our PC with 18GB RAM, t44 was the longest possible
string to be handled. As we can see, these strings contain many runs and the
ratio run(tn)/|tn| in the third column is monotonically increasing as n grows.
We are interested in its limit value, and we will try to estimate it in Section 4.

Using this result in Table 1, we improve the bound. {tn} contains enough
runs, but we can improve the bound further by considering the string tkn. First,
we give a previous result about the number of runs in an infinite string obtained
by concatenating the same string infinite many times.

Theorem 2 ([11]). For any string w and any ε > 0, there exists a positive
integer N such that for any n ≥ N ,

ρ(n)
n

>
run(w3) − run(w2)

|w| − ε.

From Theorem 2, we show a new lower bound.

Theorem 3. For any ε > 0 there exists a positive integer N so that
ρ(n) > (α − ε)n for any n ≥ N , where α = 48396453

51236184 ≈ 0.94457567.

Proof. From Table 1, we have |t41| = 51236184, run(t41) = 48396417, run(t241) =
96792871, and run(t341) = 145189324. Therefore from Theorem 2, we have

ρ(n)
n

>
145189324− 96792871

51236184
− ε. $%

Needless to say this bound is not optimal. If we can calculate run(tn) for larger
n, we would be able to obtain better bounds.

4 Analysis of Asymptotic Behavior

In this section, we analyze the asymptotic behavior of the number of runs in
{tn}. We conjecture that limn→∞ run(tn)/|tn| ≈ 0.94457571235.

To make the analysis easier, we classify the strings of {tn} into the following
three forms and we focus attention on {an}.

an = t3m = bn−1cn−1,

bn = t3m+1 = anan−1,

cn = t3m+2 = bnbn−1.

A Series of Run-Rich Strings 581

Table 1. The length of {tn} and number of runs in {tn}

n |tn| run(tn) run(tn)/|tn| run(t2n) run(t3n) run(tk
n)/k|tn|

0 19 13 0.6842105263 29 44 0.7894736842
1 13 7 0.5384615385 19 30 0.8461538462
2 24 17 0.7083333333 39 60 0.8750000000
3 37 28 0.7567567568 62 95 0.8918918919
4 56 47 0.8392857143 99 150 0.9107142857
5 69 56 0.8115942029 120 183 0.9130434783
6 125 110 0.8800000000 227 343 0.9280000000
7 162 143 0.8827160494 295 446 0.9320987654
8 218 197 0.9036697248 402 606 0.9357798165
9 380 346 0.9105263158 704 1061 0.9394736842

10 505 467 0.9247524752 943 1418 0.9405940594
11 667 617 0.9250374813 1246 1874 0.9415292354
12 1172 1094 0.9334470990 2200 3305 0.9428327645
13 1552 1451 0.9349226804 2916 4380 0.9432989691
14 2057 1930 0.9382596014 3872 5813 0.9436071949
15 3609 3391 0.9395954558 6799 10206 0.9440288168
16 4781 4501 0.9414348463 9016 13530 0.9441539427
17 6333 5964 0.9417337755 11945 17925 0.9442602242
18 11114 10480 0.9429548317 20977 31473 0.9443944574
19 14723 13887 0.9432180941 27793 41698 0.9444406711
20 19504 18405 0.9436525841 36827 55248 0.9444729286
21 34227 32307 0.9439039355 64636 96964 0.9445174862
22 45341 42808 0.9441344479 85635 128461 0.9445314395
23 60064 56712 0.9441928609 113446 170179 0.9445424880
24 105405 99540 0.9443574783 199102 298663 0.9445567098
25 139632 131868 0.9443966999 263760 395651 0.9445614186
26 184973 174698 0.9444513524 349418 524137 0.9445648824
27 324605 306586 0.9444894564 613199 919811 0.9445695538
28 430010 406152 0.9445175694 812328 1218503 0.9445710565
29 569642 538042 0.9445265623 1076111 1614179 0.9445722050
30 999652 944219 0.9445477026 1888465 2832710 0.9445737117
31 1324257 1250831 0.9445530588 2501691 3752550 0.9445742027
32 1754267 1657010 0.9445597506 3314047 4971083 0.9445745716
33 3078524 2907866 0.9445649928 5815764 8723661 0.9445750626
34 4078176 3852116 0.9445683560 7704261 11556405 0.9445752219
35 5402433 5102974 0.9445696041 10205980 15308985 0.9445753423
36 9480609 8955120 0.9445722316 17910272 26865423 0.9445755014
37 12559133 11863017 0.9445729255 23726068 35589118 0.9445755531
38 16637309 15715165 0.9445737288 31430362 47145558 0.9445755921
39 29196442 27578212 0.9445744108 55156461 82734709 0.9445756438
40 38677051 36533368 0.9445748074 73066770 109600171 0.9445756606
41 51236184 48396417 0.9445749707 96792871 145189324 0.9445756733
42 89913235 84929820 0.9445752897 N/A N/A N/A
43 119109677 112508068 0.9445753765 N/A N/A N/A
44 157786728 149041473 0.9445754715 N/A N/A N/A

582 W. Matsubara et al.

By definition, we can get the closed form of {an} as follows:

an = bn−1cn−1

= bn−1bn−2bn−1

= an−1an−2an−2an−3an−1an−2.

So we will analyze the length of {a2n} in Section 4.1, and the number of runs
in Section 4.2.

4.1 Length

At first we give the generating function of |a2n| = |t6n|.
Lemma 1. Let LA(z) be the generating function of |a2n|. LA(z) can be repre-
sented as follows:

LA(z) =
−17z2 + 65z − 19
z3 − 5z2 + 10z − 1

.

Proof.

|ak| = |ak−1ak−2ak−2ak−3ak−1ak−2|
= 2|ak−1| + 3|ak−2| + |ak−3|.

Let gn = |an|,

g0 = |a0| = 19,

g1 = |a1| = 37,

g2 = |a2| = 125,

gn = 2gn−1 + 3gn−2 + gn−3 (n > 2).

Therefore, we have general term of gn as follows:

gn = 2gn−1 + 3gn−2 + gn−3 + 19[n=0] − 1[n=1] − 6[n=2],

where the expression m[n=k] means the function such that the result is m if
n = k, and 0 if n �= k.

Let L(z) be the generating function of gn. We have

L(z) = 2
∑

n

gn−1z
n + 3

∑
n

gn−2z
n +

∑
n

gn−3z
n

+
∑

n

(19[n=0] − 1[n=1] − 6[n=2])zn

= 2zL(z) + 3z2L(z) + z3L(z) + 19 − z − 6z2

=
6z2 + z − 19

z3 + 3z2 + 2z − 1
.

A Series of Run-Rich Strings 583

By definition, |a2n| = |t6n| = |t3(2n)| = g2n,∑
n

g2nz2n =
1
2

(L(z) + L(−z))

=
1
2

(
6z2 + z − 19

z3 + 3z2 + 2z − 1
+

6z2 − z − 19
−z3 + 3z2 − 2z − 1

)
=

1
2

(
−17z4 + 65z2 − 19
z6 − 5z4 + 10z2 − 1

)
.

Therefore, the generating function of |a2n| is as follows:

LA(z) =
∑

n

|a2n|zn =
∑

n

g2nzn =
1
2

(
−17z2 + 65z − 19
z3 − 5z2 + 10z − 1

)
. $%

To solve this generating function, we use the following theorem. If A(z) is a
power series

∑
k≥0 akzk, we will find it convenient to write [zn]A(z) = an.

Theorem 4 (Rational Expansion Theorem for Distinct Roots [13]). If
R(z) = P (z)/Q(z), where Q(z) = q0(1 − ρ1z) . . . (1 − ρ�z) and the numbers
(ρ1, . . . , ρ�) are distinct, and if P (z) is a polynomial of degree less than �, then

[zn]R(z) = a1ρ
n
1 + · · · + a�ρ

n
� , where ak =

−ρkP (1/ρk)
Q′(1/ρk)

.

Using this theorem, we will show the general term of |an|. Let Q(z) = z3−5z2 +
10z − 1 and QR(z) = −z3 + 10z2 − 5z + 1. Therefore QR(z) is the “reflected”
polynomial of Q(z). Let (α, β, γ) be the roots of QR(z). Therefore QR(z) =
(z − α)(z − β)(z − γ), and Q(z) = (1 − αz)(1 − βz)(1 − γz). By Theorem 4, we
have the general term of |an| as follows.

Theorem 5. |an| = f(α)αn + f(β)βn + f(γ)γn for f(x) =
x(19x2−65x+17)

10x2−10x+3 ,
where (α, β, γ) are the roots of the equation −z3 +10z2− 5z +1 = 0. The values
of α, β, and γ are as follows:

α =
10
3

+
1
3

3

√
1577

2
− 21

√
69

2
+

1
3

3

√
1
2

(
1577 + 21

√
69
)
,

β =
10
3

− 1
6

(
1 − i

√
3
)

3

√
1577

2
− 21

√
69

2
− 1

6

(
1 + i

√
3
)

3

√
1
2

(
1577 + 21

√
69
)
,

γ =
10
3

− 1
6

(
1 + i

√
3
)

3

√
1577

2
− 21

√
69

2
− 1

6

(
1 − i

√
3
)

3

√
1
2

(
1577 + 21

√
69
)
.

4.2 Number of Runs

Instead of trying to count the numbers of runs in the strings defined by the
recurrence (1) only, we take a general approach here. We address ourselves to

584 W. Matsubara et al.

Table 2. The length of {an} and number of runs in {an}

n |an| run(an) ∆n ∆n − ∆n−2

0 19 13
1 37 28
2 125 110
3 380 346 29
4 1172 1094 44
5 3609 3391 55 26
6 11114 10480 70 26
7 34227 32307 80 25
8 105405 99540 95 25
9 324605 306586 105 25

10 999652 944219 120 25
11 3078524 2907866 130 25
12 9480609 8955120 145 25
13 29196442 27578212 155 25
14 89913235 84929820 170 25

find general formulae which express the numbers of runs in strings defined by
some recurrence, or equivalently, by some morphism.

Let m, k, γ1, γ2 . . . γk be integers such that 1 ≤ γj ≤ m for any 1 ≤ j ≤ k, and
s0, s1, . . . , sm−1 ∈ Σ+ be any nonempty strings. We consider a series of strings
{sn} defined by the recurrence formula

sn = sn−γ1sn−γ2 . . . sn−γk
(n ≥ m).

We pay our attentions to the quantity ∆n = run(sn)−
∑k

i=1 run(sn−γi). It is the
difference between the number of newly created runs and the number of merged
runs by the concatenation. Let p be the least common multiple of the two integers
γ1 and γk. We observe that {∆n} is a mixture of p arithmetic progressions with
the same common difference, except initial several terms. More formally, we have
the following conjecture.

Lemma 2 (Conjecture). There exist integers A and n0 such that ∆n = ∆n−p

+ A for any n ≥ n0.

For example, in {an} we have ∆n = ∆n−2 + 25 for n ≥ 5 (see Table 2). Un-
fortunately, we have not succeeded to give a formal proof to the conjecture at
this time of writing. However, we have verified it for various instances and en-
countered no counter examples. Based on the conjecture, we have the following
corollary, which is very useful to calculate the generating function.

Corollary 1 (Based on conjecture Lemma 2). There exist integers A, B0,
. . . , Bp−1, and n0 such that

A Series of Run-Rich Strings 585

run(spn+i) =
k∑

j=1

(run(spn+i−γj)) + An + Bi,

for any n ≥ n0.

Note that an = an−1an−2an−2an−3an−1an−2, from Corollary 1, we have p = 2
and the recurrence formula of run(an) for large n as follows:

run(a2n) = 2run(a2n−1) + 3run(a2n−2) + run(a2n−3) + 25n− 5,

run(a2n+1) = 2run(a2n) + 3run(a2n−1) + run(a2n−2) + 25n + 5.

Let us consider the progression {rn} defined by

r0 = 15,

r1 = 27,

r2 = 110,

r2k = 2r2k−1 + 3r2k−2 + r2k−3 + 25k − 5 (k ≥ 2),
r2k+1 = 2r2k + 3r2k−1 + r2k−2 + 25k + 5 (k ≥ 1).

We can see that run(an) = rn for any n ≥ 2.
To analyze the asymptotic behavior of run(an), we give the general term of

{rn}.
Let X(z), Y (z) be the generating functions of {r2n} and {r2n+1}:

X(z) =
∑

r2nzn,

Y (z) =
∑

r2n+1z
n.

Then,

X(z) = 2zY (z) + 3zX(z) + z2Y (z) + 25z
(1−z)2 − 5z

1−z −15 + 9z,

Y (z) = 2X(z) + 3zY (z) + zX(z) + 25z
(1−z)2 + 5z

1−z −3.

To solve above simultaneous equations, we have

X(z) = −19z4 − 103z2 + 164z2 − 70z + 15
(z − 1)2(z3 − 5z + 10z − 1)

.

Let α, β, γ are the roots of equation −z3 + 10z2 − 5z + 1 = 0. We have the
general term r2n from X(z) as follows:

r2n = g(α)αn + g(β)βn + g(γ)γn + O(n)

where,

g(x) =
x
(
15x4 − 70x3 + 164x2 − 103x + 19

)
12x4 − 52x3 + 6x2 − 28x + 5

.

Therefore we have the lower bounds of the maximal number of runs.

586 W. Matsubara et al.

Theorem 6 (Based on Conjecture Lemma 2)

ρ(n)
n

≥ 0.94457571235.

Proof.

ρ(n) ≥ lim
n→∞

run(a2n)
|a2n|

= lim
n→∞

r2n

|a2n|

= lim
n→∞

g(α)αn + g(β)βn + g(γ)γn + O(n)
f(α)αn + f(β)βn + f(γ)γn

=
g(α)αn

f(α)αn
(|α| > |β| = |γ|)

=
α(15α4−70α3+164α2−103α+19)

12α4−52α3+6α2−28α+5
α(19α2−65α+17)

10α2−10α+3

=

(
3 − 10α + 10α2

) (
99 − 488α + 889α2

)
(17 − 65α + 19α2) (73 − 356α + 683α2)

=
7714 − 109145 3

√
2

−27669823+9298929
√

69
+ 3
√

−27669823+9298929
√

69
2

8079
≈ 0.94457571235. $%

5 Conclusion

In this paper, we showed a new series {tn} of run-rich strings defined by a simple
recurrence formula, and we succeeded to improve the lower bound to 0.94457567
of the maximum number of runs in a string by using concrete string t41. If we
count the number of runs in a more longer strings t2n and t3n for n > 41, the bound
can be improved further. Moreover, we gave a conjecture about the numbers of
runs in the strings defined by any recurrence formula. Based on the conjecture,
we evaluated the value lim

n→∞ run(tn)/|tn| accurately, which yields the best lower
bound so far. We are trying to give a proof of the conjecture.

Recently, Baturo et al. [6] derived an explicit formula for the number of runs
in any standard Sturmian words. Moreover, they showed how to compute the
number of runs in a standard Sturmian words in linear time with respect to
the size of its compressed representation, that is, the recurrences describing the
string. We are interested in extending it to a general strings described by any
recurrences for further research.

References

1. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS
1999), pp. 596–604 (1999)

A Series of Run-Rich Strings 587

2. Rytter, W.: The number of runs in a string: Improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

3. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)
4. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain?

Theoretical Computer Science 401(1–3), 165–171 (2008)
5. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74,

796–807 (2008)
6. Baturo, P., Piatkowski, M., Rytter, W.: The number of runs in Sturmian words.

In: Ibarra, O., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 252–261.
Springer, Heidelberg (2008)

7. Giraud, M.: Not so many runs in strings. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 245–252. Springer, Heidelberg (2008)

8. Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “Runs” conjecture.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 290–302.
Springer, Heidelberg (2008)

9. Franěk, F., Yang, Q.: An asymptotic lower bound for the maximal-number-of-runs
function. In: Proc. Prague Stringology Conference (PSC 2006), pp. 3–8 (2006)

10. Franěk, F., Simpson, R., Smyth, W.: The maximum number of runs in a string. In:
Proc. 14th Australasian Workshop on Combinatorial Algorithms (AWOCA 2003),
pp. 26–35 (2003)

11. Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower
bounds for the maximum number of runs in a string. In: Proc. The Prague Stringol-
ogy Conference 2008, pp. 140–145 (2008)

12. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
lempel ziv factorization. In: Proc. DCC 2008, pp. 482–488 (2008)

13. Graham, R., Knuth, D., Patashnik, O.: Concrete mathematics, 2nd edn. Addison-
Wesley, Reading (1995)

On Accepting Networks of Evolutionary
Processors with at Most Two Types of Nodes

Victor Mitrana1,� and Bianca Truthe2

1 Faculty of Mathematics, University of Bucharest
Str. Academiei 14, 70109 Bucharest, Romania

and
Department of Information Systems and Computation

Technical University of Valencia,
Camino de Vera s/n. 46022 Valencia, Spain

mitrana@fmi.unibuc.ro
2 Faculty of Computer Science, University of Magdeburg

P.O.Box 4120, 39016 Magdeburg, Germany
truthe@iws.cs.uni-magdeburg.de

Abstract. In this paper we investigate the computational power of ac-
cepting networks of evolutionary processors (ANEP for short) with filters
defined in two ways: by regular sets and random contexts conditions, re-
spectively. We consider ANEPs with all the nodes specialized in only
one evolutionary operation (substitution, insertion and deletion) or in
two operations out of these three.

1 Introduction

Motivated by some models of massively parallel computer architectures (see [1],
[2]), networks of language processors have been introduced in [3]. Such a network
can be considered as a graph where the nodes are sets of productions and at any
moment of time a language generated by these productions is associated with
every node.

Inspired by biological processes, a different variant of network of language pro-
cessors which is called network with evolutionary processors has been introduced
in [4]. The productions of the nodes in a network with evolutionary processors
might be viewed as formal specifications of the point mutations known from
biology. Each node is associated with a set of rules and all rules of a node are
of the same type, namely either substitutions of one letter by another letter or
insertions of letters or deletions of letters; each node is then called substitution
node or insertion node or deletion node, respectively. The action of each node
on the data it contains is precisely defined. An implicit assumption is that ar-
bitrarily many copies of every word are available such that when a production
can be applied at two or more sites in a word the production is applied at each
site in different copies of the word.

� Work supported by the Alexander von Humboldt Foundation.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 588–600, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On ANEPs with at Most Two Types of Nodes 589

In [5], a characterization of the complexity class NP based on accepting net-
works of evolutionary processors was presented. In [6], it was shown that every
recursively enumerable language can be accepted by an accepting network of evo-
lutionary processors with 24 nodes and random context filters. Such a network
contains all types of nodes.

Accepting networks of evolutionary processors with regular filters were first
investigated in [7], where only networks without insertion nodes were considered.
In [8], the generative capacity of networks with regular filters and only two types
of nodes was studied. In the present paper, we try to complete the picture of
computational power of ANEPs with at most two types of nodes.

2 Some Notations and Definitions

Throughout the paper we assume that the reader is familiar with the basic
notions of the theory of formal languages. We here only recall some notation
and notions as they are used in the paper.

An alphabet is a finite and nonempty set of symbols. The cardinality of a finite
set A is written card(A). Any sequence of symbols from an alphabet V is called
word over V . The set of all words over V is denoted by V ∗ and the empty word
is denoted by ε. A language over V is a subset of V ∗.

The length of a word x is denoted by |x| while alph(x) denotes the (with
respect to inclusion) minimal alphabet W such that x ∈ W ∗.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both a
and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule if
a = ε and b �= ε. The set of all substitution, deletion, and insertion rules over an
alphabet V are denoted by SubV , DelV , and InsV , respectively.
Given a rule σ as above and a word w ∈ V ∗, we define the following actions of σ
on w:

• If σ ≡ a → b ∈ SubV , then σ∗(w) =
{
{ubv | ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{
{uv | ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{
{u | w = ua},
{w}, otherwise σl(w) =

{
{v | w = av},
{w}, otherwise

• If σ ≡ ε → a ∈ InsV , then

σ∗(w) = {uav | ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

The action α ∈ {∗, l, r} expresses the way of applying a substitution, a deletion
or an insertion rule to a word, namely at any position (α = ∗), in the left
(α = l), or in the right (α = r) end of the word, respectively. For every rule σ,
any action α ∈ {∗, l, r}, and any L ⊆ V ∗, we define the α-action of σ on L by
σα(L) =

⋃
w∈L

σα(w). Given a finite set of rules M , we define the α-action of M

on the word w and the language L by:

590 V. Mitrana and B. Truthe

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local DNA mutations.

If θ : V ∗ −→ {0, 1} is a predicate and L ⊆ V ∗, we write θ(L) = L ∩ θ−1(1).
We are interested in some special predicates. For two disjoint subsets P and F

of an alphabet V , a regular set R over V , and a word x over V , we define the
predicates

θs,P,F (x) = 1 if and only if P ⊆ alph(x) and F ∩ alph(x) = ∅,
θw,P,F (x) = 1 if and only if alph(x) ∩ P �= ∅ and F ∩ alph(x) = ∅,
θR(x) = 1 if and only if x ∈ R.

The conditions of the first two predicates is based on random context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the first condition requires (s stands for strong) that
all permitting symbols are and no forbidding symbol is present in x, while the
second (w stands for weak) is a weaker variant such that at least one permit-
ting symbol appears in x but still no forbidding symbol is present in x. We call
these two predicates random context predicates. The third predicate asks for
membership in a regular set, and is called a regular predicate.

An evolutionary processor over V is a tuple (M, ϕ, ψ), where:

– M is either a set of substitution, deletion, or insertion rules over the
alphabet V ; formally, M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M rep-
resents the set of evolutionary rules of the processor. As one can see, a processor
is “specialized” in one evolutionary operation, only,

– ϕ is the input predicate, while ψ is the output predicate of the processor.
Informally, these two predicates work as filters. A word w can enter or leave the
processor, if it satisfies the predicate ϕ(w) or ψ(w), respectively.

An evolutionary processor (M, ϕ, ψ) is non-inserting, if M is either a set of
substitution or deletion rules, it is non-deleting, if M is either a set of substitution
or insertion rules, it is non-substituting, if M is either a set of insertion or deletion
rules. Further, a node is an insertion, a deletion, or a substitution node, if M ⊆
InsV , or M ⊆ DelV , or M ⊆ SubV , respectively. The set of all evolutionary
processors is denoted by EPV . The set of all non-inserting, non-deleting, non-
substituting, insertion, deletion, and substitution processors over V is denoted
by NIEPV , NDEPV , NSEPV , IEPV , DEPV , or SEPV , respectively.

We are interested in two types of filters: filters defined by random context
conditions and filters defined by regular set conditions. An evolutionary pro-
cessor X ∈ {NIEPV , NDEPV , NSEPV , IEPV , DEPV , SEPV } is called a random
context X processor, denoted by rcX , if its both predicates are of the form θs,P,F

or of the form θw,P,F for certain disjoint subsets P and F of V . Such a processor
is called regular processor, denoted by regX if its both predicates are of the
form θR for some regular set R ⊆ V ∗.

On ANEPs with at Most Two Types of Nodes 591

An accepting network of evolutionary processors (ANEP for short) is a 7-tuple
Γ = (V, U, G, N, α, xIn , Out), where:

– V and U are the input and network alphabet, respectively, satisfying V ⊆ U .
– G = (XG, EG) is an undirected graph without loops with the set of vertices

XG and the set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPV is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, ϕx, ψx).
– α : XG −→ {∗, l, r} is a mapping which associates with each node a type

of action; α(x) gives the action mode of the rules of node x on the words
existing in that node.

– xIn ∈ XG is the input node of Γ .
– Out ⊂ XG is the set of output nodes of Γ .

In a similar way one can define the accepting networks of non-inserting,
non-deleting, non-substituting, insertion, deletion, and substitution processors
denoted by ANNIEP, ANNDEP, ANNSEP, ANIEP, ANDEP, and ANSEP, re-
spectively.

An accepting network as above is a random context or regular network if all
its processors are random context or regular, respectively.

We say that card(XG) is the size of Γ . A configuration of an ANEP Γ as
above is a mapping C : XG −→ 2V ∗

f which associates a finite set of words
with every node of the graph. A configuration may be understood as the sets of
words which are present in any node (or in the associated processor) at a given
moment. Given a word z ∈ V ∗, the initial configuration of Γ on z is defined by
C

(z)
0 (xIn) = {z} and C

(z)
0 (x) = ∅ for all x ∈ XG \ {xIn}.

A configuration can change either by an evolutionary step or by a communica-
tion step. When changing by an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C′, if and only if

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x provided that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C 1 C′, if and only if

C′(x) = (C(x) − ψx(C(x))) ∪
⋃

{x,y}∈EG

(ψy(C(y)) ∩ ϕx(C(y))) for all x ∈ XG.

Note that words that cannot pass the output filter of a node remain in that
node and can be further modified in the subsequent evolutionary steps, while

592 V. Mitrana and B. Truthe

words that can pass the output filter of a node but cannot pass the input filter
of any node are lost.

Let Γ be an ANEP, the computation of Γ on the input word z ∈ V ∗ is a
sequence of configurations C

(z)
0 , C

(z)
1 , C

(z)
2 , . . . , where C

(z)
0 is the initial configu-

ration of Γ on z, C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 1 C

(z)
2i+2, for all i ≥ 0. Note that the

configurations are changed by alternative steps. By the previous definitions, each
configuration C

(z)
i is uniquely determined by the configuration C

(z)
i−1. A compu-

tation halts (and it is said to be weak (strong) halting) if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in at least
one output node (all output nodes) is non-empty. In this case, the computation
is said to be a weak (strong) accepting computation.

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.

The languages weakly or strongly accepted by Γ are defined as

Lwa(Γ) = {z ∈ V ∗ | the computation of Γ on z is a weak accepting} and
Lsa(Γ) = {z ∈ V ∗ | the computation of Γ on z is strong accepting}.

In the theory of networks, some types of underlying graphs are common like
rings, stars, grids, etc. Networks of evolutionary words processors, seen as lan-
guage generating or accepting devices, with underlying graphs having these spe-
cial forms have been considered in several papers, see, e. g., [9] for an early survey.
We focus here on complete networks i. e., networks having a complete underlying
graph. Therefore, in what follows we replace the graph G in the definition of an
accepting network by the set of its nodes usually denoted by χ.

Moreover, we present an evolutionary network by its nodes x and the param-
eters corresponding to x, where instead of ϕβ,PIx,FIx and ψβ,POx,FOx , in case of
random context processors, and instead of ϕRx and ϕR′

x for regular processors,
we only mention PIx, F Ix, POx, FOx, β and Rx, R′

x, respectively.
For an accepting mode x ∈ {wa, sa}, a type y ∈ {rc, reg} of filters, and

Z ∈ {ANNIEP, ANNDEP, ANNSEP, ANIEP, ANDEP, ANSEP}, by Lx(yZ) we
denote the set of all languages which can be weakly/strongly accepted by net-
works of type Z with filters of type y. Note that we ignore the empty word when
we define a language and the empty set when we define a class of languages.

3 Computational Power of Random Context Networks

3.1 Networks with Substitution Nodes

We start this section by establishing a relationship between the two classes
Lwa(ANSEP) and Lsa(ANSEP). As it was expected, we have

Theorem 1. Lwa(rcANSEP) ⊆ Lsa(rcANSEP).

On ANEPs with at Most Two Types of Nodes 593

Proof. Actually, we prove a bit more general result, namely that for every
ANSEP Γ there exists an ANSEP Γ ′ with one output node only and

Lwa(Γ) = Lwa(Γ ′) = Lsa(Γ ′).

Without loss of generality, we assume that the set of rules in every output node
of Γ is empty and that all its filter types are strong. Indeed, if the filter type
of one node is a weak one with P its input set of permitting symbols and F its
input set of forbidding symbols, then this node can be replaced by 2card(P) − 1
output nodes, each of them having a strong filter type where the input set of
permitting symbols is a nonempty subset of P and the input set of forbidding
symbols is F , respectively. Further on, the output set of permitting and forbid-
ding symbols of every such node is {Z} and the empty set, respectively, where
Z is a new symbol. Now, in order to get Γ ′, we add one more node to Γ , which
is the unique output node of Γ ′. This node can receive only those words con-
taining the new symbol Z. We now associate with each output node of Γ a set
of substitution rules formed by one substitution only, namely X → Z, where X
is an arbitrary symbol from the input set of permitting symbols of that node
applied in the ∗ mode (if the input set of permitting symbols is empty, we take
all substitution rules X → Z with X from the network alphabet). $%

The class of languages computed by rcANSEPs is rather strange because it con-
tains all regular languages over the unary alphabet, non-context-free languages
but there are even singleton languages that fail to be accepted in any way by
rcANSEPs.

The last assertion is immediate as any rcANSEP accepting a word of the form
axb, where a and b are not necessarily equal, but x is a word of length at least
two containing two distinct symbols, accepts also all words ayb with y being an
arbitrary permutation of x.

Theorem 2. The class Lwa(rcANSEP) is closed under union.

Proof. According to [7], the class Lwa(rcANNIEP) is closed under union. There,
for two networks Γ1 and Γ2, a network Γ is constructed using the networks
Γ1, Γ2 and three additional substitution nodes such that Γ weakly accepts the
language Lwa(Γ1)∪Lwa(Γ2). If both networks Γ1 and Γ2 have only substitution
nodes, then also Γ has only substitution nodes. $%

Theorem 3. Every language R that is commutative and semi-linear can be
weakly accepted by an rcANSEP.

Proof. For every commutative, semi-linear language R ⊆ {a1, a2, . . . , ad}∗, there
exist natural numbers n ≥ 1, ri ≥ 0 for 1 ≤ i ≤ n and d-dimensional vectors pi

and qi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ ri such that

R = ψ−1(
n⋃

i=1

{pi +
ri∑

j=1

αi,jqi,j | αi,j ∈ N for 1 ≤ j ≤ ri})

594 V. Mitrana and B. Truthe

where ψ is the Parikh mapping. For 1 ≤ i ≤ n, let

Hi = {api1
1 a

pi2
2 . . . a

pid

d a
αi,1qi,11
1 a

αi,1qi,12
2 . . . a

αi,1qi,1d

d a
αi,ri

qi,ri 1
1 . . . a

αi,ri
qi,ri d

d

| αi,j ∈ N, 1 ≤ j ≤ ri}.

Then, R =
n⋃

i=1
COMM (Hi) where COMM (Hi) is the commutative closure of

Hi. An rcANSEP accepting Hi, for some 1 ≤ i ≤ n, can be constructed that
contains ri + 1 subnetworks. A subnetwork substitutes pi1 occurrences of a1 in
the input word by the symbols (a1, pi1, 1), (a1, pi1, 2), . . . , (a1, pi1, pi1), then pi2
occurrences of a2 by the symbols (a2, pi2, 1), (a2, pi2, 2), . . . , (a2, pi2, pi2) and so
on. The derivation is not successful if the aks are consumed before (ak, pik, pik)
is written (1 ≤ k ≤ d).

Then the subnetwork for a number j, 1 ≤ j ≤ ri is choosen. This sub-
network receives words containing the symbols (a1, pi1, 1), . . . , (ad, pid, pid) and
possibly ā. It substitutes qi,jk occurrences of ak by the symbols (a′

k, qi,jk, 1),
(a′

k, qi,jk, 2), . . . , (a′
k, qi,jk, qi,jk) for k = 1, . . . , d as shown before. As soon as

a word contains the symbols (a′
k, qi,jk, qi,jk) for 1 ≤ k ≤ d, it enters a desig-

nated node where all these symbols are replaced by ā. The obtained word is now
again an “input” for some subnetwork for a number j′ until no occurrence of ak,
1 ≤ k ≤ d is observed in the current word.

The output node of the network can receive only those words without any
occurrence of a1, . . . , ad but containing a symbol (ad, qi,jd, qi,jd) for some number
j ∈ {1, 2, . . . , ri}. The network informally described here weakly accepts Hi.

By Theorem 2 (closure under union), there is also an rcANSEP that accepts
the language R. $%

Corollary 1. Every regular language R over a unary alphabet can be weakly
accepted by an rcANSEP.

Proposition 1. The class Lwa(rcANSEP) contains non-context-free languages.

Proof. We consider the language L = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c} which
is not context-free. We explain how this language can be weakly accepted by an
rcANSEP. Exactly one occurrence of a, b, and c, in this order, is replaced by a′,
b′, c′, respectively. Words containing c′ enter a node where the all the primed
symbols are substituted by barred copies. Now the process resumes. When a
word contains only barred symbols, it can enter the output node. $%

3.2 Networks with Deletion Nodes

The results on the computational power of rcANDEPs we present in this sec-
tion are rather similar to those presented in the previous section. Namely, we
show that non-context-free languages can be weakly and strongly accepted by

On ANEPs with at Most Two Types of Nodes 595

rcANDEPs but there are singleton languages that cannot be accepted in any
mode by any rcANDEP.

Proposition 2. The classes Lwa(rcANDEP) and Lsa(rcANDEP) contain non-
context-free languages.

Proof. Let Γ be the following rcANDEP over the input alphabet {a, b, c, d, #}
with one output node only:

xIn :

⎧⎪⎪⎨⎪⎪⎩
M = {a → ε},
PI = {a, b, c, d, #},FI = ∅,
PO = ∅,FO = ∅,
α = ∗, β = s,

x1 :

⎧⎪⎪⎨⎪⎪⎩
M = {b → ε},
PI = {b, c, d, #},FI = ∅,
PO = ∅,FO = ∅,
α = ∗, β = s,

x2 :

⎧⎪⎪⎨⎪⎪⎩
M = {c → ε},
PI = {c, d, #},FI = {a, b},
PO = ∅,FO = ∅,
α = ∗, β = s,

x3 :

⎧⎪⎪⎨⎪⎪⎩
M = {d → ε},
PI = {d, #},FI = {a, b},
PO = ∅,FO = ∅,
α = ∗, β = s,

xOut :

⎧⎪⎪⎨⎪⎪⎩
M = ∅,
PI = {#},FI = {a, b, c, d},
PO = ∅,FO = ∅,
α = ∗, β = s.

Let x be an input for this network. We assume that x contains all the letters
of the alphabet {a, b, c, d, #}. In the input node xIn , an arbitrary occurrence
of a is deleted from x. All words obtained in this way are then received by x1,
where an arbitrary occurrence of b is deleted. All these words move to xIn again
if a and b still occur. This “ping-pong” process continues until no occurrence
of a and b is observed in the current word. If |x|a = |x|b, then the process of
removing all occurrences of a and b is successful, while this process will eventually
get stuck provided that |x|a �= |x|b. Now all the words obtained from x by a
successful process as above collapsed into only one word, say y, which contains
occurrences of c, d and # only. This word enters simultaneously x2 and x3,
where an occurrence of c and d is deleted, respectively. Again a “ping-pong”
game between the nodes x2 and x3 similar to that presented above takes place.
All occurrences of c and d of y can be successfully deleted if and only if either
|x|c = |x|d or |x|d = |x|c + 1. After they were successfully removed, the resulting
word enters xOut and the computation ends by accepting the input word x. It
follows Lwa(Γ)∩a+c+b+#d+ = {ancmbn#dp | n, m ≥ 1, (p = m)∨(p = m+1)},
which implies that Lwa(Γ) is not context-free. Moreover, Lwa(Γ) = Lsa(Γ)
holds, which completes the proof. $%

We finish this section with the following result.

Theorem 4. A language over the unary alphabet is weakly/strongly accepted by
an rcANDEP if and only if it is one of these languages: {a}, {aa}, {a}{a}∗, or
{aa}{a}∗.

596 V. Mitrana and B. Truthe

Proof. The reader can easily find rcANDEPs that weakly/strongly accept each
of the languages mentioned in the statement.

Conversely, one can easily prove that an rcANDEP having exactly one deletion
node (except the output ones) can accept {a}, {a}{a}∗, or {aa}{a}∗. Further
on, every rcANDEP with at least two deletion nodes (except the output ones)
can accept one of the languages {a}, {aa}, {a}{a}∗, or {aa}{a}∗. $%

Corollary 2. Neither the class Lwa(rcANDEP) nor Lsa(rcANDEP) is closed
under union.

3.3 Networks with Insertion Nodes

This case is pretty simple and can be solved completely. As far as the computa-
tional power of rcANIEPs is concerned, we can characterize precisely the class
of languages computed by these networks.

Theorem 5. A language L over the alphabet V is weakly/strongly accepted by
an rcANIEP if and only if there are the subsets V1, V2, . . . , Vn of V , for some
n ≥ 1, not necessarily pairwise disjoint, such that

L =
n⋃

i=1

{x ∈ V +
i | |x|a ≥ 1, for all a ∈ Vi}.

Proof. It is plain that the language
n⋃

i=1

{x ∈ V +
i | |x|a ≥ 1, for all a ∈ Vi} can be

weakly accepted by an rcANIEP for any subsets V1, V2, . . . , Vn of an alphabet V .
The converse statement follows immediately as soon as we note that if a word z
is weakly/strongly accepted by an rcANIEP Γ , then all words of the language
{x ∈ alph(z)+ | |x|a ≥ 1, for all a ∈ alph(z)} are also accepted by Γ . $%

From Theorem 5, we obtain the following results.

Corollary 3. Lwa(rcANIEP) = Lsa(rcANIEP).

Corollary 4. Both classes Lwa(rcANIEP) and Lsa(rcANIEP) are closed under
union.

3.4 Networks with Non-insertion Nodes

Networks with substitution and deletion nodes only have been studied by J. Das-
sow and V. Mitrana in [7]. Here, we recall only two results.

Theorem 6. ([7])

1. Lwa(rcANNIEP) ⊆ Lsa(rcANNIEP) ⊆ L(CS).
2. The class Lwa(rcANNIEP) contains all linear context-free languages and non-
semi-linear languages.

On ANEPs with at Most Two Types of Nodes 597

3.5 Networks with Non-substitution Nodes

Similar to Theorem 1 we can prove that Lwa(rcANNSEP) ⊆ Lsa(rcANNSEP)
(instead of substitution rules, we use insertion rules in the output nodes). The ad-
dition of insertion nodes brings more computational power to rcANDEPs as well
as the addition of deletion nodes brings more computational power to rcANIEPs.
The proofs of the next two results are skipped by limited space reason.

Proposition 3. For every k ≥ 1, the language Lk = {an | 1 ≤ n ≤ k} belongs
to Lwa(rcANNSEP).

Two networks Γ1, Γ2 can be combined with additional nodes to a network Γ
such that a word is accepted by Γ if and only if it is accepted by Γ1 or Γ2.

Theorem 7. The class Lwa(rcANNSEP) is closed under union.

3.6 Networks with Non-deletion Nodes

We can show the following result by the same proof as for Theorem 1 since the
constructed network differs from the original one only in substitution nodes.

Theorem 8. Lwa(rcANNDEP) ⊆ Lsa(rcANNDEP).

Analogously to Theorem 2, we can show

Theorem 9. The class Lwa(rcANNDEP) is closed under union.

ND

S = NI

��

NS

��

D

��������
�������

I

��

Fig. 1. Hierarchy

Let A = {a} be a unary input alphabet. Let I, D, S,
NI, ND, and NS be the set of all languages weakly
accepted by an insertion network over the alphabet
A, by a deletion network, by a substitution network,
by a non-inserting network, by a non-deleting net-
work, and by a non-substituting network, respec-
tively.

By the Theorems 5 and 4, Corollary 1, Proposi-
tion 3, we obtain the inclusions shown in Figure 1.

A (solid) arrow stands for (proper) inclusion. The
sets NI and NS are not necessarily uncomparable.

4 Computational Power of Regular Networks

4.1 Networks with Non-insertion Nodes

In [7], it was shown that regular networks with only substitution and deletion
nodes always accept context-sensitive languages and that every context-sensitive
language can be accepted by such a network where the number of nodes depends
linearly in the number of rules necessary for generating the language. Here, we
show that one substitution node alone is sufficient.

598 V. Mitrana and B. Truthe

Theorem 10. For any context-sensitive language L, there is an accepting reg-
ular network Γ with exactly one substitution node and one output node without
rules that weakly and strongly accepts the language L.

Proof. Let L be a context-sensitive language and G = (N, T, P, S) be a grammar
in Kuroda normal form with L(G) = L. Let R1, R2, . . . , R8 be the following sets
(A, B, C, D denote non-terminal symbols):

R1 = { x → xp,0, xp,0 → A | A → x ∈ P, A ∈ N, x ∈ N ∪ T } ,
R2 = { C → Cp,1 | p = A → CD ∈ P or p = AB → CD ∈ P } ,
R3 = { D → Dp,2 | p = A → CD ∈ P or p = AB → CD ∈ P } ,
R4 = { Cp,1 → Cp,3 | p = A → CD ∈ P or p = AB → CD ∈ P } ,
R5 = { Dp,2 → Dp,4 | p = A → CD ∈ P or p = AB → CD ∈ P } ,
R6 = { Cp,3 → A | p = A → CD ∈ P or p = AB → CD ∈ P } ,
R7 = { Dp,4 → B | p = AB → CD ∈ P } ,
R8 = { Dp,4 → | p = A → CD ∈ P } .

We construct a network Γ of with the input alphabet T , the network alphabet

V = N ∪ T ∪ { }
⋃

p=A→x

{xp,0 } ∪
⋃

p=A→CD
p=AB→CD

{Cp,1, Dp,2, Cp,3, Dp,4 }

and two nodes. The input node is (M1, ∅, O1) with

M1 = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6 ∪ R7 ∪ R8, and

O1 = { }∗{S}{ }∗ ∪ {ε} ∪ V ∗ \ ((N ∪ T ∪ { })∗O(N ∪ T ∪ { })∗),

where

O = { ε } ∪ { xp,0 | p = A → x ∈ P, A ∈ N, x ∈ N ∪ T }
∪ { Cp,1 | p = A → CD ∈ P or p = AB → CD ∈ P }
∪ { Cp,1ωDp,2 | p = A → CD ∈ P or p = AB → CD ∈ P, ω ∈ { }∗ }
∪ { Cp,3ωDp,2 | p = A → CD ∈ P or p = AB → CD ∈ P, ω ∈ { }∗ }
∪ { Cp,3ωDp,4 | p = A → CD ∈ P or p = AB → CD ∈ P, ω ∈ { }∗ }
∪ { AωDp,4 | p = A → CD ∈ P or p = AB → CD ∈ P, ω ∈ { }∗ } .

The output node is (∅, I2, ∅) with I2 =

{
{ }∗{S}{ }∗ ∪ {ε} if ε ∈ L,

{ }∗{S}{ }∗ otherwise.
The network Γ has only one output node. Therefore, there is no difference

between weak and strong acceptance.
By a case distinction on the rules of G, one can prove that any derivation

w =⇒∗ v with v �= ε of the grammar G can be simulated by the network Γ
in reverse direction (by a reduction v =⇒∗ w) and, on the other hand, a word
v ∈ N ∪ T can only be transformed into a word w ∈ N ∪ T if the derivation
w =⇒∗ v exists in G. Since a substitution node cannot delete letters, we replace
letters by the symbol instead. When simulating a derivation w =⇒ v in G, we
have to take into account that the corresponding word in the substitution node
may contain gaps in form of several occurrences of the special symbol . $%

On ANEPs with at Most Two Types of Nodes 599

4.2 Networks of Non-deleting Nodes

The main difference between context-sensitive and non-context-sensitive gram-
mars is that, in arbitrary phrase structure grammars, erasing rules are allowed.
In order to simulate an erasing rule in reverse direction, we introduce an insertion
node.

Theorem 11. For any recursively enumerable language L, there is an accepting
network of evolutionary processors with exactly one substitution node, one inser-
tion node and one output node without rules that weakly and strongly accepts the
language L.

Proof. The idea of the proof is to extend the network Γ constructed in the
proof of Theorem 10 by an inserting processor who is responsible for the reverse
simulation of erasing rules. Between two simulation phases, the substitution node
can mark a symbol such that the word can leave the node and enter the insertion
node. This processor inserts a non-terminal that belongs to an erasing rule and
returns the word to the substitution node. This processor then has to unmark
the primed symbol. If marking or unmarking is not performed in the correct
moment, the word will be lost. $%

4.3 Networks without Substitution Processors

In [8], we have shown that every recursively enumerable language can be gener-
ated by a network of one inserting processor and one deleting processor. Similar
to the proof of that statement, we can prove the following result.

Theorem 12. For any recursively enumerable language L, there is an accepting
network of evolutionary processors with exactly one deletion node, one insertion
node and one output node without rules that weakly and strongly accepts the
language L.

Acknowledgements. We thank Jürgen Dassow for stimulating discussions and
ideas on this topic.

References

1. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)
2. Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI:

NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on AI,
pp. 109–113. Morgan Kaufmann, Los Altos (1983)

3. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp.
299–318. Springer, Heidelberg (1997)

4. Castellanos, J., Mart́ın-Vide, C., Mitrana, M., Sempere, J.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)

600 V. Mitrana and B. Truthe

5. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of
evolutionary processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004.
LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

6. Manea, F., Mitrana, V.: All NP-problems can be solved in polynomial time by
accepting hybrid networks of evolutionary processors of constant size. Information
Processing Letters, 112–118 (2007)

7. Dassow, J., Mitrana, V.: Accepting networks of non-inserting evolutionary proces-
sors. In: Petre, I., Rozenberg, G. (eds.) Proceedings of NCGT 2008 – Workshop
on Natural Computing and Graph Transformations, Leicester, United Kingdom,
September 8, 2008, pp. 29–41. University of Leicester (2008)

8. Alhazov, A., Dassow, J., Mart́ın-Vide, C., Rogozhin, Y., Truthe, B.: On networks
of evolutionary processors with nodes of two types. Fundamenta Informaticae (in
press, 2009)

9. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and per-
spectives. In: Molecular Computational Models: Unconventional Approaches, pp.
78–114. Idea Group Publishing, Hershey (2005)

The Halting Problem and Undecidability of
Document Generation under Access Control for

Tree Updates

Neil Moore

University of Kentucky, Department of Computer Science
Lexington, Kentucky 40506-0046

neil@cs.uky.edu

Abstract. We show by reduction from the halting problem for Turing
machines that typical rule-based models of fine-grained access control of
trees make impossible certain forms of analysis, limiting the ability to
audit existing policies and evaluate new ones. Fine-grained access control
is the problem of specifying the set of operations that may be performed
on a complex structure. For tree-structured databases and documents,
particularly XML, a rule-based approach is most common. In this model,
access control policies consist of rules that select the allowed or disallowed
targets of queries based on their hierarchical relationships to other nodes.

We consider the problem of determining whether a given document
(that is, a rooted vertex-labelled tree) could have been produced in ac-
cordance with a particular access control policy for updates. We show
that, for rule-based policies based on a simple fragment of XPath, this
problem is undecidable. This result shows that rule-based access con-
trol policies based on XPath languages are, in some sense, too powerful,
demonstrating the need for a model of access control of tree updates that
bridges the gap between expressive and analyzable policies.

1 Motivation and Related Work

In the past few years the topic of fine-grained access control (FGAC) for hier-
archical structures has been heavily studied, particularly in the context of Ex-
tensible Markup Language (XML) [1] documents. The problem is to specify and
enforce an access control policy that determines which portions of a document
or collection of documents may be queried or modified by particular users.

A rule-based approach is prevalent in the literature [2,3,4]: in this model, an
access control policy comprises a collection of rules. Each rule permits or
denies a user, group, or role (the subject) to use a particular kind of operation
on certain parts of the document (the object). Objects are typically nodes
or subtrees of the document, specified with a language of path expressions,
usually XPath [5] or some fragment thereof [6,7].

While most of the early research on FGAC for XML focused on query op-
erations [2,3,8], there has more recently been work in applying FGAC to up-
date operations [9,10,11,12]. Two problems have been particularly well-studied:

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 601–613, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

602 N. Moore

specifying and formalizing the semantics of FGAC policies [4,12,13,14], and safely
and efficiently enforcing these policies [2,11]. We consider another problem, re-
lated to the analysis of policies: to determine a posteriori whether a document
could have been constructed under a given access control policy. This prob-
lem, which we call PolicyGenerates, is motivated by a number of database
administration and collaborative editing scenarios. For example, an administra-
tor might wish to audit a document by verifying that it was (or at least could
have been) created under the existing policy; this is particularly important when
logs of previous operations are missing or unavailable. Another application is to
evaluate a proposed policy change, by verifying that existing documents could
be reconstructed under the policy. Finally, an algorithm for PolicyGenerates
would allow administrators to verify that particular undesirable document states
are disallowed: that is, that the policy does not generate particular trees. We
will show in Section 3 that this problem is undecidable.

2 Definitions

We begin with a collection of definitions. We use the term “tree” to refer to a
rooted unordered tree, with nodes bearing a labels from some given set L.

Definition 1. An operation on a tree T is a tuple having the form (insert, µ, �),
(rename, ν, �), or (delete, ν), where ν is a node of T , µ is either ε or a node of
T , and � is a label. The second member of an operation (µ or ν) is called its
target.

Definition 2. The result O(T) of an operation O on tree T is:

– If O = (insert, ν, �), the tree obtained from T by adding a single additional
node labelled � as a child of ν.

– If O = (insert, ε, �) and T is empty, the tree with a single node labelled �.
– If O = (insert, ε, �) and T is not empty, T .
– If O = (rename, ν, �), the tree obtained from T by giving node ν the label �.
– If O = (delete, ν), the tree obtained by removing the subtree rooted at ν.

The result of a sequence of operations 〈o1, . . . , on〉 on a tree T is the tree
on(on−1(· · · o1(T) · · ·)).

Remark 1. Our operations are loosely based on those of XUpdate [15]. The
rename and delete operations are unchanged from their counterparts in XUp-
date. Insert serves as an order-insensitive version of the XUpdate operations
InsertBefore, InsertAfter, and Append. Furthermore, unlike in XUpdate, insert
adds only a single node at a time; more complicated insertions can be accom-
plished by a sequence of operations We do not include an replace operation, as
its effects can be duplicated by a sequence of insert and delete operations.

Rules in FGAC policies identify potential targets of operations by means of
path expressions. Typically, path expressions are expressed in XPath [5] or

The Halting Problem and Undecidability of Document Generation 603

some XPath fragment such as Core XPath or XPattern [16]. Our rules will use
the XP{[],∗,//} fragment of XPath, containing predicates, path expressions, and
the child and descendant axes. This fragment of XPath has been particularly well
studied [6,7].

Briefly, a path expression consists of a sequence of location steps that select
nodes along the path from the root to the target according to their labels. If
a location step is preceded by /, it selects (appropriately-labelled) children of
the preceding node; if preceded by //, it selects descendants of that node. A
location step may be followed by a number of predicates, each a path expression
surrounded by square brackets []; the location step selects a node only if each
predicate selects some descendant of that node. Some examples:

– /∗ selects the root node, regardless of its name.
– //m selects every node labelled m.
– /w/x//y selects every y descendant of an x child of the root w node.
– //x[∗/q]/z selects every z node that is the child of some x node that has a

grandchild q.

Definition 3. An access control rule is a tuple with the form (s, insert, P, L),
(s, delete, P), or (s, rename, P, L), where: s is either + (positive) or − (nega-
tive); P is a path expression (possibly the empty path expression ε); and L is
either a label or the symbol ∗, matching all labels.

Definition 4. A rule R matches the operation O on tree T , written R ∼T O,
if and only if one of the following holds:

– R = (s, insert, ε, L), O = (insert, ε, �), T is empty, and either L = � or L = ∗;
– R = (s, insert, P, L), O = (insert, ν, �), P selects ν in T , and L is � or ∗;
– R = (s, rename, P, L), O = (rename, ν, �), P selects ν in T , and L is � or ∗;

or
– R = (s, delete, P), O = (delete, ν), and P selects ν in T .

Definition 5. A positive rule R with path expression P is active on tree T if
it matches some possible operation on T : that is, if P (T) is not the empty set;
or if T is the empty tree, P = ε, and R is an insert rule.

Definition 6. An access control policy is a finite set of access control rules.
The policy P permits the operation O on tree T , written P 1T O, if there exists
some positive rule R ∈ P such that R ∼T O and there does not exist a negative
rule R− ∈ P such that R− ∼T O.

If S = 〈o1, . . . , on〉 is a finite sequence of operations, we say that P permits
S on tree T (P 1T S) if P 1Ti−1 oi for each 1 ≤ i ≤ n, where T0 = T and
Ti = oi(Ti−1).

Remark 2. Our model uses “deny overwrites” and “default deny” conflict reso-
lution [4,14]: if an operation is matched by both positive and negative rules, or
is matched by no rule, it is not permitted.

604 N. Moore

Remark 3. In order to facilitate analysis of FGAC rules and policies, we have
made some simplifying assumptions. First, we disregard subjects in our model
of policies. Even when multiple users are present, many important questions can
be expressed in terms of subject-less policies, either by considering only rules
governing a particular subject, or by considering all rules regardless of subject.
Secondly, we treat documents and databases as unordered trees. Our results may
be easily extended to policies containing multiple subjects, and to ordered trees.

With these preliminary definitions out of the way, we may now formally define
the problem PolicyGenerates.

Definition 7. A policy P generates the tree T if there exists some finite se-
quence of operations S such that P 1T0 S and S(T0) = T , where T0 is the empty
tree. The problem PolicyGenerates is the set of pairs (P , T) such that P
generates T .

3 Undecidability of PolicyGenerates

We will prove that, in our model of FGAC policies for tree updates, Policy-
Generates is undecidable. Our proof proceeds by reduction from the halting
problem for Turing machines. We will show how to encode a Turing machine M
and initial tape S as an access control policy PM,S such that PM,S generates a
particular tree Thalt if and only if M halts on input S.

We represent a Turing machine as a 7-tuple of a set of states, an initial state,
a set of final (accepting) states, a tape alphabet, an input alphabet, a blank
symbol, and a transition function.

M = (Q, q0 ∈ Q, QF ⊆ Q, Γ, Σ ⊂ Γ, b ∈ Γ \ Σ, δ)

We consider deterministic Turing machines with left and right moves only, where
no transitions are permitted from final states: that is, the transition function δ
maps from (Q \ QF) × Γ to Q × Γ × {L, R}. Furthermore, we assume the tape
is bounded on the left.

A configuration is a tuple (q, t, p) of a state q ∈ Q, a tape t ∈ Γ ∗, and a
tape position 1 ≤ p ≤ |t|. We write CM,S

0 for the initial configuration of Turing
machine M on input S, namely (q0, S, 1). We write ∆ for the function taking a
configuration to the succeeding configuration.

3.1 Modelling Turing Configurations as Trees

A tree generated by PM,S will represent a configuration of M , as well as addi-
tional bookkeeping information necessary to the simulation.

Definition 8. Let C = (q, t, p) be a configuration of the Turing machine M =
(Q, q0, QF , Γ, b, Σ, δ). The configuration tree of C, conftree(C), is the tree de-
scribed in Figure 1.

