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Abstract. Estimate of packet-loss rates between arbitrary Internet
hosts is critical for many large-scale distributed applications, including
overlay routing, P2P media streaming, VoIP, and edge-server location
in CDNs. iPlane has been recently proposed to estimate delay, packet-
loss rates, and bandwidth between arbitrary hosts [1]. To our knowledge,
iPlane is the only published technique for estimating loss rates between
arbitrary Internet hosts. In this paper, we present Queen, a new method-
ology for estimating packet-loss rates between arbitrary hosts. Queen, ex-
tending the King [2] methodology for estimating delay, takes advantage
of the open recursive DNS name servers. Queen requires neither addi-
tional infrastructure deployment nor control of the DNS recursive servers.
After describing the methodology, we present an extensive measurement
validation of Queen’s accuracy. Our validation shows that Queen’s accu-
racy is reasonably high and, in particular, significantly better than that
of iPlane for packet-loss rate estimation.
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1 Introduction

End-to-end packet loss-rate and delay are fundamental network metrics, both of
which impact the performance of network applications. Estimate of delay and
packet-loss rate between arbitrary Internet hosts is critical for many large-scale
distributed applications, including overlay routing, P2P media streaming, VoIP,
and edge-server location in CDNs. Applications can measure latency and loss rate
by passive monitor or active probe. For example, Akamai’s EdgePlatform [3], de-
ployed in 70 countries, continually monitors Internet traffic, trouble spots, and
overall network conditions. Ensuring high-quality service to its customers, this
monitoring is an indispensable component of Akamai. RON [4] measures latency
and loss rate continuously, and switches overlay paths accordingly. However, ac-
tive probing often requires control of at least one end of the path, which imposes
a significant coverage limitation. In academia, researchers are generally limited
to paths imposed by the PlanetLab platform. Due to deployment and mainte-
nance costs, large commercial entities are limited to modest-scale deployments
of measurement platforms; for example, Keynote’s platform is only available in
240 locations [8]. To overcome these limitations, several schemes have been de-
veloped to provide delay estimates without access to either end of an Internet
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path. King [2] leverages DNS infrastructure to measure latency between arbi-
trary end hosts. Network coordinate systems construct virtual coordinate spaces
from limited latency measurements, and then make latency predictions based on
the virtual coordinates [7,9,10]. Azureus builds one of such latency estimation
scheme into its production P2P client [10], in order to make better peer selection.

Although there is significant research on delay estimation between arbitrary
end hosts, there has been relatively little work on packet-loss rate. To our knowl-
edge, the only existing published methodology for estimating packet-loss rates
between arbitrary end-hosts is iPlane [1], which also measures other metrics. It
predicts the loss rate between arbitrary hosts by composing the performance of
measured segments of Internet paths. In this paper, we present Queen, a new
methodology for estimating packet-loss rates between arbitrary hosts. Queen
requires neither additional infrastructure deployment nor control of end hosts.

Queen builds upon the well-known latency measure tool King [2]. Queen ap-
proximates packet loss rates between arbitrary hosts by finding two DNS servers
near them and determining the packet loss rates between these two DNS servers.
However, although Queen gets its initial inspiration from King, it is nevertheless
very different – its design has required a deep understanding of how currently
deployed DNS servers operate. In particular, we have discovered that all DNS
servers are configured with highly regular retransmission mechanisms, allowing
packet loss to be inferred from observed excessive latencies. Because the gap
in DNS retransmissions is large and regular, Queen is accurate even though
latencies can vary wildly between end systems over short period of time.

The contribution of this paper is as follows: (i): We develop a new methodol-
ogy that estimates packet loss rate between arbitrary Internet end hosts without
control on either end. We first characterize the retransmission behavior of de-
ployed DNS servers; we then propose a loss-rate formula based on this behavior.
(ii): Based on the methodology, we develop a tool, Queen, which is made public
at http://cis.poly.edu/∼angelawang/projects/lossrate.htm. (iii): We conduct exten-
sive measurements to validate the accuracy of Queen. In particular, we show
that Queen is more accurate than iPlane for estimating packet-loss rates. (iv):
As a case study, we perform an Internet-wide packet-loss rate measurement. The
results are informative and can also provide realistic Internet characteristics to
other platforms, such as Emulab [11].

