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Preface 

Parallel and distributed processing, although within the focus of computer science 
research for a long time, is gaining more and more importance in a wide spectrum of 
applications. These proceedings aim to demonstrate the use of parallel and distributed 
processing concepts in different application fields, and attempt to spark interest in 
novel research directions to parallel and high-performance computing research in 
general. 

The objective of these workshops is to specifically address researchers coming from 
university, industry and governmental research organizations and application-oriented 
companies in order to close the gap between purely scientific research and the applicabil-
ity of the research ideas to real-life problems. 

Euro-Par is an annual series of international conferences dedicated to the promo-
tion and advancement of all aspects of parallel and distributed computing. 

The 2008 event was the 14th issue of the conference. Euro-Par has for a long time 
been eager to attract colocated events sharing the same goal of promoting the devel-
opment of parallel and distributed computing, both as an industrial technique and an 
academic discipline, extending the frontier of both the state of the art and the state of 
the practice. Since 2006, Euro-Par has been offering researchers the chance to colo-
cate advanced technical workshops back-to-back with the main conference. This is for 
a mutual benefit: the workshops can take advantage of all technical and social facili-
ties that are set up for the conference, so that the organizational tasks are kept to a 
minimal level; the conference can rely on workshops to experiment with specific areas 
of research that are not yet mature enough, or too specific, to lead to an official,  
full-fledged topic at the conference. 

The 2006 and 2007 events were quite successful, and were extended to a larger size 
in 2008, where nine events were colocated with the main Euro-Par Conference: 

• CoreGRID Symposium is the major annual event of the CoreGRID Euro-
pean Research Network on Foundations, Software Infrastructures and Appli-
cations for large-scale distributed, grid and peer-to-peer technologies. It is 
also an opportunity for a number of CoreGRID Working Groups to organize 
their regular meetings. The proceedings have been published in a specific 
volume of the Springer CoreGRID series, Towards Next Generation Grids. 

• GECON 2008 is the 5th International Workshop on Grid Economic and Busi-
ness Model. Euro-Par was eager to attract an event about this very important 
aspect of grid computing, which has often been overlooked by scientific re-
searchers of the field. Its proceedings are published in a separate volume of 
Springer’s Lecture Notes in Computer Science series. 

• VHPC 2008 is the Workshop on Virtualization/Xen in High-Performance 
Cluster and Grid Computing. Virtual machine monitors (VMMs) are now  
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integrated with a variety of operating systems and are moving out of research 
labs into scientific, educational and operational usage. This workshop aimed to 
bring together researchers and practitioners active in exploring the application 
of virtualization in distributed and high-performance cluster and grid computing 
environments. This was a unique opportunity for the Euro-Par community to 
make connections with this very active research domain. 

• UNICORE Summit 2008 brought together researchers and practitioners 
working with UNICORE in the areas of grid and distributed computing,  
to exchange and share their experiences, new ideas and latest research results 
on all aspects of UNICORE. The UNICORE grid technology provides 
 a seamless, secure and intuitive access to distributed grid resources. 
     This was the fourth meeting of the UNICORE community, after a meeting 
in Sophia-Antipolis, France, in 2005, and a colocated meeting at Euro-Par 
2006 in Dresden, Germany, in 2006, and Euro-Par 2007 in Rennes, France. 

• HPPC 2008 is the Second Workshop on Highly Parallel Processing on a 
Chip. With a number of both general and special purpose multi-core proces-
sors already on the market, it is foreseeable that new designs with a substan-
tial number of processing cores will emerge to meet demands for extremely 
high performance, dependability and controllable power consumption in mo-
bile and embedded devices, and in response to the convergence of communi-
cation, media and compute devices. The HPPC workshop aims to be(come) a 
forum for discussion of the major challenges to architecture, language and 
compiler design, algorithms and application developments, in order to fully 
(or acceptably) exploit the raw compute power of multi-core processors with 
a significant amount of parallelism. 

• SGS 2008 is the First Workshop on Secure, Trusted, Manageable and Control-
lable Grid Services. It refers to the notions of security, the way we manage such 
large systems and the way we control the grid system. For instance, the word 
'controllable' means: how we measure the activity of the grid and how we report 
it. The word 'manageable' means: 'how we deploy the grid architecture, the grid 
softwares, and how we start jobs (under controllable events such as the availabil-
ity of resources). The word 'security' refers to the traditional fields of authentica-
tion, fault tolerance but refers also to safe execution (how to certify results, how  
to adapt computation according to some metric). Moreover, all these services 
should collaborate making the building of middleware a challenging problem.  
The building of chains of trust between software components as well as the inte-
gration of security and privacy mechanisms across multiple autonomous and/or 
heterogeneous grid platforms are key challenges for the community. 

• The PROPER 2008 workshop was organized on behalf of the Virtual Insti-
tute for High Productivity Supercomputing (VI-HPS), which aims at improv-
ing the quality and accelerating the development process of complex simulation 
codes in science and engineering that are being designed to run on highly paral-
lel computer systems. One part of this mission is the development of integrated 
state-of-the-art programming tools for high-performance computing that assist 
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programmers in diagnosing programming errors and optimizing the perform-
ance of their applications. 

            Accordingly, the workshop topics cover tools for parallel program develop-
ment and analysis as well as general performance measurement and evaluation  
approaches. Last but not least, it includes success stories about optimization or 
parallel scalability achieved using the tools. In particular, the workshop wants to 
stimulate discussion between tool developers and experts on one hand and tool 
users and application developers on the other hand. Furthermore, it especially 
supports younger researchers to present their work. 

• ROIA 2008 is the First International Workshop on Real-Time Online Inter-
active Applications on the Grid. It aimed to bring together researchers 
from the domain of ROIAs and grid computing in order to exchange 
knowledge, experiences, ideas and concepts for combining both fields. The 
event was closely related to the research perfomed in the European 
edutain@grid project. 

• DPA 2008 aimed to determine where programming abstractions are important 
and where non-programmatic abstractions are likely to make greater impact in 
enabling applications to effectively utilize distributed infrastructure. This work-
shop will have a balance of applications and topical infrastructure developments 
(such as abstractions for Clouds). 

The reader will find in this volume the proceedings of the last seven events. 
Hosting Euro-Par 2008 and these colocated events in Las Palmas de Gran Canaria 

would not have been possible without the support and the help of different institutions 
and numerous people. 

Although we are thankful to many more people, we are particularly grateful to the 
workshop organizers: Martti Forsell and Jesper Larsson Träff for HPPC 2008; Achim 
Streit and Wolfgang Ziegler for UNICORE Summit 2008; and Michael Alexander and 
Stephen Childs for VHPC 2008. It has been a pleasure to collaborate with them on 
this project. 

We particularly thank them for their interest in our proposal and their trust and 
availability along the entire preparation process. 

Euro-Par 2008 was hosted on the university campus and we would like to thank 
the University Institute for Intelligent Systems and Numerical Applications in  
Engineering of the Universidad de Las Palmas de Gran Canaria for the support and  
infrastructure. We gratefully acknowledge the great organizational support of the 
Computer Architecture and Operating Systems Department of the Universidad 
Autónoma de Barcelona. We would also like to thank the Cabildo de Gran Canaria 
and the City Council of Las Palmas de Gran Canaria for they institutional support. 

Finally, we are grateful to Springer for agreeing to publish the proceedings of 
these seven workshops in a specific volume of its Lecture Notes in Computer  
Science series. We are definitely eager to pursue this collaboration. 

It has been a great pleasure to work together on this project in Las Palmas de Gran 
Canaria. 
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We hope that the current proceedings are beneficial for the sustainable growth and 
awareness of parallel and distributed computing concepts in future applications. 
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Workshop on Virtualization in
High-Performance Cluster

and Grid Computing (VHPC 2008)

Virtual machine monitors (VMMs) are now integrated with a variety of oper-
ating systems and are moving out of research labs into scientific, educational
and operational usage. Modern hypervisors exhibit a low overhead and allow
concurrent execution of large numbers of virtual machines, each strongly encap-
sulated. VMMs can offer a network-wide abstraction layer of individual machine
resources, thereby opening up new models for implementing high-performance
computing (HPC) architectures in both cluster and grid environments. This
workshop aims to bring together researchers and practitioners active in explor-
ing the application of virtualization in distributed and high-performance cluster
and grid computing environments.

Areas that are covered in the workshop series include VMM performance,
VMM architecture and implementation, cluster and grid VMM applications,
management of VM-based computing resources, hardware support for virtual-
ization, but it is open to a wider range of topics.

As basic virtualization technologies mature, the main focus of research now is
techniques for managing virtual machines in large-scale installations. This was
reflected in this year’s workshop, where five presentations were given on the
management of virtualized HPC systems. In total seven papers were accepted
for this year’s workshop, with an acceptance rate of approximately 39%.

An invited talk by Bernhard Schott of the company Platform gave an overview
of the company’s products relative to virtualization.

The Chairs would like to thank the Euro-Par organizers, the members of the
Program Committee along with the speakers and attendees, whose interaction
created a stimulating environment. Our special thanks to Bernhardt Schott for
accepting our invitation to speak at the workshop and we acknowledge the finan-
cial support of Citrix. VHPC is planning to continue the successful co-location
with Euro-Par in 2009.

December 2008 Michael Alexander
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Abstract. Virtual machines can have many different deployment sce-
narios and therefore may require generation of multiple VM images. OS
Farm is a service that aims to provide VM images that are tailored and
generated on the fly. In order to optimize generation of images, a layered
copy-on-write image structure is used, and an image cache ensures that
identical images are not regenerated.

Images can be several hundreds of megabytes large and thus can con-
gest the network and delay their transfer. Content-Based Transfer is a
technique which transfers only the difference between the source image
and existing target client image data. We present an implementation
which achieves an observed bandwidth close to the theoretical maximum
and a significant reduction in network congestion.

1 Introduction

Virtualization can add agility to datacenters by providing flexible testing en-
vironments, failover with live-migration and satisfying different OS flavour re-
quirements with consolidation. In all these scenarios it is important to have an
infrastructure that efficiently handles the needed VM images. Sect. 2 presents a
real scenario for the application of image management techniques, as a motiva-
tion for this work.

Libfsimage is a library and a standalone application, which generates VM
images with a rich selection of Linux distributions. It is presented in Sect. 3.

OS Farm is a software application that aims to provide a user interface for
generating and managing VM images. For generating images, it uses Libfsimage.
It employs some techniques in order to optimize the generation and propagation
of images, as described in Sect. 4.

The large sizes of VM images is a hurdle for managing images, particularly in
image propagation. An implementation of the Content-Based Transfer technique,
which optimizes the propagation of VM images over the network, is presented
in Sect. 5.

This paper presents our work as a solution for image management with a good
degree of configuration flexibility and performance.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 3–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Application of Image Management Techniques in the
EGEE/WLCG Grid

The Enabling Grids for E-scienceE (EGEE)[1] project, funded by the European
Union, provides a seamless Grid infrastructure for e-Science. EGEE produces
the gLite[2] middleware for grid computing. Tightly coupled to EGEE is the
Worldwide LHC Computing Grid (WLCG)[3]. Its mission is to build and main-
tain a data storage and analysis infrastructure for the entire high energy physics
community that will use the Large Hadron Collider (LHC), which is currently
being built at the European Organization for Nuclear Research (CERN)[4].

2.1 Grid Middleware Certification

A section in CERN’s IT Department is responsible for the integration, testing
and release of the gLite middleware. This activity is carried out in collaboration
with several partners all over Europe within EGEE. Testing gLite faces the
problem that its components are under active development. To enable progress
in certification the turnaround time from feature submission to certified state
must be as small as possible.

Bug fixes and new features enter gLite via the concept of a patch. A grid
testbed is being operated so that new patches can be applied to the relevant
grid nodes. However, certification of several patches at the same time can cause
conflicts on the testbed. A non functional patch may spoil the whole testbed.
To cope with such problems an infrastructure of virtual machines based on Xen
was established so that certifiers can bring up grid nodes with a certain patch
independently.

GLite is available on different Linux flavors and architectures: Scientific Linux
CERN[5] 3 and 4 on i686 and x86 64 platforms. More Linux flavors (e.g. De-
bian) are under development. As all these combinations are found in production,
interactions of nodetypes with different operating systems and hardware must
be tested. To speed up the certification process we need to be able to quickly
produce pre-defined images of different gLite nodetypes to use with Xen. We
produce such images on a weekly basis in order to reflect the latest updates.
The tools libfsimage and OS Farm were developed at CERN to achieve the
aforementioned goals.

2.2 Usage of Virtual Machines on the Grid

The EGEE/WLCG infrastructure lets users send jobs for execution to more than
250 sites. Using the information system a user can determine the operating sys-
tem provided by a site. However as more and more users from different scientific
communities join the grid it gets difficult for sites to fullfill all their requirements
in terms of operating systems and installed software. One way to deal with this
problem is to provide each job on the grid a virtual machine with a dedicated OS
setup. With thousands of users on the grid transferring images to sites becomes
an issue. The content based image transfer described in Sect. 5 shows how to
overcome this problem.



Tools and Techniques for Managing Virtual Machine Images 5

3 Libfsimage

Libfsimage is a library of Linux file system generation routines implemented
in Python. Its primary goals are the simultaneous generation of 32-bit and 64-
bit file systems for different Linux distributions in an isolated environment and
reuse of the common setup and configuration code between the distributions.
At present, the supported Linux flavors are Debian[6], Ubuntu[7], CentOS[8],
Scientific Linux CERN and Fedora[9]. The package installation and dependency
resolution for the first two are done with Debian package management tools. For
the RPM[10] based distributions this is achieved with Yum[11].

Libfsimage uses pre-built environments that reflect the hardware architecture
as well as the type and version of the package manager used in the relevant
version of the distribution being generated. When possible these pre-built envi-
ronments are shared between the different distributions. Prior to the generation
the appropriate environment is deployed and the library uses the chroot system
call to switch to a new root directory. The initial package installations in the
generated file system are done from there. Once the latter contains the basic li-
braries, a package manager and configuration tools, further package installations
and image configuration are performed from inside the new file system, again by
leveraging the chroot capability.

Libfsimage can be used both from the command line and as a python library.
In the latter case it manages a Workspace object that keeps track of the deployed
environments and their status in order to speed up the file system generation by
reusing them.

A consequence of the extensive use of the chroot system call by Libfsimage,
and Debian and RPM based package managers is the root privileges indispens-
ability. This is a major drawback in the scenario when Libfsimage is used for
simultaneous creation of images for different third parties that need to install
custom packages inside the generated file system. A harmful pre- or post-install
scriptlet that is run during the installation of a package could escape the chroot
jail and run arbitrary code with root privileges, thus compromising the host
and interfering with the generation of other parties’ images. To address this
issue a SELinux policy module is being developed for narrowing the standard
root capabilities to the required minimum and confining the concurrently run-
ning generation processes in dedicated SELinux domains, so that misuse of the
CAP CHROOT privilege can not lead to a system compromise.

4 OS Farm

OS Farm creates VM images and Virtual Appliances (VA) [12] that can sat-
isfy different needs. It provides a web interface through which users can choose
between a range of Linux distributions and yum repositories, with their corre-
sponding yum packages. Images are generated using libfsimage, which provides
a rich selection of Linux distributions, which in OS Farm are called classes.

The main interface to an OS Farm service is a web interface, which is shown
in Fig. 1. It provides several ways for the user to request a VM image. The most
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Fig. 1. OS Farm user interface

<image>

<name>MySlc4Image</name>

<class>SLC4</class>

<architecture>i386</architecture>

<package>emacs</package>

<package>unzip</package>

<group>Base</group>

<group>Core</group>

</image>

Fig. 2. OS Farm VM image specification

basic method is a Simple request, which allows the user to select image class and
architecture.

Advanced request extends Simple request and gives the possibility of adding
yum packages to the image. A dropdown menu allows the user to choose between
a list of predefined yum repositories. Using Asynchronous JavaScript and XML
[13], a further list is returned which allows the user to select the corresponding
yum packages.

OS Farm also supports image requests by XML descriptions. An image de-
scription can be uploaded as an XML file. An example image description is
shown in Fig. 2.

4.1 Layered Generation and Caching

The generation of an image is divided into three layers or stages, core, base and
image. Core is a small functional image with a minimal set of software required
to run the image on a Virtual Machine Monitor or in order to satisfy higher
level software dependencies. Base is a layer on top of core, which provides some
additional software needed in order to satisfy requirements for VAs. An image
is also a layer on top of core and provides user defined software in addition to
the core software. A subclass of image is virtual appliance, which is an image
with an extra set of rules aimed to allow the image to satisfy requirements of
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Core

Base Image

Virtual
appliance

Fig. 3. Layers of a VM image

the deployment scenario. Fig. 3 shows that core can be shared between images,
while base can be shared between VAs.

In order to accelerate the generation of images, core and base are always
cached the first time they are generated. The layers are cached in Logical Vol-
ume Manager (LVM) [14] volumes. This allows higher layers to continue instan-
taneously, using copy-on-write, with the snapshot feature of LVM. Images are
also cached and tagged such that if an image request matches that of a cached
image, the image is returned immediately.

The tag of a cached image is the checksum of its configuration parameters,
such as architecture and yum packages. Whenever an image is requested, a check-
sum is generated from the requested configuration and looked up in the cache.
If an image with the exact same configuration parameters already exists in the
cache, the image is returned immediately. A timeout value can be set on a cache
entry in order to limit the validity of it. If an entry has timed out, a request for
that entry results in a regeneration of it.

The cache also serves as a browsable repository for images. Instead of request-
ing images by parameters, images can be browsed and downloaded directly from
the cache.

Fig. 4. Flowchart of the recursive image request and generation process
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Fig. 4 shows the recursive image generation process. A request for an image is
effectively a request for a layer, which in turn requires the presence of its inferior
layer core, which, if it does not exist, triggers its creation.

The speedup gained from using these techniques varies between image con-
figurations. We have measured the execution times of three simple example sce-
narios:

– the cache is empty, i.e. the image is generated from scratch: 254 seconds
– core is in the cache: 72 seconds
– image is in the cache: instantaneous

The results show that a significant speedup can be gained when an image or
one or more of its layers are cached.

5 Content-Based Transfer

Content Based Transfer (CBT) is a technique to efficiently transfer VM image
data from a source host to a target host. It takes advantage of knowing the struc-
ture of the image data to extract common data which need not be transmitted.

Most filesystems are aligned on a fixed boundary. For example, in the Ext2
filesystem, a file is aligned in blocks of size 1024∗2n, where 0 ≤ n ≤ 232 [15]. This
means that two identical files on two different ext2 volumes, will be contained in
a set of identical blocks on both volumes, even if they are fragmented. Moreover,
if block sizes are different on the two volumes, as long as the largest block size of
the two volumes is a multiple of the smallest block size, all files in both volumes
will be aligned on the smallest block boundary. In our experience, block sizes of
1024 and 4096 are most frequent.

[16] examines the commonality between filesystem volumes. In our experi-
ments we have analysed two different scenarios:

– two computer centre batch systems,
– two major versions of Scientific Linux CERN (SLC) VM images

Our experiments have shown that commonality ranges from moderate to signif-
icant. The commonality between some example volumes is shown in Tab. 1.

Before transmitting a volume, A, across the network, a comparison can be
done between an existing volume at the destination, B, and A. If any blocks in
A already exist in B, then those blocks need not be transmitted. Moreover, any

Table 1. Commonality between example volumes

Scenario Commonality

Batch system to batch system 84 %
SLC4 to SLC3 48 %
SLC3 to SLC4 22 %
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blocks in A which exist in any of the volumes at the destination, need not be
transmitted.

Content Adressable Storage [17] exploits commonality in order to reduce stor-
age load. In [18] this is exploited in order to reduce the load on the network and
storage. We present an implementation which exploits commonality in order to
reduce network load and speed up network transfer to close to the theoretical
maximum.

5.1 Implementation

Our implementation of Content-Based Transfer uses Java, as a good compromise
between efficiency and convenience. Most notably, it exploits Java’s hash digest
algorithms and thread-safe hash tables.

Identical blocks are identified with checksums, which are calculated using the
available hash digest algorithms in Java. In spite of discovered collisions in the
MD5 algorithm1 [19], for the results in this paper, we have used it because
it is the fastest available algorithm in the Java library. The choice of hashing
algorithm, however, is open to the user.

The implementation is split into several threads that pass checksums and
blocks among each other in a pipelined fashion. For example, one thread scans
the source image and generates a checksum for the current block. Immediately,
before continuing to the next block, the checksum is passed to the next thread.
Concurrently, another thread, at the destination node, receives a checksum and
looks it up in its hash table. If the block is not already at the destination, then it
is requested from the source, in a similar pipelined fashion. The key to achieving
good efficiency in this implementation is to allow the blocks that are already at
the destination be written simultaneously and at the same pace as they are read
from the source (which should be the disk read speed), and the other blocks be
transmitted at the pace which the network allows.

5.2 Hypothetical Maximal Observed Bandwidth

The information needed to be transmitted from the source to the target consists
of a differential, sD, and an identical, sI , part. In the differential part, all data is
different between the source and the target, so all source data must be transmit-
ted, and thus the transfer speed for the differential part is bound by the network
transmission bandwidth, vn, given that the disk speed is higher than the network
bandwidth. In the identical part, data is identical between the source and the
target, so data must only be identified and only identification information needs
to be transmitted, and thus the transfer speed for the identical part is bound by
the disk read speed, vd.

Given an I/O bound only program (CPU speed is infinite, CPU time is 0),
the hypothetical best transfer time is
1 MD5 is not recommended for security application, since a collision can actively be

created. This concern is not that relevant for our application because the user is not
expected to actively create blocks that will collide with his or her own blocks.
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t =
sI

vd
+

sD

vn
, (1)

iff
vd > vn . (2)

The total transfer time of an image, using this technique, is different from
a non-optimized technique. With the optimized transfer time, we calculate an
observed bandwidth. The hypothetical best observed bandwidth is, given (2),

v =
s

sI

vd
+ sD

vn

. (3)

In general,

v =
1

ΔI

vd
+ ΔD

vn

, where Δj =
sj

s
∈ [0, 1] . (4)

The intent of the hypothetical best observed bandwidth is to determine the
performance of a hypothetical optimal CBT implementation to use as a bench-
mark for our CBT implementation. “Observed bandwidth” serves as a measure
of performance that is independent of image sizes and indicates the speedup
given by the CBT technique compared to a non-optimized technique.

On our test system we measured, using the Unix command “dd,” a disk read
speed of 35.6 MB/s. The test systems were also equipped with a 100 Mb/s
network interface card, and the theoretical max bandwidth of a 100 Mb/s line
is 11.9 MB/s. Using these vd and vn bandwidths, we calculated the hypothetical
observed bandwidths which are given in Fig. 5.

5.3 Experimental Analysis

Running our implementation of CBT on our test systems, we measured the ob-
served bandwidths which are given in Fig. 5. The results show that our CBT

Fig. 5. CBT bandwidth
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implementation achieves an observed bandwidth which closely follows the hy-
pothetical maximum bandwidth. Also, the real bandwidth, which indicates the
network load produced by the actual amount of data transmitted, is reduced,
meaning a reduced load on the network.

It is worth noting that the observed bandwidth at the two extremes of ΔD, at
0 and 1, are close to vd and vn, respectively. In our example, vd > vn. If vn > vd,
as would be, for us, the case with a gigabit network, the disk read speed is the
limitation, and CBT does not give any speedup. CBT in this case still has the
advantage of reducing the load on the network.

6 Related Work

RPath[20] is a service that offers VAs, and provides a service similar to OS Farm.
RPath’s “recipe” approach to constructing a VA is a powerful method and gives
great opportunity for reuse of packages between VAs. The approach encourages
a VA developer, who develops recipes, and a VA user, who downloads the VAs,
as two separate roles. The user can choose between a set of predefined VAs, but
does not actively change the VA. In OS Farm, the user would normally also be
the author of an image, since it is a trivial exercise.

If VM images are to be deployed on a large scale, they need to be adapted to
their deployment context. Libfsimage allows paremeterized configuration of the
images, but a future goal is to allow for contextualization[21].

Rsync[22] is an application that uses commonality in order to speed up the
transmission of data. It uses SSH for authentication, which adds some overhead.
The observed bandwidth given by Rsync, as calculated from the time reported
by Rsync itself, which is lower than the total execution time including authen-
tication, is not as high as CBT. For example, for ΔD = 0.1, Rsync gives a 30
MB/s observed bandwidth, and ΔD = 0.5 gives a 13 MB/s observed bandwidth.
Another advantage CBT has is that it takes a set of images as a source for
commonality, as opposed to Rsync, which uses only one target file.

7 Conclusion

We have presented tools and techniques for managing images, which help to
overcome some of the problems that present themselves when managing an in-
frastructure of VMs. Libfsimage provides the different flavors and architectures
that are needed in our use case and has a basis which allows extension for further
flavors of Linux. It also lends itself as a library for external application, as in the
example of OS Farm.

OS Farm uses Libfsimage and provides a graphical user interface for gener-
ation of VM images. It also provides a repository for VM images, which also
serves to cache and optimize image generation through sharing layers of images.

CBT exploits commonality between images to optimize the transfer of images
across the network. It achieves an observed bandwidth close to the theoretical
maximal observed bandwidth. It can also help to avoid network congestion when
transferring large images.
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Abstract. In Grid environments, many different resources are intended
to work in a coordinated manner, each resource having its own features
and complexity. As the number of resources grows, simplifying automa-
tion and management is among the most important issues to address.
This paper’s contribution lies on the extension and implementation of
a grid metascheduler that dynamically discovers, creates and manages
on-demand virtual clusters. The first module selects the clusters using
graph heuristics. The algorithm then tries to find a solution by searching
a set of clusters, mapped to the graph, that achieve the best perfor-
mance for a given task. The second module, one per-grid node, monitors
and manages physical and virtual machines. When a new task arrives,
these modules modify virtual machine’s configuration or use live migra-
tion to dynamically adapt resource distribution at the clusters, obtaining
maximum utilization. Metascheduler components and local administra-
tor modules work together to make decisions at run time to balance
and optimize system throughput. This implementation results in perfor-
mance improvement of 20% on the total computing time, with machines
and clusters processing 100% of their working time. These results allow
us to conclude that this solution is feasible to be implemented on Grid
environments, where automation and self-management are key to attain
effective resource usage.

1 Introduction

Using geographically distributed clusters in a coordinated manner has a major
impact in execution time for parallel applications. Grid computing is a natural
environment to deal with this usage, as Grids provide resource sharing through
open standards and tight security, making possible to solve problems faster and
efficiently.
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The Grid metascheduler is an active component in distributed systems coor-
dination and management. This component facilitates the user’s tasks to access
resources across different administrative domains. It can take decisions based
on information of the whole system. Owners of physical resource become ser-
vices providers, and the metascheduler orchestrates them according to negoti-
ated policies and service level agreements. Virtual machines provide a way to
make this task easier. These virtual machines can be independently instantiated
and configured beforehand with sandbox-like environments[4, 9]. They also al-
low dynamically tuning of parameters like memory, number of CPUs assigned
to each virtual machine, etc. Today’s virtual machine technologies performance
at CPU intensive tasks is comparable to that of native applications [5].

This paper presents a framework extension to a Grid metascheduler. The
extension consist of two modules; the first one that dynamically discovers free
machines determined by user requirements. The other one creates virtual clus-
ters to efficiently satisfy submition of parallel jobs. The first module selects the
clusters using graph heuristics. Free resources are mapped to a graph, machines
as nodes and network links as edges. The algorithm then tries to find a solution
by searching a set of clusters that achieve the best performance for a given task.
The second module, of which one instance resides in every grid node, monitors
and manages physical machines. When a new task arrives, these modules mod-
ify virtual machines configuration to dynamically adapt resource distribution
at the clusters, thus obtaining maximum utilization. Metascheduler components
and local administrator modules work together to make decisions at run time to
balance and optimize system throughput.

In the second section of this paper we present the sequence of use and the
architecture of the solution, focusing on the metascheduler; the third section
describes the model, heuristics and algorithms developed; the fourth section
presents experimental results; and finally, related works on this subject and
conclusions are shown.

2 Metascheduler

From the design viewpoint, the architecture[1] of this solution is conceptually
divided into three layers or tiers. In the first one, named access tier, the clients
accessing the system are defined. The second, management tier, considers access
control and creation of resources. Finally, the third, resource tier, deals with the
implementation of physical and virtual resources.

This paper focus on the management tier cover by the metascheduler. The
implementation begins with the study of several proposals, for this work, CSF
(Community Scheduler Framework)[2] was chosen. CSF is an open-source im-
plementation of a number of Grid services, which together functionally perform
as a Grid metascheduler, and can be used as a development toolkit.

To satisfy on demand virtual clusters there are two extension modules within
CSF. The first one is the Resource Manager Adapter Service called GramVM.
This module is in charge of looking for free machines in the group of clusters.
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For management and instantiation of virtual machines within local domains,
a new module called Hypervisor proxy was implemented. Unlike the original
CSF proposal, several Hypervisor proxy instances can be working towards one
GramVM instance at the same time, in a coordinated manner. In the original
implementation, CSF could work with different local schedulers, just one at every
time.

Also different from the original CSF is that local schedulers, with similar du-
ties as Hypervisor Proxy, have to be setup previously to CSF execution, and once
execution in a cluster is started, the assignment of machines can not be modified
until end of execution. For dynamically instantiated virtual machines, we do not
know how many machines each cluster will have until the requirement arrives.
GramVM should try to find the resources that best fit the task requirements,
leading to a great number of alternatives. Besides, virtual machines can modify
their usage of physical resources during execution, either by live migration[6],
or by dynamically varying memory and CPU allocation. All of these features
essentially reconfigure the pool of available free resources. They can be used to
obtain better cluster performance and they are negotiated between Hypervisor
Proxy and GramVM at run time.

3 Model

Finding a group of machines with specific characteristics, which is able to ef-
ficiently share a given workload, in a short time, is not a trivial problem. To
approach this task, we settled for two criteria which were given higher priority:
how fast the problem was solved, and how good the outcome was when compared
to the optimal solution.

To be able to solve the problem in an analytical way, groups of clusters and free
machines in the Grid environment are mapped to a graph. Machines are viewed
as nodes and network links as edges. Nodes and edges have weights corresponding
to machine features and bandwidth. More bandwidth-capable edges receive less
weight. Node’s weights are based upon cost functions such as per-time billing,
computing power, etc.

The strategy is divided into two stages. The first one consists in selecting
the groups of clusters. At this stage, a heuristic is used to find an optimal set of
machines, taking into account communication overhead and machines computing
power. Once a group of clusters is obtained, the second stage starts. For each
cluster, an analysis must be done to evaluate how many physical machines will
be incorporated. If the number of machines involved is greater than needed
then efficiency will decrease, as some machines will stall waiting to send data
to another cluster. We seek to keep efficiency over a certain threshold, given
beforehand. Our analysis extends the work done in [3]. This work modifies the
MPI library to span a number of clusters; a certain, unique, type of task is
assumed. In our paper, a virtual environment is proposed where applications
can run unmodified over a combination of clusters. Different types of tasks can
be supported, as expected from a Grid environment.
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Our model was evaluated over master-worker parallel applications. Clusters
are dedicated and serve a previously determined number of tasks. All tasks
within a same requirement from a user perform the same computation, and send
or receive the same amount of data, but the number of tasks can vary across
requirements. This schema is common in graphic and simulation parallel appli-
cations. It is assumed that each time a cluster is added to the grid environment,
virtual images are characterized and a performance benchmark is done. The
network links are monitored regularly to sense bandwidth changes.

3.1 Machine Selection Algorithm

To select a set of feasible clusters to be incorporated into the solution, an iter-
ative improvement algorithm is used. This algorithm, known as Hill-Climbing,
is mainly a loop that continually moves in the direction of increasing value; in
this case, the direction maximizing computing power. The algorithm does not
maintain a search tree; the node data structure needs to record just the last state
reached. This simple policy has some drawbacks: local maxima (peak values that
are lower than the highest peak value in the state space); plateaux (a region in
the state space where the evaluation function is essentially flat) and ridges (a
ridge may have steeply sloping sides, so that the search reaches the top of the
ridge with ease, but the top may slope only very gently toward a peak).

The problem we are trying to solve has particular features, as certain net-
worked geographical regions or provider domains are better provisioned than
others. This geographical connectivity pattern is mapped onto the graph edges.
When taking this feature into account, there is no need to do random restarts
as in the original algorithm. If the graph is partitioned into better-connected
geographical zones, or islands, the chances to find the global maximum grow,
and the time to find it decreases. This modification is called Hill-Climbing with
k-restarts, where k is the number of partitions on the graph. Each partition will
be a starting point.

To partition the graph in geographical zones, a different kind of algorithm
is used, namely Minimum Spanning Trees (MST). A minimum spanning tree
includes all nodes in the graph, such that the sum of their weighted edges is
lesser or equal to that of any other spanning tree over the graph. The chosen
algorithm is Kruskal’s variant because of the approach taken to build the MST.
This algorithm starts by sorting the edges by weight; then all nodes are agglom-
erated, starting from as many partitions as nodes. Traversing over the edges, the
solution is checked at every iteration for cycles. If a cycle appears, the edge that
was most recently introduced is discarded.

To enhance Hill-Climbing performance, we need to know how many restarts
there will be. The number of restarts will be the number of suitable partitions
in the graph. Once the number of partitions is set as a threshold, Kruskal ’s
algorithm starts adding edges until the threshold is reached. When Kruskal al-
gorithm stops, the remaining graph is partitioned into maximally well-connected
trees, as the first step taken was to sort the edges by weight. For each partition
the Hill-Climbing algorithm is then applied, obtaining a global maximum.



Dynamic on Demand Virtual Clusters in Grid 17

The number of partitions depends on the number of nodes and the surface
where Hill-Climbing algorithm will run. As a good practice the graph was parti-
tioned until each segment had at least one complete cluster. In most cases that
number of partition was three, this number assures to find the global maximum
in each test.

The algorithmic complexity for MST is O(E log(V)). The Hill-Climbing algo-
rithm using adjacency lists is O(E log(V)) where E are Edges and V are Vertices
of the graph. Performance can be improved if the graph nodes are Grid nodes
instead of machines, as the number of vertices in the graph decreases.

3.2 Cluster Usage Optimization

A parallel application in a multicluster environment is either limited by perfor-
mance of machines in the cluster (compute-bound) or by network throughput
(communication bound). The maximum performance (maxperf ) is reached by
an application on a particular cluster when it is compute-bound. If the ap-
plication is communication bound, machines will sit idle waiting for network
input/output. For a worker task running on a processor, the computation time
(TCpt) is defined as the ratio between the task number of operations (Oper)
and the processor performance (Perf ): TCpt=Oper/Perf. The communication
time (TComm) is the ratio between the volume of data communication (Comm)
(worker task data from and to the master) and the network throughput (TPut):
TComm=N*Comm/TPut. The maxperf is the performance that can be obtained
when TCpt >= TComm.

Once the set of clusters is computed by the heuristics, the second stage starts.
Here we analytically determine how many machines will be used in each cluster,
so as to avoid maxperf dropping under a previously fixed threshold. This calcu-
lation is based on how many task’s data the network is able to transfer by time
unit, and how many tasks per time unit the cluster is able to process.

If the cluster processes more tasks than the network would transfer, then
the application becomes communication bound; if the network is able to trans-
fer more task’s data than the cluster processes, then the application becomes
computation bound. Hence, if the application is communication bound and the
number of machines diminishes until a balance is reached, the cluster resources
are not fully used; but the machines processing the tasks will be used at a max-
imal efficiency.

In a Grid environment, multiple possibilities for cluster assignment exist. If
we regard the application as being started from different clusters (i.e. we choose
different master-clusters), the resulting outcome from our analysis will be dif-
ferent. With the heuristic algorithm, this search work is minimized, and the
best solution (reaching the highest computing power with a combination of clus-
ters) is probably achieved. To make this possible, an analytic search has to be
done for each graph partition. This will limit the number of machines for each
cluster so that performance can be held over threshold for every machine. Not
only communication and computing power for the local cluster has to be eval-
uated, but for the master-cluster as well. If the master-cluster ’s bandwidth is
smaller than the aggregated worker-clusters bandwidth, then machines from the
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worker-clusters will be idle even though their own network links are enough to
exploit their full computing capacity for a given task. Here, a fractional of the
master-cluster bandwidth will be determined, based on the computing power of
each cluster; and the analytic evaluation of computation/communication will be
carried on upon this value.

This solution focuses on maintaining machine performance, but cluster usage
is also a matter of importance. If a cluster can always satisfy a task with low
computing requirements but high data communication, and the network link
does always limit the computing power to a few machines, then this is not a
good solution. An approach to this problem is to limit even more the usage of
computing power, so as to free bandwidth. When tasks with less communication
requirements arrive, they can be submitted to idle machines, thus improving clus-
ter usage; on the downside, if such tasks never arrive, resources will be wasted.
Our proposal in this paper is to build a cluster over virtual machines to release
bandwidth on demand; when a new task with smaller communication require-
ments arrives, machines already executing on the clusters are migrated without
interrupting the execution. When two or more virtual machines are executing on
a physical processor, the virtualization software scheduler will assign computing
resources fairly, so this will result in less computing power per machine and less
data per task will be sent. The time for completion of both the new task and
the executing task are known, so the metascheduler module can calculate the
time gain for machine migration and will submit the new task onto the cluster.
If the new task has smaller communication requirements than the migrated one,
not only the physical nodes that were supporting virtual machines running on
them, but also the idle physical nodes in the cluster, could be assigned to the
new task, improving the whole cluster usage.

4 Experimental Results

The experimental evaluation is divided into two phases. The first one shows
improvement gains by using the heuristic of machine selection. This strategy is
compared to classical grid algorithms[7, 8] as a set of independent tasks arrives.
From the system’s point view, a common strategy is to assign them according
to the load of resources in order to achieve high system throughput. Three al-
gorithms were selected: a) Minimum Execution Time (MET): assigns each task
to the resource with the best expected execution time for that task, no matter
whether this resource is available or not at the present time b) Minimum Com-
pletion Time (MCT): assigns each task, in an arbitrary order, to the resource
with the minimum expected completion time for that task and c) Opportunistic
Load Balancing (OLB): assigns each task, in arbitrary order, to the next machine
that is expected to be available, regardless of the task’s expected execution time
on that machine . The intuition behind OLB is to keep all machines as busy
as possible. One advantage of OLB is its simplicity, but because OLB does not
consider expected task execution times, the mappings it finds can result in very
poor makespans. Classical grid algorithm like Min-min and Max-Min were not
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selected because these begins with the set of all tasks and in this case this data
is unknown.

The problem of grid scheduling can be investigated by taking experimental
or simulation approach. The advantages of performing actual experiment by
scheduling real applications on real resources are that it is easier and straight-
forward to compare the efficacy of multiple algorithms. However, in experimen-
tal study of scheduling algorithms it is seldom feasible to perform a sufficient
number of experiments to obtain meaningful results. Furthermore, it is difficult
to explore a variety of resource configurations. Typically a grid environment is
highly dynamic; variations in resource availability make it difficult to obtains
repeatable results. As a result of all these difficulties with the experimental ap-
proach, simulation is the most viable approach to effectively investigate grid
scheduling algorithms. The simulation approach is configurable, repeatable, and
generally fast, and is the approach we take in this work. Our simulation takes as
parameters a description of the existing clusters, their network links, machines
therein (specifying memory and processor type) and finally the tasks with their
execution time for each type of processors.

For model validation a real test in [3] was considered, where four clusters with
three, five and eight machines were used. The first two clusters were physically
lying in South America, having less bandwidth and machines with smaller com-
puting power. The third, more powerful one, was in Spain. If we enforce the same
master-cluster as in the real test, i.e. the application is submitted from each of
the clusters in South America, the final results in computing time and network
throughput returned by the simulator are the same. However, if the simulator is
used along with the machine selection algorithm, the Spanish cluster is selected
and the total execution time decreases nearly by 50%. The explanation being, if
the application is submitted from a South American cluster, then there will be
idle machines in the Spanish cluster; while if the application is submitted from
Spain, then the three clusters will have better usage.

4.1 Machine Selection Experiences

Tests were done to verify the impact of partition and master-cluster selection car-
ried over by the Hill-Climbing algorithm. These tests compare how the heuristic
algorithm proposed in this paper performs against classical grid algorithms. The
tests were done simulating clusters composed of eight machines each one. Two
arrival statistical distribution were chosen; the first one, a uniform distribution
simulating low rate of arrivals; the other one, an exponential distribution simu-
lating a incremental rate of tasks arrivals. Nineteen request were made, each one
with three hundred process to be distributed into the clusters. In all cases MCT
performs better than MET and OLB. For greater clarity, figure comparisons
were done between Hill-Climbing and MCT algorithms.

The results of simulation executions can be seen in figure 1. In the firts graph,
Hill-Climbing uses all clusters machines, selecting the best master cluster and
MCT only selects the minimum completion time cluster. Choosing to run the
application in all machines heuristic algorithm performs 70% better than MCT,
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Fig. 1. Time execution comparison between Heuristic and MCT algorithm with uni-
form task arrival and exponential task arrival

this one is the best case. If each parallel task sends more data while process-
ing, then the application becomes communication bounded (TCpt <= TComm)
limiting the number of machines each cluster could use to compute, decreasing
the algorithm performance. Once the algorithm proved to work with low rate of
arrival the next step was to test it incrementing this rate. This can be seen in
the second graph. Until the second request the execution time is below MCT.
For some request the execution time are above MCT. This happens because
tasks are distributed over different clusters. If tasks waiting times are observed
(shown as continuous lines), MCT has longer waiting periods, compensating for
faster executions. The average total time tends to be the same. After several
simulations we can conclude that in the worst case Hill-Climbing heuristic tends
to perform the same as MCT. In the average scenario (low rates of arrival with
peaks at regular intervals), the Hill-Climbing heuristic algorithm performs with
a 20% of improvement.

4.2 Cluster Adaptation Experiences

In cluster adaptation test, different task types were submitted requiring differents
volumes of I/O. Task mixes were done with exponential rate of arrivals. Some
requests overlap in time but waiting times were not too high. Because of this
they are not shown in the graphs.

After several simulation executions it was noticed that some clusters can not
be 100% used because tasks with high network I/O requirement took little per-
centage of clusters machines while saturating Internet connection. In the case
where tasks with low network requirements arrive, this can be a waste of com-
puting resources (as blocked machines could be used with smaller bandwidth).
To solve this problem a migration procedure was proposed, if a virtual machine
consuming network bandwidth was migrated to other physical machine already
working, taking advantage of virtual machine live migration. The fair scheduling
algorithm used in hypervisors will slow down computing power freeing network
bandwidth, and these free bandwidth will be taken by the new process. This
procedure is advantageous if the time waste in the migrated task is less than the
time gain processing the new task.

In figure 2 we depict Hill-Climbing heuristic execution time and MCT execution
time with a similar behavior as the previous figure with a 25% of improvement, and
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Fig. 2. Migration process sample

an example of the migration procedure. When Req3 arrives, the algorithm in-
vestigates a) where machines can be migrated and b) what the impact should be
on the running application, were these machines actually migrated, i.e. whether
the gain upon migration would pay for migration overhead. These conclusions
can be drawn only having the application’s run time characterized beforehand.
In the boxes of figure 2 two examples of this procedure can be seen. In the upper
left part of the box, a graph is shown with the machines originally assigned to
the task (in this case Req3 and Req5) and then the machines after the virtual
machine migration procedure. In the first case eight machines were assigned and
then two machines from blocked clusters were added. A small increment can
be noticed in the time in the execution of Req1 because of the slow down in
the computing power after the migration. The same can be seen in Req5. The
time gain is more obvious there. In the rest of the simulation, several cases exist
with a longer execution time. This ocurrs because of different configuration of
machine assignment after the migration process. On average, the performance
improvement is of 5% over the originally proposed algorithm but this depends
on tasks balance and arrival rate.

5 Conclusion

This paper has presented a metascheduler framework extension to generate high
performance laboratories with virtual machines, local resource managers and
management heuristic to obtain effective usage of clusters and machines. The
framework takes into account not only the time taken by a task to complete
but also network consumption, with the purpose of taking advantage of the
bigger number of machines available in a grid environment. Geographical parti-
tions through Kruskal graph algorithm also address the problem of scalability,
decreasing the complexities in the search of the optimal solution. Hill-climbing
with k-restarts does not ensure reaching an optimal solution; but in the tests
done the best solution was achieved in nearly every case.
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Tests were done by sweeping a range of arrival rates, cluster computing power,
number of tasks, number of process per tasks and task computing and I/O
requirements. Selection algorithms have been implemented to find groups of
clusters that satisfy certain requirements in a small search space, making an effort
to return a solution in a fast and optimal way. These implementations increase
computing power by nearly 20%. Dynamic algorithms have been implemented
to adapt cluster configuration at run time with migration of virtual machines.
This implementation results in performance improvement of 10% on the total
computing time, with machines processing 100% of their working time.

These results allow us to conclude that this solution is feasible to be imple-
mented on Grid environments, where automation and self-management are key
to attain effective resource usage. Where clusters serve fixed applications, multi-
cluster analysis could guide balance tuning between computation and communi-
cation, determining whether it is more effective to either increment/decrement
the bandwidth in use, or increment/decrement engaged computing power.
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Abstract. Virtual machines can greatly simplify grid computing by pro-
viding an isolated, well-known environment, while increasing security.
Also, they can be used as the base technology to dynamically modify
the computing elements of a grid, so providing an adaptive environment.
In this paper we present a Grid architecture that allows to dynamically
adapt the underlying hardware infrastructure to changing Virtual Orga-
nization (VO) demands. The backend of the system is able to provide
on-demand virtual worker nodes to existing clusters and integrate them
in any Globus-based Grid. In this way, we establish a basis to deploy
self-adaptive Grids, which can support different VOs in shared physical
infrastructures and dynamically adapt its software configuration. Exper-
imental results on a prototyped testbed show less than a 10% overall
performance loss including the hypervisor overhead.