The Halting Problem and Undecidability of Document Generation 605

– a root node labelled tm;
– three children, labelled ph, state, and tape;
– one child of the ph node, labelled run;
– one child of the state node, labelled q;
– one child C1 of the tape node, labelled cell;
– each cell node Ci (1 ≤ i ≤ |t|) having:

• one child labelled sym, itself having a child la-
belled with the tape symbol t[i];

• if i < |t|, one child Ci+1 labelled cell;
• if i = p, one child labelled curr.

tm

state phase tape

q i run cell

sym

1γ

curr
cell

sym

2γ

Fig. 1. A configuration tree

3.2 The Policy PM,S

Let M = (Q, q0, QF , Γ, Σ, b, δ) be a Turing machine, and S = S1S2 . . . Sn ∈ Σ∗
an initial tape for M . The policy PM,S will simulate the action of M on input
S. It consists of the following rules and (finite) rule schemata.

(−, insert, /tm[ph], ph) (1)

(−, insert, /tm[state], state) (2)

(−, insert, /tm[tape], tape) (3)

(−, insert, /tm/ph[∗], ∗) (4)

(−, insert, /tm/state[∗], ∗) (5)

(−, insert, //∗[cell], cell) (6)

(−, insert, //cell[curr], curr) (7)

(−, insert, //cell[new], new) (8)

(−, insert, //cell[sym], sym) (9)

(−, insert, //sym[∗], ∗) (10)

(+, insert, ε, tm) (11)

(+, insert, /tm, ph) (12)

(+, insert, /tm/ph, build) (13)

(+, insert, /tm[ph/build], state) (14)

(+, insert, /tm[ph/build], tape) (15)

(+, insert, /tm[ph/build]/state, q0) (16)

(+, insert, /tm[ph/build]/tape, cell) (17)

(+, insert, /tm[ph/build]/tape/cell, curr) (18)

(+, insert, /tm[ph/build]/tape//cell, sym)
(19)

(+, insert, /tm[ph/build]/tape/cell/sym, S1)
(20)

For each i, 1 < i ≤ |S|, let “· · · ” stand for i−1 repetitions of the path fragment “/cell”:

(+, insert, /tm[ph/build]/tape · · ·, cell) (21)

(+, insert, /tm[ph/build]/tape · · · [sym/∗]/cell/sym, Si) (22)

And a single rule where “· · · ” represents |S| − 1 repetitions of the path fragment /cell:(
+, rename, /tm[state/q0][tape/cell[curr] · · · /sym/S|S|]/ph/build, run

)
(23)

For each final state qf ∈ QF :

(+, insert, /tm[ph/run][state/qf], finished) (24)

For (q, γ) ∈ (Q \ QF) × Γ , where δ(q, γ) = (q′, γ′, D):

(+, rename, /tm[state/q][tape//cell[curr][sym/γ]]/ph/run, write-q-γ) (25)(
+, rename, /tm[ph/write-q-γ]/tape//cell[curr]/sym/γ, γ′) (26)(
+, rename, /tm[ph/write-q-γ]/state/q, q′

)
(27)(

+, rename, /tm[state/q′][tape//cell[curr]/sym/γ′]ph/write-q-γ, move-q-γ
)

(28)

(+, delete, /tm[ph/move-q-γ][tape//new]/tape//curr) (29)

(+, rename, /tm[tape//cell/new]/ph/move-q-γ, cleanup) (30)

(−, rename, /tm[tape//cell/curr]/ph/move-q-γ, ∗) (31)

606 N. Moore

If D = L:

(+, insert, /tm[ph/move-q-γ]/tape//cell[cell/curr], new) (32)

Otherwise, D = R:

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr], cell) (33)

(+, insert, /tm[ph/move-q-γ]/tape//cell, sym) (34)

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr]/cell/sym, b) (35)

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr]/cell[sym/∗], new) (36)

Finally:

(+, rename, /tm[ph/cleanup]//new, curr) (37)

(+, rename, /tm[tape//curr]/ph/cleanup, run) (38)

(+, delete, /tm[finished]//∗) (39)

3.3 Simulation Phases

Our Turing machine simulation proceeds from one configuration tree to the next
by proceeding through a number of phases. The tree’s current phase is indicated
by the label of the child of the ph node. In each phase, a particular sequence of
operations is permitted, ending with a transition into the successor phase. There
are three independent phases build, run, and cleanup; and 2|Q \ QF | · |Γ | phases
that depend on the simulated machine’s state q and the contents γ of its current
tape cell; these phases are labelled write-q-γ and move-q-γ.

We begin by noting that the negative Rules 1–10 enforce certain constraints
on the tree. These structural rules ensure that there is only one copy of each
top-level node (ph, state, and tape); that the state and ph nodes have only a
single child each; that no tape cell contains two symbols or two successor tape
cells; and that no cell is marked as “current” or “new” twice.

At the beginning of our simulation, the tree is empty, and hence does not have
a phase. In this stage, we construct enough of the tree to enter the build phase.
Because every other positive rule in PM,S requires the existence of a child of the
/tm/ph node, only Rules 11–13 are active at this point. We therefore have the
following:

Lemma 1. Any sufficiently long sequence of operations that is permitted on the
null tree must pass through an intermediate tree containing exactly: a tm root,
one ph child of the root, and one build child of that node.

Remark 4. Because an operation that would insert a root node is not permitted
on a non-empty tree, Rule 11 can be used only once. Likewise, structural Rules
1 and 4 prevent Rules 12 and 13 from being activated again as long as the
tree contains a ph node. Hence we shall disregard Rules 11–13 in the following
lemmas.

Build Phase. In the build phase, we complete the initial configuration tree, in-
cluding the state and tape nodes and their descendants. At the end of this phase,
once the entire initial configuration tree is constructed, we permit transitioning
to the run phase.

The Halting Problem and Undecidability of Document Generation 607

Lemma 2. Any sufficiently long sequence of operations permitted on the null
tree must produce the tree conftree(CM,S

0) as an intermediate step.

Proof. Lemma 1 established that such a sequence of operations must produce as
an intermediate step a tree with a /tm/ph/build node, ph and tm ancestors, and
no other nodes. On such a tree, only Rules 14 and 15 permit further operations.

Once a state node has been inserted by Rule 14, Rule 16 permits inserting a
q0 child; Rules 2 and 5 ensure that at most one state node and one child of that
node are inserted.

After applying Rule 15 to insert a tape node, Rules 17–20 allow inserting a
cell child; curr and sym grandchildren; and a S1 child of the sym node. Once
the cell node has been inserted, the instances of Rule 21 allow inserting i − 1
cell descendants, each a child of the previous node. Rule 6 ensures that neither
the tape node nor the cell nodes may contain multiple cell children; and Rule 7
prevents applying Rule 18 again.

For each of the cell nodes, Rules 19 and 22 allow inserting sym children, and
grandchildren labelled with the appropriate symbol. Furthermore, the [sym/∗]
predicate in the latter rule ensures that no symbol is inserted until the previous
symbol (and hence all preceding symbols) are inserted.

Finally, Rule 23 allows renaming the build node to run, but only after the q0
node and last cell’s symbol (and hence all |S| symbols) have been inserted.

Since all other positive rules contain predicates which require that the ph
node contain some child other than build, these are the only rules that permit
operations before Rule 23 is applied. Along with the structural rules, this ensures
that any sequence of 3 + 2 + 1 + 4 + 3|S − 1| = 3|S| + 7 operations must result
in a tree where Rule 23 is the only applicable positive rule that is not blocked
by negative rules. Applying this rule results in precisely the tree conftree(CM,S

0).
Hence any permitted sequence of length 3|S| + 8 must yield this tree, and any
longer permitted sequence will produce this tree as an intermediate result. $%

Run Phase. The run phase represents a Turing machine configuration. This
phase can be entered from the build phase (Rule 23), or from the cleanup phase
(Rule 38). The only operations permitted in this phase are to rename the run
node to the next phase, one of the write phases; to insert a finished node if the
configuration is a final one; and to delete most of the tree when the finished node
is present.

Lemma 3. If C is not a final configuration (that is, its state is not a member of
QF), then exactly one operation is permitted on conftree(C), resulting in a tree
Tw, otherwise identical to conftree(C), but with a write-q-γ node replacing the
run node, where q is the state of C and γ is the symbol in the current tape cell
of C.

Proof. Other than Rules 11–13, which are blocked by structural rules, the only
positive rules whose predicates are satisfied by a tree in the run phase without a

608 N. Moore

finished node are instances of Rule schemata 25 and 24; only the former is active
for a non-final configuration. This rule transforms the tree into precisely Tw. $%

Write Phases. For each transition, that is to say each pair (q, γ) ∈ (Q\QF)×Γ ,
the phase write-q-γ allows changing the configuration tree’s state and current
tape symbol. It is followed by the move-q-γ and cleanup phases, where the posi-
tion of the tape head is adjusted.

Lemma 4. Let C be a Turing machine configuration with state q and current
symbol γ; let Tw be the tree resulting from Lemma 3; and let (q′, γ′, D) = δ(q, γ).
Any permitted sequence of operations on Tw that results in a tree without a
write-q-γ node must as an intermediate step pass through a tree Tm that differs
from Tw in that: the child of the ph node is labelled move-q-γ; the child of the
state node is labelled q′; and the child node of the sym sibling of the curr node is
labelled γ′.

Proof. In this phase, only Rules 26–28 are active. Only the last of these rules
permits renaming the write-q-γ node. This rule’s predicates allow it to be used
only if the state node has a child labelled q′ and the current tape cell node ζ has
a grandchild labelled γ′. These are precisely the state and tape value specified
by δ(q, γ).

Rule 27 permits renaming the state node q to q′; and Rule 26 permits renaming
the γ grandchild of ζ to γ′; since these are the only three active rules, no other
operations are permitted in this phase. Hence, immediately after applying Rule
28, the tree is precisely the described Tm. $%

Remark 5. Unlike in the other phases, it is not the case that any sufficiently long
sequence of operations leads to the next phase. If a cell is being re-written with
the same symbol, or the transition does not change the Turing machine state, is
possible to apply Rule 26 or 27 an arbitrary number of times. However, since in
this case the rule in question does not alter the tree, the result does not differ
from applying the rule only once.

Move Phases. When the move-q-γ phase is entered, the tree’s state and current
tape symbol have been updated. It remains to move the tape head, adding a new
cell if necessary. This is accomplished in two phases: in the move phase, we mark
the updated tape head position as “new” and remove the “current” mark. Then,
in the cleanup phase, we change the “new” mark to “current”.

Lemma 5. Let C = (q, t, p) be a Turing machine configuration; let Tm be the
tree resulting from Lemma 4; and let D be the directional component of δ(q, γ).

If the p = 1 and D = L (a hanging configuration), no operations are per-
mitted on Tm. Otherwise, let ζ be the cell node of Tm containing a curr child. Any
sufficiently long sequence of permitted operations of Tm must as an intermediate
step pass through the tree Tc that is otherwise identical to Tm, but without a
curr node, with the move-q-γ node replaced with cleanup node, and with changes
depending on D and p:

The Halting Problem and Undecidability of Document Generation 609

– If D = L and p > 1, then the parent of ζ in Tc contains a child labelled new.
– If D = R and p = |t|, then ζ in Tc contains a new cell child, containing two

children labelled new and sym, with the latter having a child node with the
blank cell label b.

– Otherwise, D = R and p < |t|; then the cell child of ζ in Tc contains a child
labelled new.

Proof. The positive rules active in this phase are instances of Rules 29 and 30;
if D = L, Rule 32; and if D = R, Rules 33–36. Furthermore, the negative Rules
6, 8, 9, 10, and 31 are relevant to the operation of this phase. Rules 29 and 30
are not active on Tm, because the tree contains no new node.

We consider separately the two directions in which the tape head may move.
If D = L, only Rule 32 is active on Tm. This rule permits inserting a new node
as a child of the parent cell node of ζ. If p = 1, the parent of ζ is the tape node;
hence no operations are permitted. Otherwise, after inserting the new node, Rule
8 prohibits inserting another such node; and Rule 29 becomes active. Once this
rule is used to delete the curr node, Rule 31 is no longer active, leaving Rule 30
as the only active rule; applying this rule renames the move-q-γ node to cleanup,
yielding Tc. Hence, any permitted sequence of three operations must yield Tc.

If D = R, there are two cases to consider. If p < |t|, only Rules 33 and Rule
36 are active; and because ζ has a cell child, Rule 6 prohibits inserting a node
with the former rule. Hence the only permitted operation is to insert a new child
of the cell child of ζ. After this, the argument from the D = L case applies: the
next operation must be to delete the curr node, then to rename the move-q-γ
node. Hence any permitted sequence of three operations must yield Tc.

If p = |t|, Rule 36 is not active, because ζ has no cell children. Thus the only
permitted operation is to insert a new cell child of ζ by Rule 33; Rule 6 prohibits
inserting more than one such node. After this node has been inserted, Rule 34
permits inserting a sym node (but only once because of Rule 9). Then Rule 35
allows inserting a blank symbol node b as a child of this node, but only once
because of Rule 10. Once these three operations have been performed, Rule 36
is active and the other rules inactive; then we may proceed as in the p < |t| case.
Hence any permitted sequence of six operations must yield Tc. $%

Cleanup Phase. After the write and move phases, the tree has almost com-
pletely been updated to reflect the new Turing machine configuration. The only
remaining steps are to replace the new marker node with a curr node, and to
enter the run phase again, yielding the tree for the successor configuration.

Lemma 6. Let C be a Turing machine configuration and let Tc be the tree re-
sulting from applying Lemmas 3, 4, and 5 to conftree(C). Any sufficiently long
sequence of operations permitted on Tc must produce as an intermediate result
the tree T ′, otherwise the same as Tc, but with a curr node in place of the new
node, and a run node in place of the cleanup node.

Proof. In the cleanup phase, positive Rules 37 and 38 are active; the latter is
not active on Tc because it contains no curr node. Hence the only permitted

610 N. Moore

operation is to rename the new node to curr by the former rule. Performing this
operation deactivates Rule 37, because there is no longer a new node. Hence
the second operation must be to rename the cleanup node to run by Rule 38,
resulting in the desired tree T ′. Thus any permitted sequence of two operations
on Tc yields T ′. $%

Halting. Finally, if the simulation reaches a final configuration, a finished node
is inserted, and the tree is pared down to just the tm and finished nodes.

Lemma 7. If C = (qf , t, p) is a final configuration (that is, qf ∈ QF), there is
a sequence of operations permitted on T = conftree(C) that yields the tree Thalt

containing a root node labelled tm, a child node labelled finished, and no other
nodes.

Proof. The tree T contains nodes with paths /tm/ph/run and /tm/state/qf ;
hence Rule 24 is active and it is permitted to insert a finished node. Once this
node has been added, Rule 39 becomes active, allowing any non-root node in
the tree to be deleted. In particular, it is permitted to delete the ph, state, and
tape nodes, leaving precisely Thalt. $%

3.4 Correctness of Simulation

Lemma 8. Let C be a non-final Turing machine configuration, and let Q be
any non-empty sequence of operations permitted on T = conftree(C) such
that Q(conftree(C)) contains a node labelled /tm/ph/run. Then Q produces
conftree(∆(C)) as an intermediate result, representing the successor configura-
tion ∆(C). Furthermore, if C is not a hanging configuration, such a sequence Q
exists.

Proof. After applying Lemmas 3 through 6 to the tree T = conftree(C), we have
a tree T ′ that is otherwise identical to T , except that: its state is q′; the symbol
of the previous tape cell ζ (the cell that was current in conftree(C)) is γ′; the
parent (if D = L) or child (if D = R) cell of ζ is marked as current; and if
ζ had no cell children and D = R, a new child cell with symbol b has been
inserted. These are precisely the changes necessary to transform conftree(C) into
conftree(∆(C)). If any of these changes had not been performed, the resulting
tree could not have a /tm/ph/run node. $%

Figure 2 demonstrates the sequence of phases for a typical transition involving
a rightwards move.

Theorem 1. Let M be a Turing machine and S ∈ Σ∗ an initial tape of M ; and
let Thalt be the tree containing only a tm root and a finished child. Then PM,S

generates Thalt if and only if M halts on input S.

Proof. By Lemmas 1 and 2, PM,S generates the tree T1 = conftree(CM,S
0), and

any sufficiently long permitted sequence of operations must produce this tree as
an intermediate step. If M halts on input S after k steps, then k applications

The Halting Problem and Undecidability of Document Generation 611

tm

state phase tape

q i run cell

sym

1γ

curr
cell

sym

2γ

tm

state phase tape

cell

sym curr
cell

sym

2γ

γ ’

q i 1γ

writeqk

tm

state phase tape

cell

sym
cell

sym

2γ

qk

γ ’

curr

q i 1γ

move

new

tm

state phase tape

cell

sym
cell

sym

2γ

qk

γ ’

cleanup

curr

tm

state phase tape

cell

sym
cell

sym

2γ

qk

γ ’

curr

run

Fig. 2. Simulating the Turing machine transition δ(qi, γ1) = (qk, γ′, R). First row: a
configuration tree in phase run, and the tree at the end of phases write, move. Second
row: the tree at the end of phase cleanup, and the successor configuration tree.

of Lemma 8 produces a configuration tree for a final configuration. From such a
tree, by Lemma 7 there is a permitted sequence of operations that yields Thalt.

Now suppose M does not halt on input S. Then there is an infinite sequence of
configurations 〈C0, C1, . . .〉 such that each Ci+1 = ∆(Ci). Suppose S is a permitted
sequence of operations resulting in Thalt. Then, as argued above, S must as an
intermediate step produce a tree containing a run node and a qf ∈ QF node.
By Lemma 8, this sequence must produce as an intermediate result the tree
conftree(C1). Repeated applications of Lemma 8 demonstrates that the sequence
must subsequently produce intermediate results conftree(C2), conftree(C3), and
in general conftree(Ci) for each i ∈ N. However, this means that S is an infinite
sequence, contradicting the assumption that it is a permitted sequence. Hence
no such sequence exists, so PM,S does not generate Thalt. $%

Corollary 1. PolicyGenerates is undecidable.

Proof. Given a Turing machine M and input tape S, it is possible to construct
the policy PM,S algorithmically (in fact, in polynomial time). Combined with
Theorem 1, this establishes a many-to-one reduction from the halting prob-
lem to PolicyGenerates. Since the halting problem is undecidable, so too is
PolicyGenerates. $%

4 Conclusions and Future Work

We have shown that, unfortunately, the most common forms of XML access
control policies preclude certain kinds of analysis, because their expressiveness

612 N. Moore

makes PolicyGenerates undecidable. This points to the need for less expres-
sive, but still practical and flexible, models of and languages for fine-grained
access control of tree updates.

Restricting updates to only insert makes the problem decidable: each opera-
tion inserts a single node, so for a tree with n nodes we need check only sequences
of operations of length n. However, access control policies that do not allow up-
dates to existing data are useless for many practical purposes. Another change,
restricting policies to only positive rules, might make PolicyGenerates decid-
able; this is a topic for future research. However, the promise of this approach
is limited, as it may be shown by reduction from the true quantified boolean
formula problem that this simplified subproblem is still PSpace-hard.

If we eliminate predicates in our path expressions, we have the fragment
XP{∗,//} of XPath [6]. This is a much simpler language, because nodes are se-
lected based entirely on their sequence of ancestors. However, this path expres-
sion language is incapable of expressing important constraints such as uniqueness
of a node or uniqueness of a node’s children.

When the mechanical analysis and verifiability of policies is important, a dif-
ferent approach to fine-grained access control of tree updates may be necessary.
Proposed models that warrant further investigation include multi-level security
of trees [8] and schema-based access control [17].

Acknowledgments. I would like to thank my research advisor Dr. Jerzy W.
Jaromczyk for very helpful advice, discussions, and support, without which this
paper would not have been possible. I would also like to thank the reviewers,
whose helpful comments led to numerous improvements in the final version of
this paper.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.:
Extensible markup language (XML) 1.1. World Wide Web Consortium Recom-
mendation (2004), http://www.w3.org/TR/2004/REC-xml11-20040204/

2. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proceedings IFIP TC11/WG11.3 Four-
teenth Annual Working Conference on Database Security: Data and Application
Security, Development and Directions, pp. 15–26 (2000)

3. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing
XML documents. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.)
EDBT 2000. LNCS, vol. 1777, p. 121. Springer, Heidelberg (2000)

4. Hada, S., Kudo, M.: XML Access Control Language: Provisional authorization for
XML documents. Technical Report, Tokyo Research Laboratory, IBM Research
(2000), http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html

5. Clark, J., DeRose, S.: XML path language (XPath), version 1.0. World Wide Web
Consortium Recommendation (1999),
http://www.w3.org/TR/1999/REC-xpath-19991116

6. Deutsch, A., Tannen, V.: Containment of regular path expressions under integrity
constraints. In: Knowledge Representation Meets Databases (2001)

http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html
http://www.w3.org/TR/1999/REC-xpath-19991116

The Halting Problem and Undecidability of Document Generation 613

7. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1), 2–45 (2004)

8. Cho, S., Amer-Yahia, S., Lakshmanan, L.V., Srivastava, D.: Optimizing the secure
evaluation of twig queries. In: Proceedings 28th VLDB Conference (2002)

9. Lim, C.H., Park, S., Son, S.H.: Access control of XML documents considering
update operations. In: Proceedings 2003 ACM Workshop on XML Security (2003)

10. Cautis, B., Abiteboul, S., Milo, T.: Reasoning about XML update constraints. In:
PODS 2007: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 195–204. ACM, New York (2007)

11. Damiani, E., Fansi, M., Gabillon, A., Marrara, S.: Securely updating XML. In:
Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS, vol. 4694,
pp. 1098–1106. Springer, Heidelberg (2007)

12. Fundulaki, I., Maneth, S.: Formalizing XML access control for update operations.
In: Lotz, V., Thuraisingham, B.M. (eds.) SACMAT, pp. 169–174. ACM, New York
(2007)

13. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. ACM Trans. Inf. Syst. Secur. 6(1), 71–127 (2003)

14. Fundulaki, I., Marx, M.: Specifying access control policies for XML documents
with XPath. In: Proceedings 9th ACM Symposium on Access Control Models and
Technologies, pp. 61–69 (2004)

15. Laux, A., Martin, L.: XUpdate—XML update language. Working Draft (2000),
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

16. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. In: Proc. of the 28th International Conference on Very Large Data Bases
(VLDB 2002) (2002)

17. Bravo, L., Cheney, J., Fundulaki, I.: ACCOn: checking consistency of XML write-
access control policies. In: Kemper, A., Valduriez, P., Mouaddib, N., Teubner,
J., Bouzeghoub, M., Markl, V., Amsaleg, L., Manolescu, I. (eds.) EDBT. ACM
International Conference Proceeding Series, vol. 261, pp. 715–719. ACM, New York
(2008)

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

Prediction of Creole Emergence in Spatial
Language Dynamics

Makoto Nakamura1, Takashi Hashimoto2, and Satoshi Tojo1

1 School of Information Science,
Japan Advanced Institute of Science and Technology

1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan
2 School of Knowledge Science,

Japan Advanced Institute of Science and Technology
1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

{mnakamur,hash,tojo}@jaist.ac.jp

Abstract. Creole is a new born language emerging in most cases where
language contact takes place. Simulating behaviors that creole commu-
nities are formed in some environments, we could contribute to actual
proof of some linguistic theories concerning language acquisition. Thus
far, a simulation study of the emergence of creoles has been reported
in the mathematical framework. In this paper we introduce a spatial
structure to the framework. We show that local creole communities are
organized, and creolization may occur when language learners learn of-
ten from non-parental language speakers, in contrast to the non-spatial
model. The quantitative analysis of the result tells us that emergence of
local colonies at the early stage tends to induce the full creolization.

1 Introduction

Computer simulation of diachronic change in human languages has widely been
reported in the study of language evolution [1,2], where interactions among indi-
viduals affect language spoken throughout the community, dependent upon the
abilities of individuals or the learning environment. Among those simulations,
the emergence of pidgins and creoles is one of the most interesting phenomena
in language change [3,4,5].

Pidgins are simplified tentative languages spoken in multilingual communi-
ties, which come into being where people need to communicate but do not have
a language in common. On the other hand, creoles are full-fledged new languages
based on the pidgins in later generations. For example, Hawaiian Creole English
emerged among plantation workers coming from Hawaii, China, the Philippines,
Japan, Korea, Portugal, Puerto Rico and so on in the 19th century to the be-
ginning of the 20th century. Since they needed to communicate with farm own-
ers, they first formed Hawaiian pidgin based on English; later their offspring
immersed with the pidgin had developed the language to one with its own gram-
matical structure. In general, grammar of a creole is different from any contact
languages, although its vocabulary is often borrowed from them. Our goal in
this paper is to discover specific conditions under which creoles emerge.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 614–625, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Prediction of Creole Emergence in Spatial Language Dynamics 615

Thus far, we proposed a mathematical framework for the emergence of creoles
[6] based on the language dynamics equation by Nowak et al. [7], showing that
creoles become dominant under specific conditions of similarity among languages
and linguistic environment of language learners. Our purpose in the present
study is to introduce a spatial structure to our model, in order to observe self-
organization process of creole community. Especially, in this paper we compare
behaviors of the two models. A related work for introducing a spatial structure
into a mathematical model of language change has been done by Castelló et al.
[8], who have analyzed a spatial version of a mathematical framework by Abrams
et al. [9]. Different from Abrams-Strogatz’s model, our model [6] is well-defined
in terms of learning algorithm and a learning environment.

Introducing a spatial structure to a mathematical framework, we expect to
observe a process of creolization and then to obtain more precise conditions from
the model more similar to the environment where actual language phenomena
took place. We recognize this study to fill the gap between the study of multi-
agent models and mathematical models.

In Section 2, we describe the modified language dynamics model and a learning
algorithm, and in Section 3 we define a creole in population dynamics. Section 4
reports our experiments, and we conclude in Section 5.

2 Population Dynamics for the Emergence of Creole

In this section, we briefly explain how to divert a mathematical model proposed
by Nakamura et al. [6] to the one with a spatial structure.

The most remarkable point in the model of Nakamura et al. [6] is to introduce
an exposure ratio α, which determines how often language learners are exposed
to a variety of language speakers other than their parents. They modified the
learning algorithm of Nowak et al. [7], taking the exposure ratio into account to
model the emergence of creole community. Nakamura et al. [6] have shown that
a certain range of α is necessary for a creole to emerge.

2.1 Language Dynamics Equation for the Emergence of Creole

In response to the language dynamics equation by Nowak et al. [7], Nakamura
et al. [10] assumed that any language could be classified into one of a certain num-
ber (n) of grammars. Thus, the population of language speakers is distributed
to {G1 . . . Gn}. Let xi be the proportion of speakers of Gi within the total pop-
ulation. Then, the language dynamics is modeled by an equation governing the
transition of language population.

Because Nowak et al. [7] assumed that language speakers bore offspring in
proportion to their successful communication, they embedded a fitness term in
their model which determined the birth rate of each language group. The model
for creolization has excluded the biological fitness, on the assumption that in
the real world creoles did not emerge because creole speakers had more offspring
than speakers of other pre-existing languages, that is:

616 M. Nakamura, T. Hashimoto, and S. Tojo

dxj(t)
dt

=
n∑

i=1

qij(t)xi(t) − xj(t) . (1)

In the language dynamics equations, the similarity matrix S and the transition
matrix Q(t) play important roles: the similarity matrix S = {sij} is defined as
a probability that a sentence of Gi is accepted also by Gj . Children learn a
language in accordance with a learning algorithm, in which the accuracy varies
depending on the similarity among languages. The transition matrix Q(t) =
{qij(t)} is defined as a probability that a child of Gi speaker acquires Gj , and is
calculated based on the learning algorithm. Being different from the definition
by Nowak et al. [7], the definition of Q(t) depends on the generation parameter
t, as well as the S matrix and a learning algorithm.

2.2 Introducing Spatial Structure

In the spatial model, we use the language distribution in neighbors surrounding
each agent to calculate the local transition probability Q, by which each agent
acquires a language, while a child is exposed to the whole population in a non-
spatial model.

Hereafter, replacing xi for x
(l)
i as a population rate of Gi speakers surrounding

an agent at location l, equations are applicable to the spatial structure, too. We
calculate Q

(l)
(t) for each agent every generation.

2.3 Learning Algorithm

In some communities, a child learns language not only from his/her parents but
also from other adults, whose language may be different from the parental one.
In such a situation, the child is assumed to be exposed to other languages, and
thus may acquire the grammar most efficient in accepting multiple language
input. In order to assess how often the child is exposed to other languages, we
divide the language input into two categories: one is from his/her parents, and
the other is from other language speakers. We name the ratio of the latter to
the total amount of language input an exposure ratio α. This α is subdivided
into smaller ratios corresponding to those other languages, where each ratio is in
proportion to the population of the language speakers. An example distribution
of languages is shown in Figure 1(a). Suppose a child has parents who speak
Gp, s/he receives input sentences from Gp on the percentage of the shaded part,
αxp+(1−α), and from non-parental languages Gi(i �= p) on the percentage, αxi.

We have adopted a batch learning algorithm, which resolves Niyogi [11]’s prob-
lem regarding an unrealistic Markov structure which implies that some children
cannot learn certain kinds of language. From the viewpoint of universal gram-
mar, that all conceivable grammars of human beings are restricted to a finite
set [12], language learning is considered as a choice of a plausible grammar from
them. The following algorithm realizes such learning as: 1) In a child’s memory,
there is supposed to be a score table of grammars. 2) The child receives a sen-
tence uttered by an adult. 3) The acceptability of the sentence is tested using

Prediction of Creole Emergence in Spatial Language Dynamics 617

α

Gp

1- α
G1

Gp

Gn

(a) The exposure ratio α

α:

1−α:

Input Sentences:

1 2 3 4 5 6

7 8 9 10

G1 G2 G3

1

2

4

5

1

3

6

7

8

9

10

2

6

7

4

6

1

2

3

45
6

7

8
9
10

G1 G2

G3

Neighbors:Parent:

Population Rate:

x 2 x 3x 1

Non-Spatial Model

Spatial Model

(b) The learning algorithm

Fig. 1. The learning algorithm including the exposure ratio α

each grammar. The grammar which accepts the sentence scores one point. 4)
Steps 2) and 3) are repeated until the child receives a fixed number (w) of sen-
tences, which is regarded as sufficient for the decision of the grammar selection.
5) The child adopts the grammar with the highest score.

The child is exposed to utterances of adult speakers of each language, the
percentage of which is determined by the distribution of population and the
exposure ratio α, while the S matrix determines the acceptability of a sentence.
In Figure 1(b), we show an example where a child of G2 speaker obtains G2
after exposure to a variety of languages. The child receives sentences, which
are boxes numbered from 1 to 10. The input sentences are divided into two
sets according to the exposure ratio α. One of the sets consists of sentences
of all grammars. The number of the sentences of each language is proportional
to the population share of the language speakers. For example, the child hears
sentences 1, 4 and 5 uttered by G1 speakers. The other consists of sentences
of his/her parents. Therefore, these sentences are acceptable by a particular
grammar. Because his/her parental grammar is G2, for example, the sentences 7
to 10 are randomly chosen from the language of G2. The child counts acceptable
sentences for each grammar. The sentence 1 can be accepted by G3 as well
as G1, while it is uttered by a G1 speaker. The Venn diagram in Figure 1(b)
represents that each language shares sentences with others. In this case, because
the sentence 1 is acceptable both by G1 and by G3, the child adds 1 to both of
the counters in his/her mind.

2.4 Revised Transition Probability

Suppose that children hear sentences from adult speakers depending on the ex-
posure ratio and on the distribution of population. A probability that a child
whose parents speak Gi accepts a sentence by Gj is expressed by:

618 M. Nakamura, T. Hashimoto, and S. Tojo

Uij = α

n∑
k=1

skjxk + (1 − α)sij . (2)

After receiving a sufficient number of sentences for language acquisition, the
child will adopt the most plausible grammar, as estimated by counting the num-
ber of sentences accepted by each grammar. This learning algorithm is simply
represented in the following equation. Exposed to a variety of languages in pro-
portion to the population share of adult speakers, children whose parents speak
Gi will adopt Gj∗ by:

j∗ = argmax
j

{Uij} . (3)

When the children hear w sentences, a probability that a child of Gi speaker
accepts r sentences with Gj is given by a binomial distribution,

gij(r) =
(

w

r

)
(Uij)r(1 − Uij)w−r . (4)

On the other hand, a probability that the child accepts less than r sentences
with Gj is

hij(r) =
r−1∑
k=0

(
w

k

)
(Uij)k(1 − Uij)w−k . (5)

From these two probability distributions, the probability that a child of Gi

speaker accepts k sentences with Gj , while less than k − 1 sentences with the
other grammars, comes to gij(k)

∏n
l=1,l �=j hil(k). For a child of Gi speaker to

acquire Gj after hearing w sentences, Gj must be the most efficient grammar
among n grammars; viz., Gj must accept at least �w

n � sentences. Thus, the prob-
ability qij becomes the sum of the probabilities that Gj accepts w, w−1, · · · , �w

n �
sentences. Because each of the sentences is uttered by a speaker and is accepted
by at least one grammar, there must be a grammar which accepts �w

n � or more
out of w sentences. Thus, if Gj accepts less than �w

n � sentences, the child does
not acquire Gj . Therefore, qij becomes:

qij(t) =

w∑
k=�w

n �

{
gij(k)

n∏
l=1
l �=j

hil(k) + R(k, n)
}

n∑
m=1

[
w∑

k=�w
n �

{
gim(k)

n∏
l=1
l �=m

hil(k) + R(k, n)
}] , (6)

where R(k, n) is the sum total of the probabilities that the child would choose Gj

when one or more other grammars accept the same number of sentences as Gj .
When there are m candidate grammars including Gj , the probability becomes
one divided by m. The following expression is an example when n = 3.

Rij(k, 3) = 1
3{gij(k)gij2(k)gij3 (k)}

+ 1
2{gij(k)gij2(k)hij3 (k) + gij(k)hij2 (k)gij3(k)}

(j2, j3 ∈ {1, 2, 3}, j �= j2, j3, j2 �= j3)
(7)

Prediction of Creole Emergence in Spatial Language Dynamics 619

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
P

op
ul

at
io

n
S

ha
re

t

x1
x2
x3

Fig. 2. Example of creolization ((a, b, c) = (0, 0.3, 0.4), w = 10, α = 0.7)

3 Creole in Population Dynamics

Creoles are considered as new languages. From the viewpoint of population dy-
namics, we define a creole as a transition of population of language speakers.
A creole is a language which no one spoke in the initial state, but most people
have come to speak at a stable generation. Therefore, creole is represented by
Gc such that: xc(0) = 0, xc(t) > θc, where xc(t) denotes the population share
of Gc at a convergent time t, and θc is a certain threshold to be regarded as a
dominant language. We set θc = 0.9 through the experiments.

For convenience, we have mainly observed the behavior of the model using
three grammars. The similarity matrix can be expressed as a symmetric matrix
such that:

S =

⎛⎝1 a b
a 1 c
b c 1

⎞⎠ . (8)

Here, we regard G3 as a creole grammar, giving the initial condition as
(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0). Therefore, the element a denotes the similar-
ity between two pre-existing languages, and b and c are the similarities between
G1 and the creole, and between G2 and the creole, respectively.

We show an example of creolization in Figure 2. The parameters were set to
(a, b, c) = (0, 0.3, 0.4), w = 10, and α = 0.7. Note that the conditions in the
parameter space for dominant creoles are limited [13].

4 Experiments and Results

The spatial structure is a toroidal 50-by-50 square grid. Each agent has 8 neigh-
bors. Each agent chooses one of three languages every generation, two of which,
G1 and G2, are pre-existing and randomly distributed with the same total num-
ber at the initial state. The remaining language, G3, is a creole, having a certain
similarity between two languages. The similarity means the probability that a
sentence uttered by a Gi speaker is accepted by Gj . In this paper, We take the
following values: (a, b, c) = (0, 0.3, 0.4), and w = 10 for the number of input
sentences.

620 M. Nakamura, T. Hashimoto, and S. Tojo

(a) Generation 0 (b) Generation 10 (c) Generation 50

(d) Generation 100 (e) Generation 500 (f) Generation 1552

Fig. 3. Example of the spatial dynamics (white:G1, black:G2, gray:G3; α = 0.7)

4.1 Behaviors of Spatial Dynamics

We show an example of the spatial dynamics in Figure 3; (a) Only G1 and
G2 are distributed at the initial stage. (b,c) Some local communities (hereafter
colonies) of creole are organized at the early stage. (d,e) Both G1, G2 and creole
coexist at a quasi-stable stage. (f) In this trial, the creole eventually becomes
dominant at Generation 1552. Agents surrounded by both G1 and G2 neighbors
are likely to acquire the creole. In fact, creole speakers often appear on the border
between communities. This is because the large value of α makes the agents to
be exposed to both languages, and the creole is the most efficient for accepting
input utterances from both languages.

In general, learners tend to form a colony, regardless of the languages, affected
from its neighbors during learning acquisition. However, the smaller the value of
α, the slower the forming colonies. This is because the learners are hardly affected
by neighbors, hearing their mother tongue from their parents. Note that even if
α = 0, it is possible for a learner to acquire a language other than his/her mother
tongue due to the similarity among languages. The number of input sentences is
also relevant to forming a colony. Learners hearing a lot of language input become
conservative in terms of changing his/her language. That is, once a small colony
has been formed at a generation, inhabitants in the colony come to choose the
same language as the previous generation. On the contrary, if learners choose a

Prediction of Creole Emergence in Spatial Language Dynamics 621

 0

 0.2

 0.4

 0.6

 0.8

 1

0.
00

0

0.
05

0

0.
10

0

0.
15

0

0.
20

0

0.
25

0

0.
30

0

0.
35

0

0.
40

0

0.
45

0

0.
50

0

0.
55

0

0.
60

0

0.
65

0

0.
70

0

0.
75

0

0.
80

0

0.
85

0

0.
90

0

0.
95

0

1.
00

0

P
ro

ba
bi

lit
y

of
 d

om
in

an
ce

α

G1
G2

Creole
No dominant
language

Fig. 4. Probability of dominant language in the spatial model

language with less language input, they tend to be undetermined in choosing a
language. As a result, it is difficult to form a colony.

4.2 Comparing the Two Models with and without a Spatial
Structure

We examine the probability of dominance for each language (Figure 4). Note that
the spatial model is based on a stochastic dynamics. This graph is the result of
100 runs for 1,000,000 generations at each α value. The corresponding result in
the non-spatial model is the population distribution at the stable generation,
shown in Figure 51, since the non-spatial model is based on the deterministic
dynamics. This parameter set makes creole dominant at the range 0.1 � α �
0.8. In the spatial model, the probability that the creole is dominant gradually
decreases from α > 0.3, and it becomes 0.3 around α > 0.8.

In general, the larger the value of α, the more prominent the transition of
population becomes, and in some cases, the transition leads to creolization. In
Figure 5, however, the dominant language changes between the creole and G2 at
α � 0.8, and it is not always true that creoles are more likely to become dominant
at the larger value of α (See [6]). Since children of a G1 speaker become more
exposed to G2 in the larger value of α, it is possible for them to acquire G2
directly instead of the creole, and vice versa. Therefore, the population of the
creole remains small and the children of creole speakers are likely to acquire G2
rather than G1. Thus, the dominant language changes to G2 at α � 0.82.

These differences between the results shown in Figure 4 and Figure 5 can be
understood by considering local interaction and stochastic dynamics. The pre-
existing language may be able to form a colony due to stochasticity. Once a
colony with certain size is formed, agents in the colony are surrounded by the
1 In other words, the result of the population distribution at the stable generation in

Figure 2 is plotted at α = 0.7 in Figure 5.
2 In the experiments, we have chosen this parameter set with which creoles tend to

appear in the wide range of α.

622 M. Nakamura, T. Hashimoto, and S. Tojo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
op

ul
at

io
n

D
is

tr
ib

ut
io

n
R

at
io

α

x1
x2
x3

Fig. 5. Stable population distribution in the non-spatial model

same language and the exposure ratio effectively comes to α = 0. This situation
is hard for the creole speakers to organize a colony. Thus, the probability to be
dominant is restrained by the pre-existing language at the middle-high range of
α. At the higher range of α, the creole can organize a colony at the early stage
with certain ratio through random migration. The colony can grow to the whole
space.

4.3 Quantitative Analysis in Forming Creole Communities

Observing behaviors of the spatial dynamics, we realized that forming creole
colonies at early stages plays a key role for creolization. Large creole colonies are
difficult to vanish and are able to encroach upon a territory of other languages.
In other words, if creole speakers fail to form a certain size of colony before the
quasi-stable stage, it is difficult for creole to become dominant. Therefore, in
this section we try to predict whether creolization takes place or not at the early
stage, observing creole colonies quantitatively.

For a quantitative description of the emergence and dynamics of linguistic
spatial domains we use the ensemble average interface density 〈ρ〉 as an order
parameter, following a precedent work [8]. This is defined as the density of links
joining nodes in the network which are in different states [14]. For associating
with the population distribution, we use the inverse value as 〈ρ〉 = 〈1 − ρ〉.
The ensemble average, indicated as 〈·〉, denotes average over realizations of the
stochastic dynamics starting from different random distributions of initial condi-
tions. As the time proceeds, the increase of ρ from its initial value describes the
ordering dynamics, where linguistic spatial domains, in which agents are in the
same state, grow in time. The maximum value ρ = 1 corresponds to a stationary
configuration in which all the agents belong to the same linguistic community.
In addition, we defined ρi as the density of Gi speakers’ neighbors which are in
the same states.

We analyzed difference of the behaviors at the early stage among 100 trials
every α, shown in Figure 4, classifying the trials into three, each of which denotes
the corresponding language eventually becomes dominant. We recognize an early

Prediction of Creole Emergence in Spatial Language Dynamics 623

x1
x2
x3

G1
1

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1
α

x
&

 ρ
G2

1

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1
α

x
&

 ρ

α

ρ1
ρ

ρ2
ρ3

(a) (b)

G3
1

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1

x
&

 ρ

(c)

Fig. 6. Difference of xi and 〈ρi〉 at the early stage (x3 � 0.2) between results in which
G1, G2, and G3 eventually become dominant respectively

stage as the earliest generation at which x3(t) exceeds 0.2 in each trial. Figure 6
shows the difference of the average 〈ρ〉, 〈ρi〉, and xi every α at the early stage
between G1, G2 and G3 becoming dominant at the stable generation. At some
values of α in Figure 6(a) and (b), the values of x3 are partially plotted less
than 0.2, because in some trials x3 never exceeded 0.2. In this case, we took
the values at the stable generation for the average calculation. At some values
of α where no data are plotted, there was no trial in which the corresponding
language became dominant. Therefore, Figure 6 corresponds to the frequency
distribution of dominance, shown in Figure 4.

In Figure 6, we can see that 〈ρ3〉 is lower than other densities at any value of
α. Note that the average density of Gi denoted by 〈ρi〉 is affected not only by
a degree of forming colonies but also by its population3. Therefore, it is natural
that only 20 percent of the population obtains the density smaller than others.

As was mentioned in Section 4.2, creolization takes place even at the large
value of α (0.8 � α), while G2 dominates the community in the non-spatial
model (Figure 5). We can see that the values of 〈ρ3〉 in Figure 6(c) are higher
than that of (a) and (b). This tendency can be seen with other parameters of w

3 Suppose there is only a colony of Gi forming a square in the space. If the size of the
colony is 5-by-5, 〈ρi〉 = 0.72, while it is 0.855 for a 10-by-10 colony.

624 M. Nakamura, T. Hashimoto, and S. Tojo

and S. Therefore, we consider that forming creole colonies at the early stage is
important for full creolization.

On the contrary, at small values of α, the values of 〈ρ3〉 are also small. Because
the exposure ratio α determines a probability that a language learner commu-
nicates with its neighbors, forming a colony with neighbors is hardly effective in
creolization at the small value of α. Rather, the creole becomes dominant due
to an advantageous parameter set of w, S, and α. It is clear as evidenced by the
result of the non-spatial model.

5 Conclusion

In this paper, we introduced a spatial structure to a mathematical framework
of creolization. Observing this process, we discovered that forming colonies was
an important factor. We showed that in the spatial language dynamics, creole
could be dominant even in the high exposure ratio, different from the non-spatial
model.

The quantitative analysis implies that there is a condition of creolization
in terms of a combination between the ensemble average density 〈ρ3〉 and the
exposure ration α. Through the experiments, we can conclude as follows:

– Creole is easy to dominate the community in a parameter set where creoliza-
tion takes place in the non-spatial model, regardless of the value of α.

– The value of 〈ρ3〉 is probably useful for the prediction of creolization at the
early stage at the large values of α.

We need to analyze the behavior through further experiments. Although we
used a toroidal 50-by-50 square grid for a spatial structure, it can be expanded
to more complicated social networks. There is yet room for improvement in some
settings including the initial population distribution.

Acknowledgment

This work was partly supported by Grant-in-Aid for Young Scientists (B) (KAK-
ENHI) No.20700239 from MEXT Japan.

References

1. Cangelosi, A., Parisi, D. (eds.): Simulating the Evolution of Language. Springer,
London (2002)

2. Briscoe, E.J. (ed.): Linguistic Evolution through Language Acquisition: Formal
and Computational Models. Cambridge University Press, Cambridge (2002)

3. Arends, J., Muysken, P., Smith, N. (eds.): Pidgins and Creoles. John Benjamins
Publishing Co., Amsterdam (1994)

4. Bickerton, D.: Language and Species. University of Chicago Press (1990)
5. DeGraff, M. (ed.): Language Creation and Language Change. MIT Press, Cam-

bridge (1999)

Prediction of Creole Emergence in Spatial Language Dynamics 625

6. Nakamura, M., Hashimoto, T., Tojo, S.: Exposure dependent creolization in lan-
guage dynamics equation. In: Sakurai, A., Hasida, K., Nitta, K. (eds.) JSAI 2003.
LNCS (LNAI), vol. 3609, pp. 295–304. Springer, Heidelberg (2007)

7. Nowak, M.A., Komarova, N.L., Niyogi, P.: Evolution of universal grammar. Sci-
ence 291, 114–118 (2001)

8. Castelló, X., Egúıluz, V.M., Miguel, M.S., Loureiro-Porto, L., Toivonen, R.,
Saramäki, J., Kaski, K.: Modelling language competition: bilingualism and com-
plex social networks. In: Smith, A., Smith, K., Cancho, R. (eds.) The Evolution of
Language: Proceedings of the 7th International Conference (EVOLANG7), p. 85.
World Scientific Pub. Co. Inc., Singapore (2008)

9. Abrams, D.M., Strogatz, S.H.: Modelling the dynamics of language death. Nature
424, 900 (2003)

10. Nakamura, M., Hashimoto, T., Tojo, S.: Creole viewed from population dynamics.
In: Proc. of the Workshop on Language Evolution and Computation in ESSLLI,
Vienna, pp. 95–104 (2003)

11. Niyogi, P.: The Informational Complexity of Learning. Kluwer, Boston (1998)
12. Chomsky, N.: Lectures on Government and Binding. Foris, Dordrecht (1981)
13. Nakamura, M., Hashimoto, T., Tojo, S.: Simulation of common language acquisi-

tion by evolutionary dynamics. In: Proc. of IJCAI 2007 Workshop on Evolutionary
Models of Collaboration, Hyderabad, pp. 21–26 (2007)

14. Miguel, M.S., Eguiluz, V.M., Toral, R., Klemm, K.: Binary and multivariate
stochastic models of consensus formation. Computing in Science and Engg. 7, 67–73
(2005)

On the Average Size of Glushkov’s Automata

Cyril Nicaud�

LIGM, UMR CNRS 8049, Université Paris Est, 77454 Marne-la-Vallée, France
nicaud@univ-mlv.fr

Abstract. Glushkov’s algorithm builds an ε-free nondeterministic au-
tomaton from a given regular expression. In the worst case, its number
of states is linear and its number of transitions is quadratic in the size
of the expression. We show in this paper that in average, the number of
transitions is linear.

1 Introduction

Kleene’s Theorem states that regular expressions and automata describe the
same objects, regular languages. They both are finite objects which encode infi-
nite sets of words and they play a key role in formal language theory as well as
in its many fields of application.

One can often take advantage of having this two different representations,
the algorithmic problems of transforming one representation into another are
therefore fundamental. They have been widely studied and are still improved
nowadays, as one can see in a recent survey by J. Sakarovitch [1].

In this paper we focus on one particular such transformation, Glushkov’s
algorithm [2], an algorithm that builds an ε-free nondeterministic automaton
from a given regular expression. Starting from a regular expression with n let-
ters, it builds an automaton with n + 1 states and O(n2) transitions. In [3], J.
Hromkovic̃, S. Seibert and T. Wilke proposed a variation on this algorithm where
the produced automaton has O(n log2 n) states. They also proved a lower bound
of Ω(n log n) states for this general problem. Based on this work, C. Hagenah
and A. Muscholl proposed in [4] an algorithm of time complexity O(n log2 n) to
achieve the construction. See also [5,6] for some efficient related algorithms.

Our contribution is to give an average case analysis of the size of Glushkov’s
automata. Using the framework of analytic combinatorics, we prove that for the
uniform distribution of regular expressions, the average number of transitions is
linear.

The use of generating functions and complex analysis have proved to be useful
in average case analysis of algorithms [7]. The methodology we shall use here
can be summarized as follows:

1. Find an unambiguous specification of the objects, which can be recursive.
2. Transform the specification into a functional equation for the associated

generating function.
� The author is supported by the ANR (GAMMA - project BLAN07-2 195422).

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 626–637, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Average Size of Glushkov’s Automata 627

3. Analyze the dominant singularities of the generating function to obtain the
needed asymptotics.

The paper is organized as follows. In Section 2, we recall the basic definitions
and present some analytic tools. In Section 3, we study the generating function
associated to regular expressions. Section 4 is devoted to our main result. Finally,
a short discussion about the distribution is presented in Section 5.

Note that due to the lack of space, we can not show all the details of the
computations, but most of them are easily done with the help of a computer-
algebra system.

2 Preliminaries

2.1 Automata and Regular Expressions

An automaton defined on a finite alphabet A is a tuple (A, Q, T, I, F) where Q is
the finite set of states, T ⊂ Q×A×Q is the set of transitions, I ⊂ Q is the set of
initial states and F ⊂ Q is the set of final states. We refer the reader unfamiliar
with basic notions of automata and regular languages to [8] for definitions and
fundamental results.

The set of nonempty regular expressions R on a finite alphabet A is a set of
words on the alphabet {ε, ·, ∗,∪, (,)} ∪A defined inductively by: ε ∈ R, A ⊂ R,
(R)∗ ∈ R for all R ∈ R, (R1 ·R2) and (R1∪R2) for every R1, R2 ∈ R. A language
defined on A is denoted by a regular expression of R when it is exactly the set
of words obtained by interpreting each symbol ∗, · or ∪ as the corresponding
regular operation on sets of words. Let L(R) be the language denoted by R ∈ R.
For convenience, we shall freely remove parenthesis symbols that are not needed
in an element of R. It is also often useful to see regular expressions as trees, with
this equivalent inductive definition:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε ∈ R
a ∈ R ∀a ∈ A
∗
|
R
∈ R ∀R ∈ R
∪
/\

R1 R2
∈ R ∀R1, R2 ∈ R

•
/\

R1 R2
∈ R ∀R1, R2 ∈ R

(1)

The size of an element of R is the number of nodes in its tree representation:

|ε| = |a| = 1;
∣∣∣∗|
R

∣∣∣ = |R| + 1;
∣∣∣ ∪

/\
R1 R2

∣∣∣ = ∣∣∣ •
/\

R1 R2

∣∣∣ = |R1| + |R2| + 1

Note that one usually add to R the symbol ∅ that denotes the empty language.
For technical reasons it is slightly more convenient in this paper to work on
nonempty regular languages.

628 C. Nicaud

2.2 Glushkov’s Automaton

Let m be the number of letter symbols in R, for R ∈ R. We consider the
expression R̃ obtained from R by distinguishing the letters with subscripts in
{1, · · · , m}, marking them from left to right on its string representation, or
equivalently using depth-first order on its tree representation. For instance R =
b∗ ·(a∪b ·b)∗ is changed into R̃ = b∗1 ·(a2∪b3 ·b4)∗. We denote by pos(R) the set of
subscripted letters in R̃: pos(R) = {b1, a2, b3, b4} in the example. We also denote
by ν the function from pos(R) to A that removes the subscripts, ν(a2) = a for
instance.

Let First(R) and Last(R) be the sets defined by

First(R) = {α ∈ pos(R) | ∃u ∈ L(R̃), u starts with the letter α}
Last(R) = {α ∈ pos(R) | ∃u ∈ L(R̃), u ends with the letter α}

And for any letter α in pos(R), the set follow(R, α) is defined by

follow(R, α) = {β ∈ pos(R) | ∃u ∈ L(R̃), αβ is a factor of u}

The Glushkov’s automaton of R, also called the position automaton, is the
automaton AR = (A, Q, T, {i}, F) with Q = pos(R) ∪ {i}, F = Last(R) ∪ {i} if
ε ∈ L(R) and F = Last(R) otherwise, and T = {(i, ν(α), α) | α ∈ First(R)} ∪
{(α, ν(β), β) | β ∈ follow(R, α)}. This classical construction provides an au-
tomaton that recognizes L(R).

Let Edges(R) be the set of pairs (α, β) ∈ pos(R)2 such that β ∈ follow(α).
The number of transitions in AR is thus |First(R)| + |Edges(R)|. The set
Edges(R) can also be defined inductively as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Edges(ε) = 0
Edges(a) = 0

Edges
(∗

|
R

)
= Edges(R) ∪ Last(R) × First(R)

Edges
(∪

/\
R1 R2

)
= Edges(R1) ∪ Edges(R2)

Edges
(•

/\
R1 R2

)
= Edges(R1) ∪ Edges(R2) ∪ Last(R1) × First(R2)

(2)

2.3 Generating Functions

A combinatorial class C is a set of objects with a size function | · | from C to N
such that, for any n ∈ N, the number cn of objects of size n in C is finite. The
generating function C(z) of a combinatorial class C is the formal power series

C(z) =
∑
C∈C

z|C| =
∑
n≥0

cnzn

We also denote by [zn]C(z) = cn the coefficient of zn in C(z).

On the Average Size of Glushkov’s Automata 629

Let C be a combinatorial class of generating function C(z) and let f : C → R
be a mapping from this class to R. The cost generating function F (z) of C
associated to f is

F (z) =
∑
C∈C

f(C)z|C| =
∑
n≥0

fnzn, with fn =
∑
C∈C
|C|=n

f(C)

For a given n, the average value of f for the uniform distribution on the elements
of size n of C is therefore

µn(C, f) =
[zn]F (z)
[zn]C(z)

The following lemma, though trivial, will be useful throughout this article.