The rest of the paper is organized as follows. In Section 2, we briefly review
how King works, then we present the design of Queen in Section 3 and evaluate
its accuracy in Section 4. In Section 5, we present an Internet-wide experiment
result. Afterwards, we present related work and conclusion in Section 6 and 7.

2 Brief Review of King

King, developed by Gummadi et al. [2], is a methodology to estimate latency
between arbitrary Internet hosts. They propose a simple version that requires no
external setup and a somewhat more complex one with much improved accuracy
and additional setup. We only review the latter version for this work.
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To measure the latency between arbitrary end hosts A and B, King (i) finds
DNS name servers that are topologically close to A and B (say R and T, respec-
tively); (ii) estimates the latency between the two DNS name servers R and T
using DNS queries; and (iii) uses the measured latency between R and T as an
estimate of the latency between A and B (see Figure 1).
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Fig. 1. King measures the latency between R and T by tricking R to directly query T

The key step is to estimate the latency between R and T. This requires at
least one of the servers to be an open recursive DNS server, that is, a DNS server
allowing recursive DNS queries from arbitrary Internet hosts. Henceforth, assume
that R is such an open recursive server. The important issue is how to “trick” R
to send DNS queries directly to T in order to measure the latency between them.
The key idea is: (i) first trick R into believing that T is the authoritative name
server for a special domain; and (ii) then query R for a host in this domain,
which will trigger R to forward the DNS query directly to T. We refer to steps
(i) and (ii) as the caching and measurement stages, respectively.

For the caching stage, we need operate an authoritative DNS server (call it
S1) for a special domain (say queen.net). A measurement client M (arbitrary)
sends to R a recursive NS type query containing encoded T’s IP address for
a sub-domain (say t.queen.net), which will ultimately be answered by S1, the
authoritative DNS server for domain queen.net. S1 is programmed to reply that
T is the authoritative DNS server for sub-domain t.queen.net, and this reply will
be cached at R. This completes the caching stage. From this point on, any subse-
quent recursive query through R for a host belonging to sub-domain t.queen.net
will be forwarded to T directly. Since T is actually not the authoritative name
server for this sub-domain, it will return an error message (or a pointer to the
root DNS servers). R will in turn report query failure to M. Thus, R is tricked
into querying T directly, and the latency between them can be estimated.

3 Methodology

DNS queries are transmitted using UDP by default. An interesting question is:
What happens if there is packets lost (either query or response) between the two
representative name servers R and T? This leads us to a new methodology for
estimating packet-loss rates between arbitrary Internet end hosts.
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3.1 Retransmission Pattern

When a DNS server sends a query to another DNS server, either the query or the
response could get lost along the path. All DNS servers have built-in mechanism
to deal with such losses. In either case, if the querying name server does not
receive response within a certain period of time, it will resend the query until
a retry limit is reached. Intuitively, intervals between retransmissions in most
DNS servers should be substantially larger than RTT of most paths. We now
confirm this intuition by studying the retransmission patterns of DNS servers.

Architecture. To dig a DNS server’s retransmission pattern, we force the server
to resend queries until its retry limit exhausted. Fig. 2(a) shows our architecture.
We operate two name servers, S1 and S2, which are configured as: 1) S1 is
the authoritative name server for domain queen.net, and delegates sub-domain
poly.queen.net to S2; 2) S2 runs as a simple DNS black hole, which only records
the received time of all incoming queries but does not reply to any query. When
client M sends to R a recursive DNS query for a host (say host.poly.queen.net)
in the sub-domain, R will be redirected to S2 after first contacting S1. Since S2
never replies, R will resend the query until exhausting its retry limit. We encode
R’s IP address inside the query (together with a unique identifier), so that S2
can easily extract the address, as well as match queries. Finally, we collect the
timestamps of all queries from each R, and calculate the retransmission pattern.