1 Introduction

Recently, interest in virtual machines is quickly growing, as hardware support
provided by new generation microprocessors significantly reduces the overhead of
virtualization [1]. Typically, hypervisors like Xen [2] or VMWare [3] take advan-
tage of these new hardware features to improve their performace. Computational
Grids can greatly benefit from virtualization. A Grid is a highly heterogeneous
system both in terms of the hardware and software configuration of its com-
ponents. This fact reduces the number of potential resources to run a given
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application, which usually requires specific versions of different software compo-
nents (e.g. operating system, libraries or post-processing utilities). Moreover, the
installation, configuration and maintanace of these different components signif-
icantly increases the operational costs of the Grid infrastructure. Finally, those
organizations that contribute resources to a Grid usually want to limit the in-
teraction of Grid applications with their own internal workload.

Among other solutions, Virtual Machines (VM) can solve the aforementioned
problems. From the user perspective, VMs ensure the correct execution of the
application by encapsulating software configurations in a ”well-known” environ-
ment. On the system administrator side, VMs are an efficient technology to
isolate and partition the system. Thus, allowing them to set the amount of re-
sources devoted to Grid jobs. Also, the operational cost of the infrastructure
is reduced as specific appliances to run an application class can be prepared,
configured and deployed.

The integration of virtual machines in Grid environments has been previ-
ously explored by several works. For example, the In-VIGO project [4] estab-
lishes a basic layer of virtual Grid resources upon which any grid middleware
can be deployed. The Virtual Workspace Service [5], exposes the functionality
needed to manage workspaces –abstraction of execution environments imple-
mented through VMs. Also, a straightforward deployment of virtual machines
to execute scientific codes in a Grid has been analyzed in [6] (see Section 2 for
an additional description of other related works).

In this work we propose a novel architecture for the dynamic provisioning of
computational services on a Grid infrastructure. The system leverages virtualiza-
tion technologies to provide flexible support for different Virtual Organizations
(VO). Usually, the resources of a Grid site support different VOs (e.g. Bioin-
formatics or High Energy Physics). The proposed system is able to balance the
amount of resources allocated to each VO in terms of their dynamic requests.

On the other hand, different VOs need different software, or even different
versions of the same software. Traditionally, the cost of the installation, config-
uration and maintainace of VO-specific worker nodes have limited the flexibility
of the infrastructure. In our case, the system will deploy on-the-fly VO-specific
worker nodes to execute their applications.

To achieve these two goals, we propose a multi-layer architecture to provide
virtual worker nodes to clusters inside a Grid. The infrastructure, given a set of
virtual machine images, is capable of deciding the number and the kind of worker
nodes to be created on each cluster. This way, the computing elements of a grid
can be adapted to fit the changing software requirements and computational
demands. Section 3, provides a detailed description of the system.

The paper also analyzes, in Section 4, a prototype implementation of the
architecture. In particular, we discuss the overhead and interaction of all the
components of a classical middleware stack, namely: local resource management
systems (Sun Grid Engine in our case), Grid resource services (Globus GRAM),
information services (Globus MDS4) and meta-schedulers (GridWay). Finally,
in Section 5, we discuss our experience and explain our future work.
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2 Related Work

The idea of a virtual cluster which dynamically adapts its size to the workload
is not new. Jeffrey Chase et al., from Duke University, describe in [7] a cluster
management software called COD (Cluster On Demand), which dynamically
allocates servers from a common pool to multiple virtual clusters. Although the
goal is similar, the approach is completely different. COD worker nodes employ
NFS to mount different software configurations. In our case, the solution is based
on VM, and the system is studied from a Grid perspective.

Ananth I. Sundararaj et al., from Northwestern University, have also worked
on dynamic cluster configuration [8] with a different approach. They have de-
veloped a network tool that connects virtual machines, making the connectivity
problem identical to that faced by the user when connecting any new machine
to his own network. This allows to migrate VMs across different domains while
preserving the same IP. Our aim is not to develop a totally virtualized architec-
ture, but to include the advantages of virtualization in existing infrastructures
in a non-intrusive way.

OSG (Open Science Group) defines Edge Services, that mediate access be-
tween a site and the external world. They can handle common grid operations
like job submissions or data movement. I.Foster et al. [9], employ VMs to bring
them up dynamically only as they are needed. Although this work is also based
on virtualization technology and the Virtual Workspace Service (VWS) the ap-
proach is different. In this paper, our goal is not to create a new service (Edge
Service) but to improve and adapt existing ones, supporting different VOs in a
shared physical infrastructures.

Finally, Amazon Elastic Computing Cloud [10] provides a remote VM execu-
tion environment. It allows to execute one or more “Amazon Machine Images”
on their systems, providing a simple web service interface to manage them. Users
are billed for the computing time, memory and bandwidth consumed. This ser-
vice greatly complements our development, offering the possibility of potentially
unlimited computing resources. It would be possible to employ a grid-enabled
Amazon Machine Image, and create as many instances as needed, getting on-
demand resources in case the physical hardware cannot satisfy a peak demand.

3 Description of the Architecture

In this section we detail the architecture of the system and its basic behavior.
In its design, we have focused in avoiding dedicated systems. The virtual worker
nodes provided by the underlying physical infrastructure can register in existing
clusters queues (computing services). So the flexibility of the Grid infrastructure
can be boosted up without requiring dedicated hardware, or modifying neither
existing applications nor software configurations. The final goals of the proposed
architecture are:

– Dynamically adapt a shared infrastructure to support different VOs, by bal-
ancing the physical resources allocated to each VO.
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Fig. 1. Architecture Overview. Arrows represent an intertaction between components,
the time of this interaction is labeled in the figure.

– Reduce the operational cost of the Grid infrastructure, by providing a simple
way to provide on-demand software configurations to VO users.

– Minimize the Gridification time, by executing VO applications in a well-
known pre-defined environment.

The base of the architecture (depicted in Figure 1) is the Virtual Machine
Layer. This layer is responsible for the creation of virtual worker nodes to be
registered in a cluster. Typically, the functionality of this layer will be provided
by a hypervisor. In the present work we will consider Xen 3.

The worker nodes (either physical or virtual) are managed by a Local Resource
Management System (LRMS layer in Figure 1). In our case we will use a Sun
Grid Engine (SGE [11]) instance. The SGE cluster is configured with a different
queue for each VO, which also provides a VO appliance. So, when a new worker
node is to be deployed the corresponding appliance is used. This way, several
software configurations can coexist on a single cluster and a job can be executed
in the correct one by just specifying the queue name. We would like to note
that having a queue for each VO is a usual configration for Grid resources (for
example in the EGEE [12] infrastructure).

The previous resources are exposed as Grid services by the components of
the third layer, Basic Grid Middleware. The prototype version considered in this
paper uses the services provided by the Globus Toolkit 4, namely: information
(MDS4), execution (GRAM4) and file transfer services (GridFTP); along with a
virtualization interface (Virtual Workspace Service, VWS). The ability of VWS
to deploy several copies of a single image along a physical cluster, with a pre-set
pool of host names and IPs, keeps integration with LRMS layer simple.

At the top layer (Management) we usually find meta-schedulers that manage,
control and monitor the execution of Grid applications. We have chosen the
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GridWay [13] meta-scheduler. As, it provides some features which are required
by the proposed architecture:

– Scheduling capabilities: GridWay employs a dynamic scheduling system. It
can detect when a new machine has been added or removed from a cluster,
and redistribute the work load.

– Fault detection & recovery capabilities. Transparently to the end user, Grid-
Way is able to detect and recover from any of the Grid elements failure,
outage or saturation conditions [14].

3.1 Infrastructure Manager

Finally, the Infrastructure Manager module completes the system architecture.
This component is responsible for adapting the Grid computational services
to the dynamic Grid computing demands. The Infrastructure Manager decides
when to add new worker nodes (and their type) to a given computing element
(cluster queue). So, allowing Grid administrators to adapt their services accord-
ing to a pre-defined set of policies (e.g. the cluster should be shared in a 2 to 5
ratio between the fusion and bioinformatics VOs.)

The following sequence of actions (see Figure 1) describes the actions that
takes place when the Information Manager decides to add a new worker node to
the computing element:

1. The Infrastructure Manager request a new VM to the VWS (using a pre-
defined appliance for the VO). The VWS determines the best node to run
the virtual machine, based on the resources requested (e.g memory). The
arrow labeled “CR” in Figure 1 represents the time since the Infrastructure
Manager sends a deploying petition until it receives a confirmation.

2. If the VM image (appliance) is not local to the host system, it accesses the
image server via a suitable protocol (e.g. GridFTP) and obtains a copy. We
will refer to the time employed on the image transmission as “PT”.

3. Once the image has been transferred, the physical node’s DHCP server con-
figuration file is altered in order to establish VM’s IP and hostname. The
time to assign a hostname and IP will be referred as “DA”.

4. When these operations conclude, the VM is booted. “VMB” denotes the
time since the hypervisor (Xen) receives the execution instruction until it
starts booting the VM. Also, “VMR” is the time need to actually boot
the system. Note that while VMB is constant, VMR highly depends on the
virtual machine configuration and services.

5. When the VM has been deployed and is running, it registers on LRMS
frontend (arrow “SR” in Figure 1) as an execution host.

6. After a given time, the Grid information system (MDS) detects the new node
and publishes it. This step is labeled “PUB” in Figure 1.

7. Finally, the meta-scheduler (GridWay) will refresh the information of the
available Grid resources, and detect the new worker node (label “GW“).
Then, according to the scheduling policies, it will allocate jobs on this new
resource by interfacing with the Grid execution service (GRAM).
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4 Experimental Results

4.1 Testbed Description

The behavior of the previous deployment strategy will be analyzed on a testbed
based on Globus Toolkit 4.0.3 and GridWay 5.2.1. The testbed consists of three
resources: two SGE clusters, and a dedicated system hosting the management
services (meta-scheduler and infrastructure). The main characteristics of these
machines are described in Table 1.

Table 1. Characteristics of the testbeds resources

Host OS CPU Memory Services

UCM frontend Debian Etch P4 HT 3.2GHz 1 GB GT4.0.5, SGE
NIS, NFS, VWS

UCM WN (2) Debian Etch 2 x P4 HT 3.2GHz 256MB DHCP, Xen 3
ESA frontend Fedora Core 6 Xeon 1.70GHz 768MB GT4.0.4, SGE

NIS, NFS, VWS
ESA WN 1 Fedora Core 6 2 x Xeon 2.20GHz 2GB DHCP, Xen 3
ESA WN 2 Fedora Core 6 Xeon 1.70GHz 768MB DHCP, Xen 3
ESA WN 3 Fedora Core 6 Xeon 2.20GHz 2GB DHCP, Xen 3

Manager Server Debian Etch Pentium M 1.4GHz 768MB GT4.0.3, GridWay 5.2.1

4.2 Functional Analysis

The aim of the experiments presented in this section is to obtain a clear un-
derstanding of the interaction of all the components that form the architecture.
Also, we will study the overhead induced by each component, so we can evalu-
ate the the cost of the benefits that virtualization adds to the Grid in terms of
flexibility, lower operational costs and enhanced security.

Deployment Overhead. Let us start by measuring the deployment time of
a VM under several conditions. As different hardware configurations lead to
different results, we have only employed one cluster (UCM, see Table 1) to carry
out these tests. Table 2 presents the average results (over 25 runs) obtained while
deploying one, two and three VMs on the same physical machine, respectively.

In Table 2, time precision is one second. Hence, the values obtained in the
measurements of CR, DA, VMB, VMR and SR can be considered the same for
the three experiments. We would like to note that the overhead induced by the
SGE layer is negligible (the time to register a worker node in the cluster is less
than a 1% of the total deployment time).

Although most of the overheads are constant regardless of the number of VMs
deployed, the growth of propagation time (PT) makes this approach unfeasible.
These results suggest to use a sequential deployment approach for worker nodes.

On a sequential deployment, VMs are deployed one at a time. Only one image
is being transferred from the image server to the execution node, so I/O overhead
is greatly reduced, obtaining nearly a constant time. Both approaches can be
compared in figure 2. We would like to remark that when deploying more than
3 VMs simultaneously most of the times error situations occurred.
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Table 2. Deployment time (in seconds) when starting one, two and three VMs simul-
taneously. CR: Command Received in Physical Node. PT: Image propagation time.
DA: DHCP server alter. VMB: Xen start time. VMR: VM booting time. SR: SGE
registering.

VMs Created CR PT DA VMB VMR SR Total
1 2 96.8 4.58 3 10.67 1.5 118.58
2 2.54 279.58 4.82 6.44 11.73 1.88 308.02
3 1 472 3.75 5.8 11.83 1.5 495.88

Fig. 2. Deployment overhead for simultaneous and sequential approaches

Shut Down Overhead. When shutting down a VM (Table 3), we have mea-
sured three relevant values. In this case the time is constant regardless of the
number of VMs being shut down.

Overhead introduced by SGE when shutting down a VM can be minimized
by reducing the polling time. Default value is 300 seconds, so it takes an average
of 150 seconds to detect the new situation. Reducing polling time limits the
overhead, although increments network usage. System administrator must tune
this value according to the number of nodes in the cluster and average VM
uptime.

Grid Integration. Figure 3 shows a global view of the interaction of all the
system components. As has been discussed previously, the time to start a virtual
worker node (time since the Infrastructure Manager requests a worker node, 114
sec., till it is registered in the LRMS, 2 sec.) is roughly 2 minutes.
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Table 3. Times (in seconds) when a worker node is shut down

Number Command VM SGE Total
Received Destroyed

1 0.78 6.22 145 152
2 0.88 6.46 158 165.33
3 0.67 7.33 151 159

Infrastructure Manager Metascheduler

Basic Grid Middleware 

LRMS

Machine Level

114

2

170

90

Fig. 3. Sequence of actions in a VM deployment and the associated overhead
(in seconds)

The time to register the new slot in the Grid Information system (MDS4) is
about 170 seconds. It is worth pointing out that MDS publishing time is greater
than the time employed on deploying one VM plus SGE register time. There-
fore, when sequentially deploying several VMs both times overlap, producing
an additional time saving. The MDS and GridWay overhead can be limited by
adjusting their refresh polling intervals.

When switching down, the same steps are accomplished. In this case, the
time until the operation is accomplished at the machine layer is greatly reduced,
from 114 to 7 seconds. However, time until LRMS detects the lack of the VM
is incremented, from 2 to about 150 seconds. It is interesting to note that the
meta-scheduler could assign jobs to the cluster during the worker node shutting
down time. In this case the meta-scheduler should be able to re-schedule this job
to another resource.

Virtualization Overhead. Virtualization technology imposes a performance
penalty due to an additional layer between the physical hardware and the guest
operating system. This penalty depends on the hardware, the virtualization tech-
nology and the kind of applications being run. Two good performance compar-
isons of VMware and Xen were conducted by the computer science departments
at University of Cambridge [15]. and Clarkson University [16]. On these studies,
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Xen performed extremely well in any kind of tasks, with a performance loss be-
tween 1 and 15%. VMware also achieves near-native performance for processor-
intensive tasks, but experiences a significant slow-down (up to 88%) on I/O
bound tasks.

VWS development team measured VWS performance in a real-world grid
use case [17], a climate science application, achieving about a 5% performance
loss. In a previous work [6], we have obtained a similar result (about 10% loss)
when employing virtual machines in a Grid to execute a high throughput scien-
tific application. This is an acceptable result, regarding the benefits in terms of
modularity, portability and simplified application development.

5 Conclusions and Future Work

In this paper, we have presented a Grid architecture for the dynamic provisioning
of computing elements. The benefits of this architecture is a flexible Grid able
of supporting different VOs on a shared and configurable infrastructure, while
reducing its operational costs.

The results obtained on the performance tests show that the proposed ar-
chitecture and technologies represent a feasible solution. With a daily cluster
reconfiguration, induced overhead is less than 1%. Added up with Xen per-
formance lost, it remains under 10%. However, it provides attractive benefits
like increased software robustness, easier cluster administration and enhanced
security.

In the future, we will improve the decision making system on the resource
manager, in order to optimize the deployment of virtual machines under different
conditions and usage. We will also explore the possibilities that the proposed
technology offers to outsourced grids, allowing dedicated service providers to
supply resources on demand over the Internet.
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Abstract. Virtual machine (VM) technology offers increased flexibility in re-
source provisioning. Load for applications typically varies over time, justifying 
the need for dynamic resource allocation/relinquish — exactly what VM tech-
nology allows. An approach for automated, dynamic resource management of 
applications running on a computational cluster has been devised. The job of 
the framework is to maintain a certain service level of application within toler-
able limits. To do this the framework is able to dynamically vary resources 
available to the application. To facilitate performance optimization an applica-
tion performance profile can be created using stress-testing tools. A software 
toolkit that allows running single and multiple VM applications has been cre-
ated. Sample services (including both computing oriented and web oriented) 
have been tested and performance-resource dependences studied. We present an 
ongoing work on dynamic resource allocation, involving optimal control and 
optimization methods.  

Keywords: virtual environment management, service level agreements, virtual 
machines cluster, virtual appliances. 

1   Introduction 

The research goal is to develop methods and tools to deal with multiple applications 
sharing a computational cluster in a virtualized environment. With regular clusters, 
the number of nodes occupied by a particular application serves as the main resource 
consumption metric. In addition to this the virtual machine (VM) technology offers 
several new capabilities bare iron environments couldn't feasibly offer. In particular 
using Xen one can: 

1. Suspend a VM to disk and resume it later, allowing one to utilize the resources for 
a higher priority service. 

2. Pause a VM, leaving it in memory, to allow running some other application/VM. 
3. Live migration of a VM from one host to another for any one of a variety of rea-

sons (e.g. consolidate resources to allow something new to run). 
4. Start a VM with some number of virtual CPUs and then add or remove CPUs on 

the fly based on need and the priority of other VM. 



34 A.A. Moskovsky, A.Y. Pervin, and B.J. Walker 

 

5. Start a VM with some fraction of each CPU it has allocated and then grow or 
shrink this fraction dynamically. 

6. Start a VM with some amount of memory and then grow or shrink this footprint 
dynamically. 

7. Start a VM with some I/O capacity and grow or shrink this capacity on the fly. 

This drastic increase in flexibility allows not only “carve to order” (dedicate only 
as much resource to the task as needed) but also allows shared “over provisioning” in-
stead of individual application “over provisioning”. This should allow IT managers to 
provide considerably more services within the same infrastructure, particularly if one 
can automatically reallocate the resources based on their needs. As well, automation 
saves human time (and associated cost), human reaction can be too slow. At the same 
time, performance overhead of virtualization can be kept relatively low [1, 2]. 

Related works are numerous in the both industry and academia. Amazon`s EC3, 
3Tera`s Applogic are widely known industrial projects, which are capable of 
hosting on-line services in customized VMs. Cluster-on-Demand [3] provides a 
toolkit to create virtual clusters of VMs on top of physical machines. Virtual 
Workspaces [1] are utilizing VMs to isolate applications from hosts in a grid envi-
ronment (starting grid jobs inside VM), leveraging and extending Globus Tool-
kit`s resource management [4]. SoftUDC [5] is a utility computing platform, which 
virtualizes CPU, storage and network resources for applications running on a cluster. 
Resource sharing techniques in virtualized environments are sometimes borrowed 
from economics. Shirako [6] offers a mechanism were the application and the 
framework can negotiate and contract on resource leases. Tycoon [7] is an example 
of auction-based modeling applied to resource scheduling. 

We believe that one step further is feasible: an automatic resource manager can be 
aware of how valuable given portions of the CPU, memory or some other resource are 
to a given application under the current load. With this information one can more ac-
curately decide how to deploy incremental resources and when to request resources 
back from applications. In this work the software has been developed to conduct ex-
periments with various resource allocation schemas. The following assumptions are 
considered in these schemas: 

• Each application has a set of key parameters that define a quality of service for 
end-users, such as a response time for a web site application. These parameters can 
be measured at application run time. 

• With the help of VM technology, various resources can be allocated dynamically 
with very fine granularity and thus they can be treated as continuous variables. 

With these assumptions, the problem for managing the application’s quality of ser-
vice can be treated as an optimal control problem with continuous variables. This makes 
this work considerably different from other researches in QoS management [8-10]. In 
our work applications are considered as black-boxes and management framework can 
utilize powerful optimal control theory methods to implement efficient optimization 
mechanisms for resource allocation. 

In order to make use of theoretical basis, we advocate the service level abstraction 
to enable automated decision-making about which resources are necessary for an  
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application to run. The runtime framework can receive sensor data about current ap-
plication state and use application performance model to make decisions on how to 
maintain the service level for this application. In case of resource shortage, the 
framework can take away resources from less important (for end users) applications. 
Performance profiles can be either measured before runtime or generated on the fly. 

The goal is to support a variety of types of single threaded and parallel services 
(virtual appliances) with desired performance characteristics under dynamically 
changing load conditions. This support implies optimal use of the resources so the 
greatest number of services can be launched on a given amount of hardware. 

To accomplish this goal we first needed an infrastructure that allowed deployment, 
monitoring and resource re-allocation for virtual appliances. The next section of this 
paper describes the Virtual Services toolkit developed to provide such infrastructure. 

Next the performance profile or models on the services are required. This informa-
tion would not only describe the ideal resource mix (memory, number of virtual 
CPUs, CPU share value and I/O capacity) for a given load but would also describe the 
effect of adding or losing various resources. Section 4 outlines the concept of per-
formance profiles. Finally we describe an arbiter that can take the performance pro-
files and the runtime information and re-allocate resources to optimize the effect of 
those resources.  

2   Virtual Services Software 

To accomplish the research goals a simple system was implemented that allows us to 
roll-out virtual services — parallel virtual appliances. Virtual appliances can be either 
online services (like web-site) or high-performance parallel applications. Other appli-
cations may include online gaming services, data processing, and transformation or 
retrieval applications. 

Consider the components and interaction of those components in the fig. 1. 

 

Fig. 1. Virtual service software components 
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A typical use-case of the system involves a Service Provider (an administrative us-
er), who starts a service. The Service Users access it via the point of entry — an IP 
address accompanied with a port.  

Capabilities of the software kit include, but not limited to: 

• Instantiate/kill a service. Service instantiation involves launching one or more VMs 
with appropriate disk images and setting up of network traffic redirection rules and 
forming of virtual network for VMs of the service.  

• Allocate/free the resources for the service. Resources request may originate from a 
human (Service Provider) or from the application-specific resource provisioning 
component which is known as service specific scheduler.  

• Redirect network traffic. This is necessary to enable users’ access to the virtualized 
application. It’s also can be used for load-balancing. 

The resource management flexibility is crucial for the research. At the same 
time, the ability to run generic algorithms on a system-wide layer is also important. 
Bearing this in mind, a two-layer resource scheduling mechanism had been  
designed to isolate concerns of system and service layers. On the lower layer a 
pluggable, service-specific scheduler makes resource distribution decision locally, 
considering monitoring information. On the top layer the system-wide scheduler 
takes into account agreements between Service Provider and a System Administra-
tor, such as the Service Provider’s priority, to provide globally optimal distribution 
of the resources between the services. In addition, the system-wide scheduler is able 
to query an application performance model, when it’s necessary to evaluate variants 
of resource allocation. The schedulers are able to communicate with each other and 
access the monitoring data they need. The framework automatically maintains a cer-
tain resources quantity available to the application, in order to keep agreed service 
level. If a cluster node fails with a VM running on it, the framework will  
re-instantiate the VM on available free nodes using technique similar to high-
availability clustering solutions. The Ganglia monitoring system is used to imple-
ment a heartbeat mechanism. 

3   Service Examples 

• WebMapServer 
This application [11] allows querying different information from geographical 
maps. In our tests the data on Itasca County, MN was used.  It was derived, for the 
most part, from USGS (US Geological Survey) 1:24,000 quadrangles. The page 
displayed to the user includes a custom generated map in GIF format.  

• X-Com  
The computational service is based on the X-Com utility. X-Com is a meta-
computing framework, developed at Moscow State University [12]. The X-Com 
concept is similar to the Condor [13]. However, the implementation is simpler, 
light-weight, easy to install and use, yet applicable in wide variety of computa-
tional environments. 
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• Virtual Cluster 
The virtual cluster service starts the necessary number of VMs with the network 
connectivity support between each of them. Start of this service results in a set of 
the nodes that is called a virtual cluster. The network support is provided with the 
help of a bridging mechanism. It allows including a VM into the virtual cluster ab-
solutely transparently for the user. The users may interact with the virtual cluster 
node without any extra effort as if it was a normal host.  

A number of computational experiments were conducted on the virtual cluster. It 
was shown that in such environment one can successfully run LAM MPI applications 
that operate on several nodes concurrently . We have also run experiments with 
launching of parallel programs created with the help of rapid parallel application de-
velopment tools such as OpenTS [14]. 

4   Performance Profile 

An application performance profile represents the dependency between the amount of 
resources provided to the application, the user activity being generated on this appli-
cation and the quality of service this application provides to the users. The amount of 
resource can be expressed in either absolute values (1GB of RAM) or in relative form 
(53% of CPU). The user activity is specific for different application classes. For ex-
ample, for the web-site the user activity is a number of concurrent requests to a par-
ticular page of the web-site (that is, request rate). Finally, the quality of service can be 
measured as difference between desirable (or target) state of the service and its cur-
rent state. The service level concept is discussed in details below. 

This dependency can be expressed in tabular form. Tabular form describes some 
typical use cases of the application at different levels of user activity and the interpo-
lation or extrapolation is used to obtain the values that are not provided in the table. 
The data for the tables can be collected with the help of stress-test utilities, such as 
httperf. We believe that this , given sufficient data collected in tables, may be ap-
propriate for resources provisioning. 

A number of experiments with various user activity and amount of resources dedi-
cated to the service were conducted. Currently the following VM parameters are 
available to tune: amount of memory, number of virtual processors allocated by VM 
(VCPUs) and CPU cap, defining the maximum processor’s time share the VM is al-
lowed to occupy. The user load in each test run was chosen in a way to maximize the 
usage of resources provided to the service and at the same time keeping the network 
errors (such as request timeouts) at minimal levels. These user load values are re-
ferred as inflexion points — the highest load the service is capable of handling well. 

The WebMapServer performance profiling demonstrated an insensitivity of this 
application to the amount of memory: only tiny variations of request rate were  
observed (fig. 2).  Increasing VCPUs doesn’t improve performance and eventually 
degraded performance (fig. 3). The application is apparently single threaded so we fo-
cused on the CPU cap parameter in the tests as the most significant VM parameter. 
The dependence of the maximum request rate from the CPU share is almost linear. 
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Fig. 2. Maximum requests/sec served by 
WebMapServer, at different amount of mem-
ory and Xen CPU caps 

 

Fig. 3. Maximum requests/sec rate, served by 
WebMapServer, vs. VCPU of Xen at different 
CPU caps specified 

 

Fig. 4. Response time of WebMapServer vs. CPU cap specified in Xen configuration, under 
different load (requests per second) 

One may see in fig. 4 that under 10 requests per second (the most right line), qual-
ity of service is quite sensitive to the CPU share provided to Xen: only above 70% 
share is response time tolerable. At the same time, 1 request per second can be served 
even with 10% CPU cap at reasonable response time (1 second). 

The performance profiles can be used to evaluate variants of resource allocation 
without actually affecting the performance of applications running in the framework. 

5   Service Level Agreements 

Consider the situation when a web-site owner wishes to maintain service response time 
below a certain threshold (e.g. 1 second). If the web site is experiencing a spike of user 
activity, additional computing resources are required to keep the quality of service at a 
reasonable level. In this paper, this level is referred as a target level. It is natural to use 
an automated mechanism to maintain the target level since human intervention can be 
too slow and unreliable. One possible control schema is illustrated in the fig. 5 below. In 
order to re-use the optimization algorithms in the Optimizer, which acts on the system-
wide layer, it is necessary to provide translation from application-specific parameters 
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(such as response time) to abstract service level value [15], which is done with the help 
of a service level function. 

The idea of abstract service level function is the following. The function takes a 
measured parameter as an argument and results in a service level value that is in the 
0% - 100% interval. Next, these values are passed to the Optimizer, who will find op-
timal resource allocation, maximizing service levels of the services by varying re-
sources available to the services.  

 

Fig. 5. Control Chain 

 
The service level function is defined in a unique way for each service as the meas-

ured parameters and their target ranges differ from one service to another. Thus for 
the web-site service where the target service level is defined as the average response 
time below some reasonable value, the measured parameter should capture (at least) 
current response time. For the computational service with the deadline defined to fin-
ish the calculation, measured parameter describes an average calculation speed. In this 
case the optimal calculation speed will allow reaching the deadline without utilizing 
extra resources.  

Since the service level functions are continuous, the powerful continuous optimiza-
tion math algorithms can be applied in the Optimizer. In the general case the service 
level function is switch-shaped curve of the form:  

w+
x))-(b*(a+1

x)-(b*a*w
)(

2
=xs  (1) 

where x — measured parameter (e.g. response time), s — service level, а, b and w — 
are parameters, allowing one to tune the curve’s shape to fit application needs.  

We suggest setting the value of 50% as the lowest tolerable level for any service in 
the framework. The Optimizer should try to keep all service levels above 50%. The 
value of 50 is selected because the changes on the service level function curve are the 
steepest in this area and hence optimization algorithms will be most sensitive to 
changes around this last tolerable value. 

By tweaking the service level function parameters one is able to create soft or hard 
requirements to the function. Consider an example of service level function (1) with 
parameter a equal to 10, b — 1 and w — 0.5.  This function is almost 100% below 1 
second and rapidly vanishes to zero above 1.5 seconds (fig. 6). The curve parameters 
should be carefully chosen to fit application characteristics and its target service level. 
The service level concept can be easily generalized to include more parameters, e.g. 
percent of errors in addition to response time. In this case multidimensional function 
can be used. 
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Fig. 6. Service Level Curve for the web-site 
service 

 

 

Fig. 7. Service Level Curve for the computa-
tional service 

 
It is clear that the service level approach is not only valid for web-site applications 

but can be extended to other application types. It can be applied for the job queues as 
well. As was mentioned before, the Service Provider may specify a deadline by which 
all jobs in the queue should be completed (see fig 7). Given job characteristics, it is 
possible to evaluate calculation speed and estimate completion time. If the deadline is 
met under current resources the service level is 50%. It will degrade until it becomes 
0%, when results of the calculation are obsolete (say, weather forecast for tomorrow 
completed three months later).  

In real life the framework should be able to deal with multiple applications simul-
taneously. The aggregation of n service levels into one can be achieved by weighted 
multiplication: 

∏
=

=
n

i
iiin xSwxx

1
1 )()...(σ  (2) 

where the wi are relative weights assigned to each application, Si are application ser-
vice levels and σ is the whole system service level. By maximizing σ the framework 
should enable tomorrows weather forecast service to be finished by afternoon at, 
probably, the expense of some inconvenience to web-site visitors in the morning. An 
array of optimization or optimal control methods can be applied in order to maxi-
mizeσ  - dynamic programming to name just a starting point. 

6   Preliminary Implementation of Optimization Algorithm 

So far, a naive one-dimensional constrained optimization is used to find the optimal 
resources required for a given application. Consider the example with the computa-
tional service. The algorithms below tries to figure out the minimum CPU share that 
still satisfies the target service level by using a binary search: 



 Dynamic Resources Management of Virtual Appliances on a Computational Cluster 41 

 

• First stage requires finding the boundaries of the range of CPU share.  
• System starts with some guess on the resource necessary for the application. If 

the current service level is below the target level (case 1), the value of the guess 
CPU share will be higher than currently available to the service. Otherwise the 
algorithm will try to decrease the CPU share (case 2). 

• This step will be repeated with increasing values of guess doubling the step until 
the current service level will not reach some value near the target level (higher 
than the target level in case 1, and lower in case 2). 

• On the second stage, the algorithm uses the last 2 values obtained on the previ-
ous stage to perform a binary search in the range of these values to find an  
optimal CPU share distribution for the service. This step implies continuous  
increasing (or decreasing) CPU share available to the application and measuring 
of the new service level. 

This algorithm is started periodically. In that way the service level of the applica-
tion is kept at target value automatically. The existing implementation is simplistic, 
but still applicable to various services. Thus, for example, this algorithm was used to 
dynamically allocate resources for the computational X-Com service during its opera-
tion. The X-Com service was launched with some deadline to finish the job and the 
volume of resources a priori insufficient to complete the computation on time. How-
ever using this schema, the system increased the amount of resource dedicated to the 
service enough to finish the job close to the deadline. Our tests demonstrated only 
0.5% deviation from the deadline. Thus a 40 minutes long computation was finished 
only 10 to 15 seconds late. The experimental setup was the following: 

• Computational service CPU share initially was 40% of one CPU, at the end 
was 3.25 CPUs. 

•  Service was supplied with a set of uniform tasks.  
• The optimization algorithm was launched once every 5 minutes. 
• The hardware platform was 4-node cluster, each node has 2.0 GHz Opteron 

175 (Dual-core) CPU and 2 GBytes of RAM, nodes are connected with Giga-
bit Ethernet.  

7   Conclusions 

We have created the platform where the central orchestrator and service specific 
scheduling agents can co-operatively create and remove instances of services and in-
crease/decrease the resources for services. Simple automation based on service level 
concept has been demonstrated. More importantly, however, applications were tested 
on this platform in order to create performance profiles for more sophisticated auto-
mation software to leverage. This approach is not tightly knit to the Virtual Services 
and can be harnessed in other frameworks, (e.g. Virtual Workspaces, Cluster-on-
Demand) after minor modifications. 

One might argue that modifications on VM container CPU share, abrupt discon-
nections of VM instances may be detrimental to high-performance computing appli-
cations. It is true that most of existing MPI applications will suffer: they are written 
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with the assumption of uniform processor performance and could not sustain discon-
nection of even a single process. Nevertheless, more advanced parallel applications 
can live with this. MapReduce [15] is an example of a general purpose framework 
that can deal with the additional complexity of such a dynamic environment. With all 
the efforts spent by IT community to improve high-level parallel programming tools 
and techniques, one can expect such applications to become more widespread. 
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Abstract. Nowadays, the use of clusters in research centers or industries
is undeniable. Since few years, the usage of virtual machines (VM) offers
more advanced resource management capabilities, using features such as
virtual machine live migration. Because of the latest contributions in the
domain, some may argue that single system image (SSI) technologies are
now deprecated, without considering some complementarities between
VMs and SSI technologies are possible.

After evaluating different configurations, we show that combining
both approaches allows us to better address cluster challenges such as
flexibility for the usage of available resources and simplicity of use. In
other terms, the study shows that VMs add a level of management flex-
ibility between the hardware and the application, whereas, SSIs give an
abstraction of the distributed resources. The simultaneous usage of both
technologies could improve the overall platform resources utilization, the
cluster productivity and the efficiency of the running applications.

Keywords: cluster, virtualization, SSI, resource management.

1 Introduction

Clusters are today a standard computation platform for both research and pro-
duction. Batch schedulers or single system image systems (SSI) are frequently
used to manage clusters. In the first case, a head node is in charge of scheduling
applications whereas in the second case, the SSI makes an abstraction of the
cluster resources creating the illusion of an SMP machine. Several studies have
focused on combining virtual machines (VMs) and batch schedulers in order
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to provide better resource control [1]. Features provided by virtualization tech-
nologies (such as isolation and suspend/resume) enable more advanced resources
management capabilities. For instance, one VM can be suspended or migrated
to another node. Thus, administrators are able to make maintenance operations
without impacting the platform availability. On the other side, isolation mecha-
nisms simply the management of security constraints.

This trend around virtualization seems to impact directly cluster management
and more precisely SSI technology which enables, in some ways, similar capa-
bilities. For instance, the openMosix SSI project [2] has recently closed. In that
sense, we wonder whether virtualization technology will surpass the SSI systems
or if these two models are complementary.

This paper addresses these questions and investigates in which extends the
association of both virtualization and SSI technologies could improve the usage
and management of distributed architectures as well as application execution
(e.g., administration, application debugging, and security).

To our best knowledge, virtualization and SSI approaches have been used only
in the Peta-SSI project [3], using VMs in order to study the system scalability,
“emulating” a large number of nodes. In other terms, only one capability (virtual
machine stacking) provided by virtualization solutions has been studied. In this
document, we analyze the potential benefits of all major capabilities provided by
the usage of VMs in an SSI context. This study has been done in a theoretical
way (no results of experiences are presented in this document).

The remainder of this paper is organized as follows: Section 2 clarifies the
notion of virtualization and virtualization. Section 3 gives a brief background
on SSI systems. Section 4 investigates the complementarity of virtualization and
SSI. Section 5 reports lessons learnt. Section 6 concludes.

2 Introduction to Virtualization

Virtualization is an active research topic in operating systems (OS) since the
70’s but regained popularity with the latest technologies which provide extra
computational capabilities (new machines such as multi-core processors can com-
pete with multiple individual servers that are few years old). A way to use this
extra capabilities is to execute VMs on top of physical machines. From our
point of view, the concept of VM includes five major features: (i) isolation (i.e.,
degree of isolation between VMs, the bare hardware and applications running
in different VMs), (ii) server consolidation (i.e., capability of changing on de-
mand resources allocated to a specific VM), (iii) application portability (i.e.,
capability of executing an unmodified application), (iv) virtual machine porta-
bility (i.e., capability of migrating virtual environments to different hardware
architectures), (v) suspend/restart (i.e., possibility to take a snapshot/resume
of VMs).

Nowadays, two typical virtualization approaches are possible: one which im-
plements the virtualization at the system-level (well-known Goldberg classifi-
cation [4]) and the other at the process-level (containers). Part (a) of Table 1
summarizes functionalities supported by virtualization solutions.
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Table 1. Selected Capabilities Enabled by Virtualization (a) or SSI (b)

Virtualization (a) SSI (b)
Container Type-I Virt. Type-II Virt. Partial-SSI SSI (full-SSI)

Isolation - + + - -
Server conso. + + + - +
App. Portability - + + - -
VM Portability - - + - -
Suspend/Restart + + + + +

System-level Virtualization (Type-I, Type-II). This approach aims at vir-
tualizing a full OS. For that, a virtual hardware is exposed to a full OS within
a VM. The system running in a VM is named a guest OS. According to isola-
tion properties associated with virtualization, the VM cannot execute privileged
instructions at the processor level. To access the physical devices, drivers are
hosted in a privileged OS, called host OS. Moreover, VMs run concurrently and
their execution is scheduled by the hypervisor. The hypervisor is also in charge
of forwarding all privileged instructions from VMs to the host OS.

Goldberg created a model for system-level virtualization, model based on two
functions, φ and f . The function φ makes the correspondence between process
running on the guest OS and the resources (exposed within the VM) whereas
f makes the correspondence between resources allocated to a VM and the bare
hardware. Based on those functions, Goldberg identified two different types of
system-level virtualization: type-I (e.g., Xen [5]) and type-II (e.g., QEMU [6]
and VMware [7]).

Process-level Virtualization (Container). It consists of running several pro-
cesses concurrently on top of the same OS, each having its own view of available
resources (e.g., OpenVZ [8], chroot [9] and containers capabilities provided by
recent kernels). The Goldberg classification is only focusing on the former level
virtualization solutions and does not integrate such process-level virtualization
solutions. In this paper, we only consider OpenVZ-like solutions. Recent kernel
containers approach are not taken into account.

3 Introduction to Single System Image

An SSI is an OS that aims to abstract the distributed nature of the cluster
in order to ease users, administrators and programmers tasks. For that, a SSI
globally manages distributed resources. Because a transparent management of
resources is difficult to implement at user-space (it is typically the responsibility
of the OS), most of the SSIs are implemented at OS-level. Two kinds of SSI
exist: (i) partial-SSI and (ii) SSI (or full-SSI).

Partial Single System Image. A partial-SSI only allows a global management
of a subset of cluster resources (typically processes) and only from a central
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location (i.e., a “head node”). All processes are manipulable from this head
node like if they were local processes; on other nodes, resources are still viewed as
distributed. The abstraction of the distribution of resource is therefore “partial”.
Glunix [10], Bproc [11] or Cplan [12] are examples of partial-SSIs.

Full Single System Image. A SSI (or full-SSI) provides not only a global
management of processes but also a global management of all other resources,
and therefore gives to users the illusion to use an SMP machine. In such sys-
tems, there is no head node; each node is equal and has a global view of the
distributed resources. Users are able to run SMP applications on the cluster
without application modification or recompilation. For instance, SSIs implement
a Distributed Shared Memory (DSM). This functionality enables the execution
of OpenMP parallel applications based on the shared memory programming
paradigm. Therefore, a SSI abstracts the complexity created by the resource
distribution. Kerrighed [13] and OpenMosix [14] are examples of such SSIs.

The SSI technology has several interesting capabilities for cluster manage-
ment, high performance, high availability, and, ease of use and programming.
However, in this document, we focus only on the functionalities described in
Section 2. Part (b) of Table 1 summarizes them.

4 Combining Virtualization and Single System Image

In this section, we present a systematic analysis of the combination of SSI and
virtualization technologies. To realize this study, we selected three different tar-
get applications: (i) a web server such as Apache [15], (ii) an MPI-like application
(based on message passing), and (iii) an OpenMP-like application (based on a
shared memory). We think that these kinds of application are representative of a
large part of business and scientific software. To achieve our main objective, we
analyze the benefits of the five capabilities enabled by virtualization (cf. Section
2) with configurations exploiting SSIs.

4.1 Single System Image and Containers

Containers (e.g., OpenVZ-like solutions) allow applications to be isolated from
each other on the same node. Moreover, it is generally possible to assign an IP
address, to allocate memory and CPU time to each container. Hence, a container
could be migrated in most cases from one node to another.

Container Upon Single System Image. Figure 1 depicts the architecture of
a typical system running containers upon an SSI. With this architecture, the SSI
abstracts the distributed resources. Based on this “simplified” and “unified” view
of the distributed system, global resources can be dynamically and transparently
assigned to containers in order to fit at best applications needs. In other terms,
containers could dispose of more resources that is available on one node.

Isolation: Applications are isolated from the bare hardware by containers that
are running on top of the SSI. However, an application could hijack a container,
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Little squares represent the amount of resources
provided by the system. For instance, each node
provides 2 resources and the SSI provides 4 re-
sources (aggregation of resources provided by node
A and node B).

Fig. 1. Containers Upon Single System Image

and in consequence, compromise the security of the whole system (there is one
kernel for all containers). This property is not validated.

Server Consolidation: The SSI globally manages all resources, it is possible to
change on demand the resources allocated to each container. These capabilities
are very interesting for an Apache server administrator: according to the fre-
quentation of a web site, it is possible to allocate more or less physical resources
to the cluster (resizing the containers accordingly). This property is validated.

Application Portability (AP1): Thanks to the SSI, containers can span multiple
nodes. Thus, an OpenMP application or an Apache server could take advantage
of the SSI DSM (spanning nodes) whereas, an MPI application could take advan-
tage of several containers each of them having their own IP address. Application
portability is therefore guaranteed by such an architecture.

Virtual Machine Portability: Containers have not been designed to create a vir-
tual hardware different from the hardware it is running on. Thus, the virtual
machine portability is not validated.

Suspend/Restart: Containers can be suspended/restarted at any time by any
other entity running with the correct privileges inside the system. Moreover, the
SSI can suspend/restart any containers since a container is a set of standard
resource from the SSI point of view. This property is validated.

Single System Image Upon Containers. Figure 2 presents the use of an SSI
upon containers. The architecture is not realistic because no individual kernel
can run in a container, only user-level applications can be hosted.

Fig. 2. Single System Image Upon Containers
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4.2 Single System Image and Type-I Virtualization

Type-I virtualization solutions have an hypervisor running directly on top of the
bare hardware and “hosting” the host OS and the VMs.

Type-I Virtualization Upon Single System Image. Figure 3 shows the
architecture of a type-I virtualization solution running upon a SSI. This ap-
proach enables the implementation of a “global type-I hypervisor”, including
SSI features into the hypervisor. Such a global hypervisor can transparently
and globally manage resources (creation of an SMP illusion) and typically the
resource allocated to VMs is not restricted to the local resources.

Isolation (I2): The type-I hypervisor isolates applications from both the bare
hardware and others VMs. For instance, if a hacker is able to become root on
one VM, only the local VM is compromised: isolation is validated.

Server Consolidation (SC2): In case of a node addition, VMs can be moved to
the new node; in case of node eviction, VMs can be transparently moved away.
This propriety is validated.

Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: Currently no type-I virtualization solution provides
emulation capabilities. Moreover, the SSI running on the side of the type-I hy-
pervisor does not support by definition hardware architecture heterogeneity. It is
therefore not possible to migrate VMs between nodes having different hardware
architectures. VM portability cannot be achieved.

Suspend/Restart (SR2): Type-I hypervisor enables VM suspend/restart. How-
ever, if two applications are running in the same VM, it is not possible to suspend
only one of them. Property of suspend/restart is not totally validated.

Single System Image Upon Type-I Virtualization. Figure 4 shows the
architecture of an SSI upon the VMs of a type-I virtualization solution. In this

Fig. 3. Type-I Virtualization Upon SSI Fig. 4. SSI Upon Type-I Virtualization
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case, an hypervisor is deployed on all cluster nodes and the SSI is executed in
different VMs; each VM being potentially hosted by different hypervisors.