Lemma 1. Let A and B be two combinatorial classes. Let f : A → R and
g : B → R be two mappings from A and B to R. The following property holds.∑

A∈A

∑
B∈B

(f(A) + g(B))z|A|z|B| = F (z)B(z) + A(z)G(z)

where A(z), B(z), F (z) and G(z) respectively denote the generating functions of
A and B and the cost generating functions associated to f and g.

2.4 Symbolic Methods and Transfer Theorem

The symbolic methods were introduced in [9]. When they can be applied, they
directly and almost automatically build the generating functions associated to
combinatorial classes. The idea is to avoid recurrence formulas on the number
of objects by providing a dictionary that maps combinatorial constructions on
classes into constructions on generating functions. This dictionary covers a lot
of used constructions, and one can easily use it to describe combinatorial classes
such as trees, permutations, set partitions, integer partitions, random mappings,
etc. therefore obtaining directly their generating functions.

In this article we shall only use a small part of this dictionary, the most basic
one. If A = B ∪ C are combinatorial classes such that B and C are disjoint, it
is direct to prove that the associated generating functions A(z), B(z) and C(z)
satisfy A(z) = B(z) + C(z). Moreover if A = B × C, one can see that A(z) =
B(z)C(z). We shall only need this two constructions here, but in this framework,
one can directly derive the generating functions of sequences of elements in
A, sets of elements in A, and so on. We refer the reader to P. Flajolet and
R. Sedgewick’s book for more informations about this topic [7].

Once the generating function is known, either in close or implicit form, sev-
eral theorems exist to compute asymptotic estimations of its coefficients. This
theorems mainly use the theory of complex analysis, seeing generating functions
as analytic functions from C to C. The main idea is that the asymptotics of the
coefficients of a generating function can be obtained by studying it around its
dominant singularities (its singularities of smallest moduli). Informally, given a

630 C. Nicaud

generating function A(z) of unique dominant singularity ρ, the transfer theo-
rem states under some analytic conditions that if A(z) ∼ B(z) as z → ρ, then
[zn]A(z) ∼ [zn]B(z), for some useful functions B(z) whose coefficient asymp-
totics are well-known.

We use the notations of [7] to give a formal description of the theorem. Let
R > 1 and 0 < φ < π/2 be two real numbers, the domain ∆(φ, R) is

∆(φ, R) = {z ∈ C | |z| < R, z �= 1 and |Arg(z − 1)| > φ}

A domain is a ∆-domain at 1 if it is a ∆(φ, R) for some R and φ. For a given
complex number ζ �= 0, a ∆-domain at ζ is the image by the mapping z .→ ζz of
a ∆-domain at 1. A function is ∆-analytic if it is analytic in some ∆-domain.

Theorem 1 (part of Transfer Theorem). Let α and β be real number and
let f(z) be a function that is ∆-analytic that satisfies, on the intersection of a
neighborhood of 1 and its ∆-domain, the condition

f(z) = o

(
(1 − z)−α

(
log

1
1 − z

)β
)

then [zn]f(z) = o(nα−1(log n)β).

Recall that Pringsheim’s Theorem states that if f(z) is representable at the
origin by a series expansion with nonnegative coefficients, one of its dominant
singularities, if any, is on R+. This theorem is useful as generating functions
always have nonnegative coefficients.

2.5 Analytic Tools for This Paper

The generating functions we shall study in this paper always have a unique domi-
nant singularity, which is therefore in R+ by Pringsheim’s theorem. For any fixed
alphabet size k, the dominant singularity of each generating function will always
be the same ρk. Moreover, as they are all made of polynomials, quotients and
square roots, their analysis have a lot of similarities. In particular, all generating
functions satisfy one of the two conditions of the following proposition.

Proposition 1. Let f(z) be a function that is ∆-analytic at ρ ∈ R+.

1. If on the intersection of a neighborhood of ρ and its ∆-domain,

f(z) = a − b
√

1 − z/ρ + o(
√

1 − z/ρ), with a, b ∈ R, b �= 0

then [zn]f(z) ∼ b
2
√

π
ρ−nn−3/2.

2. If on the intersection of a neighborhood of ρ and its ∆-domain,

f(z) =
a√

1 − z/ρ
+ o

(
1√

1 − z/ρ

)
, with a ∈ R, a �= 0

then [zn]f(z) ∼ a√
π
ρ−nn−1/2.

On the Average Size of Glushkov’s Automata 631

This proposition is a direct consequence of Theorem 1, using classical formulas
for the asymptotic of the coefficients of z .→

√
1 − z and z .→ (1 − z)−1/2.

If f(z) is a function which is ∆-analytic at ρ ∈ R+, we say that f satisfies the
property Π1 or Π2 at ρ if it satisfies the first or second condition of Proposition 1
respectively.

The computations involved here can be technical, but can be done almost
automatically (with the help of computer algebra software for the most complex
ones). It is always straightforward to check that this functions satisfy the analytic
conditions of Proposition 1. The value of a (and b) can also be computed, and
will be some functions of the size of the alphabet. In the rest of the paper, due
to the lack of space, most details of the computations will be omitted.

3 Generating Functions for Regular Expressions

In this section we apply the framework of analytic combinatorics to the classes
of regular expressions we are studying. From now on, the alphabet considered is
A = {a1, . . . , ak}, where k ≥ 1 is a positive integer.

3.1 General Regular Expressions

From Equation (1), one can use the symbolic method to obtain the following
specification

R = ε + a1 + · · · + ak +
∗
|
R +

∪
/\

R R
+

•
/\

R R
And therefore, using the dictionary, one obtain the following equation for R(z),
the generating function associated to R:

R(z) = (k + 1)z + zR(z) + 2zR2(z)

From which one can derive the following expression for R(z), using the fact that
its Taylor coefficients are nonnegative:

R(z) =
1 − z −

√
∆k(z)

4z
, with ∆k(z) = 1 − 2z − (7 + 8k)z2

The unique dominant singularity of R(z) is ρk = 2
√

2k+2−1
7+8k , and around ρk, one

has the following expansion of R(z)

R(z) =
1 − ρk

4ρk
− 1

4ρk

√
∆k(z) + o

((
1 − z

ρk

) 1
2
)

R(z) =
√

2k + 2
2

−
√

2(1 − ρk)
4ρk

(
1 − z

ρk

) 1
2

+ o

((
1 − z

ρk

) 1
2
)

therefore, using Proposition 1, one can obtain an asymptotic equivalent to the
number of nonempty regular expressions.

Lemma 2. The number of elements of size n in R is asymptotically equivalent

to Ckρ−n
k n−3/2, with Ck =

√
2(1−ρk)
8ρk

√
π

.

632 C. Nicaud

Note that if some generating function f(z) has a unique dominant singularity
on ρk where we can apply Proposition 1, and satisfies as z → ρk:

f(z) = a − b

4ρk

√
∆k(z) + o(

√
1 − z/ρk)

then [zn]f(z) ∼ b [zn]R(z). Therefore, for our computations, it is often more
convenient to obtain developments in terms of 1

4ρk

√
∆k(z) instead of

√
1 − z/ρk.

The techniques are of course the same, since they only differ by a multiplicative
constant as z → ρk.

3.2 Regular Expressions of Languages Containing ε

Denote by Rε and Rε the regular expressions whose associated languages re-
spectively recognize and do not recognize the empty word. A specification of Rε

is the following:
Rε = ε +

∗
|
R +

∪
/\

Rε R +
∪
/\

Rε Rε

+
•
/\

Rε Rε

(3)

From which one can obtain the following expression:

Rε(z) =
z + zR(z)
1 − 2zR(z)

The dominant singularity of Rε(z) is also ρk and it satisfies Π1 at ρk:

Rε(z) =
2k +

√
2k + 2

4k + 2
− 1 − 2k + 4k

√
2k + 2

(2k + 1)2

√
∆k(z)
4ρk

+ o

((
1 − z

ρk

) 1
2
)

Therefore, using Proposition 1 one can obtain an asymptotic equivalent to its
coefficients:

[zn]Rε(z) ∼ Dk[zn]R(z), with Dk =
1 − 2k + 4k

√
2k + 2

(2k + 1)2
(4)

Note that, as a consequence, the ratio of regular expressions whose denoted lan-
guage contains the empty word is asymptotically Dk. For a two-letters alphabet,
the value of Dk is approximatively D2 ≈ 0.664.

4 Main Result

This section is devoted to the proof of our main theorem:

Theorem 2. The average number of transitions of the Glushkov’s automaton as-
sociated to a regular expression of size n, for the uniform distribution, is in Θ(n).

4.1 Lower Bound

First remark that if an expression R ∈ R contains m letters, then its Glushkov’s
automaton has m + 1 states. Moreover, since it is accessible by construction, it
has at least m transitions. For R ∈ R, let �(R) be the number of letters in R.

On the Average Size of Glushkov’s Automata 633

Let L(z) be the cost generating function of the number of letters in an element
R of R:

L(z) =
∑
R∈R

�(R)z|R|

From Equation (1) and Lemma 1, we have

L(z) = kz + zL(z) + 2zL(z)R(z) + 2zL(z)R(z)

Hence, using the fact that 1 − z − 4zR(z) =
√

∆k(z):

L(z) =
kz√
∆k(z)

Therefore, L(z) has a unique dominant singularity at ρk and satisfy Π2 at ρk.
By Proposition 1,

[zn]L(z) ∼ kρk√
2π(1 − ρk)

ρ−n
k n−1/2

and the average number of letters in an element of size n of R is equivalent to
4kρ2

k

1−ρk
n as n → ∞. For k = 2, an approximation of 4kρ2

k

1−ρk
is 0.408. We conclude

that in average, the number of transitions in the Glushkov’s automaton of an
element of size n of R is in Ω(n).

4.2 Outline of the Proof of the Upper Bound

In the following subsections we establish some results used to compute an upper
bound for the average number of transitions in a Glushkov’s automaton. As
stated before, the size of the Glushkov’s automaton associated to a nonempty
regular expression R ∈ R is equal to the number of elements in First(R) plus
the number of elements in Edges(R). In the next subsection we prove that in
average, the size of First(R) tends towards a constant. For the remaining part,
we actually compute an upper bound of the size of Edges(R), not its exact
average cardinality. Define the function e : R −→ N by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(ε) = 0
e(a) = 0 ∀a ∈ A

e
(∗

|
R

)
= e(R) + |Last(R)| · |First(R)| ∀R ∈ R

e
(∪

/\
R1 R2

)
= e(R1) + e(R2) ∀R1, R2 ∈ R

e
(•

/\
R1 R2

)
= e(R1) + e(R2) + |Last(R1)| · |First(R2)| ∀R1, R2 ∈ R

(5)

Clearly e(R) is an upper bound of |Edges(R)|, since its definition is obtained
from the one of Edges, Equation (2), and the inequality |X ∪ Y | ≤ |X | + |Y |.

Let E(z) and F (z) be the cost generating functions of e and |First(·)| respec-
tively, and let P (z) be the following generating function

P (z) =
∑
R∈R

|First(R)| · |Last(R)|z|R|

634 C. Nicaud

Note that, by symmetry, F (z) is also the cost generating function of last, F (z) =∑
R∈R last(R)z|R|.
Using Equation (5) and Lemma 1, one has

E(z) = zE(z) + zP (z) + 2zR(z)E(z) + 2zR(z)E(z) + zF (z)2

hence
(1 − z − 4zR(z))E(z) = zP (z) + zF (z)2

and as 1 − z − 4zR(z) =
√

∆k(z), we finally obtain

E(z) =
zP (z) + zF (z)2√

∆k(z)
(6)

At this point we need more informations about P (z) and F (z) in order to con-
clude that [zn]E(z) = nO([zn]R(z)). They will be obtained in the next subsec-
tions.

4.3 The Cost Generating Function F (z)

For an element R ∈ R, let first(R) and last(R) denote respectively the car-
dinalities of the sets First(R) and Last(R). We analyze the average value of
first(R), for a regular expression R ∈ R of size n. F (z) is the cost generating
function of first, and we also consider its restrictions Fε(z) to Rε and Fε(z)
to Rε:

Fε(z) =
∑

R∈Rε

first(R)z|R|; Fε(z) =
∑

R∈Rε

first(R)z|R|

For a given R ∈ R, the value of first(R) can be computed inductively as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

first(ε) = 0;
first(a) = 1 ∀a ∈ A

first
(∗

|
R

)
= first(R) ∀R ∈ R

first
(∪

/\
R1 R2

)
= first(R1) + first(R2) ∀R1, R2 ∈ R

first
(•

/\
R1 R2

)
= first(R1) + first(R2) ∀R1 ∈ Rε, ∀R2 ∈ R

first
(•

/\
R1 R2

)
= first(R1) ∀R1 ∈ Rε, ∀R2 ∈ R

(7)

We consider the following specification of R

R = ε + a1 + · · · + ak +
∗
|
R +

∪
/\

R R
+

•
/\

Rε R +
•
/\

Rε R

This specification can be transformed into a functional equation on cost gener-
ating functions using Lemma 1 and Equation (7). For instance, the construction

•
/\

Rε R produces the term:

z
∑

R1∈Rε

∑
R2∈R

(first(R1) + first(R2))z|R1|z|R2| = zRε(z)F (z) + zFε(z)R(z)

On the Average Size of Glushkov’s Automata 635

All computations and simplifications done, we obtain:

F (z) =
kz

1 − z − 3zR(z)− zRε(z)

As R(z) and Rε(z) are known, it is straightforward to obtain the expansion of
F (z) near its dominant singularity ρk and to check that it satisfies Π1 at ρk:

F (z) = Ek − Fk

√
∆k(z)
4ρk

+ o

((
1 − z

ρk

) 1
2
)

(8)

with Ek = 1 +
√

2k + 2 and Fk = 12+6k+8
√

2k+2
k . Hence, using Proposition 1,

one can prove the following proposition.

Proposition 2. For any fix integer k ≥ 1, the average size of first tends
toward a constant Fk = 12+6k+8

√
2k+2

k , as n tends toward infinity: [zn]F (z) ∼
Fk [zn]R(z).

For k = 2, an approximation of Fk is F2 ≈ 21.8.

4.4 The Cost Generating Function Fε(z)

Similarly, one can use the specification of Rε of Equation (3) to compute Fε(z).
We obtain

Fε(z) =
zF (z) + 2zRε(z)F (z)

1 − 2zR(z)

Once again, Fε(z) satisfies Π1 at ρk with

Fε(z) = Gk − Hk

√
∆k(z)
4ρk

+ o(
√

∆k(z)), with Gk =
4k + 1 +

√
2k + 2

2k + 1

The expression of Hk > 0 in terms of k can also be computed, but is not needed
in the following.

4.5 The Cost Generating Function of the Product first × last

We analyze the average value of the product of first(R) and last(R), for a
regular expression R ∈ R of size n. We consider the cost generating function
P (z) of this product, and its restriction Pε(z) to Rε and Pε(z) = P (z) − Pε(z)
to Rε:

Pε(z) =
∑

R∈Rε

first(R) · last(R)z|R|; Pε(z) =
∑

R∈Rε

first(R) · last(R)z|R|

We use the following specification of R:

R = ε + a1 + · · · + ak +
∗
|
R +

∪
/\

R R
+

•
/\

Rε Rε

+
•
/\

Rε Rε

+
•
/\

Rε Rε

+
•
/\

Rε Rε

636 C. Nicaud

The cost generating function associated to each term of the specification is com-
puted separately. For instance, one has the following cost function for

•
/\

Rε Rε

:∑
R1∈Rε

∑
R2∈Rε

first
(•

/\
R1 R2

)
last

(•
/\

R1 R2

)
z1+|R1|+|R2|

= z
∑

R1∈Rε

∑
R2∈Rε

(first(R1) + first(R2)) last(R2)z|R1|z|R2|

= z
∑

R1∈Rε

∑
R2∈Rε

first(R1)last(R2)z|R1|z|R2| + zRε(z)Pε(z)

= zFε(z)Fε(z) + zRε(z)Pε(z)

Using the same techniques for the other parts of the expression, we obtain:

P (z) =
kz + 3zF (z)2 + zFε(z)2

1 − z − 2zR(z)− 2zRε(z)

From which, using the previous results, we conclude that P (z) satisfies Π1 at ρk

and that there exists some real numbers Ik and Jk such that, as z → ρk,

P (z) = Ik − Jk

√
∆k(z) + o(

√
∆k(z))

with Ik = 38k2+77k+28+(14k2+45k+20)
√

2k+2
2k(k+1) and Jk > 0.

4.6 Concluding the Proof of Theorem 2

We can now analyze Equation (6). As both F (z) and P (z) satisfy Π1, so does
zP (z) + zF (z)2, since the constant term of its development near ρk is not zero.
Hence E(z) satisfies Π2 at ρk and Proposition 1 can be applied:

[zn]E(z) ∼ ekn [zn]R(z)

The value of ek is not needed to prove the theorem, but is still an indication on
a bound of the average number of transitions in a Glushkov’s automaton:

ek =
32k4 + 204k3 + 406k2 + 306k + 72 + (80k3 + 230k2 + 193k + 52)

√
2k + 2

2k(k + 1)(2k + 1)(8k + 7)

For k = 2, an approximation of ek is e2 ≈ 6.77.
The quantity [zn]E(z)/[zn]R(z) is an upper bound of the average cardinality

of Edges and the average cardinality of First is bounded by Proposition 2,
therefore, by linearity of the average, the average number of transitions in a
Glushkov’s automaton is in O(n). This concludes the proof of Theorem 2.

5 Remarks

In this paper we used the specification of regular expressions that directly follows
the inductive definition. One could try to use a more precise specification to

On the Average Size of Glushkov’s Automata 637

prevent some useless patterns in regular expressions to appear, as was done
for instance in [10] for enumeration purposes. Depending on the chosen such
rules, the analysis we conduct here could still be doable, but probably much
more complicated. Especially if the specification is not context-free (see [11] for
a related analysis). However, we believe that the result would be the same in
much cases. Indeed, the proofs of Theorem 2 and Proposition 2 are based on
the fact that for a non-negligible proportion of regular expressions, the denoted
language does not recognize the empty word, and that the average number of
concatenation operators is non-negligible. This must be true for most natural
specifications.

Also note that we could have used bivariate generating functions instead of
cost generating functions in this paper. The computations would have been the
same here, but this approach should be useful if one want to go one step further,
and try to obtain some informations not only about the average value, but also
about the limit distribution.

References

1. Sakarovitch, J.: The language, the expression, and the (Small) automaton. In:
Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30.
Springer, Heidelberg (2006)

2. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53
(1961)

3. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small
epsilon-free nondeterministic finite automata. In: Reischuk, R., Morvan, M. (eds.)
STACS 1997. LNCS, vol. 1200, pp. 55–66. Springer, Heidelberg (1997)

4. Hagenah, C., Muscholl, A.: Computing epsilon-free NFA from regular expressions
in O(n log2(n)) time. ITA 34(4), 257–278 (2000)

5. Ilie, L., Yu, S.: Constructing NFAs by optimal use of positions in regular ex-
pressions. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp.
279–288. Springer, Heidelberg (2002)

6. Champarnaud, J.M., Nicart, F., Ziadi, D.: Computing the follow automaton of
an expression. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA
2004. LNCS, vol. 3317, pp. 90–101. Springer, Heidelberg (2005)

7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2008)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

9. Flajolet, P., Odlyzko, A.M.: The average height of binary trees and other simple
trees. J. Comput. Syst. Sci. 25(2), 171–213 (1982)

10. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317,
pp. 2–22. Springer, Heidelberg (2005)

11. Fernández-Camacho, M.I., Steyaert, J.M.: Algebraic simplification in computer
algebra: An analysis of bottom-up algorithms. TCS 74(3), 273–298 (1990)

Tiling the Plane with a Fixed Number of
Polyominoes

Nicolas Ollinger

Laboratoire d’informatique fondamentale de Marseille (LIF),
Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France
Nicolas.Ollinger@lif.univ-mrs.fr

Abstract. Deciding whether a finite set of polyominoes tiles the plane
is undecidable by reduction from the Domino problem. In this paper,
we prove that the problem remains undecidable if the set of instances is
restricted to sets of 5 polyominoes. In the case of tiling by translations
only, we prove that the problem is undecidable for sets of 11 polyominoes.

Introduction

Tiling the plane given a finite set of tiles is an old and fascinating problem.
For an survey on tilings, the reader is invited to consult Grünbaum and Shep-
hard [1]. A celebrated computability result by Berger [2] is the undecidability of
the Domino problem: given a finite set of Wang tiles, unit squares with colored
edges, decide if the Wang tiles can tile the whole plane so that matching edges
share a same color. A polyomino is a simple kind of tile: it consists of rookwise
connected unit squares. Golomb [3] studied tiling by polyominoes and proved in
[4] that the Domino problem can be reduced to deciding if a finite set of poly-
ominoes tiles the plane. The reduction can be achieved by a classical encoding of
Wang tiles by polyominoes that preserves tilings. In this reduction, the number
of polyominoes is equal to the initial number of Wang tiles. A natural question
arises: what happens if we consider the tiling problem for a fixed number of
polyominoes? From this previous result, two cases might happen: (1) the prob-
lem is undecidable starting from a certain fixed number of polyominoes (2) the
problem is decidable for every fixed number of polyominoes but the family of de-
cision procedures is not itself recursive. As case (1) is more likely to happen, the
question is to find the frontier between decidability and undecidability. Such a
study of decidability questions with respect to a parameter appears for example
in the study of semi-Thue systems or for Post correspondence problem (PCP)
where it is shown that PCP (2) is decidable and PCP (7) is undecidable [5,6,7].

Motivated by parallel computing, Wijshoff and van Leeuwen [8] proved that
the tilability of the plane by translation of a unique polyomino is decidable.
That result was further studied and understood by Beauquier and Nivat [9] who
described precisely the tilings by translation generated by a unique polyomino.

This paper is organized as follows. In section 1, we introduce Wang tiles,
polyominoes and dented polyominoes, a special variation of polyominoes used in

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 638–647, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tiling the Plane with a Fixed Number of Polyominoes 639

the constructions. In section 2, we prove that it is undecidable whether a set of
5 polyominoes tiles the plane. In section 3, we deduce from previous section that
it is undecidable whether a set of 11 polyominoes tiles the plane by translation.
In section 4, we discuss the case of smaller sets of tiles.

1 Definitions

Polyominoes. A polyomino is a simply connected tile obtained by gluing to-
gether rookwise connected unit squares. A tiling, of the Euclidian plane, by a set
of polyominoes is a partition of the plane such that each element of the partition
is the image by an isometry of a polyomino of the set. A tiling by translation is
a tiling where isometries are restricted to translations. A tiling is periodic if it is
invariant by translation, biperiodic if it is invariant by two non-colinear transla-
tions, aperiodic if it is not periodic. A set of polyominoes is aperiodic if it admits
a tiling and all its tilings are aperiodic.

A tiling is discrete if all the vertices of the unit squares composing the poly-
ominoes are aligned on the grid Z2. If a tiling is not discrete, the tiling can be
split into two tilings of a half-plane along a line going through an edge along
which two unit squares are not aligned. By shifting one half-plane to align the
tiles, and iterating this process, one obtains the following lemma.

Lemma 1. A set of polyominoes admits a tiling if and only if it admits a discrete
tiling.

In this paper where we deal with tilability, we only consider discrete tilings,
thanks to this lemma. Thus, a polyomino can be considered as a finite, simply
connected, subset of Z2 and a tiling by a set of polyominoes is a partition of Z2

where each element is the image by an isometry of an element of the set. Each
such isometry can be decomposed into a translation and one out of 8 elementary
transformations obtained by composing right angle rotations and mirroring. A
sample polyomino and its 8 transformations are represented in Fig. 1.

Fig. 1. A polyomino and its 8 transformations

Polyominoes are compactly described by their contour words. A contour word
of a polyomino is a (finite) word on the alphabet {e, w, n, s} describing a walk
along the outline of the polyomino starting from and ending to a vertex of the
boundary of the polyomino where e is an east move (1, 0), w is a west move

640 N. Ollinger

(−1, 0), n is a north move (0, 1) and s is a south move (0,−1). A word is a
contour word if and only if the associated path does not cross itself. A polyomino
with a pointed contour word is represented in Fig. 2

e3ne2se2n2w5swnws2

Fig. 2. A polyomino with a pointed contour word

Wang Tiles. A Wang tile is a unit square with colored edges. A tiling by a
set of Wang tiles is a discrete tiling by tiles of the set such that along each edge
the colors match on both sides. The Domino problem is the following decision
problem: given a finite set of Wang tiles, decide whether it admits a tiling.

Theorem 1 (Berger [2]). The Domino problem is undecidable.

The Polyomino problem is the following decision problem: given a finite set of
polyominoes, decide whether it admits a tiling. By a reduction from the Domino
problem to the Polyomino problem, Golomb [4] proved the undecidability of the
Polyomino problem.

Theorem 2 (Golomb [4]). The Polyomino problem is undecidable.

The reduction proceeds as follows. Given a finite set of Wang tiles, Golomb
encodes each tile into a big squarish polyomino. Special bumps and dents are
added to the corners of the tiles to force both alignment and orientation of the
tiles: if one of the encoding polyominoes appears with an orientation, all the
other tiles of the tiling have to use the same orientation. Special bumps and
dents are used along the sides of the big polyominoes to encode the colors of the
Wang tiles. Quotienting the set of tilings of the set of encoding polyominoes by
isometries, it is in bijection with the set of tilings of the given set of Wang tiles.

Dented Polyominoes. A dented polyomino is a polyomino with edges labeled
by a shape and an orientation. The four possible orientations {p, q, b, d} and their
interpretation depending on the direction of the edge are depicted on Table 1
for a sample shape. On a contour word, inside shapes define bumps and outside
shapes define dents. A tiling by a set of dented polyominoes is a tiling by the
corresponding set of polyominoes where bumps and dents match along edges.

Dented polyominoes provide a convenient tool to construct complicated sets
of polyominoes. These polyominoes with puzzle bumps and dents can be easily
converted into polyominoes.

Lemma 2. Every finite set of dented polyominoes can be encoded as a finite set
of polyominoes such that their sets of tilings are in one-to-one correspondence.

Tiling the Plane with a Fixed Number of Polyominoes 641

Table 1. Encoding of bumps and dents orientation

p q b d
e
w

n

s

Proof. In order to guarantee that bumps and dents do not interfere with the
matching conditions of polyominoes, the idea is to rescale the polyominoes. For
all k ∈ Z+, a k-rescaling of a set of polyominoes consists into scaling the poly-
ominoes by a factor k, i.e., replacing each unit square by a square of k by k unit
squares. Tilings are preserved by rescaling: the set of tilings of a set of polyomi-
noes is in one-to-one correspondence with the set of tilings of its k-rescaling.

To encode a finite set of dented polyominoes into a finite set of polyominoes:
first, rescale the set of polyominoes by a factor far bigger than the size of any
shape of its bumps and dents; then, add bumps and dents in the middle of each
rescaled edge. $%

2 Tiling with a Fixed Number of Polyominoes

The k-Polyomino problem is the following decision problem: given a set of k
polyominoes, decide whether it admits a tiling. This section is dedicated to the
proof of the following theorem.

Theorem 3. The 5-Polyomino problem is undecidable.

We will proceed by reduction of the Domino problem. Given a finite set τ of
Wang tiles, we construct a set of 5 dented polyominoes P (τ) such that, up to
isometry, the set of tilings of τ is in one-to-one correspondence with the set of
tilings of P (τ). The proof goes as follows. First, we describe the construction of
P (τ). Then, we explain how to encode any tiling of τ by a tiling of P (τ). Finally,
we show that any tiling of P (τ) encodes a tiling of τ .

2.1 Encoding a Set of Wang Tiles

Let τ be a set of N Wang tiles. The set of dented polyominoes P (τ) consists of
the following 5 tiles, represented in Fig. 3:

meat encodes all tiles of the set τ sequentially;
jaw acts as a selector to select exactly one tile of the meat ;
filler is used for padding the blank leaved by the meat inside the jaw ;
tooth erases the bits on the meat so that it fits inside the jaw ;
wire links meat pieces together to verify tiling constraints.

642 N. Ollinger

From left to right and bottom to top : meat, tooth, wire, filler, jaw
Notice that here N = 4 and k = 3 to fit the page (in the text k > 4).

Fig. 3. Tiles (rotated to fit in page)

Tiling the Plane with a Fixed Number of Polyominoes 643

More formally, the dented polyominoes use 4 different shapes for bumps and
dents, detailed on Table 2.

Table 2. Types of bumps and dents

blank bit marker inside

shape
notation b m i

order 1 4 4 2
bump wire, tooth meat, filler tooth, filler
dent meat jaw jaw

Let k be a large enough integer and choose an encoding on k − 4 bits of the
colors of the set of Wang tiles (horizontal and vertical colors can use different
encodings). Let (ai

j), (bi
j), (ci

j), (di
j) be respectively the north, east, south, and

west binary encoding of the tiles where i is the tile index from 1 to N and j is
the bit index from 1 to k − 4. Let (ai

j) be the encoding of the k bits, by adding
prefix 00 and suffix 01, of (ai

j) on the alphabet {b, d}. Let (bi
j) be the encoding

of the k bits, by adding prefix 10 and suffix 11, of (bi
j) on the alphabet {p, q}.

Let (ci
j) be the encoding of the k bits, by adding prefix 00 and suffix 01, of (ci

j)
on the alphabet {b, d}. Let (di

j) be the encoding of the k bits, by adding prefix
10 and suffix 11, of (di

j) on the alphabet {p, q}. The dented polyominoes are
given by their contour words on Table 3.

Table 3. Contour encoding of the tiles

tooth: eb
inwq

bs

wire: eb
bn

5w2N(k+1)+1n4wp
bs

5e2N(k+1)+1s4

filler : eb
m

(
seb

i

)k (
eb

in
)k

ed
mnwq

m (nwp
i)

k (wp
i s)

k wp
ms

jaw : eq
m

(
ep

m (nep
i)

k (ep
is)

k eq
m

)N−1

s
(
wd

m

(
swd

i

)k (
wd

i n
)k

wb
m

)N−1

wd
ms4e2(N−1)(2k+2)+4n4

wb
m

(
wd

m

(
swd

i

)k (
wd

i n
)k

wb
m

)N−1

n
(
ep

m (nep
i)

k (ep
is)

k eq
m

)N−1

ep
mn4w2(N−1)(2k+2)+4s4

meat :
∏N

i=1

(
eb

m

∏k−1
j=1

(
e

ai
j

b s

)
e

ai
k

b

∏k−1
j=1

(
e

bi
j

b n

)
e

bi
k

b ed
m

)
n

∏1
i=N

(
wq

m

∏2
j=k

(
w

ci
j

b n

)
w

ci
1

b

∏2
j=k

(
w

di
j

b s

)
w

di
1

b wp
m

)
s

Notice the following important properties of these tiles. The meat consists of
a sequence of N diamonds decorated with bit shapes with a prefix and a suffix
marker shape pointing to the diamond. If one connects a tooth in each bit dent
of a diamond of the meat , the diamond becomes similar to the filler. Moreover,
both inside parts of a jaw consists of N − 1 places to put a filler plus a marker
shape at the entry of the jaw , pointing outside.

644 N. Ollinger

2.2 Encoding Tilings by Wang Tiles

Let us first prove the following lemma.

Lemma 3. Every tiling by τ can be encoded as a tiling by P (τ).

The set of dented polyominoes is designed to encode a Wang tile by selecting one
diamond of a meat, hiding the other diamonds using two jaws on the left and
the right, padding inside the jaws with teeth and fillers , as represented in Fig. 4.
The colors of the tile are propagated to the four neighbor tiles using wires.

Fig. 4. Encoding of a Wang tile including inter-tiles wires

Let T ∈ τZ2
be a tiling by τ . Each north-west diagonal (x + y = i for the

ith diagonal) is encoded as a line of Wang tile encodings where a jaw connects
tile T (x, i − x) to tile T (x + 1, i − x − 1). These lines of encoding are put on
top of each other with a slight translation so that tile T (x, i − x) is connected
by wires to T (x + 1, i − x), T (x, i − x + 1), T (x − 1, i − x) and T (x, i − x − 1),
as represented in Fig. 5. Notice that the choices made for a, b, c, and d permits
such a connection only if the Wang tiling is valid. Thus, one obtains a tiling of
the dented polyominoes.

Fig. 5. Wiring of Wang tiles

Tiling the Plane with a Fixed Number of Polyominoes 645

2.3 Every Tiling Encodes a Tiling

Now, we prove the following lemma.

Lemma 4. Every tiling by P (τ) encodes a tiling by τ .

Consider a tiling by the dented polyominoes. We first show that it must contain
a jaw. Consider any tile of the tiling. If it is a jaw, we are done. Examine Table 2.
If it is a meat or a filler, it has a marker bump that should be linked to a dent
only found on a jaw. If it is a tooth, it has an inside bump that should be linked
to a dent only found on a jaw. Finally, if it is a wire, it has bit bump that should
be linked to a meat, itself connected to a jaw.

Consider a jaw tile of the tiling. To fill all the marker bumps, only filler and
meat tiles can be used. As fillers have inside bumps, they can only be used
completely inside the jaw. Thus, the markers on the extremities of the jaw have
to be filled by the dents of a meat. Consider the meat that fills a marker at
the extremity of the jaw. As marker bumps only appear inside jaws, the marker
dent on the other side of the diamond of the meat next to the jaw has to be at
the extremity of a next jaw. The only possibility to fill the gap in between the
jaw and the meat locking its extremity is to use fillers and teeth. By now, we
have proved that each jaw of the tiling appears in a biinfinite line (or column if
rotated) of alternating jaws and meats where each meat has exactly one selected
diamond outside the jaws.

Consider now the diamond of each meat appearing outside the jaws : it has bit
bumps. A bit dent is found only on teeth and wires. As a tooth cannot appear
outside a jaw (it as an inside dent), only wires can be connected to these bumps.
Consider the two bit bumps side by side at the top of the diamond hill. The only
possibility for two wires to appear side by side is to have the left one point to the
left and the right one point to the right. This enforces all the wires in between
the jaw and the top hill wire to point in the same direction: left ones to the left
and right ones to the right. Thus, every tiling by dented polyominoes consists of
biinfinite lines (or columns) of selected meat diamonds connected by wires in a
lattice way as on Fig. 5.

Due to isometries, it remains to prove that all the selected diamonds have the
same orientation. This part is enforced by the prefix/suffix trick in the a, b, c,
and d encoding: the only possibility for a diamond to be connected to another
diamond is that prefix and suffix match, thus both should be oriented in the
same way. Thus, the tiling is the image by an isometry of a tiling by Wang tiles.
We have proved that every tiling by P (τ) encodes a tiling by τ , achieving the
reduction.

3 Tiling by Translation

The k-Polyomino translation problem is the following decision problem: given a
set of k polyominoes, decide if it admits a tiling by translation. Using the result
of previous section, one obtains the following.

646 N. Ollinger

Theorem 4. The 11-Polyomino translation problem is undecidable.

To prove this theorem, for any finite set of Wang tiles τ , construct a set of
11 polyominoes as follows. Consider the set of 5 dented polyominoes P (τ). To
encode any tiling by τ into a tiling by P (τ) as done in the previous section, we
use exactly:

1 transformation of meat ;
1 transformation of jaw ;
1 transformation of filler ;
4 transformations of wire;
4 transformations of tooth.

The set of 11 polyominoes tiling by translation consists exactly of these tile
transformations. These dented polyominoes admit a tiling if and only if the set
of Wang tiles admits a tiling.

4 Going Further

What can be said about tilability for sets of less that 5 polyominoes? or less
than 11 polyominoes for tilings by translation? In the case of 1 polyomino, it is
decidable for tiling by translation and still open for tiling with isometries.

Theorem 5 (Wijshoff and van Leeuwen [8], Gambini and Vuillon [10]).
The 1-Polyomino translation problem is decidable in time quadratic in the size
of the contour word.

Open Problem 1. Is the 1-Polyomino problem decidable?

To prove the undecidability of the Polyomino problem, one has to be able to
construct aperiodic sets of polyominoes. Ammann et al provide a set of 2 polyg-
onal tiles with colors and 3 polygonal tiles with bumps and dents that admits
only aperiodic tilings. This set is convertible into polyominoes.

Theorem 6 (Ammann et al. [11]). There exists an aperiodic set of 3 poly-
ominoes.

Theorem 7 (Ammann et al. [11]). There exists an aperiodic set of 8 poly-
ominoes for tiling by translation.

Open Problem 2. Is the k-Polyomino problem decidable for 3 � k < 5?

Open Problem 3. For 8 � k < 11, is the k-Polyomino translation problem de-
cidable?

Acknowledgement

The author thanks Bruno Durand for challenging him with the decision problem
of tiling the plane with a fixed number of polyominoes.

Tiling the Plane with a Fixed Number of Polyominoes 647

References

1. Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the
Mathematical Sciences. W. H. Freeman and Company, New York (1989)

2. Berger, R.: The undecidability of the domino problem. Memoirs American Math-
ematical Society 66 (1966)

3. Golomb, S.W.: Tiling with polyominoes. Journal of Combinatorial Theory 1(2),
280–296 (1966)

4. Golomb, S.W.: Tiling with sets of polyominoes. Journal of Combinatorial The-
ory 9(1), 60–71 (1970)

5. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52, 264–268 (1946)

6. Claus, V.: Some remarks on PCP(k) and related problems. Bulletin of the
EATCS 12, 54–61 (1980)

7. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-thue systems with a
few rules. Theoretical Computer Science 330(1), 145–169 (2005)

8. Wijshoff, H.A.G., van Leeuwen, J.: Arbitrary versus periodic storage schemes and
tessellations of the plane using one type of polyomino. Information and Con-
trol 62(1), 1–25 (1984)

9. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete
and Computational Geometry 6(1), 575–592 (1991)

10. Gambini, I., Vuillon, L.: An algorithm for deciding if a polyomino tiles the plane.
Theoretical Informatics and Applications 41(2), 147–155 (2007)

11. Ammann, R., Grünbaum, B., Shephard, G.: Aperiodic tiles. Discrete and Compu-
tational Geometry 8(1), 1–25 (1992)

New Morphic Characterizations of Languages in
Chomsky Hierarchy Using Insertion and Locality

Kaoru Onodera

Department of Information Sciences, School of Science and Engineering, Tokyo Denki
University, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama 350-0394, Japan

kaoru@j.dendai.ac.jp

Abstract. In this paper, we obtain some characterizations and repre-
sentation theorems of languages in Chomsky hierarchy by using insertion
systems, strictly locally testable languages, and morphisms. For instance,
each recursively enumerable language L can be represented in the form
L = h(L(γ) ∩ R), where γ is an insertion system of weight (3, 3), R is a
strictly 2-testable language, and h is a projection. A similar representa-
tion can be obtained for context-free languages, using insertion systems
of weight (3, 0) and strictly 4-testable languages, as well as for regular
languages, using insertion systems of weight (1, 0) and strictly 2-testable
languages.

1 Introduction

DNA computing theory involves the use of insertion and deletion operations. It
has been shown that by using insertion and deletion operations, any recursively
enumerable language can be characterized in [1], [2].

Insertion systems in which we can use only insertion operations are some-
what intermediate between Chomsky context-sensitive grammars (nonterminal
symbols are rewritten according to specified contexts) and Marcus contextual
grammars (contexts are adjoined to specified strings associated with contexts).
From the definition of insertion operations, one would easily imagine that by
using only insertion operations, we generate only context-sensitive languages.

On the other hand, the class of strictly locally testable languages is known as a
proper subclass of regular language classes [3]. The equivalence relation between
a certain type of splicing languages and strictly locally testable languages is
known [4].

We focus on characterizing recursively enumerable languages by using inser-
tion systems together with some “additional mechanisms”. It has been shown
that using insertion systems together with some morphisms, characterizing re-
cursively enumerable languages is accomplished in [2], [5], [6]. Each recursively
enumerable language L can be represented in a similar way to the well-known
Chomsky-Schützenberger representation of context-free languages, L = h(L(γ)
∩D), where γ is an insertion system, h is a projection, and D is a Dyck language
[7]. In this paper, we use strictly locally testable languages and morphisms as
the additional mechanisms for characterizing recursively enumerable languages.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 648–659, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

New Morphic Characterizations of Languages in Chomsky Hierarchy 649

In insertion systems, a pair of the maximum length of inserted strings and
the one of context-checking strings, called weight is an important parameter for
generative powers. As for strictly locally testable languages, the length of local
testability-checking is considered.

We prove that each recursively enumerable language can be represented in
the form h(L(γ) ∩ R), where γ is an insertion system of weight (3, 3), h is a
morphism, and R is a strictly 2-testable language. The similar characterizations
are shown for context-free and regular languages. The optimality of these results,
in terms of weight in insertion operations and the parameter of strictly locally
testable languages remains to be checked.

2 Preliminaries

In this section, we introduce necessary notation and basic definitions needed in
this paper. We assume the reader to be familiar with the rudiments on basic
notions in formal language theory (see, e.g., [2,8]).

2.1 Basic Definitions

For an alphabet V , V ∗ is the set of all strings of symbols from V which includes
the empty string λ. For a string x ∈ V ∗, |x| denotes the length of x. For 0 ≤
k ≤ |x|, let Prek(x) and Sufk(x) be the prefix and the suffix of x of length k,
respectively. For 0 ≤ k ≤ |x|, let Intk(x) be the set of proper interior substrings
of x of length k, while if |x| = k then Intk(x) = ∅.

2.2 Normal Forms of Grammars

A phrase structure grammar is a quadruple G = (N, T, P, S), where N is a set
of nonterminal symbols, T is a set of terminal symbols, P is a set of production
rules, and S in N is the initial symbol. A rule in P is of the form r : α → β, where
α ∈ (N ∪T)∗N(N ∪T)∗, β ∈ (N ∪T)∗, and r is a label from a given set Lab(P)
such that there are no production rules with the same label. For any x and y in
(N ∪ T)∗, if x = uαv, y = uβv, and r : α → β ∈ P , then we write x

r=⇒G y.
We say that x directly derives y with respect to G. If there is no confusion, we
write x =⇒ y. The reflexive and transitive closure of =⇒ is denoted by =⇒∗.

We define a language L(G) generated by a grammar G as follows:

L(G) = {w ∈ T ∗ | S =⇒∗
G w}.

It is well known that the class of languages generated by the phrase structure
grammars is equal to the class of recursively enumerable languages RE [8].

A grammar G = (N, T, P, S) is context-free if P is a finite set of context-free
rules of the form A → α, where A ∈ N and α ∈ (N ∪ T)∗. A language L is a
context-free language if there is a context-free grammar G such that L = L(G).
Let CF be the class of context-free languages.

A context-free grammar G = (N, T, P, S) is in Chomsky normal form if each
production rule in P is of one of the following forms:

650 K. Onodera

1. X → Y Z, where X, Y, Z ∈ N .
2. X → a, where X ∈ N , a ∈ T .
3. S → λ (only if S does not appear in right-hand sides of production rules).

It is well known that, for each context-free language L, there is a context-free
grammar in Chomsky normal form generating L [8].

A grammar G = (N, T, P, S) is regular if P is a finite set of rules of the form
X → α, where X ∈ N and α ∈ TN ∪T ∪{λ}. A language L is a regular language
if there is a regular grammar G such that L = L(G). Let REG be the class of
regular languages.

We are going to define a strictly locally testable language, which is one of the
main objectives of the present work.

Let k be a positive integer. A language L over T is strictly k-testable if there
is a triplet Sk = (A, B, C) with A, B, C ⊆ T k such that, for any w with |w| ≥ k,
w is in L iff Prek(w) ∈ A, Sufk(w) ∈ B, Intk(w) ⊆ C.

Note that if L is strictly k-testable, then L is strictly k′-testable for all k′ > k.
Further, the definition of strictly k-testable says nothing about the strings of
“length k − 1 or less”.

A language L is strictly locally testable iff there exists an integer k ≥ 1 such
that L is strictly k-testable. Let LOC(k) be the class of strictly k-testable lan-
guages. Then one can prove the following theorem.

Theorem 1. [9] LOC(1) ⊂ LOC(2) ⊂ · · · ⊂ LOC(k) ⊂ · · · ⊂ REG.

We are now going to define an insertion system. An insertion system (ins system,
for short) is a triple γ = (T, P, AX), where T is an alphabet, P is a finite set of
insertion rules of the form (u, x, v) with u, x, v ∈ T ∗, and AX is a finite set of
strings over T called axioms.

We write α
r=⇒γ β if α = α1uvα2 and β = α1uxvα2 for some insertion rule

r : (u, x, v) ∈ P with α1, α2 ∈ T ∗. If there is no confusion, we write α =⇒ β.
The reflexive and transitive closure of =⇒ is defined by =⇒∗.

A language generated by γ is defined by

L(γ) = {w ∈ T ∗ | s =⇒∗
γ w, for some s ∈ AX}.

An insertion system γ = (T, P, AX) is said to be of weight (m, n) if

m = max{ |x| | (u, x, v) ∈ P},
n = max{ |u| | (u, x, v) ∈ P or (v, x, u) ∈ P}.

For m, n ≥ 0, INSn
m denotes the class of all languages generated by ins

systems of weight (m′, n′) with m′ ≤ m and n′ ≤ n. When the parameter is not
bounded, we replace m or n with ∗.

For insertion systems, there exist the following results.

Theorem 2. [2]

1. FIN ⊂ INS0
∗ ⊂ INS1

∗ · · · ⊂ INS∗
∗ ⊂ CS.

2. REG ⊂ INS∗
∗ .

New Morphic Characterizations of Languages in Chomsky Hierarchy 651

3. INS1
∗ ⊂ CF .

4. CF is incomparable with all INSn∗ (n ≥ 2), and INS∗∗ .
5. INS2

2 contains non-semilinear languages.

From the definition of insertion systems, we can easily prove the following lemma.

Lemma 1. INS0
1 ⊂ REG.

A mapping h : V ∗ → T ∗ is called morphism if h(λ) = λ and h(xy) = h(x)h(y)
for any x, y ∈ V ∗. For languages L1, L2, and morphism h, we use the following
notation: h(L1 ∩ L2) = {h(w) | w ∈ L1 ∩ L2}. For language classes L1 and L2,
we introduce the following class of languages:

H(L1 ∩ L2) = {h(L1 ∩ L2) | h is a morphism, Li ∈ Li (i = 1, 2)}.

3 Characterizations of Regular Languages

In this section, we will characterize regular languages in terms of insertion lan-
guages and strictly locally testable languages both of which form proper sub-
classes of regular languages.

Lemma 2. REG ⊆ H(INS0
1 ∩ LOC(2)).

Proof. For a regular language L, let G = (N, T, P, S) be a regular grammar such
that L = L(G). Using the new symbol F , we construct the insertion system
γ = (V, P ′, {λ}) of weight (1, 0), where

V = {Xr | r : X → α ∈ P} ∪ {F},
P ′ = {(λ, X, λ) | X ∈ V }.

Then, L(γ) = V ∗.
Further, we define the morphism h : V ∗ → T ∗ by

h(Xr) = a if r : X → aY ∈ P or r : X → a ∈ P,
h(Xr) = λ if r : X → λ ∈ P,
h(F) = λ.

Finally, consider R = AV ∗ ∩ V ∗B − V +C′V + with C′ = V 2 − C, where

A = {SrXr1 | r : S → aX ∈ P, r1 : X → α ∈ P, α ∈ T ∪ TN ∪ {λ}}∪
{SrF | r : S → α ∈ P, α ∈ T ∪ {λ}},

B = {XrF | r : X → a ∈ P or r : X → λ ∈ P},
C = {XrYr1 | r : X → aY ∈ P, r1 : Y → α ∈ P, α ∈ T ∪ TN ∪ {λ}}.

Then R is a strictly 2-testable language prescribed by S2 = (A, B, C).
We can prove that, for any X ∈ N , X r1=⇒G · · · rn−1=⇒G w′Y rn=⇒G w′y = w ∈ T ∗

iff Xr1 · · ·YrnF ∈ V ∗B − V ∗C′V + with h(Xr1 · · ·YrnF) = w by the induction
on n. We omit the proof here.

Considering the special case X = S, then a string w is in L(G) iff w is in
h(L(γ) ∩ R). $%

652 K. Onodera

Lemma 3. H(INS0
1 ∩ LOC(2)) ⊆ REG.

Proof. Since the class of regular languages is closed under intersection with reg-
ular languages and morphisms, the result follows from the facts that INS0

1 ⊂
REG in Lemma 1 and LOC(2) ⊂ REG in Theorem 1. $%

From Lemma 2 and Lemma 3, we have the following theorem.

Theorem 3. REG = H(INS0
1 ∩ LOC(2)).

Since for arbitrary k with k ≥ 2, the class of regular languages includes the
class of strictly k-testable languages, the next result follows from Theorem 3
and Theorem 1.

Corollary 1. REG = H(INS0
1 ∩ LOC(k)) (k ≥ 2).

The value of parameter k = 2 in the strictly k-testable languages in Theorem 3
is necessary for expressing regular languages in the following sense.

Lemma 4. There exists a regular language which cannot be written in the form
h(L(γ)∩R), for any insertion system γ of weight (i, 0) (∀i ≥ 1), strictly 1-testable
language R, and morphism h.

Proof. Consider the regular language L = {al | l ≥ 0} ∪ {bl | l ≥ 0}. Suppose
that there is an insertion system γ = (V, P, AX) of weight (i, 0) with i ≥ 1, a
strictly 1-testable language R prescribed by S1 = (A, B, C), and a morphism h
such that L = h(L(γ) ∩ R).

Then, for any l ≥ 0, there exists the set of strings Dl = {x | h(x) = al} ∪ {y |
h(y) = bl} such that Dl ⊂ L(γ) ∩ R. Let D = ∪

l≥0
Dl, then D is an infinite set.

Since D ⊂ L(γ) ∩ R holds, L(γ) ∩ R is also an infinite set. Then P includes
both (λ, ua, λ) and (λ, ub, λ), where ua, ub ∈ Ci, h(ua) = aia , h(ub) = bib for
some ia, ib > 0. Let t1xt2 and t3yt4 be in L(γ) ∩ R with t1, t3 ∈ A, t2, t4 ∈ B,
ua ∈ Inti(t1xt2), ub ∈ Inti(t3yt4).

Then, the string t1ubxt2 is in L(γ) ∩ R satisfying |h(t1ubxt2)|a ≥ ia > 0 and
|h(t1ubxt2)|b ≥ ib > 0, which contradicts to the fact that L = {al | l ≥ 0} ∪ {bl |
l ≥ 0}. $%

From Lemma 4, Theorem 1, and Theorem 3, we have the following theorem.

Theorem 4. H(INS0
1 ∩ LOC(1)) ⊂ REG.

The value of weight (1, 0) in insertion systems in Theorem 3 is optimal for
expressing regular languages in the following sense.

Lemma 5. There exist an insertion system γ of weight (2, 0), a strictly 1-
testable language R, and a morphism h such that h(L(γ) ∩ R) is non-regular.

Proof. Consider an insertion system γ = (T, {λ}, {(λ, ab, λ)}) with T = {a, b}.
Then, for any w in L(γ), |w|a = |w|b holds.

New Morphic Characterizations of Languages in Chomsky Hierarchy 653

Consider R = AT ∗∩T ∗B−T +C′T + with C′ = T−C, where A = B = C = T .
Then R = T + is a strictly 1-testable language prescribed by S1 = (T, T, T).
Further, we define a morphism h : T ∗ → T ∗ by h(c) = c for any c ∈ T . Then,
we have L(γ) ∩ R = h(L(γ) ∩ R) = {w | w ∈ L(γ), w �= λ}.

For a regular language R∗ = {aibj | i, j ≥ 1}, h(L(γ)∩R)∩R∗ = {aibi | i ≥ 1},
which is not regular. From the fact that the class of regular languages is closed
under intersection with regular languages, h(L(γ) ∩ R) is not regular. $%

From Lemma 4, Lemma 5, and the fact that INS0
i ⊆ INS0

i+1 with i ≥ 1, we
have the following corollary.

Corollary 2. REG and H(INS0
i ∩ LOC(1)) are incomparable (i ≥ 2).

From Lemma 5, Theorem 2, and Theorem 1, we have the following corollary.

Corollary 3. REG ⊂ H(INS0
i ∩ LOC(k)) (i ≥ 2, k ≥ 2).

4 Characterizations of Context-Free Languages

We will show how context-free languages can be characterized by insertion sys-
tems and strictly locally testable languages. In some respect the proof technique
from [7] might be helpful to follow the main proof of this section.

Lemma 6. CF ⊆ H(INS0
3 ∩ LOC(4)).

Proof. Consider a context-free grammar G = (N, T, P, S) in Chomsky normal
form. We construct an insertion system γ = (Σ, Pγ , {S}), where

Σ = V ∪ V̄ ∪ T
V = N ∪ Lab(P),
Pγ = {(λ, Y Zr, λ), (λ, X̄ r̄, λ) | r : X → Y Z ∈ P}∪

{(λ, ar, λ), (λ, X̄r̄, λ) | r : X → a ∈ P}∪
{(λ, r, λ), (λ, S̄r̄, λ) | r : S → λ ∈ P}.

For the rule r : X → α in P , we say that the two insertion rules (λ, αr, λ) and
(λ, X̄r̄, λ) in Pγ are r-pair.

We define the projection h : Σ∗ → T ∗ by

h(a) = a for all a ∈ T,
h(a) = λ otherwise.

Consider R = AΣ∗ ∩ Σ∗B − Σ+C′Σ+ with C′ = Σ4 − C, where

A = {arXX̄ | r : X → a ∈ P} ∪ {rSS̄r̄ | r : S → λ ∈ P},
B = {rSS̄r̄ | r : S → α ∈ P, α ∈ (N ∪ T)∗},
C = {rXX̄r̄, XX̄r̄a, XX̄r̄r1, X̄r̄ar1, X̄r̄r1Y, r̄1arX, r̄1rXX̄, arXX̄ |

r : X → α ∈ P, r1 : Y → α1 ∈ P, a ∈ T, α, α1 ∈ (N ∪ T)∗}.

654 K. Onodera

Then R is a strictly 4-testable language prescribed by S4 = (A, B, C). The
language R can be characterized by using

Ω = {rXX̄r̄ | r : X → α ∈ P, α ∈ (N ∪ T)∗}

such that R ⊂ (Ω ∪ TΩ)∗(B ∪ TB). A nonterminal symbol X in rXX̄r̄ ∈ Ω
is said to be Ω-blocked. A symbol in N ∪ T which is not Ω-blocked is said to
be unblocked. Intuitively, an Ω-blocked nonterminal symbol X in rXX̄r̄ means
that X has been used for the rule r.

