Simbatch: An API for Simulating and Predicting the
Performance of Parallel Resources Managed by Batch
Systems

Y. Caniou’>*>** and J.-S. Gay?2-***»***

! L1p-ENS de Lyon, Université Claude Bernard de Lyon
yves.caniou@ens-lyon. fr
2 L1p-ENS de Lyon
Jean-Sebastien.Gay@ens-lyon. fr

Abstract. In this paper, we describe Simbatch, an API which offers core func-
tionalities to realistically simulate parallel resources and batch reservation sys-
tems. The objective is twofold: proposing at the same time a tool to efficiently
predict parallel resources usage based on their simulations, and to realistically
study Grid scheduling heuristics that may be embedded in a Grid middleware or
in a tool that deploys it. Indeed, such predictions can be used in a Grid middleware
both for scheduling purposes, and to dynamically tune moldable applications in
function of the load of the chosen parallel resource in place of the Grid user. Sim-
batch simulation experiments show an average error rate under 2% compared to
real life experiments conducted with the OAR batch manager.

Keywords: Performance prediction, Batch systems simulation, Grid simulation,
Scheduling.

1 Introduction

Nowadays Grids are built on a clusters hierarchy model, as used for example by the
two projects EGEE[] and GrID’ 5000 [9]. The production platform in the EGEE project
(Enabling Grids for E-science in Europe) aggregates more than 100 sites spread over
31 countries. GRID’5000 is the French Grid for the research, which aims to own 5000
nodes spread over France (9 sites are actually participating).

Parallel computing resources are generally managed via a batch reservation system
also called batch scheduler. Users wishing to submit parallel tasks to the resource have
to write scripts which notably describes the number of required nodes and the walltime
of the reservation. They are generally answered the starting time of their jobs.

The accessibility to the aggregated power of a federation of computing resources re-
quires mechanisms to monitor, handle/submit jobs, etc. This can be done with the help
of Grid middleware such as DIET [[10] or NetSolve [[L1]. They aim to offer to Grid users

* This work is supported by the LEGO project ANR-05-CIGC-11.
** This work is supported by the REDIMPS project JST-CNRS.
*** This work is supported by the cluster Rhone Alpes
'http://public.eu-egee.org/

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 223 2009.
(© Springer-Verlag Berlin Heidelberg 2009

http://public.eu-egee.org/

224 Y. Caniou and J.-S. Gay

the capacity to efficiently solve problems, while hiding the complexity of the platform.
In order to efficiently exploit the resource, Grid middleware should map the computing
tasks according to local scheduler policy and availability. There is consequently a two-
level scheduling: one at the Grid middleware level and the other one at the batch level.
Neither the conception and validation of such algorithms nor their implementation are
obvious. First, the execution of large scale experiments monopolizes the resources and
cannot be reproduced. So it seems to be necessary to define common bases in order to
simulate them and draw their profiles before trying to realize them in real life. Second,
to efficiently schedule real life experiments, a Grid middleware must be able to get per-
formance estimations on parallel resources. These have also to be used to dynamically
tune parallel jobs in accordance with the parallel resource availability [1216].

Contributions of this work mainly focus on the conception of an API which extends
the functionalities of the Grid simulator Simgrid, allowing to easily simulate paral-
lel resources and batch system in Grid computing. Realistic models of PBS [l1]] (or
Torque [2]) and OAR [8] are built-in. The quality of the results obtained during the
validation of this work allows us to use it as a simulation-based performance prediction
tool embedded in the Grid middleware DIET.

2 Background

This section briefly describes our previous work, which has led to the design and contri-
butions presented in this paper. Grid-TLSE [13]] aims to provide an International Expert
System for Sparse Linear Algebra relying on an international Grid computing environ-
ment which manages French and Japanese computing resources.