Isolation (I3): The type-I virtualization isolates both the SSI and applications
from the bare hardware. However, if the SSI is compromized the management of
all resources and thus all running applications may be compromized. Isolation
is therefore partially achieved.

Server Consolidation: The type-I hypervisor enables VMs migration and the SSI
provides process migration between VMs. This property is validated.

Application Portability: Applications are actually running on top of the SSI,
providing an SMP illusion. This enables the execution of MPI-like, OpenMP-
like and Apache-like applications compiled for the native OS of the SSI. This
property is validated.

Virtual Machine Portability: Today no type-I virtualization solution allows the
emulation of an architecture at the VM level that is different from the bare
hardware. Portability is, for the moment, not achieved.

Suspend/Restart (SR3): Both virtualization and SSI solutions provide suspend/
restart mechanisms, respectively suspending/restarting VMs and processes. This
property is validated.

4.3 Single System Image and Type-II Virtualization

Type-II virtualization solutions run VMs upon a host OS and generally provide
live migration and suspend/resume capabilities.

Type-II Virtualization Upon Single System Image. Figure 5 shows the
execution of VMs upon an SSI. The SSI globally manages all the distributed
resources; the type-II virtualization hypervisor can therefore allocate distributed
resources to VMs on demand in a transparent manner.

Isolation: Same as I2, substituting type-I hypervisor by type-II hypervisor.

Server Consolidation: Same as SC2, substituting type-I by type-II.

Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: It is possible to migrate a VM between nodes (ac-
cording to VM resource needs) or SSIs compiled for other architectures. This
property is validated.

Suspend/Restart: Same as SR2, substituting type-I by type-II.

Single System Image Upon Type-II Virtualization. Figure 6 shows the
architecture of an SSI upon VMs. As for the type-I, each node runs VMs, and
the SSI is deployed upon them.

Isolation: Same as I3, substituting type-I hypervisor by type-II hypervisor.

Server Consolidation: In case of node addition/removal, there are two cases: (i)
an automatic reconfiguration of the SSI (e.g., the SSI “knows” that nodes are
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Fig. 5. Type-II Virtualiza-
tion Upon SSI

Fig. 6. SSI Upon Type-II
Virtualization

Fig. 7. Isolation of Two
Distinct SSIs

added or removed), and (ii) a VM live migration to another node (e.g., the SSI
is deployed on top of several VMs, and this number is static). In each case, the
property of server consolidation is validated.

Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: The type-II virtualization enables the emulation
of different hardware architectures. It is therefore possible to migrate VMs to
different hardware architectures, only the architecture of the virtual hardware
exposed inside the VMs has to be consistent (the SSI does not support hetero-
geneity). This property is validated.

Suspend/Restart: Same as SR3, substituting type-I by type-II.

5 Lessons

Containers on Top of Single System Image Clusters. Using the container
based solution in an SSI, resources exposed to applications can span multiple
cluster nodes. By providing the illusion that a cluster is a virtual SMP, the SSI
retains all the advantages enabled by containers on a real SMP machine in a
cluster environment; removing frontiers between cluster nodes.

Virtual Machines on Top of Single System Image Clusters. This config-
uration has a major advantage: application portability. For instance, with VMs,
it is possible to execute an application developed for processor technology “A”
and OS “B” on top of a computer running an SSI OS based on OS “C” and devel-
oped for processor technology “D”. This means that any application binary can
be executed on top of an SSI OS, provided that the appropriate virtualization
technology is available. For example, an IIS web server compiled for Windows
OS could be deployed on the top of a VM running on an SSI compiled for Linux.

Single System Image on Top of Virtual Machines. Executing an SSI OS
on top of a virtual cluster provides a flexible, simple and on demand resource
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allocation to applications, but also system-level adaptation in case of cluster con-
figuration changes (node addition and eviction). The idea is to simplify manage-
ment tasks and to reduce cost of power consumption. If an application requires
more (respectively less) resources and more (respectively less) physical cluster
nodes, the virtual machines are simply migrated to remote physical nodes. For
instance, a multi-threaded Apache server could be deployed on more or less phys-
ical nodes according to the amount of requests. Moreover, it becomes possible
to execute multiple virtual clusters on the same real cluster, each of them been
isolated from the others (for instance, two OpenMP applications can be executed
in an isolated way on two different virtual clusters, see Figure 7).

6 Conclusion and Future Works

Nowadays, virtualization technologies are very popular for the execution of ap-
plications and services on top of computers. The motivation of this paper was
to answer the following question. Do these trends make the SSI for clusters
irrelevant for the future?

Based on the current state of the art on SSI and on virtualization techniques,
we analysed different configurations combining SSI and virtualization techniques
in clusters. From the analysis presented in this paper, we conclude that virtual-
ization and SSI complement each other. A full SSI makes transparent resource
distribution in cluster nodes, providing the illusion of a virtual SMP machine
(abstraction of distributed resources, see Table 2, cases 4 and 6), whereas the
virtualization technologies provide flexibility in resource management (cases 1,
3, and 5).

Table 2. Summary of the different cases studied in this document: (1) Container upon
SSI; (2) SSI upon container; (3) type-I upon SSI; (4) SSI upon type-I; (5) type-II upon
SSI; (6) SSI upon type-II

1 2 3 4 5 6
Isolation - N/A + + + +
Server conso. + N/A + + + +
Application Portability + N/A + + + +
VM Portability - N/A - - + +
Suspend/restart + N/A - + - +

We have started experimentations on Kerrighed [13] on top of VMware Server
1.0.4 [7] (no porting effort is required in the current state of the technology).
These experiments are realized on a cluster of Grid5000 [16]. We test sev-
eral kinds of applications: bags of tasks, parallel applications (MPI, OpenMP),
servers (Apache with different configurations based on multiple processes or
threads). This would allow us to compare the behavior of these applications on
clusters running an SSI, running VMs or running one of the combinations of SSI
and virtualization solutions that have been identified as attractive. In particular,
we plan to measure the applications performance in such environments.
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From a more theoretical point of view, we work on designing a model ex-
tending the one proposed by Goldberg to present in a uniform framework the
hardware, the emulated hardware, the OS, the different virtualization techniques,
containers and SSIs.

Hence, we plan to investigate the use of virtualization techniques in a Grid
environment for commercial applications requiring strong isolation.
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Abstract. Thanks to recent advances in virtualization technologies, it is
now possible to benefit from the flexibility brought by virtual machines
at little cost in terms of CPU performance. However on HPC clusters
some overheads remain which prevent widespread usage of virtualization.
In this article, we tackle the issue of inter-VM MPI communications
when VMs are located on the same physical machine. To achieve this we
introduce a virtual device which provides a simple message passing API
to the guest OS. This interface can then be used to implement an efficient
MPI library for virtual machines. The use of a virtual device makes our
solution easily portable across multiple guest operating systems since it
only requires a small driver to be written for this device.

We present an implementation based on Linux, the KVM hypervisor
and Qemu as its userspace device emulator. Our implementation achieves
near native performance in terms of MPI latency and bandwidth.

1 Introduction

Thanks to their excellent isolation and fault tolerance capabilities, virtual ma-
chines (VM) have been widely embraced as a way to consolidate network servers
and ease their administration. However, virtual machines have not yet been
adopted in the context of high performance computing (HPC), mostly because
they were incurring a substantial overhead. Recently, advances in hardware and
software virtualization support on commodity computers have addressed some
of these performance issues. This has led to many studies of how HPC could
take advantage of VMs [1].

First, HPC clusters too would greatly benefit from the ease of management
brought by virtual machines. Checkpoint/restart and live migration capabilities
could provide fault tolerance and load balancing transparently to applications.
Moreover, VMs give cluster users a greater control of their software environment
without involving system administrators.

Second, it should be possible to use VMs to improve the performance of
HPC applications. Using a minimal hypervisor and guest operating system can
decrease system noise and therefore greatly increase performance of some com-
munication operations [2]. More generally, virtualization allows the use of spe-
cialized guest OSes with scheduling or memory management policies tuned for
a specific application class.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 53–62, 2009.
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Nonetheless, whatever VMs are used for, their integration within HPC envi-
ronments must have a negligible performance overhead to be successful. Since
MPI (Message Passing Interface) is the most widely spread communication in-
terface for compute clusters, designing efficient MPI implementations in the con-
text of virtual machines is critical.

Some high performance Network Interface Cards can be made accessible di-
rectly from within VMs, thus providing near native communication performance
when VMs are hosted on different physical machines [3]. However, implementing
fast communication between virtual machines over shared memory is also crucial
considering the emergence of multicore cluster nodes.

Indeed, to execute MPI applications, it is desirable to use monoprocessor VMs
and one MPI task per virtual machine: it allows finer-grained load balancing by
VM migration and multiprocessor VMs exhibit additional overheads due to in-
terferences between host and guest schedulers [4,5]. Thus, one major challenge is
to implement efficient message passing between processes running inside separate
VMs on shared memory architectures.

In this paper, we present a new mechanism to perform efficient message pass-
ing between processes running inside separate VMs on shared memory architec-
tures. The main idea is to provide a virtual message passing device that exposes
a simple yet powerful interface to the guest MPI library. Our approach enables
portability of the guest MPI implementation across multiple virtualization plat-
forms, so that all the complex code dealing with optimizing memory transfers
on specific architectures can be reused.

2 Fast MPI Communication over Shared-Memory
Architectures

In recent years, shared memory processing machines have become increasingly
prevalent and complex. On the one hand, the advent of multi-core chips has dra-
matically increased the number of cores that can be fitted onto a single moth-
erboard. Intel announcement of an 80 core chip prototype shows that this trend
is only going to intensify in the future. On the other hand the increase in the
number of sockets per motherboard has led to the introduction of NUMA effects
which have to be taken into account. As a result, many research efforts have
been devoted to achieving efficient data transfers over these new architectures.

In this section, we give an insight on how to perform such data transfers both
in a native context, that is between processes running on top of a regular oper-
ating system, and in a virtualized environment (i.e. between processes belonging
to separate virtual machines).

2.1 Message Passing on Native Operating Systems

On a native operating system, data exchanges between processes can be performed
in many different ways, depending on the size of messages. Nonetheless, all solu-
tions rely only on two primitive mechanisms: using a two step copy through pre-
allocated shared buffers or using a direct memory-to-memory transfer.
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Shared memory buffers. Many MPI implementations set up shared memory
buffers between processes at startup thanks to standard mechanisms provided
by the OS (e.g. mmap, system V shared memory segments). Communication
can then take place entirely in userspace by writing to and reading from these
buffers. Several communication protocols have been proposed. In MVAPICH2 [6]
all processes have dedicated receive buffers for each peer process: no synchro-
nization is required between concurrent sends to a single process, but n2 buffers
are required and the cost of polling for new messages dramatically increases with
the number of processes. To alleviate these issues, Nemesis, one of MPICH2 com-
munication channels [7], uses only one receive buffer per process. This requires
less memory and ensures constant time polling with respect to the number of
processes. However concurrent senders have to be synchronized, which can be
done efficiently using lockless queues.

Buffer based communication makes an efficient usage of the shared caches
found in multi-core chips because the buffers can be made small enough so
that they fit in the cache. As a result, when communicating between two cores
sharing a cache, the extra message copy induces very little overhead (Fig. 1).
Moreover, high NUMA locality can be achieved by binding each process to a
core and allocating their memory buffers on the closest memory node. Such
implementations thus offer very low latencies. However, bandwidth usage is not
optimal for large messages, especially when processes are executed on cores which
do not share a cache level.

Direct transfer. To avoid the extra copy induced by the use of a shared buffer,
some MPI implementations aim at directly copying data between send and re-
ceive buffers and thus ensure maximum bandwidth usage for large messages.
However, this requires that the copy be performed in a memory context where
both send and receive buffers are mapped. That for, a first approach is to per-
form the copy within the operating system’s kernel [8]. This requires a dedicated
kernel module which makes this solution less portable. Moreover each commu-
nication will incur system call or even page pinning costs that restrict usage of
this technique to sufficiently large messages. For smaller messages, shared buffer
based communication has to be used. Another approach is to use threads in-
stead of processes to execute MPI tasks [9]. This allows a portable, userspace
only implementation but requires that the application code be thread-safe. For
example, it may not use global variables.

2.2 Message Passing between Virtual Machines on the Same Host

The issues raised when trying to provide shared memory message passing be-
tween VMs are actually quite similar to those involved in the native case. Indeed,
similarly to processes in an OS, VMs do not share the same virtual address space.
Therefore, one of two things is necessary to allow communications between two
VMs:

– Having a pool of shared physical pages mapped in both communicating VMs
virtual address spaces, so that the VMs can communicate directly using
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Fig. 1. Performance impact of using a shared buffer: if communicating cores share their
cache (a), the additional copy does not lead to a cache miss and therefore causes little
overhead compared to a direct copy. On the other hand, if caches are separate (b),
significant memory bandwidth is wasted.

any shared memory buffer message passing technique seen earlier with no
additional overhead. This approach has been studied using Xen page sharing
capability to provide fast socket [10] and MPI [3] communication.

– Requesting a more privileged access to the memory of both VMs to perform
the message transfers. This avoids unnecessary copies to a shared buffer but
requires a costly transition to the hypervisor.

This is once again a tradeoff between latency and bandwidth. To provide opti-
mal performance, the most appropriate technique has to be picked dynamically
depending on the size of the message to transmit. Additionally, VM isolation
must be taken into consideration. A VM should not be able to read or corrupt
another VM’s memory through our communication interface, except for the spe-
cific communications buffers to which it has been granted access.

3 Designing a Virtual Message Passing Device

As we pointed out in section 2, two communication channels have to be provided
to allow high speed MPI data transfers between VMs running on the same host:
a low latency channel based on shared buffers accessible directly from guests’
userspaces and a high bandwidth channel based on direct copies performed by
the hypervisor.

To address the challenge of providing these two channels to guest OSes in
a portable way, we introduce a virtual communication device which exposes a
low-level, MPI-friendly interface.

Indeed, traditional operating systems expect to sit directly on top of hardware
and to interact with it through various interfaces. Therefore, they already provide
ways to deal with these interfaces and to export them to applications. As a
result, to introduce guest OS support for a new device one usually only has to
write a small kernel module or device driver. Moreover, most hypervisors already
emulate several devices to provide basic functionality to VMs (network, block
device, etc.) Thus, it is possible to emulate a new device without modifying the
core of the hypervisor. A virtual device is therefore an easy and portable way to
introduce an interface between hypervisors and guest operating systems.
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Guest userspace

Guest kernel

Guest userspace

3− match

b− copy c− copy

1− receive request2− send request

4− direct copy

Receiver VM

Message passing devicea−mapGuest kernel

Sender VM

a− map

Fig. 2. Overview of the virtual message passing device: shared memory buffers which
can be mapped in userspace are provided for low latency communications (a,b,c). Send
and receive requests can be posted so that the device performs direct memory copies
between VMs (1,2,3,4).

An overview of the usage of these communication channels is provided in
Figure 2. We now describe the key features of the device.

Ports. All communication endpoints on a physical machine are uniquely identi-
fied by a port number. This allows several communication channels to be opened
on each virtual machine to cater for most use cases. Several MPI processes on a
single VM might typically want to use the device for communication with MPI
processes running in other VMs. Using port numbers instead of VM identifiers
allows to handle these cases seamlessly. A VM must open a port before it is able
to issue requests originating from it and only one VM can have a given port
opened at a time.

Shared memory. The virtual device possesses onboard memory which corre-
sponds to a shared memory buffer that can be used to communicate between
VMs. More specifically, this memory is divided into blocks of equal size and each
port is attributed a block. The actual communication protocol is unspecified and
shall be implemented in the guest’s userspace by the communication library (e.g.
MPI library). This way, communications can be performed entirely in userspace
and don’t incur latency overheads due to context switching.

DMA transfers. The virtual device can process DMA copy operations between
arbitrary memory locations on all the VMs that use it. There are 2 types of
requests: receive and send which both apply to an origin and a target port.
They take two additional arguments:

– A list of pointers and sizes which describe a possibly scattered memory buffer
to send to or receive from.

– A completion register which is a pointer to an integer in the VM’s memory.
Completion and failure of a request can be inferred by reading the specified
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integer. This allows to poll directly from the guest’s userspace, thus reducing
the number of transitions to the guest kernel and to the hypervisor.

The semantics of these operations are similar to MPI Irecv and MPI Isend se-
mantics. In particular, they ensure that a VM can only write to an other VM’s
memory when and where it is authorized to do so.

Note that this interface is similar to those of high performance network cards
which offer buffered and rendez-vous communication channels. This ensures that
existing MPI libraries can be ported easily to support this virtual messaging de-
vice. While our solution still requires more porting work than a solution offering
binary compatibility with the socket interface [10] it is also more efficient, if only
because it doesn’t incur the system call overhead induced by sockets.

4 Implementation

In this section we provide details on our preliminary implementation of this
virtual device using Linux as both guest and host OS and the Kernel Virtual
Machine hypervisor. We start by providing a brief overview of KVM and then
proceed to describe the implementation of our device from the guest and host
point of view.

4.1 The Kernel Virtual Machine

KVM is a Linux kernel module which allows Linux to act as an hypervisor thanks
to hardware virtualization capabilities of newer commodity processors. It is thus
capable of virtualizing unmodified guest OSes but also supports paravirtual-
ization to optimize performance critical operations. It provides paravirtualized
block and network devices and a paravirtualized MMU interface.
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Using KVM, VMs are standard Linux processes which can be managed and
monitored easily. A userspace component is used to perform various initializa-
tion tasks, among which allocating a VM’s memory using standard allocation
functions and launching it by performing an ioctl call on the KVM module (see
Figure 3). This component is then asked to emulate the VM’s devices: whenever
the guest OS tries to access the emulated device, the corresponding instruction
traps into the KVM module which forwards it to the userspace component so
that the expected result may be emulated. A slightly modified version of QEMU
is provided as KVM’s default userspace component as it is capable of emulating
many devices.

As a result, it is interesting to note that in this model, implementing the
emulation of a new virtual device does not introduce additional code into the
host kernel. Everything is performed inside QEMU which is a userspace process.

4.2 Guest Implementation

A Linux driver has been implemented to allow Linux guests to handle our device.
In the following paragraphs, we describe how this driver accesses the device and
how it exposes the virtual device’s functions to userspace applications.

Accessing the device. To maximize portability, our device is accessed through
the recently introduced VirtIO interface. This interface abstracts the hypervisor
specific virtual device handling instructions into an hypervisor agnostic inter-
face. As a result, as shown in Figure 4, the same drivers can be used to handle
several hypervisors’ implementations of a given device. Only one hypervisor spe-
cific driver is needed to implement the interface itself. The VirtIO interface is
based on buffer descriptors, which are lists of pointers and sizes packed in an
array. Operations include inserting these descriptors into a queue, signalling the
hypervisor and checking if a buffer descriptor has been used.

In our virtual device, each open port is associated with a VirtIO queue
through which DMA requests can be sent by queuing buffer descriptors. The
first pointer/size pair of the buffer descriptor points to a header containing the
parameters of the request: whether it is a send or a receive, its buffer size, its
destination port and its completion register. The following pointer/size pairs
describe the buffer to send or receive.

However there is no VirtIO interface for directly sharing memory between
guests. Therefore the shared memory is exposed to guests as the onboard memory
of a PCI device.

Userspace interface. Our Linux driver exposes the virtual device as a char-
acter device and uses file descriptors to define ports. A port is acquired with the
open system call, which returns the corresponding file descriptor and released
with close. Ioctl calls are used to issue DMA requests because they require
custom arguments such as the destination port and completion register. Mmap
allows to map the shared memory of the device in userspace.
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4.3 Host Implementation

The host is in charge of emulating the virtual device. It has to implement memory
sharing and DMA copies between VMs. Using KVM, everything can be imple-
mented inside the VMs’ corresponding QEMU processes as described below.

Memory sharing between QEMU instances. Since each VM’s device em-
ulation is performed by its own QEMU process these processes need to share
memory to communicate: DMA requests passed through VirtIO queues must
be shared so that send and receives may be matched and each QEMU instance
needs to be able to access any VM’s memory to perform the copies between send
and receive buffers. Moreover, a shared memory buffer must be allocated and
mapped as the onboard memory of a PCI device to expose it to guests.

Our QEMU instances are slightly modified so that they allocate all of this
memory from a shared memory pool. This is currently achieved by allocating
this memory pool in one process with mmap and the MAP SHARED flag before
creating the QEMU instances for the VMs. These instances are then created by
forking this initial process.

One limitation of this implementation is that it cannot support a varying
number of communicating VMs. However we plan to support this by allocating
each QEMU instance’s memory separately using a file backed mmap. QEMU
instances would then be able to access each other’s memories by mapping these
files into their respective address spaces. Another possibility would be to run
VM instances inside threads of a single process but this would require to make
QEMU thread-safe.

DMA transfers. Whenever a guest signals that it has queued DMA requests
through the VirtIO interface, the corresponding QEMU instance will dequeue
and process these requests. Receives are stored in a per port queue which is
shared among QEMU instances and for each send, the corresponding receive
queue is searched for a matching receive. If one is found, a copy is performed
between the send and receive buffers and the completion registers are updated.

5 Evaluation

To evaluate our virtual device implementation, we have developed a minimal
MPI library which provides MPI Irecv, MPI Isend and MPI Wait communica-
tion primitives. It should be noted that most other MPI calls can be implemented
on top of these basic functions.

Small messages (≤ 32 KB) are transmitted over the shared buffers provided
by the virtual device. This 32KB limit has been determined empirically. Each
MPI task receives messages in the shared memory block of the virtual port it
has been attributed. This memory block is used as a producer/consumer circular
buffer and is protected by a lock to prevent concurrent writes.

For larger messages, we use a rendez-vous protocol. The sender sends the
message header to the shared buffer of the receiver. In turn, when the receiver
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Fig. 5. Results

finds a matching receive, it posts a DMA receive request to the virtual device.
It then sends an acknowledgment to the sender which can post a DMA send
request.

We evaluate the performance of our implementation on a pingpong bench-
mark. We measure the latency and bandwidth achieved between two host pro-
cesses communicating using MPICH2 and between two processes on two VMs
using our virtual device and minimal MPI implementation (VMPI). The ma-
chine used for this test has two quad-core Xeon E5345 (2.33Ghz) processors and
4GB of RAM. Processes or VMs are bound to different processors. Results are
shown in Figure 5.

Nemesis uses lockless data structures and minimizes the number of instruc-
tions on the critical path which explains its better performance in small message
latency compared to our naive MPI implementation. By implementing Nemesis’
communication algorithm in our MPI library we should be able to attain similar
performance. The bandwidth graph shows that as long as we use the virtual
device’s shared buffers for communication (up to 32 KB), there are little differ-
ence between the native and virtualized case. For larger messages, the ability to
perform direct copies between send and receive buffers allows us to outperform
Nemesis even when messages don’t fit in the cache. This result outlines an in-
teresting property of virtualization: it can be used to implement optimizations
that cannot be performed natively without introducing privileged code.

6 Conclusion and Future Work

In this paper, we presented the design and implementation of a virtual device
for efficient message passing between VMs which share the same host. Our eval-
uation shows that it achieves near native performance in MPI pingpong tests
and can outperform native userspace MPI implementations without introducing
privileged code on the host.

In the future, we intend to integrate support for our device as a channel in an
existing MPI implementation so as to provide the whole MPI interface. This will
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allow a more thorough evaluation of our solution on real HPC applications. We
also plan to extend our virtual device so that it supports additional features such
as live migration. This will require a callback mechanism to allow the MPI library
to suspend and resume communications appropriately when tasks are migrated.
On an other note, we plan to experiment with specialized VM scheduling policies
that take communications and NUMA effects into account to reduce overheads
when there are more VMs than available cores.
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Abstract. Virtualization technology has been gaining acceptance in the scientific
community due to its overall flexibility in running HPC applications. It has been
reported that a specific class of applications is better suited to a particular type
of virtualization scheme or implementation. For example, Xen has been shown
to perform with little overhead for compute-bound applications. Such a study,
although useful, does not allow us to generalize conclusions beyond the perfor-
mance analysis of that application which is explicitly executed. An explanation of
why the generalization described above is difficult, may be due to the versatility
in applications, which leads to different overheads in virtual environments. For
example, two similar applications may spend disproportionate amount of time in
their respective library code when run in virtual environments. In this paper, we
aim to study such potential causes by investigating the behavior and identifying
patterns of various overheads for HPC benchmark applications. Based on the in-
vestigation of the overhead profiles for different benchmarks, we aim to address
questions such as: Are the overhead profiles for a particular type of benchmarks
(such as compute-bound) similar or are there grounds to conclude otherwise?

1 Introduction

Increasingly, HPC applications are being deployed on virtual environments such as Xen.
The reason for such a trend is that the flexibility provided by virtual environments, such
as the ability to facilitate fault-tolerance, could balance any performance costs. Indeed,
many studies [11] [6] [4], have indicated that performance penalty arising from vir-
tualization schemes is not significant. Furthermore, research has established that I/O
bound applications incur more performance penalty on Xen than compute-bound appli-
cations [6]. Yet, we cannot generalize such a performance conclusion even for similar
applications only on the basis of a final performance number. For example, it is possible
that two different performance overhead profiles may ultimately post a similar perfor-
mance penalty, but for different reasons. Thus, the problem of predicting performance
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for applications is difficult, and becomes even more difficult in virtual environments
due to its complexity.

The complexity inherent in virtual environments can lead to unpredictable applica-
tion performance such as incurring disproportionate overhead when code contribution is
changed (for example, increase in the user code may be impacted disproportionately).
Further, the impact of events such as ITLB, DTLB, and cache misses can also con-
tribute towards the difficulty of performance prediction due to an indirection layer of
virtualization. But the problem can be alleviated by studying the details of the impact
of virtualization on applications.

Understanding the details about the impact of virtualization on HPC application is
useful for the following reasons: First, it can uncover an application’s behavior in virtual
environments. Second, it allows us to identify sources of various overhead costs. Third,
its possible that two applications may have similar gross performance numbers, but
the composition of performance penalty may be totally different. Fourth, by analyzing
the impact of virtualization, we can state more confidently whether we can generalize
the performance conclusions.

Our primary objective in this paper is to study the impact of Xen on the behav-
ior of HPC applications in detail. In particular, we compare the impact of Xen [4] on
HPCC [1] and NPB [2]. In the process, we study how Xen affects various parts of HPCC
and NPB.

The organization of our paper is the following: Section 2 presents related work in
the area. Section 3 describes the settings used to study the analysis of the impact of Xen
on HPC application behavior profiles. In Section 4, we detail our results based on two
HPC application profiles. In Section 5, we discuss and analyze our results. In section 6,
we present our conclusion and future work.

2 Related Work

Xenoprof [8] is one of the few tools that can be used as a system wide profiler on Xen.
Xenoprof was used to diagnose performance overheads in network applications. The
authors also study various events such as L2cache misses, ITLB misses, and correlate
them in their study. However, the original goal was to identify performance bugs using
the data collected by Xenoprof/OProfile.

The TLB behavior for scientific applications on commodity microprocessors was
studied in [7]. Their work is similar in theme to ours. Their conclusion is that while
SPEC CPU and HPCC benchmark suits represent cache behaviors of the high-end sci-
entific applications, they fall short when it comes to TLB behavior, and thus can have
significant performance consequences. In this paper, we want to emphasize the diffi-
culty of generalizing performance conclusions in virtual environments.

Work in [10] studies memory hierarchy characteristics of para-virtualized systems.
The authors also study hardware counters using Xenoprof for memory intensive appli-
cations such as DGEMM. The authors conclude than Xen provides near native execu-
tion performance and similar memory hierarchy profiles. Our work attempts to compare
impacts of Xen on two HPC applications in order to study their profiles.

Work reported in [3] points out that there is a need to consider real HPC ap-
plications for performance evaluations and benchmarking. The authors also compare
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performance results from kernel benchmarks to the real-world applications, and find
that kernel benchmarks do not fully represent real world scientific applications.

Other studies such as [5] [11] concluded that Xen impacts HPC applications mini-
mally. Our study extends previous work by attempting to determine if we can generalize
such conclusions beyond those applications that are expressly studied.

3 Evaluation Methodology

In this section, we outline the experimental settings used to gather results and perform
post-analysis.

3.1 Applications

We have used the HPCC and NPB application benchmark suites for our study. HPL and
SP are used as work-loads to study the compute-bound properties of an application. The
problem sizes are 6000 and 162 (class C) for HPL and SP respectively.

3.2 Native and Virtual Machine Environments

Our system environment consists of a 16 node cluster. Each node has a 2Gz Pentium 4
processor, 768MB of RAM, and a 256KB L2 cache, connected by a 100Mb Ethernet
switch. Our “Native” environment consists of a Linux 2.6.16.33 kernel with the Fe-
dora Core 5 (FC5) filesystem distribution. Our “Virtual Machine” environment runs on
Xen 3.0.4, Linux kernel 2.6.16.33, with 512MB of memory for each virtual machine
with one virtual machine per node. We use the same filesystem as that of Native for
HostOS. The filesystem for a virtual machine is a disk based flat file of 2GB using FC5.
We use a NFS shared filesystem on all three platforms.

3.3 Profiling and Data Collection Tools

We use Oprofile 0.9.1 as our data gathering tool. Oprofile is a system wide statistical
profiler. Oprofile uses CPU counters to generate events based on a configurable fre-
quency, which we have set to 100000. This frequency instructs Oprofile to generate a
sample for every 100000 occurrences of a specific configurable event such as DTLB
miss and attribute it to the code that caused the counter associated with that event to
overflow.

We study four events: clock-unhalted, ITLB miss, DTLB miss, and L2Cache miss.
For each event, we gather the breakdown of the samples of an application into various
parts such as application code, library code, kernel modules, kernel code, and hyper-
visor code. The clock-unhalted event is a measure of CPU processing time. ITLB and
DTLB miss events measure the time spent by the page walk handler. The L2cache miss
event is a read level cache miss.

Custom scripts [9] were developed to parse the collected data into application code,
library code, kernel modules, kernel code, and hypervisor code.
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4 Performance Evaluation

4.1 Overall Penalty

Table 1 shows us the overall performance penalty on HostOS (which is the Dom0 virtual
machine) as well as on VMs in terms of the wall clock time, the number of samples,
and the instructions executed. The table shows that the overhead in number of samples
in virtual environments (at least HostOS, but possibly VMs too, as explained below)
is more compared to the wall clock time overhead. One explanation being that: even
though the clock-unhalted event, as described earlier, is a measure of CPU processing
time, it is a measure of time when the CPU is active. Therefore, when the CPU is idle,
as when there is an I/O or memory transfer, this event is not useful. Further, the CPU
executes a fewer number of instructions on native compared to virtual environment as
shown by Table 1, and thus can remain idle longer than say HostOS, which can execute
more instructions in parallel to I/O. Please note that, because of Xen’s architecture [4],
the samples for a VM are split into DomU and Dom0. The application executes in
DomU and therefore contains the bulk of the samples, but Dom0 also contains part of
the application samples when the application requires backend device drivers (such as
for performing I/O) located in the Dom0 HostOS kernel. Further, also note that, even
though the application samples for a VM are located in DomU and Dom0, we only
analyze the DomU side of the samples in the case of VMs because of a known limitation
of Xenoprof, which does not allow us to isolate samples from Dom0 profile which are
part of the applications running in DomU. Therefore, in the following analysis, we
indicate Dom0 samples by greek letters such as δ and γ. And unless otherwise stated,
when we refer to the VM, we mean the DomU portion of the Virtual Machine.

4.2 Breakdown of Overall Penalty

Figure 1 shows the breakdown of the time spent by each application into its various
parts across native, HostOS and VM environments. Overhead cost of user code in HPL

Table 1. Performance penalty as compared to native

HostOS penalty % VM penalty %
Wall clock No. of Instructions Wall clock No. of Instructions

time samples executed time samples executed
HPCC- HPL 2 8 2 12 11 + δ 5

NPB - SP 1 5 9 18 9 + γ 11

Table 2. Breakdown of performance penalty for clock samples as compared to native - δclk and
γclk: Dom0 part of HPL and SP respectively

HPL-App SP-App HPL-Lib SP-Lib HPL-Sys SP-Sys

HostOS penalty% 5 1 6 138 50 49
VM penalty % 13 4 8 118 88 + δclk 62 + γclk
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Fig. 1. Comparison of breakdown of CPU samples for HPL and SP across platforms - Results for
VM do not contain Dom0 samples

is more than that of SP. One reason is that user code contribution is more in HPL than in
SP, and therefore virtualization impacts it disproportionately. Interestingly, the overhead
cost of system code under HostOS and VM in SP is less than that of HPL even though
SP spends twice as much time in system code as HPL on native. This can be because
HPL spends proportionately more time in hypervisor code than SP does. Furthermore,
the overhead costs are more when applications are running in virtual machines than
when they are running in the HostOS.

Table 2 shows how various parts of HPL and SP are being impacted differently in
virtual environments. The most obvious is the small contribution from SP’s library code.
Since the library code of SP only forms a small fraction of the overall code distribution,
its impact in virtual environments does not show up in Figure 1. Similarly, the system
code is expensive in virtual environments even though it may not be apparent in Figure 1
as the system code is only 10% of the overall code. The system code penalty distribution
among kernel modules, kernel core and hypervisor on the HostOS are: 9%, 62%, 29%
for HPL, and 10%, 66%, 24% for SP. Similarly, the penalty distribution for system code
under the VM (DomU only) is kernel core and hypervisor are: 72%, 28% for HPL, and
77%, 23% for SP. Note, the contribution of kernel modules under VMs is part of Dom0
and therefore not shown as explained previously (Section 4.1).

Further, system code penalty for HPL on VMs is more than that of SP. One ex-
planation is that HPL code performs more privileged operations than SP. The reason
why the impact of Xen on the library code in SP is so drastic compared to HPL is un-
clear and may additionally require sophisticated tracing to diagnose the problem. Thus,
while the overall performance penalty is only one number, Table 2 shows us the actual
“behind-the-scene” story. . In light of this information, it is difficult to generalize the
performance conclusions to other applications. In the next few sections, we study other
events such as ITLB miss, DTLB miss and L2 cache miss.

4.3 Breakdown of DTLB Miss Samples

Figure 2 shows the comparison of DTLB misses across platforms for our two appli-
cations. From the figure, we can see that the impact of virtualization is limited to the



68 A. Tikotekar et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Native-HPCC-HPL

Native-NPB-SP

Hostos-HPCC-HPL

Hostos-NPB-SP

VM
-HPCC-HPL

VM
-NPB-SP

D
T

LB
 m

is
s 

sa
m

pl
es

 C
ou

nt

execution platforms

DTLB miss samples for HPL and SP across platforms

Application code
Libaray code
linux os code

Kernel modules
Hypervisor code

Fig. 2. Comparison of breakdown of DTLB Miss samples for HPL and SP across platforms -
Results for VM do not contain Dom0 samples

Table 3. Breakdown of performance penalty for DTLB miss samples as compared to native

HPL-App SP-App HPL-Lib SP-Lib HPL-Sys SP-Sys

HostOS penalty% 7 0.6 1 1900 800 1300
VM penalty % 7 0.6 1.6 1500 700 + δdtlb 1150 + γdtlb

system side. Further, by looking at Figure 1, one might conclude that Xen impacts HPL’s
library code more than that of SP’s library code. But as described in our previous section,
the contribution of the library code in SP is very small and therefore does not show up
in Figure 1. However, Table 2 shows that the library code in SP is impacted drastically,
and is supported by the fact that the DTLB miss rate increases for SP’s library code, and
remains very low for HPL as shown in Table 3. The huge performance penalty numbers
like 1900% arise because the number of DTLB miss samples increases from 3 to 60.
The story for the system side described by Figure 1 is also supported by Figure 2, in
that DTLB rate increases for both HPL and SP, although in different ways. The impact
of Xen on DTLB miss rate is more for SP’s system code than HPL’s under HostOS and
VM. As stated before, we cannot comment on the δdtlb and γdtlb from Dom0.

4.4 Breakdown of ITLB Miss Samples

Figure 3 shows the comparison of ITLB misses across platforms for our two applica-
tions. Figure 3 and Table 4 show that Xen impacts the system side more than the user
side but the impact is not limited to the system side. First, the ITLB miss rate continues
to support the fact that Xen does impact SP’s library code drastically. Second, the ITLB
miss rate (Table 4) is also consistent with Figure 1 in that it partly explains why Xen
impacts HPL’s system code more than SP’s under both HostOS and VM. Yet, as shown
in Table 3, the DTLB miss rate does not explain why Xen impacts HPL’s system side
more than SP’s. Moreover, one can easily see that Table 3 and Table 4 support Table 2
when it comes to application-only code.
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Table 4. Breakdown of performance penalty for ITLB miss samples as compared to native - δitlb

and γitlb: Dom0 part of HPL and SP respectively

HPL-App SP-App HPL-Lib SP-Lib HPL-Sys SP-Sys

HostOS penalty % 74 70 74 243 417 257
VM penalty % 177 117 93 331 1500 + δitlb 750 + γitlb
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4.5 Breakdown of L2 Cache Miss Samples

The comparison of L2 cache miss samples is shown in Figure 4. Table 5 shows that
the impact of Xen on L2 cache miss samples is restricted to system side only, except
SP’s library code. Table 5 shows mixed results. The L2 cache miss rate for the system
code on the HostOS is greater for HPL than SP, and on VMs it is the opposite, SP being
greater than HPL.
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Table 5. Breakdown of performance penalty for L2 cache samples as compared to native - δl2

and γl2: Dom0 part of HPL and SP respectively

HPL-App SP-App HPL-Lib SP-Lib HPL-Sys SP-Sys

HostOS penalty% 10 0.2 0.4 130 104 101
VM penalty % 30 0.7 0.9 500 171 + δl2 186 + γl2

5 Discussion

Our previous section establishes that HPL and SP are impacted differently by Xen. As
shown in our study, the applications have different characteristics even though both are
compute bound. This supports our premise that we can not generalize performance in
virtual environments. A detailed analysis is useful to understand the application work-
load. For instance, HPL spends most of its user code time in the BLAS library, while
most of the user code in SP is located in the application itself. Second, SP has a greater
contribution from system code than HPL has from its system code.

The conclusion that the impact of Xen is mainly restricted toward the system code
and not the user code is accepted based on Xen’s para-virtualized architecture. However,
this paper has indicated that while Xen impacts system code much more than user code,
there is evidence, such as in the case of SP’s library code, that the user code may not be
immune from Xen’s impact.

6 Conclusion

We have studied and analyzed HPL and SP from HPCC and NPB respectively. Our goal
for the study was to determine the impact of Xen on these applications and compare the
penalty profiles of these two applications. It is important to note that we are not only
concerned with the “final performance penalty” number but the composition that makes
up the overall performance penalty.

We found that, while the overall performance penalty does not differ much between
HPL and SP, their overhead profiles are not similar. Further, we found that Xen impacts
the various parts of these applications in different ways. It is therefore possible that dif-
ferent applications in the same class may be impacted more differently than HPL or SP.

We also found that the similar final performance impact of HPL and SP is not en-
tirely due to the fact that these are compute-bound benchmark applications, but because
the parts that are impacted differently by Xen are too small to influence the final perfor-
mance number.

Our findings emphasize the difficulty of performance prediction and generalization.
Moreover, as we have seen, performance isolation, especially on VMs remains difficult
to achieve.

We plan to extend our study to more scientific applications. We would like to de-
termine whether similar benchmark applications have versatility such that Xen impacts
them differently or not. Further,We would like to work on the limitations of the per-
formance measurement tools, such as Xenoprof, so that we can enhance application
profiling.
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Abstract. We explore a novel approach to high-throughput, embarass-
ingly parallel applications in UNICORE 6 based Grids. This is an XML
centric tuple space based approach inspired by JavaSpaces, with an
implementation using the UNICORE 6 WSRF framework. Other ap-
proaches such as the layered workflow and data splitting architecture
developed in the Chemomentum project, batch processing using the
UNICORE commandline client UCC and concurrent programming using
the HiLA Java API are discussed as well. Performance and scalability
evaluations are presented, backed up by preliminary experimental results
comparing our approach to the standard batch mode of the UNICORE
commandline client.

1 Introduction

In this paper we explore an approach to high-throughput computing on
UNICORE Grids that is based on an XML tuple space, i.e. a globally shared
storage, that offers a simple API for storing,reading and removing arbitrary XML
documents. The term high-throughput computing is used here in the sense that
many relatively small computational jobs are run on a Grid system composed
of relatively many compute nodes. To give an example, a typical run might in-
volve several thousands of jobs, where each job consumes about 15 minutes of
computational time, and with a number of compute nodes that is on the order
of 100. For the purposes of this paper, the application throughput is assumed
to be limited by the computation itself, not by the associated data transfers.
High-throughput computing as defined here is highly relevant in many appli-
cation fields from drug discovery to multi-media applications such as image or
video rendering. A prominent example is in-silico screening of chemical sub-
stances using docking techniques, for example in the WISDOM initiative [2].
The main problems to be overcome are scalability, efficient resource discovery,
selection and usage. Conventional approaches to resource discovery and selec-
tion involve information systems, where the resource providers have to publish
detailed information about the state of their resources. This is often undesir-
able, as this information may be confidential. It is difficult to keep this infor-
mation up-to-date, and the information system may become the bottleneck.
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Additionally, sites may have to give up some of their autonomy to allow efficient
resource management by the Grid scheduling systems. As will be shown, the tu-
ple space-based approach removes the need for these information systems, and
the sites can trivially enforce their local policies.

The remainder of the paper is organised as follows. Section 2 introduces the
UNICORE 6 Grid middleware. Existing approaches to high-throughput comput-
ing using UNICORE are summarised in section 3, while our tuple space-based
approach is introduced in section 4, Some preliminary performance results are
given in section 5. A summary and outlook concludes the paper.

2 The UNICORE 6 Grid Middleware

UNICORE, developed in the course of several German and European projects
since 1997 [1], is a mature Grid middleware that is deployed and used in a
variety of settings, from small projects to large (multi-site) infrastructures in-
volving high-performance computing resources. UNICORE can be characterised
as a vertically integrated Grid system, that comprises the full software stack
from clients to various server components down to the components for access-
ing the actual compute or data resources. Its basic principles are abstraction of
site-specific details, openness, interoperability, operating system independence,
security, and autonomy of resource providers. In addition, the software is easy to
install, configure and administrate. The latest version is UNICORE 6 [4], which
is based on Web Services and particularly the Web Service Resource Framework
(WSRF). UNICORE is licensed under the liberal BSD license, and is available
as open source from the SourceForge repository [3].

UNICORE 6 is a four-tiered system, consisting of the client, gateway, services
and target system tiers. A wide variety of clients exist, from programming APIs
[14], commandline client [15], simple Java clients to a rich client based on the
Eclipse framework. The Gateway is a thin authentication and routing service
that can be considered as a web service firewall and router. It resides outside
the networking firewall, protecting the services behind it. Thus, UNICORE by
default only requires a single open port to the public internet. The basic services
(UNICORE atomic services) provide resource discovery (Registry service), job
execution (Target System Factory and Target System services), and file access
(Storage and FileTransfer services).

The target system tier consists of the interface to the local operating sys-
tem, file system and resource management (batch) system. UNICORE 6 uses
XML based standards in all functional areas: WS(RF)/SOAP for communica-
tion, JSDL for job submission, SAML assertions and XACML for authentication
and authorisation.

The UNICORE 6 service registry contains the available target system factory
(TSF) services, not the target system services (TSS) themselves. The reason for
this is that each client (i.e. Grid user) creates their own target systems, which are
accessible only for that particular client. The TSFs keep a list of TSS created
by them. Thus, the discovery of available target systems is a fairly expensive
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operation involving several web service calls, because clients have to iterate over
these TSS lists, and check for accessible services.

The basic sequence to run a computational job on UNICORE 6 is as follows.

– A suitable computational resource (target system service, TSS) needs to be
found. If no TSS is available to the client, a suitable target system factory
(TSF) must be discovered and invoked to create a TSS

– The job is submitted to the TSS, resulting in a new job management service
(JMS) instance

– Input data can be staged in to the job’s working directory
– The job is started. Usually the client sends a “start” message to indicate it

has finished staging data in.
– After the job finishes, output data can be staged out.

At the time of writing (April 2008), UNICORE does not support client notifica-
tion on job status changes, so a polling approach has to be used to find out if a
job has finished.

3 High-Thoughput Approaches for UNICORE 6

3.1 Batch Mode of the Commandline Client

The UNICORE commandline client (UCC) [15] is a core component of UNICORE
6 and offers full access to the functions of a UNICORE 6 Grid. The UCC includes
a batch processing mode, where a set of job files is read and jobs are submitted to
the available compute resources.This batch mode can be used for high-throughput
computation, where the user just has to generate the individual job files. There
is no built-in fault handling, so the user has to deal with job failures herself, for
example by re-running failed computations. Fault-handling features could how-
ever be added to UCC in the future. Resource discovery is performed by looking
up target systems that offer the required application. More detailed brokering,
for example by operating system or number of processors is not done by UCC.
UCC selects resources using a round-robin strategy. A number of jobs are submit-
ted concurrently, and their status is checked using a polling approach. The total
number of concurrent jobs, the number of client threads used, and the polling in-
terval used for job status updates can be controlled. This allows some tuning of
the batch mode performance and controlling of the load generated on the Grid.
UCC seems well suited for simple batch applications that do not require complex
brokering or fault-handling strategies. Its scaling behaviour is fairly good due to
its simplicity.