Further, based on γ and R, we define the followings: for each X ∈ N , let

γX = (Σ, Pγ , {X})

be an insertion grammar, and let

RX = AΣ∗ ∩ Σ∗BX − Σ+C′Σ∗

be a strictly 4-testable language, where BX = {rXX̄r̄ | r : X → α ∈ P, α ∈
(N ∪ T)∗}. There is a slight note on the form of Σ+C′Σ∗ in RX . Then RX can
be characterized by RX ⊂ (Ω ∪ TΩ)∗. For the case X = S, γS = γ and BS = B
hold.

We can prove that, for any X in N , if there is a derivation X
r1···rn=⇒ G a1 · · ·al

with ai ∈ T (1 ≤ i ≤ l) then there is a string

– w = a1u1 · · · alul in L(γX) ∩ RX ,
where l ≥ 2, ui ∈ Ω+ (1 ≤ i ≤ l − 1), and ul ∈ Ω∗{r1XX̄r̄1}, or

– w = a1u1 in L(γX) ∩ RX ,
where u1 ∈ Ω∗{r1XX̄r̄1}

by induction on the length n of derivations in G. We omit the proof here.
Conversely, we will show that, for nonempty string w in L(γ) ∩ R, h(w) is in

L(G). We start by showing that if a string w is in L(γX) ∩ RX , then there is a
derivation X =⇒∗

G h(w).
Suppose that w is in L(γX) ∩ RX . In order to derive the string w in RX ⊂

(Ω ∪ TΩ)∗, without loss of generality, we may assume here that, for each r in
P , the first two steps in γX are performed by r-pair insertion rules. For the
derivation X =⇒2n

γX
w, we can prove the claim by induction on n. We omit the

proof here. For the case X = S, if there is a nonempty string w ∈ L(γ)∩R, then
a string h(w) is in L(G).

Finally let us consider the case that λ is in L(G). Since G is in Chomsky
normal form, λ is in L(G) if and only if for λ there is a derivation S

r=⇒
λ. By the construction of Pγ and R, the string λ is in L(G) if and only if
(λ, r, λ), (λ, S̄r̄, λ) ∈ Pγ and rSS̄r̄ ∈ A ∩ B. Then there is a derivation S =⇒γ

SS̄r̄ =⇒γ rSS̄r̄ ∈ A∩B. From the definition of h, h(rSS̄r̄) = λ. Therefore, λ is
in L(G) if and only if λ is in h(L(γ) ∩ R). $%

It is known that the class of context-free languages includes the class of in-
sertion languages of weight (3, 0) [10]. Together with the fact that the class of
context-free languages is closed under intersection with regular languages and
morphisms, we have the following lemma.

New Morphic Characterizations of Languages in Chomsky Hierarchy 655

Lemma 7. H(INS0
3 ∩ LOC(4)) ⊆ CF .

From Lemma 6 and Lemma 7, we have the following theorem.

Theorem 5. CF = H(INS0
3 ∩ LOC(4)).

Furthermore, from the fact that for arbitrary k with k ≥ 1, the class of regular
languages includes the class of strictly k-testable languages, we have the following
corollary.

Corollary 4. CF = H(INS0
3 ∩ LOC(k)) (k ≥ 4).

5 Characterizations of RE Languages

In this section, we will show that any recursively enumerable language can be
represented by using insertion systems and strictly locally testable languages in
the similar way to context-free and regular languages.

Theorem 6. RE = H(INS3
3 ∩ LOC(2)).

Construction of an insertion system γ: Let G = (N, T, P, S) be a type-0
grammar in Penttonen normal form. In this normal form, the rules in P are of
the following types:

Type 1 : X → α ∈ P, where X ∈ N, α ∈ (N ∪ T)∗, |α| ≤ 2.
Type 2 : XY → XZ ∈ P, where X, Y, Z ∈ N.

By introducing new symbols # and c, we construct the insertion system γ =
(Σ, Pγ , {Scc}), where Σ = N∪T ∪{#, c} and Pγ contains the following insertion
rules:

– Group 1: For each rule r : X → Y Z ∈ P of Type 1, with X ∈ N and
Y, Z ∈ N ∪ T ∪ {λ}, we construct the following insertion rules

form-(r1) (X, #Y Z, α1α2) in Pγ , where α1α2 ∈ (N ∪ T ∪ {c})2.

– Group 2: For each rule r : XY → XZ ∈ P of Type 2, with X, Y, Z ∈ N , we
construct the following insertion rules

form-(r2) (XY, #Z, α1α2) in Pγ , where α1α2 ∈ (N ∪ T ∪ {c})2.

– Group 3 (Relocation task for X): For each X, Y ∈ N , we construct the
following insertion rules

form-(r3) (XY #, #X, α), where α ∈ (N ∪ T ∪ {c}),
form-(r4) (X, #, Y ##),
form-(r5) (#Y #, Y, #X).

656 K. Onodera

We define a projection h : Σ∗ → T ∗ by

h(a) = a for all a ∈ T,
h(a) = λ otherwise.

Finally, let R = AΣ∗ ∩ Σ∗B − Σ+C′Σ+ with C′ = Σ2 − C,

A = {X# | X ∈ N},
B = {cc},
C = {X# | X ∈ N} ∪ {#X | X ∈ N} ∪ {aX | X ∈ N}∪

{ab | a, b ∈ T } ∪ {ac | a ∈ T } ∪ {#a | a ∈ T } ∪ {#c}.

Then R is a strictly 2-testable language prescribed by S2 = (A, B, C). The
language R can be represented by R = N{#}(T ∪ N{#})∗{cc}.

Then we obtain L(G) = h(L(γ) ∩ R), which will be proven in the sequel. We
start by introducing some useful notions.

We call the symbol # a marker. A symbol in N followed by # is said to be
#-marked (briefly marked). A symbol in N ∪ T which is not marked is said to
be unmarked. We call a string in N{#} a wreck and a string in (N{#})+ a
wrecks. Since the symbols c and # are special symbols, they are neither marked
nor unmarked. A string xcc, where x is in (N{#} ∪ N ∪ T)∗, is a legal string.

An intuitive explanation of marked symbols and unmarked symbols is the
followings:

Note 1. A marked symbol means that the symbol has been used (i.e. consumed)
for some derivation in γ.

Note 2. In γ at each step a string consisting of unmarked symbols of a legal
string indicates a sentential form of G.

By the construction of R, making L(γ) ∩ R leads to only legal strings. Then if
we erase the “wrecks” and the symbol c, we get the legal strings of unmarked
symbols which are exactly sentential forms of G.

By using the rules of Group 1 and Group 2, we can simulate the rules of Type
1 and Type 2 respectively. By using the rules of Group 3, we move an unmarked
symbol to the right across a block M#, where M ∈ N . Thus the nonterminal
pairs XY can be ready for simulating the rules XY → Y Z of Type 2.

In order to prove the equality L(G) = h(L(γ)∩R), we first prove the inclusion
L(G) ⊆ h(L(γ) ∩ R).

Fact 1. Applying a form-(r1) rule : (X, #Y Z, α1α2) to an occurrence of a string
Xα1α2 with α1α2 ∈ (N ∪ T ∪ {c})2 makes a new occurrence of the string
X#Y Zα1α2. Note that the unmarked symbol X becomes marked, while the sym-
bols Y, Z are newly created unmarked symbols.

Fact 2. Applying a form-(r2) rule : (XY, #Z, α1α2) to an occurrence of a string
XY α1α2 with α1α2 ∈ (N ∪ T ∪ {c})2 makes a new occurrence of the string
XY #Zα1α2. Note that the symbol X is preserved in just the unmarked state,
the unmarked symbol Y becomes marked, while the symbol Z is newly created
unmarked symbol.

New Morphic Characterizations of Languages in Chomsky Hierarchy 657

Lemma 8. The rules in Group 3 can replace a substring XY #α (α ∈ N ∪ T ∪
{c}) by a substring consisting of the strings in N{#} and ending with Xα. The
symbol X is unmarked before and after the derivations.

Proof. A form-(r3) rule (XY #, #X, α) can be applied to a string XY #α, where
X, Y ∈ N , α ∈ N ∪ T ∪ {c}. After applying the form-(r3) rule, we have
XY ##Xα. Then the form-(r4) rule (X, #, Y ##) can be applied for the sub-
string XY ##, and we have X#Y ##Xα. Now we apply the form-(r5) rule
(#Y #, Y, #X) for the substring #Y ##X , and the substring is replaced by
#Y #Y #X .

Therefore, the substring XY #α is replaced by X#Y #Y #Xα, which has the
unmarked symbol X on the rightmost position. $%

Thus the insertion rules in γ simulate the rules in G, and generate legal strings
from the legal string Scc.

We will give separate consideration to the case of using the rules in Group 3.

Lemma 9. Once the form-(r3) rule : (XY #, #X, α) is applied to obtain a sub-
string of a legal string, then the form-(r4) rule and form-(r5) rule are used in
this order.

Proof. We may consider a substring XY #α, where X, Y ∈ N , α ∈ N ∪ T ∪ {c}.
After using rule in form-(r3), we obtain XY ##Xα. Because of the symbols ##,
rules in form-(r1) or (r2) or (r3) cannot be applied for the substring XY ##. In
view of the construction of form-(r5) rule, we cannot apply a form-(r5) rule for
XY ##. Hence, the only applicable rule for XY ## is form-(r4) rule.

After using form-(r4) rule (X, #, Y ##) for XY ##Xα, we obtain the sub-
string X#Y ##Xα. For the symbol X following ##, we have a chance to apply
one of the rules in form-(r1), (r2), (r3), (r4). If we apply form-(r1) or form-(r2)
rule, we may take it as the first step of simulation for Type 1 or Type 2 re-
spectively. Note that, during these simulations, X remains at the immediately
to the right of ##. If we apply form-(r3) or form-(r4) rule, we may take it in-
dependently a new relocation task. Note that, after application of form-(r3) or
form-(r4) rule, X remains immediately to the right of ##. Therefore, in all cases
the symbol ## is followed by X . Further, since the symbol X was originally
unmarked in XY #α, X provides the possibility of applying one of the rules
in form-(r1), (r2), (r3), (r4). Hence this application causes no trouble with the
current relocation task.

After using form-(r4) rule for XY ##, we obtain X#Y ##. From the above
notation, since X always follows the symbols ##, after applying form-(r4) rule,
we obtain X#Y ##X . In the substring X#Y ##, both of the symbols X and
Y are already marked, and in view of the form of the rules, none of form-(r1),
(r2), (r3), (r4) rule can be used for this substring. Hence, the only applicable
rule for X#Y ##X is form-(r5) rule. After applying this rule, (#Y #, Y, #X),
we have X#Y #X#X , which is the substring of a legal string.

Hence to obtain a substring of a legal string, whenever we use the form-(r3)
rule, we have to use form-(r4) rule and (r5) rule in this order. $%

658 K. Onodera

From Lemma 9, for any derivation in γ, x
π=⇒γ y, there is a standard derivation

which satisfies that form-(r4) rule and form-(r5) rule are applied in this order
immediately after applying form-(R3) rule.

Denote by umk(x) a string consisting of unmarked symbols in a legal string
x generated by γ. Note that since c is the special symbol, neither marked nor
unmarked, umk(x) does not contain a suffix cc. We thus have the next lemma.

Lemma 10. The nonterminal symbol S derives x in G if and only if there is a
derivation Scc =⇒∗

γ x′ in γ such that umk(x′) = x.

Proof. We will show that if there is a derivation S =⇒n
G x then there is a

derivation Scc =⇒∗
γ x′ such that umk(x′) = x by induction on n.

Base step: If n = 0, then for the axiom Scc in γ, umk(Scc) = S holds. Thus
obviously the claim holds.

Induction step: We suppose that the claim holds for any k ≤ n. Now consider a
derivation S =⇒n

G x =⇒G y. From the induction hypothesis, there is a derivation
Scc =⇒∗

γ x′, where umk(x′) = x. If the rule applied for x is of Type 1 (Type 2,
resp.) then we use the corresponding insertion rule in Group 1 (Group 2, resp.)
for the string x′.

However, in the latter case (i.e. Group 2), if the insertion rule in Group 2
cannot be immediately applied for x′, we need to apply some rules in Group 3.
From Lemma 8, after application of the rules in Group 3, unmarked symbols
of a legal string x′ remain unchanged. We denote this process of derivations by
x′ =⇒∗

γ x′′ =⇒γ y′, where x′′, which is a string ready for applying a rule in
Group 2, is derived by using only rules in form-(r3), (r4), (r5) in Group 3 and
y′ is derived by using only a rule in Group 2. Note that umk(x′) = umk(x′′).

Then, in either case, from Fact 1 and Fact 2 we eventually have umk(y′) = y.
Therefore the claim holds for n + 1.

Conversely, we can prove that if there is a standard derivation Scc
π=⇒γ x′

then there is a derivation S =⇒∗
G x such that umk(x′) = x by induction on the

number n of legal strings in the derivation π. We omit the proof here. $%

In view of the manner of constructing the strictly 2-testable language R and the
projection h, we have the following fact.

Fact 3. For any y ∈ L(γ), if y is in R and umk(y) ∈ T ∗, then umk(y) = h(y).

From Lemma 10 and Fact 3, we obtain the inclusion L(G) ⊆ h(L(γ) ∩R). Next
we prove the inverse inclusion which completes the proof of Theorem 6.

Fact 4. As far as unmarked symbols are concerned, the rules in Group 1 and
Group 2 can only simulate the rules of Type 1 and Type 2 respectively in G.

Proof of Theorem 6. From Fact 4, Lemma 9 and Lemma 10, every string
of a form umk(xcc) is generated by the grammar G, where xcc is a legal string
generated by γ.

Therefore, if for any y ∈ L(γ), y is in R, then there is a string h(y) such that
S =⇒∗

G h(y). This means that the inclusion h(L(γ)∩R) ⊆ L(G) holds. Together
with the fact that L(G) ⊆ h(L(γ)∩R), we complete the proof of Theorem 1. $%

New Morphic Characterizations of Languages in Chomsky Hierarchy 659

6 Conclusion

In this paper, we have contributed to the study of insertion systems with new
characterizations of recursively enumerable, context-free, and regular languages.
Specifically, we have shown that

REG = H(INS0
1 ∩ LOC(k)) with k ≥ 2.

H(INS0
1 ∩ LOC(1)) ⊂ REG ⊂ H(INS0

i ∩ LOC(k)) with i, k ≥ 2.
CF = H(INS0

3 ∩ LOC(k)) with k ≥ 4.
RE = H(INS3

3 ∩ LOC(k)) with k ≥ 2.

The followings are open problems:

Can CF be represented as CF = H(INS0
3 ∩ LOC(k)) for some k < 4 ?

Can RE be represented as RE = H(INSj
i ∩LOC(2)) for some i < 3 or j < 3 ?

Acknowledgements

The author is deeply indebted to T.Yokomori for his helpful discussions. This
work is supported in part by Grant-in-Aid for the Research Institute for Science
and Technology of Tokyo Denki University with no.Q07J-05.

References

1. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

2. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing
Paradigms. Springer, Heidelberg (1998)

3. Yokomori, T., Kobayashi, S.: Learning local languages and their application to
DNA sequence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1067–
1079 (1998)

4. Head, T.: Splicing representations of strictly locally testable languages. Discrete
Applied Math. 87, 87–139 (1998)

5. Martin-Vide, C., Păun, G., Salomaa, A.: Characterizations of recursively enumer-
able languages by means of insertion grammars. Theor. Comput. Sci. 205(1-2),
195–205 (1998)

6. Onodera, K.: A note on homomorphic representation of recursively enumerable
languages with insertion grammars. IPSJ Journal 44(5), 1424–1427 (2003)

7. Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characteriza-
tions of languages in Chomsky hierarchy by means of insertion-deletion systems.
Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)

8. Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages. Springer, New
York (1997)

9. McNaughton, R., Papert, S.A.: Counter-Free Automata. M.I.T. research mono-
graph, vol. 65. MIT Press, Cambridge (1971)

10. Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang.
Comb. 12(1), 317–328 (2007)

On Parallel Communicating Grammar Systems
and Correctness Preserving Restarting Automata

Dana Pardubská1,�, Martin Plátek2,��, and Friedrich Otto3

1 Dept. of Computer Science, Comenius University, Bratislava
pardubska@dcs.fmph.uniba.sk

2 Dept. of Computer Science, Charles University, Prague
Martin.Platek@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel, Kassel
otto@theory.informatik.uni-kassel.de

Abstract. This paper contributes to the study of Freely Rewriting Re-
starting Automata (FRR-automata) and Parallel Communicating Gram-
mar Systems (PCGS) as formalizations of the linguistic method of analysis
by reduction. For PCGS we study two complexity measures called genera-
tion complexity and distribution complexity, and we prove that a PCGS Π ,
for which both these complexity measures are bounded by constants, can
be simulated by a freely rewriting restarting automaton of a very restricted
form. From this characterization it follows that the language L(Π) is semi-
linear, that its characteristic analysis is of polynomial size, and that this
analysis can be computed in polynomial time.

1 Introduction

This paper contributes to the analysis of Freely Rewriting Restarting Automata
(FRR-automata) and Parallel Communicating Grammar Systems (PCGS), see
[1,2]. Here the main goal is the quest for constraints for FRRs and PCGSs, under
which the corresponding classes of languages and their analysis by reduction are
of interest from the point of view of computational linguistics. For example,
this is the case if the languages obtained are semi-linear, and if their so-called
characteristic analysis can be computed in polynomial time.

Freely rewriting restarting automata create a suitable tool for modelling the
so-called analysis by reduction. In general, analysis by reduction explains basic
types of so-called dependencies in sentences of natural languages. The Functional
Generative Description for the Czech language developed in Prague (see, e.g., [3])
is based on this method.

In order to model analysis by reduction, FRR-automata work on so-called char-
acteristic languages, that is, on languages with auxiliary symbols (categories)
included in addition to the input symbols. The proper language is obtained from
� Partially supported by the Slovak Grant Agency for Science (VEGA) under contract

“1/0726/09 - Algorithmic and complexity issues in information processing”.
�� Partially supported by the Grant Agency of the Czech Republic under Grant No.

405/08/0681 and by the program Information Society under project 1ET100300517.

A.H. Dediu, A.M. Ionescu, and C. Martín-Vide (Eds.): LATA 2009, LNCS 5457, pp. 660–671, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On PCGS and Correctness Preserving Restarting Automata 661

a characteristic language by removing all auxiliary symbols from its sentences.
We focus on restarting automata that ensure the correctness preserving prop-
erty for the analysis, that is, after any restart within a computation starting
with a word from the characteristic language, the content of the tape is again
from that language. This property is required in order to introduce the notion of
characteristic analysis in a linguistically adequate way. To achieve our goal we
use a technique that is based on the notion of skeletal set, which is particularly
useful for error recovery during a robust parsing or during a grammar-checking
procedure.

We study two complexity measures for returning PCGSs with regular com-
ponents: the generation complexity1, which bounds the number of generative
sections in a word generated by a PCGS, and the distribution complexity2, which
bounds the distribution of concurrently generated segments over the word gen-
erated. Our technical main result states the following. If Π is a PCGS, for which
the generation complexity is bounded by a constant g and the distribution com-
plexity is bounded by a constant d, then the language L(Π) generated by Π
is the proper language of a freely rewriting restarting automaton M of a very
restricted form: M is correctness preserving, and it only performs rewrite opera-
tions of a very restricted type. In addition, the number of rewrites per cycle and
the number of auxiliary symbols that occur in any word from the characteristic
language of M are both bounded by constants that depend on the bounds g and
d above. In fact, M even has a skeletal set of type (g, d). Based on these re-
strictions of M we obtain the following important results on the language L(Π):
it is semi-linear, its characteristic analysis is of polynomial size, and it can be
computed in polynomial time, where the degree of the polynomial time-bound
also depends on the constants g and d. The latter two results answer questions
that were left open in [1,2].

The structure of the paper is as follows. In Section 2 we give the (informal)
definitions of FRR-automata, AuxRR-automata, and PCGS and present some ba-
sic facts about them. In Section 3, which constitutes the technical main part of
the paper, we present our simulation result described above, and we then intro-
duce the notion of skeletal set. Using this notion we derive the main results of
the paper from the simulation given in the first part of this section. This section
ends with some concluding remarks.

2 Basic Notions

Restarting automata. A freely rewriting restarting automaton (FRR-automa-
ton, for short) is a restarting automaton without rewriting constraints, that is, it
is a nondeterministic machine with a flexible tape, a read/write window of a fixed
size k ≥ 1 that can move along this tape, and a finite-state control. Formally, it
is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ). Here Q denotes a finite set
of (internal) states that contains the initial state q0, Σ is a finite input alphabet,

1 The generation complexity corresponds to the degree of (linguistic) independence.
2 The distribution complexity models the degree of (linguistic) dependence (valence).

662 D. Pardubská, M. Plátek, and F. Otto

and Γ is a finite tape alphabet that contains Σ. The elements of Γ � Σ are
called auxiliary symbols. The additional symbols c, $ �∈ Γ are used as markers
for the left and right end of the workspace, respectively. They cannot be removed
from the tape. The behavior of M is described by a transition function δ that
associates a finite set of transition steps to each pair of the form (q, u), where q
is a state and u is a possible content of the read/write window. There are four
types of transition steps: move-right steps, rewrite steps, restart steps, and accept
steps. A move-right step simply shifts the read/write window one position to the
right and changes the internal state. A rewrite step causes M to replace a non-
empty prefix u of the content of the read/write window by a word v satisfying
|v| ≤ |u|, and to change the state. Further, the read/write window is placed
immediately to the right of the string v. A restart step causes M to place its
read/write window over the left end of the tape, so that the first symbol it sees
is the left sentinel c, and to reenter the initial state q0. Finally, an accept step
simply causes M to halt and accept.

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it
is understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further restart operation is
performed, the computation necessarily finishes in a halting configuration – such
a phase is called a tail. It is required that in each cycle, M performs at least one
rewrite step that is strictly length-decreasing. Thus, each cycle strictly reduces
the length of the tape. We use the notation u 1c

M v to denote a cycle of M
that begins with the restarting configuration q0cu$ and ends with the restarting
configuration q0cv$; the relation 1c∗

M is the reflexive and transitive closure of 1c
M .

A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from
the restarting configuration q0cw$, and ends with an application of an accept
step. By LC(M) we denote the so-called characteristic language of M , which
is the language consisting of all words accepted by M . By PrΣ we denote the
projection from Γ ∗ onto Σ∗, that is, PrΣ is the morphism defined by a .→ a
(a ∈ Σ) and A .→ ε (A ∈ Γ � Σ). If v := PrΣ(w), then v is the Σ-projection
of w, and w is an expanded version of v. For a language L ⊆ Γ ∗, PrΣ(L) :=
{PrΣ(w) | w ∈ L }. Further, for K ⊆ Γ , |x|K denotes the number of occurrences
of symbols from K in x.

Motivated by linguistic considerations to model the analysis by reduction
with parallel processing, we are interested in the so-called proper language of M ,
which is the set of words LP(M) := PrΣ(LC(M)). Hence, a word v ∈ Σ∗ be-
longs to LP(M) if and only if there exists an expanded version u of v such
that u ∈ LC(M). Realize that the main difference between the input and the

On PCGS and Correctness Preserving Restarting Automata 663

proper language lies in the way in which auxiliary symbols are inserted into the
(terminal) words of the language.

An FRR-automaton M is called linearized if there exists a constant j such
that |w|Γ�Σ ≤ j · |w|Σ + j for each w ∈ LC(M) [1,2]. Since a linearized FRR-
automaton only uses linear space, we see immediately that the proper language
of each linearized FRR-automaton is context-sensitive.

In a real process of analysis by reduction of a sentence of a natural language it
is desired that whatever is done within the process does not change the correct-
ness of the sentence. For restarting automata this property can be formalized
as follows: An FRR-automaton M is correctness preserving if u ∈ LC(M) and
u 1c∗

M v imply that v ∈ LC(M), too. While it is easily seen that each determinis-
tic FRR-automaton is correctness preserving, there are FRR-automata which are
not correctness preserving.

Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an FRR-automaton that is correctness pre-
serving, and let w ∈ Σ∗. Then AC(w, M) = {wC ∈ LC(M) | wC is an extended
version of w } is called the characteristic analysis of w by M .

Definition 1. An FRR-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) is called aux-re-
writing if, for each of its rewrite operations (q′, v) ∈ δ(q, u), PrΣ(v) is obtained
from PrΣ(u) by deleting some symbols, and PrΓ\Σ(v) is obtained from PrΓ\Σ(u)
by replacing some symbol by another symbol.

By AuxRR we denote the class of aux-rewriting FRR-automata that are correct-
ness preserving. For each type X of restarting automata and each t ∈ N+, we
use t -X to denote the class of X-automata that execute at most t rewrite steps
in any cycle.

Parallel Communicating Grammar Systems. A returning PCGS of de-
gree m (≥ 1) with regular components is an (m+1)-tuple Π = (G1, . . . , Gm, K),
where, for all i ∈ {1, . . . , m}, Gi = (Ni, T, Si, Pi) are regular grammars, called
component grammars, satisfying Ni ∩ T = ∅, and K ⊆ {Q1, . . . , Qm}

⋂⋃m
i=1 Ni

is a set of special symbols, called communication symbols. A configuration of Π
is an m-tuple C = (x1, . . . , xm), where xi = αiAi, αi ∈ T ∗, and Ai ∈ (Ni ∪ {ε});
we call xi the i-th component of the configuration. The nonterminal cut of con-
figuration C is the m-tuple N(C) = (A1, A2, . . . , Am). If N(C) contains at least
one communication symbol, it is called an NC-cut and denoted by NC(C).

A derivation of Π is a sequence of configurations D = C1, C2, . . . , Ct, where
Ci+1 is obtained from Ci by one generative step or one communication step. If
no communication symbol appears in any of the components, then we perform a
generative step. It consists of synchronously performing a rewrite step in each of
the component grammars Gi, 1 ≤ i ≤ m. If any of the components is a terminal
string, it is left unchanged, and if any of the components contains a nonterminal
that cannot be rewritten, the derivation is blocked. If the first component is a
terminal word w, then w is the word that is generated by Π in this derivation.
In this situation D is usually denoted as D(w). If a communication symbol is
present in any of the components, then a communication step is performed. It

664 D. Pardubská, M. Plátek, and F. Otto

consists of replacing those communication symbols with the phrases they refer to
for which the phrases themselves do not contain communication symbols. Such
an individual replacement is called a communication. Obviously, in one commu-
nication step at most m− 1 communications can be performed. Communication
steps are performed until no more communication symbols are present, or until
the derivation is blocked because no communication symbol can be replaced. The
maximal sub-sequence of communication steps forms a communication section.

A generative section is a non-empty sequence of generative steps between two
consecutive communication sequences in D (or before the first or after the last
communication step). Thus, the communication steps divide the derivation into
generative and communication sections.

The (terminal) language L(Π) generated by Π is the set of terminal words
that appear in the component G1, which is called the master of the system:

L(Π) = {α ∈ T ∗ | (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.
Several notions are associated with the derivation D(w):

• g(i, j) (or g(i, j, D(w))) denotes the (i, j)-(generative) factor of D(w), which
is the terminal word that is generated by Gi within the j-th generative
section of D(w);

• n(i, j) (or n(i, j, D(w))) denotes the number of occurrences of g(i, j) in w.
• The communication structure CS(D(w)) of D(w) captures the connection

between the terminal word w and its particular derivation D(w)):
CS(D(w)) = (i1, j1), (i2, j2), . . . , (ir, jr), if w = g(i1, j1)g(i2, j2) . . . g(ir, jr).

• For j ≥ 1 let N(j, D(w)) =
∑m

i=1 n(i, j, D(w)). Then the so-called degree of
distribution DD(D(w)) of D(w) is the maximum over all N(j, D(w)).

• The trace of a (sub-)derivation D is the sequence T (D) of nonterminal cuts of
individual configurations of D: T (D)=N(C0), N(C1), . . . , N(Ct). Note that
(in general) the trace does not unambiguously identify the derivation.

• The communication sequence, resp. the NC-sequence, is defined analogously:
NCS(D) is the sequence of all NC-cuts in the (sub-)derivation D. Realize
that the communication sequence NCS(D(w)) unambiguously defines the
communication structure of D(w). Moreover, the set of words with the same
communication sequence/structure might, in general, be infinite.

A cycle in a derivation D is a smallest (continuous) sub-derivation C =
C1, . . . , Cj of D such that N(C1) = N(Cj). If none of the nonterminal cuts in C
contains a communication symbol, then the whole cycle is contained in a gener-
ative section; we speak about a generative cycle in this case. If the first nonter-
minal cut contains communication symbols, which means that N(C1) = N(Cj)
are NC-cuts, then the cycle is called a communication cycle.

If there is a cycle in the derivation D(w), then manifold repetition3 of the cy-
cle is possible and the resulting derivation is again a derivation of some terminal
word. Observe, however, that the repetition or deletion of a generative cycle does

3 Deletion of a cycle is also possible.

On PCGS and Correctness Preserving Restarting Automata 665

not change the communication structure of a derivation. We call a derivation
D(w) reduced, if every repetition of any of its cycles leads to a longer terminal
word ω; |w| < |ω|. Obviously, to every derivation D(w) there is an equivalent
reduced derivation D′(w) of the same word. In what follows, we consider only
derivations that are reduced.

Finally, we define several complexity measures for PCGS. Informally, the com-
munication complexity of a derivation D (denoted com(D)) is defined as the
number of communications performed within the derivation D; analogously, the
distribution complexity of a derivation D is the degree of distribution defined
above, and the generation complexity of the derivation D is the number of genera-
tive sections in D. Then the communication/distribution/generation complexity
of a language and the associated complexity class are defined in the usual way
(always considering the corresponding maximum).

Here, we are mainly interested in those classes of languages for which all the
complexity measures considered above are bounded from above by a constant.
For natural numbers k, d, g, we denote the corresponding communication com-
plexity class by COM(k), and the distribution and/or generation complexity class
by d-DG, g-DD, and d-g-DDG, respectively. Some relevant observations charac-
terizing the derivations of a PCGS with constant communication complexity are
summarized in the following facts.

Fact 1. Let Π be a PCGS with constant communication complexity. Then there
are constants d(Π), �(Π), s(Π), and e(Π) such that

1. the number n(i, j) of occurrences of individual g(i, j)’s in a reduced deriva-
tion is bounded by d(Π); that is, n(i, j) ≤ d(Π);

2. the length of the communication structure for every (reduced) derivation is
bounded by �(Π);

3. the cardinality of the set of all possible communication structures correspond-
ing to a reduced derivation by Π is bounded by s(Π).

4. Let D(w) be a reduced derivation of a terminal word w in Π. If more than
e(Π) generative steps are performed in the j-th generative section of D(w),
then at least one factor g(i, j, D(w)) has been changed.

Based on pumping arguments the following observation now follows easily.

Proposition 1. Let Π be a PCGS with constant communication complexity.
Then the set of all derivations by Π without a generative cycle is finite.

3 Analysis by Reduction for PCGSs

In [1] it is shown how to transform a PCGS with constant communication com-
plexity into a deterministic linearized FRR-automaton. In what follows we will
reduce the number of occurrences of auxiliary symbols in the words from the
characteristic language of the corresponding restarting automaton to a constant
by utilizing nondeterminism. In fact, the resulting automaton will be an AuxRR-
automaton for which the positions at which rewrites are performed within a

666 D. Pardubská, M. Plátek, and F. Otto

cycle are severely restricted. These restrictions will be formalized through the
notion of a skeletal set in Definition 2.

Theorem 1. For each L ∈ g-d-DDG, there is a d-AuxRR-automaton M such
that L = LP(M). Moreover, the number of auxiliary symbols in w ∈ LC(M) is
bounded from above by the constant 2 · g · d + 2.

Proof. Let L ∈ g-d-DDG, and let Π be a PCGS with m components that gen-
erates L with distribution complexity d and generation complexity g. Our con-
struction is based on the fact that Π has only a finite number σ of cycle-free
derivations. Let Cf = {D̂1(ŵ1), · · · , D̂σ(ŵσ)} be the set of these derivations.

We describe a d-AuxRR-automaton M that, given a certain extended version
wC of a word w, performs the analysis by reduction which starts by considering
a Π-derivation D(w) of the word w ∈ L, and ends by checking that the Π-
derivation D̂k(ŵk) obtained is one of the cycle-free derivations listed above.

Let w ∈ L, let D(w) be a derivation of w in Π , and let g(i, j) be the ter-
minal word generated by the component grammar Gi within the j-th gener-
ative section. Then w can be written as w = g(i1, j1)g(i2, j2) . . . g(ir, jr). As
Π has generation complexity g, there are at most g generative sections in the
derivation D(w), and as Π has distribution complexity d, there are at most d
occurrences of factors g(it, jt) such that jt = j for any j. Hence, we have r ≤ d·g.

To reconstruct the derivation of a factor g(i, j) in detail we utilize the following
notion of an extended j-trace. Let

(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . .
(α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)

be the sub-derivation corresponding to the j-th generative section of D(w). It
yields the following extended version of the trace of the j-th generative section:⎛⎜⎜⎝

A1
A2
· · ·
Am

⎞⎟⎟⎠
⎛⎜⎜⎝

α1,1A1,1
α1,2A1,2

· · ·
α1,mA1,m

⎞⎟⎟⎠
⎛⎜⎜⎝

α2,1A2,1
α2,2A2,2

· · ·
α2,mA2,m

⎞⎟⎟⎠

⎛⎜⎜⎝
αs,1As,1
αs,2As,2

· · ·
αs,mAs,m

⎞⎟⎟⎠ .

This description is denoted ex-T (D(w), j). It describes the sequence of generative
steps of the j-th generative section. Assume that D(w) has gk generative sections.
Then ex-T (D(w)) = ex-T (D(w), 1), ex-T (D(w), 2), . . . , ex-T (D(w), gk) is called
the extended trace of D(w). Let us note that ex-T (D(w)) can serve as an another
representation of D(w).

The restarting automaton M processes the word wC as follows. In each cycle
M first nondeterministically chooses an index j of a generative section, and then
it consistently removes the rightmost generative cycle from each of the factors
g(i, j) of w. Simultaneously, it checks the consistency of its guess and makes
necessary changes in the delimiters. M repeatedly executes such cycles until a
word is obtained that does not contain any generative cycles anymore. From
Proposition 1 we see that the set of words of this form is finite.

On PCGS and Correctness Preserving Restarting Automata 667

Fig. 1. The situation before and after the execution of a cycle that makes rewrites
within the j-th generative section: the reduced parts are grey. Two occurrences of
g(1, j) were reduced to g′(1, j); one occurrence of g(2, j) was reduced to g′(2, j).

We show that we only need to store a constant amount of information in the
auxiliary symbols to realize this strategy. Accordingly, the word wC is chosen as

wC := ∆0,k∆1,k g(i1, j1)Λ1,k∆2,k g(i2, j2)Λ2,k . . . ∆r,k g(ir, jr)Λr,k∆r+1,k,

where ∆0,k, . . . , ∆r+1,k and Λ1,k, . . . , Λr,k are auxiliary symbols. These symbols
are not only used to separate the individual factors g(i, j) from each other, but
also to store relevant information about the derivations D(w) and D̂k(ŵk). In
fact, the information stored in each symbol ∆t,k (0 ≤ t ≤ r + 1) will be fixed,
while the information stored in each symbol Λt,k (1 ≤ t ≤ r) is temporary. The
information stored in ∆t,k describes the factor g(it, jt) and the factor ĝ(it, jt).
The information stored in Λt,k will be changed whenever a deletion is executed in
the left neighborhood of the particular delimiter; it describes a suffix of the rele-
vant extended trace ex-T (D(w), jt). By Λt,k(D(w)) we will denote the particular
symbol that corresponds to this information.

� If M has decided to try to execute a cycle, then it nondeterministically chooses
a number j ∈ {1, . . . , gk} as the index of the generative section of D(w) that it
will reduce in this cycle. It stores j and ∆0,k in its internal state and moves its
head to the right until it reaches the first delimiter ∆t,k for which jt = j holds,
that is, the leftmost occurrence of a factor of the form g(i, j) is found. Then M
moves its window further to the right until ∆t,k becomes the leftmost symbol
inside the window. Now M is going to try to simulate a reduction of the factor
g(it, jt) as described above.

(1.) From the description of ex-T (D̂k(ŵk)) stored in ∆0,k, M determines the
nonterminal cut with which the extended j-trace ex-T (D(w), j) begins.
(2.) Moving from left to right across the factor g(it, j), M guesses the extended
j-trace ex-T (D(w), j) in such a way that it is consistent with the word g(it, j); if
no such guess is possible, the computation is blocked. Simultaneously, M always
remembers the current suffix �t of length 2 · p(Π) of the part of ex-T (D(w), j)
considered so far. Here p(Π) is a constant that is sufficiently large to ensure that
any sub-word of any ex-T (D(w), j) of length at least p(Π) contains a generative
cycle.
(3.) When the delimiter ∆t+1,k occurs as a rightmost symbol in M ’s window,
then M tries to execute a reduction of the suffix of g(it, j); if none is possible,
then the computation is blocked. To perform a reduction M checks whether the
current suffix �t of ex-T (D(w, j)) contains a (generative) cycle, that is, whether
the suffix �t,2 of �t of length p(Π) has the following form:

668 D. Pardubská, M. Plátek, and F. Otto⎛⎜⎜⎝
α1,1A1,1
α1,2A1,2

· · ·
α1,mA1,m

⎞⎟⎟⎠ . . .

⎛⎜⎜⎝
αγ,1Aγ,1
αγ,2Aγ,2

· · ·
αγ,mAγ,m

⎞⎟⎟⎠ . . .

⎛⎜⎜⎝
αγ+ν,1Aγ+ν,1
αγ+ν,2Aγ+ν,2

· · ·
αγ+ν,mAγ+ν,m

⎞⎟⎟⎠ . . .

⎛⎜⎜⎝
αs′,1As′,1
αs′,2As′,2

· · ·
αs′,mAs′,m

⎞⎟⎟⎠
such that Aγ,µ = Aγ+ν,µ for all µ = 1, . . . , m. If that is the case, and if �t,2
coincides with the information stored in the symbol Λt,k(D(w)), then M re-
moves the factor αγ+1,it · · ·αγ+ν,it from g(it, j), it removes the corresponding
cycle from �t, which yields the suffix �′t of an extended j-trace, and it replaces
the information stored in Λt,k by the suffix of �′t of length p(Π). Observe that
the factor αγ+1,it · · ·αγ+ν,it may well be empty, implying that this rewrite step
simply replaces the symbol Λt,k by a new symbol Λ′

t,k. Further, M stores �t in its
finite control, in order to be able to verify at later occurrences of factors of the
form g(., j) that a consistent reduction is performed, and then M moves further
to the right.

If no further factor of the form g(., j) is encountered, then M restarts at the
right end of the tape. If, however, another factor g(it′ , jt′) = g(i′, j) is found,
then M tries to reduce this factor in a way consistent with the reduction applied
to g(it, j). Essentially, M processes the factor g(i′, j) in the same way as g(it, j).
However, on reaching the symbol Λt′,k it checks whether the current suffix �t′

of the extended j-trace simulated coincides with the suffix �t stored in its finite
control. In the affirmative it can then perform the same replacement in Λt′,k that
it performed on Λt,k, and it can reduce the factor g(i′, j) in a way consistent
with this replacement; otherwise, the computation is blocked.

� In an accepting tail M simply checks whether the current content w′
C of the

tape belongs to the finite set of “shortest” characteristic words.
From the description above it follows that M is a nondeterministic aux-

rewriting FRR-automaton, that the number of auxiliary symbols occurring in
any restarting configuration of an accepting computation of M is bounded from
above by the constant 2 ·g ·d+2, and that M performs at most d rewrite steps in
any cycle of any computation. Further, it is quite clear that LP(M) = L holds.

Finally, observe that M is in fact correctness preserving. For two different
factors g(it, j) and g(it′ , j) it may guess different extended j-traces, but because
of the information stored in Λt,k = Λt′,k, the suffixes of length 2 · p(Π) of these
traces coincide. Thus, as long as the corresponding suffix of the extended j-
trace considered coincides with Λt,k, the reduction performed is consistent with
a valid derivation D(w). Further, if an inconsistency is discovered by M , then
the computation is blocked immediately, that is, no further restart is performed.
It follows that w′

C ∈ LC(M) if wC ∈ LC(M) and wC 1c
M w′

C hold, that is, M is
indeed correctness preserving. This completes the proof of Theorem 1. �

A detailed example with some additional explanations can be found in the tech-
nical report [4].

The AuxRR-automaton M described in the proof of Theorem 1 processes a
given input by first choosing a particular derivation without cycles (and its com-
munication structure) from among the finite set of possible derivations without

On PCGS and Correctness Preserving Restarting Automata 669

cycles by inserting delimiters. Then, in each cycle a specific generative section
j is chosen nondeterministically, and the rightmost generative cycle is removed
from each factor g(i, j). In fact, each rewrite operation of each cycle executed
by M replaces an auxiliary symbol of the form Λ(D(w)) by another auxiliary
symbol of the form Λ(D′(w′)), and there is at least one rewrite operation in
each cycle that removes a non-empty factor consisting of input symbols4. These
observations motivate the following definition of a skeletal set.

Definition 2. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be a t-AuxRR-automaton, r, s ∈
N+, and let SP be a subalphabet of Γ of cardinality |SP | ≤ s · r · t. We call
SP a skeletal set of type (r, t), if there is an injection φ : SP → {1, . . . , s} ×
{1, . . . , r} × {1, . . . , t} such that the properties below are satisfied:

1. Elements of SP are neither inserted, nor removed, nor changed during any
computation of M ; accordingly, we call them islands.

2. For all w ∈ LC(M) and all χ ∈ SP , |w|χ ≤ 1, that is, w contains at most
one occurrence of χ.

3. For 1 ≤ i ≤ s, let SP (i) = {χ ∈ SP | φ(χ) = [i, a, b] } be the i-th skeleton
of SP . For each word w ∈ LC(M), there exists a unique index i ∈ {1, . . . , s}
such that PrSP (w) ⊆ SP (i) holds. Thus, w only contains islands of a single
skeleton.

4. Each rewrite operation O of M has the form xyzγχ → xzγ′χ, where xyz ∈
Σ∗, |y| ≥ 0, γ, γ′ ∈ (Γ �(Σ∪SP)) are auxiliary symbols that are not islands,
and χ ∈ SP is an island. The symbol χ is called the island visited by O.

5. For 1 ≤ i ≤ s and 1 ≤ j ≤ r, let SP (i, j) = {χ ∈ SP | φ(χ) = [i, j, b] },
which is the j-th level of the i-th skeleton of SP . Within a cycle of a computa-
tion of M , the level of a skeleton is kept fixed, that is, if a rewrite operation
O is applied in a cycle such that the island visited by O is from SP (i, j),
then for every rewrite operation executed during this cycle the island visited
belongs to SP (i, j).

6. There exists a constant �(M) such that, for each w = xyz ∈ LC(M), where
|y| > �(M) and y does not contain any island, then starting from the restart-
ing configuration corresponding to w, M will execute at least one cycle before
it accepts.

If SP is a skeletal set of type (r, t), then the auxiliary symbols in Γ � SP are
called variables of M . Thus, Γ is partitioned into three disjoint subsets: the set
of input symbols Σ, the skeletal set SP , and the set of variables.

Based on the properties of a skeletal set the following result can be derived
similarly as in [1].

Corollary 1 (SP semi-linearity). Let t ∈ N be a positive integer, and M be a
t-AuxRR-automaton with a skeletal set. Then the languages LC(M) and LP(M)
are semi-linear, that is, their Parikh images are semi-linear (see [5]).

4 All derivations considered are reduced.

670 D. Pardubská, M. Plátek, and F. Otto

Observe that the copy language Lcopy = {ww | w ∈ {a, b}∗ } can be generated by
a returning PCGS with regular components and constant communication com-
plexity, but that it cannot be generated by any centralized returning PCGS with
regular components. Thus, Corollary 1 is not a special case of the corresponding
result for the latter class of PCGSs given in [5].

Obviously, with almost no change the delimiters ∆0,k and ∆1,k in the proof
of Theorem 1 can be shifted just before the delimiter ∆2,k. Thus, the set of
delimiters of the form Θ1,k = (∆0,k, ∆1,k, ∆2,k), and Θt,k = ∆t+1,k for t > 1, can
serve as a skeletal set for a newly constructed automaton M ′. The characteristic
word wC from LC(M ′) will then be of the following form:

wC := g(i1, j1)Λ1,kΘ1,k g(i2, j2)Λ2,kΘ2,k . . . g(ir, jr)Λr,kΘr,k.

Corollary 2. For each L ∈ g-d-DDG, there exists a nondeterministic d-AuxRR-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). Each
variable of w ∈ LC(M) is positioned immediately to the left of an element of SP .

The d-AuxRR-automaton M in Corollary 2 is inherently nondeterministic. To
avoid this nondeterminism we now consider a slight generalization of the un-
derlying FRR-automaton: the FRL-automaton. The FRL-automaton is obtained
from the FRR-automaton by introducing move-left steps. For example, such an
automaton can first scan its tape completely from left to right, then move back
to the left end of the tape, and then perform some rewrite operations during
a second left-to-right sweep. A d-AuxRL-automaton is an FRL-automaton that
is aux-rewriting, correctness preserving, and that performs at most d rewrite
operations in any cycle.

Obviously, the d-AuxRR-automaton M from Corollary 2 can be seen as a d-
AuxRL-automaton of a restricted form. Hence, Theorem 3.4 in [6] applies, which
states that there exists a deterministic d-FRL-automaton Mdet that accepts the
same characteristic language as M . In fact, if w 1c

Mdet
w′, then also w 1c

M w′

holds, and if w 1c
M w′, then w 1c

Mdet
w′′ for some word w′′. Since the transfor-

mation from M to Mdet in the proof of Theorem 3.4 in [6] does not change the
existence of a skeletal set, we can restate Corollary 2 as follows.

Corollary 3. For each L ∈ g-d-DDG, there exists a deterministic d-AuxRL-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). More-
over, in each wC ∈ LC(M) each variable is positioned immediately to the left of
an element of SP .

Let M be a deterministic d-FRL-automaton. Given an input w of length n, M will
execute at most n cycles, before it either accepts or rejects. Each of these cycles
requires a number of steps that is linear in n. It follows that the membership
problem for the language LC(M) is decidable in quadratic time.

If M is a deterministic d-AuxRL-automaton with a skeletal set SP of type
(g, d), then an input word w of length n belongs to the proper language LP(M),
if there exists an extended variant wC of w that is in the characteristic lan-
guage LC(M). From the form of the skeletal set we see that wC is obtained from

On PCGS and Correctness Preserving Restarting Automata 671

w by inserting at most g · d factors of the form λδ, where λ is a variable and δ is
an island. Hence, there are O(|Γ � Σ|2·g·d · ng·d) many candidates for wC . They
can all be enumerated systematically, and then for each of them membership in
LC(M) can be tested in time O((n + 2 · g · d)2). Thus, we obtain the following.

Proposition 2. Let M be a deterministic d-AuxRL-automaton with a skeletal
set SP of the type (g, d) such that each variable in wC ∈ LC(M) is positioned
immediately to the left of an element of SP . Then, for each w ∈ Σ∗, the size of
AC(w, M), the characteristic analysis of w by M , is at most O(|Γ �Σ|2·g·d·ng·d),
and this set can be computed in time O(|Γ � Σ|2·g·d · ng·d · (n + 2 · g · d)2).

This proposition together with Corollary 3 has the following consequence.

Corollary 4. For each language L ⊆ Σ∗, if L ∈ g-d-DDG, then there exists a
d-AuxRR-automaton M such that L = LP(M), and for each w ∈ Σ∗, the size of
the set AC(w, M) is at most O(|Γ � Σ|2·g·d · ng·d), and it can be computed in
time O(|Γ � Σ|2·g·d · ng·d · (n + 2 · g · d)2).

Concluding remarks. Similar results as in this paper can be derived for PCGSs
with linear-grammar components. On the other hand, that will surely not be
the case for PCGSs with context-free components. Let us note that a polynomial
upper bound for the (simple) membership problem for returning PCGSs with
regular components already follows from [7]. Some results illustrating the gen-
erative power of the classes of PCGSs considered here are given already in [2] by
the use of a deterministic variant of FRR-automata.

References

1. Pardubská, D., Plátek, M.: Parallel communicating grammar systems and analysis
by reduction by restarting automata. In: Bel-Enguix, G., Jimenez-Lopez, M. (eds.)
ForLing 2008. Proc. Research Group on Mathematical Linguistics, pp. 81–98. Uni-
versitat Rovira i Virgili, Tarragona (2008)

2. Pardubská, D., Plátek, M., Otto, F.: On PCGS and FRR-automata. In: Vojtáš, P.
(ed.) ITAT 2008, Proc. Pavol Jozef Šafárik University, Košice, pp. 41–47 (2008)

3. Lopatková, D., Plátek, M., Sgall, P.: Towards a formal model for functional gen-
erative description - analysis by reduction and restarting automata. The Prague
Bulletin of Mathematical Linguistics 87, 7–26 (2007)

4. Pardubská, D., Plátek, M., Otto, F.: On parallel communicating grammar systems
and correctness preserving restarting automata. Kasseler Informatikschriften, Uni-
versität Kassel (2008), https://kobra.bibliothek.uni-kassel.de/bitstream/
urn:nbn:de:hebis:34-2008111825149/3/Technicalreport2008_4.pdf

5. Czuhaj-Varjú, E., Dassow, J., Kelemen, J., Pǎun, G. (eds.): Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers (1994)

6. Messerschmidt, H., Otto, F.: On determinism versus nondeterminism for restarting
automata. Information and Computation 206, 1204–1218 (2008)

7. Cai, L.: The computational complexity of PCGS with regular components. In: Das-
sow, J., Rozenberg, G., Salomaa, A. (eds.) Proc. of DLT 1995, pp. 209–219. World
Scientific, Singapore (1996)

https://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2008111825149/3/Technicalreport2008_4.pdf
https://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2008111825149/3/Technicalreport2008_4.pdf

Finitely Generated Synchronizing Automata

Elena V. Pribavkina1,� and Emanuele Rodaro2,��

1 Ural State University, 620083, Ekaterinburg, Russia
2 Universitá dell’Insubria, Via Valleggio 11, 22100 Como, Italy
elena.pribavkina@usu.ru, emanuele.rodaro@mate.polimi.it

Abstract. A synchronizing word w for a given synchronizing DFA is
called minimal if no proper prefix or suffix of w is synchronizing. We
characterize the class of synchronizing automata having finite language
of minimal synchronizing words (such automata are called finitely gen-
erated). Using this characterization we prove that any such automaton
possesses a synchronizing word of length at most 3n − 5. We also prove
that checking whether a given DFA A is finitely generated is co-NP-
hard, and provide an algorithm for this problem which is exponential in
the number of states A .

1 Introduction

A synchronizing automaton A = 〈Q, Σ, δ〉 is a deterministic and complete finite-
state automaton (DFA) possessing a synchronizing word, that is a word w which
takes all states of A to a particular one: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. By
L (A) we denote the language of all words synchronizing A .

Over the past forty years synchronizing automata and especially shortest syn-
chronizing words have been widely studied, motivated mostly by the famous
Černý conjecture [1] which states that any n-state synchronizing automaton
possesses a synchronizing word of length at most (n − 1)2. This conjecture has
been proved for a large number of classes of synchronizing automata, nevertheless
in general it remains one of the most longstanding open problems in automata
theory. For more details see the surveys [2,3,4].

In this paper we deal with minimal synchronizing words which in some sense
generalize the notion of a shortest synchronizing word. Namely, a synchronizing
word is called minimal if none of its proper prefixes nor suffixes is synchronizing.
It is obvious that the language L (A) of all synchronizing words is a two-sided
ideal generated by the language Lmin(A) of all minimal synchronizing words:
L (A) = Σ∗Lmin(A)Σ∗. Thus it is rather natural to consider the class of syn-
chronizing automata whose language of minimal synchronizing words is finite.
Such automata are referred to as finitely generated synchronizing automata and
� The author acknowledges support from CIMO Fellowship Programme TM-07-5127

during her stay at the University of Turku, Finland.
�� Part of this work was done during the two visits of the second named author to

the Ural State University. These visits were partially supported by the ESF project
Automatha and the group GNSAGA of INDAM.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 672–683, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finitely Generated Synchronizing Automata 673

the class of such automata is denoted by FG. In Section 3 we give a characteriza-
tion of this class. Moreover using the characterization we prove in Section 4 that
the shortest synchronizing word for such automata has length at most 3n− 5.

Example 1. Let Σ = {a, b} and consider the minimal automaton A recognizing
the language L = Σ∗abaΣ∗ (see Fig. 1.)

1 2 3 4

b a a, b

a b a

b

Fig. 1. Automaton A recognizing L = Σ∗abaΣ∗

It is easy to see that A is synchronizing, and L (A) = L, thus Lmin(A) =
{aba}, so A ∈ FG. Analogously for any w ∈ Σ∗ the minimal automaton recog-
nizing Σ∗wΣ∗ is finitely generated. Moreover it is well-known that this automa-
ton has n = |w|+1 states, hence its minimal synchronizing word is of length n−1.
Clearly, in general, the minimal automaton recognizing the language Σ∗MΣ∗

for a finite language M is finitely generated.

Another natural question arising in this contest is whether testing A ∈ FG is
decidable. An easy argument shows that the answer is “yes”. Indeed, in general,
for a given language L, we can consider the set Lmin of its minimal words.
Analogously it is the set of words from L such that none of its proper prefixes
nor suffixes belongs to L. It is not hard to see that Lmin = L \ (Σ+L ∪ LΣ+).
In particular, if L is a two-sided ideal, this expression reduces to:

Lmin = L \ (ΣL ∪ LΣ). (1)

Observe that if L is a regular language and it is represented by an n-state
DFA, then clearly Lmin is also a regular language recognized by an automaton
with O(n3) states, and it is easy to see that checking finiteness of Lmin takes
O(n6) operations. In framework we are dealing the language of synchronizing
words of a given automaton A is well known to be regular (it is recognized by
the power automaton P(A) with Q as an initial state and singletons as terminal
ones). Thus the language L (A) of an n-state synchronizing automaton A is
recognized by an automaton with at most 2n states. Hence by (1) the language
Lmin(A) is regular and checking whether A ∈ FG takes O(26n) operations.
Therefore one may ask whether checking finiteness of the language of minimal
synchronizing words is indeed a hard task and if there are better algorithms than
the naive one. We formally state the FINITENESS problem:

– Input : A synchronizing DFA A = 〈Q, Σ, δ〉.
– Question: Is the language Lmin(A) finite?