The architecture of Grid-TLSE [18] has been improved to the one [7] described
in Figure [1l The architecture relies on the integration of a “protocol” interoperability
between the French and Japanese middleware, respectively called DIET and AEGIS.
DIET, developed by the GRAAL INRIA team project at LIP / ENS Lyon, is built upon
the client/agent/server paradigm, and provides the GridRPC standard API [21]. This
Grid middleware is able to find an appropriate server (running a DIET Server Dae-
mon, SED), according to the information given in the client’s request (e.g., problem
to be solved, size of the data involved), the performance of the target platform (e.g.,
server load, available memory, communication performance) and the local availabil-
ity of data stored during previous computations. Scheduling, which can be application
specific, is distributed over a hierarchy of agents (Master and Local Agents). AEGIS
(Atomic Energy Grid InfraStructure) is the next version of the IT Based Laboratory
(ITBL) [14] middleware developed by the JAEA (Japan Atomic Energy Agency). In
AEGIS, supercomputers are isolated from the Internet by a firewall for security reasons.
Usually, a user of the AEGIS system connects to the computers through a Web portal,
which has the accessibility for all the computers within AEGIS. Therefore, the portal
equips file management, job submission, or the other basic functions for computation.
On the other hand, AEGIS also proposes a control API to meet the expectations of
advanced users.

The new architecture of Grid-TLSE, pictured in Figure [Il involves the following
mechanisms which are very similar to the standard DIET operations: (a) After the

Simbatch: An API for Simulating and Predicting 225

HTTPS website

DIET

TLSE

Hierarchy

Fig. 1. Architecture of Grid-TLSE

deployment of all DIET components on Grid’5000 (including a specifically designed
server daemon for the AEGIS system (SeDs p 1g)> and composed of both binaries and
configuration file(s)), each SED registers the services that it can solve to its agent in
the hierarchy; (b) When a user performs a request through the secure Grid-TLSE Web
portal, he must provide a certification file if he wants that his request can be executed
on Japanese resources; (c) After being processed by the Grid-TLSE Web portal, the
DIET client sends the corresponding request to the DIET hierarchy. The request is for-
warded down (eventually pruned if the service is not available downward); (e) After
having been sent back the identity of the host to contact, which can be managed either
by the AEGIS middleware or by the DIET middleware, the common AEGIS-DIET client
performs the call and the certificate may then be used. Once the problem solved, results
are sent back to the client and so, made available to the user through the Grid-TLSE
Web portal.

DIET is also able to obtain immediate information on parallel resources in order to
perform cycle-stealing and online tunable parallel moldable job (with the possibility to
set the number of processors to use at launch time) with as case of study, the sparse matrix
solver PASTIX library [6]. Cycle-stealing policy was clearly dependent on the context
of the work (analysis of a whole set of tasks without strict constraint on the experiment
finishing date), and the work only used the immediate availability of the platform to tune
the parallel jobs.

To improve these works, the DIET Grid middleware need estimations on when a job
can be executed by a batch scheduler, which is dependent on the number of resources
being requested. To be efficient, this number has to be chosen taking into account the
jobs that may soon release reserved nodes which can benefit to the submitted parallel
job (which would be launched later but with a smaller expected completion time). Fur-
thermore, if a slot can be used depending on the batch scheduling policy (Conservative
Backfilling for example), the Grid middleware may benefit of such information for its
decisions.

Hence, Simbatch has been designed to be used as a simulation-based performance
prediction tool to be used within DIET. Provided with information on the parallel system
state, it takes into account the scheduler policy to instantly respond the different idle
slots, with the number of processors that should be available as well as the duration of
the idle slots.

226 Y. Caniou and J.-S. Gay
3 Grid Simulators

There are numerous Grid simulators. Amongst them we can cite Bricks [24] for the sim-
ulation of client-server architectures; OptorSim [5]], created for the study of scheduling
algorithms dedicated to the migration and replication of data; GridSim [23] and Sim-
grid [[19], which are by definition toolkits that provide core functionalities for the sim-
ulation of distributed applications in heterogeneous distributed environments.