3.2 HiLA Java API

HiLA [14] is a Java API to a UNICORE Grid, offering a simple set of abstractions
(such as Grid, Site, Task and File) and a familiar programming model. Using
HiLA, applications can make use of Grid resources and run remote computations
easily. HiLA can be used to develop high-throughput applications, with expected
characteristics similar to the UCC batch mode.
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3.3 UNICORE 6 / Chemomentum Workflow System

This workflow system has been developed within the European Chemomentum
project [12]. It is fully integrated with the UNICORE middleware since the 6.1
release. The workflow system adds two layers to the basic UNICORE 6 architec-
ture. A workflow engine layer deals with execution of high-level workflows, while
a service orchestrator deals with resource discovery, selection and job execution.
The system has been designed to allow easy scaling. The service orchestrator
component is stateless in the sense that it operates on a per-job basis. Thus,
multiple service orchestrator instances can be deployed to allow load-balancing.
This workflow system can be used as-is for high-throughput computations, be-
cause it supports semi-automated data splitting and the service orchestrator
component. The system is very simple to use for end-users, and needs no further
programming or customisation work. The workflow engine receives a simple XML
description of the task to be performed, with some workflow options that con-
trol the data splitting. The workflow engine then auto-generates a more detailed
workflow with all sub-tasks specified.The sub-tasks are then sent to the service
orchestrator which executes them on a suitable UNICORE 6 resource. The work-
flow system supports fault handling in the sense that failed computations can be
repeated, and the system can deal with disappearing and newly appearing exe-
cution systems. At the time of writing, more elaborate, rule-based fault-handling
is still under some development. The split and merge operations are performed
internally, because a suitable UNICORE application for data splitting/merging
has to be available on the Grid, and will be invoked automatically by the work-
flow engine. A special Resource Information Service (GRIS) is used for resource
discovery. This service keeps Grid resource information which is periodically
updated. Resource selection is performed by a brokering sub-component of the
service orchestrator, which queries the GRIS and selects an execution resource
based on current GRIS data and a set of configurable strategies. The basic strat-
egy is based on application availability, combined with a round-robin approach
in the common case of multiple execution host candidates. The Service orches-
trator deals with job control, submitting jobs to the selected resources, checking
their status, and sending notifications to the workflow engine when jobs succeed
or fail. At the time of writing it is not yet clear how well this architecture scales
in practice with increasing number of Grid sites, due to the limited deployment
experiences.

4 Tuple Space Based Approach

The bottlenecks when using Grid systems for high-throughput computations are
usually the resource discovery and selection processes. These are expensive op-
erations, involve many web service calls, and tend to scale badly with increasing
number of Grid resources. To completely bypass this procedures, we propose a
different approach based on the tuple space concept.

A tuple space is essentially a shared memory accessible by distributed clients
and servers. It stores data as records with typed fields (called tuples). The tuple
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space provides a small number of operations to insert, read and remove (take)
tuples from the space, using template-based queries. The original concept was
designed by David Gelernter and others for the Linda system in the mid-80s
[5] and many implementations exist, for example several Java implementations
based on SUNs JavaSpaces APIs [7]. Commercial implementations such as Gi-
gaSpaces [8] have gotten a lot of publicity recently due to their promise to deliver
horizontally scalable, "share-nothing" enterprise architectures.

In an XML centric web-services system such as UNICORE 6 the idea to
build a tuple space for XML documents is quite natural. XML-based tuple space
implementations are not very common, however. It has been noted that XML
and web services might be a promising way forward for Linda-like systems [6]
especially in conjunction with web services. A .NET based XML tuple space was
implemented by Tolksdorf et al. [9].

In the course of a diploma thesis [10], a tuple space for storing and retrieving
arbitrary XML documents has been designed and implemented, based on the
WSRFlite web services framework used in UNICORE 6. It is composed of two
services, the Space service itself and a WSRF service for storing the tuple space
entries. Each entry corresponds to a WS-Resource. Reading and taking entries
involves matching the entries in a brute-force manner against a template.

4.1 Job Execution Using the Tuple Space

The XML documents used for realising the job execution application look as
follows

<Job xmlns="http://www.unicore.eu/unicore6/spaces/job">
<JobID>
<ServerJobID>
<ServerID>
<Status>
<Address>
<JSDL>

</Job>

Here, the "JSDL" element stores the job description, and the "Status" field can
take the values NEW, SUBMITTED and DONE. The other fields are used to
store information relevant to the client, such as the endpoint reference of the
UNICORE 6 job management service for managing the job.

As Figure 1 shows, the basic scheme is as follows:

– The client submit jobs to the space
– At the target system, a worker component (“job taker”) takes jobs from the

tuple space and submits them to the target system and thus to the underlying
UNICORE 6 XNJS execution manager

– When the job is done, the XNJS notifies the worker, and the job is written
to the tuple space with status "DONE".

– The client checks for done jobs, and can download results
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Fig. 1. Tuple space based job execution

This approach promises several advantages to the usual schemes. The tuple
space can be seen as a globally shared queue, thus resource usage should be
very efficient. The crucial point is that the job takers at the TSS decide when
to fetch and submit the next job. This makes applying local scheduling policies
trivial. Resource discovery and explicit resource selection by Grid clients are not
necessary, nor is publishing of local scheduling information to a Grid scheduler.
Another major benefit is that workers can be added (and removed) easily and
transparently, without the need to make their presence known to other Grid
components such as Grid schedulers or information systems.

The existing implementation is very simple, each job taker will just process
exactly one job at a time. Of course, more complex policies are quite easy to
implement (for example, on a cluster system it would be better to accept one
job per compute node). Another limitation of the current implementation is that
there is no well-defined order (e.g. FIFO) in which the jobs will be processed.

The UNICORE Spaces module including a prototype of the job execution
application discussed in this section is available on the UNICORE Subversion
repository [11]. This prototype does not include any security functionality (ex-
cept for the standard TLS), the space is freely accessible, and jobs are submit-
ted under the worker node’s identity. However, we note that reasonable security
mechanisms would be straightforward to add.

5 Some Performance Results

We performed some preliminary performance measurements on a small test Grid
composed of six AMD Opteron 2GHz machines, with 2GB of memory, connected
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to the LAN with Gigabit Ethernet. They are running SUSE Linux 10.1 and
Sun Java 1.5. Each UNICORE 6 service container is configured to use 128Mb of
memory, and persistence is activated using the HSQLDB database. Node 1 hosts
Gateway, Registry, XUUDB and the Space service, Nodes 2-5 are the workers,
and Node 6 is used as client. The worker nodes are configured to run at most
two jobs at a time.

Running 100 "Date" jobs (no data staging) on 4 worker nodes using the UCC
batch mode took about 120 seconds, where we switched off the download of
result files and the checks for application availability.

Our tuple space based job execution performed significantly better. Even us-
ing just a single worker, the 100 jobs were finished in about 100 seconds. This
shows that in the space-based case there is much less overhead associated with
each job.

Using two and four worker nodes, the 100 jobs were finished in 48 and 26 sec-
onds respectively, showing linear scaling in this region. Also, each node consumed
an approximately equal share of the total workload.

Similar scaling behaviour can be achieved with higher numbers of jobs, since
the client limits the number of concurrent jobs to 100. When this limitation
is removed, performance decreases slightly due to the longer lookup times in
the space.

We have also measured the average time needed to lookup 100 random entries
in the space, while varying the total number of entries. We find the linear increase
that would be expected due to the brute-force lookup algorithm. The average
lookup times are 12ms for 2000 entries, rising to 40ms for 10000 entries. This
indicates a potential bottleneck: as the number of clients increases, the tuple
space will become blocked for longer periods of time and the throughput will
decrease. More measurements are needed to find the true limits here.

6 Summary and Outlook

The space-based approach presented here is highly promising for applications
that do not have complex resource requirements, and that do not requiring high-
level Grid features such as co-scheduling. For example, docking or other types of
high-throughput screening are very well suited for this approach. Several issues
remain though. Most importantly, real-world security requirements still have
to be implemented. However, we are convinced that the XML space is flexible
enough to handle these requirements. The excellent scalability characteristics
would be very hard to achieve with other, more traditional Grid tools. Also, the
space-based approach is very simple, and does not require complex broker and
scheduler components.

Our preliminary performance numbers confirm the expectations we had when
designing the system. Still, it remains to be seen how well the space-based ap-
proach scales up to higher numbers of worker nodes and concurrent clients. It
should be expected that the performance of the central Space service will degrade
under heavier loads, and load-balancing and clustering techniques will have to
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be employed. Also, the storage and lookup techniques for tuple space entries will
have to be improved, to avoid needless searches and XML matching. For exam-
ple, in the job execution application it would be highly beneficial to partition
the tuple space using the job’s Status field, which is used as the major search
criterion in the application. Of course, the tuple space itself is generic, so the
application programmer needs to provide some hints to the system how to do
the partitiong. Similarly, indexes could be built on selected parts of the XML to
decrease lookup times.

In summary, the basic overall simplicity of the tuple space concept and the
applications in facilitates is clearly attractive and fits in very well with the
UNICORE philosophy.

Acknowledgement

Part of this work was funded by the European Commission in the Chemomentum
project (IST-5-033437).

References

1. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel,
M., Romberg, M., Schuller, B., Wieder, P.: In: Grandinetti, L. (ed.) Grid Com-
puting: The New Frontiers of High Performance Processing Advances in Parallel
Computing, vol. 14, pp. 357–376. Elsevier, Amsterdam (2005)

2. Initiative for grid-enabled drug discovery against neglected and emergent diseases
(April 2008), http://wisdom.eu-egee.fr

3. UNICORE website (April 2008), http://www.unicore.eu
4. UNICORE 6 overview (April 2008),

http://www.unicore.eu/documentation/files/Unicore6Overview.pdf
5. Gelernter, D.: Generative communication in Linda. ACM Trans. Program.

Lang.Syst. 7, 80–112 (1985)
6. Wells, G.: Back to the future with Linda. In: Second international workshop on

coordination and apaptation techniques for software entities (in conjuction with
ECOOP 2005), Oslo 2005 (April 2008),
http://wcat05.unex.es/Documents/Wells.pdf

7. SUN Microsystems: Jini (April 2008),
http://java.sun.com/software/jini

8. Gigaspaces commercial JavaSpaces implementation (April 2008),
http://www.gigaspaces.com

9. Tolksdorf, R., Liebsch, F., Nguyen, D.M.: XMLSpaces.NET: An extensible Tuple
Space as XML Middleware. In: 2nd International Workshop on.NET Technologies
2004 (submitted) (April 2008),
http://www.ag-nbi.de/research/xmlspaces.net

10. Schumacher, M.: Realisierung eines XML-Tupelraumes unter Verwendung des
Web Service Resource Framework, University of Applied Science Aachen/Juelich
(February 2008)

11. UNICORE Spaces Subversion repository (April 2008),
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/
unicore-spaces/trunk

http://wisdom.eu-egee.fr
http://www.unicore.eu
http://www.unicore.eu/documentation/files/Unicore6Overview.pdf
http://wcat05.unex.es/Documents/Wells.pdf
http://java.sun.com/software/jini
http://www.gigaspaces.com
http://www.ag-nbi.de/research/xmlspaces.net
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/unicore-spaces/trunk
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/unicore-spaces/trunk


Space-Based Approach to High-Throughput Computations 83

12. Chemomentum: Grid-Services based Environment for enabling Innovative Research
(April 2008), http://www.chemomentum.org

13. Schuller, B., Demuth, B., Mix, H., Rasch, K., Romberg, M., Sild, S., Maran, U.,
Bała, P., del Grosso, E., Casalegno, M., Piclin, N., Pintore, M., Sudholt, W.,
Baldridge, K.K.: Chemomentum - UNICORE 6 based infrastructure for complex
applications in science and technology. In: Bougé, L., Forsell, M., Träff, J.L., Streit,
A., Ziegler, W., Alexander, M., Childs, S. (eds.) Euro-Par Workshops 2007. LNCS,
vol. 4854, pp. 82–93. Springer, Heidelberg (2008)

14. HiLA High-level API for Grids (April 2008),
http://www.unicore.eu/community/development/hila-reference.pdf

15. UNICORE commandline client (April 2008),
http://www.unicore.eu/documentation/unicore6/manuals/ucc

http://www.chemomentum.org
http://www.unicore.eu/community/development/hila-reference.pdf
http://www.unicore.eu/documentation/unicore6/manuals/ucc


The Chemomentum Data Services – A Flexible
Solution for Data Handling in UNICORE

Katharina Rasch1, Robert Schöne1, Vitaliy Ostropytskyy2, Hartmut Mix1,
and Mathilde Romberg3

1 Technische Universität Dresden, Dresden, Germany
2 University of Ulster, Coleraine, Northern Ireland
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Abstract. This paper introduces the Chemomentum data services, a
UNICORE-based flexible solution for managing large amounts of data
and metadata produced in a Grid. In order to store and manage the
increasing amounts of data produced in Grid environments, a highly
scalable and distributed Grid storage system is needed. However, the
simple storage of data is not enough. To allow a comfortable browsing
and retrieving of the data, it is crucial that files are indexed and aug-
mented with metadata. This paper analyses integrated solutions that
already provide these functionalities for their features and shortcomings.
Incorporating the conclusions drawn from the examination, an architec-
ture for a revised data management solution is presented. This system
provides the means to store files with augmenting extensible metadata.
It allows also to browse through data using metadata, handle ontologies
and transparently access external data sources. In the current stage, most
of these functionalities are implemented and running in a distributed en-
vironment.

1 Introduction

Grid technologies are starting to realise their large potential to provide inno-
vative infrastructures for complex scientific and industrial applications. The
UNICORE 6 Grid computing solution [1] already provides a seamless, secure,
and intuitive access to distributed Grid resources. However, to make Grids more
useful for knowledge-oriented applications such as decision support and risk as-
sessment, more effort in the fields of semantics, metadata and knowledge man-
agement in distributed, heterogeneous environments is needed.

The Chemomentum project [2] aims to fill these gaps by taking up and enhanc-
ing state-of-the-art Grid technologies and applying them to real-world challenges
in computational chemistry and related application areas. The Chemomentum
project specifically supports the European REACH (Registration and evaluation
of chemicals) [3] initiative aimed at optimising risk assessment strategies.

To be in line with the REACH initiative it is crucial that all results of cal-
culations can be subsequently evaluated and reproduced. This means that not
only final experiment results may need to be stored permanently, but also inter-
mediate results and metadata that describe the provenance of the result data,
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e.g. the workflow and applications that produced the data and information on
the user who ran the workflow.

It is foreseeable that a considerable amount of data and metadata will be pro-
duced. Depending on the type of executed workflow and the level of detail, the
size of metadata can reach hundreds of kilobytes, the data even up to gigabytes.
Therefore a highly scalable, distributed and decentralised Grid storage solution
is needed. The storage of data and augmenting metadata is the fundamental
requirement for such a storage system. An important feature is the possibility
to define sets of metadata, which describe data used or generated within spe-
cific workflows. Clearly defined and well structured metadata sets are crucial to
provide adapted user interfaces for diverse purposes.

A transparent access to external data sources (e.g. web-based chemical data-
bases) is also desirable. Data from such sources could then be included as input
data of a workflow just like data in the internal storage. Ontologies describing
synonyms in a specific context can be used to ease the retrieving of metadata. If a
user searches for data connected with the chemical name ’H2O’ additional results
for ’water’ or ’dihydrogen monoxide’ could be returned as well. By providing an
integrated conversion of values between scientific units, the advantages of using
ontologies can be even further extended.

As one solution, the data management system developed in the Chemomen-
tum project is presented in this paper. The system is not limited to the scientific
domains in focus of the Chemomentum project, but is a general approach to the
challenges of a Grid storage solution.

2 Related Work

Handling of data and metadata in a Grid environment has been described before.
Most of these approaches, however, provide only data access but no or insufficient
handling of metadata. Nevertheless, there are existing solutions for the Globus[4]
and gLite[5] Grid middlewares.

The Storage Resource Broker SRB [6] handles data and metadata in a data
Grid, a digital library, a persistent archive, or a distributed file system. It has
been developed by the San Diego Supercomputer Center and is commercialised
by Nirvana. The SRB provides a uniform data access to different storage types
over a network as well as the replication of files. It is often used in Globus Grid
projects. The SRB could not be used because the support for metadata extension
and schema handling is not sufficient. The need for a commercial license to deploy
SRB within Chemomentum was an important disadvantage.

Another solution that offers both, data and metadata handling, is the Arda
Metadata Catalogue Project AMGA [7] which is used with the gLite Grid mid-
dleware. It supports user-defined metadata to describe the data stored in the
system. These schemas are, however, not shared between users, a crucial point
against the adoption for the Chemomentum project. The AMGA server is a
monolithic C++ implementation, making it platform dependent and inhibiting
the installation of just a subset of the functionalities.
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A data and metadata management system that also integrates ontologies, the
conversion of scientific units and the transparent access to external data sources
could not be found.

3 Overview of the Chemomentum Data Management
System

The data management system within Chemomentum provides data storage and
retrieval functionality and a global data view independent of the actual data loca-
tion. A crucial point in designing the system was to build lightweight, specialised
services dealing with the different types and sources of data and metadata. The
services have well-defined interfaces that allow the installation and running of
single services or of subsets of the complete system. The interfaces also support
the easy plugging in of extensions, e.g. to access other storage systems.

The heart of the data management system is the Documented Data Space
DDS (see figure 1). It is composed of metadata databases, data storages and a
location database. The data storages contain data in flat files, typically input
and output data produced by workflows. The location database acts as a global
file location directory by indexing those files and assigning them globally unique
logical names. The metadata databases contain metadata that describe the files
in the data storages, referencing them by their logical names. Access to the
components of the DDS is provided by a set of three specialised services.

The central interface to the data management system is the Data Management
System Access Service (DMSAS). It forwards service requests to the appropriate
service(s), collects the results and returns them to the requester. The Database

Fig. 1. System architecture
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Access Tool (DBAT) serves as a uniform interface to external data sources.
It transforms a query to the data management system into the native query
language used by the external data source, queries the source and transforms the
result back into a format the client understands. The ontology service provides
the access to external ontology services and knowledge about types, units and
vocabulary to interpret the data.

For the other side of the communication, which includes the workflow system,
GUIs and other clients, a special API is provided. The ClientAPI procures ob-
jects and methods which enable programmers to access the data management
system without any knowledge of the underlying web service schemas and secu-
rity issues. Built on top of it, special Eclipse RCP [8] views are implemented,
which enable the users to create new metadata schemas and to create, query
and download data and metadata.

The data management system uses the wsrflite web service framework of
the UNICORE 6 Grid middleware. UNICORE 6 implements the Grid standard
WSRF, compliant with the Open Grid Forum’s Open Grid Services Architec-
ture (OGSA)[9]. It offers strong security based on industry standards such as the
X.509 public key infrastructure. The communication with UNICORE 6 services
is protected by mutual authentication. All services that form the data manage-
ment system are implemented as web services that can be run distributed across
the Grid.

4 Detailed Architecture

Following the short introduction of the Chemomentum data management so-
lution, this section will now focus in detail on the key characteristics of the
system.

4.1 Metadata Modelling

While Chemomentum itself is specifically aimed at the computational chemistry
domain, the ambition is to develop Grid technologies applicable in any scientific,
economic or other domain. Hence, the ability to cater for arbitrary, extensible
metadata schemas instead of limiting the available metadata items to a fixed
set was a crucial design criteria for the data management system. The naive
approach of using a general metadata model like RDF (Resource Description
Format)[10] for this was deemed unfeasible. Having a completely unrestricted
modelling of metadata can be more limiting than a fixed set of items. The user
needs some knowledge about the data’s semantics to interpret the results. With-
out a restricting metadata schema describing the semantics, a set of metadata
triples is just a bunch of information, difficult to interpret and process.

Instead, a metadata model similar to a relational database was chosen for
Chemomentum. The metadata schema for a scientific domain is declared (and
can also be extended) by a scientific administrator. The schema includes the basic
information about names and data types of metadata items, but also further
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Fig. 2. Metadata modelling

information like a detailed description and units. Attributes can be linked to
each other and to logical names of files.

Figure 2 shows an exemplary metadata schema setup. The domain ’common’
is a fixed domain that contains basic provenance information, e.g. the workflow
that produced the data, the owner of the data and the applications used. The
other domains are defined additionally. To gain knowledge about a domain, a
user client can request the domain’s metadata schema from the data manage-
ment system and provide the user with a dynamically created graphical interface
adapted to the domain.

Aside from manual uploads, most of the metadata is automatically filled by
the UNICORE 6 Workflow System that runs the applications and uploads the
resulting files into the DDS. While this is a straightforward process for the fixed
’common’ domain, the handling of additional domains needs further input from
the scientific administrator. The Workflow System has to be provided with the
knowledge of how to extract metadata from the input and output of applications
and how to map it to the metadata items required by the schema.

Users can manually annotate metadata with additional information like rating
and comments for files. Also, metadata which could not be retrieved automati-
cally, can be supplemented later.

4.2 The Documented Data Space

The Documented Data Space (DDS) is split into three types of data storages:
the metadata databases, the location database and the file storages. The loca-
tion database acts as a global file catalogue that maps globally unique logical file
names onto the actual physical locations of files and directories. The files are only
referenced by their logical names in the system. This mechanism allows for an easy
migration of files from one file storage to another. The location database also sup-
ports the replication of files, increasing the reliability as well as the performance
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Fig. 3. Database handlers

of the system. Access to the location database is given through the Location Man-
ager. This service provides the functionalities to store, look-up, update and delete
locations.

The data files themselves are stored on file storages. The file storages are
implemented using the UNICORE 6 Storage Management Services that offer
access to storages in a Grid. The current transfer is based on OGSA ByteIO
standard, but can be extended to other protocols as well.

Metadata that augment the files in the file storages is kept in the metadata
databases of the DDS, as described in section 4.1. The metadata databases are
accessed by the Metadata Service, which offers functionalities to store, query,
update and delete metadata. The metadata modelling acts as an additional
layer above the underlying database systems (see figure 3). All metadata ex-
changed between the client and the Metadata Service operates on one or more
domain schemas and not directly on the database system. Pluggable database
handlers provide the mapping between the client data and the specific underly-
ing database technology. Special care is taken for write access to metadata items
marked as provenance. The DDS implements a row-based security on the data
in the metadata databases. Access control lists mark whether a user, group or
virtual organisation has the right to read the data, to write it or to change the
permissions. Users with high-level security and privacy needs can also provide
their own private DDS on their own site.

4.3 The Database Access Tool

The Database Access Tool (DBAT) provides a comfortable access to external
data sources. External data sources can be various database systems, web ser-
vices or simply flat files. Like the Metadata Service, the DBAT is called only by
the Access Service. The DBAT extracts the name of the external data source to
be accessed from the query and transforms the query accordingly to the native
query standard of the data source. The native query standard is, for example,
SQL for data in relational database systems and XML-based service calls for
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data provided by web services. The transformation is done by using the afore-
mentioned database handlers. The result set of the query is returned to the
Access Service for further processing.

Just like the Metadata Service, the DBAT uses metadata schemas to know
the correct set up for the scientific domains it supports. In the current status of
the project the Ecotoxicology[11] databases Aquire and Terretox as well as the
Protein Data Bank (PDB) [12] are implemented.

4.4 The Ontology Service

The Ontology Service supports queries by providing additional, domain specific
information about data - for example, synonyms to broaden queries to data
services or knowledge about the conversion of values between different units.

To broaden a query, the Ontology Service contacts external ontology services
to examine the query for data items that can be represented in a different fashion.
At the present stage, for example, the external ontology service ChEBI[13] is used
to look up the molecular names of small molecules. The synonyms of data items
are then aggregated into the query. When the broadened query is executed, it
will return more exhaustive results then the original query.

The Ontology Service also provides the means to automatically convert values
in requests between user-provided units and the units used in the databases. The
set of units supported by the Ontology Service is not fixed, scientific adminis-
trators can set up own unit groups and conversions.

4.5 The Data Management System Access Service

The Data Management System Access Service (or more conveniently Access
Service) is the sole entry point into the data management system. Therefore, only
one open port is needed to operate the system. The Access Service is a lightweight
service that can easily be run in several parallel instances to avoid bottlenecks.
It implements the logic to bundle the functionalities of the underlying services to
a higher-level interface, that offers comfortable methods to query, store, update
and delete data and metadata.

The user is presented with a uniform interface for queries to the DDS and to
external databases. Queries made are directed to the appropriate services. The
Access Service also manages distributed queries to multiple Metadata Services.
With the help of the Ontology Service, queries are automatically broadened to
improve the results and any unit conversions necessary between the user’s units
and the units used in the system are performed. Files requested by the users are
looked up in the DDS and made available for an easy download.

In particular the process of storing data and metadata demands the interplay
of multiple services. The Access Service coordinates the following tasks:

1. Check the metadata for validity.
2. Perform necessary unit conversions.
3. Upload the file(s) to the storage(s).
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4. Register the files with the Location Manager.
5. Store the metadata in the metadata database.

A transaction mechanism automatically rolls back all changes already made if
one of those steps fails.

Considering the huge amount of data that can be processed in one request,
the data management system uses asynchronous execution (see figure 4). The
Access Service spawns a dedicated service that handles the request and returns
its address to the user. The user can then poll this service for the current status
of the processing. Alternatively, the user can provide the address of a call-back
service that is updated automatically by the system (figure 5).

4.6 The Client API and the Eclipse Plugin

The Client API provides users and developers with a convenient Java based
interface to the data management system. Its key features are the comfortable
support for handling large sets of metadata items and for the asynchronous
execution mode.

The Client API supports the access to the system in various levels of com-
plexity. It consists of low-level implementations that resemble the web service

Fig. 6. Query external data sources (e.g. PDB)
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interface, but it includes also high-level implementations that allow the client
developer to start a request with a single line of code.

On top of the Client API an Eclipse Plugin has been developed, which smoothly
integrates with the UNICORE RCP client. It can be used to access the data man-
agement system and, for example, upload and download files, browse through
metadata or access the external databases (figure 6).

5 Current Status and Future Work

In the current stage of development, all services described here are implemented
and can be installed on any server that is running a Java Virtual Machine in ver-
sion 1.5 or higher. The components have already been installed in a distributed
fashion and are running as part of a testbed for the Chemomentum project. GUI
components that allow browsing and storing data and metadata are available and
are in use for testing the system.

Within the year 2008, the final version of the Chemomentum software – in-
cluding the data management system – will be available. In addition to the
functionality presented in this paper, this version will support more external
databases and contain a sophisticated administration interface. Additional GUI
components for a simple and flexible access to the system will also be provided.

6 Conclusions

The Chemomentum data management system is a flexible, distributed and user-
friendly approach to data management in the Grid. Because of its extensible
metadata system, it is not limited to specific use cases, but can be used in
arbitrary scientific, economic or other fields.

The data management system can be deployed on any server running the Java
Virtual Machine. Its modular design allows also for a distributed deployment on
multiple servers and sites. The data in the data management system is protected
by sophisticated security and safety solutions based on the UNICORE 6 frame-
work. The data management system supports web service standards like WSRF
and OGSA ByteIO. The Eclipse Client and the ClientAPI allow an easy integra-
tion into other projects without knowledge of the internal handling of data and
meta data. Despite of its UNICORE background, the system is deployable also
in non UNICORE based Grid environments. This makes it an excellent solution
for Grid data management.
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Abstract. Firewalls separate areas of different security requirements.
This major task leads to problems regarding the network connectivity
and performance of various applications. In particular within distributed
systems, like a Grid an unobstructed communication, which is essential
for using distributed resources is not possible. Furthermore Grid appli-
cations often use multiple ports dynamically and in parallel. This raises
the challenge of a dynamic configuration of firewalls. This paper shows a
solution based on UDP hole punching and describes the implementation
of a UNICORE transfer service using this technology to perform direct
high speed file transfers.

1 Firewalls and Filtering of Network Traffic

Firewalls are used to separate areas of different security policies from each other.
Their major task is to protect computing resources against unauthorized access
and misuse. In order to achieve this task the firewall system processes certain
information which is used as a basis to decide if a message may pass through
the firewall. The firewall administrator defines a ruleset which represents the
implementation of the local security policy. The network traffic is divided into
classes of those packets that will be forwarded to the destination and those
which will be rejected. This ruleset is a baseline to different tests that will be
applied to each incoming packet. The firewall checks IP addresses and ports of
the appropriate protocol headers. In addition, stateful packet inspection engines
use connection states.

Firewalls store state information primarily when a TCP stream is discovered
because TCP is a connection oriented protocol. Connections may be in one of four
different states: half open, established, half closed and closed state. Therefore it
is reasonable to differentiate which state a connection has entered. Additionally,
TCP is a reliable protocol, i.e. if any TCP segment is lost during transfer a
retransmission is triggered due to missing acknowledgments discovered at the
sender. Further information can be found in [1].

The User Datagram Protocol (UDP) is a non-reliable and non-connection
oriented transport layer protocol. An application that uses UDP has to make
sure that the data is successfully transmitted. Although no connections exist,
firewalls use a simple mechanism to simulate a connection. Figure 1 shows a
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Fig. 1. Firewalls and UDP

client behind a firewall being allowed to send UDP packets to outside, which
sends a UDP datagram to a DNS server outside the companies network.

The client generates the UDP datagram and sends it to the firewall (Figure 1
#1). The firewall examines the datagram and forwards it to the destination (#2).
According to the information that has been gathered the firewall adds an entry
to its connection table including source IP address, source port, destination IP
address, and destination port. However, this results in a dynamically generated
access rule like

allow UDP from 172.30.80.2 port 53 to 10.1.2.2 port 2034

which is valid for a certain configurable period of time. This rule guarantees that
as long as the timeout has not been reached, UDP replies from the server (#3)
to the client can traverse the firewall (#4).

2 Grid Applications and Firewalls

A Grid is a distributed system which makes resources like compute power, stor-
age capacity, and distributed data available to its users. It forms an union of
geographically distributed, independent organizations sometimes referred to as
virtual organization. The usage of available resources takes place statically or
dynamically at run-time according to the requirements of the user and/or the
application.

Grid applications often need high transfer rates and small latencies. Moreover,
these applications transfer large data sets which must arrive reliably and as fast
as possible at the destination. One approach to satisfy these needs is the usage
of several parallel connections. GridFTP [2] can serve as an example here: it
mandates that multiple parallel data connections are always established from
the sender to the receiver. Thus, a server running GridFTP must be accessible
from outside on a broad port-range. Statically opening these ports at the firewall
leads to severe security problems because the open server ports can be used by
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malicious software while not in use by a current GridFTP transfer. GridFTP is
a fast solution but its insecure design disqualifies it for use in most production
networks.

An alternative is the dynamic configuration of firewalls. This should satisfy
the following:

1. It can be integrated smoothly into an existing administrative security frame-
work.

2. It can be used in open source and in commercial solutions.
3. It keeps the communication between the partners open for the shortest pos-

sible time.

Currently there are different solutions to configure a firewall dynamically.
These solutions are either proprietary and vendor specific such as Cisco PIX
[3] or they support only certain kinds of firewalls. CODO [4] is such a solution.
This document presents a novel approach to dynamic configuration of firewalls.
It uses a mechanism comparable to UDP hole punching a commonly used NAT
traversal technique.

3 UDP Hole Punching

NAT traversal through UDP hole punching is a method for establishing bidirec-
tional UDP connections between Internet hosts in private networks using NAT
[5]. It takes advantage of firewalls that simulate connections for UDP traffic.

Prerequisites to use UDP hole punching are the following:

– the local firewall allows outbound UDP connections
– the local firewall simulates connections for UDP data transfer as described

in section 1.
– a relay server exists.

The relay server is a central part of this concept. Each client connects to
the relaying server using a persistent TCP connection. Simultaneously the relay
server recognizes the IP addresses of the clients. It does not even matter if any
client connects to the public network through a NAT device because the public
IP address is notified.

The following describes how two clients in different security domains establish
a UDP connection using UDP hole punching. The initiator (client A) sends a
TCP segment to the relaying server C, see figure 2 (message #1). This contains
the information that client A wants to talk to client B using a UDP source port,
e.g. 4711. The server notifies client B that client A has the public IP address
x.x.x.x and that it expects a UDP connection on port 4711 (#2). Client B sends
the preferred UDP port, e.g. 8822 to the relaying server and simultaneously it
sends a UDP datagram from source port 8822 to destination port 4711 to client
A (#3).

Client B’s local firewall forwards the UDP datagram, creates a connection
entry and the dynamic access rule which allows responses to traverse the firewall.
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Fig. 2. UDP Hole Punching

Fig. 3. UDP hole punching with netcat

Client A’s local firewall rejects the packet but this does not matter at all. The
relaying server C informs client A via the existing TCP connection between A
and C that client B is accessible on IP address y.y.y.y and UDP port 8822 (#4).

Client A now sends a UDP datagram from source port 4711 to 8822 (#5).
Client A’s local firewall now creates the dynamic entries. However, the dynamic
entry in B’s local firewall is still active and valid, so that the UDP datagram
from A to B passes the firewall. Now the communication channel is established
although the static ruleset of each firewall would normally deny inbound con-
nections according to the parameters of the protocol headers.

The concept of UDP hole punching can easily be demonstrated using net-
cat. netcat is a networking utility which reads and writes data across network
connections. It can use TCP/IP and UDP/IP [6]. It is available on most Linux
systems. The server resides behind a firewall and listens on port 4711:

server# netcat -u -l -p 4711

A client from the outside tries to connect to the UDP port 4711 on this server
behind the firewall, see figure 3(#1):

client# echo Hello | netcat -p 8822 -u server 4711

This UDP connection is not allowed by the local firewall. The UDP datagram
is dropped and nothing happens. Now the server sends a UDP datagramm to
the client outside the firewall and punches a hole into the firewall (#2). The
local firewalls allows outbound UDP communication and forwards the packet
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towards the destination. Because of the algorithm used to simulate a connection
the firewall passes any reply of the client to the server:

server# echo Hello | netcat -p 4711 -u client 8822

After this initial exchange the datagram from client to server is allowed to pass
the firewall (#3):

client# echo Hello | netcat -p 8822 -u server 4711
server# netcat -u -l -p 4711
Hello

This simple example works on any linux system and with different firewalls. We
successfully tested it with iptables [7] and Cisco PIX [3].

Because TCP uses connection states that are examined by firewalls, it is no
alternative here. It is not possible to make both firewalls believe that a connection
has been opened from inside.

4 A Transfer Service Using UDP Hole Punching

For a file transfer based on UDP Hole Punching, UNICORE [8] serves as a perfect
environment. Many concepts described in section 3 are already realized. There
is a central Gateway for all control messages which are encrypted via X.509
certificates. Users and devices are centrally authenticated and authorized once.
The existing file transfers for UNICORE are all based on predefined classes which
implement basic features and error handling. A new transfer service is derived
from these classes and extends them with the specific methods and members
for the used technique. Thus, the implementation of a file transfer using the
UDP Hole Punching is done by providing the methods to exchange connection
parameters like IP address and UDP port and to send the Hole Punching packet
and the data using UDP.

A new challenge arises from encrypted UDP data traffic. One approach to
encrypt the data could be a simple symmetric algorithm. Because the TCP
connections between clients and the gateway are secured via X.509 certificates
the exchange of a shared secret could be done via this channel. Moreover it would
be useful to declare the encryption of the data transfer as an optional feature.
Because data is not always confidential this could speed up the transfer.

The second challenge results from specific requirements of Grid applications.
Data transfers should be fast and reliable but UDP is unreliable. Each UDP
datagram is an instance of its own and the application has to make sure that all
the data has arrived. In fact this means that Grid applications using UDP need
an application layer protocol to implement reliability.

This can be accomplished by UDP-based Data Transfer Protocol (UDT). UDT
uses UDP as transport protocol but it guarantees reliability through an upper
layer. The following section describes UDT [9] in general.
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4.1 UDP-Based Data Transfer Protocol (UDT)

Like TCP, UDP is a transport layer protocol. Besides the data payload UDP
packets only consist of a minimal header containing information about source
and destination port, packet length and a checksum. In contrast to TCP, a UDP
header contains neither flags or control bits nor any sequence or acknowledgment
numbers. For that reason the protocol itself is not able to read a connection state
from a packet. Additionally, it cannot recognize or interpret packet loss. There-
fore TCP features relating to a reliable and fair protocol such as establishing or
terminating a connection, buffering packets for a resend after loss and avoiding
congestion have to be implemented at higher levels.

UDT is such an implementation. UDT is not a protocol of the transport layer
like TCP or UDP. It utilizes UDP as transport protocol and provides reliable
communication and congestion control on the application layer, thus completely
in the user space.

UDT is available as open source. It is designed and implemented by the Na-
tional Center for Data Mining at the University of Illinois at Chicago. A first
internet draft has been released in August 2004 [10]. The latest stable release
including documentation can be downloaded from Sourceforge [9].

Fig. 4. TCP and UDT sockets

The UDT specific implementation for reliability and congestion control is
realised as follows:

– Reliability is achieved by sequencing and acknowledgment. Each UDT packet
is assigned a unique increasing sequence number. The receiver will send back
acknowledgments and loss reports according to packet arrival. So lost packets
will be retransmitted.
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– Congestion control: unlike TCP the approach is not window but rate based,
meaning that the algorithm does not open up the sender’s congestion win-
dow, in fact it reduces the inter-packet delay of sent out packets, thus in-
creasing its sending rate. Congestion avoidance uses a special case of the
AIMD (Additive Increase Multiplicative Decrease) algorithm; it reduces the
increase when getting close to the estimated link bandwidth.

Besides its own congestion control algorithm UDT can also utilize external or
custom congestion control algorithms like TCP Reno or TCP BIC congestion
control. That enables developers to find a good agreement between fairness and
transfer rate, making the use of multiple parallel connections obsolete in most
scenarios.

From a programmer’s point of view UDT provides a C++ API with a seman-
tic analogue to the TCP sockets (see figure 4).

For further examples, a tutorial and a full list of all UDT functions and
references please read the UDT manual [9].

5 The Overall Design

After the concept of UDP hole punching has been described along with exten-
sions for the usage in Grid environments in the previous sections, the overall
design of an implementation as a new UNICORE transfer service can be de-
scribed now.

The implementation is based on the two basic UNICORE classes “FileTrans-
ferClient” and “FileTransfer” which are extended by only one WebService
method called “initUDT”. After transfer objects are created by UNICORE on
client- and server-side the process of transfering the file mainly consists of the
following steps. The Client immediately starts preparing the UDT connection
by binding its UDT socket to a randomly chosen port. It then passes its IP and
port number to the server as parameters to the WebService method. The server
prepares its own UDT socket and performs the UDP Hole Punching by sending
an empty UDP packet to the IP and port that it just got from the client. Then
it sends its own connection parameters (IP and port) back as the return value
of the WebService method. The Client now can use its prepared UDT socket
to connect to the server which is waiting for the connection with a UDT server
socket.

During the transfer, both sides collect basic status information like the num-
ber of transfered bytes and the time needed. Status information and errors are
handled accordingly to the implementation of the standard transfer classes and
therefor are easily evaluated.

The fact that UNICORE and its WebServices are implemented in JAVA but
UDT is implemented in C++ leads to a hybrid solution using the Java Native
Interface (JNI) [11]. JNI is used by JAVA applications to involve functions that
are not implemented in JAVA but in a native language. JNI can also be used to
load dynamic native libraries and to involve their functions. These functions are
declared but not implemented in the JAVA code. The native library is loaded
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on runtime. The native functions need to follow some rules concerning the way,
parameters are passed. They get pointers to standard JNI functions that give
access to JAVA objects. Therefore wrapper functions are necessary to built a
bridge between the JAVA classes and the UDT interface. For a more simple
design and to minimize the parameter transfer between JAVA and C++, these
wrapper functions also contain the code to bind the sockets and to do the Hole
Punching.

When using the UDT based transfer, the native library containing the wrap-
per functions as well as the UDT library need to be available for the underlying
hardware architecture and operating system. To simplify the installation, all
native code, including the wrapper functions and the UDT source code, is com-
piled into one single library. The source code as well as a built script for unix
like systems are provided as part of the file transfer implementation.

This transfer can be transparently used as an alternative to the commonly
used ByteIO mode. Its is working in production networks and has several advan-
tages over GridFTP and ByteIO. On one hand, it is secure enough to be used
in most productive networks and on the other hand, it is faster than ByteIO
and even than GridFTP. Some performance tests where done in the German
X-WIN net with two machines in Juelich and Hannover, connected via 1 GBit/s
ethernet. The following table shows the average throughput.

GridFTP (1 Stream) GridFTP (4 Streams) UDT 3 UDT 4 ByteIO
81 MBit/s 294 MBit/s 700 MBit/s 930 MBit/s 0.4 MBit/s

These values show how aggressive the standard UDT congestion control works.
It must be changed to a fair algorithm or as an alternative, the throughput can
be limited by quality of service rules at the networks routers.

6 Summary

Firewalls are absolute essential devices to improve the security of an organi-
zation. Consequently, this leads to restrictions regarding network connectivity
and performance. Grid applications are affected by firewalls because they need
high performance and low latencies. More often they use multiple connections
in parallel to speed up the data transfer. To match this requirement of Grid
applications static port ranges are opened on firewalls what leads potentially
to unauthorized accesses to sensitive resources. Dynamic configuration can ease
this problem.

This paper introduced a solution which configures a firewall dynamically based
on UDP hole punching to securely establish direct transfers between hosts. The
concept has been extended and adapted to the needs of Grid environments and
the implementation for UNICORE has been described.

These concepts of Grid UDP hole punching can be seen as a further step
in providing solutions for Grid applications dealing with existing firewalls. It
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can be easily used by most of the Grid applications known today to overcome
time delays until “real” dynamically configurable firewalls are available on the
market.
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Abstract. The BIS-Grid project1, a BMBF-funded project in the
context of the German D-Grid initiative, focusses on realising Enter-
prise Application Integration using Grid technologies to proof that Grid
technologies are feasible for information systems integration. Small and
medium enterprises shall be enabled to integrate heterogeneous business
information systems and to use external Grid resources and services with
affordable effort.

In this paper, we describe service extensions to UNICORE 6 to use
an arbitrary WS-BPEL workflow engine and standard WS-BPEL to or-
chestrate stateful, WSRF-based Web Services, also called Grid Services.
Thereby, we focus on how to combine the arbitrary workflow engine with
UNICORE 6, and on how to access workflows and workflow instances.
The workflows itself are also provided as Grid Services, realised by a
Workflow Management Service that deploys Workflow Services within
UNICORE 6, each wrapping a WS-BPEL workflow that is deployed in
the arbitrary workflow engine.

1 Introduction

In order to map business processes to the technical system level the integration
of heterogeneous information systems - referred to as Enterprise Application
Integration (EAI) - is crucial. Thereby, integration is often achieved by service
orchestration in service-oriented architectures (SOA). A means commonly used
to create SOA are Web Services since they enable service orchestration and
hide the underlying technical infrastructure. Modern Grid middlewares such as

1 This work is supported by the German Federal Ministry of Education and Research
(BMBF) under grant No. 01IG07005 as part of the D-Grid initiative.
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UNICORE 62 and Globus Toolkit 43 are based on the Web Service Resource
Framework (WSRF) [1], a standard that extends classical, stateless Web Services
to be stateful. Such WSRF-based Web Services, also called Grid Services, provide
a basis to build SOAs using Grid technologies.

In BIS-Grid we focus on realising EAI using Grid technologies. One major
objective is to proof that Grid technologies are feasible for information systems
integration. Small and medium enterprises (SMEs) shall be enabled to integrate
heterogeneous business information systems and to use external Grid resources
and services with affordable effort. To do so, we develop a workflow engine, the
BIS-Grid workflow engine, that is capable to integrate Grid Services. This engine
is based upon service extensions to the UNICORE 6 Grid middleware, using an
arbitrary WS-BPEL workflow engine and standard WS-BPEL to orchestrate
Grid Services. Also, it propagates service orchestrations as Grid Services. The
main reason that led us to the decision to use UNICORE 6 is that UNICORE 6 is
a pioneer in adopting Grid standards, since the support of standards is essential
for us, especially regarding security. The WS-BPEL workflow engine to be used is
ActiveBPEL4 since it exhaustively supports the WS-BPEL standard, and is well
accepted in the business domain as well as in the Grid domain. We refrain from
extending well-adopted standards and technologies as far as possible to increase
sustainability. Instead, we use service extensions to UNICORE 6 to conceal the
WS-BPEL engine by wrapping the message exchange between the engine and
Grid Services.

This paper presents a snapshot on our ongoing work and is organised as
follows. Related work is presented in Section 2. In Section 3, we present the
architecture of the BIS-Grid solution in detail, highlighting the service extensions
to UNICORE 6. Finally, in Section 4, we conclude the paper and briefly present
our future work.

2 Related Work

Orchestrating stateful Grid Services is in the focus of many German and in-
ternational projects, for example, the German D-Grid projects Text-Grid5 and
InGrid6, and the European projects A-WARE7, Chemomentum8, and EGEE9.
Orchestrating Grid Services is also in the focus of several papers. Leymann [8]
describes the appropriateness of using BPEL4WS as a basis for Grid Service
orchestration since it already fulfils many requirements of the WSRF standard.
He concludes that a Grid-specific extension of BPEL4WS is more appropriate

2 http://www.unicore.eu
3 http://www.globus.org/toolkit/
4 http://www.activevos.com/community-open-source.php
5 http://www.textgrid.de/
6 http://www.ingrid-info.de/
7 http://www.a-ware-project.eu/
8 http://www.chemomentum.org
9 http://www.eu-egee.org/
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than creating new Grid-specific standards. The appropriateness of BPEL4WS for
Grid Service orchestration is also examined and confirmed in [5], [10], [2], and [6].
In [4], Dörnemann et al. discuss composing Grid Services by using BPEL4WS.
They present a solution that is based on extending the BPEL4WS specifica-
tion. Emmerich et al. [5] describe the evaluation of reliability, performance, and
scalability issues of the open source workflow engine ActiveBPEL on executing
a complex scientific Grid workflow. As a preparatory work to this paper, we
describe the requirements that apply to a Grid-enabled workflow system in [6].