674 E.V. Pribavkina and E. Rodaro

Our characterization gives rise to another algorithm for solving FINITENESS
which is a slight improvement of the naive one, it is discussed in Section 3. Fur-
thermore in Section 5 we show that FINITENESS is co-NP-hard. So the problem
is not likely to have a polynomial time algorithm. Pawel Gawrychowski [5] has
shown that this problem is in PSPACE, but we are not aware whether it belongs
to some lower complexity class.

2 Preliminaries

We fix a synchronizing DFA A = 〈Q, Σ, δ〉. For convenience for each v ∈ Σ∗

and q ∈ Q we will write q . v = δ(q, v) and put S . v = {q . v | q ∈ S} for any
S ⊆ Q.

A subset S of Q is called reachable if there is a word v ∈ Σ∗ with S = Q . v.
Given a subset S of Q by C(S) we denote the set of all words stabilizing S:

C(S) = {w ∈ Σ∗ | S . w = S}.

By R(S) we denote the set of all words bringing S to a singleton:

R(S) = {w ∈ Σ∗ | |S . w| = 1}.

Note that L (A) is contained in R(S) for any S.

Lemma 1. Given a word w ∈ Σ∗ there exists an integer β ≥ 0 such that the
set m(w) = Q . wβ is fixed by w. Moreover m(w) is the largest subset of Q with
this property.

Proof. Consider the sets Q .wα ⊆ Q for any α ≥ 0. Since the number of subsets
of Q is finite, there are β ≥ 0 and γ > 0 such that Q .wβ = Q .wβ+γ . It is easy
to see that

Q .wβ ⊇ Q .wβ+1 ⊇ . . . ⊇ Q .wβ+γ = Q .wβ .

Hence all inclusions are in fact equalities and in particular Q . wβ+1 = Q .wβ , so
the set Q .wβ is fixed by the word w. On the other hand take any S ⊆ Q fixed
by w, then applying w we obtain

S = S . w ⊆ Q . w, . . . , S = S . wβ ⊆ Q .wβ ,

so m(w) is the largest subset fixed by the word w. �

Given a word w, the subset m(w) of Q from the previous Lemma is called the
maximal fixed set with respect to w.

Let k(w) be the least integer with the property Q .wk(w) = m(w). Then we
have the following

Lemma 2. Given a word w ∈ Σ∗

k(w) ≤ |Q| − |m(w)|.

Finitely Generated Synchronizing Automata 675

Proof. We have |Q .wβ+1| < |Q . wβ | for any 0 ≤ β < k(w). Indeed, suppose
|Q .wβ+1| = |Q . wβ | for some 0 ≤ β < k(w). Since Q .wβ+1 ⊆ Q .wβ we
have Q .wβ+1 = Q .wβ , hence Q .wβ ⊆ m(w). On the other hand, m(w) =
Q .wk(w) ⊆ Q .wβ , thus m(w) = Q .wβ , which is a contradiction with the choice
of k(w). Therefore |Q| > |Q . w| > . . . > |Q .wk(w)|, and |Q . wk(w)| ≤ |Q|−k(w),
hence k(w) ≤ |Q| − |m(w)|. �

Lemma 3. Given a word w ∈ Σ∗ and α ∈ N

m(wα) = m(w).

Proof. Obviously wα ∈ C(m(w)) for any α ∈ N, hence m(w) ⊆ m(wα). Con-
versely, by Lemma 1 m(wα) = Q .wαβ for some β ≥ 0. Since m(wα) is fixed by
wα, we have |m(wα) . wα| = |m(wα)| in particular; thus |m(wα) . w| = |m(wα)|
and hence |Q .wαβ+1| = |Q .wαβ |. On the other hand, Q . wαβ+1 ⊆ Q .wαβ ,
thus Q .wαβ+1 = Q .wαβ , so m(wα) is fixed by w as well, and m(wα) ⊆ m(w).
Therefore m(wα) = m(w). �

3 The Class FG

In this section we characterize the class FG and provide another algorithm for
checking whether a given DFA is in FG.

Theorem 1. Given a synchronizing DFA A = 〈Q, Σ, δ〉 the following are equiv-
alent:

(i) A ∈ FG
(ii) for any reachable subset S ⊆ Q such that 1 < |S| < |Q|, for each w ∈ C(S)

R(S) = R(m(w)).

Proof. (i) ⇒ (ii). Consider an arbitrary reachable subset S ⊂ Q with 1 < |S| <
|Q|. If C(S) = ∅ then there is nothing to prove, so we can assume that C(S) �= ∅
and take an arbitrary w ∈ C(S). Note, that the inclusion R(m(w)) ⊆ R(S)
always holds true. Indeed, the set S is contained in the maximal fixed set m(w),
and all the words synchronizing the set m(w) synchronize also S.

In case R(S) = L (A) we have L (A) ⊆ R(m(w)) ⊆ L (A), therefore
R(m(w)) = L (A), and the equality holds.

Suppose now that R(S) �= L (A). It means that there exists a word v which
brings the set S to a singleton, but does not synchronize the whole automaton.
On the other hand, since the set S is reachable there exists a word u such that
S = Q . u. Consider now the infinite sequence of words uwiv for i ≥ 0. Note that
these words are synchronizing, and since Lmin(A) is finite, among them there
can be only a finite number of minimal synchronizing words. By the choice of
u and w such a minimal synchronizing word always contains a prefix of v as a
suffix. Note also that if all the minimal synchronizing words in the given sequence
would start with some suffix of u, then there would be an infinite sequence of

676 E.V. Pribavkina and E. Rodaro

u w v

min

u w w v

min

. . .

u w w . . . w v

min

Fig. 2. Finite Sequence of Minimal Synchronizing Words

minimal synchronizing words u′′
i wiv where u = u′

iu
′′
i for i = 0, 1, 2 Therefore

there exists a positive integer β such that the word wβv is synchronizing (not
necessarily minimal, see Fig. 2).

By Lemma 1 as β we can choose an integer such that Q .wβ = m(w), thus
v brings this set to a singleton. Thus if the language Lmin(A) is finite then
R(S) ⊆ R(m(w)). Since the opposite inclusion always holds true, we have
R(S) = R(m(w)).

(ii) ⇒ (i). Arguing by contradiction suppose that the condition (ii) holds, but
Lmin(A) is infinite. Since this language is regular, applying the pumping lemma
we have that any long enough word in Lmin(A) can be factorized as uwv so
that w �= 1 (where 1 denotes the empty word) and uwαv is in Lmin(A) for any
integer α ≥ 0. If u = 1 then wαv ∈ Lmin(A) for all α ≥ 0, in particular for α = 0
we obtain that the word v is synchronizing, but this means that the words wαv
do not belong to Lmin(A), a contradiction. Analogously we get a contradiction
in case v = 1. Thus we may assume that both u and v are non-empty words.
Consider sets Q .uwα for α ≥ 0. Since uwαv is minimal synchronizing, we have
1 < |Q . uwα| < |Q|. Since the number of subsets of Q is finite there are integers
α0 ≥ 0 and γ > 0 such that Q . uwα0 = Q .uwα0+γ . Put S = Q .uwα0 . This set
is fixed by wγ , so by (ii) we have R(S) = R(m(wγ)), with m(wγ) = Q .(wγ)β

for some β ≥ 0. Since v ∈ R(S) we have v ∈ R(m(wγ)), so |Q . wγβv| = 1.
Therefore the word wγβv is synchronizing and for α > γβ the word uwαv does
not belong to the language Lmin(A), again a contradiction. Thus the language
Lmin(A) is finite. �

Corollary 1. Let A = 〈Q, Σ, δ〉 be a synchronizing automaton such that there
is a letter a ∈ Σ with Q .a = Q and there are no letters b ∈ Σ with |Q . b| = 1.
Then Lmin(A) is infinite.

Proof. Consider the shortest synchronizing word w for the automaton A . Since
no letter is synchronizing we have w = xv with x ∈ Σ, v ∈ Σ+, and 1 <
|Q .x| < Q. Since a is a permutation letter it is clear that aα ∈ C(Q .x) for
some positive integer α. On the other hand Q .aα = Q, hence m(aα) = Q. Note
that R(Q . x) �= R(Q) since v ∈ R(Q . x) but not in R(Q) = L (A) (otherwise
it would be a shorter synchronizing word). Thus by Theorem 1 the language
Lmin(A) is infinite. �

Theorem 1 gives rise to an algorithm FinCheck different from the straight-
forward one presented in section 1 for the problem of recognizing finitely

Finitely Generated Synchronizing Automata 677

generated synchronizing automata. Actually Theorem 1 says that for a given
reachable subset S of Q for all the words w ∈ C(S) we must check whether
R(S) = R(m(w)). The problem is that the set C(S) might be infinite. On the
other hand there are only finitely many subsets of Q of the form m(w) for all
w ∈ C(S). So for a given S we can check the property of Theorem 1 for all the
subsets T of Q containing S with C(S)∩C(T) �= ∅. Indeed, obviously among such
subsets there are those of the form m(w) for all possible w. So if R(S) = R(T)
for all such T , then the condition of the theorem holds. If R(S) �= R(T) for
some T ⊇ S, then it does not hold for m(w) either, w ∈ C(S) ∩ C(T) �= ∅, since
T ⊆ m(w). Now we present the algorithm.

FinCheck(A):

1 From the DFA A = 〈Q, Σ, δ〉 construct its power automaton P(A)
consisting only of subsets reachable from Q.

2 For each state S of P(A) do:
2.1 For each T of P(A) with S ⊆ T do:

2.2 If C(T) ∩ C(S) �= ∅, then
2.3 If R(T) �= R(S), then exit and return NO

3 Otherwise exit and return YES

A rather technical calculation shows that the cost of this algorithm is of
O
(
22n3n

)
operations, so it is slightly better than the straight-forward algorithm

but still is exponential in the number of states of the initial automaton.

4 Černý’s Conjecture for the Class FG

Using the characterization from the previous section here we show a linear upper
bound on the length of the shortest synchronizing word for the class of finitely
generated synchronizing automata.

Recall that the deficiency of a word w ∈ Σ∗ with respect to a given automaton
A = 〈Q, Σ, δ〉 is the difference df(w) = |Q|−|Q .w|. We make use of the following
result from [6] (see also [7]):

Theorem 2. Given a synchronizing automaton A = 〈Q, Σ, δ〉 and the words
u, v ∈ Σ+ such that df(u) = df(v) = k > 1, there exists a word τ , with |τ | ≤ k+1,
such that df(uτv) > k.

Theorem 3. Let A = 〈Q, Σ, δ〉 be a finitely generated synchronizing automaton
with n states. There is a synchronizing word of length at most 3n − 5.

Proof. Take any a ∈ Σ. By Corollary 1, if a acts as a permutation on the state
set Q, then there exists a synchronizing letter b, so the statement of the theorem
trivially holds. Thus we can assume that a is not a permutation letter, thus
Q .ak(a) = m(a) � Q. Suppose first that |m(a)| = 1, then 1 = |m(a)| = |Q .ak(a)|
and by Lemma 2, k(a) ≤ n − |m(a)| = n − 1 ≤ 3n − 5 for n ≥ 2.

678 E.V. Pribavkina and E. Rodaro

Now suppose that |m(a)| > 1, and consider non-singleton subsets of m(a)
reachable from m(a):

Reach(a) = {S ⊆ m(a) | S = m(a) . u, u ∈ Σ∗, |S| > 1}.

Obviously m(a) ∈ Reach(a), so Reach(a) is not empty. Also note that for any
S ∈ Reach(a) it holds

R(S) = R(m(a)). (2)

Indeed, since S ⊆ m(a) we have aα ∈ C(S) for some α ∈ N. Then since A is
finitely generated applying Theorem 1 and Lemma 3 we get R(S) = R(m(aα)) =
R(m(a))

Now let H = Q .ak(a)u be an element of Reach(a) of minimal cardinality
and let k′ = n − |H | = df(ak(a)u). Since |H | > 1 we have k′ ≤ n − 2. Since
A is synchronizing, there exists a word of deficiency n − 1, therefore by Theo-
rem 2 there is a word τ with |τ | ≤ k′ + 1 such that df(ak(a)uτak(a)u) > k′, i.e.
|Q .ak(a)uτak(a)u| < |H |. Next we prove that the word ak(a)uτak(a)uaka is syn-
chronizing. Indeed, suppose on the contrary that |Q .ak(a)uτak(a)uak(a)| > 1. It
is easy to see that Q . ak(a)uτak(a)uak(a) ⊆ m(a), hence Q . ak(a)uτak(a)uak(a) ∈
Reach(a). However the inequality

|Q . ak(a)uτak(a)uak(a)| ≤ |Q . ak(a)uτak(a)u| < |H |

contradicts the choice of H . In fact even the word ak(a)uτak(a) is synchronizing.
Indeed, consider the set S = Q .ak(a)uτak(a). If |S| > 1 then S ∈ Reach(a),
hence uak(a) ∈ R(S) = R(m(a)), so 1 = |m(a) . uak(a)| = |H . ak(a)|. But by the
choice of H we have |H . ak(a)| = |H | > 1, which is a contradiction.

Thus

τak(a) ∈ R(Q . ak(a)u) = R(H) = R(m(a)) = R(Q . ak(a)),

hence the word ak(a)τak(a) is synchronizing and |ak(a)τak(a)| ≤ 2k(a) + k′ + 1 ≤
2(n − 2) + n − 1 = 3n − 5. �

Remark 1. Under conditions of the Theorem 3 if k = min
a∈Σ

k(a), then there is a

synchronizing word of length at most 2k + n − 1.

5 Co-NP-Hardness

In this section we prove that the FINITENESS problem for a given DFA is co-
NP-hard. To prove the result we introduce another problem which we refer to
as REACHABILITY. Formally:

Input : A DFA A = 〈Q, Σ, δ〉 and a subset H ⊆ Q.
Question: Is there a word w ∈ Σ∗ such that Q .w = H?

The proof proceeds in two stages. First we show that any instance from a par-
ticular set I of instances of REACHABILITY can be polynomially reduced to an

Finitely Generated Synchronizing Automata 679

instance of the complement of FINITENESS. Next we complete the proof by poly-
nomially reducing any instance of SAT to an instance of REACHABILITY belonging
to I.

In our reductions we essentially make use of a particular class of automata,
called nilpotent automata. This notion was introduced by Perles et al. in 1962
under the name of definite table [8]. Later such automata were studied by Rystsov
in [9] in view of Černý’s conjecture. In the present paper we use the definition
from [9]. Namely, we say that a DFA A = 〈Q, Σ, δ〉 is nilpotent if there is a state
q ∈ Q and a positive integer n such for any word w ∈ Σ∗ of length at least n it
holds Q .w = {q}.

Obviously any nilpotent automaton is synchronizing with a sink state, i.e. the
state fixed by all the letters of the alphabet (q in the definition). In the follow-
ing lemma we state without proof some simple known properties of nilpotent
automata.

Lemma 4. Let A = 〈Q, Σ, δ〉 be a DFA with a unique sink state.

(1) If A is nilpotent, then for any word w ∈ Σ+ there exists a positive integer
m such that Q . wm = {q}.

(2) A is nilpotent iff there are no cycles or loops passing through non-sink states.

Next we introduce a particular subclass of nilpotent automata and a particular
set I of instances of REACHABILITY.

Consider a nilpotent automaton A = 〈Q, Σ, δ〉 with a sink state p and a
non-empty set RA of states r satisfying the following conditions:

– r . Σ = p;
– if there exists a word w such that Q .w = {p, r}, then there exists such word

of length at least 2.

We denote this class of automata by N . Note that the language Lmin(A) is
finite for every A ∈ N . It is an easy consequence of Theorem 1 and Lemma 4.

The set I is defined as follows:

I = {(A , H) | A ∈ N , H = {p, r}, r ∈ RA }.

The next proposition polynomially reduces any instance of REACHABILITY
belonging to I to an instance of the complement of FINITENESS. Its proof is
rather technical and due to the space limitation is omitted here.

Proposition 1. Let (A , H) ∈ I be an instance of REACHABILITY, with A =
〈Q, Σ, δ〉 and H = {p, r}, r ∈ RA . Then there is a synchronizing automaton A ′

such that the language Lmin(A ′) is infinite if and only if there exists w ∈ Σ+

such that Q . w = H.

In the sequel we polynomially reduce an instance of SAT to an instance of
REACHABILITY belonging to I. To this end we present another auxiliary con-
struction. Recall that a cartesian product of n deterministic finite automata

680 E.V. Pribavkina and E. Rodaro

Ai = 〈Qi, Σ, δi〉 is a DFA ×n
i=1Ai = 〈Q, Σ, δ〉 with Q = Q1×Q2×· · ·×Qn, and

a transition function δ : Q × Σ → Q defined component-wise

δ((q1, q2, . . . , qn), a) = (δ1(q1, a), δ2(q2, a), . . . , δn(qn, a)).

Clearly this action extends in a natural way to the free monoid Σ∗. It is not
difficult to check that the following statement holds

Lemma 5. Let A1, . . . , Am be nilpotent automata over a fixed alphabet with the
sink states q1, . . . , qm respectively. Then their cartesian product ×m

i=1Ai is also
nilpotent with a sink state q = (q1, . . . , qm).

Next we fix a positive integer n ≥ 2 and for each such n construct two particular
nilpotent automata over the alphabet Σn = {a1, b1, . . . , an, bn}.

For convenience let γi = {ai, bi} (in the sequel γi will correspond to the two
possible values for the ith variable). Consider an automaton An = 〈QA, Σn, δA〉
with QA = {0, 1, . . . , n, p1} and the transition function defined as follows (Fig. 3):

i . γi+1 = i + 1 for 0 ≤ i ≤ n − 1, i . (Σn \ γi+1) = p1 for 0 ≤ i ≤ n − 1,
n . Σn = p1, p1 .Σn = p1.

p1

0

Σn

1
. . .

n − 1

n

a1, b1

Σn \ γ1

Σn \ γ2

a2, b2

an, bn

Σn \ γn

Σn

Fig. 3. Automaton An

Next let Bn = 〈QB, Σn, δB〉 with QB = {0, 1, . . . , n} and the following tran-
sition rules (Fig. 4): i .Σn = i + 1 for 0 ≤ i ≤ n − 1 and n .Σn = n.

0 1 . . . n − 1 n

Σn

Σn Σn Σn

Fig. 4. Automaton Bn

Now we construct their cartesian product Vn = An × Bn which has (n +
1)(n + 2) states and will serve as a gadget encoding the correct assignment of
the values to variables. The following proposition establishes the main properties
of this automaton.

Finitely Generated Synchronizing Automata 681

Proposition 2. The automaton Vn = An × Bn = 〈QA,B, Σn, δA,B〉 is nilpotent
with the sink state p = (p1, n) and the state r = (n, n) satisfies r . Σn = p.
Moreover QA,B . w = {p, r} if and only if w = x1 . . . xn with xi ∈ γi.

Proof. By Lemma 5 Vn is nilpotent with the sink state p = (p1, n). The state
r = (n, n) satisfies r .Σn = p.

Suppose that QA,B . w = {p, r} = {p1, n} × {n}. It is obvious that for any
word w it holds QA,B . w = QA . w×QB . w. Thus we have QA . w = {p1, n} and
QB . w = {n}. An inspection of the automaton Bn shows that QB . w = {n}
if and only if |w| ≥ n. Suppose that w = xjw

′ for some xj ∈ γj , then by the
definition of the automaton An, we get QA . xj = {p1, j}. Hence, not to kill the
state j and to lead it till the state n, we must have w = xjxj+1 . . . xn, xi ∈ γi

for all i ≥ j. Combining this with the condition |w| ≥ n we get j = 1, i.e.
w = x1 . . . xn with xi ∈ γi for all i ≥ 1.

Conversely, let w = x1 . . . xn with xi ∈ γi. An easy computation shows that
QA . w = {n, p1} and QB . w = {n}. Thus {p, r} = {p1, n} × {n} = QA . w ×
QB . w = QA,B . w = {p, r}. �

Let an instance of SAT consist of m clauses χ = {c1, . . . , cm} over n variables
X1, . . . , Xn. Without loss of generality we can assume n ≥ 2.

Next for each xi ∈ γi = {ai, bi}, 1 ≤ i ≤ n we define χ(xi) = {ci1 , . . . , cik
}

to be the subset of χ consisting of clauses which contain positive literal Xi if
xi = ai, and of clauses containing negative literal ¬Xi if xi = bi. Without loss of
generality we can assume that χ(ai) ∩ χ(bi) = ∅, otherwise the common clause
ck ∈ χ(ai) ∩ χ(bi) would contain both Xi and ¬Xi, and so it would be trivially
satisfied. Moreover we can assume that all such subsets are non-empty. Indeed
if some χ(ai) = ∅, then all the clauses contain only negative literal ¬Xi, hence
we can put Xi = 0 and reduce the problem to one with less variables.

We say that the set {x1, . . . , xn} with xi ∈ γi for i = 1, . . . , n is a satisfiable
assignment for χ if and only if

n⋃
i=1

χ(xi) = χ.

With these definitions, it is clear that to a satisfiable assignment {x1, . . . , xn}
corresponds a satisfiable assignment for the Boolean formula ∧m

i=1ci given by
Xi = 1 if xi = ai, and Xi = 0 if xi = bi, and vice versa.

We now define a nilpotent automaton S(c1, . . . , cm) = 〈S, Σn, ∆〉 associated
to the clauses c1, . . . , cm. This automaton is a gadget which chooses satisfiable
assignments from all possible ones. This automaton has m(n+1)+1 states with
S = χ1 ∪ χ2 ∪ . . . χn ∪ χ ∪ {p′} where χi = {ci

1, . . . , c
i
m} for i = 1, . . . , n are

copies of χ = {c1, . . . , cm}. We denote by χi(xk) the subset of χi which is the
corresponding copy of χ(xk). The action of ∆ on S is defined as follows. For
each 1 ≤ i ≤ n − 1, each 1 ≤ j ≤ m, and ci

j ∈ χi we have

if ci
j ∈ χi(ai) then ci

j . ai = p′, and ci
j .(Σn \ {ai}) = ci+1

j ∈ χi+1,
if ci

j ∈ χi(bi) then ci
j . bi = p′ and ci

j .(Σn \ {bi}) = ci+1
j ∈ χi+1,

682 E.V. Pribavkina and E. Rodaro

if ci
j ∈ χi \ (χi(ai) ∪ χi(bi)) then ci

j . Σn = ci+1
j ∈ χi+1;

if cn
j ∈ χn(an) then cn

j . an = p′ and cn
j .(Σn \ {an}) = cj ∈ χ,

if cn
j ∈ χn(bn) then cn

j . bn = p′ and cn
j .(Σn \ {bn}) = cj ∈ χ,

if cn
j ∈ χn \ (χn(an) ∪ χn(bn)) then cn

j . Σn = cj ∈ χ,
χ . Σn = p′ and p′ . Σn = p′.

Clearly S(c1, . . . , cm) is nilpotent with the sink state p′. The property stated in
the following lemma is rather clear from the construction, thus we omit here the
formal proof:

Lemma 6. Let S(c1, . . . , cm) = 〈S, Σn, ∆〉 be constructed as above and w =
x1 . . . xn ∈ Σ+

n be a word with xi ∈ γi for i = 1, . . . , n, then S .w = {p′} if and
only if x1, . . . , xn is a satisfiable assignment.

Proposition 3. Let c1, . . . , cm be clauses over n ≥ 2 variables. The automaton
A = Vn×S(c1, . . . , cm) = 〈Q, Σn, δ〉 belongs to N . Moreover, putting p = (p, p′),
r = (r, p′), and H = {p, r}, we have (A , H) ∈ I and there is a word w ∈ Σ+

n

such that Q . w = H if and only if the Boolean formula ∧m
i=1ci is satisfiable.

Proof. By Lemma 5, A = 〈Q, Σn, δ〉 is nilpotent since both Vn and S(c1, . . . , cm)
are nilpotent automata. Moreover, with the notation of Proposition 2, p = (p, p′)
is the sink state for A and since r . Σn = p and p′ .Σn = p′, we obtain that the
state r = (r, p′) satisfies r . Σn = p.

Let us first prove that Q . w = H = {p, r} if and only if ∧m
i=1ci is satisfiable.

Since {p, r} = {p, r}×{p′}, then Q .w = QA,B . w×S . w. Thus Q . w = H if and
only if QA,B . w = {p, r} and S . w = {p′}. On the other hand, by Proposition 2,
QA,B . w = {p, r} if and only if w = x1 . . . xn with xi ∈ γi for i = 1, . . . , n and,
by Lemma 6, S . w = {p′} if and only if {x1, . . . , xn} is a satisfiable assignment.

Now we prove that RA is not empty. By its definition if there is a word w
such that Q . w = {p, r}, then the previous argument and the condition n ≥ 2
imply |w| ≥ 2. So r ∈ RA , hence A ∈ N . �

Now we are ready to state the main theorem of this section.

Theorem 4. The problem FINITENESS is co-NP-hard.

Proof. Let {c1, . . . , cm} be an instance of SAT with X1, . . . , Xn variables, n ≥ 2.
Combining Propositions 1 and 3 we obtain the automaton A ′ = 〈Q′, Σn, δ′〉 over
an alphabet with 2n + 1 symbols and having (n + 1)(n + 2)(m(n + 1) + 1) + 2
states, such that Lmin(A ′) is infinite if and only if ∧m

i=1ci is satisfiable. �

Remark 2. Note that in our reduction the size of the alphabet is not constant
and depends on the input. In fact choosing the following coding ϕ of letters from
Σn in words of length n over a binary alphabet

ϕ(ai) = 1i0n−i; ϕ(bi) = 0i1n−i, i = 1, 2, . . . , n

gives our co-NP-hardness result also in case of a constant-size alphabet. The
proof of the result is rather technical, so we omit it here.

Finitely Generated Synchronizing Automata 683

6 Open Problems

Theorem 3 shows that every n-state finitely generated synchronizing automaton
has a synchronizing word of length at most 3n − 5. On the other hand, as
discussed in the introduction, there are examples of automata in FG having
shortest synchronizing words of length n−1. We are interested in finding a series
of finitely generated synchronizing automata whose shortest synchronizing word
has length exactly 3n− 5 or proving that this length is always not greater than
n − 1.

Another interesting question concerns the precise complexity class of the prob-
lem FINITENESS. In particular, is it in co-NP?

Let A ∈FG. Since the language Lmin(A) is finite, one may ask how many
elements it might have? Another problem is to give a bound for the length of
the longest word in Lmin(A).

Acknowledgement

The authors thank professor Mikhail V.Volkov for proposing the problem and
for the precious suggestions. They deeply appreciate useful remarks by professor
Juhani Karhumäki and are grateful to Pawel Gawrychowski for communicating
them his PSPACE result. They also thank anonymous referees for careful reading
of the paper and a number of helpful remarks.

References

1. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Mat.-Fyz. Čas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)

2. Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and
road coloring. EATCS Bull. 68, 134–150 (1999)

3. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Ka-
toen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

4. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

5. Gawrychowski, P.: Finiteness problem for the language of minimal synchronizing
words is in pspace. Private Communication (2008)

6. Pin, J.E.: Utilisation de l’algèbre linéaire en théorie des automates. Actes du 1er
Colloque AFCET-SMF de Mathématiques Appliquèes, AFCET, Tome II, 85–92
(1978) (in French)

7. Margolis, S.W., Pin, J.E., Volkov, M.V.: Words guaranteeing minimum image. Int.
J. Foundations Comp. Sci. 15(2), 259–276 (2004)

8. Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans.
Electr. Comp. 12(3), 233–243 (1963)

9. Rystsov, I.K.: Resetting words for decidable automata. Cybernetics and Systems
analysis 30(6), 807–811 (1994)

Genetic Algorithm for Synchronization

Adam Roman

Institute of Computer Science
Jagiellonian University, Cracow, Poland

roman@ii.uj.edu.pl

Abstract. We present a novel approach to the synchronization problem.
It is a well-known fact that a problem of finding minimal (or: the shortest)
synchronizing word (MSW) for a given synchronizing automaton is NP-
complete. In this paper we present the genetic algorithm which tries, for
a given automaton, to find possibly short word that synchronizes it. We
use a modified version of a classical simple genetic algorithm (SGA).

1 Introduction

Synchronizing automata have many practical applications. They are used in
robotics (for designing so-called part orienters) [1], bioinformatics (the reset
problem) [2], network theory [3], theory of codes [4] etc. On the other hand,
synchronizing theory is nowadays a field of the very intensive research, motivated
mainly by the famous and still open Černý Conjecture. It claims that (n − 1)2

is an upper bound for the length of minimal synchronizing word (MSW) in any
n-state synchronizing automaton. This conjecture, stated in 1964 by Černý [5],
is the most longstanding open problem in automata theory.

When trying to apply the synchronization theory in some practical issues, the
main problem we have to deal with is to find the minimal (or as short as possible)
synchronizing word in some automaton. This problem is known as NP-complete
[6]. For automata with small number n of states the exponential algorithm works
well, but when n grows, it becomes useless. Instead of it we can use one of the
well-known polynomial algorithms, such like Eppstein algorithm, cycle algorithm
or others [6,7]. Each of them works good for some class of automata, but in
general they rarely find the optimal solutions.

In this paper we present a genetic algorithm for solving the problem. Accord-
ing to our best knowledge, this is the first attempt to apply an evolutionary
approach to the synchronization problem. Our approach is based on the model
of simple genetic algorithm (SGA). The research on the abilities and limitations
of the SGA (that is, what kinds of problems it can and cannot solve) has been
heavily influenced by a theory of adaptation called the building block hypoth-
esis [8,9,10]. It has become an object of a strong critique. The main reproach
was that it lacks theoretical justification. Moreover some experimental results
have been published that draw its veracity into question. The researchers tried
to find some other models of evolutionary computations that would work better

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 684–695, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Genetic Algorithm for Synchronization 685

than SGA. New paradigms of evolutionary computations have arisen: evolution-
ary programming (with arbitrary chromosome structure), genetic programming,
evolutionary strategies. In this paper we try to support somehow the idea lying
behind the theory of SGA. The algorithm presented in Section 3 gives a promis-
ing result, mainly because the synchronizing problem nature fits well into SGA
paradigm.

In SGA chromosome population is, in fact, the population of solutions to the
encoded version of the original problem. When the best solution is found, it must
be decoded into the language of the original problem. Usually the encoding and
decoding functions are not identities. In the synchronizing problem an automaton
is given and we want to find the shortest word which synchronizes it. Notice that
in case of binary alphabet the word itself is the solution and it represents the
chromosome directly - no encoding/decoding function is needed. In other words,
genotype equals phenotype here. Moreover, it seems that the building block
hypothesis works in this case, because the algorithm converges to local optima.

The paper is organized as follows: in Section 2 we introduce the basic notions
referring to the synchronization theory and we formulate the synchronization
problem. In Section 3 we present the genetic algorithm based on SGA paradigm,
but with some modifications (mainly related to parameter adaptation issues).
All genetic operations and heuristics used in GA are described there. Section 4 is
devoted to the experiments and their results. Finally, in Section 5 we summarize
our results and describe the future work in the field of evolutionary approach to
synchronization problem.

2 Synchronizing Automata

Let A be a finite set. By A∗ we denote the free monoid over A. If we interpret
A as an alphabet, then A∗ is the set of all finite words over A. For example,
if A = {a, b}, then A∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}, where ε is an empty
word. The length of w ∈ A∗ is the number of its letters. We denote the length
of w by |w| and we define |ε| = 0. By |w|a we denote the number of occurrences
of a in w.

An automaton is a triple A = (Q, A, δ), where Q is a finite set of states, A is
a finite alphabet and δ : Q× A → Q is a transition function. It can be naturally
extended on 2Q × A∗ → 2Q in the following way: δ(P, ε) = P , δ(P, aw) =⋃

p∈P δ(δ(p, a), w), where p, q ∈ Q, P ⊆ Q, w ∈ A∗. Since now we assume that
we deal only with full, deterministic and strongly connected automata, that is:
(1) δ is a total function on Q × A, (2) ∀p, q ∈ Q ∃w ∈ A∗ : δ(p, w) = q. For the
sake of simplicity, we will write p.a = q instead of δ(p, a) = q.

Definition 1. Let A = (Q, A, δ) be an automaton. If there exists w ∈ A∗ such
that |Q.w| = 1, we call w a synchronizing word for A. We also say that A is
synchronizing.

For a given A = (Q, A, δ) and w ∈ A∗ we define the deficiency of w as follows:
df(w) = |Q| − |Q.w|. If w synchronizes A, then df(w) = |Q| − 1.

686 A. Roman

It is clear that if w synchronizes A, then each word of the form uwv (u, v ∈ A∗)
also does it. Therefore a natural question arises: what is the shortest synchro-
nizing word for A? Such a word will be called a minimal synchronizing word
(MSW) for A. By m(A) we denote the length of the MSW for A.

Conjecture 1 (Černy, 1964). Let A be an n-state synchronizing automaton.
Then

m(A) ≤ (n − 1)2.

For many classes of automata the conjecture was shown to be true (see for
example [1,11,12,13,14]), but in general it is still an open problem. Černý showed
that for each n there exists an n-state automaton with MSW of length (n− 1)2.
These are so-called Černý automata and are denoted by Cn.

Now we can formally define the synchronizing problem:

Definition 2 (Synchronizing problem). Given A = (Q, A, δ), find

w◦ = argmin
w: |Q.w|=1

{|w|}.

3 Genetic Algorithm

SGA transforms population of solutions in a way that imitates nature. The
algorithm is described in Listing 1. We assume the reader to be familiar with
basic notions and properties of SGA and we do not describe SGA here (see [8] for
details). Throughout the paper the following notions will be used: N denotes the
population size, t denotes the discrete time - in each time unit one population
is processed (t = 0, 1, 2, ...). P t is a population in time t. By f we denote the
fitness function and dt

i ∈ A∗ is the i-th chromosome in P t (i = 1, 2, ..., N).

Algorithm 1. Simple Genetic Algorithm

1: begin
2: t ← 0
3: initiate population P 0

4: evaluate P 0

5: while (not stop criterium) do
6: begin
7: T t ← selection in P t

8: Ot ← crossover and mutation in T t

9: evaluate Ot

10: P t+1 ← Ot

11: t ← t + 1
12: end
13: end

Let us now describe some important differences between SGA and our algo-
rithm.

Genetic Algorithm for Synchronization 687

1. In synchronization problem each solution is a word over some alphabet A.
As we mentioned earlier, we will understand that words are chromosomes
and their letters represent genes. But these words can have different lengths.
Therefore we assume that the chromosome length is not fixed. This will have
some important consequences when defining crossover and mutation;

2. We use adaptation methods for changing mutation and crossover probability
during the algorithm work. Adaptation is also used for modifying the prob-
ability distribution P(A) over an alphabet. This distribution is utilized in
the initiation phase and also in the mutation;

3. We use elitist selection - two copies of the best chromosome from P t−1 pass
into P t and the remaining N−2 are chosen using proportional selection based
on the roulette wheel method. Here by ”best” we understand the shortest
word among all words in P t−1 with the highest deficiency.

In the next subsections we describe all details of our algorithm. All experi-
ments will be performed for automata over binary alphabet, but in the theoretical
parts of this paper we assume that A is arbitrary (that is, |A| ≥ 2).

Initial Probability Distribution for Letters. The initial population P 0 is
constructed using the heuristic on the distribution P(A). Let A = (Q, A, δ)
be an automaton and let Ca = {P ⊂ Q : ∀p, q ∈ P ∃i ≥ 1 p.ai = q} =
{P1, P2, ..., P|Ca|}. Ca is the set of all cycles in directed graph Ga = (Q, E),
where (p, q) ∈ E ⇔ p.a = q. We define µ(a) = LCM(|P1|, |P2|, ..., |P|Ca||) as the
lowest common multiple of the lengths of all cycles over a in A. We also define
ξ(a) = min{k : ∀l > k Q.al = Q.ak}. In other words, ξ(a) is the longest path
(over a ∈ A) leading from some state p ∈ Q \

⋃
Ca to some state q ∈

⋃
Ca,

assuming that no state appears twice or more on this path. If µ(a) is small, then
there are more states lying on the paths leading to cycles, so they can be easily
synchronize by ak for some k into Q.ak, such that |Q.ak| equals the number of
cycles. When µ(a) is large, then more states are lying on cycles and usually it is
harder to synchronize these states than in a previous case.

Now we are ready to define the probability distribution for alphabet letters:

∀a ∈ A P(a) =
ξ(a) + µ(a)∑
l∈A ξ(l) + µ(l)

. (1)

Distribution (1) will be used for generating genes in initial population, as well
as in the mutation operator.

Chromosome Length in P 0. The lengths of the words generated in the ini-
tial population are random according to a uniform distribution on {1, 2, ..., M},
where M is a fixed maximal length of chromosome. From [15] and [16,17] we
know that for each n there exists an automaton Cn such that m(Cn) = (n − 1)2

and that for each synchronizing A it is true that m(A) ≤ n3−n
6 , so necessarily

(n−1)2 ≤ M ≤ n3−n
6 . From the other hand, ”Higgins [18] has shown that if Q is

a set with n elements (where n is sufficiently large), then on average any product
of 2n randomly chosen transformations of Q is a constant map. Being retold in

688 A. Roman

automata-theoretic terms, it implies that a randomly chosen automaton having
n states and over a sufficiently large input alphabet tends to be synchronized,
and, moreover, it is synchronized by any word of length 2n” [19]. Numerical
computations confirm that the mean length of MSW tends to behave linear (or
even logarithmic) in n (see Fig. 1).

We strongly believe that Černý conjecture is true at least for binary alphabet,
therefore in all experiments M has been usually defined as a value a little greater
than n2. According to the results described above, a more theoretical study is
needed on the probability distribution of MSWs lengths for a given n. We could,
for example, use a normal distribution N (m, σ) with m = Θ(n), but we don’t
know which σ would be the best choice. Nevertheless, we have decided to use a
uniform distribution on {1, 2, ..., M}, because the algorithm works well even if
the words in the initial population are much more longer than m(A). The use of
a normal (or some other) distribution could increase the algorithm convergence,
but, as we said, little is known about the parameters of such a distribution.

Fig. 1. Mean MSW length for a random n-state synchronizing automaton. Sample size
= 1000 for each n = 5, 6, ..., 15. Linear regression: y = 0, 486x + 1, 654, R2 = 0, 985.

Probability Distribution Adaptation. When the algorithm works, the prob-
ability distribution for letters is modified. Let P t be the currently processed
population and let P be the probability distribution for letters in step t − 1. If∑N

i=1 df(dt
i)

N
>

∑N
i=1 df(dt−1

i)
N

,

then we compute the empirical distribution for letters from P t by the formula

Pemp(a) =
∑N

i=1 |dt
i|a∑N

i=1 |dt
i|

(2)

Genetic Algorithm for Synchronization 689

and we put P ← Pemp. The reason for implementing such an adaptation is
simple: the optimal distribution should be equal to the distribution Pw in the
MSW w, but this word is of course unknown. If the average deficiency in P t

increases in relation to the average deficiency in P t−1, it means that P t is ”on
average” better than P t−1 and it’s empirical distribution Pt

emp is more similar to
Pw than the current one. Therefore we make Pt

emp to be our new distribution P .

Genetic Operators. Both mutation and crossover probabilities are defined
by two values: pm and p′m for mutation and pc and p′c for crossover. At the
beginning pm = p′m, pc = p′c and p′m, p′c remain unchanged during the algo-
rithm work. We use an adaptive technique for pm and pc values: if, in step t,
maxp∈P t f(p) ≤ maxp∈P t−1 f(p), we increase pm by 0.001 and pc by 0.01. In
other case we put pm = p′m and pc = p′c. Experiments showed that this simple
adaptation mechanism speeds up the algorithm convergence.

Crossover. We use a modified version of one-point crossover, taking under con-
sideration the variability of the chromosome length. Given two chromosomes
dt

i = a1a2...as and dt
j = b1b2...bt we pick two random numbers q, r, such that

1 ≤ q ≤ s and 1 ≤ r ≤ t. The crossover results with two new offsprings
a1a2...aqbr+1br+2...bt and b1b2...braq+1aq+2...as, provided that q + (t − r) ≤ M
and r + (s − q) ≤ M , where M is the maximal allowed chromosome length.

Mutation. There are three types of mutation:

M1 for each letter in a given word flip a coin. If it’s head, substitute the cur-
rent letter a with another one. If |A| > 2 the new letter should be chosen
according to the uniform distribution on A \ {a};

M2 insert a random subword in a random place of the given word; letters for
the new subword are generated with the current probability distribution P ;

M3 delete a random subword from a given word.

Mutation is realized as follows: Let u ∈ [0, 1] be a random number. If u ≤ pm

flip a coin. If head, perform (M2) else perform (M3). At the end perform (M1)
with probability p′m for each letter. If mutation results with an empty word ε,
replace it by a one-letter word. The letter is chosen randomly, according to the
current probability distribution P .

Fitness Function. In order to evaluate the chromosome, we have to take into
consideration two values: |w| and df(w). The shorter word is and the greater
deficiency it has, the better it is. Moreover, we want f to have the following two
properties: (P1) if |Q.w| < |Q.v|, then f(w) > f(v); (P2) if |Q.w| = |Q.v| and
|w| < |v|, then f(w) > f(v). After several series of experiments we have chosen
the following fitness function:

f(w) =
df4(w)

4
√
|w|

. (3)

Let w, v be two words such that df(w) > df(v). If |w| ≤ |v|, then clearly
(P1) and (P2) holds. If |w| > |v|, (P1) and (P2) are almost always fulfilled,

690 A. Roman

because in practice, especially when n is large, |w|
|v| is usually close to 1 and then

(1 + 1
df(w)−1

)4 > 4

√
|w|
|v| .

Algorithm. In this section we give the formal algorithm description. It is shown
in Listing 2. P denotes the current probability distribution for letters.

Algorithm 2. SynchroGA

1: begin
2: INPUT: A = (Q, A, δ)
3: popSize← 40, pm ← 0.03, p′

m ← pm, pc ← 0.7, p′
c ← pc

4: compute P
5: t ← 0
6: initialize P0 using P
7: evaluate P0

8: while (t < mboxpopNumber) do
9: begin

10: Tt ← selection Pt //elitist + roulette wheel
11: Ot ← crossover and mutation (with P) on Tt // use p′

m and p′
c

12: evaluate Ot

13: if maxp∈P t f(p) ≤ maxp∈P t−1 f(p)
14: p′

m ← pm + 0.001, pc ← pc + 0.01
15: else p′

m ← pm, p′c ← pc

16: if 1
N

∑
p∈P t df(p) > 1

N

∑
p∈P t−1 df(p)

17: compute Pemp in P t

18: P ← Pemp

19: Pt+1 ← Ot

20: t ← t + 1
21: end
22: end

4 Experiments and Results

In order to evaluate the quality of the SynchroGA algorithm three experiments
were performed.

Experiment 1. SynchroGA was launched for several automata, one hundred
times for each of them. In each run i = 1, 2, ..., 100 algorithm processed 2000
generations and returned ci ∈ P 1999, which is the shortest among all words in
P 1999 with the highest deficiency. The results of this experiment are gathered in
Table 1. Two first columns represent an automaton and the length of its MSW.
Let m = maxi{df(ci)} and W = {ci : df(ci) = m}. Columns 3-5 give some
statistical information on the set W : the minimal, average and the maximal
length of the words from W . Columns 6-8 give the same statistical information
(but now for all words c1, c2, ..., c100) on the value of |Q.ci|. Column 9 shows a
mean number of the first generation in which a word from W has been found.
Column 10 describes the maximal allowed chromosome length.

Genetic Algorithm for Synchronization 691

Table 1. Results of the first experiment

Genetic algorithm
A m(A) |MSW | |Q.w| MSW max

min mean max min mean max N ChrSize
A21 20 20 20.51 23 1 1 1 466.47 500
A41 40 40 41.85 46 1 1 1 643.86 2000
A61 60 60 62.6 70 1 1 1 778.23 4000
B21 20 20 20 20 1 1 1 248.76 500
B41 40 40 40.12 41 1 1 1 757.16 2000
B61 60 60 60.73 63 1 1 1 1123.97 4000
C6 25 25 28.42 33 1 1 1 1336.44 200
C11 100 117 139.4 168 1 1.06 2 1619.46 200
C16 225 262 262 262 1 2.02 3 1572 300
C21 400 282 391.9 493 2 2.59 4 1790.56 500
C41 1600 1562 1562 1562 3 6.09 9 1977 2000
D7 30 30 31.57 38 1 1.14 2 1254.81 40
D21 380 421 421 421 1 2 3 1682 500
D41 1560 1337 1548.57 1791 2 4.1 6 1757.43 2000

Automaton An = ({1, 2, ..., n}, {a, b}, δ) has the following transition function:
for i < n i.a = i + 1; n.a = n; for all i i.b = i. It is clear that MSW length
for An is an−1 and m(An) = n − 1. Bn = ({1, 2, ..., n}, {a, b}, δ) is defined
as follows: for even i, i.a = i − 1 and i.b = i; for odd i ≥ 3, i.a = i and
i.b = i − 1; 1.a = 1.b = 1. Minimal synchronizing word for Bn is (ba)

n
2 for n

odd and a(ba)
n−1

2 for n even. Automata An and Bn are similar, but their initial
probability distributions are different, so the experiment allows us to check if the
probability adaptation mechanism works. Cn are n-state Černý automata and
it is known that m(Cn) = (n − 1)2 [15]. MSW here is (ban−1)n−2b. Automaton
Dn (n odd) with Q = {0, 1, ..., n − 1} has the following transition function:
i.a = i − 2(mod n) if i = 0, 1; i.a = i if 2 ≤ i ≤ n − 1; i.b = i − 1(mod n).
It was proved [20] that m(Dn) = (n − 1)(n − 2) and it is realized by the word
w = (ab2k−1)k−1(ab2k−2)k−1a, where n = 2k + 1.

Experiment 2. A thousand random 14-state synchronizing automata were
generated. For each of them SynchroGA found a minimal synchronizing word.
Fig. 2 shows the distribution of the number of the first generation t, in which
the best word was found.

A typical run of the algorithm is shown in Fig. 3. Characteristic slow growths
and immediate decreases of |Q.w| are caused by the adaptive change of mutation
and crossover probability. If, for a long period of time, no solution with higher
deficiency is found, pm and pc grow. The algorithm then tends to behave more
randomly, so the mean fitness decreases. When a new, better solution is found,
pm and pc are set to their initial values and we can observe an immediate decrease
of mean |Q.w| and increase of the mean fitness.

692 A. Roman

Fig. 2. For n = 10, 20, ..., 600 histogram shows the number of algorithm runs in which
MSW was found in generation t, n − 10 ≤ t < n

Fig. 3. A typical run of SynchroGA

Genetic Algorithm for Synchronization 693

Experiment 3. In the previous experiment computations were done for au-
tomata with small number of states. This is because we had to compare the
result of SynchroGA with the minimal synchronizing word for a given au-
tomaton. This required the use of an exponential algorithm, so the number n of
states had to be small. In this experiment we operate on bigger automata. In this
case computing MSW is not possible, so instead of MSW value we use a regres-
sion line from Fig. 1. For each n = 15, 16, ..., 100 a ten random n-state automata
were generated. In Fig. 4 the mean value of the shortest synchronizing word
found by SynchroGA is shown in comparison with the values obtained from
the regression equation for x = n. We see that these values tend to behave as a
linear function, but with a lower slope than the regression line y = 0.486x+1.654
from Fig. 1. Taking into account that a genetic algorithm usually does not find
the best solution but rather a sub-optimal one, results shown in Fig. 4 reinforce
our conviction that the mean MSW length for a random n-state synchronizing
automaton is proportional to an, with a much smaller than 0.486.

Fig. 4. Mean value of the shortest synchronizing word found by SynchroGA (n =
15, ..., 100) and regression line y = 0.486x + 1.654 from Fig. 1

5 Conclusions and Future Work

Experiment 1 shows that SynchroGA works good, but for ”harder” automata
(that is, with MSWs lengths quadratic in n, such like MSWs for Černý au-
tomata), the convergence decreases when n grows. For random automata (ex-
periment 2) our algorithm deals with the synchronization problem very well and
converges quickly. This can be explained by the fact that the expected value
of MSW in a random automaton is (probably) linear or even logarithmic in n,
so these words are rather short: results for automata An and Bn (see Table 1)
confirm that SynchroGA works very good if MSW is short. Therefore, if we

694 A. Roman

see that the algorithm has a problem with finding a word with a high deficiency,
we can almost be sure that the automaton has a long MSW.

We can improve the mean length of the synchronizing words found by Syn-
chroGA. When it finds the best solution w, we can check if its length can be
shortened. Let w = a1a2...an. If there are i < j such that Q.w1...wi = Q.w1...wj

it is clear that for v = a1...aiaj+1...an we have Q.w = Q.v, but |v| < |w| (notice
that even if |Q.w| = 1, it does not imply that v will be the minimal synchro-
nizing word, but only that it can be shorter than w). The optimizing step can
be done not only at the end but, for example, after each k generations for each
chromosome in the population. This, however, would highly increase the run
time.

Notice that in a few cases the algorithm failed to find a synchronizing word.
In such situation we can combine the genetic algorithm with any of the heuristic
algorithms for finding short synchronizing words (for example, an Eppstein one
[6]) in a following way: when a word w is found by the genetic algorithm and
|Q.w| > 1, then run Eppstein algorithm for Q.w. It will return a word v such
that |Q.wv| = 1, so the result is a synchronizing word wv.

In conclusion, we think that SynchroGA can be a useful tool in finding
short synchronizing words. Future work should concentrate on tuning up the
algorithm: finding the optimal mutation and crossover probability, dealing with
another selection methods (for example a tournament selection method) and so
on. As it was said before, a research on the relation between the automaton
structure and it’s m(A) value should be done. This could be useful for choosing
better initial probability distribution P .

Algorithm can be found at www.ii.uj.edu.pl/∼roman/publications.html.

References

1. Ananichev, D., Volkov, M.: Synchronizing monotonic automata. In: Ésik, Z., Fülöp,
Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg (2003)

2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, L., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. Proc. National Acad. Sci.
USA 100, 2191–2196 (2003)

3. Kari, J.: Synchronization and stability of finite automata. JUCS 8(2), 270–277
(2002)

4. Jürgensen, H.: Synchronization. Information and Computation 206(9-10), 1033–
1044 (2008)

5. Černý, J.: Poznámka k. homogénnym experimentom s konecnymi automatmi. Mat.
fyz. cas SAV 14, 208–215 (1964)

6. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–
510 (1990)

7. Roman, A.: Synchronizing finite automata with short reset words. Appl. Math.
Comp. (in press, 2008), doi:10.1016/j.amc.2008.06.019

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Uni-
versity of Michigan Press Edition (1992)

Genetic Algorithm for Synchronization 695

10. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

11. Dubuc, L.: Les automates circulaires et la conjecture de Černý. Inform. Theor.
Appl. 32, 21–34 (1998)

12. Kari, J.: Synchronizing finite automata on eulerian digraphs. Theor. Comp.
Sci. 295, 223–232 (2003)

13. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comp.
Sci. 172, 273–279 (1997)

14. Trahtman, A.N.: The existence of synchronizing word and Černý conjecture for
some finite automata. In: Second Haifa Workshop on Graph Theory, Combinatorics
and Algorithms, Haifa (2002)

15. Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetica 7,
289–298 (1971)

16. Klyachko, A.A., Rystsov, I., Spivak, M.A.: An extremal combinatorial problem
associated with the bound on the length of a synchronizing word in an automaton.
Kybernetika 2, 16–20 (1987)

17. Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of
Discrete Mathematics 17, 535–548 (1983)

18. Higgins, P.M.: The range order of a product of i transformations from a finite full
transformation semigroup. Semigroup Forum 37, 31–36 (1988)

19. Volkov, M.: Personal communication (2008)
20. Ananichev, D., Volkov, M., Zaks, Y.: Synchronizing automata with a letter of

deficiency 2. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp.
433–442. Springer, Heidelberg (2006)

Constructing Infinite Words of Intermediate
Arithmetical Complexity

Paul V. Salimov

Sobolev Institute of Mathematics, prosp. Koptyuga 4, 630090,
Novosibirsk, Russia

ch.cat.s.smile@gmail.com

Abstract. Arithmetical complexity of an infinite word, defined by Av-
gustinovich, Fon-Der-Flaass and Frid in 2000, is the number of words
of length n which occur in its arithmetical subsequences. We present
a construction of infinite words whose arithmetical complexity function
grows faster than any polynomial, but slower than any exponential. Also
we give a rough upper bound for the arithmetical complexity of the
Sierpiński word.

1 Introduction

Let Σ be a finite alphabet, and x = x0x1 · · · ∈ ΣIN0 be an infinite word on Σ
with indices in IN0 = IN ∪ {0}. A factor or subword of x is a finite word that
occurs as a block of successive letters in x, i.e., is equal to xkxk+1 . . . xk+n for
some k and n, and if k = 0 such a subword is called prefix. The notation Fx is
used for the set of subwords of x. The length of a finite word u is a number of
letters in it and is denoted by |u|.

A classical complexity measure of a sequence x on a finite alphabet is the
subword complexity that is the function fx counting the number of its distinct
subwords of the given length. A survey on subword complexity can be found at
[1].

We consider another complexity measure that is the function ax which counts
not only factors of a given word but all distinct words occurring in its arithmetical
progressions. Namely, the arithmetical complexity function ax of n is the number
of distinct words of the form xkxk+d . . . xk+(n−1)d for arbitrary initial positions
k � 0 and differences d � 1. The set of such words is called the arithmetical
closure of Fx and is denoted by Ax.

The arithmetical complexity was introduced in 2000 by Avgustinovich, Fon-
Der-Flaass and Frid [2] and has become one of the most well-explored modified
complexity functions relative to the subword complexity.

Characterizing the set of possible arithmetical complexity functions is a chal-
lenging problem and only partial results in this direction are known. Most of
them concern words of polynomial arithmetical complexity.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 696–701, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Constructing Infinite Words of Intermediate Arithmetical Complexity 697

It was shown in [3] how to construct words of intermediate subword complex-
ity. In this paper we obtain the similar result for the arithmetical complexity.
Namely, we present a construction of infinite words on the binary alphabet of
arithmetical complexity that satisfies 2c1nc � ax(n) � c2n

42c3nc

for some c < 1
and some c1,c2,c3.

2 Definitions

Let Σ = Σs = {0, 1, . . . , s − 1} be a finite alphabet. The set of all finite words
on Σ is denoted by Σ∗, the set of all non-empty finite words is denoted by Σ+

and the set of all words of length n is denoted by Σn.
A morphism ϕ : Σ∗ → Σ∗ is a map that obeys the identity ϕ(xy) = ϕ(x)ϕ(y)

for all words x, y ∈ Σ∗. A morphism is called m-uniform if all images of letters
have the same length equal to m.