Nonetheless, except for GridSim and Simgrid, systems are not generic [16/22]: they
do not provide any API of reusable functions; moreover in an attempt to keep their
study simple the employed scheduling policy is always First Come First Served; at last,
they usually only implement sequential tasks, e.g., they do not model parallel tasks.

If the GridSim toolkit covers several mandatory functionalities, it is hard to use the
same code to at the same time address scheduling heuristic studies and performance
predictions that can be used online to dynamically tune parallel applications according
with the resource load. Furthermore, as it is written in JAVA, the use of GridSim, if
feasible, is contradictory within the context of the lightweight deployment of the DIET
Grid middleware.

Thus, we have chosen to integrate Simbatch [3] in the Simgrid toolkit to embed
in DIET an efficient performance prediction tool, in order to improve its quality of
service. In addition, its design also eases the conception and analysis of Grid scheduling
heuristics.

4 The Simbatch API

Simbatch is a C API consisting of 2000 lines of code. It uses data types and function-
alities provided by the Simgrid library to model clusters and batch systems. Simbatch
provides a library containing already three scheduling algorithms [20]: Round Robin
(RR), First Come First Served (FCFS) and Conservative Backfilling (CBF). The API
is designed to easily let the user integrate its own algorithms. In order to visualize the
algorithm behavior, a compliant output with the Pajé [4] software is available allowing
the draw of the Gantt chart of the execution.

4.1 Modeling

Clusters consist of a frontal computer relied to interconnected computing resources
following a specific topology. Resources of a cluster cannot be usually accessed directly
from outside the cluster: communications must be done through the frontal. The batch
manager system is run on the frontal node. Every jobs running on the nodes must have
been submitted to the batch system. It receives requests from users, schedules them on
the parallel resources and executes the corresponding task when needed. In this context,
scheduling means that the batch scheduler must determine the starting time for each
computing task and must allocate computing nodes for each of them. The computing
tasks are generally parallel and could have both input and output data.

In Simbatch, a parallel task submitted by a client is modeled by the addition of
different information to a Simgrid task data type such as the number of nodes, the

Simbatch: An API for Simulating and Predicting 227

. Tasks,
IMSG_Process entryPoint submission

e D e
ey

j
cluster 1 Gantt chart
Modeling ! computation

Scheduler L~

FCFS

MSG_process batch runs on host frontal

MSG_Process submissionPlateform

— i ®

Network

i I I ; topology
,,,,,,,,,,,,,,,,,, A

MSG_process node

Fig. 2. Simbatch architecture

walltime, the run time. Other models are directly inherited from Simgrid. As exposed
in Figure[2] the task treatment is made in the following manner:

1. The entryPoint process accept parallel tasks submission from the different
clients and put them in the right priority queue.

2. Thanks to the modeling unit, the scheduler assigns the starting time to the tasks and
reserves the computing resources needed for their execution. A global view of the
cluster is obtained by calculating the Gantt chart.

3. The submission module manages the sending of each task at the starting date on
the reserved resources. It controls the good respect of the reservation too. A task is
killed if the walltime is exceeded.

4. Because Simbatch is build on top of Simgrid, it lets this one simulate communi-
cations and executions. When a task finishes its life cycle, an acknowledgement is
sent to the batch process in order to update its global view of the cluster.

4.2 Using Simbatch

An experiment requires at least four files: a platform file, a deployment file, a batch
configuration file and a file describing the tasks which will be submitted to each parallel
resource, the external load.

Simgrid uses the platform file to describe resources which compose the simulated
platform. It contains the description of all resources such as nodes, network links, the
connectivity of the platform, etc.

Simbatch requires a deployment file in which the functions attached to the resources
are defined. Thus, to define the use of a batch scheduler on frontal nodes, one must
affect the SB_batch process provided by the Simbatch API to each frontal name.