UNICORE itself provides a workflow system extension for an existing UNI-
CORE 6 installation, originating from the Chemomentum project. This system
consists of two UNICORE/X service containers: a workflow engine, processing
workflows on a logical level, and a service orchestration layers that concerns
the invocation of Grid Services. The workflow engine utilises pluggable domain-
specific language (DSL) modules and a generic workflow language internally.
It also includes a resource brokering component. Both the UNICORE 6 work-
flow system and the BIS-Grid workflow engine have in common that they are
realised as service extensions to the UNICORE/X service container. However,
the UNICORE 6 workflow system does not feature the integration nor the ex-
changeability of an arbitrary WS-BPEL workflow engine and is therefore less
sustainable.

The works presented in the preceding paragraphs mainly focus on scientific
workflows instead of business workflows relevant to BIS-Grid. Concerning the
use of BPEL (BPEL4WS or WS-BPEL), it is primarily relied on extending
or adapting the language, thus creating BPEL dialects. The A-WARE project
is one project that addresses business workflows in Grid environments. In [3],
the project presents the orchestration of UNICORE 6 services with the help
of a standard BPEL engine, relying on a Service Bus that supports adapters to
submit jobs to UNICORE. However, workflows are not provided as Grid Services.

When regarding business workflows, another important aspect is choreogra-
phy. Choreography regards the interaction and cooperation of multiple work-
flows, potentially traversing organisational borders. Choreography is relevant to
Grid environments since Grid-based Virtual Organisations (VOs) may require
workflow cooperation. The TrustCoM10 project, for example, provides a trust
management framework for the definition and enactment of collaborative busi-
ness processes within VOs. BIS-Grid instead focusses on orchestration. It regards
itself as a a door opener for SMEs, allowing them to integrate their information
systems with technologies that are Grid-compatible, also allowing them to in-
tegrate external Web and Grid Services. Nevertheless, this does not prohibit to
consider choreography in future.

3 UNICORE 6 Service Extensions

Our UNICORE 6 service extensions mainly consists of two WSRF service types,
Workflow Management Service and Workflow Service, and an arbitrary standard
10 http://www.eu-trustcom.com/
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WS-BPEL workflow engine. In our case this is the open source workflow engine
ActiveBPEL. Together, the service extensions and the arbitrary WS-BPEL en-
gine represent the BIS-Grid workflow engine. The service extensions are realised
as Grid Services within UNICORE 6’s service container, the UNICORE/X com-
ponent. For each workflow deployed with the Workflow Management Service
one Workflow Service will be created using a hot deployment mechanism with-
out restarting UNICORE/X. These services manage and access ActiveBPEL. As
a standard WS-BPEL workflow engine, it typically orchestrates stateless Web
Services and supports only basic security mechanisms, e.g. username-based and
password-based authentication. Therefore, advanced security concepts must be
provided by the service extensions in the UNICORE/X service container. In [7]
we illustrate some considerations on security within the BIS-Grid solution.

UNICORE 6

compute jobs / file transfers
UNICORE Atomic Services

BIS-Grid-specific services

other UNICORE 6 services

uses

uses

workflow deployment / execution

ActiveBPEL

other UNICORE 6 services

W
S-B

P
E

L
w

orkflow
engine

Fig. 1. Overview on the Architecture of the BIS-Grid solution

Figure 1 presents an overview on the architecture of the BIS-Grid workflow en-
gine. Within UNICORE/X, the BIS-Grid service extensions are placed beside
so-called UNICORE Atomic Services which provide basic functionalities to sup-
port Grid computing, and beside other Grid Services that, e.g. may provide
access to information systems. One important design decision was to neither
extend the WS-BPEL standard nor to modify ActiveBPEL for Grid Service or-
chestration, although the WS-BPEL 2.0 specification provides an extensibility
mechanism that allows to integrate additional functionality without declining
the standard. However, the use of proprietary extensions would conclude in a
solution that may not be interoperable with future versions of the standard as
well as with the engine.

Leaving the WS-BPEL standard and the engine untouched ensures sustain-
ability and flexibility, and allows to exchange the WS-BPEL engine by any other
WS-BPEL engine. Figure 1 shows that the ActiveBPEL engine is located behind
UNICORE 6. Hence, it can be deployed separately on backend nodes to support
load balancing. In [7] we also present our considerations on load balancing the
BIS-Grid solution.
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Besides all this advantages also some problems arise when using such a de-
coupled architecture without WS-BPEL extensions. The BPEL code, that is
necessary to call a Grid Service is more complex as if we would introduce new
grid-specific activities. Even, if a WSRF-resource of a Grid Service is only used
for a single call, we have to explicitly create and destroy it using BPEL invoke
activities. We tackle this problems by hiding the complexity from the user and
the as far as possible from the workflow designer. We plan to extend an existing
BPEL editor by introducing new “Grid Activities” that automatically generates
the BPEL code. Furthermore, we need some additional BPEL code to solve a
mapping problem, that is described in more detail in Section 3.3. The mapping
problem will be hidden completely in the Workflow Management Service, that
will do some processing steps before the deployment of the BPEL code to the
WS-BPEL workflow.

deploy workflow

undeploy workflow

redeploy workflow

retrieve workflow
Workflow Designer

(a) Workflow Management Service

create workflow instance

execute workflow

get current status

change configuration
Workflow User

(b) Workflow Service

Fig. 2. Use Cases

3.1 Workflow Management

Important workflow management functionalities are workflow deployment, rede-
ployment, undeployment, and retrieval (see Figure 2(a)). These functionalities
are realised as a Grid Service, the Workflow Management Service, whereas an
instance of the service manages exactly one workflow. Workflow Management
Service instances are created by a factory that is realised as a standard Web
Service within the UNICORE/X service container. This factory offers the fol-
lowing functions:

– create: The method creates a new (empty) service instance and returns the
corresponding endpoint reference.

– search: The method returns a set of endpoint references pointing to service
instances that represent workflows accessible to the user. Search patterns
can be used to limit the result list.

A Workflow Management Service instance provides the following functions:

– deploy: The method deploys a workflow by requiring a BIS-Grid Workflow
Deployment Package. This package contains a WS-BPEL workflow descrip-
tion and additional resources, e.g. deployment descriptors. Since each Work-
flow Management Service instance manages only one workflow this method
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is blocked after deployment until the undeploy method has been called. To
modify a deployed workflow the method redeploy must be used.

– undeploy: This method undeploys a workflow previously deployed with the
same Workflow Management Service instance, and destroys the correspond-
ing Workflow Service.

– redeploy: This method redeploys a workflow previously deployed with the
same Workflow Management Service instance. The effect is regarded the
same as if the methods undeploy and deploy are called consecutively.

– retrieve: This method returns the corresponding deployment package of a
workflow previously deployed with the same Workflow Management Service
instance.

For workflow deployment and undeployment, the Workflow Management Ser-
vice has to communicate with the WS-BPEL engine and with the UNICORE/X
service container to create or remove Workflow Services (see Section 3.2). There-
fore, the deployment and undeployment processes can be subdivided into several
steps. If one step fails the complete deployment or undeployment process must
fail, too, and the preceding steps must be rolled back (if required and possible).
The deployment process is as follows:

1. The BIS-Grid Workflow Deployment Package is stored to a previously spec-
ified local file space and is unpacked.

2. The deployment package, containing the workflow description and a corre-
sponding deployment descriptor, is checked for correctness and completeness.

3. The WS-BPEL workflow description is modified to solve a UNICORE 6/WS-
BPEL workflow engine mapping problem. Details about this problem and
the solution are described in Section 3.3.

4. The workflow is deployed to the WS-BPEL workflow engine. This is done
by transferring the WS-BPEL workflow description and the corresponding
deployment descriptor to the WS-BPEL engine by an appropriate adapter,
in our case an ActiveBPEL adapter.

5. The corresponding Workflow Service (see Section 3.2) is created and regis-
tered to the UNICORE/X service container.

Subsequently, undeployment is executed as follows:

1. The factory service of the corresponding Workflow Service (see Section 3.2)
is deregistered and removed from the UNICORE/X service container to pre-
vent the creation of new Workflow Service instances.

2. The undeployment process waits for the termination of active workflow in-
stances. The initiator of undeployment may decide whether these instances
shall terminate normally (expiration date is infinite), instantly (expiration
date is 0 ), or at a specific date (expiration date is specified either explic-
itly or by a grace time). Except for normal termination, Workflow Service
instance termination is enforced by the undeployment process at the given
expiration date. By default, the normal termination strategy is used.

3. The actual Workflow Service (see Section 3.2) is deregistered and removed
from the UNICORE/X service container.
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Fig. 3. Workflow Service Architecture and Example Usage

4. The WS-BPEL workflow is undeployed from the WS-BPEL workflow engine
by using an appropriate adapter (ActiveBPEL). It has to be ensured that
all data concerning the WS-BPEL workflow to be undeployed is removed.

5. The BIS-Grid Workflow Deployment Package and all related data are re-
moved from the respective local file space.

Beside the functionalities described in this section, WS-BPEL engine manage-
ment, and high-level monitoring and auditing of Workflow Service instances can
also be seen as a part of workflow management. Appropriate services are already
envisioned in our architecture but are not part of this work.

3.2 Workflow Service

A Workflow Service represents the execution of a specific deployed workflow. It
is a WSRF service which instances are created through a corresponding factory
service. Each instance is mapped directly to one workflow instance in the Ac-
tiveBPEL workflow engine. The Workflow Service must fulfil the use case shown
in Figure 2(b): workflow instance creation, workflow execution, status informa-
tion providing, and online configuration modification.

Figure 3 shows a more detailed view on a Workflow Service (note that the
factory service is omitted). We assume a simple workflow that calls an external
service and sends the response back to the user. Only relevant WS-BPEL activ-
ities are shown in the ActiveBPEL engine. Before the execution starts, the user
has to create a new Workflow Service instance via the corresponding factory
service.

The WSDL interface of this Workflow Service is a combination of two inter-
faces: The first one is the Workflow Service interface that offers BIS-Grid-specific
operations, e.g. requesting information on workflow progress, changing/adding
security tokens, or modifying the security policy. The second interface is the
original workflow interface provided by the WS-BPEL engine integrated in the
combined WSDL so that all service calls can be done on the Workflow Service.
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Internally, the UNICORE/X service container contains an XFire SOAP en-
gine11 that processes incoming messages through an XFire Handler Pipeline.
The last handler of the incoming pipeline is the so-called Invoker that manages
the Java method invocation on the actual UNICORE/X service. The Invoker of
a Workflow Service instance differentiates between BIS-Grid-specific service calls
and service calls specific to workflow execution. Regarding the latter, the Invoker
forwards the message to a general method. Grid-specific information such as se-
curity credentials or accounting and billing information is removed in a second
configurable handler pipeline, thus converting the message to a standard mes-
sage used in Web Service calls (see Figure 3
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and forwards the message to the correct Workflow Service instance for fur-
ther processing. By using another handler pipeline that depends on the current
configuration of the Workflow Service instance, Grid-specific XML fragments -
e.g. SAML assertions [9] - are added to the message and then forwarded through
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ActiveBPEL runs in a separate environment. It is not possible to access the
engine without using the BIS-Grid-specific services of a UNICORE 6 installa-
tion. This is crucial for Grid workflow execution security since workflow access
is controlled by UNICORE 6 security mechanisms using Grid credentials. All
message transfers are performed using certificate-secured SSL channels.

3.3 UNICORE 6/WS-BPEL Engine Mapping

Using an arbitrary WS-BPEL engine, we have to deal with two different in-
stances of the same workflow: a regular workflow instance in the actual WS-
BPEL engine, and the WSRF Workflow Service instance in the UNICORE/X
service container. It is the task of the UNICORE/X service extensions to check
incoming and outgoing messages and to prepare them for Grid utilisation. To
do so, it is necessary to map messages from the WS-BPEL engine to the correct
WSRF instances and vice versa. In UNICORE 6, a Workflow Service instance is
identified by a resource id which is also contained in its endpoint reference. Un-
fortunately, there is no identification information in the SOAP messages that
are sent between UNICORE/X and the WS-BPEL engine which enables to

11 http://xfire.codehaus.org/
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conclude the original WS-BPEL instance. Such information is necessary for both
synchronous and asynchronous external service invocations, e.g. since appropri-
ate security credentials must be assigned to outgoing messages.

This problem is solved by modifying the WS-BPEL workflow description so
that the resource identifier used by UNICORE/X is known to the WS-BPEL
workflow and used in external message communication (cp. Section 3.1). There-
fore, we stipulate that a WS-BPEL workflow expects the resource id of a corre-
sponding Workflow Service instance to be attached to incoming messages that
create workflow instances. Second, we stipulate an assign operation before each
external service invocation within the WS-BPEL workflow description. This
assign operation inserts the resource id into the message. All in all, the follow-
ing requirements (RQ) must be met: For all start -messages12 the corresponding
XML schema must be extended by an extra variable for the resource id iden-
tifying the UNICORE/X Workflow Service instance (RQ1). There must be a
dedicated process variable within the workflow to store the resource id during
the whole process execution (RQ2). There must be an assign activity after each
instance-creating activity which copies the resource id from the message into the
process variable (RQ3). All outgoing message schemas, i.e. reply or invoke,
must be extended by an extra variable to carry the resource id (RQ4). There
must be an assign activity that copies the resource id from the dedicated pro-
cess variable into the corresponding message variable before each activity that
causes an outgoing message (RQ5). We developed WS-BPEL patterns that meet
these requirements. They will be part of a WS-BPEL pattern catalogue that also
contains patterns for Grid utilisation with standard WS-BPEL, for example.

3.4 Implementation Status

A first prototype of the BIS-Grid workflow engine is expected to be released in
August 2008. The prototype and the WS-BPEL pattern catalogue mentioned in
Section 3.3 will be made available on the BIS-Grid web site (www.bisgrid.de).

4 Conclusion and Future Work

We presented an overview on the architecture of the BIS-Grid workflow engine. It
mainly consists of two Grid Services working together with the WS-BPEL engine
ActiveBPEL. Instances of a Workflow Management Service hot-deploy Work-
flow Services that encapsulate workflows in the WS-BPEL engine, and propa-
gate them as WSRF-compliant Grid Services. Within this architecture, neither
the WS-BPEL engine nor the WS-BPEL 2.0 standard have to be adapted. The
WS-BPEL engine is therefore exchangeable through any WS-BPEL-compliant
engine. Also, the architecture offers further possibilities to easily adopt future
features, e.g. by modifying handler pipelines.

12 I.e. messages which are addressed to receive or pick activities with the
createInstance attribute set to yes.
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This paper presents a snapshot on our ongoing work. We recently started with
the implementation, focussing on the basic functionalities, e.g. piping messages
through the Workflow Service and on security issues. We will subsequently ad-
dress human interaction in worflows, and consider an adequate workflow design
tool in our future work.
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Abstract. This paper evaluates the performance of the emerging OGF
standard OGSA - Basic Execution Service (BES) on three fundamentally
different Grid middleware platforms: UNICORE 5/6, Globus Toolkit 4
and gLite. The particular focus within this paper is on the OGSA-BES
implementation of UNICORE 6. A comparison is made with baseline
measurements, for UNICORE 6 and Globus Toolkit 4, using the legacy
job submission interfaces. Our results show that the BES components are
comparable in performance to existing legacy interfaces. We also have a
strong indication that other factors, attributable to the supporting infras-
tructure, have a bigger impact on performance than BES components.

Keywords: Performance analysis, Grid middleware, UNICORE, gLite,
Globus Toolkit, OGSA-BES.

1 Introduction

Today’s large-scale scientific research is supported by Grid and e-science infras-
tructures. Grids are composed of a set of heterogeneous resources that are man-
aged by several interacting software components accessible as Grid services [1].
These infrastructures are increasingly often accessed via different flavors of Grid
middleware technologies. Several different Grid infrastructures exist today. Some
are primarily focused on maximized throughput, like egee, osg and ngs; oth-
ers are primarily driven by high-performance computing (hpc) needs, like deisa

and teragrid. With emerging Grid infrastructure interoperability, it is now be-
coming possible and realistic to combine these different types of resources for
major scientific research areas that demand both high throughput and hpc to
make progress [2]. In these scenarios, Grid middleware performance becomes
important to measure and understand.

Recently, many Grid middleware technologies have been augmented with im-
plementations of proposed recommendations from the Open Grid Forum (ogf).
An example is the OGSA Basic Execution Service (bes) [3] for job management
and submission. Adding bes to a middleware is motivated by the gain in inter-
operability between different Grids [4], and by the increase in performance and
handling of jobs between these middleware technologies.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 113–122, 2009.
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Performance analysis and benchmarking of Grid technologies in general, and
Grid middleware in particular, is still an emerging area. Some results covering
different approaches and tools can be found in [5,6,7].

In contrast to these approaches, we presented in [8] a “black-box” approach for
analyzing Grid middleware, using a straightforward and non-invasive platform
independent method. In this paper, we build on our previous work to assess the
performance of the recently finalized bes implementations for three1 different
Grid middleware stacks: gLite, Globus Toolkit 4 and unicore 6. Performance
analysis of the unicore implementation [9] becomes specifically important since
it has been deployed on several deisa sites for evaluations.

This paper is structured as follows. Section 2 gives a background and illus-
trates the design of our approach for bes. Section 3 provides implementation
details of the benchmarked bes implementations. We present results from our
performance measurements and provide insights by evaluating them with respect
to the core technologies and job management handling within the different Grid
middlewares in Section 4. Finally a conclusion is presented in Section 5.

2 Black-Box Benchmarks of Grid Middleware

From a user perspective Grid middleware adds a certain overhead compared to
local execution. Independent of the size of the submitted job, fixed costs con-
tribute to the overhead of the Grid system. It is important to be able to diagnose
and address this overhead early in the design cycle of a new component. Grid
developers can use this information for evaluating design and implementation
trade-offs while Grid users can try to amortize the overhead by submitting fewer
longer running jobs.

To analyze the performance of Grid middleware rather than just measuring
the time an application spends on a resource, we have demonstrated a method
to measure the time spent on the “grid work” per job in [8]. In this paper we
build on our previous work and investigate the performance of recently developed
alternative job submission components in different Grid middlewares. We assume
that a component can be treated as a black box into which jobs are submitted
and from which results are returned. The results obtained can be compared with
our baseline measurements for consistency and rough estimates of the overhead
introduced by the new components.

Features and capabilities provided by the investigated job submission inter-
faces vary. Thus we implemented three different variants of our basic benchmark.
For the ws-gram baseline measurements we used the globusrun-ws command
line client. It can submit and monitor one job at a time. Our implementation
uses 10 parallel threads that first submit the required number of jobs and poll for
their completion in a round-robin fashion. condorg and cliq offer bulk submis-
sion capability: a single job submission followed by local polling is used. Finally

1 Our work was done in the context of the OMII-Europe project which focused on
these three Grid middleware platforms.
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for the new bes and unicore 6 mechanisms we use a serial implementation,
submitting and monitoring one job at a time.

To provide a basis for reproducible and repeatable results, it is necessary to
create identical conditions when performing comparisons of Grid middleware.
Our experience is that this can be very timeconsuming and in some cases not
feasible. We claim a best effort approach can still give some comparable perfor-
mance measurements across different Grid middleware.

3 OGSA-BES Implementations

bes provides easy, intuitive and standardized access to computational resources.
The OMII-Europe project provided bes implementations for the three middle-
ware stacks which we benchmarked.

The bes specification [3] defines two mandatory (BESFactory and BESManage-
ment) and one optional (BESActivity) interface. The management interface al-
lows to control the service itself. The factory interface provides job submission
and bulk monitoring capabilities while the activity interface allows monitoring
of a single job. Jobs submitted to the bes interface have to be described in the
Job Submission and Description Language (jsdl) [10].

3.1 OGSA-BES Implementation of UNICORE 6

At the time of writing, unicore 6 offers two ws-based interfaces for job sub-
mission and management: bes and unicore Atomic Service (uas) [9]. Both
interfaces allow for job management and control functions using ws messages.
Both interfaces are adopted within the middleware and deployed on top of re-
source management systems (rms) (e.g. Torque, LoadLeveler) that in turn deal
with job scheduling on computational resources.

Since bes allows for a flexible implementation strategy, the unicore devel-
opers have been able to directly use the interfaces of the execution back-end
of unicore 6, which is the enhanced Network Job Supervisor (xnjs) [11]. The
implementation consists of the mandatory BESFactory and BESManagement in-
terfaces as well as the optional BESActivity. In comparison to bes, the uas is
a suite that additionally provides storage management and file transfer mech-
anisms that have been leveraged by the bes implementation. uas also accepts
jobs described in jsdl.

3.2 OGSA-BES Implementation of gLite

The integration of the bes interface into the gLite middleware was accomplished
by extending the cream computing element which provides both the back-end
core and the legacy interface. The new interface is implemented as a separate
plugin on top of cream core. Both interfaces can share the same core so that
jobs can be submitted to the same resource via both interfaces.
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3.3 OGSA-BES Implementation of Globus

The bes service for the Globus toolkit is implemented as a thin wrapper layer
in front of the ws-gram job submission service. The legacy ws-gram interface
is also available to support the existing Globus infrastructure.

The bes service itself is stateless with the exception of a single flag that allows
to stop job submission via the management interface. Each incoming request is
translated into corresponding WS-GRAM requests, which involves a translation
of the jobs description from jsdl to rsl needed by the ws-gram. This adds some
overhead to each bes call but allows for a transparent deployment of bes interfaces
into existing Globus infrastructures, since the bes service simply behaves like a
ws-gram client and can even be in a completely different organizational domain.

4 Benchmark Results

Using the “black-box” approach described in [8] we have collected baseline per-
formance data for a number of Grid middlewares. We use the baseline data to
assess the performance of the new bes components.

4.1 Baseline Results

The computer platform used consisted of nodes with a 2.8 GHz Intel Pentium
D cpu and 2 GB ram connected through gigabit Ethernet and running Sci-
entific gnu/Linux version 4 operating system. Even though the test-bed was a
controlled environment with only local network traffic and consistent operating
system and middleware installations, big variations between different runs were
detected. This underlines the importance of a carefully controlled environment
to arrive at repeatable and comparable experiments for quantitative analysis.

Figures 1 and 2 show a selection of our results from a number of benchmark
runs for Globus Toolkit 4 and unicore 5/6 in our test-bed. Keeping the large
variation in mind a number of qualitative conclusions can be drawn. For Globus
Toolkit middleware we conclude:

– Submission via the condorg interface yields best results for the workload
of the benchmark. This is also the mechanism that is recommended by the
Globus Alliance for the case of submitting a large number of jobs.

– Data staging has by far the biggest influence on job submission performance.
The fastest runs occur for all tested submission mechanisms when staging of
input and output is not used.

– The results for the ws-gram submission tests show that considerable stress
is put on both the middleware and the submission script. For instance, the
two runs with the longest run time in Fig. 1 show that about half of the jobs
finished almost simultaneously which is most likely an artifact of the polling
method used by the benchmark driver to detect job completion. The polling
attempts load both the middleware and the benchmark driver and this load
is highest in the beginning of the run when there are many unfinished jobs
that need to be checked.
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Fig. 1. Selected system level performance runs for the Globus job submission com-
ponents. The data sets show that different job submission mechanisms (ws-gram,
condorg, bes) show different characteristics, but also that staging effort dominates
over all other issues. bes does not do any staging and is shown for reference.

Fig. 2 shows the results from the evaluation of the system level performance
for the unicore 6 middleware stack, including comparisons with unicore 5:

– The unicore 5 results show consistent behavior for both Torque and Fork
local resource management. In this cases we used the batch submission ca-
pability provided by the cliq client.

– The results show also that the scheduling policy of the local resource man-
ager (batch system) can have an impact on the total performance. This is
exemplified by the results obtained when using the maui scheduler for the
Torque batch system.

– The unicore 6 system level performance shows considerable spread in con-
trast to the unicore 5 results. Part of this could be attributed to the fact
that different versions of the middleware were used to make the measure-
ments. However the large spread between the Fork and Torque performance
points more to the sensitivity of the unicore 6 benchmarks towards small
changes in the benchmarking environment. This is probably caused by the
fact that the current benchmark tools are restricted to serial submission
when targeting unicore 6 which puts more emphasis on the latency of a
single submission.

– In contrast to the Globus Toolkit, no surge of jobs completing can be seen.
This leads to the conclusion that the selected benchmark method is well
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Fig. 2. System level performances for the unicore middleware stack. The data-sets
shown are both for version 5 and 6 of unicore. As a reference the results for the bes

submission are also given.

adopted towards the unicore middleware stack thus not exhibiting the
polling problems of the Globus tools.

4.2 BES Components Performance

With the availability of the bes enhanced job submission components from the
omii-Europe [12] project, we have performed a first evaluation of the perfor-
mance of these components. Since these components are handling job submission
we compare them against the system level performance evaluations. It is however
essential to bear in mind that no firm comparisons can be made because of dif-
ferences in the platforms and setups that were used. A number of adoptions had
to be made in order to conduct the performance evaluation at this early stage
of deployment of the bes components. In particular the following differences to
the system level evaluation are present:

– Because of the limited time we used the test services provided by developers
of the respective bes components. This means that the hardware and soft-
ware setup differs significantly. This is most apparent in the case of the gLite
test service which uses a complete batch system and computing element (the
cream-ce) for its backend compared to the simple process forking backends
used by the Globus Toolkit and unicore services. The specification of hard-
ware and software for bes endpoints used are:
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CREAM/BES. The omiivm03.cnaf.infn.it host is deployed as a vir-
tual machine on the omii005 host. This machine has 2 Intel(R) Xeon(R)
2.00GHz cpus and 4 GB ram. The machine hosts four virtual machines
each with an equal share of the available resources of which omiivm03
is one.

GT/BES. The GT/BES server is hosted on romana.pdc.kth.se and has
a Intel Dual Core 2.13 GHz cpu with 1 GB memory running Gentoo
gnu/Linux 2.6.

UNICORE/BES. The BES server hosted on zam461.zam.kfa-juelich.
de has a Intel Dual Xeon 3 GHz cpu with 2 GB memory running SuSE
gnu/Linux 9.3.

Benchmark client. An Intel Dual Core cpu 2.13 GHz running Gentoo 2.6
machine targeting different endpoint. The cost of a ping to the endpoints
were approximately 30 ms.

– No attempts at handling input or output data (data staging) for the job
were made.

– The current bes benchmark does not submit jobs in parallel but processes
them in a serial fashion.

In total, the bes benchmark is considerably simpler in nature than the earlier
system level benchmarks. Despite this fact, we found it helpful in uncovering a few
interesting facts about the behavior of the omii-Europe bes implementations:
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Fig. 3. Performance of Globus and unicore 6 bes implementations compared to the
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120 F. Hedman et al.

– We were able to make a close comparison between the unicore 6 bes

adoption and the legacy interface (i.e. uas) using the same method. The
legacy system seemed to exhibit 3 times higher latencies than the bes sys-
tem (Fig. 3). The benchmark that we used however emphasizes the latency
component because of the serial nature of the submission. Preliminary inves-
tigations show that this was caused by a polling rate limitation in the uas

client.
– Despite the differences in hardware and web services implementation, the

performance of the unicore and Globus Toolkit implementations is about
the same and comparable to the performance of the legacy Globus ws-gram

when no data staging is done. This can be seen in Fig 3. The increased delay
until completion of the first job in the system level script is caused by the
concurrent submission of all 750 jobs in the beginning of the benchmark run.

– The impact of staging and logging is far bigger than any overhead introduced
by the bes services. This becomes apparent in Fig 4 where the gLite bes im-
plementation is compared to the legacy Globus ws-gram performance with
and without staging. The inclusion of input/output staging into the ws-

gram submission increased total execution times by a factor of roughly 6.
Also the job completion rate in the early stages of the ws-gram experi-
ment match the rate from the gLite bes. This is a strong indication that the
performance of the gLite service is comparable to the other bes implemen-
tations with a more realistic backend and job setup where input and output
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would be transferred to the user and/or permanent storage. Also, the lack
of concurrency may slow down the gLite bes since logging phases cannot
overlap with execution of the next job.

To sum up, the simple evaluation of the performance of the bes services does
show that the performance of the bes services should be acceptable compared
to the performance of the legacy job submission mechanisms. However, further
targeted investigation in carefully controlled environments would be necessary
to conclusively asses the performance of these new mechanisms.

5 Conclusion

A necessary prerequisite to benchmark a piece of software is the ability to exe-
cute this software under controlled and well known conditions. In fact, the bes

components are dependent on local resource management systems to perform
the actual job execution. As the presented “black-box” results suggest, configu-
ration and services, for example handling of input and output data or logging,
carried out by these “back-end” infrastructure have a large impact on the mea-
sured performance of the component. We tried to resolve this issue by estimating
the effect of the back-end system onto the component performance by using al-
ternate legacy components that utilized the same back-end infrastructure and
use them as a baseline for relative comparison. We used this approach for the
bes job submission benchmark provided in this paper.

In summary, our results show that the performance of the bes components
that were evaluated are comparable to existing legacy solutions. Different se-
curity setups of the components may also lead to different performance, but in
this paper we clearly consider them out-of-scope. The “black-box” experiments
strongly indicate that other factors attributable to the supporting infrastructure
have a bigger impact on performance than the use of bes components.
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Second Workshop on Highly Parallel Processing
on a Chip (HPPC 2008)

It is now noncontroversial to assume that explicit, general-purpose on-chip paral-
lelism will play a much more prominent role in future computing systems, ranging
from embedded and portable systems, through servers, to compute farms and
high-performance systems. What is, on the other hand, currently completely
open is how such systems will be organized from the architectural point of view,
how parallelism shall be exposed to the programmer (and user), as well as the
nature of the parallelism (general or special purpose) that can or will be made
available.

The Workshop on Highly Parallel Processing on a Chip (HPPC) takes as
premise that the drive for increased application performance, technological fea-
sibility and technological and environmental constraints (for instance on power
consumption) within the next 5 to 10 years will lead to chips with a significant
number (read: more than four or eight) of general-purpose cores, and/or possibly
an order of magnitude more special-purpose cores, quite likely complemented by
new and/or different paradigms for on-chip communication and memory orga-
nization than the processors that are now on the market. These developments
pose major challenges to architecture, language and compiler design, algorithms,
and application developments, in order to fully (or acceptably) exploit the raw,
provided compute power. The HPPC workshop aims to be a forum for discussion
of such fundamental issues. It is open to all aspects of existing and emerging,
envisaged and imagined multi-core (by which is meant: many-core) chips with a
significant amount of parallelism, especially to considerations on novel paradigms
and models and the related architectural and linguistic support. To be able to
relate to the parallel processing community at large, which we consider essen-
tial, the workshop is organized in conjunction with Euro-Par, the main European
(but international) conference on all aspects of parallel processing.

For HPPC 2008, the second installment of the workshop, 6 papers were se-
lected for presentation and subsequent publication out of the 20 submissions
received in response to the call for papers that was launched early in 2008. The
submitted papers were all relevant to the workshop themes, some more than oth-
ers, and due to the limited time for the workshop (an extended half-day event),
only about 30% of the submissions could be accepted. The workshop organizers
thank all contributing authors, and hope that they will also find it worthwhile
to submit contributions next year. All contributions received four reviews by
members of the Program Committee, who are likewise all thanked for the time
and expertise they put into the reviewing work, and for getting it done within
the rather strict time limit. The final decision on acceptance was made by the
Program Chairs based on the recommendations from the Program Committee.

The Euro-Par 2008 workshop day was lively and well-organized, and the
HPPC workshop had a cumulative attendance of more than 40. In addition to the
six contributed talks, the workshop had two longer, invited talks by Gianfranco

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 123–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Bilardi (on “Models for Parallel and Hierarchical On-Chip Computation”) and
Chris Jesshope (on “Building a Concurrency and Resource Allocation Model
into a Processor’s ISA”). The HPPC 2008 workshop organizers thank all at-
tendees, who contributed much to the workshop with questions, comments and
discussion, and hope they found something of interest in the workshop, too. We
also thank the Euro-Par organization for creating the opportunity to arrange
the HPPC workshop in conjunction with the Euro-Par conference, and of course
all Euro-Par 2008 organizers for their help and (excellent) support both before
and during the workshop. Our sponsors VTT, NEC Laboratories Europe and
Euro-Par 2008 are warmly thanked for the financial support that made it possi-
ble to invite Gianfranco Bilardi and Chris Jesshope, both of whom we sincerely
thank for accepting our invitation to speak and for their excellent talks.

These proceedings include the final versions of the presented HPPC papers
(as a matter of principle, accepted papers not presented at the workshop are not
included in the proceedings), taking the feedback from reviewers and workshop
audience into account. In addition to the reviews by the Program Committee
prior to selection, an extra, post-workshop (blind) “reading” of each presented
paper by one of the other presenters was introduced with the aim of getting
fresh, uninhibited high-level feedback for the authors to use at their discretion
in preparing their final version (no papers would have been rejected at this stage
– bar major flaws). This idea will be continued for HPPC 2009.

The contributed papers are printed in the order they were presented at the
workshop. The abstracts of the two invited talks by Gianfranco Bilardi and
Chris Jesshope have also been included in the proceedings. Thematically the con-
tributed papers cover aspects of language and algorithms support for an actual,
well-known, heterogeneous multi-core processor (“Optimized Pipelined Parallel
Merge Sort on the the Cell BE” by Keller and Kessler, and “Compile-Time and
Run-Time Issues in an Auto-parallelization System for the Cell BE Processor”
by Donaldson, Keir and Lokhmotov), general, run-time support for heteroge-
neous multi-cores (“A Unified Runtime System for Heterogeneous Multi-core
Architectures” by Augonnet and Namyst), improvements of software implemen-
tations of the transactional memory programming model (“Adaptive Read Val-
idation in Time-Based Software Transactional Memory” by Atoofian, Baniasadi
and Coady), high-level, general-purpose, programming support tools (“Towards
an Intelligent Environment for Programming Multi-core Computing Systems”
by Pllana et al.), as well as considerations on power-constrained limits to scaling
of multi-cores (“(When) Will CMPs Hit the Power Wall?” by Meenderinck and
Juurlink). The last mentioned paper, very much aligned with the premise of the
HPPC workshop, conjectures chip-multiprocessors with 999 cores by 2022.

The HPPC workshop is planned to be organized again in conjunction with
Euro-Par 2009.

November 2008 Martti Forsell
Jesper Larsson Träff
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Models for Parallel and Hierarchical On-Chip
Computation

Gianfranco Bilardi

Department of Information Engineering
University of Padova

Italy
bilardi@dei.unipd.it

Abstract. Chip Multiprocessors have the potential to deliver significant
performance, easily in the Teraflop/s range within a few years. To achieve
the full exploitation of this potential, it is crucial to develop adequate
models of computation that can guide the optimization of algorithms
and of architectures. This talk will present results and open issues along
three directions:

1. The pipeline of accesses in the memory hierarchy to increase memory
bandwidth utilization.

2. The network-oblivious approach as a step toward efficient algorith-
mic portability across chip multiprocessors with different
organizations.

3. The information-exchange methodology to identify the best partition
of chip area between functional units and storage elements, under
chip I/O bandwidth constraints.
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Saarbrücken, Germany.

Bilardi’s research is mostly in the areas of parallel algorithms and architec-
tures, high performance computing, VLSI, and signal processing. This research
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at the European level. Currently, he is the Coordinator of the Center of Ex-
cellence MIUR ”Science and Applications of Advanced Computing Paradigms,”
established in 2001, and involving researchers in different areas of informatics
and computational sciences and engineering. He has (co)authored over 75 inter-
national publications.
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Building a Concurrency and Resource Allocation
Model into a Processor’s ISA

Chris Jesshope

Computer Systems Architecture Group, Informatics Institute
University of Amsterdam

The Netherlands
jesshope@science.uva.nl

Abstract. We are now facing the prospect of no increases in computer
system’s performance unless we harness and efficiently exploit the con-
currency that comes from multiple cores on a chip. It should be empha-
sised that the issues in exploiting concurrency are scale invariant and
relate to a few simple parameters and issues. These are: the ratio of the
throughput of computation and communication (both local and global),
which determines how computation can be distributed and the cost of
concurrency creation compared to computation. The latter determines
the grain size of the computation. Finally we need virtual concurrency
or parallel slack and an efficient data-driven scheduling mechanism, in
order to tolerate the latency in any asynchronous activity in the compu-
tation, such as access to remote data and resource sharing. The concur-
rency model used must also be well behaved, i.e. provide determinism of
the values computed (although not necessarily of the time required to
compute them) and have safe composition. Although these concurrency
issues are scale invariant it makes sense to implement them at the low-
est scale possible, i.e. at the level of machine instructions, which have
overheads measured in single cycles. In this way, all levels of concur-
rency may be exploited, which is important when dealing with legacy
or constrained code. This presentation will explore work undertaken at
the University of Amsterdam in designing and evaluating micro-grids of
micro-threaded processors that meet these requirements. Moreover the
concurrency model developed in this work, SVP, is free of deadlock under
composition and has built into its implementations issues which are con-
sidered to be operating system ones. Namely it builds in the abstraction
of a place, which capture resources and security both in using places and
in controlling the execution of concurrency at a place. As the implemen-
tation of the concurrency model also manages mapping and scheduling
of concurrency, it can truly be said that SVP is an operating system
kernel built into the ISA of the processor.
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Chris Jesshope is Professor of Computer Systems Engineering at the Univer-
sity of Amsterdam and has held this post since 2004. Prior to this, he has held
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posts in a number of universities including a Readership at Southampton Uni-
versity and a Chair at Surrey University, two of the top Electronic Engineering
schools in the UK. Professor Jesshope is a Chartered Engineer, a Fellow of the
BCS, a Member of the IEEE and a Member of the IEEE Computer Society. His
professional activities have included membership on various funding agency com-
mittees in both the UK and the Netherlands and the prestigious post of Editor of
the IEE Proceedings part E (Computers and Digital techniques) over a 10 year
period. He has been involved in numerous program committees, is the Found-
ing Chair of the steering committee of the Microgrid International Workshop
on on-chip concurrency and was the founding chair of the steering committee
for the Euro-Par International Conference. He has also been general chair for
nine international conferences and workshops. Professor Jesshope has given in
excess of 50 invited papers or keynote presentations in his career, has written or
edited 17 major works, including the very successful book Parallel Computers
and published in excess of 160 refereed papers. Most of this work has been in
the field of parallel computer architectures and concurrent programming.



Optimized Pipelined Parallel Merge Sort on the Cell BE

Jörg Keller1 and Christoph W. Kessler2
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Abstract. Chip multiprocessors designed for streaming applications such as Cell
BE offer impressive peak performance but suffer from limited bandwidth to off-
chip main memory. As the number of cores is expected to rise further, this bot-
tleneck will become more critical in the coming years. Hence, memory-efficient
algorithms are required. As a case study, we investigate parallel sorting on Cell
BE as a problem of great importance and as a challenge where the ratio between
computation and memory transfer is very low. Our previous work led to a parallel
mergesort that reduces memory bandwidth requirements by pipelining between
SPEs, but the allocation of SPEs was rather ad-hoc. In our present work, we
investigate mappings of merger nodes to SPEs. The mappings are designed to
provide optimal trade-offs between load balancing, buffer memory consumption,
and communication load on the on-chip bus. We solve this multi-objective op-
timization problem by deriving an integer linear programming formulation and
compute Pareto-optimal solutions for the mapping of merge trees with up to 127
merger nodes. For mapping larger trees, we give a fast divide-and-conquer based
approximation algorithm. We evaluate the sorting algorithm resulting from our
mappings by a discrete event simulation.

1 Introduction

Multiprocessors-on-chip are about to become the typical processors to be found in desk-
tops, notebooks and clusters. Besides multicores based on x86 architectures, we also
find new designs such as the Cell Broadband Engine processor with 8 parallel proces-
sors called SPEs and a Power core (see e.g. [1] and the references therein). Currently,
explicit parallel programming is necessary to exploit the raw power of these processors.
Many applications use the Cell BE like a dancehall architecture, i.e. all SPEs load data
from the external memory, and use their small local memories (256 KB for code and
data) as explicitly-managed caches. Yet, as the bandwidth to the external memory is the
same as each SPE’s bandwidth to the element interconnect bus (EIB) [1], the external
memory limits performance and prevents scalability. Bandwidth to external memory is
a common bottleneck in multiprocessors-on-chip, and the increasing number of cores
will intensify the problem [2]. A scalable approach to parallelism on such architectures
therefore must use communication between the SPEs to reduce communication with
external memory.

Sorting is an important subroutine in applications ranging from computational geom-
etry to bio informatics and data bases. Parallel sorting algorithms on a wealth of archi-
tectures have therefore attracted considerable interest continuously for the last decades,

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 131–140, 2009.
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see e.g. [3,4]. As the computation to memory-transfer ratio is quite low in sorting, it
presents an interesting case study to develop bandwidth efficient algorithms.

Sorting on the Cell BE presents several challenges. First, the SPEs’ local memories
are so small that most parallel sorting algorithms must mainly use the external mem-
ory, and thus will not be memory-efficient. Algorithms which do not suffer from this
problem must also have very simple, data-independent control structures that are able to
efficiently use the SPEs’ SIMD structure and minimize branching. Sorting algorithms
implemented for the Cell BE [5,6] use bitonic sort or merge sort and work in two phases
to sort a data set of size n with local memories of size n′. In the first phase, blocks of
data of size 8n′ that fit into the combined local memories of the 8 SPEs are sorted. In
the second phase, those sorted blocks of data are combined to a fully sorted data set. We
concentrate on the second phase as the majority of memory accesses occurs there. In [5],
this phase is realized by a bitonic sort because this avoids data dependent control flow
and thus fully exploits the SIMD architecture of the SPEs. Yet, O(n log2 n) memory
accesses are needed, and the reported speedups are small. In [6], mergesort with 4-to-1-
mergers is used in the second phase, where the mergers use bitonic merge locally. The
data flow graph of the merge procedures thus forms a fully balanced quad-tree. As each
SPE reads from main memory and writes to main memory, all n words are transferred
from and to main memory in each round, resulting in n log4(n/(8n′)) = O(n log4 n)
data being read from and written to main memory. While this improves the situation,
speedup still is limited.

In order to overcome this bottleneck, we propose to run merger nodes belonging to
consecutive layers of the merge tree concurrently, so that output from one merger is not
written to main memory but sent to the SPE running the follow-up merger node, i.e.
we use a form of pipelining. If we can embed k-level b-ary merge trees in this way,
we are able to realize parallelized bk-to-1 merge routines and thus increase the ratio of
computation to memory transfer by a factor of k · log4 b. Yet, this must be done such
that all SPEs are kept busy. As in [6], a merger node does not process complete blocks
of data before forwarding its result block, but uses fixed sized chunks of the blocks,
i.e. a merger node is able to start work as soon as it has one chunk of each of its input
blocks, and as soon as it has produced one chunk of the output block, it forwards it to
the follow-up node. This form of streaming allows the use of fixed size buffers, holding
one chunk each. To overlap data transfer and computation, the merger nodes should
use double buffering at least for their inputs, and the buffers should have a reasonable
minimum size to allow for efficent data transfer between SPEs.

Both [6] and our approach may benefit from a sample sort [7] preprocessing to reduce
the problem to p sorts of cn/p data each, where c ≤ 3 with high probability, which
avoids log4 p and logbk p rounds, respectively.

Ensuring that our pipeline runs close to the maximum possible speed requires load
balancing. If a merger node u must provide an output rate of τ words per time unit, then
the mergers ui, where 1 ≤ i ≤ b, feeding its inputs must provide a rate of τ/b words
per time unit on average. However, if the values in the output chunk produced by ui are
much larger than those in uj (see Fig. 1), u will only process values from uj for some
time, so that uj must produce at a double rate for some time, while ui will be stalled
because of finite buffering between ui and u. Otherwise the rate of u will reduce.
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Fig. 1. Load balancing between merger nodes

Finally, the merger nodes should be distributed over the SPEs such that not all com-
munication between merger nodes leads to communication between SPEs, in order not
to overload the EIB.

The remainder of this article is organized as follows. In Section 2, we present the
mapping problem sketched here in a formal way, give an integer linear programming so-
lution to compute an optimal mapping of a b-ary merge tree onto the SPEs for small and
medium-sized merge trees, and present an approximation algorithm based on divide-
and-conquer. In Section 3, we discuss how our mapping turns into an efficient sorting
algorithm, and we present simulation results. Section 4 concludes.

2 Mapping Trees onto Processors

2.1 Definitions

Given is a set P = {P1, . . . , Pp} of p processors interconnected by a ring, and a k-
level balanced b-ary tree T = (V, E) directed towards its root, to be mapped onto the
processors. Information in the tree flows from the leaves towards the root, input being
fed in at the leaves and output leaving the tree root. Each node v in the tree processes b
designated incoming data streams and combines them into one outgoing data stream of
rate 0 < τ(v) ≤ 1. Hence, the incoming data streams on average will have rate τ(v)/b,
if we assume finite buffering within nodes.