An m-uniform morphism ϕ : Σ∗ → Σ∗ with m > 0 generates a mapping that
maps an infinite word x = x0x1 . . . to the word ϕ(x0)ϕ(x1) We denote this
mapping by the same letter ϕ.

If a morphism ϕ is m-uniform with m � 2 and the word ϕ(a) starts with a
letter a for some a ∈ Σ, then there always exists an infinite word x satisfying
x = ϕ(x) and it can be obtained as a limit limn→∞ ϕn(a). Such a word x is
called a fixed point of the morphism ϕ.

Example 1. The well-known Sierpiński word s = 0101110101111 . . . is a fixed
point of the 3-uniform morphism ϕS on Σ2 defined by ϕS(0) = 010 and ϕS(1) =
111.

An m-uniform morphism ϕ : Σ∗
s → Σ∗

s is symmetric if the word ϕ(i) is a
result of a symbol-by-symbol addition modulo s of ϕ(0) with ii . . . i for each
i. It was shown in [4] that non-periodic fixed points of a symmetric morphism
are of exponential arithmetical complexity. In [5] uniformly recurrent words of
linear arithmetical complexity were studied, and some of them are fixed points
of morphisms too.

We will consider some subclass of m-uniform morphisms and will prove that
the arithmetical complexity functions of their fixed points grow slower than any
exponential. Then we will show how to obtain words of intermediate arithmetical
complexity from fixed points of such morphisms.

A word x is called universal if Fx = Σ∗.
We will need some facts about mechanical words [6]. An upper mechanical

word s = s0s1 . . . is an infinite word that can be defined by si = �(i + 1)α +
ρ� − �iα + ρ� for some real α ∈ [0, 1] and ρ, i.e., mechanical words are either
periodic or Sturmian words. Let the function χ(n) be the number of distinct
words which are factors of mechanical words. It was proved (see Theorem 2.2.36
in [6]) that χ(n) = 1 +

∑n
i=1(n + 1 − i)φ(i) where φ is Euler’s totient function,

so χ(n) � cχn3.

698 P.V. Salimov

3 The Construction

Let us consider any morphism ϕ satisfying the following conditions:

ϕ is an m-uniform Σ∗
2 → Σ∗

2 morphism ;
ϕ(0) starts with 0 ;
ϕ(0) contains exactly t occurrences of 0, where 1 < t < m ;
ϕ(1) = 1m .

(1)

The upper bound for the arithmetical complexity function of its fixed point
grows slower than any exponential. Namely, we will prove the following state-
ment.

Theorem 1. If an infinite word x is a fixed point of a morphism ϕ satisfying
conditions (1), then its arithmetical complexity function obeys the inequality

ax(n) � 4m2nχ(mn)2t2nlogm t

.

The main idea of the proof is that words of the arithmetical closure of x do
not differ “very much” from those of the set Fx, due to conditions (1). More
precisely, we will show that every word of the arithmetical closure of x can be
obtained from some subword of x of length mn by some character deletion of
a special kind and replacing some symbols 0 with 1. And since the number of
occurrences of 0 in subwords of x grows slowly, we get a non-exponential upper
bound for the arithmetical complexity function.

Let us define µ0 as the function counting occurrences of a symbol 0 in a finite
word.

Lemma 1. If v is a subword of a fixed point of a morphism ϕ satisfying condi-
tions (1), then µ0(v) � t�logm |v|�.

Proof. Let k = �logm |v|�. The word x is a fixed point of ϕ, so, by the definition,
x = ϕk(x) = ϕk(x0)ϕk(x1) . . . where |ϕk(xi)| = mk � |v|. Hence, v is a subword
of some word of the form ϕk(xj)ϕk(xj+1). Conditions (1) in particular contain
ϕk(1) = 1mk

thus the maximum of µ0(v) is achieved when v is a subword of
ϕk(00). In this case µ0(v) � µ0(ϕk(0)). From conditions (1) we have µ0(ϕk(0)) =
tk. $%

There is some linear upper bound for the subword complexity function of a fixed
point of an m-uniform morphism.

Lemma 2. The subword complexity of a fixed point x of an m-uniform mor-
phism on the binary alphabet satisfies the inequality

fx(n) � 4mn .

This lemma is a particular case of Theorem 10.3.1 from the book [7].

Constructing Infinite Words of Intermediate Arithmetical Complexity 699

Proof (of Theorem 1). Let us consider a word u = xkxk+d . . . xk+(n−1)d of the
arithmetical closure of x with mc � d < mc+1. The word x is a fixed point
of ϕ so, by the definition, x = ϕc(x) = ϕc(x0)ϕc(x1) . . . , where |ϕc(xi)| = mc

(here ϕ0 is the identity map). Thus u is in the arithmetical closure of some word
w = ϕc(v) of length equal to mc+1n where the word v is a subword of length
equal to mn of x. More precisely, u = wk0wk0+d . . . wk0+(n−1)d, where k0 = k
modulo mc.

Let us divide the set {0, 1, . . . , mc+1n − 1} into blocks Bi = {imc, imc +
1, . . . , imc + mc − 1} where 0 � i < mn.

Now we can define the characteristic word θ = θ0θ1 . . . θmn−1 of the pro-
gression k0 + jd as follows: θi = 1 if and only if there exists some j such that
k0 + jd ∈ Bi, otherwise θi = 0.

The word θ is a factor of some mechanical word. More precisely, if s is a word
defined by si = �(i + 1)mc/d − k0/d� − �imc/d − k0/d�, then θ is a prefix of s.
Let us prove it. If si = 1, then there exists such j that (i + 1)mc/d − k0/d > j
and imc/d − k0/d � j; in other words, (i + 1)mc > k0 + dj � imc.

So, we have mn blocks; each of them contains at most 1 integer belonging to
the progression k0 + jd. Let us consider a mapping M that maps each number i
of a block to a symbol of w at a position within the block Bi. And let us define
the word u′ = u′(M, θ) for such a mapping M and θ by u′

i = M(j) where j is a
position of the i’s occurrence of 1 in θ.

Obviously, if M is such that M(i) = wk0+jd when k0 + jd ∈ Bi for some j,
then u′(M, θ) = u. Thus ax(n) is less then or equal to the product of a number
of possible θs, which is not greater than χ(mn), and a number of possible Ms,
which we will estimate next.

It follows from conditions (1) that Bi contains a position of 0 in w only if
vi = 0. Therefore, from Lemma 1 we have that at most µ0(v) � t�logm mn�

blocks contain positions of 0 in w. Hence, the number of possible Ms for current
v is not greater than 2t�logm mn	

and the number of all possible Ms is not greater
than 2t�logm mn	

fx(mn).
Thus, using Lemma 2 we have

ax(n) � fx(mn)χ(mn)2t�logm mn	 � 4m2nχ(mn)2t1+logm mn

=

= 4m2nχ(mn)2t(mn)logm t

= 4m2nχ(mn)2t2nlogm t

. $%

Corollary 1. The arithmetical complexity of the Sierpiński word satisfies the
inequality

asp(n) � 36nχ(3n)24nlog3 2
.

Suppose that in an infinite word x from Theorem 1 some 0 were replaced with
1. Obviously, this will not increase the number of possible concerned mappings
M . Namely, the following statement is true.

Proposition 1. If an infinite word x is obtained from a fixed point of a mor-
phism ϕ satisfying conditions (1) by replacing 0 with 1 at some positions, then
its arithmetical complexity function obeys the inequality

700 P.V. Salimov

ax(n) � 4m2nχ(mn)2t2nlogm t

.

This proposition and Lemma 1 allow us to construct words of intermediate com-
plexity. Indeed, fixed points of morphisms satisfying conditions (1) are recurrent,
which mean that they have infinitely many occurrences of each prefix. And each
prefix p contains t�logm |p|� symbols 0. So if we replace 0 with 1 on proper positions
in x then we obtain a word with subword complexity not less than 2t
logm n�

.
We are to formalize the replacing method. Let x and y be infinite or finite

words on Σ2. We denote by R0(x, y) a word obtained from x by replacing the
i’s occurrence of 0 in x with a symbol yi.

Example 2. Let the word s = 0101110101 . . . be the Sierpiński word from Ex-
ample 1 and y = y0y1 . . . be an infinite word, then R0(s, y) = y01y1111y21y3

Proposition 2. If an infinite word x is a fixed point of a morphism ϕ satisfy-
ing conditions (1) and y is a universal word, then the arithmetical complexity
function of the word z = R0(x, y) obeys the inequality

az(n) � 2
nlogm t

t .

Proof. Obviously, az(n) � fz(n). The word x is a fixed point of ϕ so, by the
definition, x = ϕk(x) = ϕk(x0)ϕk(x1) . . . for each k, and µ0(ϕk(xi)) is either tk

or 0. Hence, the set of subwords of the word z contains all words of the form
R0(ϕk(0), yitkyitk+1 . . . y(i+1)tk−1) for arbitrary i.

Each word s ∈ Σtk

can be found at position jtk for some j in the word y. This
follows from the fact that y is universal and thus contains a subword (s0)tk−1s.

So we have that the set of subwords of the word R0(x, y) contains at least
2t
logm n�

distinct words of length n. Hence

az(n) � 2t
logm n� � 2tlogm n−1
= 2t−1nlogm t

. $%

The definition of R0(x, y) fits the conditions of Proposition 1. So the main result
of this paper can be formulated as follows

Proposition 3. For arbitrary t, m ∈ IN, where 1 < t < m, an infinite word x
on Σ2 with arithmetical complexity satisfying

2
nlogm t

t � ax(n) � 4m2nχ(mn)2t2nlogm t

can be constructed.

Acknowledgements

The author is grateful to Anna Frid and Sergey Avgustinovich.

Constructing Infinite Words of Intermediate Arithmetical Complexity 701

References

1. Ferenczi, S.: Complexity of sequences and dynamical systems. Discrete Math. 206(1),
145–154 (1999)

2. Avgustinovich, S.V., Fon-Der-Flaass, D.G., Frid, A.E.: Arithmetical complexity of
infinite words. In: Ito, M., Imaoka, T. (eds.) Words, Languages and Combinatorics
III, pp. 51–62. World Scientific Publishing, Singapore (2003)

3. Cassaigne, J.: Constructing infinite words of intermediate complexity. In: Ito, M.,
Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 173–184. Springer, Heidelberg
(2003)

4. Frid, A.E.: Arithmetical complexity of symmetric D0L words. Theoret. Comput.
Sci. 306(1), 535–542 (2003)

5. Frid, A.E.: Sequences of linear arithmetical complexity. Theoret. Comput. Sci. 339,
68–87 (2005)

6. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cam-
bridge (2002)

7. Allouche, J.P., Shallit, J.: Automatic Sequences. Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

From Gene Trees to Species Trees through a
Supertree Approach

Celine Scornavacca1,2,�, Vincent Berry2, and Vincent Ranwez1

1 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS), Université
Montpellier II, Place E. Bataillon - CC 064 - 34095

2 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
(LIRMM,UMR 5506, CNRS), Université Montpellier II 161, rue Ada, 34392

Montpellier Cedex 5, France
{scornava,vberry}@lirmm.fr, Vincent.Ranwez@univ-montp2.fr

Abstract. Gene trees are leaf-labeled trees inferred from molecular se-
quences. Due to duplication events arising in genome evolution, gene
trees usually have multiple copies of some labels, i.e. species. Inferring a
species tree from a set of multi-labeled gene trees (MUL trees) is a well-
known problem in computational biology. We propose a novel approach
to tackle this problem, mainly to transform a collection of MUL trees
into a collection of evolutionary trees, each containing single copies of
labels. To that aim, we provide several algorithmic building stones and
describe how they fit within a general species tree inference process. Most
algorithms have a linear-time complexity, except for an FPT algorithm
proposed for a problem that we show to be intractable.

1 Introduction

An evolutionary tree (or phylogeny), is a tree displaying the evolutionary history
of a set of sequences or organisms. A gene tree is an evolutionary tree built by
analyzing a gene family, i.e. homologous molecular sequences appearing in the
genome of different organisms. Gene trees are primarily used to estimate species
trees, i.e. trees displaying the evolutionary relationships among studied species.
Unfortunately, most gene trees can significantly differ from the species tree for
methodological or biological reasons, such as long branch attraction, lateral gene
transfers, deep gene coalescence and, principally, gene duplications and losses [1].
For this reason, species trees are usually estimated from a large number of gene
trees.

Inferring a species tree from gene trees is mostly done in a two-step approach.
First, a micro-evolutionary model that takes into account events affecting indi-
vidual sites is used to infer the gene trees. The species tree is then inferred
on the basis of a macro-evolutionary model, i.e. minimizing the number of
transfer, duplication and loss events [2,3,4,5,6]. To produce more biologically
meaningful trees, unified models have been proposed in which the micro and
� Corresponding author.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 702–714, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

From Gene Trees to Species Trees through a Supertree Approach 703

macro-evolutionary dimensions are entangled [7,8,9]. However, it is difficult to
determine how to incorporate events occurring on different spatial and tempo-
ral scales, as well as belonging to neutral and non-neutral processes, in a single
model [9]. Lately, a hybrid approach has been proposed, where a first draft of
a species tree is inferred with a micro-evolutionary model, the most uncertain
parts of which are then corrected according to a macro-evolutionary model [9].

In this paper, we propose instead to take advantage of the very large number
of gene trees present in recent phylogenomic projects to avoid entering into the
detail of all possible macro-evolutionary scenarios (e.g. is a parsimony approach
always justified? Should only the most parsimonious scenario be retained?). We
propose to extract the non-ambiguous part of the topological information con-
tained in the gene trees, i.e. that resulting from speciation events as opposed
to duplication events, and then apply a traditional supertree method letting the
weight of evidence decide in favor of one candidate species tree [10,11,12].

This approach is only possible when the number of gene trees is very large,
and indeed this is now the case in projects such as the HOMOLENS database
(http://pbil.univ-lyon1.fr/databases/homolens.php), storing several
thousands of gene trees. In the release 04 of this database, 51% of gene families
have paralogous sequences, i.e. sequences where duplications and losses have
actually taken place. Currently, these gene families are discarded when inferring
a supertree of the concerned species. Disentangling information derived from
speciation events from that resulting from duplication events would thus provide
more information for species tree inference.

Supertree methods combine source trees whose leaves are labeled with individ-
ual species into a larger species tree. The source trees are single-labeled, i.e. each
species labels at most one leaf. Note that, by definition, the inferred supertree
is also single-labeled. In contrast, gene trees are usually multi-labeled, i.e. a sin-
gle species can label more than one leaf, since duplication events resulted in the
presence of several copies of the genes in the species genomes. The task we there-
fore have to solve is to extract the largest amount of unambiguous topological
information from the multi-labeled gene trees under the form of single-labeled
trees. This paper presents a number of results in this direction, that all play a
role in the general scheme that is fully described below. The rest of the paper
details these results, though in a different order for the sake of dependancies
between definitions.

First of all, we propose to separately preprocess MUL trees in order to remove
their redundant parts with respect to speciation events. For this purpose, we
extend the tree isomorphism algorithm of [13] making it applicable to MUL
trees while preserving a linear running time (section 5). This algorithm is then
applied to the pairs of subtrees hanging from duplication nodes in MUL trees.
This preprocess lowers the number of duplication nodes in gene trees. We also
give in passing a linear time algorithm to identify duplication nodes in MUL trees
(section 4). For the gene trees that still have duplication nodes, we define a set R
of triplets (binary rooted trees on three leaves [14,12]) containing the topological
information of a MUL tree that can be thought of as being unambiguously

http://pbil.univ-lyon1.fr/databases/homolens.php

704 C. Scornavacca, V. Berry, and V. Ranwez

related to speciation events. We show that this set of triplets can be computed
in O(|R|) time (section 2). When this set is compatible, the MUL tree contributes
a coherent topological signal to build the species tree. In such a case, we can
replace the MUL tree with a single-labeled tree representing its associated set
of triplets by using the BUILD algorithm [14] (section 3). When a MUL tree is
not auto-coherent, we propose to extract a maximum subtree that is both auto-
coherent and free of duplication events. Surprisingly, this optimization problem
can be solved in linear time (section 6). When extracting largest single-labeled
subtrees from MUL trees it is possible to obtain an incompatible collection, when
a compatible collection could have been obtained by choosing subtrees of MUL
trees in a coordinated way. However, solving this problem is computationally
harder, as we show by providing an NP-completeness proof (section 7).

2 Preliminaries

In this paper we focus on rooted binary multi-labeled (MUL) trees. Let M be a
MUL tree and v a vertex of M . We denote by s(v) and s’(v) the two sons of v
and by sons(v) the set {s(v),s’(v)}. We define by subtree(v) the subtree with
v as root and by L(v) the multiset of labels of subtree(v). We denote by L(M)
the multiset L(root(M)).

Definition 1. A node v of M is called an observed duplication node (odn)
if the intersection of L(s(v)) and L(s′(v)) is not empty.

Note that, for an odn v, L(v) will always contain some label more than once. We
denote by D(M) the set of odn. A label l ∈ L(M) is a repeated label for M iff
the label l occurs more than once in L(M). We say that f is a repeated leaf for
M iff L(f) is a repeated label. For every three leaves we can have three different
rooted tree binary shapes, called triplets. We denote by AB|C the rooted tree
that connects the pair of taxa (A, B) to C via the root.

We denote by R(M) the set of triplets of a (single/multi)labeled evolutionary
tree M i.e. R(M) = {ab|c s.t. there exist three leaf nodes x, y, z ∈ M : L(x) = a,
L(y) = b, L(z) = c and lca(x, y) �= (lca(x, z) = lca(y, z))}1.

Definition 2. Let M be a MUL tree. We define by Rwd(M) (R(M) without
duplications) the set of triplets ab|c of M s.t. there exist three leaf nodes x, y, z ∈
M : L(x) = a, L(y) = b, L(z) = c and lca(x, y) /∈ D(M), lca(x, y, z) /∈ D(M),
lca(x, y) �= (lca(x, z) =lca(y, z)).

For example, for the MUL tree in Fig. 1, Rwd(M)={ac|b, ac|d,ab|d,bc|d,ac|o,ab|o,
ad|o,bc|o,cd|o,bd|o,ab|c}. Hence, not all the triplets of R(M) are kept. This is due
to the fact that, once a duplication event occurred in a gene’s history, the two
copies of the gene evolved independently. The history of each copy is influenced
by the species history but, considering them simultaneously may produce infor-
mation unrelated to the species evolution. Therefore, it is more appropriate to
discard the triplets mixing the histories of distinct copies of a gene.
1 lca(x, y) denotes the least common ancestor of nodes x and y, i.e. the lowest node

in the tree that has both x and y as descendants.

From Gene Trees to Species Trees through a Supertree Approach 705

Fig. 1. An example of MUL tree with one odn indicated by a black square

Rwd(M) has an O(n3) size and can be computed in O(n3) time. Indeed, once
the lca of all pairs of nodes in M are computed in O(n) time (see [15,16]),
checking for three leaf nodes x, y, z of M if they satisfy Definition 2 can be done
in O(1) time, thus in O(n3) for all triplets of leaves in M .

3 Auto-coherency of a MUL Tree

Let M be a multi-labeled gene tree. Since M contains several copies of the same
gene, we can wonder whether the evolutionary signal of each copy is coherent or
not.

Definition 3. A MUL tree M is said to be auto-coherent if there exists a
single-labeled tree T such that Rwd(M) ⊆ R(T).

In the case of an auto-coherent MUL tree, we know that we can find a tree
T containing all the information in Rwd(M), i.e. the information of M that is
considered reliable. To find such a tree, we use the AncestralBuild algorithm of
[17]. For a set of triplets Rwd(M), this algorithm indicates in O(|Rwd(M)|·log2 n)
time whether there exists a tree T s.t. Rwd(M) ⊆ R(T) and returns T in case of
a positive answer. At present, it is not clear whether an implicit representation
of Rwd(M) using only O(n) triplets, as that reported in [18] to encode an binary
tree, could be used here. Indeed, the presence of multiple occurrences of labels
might lead to obtain a small compatible sets of triplets, while the whole set
Rwd(M) would be incompatible.

4 Computing D(M) in Linear Time

The easiest way to compute D(M) is checking for each node v if the sets L(s(v))
and L(s′(v)) have at least one label in common; in the case of a positive answer,
v is inserted in D(M). The complexity of this approach is O(n2), since it requires
computing O(n) intersections of two lists of O(n) elements. The algorithm 1 uses
the lca to find the set of odn D(M) and requires only linear time. To demonstrate
the correctness of algorithm 1, we need to determine some relationships between
the lca and the odn.

Lemma 1. A node is an odn if and only if it is the lca of at least two repeated
leaves m and p.

706 C. Scornavacca, V. Berry, and V. Ranwez

Proof. Indeed, from the definition 1, v is an odn iff L(s(v)) ∩ L(s’(v)) �= ∅.
Therefore, ∃m ∈ subtree(s(v)) and ∃p ∈ subtree(s′(v)): L(m) = L(p). Thus v
is a common ancestor of the two leaves m and p with the same label. Now, m
and p belong to two different subtrees having v as father (m ∈ subtree(s(v)) and
p ∈ subtree(s′(v))), hence v is their lowest common ancestor in M . Reciprocally,
if v is the lca of two leaves m and p with the same label, this means that L(s(v))
∩ L(s’(v)) �= ∅, then v is an odn according to definition 1. $%
According to Lemma 1, we can search for the lca of any two leaves m and p with
the same label. To determine the lca between multiple pairs of nodes, one can
use an algorithm in [15] which preprocesses a data structure in O(n) time, where
n is the number of nodes and returns the lca of any two specific nodes from the
data structure in O(1). We still have O(n2) of these couples, and even constant
time for each gives an O(n2) total complexity. However, since there are only
O(n) odn, checking the lca of any pair of leaves computes the same lca several
times. A smarter approach is used in algorithm 1: first of all, the subtrees of M
are ordered from the left to the right in an arbitrary way. Then, each repeated
leaf, starting from the left of the tree and moving to the right, is tagged with
the repeated label followed by its occurrence number. Then, for each repeated
label e, the lca of any two successive occurrences of e, ei and ei+1 is inserted
in D(M). This leads to a linear time complexity. Indeed, we have O(n) of these
couples since each leaf of M is involved in at most two pairs (ei, ei+1).

Algorithm 1. CompDuplicationNodes(r)
Data: A MUL tree M .
Result: A set of odn D(M).
Order M in an arbitrary way. In this order, tag each duplicated leaf with the
repeated label followed by its occurrence number. Compute the lca for each
couple of leaves.
D(M) ← ∅;
foreach (repeated label e) do

foreach ({ej , ej+1}) do D(M) ← lca(ej , ej+1);
return D(M);

The correctness of algorithm 1 is justified by Lemma 2 showing that algorithm 1
retrieves all the odn of M .

Lemma 2. Let M be a MUL tree. For each odn v, ∃ two successive occurrences
of a label e denoted by ei and ei+1 s.t. v = lca(ei, ei+1).

Proof. Given an odn v, there exists at least one label e present in both subtrees
s(v) and s′(v). We denote by A the set of leaves ai s.t. ai ∈ subtree(s(v)) and
L(ai) = e and by B the set of leaves bj s.t. bj ∈ subtree(s′(v)) and L(bj) = e.
If we take the last element of B (b|B|) and the first one of A (a1), we know that
v is their lca. Additionally, due to the way we tagged M, we know that there
is no other occurrence of the label e between b|B| and a1. Indeed, if there was
another leaf x labeled with e, it would be either in s(v) (and then x = a1) or

From Gene Trees to Species Trees through a Supertree Approach 707

in s′(v) (and then x = b|B|). Then b|B| and a1 are two successive occurrences of
the same label and their lca is the node v. $%

5 Isomorphic Subtrees

Definition 4. Two rooted trees T1 , T2 are isomorphic (denoted by T1=T2) iff
there exists a one-to-one mapping from the nodes of T1 onto the nodes of T2
preserving leaf labels and descendancy.

We are interested in testing if, for each odn v, the two subtrees s(v) and s′(v)
are isomorphic or not. In the positive, we can prune one of the two isomorphic
subtrees without losing any information contained in Rwd and eliminate the
odn v, as in the example of Fig. 2. For detecting isomorphism of multi-labelled
trees, we propose Algorithm 2, an extension of the Check-isomorphism-or-
find-conflict algorithm [19]. Indeed, the latter does not deal with MUL trees.
Alternatively, we could have proposed an appropriate variant of the tree isomor-
phism algorithm detailed in [20]. However, such an algorithm would likely have
been less space efficient than the one we present here due to a number of string
sorting steps using a number of queues and lists to ensure linear running time.

A node that has only two leaves as children is called cherry. In the case of
single-labeled trees we have the following lemma:

Lemma 3. [13] Let T1, T2 be two isomorphic trees and let c1 be a cherry in T1.
Then, there is a cherry c2 ∈ T2 s.t. L(c1) = L(c2).

In the case of MUL trees, we can have several copies of the same cherry. We call
a multiple cherry the list of cherries on the same two labels. For a multiple
cherry mc, we note |mc| the number of occurrences of the cherry in its tree.

Lemma 4. Let M1, M2 be two isomorphic MUL trees and let mc1 be a multiple
cherry in M1. Then, there is a multiple cherry mc2 ∈ M2 s.t. L(mc1) = L(mc2)
and |mc1| = |mc2|.

The proof is inspired from that of Lemma 3 in [13] and left to the reader.

5.1 Outline of the Algorithm

First of all, we find all the multiple cherries for the MUL trees M1 and M2.
We store them in the list Lmc using a simple linked list. Additionally, we use a

n n ∈ D(M) n ∉ D(M)

a b c a b c x x y a b c x x y

Fig. 2. An example of MUL tree where the sons of the duplication node are isomorphic

708 C. Scornavacca, V. Berry, and V. Ranwez

Algorithm 2. CheckIsomorphismMULTree(M1,M2)
Data: Two MUL tree M1 and M2.
Result: TRUE if M1 and M2 are isomorphic, FALSE otherwise.
Let Lmc be the list of multiple cherries in M1 and M2. Let H be the hashtable
where each mc ∈ Lmc is a key. To each H(mc), we associates two lists O2(mc)
and O1(mc), resp. of the occurrences of mc in M1 and M2;
while (Lmc �= ∅) do

mc ← the first multiple cherry in Lmc; delete mc form Lmc;
if (O2(mc) = O1(mc)) then

Turn all cherries in O2(mc) and O1(mc) into leaves to which a same
new label is assigned;
add the new multiple cherries in Lmc and H ;

else return FALSE;
return TRUE;

hashtable H where each mc ∈ Lmc is a key. H associates to each multiple cherry
mc two linked lists, O1(mc) and O2(mc), storing pointers to nodes of M1 and M2
respectively that correspond to the occurrences of mc. The multiple cherries of
a MUL tree are then examined in a bottom-up process. Given a multiple cherry
mc in Lmc we check if the size of O1(mc) is the same as that of O2(mc). If this
is not the case, we have found a multiple cherry for which we do not have the
same number of occurrences in M1 and M2. In this instance, M1 and M2 are not
isomorphic (Lemma 4) and the algorithm returns FALSE. Otherwise we turn
all the cherries in O1(mc) and O2(mc) into leaves to which a same new label,
different from all other labels in M1 and M2, is assigned. This modification of M1
and M2 can turn the fathers of some cherries in O1(mc) and O2(mc) into new
cherries. Then Lmc is updated and the processing of cherries in M1 is iterated
until both MUL trees are reduced to a single leaf with the same label if M1 and
M2 are isomorphic, or a FALSE statement is returned.

Theorem 1. Let M1 and M2 be two rooted MUL trees with L(M1) = L(M2)
of cardinality n. In time O(n), algorithm 3 returns TRUE if M1 and M2 are
isomorphic, FALSE otherwise.

Proof. This algorithm is an extension of the Check-isomorphism-or-find-
conflict algorithm [19] applicable to MUL trees. We show here that we can
keep a linear time execution, using supplementary data structures.

A simple depth-first search of trees M1 and M2 initializes Lmc and H in
O(n) time. At each iteration of the algorithm, choosing a multiple cherry mc
to process is done in O(1) by removing the first element mc of Lmc. H then
provides in O(1) the lists O1(mc) and O2(mc) of its occurrences in the trees.
Checking that these lists have the same number of elements is proportional
to the number of nodes they contain, hence costs O(n) amortized time, as
each node is only once in such a list, and the list is processed once during
the whole algorithm. Replacing all occurrences of mc by a new label is done
in O(n) amortized time, since each replacement is a local operation replacing

From Gene Trees to Species Trees through a Supertree Approach 709

three nodes by one in a tree and at most O(n) such replacements can take place
in a tree to reduce it down to a single node (the algorithm stops when this
situation is reached). Reducing a cherry can create a new occurrence omc′ of a
cherry mc′. Checking in O(1) time if mc′ is a key in H allows to know whether
occurrences of mc′ have already been encountered or not. In the positive, we
simply add omc′ to the beginning of the list O1(mc) (if omc′ ∈ M1) or O2(mc) (if
omc′ ∈ M2), requiring O(1) time. In the negative, we add mc′ to the beginning of
Lmc, create a new entry in H for mc′, and initialize the associated lists O1(mc)
and O2(mc) so that one contains omc′ and the other is the empty list. Again,
this requires only O(1) time. Thus, performing all operations required by the
algorithm globally costs O(n) time. $%
Apply algorithm 2 to each subtree(s(v)) and subtree(s′(v)) of each odn of a MUL
tree M in a bottom-up approach requires O(dn) time, where d is the number of
duplication nodes in M .

6 Computing a Largest Duplication-Free Subtree of a
MUL Tree

If a MUL tree is not auto-coherent, identifying duplication nodes allows for
the discrimination of leaves representing orthologous and paralogous sequences.
Since only orthologous sequence history reflects the species history, a natural
question is to determine the most informative sequence set for a given gene. As
long as the gene tree contains odn, it will also contain leaves representing paral-
ogous sequences. Yet, if for each node v ∈ D(M) of M we choose to keep either
s(v) or s′(v), we obtain a pruned single-labeled tree containing only apparent or-
thologous sequences (observed paralogous have been removed by pruning nodes).
Note that the so obtained single-labeled tree is auto-coherent by definition.

Definition 5. Let M be a MUL tree. We say that T is obtained by (duplication)
pruning M iff T is obtained from M choosing for each odn v either s(v) or s′(v).
We denote this operation by the symbol �.

One can wonder, for a non auto-coherent MUL tree M , what is the most infor-
mative single-labeled tree T s.t. T � M . We define this problem as the MIPT
(Most Informative Pruned Tree) problem.

To evaluate the informativeness of a tree we can use either the number of
triplets of T (see [21,22,11]) that, for binary trees, depends only on the number
of leaves, or the CIC criterion (see [23,12]). The CIC of a not fully resolved and
incomplete2 tree T with |L(T)| leaves among the n possible is a function of both
the number nR(T, n) of fully resolved trees T ′ on L(T) such that R(T) ⊆ R(T ′)
and the number nR(n) of fully resolved trees on n leaves. More precisely,

CIC(T, n) = − log
(
nR(T, n)/nR(n)

)
2 A tree is called incomplete when it misses some taxa.

710 C. Scornavacca, V. Berry, and V. Ranwez

Algorithm 3. pruning(v,M ,D(M))
Data: A node v, a MUL tree M , and a set of odn D(M).
Result: The most informative MUL tree M ′ s.t. subtree(v)M′ � subtree(v)M .
foreach (m ∈ sons(v)) do pruning(m,M ,D(M));
if (v ∈ D(M)) then

if (|L(s(v))| > |L(s′(v))|) then v ← s(v);
else v ← s′(v);
D(M) ← D(M) − {v};

return M ;

In the case of binary trees, nR(T, n) depends only on the number of source
taxa missing in T since T does not contain multifurcations. Thus, dealing with
binary trees, maximizing the information of a tree (i.e. maximizing the number
of triplets or minimizing the CIC value) consists in finding the tree with the
largest number of leaves. A natural approach for the MIPT problem for binary
MUL trees is an algorithm that, after having computed D(M), uses the bottom-
up algorithm 3, with v =root(M), to keep the most informative subtree between
subtree(s(m)) and subtree(s′(m)), for each odn m.

Theorem 2. Let M a MUL tree on a set of leaves of cardinality n. In time O(n),
pruning(M,root(M),D(M)) returns the most informative tree T s.t. T � M .

Proof. First of all, it’s obvious that pruning(M,root(M),D(M)) returns a tree.
Indeed, if for each odn v only one node between s(v) and s′(v) is kept, at the end
of the bottom-up procedure one copy of each duplicated leaf is present in the
modified M . Now, we have to show that the resulting tree is the most informative
tree s.t. T � M , i.e. the tree with as many leaves as possible. For an odn v that
is the ancestor of other duplication nodes, the choices made for s(v) do not
influence the choices for s′(v) since for each duplication node we can keep only
one of the two subtrees, the most populous one. Thus we can search for the best
set of choices left/right for s(v) and s′(v) independently and then choose the
most populous pruned subtree between s(v) and s′(v). Iterating recursively this
reasoning, we demonstrate that the tree obtained by Algorithm 3 is the most
informative tree T s.t. T � M . The computation of the set of odn D(M) takes
linear time. The subroutine pruning(M, root(M),D(M)) requires a tree walk,
thus the time complexity of Algorithm 3 is O(n). $%

7 The Compatibility Issue of Single-labeled Subtrees
Obtained from MUL Trees

We can also ask if it is possible, given a collection of MUL tree M, to discriminate
leaves representing orthologous and paralogous sequences in a gene tree using
the information contained in the other gene trees to obtain a compatible forest
T , i.e. a forest for which there exists a tree T s.t. ∪Ti∈T R(Ti) ⊆ R(T). We
denote this problem by EPCF, Existence of a Pruned and Compatible Forest.

Unfortunately, the EPCF problem is NP-complete.

From Gene Trees to Species Trees through a Supertree Approach 711

EPCF

∣∣∣∣∣∣∣∣∣∣∣

Instance : A set of leaves X and a collection M={M1, · · ·Mk}
of MUL trees on X .

Question : ∃ a set S of choices left/right, S : M → T ,
with T ={T1, · · ·Tk} s.t. Ti � Mi and T is compatible?

Theorem 3. The EPCF problem is NP-complete.

Proof. We start by proving that EPCF is in NP, i.e. checking if a set S of choices
left/right is a solution for the instance I = (M, X) can be done in polynomial
time. First of all, for each MUL tree Mj ∈ M, we place the choices left/right
on Mj , i.e. we discard the subtrees not chosen, obtaining a forest of trees T .
We check then the compatibility of T with the Aho graph[14]. Constructing this
graph can be done in polynomial time.

Given that EPCF is in NP, we use a reduction of 3-SAT to EPCF to demon-
strate that it is NP-complete.

3-SAT

∣∣∣∣∣∣∣∣∣∣∣

Instance : A boolean expression C=(C1 ∧ C2 ∧ · · · ∧ Cn) on a
finite set L={l1, l2, · · · , lm} of variables with Cj=

(a ∨ b ∨ c) where {a, b, c} ∈ {l1, l2, · · · , lm, l1, l2 · · · , lm}
Question : ∃ a truth assignment for L that satisfies all Cj in C ?

We need to show that every instance of 3-SAT can be transformed into an in-
stance of EPCF; then we will show that given an instance I = (C, L) of 3-SAT,
I is a positive instance, i.e. an instance for which a solution exists, iff the cor-
responding instance for EPCF is positive.

Given an instance I = (C, L) of 3-SAT, we build an instance I ′ = (M, X) of
EPCF associating to each li in L the binary tree3 T (li) = (((xi, yi), zi), d) and
to li the binary tree T (li) = (((zi, yi), xi), d) (see Fig. 3 for an example).

The set of subtrees
{
T (a) | a ∈ {l1, l2, · · · , lm, l1, l2, · · · , lm}

}
is denoted by

TL. Then, for each clause Cj = (a ∨ b ∨ c) in C, a binary MUL tree Mj is
built, formed by three subtrees ((T (a), T (b)), T (c)). Note that Mj has exactly
two duplication nodes due to the presence of d in T (a), T (b) and T (c), so that
any left/right choice of Mj will reduce it to either T (a), T (b) or T (c). In Fig. 4
an example of a MUL tree built from a clause. In this way we obtain a forest of
MUL trees M on the leaf set X =

{{⋃m
i=1{xi, yi, zi}

}
∪ {d}

}
, i.e. an instance

of the EPCF problem. Clearly M can be built in polynomial time.
We now need to show that a positive instance of 3-SAT gives a positive in-

stance of EPCF through the previous transformation. Having a positive instance
for 3-SAT implies that for each Cj ∈ C with Cj = (a ∨ b∨ c), at least one of the

3 T (li) is expressed in the Newick format.

712 C. Scornavacca, V. Berry, and V. Ranwez

T(li) =

xi yi zi d zi yi xi d

 T(li)=

Fig. 3. Binary trees on four leaves associated to li and to li

xi yi zi d
T(li) T(lj)

xi yi zi d

 T(lk)
_ xi yi zi d

Fig. 4. MUL tree built from the clause {li∨lj ∨lk}. Odn are indicated by black squares

three literals is TRUE. Without loss of generality, let us suppose that a is TRUE.
Then in the MUL tree Mj corresponding to Cj we set the choice left/right so
that only the subtree T (a) is kept. We then obtain a forest T that is a sub-
set of TL. We need to prove that T is compatible. Let T̃ (a) denote the tree
T (a)|(L(T (a)) − {d})4 and T̃ the forest composed by all trees {T̃ (a)|T (a) ∈ T }.
Then, we can build a tree Ts = (T̃1, T̃2, · · · , T̃|T̃ |, d). Since li cannot have the
value TRUE and FALSE at the same time, we have either T (li) or T (li) in T . The
tree Ts is therefore a single-labeled tree. Moreover, by construction Ts|(L(T (a))
is identical to T (a), for all T (a) in T ensuring that

⋃
Ti∈T R(Ti) ⊆ R(Ts). Thus

T is compatible.
Now, the only thing left to prove is that a positive instance of EPCF gives a

positive instance of 3-SAT.
The repetition of the taxon d in each subtree makes the two nodes connecting

the subtrees in each Mj be odn. Thus a left/right choice set S reduces each
Mj in M into a tree T (a) ∈ TL, providing the forest T . Setting the value of
a to TRUE ensures that the clause Cj corresponding to Mj is TRUE. This
can be done simultaneously for all clauses ∈ C since the forest compatibility
implies that there is no contradiction among the trees in T , all the more so
direct contradictions. Then, either T (li) or T (li) is in T . This ensures us that
either li or li is assigned to TRUE, but not both. $%
Note that the problem to find the most informative forest T = {T1, · · ·Tk} s.t.
Ti � Mi and T is compatible, denoted by MIPCF (Most Informative Pruned and
Compatible Forest) is FPT. Indeed, analyzing all possible scenarios of choices
left/right is FPT on the total number of duplication nodes in M.

4 Given a tree T and a label set S, we denote by T |S the restriction of T to the set S.

From Gene Trees to Species Trees through a Supertree Approach 713

8 Conclusions

In this paper we presented several algorithms to transform multi-labeled evolu-
tionary trees into single-labeled ones so that they can be used by all existent
supertree methods. In the future we plan to go further and extend the algorithm
find-refinement-or-confict in [19] applicable to MUL trees and to work on
a more sophisticated FPT algorithm for the MIPCF problem.

This work was funded by the ANR-08-EMER-011 project.

References

1. Cotton, J., Page, R.: Rates and patterns of gene duplication and loss in the human
genome. Proceedings of Royal Soceity of London 272, 277–283 (2005)

2. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30,
729–752 (2000)

3. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RE-
COMB 2000, Fourth Annual International Conference on Computational Molecular
Biology, pp. 138–146 (2000)

4. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–444 (2000)

5. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species trees. J. Comput. Biol. 15(8), 981–1006 (2008)

6. Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication,
speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)

7. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy Illustrated
by Cladograms Constructed from Globin Sequences. Systematic Zoology 28(2),
132–163 (1979)

8. Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Bayesian gene/species
tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl.
1), 7–15 (2003)

9. Durand, D., Halld–rsson, B., Vernot, B.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. J. Comput. Biol. 13, 320–335 (2006)

10. Baum, B.R., Ragan, M.A.: The MRP method. In: Bininda-Emonds, O. (ed.) Phy-
logenetic supertrees: combining information to reveal the Tree of Life, pp. 17–34.
Kluwer, Dordrecht (2004)

11. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI
2002. LNCS, vol. 2452, pp. 537–552. Springer, Heidelberg (2002)

12. Scornavacca, C., Berry, V., Lefort, V., Douzery, E.J.P., Ranwez, V.: Physic ist:
cleaning source trees to infer more informative supertrees. BMC Bioinformat-
ics 9(8), 413 (2008)

13. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21,
12–28 (1991)

14. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM J. Comp. 10(3), 405–421 (1981)

15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

714 C. Scornavacca, V. Berry, and V. Ranwez

16. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

17. Berry, V., Semple, C.: Fast computation of supertrees for compatible phylogenies
with nested taxa. Syst. Biol. 55, 270–288 (2006)

18. Henzinger, M., King, V., Warnow, T.: Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica 24,
1–13 (1999)

19. Berry, V., Nicolas, F.: Improved parameterized complexity of the maximum agree-
ment subtree and maximum compatible tree problems. IEEE/ACM Trans. Com-
put. Biol. Bioinformatics 3(3), 289–302 (2006)

20. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

21. Ranwez, V., Berry, V., Criscuolo, A., Fabre, P., Guillemot, S., Scornavacca, C.,
Douzery, E.: PhySIC: a veto supertree method with desirable properties. Syst.
Biol. 56, 798–817 (2007)

22. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl.
Math. 105, 147–158 (2000)

23. Thorley, J., Wilkinson, M., Charleston, M.: The information content of consensus
trees. In: Rizzi, A., Vichi, M., Bock, H.H. (eds.) Advances in Data Science and Clas-
sification. Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 91–98 (1998)

A Kleene Theorem for Forest Languages

Lutz Straßburger

INRIA Saclay, Île-de-France, Équipe-projet Parsifal
École Polytechnique, LIX, Rue de Saclay, 91128 Palaiseau Cedex, France

http://www.lix.polytechnique.fr/~lutz

Abstract. This paper proposes an alternative approach to the standard
notion of rational (or regular) expression for tree languages. The main
difference is that in the new notion we have only one concatenation op-
eration and only one star-operation, instead of many different ones. This
is achieved by considering forests instead of trees over a ranked alpha-
bet, or, algebraicly speaking, by considering cartesian categories instead
of term-algebras. The main result is that in the free cartesian category
the rational languages and the recognizable languages coincide. For the
construction of the rational expression for a recognizable language it is
not necessary to extend the alphabet. We only use operations that can
be defined with the algebraic structure provided by cartesian categories.

1 Introduction

Kleene’s theorem on the coincidence of the rational and the recognizable lan-
guages in a free monoid [1] is considered to be one of the cornerstones of theo-
retical computer science. Although it does not hold in every monoid [2], it has
been generalized in several directions, e.g., [3,4,5]. Thatcher and Wright pre-
sented in [6] a similar result for tree languages. In recent years, recognizable tree
languages have received increased attention because they form a foundation for
XML schemas for expressing semi-structured data (e.g., [7,8,9]). In this paper I
will only consider ranked trees and tuples of ranked trees, which I call forests to
distinguish them from hedges [10] which are sequences of unranked trees [9].

The recognizable tree languages are defined by means of finite-state tree au-
tomata (fsta), which are a generalization of ordinary finite state automata (fsa)
over words. While an fsa works on an alphabet A, an fsta works on a ranked
alphabet Σ, i.e., every symbol in Σ is equipped with a rank, which is a natural
number. The language recognized by an fsta is a subset of the set TΣ of all
finite trees over Σ. The running example for this paper is the ranked alphabet
Σ = {σ, γ, α}, where σ has rank 2, γ has rank 1, and α has rank 0. Let us define
an fsta A with two states p and f , where f is a final state. Observe that (contrary
to fsa on words) there are no initial states. Usually the behaviour of an fsta is
represented as set of rules of a term rewriting system [11]. In the example, let
the behaviour of A be described by the rules

α → p , α → f , γ(p) → p , σ(p, f) → f .

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 715–727, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

716 L. Straßburger

��
σ

��
γ

...

γ

α

��
σ

��
γ

...

γ

α

��
σ

��
γ

...

γ

α

α

��

. . .

��
σ

��
γ· · ·γα

��
σ

��
γ· · ·γα

��
σ

��
γ· · ·γα

α

��
·· ·

��

Fig. 1. Left: The form of the trees in language L. Right: Depicted as forests.

The tree language L accepted by this automaton contains the tree α and all trees
of the shape σ(γ . . . γα, σ(γ . . . γα, σ(. . . , σ(γ . . . γα, α) . . .))), which is more vivid
if drawn as a tree as on the left of Fig. 1, where the number of γ’s in each chain
and the number of σ’s can be any natural number (including zero).

In order to find for this recognizable tree language a rational expression in the
same sense as for recognizable word languages, we encounter the problem that
there is no straightforward concatenation operation for trees. The concatenation
of two words is simply their juxtaposition. But what is the concatenation of two
trees? The approach taken in [6] is to paste one tree into some leaves of the other
tree. In order to decide into which leaves of the first tree the second tree has to
be plugged in, we have to name those leaves. In a tree over Σ, the leaves are
labeled by the 0-ary symbols of Σ. Hence, for every 0-ary symbol of Σ, there
is another concatenation operation. In order to obtain a rational expression for
every recognizable tree language, it is necessary to extend Σ by additional 0-ary
symbols. The rational expression for the language in our example is

L = {α} ∪ ({σ(p, f)} ·p {γ(p)}∗p ·p {α})∗f ·f {α} . (1)

Observe that there are two additional symbols p and f with rank 0 that are not
elements of Σ. This means that although the language L is a subset of TΣ, the
sets {σ(p, f)} and {σ(p, f)} ·p {γ(p)}∗p, that occur in in (1), are not subsets of
TΣ but subsets of TΣ∪{p,f}. We see two different concatenation operations, ·p
and ·f , in (1), because there are two states in the corresponding automaton.

It has been shown in [6], that for every recognizable tree language there exists
such a rational expression, and that every tree language that can be represented
by a rational expression is indeed recognizable. There are three points that one
might find disturbing:

A Kleene Theorem for Forest Languages 717

��
α ��

σ

��

��

��

��

�� σ
�
��

��
��

σ

��

�� ��
��
��

σ
�
��

��
α ��

σ

σ

��

��

��
��

Fig. 2. The three forests s, t and r

(i) The language for formalizing the rational expressions is not predefined by
Σ. For a given recognizable tree language L ⊆ TΣ , the number of different
concatenation operations that occur in the rational expression for L is
determined by the automaton that recognizes L. (In rational expressions
for word languages we have only one concatenation operation.)

(ii) The tree languages that are obtained by evaluating a subexpression of a
rational expression for a language L ⊆ TΣ are usually not subsets of TΣ .
(In the case of word languages, a subexpression of a rational expression for
a language L ⊆ A∗ always represents a subset of A∗.)

(iii) The set TΣ of all trees over Σ forms the free Σ-algebra generated by
the empty set. The tree concatenation operations have no correspondence
in the Σ-algebra structure. (The set A∗ of all words over A forms the
free monoid generated by A, and the word concatenation operation is the
multiplication in the monoid.) As a consequence, the notion of rational
(tree) language cannot easily be generalized to any Σ-algebra, as it has
been done very successfully for rational languages in any monoid [2,3,4,5].

These three problems can be entirely avoided by a remarkable simple generaliza-
tion: instead of concatenating trees, we concatenate tuples of trees, i.e., forests.
The set of all forests over a ranked alphabet Σ will be denoted by Σ�. Alge-
braicly speaking, we generalize the notion of monoid not to a Σ-algebra but to
a cartesian category, and Σ� is the free cartesian category generated by Σ. The
usual free monoid of words can be seen as the special case in which all symbols
in Σ have rank 1. One can visualize a forest as a box with holes on one side and
plugs on the other. As example, Figure 2 shows three forests (for the same Σ as
above). If we call them s, t and r, respectively, then s contains two trees and t
and r contain each one tree. The leaves either contain a symbol of Σ with rank
0 or are connected to a hole of the box. The concatenation operation, which is
the composition of arrows in the category, becomes now a plugging together of
two forests with a matching number of plugs and holes. In our example, s and t
can be plugged together and the result is r. With this approach, the many tree
concatenation operations are reduced to a single forest concatenation operation.

Note that this category has been around since the work by Lawvere on
algebraic theories [12]. It has also been extensively studied in the context of

718 L. Straßburger

L = α
���

⎛⎜⎜⎜⎜⎜⎝
α

��· γ
�� ��

�

×
α

��

⎞⎟⎟⎟⎟⎟⎠ ·
σ

��

��
��

��
�
��

�

· σ��

�� ��

Fig. 3. The rational expression in for the language L

iteration theories [13], in which the regular forests have been characterized in
various ways [14]. But the structure is different from preclones [15], which have
another concatenation operation (see also Remark 2.2 in [15]). Our category is
also a special case of a magmoid [16]. However, it seems that the structure of
cartesian category has not yet been used to define the notion of rational ex-
pression in order to provide a Kleene-theorem (but see [17] for related work on
unranked trees).

The notion of recognizability presented in this paper is the same as the one by
Thatcher and Wright [6] or the one by Ésik and Weil [15] (modulo the cosmetic
difference that we consider forests instead of trees). The novelty is the new notion
of rational expression, whose definition is closer to the rational languages in a
monoid [2]. The only operations that are allowed are the componentwise union
�, the cartesian product ×, the concatenation ·, and the concatenation closure
�, which is the generalization of the Kleene star ∗ for words. Although it is
straightforward to translate the many concatenation and star-operations of [6]
for trees into the corresponding forest operations presented in this paper, the
converse translation is not so immediate. Nonetheless, it follows from [6] and our
work, that the two notions coincide for tree languages. Thus, this paper provides
yet another characterization of the recognizable (or regular) tree languages.

For giving an example, the right-hand side of Fig. 1 shows how the language
L can be depicted as forest language. The new rational expression is depicted
in Fig. 3. Observe that there is only one concatenation operation and that ev-
ery subexpression represents a subset of Σ�. Note that the operations used in
a rational expression are available in any cartesian category (a category with
a terminal object and all finite products). This means that the notions of rec-
ognizability and rationality defined in this paper are available in all cartesian
categories, where the two notions do in general not coincide.

Related to this work is the general notion of substitution (e.g., [18]). However,
the set of substitutions forms a monoid and the composition of substitutions
is the multiplication in that monoid. Imposing the notions of recognizability
and rationality on substitutions would mean to use the well-known notions of
recognizability and rationality in a monoid [2], whereas the purpose of this paper
is to capture the notion of recognizability for trees. For this it is necessary to
add to each substitution also the information about which variables occur in the
domain and in the codomain; and this in turn leads to the notion of forest.

All the technical details of this paper are available in [19].

A Kleene Theorem for Forest Languages 719

2 Forests

Forests are tuples of trees (or terms) over a ranked alphabet. In other words,
they are the arrows in the free cartesian category generated by the alphabet,
and the forest concatenation is the usual term substitution, which is the arrow
composition in that category [12]. In order to make the paper self-contained, the
definitions are given if full (without using category theory).

Definition 1. A ranked alphabet Σ is a finite set of symbols together with a
function rank : Σ → IN, which assigns to every symbol σ ∈ Σ its rank. For a
given k ∈ IN, let Σk = {σ ∈ Σ | rank(σ) = k}.

Example 1. For the example from the introduction we have Σ = Σ0 ∪ Σ1 ∪ Σ2
with Σ0 = {α}, Σ1 = {γ} and Σ2 = {σ}.

Definition 2. Let Σ be a ranked alphabet. For every n, m ≥ 0, the set Σ�[n, m]
of all (n, m)-forests over Σ is the smallest set such that

(i) the set Σ�[n, 0] = {〈〉n} is a singleton,
(ii) for every i ∈ {1, . . . , n} (with n ≥ 1), there is a forest πn

i ∈ Σ�[n, 1],
(iii) for every k ≥ 0 and t ∈ Σ�[n, k] and σ ∈ Σk, there is a forest tσ ∈ Σ�[n, 1],
(iv) if m ≥ 2 and t1, . . . , tm ∈ Σ�[n, 1], then 〈t1, . . . , tm〉 ∈ Σ�[n, m].

The elements of the set Σ� =
⋃

n,m∈IN Σ�[n, m] are called forests over Σ.

Example 2. Let Σ be as above. Then s = 〈〈π3
1 , 〈〉3α〉σ, π3

2〉 is a (3, 2)-forest and
t = 〈〈π2

2 , π2
2〉σ, π2

1〉σ is a (2, 1)-forest. Both are depicted in Fig. 2.

Notation 1. By some abuse of notation, we can see Σk as subset of Σ�[k, 1],
by identifying σ ∈ Σk with 〈πk

1 , . . . , πk
k〉σ ∈ Σ�[k, 1].

Definition 3. For a given ranked alphabet Σ, the forest concatenation ; is in-
ductively defined as follows.

(i) For every n, m ∈ IN and t ∈ Σ�[n, m], let t; 〈〉m = 〈〉n,
(ii) for every n, m ∈ IN (with m ≥ 1), every t1, . . . , tm ∈ Σ�[n, 1], and every

i ∈ {1, . . . , m}, let 〈t1, . . . , tm〉; πm
i = ti,

(iii) for every n, m, k ∈ IN, every s ∈ Σ�[n, m], every t ∈ Σ�[m, k], and every
σ ∈ Σk, let s; (tσ) = (s; t)σ,

(iv) for every n, m, k ∈ IN (with k ≥ 2), every s ∈ Σ�[n, m], and every
t1, . . . , tk ∈ Σ�[m, 1], let s; 〈t1, . . . , tk〉 = 〈s; t1, . . . , s; tk〉.

Example 3. The concatenation of s and t above is s; t = 〈〈π3
2 , π3

2〉σ, 〈π3
1 , 〈〉3α〉σ〉σ

∈ Σ�[3, 1], which is the forest r shown in Fig. 2.

One can easily show that the forest concatenation is associative and that for every
n, m ∈ IN and s ∈ Σ�[n, m] we have that 〈πn

1 , . . . , πn
n〉; s = s = s; 〈πm

1 , . . . , πm
m〉.

Hence, we have a category (that we also denote by Σ�) whose objects are
the non-negative integers, the terminal object is 0, the cartesian product is
given by the usual addition, and the πn

i are the projections. I will write εn

for 〈πn
1 , . . . , πn

n〉 ∈ Σ�[n, n] if n ≥ 1 (resembling the empty word ε in the free
monoid) and ε0 for 〈〉0 ∈ Σ�[0, 0].