228 Y. Caniou and J.-S. Gay

Likewise, one must declare for each computing resource of each cluster the execution
of the SB_node process provided by the Simbatch API.

The batch configuration file contains all information relative to each frontal node of
the platform, like the number of waiting queues and the scheduling algorithm.

The external load is generated by the tasks submissions of the simulated Grid plat-
form users. The file, whose name is recorded in the configuration file, describes the
tasks specifications such as dates of submission, numbers of processors, walltimes, etc.

It is also possible to simulate an internal load for each batch scheduler. It aims at
reproducing the submissions of tasks from clients who are directly connected to the
parallel resource, i.e., who are not actively participating to the simulated Grid platform.
There is at most the same number of internal load files than the number of frontal nodes
in the platform.

We give PR34] some of the files that we used for the experiments. The main code
shows a client submitting a task to a batch scheduler described as follows: use of an
external load, 3 priority queues, 5 nodes directly connected with a star topology and the
CBF algorithm. In addition, we have also modeled the Grid’5000 node of Lyon A.

5 Experimental Validation

Tasks generation. In order to validate the results obtained with Simbatch, we have built
a workload generator using the GSL library [13]). It uses a Poisson’s law with parameter
1 = 300 to generate inter-arrival time. Tasks specifications are determined by flat laws.
Thus, CPU numbers are drawn from U (1; 7), execution durations from U (600; 1800)
and walltimes are obtained by balancing the corresponding execution duration by a
random number drawn from U (1.1; 3).

Some experiments have been conducted with communicating tasks. They are all in-
dependent but require the communication of input data from the frontal node to one
node allocated to the parallel task, and the communication of the output data back to
the frontal node. In order to do this, we have created 6 files with a size of respectively
1,2,5,10,15,20 MB . One of this file is chosen randomly by a uniform law to be trans-
fered as input data, while another file is chosen in the same manner to be transfered as
output data.

Real experiments platform. OAR [8] is a batch reservation system developed by the
project MESCAL in Grenoble. It is deployed on each site of the Grid’5000 platform. The
scheduling algorithm used is CBF.

The 1.6 version of OAR has been installed on a cluster made of 1 frontal and 7
servers SuperMicro 6013PI equipped with a XEON processor at 2.4 GHz, each of them
relied to a 100 Mbits/sec switch.

Protocol of experimentation. We have modeled the real platform by creating com-
puting resources connected in a star topology. Then, thanks to our load generator, we
have submitted the same load to both platforms (real and simulated). In this purpose,
we have created a MPI computing task whose duration is given as parameter. The task

2 http://graal.ens-1lyon.fr/simbatch

http://graal.ens-lyon.fr/simbatch

Simbatch: An API for Simulating and Predicting 229

is executed between two calls for time measuring in an OAR script. The precision of
the time measure is about 1 second, so it is negligible compared to the task duration.

6 Results and Discussion

6.1 Validation of the Integrated Scheduling Algorithms

We show in Figure [3 the result obtained for one simple experience, described in
Figure [Tl One can see the Pajé Gantt chart on the top and beneath, the one obtained
with the Drawgantt OAR. The tasks execution order is strictly the same (as it has al-
ways been, tested with a extensive set of experiments [17]]): task 3, 4, 5 benefit from
the backfilling and start their execution before task 2 which needs every nodes of the
cluster. However, we can point out that Simbatch doesn’t necessarily allocate the same
nodes than OAR (task 3).

6.2 Accuracy of Simbatch Simulations

Two sets of experiments have been conducted with the second protocol: only computing
tasks are involved in the first one, as the second one uses exclusively communicating tasks.

Experiments involving computing tasks. We have run numerous experiments for the
first set of experiments, representing about 130 hours of computing on the cluster. Only
computing tasks are involved. We present here a representative experiment for this set.