The computational load γ(v) that a node v places on a processor that it is mapped
to is proportional to its output rate τ(v), hence γ(v) = τ(v). The tree root r has a
normalized output rate of τ(r) = 1. Thus, each node v on level i of the tree, where
0 ≤ i ≤ k − 1, has τ(v) = b−i on average. The computational load and output rate
may also be interpreted as node and edge weights, respectively. For Tl(v) being the l-
level sub-tree rooted in v, we extend the definitions to τ(Tl(v)) = τ(v) and γ(Tl(v)) =∑

u∈Tl(v) γ(u). Note that γ(Tl(v)) = l ·γ(v), because the accumulated rates of siblings
equal the rate of the parent. For nodes u and v not in a common sub-tree, τ({u, v}) =
τ(u) + τ(v) and γ({u, v}) = γ(u) + γ(v). In particular, the computational load and
output rate of any tree level equals 1. The memory load that a node v will place on the
processor it is mapped to is a constant value c, because the node needs a fixed amount
for buffering transferred data and for the internal data structures it uses for processing
the data. For simplicity, one may assume c = 1 in the sequel.

We construct a mapping μ : V → P of tree nodes to processors. Under this mapping
μ, a processor Pi has computational load1 Cμ(Pi) =

∑
v∈μ−1(Pi) τ(v), i.e. the sum of

1 The computational load depends on τ and thus averaged over time.
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the load of all nodes mapped to it, and it has memory load Mμ(Pi) =
∑

v∈μ−1(Pi) c =
c · #μ−1(Pi). The mapping μ shall have the following properties:

1. The maximum computational load C∗
μ = maxPi∈P Cμ(Pi) among the processors

shall be minimized. This requirement is obvious, because the lower the maximum
computational load, the more evenly the load is distributed over the processors.
With a completely balanced load, C∗

μ will be minimized.
2. The maximum memory load M∗

μ = maxPi∈P Mμ(Pi) among the processors shall
be minimized. The maximum memory load is proportional to the number of the
buffers. As the memory per processor is fixed, the maximum memory load de-
termines the buffer size. If the buffers are too small, communication performance
will suffer.

3. As often as possible, sibling nodes shall be mapped to the same processor. We refer
to the discussion on load balancing in Sect. 1.

4. The communication load Lμ =
∑

(u,v)∈E,μ(u) �=μ(v) τ(u), i.e. the sum of the edge
weights between processors, shall be low.

Lemma 1 (Lower bounds). In any mapping μ the maximum computational load is at
least k/p, and the maximum memory load is at least �c · (bk − 1)/((b − 1)p)�.

We omit the routine proof of Lemma 1. The latter bound can be tightened for the case
p = k. If no processor is overloaded, the root must be placed on a processor of its
own, so that the rest of the tree is mapped onto p − 1 processors, leading to M∗

μ ≥
c((bk − 1)/(b − 1) − 1)/(k − 1) = c(bk − b)/((b − 1)(k − 1)).

For larger chip-multiprocessors, e.g. with p ≥ 20, the assumption k = p might lead
to problems because the tree gets very large. In this case, we choose a small k, map the
tree onto p′ = k pseudo-processors, and implement each pseudo-processor with p/k
processors by evenly distributing the nodes assigned to that pseudo-processor. If fewer
than p/k nodes are mapped to a processor (e.g. if the root is mapped separately), then
we use a technique already known [4] and mentioned in [6]: we partition the very large
data blocks and perform merges on the partitions in parallel.

2.2 ILP Formulation

In the following, we number the tree nodes in breadth-first order, i.e. the root gets index
1, its children 2, 3 etc., and generally, the ith child of an inner node v gets index b · (v−
1) + i + 1, for i = 1, 2, ..., b. Let V = {1, ..., (bk − 1)/(b − 1)} denote the set of tree
nodes, Vinner = {1, ..., (bk−1 − 1)/(b − 1)} the set of inner nodes, and P = {1, ..., p}
the set of available SPEs. Our ILP formulation uses three arrays of O(bk · p) boolean
variables, x, y and z. The actual solution, i.e. the mapping of nodes to processors, will
be given by x:

xv,q = 1 iff tree node v is mapped on processor q.

In order to determine internal edges (where both source and target node are mapped to
the same processor) and siblings on the same processor, we need to introduce auxiliary
variables z and y:

zu,q = 1 iff non-root node u > 1 and its parent are mapped to processor q.
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yu,q = 1 iff all children b(u− 1) + 2, . . . , b · u + 1 of inner node u are mapped
to proc. q.

Also, we use an integer variable maxMemoryLoad that will indicate the maximum
memory load assigned to any SPE in P , and integer variable nSiblingsOnDiffSPEs that
will indicate the total number of inner nodes whose children are all mapped to the same
processor. The following constraints must hold:
Each node must be mapped to exactly one processor, and each processor can be filled
up to 100% with work2:

∀v ∈ V :
∑
q∈P

xv,q = 1 ∀q ∈ P :
∑
v∈V

xv,q · τ(v) ≤ 1

The memory load should be balanced:

∀q ∈ P :
∑
v∈V

xv,q ≤ maxMemoryLoad

Communication cost occurs whenever an edge is not internal, i.e. its endpoints are
mapped to different SPEs. To avoid products of two x variables when determining
which edges are internal, we use the following constraints and slack variables z:

∀v ∈ Vinner , q ∈ P, i ∈ {1, ..., b} : zb(v−1)+i+1,q ≤ xv,q

zb(v−1)+i+1,q ≤ xb(v−1)+i+1,q

and in order to enforce that a zu,q will be 1 wherever it could be, we have to take up
the (weighted) sum over all z in the objective function. This means, of course, that only
optimal solutions to the ILP are guaranteed to be correct with respect to minimizing
memory load and communication cost.

The communication load is the total communication volume over all tree edges mi-
nus the volume over the internal edges:

commLoad =
∑

v∈V −{1}
τ(v) −

∑
v∈Vinner

∑
q∈P

⎛
⎝ ∑

1≤i≤b

zb(v−1)+i+1,q

⎞
⎠ · τ(bv)

We apply the same trick to determine yv,q:

∀v ∈ Vinner , q ∈ P, i ∈ {1, ..., b} : yv,q ≤ xb(v−1)+i+1,q

The total number of nodes whose children are mapped to different processors is then

nSiblingsOnDiffSPEs =
∑

v∈Vinner

∑
q∈P

(1 − yv,q)

Finally, the objective function is:

Minimize εM · maxMemoryLoad + εC · commLoad + εS · nSiblingsOnDiffSPEs

where the positive weight parameters εM , εC and εS can be set appropriately to give
preference to minimizing for maxMemoryLoad, commLoad, or nSiblingsOnDiffSPEs as
first optimization goal. The formulation above requires that εC > 0 and εS > 0.

2 We focus on the case k = p; the general case would need the constraint ≤ k/p.
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Table 1. The Pareto-optimal solutions found with ILP for b = 2, k = p = 5, 6, 7

k 5 6 7
# binary var.s 305 750 1771
# constraints 341 826 1906
maxMemoryLoad 8 9 10 13 14 15 20 21 29 30
commLoad 2.5 2.375 1.75 2.625 2.4375 1.9375 1.875 2.375 2.3125 2.0

By choosing the ratio of εM to εC , we can only find two extremal Pareto-optimal solu-
tions, one with least possible maxMemoryLoad and one with least possible commLoad.
In order to enforce finding further Pareto-optimal solutions that may exist in between,
one can use any fixed ratio εM/εC , e.g. at 1, and instead set a given minimum memory
load to spend (which is integer) on optimizing for commLoad only:

maxMemoryLoad ≥ givenMinMemoryLoad

2.3 ILP Optimization Results

We implemented the above ILP model in CPLEX 10.2 [8], a commercial ILP solver.
Table 1 shows all Pareto-optimal solutions that CPLEX found for b = 2 and k =
p = 5, 6, 7. The computations for k = 5 and k = 6 took just a few seconds each,
the time to optimize for k = 7 varied between a few seconds and several hours per
givenMinMemoryLoad. For k = 8, with 5088 binary variables and 6369 constraints,
CPLEX exceeded the timeout of 24 hours and could only produce approximate solu-
tions, including one with maxMemoryLoad of 37 and a commLoad of 2.78125, and one
with 38 and 2.71875, respectively.

By varying εM/εC and keeping εS 
 εC , two of the Pareto-optimal solutions can
be found, namely that with best maxMemoryLoad and that with best commLoad. As
the memory load is often one order of magnitude larger than communication load,
εC � εM is necessary to spot the communication-optimal one. The remaining Pareto-
optimal solutions in between can be found by setting givenMinMemoryLoad appro-
priately. We use a very small εS , to give the sibling placement optimization the least
priority and not interfere with communication optimization. Figure 2 shows the gener-
ated tree drawings for two of the solutions for k = 5. The tree computed for k = 7 with
minimum commLoad is shown in Figure 3.

2.4 A Divide-and-Conquer Based Approximation Algorithm

For larger values of k, we use the following divide-and-conquer algorithm (called DC-
map in the sequel) which we first present for b = 2, and then extend to arbitrary b.

To construct a mapping for a k1-level binary tree onto k1 processors, we distinguish
two cases. If k1 ≤ k0, where k0 is a constant, we take a precomputed optimal mapping.
Currently we use k0 = 7. If k1 > k0, we place the tree root onto one processor, and
interpret the remaining k1−1 processors as two sets of k1−1 processors, each with half
the computational power. We map a (k1 − 1)-level tree onto each set recursively. Then
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Fig. 2. Two Pareto-optimal solutions for mapping a 5-level tree onto 5 processors, computed by
the ILP solver. — Left hand side: max. memory load 10 and communication load 1.75, obtained
e.g. for εM = 0.1εC . — Right hand side: max. memory load 8 and communication load 2.5,
obtained e.g. for εM = 10εC .

Fig. 3. The Pareto-optimal solution for mapping a 7-level tree onto 7 processors with least com-
munication load, computed by ILP
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we sort the processors in each set according to their memory load, one set in ascending
order, one set in descending order. Finally we re-combine the i-th processors from both
lists into one processor with full computational power.

We illustrate DC-map by an example where we employ an optimal mapping for
k0 = 5 (Fig. 2 right hand side), and construct a mapping for k1 = 6. We first place the
root of the 6-level tree onto processor 6. The two 5-level trees are mapped onto 5 ‘half’-
processors each with the help of the optimal mapping, with memory loads of 8, 8, 7, 7, 1.
As this list is already sorted in descending order, we sort the copy in ascending order and
receive 1, 7, 7, 8, 8. Combination of the lists results in memory loads of 9, 15, 14, 15, 9,
and thus a maximum memory load of 15, compared to a sharpened lower bound of 13,
but still representing a Pareto-optimal solution from Table 1.

To map a tree with b > 2, we receive b lists from the recursion step, that we may
successively combine into pairs, as in a balanced binary tree with b leaves. Alternatively,
we might use some form of linear optimization here.

DC-map mainly sorts lists of increasing length, thus its runtime is
∑k1

k=k0
O(k log k)

= O(k2
1 log k1), which can be considered efficient given that typically k1 
 103. By

construction, DC-map produces a mapping where each processor has a computational
load of 1. The maximum memory load may increase by a factor of b when going from
k to k + 1, because b lists are to be combined. In contrast, the lower bound increases by
a factor

bk+1−1
(b−1)(k+1)

bk−1
(b−1)k

≈ b · k

k + 1

Thus, if we start with an optimal solution for k0 and use DC-map to construct a solution
for k1 > k0, the maximum memory load may increase by a factor of bk1−k0 , while
the lower bound increases by a factor bk1−k0k0/k1. Thus, we may be away from the
optimum maximum memory load by a factor of k1/k0.

DC-map does not take special care for the placement of siblings or communication
load. Yet, with respect to siblings, the majority of the nodes and thus the siblings is
in the levels close to the leaves, which are placed with the help of an optimal map-
ping. With respect to communication load, we may employ the following additional
step. Normally, the two ‘half’-processors to be combined into one are from different
lists, i.e. they carry nodes from different subtrees that are not connected by edges. Yet,
when the two lists are combined, we may interchange pairs of ‘half’-processors with
identical memory load without disturbing the algorithm. If the ‘half’-processors to be
interchanged are from different lists, then their partners in the combination are now
from the same list, and the nodes they carry may be connected by edges that now be-
come internal.

We have implemented a prototype version of DC-map, albeit without the improvement
of communication load. We evaluated the prototype on the basis of optimal solutions for
k0 = 3 and k0 = 7. Table 2 depicts the placement results achieved for k1 = 3, 4, . . . , 8
and k1 = 7, . . . , 12, respectively. From the numbers it is clear that the algorithm in
practice is much closer to the lower bound than by a factor of k1/k0.
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Table 2. Results for DC-map prototype

k0 = 3 k0 = 7
k1 3 4 5 6 7 8 7 8 9 10 11 12
M∗

μ 3 6 8 15 24 46 21 42 84 132 236 453
lower bound 3 5 8 13 21 37 21 37 64 114 205 373
quotient 1.00 1.20 1.00 1.15 1.14 1.24 1.00 1.14 1.31 1.16 1.15 1.21
k1/k0 1.00 1.33 1.66 2.00 2.33 2.66 1.00 1.14 1.29 1.43 1.57 1.71

3 Sorting Algorithm and Performance

In order to test the usefulness of our mappings, e.g. with regard to load balancing, we
implemented a discrete event simulation of the second phase of the parallel merge sort-
ing algorithm. As the runtime of each merger node to produce one chunk of output
is only dependent on the size of the output buffer, it is considered a constant. As fur-
thermore communication and computation are assumed to be overlapped, we believe
the simulation to quite accurately reflect the full algorithm. We chose b = 2 because
quad-trees lead to high memory load, i.e. to very small buffer sizes, even for small k.

In each step, each SPE runs one merger node that has enough input data until it has
produced one chunk, i.e. one output buffer full of data. As buffer size, we use 4 KByte
for the output buffer (holding 1,024 32-bit integers), and 2 × 4 KByte for the input
buffers, in order to allow a merger to commence work on its input data, while its input is
being simultaneously filled with the output of a previous merger. Each merger mapped
to a particular SPE receives a share of the SPE’s processing time at least according to
its position in the merge tree, i.e. a node at level i ≥ 0 receives a share of at least 2−i,
provided that it has enough input to produce one chunk of output. We use a simple
round robin scheduling policy in each SPE, where a merger receives a number of slots
in proportion to its share. A merger not ready to run (e.g. insufficient input or full output
buffer) is simply left out.

We have investigated three mappings resulting from our mapping algorithm. In the
5-level tree of Fig. 2 (right hand side), we have realized a 32-to-1 merge on 5 SPEs,
with the restriction that no more than 8 mergers are to be mapped to one SPE. With 20
KByte of buffering (5 buffers of 4 KByte each) for each merger, this seems to be the
upper limit. We used 32 input blocks of 220 sorted integers each. The blocks were filled
with randomly chosen integers and then sorted. The pipeline ran with an efficiency of
93%, meaning that in 93% of the time steps, the root merger node could run and produce
output. In comparison to [6], our memory bandwidth requirements decreased by a factor
of 2.5. Combined with a pipeline efficiency of 93%, we still gain a factor of 1.86.

By way of comparison, we also consider mapping a 4-level tree where leaf merger
nodes over 4 SPEs, instead of 2, so that we use 6 SPEs in total. Thus, load balancing
should not pose a problem. We have simulated this mapping with 16 input blocks of
220 integers each, chosen as before. In all experiments, the pipeline ran with 100%
efficiency as soon as it was filled. As we realize a 16-to-1 merge, we gain a factor of
2 on the memory bandwidth requirements in relation to [6]. Yet, as we need 6 SPEs
instead of 4 (which would be the normal case p = k), our real improvement is only
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2 · 4/6 = 4/3 in this case. This mapping would be targeted towards a Cell BE variant
with 6 SPEs as used in a Playstation 3.

Finally, we also simulated an 8-level tree on 8 processors. In this simulation, we had
to reduce the buffer size to 256 bytes (64 integers), because the maximum memory load
is 60 (resulting from DC-map with k0 = 2), so that 300 buffers must be placed into
the local memory of one SPE. As typically at most half the memory is available for
data because of code size, and there are other data structures must be stored, too, using
75 KBytes for buffers seemed the upper limit. The simulation ran with an efficiency
of at least 98% in all simulations. Thus, in comparison to the algorithm running with
4-to-1 mergers on 8 SPEs, i.e. on a complete Cell BE, our algorithm reduces memory
bandwidth requirements by a factor of 0.98 · log4(256) = 3.92. Also we see that our
algorithm can cope with rather small buffer sizes, as long as computation and commu-
nication can be overlapped.

4 Conclusion

We have investigated how to lower memory bandwidth requirements in the Cell BE by
pipelining, with sorting being used as our case study. We have formulated the mapping
of the merge tree onto the processors as an integer linear optimization problem, and
given solutions for small tree sizes. For larger sizes, we presented a divide-and-conquer
approximation algorithm. The mapping turns into a sorting algorithm whose perfor-
mance we have demonstrated by a discrete event simulation. Note that our resulting
sorting algorithm is also able to run on multiple Cell processors, as does [6]. At the be-
ginning, there will be many blocks, and hence many bk-to-1 mergers can be employed.
In the end, when nearing the root, we are able to employ parallel mergers similar to the
case p > k discussed in Sect. 2.1. Approaches similar to the one presented here may
work for other memory-intensive problems as well, such as data-parallel computations.
We therefore plan to investigate other applications in the future.
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Abstract. In this position paper we argue that an intelligent program de-
velopment environment that proactively supports the user helps a main-
streamprogrammer to overcome thedifficulties of programmingmulti-core
computing systems. We propose a programming environment based on
intelligent software agents that enables users to work at a high level of ab-
straction while automating low-level implementation activities. The pro-
gramming environment supports program composition in a model-driven
development fashion using parallel building blocks and proactively assists
the user during major phases of program development and performance
tuning. We highlight the potential benefits of using such a programming
environment with usage-scenarios. An experiment with a parallel building
block on a Sun UltraSPARC T2 Plus processor shows how the system may
assist the programmer in achieving performance improvements.

1 Introduction

While multi-core processors alleviate several problems that are related to single-
core processors - known as memory wall, power wall, or instruction-level par-
allelism wall - they raise the issue of the programmability wall. On the one
hand, program development for multi-core processors, especially for heteroge-
neous multi-core processors, is significantly more complex than for single-core
processors. On the other hand, programmers have been traditionally trained for
the development of sequential programs, and only a small percentage of them
have experience with parallel programming.

Additionally, there is a portability problem. In the past programmers could
trust that compilers succeeded to pass the increased computing power of next
processor generations without high porting effort. This was due to relatively
homogeneous processor designs even from different hardware vendors with in-
struction level parallelism (ILP) supported at hardware level. The architectural
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change to multi-core processors, however, affects the programmer in several ways.
On the one hand, thread level parallelism (TLP) must be exploited effectively
and efficiently. In general, this cannot be done automatically by a compilation
system, but requires assistance by the programmer. On the other hand, multi-
core architectures differ significantly requiring that applications must be adapted
to the various platforms.

While in the past only a relatively small group of programmers interested
in HPC was concerned with the parallel programming issues, the situation has
changed dramatically with the appearance of multi-core processors on commonly
used computing systems. Traditionally parallel programs in HPC community
have been developed by heroic programmers1 using a simple text editor as pro-
gramming environment, programming at a low-level of abstraction, and doing
manual performance optimization. It is expected that with the pervasiveness
of multi-core processors parallel programming will become mainstream, but
it can not be expected that a mainstream programmer will like to become a
HPC hero.

In this paper we argue that the programming productivity of multi-core2 sys-
tems is increased if an intelligent programming environment would be available
that (1) enables the programmer to work during the process of program develop-
ment at a higher level of abstraction using domain-specific modeling languages in
a model-driven development fashion; and (2) provides context-specific knowledge
and performs iterative time-consuming tasks involved in program development
in a semi automatic/autonomic manner (for instance, performance tuning). We
propose a parallel programming methodology that combines model-driven and
agent-supported program development with the use of high-level parallel build-
ing blocks. The goal is to increase programming productivity without restricting
flexibility and creativity, allowing the programmer to fully use his/her intellec-
tual capacity for software design at model-level. Although software development
is considered to be an art, we anticipate that there are many implementation
activities that can be performed more automatically/autonomically.

The rest of this paper is organized as follows. Section 2 describes our vision
for programming of multi-core computing systems. We illustrate our approach
experimentally in Section 3. Section 4 reviews the state-of-the-art in program-
ming multi-core computing systems. We conclude the paper with a summary
and future work in Section 5.

2 Intelligent Programming of Multi-core Systems

In this section we outline our methodology and the corresponding environment
for programming multi-core systems.
1 Andrea: ”Unhappy is the land that breeds no hero.” Galileo: ”No, Andrea: Unhappy

is the land that needs a hero.” – Bertolt Brecht in Life of Galileo.
2 Although some authors have introduced the term many-core to denote multi-core sys-

tems with many cores (i.e. 100 or more), we will stick to the more established term
multi-core. We do not see a need to make a distinction between multi- and many.
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2.1 Methodology

Our parallel programming methodology combines model-driven agent-supported
program development with the use of high-level parallel building blocks (PBB).
We propose to address the complexity of programming multi-core systems as
follows:

– Raise the level of abstraction at which the programmer performs most of
the activities during the process of software development, by using a model-
driven development approach combined with PBBs;

– Support the programmer during the software development, by using intelli-
gent software agents for providing context-specific knowledge and automa-
tion of iterative activities involved in software development and optimization.

Model-Driven Development (MDD) [13]. MDD is a software development
method that advocates to first model a program and then build the program
code. It is inspired by mature engineering disciplines such as civil engineering,
where before an artifact (for instance a bridge) is built first the corresponding
model is developed. In software engineering the models are usually described
graphically using the Unified Modeling Language (UML). The model should
preferably describe the program at an abstraction level that is independent
from a specific platform. Models may be used to study the functionality and
the performance of the program before the program code for a specific plat-
form is developed. MDD has the potential to reduce software development time
and complexity, by using tools for automatic model-to-code transformation and
thereby reducing the programmer’s effort for manual coding. Since multi-core ar-
chitectures differ significantly from each other, a significant effort is required to
adapt (that is port) programs to the various platforms. Since MDD captures the
program logic as a platform-independent model, then program models remain
largely unaffected from the changes in processor architectures. In our previous
work we have developed an extension of UML for the domain of performance-
oriented parallel/distributed programs [16] and the corresponding tool-support
Teuta [10]. Teuta allows to build models of parallel programs, enrich them with
performance-related information, and generate various textual representations
(such as XML or C++).

Parallel Building Blocks. The PBBs are inspired from research in program-
ming concepts such as skeletons [1,2,8] or dwarfs [3]. Basically, PBBs may be
thought of as program-independent generic programming units that support
software re-usability. A set of parameters is used to specify the functionality
of a PBB in the context of a certain program. For instance, as parameter may
serve the program-specific code (that is the code that PBB requires to perform
the expected functionality in the context of a certain program). PBBs may be
implemented for instance using C++ Templates or Java Generics. Parallelism is
described within the PBB, and therefore the programmer is not exposed directly
to the parallel programming complexity (such as dealing explicitly with the com-
munication and synchronization among processing units or deadlock avoidance).
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Commonly various combinations of PBBs may be used for solving a certain
problem. In the context of programming environments PBBs lend themselves
to an increased level of automation of various activities such as program trans-
formation, code generation, performance optimization, and resource usage opti-
mization. In our previous work, in the context of MALLBA project [1], we have
developed a library of parallel skeletons (such as branch and bound, metropo-
lis, simulated annealing, genetic algorithms, or tabu search) for solving various
optimization problems.

Intelligent Software Agents. Software agents are programs that are reac-
tive, proactive, autonomic, and social [21]. Software agents that have learning
and adapting abilities are known as intelligent software agents. Reactiveness in-
dicates the ability to respond adequately to changes in the context in which
it operates. A proactive program performs activities to achieve a specific goal
based on its initiative (it does not wait passively for a request of another en-
tity to perform a certain activity). Autonomy indicates the ability to perform
activities independently of user intervention in order to achieve a specific goal.
Social programs are able to communicate and coordinate activities with other
programs (that is agents). A program is considered intelligent if it is able to learn
from the previous experience (for instance, via trial-and-error or generalization)
and is able to adapt accordingly to the perceived changes in the environment.
We have a vision about several intelligent software agents cooperating with each
other and the programmer during the process of program development. Our
vision is based on the idea that the programming environment should be bet-
ter at helping the programmer as a more active partner. In our previous work,
in the context of the AURORA project [4], we have used intelligent software
agents to automate systematic performance analysis for parallel and distributed
programs. Although software development is considered to be an art, we antici-
pate that there are many implementation activities that can be performed more
automatically/autonomically using intelligent software agents.

In the following sub-section we propose a programming environment for multi-
core computing systems that uses MDD, PBBs, and intelligent software agents.

2.2 Programming Environment

The proposed programming environment comprises a set of intelligent software
agents that may help to automate the programming process at several levels.
Some agents will advice the composition of programs using PBBs, while others
will guide the exploration of different possible parallel strategies, load balancing
and performance optimization (see Figure 1).

The programming environment provides the programmer with information
feedback useful in the process of developing a program for a multi-core sys-
tem. This information is collected at several levels, from program composition
to information about resource usage (such as the cache behavior) obtained by
execution or simulated execution. Also, information is exchanged between the
agents at the system level in an automated manner continuously looking for ways
of obtaining and improving knowledge about the performance of the program
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Fig. 1. Agent supported program development. The programming environment com-
prises multiple intelligent software agents that support program composition, design
space exploration and resource usage optimization.

being developed. In this way, a parallel program with good performance can be
developed with high programmer productivity.

In what follows in this section we highlight the major program development
and tuning phases: (i) high-level program composition, (2) design space explo-
ration, (3) resource usage optimization.

High-level Program Composition. This phase deals with the composition
and coordination of PBBs. The granularity of PBBs may range from frequently
used programming idioms, to larger patterns or dwarfs [3]. High-level descrip-
tors are used to capture the main parallelization aspects of PBBs and serve as
interface to agents in the design space exploration phase. The user composes the
program graphically using a UML extension for multi-core systems.

{code_parameters,
performance_parameters}

«PBB_Type »

pbb_instance
code_template()
performance_model()

Fig. 2. UML representation of a PBB

The UML may be extended by defining new modeling elements, stereotypes,
based on existing elements (also known as base classes or metaclasses). Stereo-
types are notated by the stereotype name enclosed in guillemets <<Stereotype
Name>>. Figure 2 depicts the graphical representation of a PBB. <<PBB Type>>
indicates the kind of PBB. With a PBB is associated the corresponding
parametrised code and performance model. Parameters determine the behavior
of the PBB instance in the context of a specific program.

The programming environment assists the user proactively during the pro-
gram composition. For instance while the user is loading some old BLAS code
for some dense linear algebra operations – the composer agent interrupts and
suggests using the PBB for dense linear algebra tailored for efficient execution on
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multi-core systems. Additionally, it may offer a list of other PBBs that often are
used together with this one, as well as presenting typical compositional patterns
in a graphical way.

Design Space Exploration. High level discrete-event simulation is used for
rapid model-based performance evaluation of programs, using a hybrid method
that combines mathematical modeling with high level discrete-event
simulation [15].

For instance, after the completion of the program composition phase the pro-
gramming environment may suggest to the user doing some high level rapid de-
sign space exploration. The estimated performance of various possible program
implementations is presented by a visualization agent. While the user is studying
the graphs, and gets some ideas for improvement, the programming environment
is also analyzing the results and suggests changing some of the parameters in
one of the PBBs (such as the parallelization granularity), and to perform some
more detailed simulations for getting better knowledge of the performance that
can be obtained with different task allocation and scheduling policies.

Resource Usage Optimization. Instruction-level simulation is used for more
detailed studies of the utilization of shared resources such as shared on-chip
memory and off-chip bandwidth. For instance, in [9] an efficient utilization of
the shared cache resources has been found to have great affect on multi-core
performance. This is integrated with the use of performance counters. A per-
formance monitoring agent provides information about the state of the system
(resource characteristics and usage). Instruction-level simulation is time consum-
ing (may take several hours or days), and therefore should run in background.
When finished, the findings will be propagated upwards back to the higher level
performance models, as a model calibration process. It is a systematic way of
bringing performance information from the execution (or simulated execution)
environment back to the development environment. Please note that this kind
of optimization is architecture-dependent.

For instance, the user may get hints from the programming environment for
changes that will improve performance of the program. The programming envi-
ronment may offer some detailed simulations at the instruction level, and helps
the user to select those simulation experiments that are likely to be the most
relevant. For instance, if higher-level simulations show that some of the processor
cores were waiting for data for long periods, a more detailed study of the on-chip
shared memory resources should be done.

3 Example

In this section we illustrate how best practices from HPC combined with agent
based program development offer new opportunities to obtain efficient solutions.

PBBs allow a programmer to specify various parallelization strategies together
with the code and a first guess for individual parameters which are subject
to the tuning process. This follows our assumption that only semi-automatic
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parallelization is reasonable. The programmer specifies the main strategies for
parallelizing the code and the system explores this restricted optimization space
to generate efficient code. Two factors back up this approach. First, rich analysis
work has been done in the past by the HPC community, including the authors
institutions (Vienna Fortran Compilation System [6]), which can be reused. Sec-
ond, in the past the strong emphasis on the target-code performance and manual
performance tuning resulted in low programming productivity. The increasing
importance of development of economically viable software nowadays reveals
opportunities for semi-automatic parallelization, even at the price of achieving
lower performance compared to a hand-tuned version.

In our example we use as hardware platform the Sun UltraSPARC T2 Plus, co-
denamed Niagara-2, multi-core processor (shown in Figure 3(a)) which is an SMP
extended version of the T2 allowing multiple Chip-level MultiThreading (CMT)
processors to be used within a single system. The T2 Plus was presented in April
2008 and has up to 8 cores per processorwith 8 hardware threads per core resulting
in a maximum number of 64 threads per processor or logical CPUs as reported by
the operating system. T2 Plus offers only poor support for instruction-level par-
allelism emphasizing thread-level parallelism. Two integer units are provided per
core with four threads sharing one unit, and one FPU is provided per core with
all eight threads sharing it. The L1 data cache has 8 KB per core and the on-chip
L2 cache offers 4 MB which are shared between the cores.

In what follows in this section we present an example scenario to illustrate
the agent-supported software development cycle. Different forms of PBBs are
possible, but in the simplest case a PBB can be some loop nest together with data
layout and work distribution annotations. Consider e.g. an application written
in C consisting of a series of PBBs with one of them denoting a floating point
matrix-matrix multiplication, i.e. C[i,j] = C[i,j] + A[i,k] * B[k,j] with
loop nest (i,j,k). As parallelization strategy the programmer specifies that the
elements of result matrix C should be assigned to processor cores in a row-
wise manner and calculated by them. Since the target architecture is a Sun T2
Plus with 8 cores and 8 FPUs, the programmer specifies that the rows shall be
assigned to 8 threads.

When submitted to the design space exploration agent and its analysis frame-
work (cf. [6,7]), the framework detects poor spatial cache locality and performs

Cross Bar

L2$ L2$ L2$L2$ L2$ L2$ L2$ L2$

Coherency Unit Coherency Unit Coherency UnitCoherency Unit

Memory Controller Unit Memory Controller Unit

System Interface PCI Express

UltraSPARC T2 Plus

FPU

SPU

Core 2

FPU

SPU

Core 3

FPU

SPU

Core 4

FPU

SPU

Core 5

FPU

SPU

Core 6

FPU

SPU

Core 7

FPU

SPU

Core 8

FPU

SPU

Core 1

(a) Sun UltraSPARC T2 Plus.

0

0.2

0.4

0.6

0.8

1

1 2 4 6

ti
m
e

threads

(i,j,k) loop

(i,k,j) loop

(b) Performance improvements.

Fig. 3. Processor block diagram and optimization results



148 S. Pllana et al.

loop interchange resulting in loop nest (i,k,j). Then the code is split up in 8
threads as suggested by the programmer and assigned to the 8 cores of T2 Plus
and executed. The monitoring component of the resource usage agent reveals
low memory bandwidth utilization and low FPU utilization for this PBB and
reports this feedback information to the agent. The resource usage agent is aware
of the hardware characteristics of T2 Plus and knows about the hyper-threading
(HT) technology provided by this kind of architecture with up to 8 hardware
threads. Therefore the agent suggests to use HT technology to increase FPU
utilization and reports to the design space agent to explore possibilities to in-
crease the number of threads. Consequently, the design space agent proposes to
assign the rows of result matrix C to 2, 4, 6 hardware threads per core resulting
in a total number of 16, 32, 48 threads, respectively. Three versions are gener-
ated and submitted for execution. Moreover, feedback information is used by the
compilation system to perform further optimizations (cf. [11]).

The key point is that this time-consuming tuning task is done automatically by
the system and not by the programmer. The different versions are automatically
generated and run on T2 Plus and the monitoring results are reported back to the
agents and the programmer. Figure 3(b) shows the normalized execution times
(longest execution time denoted by time unit 1.0) for the different versions with
1, 2, 4, 6 threads per core and the improvements achieved by the optimizations
taking programmer annotations and hardware characteristics into account. The
performance improvement of loop interchange is considerable and amounts to
26% for 1 thread per core, approx. 20% for 2 and 4 threads per core, and 66%
for 6 threads per core. The performance improvement for increasing the number
of threads per core to deal with memory latency is even more significant. The
performance improvement assigning 2 and 4 threads to one core was for both
loop nest versions approx. a factor of 1.7 and 2.5, respectively. For 6 threads
per core we got for (i,j,k) loop nest a factor of 2.8 and for (i,k,j) loop nest up
to 3.7. Based on this experience, the resource usage agent classifies increasing
the number of threads to deal with memory latency as valuable optimization
which has proven beneficial for this processor. The programming environment
may suggest this kind of optimization for similar processor architectures as well.

4 A Review of the State-of-the-Art

An increasing number of research projects is addressing the challenge of program-
ming multi-core computing systems. The Habanero project [12], which started in
Fall 2007 at Rice University, aims to develop languages and compilers for the de-
velopment of portable software for multi-core systems. The SALSA project [19] at
Indiana University is investigating the use of services as building blocks for com-
posing parallel data-mining applications based on the workflow paradigm. Linked
Sequential Activities in SALSA, which are conceptually based on Communicating
Sequential Processes of Hoare, are used to build services. The Berkeley View [3]
project investigates the influence of multi-core processors in applications, hard-
ware, programming models, and systems software for parallel computing. The
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Berkeley View proposes to use a set of dwarfs (a dwarf defines a specific computa-
tion and communication pattern) for evaluation of parallel programming models.
The recently established Pervasive Parallelism Laboratory (PPL) [17] at Stan-
ford University is investigating future parallel computing platforms. PPL is sup-
ported by six computer and chip makers that are convinced that their product
sales may decline if software is not able to use effectively the new multi-core-
based hardware. SWARM [5], developed at Georgia Institute of Technology, is
a parallel programming framework that provides a collection of primitives for
programming multi-core processors. The Programming Environments Labora-
tory (PELAB) [18] at Linköping University is investigating the applicability of
round-trip engineering techniques to parallelization of sequential programs. The
Cell Superscalar (CellSs) [14] project at Barcelona Supercomputing Center fo-
cuses on parallelization of sequential programs for Cell BE processor. The CellSs
parallelization involves the functional decomposition, code annotation and the
use of a source-to-source compiler. The IT Research Division of the NEC Labo-
ratories Europe [20] is investigating the use of work stealing concept to achieve
load balancing.

In contrast to the related work we propose an intelligent programming envi-
ronment that proactively supports the user during major phases of program de-
velopment and performance tuning by providing context-specific knowledge and
performing iterative time-consuming tasks involved in program development in
a semi automatic/autonomic manner.

5 Conclusions

We have outlined an intelligent programming environment, which proactively
supports the user during high-level program composition, design space explo-
ration, and resource usage optimization. We have highlighted the potential ben-
efits of using such a programming environment with usage-scenarios.

We have observed that even for a rather simple parallel building block such
as matrix multiplication the exploration of the parameter space may be time
prohibitive on one hand, but on the other hand there is a big potential for per-
formance improvement. The example scenario described a first and manageable
step towards an intelligent program environment for multi-core architectures.
Several projects at the authors’ home institutions are currently pursued towards
the realization of such an intelligent programming environment for multi-core
computing systems.
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Oriented Applications. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML
2002. LNCS, vol. 2460, p. 259. Springer, Heidelberg (2002)

17. Pervasive Parallelism Laboratory,
http://ppl.stanford.edu/wiki/index.php/Pervasive

Parallelism Laboratory

http://www.vcpc.univie.ac.at/aurora/
http://www.cs.rice.edu/~vs3/habanero/
http://www.omg.org/mda/
http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory
http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory


Towards an Intelligent Environment 151

18. Programming Environments Laboratory (PELAB),
http://www.ida.liu.se/labs/pelab/

19. Service Aggregated Linked Sequential Activities (SALSA),
http://www.infomall.org/multicore/
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Abstract. In software transactional memory (STM) systems, read validation en-
sures that a transaction always has a consistent view of the memory. Existing 
read validation policies follow a static approach and use one policy across all 
applications. However, no single universal read validation policy offers optimal 
performance across all applications. We propose adaptive read validation 
(ARV) for time-based STMs and adjust read validation policy according to 
workloads’ behavior. ARV not only varies read validation policy across appli-
cations, but also tunes read validation policy across different phases of a trans-
action. The adaptive nature of our suggested technique improves performance 
significantly for the set of workloads studied in this work.  

Keywords: transactional memory, read validation policy, time-based transac-
tional memory. 

1   Introduction 

Chip multiprocessors (CMPs) are becoming mainstream computing, making concur-
rent programming necessary to utilize available cores in CMPs. Traditionally, pro-
grammers use locks to develop parallel applications and to protect program critical 
sections from concurrent thread accesses. Coarse grained locks simplify program-
ming; however, they are not scalable and work poorly when the number of threads 
increases. On the other hand, although fine-grained locks are scalable, they are com-
plicated and error-prone. Priority inversion, deadlock, and other synchronization bugs 
make the lock-based programming too difficult for programmers, preventing develop-
ers from composing scalable applications out of existing software components. 

The alternative solution for parallel programming is transactional memory (TM). 
Transactional memory alleviates problems associated with lock-based programming 
and enables developers to compose scalable applications. A transaction is a finite 
sequence of instructions that access memory and are executed by a thread. Each 
transaction is atomic: it commits if all read and write operations are validated, or 
aborts if it conflicts with any other transaction. The ability to abort and restart con-
flicting sections eliminates potential deadlocks and avoids dealing with the complex-
ity of fine-grain locks. In addition to atomicity, transactions are linearizable [1]: they 
take effect in a one-at-a-time order. Linearizability allows transactions to run in isola-
tion and prevents other transactions to interfere during execution. The underlying 
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system is free to reorder transactions but must ensure that the result of the execution is 
linearizable. 

Transactional memory may be implemented in hardware (HTM) [2, 7], software 
(STM) [3, 6, 10, 16], or a combination of both [4, 18]. While HTM makes transac-
tional memory fast, it increases design complexity and is not flexible. In addition, 
both HTM and hybrid approaches need new processor architectures. STM, however, 
can use available features of current processors and has fewer intrinsic limitations 
imposed by hardware structure, such as buffer size and caches. 

In this work, we focus on STMs and introduce two adaptive read validation poli-
cies (ARV and ARV+) to improve performance in STMs. STMs use different policies 
to validate read operations and to guarantee a consistent view of memory. For exam-
ple, in the eager validation policy [14], whenever a transaction reads a memory loca-
tion, all previously read values are validated. Accordingly, the eager policy detects 
contention as soon as possible and enables a doomed transaction to abort instead of 
performing useless work. This, however, imposes an overhead which is quadratic 
function of the number of read operations. An alternative validation policy is the lazy 
policy [16] which postpones validation to the commit time. The lazy policy tends to 
minimize the window during which transactions may be identified as competitors; if 
application semantics allow both transactions to commit, lazy policy may result in 
significantly higher concurrency. However, lazy policy may waste resources on exe-
cuting a doomed transaction. Our experiments show that applications react differently 
to eager and lazy policies. While some applications run faster using eager policy, 
others benefit more from the lazy policy. In adaptive read validation, we exploit this 
variability and use a speculative approach to adjust the validation policy based on 
applications’ behavior. In the event that read operations of a transaction are likely to 
conflict, we use the eager policy to detect a conflict as soon as possible. On the other 
hand, if the history of a transaction shows that transactional reads usually commit 
without conflict, we select the less costly lazy policy.  

The rest of the paper is organized as follows. In section 2, we explain the necessary 
background and discuss how a time-based STM works. Section 3 explains the intui-
tion behind ARV and shows that neither eager nor lazy policies are the optimum pol-
icy across all applications. Section 4, discusses adaptive read validation in detail. We 
review related work in section 5. Finally, in section 6 we offer concluding remarks. 

2   Background 

In this section, we review time-based STMs. A time-based software transactional 
memory exploits global time to impose order among transactions and reason about 
consistency of data accessed by transactions. Time-based STMs eliminate the over-
head of transactional memories which always verify consistency of memory for each 
transactional read [14]. Meanwhile, time-based STMs have a consistent view of 
memory at all times. This is in contrast to those STMs which postpone validation to 
commit time [16].  

The global time in time-based STMs is implemented using a shared counter [3, 6, 9], 
and the counter is incremented by every committed write-transaction. A write-
transaction is a transaction that stores at least one value to the memory. On the other 
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hand, a read-transaction only loads data from memory in the transactional section. Each 
transaction has a read-set and a write-set implemented using two separate link-lists. The 
read-set and write-set hold information for transactional reads and writes, respectively. 
We use TL2 [3] as a time-based STM for our evaluation framework. 

In word-based STMs, e.g. TL2, each transactional write acquires a lock to pre-
vent concurrent update of memory locations. TL2 exploits a shared array of locks, 
and a hash function maps memory address space to the array (Figure 1). Each array 
field has a size equal to the size of the address on the host machine. The least sig-
nificant bit (lsb) of the lock shows the lock is free or acquired. If the lsb is zero 
(free), the rest of the lock shows the time stamp that the last transaction wrote to a 
memory address covered by the lock. If the lsb is one (acquired), the rest of the lock 
holds the address of the node in the write-set of the owner transaction. In both 
cases, the lock is word-aligned, and the lsb can safely represent the status of the 
lock (free or acquired).  

At the start of each transaction, the global version clock is sampled and saved into 
a thread local variable called read version (rv). A transaction compares rv against the 
version number of locks corresponding to the transactional reads. If the version num-
ber is more than the rv, the memory location is updated after the transaction has 
started. Hence, the transaction is aborted; otherwise, a new node is allocated for the 
transactional read and is added to the read-set. At commit time, the nodes of the read-
set are traversed to validate all transactional reads and detect any possible conflicts 
that may happen among concurrent transactions. 

When storing to a memory location in a transactional section, the transaction allo-
cates a new entry in the write-set. During commit time, all locks corresponding to the 
nodes in the write-set are acquired using bounded spinning to prevent deadlock [3]. 
Failure of acquisition results in an abort. After successful acquisition, the transaction 
increments the global version clock atomically using the CAS operation and saves it 
in the local variable write version (wv). Then, all elements in the read set are vali-
dated. This is necessary to satisfy atomicity of the transactional memory. If read vali-
dation fails, all acquired locks are released, and the transaction is aborted; otherwise, 
the write-set is traversed and memory locations are updated. Hence, TL2 follows 
write-back policy for transactional writes. Also, wv is written to the version section of 
all acquired locks, and lsbs of the locks are set to zero. 

 
 
 
 
 
 
 
 
 

Fig. 1. Memory address space is mapped to an array of locks in word-based STMs. Each array 
entry shows whether the corresponding memory location is free or acquired [3].  
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It is important to note that in TL2 (and some other time-based STMs [9]), transac-
tions validate the new read memory locations to keep a consistent view of the mem-
ory. For each transactional read, the version of the newly read memory location is 
compared against the local rv. Accordingly, read operations succeed only if their 
version is less than or equal to rv. In contrast to time-based STMs, other STMs incur 
significant overhead to have a consistent view of memory [5, 14, 17]. In the eager 
validation policy [5], transactions should validate all previously read elements for 
each new transactional load [5]. This is necessary as a memory location read by the 
current transaction may be written by other transactions later. This results in unsafe 
operations which may cause infinite loops, divide by zero, or other bugs. To alleviate 
the overhead associated with the eager policy, some STMs [10] exploit lazy validation 
with invisible reader policy [10]. In invisible reader policy, memory locations read by 
a transaction are not transparent to other transactions. As such, a memory location 
read by a transaction may be written by another transaction later, and the reader will 
not detect the conflict until the commit time. STMs with lazy validation and invisible 
reader policies do not prevent unsafe operations [10]. Instead, they exploit exception 
handling to catch a subset of inconsistencies and leave the rest to the programmers. 
This is not consistent with transactional memory’s primary concern, i.e., simplifying 
parallel programming. One alternative is using lazy validation with visible reader 
policy [5]. In visible reader policy [5], write-transactions should check the list of 
readers to eliminate read-write conflict as soon as possible. This increases the com-
plexity associated with transactional writes and results in heavy bookkeeping and 
cache miss penalties [15].  

3   Motivation 

In TL2, a transactional read is validated by checking that the corresponding memory 
location is updated before the start of the transactional section. Later, during the 
commit time, all memory addresses that have been read in the transactional section 
are validated to assure that they have not been written by other transactions since the 
last validation. This is similar to the lazy validation policy with one difference. In the 
lazy validation, the new read memory location is not verified. Verification of transac-
tional reads is postponed to the commit time. However, as discussed in section 2, this 
increases complexity of programs which is too hard to deal with for most of pro-
grammers. We use term “semi-lazy” for the read validation method used in TL2. 