720 L. Straßburger

3 Recognizable Forest Languages

One can define recognizability either via automata or via the inverse image
of a morphism into a finite structure. In our case this would be a cartesian
category with countably many objects but with finite hom-sets. Usually there is a
straightforward translation between such a morphism and a deterministic finite-
state automaton. Our case is no different in that respect. But many costructions
on automata, for example concatenation, require the non-deterministic model.
Thus, we define the recognizable forest languages via (non-deterministic) finite-
state forest automata (fsfa) which accept those languages. Morally, an fsfa is the
same as a finite-state tree automaton (fsta), see e.g. [11], but technically, there
is a subtle difference: fsfa have initial as well as final states, whereas fsta do
only have final states. On the other hand, usual finite-state automata (fsa) over
words do also have initial as well as final states. Thus, forest automata regain
a symmetry which was lost for tree automata. In the definitions that follow, we
will stay as close as possible to the theory of fsa for word languages [20]. The
main difference is that there is no longer a single state transition relation (or
state transition function), but a family of such relations (or functions), one for
each rank that occurs in the ranked alphabet Σ.

Definition 4. Let n, m ∈ IN. A (nondeterministic) finite-state (n, m) forest
automaton ((n, m)-fsfa) is a tuple A = 〈Q, Σ, I, F, E〉, where Q is a finite set of
states, Σ is a ranked alphabet, I = I1 × . . .× In (with I1, . . . , In ⊆ Q) is the set
of initial state tuples, F = F1 × . . . × Fm (with F1, . . . , Fm ⊆ Q) is the set of
final state tuples, and

E = {Ek | k ≥ 0}, where Ek ⊆ Qk × Σk × Q (for every k ≥ 0)

is the set of state transition relations. Since Σ is finite, the relation Ek is empty
for almost all k ∈ IN.

In order to define the language accepted by an fsfa A, it is necessary to extend the
relations Ek from symbols in Σ to forests in Σ�. For this let us define for every
k, l ≥ 0 a relation EA

k,l ⊆ (P(Q))k ×Σ�[k, l]×Ql (where P(Q) denotes the pow-
erset of Q). Informally speaking, we have (〈Q1, . . . , Qk〉, t, 〈p1, . . . , pl〉) ∈ EA

k,l iff
the forest t ∈ Σ�[k, l] can cause a transformation from the states in 〈Q1, . . . , Qk〉
to the state tuple 〈p1, . . . , pl〉. The formal definition is given inductively on the
structure of the elements of Σ�[k, l].

(i) For every k ≥ 0 and Q1, . . . , Qk ⊆ Q, we have (〈Q1, . . . , Qk〉, 〈〉k, 〈〉) ∈ EA
k,0,

where 〈〉k ∈ Σ�[k, 0] is the unique (k, 0)-forest (cf. Def. 2) and 〈〉 ∈ Q0 is
the empty tuple of states,

(ii) for all k ≥ 0 and Q1, . . . , Qk ⊆ Q and i ∈ {1, . . . , k} and q ∈ Qi, we have
(〈Q1, . . . , Qk〉, πk

i , q) ∈ EA
k,1,

(iii) for all k, k′ ≥ 0 and t ∈ Σ�[k, k′] and σ ∈ Σk′ and Q1, . . . , Qk ⊆ Q and
p1, . . . , pk′ , q ∈ Q, if (〈Q1, . . . , Qk〉, t, 〈p1, . . . , pk′〉) ∈ EA

k,k′ and
(〈p1, . . . , pk′〉, σ, q) ∈ Ek′ , then (〈Q1, . . . , Qk〉, tσ, q) ∈ EA

k,1,

A Kleene Theorem for Forest Languages 721

(iv) for all k ≥ 0 and l ≥ 2 and Q1, . . . , Qk ⊆ Q and p1, . . . , pl ∈ Q and
t1, . . . , tl ∈ Σ�[k, 1], if (〈Q1, . . . , Qk〉, ti, pi) ∈ EA

k,1, for every i ∈ {1, . . . , l},
then (〈Q1, . . . , Qk〉, 〈t1, . . . , tl〉, 〈p1, . . . , pl〉) ∈ EA

k,l.

Definition 5. Let n, m ∈ IN and A = 〈Q, Σ, I, F, E〉 be an (n, m)-fsfa. Then
L(A) = { t ∈ Σ�[n, m] | ∃〈p1, . . . , pm〉 ∈ F . (〈I1, . . . , In〉, t, 〈p1, . . . , pm〉) ∈
EA

n,m } is the language accepted (or recognized) by A.

Example 4. Let Σ be as before. Define the (0, 1)-fsfa A = 〈Q, Σ, I, F, E〉 by
Q = {p, f} and I = ∅ and F = {f} and

E0 = {(〈〉, α, p), (〈〉, α, f)} , E1 = {(〈p〉, γ, p)} , E2 = {(〈p, f〉, σ, f)} .

Then L(A) is the set of all forests with the shape shown on the right of Fig. 1.

Definition 6. A (n, m)-forest language L ⊆ Σ�[n, m] is called recognizable if
there is an (n, m)-fsfa A = 〈Q, Σ, I, F, E〉 with L(A) = L. The set of all recog-
nizable (n, m)-forest languages over Σ is denoted by Rec(Σ�)[n, m]. Further,

Rec(Σ�) =
⋃

n,m∈IN

Rec(Σ�)[n, m]

is the set of all recognizable forest languages over Σ.

The concept of fsta is usually introduced by means of term rewriting systems
[11,21]. It should be obvious that such an fsta is the same as a (0, 1)-fsfa (Def. 4):
a (0, 1)-fsfa has no initial states, the set of final state tuples is reduced to a
set of final states and the relations Ek contain exactly the same information
as the rules of the term rewriting system of a tree automaton, since there is
not much difference between the tuple (〈q1, . . . , qk〉, σ, q) ∈ Ek and the rewrite
rule σ(q1, . . . , qk) → q (with σ ∈ Σk). This means that for a given Σ, the set
Rec(Σ�)[0, 1] is isomorphic to the set of recognizable tree languages over Σ.
Sometimes the discussion is casted in terms of tree languages over a ranked
alphabet Σ and a finite set of variables X . In [11], the set of recognizable tree
languages over Σ and X is denoted by Rec(Σ, X). If n = |X | is the number of
symbols in X , then Rec(Σ, X) is isomorphic to Rec(Σ�)[n, 1].

Definition 7. An (n, m)-fsfa A = 〈Q, Σ, I, F, E〉 is called deterministic if |I| =
1 (i.e., there is only one input state tuple), and for every k ≥ 0, every σ ∈ Σk and
every q1, . . . , qk, p1, p2 ∈ Q, if (〈q1, . . . , qk〉, σ, p1) ∈ Ek and (〈q1, . . . , qk〉, σ, p2) ∈
Ek, then p1 = p2 (i.e., the next state is uniquely determined). An (n, m)-fsfa
A = 〈Q, Σ, I, F, E〉 is called totally defined if for every k ≥ 0, every σ ∈ Σk and
q1, . . . , qk ∈ Q, there is a p ∈ Q such that (〈q1, . . . , qk〉, σ, p) ∈ Ek.

For a deterministic and totally defined (n, m)-fsfa A, the relations Ek ⊆ Qk ×
Σk × Q are graphs of functions δk : Qk × Σk → Q. In this case the definitions
can be simplified by the use of functions δA

k,l : Qk ×Σ�[k, l] → Ql instead of the
relations EA

k,l ⊆ (P(Q))k×Σ�[k, l]×Ql. The functions δA
k,l define a functor from

722 L. Straßburger

the free cartesian category Σ� to a cartesian category with finite hom-sets. More
explicitely, for a determinisic (0, 1)-fsfa, the function δA

0,1 : Σ�[0, 1] → Q is a Σ-
algebra homomorphism whose inverse image of F ⊆ Q is L(A) ⊆ Σ�[0, 1], as
it is in the definition of deterministic tree automata [11]. We have the following
proposition, whose proof uses the well-known power set construction.

Proposition 1. Let n, m ∈ IN and A be an (n, m)-fsfa. Then there exists a
deterministic and totally defined (n, m)-fsfa A′ such that L(A′) = L(A).

In the view of this, the definition of EA
n,m could be replaced by the much simpler

construction in the deterministic automaton. However, as in the case of automata
over words, the construction in the proof of the Kleene theorem requires non-
deterministic automata and a properly defined state transition relation, which
is the reason for not using rewriting rules.

4 Closure Properties of Recognizable Forest Languages

As mentioned before, the set Rec(Σ�)[n, 1] ⊆ P(Σ�[n, 1]) of recognizable (n, 1)-
forest languages over Σ is isomorphic to the set Rec(Σ, X) ⊆ P(TΣ(X)), where
|X | = n, of recognizable tree languages [11]. Hence, Rec(Σ�)[n, 1] is closed under
the boolean operators intersection, union, and complement.

Proposition 2. Let Σ be given and n ∈ IN. If L1, L2 ∈ Rec(Σ�)[n, 1], then
LC

1 = Σ�[n, 1] \ L1 as well as L1 ∪ L2 and L1 \ L2 are recognizable.

Proposition 3. Let Σ be a ranked alphabet and n, m ∈ IN. If L1, L2 ∈
Rec(Σ�)[n, m], then L1 ∩ L2 ∈ Rec(Σ�)[n, m].

It is important to notice, that the set Rec(Σ�)[n, m] is in general not closed
under union. However, the recognizable languages are closed under cartesian
product. With this as a base, we can define another operation � which will take
the place of the union.

Definition 8. If L1 ⊆ Σ�[n, m1] and L2 ⊆ Σ�[n, m2], then

L1 × L2 = { 〈t1, . . . , tm1+m2〉 ∈ Σ�[n, m1 + m2] | 〈t1, . . . , tm1〉 ∈ L1 and
〈tm1+1, . . . , tm1+m2〉 ∈ L2 }

is the cartesian product of L1 and L2.

Proposition 4. Let Σ be a ranked alphabet and n, m ∈ IN. Further, let L ⊆
Σ�[n, m]. Then L ∈ Rec(Σ�)[n, m] iff there are L1, . . . , Lm ∈ Rec(Σ�)[n, 1],
such that L = L1 × . . . × Lm.

Note that this implies that Rec(Σ�)[n, m] = Rec(Σ�)[n, 1]m.

Definition 9. Let Σ be a ranked alphabet, let n, m, k ∈ IN, and let L1 ⊆
Σ�[n, m] and L2 ⊆ Σ�[m, k]. Then L1; L2 = {t1; t2 | t1 ∈ L1, t2 ∈ L2} is
the naive concatenation of L1 and L2.

A Kleene Theorem for Forest Languages 723

In the case that L2 is a singleton, say L2 = {ν}, I will write L1; ν instead of
L1; {ν}, for notational convenience. Similarly, ν; L2 stands for {ν}; L2.

Definition 10. Let L, L′ ⊆ Σ�[n, m]. Then

L � L′ = (L; πm
1 ∪ L′; πm

1) × . . . × (L; πm
m ∪ L′; πm

m)

is the componentwise union of L and L′. Similarly, for a family {Li | i ∈ I} of
languages with Li ⊆ Σ�[n, m] for all i ∈ I, define

⊎
i∈I

Li =

(⋃
i∈I

Li; πm
1

)
× . . . ×

(⋃
i∈I

Li; πm
m

)
.

Proposition 5. Let Σ be a ranked alphabet, and n, m ∈ IN. If L, L′ ∈
Rec(Σ�)[n, m], then L � L′ ∈ Rec(Σ�)[n, m].

Definition 11. Let Σ be a ranked alphabet and n, m, k ∈ IN. Further, let L ⊆
Σ�[n, m] and t ∈ Σ�[m, k]. Define the concatenation L·t of L and t by induction
on t as follows:

L · 〈〉m = {〈〉n} ,

L · πm
i = L; πm

i (for every i = 1, . . . , m),
L · (t′σ) = (L · t′); εk′σ (for every k′ ≥ 0, t′ ∈ Σ�[m, k′], and σ ∈ Σk′),

L · 〈t1, . . . , tk〉 = L · t1 × . . . × L · tk (for every t1, . . . , tk ∈ Σ�[m, 1]).

If L′ ⊆ Σ�[m, k], then L · L′ =
⊎

t∈L′ L · t is the concatenation of L and L′.

The construction of the forest concatenation might seem unnatural, but the usual
tree concatenation [6,11] is defined in a similar way: Different occurrences of the
same 0-ary symbol can be replaced by different trees. Although the recognizable
forest languages are not closed under the naive concatenation, they are closed
under concatenation. This means that also Rec(Σ�) forms a cartesian category
(see also [13]).

Proposition 6. Let Σ be a ranked alphabet, and n, m, k ∈ IN.
If L1 ∈ Rec(Σ�)[n, m] and L2 ∈ Rec(Σ�)[m, k], then L1 · L2 ∈ Rec(Σ�)[n, k].

For the proof we need the concept of normalized fsfa, where there is only one
input state tuple and only one output state tuple and there are no transitions
from a final state or into an initial state. Then, the two normalized fsfa for L1
and L2 are connected.

Now we can define a generalization of Kleene’s star operation as a closure
operation for the concatenation. For the concatenation operation of a free monoid
this does not bring any problems. Note that this makes sense only for languages
L ⊆ Σ�[n, n], and we do not take the union of all Lz for 0 ≤ z < ω (as it is
done for word languages) but use the operation

⊎
instead.

724 L. Straßburger

Definition 12. For L ⊆ Σ�[n, n] define

L0 = {εn} = {〈πn
1 , . . . , πn

n〉} ,

Lz+1 = Lz · L for every z ≥ 0 ,

L� =
⊎
z≥0

Lz .

This star operation is a generalization of both, Kleene’s star operation for word
languages and the star operations for trees defined in [6].

Proposition 7. If L ∈ Rec(Σ�)[n, n], then L� ∈ Rec(Σ�)[n, n].

The basic idea of the proof is to construct the normalized fsfa A′ for L and
identify initial and final states. However, note that the situation is not entirely
trivial because in general L(A′) �= L. The reason for this is that the forests
containing πn

i are removed in L(A′) because otherwise A′ would not be normal.
We have to construct another automaton A′′, which reintroduces these forests.

5 Rational Forest Languages

The set of rational forest languages is the smallest set that contains the finite
languages and that is closed under componentwise union, cartesian product,
concatenation, and the star operation.

Definition 13. Let Σ be a ranked alphabet. For every n, m ∈ IN, the set
Rat(Σ�)[n, m] is the smallest set such that

– ∅ ∈ Rat(Σ�)[n, m], and if t ∈ Σ�[n, m], then {t} ∈ Rat(Σ�)[n, m],
– if L1, L2 ∈ Rat(Σ�)[n, m], then L1 � L2 ∈ Rat(Σ�)[n, m],
– if L1 ∈ Rat(Σ�)[n, m1] and L2 ∈ Rat(Σ�)[n, m2], then

L1 × L2 ∈ Rat(Σ�)[n, m1 + m2],
– if L1 ∈ Rat(Σ�)[n, k] and L2 ∈ Rat(Σ�)[k, m], then L1 ·L2 ∈ Rat(Σ�)[n, m],
– if L ∈ Rat(Σ�)[n, n], then L� ∈ Rat(Σ�)[n, n].

The set of all rational forest languages over Σ is defined as

Rat(Σ�) =
⋃

n,m∈IN

Rat(Σ�)[n, m] .

From the propositions in the previous section it follows that for every ranked
alphabet Σ and n, m ∈ IN we have that Rec(Σ�)[n, m] ⊆ Rat(Σ�)[n, m]. The
following theorem says that the converse is also true.

Theorem 1. Rat(Σ�)[n, m] = Rec(Σ�)[n, m].

In the proof of this theorem, the rational expression is constructed inductively
on the size of the fsfa. The construction is inspired by Kleene’s original construc-
tion [1], but it is quite different from the one used by Thatcher and Wright [6].

A Kleene Theorem for Forest Languages 725

In particular, note that a priori there is no relation between Rat(Σ�)[n, 1] and
the rational languages of [6]. Hence, Theorem 1 is not a consequence of the result
in [6]. But from Theorem 1 and [6] it follows that Rat(Σ�)[n, 1] coincides with
the rational languages of [6].

Example 5. For the forest language recognized by the automaton in Example 4
we can obtain the rational expression depicted in Fig. 3:

L = {〈〉0α} �
(
{〈〉0α} · {π1

1γ}� × {〈〉0α}
)
· {〈π2

1 , 〈π2
1 , π

2
2〉σ〉}� · {〈π2

1 , π2
2〉σ} .

By using Notation 1, we can write this more concisely as

L = {α} � ({α} · {γ}� × {α}) · {〈π2
1 , σ〉}� · {σ} .

Now we can immediately derive the main theorem of this paper.

Theorem 2. Let Σ be a ranked alphabet. Then Rat(Σ�) = Rec(Σ�).

6 Conclusions and Future Work

The algebraic concepts used in this paper have been studied for a long time
(e.g., [12,14,16,13]), but the construction of rational expression for the Kleene
theorem (Theorem 2) in this paper has (up to my knowledge) not yet appeared
in the literature. Apart from the independent interest of the result, the work is
motivated by the following issues of future research.

– The original motivation for proposing this new approach comes from the de-
sire to give algebraic characterizations for certain classes of tree transducers
(e.g., [21,22]). Their counterparts for word languages, e.g., general seqential
machines [23], have been algebraicly characterized by using Kleene’s origi-
nal theorem (see e.g. [24]). For tree transductions it is more difficult to find
such characterizations because of the insufficient behaviour of the tree con-
catenation operation (see also [16]). The here proposed notion of rational
expression allows to give an algebraic characterization of the transductions
realized by sequential forest transducers [19], which are a generalization of
a certain class of bottom-up tree transducers. In [16], Arnold and Dauchet
encountered the same problem when studying bimorphisms for trees. Their
solution uses magmoides. The structures Σ� and Rec(Σ�) discussed in this
paper are magmoides (see also [15]).

– In [25], the result of [6] is generalized to trees over arbitrary semirings (as
done in [4] for word automata). This raises the question whether also Theo-
rem 2 can be proved for forests over arbitrary semirings.

– Another important problem is whether the result can be extended to unranked
trees and hedges [10,9] which are important for practical applications [7,8].
The notion of cartesian category already provides the right algebraic struc-
ture. We only have to add additional objects (infinite ordinals) to the category
of forests.

726 L. Straßburger

– More generally, it is now possible to generalize the notion of recognizable and
rational languages from the free cartesian category to any cartesian category,
in the same sense as it had been generalized from the free monoid to any
monoid [2,24]. The question is in which cases Theorem 2 holds.

– The same question can be raised for the definability in monadic second order
logic [6,26,7,9].

References

1. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–40. Princeton (1956)

2. Eilenberg, S.: Automata, Languages And Machines, vol. B. Academic Press, New
York (1976)

3. Ochmański, E.: Regular behaviour of concurrent systems. Bull. Europ. Assoc. The-
oret. Comput. Sci. (EATCS) 27, 56–67 (1985)

4. Schützenberger, M.P.: On the definition of a family of automata. Inform. And
Control 4, 245–270 (1961)

5. Droste, M., Gastin, P.: The Kleene–Schützenberger theorem for formal power series
in partially commuting variables. Information and Computation 153, 47–80 (1999)

6. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Systems Theory 2, 57–81
(1968)

7. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

8. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata
for unranked trees. J. Comput. Syst. Sci. 73(4), 550–583 (2007)

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007) (release
October 12, 2007)

10. Courcelle, B.: On recognizable sets and tree automata. In: Nivat, M., Ait-Kaci, H.
(eds.) Resolution of equations in algebraic structures, pp. 93–126. Academic Press,
London (1989)

11. Gécseg, F., Steinby, M.: Tree Languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, Beyond Words, vol. 3, pp. 1–68. Springer, Heidel-
berg (1997)

12. Lawvere, F.W.: Functorial semantics of algebraic theories. In: Proceedings of the
National Academy of Sciences, USA. Volume 50., National Academy of Sciences,
Summary of PhD thesis, pp. 869–872, Columbia University (1963)

13. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)
14. Ésik, Z.: An axiomatization of regular forests in the language of algebraic theo-

ries with iteration. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 130–136.
Springer, Heidelberg (1981)

15. Ésik, Z., Weil, P.: Algebraic recognizability of regular tree languages. Theoretical
Computer Science 340, 291–321 (2005)

16. Arnold, A., Dauchet, M.: Morphisms et bimorphisms d’arbres. Theoretical Com-
puter Science 20, 33–93 (1982)

17. Bojańczyk, M.: Forest expressions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 146–160. Springer, Heidelberg (2007)

A Kleene Theorem for Forest Languages 727

18. Eder, E.: Properties of substitutions and unifications. Journal of Symbolic Com-
putation 1(1), 31–46 (1985)

19. Straßburger, L.: Rational forest languages and sequential forest transducers. Mas-
ter’s thesis, Technische Universität Dresden (2000)

20. Perrin, D.: Finite Automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science. Formal Models and Semantics, vol. B, pp. 1–57. Elsevier Science
Publishers, B.V., Amsterdam (1990)

21. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Mathematical Systems Theory 9(3), 198–231 (1975)

22. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree
Transducers. Springer, Heidelberg (1998)

23. Ginsburg, S., Rose, G.F.: A characterisation of machine mappings. Can. J. of
Math. 18, 381–388 (1966)

24. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten
Mathematik und Mechanik LAMM, vol. 38. B.G. Teubner Stuttgart (1979)

25. Droste, M., Pech, C., Vogler, H.: A Kleene theorem for weighted tree automata.
Theory Comput. Syst. 38(1), 1–38 (2005)

26. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Language Theory, vol. 3, pp. 389–456. Springer, Hei-
delberg (1997)

Determinization and Expressiveness of Integer
Reset Timed Automata with Silent Transitions

P. Vijay Suman and Paritosh K. Pandya

Tata Institute of Fundamental Research, India

Abstract. ε-IRTA are a subclass of timed automata with ε moves (ε-TA).
They are useful for modelling global sparse time base used in time-
triggered architecture and distributed business processes. In a previous
paper [1], the language inclusion problem L(A) ⊆ L(B) was shown to
be decidable when A is an ε-TA and B is an ε-IRTA. In this paper, we
address the determinization, complementation and ε-removal questions
for ε-IRTA. We introduce a new variant of timed automata called GRTA.
We show that for every ε-IRTA we can effectively construct a language
equivalent 1-clock, deterministic GRTA with periodic time guards (but
having no ε moves). The construction gives rise to at most a double
exponential blowup in the number of locations. Finally, we show that
every GRTA with periodic guards can be reduced to a language equiva-
lent ε-IRTA with at most double the number of locations. Thus, ε-IRTA,
periodic GRTA, and deterministic 1-clock periodic GRTA have the same
expressive power and that they are all expressively complete with respect
to the regular δ�-languages. Equivalence of deterministic and nondeter-
ministic automata also gives us that these automata are closed under the
boolean operations.

1 Introduction

Timed automata (TA) are an extension of finite state automata with real-valued
clocks. They have emerged as a standard theoretical model for real-time systems,
and their formal properties have been well studied [2]. The expressive power of
richer classes of timed automata such as timed automata with ε transitions
(ε-TA) [3] and TA with periodic constraints [4] have also been explored. These
extensions result in models which can elegantly specify periodic timed behaviours
of the systems.

Integer Reset Timed Automata (IRTA) are a syntactic subclass of timed au-
tomata which restrict clock resets to integral time points. Additionally, if ε tran-
sitions are allowed, the resulting automata are called ε-IRTA. A recent paper
showed that the notion of global but sparse time as used in time triggered archi-
tecture and distributed business processes can be naturally modeled in ε-IRTA
(see [1]). The ε transitions are crucial in modelling periodic timed activities.

In the previous paper [1], it was shown that the language inclusion problem
L(A) ⊆ L(B) is decidable with EXPSPACE complexity if A is an ε-TA and
B is an ε-IRTA. The decision procedure relies upon an effectively computable

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 728–739, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Determinization and Expressiveness of IRTA with Silent Transitions 729

symbolic representation of the timed language L of ε-TA over alphabet Σ by
an untimed regular language f(L) over the extended alphabet Σ ∪ {δ, �}. The
finite state automata recognizing the untimed symbolic δ�-languages can be
called δ�-automata.

In this paper, we consider the questions of determinization, complementation
and ε removal of ε-IRTA. Note that, in general, all these questions are unsolv-
able for ε-TA [2,5,3]. Though silent transitions are useful in specifying periodic
properties, the use of silent transitions cannot be justified in the scenario of
deterministic modeling. Hence, our aim is to characterize timed languages rec-
ognized by ε-IRTA in terms of some suitable ε-free and deterministic species of
timed automata.

In the paper, we introduce a new variant of timed automata called Generalized
Reset Timed Automata (GRTA) in which only the integer part of the clock is
reset. Since the clock resets do not change the fractional parts of the clocks,
the fractional values of all clocks remain equal in any configuration of a GRTA.
The clocks measure the time since the last integral time point before it was
reset. Moreover, to model periodic activity, we consider GRTA with periodic
time guards and call the resulting model as Per-GRTA.

As our main result, we give a construction of a deterministic, 1-clock Per-
GRTA B for any δ�-automaton A such that f(L(B)) = L(A). This is used
to prove that ε-IRTA can be effectively reduced to a language equivalent 1-
clock, deterministic Per-GRTA with at most double exponential blowup in the
number of locations. It follows that ε-IRTA are closed under complementation.
We also show that Per-IRTA are strictly less expressive than ε-IRTA. Hence,
using the proposed GRTA as well as periodic time guards seem necessary for
ε-free determinization of ε-IRTA.

As our second main result, we show that every Per-GRTA can be reduced to
a language equivalent ε-IRTA with at most doubling of the number of locations.
This result builds upon the techniques for reducing periodic timed automata to
ε-TA given by Choffrut and Goldwurm [4].

Putting all the results together, we conclude that ε-IRTA and Per-GRTA are
expressively equivalent and they are expressively complete for the class of regu-
lar δ�-languages. Our reduction also shows that, expressively, ε-IRTA and Per-
GRTA are contained within 1-clock, deterministic ε-TA. Moreover, equality of
nondeterministic and deterministic automata in classes ε-IRTA and Per-GRTA
implies that they are closed under boolean (intersection, union and comple-
mentation) operations. The paper also studies the expressive power of various
subclasses of ε-IRTAand Per-GRTA. The relationships between these classes is
depicted in Figure 1. We end the paper by showing that the question whether
there exists an ε-IRTA which is language equivalent to a given ε-TA is unde-
cidable. The question whether a given timed automaton is determinizable was
already been shown to be undecidable [6].

Related Work. Finding determinizable and boolean closed sub-classes of timed
automata has been an interesting quest. Alur et al [7] have shown that a subclass
of timed automata called Event Recording Automata (ERA) can indeed be deter-

730 P.V. Suman and P.K. Pandya

Per-IRTA GRTAIRTA

ε-IRTA = Per-GRTA = 1-Clk-Det-Per-GRTA

1-Clock Deterministic ε-TA

Fig. 1. Relationships between various classes. 1-Clk-Det-Per-GRTA denotes 1-Clock,
Deterministic GRTA with Periodic guards.

minized with one exponential blowup in the automaton size. Our previous work
[1] showed that ε-IRTA and ERA are expressively incomparable. Ouaknine and
Worrell [8] as well as Lasota and Walukiewicz [9] have defined 1-clock alternat-
ing timed automata which are boolean closed. Moreover the emptiness of these
automata is decidable but with Non-primitive-recursive complexity. Laroussinie
et al [10] have shown that emptiness checking for 1-clock TA is NLOGSPACE-
complete although these automata are not closed under complementation. The
language inclusion and universality of 1-clock timed automata has also been
studied [11] and shown to be decidable with Non-primitive-recursive complexity.

2 Preliminaries

Definition 1 (Timed Word). A finite timed word over Σ is defined as ρ =
(σ, τ), where σ = σ1 . . . σn is a finite sequence of symbols in Σ and τ = τ1 . . . τn

is a finite monotone sequence of non-negative real numbers. τi represents the
time stamp of the occurrence of the event σi.

For convenience of presentation we assume a default initial time stamp τ0 = 0,
prefixed to any sequence of time stamps τ = τ1 . . . τn.

Definition 2 (Timed Automata). A timed automaton A is a tuple (L, L0,
Σ, C, E, F) where (i) L is a finite set of locations, (ii) L0 ⊆ L is the set of
initial locations, (iii) Σ is a finite set of symbols (called alphabet), (iv) C is a
finite set of real valued clocks, (v) E ⊆ L × L × Σ × Φ(C) × 2C is the set of
transitions. An edge e = (l, l′, a, ϕ, λ) represents a transition from the source
location l to the target location l′ on input symbol a. The set λ ⊆ C gives the
set of clocks that are reset with the transition and, ϕ is a guard over C, and
(vi)F ⊆ L is the set of final locations.

Let x represent a clock in C and k represent a natural number. Φ(C) is the set
of constraints ϕ defined by ϕ := x = k|x ≤ k|x ≥ k|x < k|x > k|ϕ ∧ ϕ.

Determinization and Expressiveness of IRTA with Silent Transitions 731

Definition 3 (Clock Interpretation). Let C be the set of clocks. A clock
interpretation ν : C → R≥0 maps each clock x ∈ C to a non-negative real
number.

A state of A is a pair (l, ν) such that l ∈ L and ν is a clock interpretation over
C. The state space of A is L×R|C|

≥0 . The state of a timed automaton can change
in 2 ways:

1. Due to elapse of time: for a state (l, ν) and a real-number t ≥ 0, (l, ν) t−→
(l, ν + t). This kind of transition is called a timed transition.

2. Due to a location-switch: for a state (l, ν) and an edge (l, l′, a, ϕ, λ) such that
ν |= ϕ, (l, ν) a−→ (l′, ν[λ := 0]). We call such a transition, a Σ-transition.

Here (ν + t)(x) = ν(x) + t and, ν[λ := 0](x) = 0, ∀x ∈ λ, and remains
unchanged ∀x ∈ (C\λ).

Definition 4 (Run, Word, Language). A run r of a timed automaton is
a sequence of alternating timed and Σ transitions: (l0, ν0)

τ1−→ (l0, ν1)
e1−→

(l1, ν′
1)

τ2−τ1−→ (l1, ν2) · · · (ln−1, ν
′
n−1)

τn−τn−1−→ (ln−1, νn) en−→ (ln, ν′
n) with l0 ∈ L0

and ν0 is such that ν0(x) = 0, ∀x ∈ C. The run r is accepting iff ln ∈ F . Corre-
sponding to each run, there is a timed word (σ1, τ1), (σ2, τ2), · · · , (σn, τn) where
σi is the label over the edge ei, and τi is the time stamp of σi. A finite timed
word ρ = (σ, τ) is accepted by A iff there exists an accepting run over A, the
word corresponding to which is ρ. The timed language L(A) accepted by A is
defined as the set of all finite timed words accepted by A. $%

We say that two automata are equivalent iff the (timed) languages accepted by
them are the same. Let t be a non-negative real number. We use int(t) and fr(t)
to denote respectively the integral part and the fractional part of t. We say that
an edge is resetting if the set of clocks to be reset over it is nonempty.

Definition 5 (IRTA). Integer reset timed automata are timed automata in
which the guard over each resetting edge consists of an atomic constraint of the
form x = c.

In any run of an IRTA the clock resets happen only at integer time points.

Definition 6 (GRTA). Generalized reset timed automata are a variant of
timed automata wherein the clock resets are defined as follows. ν[λ := 0](x) =
ν(x) − int(ν(x)), ∀x ∈ λ, and remains unchanged ∀x ∈ (C\λ).

Since resets do not perturb the fractional values of the clocks, in any configu-
ration that arises in a GRTA the clocks have equal fractional parts. Note that
GRTA is a generalization of IRTA.

Definition 7 (Periodic Clock Constraints). An atomic periodic clock con-
straint is in either of the following forms: ∃k ∈ N : x ∈ [a + kp, b + kp], ∃k ∈ N :
x ∈ (a+kp, b+kp], ∃k ∈ N : x ∈ [a+kp, b+kp), or ∃k ∈ N : x ∈ (a+kp, b+kp),
where a, b, p ∈ N.

732 P.V. Suman and P.K. Pandya

q1

q2

q3

ε, 0 < x < 1 ε, x = 1, {x}

ε, 0 < x < 1

a, x = 0
q1

a, ∃k ∈ N, x ∈ [1 + k, 1 + k], {x}

Fig. 2. An ε-IRTA and a Per-IRTA equivalent to it

Note that an aperiodic constraint can be expressed as a periodic constraint. For
example, the constraint x ≥ 3 is equivalent to the periodic constraint ∃k ∈ N :
x ∈ [3 + k, 4 + k).

Definition 8 (Per-IRTA). Per-IRTA are IRTA wherein the atomic clock con-
straints can be periodic and, the guard over each resetting edge consists an atomic
constraint of the form ∃k ∈ N : x ∈ [a + kp, a + kp].

In any run of a Per-IRTA, the clock resets happen only at integer time points.

Definition 9 (Per-GRTA). Per-GRTA are GRTA wherein the atomic clock
constraints can be periodic

Definition 10 (ε-IRTA, ε-GRTA). ε-IRTA and ε-GRTA are respectively gen-
eralizations of IRTA and GRTA, wherein transitions can have ε as label to des-
ignate silent moves. While a run can have ε-transitions, these symbols or their
time stamp are not recorded in the timed word corresponding to the run (see [3]).

Figure 2 shows an ε-IRTA and a Per-IRTA both of which accept the language
L1 = {〈(a, τ1) . . . (a, τn)〉 : τi − τi−1 is an integer greater than 0}.

ε-IRTA formalize timed systems where the time stamps of events which occur
in any open interval (i, i + 1) cannot be distinguished [1]. In this setting, we
symbolically represent a timed word ρ over Σ by an untimed word f(ρ) over
Σ ∪ {δ, �}. In f(ρ) a � occurs at every integral time point and all the Σ events
of ρ which occur at this time point immediately follow the symbol � in order.
Moreover, before every � denoting the integral point i, there is a δ denoting
the open interval (i − 1, i) and all events of ρ which occur within this open
interval follow the symbol δ in order. Example 1 illustrates this representation.
The formal definition of representation function f is given below. Firstly we
define a δ�-representation for a real number τ , and its extension for two real
numbers τ1 ≤ τ2.

Definition 11. Let int(τ) = k.

dt(τ) �
{

(δ�)k if τ is integral,
(δ�)kδ if τ is non-integral,

Let τ1 ≤ τ2 be two real numbers. Then dte(τ1, τ2) is the δ�-pattern that is to be
right concatenated to dt(τ1) to get dt(τ2). $%

Determinization and Expressiveness of IRTA with Silent Transitions 733

For example, if τ1 = 1.6 and τ2 = 2.7, then dt(τ1) = δ�δ while dt(2.7) = δ�δ�δ.
Therefore, dte(τ1, τ2) = �δ.

Definition 12. Given a timed word ρ = (σ, τ), the map f(ρ) is defined as the
untimed word w1σ1w2σ2 . . . wnσn, where each wi is dte(τi−1, τi). $%

Example 1. For example, let ρ1 = 〈(a, 1.2), (b, 3.5), (c, 4), (d, 4.5), (e, 4.5), (f ,
5.6), (g, 5.8))〉, ρ2 = 〈(a, 0), (b, 0), (c, 0.5), (c, 0.6), (d, 2)〉 and ρ3 = 〈 (a, 0), (b, 0),
(c, 0.3), (c, 0.7), (d, 2)〉 be three timed words. Then, f(ρ1) = δ�δa�δ�δb�cδd
e�δfg and f(ρ2) = f(ρ3) = abδcc�δ�d.

Definition 13 (f-Equivalence). Two timed words ρ and ρ′ are said to be f -
equivalent, denoted by ρ ∼= ρ′ iff f(ρ) = f(ρ′). $%

The central property of ε-IRTA is that its languages are closed under
f -equivalence.

Theorem 1. If A is an ε-IRTA and ρ ∼= ρ′ then, ρ ∈ L(A) iff ρ′ ∈ L(A) ([1]).

3 δ�-Regular Languages

A δ�-word over Σ is a word over Σ ∪ {δ, �} where ignoring the letters from
Σ the δ and � strictly alternate and the first such symbol (if any) must be δ.
Moreover, the last letter of the word must be from Σ. For example, aδbc�abδc
is a δ�-word.

Definition 14. Let || be shuffle operator in the classic regular expression theory.
The set of all δ�-words over Σ is given by (Σ∗ || ((δ�)∗ + δ(�δ)∗)).Σ. A
regular set of δ�-words is called a δ�-regular language. A deterministic finite
state automaton is called a δ�-automaton iff the language accepted by it is δ�-
regular.

q1

q2

q3

δ �

δ
a

Fig. 3. A δ�-automaton

Normalized δ�-Automata. Let A be a given δ�-automaton. We say that q1

reaches q2 by an extended time step of δ type, denoted q1
δ=⇒ q2, if we have

q1
uδv−→ q2 for some u, v ∈ Σ∗. Similarly, we can define extended time step of

� type q1
�=⇒ q2. A state q of automaton A is said to be post(δ) provided all

incoming extended time steps are of δ type. A state is said to be of post(�)
type if all incoming extended time steps are of � type. By convention the initial

734 P.V. Suman and P.K. Pandya

state and all states reachable from it with only Σ-transitions are post(�)-type.
In general, the automaton can have a state q with incoming time steps of both
types (call such states mixed type). A δ�-automaton is said to be normalized iff
there are no mixed type states. It is easy to transform any δ�-automaton to an
equivalent normalized δ�-automaton (See full version of this paper for details).

δ�-Languages of ε-IRTA. The abstraction f mapping a timed word ρ into
a δ�-word f(ρ) was defined in the previous section. This also maps a timed
regular language L into a δ�-language f(L). The following results were proved
in a previous paper [1].

Proposition 1. For every A ∈ ε-TA we can effectively construct normalized
δ�-automaton B such that L(B) = f(L(A)). Thus, f(L(A)) is δ�-regular.
Moreover, if A is an ε-IRTA, then f−1(f(L(A))) = L(A). (In general for
ε-TA, we can only show that f−1(f(L(A))) ⊇ L(A)).

Complexity. If k is the maximum constant appearing in the constraints of A
= (L, L0, Σ, C, E, F) then, the number of states in B is upperbounded by
24.|L|.(k+1)|C|+1

. We refer the reader to the original paper for details. Thus the
reduction from ε-IRTA to normalized (deterministic) δ�-automaton results in
doubly exponential blowup in number of locations.

Proposition 2. The following structural properties hold for a normalized δ�-
automaton A.

1. A is bipartite with the partitions corresponding post(δ) and post(�) states.
The initial state is in post(�) partition.

2. The Σ-transitions stay within the same partition. A δ-transition takes only
a post(�)-type state to only a post(δ)-type state and a �-transition takes
only a post(δ)-type state to only a post(�)-type state.

3. Let Grδ�(q) be the subgraph of A which consists of states reachable from a
state q with only δ and �-transitions. Either Grδ�(q) is a simple path or
is a simple path ending with a loop. Hence, a state cannot be part of two
different pure δ�-loops. $%

In the rest of the paper, we assume that the δ�-automaton is always normalized.

4 Per-GRTA and ε-Removal

Our aim is to characterize timed languages recognized by ε-IRTA in terms of
some suitable deterministic class of timed automata (See [2,4] for definition)
which are also ε-free. One main use of the ε-transitions is to model periodic timed
activity. Periodic timed constraints (See Definition 7) have been introduced as
a direct construct for expressing periodic activities [4]. Hence Per-IRTA can be
considered as a candidate for ε-free determinization of ε-IRTA. Unfortunately
Lemma 1 below shows that the class Per-IRTA does not have the power to
express all ε-IRTA languages.

Determinization and Expressiveness of IRTA with Silent Transitions 735

In Section 2, a variant of timed automata with periodic constraints, called
Per-GRTA, were introduced. In this section we show a reduction from ε-IRTA
to equivalent 1-clock, deterministic Per-GRTA.

Lemma 1. Per-IRTA � ε-IRTA.

Proof. Consider the ε-IRTA A shown in Figure 4 (first automaton). L(A) =
{〈(a, τ1), (b, τ2)〉 : τ1 and τ2 are non-integral, and are separated by at least one
integer}. Assume to the contrary that there exists an IRTA with periodic clock
constraints B = (L, L0, {a, b, }, C, E, F) accepting L(A). For n ∈ N, let Ln rep-
resent the set of locations reachable from L0 on the event a at time τ1, where
τ1 ∈ (n, n + 1). Note that since A is an IRTA, the subset Ln ∈ 2L is completely
determined by the interval (n, n+1). Also note that since the first time stamp of
the words in L(A) can be any non-integral time point, Ln is nonempty for each
n. Let k be the maximum constant appearing in B (max. is calculated ignoring
the periods). Since 2L is finite and the number of integers is infinite, there exist
k1 and k2 such that k < k1 < k2 and Lk1 = Lk2 . Let τ1 ∈ (k1, k1 + 1) and
τ2 ∈ (k2, k2 + 1) be two randomly selected time stamps. Then we know that
〈(a, τ1), (b, τ2)〉 ∈ L(B). i.e., there exists an accepting run (l0, ν0)

τ1−→ (l0, ν1)
e1−→ (l1, ν1)

τ2−τ1−→ (l1, ν2)
e2−→ (lf , ν2) corresponding to this word, where ∀x ∈ C,

ν1(x) = τ1 and ν2(x) = τ2. Note that none of the clocks would have been reset
on e1 or e2 since they occur at a nonintegral time point. Since Lk1 = Lk2 the
modified run (l0, ν0)

τ2−→ (l0, ν2)
e1−→ (l1, ν2)

0−→ (l1, ν2)
e2−→ (lf , ν2) is also ac-

cepting. Hence the word 〈(a, τ2), (b, τ2)〉 ∈ L(B), which is a contradiction. $%

l0 l1 l2 l3
a, 0 < x < 1

ε, x = 1, {x}

ε, x = 1, {x} b, 0 < x < 1

ε, x = 1, {x}

l0 l1 l2
a, ∃k ∈ N : x ∈ (k, k + 1), {x} b, ∃k ∈ N : x ∈ (k + 1, k + 2)

Fig. 4. An ε-IRTA and a Per-GRTA equivalent to it

4.1 Construction of 1-Clock Deterministic Per-GRTA

Let L be a δ�-regular language and let A be the normalized δ�-automaton
accepting L. In this section we show how to construct a deterministic 1-clock
Per-GRTA B from A which accepts the timed version of L. We first define
constraint which decodes the timing information represented by δ�-paths in A.

Definition 15 (Time Distance). Let π be a simple, pure δ�-path from q1 to
q2 in Det(A�

δ). Let m be the number of �-transitions in π. Then,

736 P.V. Suman and P.K. Pandya

constraint(π) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[m, m] if q2 is post(�)-type, and q2 is
not in a pure δ�-loop

(m, m + 1) if q2 is post(δ)-type, and q2 is
not in a pure δ�-loop

∃k ∈ N[m + pk, m + pk] if q2 is post(�)-type, and q2 is
in a pure δ�-loop with p �’s

∃k ∈ N(m + pk, m + pk + 1) if q2 is post(δ)-type, and q2 is
in a pure δ�-loop with p �’s

Construction: Let A = (Q, q0, Σ ∪ {δ, �}, E, F) be the given normalized δ�-
automaton. We construct the deterministic 1-clock GRTA B = (L, l0, Σ, {x},
E′, F) as follows. Note that the number of locations in B is at most equal to the
number of states in the A.

– L = {q0} ∪ {q ∈ Q: q has an incoming Σ-transition in A}. l0 = q0.
– There is an edge (q1, q2, a, ϕ, {x}) ∈ E′ iff there exists q3 ∈ Q such that (i)

there is a simple, pure δ�-path π from q1 to q3 in A, (ii) the edge (q3, a, q2) ∈
E, and (iii) ϕ is defined as x ∈ constraint(π). $%

Figure 2 shows the Per-GRTA (which is in this case a Per-IRTA) constructed
from the δ�-automaton in Figure 3. In the following we prove that the resultant
automaton B is deterministic and that f(L(B)) = L(A).

Lemma 2. The automaton B constructed above is deterministic.

Proof. Let q be a location in B and let e1 = (q, q1, a, ϕ1, {x}) and e2 = (q,
q2, a, ϕ2, {x}) be two edges out of q. Note that this is the case iff there is a
simple, pure δ�-path π1 (π2) from q to q′1 (q′2) such that constraint(π1) = [ϕ1]
(constraint(π2) = [ϕ2]) and there is an edge (q′1, a, q1) ((q′2, a, q2)) in A. We
assume w.l.o.g. that q1 �= q2 and since A is deterministic this implies that q′1 �= q′2.
We consider the case where both q′1 and q′2 are part of pure δ�-loops. The
argument is similar in the other cases. From Proposition 2 it follows that q′1 and
q′2 are part of the same pure δ�-loop. Hence constraint(π1) and constraint(π2)
are periodic sets with the same period p but their offsets modulo p are distinct.
Hence ϕ1 and ϕ2 are disjoint. $%

Given a run, let (l, ν)t denote that configuration (l, ν) arises in the given run at
time t.

Lemma 3. Let π be a pure δ�-path in A. There exists a superstep q1
π=⇒ q2

e−→
q3 where e = (q2, a, q3), in A iff there exists a step (q1, ν1)τ1

τ2−τ1−→ (q1, ν2)τ2 e′
−→

(q3, ν3)τ2 where e′ = (q1, q3, a, ϕ, {x}), in B such that word(π) = dte(τ1, τ2). $%

Theorem 2. f(L(B)) = L(A). The number of locations in B is at most the
number of states in A.

Proof. We use induction over steps of B and supersteps of A. Using Lemma 3
we can establish that there exists an accepting run over r over a timed word
ρ = 〈(σ1, τ1) . . . (σn, τn)〉 in B iff there exists a corresponding accepting run r′

over the word ρ′ = w1σ1w2σ2 . . . wnσn in A such that (a) the states arising

Determinization and Expressiveness of IRTA with Silent Transitions 737

after supersteps in r′ are the locations of states arising after steps in r, and (b)
wi = dte(τi−1, τi). From the definition of f it follows therefore that f(ρ) = ρ′.

Corollary 1. For every ε-IRTA A we can effectively construct a language equiv-
alent 1-clock, deterministic Per-GRTA B with at most double exponential blowup
in number of locations.

The corollary follows directly using Proposition 1 and Theorem 2. The size bound
is an improvement over the triply exponential bound for determinization for the
subclass IRTA given in [12]. Note that the reduction is via δ�-automata and a
direct translation from ε-IRTA to Per-GRTA seems nontrivial.

5 From Per-GRTA to ε-IRTA

In this section we show that for every Per-GRTA an equivalent ε-IRTA can be
effectively constructed. Our construction is in two parts. Part 1 converts Per-
GRTA into ε-GRTA making use of the technique of [4] originally introduced for
showing that Per-TA is a subclass of ε-TA. Part 1 is carried out in two steps
given below. In the second part the resulting ε-GRTA is reduced to an ε-IRTA.

Part 1, Step 1: The periodic guards can be put in canonical form such that
there exists a common period p and each constraint consists of conjunctions of
atomic constraints of the following form (where 0 ≤ i < p): (i)x = i, (ii)x ∈
(i, i+1), (iii)∃k ∈ N : x ∈ [i+kp, i+kp], (iv)∃k ∈ N : x ∈ (i+kp, i+1+kp). Note
that because of introduction of disjunction in making the guards canonical edges
may have to be split into multiple edges (See [4] for the details and correctness
of this construction).

Part 1, Step 2: For each clock x, a new clock x is introduced which keeps
track of the value of x modulo p. Hence the periodic constraints over x could
be replaced by aperiodic constraints over x, of the following form: (i) x = i,
(ii) x ∈ (i, i + 1). Additional transitions labelled with ε are introduced which
reset x whenever x = p. If an edge has two conjuncts of the form x = i and
y ∈ (j, j + 1) then, such a guard is not satisfiable as fractional parts of all clocks
are equal, and such edges can be deleted. Hence the constraints over edges in
the resultant automaton are either uniformly of the form x = i or uniformly of
the form x ∈ (i, i+1). We call the former edges integral edges and the later kind
of edges nonintegral edges.

Proposition 3. Let A′ be obtained after applying Step 1 and Step 2 to a given
Per-GRTA A. Then, L(A′) = L(A). $%

Part 2: We intend to show that one can effectively construct an ε-IRTA B
which is equivalent to A′. The idea of the construction is to replace a resetting
nonintegral edge by two consecutive edges. The first edge is an ε-transition which
does the required resetting at the last integral time point (say t). The second
transition is labeled by the same event as the original edge. The constraint over
this edge makes sure that the transition occurs in the unit interval (t, t+1). Let

738 P.V. Suman and P.K. Pandya

ϕ be the constraint
∧

x∈X

x ∈ (ix, ix + 1). Then base(ϕ) represents the constraint∧
x∈X

x = ix and ext(ϕ) represents the constraint
∧

x∈X

0 < x < 1.

Construction: Let A′ = (L, L0, Σ, C, E, F). Let E′′ be the set of resetting
nonintegral edges in E. The automaton B = (L′, L0, Σ, C, E′, F) is defined as
follows.

– L′ = L ∪ {le : e ∈ E′′}.
– E′ = (E \ E′′) ∪ {(l1, le, ε, base(ϕ), λ), (le, l2, σ, ext(ϕ), {}):

e = (l1, l2, σ, ϕ, λ) ∈ E′′}.

Lemma 4. Let e = (l1, l2, σ, ϕ, λ) be a resetting nonintegral edge in A′. There
exists a step (l1, ν1)τ1

τ2−τ1−→ (l1, ν2)τ2 e−→ (l2, ν3)τ2 in A′ iff there exists a double
step (l1, ν1)τ1

i−τ1−→ (l1, µ1)i e1−→ (le, µ2)i τ2−i−→ (le, µ3)τ2
e2−→ (l2, ν3)τ2 in B, where

i = int(τ2), e1 = (l1, le, ε, base(ϕ), λ) and e2 = (le, l2, σ, ext(ϕ), {}). $%

Lemma 5. L(B) = L(A′).

Proof. We observe that (i) the edges which are not resetting nonintegral in A′

are replicated in B, and (ii) each new location le is not part of any edges except
those from and to the source and target of e. Let ρ be a timed word. ρ ∈ L(A′)
iff there exists an accepting run for ρ over A′. By induction on the number of
steps/double steps and Lemma 4 it follows that such a run exists iff there exists
an accepting run over B for ρ. Note that the ε-transitions are not accounted for
in a timed word. $%

Corollary 2. It follows from Proposition 3 and Lemma 5 that given a Per-
GRTA A an ε-IRTA B can be effectively constructed such that L(A) = L(B)
with at most double the number of locations. $%

6 Expressiveness

Corollary 3. From Corollaries 1 and Corollary 2, it follows that Per-GRTA =
ε-IRTA. $%

The technique of Proposition 3 can be used to prove ε − Per − GRTA = ε −
GRTA = Per − GRTA. The following Lemma and Figure 1 summarize the
relationships between various classes of automata introduced in this paper.

Lemma 6. (i) IRTA � Per-IRTA, (ii) GRTA � Per-IRTA, (iii) IRTA � GRTA
and (iv) Per-IRTA � GRTA. $%

Theorem 3. It is undecidable to determine whether for a given timed automa-
ton there exists an ε-IRTA equivalent to it.

Proof. We observe that the problem L(A) ⊆ L(B)?, where A is an ε-IRTA
and B is a TA, is undecidable (follows from undecidability of universality of

Determinization and Expressiveness of IRTA with Silent Transitions 739

timed automata). We reduce this problem to the above problem. We know that
L(A) ⊆ L(B) iff L(A ∩ B) = L(A). Given an instance of L(A) ⊆ L(B)?, we
ask whether A ∩ B which is a timed automaton, is ε-IRTA-representable. If the
answer is No then clearly L(A ∩ B) � L(A). Hence L(A) � L(B). If the answer
is Yes then we can check whether L(A∩B) ⊇ L(A) by the method of [1]. In this
method, we can directly construct the δ�-automaton for f(L(A ∩ B)) without
constructing an equivalent ε-IRTA. $%
Essentially the same proof can be used to show that determining the existence
of ε-IRTA/IRTA/GRTA/Per-GRTA equivalent to given TA/ε-TA is undecidable
as well.

Acknowledgements. We thank Kamal Lodaya for his helpful comments.

References

1. Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with
integer resets: Language inclusion and expressiveness (LNCS 5215). In: Cassez, F.,
Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg
(2008)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Berard, B., Petit, A., Gastin, P., Diekert, V.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2-3),
145–182 (1998)

4. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints.
Journal of Automata, Languages and Combinatorics 5(4), 371–404 (2000)

5. Bouyer, P., Haddad, S., Reynier, P.A.: Undecidability results for timed automata
with silent transitions. Research Report LSV-07-12, Laboratoire Spécification et
Vérification, ENS Cachan, France, 22 pages (2007)

6. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P.
(eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)

7. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theoretical Computer Science 211(1–2), 253–273 (1999)

8. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS
2005: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Sci-
ence, Washington, DC, USA, pp. 188–197. IEEE Computer Society, Los Alamitos
(2005)

9. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput.
Logic 9(2), 1–27 (2008)

10. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with
one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, pp. 387–401. Springer, Heidelberg (2004)

11. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
Closing a decidability gap. In: LICS 2004: Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science, Washington, DC, USA, pp. 54–63.
IEEE Computer Society, Los Alamitos (2004)

12. Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Determinization of timed
automata with integral resets. Research Report TIFR-PPVS-GM-2007/4, TIFR
(2007)

One-Clock Deterministic Timed Automata Are
Efficiently Identifiable in the Limit

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Delft University of Technology
{S.E.Verwer,M.M.deWeerdt,C.Witteveen}@tudelft.nl

Abstract. We study the complexity of identifying (learning) timed au-
tomata in the limit from data. In previous work, we showed that in order
for timed automata to be efficiently identifiable in the limit, it is neces-
sary that they are deterministic and that they use at most one clock. In
this paper, we show this is also sufficient: we provide an algorithm that
identifies one-clock deterministic timed automata efficiently in the limit.

1 Introduction

Timed automata [1] (TAs) are finite state models that model timed events using
an explicit notion of time. They can be used to model and reason about real-time
systems [2]. In practice, however, the knowledge required to completely specify a
TA model is often insufficient. An alternative is to try to induce the specification
of a TA from observations. This approach is also known as inductive inference.
The idea behind inductive inference is that it is often easier to find examples of
the behavior of a real-time system than to specify the system in a direct way.
Inductive inference then provides a way to find a TA model that characterizes
the (behavior of the) real-time system that produced these examples.