2

M: Measurementc lient

R: open recursive DNS server

S1: our DNS server
domain: queen.netS2: our DNS server

domain: poly.queen.net

1   A? xx.poly.queen.net

2   NS? xx.poly.queen.net

3   NS: xx.poly.queen.net,Addr: S2

4   Same as  1
1

4

3

(a) Method to measure a name server’s
retransmission pattern

(b) Most Common Retransmis-
sion Patterns of DNSs

Fig. 2. Retransmission pattern measurement

Experiment. We setup an experiment to discover the retransmission patterns
of ∼30,000 DNS servers picked from a large list of unique open recursive DNS
servers with wide coverage, obtained in our previous study [6]. Those servers
cover 6 continents and 147 countries. For each name server R, we send a unique
recursive query from our measurement client M. The retry at M is set to 0 to
ensure that exactly one query is sent to each R and all the duplicate queries
recorded at S2 are generated solely by R. We found that there are small number
of common retransmission patterns among DNS servers, showed in Fig. 2(b).
Those patterns cover 93.5% measured servers. As an example, pattern 2-2-8-16
means the server will retry 4 times, 1st after 2 seconds timeout, 2nd after another
2 seconds timeout, 3rd after another 8 seconds, and 4th after another 16 seconds.
Furthermore, about 94% servers will wait at least 2 seconds before retry.
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3.2 Loss Rate Estimation

We are now ready to describe how to infer packet losses from large latencies,
and how to estimate the packet-loss rate.

Packet Loss Definition. We will use an example to explain how to infer packet
losses from large latencies. In Fig. 3, we measure the latency between two name
servers R (in S. Africa) and T (in Seattle) using DNS queries with exponential
inter-arrival time, where the average is 200ms and their associated counting
process is Poisson, over a 15-minute duration. Here, R is an open recursive name
server with retransmission pattern 2-2-8-16s. We can see most latencies fall into
a range (490-500ms) – the regular RTTs between R and T. However, there are
some latencies far larger than the regular ones. We infer that these large latencies
correspond to packet losses. Specifically, we compute a latency threshold based
on R’s retransmission pattern. Because the regular RTT is about 500ms and R
sends out its first retransmission after 2 seconds if there is no response, we set
the threshold to be 500ms+2s. Thus, any latency around 2500ms implies one
packet loss between R and T, either on forward path or reverse path. Similarly,
any latency around 500ms+2s+2s implies two packet losses, and so on.
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Fig. 3. Packet Loss Example

Loss Rate Computation. Now we know whether there is a packet loss from the
measured latency. Next is how to compute the packet loss rate exactly. Suppose
we send out N total queries, where M queries receive response and obtain the
latencies, while the other (N − M) queries have failed (without responses). To
compute the total number of lost packets, we consider those M queries only (the
reason to be explained later). With the loss definition in previous section, we
can infer how many queries (say L out of M) have excessive latencies, as well
as the total number of retransmission packets L′ (clearly, L′ ≥ L). Then, the
packet loss rate is simply calculated as L′/(M + L′).

So far, we have presented our methodology to estimate the packet-loss rate
from excessive DNS query latencies. However, what’s the effect if packets get
lost between M and R, or R and S1 in Fig 1? The facts are: 1) if the packet is
lost between M and R, no matter forward or reverse, M will not receive response
at all. This is exactly the reason to exclude those failed queries when computing
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the loss rate; 2) Packet losses between R and S1 will be automatically taken care
of by R’s retransmission mechanism. In addition, it happens during the caching
stage, so the excessive latency here will not affect the measurement stage at all.
Thus, the losses inferred in our method will only be the losses between R and T.