Table 1. Data used for experiment 1

Tasks 1 2 3 4 5

Processors number 1 5 2 1 3
Submission date 0 600 1800 3600 4200
Run time 10800 3300 5400 4000 2700
Reservation time 12000 4000 7000 5000 3500

]

Diagramme de Gantt

Origin|[2006], % || Apr | (20 #(10:00 3| Range(/6 day %) Draw | Defaut |

Fig. 3. Gantt chart for experiment 1: Simbatch (top), OAR (bottom)

230 Y. Caniou and J.-S. Gay

T
error (%) +
—_
] 25 4
9 +
'
Q
e af il
z
)
=
g Last submission
= 1.5 4
5]
E +
o
k] . +
1) r 4
0
ﬁ +
5 - .
2 05 L KR
L LS Tt + +1ty A AT R R e
A FRRR S TN S X Fan s A
. . "

0
0 10000 20000 30000 40000 50000 60000 70000 80000
Task’s start time

Fig. 4. Error ratios for an experiment scheduled with the Simbatch CBF and the real-life CBF
implemented in OAR

The experiment consists in submitting the same set of 100 computing tasks to the real
platform and to the simulated platform: results obtained with OAR was exactly 80392
seconds (about 22h) while the simulator gave us 80701 seconds. So the total execution
time difference is only 308 seconds. It represents an error rate of 0.38%. This difference
is mainly due to the mechanisms for interrogating the Mysql database, submitting tasks
via ssh, etc., of OAR.

Figure] shows the error rate obtained for the flow metric in function of the tasks
execution date. The flow of a task is the time spent in the system, i.e., results from the
addition of the waiting time passed in the queue, of the run time and of the communi-
cation costs. We can point out that the error rate is constant and generally below 1%,
which is negligible compared to the precision of the measure. We can point out that for
each experiment we have few tasks with an error rate above the 1%. This phenomenon
is not due to a scheduling error due to some time precision here. In fact, some shorter
and small tasks (time and processor) can enter the system and take advantage of the
backfilling both with Simbatch and OAR. Because of the small gap between Simbatch
and OAR starting time (thus between their ending time as well), the task begins a little
later in reality, which can represent up to 15% and has only been observed once in our
experiments (the second maximum observed is 6%).

An arrow is also drawn at time 29454 it represents the date of the last submission. In
a dynamic environment, if we give to Simbatch every specification of a set of tasks sub-
mitted to a batch scheduler, then Simbatch should be able to make a reliable prediction
on the execution of this set.

Experiments involving communicating tasks. Since we obtained excellent results for
the simulation of batch scheduler for parallel tasks without communication costs, we
have decided to go further and we have tested Simbatch with experiments involving
communication costs. Hence, we transfer some data from the frontal node to one of the
allocated nodes for the parallel task. Once the computation done, we transfer back some
data from the same allocated node to the frontal.

Simbatch: An API for Simulating and Predicting 231

20

er‘ror (%) +

N
Last submission 4

+

N
+ +
N
M cory o T +
L . 6 S e T
ke
.

4o+
+ o+

Percentage of error on flow metric (%)
)
T

0 10000 20000 30000 40000 50000 60000 70000 80000
Task’s start time

Fig. 5. Error ratios for an experiment involving communication costs scheduled with the Simbatch
CBF and the real-life CBF implemented in OAR

We have run the experiments on our platform with OAR and in simulation with
Simbatch. Then, we have measured the flow for each task and we have calculated the
error on the flow metric between simulation and real experiments.

Figure[3depicts one representative experiment. The error rate is low, with an average
around 2%. However a few tasks have a higher error percentage. After having analysed
our results, we can point out that those tasks have the same profile, i.e., small compu-
tation time and few resources needed (typically 1 processor). When we analyse deeply,
we can conclude that those tasks are taking advantage of the backfilling in simulation
contrarily to the reality. In spite of the fact that some tasks are scheduled earlier in
simulation than in reality, the impact is very small on the other task flow: the duration
of the task which benefited from a backfilling represents a small percentage of other
task flow.