In our case, we can monitor the occurrences of the events in a real-time sys-
tem. This results in a set of labeled (positive and negative) time stamped event
sequences. The exact problem we want to solve is to find the TA model that
(most likely) produced this data. This is called TA identification. Naturally, we
want to solve this problem in an efficient way, i.e., without requiring exponential
amounts of space or time.

Unfortunately, identifying a TA efficiently is difficult due to the fact that the
identification problem for non-timed deterministic finite state automata (DFAs)
from a finite data set is already NP-complete [3]. This property easily general-
izes to the problem of identifying a TA (by setting all time values to 0). Thus,
unless P = NP , a TA cannot be identified efficiently from finite data. Even
more troublesome is the fact that the DFA identification problem from finite
data cannot even be approximated within any polynomial [4]. Hence (since this
also generalizes), the TA identification problem from finite data is also inapprox-
imable. However, both of these results require that the input for the identification
problem is finite. While in normal decision problems this is very natural, in an
identification problem the amount of input data is somewhat arbitrary: more

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 740–751, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 741

data can be sampled if necessary. Therefore, it makes sense to study the be-
havior of an identification process when it is given more and more data. The
framework that studies this behavior is called identification in the limit [5].

The identifiability of many interesting models (or languages) have been stud-
ied within the framework of learning in the limit. For instance, DFAs have been
shown to be efficiently identifiable in the limit from labeled examples [6], but
non-deterministic finite state automata (NFAs) have been shown not to be effi-
ciently identifiable in this way [7]. Because of this, we restrict our attention to
deterministic timed automata (DTAs). Unfortunately, in previous work we have
shown that DTAs in general cannot be identified efficiently in the limit [8]. The
argument we used was based on the existence of DTAs such that languages of
these DTAs only contain examples of length exponential in the size of the DTA.
Therefore, if we intend to identify the full class of DTAs, we will sometimes
require an exponential amount of data in order to converge to the correct DTA.
However, this argument no longer holds if the DTAs contain at most one timed
component, known as a clock. In fact, in the same work, we even proved that the
length of the shortest string in the symmetric difference of two one-clock DTAs
(1-DTAs) can always be bounded by a polynomial. DTAs with this property are
called polynomially distinguishable. This is a very important property for identi-
fication purposes because to identify a model is basically to distinguish models
from each other based on examples. We have shown that this is a necessary
requirement for efficient identification in the limit [8].

In this paper, we provide an algorithm that identifies 1-DTAs efficiently in
the limit. The proof of convergence of this algorithm is based on the polynomial
distinguishability of 1-DTAs. The algorithm is an important step in the direc-
tion of being able to identify real-time systems efficiently. To the best of our
knowledge, our result is the first positive efficiency result for identifying timed
automata. Moreover, we do not know of any other algorithm that identifies the
complete structure of a timed automaton, including the clock resets.

The paper is organized as follows. We start with a brief introduction to 1-
DTAs (Section 2), and a formal explanation of efficient identifiability in the limit
(Section 3). We then describe our algorithm for identifying 1-DTAs (Section 4),
and give the sketch of a proof that it converges to the correct 1-DTA efficiently
in the limit(Section 5). We end our paper with some conclusions (Section 6).

2 Deterministic One-Clock Timed Automata

A timed automaton (TA) [1] is an automaton that accepts (or generates) strings
with event-time value pairs, called timed strings. A timed string τ over a finite
set of symbols Σ is a sequence (a1, t1)(a2, t2) . . . (an, tn) of symbol-time value
pairs (ai, ti) ∈ Σ × N.1 Each time value ti in a timed string represents the time
passed until the occurrence of symbol ai since the occurrence of the previous
symbol ai−1. We use τi = (a1, t1) . . . (ai, ti) to denote the prefix of length i of τ .
1 Sometimes R is used as a time domain for TAs. However, for identification of TAs

N is sufficient since, in practice, we always measure time using finite precision.

742 S. Verwer, M. de Weerdt, and C. Witteveen

q0 q1 q2

a
reset

a
x 5

b
x 2

q3

a
reset

b
reset

Fig. 1. A deterministic one-clock timed automaton. The start state q0 is denoted by an
arrow pointing to it from nowhere. The final state q3 has two circles instead of one. The
arrows represent transitions. The labels, clock guards, and clock resets are specified for
every transition. When no guard is specified, the guard is always satisfied.

In TAs, timing conditions are added using a finite set X of clocks and one
clock guard on every transition. For the purpose of this paper, i.e., identifying
one-clock deterministic timed automata, we focus on the case where the TAs
are deterministic and contain at most a single clock. Such a TA is called a
deterministic one-clock timed automata (1-DTA). In TAs, valuation mappings
v : X → N are used to obtain the value of a clock x ∈ X . Since we use only a
single clock x, we use v instead of v(x) to denote the value of x. Every transition
δ in a 1-TA contains a boolean value known as a reset value. When a transition
δ fires (or occurs), and the reset value of δ is set to true, then the value of x is
set to 0, i.e., v := 0. In this way, x is used to record the time since the occurrence
of some specific event. Clock guards are then used to change the behavior of the
1-DTA depending on the value of x. A clock guard g = c ≤ x ≤ c′ is a boolean
constraint on the value of x, where c ∈ N and c′ ∈ N ∪ {∞} are constants.2 A
valuation v is said to satisfy a clock guard g, if whenever each occurrence of x
in g is replaced by v the resulting statement is true. A deterministic one-clock
timed automaton is defined as follows:

Definition 1. A deterministic one-clock timed automaton (1-DTA) is a tuple
A = 〈Q, x, Σ, ∆, q0, F 〉, where Q is a finite set of states, x is a clock, Σ is a
finite set of symbols, ∆ is a finite set of transitions, q0 is the start state, and
F ⊆ Q is a set of final states.

A transition δ ∈ ∆ is a tuple 〈q, q′, a, g, r〉, where q, q′ ∈ Q are the source and
target states, a ∈ Σ is a symbol, called the transition label, g is a clock guard,
and r ∈ {true, false} is a reset value. Since A is deterministic, for every source
state q ∈ Q, every label a ∈ Σ, and every valuation v ∈ N, there exists at most
a single transition 〈q, q′, a, g, r〉 ∈ ∆ such that v satisfies g.

Figure 1 shows an example of a 1-DTA. Like a DFA, a 1-DTA moves from state
to state by firing state transitions δ ∈ ∆ that connect these states. However, in
addition, a 1-DTA is capable of remaining in the same state q for a while. While
doing so, the valuation v of its clock x increases. We call this action of staying in
the same state a time transition. A time transition of t time units increases the
valuation v of x by t, i.e. v := v + t. One can view a time transition as moving
2 Since we use the natural numbers to represent time open (x < c) and closed (x ≤ c)

one-clock timed automata are equivalent.

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 743

from one timed state (q, v) to another timed state (q, v + t) while remaining in
the same untimed state q. The length t of time transitions corresponds to the
time values in a timed string. More precisely, the occurrence of a timed symbol
(a, t) in a timed string means that before firing a transition δ labeled with a, the
1-DTA makes a time transition of t time units. After such a time transition, δ
can only fire if its guard g is satisfied by v + t. The exact behavior of a 1-DTA
is defined by what is called a run of a 1-DTA:

Definition 2. A (finite) run of a 1-DTA A = 〈Q, x, Σ, ∆, q0, F 〉 over a
timed string τ = (a1, t1) . . . (an, tn) is a sequence of timed states and transi-
tions (q0, v0)

t1−→ (q0, v0 + t1)
a1−→ (q1, v1) . . . (qn−1, vn−1)

tn−→ (qn−1, vn−1 +
tn) an−→ (qn, vn), such that for all 1 ≤ i ≤ n there exists a transition δi =
〈qi−1, qi, ai, g, r〉 ∈ ∆ such that vi−1 + ti satisfies g, v0 = 0, and vi = 0 if
r = true, vi = vi−1 + ti otherwise.

In a run the subsequence (qi, vi + t)
ai+1−→ (qi+1, vi+1) represents a state transition

like in a finite automaton without time. When this occurs, the timed string τ is
said to fire a transition δ with valuation vi+t to another timed state (qi+1, vi+1).

The time transitions of a 1-DTA are represented by (qi, vi)
ti+1−→ (qi, vi+ti+1). We

say that a timed string τ reaches a timed state (q, v) in a TA A if there exist two

time values t ≤ t′ such that (q, v′) t′−→ (q, v′ + t′) occurs somewhere in the run
of A over τ and v = v′ + t. If a timed string reaches a timed state (q, v) in A for
some valuation v, it also reaches the untimed state q in A. A timed string ends
in the last (timed) state it reaches, i.e., (qn, vn) or qn. Notice that timed states
in 1-DTAs are similar to the (untimed) states in DFAs: at any point during the
run of a timed string τ , the state τ ends in depends on the current timed state
and the remaining suffix of τ . A timed string τ is accepted by a 1-DTA A if τ
ends in a final state, i.e., if qn ∈ F . The set of all strings τ that are accepted by
A is called the language L(A) of A.

Example 1. Consider the TA A of Fig. 1. The run of A over the timed string τ =
(a, 5)(a, 6)(a, 2)(b, 2) is given by: (q0, 0) 5−→ (q0, 5) a−→ (q1, 0) 6−→ (q1, 6) a−→
(q2, 6) 2−→ (q2, 8) a−→ (q2, 0) 2−→ (q2, 2) b−→ (q3, 2). Since q3 is a final state, it
holds that τ ∈ L(A). Note that q3 cannot be reached directly after reaching q2
from q1: the clock guard to q2 is satisfied by a valuation v greater than 4, while
the guard of the transition to q3 requires v to be less than 3.

3 Efficient Identification in the Limit

An identification process tries to find (learn) a model that explains a set of obser-
vations (data). The ultimate goal of such a process is to find a model equivalent
to the actual concept that was responsible for producing the observations, called
the target concept. In our case, we try to find a 1-DTA model A that is equivalent
to a target language Lt, i.e., L(A) = Lt. If this is the case, we say that Lt is
identified correctly. We try to find this model using labeled data: an input sample

744 S. Verwer, M. de Weerdt, and C. Witteveen

S for Lt is a pair of finite sets of positive examples S+ ⊆ Lt and negative exam-
ples S− ⊆ LC

t = {τ | τ �∈ Lt}. We modify the non-strict set-inclusion operators
for input samples such that they operate on the positive and negative examples
separately, for example if S = (S+, S−) and S′ = (S′

+, S′
−) then S ⊆ S′ means

S+ ⊆ S′
+ and S− ⊆ S′

−. In addition, by τ ∈ S we mean τ ∈ S+ ∪ S−.
The input of our 1-DTA identification problem is a pair of finite sets. Unfor-

tunately, as we already mentioned in the introduction, the 1-DTA identification
problem is inapproximable. Because of this, we study the behavior of a 1-DTA
identification process that is given more and more data. The framework for
studying such a process is called identification in the limit [5]. In this frame-
work, we do not regard the complexity for any possible input sample S, but for
any possible target language Lt. For every target language Lt, there exist many
possible input samples S. An identification process A is called efficient in the
limit (from polynomial time and data) if for any target language Lt, A requires
time polynomial in the size of any input sample S for Lt, and if the smallest
input sample S such that A converges to Lt can be bounded by a polynomial in
the size of Lt. The size of a target language Lt is defined as the size of a smallest
model for Lt. Efficient identifiability in the limit can be proved by showing the
existence of polynomial characteristic sets [7].

Definition 3. A characteristic set Scs of a target language Lt for an identifica-
tion algorithm A is an input sample (S+, S−) for Lt such that:

– given Scs as input, algorithm A identifies Lt, i.e., A returns an automaton
A such that L(A) = Lt, and

– given any input sample S′ ⊇ Scs as input, algorithm A still identifies Lt.

Definition 4. A class of automata C is efficiently identifiable in the limit if
there exist two polynomials p and q, and an algorithm A such that:

– given an input sample of size n =
∑

τ∈S |τ |, A runs in time bounded by p(n),
– and for every target language Lt = L(A), A ∈ C, there exists a characteristic

set Scs of Lt for A of size bounded by q(|A|).

In previous work [8], we showed that DTAs in general are not efficiently iden-
tifiable. The argument we used was based on the fact that there exists DTAs
such that languages of these DTAs only contain examples (strings) of length
exponential in the size of the DTA. This was used to prove that DTAs are not
polynomially distinguishable:

Definition 5. A class C of automata is polynomially distinguishable if there
exists a polynomial function p, such that for any A,A′ ∈ C with L(A) �= L(A′),
there exists a τ ∈ (L(A)∪L(A′)) \ (L(A)∩L(A′)), such that |τ | ≤ p(|A|+ |A′|).

We have also shown that polynomial distinguishability is a necessary requirement
for efficient identification [8]. Because of this, we cannot identify DTAs efficiently.
In addition, we have proved that 1-DTAs are polynomially distinguishable. Based
on this result, we conjectured that 1-DTAs might be efficiently identifiable in

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 745

the limit. In the following sections, we prove this conjecture by first describing
an algorithm for identifying 1-DTAs. We then prove the convergence of this
algorithm, i.e., that it identifies 1-DTAs efficiently in the limit. This proof is
based on the polynomial distinguishability of 1-DTAs.

4 Identifying 1-DTAs Efficiently in the Limit

In this section, we describe our ID 1DTA algorithm for identifying 1-DTAs from
an input sample S. The main value of this algorithm is that:

– given any input sample S, ID 1DTA returns in polynomial time a 1-DTA A
that is consistent with S, i.e., such that S+ ⊆ L(A) and S− ⊆ L(A)C,

– and if S contains a characteristic subsample Scs for some target language
Lt, then ID 1DTA returns a correct 1-DTA A, i.e., such that L(A) = Lt.

In other words, ID 1DTA identifies 1-DTAs efficiently in the limit. Note that, in a
1-DTA identification problem, the size of the 1-DTA is not predetermined. Hence,
our algorithm has to identify the complete structure of a 1-DTA, including states,
transitions, clock guards, and resets. Our algorithm identifies this structure one
transition at a time: it starts with an empty 1-DTA A, and whenever an identified
transition requires more states or additional transitions, these will be added to
A. In this way, ID 1DTA builds the structure of A piece by piece. Since we claim
that ID 1DTA identifies 1-DTAs efficiently, i.e., from polynomial time and data,
we require that, for any input sample S for any target language Lt, the following
four properties hold for this identification process:

Property 1. Identifying a single transition δ requires time polynomial in the
size of S (polynomial time per δ).

Property 2. The number of such transition identifications is polynomial in the
size of S (convergence in polynomial time).

Property 3. For every transition δ, there exists an input sample Scs of size
polynomial in the size of the smallest 1-DTA for Lt such that when included
in S, Scs guarantees that δ is identified correctly (polynomial data per δ).

Property 4. The number of such correct transition identifications that are re-
quired to return a 1-DTA A with L(A) = Lt is polynomial in the size of the
smallest 1-DTA for Lt (convergence from polynomial data) .

With these four properties in mind, we develop our ID 1DTA algorithm for the
efficient identification of 1-DTAs. Pseudo code of this algorithm is shown in
Algorithm 1. In this section, we use an illustrative example to show how this
algorithm identifies a single transition, and to give some intuition why the al-
gorithm satisfies these four properties. In the next section, we prove that our
algorithm indeed satisfies these four properties and thus prove that it identifies
1-DTAs efficiently in the limit.

Example 2. Suppose that after having identified a few transitions, our algorithm
has constructed the (incomplete) 1-DTA A from Figure 2. Furthermore, suppose

746 S. Verwer, M. de Weerdt, and C. Witteveen

q0 3

q1 a
10 x

reseta
4 x

q2

a
0 x 3

reset

b
0 x

Fig. 2. A partially identified 1-DTA. The transitions from state q0 have been completely
identified. State q1 only has one outgoing transition. State q2 has none.

that S contains the following timed strings: {(a, 4)(a, 6), (a, 5)(b, 6), (b, 3)(a, 2),
(a, 4)(a, 1)(a, 3), (a, 4)(a, 2)(a, 2)(b, 3)} ⊆ S+ and {(a, 3)(a, 10), (a, 4)(a, 2)(a, 2),
(a, 4)(a, 3)(a, 2)(b, 3), (a, 5)(a, 3)} ⊆ S−. Our algorithm has to identify a new
transition δ of A using information from S. There are a few possible identifiable
transitions: state q1 does not yet contain any transitions with label b, or with
label a and valuations smaller than 9, and state q2 does not yet contain any
transitions at all. Our algorithm first makes a choice which transition to identify,
i.e., it selects the source state, label, and valuations for a new transition. Then our
algorithm actually identifies the transition, i.e., it uses S in order to determine
the target state, clock guard, and reset of the transition.

As can be seen from the example, the first problem our algorithm has to deal with
is to determine which transition to identify. Our algorithm makes this decision
using a fixed predetermined order (independent of the input sample). The order
used by our algorithm is very straightforward: first a state q is selected in the
order of identification (first identified first), second a transition label l is selected
in alphabetic order, and third the highest possible upper bound c′ for a clock
guard in this state-label combination is chosen. This fixed order makes it easier to
prove the existence of characteristic sets (satisfying property 3). In our example,
our algorithm will try to identify a transition δ = 〈q, q′, l, c ≤ x ≤ c′, r〉, where
q = q1, l = a, and c′ = 9 (since there exists a transition with a clock guard that
is satisfied by a valuation v = 10) are all fixed. Thus, our algorithm only needs
to identify: (i) the target state q′, (ii) the lower bound of the clock guard c, and
(iii) the clock reset r.

Note that fixing q, a, and c′ in this way does not influence which transitions
will be identified by our algorithm. Since we need to identify a transition with
these values anyway, it only influences the order in which these transitions are
identified. We now show how our algorithm identifies c, r, and q′.

The lower bound c. Our algorithm first identifies the lower bound c of the clock
guard g of δ. The smallest possible lower bound for g is the smallest reachable
valuation vmin in q (q1 in the example). This valuation vmin is equal to the
smallest lower bound of a transition with q as target. In the example, vmin is 4.
Thus, the lower bound c has to be a value with the set {c | vmin ≤ c ≤ c′}.
One approach for finding c would be to try all possible values from this set and
pick the best one. However, since time values are encoded in binary in the input
sample S, iterating over such a set is exponential in the size of these time values,

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 747

Algorithm 1. Efficiently learning 1-DTAs from polynomial data: ID 1DTA

Require: An input sample S = (S+, S−) for a language Lt, with alphabet Σ
Ensure: A is a 1-DTA consistent with S, i.e. S+ ⊆ L(A) and S− ⊆ L(A)C, in addition,

if it holds that Scs ⊆ S, then L(A) = Lt

A := 〈Q = {q0}, x, Σ, ∆ = ∅, q0, F = ∅〉
if S+ contains the empty timed string λ then set F := {q0}
while there exist a reachable timed state (q, v) and a symbol a for which there
exists no transition 〈q, q′, a, g, r〉 ∈ ∆ such that v satisfies g do

for all states q ∈ Q and symbols a ∈ Σ do
vmin := min{v | (q, v) is reachable }
c′ := max{v | ¬∃ 〈q, q′, a, g, r〉 ∈ ∆ such that v satisfies g}
while vmin ≤ c′ do

create a new transition δ := 〈q, q′ := 0, a, g := vmin ≤ x ≤ c′, r〉, add δ to ∆
V := {v | ∃τ ∈ S : τ fires δ with valuation v}
r := true and c1 := lower bound(δ, V ∪ {vmin},A, S)
r := false and c2 := lower bound(δ, V ∪ {vmin},A, S)
if c1 ≤ c2 then set r := true and g := c1 ≤ x ≤ c′

else set r := false and g := c2 ≤ x ≤ c′

for every state q′′ ∈ Q (first identified first) do
q′ := q′′

if consistent(A, S) is true then break else q′ := 0
end for
if q′ = 0 then

create a new state q′′, set q′ := q′′, and add q′ to Q
if ∃τ ∈ S+ such that τ ends in q′ then set F := F ∪ {q′}

end if
c′ := min{v | v satisfies g} − 1

end while
end for

end while

i.e., it is exponential in the size of S (contradicting property 1). This is why our
algorithm only tries those time values that are actually used by timed strings
from S. We determine these in the following way. We first set the lower bound
of g to be vmin. There are now examples in S that fire δ. The set of valuations
V that these examples use to fire δ are all possible lower bounds for g, i.e.,
V := {v | ∃τ ∈ S : τ fires δ with valuation v}. In our example, we have that
{(a, 4)(a, 1)(a, 3)} ⊆ S+ and {(a, 5)(a, 3), (a, 4)(a, 2)(a, 2)} ⊆ S−. In this case,
V = {4+1 = 5, 5+3 = 8, 4+2 = 6}. Since for every time value in V there exists
at least one timed string in S for every such time value, iterating over this set
is polynomial in the size of S (satisfying property 1).

From the set V ∪{vmin} our algorithm selects the smallest possible consistent
lower bound. A lower bound is consistent if the 1-DTA resulting from identifying
this bound is consistent with the input sample S. A 1-DTA A is called consistent
if S contains no positive example that inevitably ends in the same state as a
negative example, i.e., if the result A can still be such that S+ ∈ L(A) and
S− ∈ L(A)C (satisfying property 4). Whether A is consistent with S is checked

748 S. Verwer, M. de Weerdt, and C. Witteveen

by testing whether there exist no two timed strings τ ∈ S+ and τ ′ ∈ S− that
reach the same timed state (possibly after making a partial time transition) and
afterwards their suffixes are identical. We use consistent to denote this check.
This check can clearly be done in polynomial time (satisfying property 1). Our
algorithm finds the smallest consistent lower bound by trying every possible
lower bound c ∈ V ∪ {vmin}, and testing whether the result is consistent. We
use lower bound to denote this routine. This routine ensures that at least one
timed string from S will fire δ, and hence that our algorithm only identifies a
polynomial amount of transitions (satisfying property 2). In our example, setting
c to 5 makes A inconsistent since now both (a, 4)(a, 1)(a, 3) and (a, 4)(a, 2)(a, 2)
reach (q′, 6), where q′ is any possible target for δ, and afterwards they have the
same suffix (a, 2). However, setting c to 6 does not make A inconsistent. Since 6
is the smallest value in V ∪{vmin} greater than 5, c = 6 is the smallest consistent
lower bound for g.

Our main reason for selecting the smallest consistent lower bound for g is that
this selection can be used to force our algorithm to make the correct identification
(required by property 3). Suppose that if our algorithm identifies c∗, and if all
other identifications are correct, then the result A will be such that L(A) = Lt.
Hence, our algorithm should identify c∗. In this case, there always exist examples
that result in an inconsistency when our algorithm selects any valuation smaller
than c∗. The reason is that an example that fires δ with valuation c∗ − 1 should
actually fire a different transition, to a different state, or with a different reset
value. Hence, the languages after firing these transitions are different. Therefore,
there would exist two timed strings τ ∈ Lt and τ ′ ∈ LC

t (that can be included
in S) that have identical suffixes after firing δ with valuations c∗ and c∗ − 1
respectively. Moreover, any pair of string that fire δ with valuations greater or
equal to c∗ cannot lead to an inconsistency since their languages after firing δ
are the same.

The reset r. After having identified the lower bound c of the clock guard g
of δ, our algorithm needs to identify the reset r of δ. One may notice that the
identification of g depends on whether δ contains a clock reset or not: the value of
r determines the valuations that are reached by timed strings after firing δ (the
clock can be reset to 0), hence this value determines whether A is consistent
after trying a particular lower bound for g. In our example, (a, 4)(a, 1)(a, 3)
and (a, 4)(a, 1)(a, 2) reach (q′, 1) and (q′, 0) respectively before their suffixes are
identical if r = true. Because of this, our algorithm identifies the clock reset r of
δ at the same time it identifies its clock guard g. The method it uses to identify
r is very simple: first set r = true and then find the smallest consistent lower
bound c1 for g, then set r = false and find another such lower bound c2 for g. The
value of r is set to true if and only if the lower bound found with this setting is
smaller than the other one, i.e., iff c1 ≤ c2. There always exist timed strings that
ensure that the smallest consistent lower bound for g when the clock reset is set
incorrectly is larger than when it is set correctly (satisfying property 3). In our
example the timed strings that ensure this are (a, 4)(a, 2)(a, 2)(b, 3) ∈ S+ and
(a, 4)(a, 3)(a, 2)(b, 3) ∈ S−. Because these examples reach the same valuations

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 749

in state q′ only if the clock is reset, they create an inconsistency when r is set
to true. In general, such strings always exists since the difference of 1 time value
is sufficient for such an inconsistency: a difference of 1 time value can always be
the difference between later satisfying and not satisfying some clock guard.3

The target state q′. Having identified both the clock guard and the reset of δ, our
algorithm still needs to identify the target state q′ of δ. Since we need to make
sure that our algorithm is capable of identifying any possible transition (required
by property 3), we need to try all possible settings for q′, and in order to make
it easier to prove the existence of a characteristic set (required by property 3),
we do so in a fixed order. The order our algorithm uses is the order in which our
algorithm identified the states, i.e., first q0, then the first additional identified
state, then the second, and so on. The target state for δ is set to be the first
consistent target state in this order. In our example, we just try state q0, then
state q1, and finally state q3. When none of the currently identified states result
in a consistent 1-DTA A, the target is set to be a new state. This new state is set
to be a final state only if there exists a timed string in S+ that ends in it. It should
be clear that since the languages after reaching different states are different, there
always exist timed strings that ensure that our algorithm identifies the correct
target (satisfying property 3). In our example, there exist no timed strings that
make A inconsistent when our algorithm tries the first state (state q0), and hence
our algorithm identifies a transition 〈q1, q0, a, 6 ≤ x ≤ 9, false〉.

This completes the identification of δ and (possibly) q′. This identification of
a single transition δ essentially describes the main part of our algorithm (see
Algorithm 1). However, we still have to explain how our algorithm iterates over
the transitions it identifies. The algorithm consists of a main loop that iterates
in a fixed order over the possible source states and labels for new transitions.
For every combination of a source state q and a label a, our algorithm first sets
two values: vmin and c′. The first is the smallest reachable valuation in q. The
second is the fixed upper bound of the delay guard of a new transition. Because
our model is deterministic, this is set to be the largest reachable valuation for
which there exists no transition with q as source state and a as label. After
identifying a transition δ with these values, our algorithm updates c′ to be one
less than the lower bound of the clock guard of δ. If c is still greater than vmin,
there are still transitions to identify for state q and label a. Thus, our algorithm
iterates and continues this iteration until c′ is strictly less than vmin. Our main
reason for adding this additional iteration is that it makes it easier to prove the
convergence of our algorithm (property 4). The main loop of our algorithm con-
tinuously identifies new transitions and possibly new target states until there are
no more new transitions to identify, i.e., until there exists a transition for every
reachable timed state in A. This is necessary because identifying a transition δ
can create new identifiable transitions. This happens when the smallest reachable

3 This holds unless the clock guard can only be satisfied by a single valuation v, i.e.,
unless g = c ≤ x ≤ c. However, in this case any setting for r is correct since both
can lead to results such that L(A) − Lt.

750 S. Verwer, M. de Weerdt, and C. Witteveen

valuation vmin in some state is decreased, or when a new state is identified, by
the identification of δ.

5 Properties of the Algorithm

We described an algorithm for the identification of 1-DTAs. We claim now,
and argued in the previous section, that the algorithm converges efficiently to
a correct 1-DTA, i.e., that it identifies 1-DTAs efficiently in the limit. In this
section, we show that the four properties mentioned in the previous section
hold. The combination of these properties satisfies all the constraints required
for efficient identification in the limit (Definition 4), and hence shows that 1-
DTAs are efficiently identifiable (Theorem 1). We only give sketches of proofs
due to space restrictions.

Proposition 1. ID 1DTA is a polynomial time algorithm (properties 1 and 2).

Proof. (sketch) Identifying a single transition can be done in polynomial time as
argued in the previous section. In addition, every transition is guaranteed to be
fired by at least one timed string from S. Hence, our algorithm will stop after
identifying a polynomial amount of transitions. The proposition follows. $%
Lemma 1. There exist polynomial characteristic sets of the transitions of 1 -
DTAs for ID 1DTA (property 3).

Proof. (sketch) As shown by the example in the previous section, we can always
find a polynomial amount of timed strings such that our algorithm identifies
the correct transition δ. In addition, we can bound each of these strings by a
polynomial since 1-DTAs are polynomially distinguishable. Moreover, because
the order in which our algorithm identifies transitions is independent of S, it
is impossible to add additional examples to S such that our algorithm will no
longer identify δ. This proves the lemma. $%
Lemma 2. ID 1DTA converges after identifying a polynomial amount of tran-
sitions (property 4).

Proof. (sketch) Since 1-DTAs are polynomially distinguishable, any state can
be reached by timed strings τ of polynomial length. Hence, the main loop will
be run at most |τ | times before the smallest reachable valuation in any state
of At can be reached. Once the smallest reachable valuation can be reached,
every transition can be identified. In a single run of the main loop, at most
|At| new correct transitions can be identified. Thus, our algorithm identifies at
most |τ | × |At| transitions before every transition can be identified. Hence, by
Lemma 1, every transition of At can be identified correctly after identifying
|τ | × |At| transitions. $%
Theorem 1. 1-DTAs are efficiently identifiable in the limit.

Proof. By Proposition 1 and Lemma 2, if all the examples from Lemma 1 are
included in S, our algorithm returns a 1-DTA A such that L(A) = Lt in poly-
nomial time and from polynomial data. We conclude that Algorithm 1 identifies
1-DTAs efficiently in the limit. $%

One-Clock Deterministic TA Are Efficiently Identifiable in the Limit 751

6 Conclusions

In this paper we described an algorithm that identifies 1-DTAs efficient in the
limit. This algorithm is an important step in the direction of being able to iden-
tify timed systems efficiently. To the best of our knowledge, our result is the first
positive efficiency result for identifying timed automata. The fact that 1-DTAs
can be identified efficiently has important consequences for anyone interested in
identifying timed systems. Most importantly, it is a reason to model timed sys-
tems with 1-DTAs. However, when 1-DTAs are too restrictive, our result is still
useful because identification algorithms for other DTAs could identify the class
of 1-DTAs efficiently. This is a desirable property since 1-DTAs are efficiently
identifiable. For instance, in related work, a query learning algorithm is described
for identifying event recording automata (ERAs) [9]. However, the used query
learning algorithm requires an exponential amount of queries (data). It would
be interesting to either adapt the timed query learning algorithm to the class of
1-DTAs, or to show that the algorithm does in fact identify 1-DTAs efficiently.
This could result in an efficient query learning algorithm for timed systems.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

2. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutschell. International journal on
software tools for technology transfer 1(1-2), 134–152 (1997)

3. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

4. Pitt, L., Warmuth, M.: The minimum consistent dfa problem cannot be approxi-
mated within and polynomial. In: Annual ACM Symposium on Theory of Comput-
ing, pp. 421–432. ACM, New York (1989)

5. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

6. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In:
Pattern Recognition and Image Analysis. Series in Machine Perception and Artificial
Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)

7. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine
Learning 27(2), 125–138 (1997)

8. Verwer, S., de Weerdt, M., Witteveen, C.: Polynomial distinguishability of timed
automata. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS, vol. 5278,
pp. 238–251. Springer, Heidelberg (2008)

9. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

Author Index

Abdulla, Parosh Aziz 71
Afonin, Sergey 83
Akama, Yohji 93
Allen, Emily 176

Baader, Franz 105
Bailly, Raphaël 117
Balbach, Frank J. 1
Bannai, Hideo 422, 578
Bauer, Andreas 105
Behle, Christoph 129
Berg, Tobias 141
Berry, Vincent 702
Bertrand, Nathalie 152
Beyersdorff, Olaf 164
Blanchet-Sadri, Francine 176, 188
Boigelot, Bernard 200
Bollig, Beate 212
Bonizzoni, Paola 224
Bordihn, Henning 236
Brzozowski, Janusz 247
Bucci, Michelangelo 259
Büchse, Matthias 267
Byrum, Cameron 176

Carle, Benjamin 279
Caron, Pascal 290
Cattaneo, Gianpiero 302
Champarnaud, Jean-Marc 290
Clarridge, Adam 314
Courcelle, Bruno 19

Dassow, Jürgen 326
Degbomont, Jean-François 200
De Luca, Alessandro 259
Delzanno, Giorgio 71
Denis, François 117
de Weerdt, Mathijs 740
Dennunzio, Alberto 302

Ferretti, Claudio 224
Formenti, Enrico 302
Fredriksson, Kimmo 338

Gauwin, Olivier 350
Gierasimczuk, Nina 362

Glaßer, Christian 374
Gnaedig, Isabelle 386
Golomazov, Denis 83
Grabowski, Szymon 338

Han, Yo-Sub 398
Hashimoto, Takashi 614
Hemerik, Kees 410
Hempel, Harald 141
Holan, Tomáš 542
Holzer, Markus 23, 236

I, Tomohiro 422
Inenaga, Shunsuke 422
Ito, Masami 434

Jacquemard, Florent 446
Jain, Sanjay 43
Jirásková, Galina 458

Kasprzik, Anna 469
Klay, Francis 446
Köbler, Johannes 164
Krebs, Andreas 129
Kusano, Kazuhiko 578
Kutrib, Martin 23, 236

Leupold, Peter 434
Liefooghe, Aude 481
Limaye, Nutan 493
Lisitsa, Alexei 505
Liu, Jiamou 518
Llull-Chavarŕıa, Jordi 530
Lopatková, Markéta 542

Mahajan, Meena 493
Masopust, Tomáš 554
Matoba, Ryuichi 566
Matsubara, Wataru 578
Mauri, Giancarlo 224
Mercaş, Robert 176, 188
Mignot, Ludovic 290
Minnes, Mia 518
Mitrana, Victor 434, 588
Moore, Neil 601
Müller, Sebastian 164

754 Author Index

Nakamura, Makoto 566, 614
Narendran, Paliath 279
Nicaud, Cyril 626
Niehren, Joachim 350

Ollinger, Nicolas 638
Onodera, Kaoru 648
Otto, Friedrich 660

Pandya, Paritosh K. 728
Pardubská, Dana 660
Pavan, A. 374
Pighizzini, Giovanni 458
Pinchinat, Sophie 152
Plátek, Martin 660
Potapov, Igor 505
Pribavkina, Elena V. 672
Provillard, Julien 302

Raclet, Jean-Baptiste 152
Ranwez, Vincent 702
Rashin, Abraham 188
Reifferscheid, Stephanie 129
Rodaro, Emanuele 672
Roman, Adam 684
Roslin Sagaya Mary, Anthonath 224

Saleh, Rafiq 505
Salimov, Paul V. 696
Salomaa, Kai 59, 314, 398

Scornavacca, Celine 702
Shallit, Jeffrey 247
Shinohara, Ayumi 578
Stüber, Torsten 267
Straßburger, Lutz 715
Suman, P. Vijay 728

Takeda, Masayuki 422
Tison, Sophie 350
Tiu, Alwen 105
Tojo, Satoshi 566, 614
Touzet, Hélène 481
Travers, Stephen 374
Truthe, Bianca 588
Turaev, Sherzod 326

Vacher, Camille 446
Valero, Oscar 530
Van Begin, Laurent 71
Varré, Jean-Stéphane 481
Verwer, Sicco 740

Willett, Elara 188
Witteveen, Cees 740

Xu, Zhi 247

Yu, Sheng 398

Zeugmann, Thomas 1

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Recent Developments in Algorithmic Teaching
	Introduction
	The Teaching Dimension Model
	The Average Teaching Dimension

	Teaching Learners with Restricted Mind Changes
	The Randomized Teaching Model
	Further Directions
	References

	Monadic Second-Order Logic for Graphs: Algorithmic and Language Theoretical Applications
	References

	Descriptional and Computational Complexity of Finite Automata
	Introduction
	Descriptional Complexity of Finite Automata Simulations
	Computational Complexity of Some Decision Problems for Finite Automata
	The Fixed and General Membership Problem
	Emptiness, Universality, Equivalence, and Related Problems
	Minimization of Finite Automata

	References

	Hypothesis Spaces for Learning
	Introduction
	Some Further Criteria of Learning
	Learning Indexed Families
	Special Hypotheses Spaces
	Prescribed Learning
	Optimal Hypotheses Spaces
	References

	State Complexity of Nested Word Automata
	Introduction
	Finite Automata on Nested Words
	State Complexity Lower Bounds
	Summary of State Complexity Results and Open Problems
	References

	Regular Papers
	A Language-Based Comparison of Extensions of Petri Nets with and without Whole-Place Operations
	Introduction
	Whole-Place Operations in Nets with Black Tokens
	Whole-Place Operations in Nets with Colored Tokens
	CMRS, Petri Data Nets, and Data Nets

	Conclusions
	References

	Minimal Union-Free Decompositions of Regular Languages
	Introduction
	Preliminaries
	Union-Free Languages
	Union-Free Decomposition
	Conclusions and Further Work
	References

	Commutative Regular Shuffle Closed Languages, Noetherian Property, and Learning Theory
	Introduction
	Commutative Regular Shuffle Closed Languages
	Computational Learning Theory: Finite Elasticity and Wright’s Theorems
	Finite Elasticity of Semigroups, Commutative Regular Shuffle Closed Languages and Pattern Languages
	Integer Crystalline Structure: Learning Algorithm as Geometric Algorithm
	Noetherian Spaces
	References

	Matching Trace Patterns with Regular Policies
	Introduction
	Preliminaries
	The Linear Violation Problem
	The General Violation Problem
	The Adherence Problem
	Policies Defined by LTL Formulae
	Future Work
	References

	Absolute Convergence of Rational Series Is Semi-decidable
	Introduction
	Preliminaries
	Rational Series
	Prefixial Multiplicity Automata

	On Representation of Absolutely Convergent Rational Series
	Absolutely Convergent Rational Series
	A Particular Representation of Absolutely Convergent Rational Series

	Decidability
	Approximation and L_1-Distance
	Conclusion
	References

	Non-solvable Groups Are Not in FO+MOD+M\ensuremath{\widehat{A}}J$_2$[REG]
	Introduction
	Preliminaries
	Semilinear Sets
	Finitely Typed Monoids
	Prefix/Suffix Mappings
	Results
	Discussion
	References

	Reoptimization of Traveling Salesperson Problems: Changing Single Edge-Weights
	Introduction
	Preliminaries
	Minimum Travelling Salesperson (MinTSP)
	Maximum Travelling Salesperson (MaxTSP)
	References

	Refinement and Consistency of Timed Modal Specifications
	Introduction
	Timed Automata and Timed Modal Specifications
	Timed Automata
	Timed Modal Specifications

	Timed Modal Specification Semantics
	Models of Timed Modal Specifications
	The Region-Based Interpretation

	Refinement
	Consistency
	Conclusion
	References

	Nondeterministic Instance Complexity and Proof Systems with Advice
	Introduction
	Preliminaries
	Nondeterministic Instance Complexity
	Proof Systems with Advice
	Polynomially Bounded Proof Systems with Advice
	Polynomially Bounded Proof Systems for TAUT
	References

	How Many Holes Can an Unbordered Partial Word Contain?
	Introduction
	Simply Bordered Partial Words
	Bordered Partial Words
	A Formula for $\hat{m}_2(n)$
	A Lower Bound for $\hat{m}_3(n)$
	A Lower Bound for $\hat{m}_4(n)$

	Conclusion
	References

	An Answer to a Conjecture on Overlaps in Partial Words Using Periodicity Algorithms
	Introduction
	Periodic Partial Words with No Two Holes within a Fixed Distance
	Short Factors in the Images of Morphisms
	An Overlap-Free Word over an Alphabet of Size Five
	References

	Partial Projection of Sets Represented by Finite Automata, with Application to State-Space Visualization
	Introduction
	Automata-Based Representations
	Set Projection and State-Space Visualization
	Projecting Sets Represented by Automata

	BasicNotions
	Automata-Based Representations of Sets
	Multidimensional Domains
	Projection
	Application to Sets of Integers

	State-Space Visualization
	Problem Statement
	Visualization and Projection
	Avoiding Redundant Computations

	Partially Projected Automata
	Definition
	Algorithms

	Experimental Results
	Conclusions
	References

	Larger Lower Bounds on the OBDD Complexity of Integer Multiplication
	Introduction and Results
	Ordered Binary Decision Diagrams
	Integer Multiplication and Ordered Binary Decision Diagrams

	Preliminaries
	Notation
	Communication Complexity

	A Larger Lower Bound on the OBDD Complexity of the Graph of Integer Multiplication
	A Larger Lower Bound on the OBDD Complexity of the Most Significant Bit of Integer Multiplication
	Concluding Remarks
	References

	Picture Languages Generated by Assembling Tiles
	Introduction
	Preliminaries
	Tiling Rule Systems
	Computational Power of TRuS Systems
	Conclusions and Open Problems
	References

	Undecidability of Operation Problems for T0L Languages and Subclasses
	Introduction
	Preliminaries and Definitions
	Boolean Operations
	Non-erasing Homomorphism, Substitution, and Concatenation
	Conclusions
	References

	Decision Problems for Convex Languages
	Introduction
	Decision Problems for Languages Specified by DFA’s
	Minimal Witnesses
	Factor-Convexity
	Prefix-Convexity
	Suffix-Convexity
	Subword-Convexity

	Languages Specified by Other Means
	Languages Specified by NFA’s
	Languages Specified by Context-Free Grammars

	Conclusions
	References

	On a Family of Morphic Images of Arnoux-Rauzy Words
	Introduction
	Basic Definitions and Results
	Proof of Theorem 1
	Concluding Remarks
	References

	Monadic Datalog Tree Transducers
	Introduction
	Preliminaries
	Monadic Datalog Tree Transducers
	Comparison to Attributed Tree Transducers
	Connected
	Proper
	Local
	Attributed Tree Transducers
	Open Problems

	References

	On Extended Regular Expressions
	Introduction
	Definitions
	The Results on EREG Languages
	Extended Multi-Pattern Languages (EMPL)
	References

	Multi-tilde Operators and Their Glushkov Automata
	Introduction
	Preliminaries
	The Family of Multi-tilde Operators
	Multi-tilde Definition
	Reduction Power of Multi-tildes

	Properties of Multi-tildes
	Definitions and Notation
	Nullability Properties

	Definition of Multi-tildes in Tilde Normal Form
	Glushkov Functions
	Conclusion
	References

	Non-uniform Cellular Automata
	Introduction and Motivations
	Non-uniform Cellular Automata \ensuremath{\nu\text{-}\mathcal{CA}
	CA vs. \ensuremath{\nu\text{-}\mathcal{CA}
	Surjectivity
	More on Dynamical Properties
	Equicontinuity
	Sensitivity to the Initial Conditions
	Expansivity and Permutivity

	Conclusions
	References

	A Cryptosystem Based on the Composition of Reversible Cellular Automata
	Introduction
	Preliminaries
	Theoretical Results
	Neighbourhood Size of Compositions
	Reversibility

	A Public-Key Cryptosystem
	The Key Generation Algorithm
	Security Concerns and Practical Considerations

	Conclusion and Future Work
	References

	Grammars Controlled by Special Petri Nets
	Introduction
	Definitions
	Grammars and Their Languages
	Results: Labeling Strategies
	Results: Final Markings
	References

	Nested Counters in Bit-Parallel String Matching
	Introduction
	Preliminaries
	(δ, α)-Matching
	Two-Level Solution

	Intrusion Detection and Episode Matching
	ImprovedABNDM
	References

	Bounded Delay and Concurrency for Earliest Query Answering
	Introduction
	Queries in Words
	Earliest Query Answering for Words
	Earliest Query Answering for Unranked Trees
	Recognizable Relations between Unranked Trees
	Deciding Bounded Delay and Concurrency
	References

	Learning by Erasing in Dynamic Epistemic Logic
	Introduction
	Dynamic Epistemic Logic – Semantic Perspective
	Dynamic Doxastic Logic
	LearningTheory
	Identification in the Limit
	Learning by Erasing

	Finite Identification in DEL
	Learning by Erasing in DDL
	Conclusions and Further Work
	References

	The Fault Tolerance of NP-Hard Problems
	Introduction
	Preliminaries
	Weak Deterministic Self-correction

	Partly Corrupt NP-Hard Sets
	Many-One Reductions
	Bounded Truth-Table Reductions
	Disjunctive Truth-Table Reductions
	Non-robustness against Sparse Sets of False Positives

	References

	Termination of Priority Rewriting
	Introduction
	Priority Rewriting
	Inductively Proving Termination of IP-Rewriting
	Abstraction, Narrowing, Constraints
	The IP-Termination Procedure
	Abstraction Constraints for Priority Rewriting
	Conclusion
	References

	State Complexity of Combined Operations for Prefix-Free Regular Languages
	Introduction
	Preliminaries
	State Complexity of Combined Operations
	Star of Union
	Star of Reversal
	Star of Catenation and Intersection

	Conclusions
	References

	Towards a Taxonomy for ECFG and RRPG Parsing
	Introduction
	Definitions
	Recursive Descent
	Sub-taxonomy for Recursive Descent

	LL-Like Parsers
	LR-Like Parsers
	Transformation of RRPG to CFG
	LR-Parsers with Readback
	Purdom and Brown’s Technique
	Embedding in Different LR-Like Frameworks

	Tabular Parsers
	Concluding Remarks
	References

	Counting Parameterized Border Arrays for a Binary Alphabet
	Introduction
	Parameterized Matching and Parameterized Border Array
	Reverse and Enumerating Problems on Strings
	Our Contribution

	Preliminaries
	Parameterized String Matching
	Parameterized Border Arrays
	Problems

	Algorithms
	Conclusions and Open Problems
	References

	Bounded Hairpin Completion
	Introduction
	Basic Definitions
	The Non-iterated Case
	The Iterated Case
	An Inverse Operation: The Bounded Hairpin Reduction
	FinalRemarks
	References

	Rigid Tree Automata
	Preliminaries
	RTA: Definition and First Properties
	Definition and Examples
	Pumping Lemma
	Related Classes of Tree Automata
	Determinism and Completeness
	Boolean Closure

	Decision Problems
	RewriteClosure
	Conclusion and Further Work
	References

	Converting Self-verifying Automata into Deterministic Automata
	Introduction
	Preliminaries
	Conversion of svfa’s into dfa’s
	Optimality
	Conclusions
	References

	Two Equivalent Regularizations for Tree Adjoining Grammars
	Introduction
	Preliminaries
	Lifted Trees
	Three-Dimensional Trees and Their Yields
	Equivalence
	Conclusion
	References

	Self-overlapping Occurrences and Knuth-Morris-Pratt Algorithm for Weighted Matching
	Introduction
	Analysis of Self-overlapping Occurrences of a PWM
	Definitions
	How to Compute c

	Application to Counting Occurrences in a Text
	Probability of Observing Two Overlapping Occurrences
	Mean, Covariance and Variance

	Application to Text Searching and the Knuth-Morris-Pratt Algorithm
	Previous Work Related to PWM Pattern Matching
	The Original Morris-Pratt and Knuth-Morris-Pratt Algorithms
	Expansion to Position Weight Matrices
	The {\tt kmpNext}_Σ Table
	Looking for Occurrences Using {\tt mpNext, kmpNext or kmpNext}_$Sigma$
	Experimental Results

	Conclusion
	References

	Membership Testing: Removing Extra Stacks from Multi-stack Pushdown Automata
	Introduction
	Preliminaries
	Reduction from {\sf MEM(MVPL_k)} to {\sf MEM(PD_k)}
	The {\sf LogCFL} Upper Bound for {\sf MEM(PD_k)}
	Outline of the {\sf P}-Time Algorithm of [11,17]
	The {\sf LogCFL} Algorithm (k = 2)
	The {\sf LogCFL} Algorithm for {\sf MEM(PD_k)}
	Bounds for {\sf MVPA} and {\sf OVPA}

	Discussion
	References

	Automata on Gauss Words
	Introduction
	Automata over Infinite Alphabets
	Register Automata

	Recognisability of Knot Properties
	The Language of Gauss Words
	Planar and Non-planar Gauss Words

	Conclusion
	References

	Analysing Complexity in Classes of Unary Automatic Structures
	Introduction
	Preliminaries
	Linear Orders
	Efficient Solution to the Isomorphism Problem
	State Complexity

	Equivalence Relations
	Efficient Solution to the Isomorphism Problem
	State Complexity

	Trees
	Characterizing Unary Automatic Trees
	Efficient Solution to the Isomorphism Problem
	State Complexity

	Graphs of Finite Degree
	References

	An Application of Generalized Complexity Spaces to Denotational Semantics via the Domain of Words
	Introduction and Preliminaries
	The Mathematical Results
	Complexity Spaces in Denotational Semantics
	The Classical Approach
	Our Approach

	References

	Segmentation Charts for Czech – Relations among Segments in Complex Sentences
	Motivation
	Segment Boundaries, Segments and Segmentation Chart
	Experiments with Automatic Identification of Segmentation Charts
	How to Obtain Segments from Syntactic Tree?
	How to Obtain Segments from Plain Text?

	Evaluation and Analysis of the Results
	Evaluation Data and Possible Evaluation Measures
	Evaluation of Rules for Syntactic Trees
	Evaluation of Rules for Plain Text

	Conclusions
	References

	A Note on the Generative Power of Some Simple Variants of Context-Free Grammars Regulated by Context Conditions
	Introduction
	Preliminaries and Definitions
	MainResults
	Overview of Results and Open Problems
	Conclusion
	References

	Efficiency of the Symmetry Bias in Grammar Acquisition
	Introduction
	Iterated Learning Model with the Symmetry Bias
	Utterance Rule of Kirby’s Model
	Rule Subsumption
	Abductive Reasoning
	Extensional Model by the Symmetry Bias

	Experiments in Symmetry Bias Model
	Experimentation Environment
	Pilot Experiment: Kirby’s Model
	Experiment (I): Listener Ignores Incomprehensible Utterances
	Experiment (II): Listener Arbitrarily Interprets Incomprehensible Utterances
	Experiment (III): Listener Applies the Symmetry Bias to Interpret Incomprehensible Utterances

	Comparison of Experimental Results
	Conclusion
	References

	A Series of Run-Rich Strings
	Introduction
	Preliminaries
	A New Series of Run-Rich Strings
	Analysis of Asymptotic Behavior
	Length
	Number of Runs

	Conclusion
	References

	On Accepting Networks of Evolutionary Processors with at Most Two Types of Nodes
	Introduction
	Some Notations and Definitions
	Computational Power of Random Context Networks
	Networks with Substitution Nodes
	Networks with Deletion Nodes
	Networks with Insertion Nodes
	Networks with Non-insertion Nodes
	Networks with Non-substitution Nodes
	Networks with Non-deletion Nodes

	Computational Power of Regular Networks
	Networks with Non-insertion Nodes
	Networks of Non-deleting Nodes
	Networks without Substitution Processors

	References

	The Halting Problem and Undecidability of Document Generation under Access Control for Tree Updates
	Motivation and Related Work
	Definitions
	Undecidability of PolicyGenerates
	Modelling Turing Configurations as Trees
	The Policy \mathcal{P}_M,S
	Simulation Phases
	Correctness of Simulation

	Conclusions and Future Work
	References

	Prediction of Creole Emergence in Spatial Language Dynamics
	Introduction
	Population Dynamics for the Emergence of Creole
	Language Dynamics Equation for the Emergence of Creole
	Introducing Spatial Structure
	Learning Algorithm
	Revised Transition Probability

	Creole in Population Dynamics
	Experiments and Results
	Behaviors of Spatial Dynamics
	Comparing the Two Models with and without a Spatial Structure
	Quantitative Analysis in Forming Creole Communities

	Conclusion
	References

	On the Average Size of Glushkov’s Automata
	Introduction
	Preliminaries
	Automata and Regular Expressions
	Glushkov’s Automaton
	Generating Functions
	Symbolic Methods and Transfer Theorem
	Analytic Tools for This Paper

	Generating Functions for Regular Expressions
	General Regular Expressions
	Regular Expressions of Languages Containing ε

	MainResult
	Lower Bound
	Outline of the Proof of the Upper Bound
	The Cost Generating Function $F(z)$
	The Cost Generating Function $F_{\varepsilon}(z)$
	The Cost Generating Function of the Product {\tt first\timeslast}
	Concluding the Proof of Theorem 2

	Remarks
	References

	Tiling the Plane with a Fixed Number of Polyominoes
	Definitions
	Tiling with a Fixed Number of Polyominoes
	Encoding a Set of Wang Tiles
	Encoding Tilings by Wang Tiles
	Every Tiling Encodes a Tiling

	Tiling by Translation
	Going Further
	References

	New Morphic Characterizations of Languages in Chomsky Hierarchy Using Insertion and Locality
	Introduction
	Preliminaries
	Basic Definitions
	Normal Forms of Grammars

	Characterizations of Regular Languages
	Characterizations of Context-Free Languages
	Characterizations of RE Languages
	Conclusion
	References

	On Parallel Communicating Grammar Systems and Correctness Preserving Restarting Automata
	Introduction
	BasicNotions
	Analysis by Reduction for PCGSs
	References

	Finitely Generated Synchronizing Automata
	Introduction
	Preliminaries
	TheClassFG
	Černý's Conjecture for the Class FG
	Co-NP-Hardness
	OpenProblems
	References

	Genetic Algorithm for Synchronization
	Introduction
	Synchronizing Automata
	Genetic Algorithm
	Experiments and Results
	Conclusions and Future Work
	References

	Constructing Infinite Words of Intermediate Arithmetical Complexity
	Introduction
	Definitions
	The Construction
	References

	From Gene Trees to Species Trees through a Supertree Approach
	Introduction
	Preliminaries
	Auto-coherency of a MUL Tree
	Computing $\mathcal{D}(M)$ in Linear Time
	Isomorphic Subtrees
	Outline of the Algorithm

	Computing a Largest Duplication-Free Subtree of a MUL Tree
	The Compatibility Issue of Single-labeled Subtrees Obtained from MUL Trees
	Conclusions
	References

	A Kleene Theorem for Forest Languages
	Introduction
	Forests
	Recognizable Forest Languages
	Closure Properties of Recognizable Forest Languages
	Rational Forest Languages
	Conclusions and Future Work
	References

	Determinization and Expressiveness of Integer Reset Timed Automata with Silent Transitions
	Introduction
	Preliminaries
	$\delta\tick$-Regular Languages
	Per-GRTA and ϵ-Removal
	Construction of 1-Clock Deterministic Per-GRTA

	From Per-GRTA to ϵ-IRTA
	Expressiveness
	References

	One-Clock Deterministic Timed Automata Are Efficiently Identifiable in the Limit
	Introduction
	Deterministic One-Clock Timed Automata
	Efficient Identification in the Limit
	Identifying 1-DTAs Efficiently in the Limit
	Properties of the Algorithm
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