While the semi-lazy policy reduces the conflict window size among transactions, it 
may waste significant computational resources on executing doomed transactions. A 
doomed transaction is a transaction that reads a memory location which later is writ-
ten by another transaction. In the semi-lazy policy, the doomed transaction detects the 
conflict too late and at the commit time. 

One solution to detect doomed transactions as early as possible is using eager vali-
dation. In the eager policy, whenever a transaction reads a memory location, it revali-
dates all previously read memory locations. As a result, a doomed transaction may be 
detected before commit time, and this may prevent wasting computational resources. 
However, validating all old read operations on each subsequent read is costly. For n 
read operations, the cost of read validation in the eager policy is O(n2). 
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We expect applications to react differently to semi-lazy and eager policies. In ap-
plications with frequent transactional conflicts, the eager policy may work better than 
the semi-lazy policy as quite often, a memory location read by a transaction is written 
by another transaction later. Hence, eager validation detects these conflicts early and 
prevents doomed transactions from wasting precious processor resources. On the 
other hand, in applications with low abort rate, the semi-lazy policy may result in 
better performance compared to the eager policy. This is due to the fact that in appli-
cations with less frequent conflicts, most of the transactions commit successfully. As 
such, an aggressive validation approach such as that used in the eager policy is not 
always necessary. Under such circumstances, performing the final validation at com-
mit time could efficiently detect the few conflicting transactions.  

To provide better understanding, in figure 2 we show the execution time for Stamp 
v0.9.7 benchmark suite [4] under the eager policy versus semi-lazy policy. Our ex-
perimental framework includes four 3.16 GHz dual-core Intel Xeon processors run-
ning Linux 2.4.21 (32-bit). Table 1 presents the set of benchmarks with their input 
arguments used in our experiments. We ran benchmarks up to completion and meas-
ured statistics over a set of ten test runs. Positive bars in figure 2 represent speed-up 
under the eager policy over the semi-lazy policy. For each benchmark, the number of 
threads varies from two to 64. This figure proves that neither eager nor semi-lazy 
policies are robust across all benchmarks. Moreover, within a single benchmark,  
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Fig. 2. Execution time for eager vs. lazy policy in Stamp v0.9.7 benchmarks. Positive bars 
show speed-up under eager policy. For each benchmark, the number of threads changes from 
two to 64.  

Table 1. Stamp v0.9.7 benchmarks and input parameters 

Benchmarks Input Parameters 

Genome -g16384 -s64 -n4194304 

Kmeans -m20 -n20 -t0.00001 -i inputs/random-n65536-d32-c16.txt 

Vacation -n4 -q60 -u90 -r65535 -t4194304 

Bayes -v32 -r4096 -n10 -p40 -s1 -q1.0 -i2 -e8 
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depending on the number of threads, the optimum policy varies. For example, in Ge-
nome, when the number of threads is equal to four or eight, the semi-lazy policy out-
performs the eager policy. However, when the number of threads is equal to two, 16, 
32, or 64, the eager policy works better than the semi-lazy policy. In the next section, 
we exploit this variability and introduce adaptive techniques using one of the two 
policies according to the workload behavior.  

4   Adaptive Read Validation 

Adaptive read validation (ARV) takes a dynamic approach to select either the eager or 
the semi-lazy policy according to the applications’ behavior. ARV relies on transac-
tion history to make the proper decision. ARV stores the relative distance of the con-
flicting node in the read-set of a transaction. The relative distance is the distance of 
conflicting node from the head of link-list divided by the length of the link-list. If 
several read operations in the read-set fail, ARV selects the one appearing sooner in 
the link-list. The relative distance is compared with a predetermined threshold to 
select the validation policy for the subsequent read operations. If the relative distance 
is lower than the threshold, then eager policy is selected; otherwise, subsequent reads 
use the semi-lazy policy. The threshold is determined by running benchmarks with 
different thresholds and selecting the one with lowest execution time. Figure 3 ex-
plains ARV with an example. 

ARV assumes that a transaction tends to repeat its behavior with regard to conflicts 
with other transactions. If a conflict happens early in a transaction (relative distance 
of conflicting node is less than the threshold), we would expect that the conflict would 
happen close to the starting point of the transaction next time the transaction executes 
too. Executing such a doomed transaction is waste of resources. Therefore, eager 
validation is the preferable policy as it detects the doomed transaction as soon as 
possible. On the other hand, if the relative distance of the conflicting node is larger 
than the threshold, ARV speculates that next time the transaction is executed, the 
conflict with other transactions will occur at a point closer to the end of transaction. 
Hence, ARV uses the less costly semi-lazy policy. 

Figure 4 compares execution time under ARV to the execution time under semi-
lazy (TL2 uses semi-lazy for read validation) in Stamp v0.9.7 benchmark suite [4].  
 

 

 
 

Fig. 3. The read-set has 5 nodes. In commit, the link-list is traversed to validate transactional 
reads. Assuming a threshold of 50%, if transactional read corresponding to node B conflicts, 
relative distance is 40% as the node B is the second node in a link-list with the length of 5. In 
this case, ARV uses eager policy for the subsequent reads as relative distance is lower than the 
threshold. If conflicting node is D, then the relative distance is 80%, and ARV sets the valida-
tion policy to semi-lazy. 



158 E. Atoofian, A. Baniasadi, and Y. Coady 

 

The number of threads varies from two to 64 for each benchmark. In addition to the 
number of threads, we change threshold from five to 90. Positive bars represent 
speed-up for ARV. While in some benchmarks, e.g. Genome, ARV improves per-
formance significantly, in some others, e.g. Vacation, ARV results in slowdown. 

ARV uses the location of the conflicting node in the most recent read validation 
failure to speculate subsequent transactional read. While this technique may choose 
the optimum policy in benchmarks that are write-read conflict dominant, it may result 
in frequent misspeculations in benchmarks with a low write-read conflict rate. In 
transactions that write-read conflict occurs rarely, an invalid read may be followed by 
a long stream of successful transactional reads. In ARV, the optimum policy is se-
lected by the last failed transactional read, and does not adjust the validation policy by 
the successful reads. This may result in considerable performance penalty. We clarify 
this issue through the following example. 

 

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2 4 8 16 32 64 AVG.

5 15 25 50 75 90

a) Genome 

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

2 4 8 16 32 64 AVG.

5 15 25 50 75 90

 
b) Kmeans 

-600%

-500%

-400%

-300%

-200%

-100%

0%

2 4 8 16 32 64 AVG.

5 15 25 50 75 90

c) Vacation 

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

2 4 8 16 32 64 AVG.

5 15 25 50 75 90

 
d) Bayes 

Fig. 4. Execution time in ARV relative to the semi-lazy policy for Stamp v0.9.7 benchmarks. 
Number of threads changes from two to 64, and threshold varies from five to 90.  
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Assume that transaction A has 10 transactional read operations, and the threshold in 
ARV is equal to 20%. When the transaction is executed for the first time, ARV picks 
the baseline read validation policy, i.e., semi-lazy. Assuming that a conflict is detected 
for the first transactional read at commit time, the relative distance of conflicting read 
will be 10% which is less than 20%. Therefore, ARV changes the validation policy to 
eager. Assuming a scenario where none of the transactional reads conflict after the 
transaction restarts, the selected eager policy will validate all previously read memory 
locations for each read operation imposing a significant timing overhead. 

In the next section, we introduce ARV+ to dynamically change the validation pol-
icy for successful transactional reads. 

4.1   ARV+ 

To adapt our validation policy in the event of successful reads, we use a predictor to 
speculate whether the next read would succeed or fail. If a read operation is predicted 
to succeed, ARV+ selects the semi-lazy for validation. However, if the read operation 
is likely to conflict, ARV+ picks the optimum policy taking into account the relative 
distance of the last conflicting read node and the threshold. As such, in the event of  
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Fig. 5. Execution time for ARV+ using 3-bit saturating counter relative to the semi-lazy policy 
for Stamp v0.9.7 benchmarks. The threshold for the saturating counter is six.  
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speculating successful reads, ARV follows the semi-lazy policy to validate read 
memory locations avoiding the timing overhead of the eager policy. 

The predictor exploits saturating counters to speculate whether the subsequent read 
succeeds or fails. Saturating counters are widely used in hardware to speculate branch 
instructions [11] or values [12]. In our scheme, each transactional section has its own 
saturating counter. If a transactional read fails, the saturating counter is incremented. 
If the transactional read succeeds, the saturating counter is reset to zero. The subse-
quent read is predicted to succeed if the saturating counter is less than a static thresh-
old; otherwise, it is predicted to fail. The value of an n-bit saturating counter changes 
from 0 to 2n-1. The number of the bits and the counter threshold are configured once 
and used for all applications. 

Figure 5 reports execution time for ARV+ and compares to the baseline TL2. We 
use 3-bit saturating counters with a threshold equal to six. We have picked these val-
ues after trying different configurations. ARV+ improves performance for all bench-
marks. In some benchmarks, e.g. Genome, ARV+ improves performance up to 90%. 
By exploiting saturating counters, ARV+ is able to predict those transactional reads 
that pass validation and select the semi-lazy policy to validate those reads. However, 
without the saturating counter, ARV+ could mistakenly select the eager policy for 
such transactional reads and incur significant timing overhead. 

5   Related Work 

Transactional memory was originally proposed as a hardware technique by Herlihy 
and Moss [2] and later by Stone et al. [7]. Shavit and Touitou [8] introduced the first 
transactional memory relying on software. Previous studies proposed two types of 
STMS: word-based [3, 13] and object-based [14]. Word-based STMs access memory 
at granularity of memory words or larger blocks. Object-based STMs access memory 
at the granularity of objects. While object-based STMs need compiler or manual in-
sertion of lock fields, word-based STMs do not modify data structures. 

TL2 [3] uses an integer counter which is shared among all threads as a time base. 
The overhead of this counter is acceptable as inter-processor communication is done 
through on-chip wires, and so sharing data in current chip multiprocessors is inexpen-
sive. TL2 uses invisible reads with semi-lazy policy to guarantee consistency. This 
simplifies read validation as TL2 only checks the current read operation. However, 
such a read validation policy does not necessarily prevent a doomed transaction to 
abort before commit time. We use TL2 as our experimental framework and propose 
ARV+ to detect a doomed transaction as soon as possible and abort before commit. 

Herlihy et al. [14] exploit the eager policy in DSTM to validate transactional reads. 
DSTM avoids potential inconsistency by maintaining a private read list (invisible 
reader) that remembers all values previously returned by transactional reads. On every 
subsequent read, the transaction checks the validity of these values and aborts if any 
of the reads is not valid. Invisible reader incurs significant validation overhead which 
is quadratic function of transactional reads. Visible readers solve the problem. A 
writer transaction explicitly aborts all visible readers. As such, the quadratic overhead 
of eager policy is eliminated. Unfortunately, visible readers achieve this improvement 
at the expense of a significant increase in bookkeeping and cache eviction [15].  
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ARV+ is different from DSTM as it pays the overhead of aggressive validation 
only when there is high confidence that the subsequent read conflicts occur early in 
the transactional section without side effect on bookkeeping and cache miss.   

In contrast to DSTM, OSTM [16] uses the lazy validation policy and checks trans-
actional reads at commit time. Using the lazy policy with invisible reads in OSTM 
allows a transaction to enter an inconsistent state during its execution. Inconsistency 
may cause memory access violations, infinite loops, or other faults in programs. Fra-
ser proposes a mechanism based on exception handling [16] to catch problems when 
they arise. On a memory access violation, the exception handler aborts the transaction 
that caused the exception. The responsibility of detecting other inconsistencies is left 
to the application programmer which makes programming very difficult. ARV+ does 
not impose such complexities on programmers. 

Marathe et al. [17] proposed ASTM which uses an adaptive technique for object 
acquisition. ASTM switches from DSTM-style eager acquire [14] to OSTM-style lazy 
acquire [16] based on the number of transactional writes. ARV+ is different as it 
changes the read validation policy and not the object acquisition policy. In addition, 
our speculative technique is different, and it relies on relative distance and saturating 
counters. 

6   Conclusion 

In this work, we evaluated eager and lazy validation policies and showed that there is 
no single validation policy offering optimal performance across all applications. To 
address this inefficiency, we introduced a new read validation policy that adapts based 
on workload characteristics. We proposed ARV which selects one of the two valida-
tion policies using the relative distance of the conflicting node. Moreover, we intro-
duced ARV+ to improve performance further. ARV+ exploits saturating counters to 
speculate successful transactional reads and is able to improve performance for Stamp 
v0.9.7 benchmarks up to 90%. 
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Abstract. We describe compiler and run-time optimisations for effective auto-
parallelisation of C++ programs on the Cell BE architecture. Auto-parallelisation
is made easier by annotating sieve scopes, which abstract the “read in, com-
pute in parallel, write out” processing paradigm. We show that the semantics of
sieve scopes enables data movement optimisations, such as re-organising global
memory reads to minimise DMA transfers and streaming reads from uniformly
accessed arrays. We also describe run-time optimisations for committing side-
effects to main memory. We provide experimental results showing the benefits
of our optimisations, and compare the Sieve-Cell system with IBM’s OpenMP
implementation for Cell.

1 Introduction

The Cell Broadband Engine (BE) processor [4] is a heterogeneous multi-core chip,
which consists of a Power Processing Element (PPE) and eight Synergistic Processing
Elements (SPEs). To avoid memory bottlenecks, each SPE is equipped with 256KB of
fast local memory, which can be viewed as an extended register file for intensive calcu-
lations, and accesses main memory via DMA transfers. This approach allows scalable
parallelisation over SPEs for suitable algorithms. Abandoning the convenient shared
memory paradigm, however, makes the Cell processor difficult to program correctly
and efficiently: the programmer needs to write separate programs for the PPE and SPEs,
pack data into vectors for SIMD processing, and orchestrate data movement explicitly
using untyped DMA transfers.

Codeplay’s Sieve C++ [2,5] is a C++ extension to aid automatic parallelisation. The
principal language construct is the sieve block – a lexical scope prefixed with the sieve
keyword. By placing code inside a sieve block, the programmer instructs the compiler
to delay writes to memory locations defined outside the block (global memory) and
apply them in order on exit from the block. Conceptually, global memory is read on
entry to the block and written to on exit from the block. Thus, the compiler is free to
re-order computation within a sieve block, if it has no dependences on memory loca-
tions defined within the block (local memory). Restricting dependence analysis to local
memory makes C++ code more amenable to deterministic automatic parallelisation.
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In the context of the Cell processor, a sieve block makes explicit the notion of sep-
arate memory spaces: code outside a sieve block runs on the PPE and accesses main
memory as usual; code inside a sieve block is a candidate for parallelisation over SPEs,
with local variables to be placed in local store. The sieve semantics enables streaming
between global memory and local store.

Sieve blocks are similar to tasks in Stanford’s Sequoia [3] and BSC’s CellSs [1] in
that they specify a fragment of code to be executed on SPEs. Unlike a task, a sieve block
leaves unspecified the working set of code, making optimisation of sieved code more
challenging. However, while a task (a leaf task in Sequoia) is intended for execution
on a single SPE, the sieve semantics parallelisation of a sieve block across multiple
SPEs. The sieve construct is similar to the bulk-synchronous parallel (BSP) model [6]:
it separates computation (on data brought into local memory) and communication (of
results into global memory). Communication in BSP, however, is non-deterministic.

We have previously described Sieve C++ and its other constructs facilitating auto-
matic parallelisation via software thread-level speculation [2]. Our contributions in this
paper are: a discussion of the components of the Sieve-Cell system (§2); the description
of optimisation techniques concerning the movement of data between main memory and
local store (§3); and a comprehensive experimental evaluation showing the speedups af-
forded by our optimisations and comparing the Sieve-Cell system with IBM’s OpenMP
implementation for Cell (§4). We conclude (§5) with an outline of future work.

2 Sieve Overview

We illustrate the sieve concept and its advantages using a molecular dynamics example
(§2.1), and describe a sieve implementation for the Cell BE processor (§2.2).

2.1 Sieve Scopes and Outer Pointers in a Molecular Dynamics Example

In addition to marking sieve blocks, the sieve keyword can be used as a function
qualifier indicating that the function may be called from a sieve block (or other sieve
functions) and therefore should be compiled with the semantics of delayed writes to
global memory. (Sieve blocks and functions constitute sieve scopes.)

The outer qualifier applied to a pointer declared within a sieve scope indicates that
the pointer points to data in global memory. (Pointers declared outside a sieve scope are
outer by default.) Hence, writes via outer pointers occuring in a sieve scope get delayed.

The following listing shows a function, computeForces, which takes input arrays
representing masses and positions for each particle in a system, and computes an out-
put array representing forces exerted upon each particle, according to the law of gravity:

extern int Size;

sieve float3 rNormalised(outer float3 *Pos, int i, int j);

*Pos, float* Mass) {
sieve {
for(int i=0; i<Size; ++i) {

float3 Potential = { 0.0f, 0.0f, 0.0f };
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for(int j=0; j<Size; ++j)
Potential -= rNormalised(Pos, i, j) * Mass[j];

Forces[i] = Potential * Mass[i]; // Delayed write
} } // Side-effects to Forces[] committed here

}

Listing 1. Molecular dynamics code, annotated with a sieve block

We do not show code for the float3 class (a floating point vector class with standard
operations), or for the sieve function rNormalised which, given Pos, i and j, returns
(0, 0, 0) if i=j, and (Pos[i]−Pos[j])/|(Pos[i]−Pos[j])|3 otherwise.

Consider the standard C++ code obtained by removing the sieve and outer key-
words from Listing 1. In this form, the code is hard to automatically parallelise for
the following reasons. First, the compiler must conservatively assume that the arrays
Forces and Mass may overlap, which would lead to a carried dependence on the outer
loop due to the write to Forces. Second, note that both loops are bounded by the ex-
ternal global variable Size. The compiler has to assume that Size may be modified
during calls to the rNormalised function (for which the compiler does not necessarily
have source code), which would destroy the regular structure of the loops. Similarly,
the array Pos is passed as a parameter to rNormalised. The compiler must therefore
assume that memory accessed via Pos could be modified by this function call, which
would introduce carried dependences on both loops in the nest.

For the molecular dynamics example, this conservativeness is due to the mechan-
ical compiler lacking domain-specific information. In a sensibly-written application,
computeForces will be called with arrays that do not overlap, and Size and Pos

will not be modified by the pure function rNormalised. The intention that the input
parameters refer to distinct memory regions can be stated using the C99 restrict

qualifier, but restricted pointers do not help with a possible modification by the called
function.

The sieve block of Listing 1 tears down these barriers to parallelisation. The Pos,
Mass and Forces parameters are outer pointers, since they are declared outside the
sieve block. As a result, during sieve block execution, any modification to data via
these pointers is delayed until the end of the block. This change in semantics means
that there are no loop-carried dependences even if the arrays do overlap. The compiler
knows that rNormalised is a sieve function, compiled with delayed semantics, so
that if the function (or a function it calls in turn) writes to global variable Size, or
via outer pointer Pos, these writes will be delayed, having no effect on sieve block
computation.

Clearly, the semantics of the sieve block will depart from the conventional seman-
tics if the code does involve a write to, followed by a read from, a global memory
location. While parallelising such code with standard semantics would result in non-
deterministic, undefined behaviour, the sieve semantics mean that parallel code is de-
terministic, regardless of how many cores are employed. If sieved code does not behave
as expected (due to a programmer error, or to a sieve block being applied to code which
involves read-after-write dependences by design) the guarantee of determinism means
that the programmer can debug their multi-core application on a single core.
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2.2 The Sieve-Cell System

The Sieve concept fits neatly with systems having multiple levels of memory hierarchy,
in particular, the Cell BE processor. The programmer uses a sieve block to specify that
a portion of code should be distributed across the SPEs. Variables declared inside sieve
scopes reside in SPE local store; variables declared in standard scopes are located in
main memory, and data structures in main memory can be traversed on an SPE via outer
pointers. A read inside a sieve block from global memory results in the transfer of data
into local store via DMA; a write to global memory results in an entry being appended
to a queue of side-effects, to be applied at the end of the sieve block. The Sieve compiler
and run-time system take care of the low-level details associated with data movement.
The programmer is able to write a unified application for the Cell processor, rather than
being forced to write separate PPE and SPE programs with explicit communication
via mailbox messages and DMA transfers (which cannot be typechecked). Annotat-
ing blocks of code, as opposed to outlining code into functions, also aids productivity,
allowing Sieve versions of serial C++ codes to be developed quickly.

Sieve Compiler. The compiler processes a Sieve C++ application and outputs a set of
ANSI C files, which we refer to as OutputC files, together with a makefile. The makefile
uses third party C compilers for the PPE and SPE processors to compile these C files,
linking the resulting object files with the Sieve run-time library and other PPE/SPE
libraries to produce a Cell executable. The Sieve compiler provides full support for
PPU and SPU vector intrinsics.

The sieve and outer keywords allow type-checking across the PPE/SPE boundary,
ensuring for example that SPE code does not accidentally de-reference a pointer to PPE
data. The occurrence of a sieve block in a Sieve C++ application causes a call to a
function named runSieve to be generated at a corresponding position in the OutputC
code. This function is part of the Sieve-Cell PPE run-time library. Given a pointer to
an SPE program for the associated sieve block, the runSieve function manages the
distribution of sieve scope execution across available SPEs.

PPE Runtime. After loading each SPE with the sieve block program,1 the PPE run-
time issues each SPE with a speculative work unit. A work unit consists of a program
point in the sieve block at which execution should begin, called a split point, together
with speculated values for variables which are live at the given split point, and an integer
specifying how many further split points should be crossed before execution of the work
unit is completed [2]. Execution of a work unit also completes if the end of the sieve
block is reached before the given number of split points is crossed. To ease speculation
(e.g. for automatic loop parallelisation), the compiler requires that the only variables
live across split points are iterators – instances of special user-defined classes having
methods for prediction of class state after traversal of a given number of split points.

After issuing work units, the PPE run-time sleeps, waking up when an SPU thread
interrupts to indicate completion of work. On receiving a completed work unit from
an SPE, the PPE issues the SPE with a fresh work unit, then attempts to validate the
completed work – checking that the predicted iterator values for the work unit match

1 A run-time check ensures that SPEs are not needlessly re-issued sieve block code if the same
sieve block is executed in succession.
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the actual values computed by the previous work unit. A completed work unit contains
a queue of associated side-effects. Side-effects for a valid work unit are kept until the
end of the sieve block; side-effects for an invalid work unit are discarded. At the end of
the sieve block, the PPE run-time invokes a function, runSideEffects, which takes
the side-effects generated by all valid work units (by which time all side-effects have
been transferred to main memory), and commits these side-effects in order.

SPE Runtime. The SPE program for a sieve block consists of a small run-time system
loop together with code for work unit execution, which must all fit within the SPE local
store. Each SPE has an outbound interrupt mailbox, which it uses to request a work
unit from the PPE. Using the interrupt mailbox means that the PPE can sleep when not
servicing an SPE, avoiding a busy-wait loop. The PPE responds to the SPE, via the
SPE’s inbound mailbox, with a pointer to a work unit. The SPE uses this pointer to
fetch the work unit via DMA, after which the SPE executes the work unit.

By default, reads from main memory are via an SPE software cache, based on an im-
plementation provided by IBM as part of the Cell SDK for Linux. Alternative methods
for reading data from main memory are discussed in §3. For each write to main memory
inside a sieve scope, the compiler generates a call to the delayedStore function in the
SPU run-time. This function takes pointers to a SPU source address and PPU destina-
tion address, and an integer specifying the size of the data to be stored. The function
adds a (PPU address, size, data) triple to a queue on the SPE. When an SPE’s local
side-effect queue reaches an upper bound (specified at compile-time), the SPE transfers
the contents of its queue to a temporary location in main memory, and continues exe-
cution with an empty local queue. The PPE run-time is responsible for managing SPE
requests to allocate main memory for temporarily storing side-effects.

3 Sieve-Cell Optimisations

Efficient data movement is key to achieving high-performance on the Cell processor. We
describe compiler and run-time data-movement optimisations in the Sieve-Cell system.

3.1 Streaming DMA Reads

A common DMA transfer optimisation involves fetching data from main memory in
large chunks before processing. For example, given an SPU loop which on each itera-
tion fetches and processes an element of main memory array A[0..N-1], it is typically
more efficient to transfer A[0..N-1] into local memory before executing the loop. This
is due to high cost of initiating a DMA transfer compared with the cost of transferring
additional bytes once a DMA has been initiated. If N is large then it may be worth over-
lapping communication with computation, streaming data from A in chunks and using
double-buffering to process chunk n while fetching chunk n+1. Indeed, streaming may
be necessary if N is large enough that A[0..N-1] does not fit into local store.

The Sieve compiler exploits the delayed semantics to generate efficient DMA stream-
ing code when compiling regularly structured loops which read throughouter pointers.
We illustrate this using the molecular dynamics example of Listing 1 as follows:
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void computeForces(float3 *Forces, float3 *Pos, float* Mass) {
sieve {
DMAStream<sizeof(float)> MassStr_i, MassStr_j;
int LocalSize = Size;
MassStr_i.start(Mass);
for(int i=0; i<LocalSize; ++i) {

float3 Potential = { 0.0f, 0.0f, 0.0f };
MassStr_j.start(Mass);
for(int j=0; j<LocalSize; ++j)

Potential -= MassStr_j.read(j) * rNormalised(Pos, i, j);
Forces[i] = Potential * MassStr_i.read(i);

}
MassStr_j.destroy(); MassStr_i.destory();

} }

Listing 2. Optimised molecular dynamics code

The compiler spots that the outer loop of the sieve block includes a statement reading
from the base address Mass with offset i. Since i can be identified as an index vari-
able for the outer loop, the compiler generates a DMA stream object, MassStr_i, and
replaces the read from Mass[i] with a read from MassStr_i. Similarly, the regular
reads from Mass offset by index variable j in the inner loop are replaced with reads
from a stream, MassStr_j.2

A DMA stream can be thought of as a window into an array in main memory. In our
double-buffered implementation, a stream is an SPU-side record consisting of a pair
of buffers, a pointer to the current buffer, a base address for the PPU array to which
the stream corresponds, an address indicating the main memory address to which the
current buffer refers, and a DMA tag to monitor completion of prefetching operations.

The declaration DMAStream<elem size> stream name declares a DMA stream with a
fresh DMA tag, with the capacity to store elem num elements of size elem size (where
the elem num parameter may vary at run-time). A fresh tag means that simultaneous
DMA requests for multiple streams can be issued simultaneously and managed inde-
pendently. The stream name.start(base address) operation issues and waits for a
DMA operation to copy elem size × elem num bytes of data into the current buffer for
the stream. A DMA request to fill the other buffer with the next elem size × elem num
bytes of data is also issued, but not waited for. The stream name.read(offset) first
checks that the current buffer contains sufficient data to return the element at the speci-
fied offset. If not, this data will reside in the other buffer, so the pending DMA request
to fill the other buffer is waited for. A new DMA request is issued to re-fill the current
buffer, and the buffer pointer is switched. Now that the required data is ready, elem size
bytes are copied from the current buffer and returned. To avoid stack corruption, the
compiler must ensure that all pending DMA operations are completed before returning
from a sieve function which uses DMA streams.

2 For readability, we use C++ template notation to describe streams. Note that streams are gener-
ated in the Sieve compiler intermediate representation, and are not exposed to the programmer
as our example suggests.
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3.2 Pre-fetching Global Variables

Consider the global variable Size used to control the for loops in Listing 1. Since
Size is in main memory, its value must be fetched using a software cache read. Al-
though this is more efficient than simply fetching Size by DMA, Size is accessed
many times which results in frequent cache reads. The sieve semantics allow us to
optimise further by hoisting the read from Size to the start of the sieve block. This
is safe even though Size could be modified by the call to rNormalised: because
rNormalised is a sieve function, any potential write to Size would be delayed.

Listing 2 illustrates this optimisation: the first executable statement in the sieve block
copies the value of Size to a local variable LocalSize, and all reads from Size in the
sieve block are changed to read from LocalSize.

3.3 Combining Delayed Writes

A write to global memory occurring in a sieve scope causes a call to a delayedStore
function in the SPU run-time system. As discussed in §2.2, this function appends a side-
effect node of the form (PPU address, size, data) to a local queue, streaming the local
queue to PPE memory when full. A sieve scope with many side-effects will cause the
SPE side-effect queues to fill up quickly, resulting in frequent DMA transfers to stream
side-effects to main memory. In addition, at the end of the sieve block, the PPE must
commit this large number of side-effects to memory individually.

If these side-effects are the result of small delayed writes (e.g. 4 bytes or less) then the
8 byte PPE address + size overhead associated with each side-effect may be the main
reason why the local side-effect queue fills up. In many practical examples, delayed
writes are to contiguous memory locations, e.g. elements of an array in global memory.
Consider the delayed store to Forces[i] in the molecular dynamics code of Listing 1.
It is clear that each iteration of the outer loop will write to an element of Forces. Since
the loop uses stride 1 access, these writes are contiguous.

The Sieve-Cell system uses a run-time optimisation to take advantage of commonly
occurring contiguous delayed writes. Suppose the delayedStore function is called
with the side-effect node (addrn, sizen, datan), and that the last side-effect in the queue
is (addrn−1, sizen−1, datan−1). The run-time checks whether addrn = addrn−1
+sizen−1. If this is the case then the new side-effect can be handled by replacing the
last side-effect node with (addrn−1, sizen−1 + sizen, datan−1++datan), where ++ de-
notes concatenation of bits. Otherwise, the new side-effect node is added to the queue as
usual. The contiguity check bears a (small) run-time overhead, and while effective when
delayed stores are contiguous, may be onerous when delayed stores are fragmented.

We could extend the check to eliminate redundant side-effects by spotting cases
where multiple stores are made to the same memory location; we have not found this to
be a useful optimisation for practical examples.

4 Experimental Evaluation

4.1 Experimental Setup

We present experimental data for single-precision benchmark programs implemented in
standard C++, Sieve C++, and OpenMP C++. The Sieve versions of the programs were
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developed from serial base codes by the addition of Sieve annotations, and elimination
of global variable updates within kernels. In all cases, a small number of preprocessor
macros were then sufficient to allow OpenMP, Sieve, and serial code to coexist in one
set of files. We also present results for standard and Sieve C++ versions of three further
programs which, due to limitations of the (Alpha version of) XL C++, we were not able
to implement using OpenMP; these benchmarks are marked † in the following list:

SGEMV: Matrix-vector multiply (8192× 4096)
GRAVITY: An N -body molecular dynamics simulation of 8192 particles
NOISE RGB: Noise reduction filter applied to a 512 × 512 colour image
NOISE GREY: Noise reduction filter applied to a 512 × 512 greyscale image
CRC: Cyclic redundancy check on a random 8M (1M=220) word message
MAND: Calculates a 1024× 1024 fragment of the Mandelbrot set
FFT3D: Fast Fourier transform of a complex 1283 data set†

JULIA: Ray traces a 512 × 512 3D slice of a 4D quaternion Julia set†

MAND+SIMD: The MAND program optimised using SPU SIMD intrinsics†

Experiments are performed on a Sony PlayStation 3 console (on which only six of the
SPEs are available to the programmer), running Fedora Core 7 Linux, with IBM SDK
v3.0.0. The OutputC code produced by the Sieve compiler is compiled using ppu-gcc

and spu-gcc, and Sieve results are compared against programs in standard C++ com-
piled with ppu-g++ (all GNU compilers are v4.1.1). OpenMP examples are compiled
using the IBM XL C/C++ Single-Source compiler (Alpha Edition, v0.9), and compared
against serial code compiled with the same compiler, using the -qnosmp to specify that
OpenMP directives should be ignored. Both serial versions run on the PPU.

Figure 1(a) plots the speedup of each Sieve C++ program relative to a single SPU
when data movement optimisations are applied. Figure 1(b) demonstrates the effec-
tiveness of these optimisations for code parallelised over 6 SPEs, showing speedups
for each optimisation and for their combination relative to performance without data
movement optimisations. Figure 2 shows the speedup of each Sieve/OpenMP applica-
tion relative to serial code compiled with ppu-g++/XL C++. For the Sieve applications,
the number of SPUs is indicated above the corresponding bar. For OpenMP, the number
indicated is the number of active parallel threads, which ranges from 1 to 7 since the
IBM OpenMP implementation supports parallelisation across the SPUs and PPU. The
rules as to when a thread is spawned on the PPU rather than an SPU are undocumented;
the results indicate that the distribution strategy varies between input programs.

4.2 Discussion

Figure 1(a) shows that six of our nine benchmarks scale almost linearly as the number
of active SPUs increases, with GRAVITY showing the best scaling. Of the remaining
three benchmarks, MAND+SIMD scales slightly worse than MAND: the gain from
using vector intrinsics is high for a small number of SPUs, but more active SPUs leads
to higher bus traffic due to side-effect transfer. This slows down the SPUs, making
the impact of vector instructions less significant. Analysis using an in-house Codeplay
profiler attributes the reasonable but sub-linear FFT3D scaling and the poor SGEMV
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Fig. 1. Benchmark results for Sieve C++ programs

scaling to high bus activity. These benchmarks involve a high rate of data movement in
small chunks both to and from SPU local store.

Our data movement optimisations provide no performance improvement for JULIA
and MAND+SIMD, which are therefore not shown in Figure 1(b). DMA streaming does
not apply to these benchmarks (or to MAND) since they do not read data from global
memory. Delayed write combining is effective for MAND and FFT3D, which involve
frequent delayed stores. MAND+SIMD involves fewer delayed stores than MAND
since the former benchmark writes back pixels in vector chunks. For NOISE RGB,
delayed write combining has little effect alone but provides an improvement when com-
bined with streaming. This works the other way for FFT3D, where streaming provides
a more significant speedup when applied with write combining.

The results of Figure 2 show that automatic parallelisation using Sieve and OpenMP
can lead to significant speedups over PPU-only code, and thus commends both sys-
tems. The Sieve results are competitive with those for OpenMP, showing better scaling
for three benchmarks. Both approaches perform poorly compared with serial SGEMV.
For the GRAVITY benchmark, although scaling is good, the performance of Sieve code
with six SPUs is roughly equal the performance of serial code; OpenMP code using all
seven parallel threads runs 1.3 times faster than the XL C++ serial version. Of the Sieve-
only benchmark programs, MAND+SIMD shows excellent scalability, approaching the
performance of hand-written parallel Cell code. Nevertheless, our 4-pixel SIMD exe-
cution path prevents an ideal quadrupling of performance. A modest 1.6 times speedup
with 6 SPUs is achieved for JULIA. As with GRAVITY, Sieve code for FFT3D with 6
SPUs runs at roughly the same speed as the serial ppu-g++ code. Further investigation
of the weaker speedup responses has shown that programs with a high rate of data trans-
fer between SPE and PPE memory are most strongly affected, due to the cost of DMA
operations and the attendant overhead of the delayed store function. The final writeback
of side-effects by the PPE does not make a significant contribution.
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5 Conclusions and Future Work

We have presented the Sieve-Cell system – an auto-parallelisation system for the Cell
BE processor based on the Codeplay Sieve C++ language. We have described compile-
time and run-time data movement optimisations, and presented experimental results
which show the effectiveness of these optimisations on a number of benchmarks, as
well as the scaling of parallel code over multiple SPUs. Our experimental results also
show that Sieve is competitive with IBM’s OpenMP implementation for Cell.

Future work includes comparing the Sieve-Cell system against Sequoia and CellSs
on a number of representative benchmarks, and performance comparisons with other ar-
chitectures. Similar experiments on double-precision data using PowerXCell8i will also
be attempted. The design and implemention of advanced data movement techniques for
complex access patterns is also underway, as is the development of an overlay system
to allow larger applications to be parallelised over SPUs.

Acknowledgements. Thanks to all at Codeplay for their work on the Sieve-Cell sys-
tem, Mike Houston for providing Sequoia benchmark source code, and the anonymous
reviewers for their comments which have helped to improve the paper.
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Abstract. Approaching the theoretical performance of heterogeneous
multicore architectures, equipped with specialized accelerators, is a chal-
lenging issue. Unlike regular CPUs that can transparently access the
whole global memory address range, accelerators usually embed local
memory on which they perform all their computations using a specific
instruction set. While many research efforts have been devoted to of-
floading parts of a program over such coprocessors, the real challenge is
to find a programming model providing a unified view of all available
computing units.

In this paper, we present an original runtime system providing a high-
level, unified execution model allowing seamless execution of tasks over
the underlying heterogeneous hardware. The runtime is based on a hi-
erarchical memory management facility and on a codelet scheduler. We
demonstrate the efficiency of our solution with a LU decomposition for
both homogeneous (3.8 speedup on 4 cores) and heterogeneous machines
(95 % efficiency). We also show that a “granularity aware” scheduling
can improve execution time by 35 %.

1 Introduction

The last years have witnessed the tremendous invasion of multicore architec-
tures in the field of parallel computing. Although many research efforts have
been devoted to designing multicore-aware algorithms and software, application
developers are still having a hard time trying to get the most of these hierarchical
architectures. Unfortunately, the situation is about to get even worse, with the
emergence of a new architecture trend: heterogeneous multicore architectures.

We have known for a long time that making use of specific hardware accel-
erators can dramatically speed up applications featuring data-parallelism. The
novelty is that such hardware is now available off the shelf: clusters featuring
GPGPUs, FPGAs or even Cell processors are affordable for most users. It is
likely that many supercomputers will be equipped with such heterogeneous hard-
ware in the future. Consequently, programmers now have to deal with architec-
tures composed by a mix of regular CPUs and specific PUs (SPUs, GPGPUs).

Only few applications are currently taking advantage of these hybrid archi-
tectures. And even fewer applications are able to use both types of comput-
ing units at the same time. Many approaches actually only rely on offloading
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parts of the computations over accelerators, since there exists no unified run-
time system allowing programmers to seamlessly exploit all available computing
units. Thus, the most widely used programming models on such machines are a
mix of pthreads and CUDA [3] (for nVidia GPGPUs) or libspe (for Cell’s
SPUs). Of course, higher level approaches exist (RapidMind [14], CellSs [9],
HMPP [8]) that hide the hardware complexity to programmers. However, they
currently only support a single type of accelerator at a time. To deal with ir-
regular application, where dynamic load balancing is required, all these systems
rely on specific runtime systems that implement memory transfers between main
memory and the accelerators.

In this paper, we present the design of a unified runtime system that provides
a simple yet powerful interface to exploit multiprocessors equipped with hetero-
geneous accelerators (e.g. SPU+GPU+CPU). The programming model is based
on a high level memory management interface enabling hierarchical description
of data domains. Applications tasks are running as “codelets” over the underlying
hardware computing units: the runtime system automatically takes care of gath-
ering input data before their execution and scattering output results upon com-
pletion. Thanks to the concept of divisible tasks, our approach helps to develop
programs that dynamically adapt to the available processing units.

2 A Uniform Approach to Exploiting Heterogeneous
Computing Units

Designing a runtime system for heterogeneous multicore machines, featuring
different accelerators and computing units, introduces challenging issues. Tra-
ditional shared-memory homogeneous multicore architectures are either pro-
grammed using high-level languages (e.g. OpenMP [1], Cilk [11]) or low-level
task management libraries (e.g. pthread, libspe). In both approaches, the
underlying runtime system is merely devoted to task scheduling. In contrast,
heterogeneous machines have much more runtime requirements since they do
not provide a coherent (nor even shared) global memory. Unlike regular CPUs
that can transparently access the whole global memory address range, acceler-
ators often embed local memory on which they perform all their computations.
With no help from the runtime system, programmers would have to explicitly
enforce memory consistency between accelerators, which would seriously impact
both programmability and portability as we potentially have to deal with various
kinds of accelerators (e.g. Cell’s SPU with GPGPUs). This definitely empha-
sizes the need for a runtime featuring high-level memory management interface.

Besides, using the thread concept (as provided by modern operating systems)
does not allow to efficiently exploit those architectures. Indeed, tasks running
over specialized computing units such as GPGPUs can only use a specific in-
struction set and access a private memory address space. The “codelet” con-
cept, which models non-preemptible offloadable tasks, has been recognized to
be a much more appropriate execution model [8]. However, provided the variety
of accelerator technologies and the gap between their respective performance,
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statically determining a relevant granularity is a major issue. Therefore, we be-
lieve that the runtime system should offer support for a dynamically adaptive
grain size, in collaboration with the programmer who would be responsible for
submitting splittable tasks.

2.1 A Topology Aware Hierarchical Data Management

The major component of our runtime system is a data management facility,
which aims at providing a high level API that hides the complexity raised by
accelerators’ heterogeneity. The idea is to abstract the description of memory
regions in such a way that the underlying data transfers and data caching policies
can be optimized, depending on the hardware capabilities.

Hardware accelerators typically work only on a subset of data at a time. As
it would be unwise to manipulate a huge matrix while only working on a sub-
set of its elements, our library features an interface to manipulate sub-data as
well. However, maintaining an MSI protocol on several sub-data is complex as
they could overlap. In that case, modifying a piece of data requires to invali-
date all copies of the overlapping chunks. This requires to maintain an inter-
section graph, and makes the coherence protocol NP-complete. Constructing
such a graph without an expressive description of data subsets is also costly if
not impossible. To address those issues, we introduce the notion of filter as a
result of two simple observations. First, the programmer is usually well aware
of the data layout which the library should therefore not have to infer. Sec-
ond, we can reasonably make sure all sub-data are disjointed, breaking ties by
making new sub-data out of intersections. Contrary to HPF, filters are not re-
stricted to dense matrix structures and can be used with multiple data interfaces
(e.g. CSR).

Our runtime features a number of predefined filters (e.g. block-cyclic distri-
bution), and user-provided filters can easily be added if needed. All filters can
be applied recursively, so that data is partitioned following a tree-based hierar-
chy. Applications must only access the leaves of the resulting tree to maintain
consistency of each sub-data independently. This restriction is consistent with a

// use horizontal and vertical n-block built -in filters

filter f1 , f2;

f1.func = block; f2.func = vert_block ;

f1.arg = n; f2.arg = n;

// declare the data and apply filters on it

data_state *D , * subD;

monitor_blas_data (D, ptr , ld , nx , ny , 4);

map_filters (D , 2 , &f1 , &f2);

// get a reference to the sub -data

subD = get_sub_data (D, 2, i, j);

// fetch the actual data in local memory

fetch_data (subD , RW);

[...] /* Use subD.ptr for computations */

release_data (subD);

Fig. 1. Internal API to manipulate a
sub-data

Fig. 2. Coherence protocol



A Unified Runtime System for Heterogeneous Multi-core Architectures 177

data-parallelism paradigm where all computations are performed locally. When
the application needs to access an inner node of the tree, for instance during
a reduction phase, we temporary unapply some filters. Filters can be efficiently
restored later thanks to a lazy design that makes this operation virtually costless.

Once appropriate filters are created and applied by the application, the mem-
ory management facility is typically invoked each time a task is scheduled some-
where, to make sure that the required input data is made available on time
(see Fig. 1). A straightforward “write-through” implementation would simply
maintain the up-to-date state of each data in main memory, but this would re-
quire numerous unnecessary data transfers between main memory and embedded
memory banks. In contrast, the use of a write-back model would maintain mem-
ory consistency in a lazy fashion (i.e. data transfers are only performed when
actually needed) and would thus reduce the stress on the memory buses.

From a technical perspective, implementing such a memory model is challeng-
ing, as one cannot assume that it is feasible to directly move data between any
combination of accelerators. We thus have extended the pure write-back model
so that we sometimes allow data modifications to be propagated eagerly to main
memory. To enforce data consistency, we maintain a list of the nodes that are
holding a valid copy of each data. To this end, we use a similar approach to
the one used by write-back cache coherency protocols implemented within SMP
machines. Since our approach does not rely on any specific hardware support, we
use a directory-based protocol. As shown on Figure 2, every data is associated to
a vector indicating its state on each memory node. There are three states, invalid
(I) that indicates the node does not hold a valid copy, modified (M) for nodes
that do have one, and shared (S) if there are several nodes with the data. Along
with the updating of those states, the MSI automaton also describes which data
transfers are needed.

When accessing data for the first time, computing units have to allocate a
buffer of sufficient size. The runtime system maintains a reference count of units
that actually use the data, so that deallocations are performed in a lazy man-
ner. When a unit accesses a data larger than its remaining memory, some of the
unused local data is either discarded or flushed to main memory, depending on
the existence of another valid copy of the data. Note that any other unit holding
enough free memory is eligible for that purpose. This memory reclaiming mecha-
nism thus allows to transparently handle data sets which size would not entirely
fit within accelerators memory. As the size of embedded memory typically vary
from orders of magnitude (from 256KB on a SPU to 1GB on a GPU), this is
crucial when running the same application on various architectures.

2.2 Modeling Tasks with Codelets

Given the aforementioned restrictions imposed by some hardware accelerators
about memory accesses, our unified execution model relies on the use of codelets ,
which are tasks enriched with a description of their input and output data.
This description is performed with the high-level data library we defined in
the previous section. While being a constraint for the programmer, the need to
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precisely specify which data are used opens room for numerous optimizations.
It is for instance possible to take data affinity into account while scheduling.
Figure 3 illustrates the codelet structure used by our runtime. To execute a
codelet , each eligible accelerator is given a function specific to its architecture.
The corresponding “kernels” are written by the programmer, but we expect
compiling environments to be able to generate them automatically from a generic
source code.