Thus, Simbatch obtains realistic results for simulated experimental studies. It allows
to easily model parallel resources managed by a batch scheduler. The good quality of
its simulation shows its relevancy in the study of scheduling algorithms for the Grid.
Furthermore, its use is straightforward as prediction module in a Grid middleware.

7 Conclusions and Future Works

The submission of parallel tasks by a Grid middleware is not straightforward, particu-
larly due to the lack of profiling functionalities in batch schedulers. Nonetheless, per-
formance estimations must be used to both efficiently schedule tasks on the Grid and
tune accordingly parallel tasks with the parallel resource load and scheduling policy.
As astep in the Grid-TLSE architecture, we have designed Simbatch. It can be embed-
ded in a Grid middleware to give accurate predictions. We have detailed those functional-
ities and we have specified the models we use. Then we have shown the facility for every
Simgrid user to use Simbatch thanks to the examples coming from our validation work.

232 Y. Caniou and J.-S. Gay

The main scheduling algorithms (Round Robin, First Come First Served and Conser-
vative BackFilling; the last two are respectively implemented in PBS, and in MAUI and
OAR) are integrated and have been validated by several simulation experiments. More-
over, we have compared results obtained from Simbatch simulations with the ones from
the real-life batch scheduler OAR. Simbatch shows very good precision with an error
rate in general less than 2%.

There are numerous perspectives. Among them, we want to test and eventually ex-
tend Simbatch to batch schedulers like SGE or Loadleveler; we want also to design
scheduling heuristics to take advantage of such predictions and integrate them in DIET
for immediate use in the Grid-TLSE system.

References

http://www.openpbs.org/

http://old.clusterresources.com/products/torque/

http://simgrid.gforge.inria.fr/doc/contrib.html
http://www-1d.imag.fr/Logiciels/paje/

Bell, W., Cameron, D., Capozza, L., Millar, P., Stockinger, K., Zini, F.: Optorsim - a grid sim-

ulator for studying dynamic data replication strategies. Journal of High Performance Com-

puting Applications 17 (2003)

6. Caniou, Y., Gay, J.-S., Ramet, P.: Tunable parallel experiments in a gridrpc framework: ap-
plication to linear solvers. In: VECPAR 2008 International Meeting on High Performance
Computing for Computational Science (2008) (to appear)

7. Caniou, Y., Kushida, N., Teshima, N.: Implementing interoperability between the AEGIS and
DIET GridRPC middleware to build an International Sparse Linear Algebra Expert System.
In: Second International Conference on Advanced Engineering Computing and Applications
in Sciences, ADVCOMP 2008 (2008)

8. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounier, G., Neyron, P.,
Richard, O.: A batch scheduler with high level components. In: Cluster computing and Grid
2005, CCGrid 2005 (2005)

9. Cappello, F., Desprez, F., Dayde, M., Jeannot, E., Jegou, Y., Lanteri, S., Melab, N., Namyst,
R., Primet, P., Richard, O., Caron, E., Leduc, J., Mornet, G.: Grid’5000: A large scale, recon-
figurable, controlable and monitorable grid platform. In: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, Grid 2005, Seattle, Washington, USA (Novem-
ber 2005)

10. Caron, E., Desprez, F., Fleury, E., Lombard, F., Nicod, J.-M., Quinson, M., Suter, F.: Une
approche hiérarchique des serveurs de calculs. In: Calcul réparti a grande échelle, Hermés
Science, Paris (2002)

11. Casanova, H., Dongarra, J.: Netsolve: A network server for solving computational science
problems. In: Proceedings of Super-Computing, Pittsburg (1996)

12. Cirne, W., Berman, F.: Using moldability to improve the performance of supercomputer jobs.
J. Parallel Distrib. Comput. 62(10), 1571-1601 (2002)