Another potential problem is, when T returns an error to R, depending on its
configuration, R may have two other outlier actions: 1) It may retransmit the
same query several times. In this case, even without packet loss, the estimated
latency will be a factor of K larger, where K is the number of retransmissions.
It will introduce noise to the real loss. 2) Alternatively, it may stop forwarding
further queries for the same sub-domain to T. If so, R will not contact T directly
any more after an error, which causes the algorithm to fail. Fortunately, we can
easily point our own DNS server as T and send trial DNS queries to examine
all open recursive DNS servers (R’s). By parsing the query logs on our own
DNS server, we can identify which R’s behave as outliers and simply filter them
out in future measurements. Based on our observation, there are only few such
outlier-behaving DNS servers; majority can handle exception normally.

4 Validation

In this section, we present quantitative validation of the accuracy of Queen.

4.1 Direct Path Validation

First, we fix the target T to be S1. We trick open recursive DNS servers (R’s) to
query S1 and estimate the packet loss rate between them, as shown in Fig. 4(a).
We send out DNS queries with exponential inter-arrival time and 200ms in average
over a 15-minute duration, so that their associated counting process is Poisson. In
parallel, we also run direct probing by sending ICMP packets from S1 to R, which
serves as ground truth loss rate. Note that, in this validation, Queen is estimating
the packet loss rate on exactly the same path as the direct probing.

ICMP Direct Probe

DNS Probe

R (Open RDNS)S 1(T)

(a) Direct Path

PL Node1 PL Node2

Local DNS1 (Recursive) Local DNS2

UDP direct probe

DNS probe

<5ms <5ms

(b) PlanetLab

Fig. 4. Validation Path Setup

We randomly choose 370 open recursive name servers from 5 continents. In
the end, we get results for ∼330 paths, where 210 experience loss either in direct
probing or Queen. Fig. 5(a) compares two latencies. Optimally, they will align
at 45◦ straight line. As we can see they indeed match very well. Fig. 5(b), 5(c)
compare the loss rate estimated by two methods. They also match very well. In
particular, the absolute loss rate difference between direct probing and Queen is



Queen: Estimating Packet Loss Rate between Arbitrary Internet Hosts 63

0 100 200 300 400 500
0

100

200

300

400

500

Direct RTT (ms)

Q
u

ee
n

 R
T

T
 (

m
s)

Experiment
Optimal

(a) Latency Comparison

0 2 4 6 8 10
0

20

40

60

80

100

Loss Rate (%)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 (

%
)

Direct
Queen

(b) LossRate Comparison

−4 −2 0 2 4
0

20

40

60

80

100

Loss Rate (direct − Queen)(%)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 (

%
)

(c) LossRate Difference

Fig. 5. Direct Path Validation Results
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Fig. 6. PlanetLab Validation Results

within 1% for more than 80% of paths. Finally, it appears that iPlane does not
return loss rate for any of the paths in this experiment. Apparently, these paths
are not covered by its database.

4.2 PlanetLab Validation

In this set, we use PlanetLab (PL) to conduct validation, as in Fig. 4(b). Similar
to 4.1, we again run two kinds of probes in parallel with the same pattern. The
difference is: in direct probing, we run a UDP probing client at one PL node and
a UDP echoing server at another PL node, to get the ground truth loss rate.
We locate two nearby corresponding DNS servers (e.g. no more than 5ms away),
one for each PL node, and estimate the loss rate between them. We compare
loss rate estimated by both methods to see whether they match each other. In
this set of validation, the path whose loss rate is estimated by Queen is slightly
different from the path estimated by direct probing – the former path is between
the two name servers while the later one is between the two PL nodes.