13. Daydé, M., Desprez, F., Hurault, A., Pantel, M.: On deploying scientific software within the
Grid-TLSE project. Computing Letters 1(3), 85-92 (2005)

14. Fukuda, M.: ITBL — toward constructing a new R & D environment, vol. 55, pp. 19-23
(2002)

15. Galassi, M., Theiler, J.: The Gnu Standard Library (1996)

16. Garonne, V.: DIRAC - Distributed Infrastructure with Remote Agent Control. Ph.D thesis,

Université de Méditéranée, Décember (2005)

A N

http://www.openpbs.org/
http://old.clusterresources.com/products/torque/
http://simgrid.gforge.inria.fr/doc/contrib.html
http://www-id.imag.fr/Logiciels/paje/

17.

18.

19.

20.

21.

22.

23.

24.

Simbatch: An API for Simulating and Predicting 233

Gay, J.-S., Caniou, Y.: Simbatch: an api for simulating and predicting the performance of par-
allel resources and batch systems. Technical Report RR2006-32, LIP ENS-Lyon, Université
Claude Bernard Lyon 1, Lyon, (October 2006)

Kushida, N., Suzuki, Y., Teshima, N., Nakajima, N., Caniou, Y., Daydé, M., Ramet, P.: To-
ward an International Sparse Linear Algebra Expert System by interconnecting the ITBL
computational Grid with the Grid-TLSE platform. In: VECPAR 2008 International Meeting
on High Performance Computing for Computational Science (2008) (to appear)

Legrand, A., Marchal, L., Casanova, H.: Scheduling distributed applications: the simgrid
simulation framework. In: IEEE Computer Society (ed.) 3rd International Symposium on
Cluster Computing and the Grid, p. 138. IEEE Computer Society, Los Alamitos (2003)
Mu’alem, A.W.,, Feitelson, D.G.: Utilization, predictability, workloads, and user runtime es-
timates in scheduling the ibm sp2 with backfilling. In: IEEE (ed.) IEEE Trans. Parallel and
Distributed Systeme, pp. 529-543. IEEE, Los Alamitos (2001)

Nakada, H., Matsuoka, S., Seymour, K., Dongarra, J., Lee, C., Casanova, H.: A GridRPC
Model and API for End-User Applications (December 2003)

Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in distributed data-
intensive applications. In: 11th IEEE International Symposium on High Performance Dis-
tributed Computing, HPDC-11 (2002)

Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling and
simulating data grids: An extension to gridsim (accepted December 3, 2007) (in press)
Takefusa, A., Casanova, H., Matsuhoka, S., Berman, F.: A study of deadline for client-server
sytems on the computational grid. In: 10th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-10), pp. 406-415 (2001)

234 Y. Caniou and J.-S. Gay

Annexe A

<?xml version="1.0" 7>
<config>
<l— Global settings for the simulation—>
<global>
<file type="platform">platform.xmi</file>
<oxml version="1.0"%> <file type="deployment">deployment.xml</file>
<IDOCTYPE platform_description SYSIEM "surfxml . dtd"> <t— Paje output : suffix has 1o be .trace —>
<platform_description> <file type="trace">simbatch.trace</file>
<process host="Client" function"client"> </global>

<L— Each batch deployed should have its own config—s>
<batch host="Frontale">
<plugin>librrobin.so</plugin>
<t— Internal Load—>
<wld>./workload/seed/1.wld</wld>

<argument value="Frontale" /> <— Connection —>
</process>
<L— The Scheduler process (with some arguments) —>
<process host="Frontale" function="SB_batch">
<argument valu <L— Number of tasks —>
<argument valu <l— Size of tasks —>
<l— Size of 1/0—>
<t— Connections—>

<priority_queue>
<number>3</number>
</priority_queue>
</batch>

<l— Other batchs
</config>

<argument value="Node4"
<argument value="Node5"

</process>

<process host="Nodel"

Configuration of the simulated batch system

SB_node" />
="SB_node" />
SB_node" />
SB_node" />
SB_node" />

<process host='
<process hos
</platform_description>

function=

<stdio .h>
<stdlib .h>
<string .h>
#include <msg/msg.h>
#include <simbatch .h>
#define NB_CHANNEL 10000

#include
#include
#include

Deployment file

/% How to create and send a task x/

<oxml version=’1.0°% int client(int arge, char x argv)
<!DOCIYPE platform_description SYSIEM "surfxml.dtd"> {
<platform_description>

<cpu name="Client" power="97.34000000000000" />

<t— One scheduler for one cluster of five nodes—s>

<t— Power of the batch is not important —_

job_t job=calloc (job_t,
m_task_t task=NULL;

sizeof (job)):

strepy (job—>name, "tache"):

job—>nb_procs = 3: job—>priority = 1;

<cpu name="Frontale” power="98.094999999999999" /> i X

<cpu name="Nodel" power="76.296000000000006" /> job—>wall_time = 600; job—>requested_time = 1800;
<cpu name="Node2" power="76.296000000000006" /> job—>input_size = 100; job—>output_size = 600;
<cpu name="Node3" power="76.296000000000006" /> task = MSG_task_create(job—>name, 0, 0, job);

MSG_task_put(task , MSG_get_host_by_name(" Frontale")

<cpu name="Node4" CLIENT_PORT);

<cpu name="Node5"

power="76.296000000000006" />
power="76.296000000000006" />

<t— No discrimination

<network_link name="0"

for the moment—> }

bandwidth="41.279125"

latency="5.9904e—05"/>

int main(int argce, char *x argv)

<network_link name="1" bandwidth="41.279125" latency="5.9904e—(5" />
<network_link name="2" bandwidth="41279125" latency="5.9904e—(5"/> |)

<network_link name="3" bandwidth="41279125" latency="5.9904e—05"/> SB_global_init(&arge, argv);
<network_link name="4" bandwidth="41.279125" latency="5.9904e—05"/> ~ MSG_global_init(&arge . argv):
<network_link name="5" bandwidth="41.279125" latency="5.9904e—(5"/>

/% Open the channels x/
MSG_set_channel_number (NB_CHANNEL) ;
MSG_paje_output ("simbatch . trace");

<t— Simple topologie —>
<route

Frontale "><route_element name="0"/></route>

<route Frontale” dst="Nodel"><route_clement name="1"/></route>

<route Node2"><route_element name="2"/></route>

<route s Node3"><route_element name="3"/></route> ~ /* The client who submits requests (write your own)
e O AN « Params have to be called with the same name %/
<route sre="Frontale” dst="NodeS"><route_clement name="5"/></route> ~ MSG_function_register("client”, client);

<t— Bi—directionnal —>

<route sre="Nodel" dst="Frontale"><route_element name="1"/></route> /* Register simbatch functions */

<route dst="Frontale"><route_element name="2"/></route> ~ MSG_function_register("SB_batch", SB_batch);

MSG_function_register("SB_node", SB_node);

<route dst="Frontale"><route_element name="3"/></route>

<route "Noded” dst="Frontale><route_element name="4"/></route> = - B .

<route src="NodeS" dst="Frontale"><route_element name="5"/></route> SG_create_environment("platform.xml");
MSG_launch_application ("deployment.xml");

</platform_description>

Platform description file MSG_main();

/% Clean everything up */
SB_clean ()
MSG_clean();

return EXIT_SUCCESS ;

Simgrid main code

	Simbatch: An API for Simulating and Predicting the Performance of Parallel Resources Managed by Batch Systems
	Introduction
	Background
	Grid Simulators
	The Simbatch API
	Modeling
	Using Simbatch

	Experimental Validation
	Results and Discussion
	Validation of the Integrated Scheduling Algorithms
	Accuracy of Simbatch Simulations

	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