We choose 5 PL nodes with recursive local DNS servers as sources. Each source
picks ∼70 target PL nodes from different continents. We get results for ∼260
paths, where 200 show loss either in UDP probing or Queen. Fig. 6 depicts the
results. Again, two latencies and loss rates match very well. In particular, the
absolute loss rate difference between two methods is within 1% for more than
85% paths. At the meantime, iPlane returns zero loss rates for all the paths in
this experiment, which is quite far from both Queen and the ground truth.
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Previous study [15] suggested that small 40-byte probes tend to experience
less losses than large 1000-byte probes. Since query packets generated by Queen
can be at most 280 bytes (limited by the maximum length of DNS hostnames,
which is 255), it raises a concern that Queen might under-estimate the true loss
rate. To study this issue, we re-run the same validation in parallel with different
probing size of 80B, 160B and 240B. We observe that packet size in fact has very
little effect on loss rate. In addition, we compare direct UDP probes with size of
80B, 240B and 1200B (very large, close to MTU) and the packet size also has
very minimum effect(details skipped due to space constraint).

5 Experiment

After validating that our method has reasonably high accuracy, we conduct a
loss rate measurement for a large geographic area with world-wide coverage.

5.1 Measurement Setup

We pick one server for each country from our open recursive DNS server list and
measure the loss rate between each pair of servers. The final data set covers 6
continents and 147 countries, with 10,731 paths in total. The complete measure-
ment involves a large number of paths. On each path, Queen sends query probes
following exponential inter-arrival time with average 500ms for 15 minutes, so
that their associated counting process is Poisson. To speed up the measurement
process, we have developed a distributed execution platform, which splits the
complete task into many smaller jobs, spreads these jobs onto PL nodes and
executes them in parallel. This platform helps to complete the measurement
quickly (e.g., with 300 PL nodes, 10,000 paths, each node only needs to run 33
jobs, and the entire task takes slightly more than 8 hours to complete).

5.2 Summary of Results

We group the sampled servers by continent and analyze loss rates within/cross
continents. Fig. 7(a) shows the loss rate statistics within each continent, and
Fig. 7(b) cross continents. Some results are intuitive – North America and Europe
have low loss rates, no matter intra-continent or cross-continent. This is clearly
due to good networking infrastructure with the two regions and connectivity
between them. In addition, North America and Europe always have lower loss
rates within the continent than cross to the other continent. Not as intuitive
though, we also observe that, for other continents, the loss rates are in fact
lower cross to North America or Europe than within the continent itself. This,
we believe, reflects the fact that North America and Europe are currently the
hubs of the Internet.

6 Related Work

The study of Internet packet loss rate can be dated back to more than a decade
ago. It is conducted to understand Internet itself, as well as the impact on
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Fig. 7. Continent Loss Rate Statistics. Numbers 0-5 represent 6 continents, respec-
tively. 0-Africa, 1-Asia, 2-Europe, 3-N.America, 4-Oceania, 5-S.America.

the performance of applications [13,14]. Constant efforts are continuously being
pushed to improve the accuracy of packet loss rate estimation [12]. Tools [15] are
developed to use loss rate to troubleshoot path failures. All these work rely on
sending out active UDP/ICMP probes. Hence, they require controlling of either
one or both ends of the path being studied.

iPlane [1] is the only other tool close to be able to estimate packet loss rate
without requiring access to either end. It constructs an annotated map of the In-
ternet by: (i) sending probes from a large number of various vantage points, such
as PlanetLab nodes and traceroute servers; (ii) clustering interfaces into PoPs
based on response source address or returned TTLs to all the vantage points.
By collecting all probes and processing the measurement data, it characterizes
the loss rate of all inter-cluster links in the measured topology. Then, it may
indirectly predict packet loss rate between a pair of end hosts by compounding
the packet loss rate of each segment link along the path. However, iPlanes’s
coverage is limited as it can not provide packet loss rate on a path if neither
end of the path exists in the database. Thus, it doesn’t really provide loss rate
between arbitrary two end-hosts, as it still requires contributions from one end.
In addition, it does not perform measurement on demand.

7 Conclusion

In this paper, we presented Queen, a tool that estimates loss rate between ar-
bitrary Internet end hosts without control of either side. We validate Queen
with two different data sets. They all show that our method has reasonably
high accuracy. We used Queen for an Internet-wide experiment, which provides
informative results and realistic Internet characteristics.
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