The execution of codelets is asynchronous and there is no guarantee about
their ordering. We therefore added the possibility to perform a callback func-
tion on the host after the termination of a codelet . If synchronization is needed,
these callbacks can perform interactions between accelerators and the host. Such
interactions can involve costly operations that may decrease the entire system
performance, possibly overwhelming the actual codelet computation time. The
callback mechanism is therefore not sufficient to enforce task dependencies.
Hence, our runtime features facilities to express dependencies between tasks
within the codelet structure itself. This makes programming easier and gives
more freedom to the scheduler. It is indeed simpler to extract parallelism when
the runtime has a wider view of the task and data dependencies.

Fig. 3. The codelet structure Fig. 4. Execution model

Adding a driver to support a new accelerator architecture only requires to
write a limited number of functions as shown on Figure 4. First, the driver
needs to supply methods to fetch and to push codelets from the scheduler which
is a mere list of codelets from the driver’s perspective. This is straightforward
on a CPU or a GPU that is controlled directly from the host, but it requires a
little more work on a Cell’s SPU which has to use DMA mechanisms to ma-
nipulate the codelet list. The driver must also supply a method that executes the
code associated to its architecture in the codelet structure. This may involve to
actually upload the executable code into the memory of the accelerator, possibly
using our data library. Last, the driver needs to offer a mechanism to schedule
the execution of a codelet ’s callback on the host after its termination. On the
Cell, we use special hardware interrupts from the SPUs to handle a codelet
termination and execute its callback.

2.3 Discussion

With respect to our portability requirements, supporting a new architecture
is relatively simple. In addition to the limited number of methods needed to
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execute and manipulate codelets on an accelerator, we have to write functions
that perform the actual memory transfers with main memory. As memory band-
width is a scarce resource, we otherwise believe that it is worth writing some
optional methods to transfers data directly between some pairs of accelerators,
even though there is a slight risk for a combinatorial explosion as the number
of supported architectures grows. Provided that our only assumption is that an
accelerator needs a mechanism to access main memory, we are confident that our
model is well suited for most current and future heterogeneous architectures.

We also believe that our execution model should be helpful for various pur-
poses. On the one hand, the expressiveness of our high-level interface helps pro-
gramming experts to transmit useful indications to the scheduler while getting
some feedback in return. On the other hand, although our solution does not ad-
dress the code generation problem, compilers can infer most task dependencies,
and generate codelets that our runtime can schedule efficiently.

3 Experiments

We perform our experiments on a E5410 Xeon quadcore running at 2.33GHz

with 4GB of memory. This machine also has a nVidia Quadro FX4600

CUDA-enabled graphic card with 768MB of embedded memory.

3.1 Programmability

Our first contribution is to ease the programming of heterogeneous architectures
by the mean of high-level abstractions. This is illustrated on the common ma-
trix multiplication example which follows. After partitioning data into blocks as
shown on Figure 1, we actually launch codelets as shown below.

for (i = 0; i < nslicesx ; i++) {
for (j = 0; j < nslicesy ; j++) {

codelet *cl = malloc(sizeof(codelet ));
cl->where = ANY; cl-> core_func = core_mult;

cl ->cublas_func = cublas_mult;
cl->cb = callback_func; cl->argcb = & jobcounter;
cl->nbuffers = 3; [...]
cl->buffers [2].state = subdata_ref(&C, 2, i, j);
cl->buffers [2].mode = W; /* write results into submatrix C_ij */
push_task(cl); /* schedule the codelet */

}
}

Writing the actual blocked parallel matrix multiplication is then immediate
as each codelet computes one block of the output matrix. A codelet takes Ai

and Bj as inputs and writes its result into Ci,j , which is described naturally
with our high-level library. As there are no task dependencies, the callback
only decrements a task counter until there is no more work. Those codelets
can either be executed on a GPU by calling cublas_mult or on a CPU with
core_mult.
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void cublas_mult(buffer_descr * descr , void *arg) {
cublasSgemm(..., descr [2].nx , descr [2].ny ...);

}

void core_mult(buffer_descr * descr , void *arg) {
cblas_sgemm(..., descr [2].ny , descr [2].nx , ...);

}

The programmer must write the kernels that run on the various resources. But
the descr array is automatically filled with a description of all buffers : the first
matrix is for instance located at address descr[0].ptr. All the underlying data
transfers are transparent, making it much easier to concentrate on the algorithm
itself. It is also worth noting that the programmer does not need to take into
account the possibility of solving a problem larger than GPU memory.

3.2 Heterogeneous Computing

We now validate our core affirmation that it is possible to efficiently use mul-
tiple heterogeneous resources by comparing the performance depending on the
available computational resources. This experiment consists in multiplying two
16384 × 16384 single precision matrices. We compute a synthetic performance
metric out of the measured execution times.

Table 1 not only shows our system performs well with multiple homogeneous
cores as we get a 3.8 speedup on four cores, but we also transparently exploit an
hybrid architecture, only supplying the implementation of the kernel on various
resources. It appears that we need to devote a core to control the accelerators.
On the one hand, the host must remain reactive to external events; on the
other hand, such events are especially harmful for cache-sensitive computations
such as BLAS. Our runtime system therefore obtains 82.47GFlops with three
cores and a GPU, which is 95 % of the added performance of either three cores
(25.24GFlops) and a single GPU (62.06GFlops).

Table 1. Combining heterogeneous resources

1 core 3 cores 4 cores 4 cores / 1 GPU 3 cores / 1 GPU 1 GPU

GFlops 8.70 25.24 32.83 62.34 82.47 62.06

3.3 Extracting Enough Parallelism

We implemented the LU decomposition presented on the Algorithm 1 twice
to underline the importance of a collaboration between the programmer and
the runtime system in order to improve scheduling. More precisely, those two
versions share the same implementation of the kernels, but the callbacks differ
in their handling of the dependencies between codelets . In the first version, the
codelets of type D are not scheduled until all B and C codelets are finished,
and the A codelet waits for all D ones. This means that the entire algorithm
suffers from a sequential section, which is critical for performance. In the second
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Algorithm 1. Blocked LU decomposition of matrix M
for k = 1 to n do

Decompose Mk,k ; /* 1 Codelet A */

for i = k + 1 to n do
Find Mi,k with Mk,kMi,k = Mi,k ; /* (n − k − 1) Codelets B */

for j = k + 1 to n do
Find Mk,j with Mk,jMk,k = Mk,j ; /* (n − k − 1) Codelets C */

for i = k + 1 to n do
for j = k + 1 to n do

Mi,j− = Mi,kMk,j ; /* (n − k − 1)2 Codelets D */

implementation, codelets are scheduled as soon as data dependencies are verified.
This has a clear effect on the amount of parallelism of the overall algorithm as
shown on Figure 5 : while most resources are almost stalled during the execution
of the first implementation, they keep running nearly all the time in the second
version, substantially reducing the execution time by 15 %.

Fig. 5. Supplying enough parallelism helps to reduce load imbalance

Table 2. Optimizing the LU decomposition

Optimisation Reference Memory pinning Dependencies Priorities
GFlops 49.65 53.62 64.94 67.33

Gain (%) 0 8.0 30.9 35.6

There remains load balancing issues at the end of the execution which result
from algorithm’s inherent lack of parallelism. To avoid that, we added the notion
of priority tasks to schedule codelets of type A – and all their direct dependencies
– as soon as possible. In addition to the use of registered memory that reduces
the need for costly memory copies within the CUDA driver, we see another 5 %
improvement using priorities on Table 2.

4 Related Work

Programmable GPUs can be controlled using specific languages (e.g., Cg, HLSL

or GLSL). Others require less knowledge of graphic APIs using higher-level
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abstractions like streams instead of graphical primitives (e.g. Brooks, Scout,
Glift). Given that successful evolution toward GPGPUs, well summarized by
Ownens et al. [17], constructors enriched hardware with generic features and
now provide generic programming environments such as CUDA [3], CAL [2]. As
summarized by Buttari et al. [6], Cell programming usually consists in the
use of low-level specific mechanisms provided by the LibSPE, even though there
are higher level abstractions either in runtime systems (e.g. ALF [7], MCF [4],
Charm++ [12], Gordon [15]) or at compile time (e.g. Octopiler).

There are also substantial efforts to develop hybrid programming models
which differ in the objects they manipulate. On the one hand, there are data
parallel approaches which map operations on arrays or matrices (e.g. Rapid-

Mind [14], Brooks [5], PeakStream). On the other hand, some follow a task
parallelism model, and offer architecture independent abstractions for offload-
able functions (e.g. Merge [13], Sequoia [10]). A growing number of compiler
frameworks are also intended to offer support for heterogeneous architectures
(e.g. HMPP [8], EXOCHI [13], R-Stream [20]). Likewise, high level asyn-
chronous stream processing systems such as AETHER’s S-Net [19] or the
Scalp project [15] rely on support at the runtime level. Given the lack of an
actual hybrid programming standard, substantial efforts are done to adapt main
standards like MPI [18,16], or OpenMP that CellSs extends to express task
and data dependencies [9], which is interesting to generates codelets .

5 Conclusion and Future Work

In this paper, we present a runtime system that transparently handles the co-
herency of hierarchical data structures over heterogeneous multiprocessor ma-
chines. With the support of the codelet abstraction to model tasks, we sketch the
basis of a generic task scheduling platform. We show that our prototype actually
obtains very good performance for non-trivial problems, either on accelerators
or on hybrid architectures. Those abstractions indeed offer the opportunity to
drive accelerator programming beyond the mere solving of technical issues, hence
allowing to concentrate on the algorithmic issues. Another conclusion is the im-
portance of a proper task scheduling, and the need for an expressive interface.

In addition to a seamless use of multiple GPU, we plan to make our data
library asynchronous which should be profitable in the context of scheduling
policies using data prefetching. Besides improving the on-going support of the
Cell, we will investigate lock-free protocols to prevent scalability concerns. On
a longer term, we envision to supply a set of scheduling policies covering a wide
spectrum of problematics, going from a better support of NUMA machines to an
inter-node scheduling using MPI. We claim that our runtime could provide the
necessary support that compilation environments and specialized libraries lack
to harness the growing complexity of heterogeneous machines. With performance
portability as a major goal, and given the urgent need for a standardization of
all the work around heterogeneous multicore programming, our runtime could
contribute to the efforts made around OpenMP and other high level approaches.
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Abstract. The power wall is currently one of the major obstacles com-
puter architecture is facing. In this paper we analyze the impact of the
power wall on CMP design. As a case study we model a CMP consisting
of Alpha 21264 cores, scaled to future technology nodes according to the
ITRS roadmap. When running at the maximum clock frequency, such
a CMP would far exceed the power budget. Although power limits per-
formance significantly, technology improvements will still provide perfor-
mance growth. Amdahl’s Law highly threatens this performance growth,
but might not be valid for all application domains. In those cases Gustaf-
son’s Law could be valid which is much more optimistic. From our results
we derive some principles to prevent CMPs from hitting the power wall.

1 Introduction

It is commonly believed that we have reached the power wall, meaning that
uniprocessor performance improvements have come to an end due to power con-
straints. The main causes of the increased power consumption are higher clock
frequencies and power inefficient techniques to exploit more Instruction Level
Parallelism (ILP), such as wide-issue superscalar execution. Hitting the power
wall is also one of the reasons why industry has shifted towards multicores or
chip multiprocessors (CMPs). Because CMPs exploit explicit Thread Level Par-
allelism (TLP), their cores can be simpler and do not need additional hardware
to extract ILP. In other words, CMPs allow exploiting parallelism in a power
efficient way.

Figure 1, taken from [1], illustrates the power wall. Uniprocessors have basi-
cally reached the power wall. As argued above, multicores can postpone hitting
the power wall but they are also expected to hit the power wall. Several ques-
tions arise like when will CMPs hit the power wall, what limitation will cause
this to happen, what can computer architects do to avoid the problem, etc. It
is generally believed that the power efficiency of CMPs can be improved by de-
signing asymmetric or heterogeneous multicores. For example, several domain
specific accelerators could be employed which are turned on and off according to
the actual workload. But, is the power saving it provides worth the area cost?
In this paper we try to answer those questions.

Specifically, in this paper we focus on technology improvements as they have
been one of the main drivers of performance growth in the past. According to the
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Fig. 1. The power wall problem

ITRS roadmap [2], technology improvements are expected to continue. However,
power constraints might not allow us to exploit them fully. In the next section we
analyze the limits of performance growth due to technology improvements with
respect to power constraints. In Section 3 based on the results of our experiment
we conclude that CMPs can offer significant performance improvements provided
a number of principles are followed.

Of course our model is necessarily rudimentary. For example, it does not
consider modifications in memory and interconnect, bandwidth constraints, nor
static power dissipation due to leakage. Nevertheless, the power wall has been
predicted, multicores are expected to be the remedy, asymmetric multicores have
been envisioned, but to the best of our knowledge this has never been quantified.
From our results we hope to derive some principles which can be the basis for
future work.

2 Performance and Power of Future Multicores

To analyze the effect of technology improvements on the performance of future
CMPs and to investigate the power consumption trend, the following experiment
was performed. We take an Alpha 21264 chip (core and caches), scale it to future
technology nodes according to the ITRS roadmap, create a hypothetical CMP
consisting of the scaled cores, and derive the power numbers. Specifically, we
calculate the power consumption of a CMP for full blown operation, i.e., all
cores are active and run at the maximum possible frequency. Furthermore, we
analyze the performance growth over time if the power consumption is restricted
to the power budget allowed by packaging.

The Alpha 21264 [3] core was chosen as subject of this experiment for two
reasons. First, the Alpha has been well documented in literature, providing the
data required for the experiment. Second, the 21264 is a moderately sized core
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lacking the aggressive ILP techniques of current high performance cores. Thus,
it is a good representative of what is generally expected to be the processing
element in future many-core CMPs. The relevant parameters of the 21264 core
for this analysis are the following: year t0 = 1998, technology node Lorig = 350
nm, supply voltage Vorig = 2.2 V , die area Aorig = 314 mm2, dynamic power
(@400 MHz) = 48 W , and dynamic power (@600 MHz) = 70 W .

2.1 Scaling of the Alpha 21264

The 21264 is scaled according to data in the 2007 edition of the International
Technology Roadmap for Semiconductors (ITRS) [2]. The relevant parameters
are given in Table 1. The values of the technology node and the on-chip frequency
were taken from Page 79 of the Executive Summary Chapter. The on-chip fre-
quency is based on the fundamental transistor delay, and an assumed maximum
number of 12 inverter delays. The die area values were taken from the table on
Page 81 of the Executive Summary. Finally, the values of the supply voltage
and the gate capacitance (per micron device) were taken from the table starting
at Page 11 of the Process Integration, Devices, and Structures Chapter of the
roadmap.

Table 1. Technology parameters of the ITRS roadmap

2007 2008 2009 2010 2011 2012 2013 2014
technology (nm) 68 57 50 45 40 36 32 28
frequency (MHz) 4700 5063 5454 5875 6329 6817 7344 7911
die area (mm2) 310 310 310 310 310 310 310 310
supply voltage (V ) 1.1 1 1 1 1 0.9 0.9 0.9
Cg,total (F/μm) 7.10E-16 8.40E-16 8.43E-16 8.08E-16 6.5E-16 6.29E-16 6.28E-16 5.59E-16

2015 2016 2017 2018 2019 2020 2021 2022
technology (nm) 25 22 20 18 16 14 13 11
frequency (MHz) 8522 9180 9889 10652 11475 12361 13351 14343
die area (mm2) 310 310 310 310 310 310 310 310
supply voltage (V ) 0.8 0.8 0.7 0.7 0.7 0.65 0.65 0.65
Cg,total (F/μm) 5.25E-16 5.07E-16 4.81E-16 4.58E-16 4.1E-16 3.91E-16 3.62E-16 3.42E-16

To model the experimental CMP for future technology nodes, we scale all
relevant parameters of the 21264 core. The values that are available in the ITRS,
we use as such. The others we scale using the available parameters by taking
the ratio between the original 21264 parameter values and the predictions of
the roadmap. Below we describe in detail for each scaled parameter how this
was done. The gate capacitance of the 21264 was not found in literature, thus
we extrapolated the values reported in the roadmap and calculated a value of
1.1 × 10−15F/μm for 1998.

First, the area of one core was scaled. Let L(t) be the process technology size
for year t and let Lorig be the process technology size of the original core. The

area of one 21264 core in year t will be A1(t) = Aorig×
(

L(t)
Lorig

)2
. Figure 2 depicts

the results for the time frame considered. The area of one core decreases more or
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Fig. 2. Area of one core and the number of cores per die

less quadratically over time, and will be about one third of a square millimeter
in 2022.

Second, using the scaled area of one core, the number of cores that could
fit on a single die was calculated. The ITRS roadmap assumes a die area of
310mm2 for the entire time frame. Thus, the total number of cores per die in

year t is N(t) = 310
A1(t)

= 310
Aorig

×
(

L(t)
Lorig

)2
, which is depicted in Figure 2. The

graph shows a doubling of cores roughly every three years which is in line with
the expectations [4]. In 2022 our calculations predict a CMP with 999 cores.

Finally, the power of one core was scaled. Power consumption consists of a
dynamic and a static part, of which the latter is dominated by leakage. The data
required to scale the static power is not available to us and thus we restrict this
power analysis to dynamic power. It is expected that leakage remains a problem
and thus our estimations are conservative.

The dynamic power is given by Pdyn = αCfV 2, where α is the transistor
activity factor, C is the gate capacitance, f is the clock frequency, and V is the
power supply voltage. The activity factor α of the 21264 processor is unknown
and also depends on the application, but since this does not change with scaling,
it can be assumed to be constant. The capacitance C (F ) in the equation is
different from capacitance Cg,total (F/μm) in Table 1, but they relate to each
other as C ∝ Cg,total × L. Thus, the dynamic power at year t is calculated as:

P (t) = Porig × Cg,total(t) × L(t)
Cg,total,orig × Lorig

× f(t)
forig

×
(

V (t)
Vorig

)2

. (1)

This analysis assumes that the cores run at the maximum possible frequency.
Figure 3 depicts the power of one core over time. As the curve shows it roughly
decreases linearly, resulting in less than 2 W in 2022.

2.2 Power and Performance Assuming Perfect Parallelization

Now that all parameters have been scaled, it is possible to calculate the power
consumption of the total CMP. It is assumed that all cores are active and thus
Ptotal(t) = N(t)×P (t). Figure 3 depicts the total power over time and shows that
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Fig. 3. Power of one core and total power of the case study CMP

the total power consumption of the modelled CMP in 2008 is 600 W , gradually
increases, and reaches 1.5 kW in 2022. The roadmap predicts that the power
budget allowed due to packaging constraints is 198 W . It is clear that for the
entire calculated time span the power consumption of our hypothetical CMP
exceeds the power budget. This is why power has become one of the main design
constraints nowadays.

The figure also shows that the difference between the power budget and the
power consumption of the full blown hypothetical CMP is increasing over time.
That means that a large part of the technology improvement cannot be put
into effect for performance growth. For example, between 2011 and 2020 tech-
nology allows doubling the on-chip frequency. However, the power consumption
would increase with a factor 1.5. Thus, for equal power only a small frequency
improvement would be possible.

Next we analyze the performance improvement that can be achieved by this
CMP. Assuming that the application is perfectly parallelizable, the parameters
that influence performance are frequency and the number of cores. In this case
the speedup in year t, relative to the original 21264 core, is given by S(t) =
f(t)
forig

×N(t)
1 . This speedup is depicted in Figure 4 as the non-constrained speedup.

We are interested in the speedup achieved by CMPs that meet the power
budget of 198 W . As the results show the power budget is exceeded when all cores
are used concurrently at the maximum frequency. Thus, the non-constrained
speedup is not achievable in practice. To meet the power budget, either the
frequency could be scaled down or a number of cores could be shut down. Since
both measures are linear to the speedup, the power-constrained speedup can be
defined as:

Spower constr.(t) =
f(t)
forig

× N(t)
1

× Pbudget

Ptotal(t)
, (2)

where Pbudget is the power budget allowed by packaging.
Figure 4 depicts the power-constrained performance of the case study CMP

over time. To increase readability we normalized the result to 2007. The curve
shows a performance growth of 27% per year. Also the non-constrained perfor-
mance growth is depicted. Note that the latter is growing with 37% per year
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Fig. 4. Power-constrained performance growth

and that the gap between the two is increasing. The robustness of the model
to variations in the input parameters is rather good. Even if all parameters we
took from the ITRS roadmap vary by 20%, the predicted performance in 2022
varies between 46% and 130%.

To put these results in historical perspective we compare to Figure 2.1 of
Hennessy and Patterson [5]. From the mid-1980s to 2002 the graph shows an
annual performance growth of 52%. Then from 2002 the annual performance
growth dropped to 20%. Considering this historical perspective, the predicted
annual performance growth of 27% is a bit on the high side, but not far of.
The main conclusion from these results is that although power severely limits
performance, substantial performance improvements are still possible using the
CMP paradigm.

2.3 Performance Assuming Non-perfect Parallelization

So far we assumed a perfectly parallelizable application. In practice this is not
always the case as there might be purely serial code. If this is the case we can
apply either Amdahl’s Law or Gustafson’s Law [6].

Both Amdahl and Gustafson proposed an equation to calculate the speedup
achieved by a parallel system. At first sight they look different but Yuan Shi
proved that actually they are identical [7]. However, they used different assump-
tions resulting in different predictions of the future. A detailed description of
both laws is provided in the extended version of this paper [8].

Depending on the application domain, either Amdahl’s or Gustafson’s as-
sumptions might be valid, or even something in between. First, we take Amdahl’s
assumptions to predict the power-constrained performance growth. We assume
a symmetric CMP where all cores are being used during the parallel part. The
clock frequency of all cores is equal and has been scaled down to meet the power
budget. The power-constrained speedup that this symmetric CMP can achieve
is given by
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SAmdahl power−constr. sym.(t) =
1

s + 1−s
N(t)

× f(t)
forig

× Pbudget

Ptotal(t)
(3)

and is depicted in Figure 5. We used a serial fraction s ranging from 0.1% to
10%. The figure shows that for s = 0.1% there is a slight performance drop,
compared to ideal, going up to a factor 2 for 2022. However, for s = 1% there
is a performance drop of 10x for 2022 and for s = 10% there is no performance
growth at all.

Fig. 5. Prediction of power-constrained performance growth for several fractions of
serial code s assuming a symmetric CMP and with Amdahl’s assumptions

Indeed we see that Amdahl’s prediction is pessimistic, which is an argument
for asymmetric or heterogeneous CMPs. If the serial part can be accelerated by
deploying one faster core, more speedup through parallelism could be achieved.
This one fast core could be an aggressive superscalar core, a domain specific
accelerator, or a core that runs at a higher clock frequency than the others. For
this experiment we assume identical cores but increase the clock frequency of one
core during the serial part. Note that during this time the other cores are inactive
and thus the power budget is not exceeded. The speedup this asymmetric CMP
can achieve is given by

SAmdahl power−constr. asym.(t) =
1

s × forig

f(t) + 1−s
N(t) × forig

f(t) × Ptotal(t)
Pbudget

(4)

and is depicted in Figure 6. Note that both this equation and Equation 3 become
identical to Equation 2 if s = 0%. The results show that for s = 0.1% there
is only a very small performance drop compared to ideal parallelization. For
s = 1% the performance drop is 2.3x while for s = 10% the performance drops
14 times compared to ideal parallelization but considerable performance growth
is predicted over time. These results show that asymmetric CMPs are a good
choice to improve performance, if Amdahl’s assumptions are correct and if the
serial fraction is larger than approximately 0.5%.

Second, we predict the power-constrained performance growth using Gustaf-
son’s assumptions. Again, we assume a symmetric CMP where all cores are being
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Fig. 6. Prediction of power-constrained performance growth for several fractions of
serial code s assuming an asymmetric CMP and with Amdahl’s assumptions

Fig. 7. Prediction of power-constrained performance growth for several fractions of
serial code s′ with Gustafson’s assumptions

used during the parallel part. The clock frequency of all cores is equal and has
been scaled down to meet the power budget. The power-constrained speedup
that this symmetric CMP can achieve is given by

SGustafson power−constr. sym.(t) = (N + (1 − N) × s′) × f(t)
forig

× Pbudget

Ptotal(t)
(5)

and is depicted in Figure 7. The figure shows that for any value s′ between
0% and 10% there will be no significant performance loss compared to ideal
parallelization. For s′ = 10% in 2022 the performance is 11% less than the ideal
parallelization s′ = 0% case. Thus we can conclude that symmetric CMPs are a
good choice if Gustafson’s assumptions are correct.

3 Conclusions

In this paper we analyzed the impact of the power wall on CMP design. Specifi-
cally, we investigated the limits to performance growth of CMPs due to
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technology improvements with respect to power constraints. As a case study
we modelled a CMP consisting of Alpha 21264 cores, scaled to future technology
nodes according to the ITRS roadmap. It was found that in 2022 such a CMP
would contain 999 cores, each consuming 1.5 W when running at the maximum
possible frequency of 14 GHz. The total CMP, at full blown operation, would
consume 1.5 kW while the power budget predicted by the ITRS is 198 W .

From these figures it is clear that power has become a major design con-
straint, and will remain a major bottleneck for performance growth. However,
it does not mean that the power wall has been hit for CMPs. We calculated the
power-constrained performance growth and showed that technology improve-
ments enables a doubling of performance every three years for CMPs, which is
in line with the number of cores per die.

However, there is another threat for scalable performance which is Amdahl’s
Law. The speedup achieved by parallelism is limited by the serial fraction s.
Using Amdahl’s Law we predicted the power-constrained performance growth
for several fractions s. For a symmetric CMP, 1% of serial code decreases the
speedup by a factor of up to 10. For an asymmetric CMP, where the serial code
is executed on a core that runs at a higher clock frequency, 1% of serial code
reduces the achievable speedup only by a factor of up to 2.

On the other hand, there is Gustafson’s Law which uses different assumptions.
The predictions with this Law are much more optimistic as even for s′ = 10%
in 2022 the performance loss is only 11% compared to ideal parallelization.

The question whether Amdahl’s or Gustafson’s assumptions are believed to
be valid for a certain application domain is unresolved. Most likely some can
be characterized as ’Amdahl’, some as ’Gustafson’ and other as something in
between.

From the results of this paper we conclude that in order to avoid hitting the
power wall the following two principles should be followed. First, at the architec-
tural level power efficiency has to become the main design constraint and evalu-
ation criterion. The transistor budget is no longer the limit but the power those
transistors consume. Thus performance alone should no longer be the metric
but performance per watt (or a similar power efficiency metric like performance
per transistor and BIPS3/W ). Second, for application domains that follow Am-
dahl’s assumptions asymmetric or heterogeneous designs are necessary. For those
the need to speedup serial code remains. A challenge for computer architects is
to combine speedup of serial code with power efficiency.

A CMP that follows these principles could for example look like this: a few gen-
eral purpose high speed cores (e.g. aggressive superscalar), many general purpose
power efficient cores (no superscalar, no out-of-order, no deep pipelines, etc.),
and domain specific accelerators. The latter provides the most power efficient
solution and also allows fast execution of serial code. Furthermore, dynamic volt-
age/frequency scaling can be applied to optimize the performance-power balance,
while hardware support for thread and task management reduces the energy of
the overhead introduced by parallelism. A lot more techniques and architectural
directions are possible.
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Summarizing, from this study we conclude that for the next decade CMPs can
provide significant performance improvements without hitting the power wall,
even though power severely limits performance growth. Technology improve-
ments will provide the means, however, to achieve the possible performance
improvements power efficiency should be the main design criterion at the archi-
tectural level.
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Workshop on Secure, Trusted, Manageable and
Controllable Grid Services (SGS 2008)

Grid systems are expected to connect a large number of heterogeneous resources
(PCs, databases, HPC clusters, instruments, sensors, visualization tools, etc.),
to be used by many users and to execute a large variety of applications (number
crunching, data access, multimedia, etc.) and may deal with many scientific fields
(health, economy, computing etc.).

Grids are distributed systems and, like them, the notion of security, the way
we manage such large system and the way we control the grid system are of
particular interest. For instance, the word ‘controllable’ means how we measure
the activity of the grid and how we report it. The word ‘manageable’ means how
we deploy the grid architecture, the grid softwares, and how we start jobs (under
controllable events such as the availability of resources). The word ‘security’
refers to the traditional fields of authentication, fault tolerance but also refers
to safe execution (how to certify results, how to adapt computation according
to some metric). Moreover, all these services should collaborate, making the
building of middleware a challenging problem. In this context questions about
who holds the sensitive information, who has permissions to access it, how this
information is handled are raised. Therefore, the building of a chain of trust
between software components as well as the integration of security and privacy
mechanisms across multiple autonomous and/or heterogeneous grid platforms
are key challenges.

This workshop aims at gathering papers in the fields of grid/distributed sys-
tems and it extends the recent STPG workshop (see CCGRID2008) and the
Journal of Supercomputing special issue that have served to federate a commu-
nity of researchers and practitioners. The workshop is also open for contributions
in connected fields: P2P systems, sensors networks, networking, large-scale het-
erogeneous distributed databases.

The Steering Committee invited authors to submit original and unpublished
work. We also required that the submission was not being concurrently submit-
ted to another special issue or conference. Papers were reviewed by at least two
reviewers. We informed authors that papers without evaluation (either theoret-
ical or experimental) would not be considered.

So, we solicited novel papers on a broad range of topics including but not
limited to the following keywords:

– Grid monitoring and controlling (forecasting...) systems
– Grid management systems (deployment of infrastructures and applications)
– Grid security: access control, i.e., authentication, trust-based models
– Infra-structural support for privacy in grid environments: architectures,

mechanisms, models, frameworks and implementation
– Specification of grid services for secure components

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 195–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– Secure execution and reliability: adaptation, results’ certification, safe exe-
cution and/or communication

– Aggregation of secure/manageable components into grid middlewares
– Algorithms related to resource brokers, load balancing and heterogeneity
– Applications and experiences with secure/manageable/controllable grid in-

frastructures

Since the selection of papers of the workshop was not a ‘one-shot’ process, we
requested the authors to carefully read the reviews and to modify the original
submission (and the oral presentation) as soon as possible in order to take into
account the comments... and the work was done! The selected papers were:

– Attila Kertesz, Ivan Rodero and Francesc Guim Bernat. “Meta-Brokering
Solutions for Expanding Grid Middleware Limitations”

– Sebastien Varrette, Jean-Louis Roch, Guillaume Duc and Ronan Keryell.
“Building Secure Resources to Ensure Safe Computations in Distributed
and Potentially Corrupted Environments”

– Caniou Yves and Jean-Sebastien Gay. “Simbatch: An API for Simulating
and Predicting the Performance of Parallel Resources Managed by Batch
Systems”

– Heithem Abbes and Jean-Christophe Dubacq. “Analysis of Peer-to-Peer Pro-
tocols Performance for Establishing a Decentralized Desktop Grid Middle-
ware”

– Oleg Lodygensky, Gilles Fedak, Gabriel Caillat, Haiwu He and Etienne Ur-
bah. “Towards a Security Model to Bridge Internet Desktop Grids and
ServiceGrids”

The workshop started on August 25, 2008, at the Informatics and Mathematics
Building. The order for presentations followed the list of selected papers above,
and talks were 30 minutes long. The slides for presentation are available online at
http://www.lipn.fr/~cerin/SGS.html. During the last part of the workshop,
we managed a panel discussion in order to isolate main topics of interest for the
next workshop and what we think is important for future work.

During the panel session, attendees listed the problems covered in the talks
and showed the coherency of the topics of selected papers. At the end, they tried
to find a common interest and emerging projects for the future.

For the sake of simplicity, the topics covered during the workshop can be
summarized as follows:

1. Analysis of publish/subscribe systems in order to build an institutional /
community orchestration tool for desktop grids

2. Meta brokering solutions: how to make grid services more generic
3. Techniques for building secure resources and safe computation
4. An API for simulating and predicting scheduling heuristics
5. Security models for coupling Internet desktop grids and service grids: how

to cope with different grid instances according to a secure mode
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Attendees concluded that they have all the components to build a result certi-
fication service for desktop grids, and the building of such a service introduces
challenging efforts in order for it to be:

– Scalable
– Decentralized as much as possible
– Based on standards for cooperation and description
– Based on proved algorithms for the certification algorithms
– With performance
– Interoperable with other grids flavors and with a secure mode to grant op-

erations (delegating rights)
– Able to be simulated in order to validate the component

From the certification side, they noticed that a large set of techniques exist,
among them replication, partial replication of randomly selected tasks, lists of
repudiation to minimize re-computations, and quiz. From the meta-brokering
point of view, they noticed that standards are now available for the description
scheduling languages, for the capability description languages, for global job
identifiers, for security management so that the certification services could be
build on top of theses facilities.

Finally, attendees recalled the questions of “what is the best institutional form
/ organization able to support such work” and how to extend the topics of the
workshop for the 2009 edition.

October 2008 Christophe Cérin
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Abstract. Grid Resource Management tools evolved from manual dis-
covery and task submission to sophisticated brokering solutions. User
requirements created certain properties that resource managers have
learned to support. This development is still continuing, and users al-
ready need to stress themselves to distinguish brokers and migrate their
applications when they move to a different grid. Moreover, grid inter-
operability have emerged the need for higher level brokering services.
This paper introduces a meta-brokering approach that means a higher
level resource management by enabling automatic and simultaneous uti-
lization of Grid Brokers. First we gather the requirements of this novel
middleware service then define a general meta-brokering architecture.
Finally we show how meta-brokers can be implemented in different grid
environments and we conclude with their evaluations.

Keywords: Grid Interoperability, Grid Meta-brokering, Grid Schedul-
ing, Grid Services.

1 Introduction

In the last decade grid resource management has evolved from manual discov-
ery and task submission to sophisticated brokering solutions. Nowadays research
directions are focusing more on user needs: more efficient utilization and interop-
erability play the key roles. Grid resource management is probably the research
field most affected by user demands. Though well-designed, evaluated and widely
used resource brokers, meta-schedulers have been developed, new capabilities are
still required, such as agreement and interoperability support. These two direc-
tions also depend on other grid middleware capabilities and services, and since
they cannot cross the border of these middleware solutions, they need significant
changes affecting the whole system. Trying to enlarge the limitation borders, in
this paper we introduce a meta-brokering approach as an evolutionary step for
grid resource management, which does not need radical changes to the whole
system. The need for interoperability among different grid systems has raised
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several questions and directions. The advance of grids seems to follow the way
envisaged and assigned by the Next Generation Grids Expert Group [1]. The
SOKU architecture [1] enables more flexibility, adaptability and advanced in-
terfaces, therefore interoperability is evident and congenital in these systems.
Moving towards this direction two works envisaged WWG (World Wide Grid)
as the next generation of grids in a similar manner as the Internet was born.
One of the first vision is the InterGrid [2], which promotes interlinking of grid
systems through peering agreements to enable inter-grid resource sharing. This
approach is a more economical view, where business application support is a pri-
mal goal, and this also supposed to establish sustainability. The second approach
is detailed in [3] which states that three major steps are required to create the
WWG architecture: existing production grids should be connected by uniform
meta-brokers, workflow-oriented portals should interface these meta-brokers, and
a repository of workflow grid services should be created. As a final solution the
inter-connected meta-brokers should solve the interoperability among different
grids through uniform interfaces. Both visions proceed from the current grid
architectures and conclude in a more or less redesigned one.

In this paper we gather the requirements of this novel middleware service
that define a general meta-brokering architecture. Moreover, we show how meta-
brokers can be implemented in different grid environments. Finally, we evaluate
our implementations in two diferent simulation environment, and demonstrate
that the meta-brokering approach can reduce execution time and improve the
overall interoperable system performance. The main contributions of this work
are the design, implementation, and evaluation of the meta-brokering approach
in two different scenarios.

The rest of the paper is organized as follows. In Section 2 we present the
related work in higher level brokering directions. In Section 3, we introduce a
general meta-brokering architecture by gathering its requirements. In Section 4,
we show how the presented architecture can be realized in two different grid user
environments, and we describe the simulation environments used for evaluating
these realized solutions. Finally, in Section 5, we present the conclusions and
future work.

2 Related Work

Several research groups have noticed interoperability problems at the level of
grid resource management. One of the promising approaches aimed at enabling
communication among existing resource brokers. The GSA-RG of OGF [15] is
currently working on a project enabling grid scheduler interaction. They plan
to define common protocol and interface among schedulers enabling inter-grid
usage. In this work they propose a Scheduling Description Language to extend
the currently available job descriptions. Another instance of this approach is the
Latin American Grid (LA Grid) initiative. The meta-scheduling project in LA
Grid [16] aims to support grid applications with resources located and managed
in different domains. They define meta-broker instances with a set of functional
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modules: connection management, resource management, job management and
notification management. These modules implement the APIs and protocols used
in LA Grid through web services. Each meta-broker instance collects resource
information from the other instances having a view of all resources in aggregated
form. The Koala grid scheduler [4] was designed to work on DAS-2 interacting
with Globus middleware services with the main features of data and processor
co-allocation, lately it is being extended to support DAS-3 and Grid’5000. To
inter-connect different grids, they have also decided to use inter-broker commu-
nication. Their policy is to use a remote grid only if the local one is saturated.
In an ongoing experiment they use a so-called delegated matchmaking (DMM),
where Koala instances delegate resource information in a peer-2-peer manner.
Gridway introduces a Scheduling Architectures Taxonomy [5], where they de-
scribe a Multiple Grid Infrastructure. It consists of different categories, we are
interested in the Multiple Meta-Scheduler Layers, where Gridway instances can
communicate and interact through grid gateways. These instances can access
resources belonging to different administrative domains (grids/VOs). The basic
idea is to pass user requests to another domain when the current is overloaded.
This approach follows the same idea as the previously introduced DMM.

Comparing the previous approaches, we can see that all of them use a new
method to expand current grid resource management boundaries. Meta-brokering
appears in a sense that different domains are being examined as a whole, but they
rather delegate resource information among domains, broker instances or gate-
ways. Usually the local domain is preferenced, and when a job is passed to some-
where else, the result should be passed back to the initial point. In the next section
we focus on a solution that utilizes and delegates broker information by reaching
the brokers through their current interfaces.

3 General Meta-Brokering Architecture

We have developed solutions to make resource managers’ data available for co-
operated, automatic processing in the form of metadata. We provide language
schemas to store and share this metadata, and to be processed by various schedul-
ing policies. Using these advanced techniques we present a meta-brokering ar-
chitecture that enables a higher level brokering that has a global, up-to-date
view of broker capabilities and availability. Figure 1 is intended to show all
the components and tools needed by a General Meta-Broker. In the following
we describe these components by introducing the main requirements of this
higher level brokering service:

– JDL – Job Description Language: Since the goal of the meta-brokering
service is to offer a uniform way to access various grids, a unified description
format is needed to specify all the user requirements.

– CDL – Capability Description Language: Each broker has a different
set of functionalities, they can be specialized in different application-types.
In order to store and track these properties, it is required to use a CDL.
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Fig. 1. Required components and tools of a General Meta-Broker

It should be general enough to include all the service capabilities (interfaces,
job submission, monitoring and agreements).

– SDL – Scheduling Description Language: Besides CDL and JDL the
scheduling requirements and policies also need to be stored separately. The
users can express their needs by extending the JDL with SDL, and the
scheduling policies and methods of the brokers can be stored in this format.

– Scheduling: This component performs the scheduling (matchmaking) of
incoming user requests. A proper grid broker (which implies a domain, VO
or execution environment) needs to be selected for a user job taking into
account the available scheduling policies.

– GJI – Global Job Identifiers: It is important to have unique mapping
of user jobs to different grids. An implementation can be a single job ID
provider for the meta-brokering system or simply using each broker system
as a prefix for the assigned grid job ID.

– SM – Security Management: The role of this component is to provide
secure access to the interconnected domains. For example, different user
certificates, proxies may be accepted in different VOs and grids. Providing
a transparent way for users these various proxies also need to be handled
by the Meta-Broker. (In most cases we rely on the underlying Grid Security
Infrastructure (using proxies).)

– Accounting Mechanism: The GJI and SM can be a part of a global ac-
counting component. The role of this mechanism is to manage user access
by pre-defined policies. Though grid economy is still in a pre-mature state,
in the future the meta-brokering service should also serve business grids.

– Agreements Mechanism: This component is in connection with the Ac-
counting mechanism. Service Level Agreements (SLA) are planned to be
used in future generation grids. The role of this part is to negotiate user re-
quirements, which can also affect scheduling policies. When agreements will
be generally accepted and used, this mechanism should be extended to do
negotiations with the brokers.

– Monitoring Mechanism: Reliable operation requires global monitoring, in
terms of the inter-connected brokers, reachable domain, grid resources and
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loads, and local component functionalities. Self-awareness and fault tolerance
need to be provided by the system itself, which needs extensive monitoring.

– Prediction Mechanism: This component is in connection with the Mon-
itoring and Scheduling mechanisms. It is necessary to perform calculations
of broker availability, service utilization and user request load to cope with
the highly dynamic nature of grids.

– Addressing and Notification Mechanism: This component is responsi-
ble for accessing the inter-connected resource brokers, and managing com-
munication including local events and external job state notifications.

In addition to the architecture model and the required interfaces it is impor-
tant to deal with scheduling at the meta-brokering level. Based on the compo-
nents of the architecture shown in Figure 1, we propose a general meta-brokering
policy relying on the capabilities and measured performances of the utilized bro-
kers. The selection of the appropriate brokering system can be done using a
multi-criteria algorithm that can take into account the gathered and predicted
metadata stored in SDL and CDL. The general scheduling policy examines the
job description (JDL) and matches its requirements to the metadata stored in
CDL and SDL. The matchmaking algorithm consists of the following steps: In the
first phase the basic job requirement attributes and the scheduling constraints
are matched against the basic broker capabilities: this selection determines a
group of brokers that are able to fulfill the job request. In this phase those bro-
kers are kept that are able to submit the specified job type and work with the
requested middleware services. In the second phase the brokers are filtered by
all the scheduling requirements of the user job. For all of the brokers that could
pass these filtering phases a rank is computed by the actual broker performance
and domain load. For the brokers that could only pass the first phase reduced
ranks are assigned. Finally the list of the brokers is ordered by these ranks.
The broker with the highest rank is selected for submission. Different scheduling
policies can be defined regarding the data stored in SDL. It also depends on the
deployed architecture, which policies are implemented. In economy-based grid
environments scheduling policies could rely on the agreements and accounting
information to match user budget and maximize domain earnings. An ongoing
work in UPC investigate to use policies based on historical job/resource infor-
mation to make scheduling decisions. Later we can use the achievements of this
approach to improve the meta-brokering algorithm and create another policies
with estimation and prediction results.

4 Meta-Broker Architecture Realizations

Having all the requirements defined, we are able to implement and build a meta-
brokering service. As we stated in the previous section, semantics are crucial to
establish interoperability. Standardization should be taken into account during
the design and development of sustainable solutions. To walk on this way, we
use the standards and widespread technologies, where applicable. To describe
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user jobs we use JSDL (Job Submission Description Language) [17] and WS-
Agreement for handling agreements. Regarding CDL we developed a language
called BPDL (Broker Property Description Language) [8], which had also in-
corporated SDL. To provide full support for our meta-brokering approach we
have revised and modified BPDL and gathered the scheduling-related attributes
to MBSDL (Meta-Broker Scheduling Description Language). The structure of
the new BPDL – that we call BPDL 2.0 –, remains nearly the same, we have
only clarified some attributes, added missing ones and separated the scheduling-
related ones to MBSDL. The updated BPDL version includes: BrokerID, Inter-
face (to providee metadata about the accessibility and notification), Monitoring,
Security, and Middleware (kind of middleware, grid or VO the broker can oper-
ate), JobType, RemoteFileAccess. We use the PerformanceMetrics field to store
how successfully the broker performed job requests, and how reliable its services
are. The Prediction attribute can be used to store predicted data about broker
availability and reliability. The MBSDL language can be used to extend BPDL
with scheduling related attributes. Since JSDL is also lacking these attributes,
MBSDL can also be regarded as a JSDL extension. Its schema contains three
fields: Constraints (that have to be fulfilled during scheduling), QoS (Quality of
Service) requirements, and Policy (for scheduling policies). Taking into account
these ideas, in the following, we present two different realizations of the presented
meta-brokering approach. The first one is the Grid Meta-Broker that has been
evaluated in a GridSim-based environment, and the second one is the extension
of eNanos that has been evaluated with the Alvio simulation framework.

4.1 The First Solution: Grid Meta-Broker

The first realization, the Grid Meta-Broker [7], will be used to solve meta-
brokering in the future version of P-GRADE Portal [6]. Nevertheless it has
been designed as a standalone, standards-based Web Service, therefore it is
grid middleware and portal independent. It has been derived from the archi-
tecture shown in Figure 1. This service consists of the following components
(Figure 2): the Translator is responsible for translating the JSDL of the user
job to the language of the appropriate broker that the Grid Meta-Broker se-
lects for submission. The users can use the MBSDL to specify scheduling related
attributes, and the Meta-Broker uses BPDL together with MBSDL to store bro-
ker properties. The Information Collector (IC) component stores the data of the
reachable brokers and historical data of the previous submissions in BPDL. The
load of the resources behind the brokers is also taken into account to help the
MatchMaker component to select the proper environment for the submitted job.
There are IS Agents reporting to the IC, which regularly check the load of the
underlying grids of each connected resource broker. The previously introduced
language attributes are used for matching the user requests to the description
of the interconnected brokers: which is the role of the MatchMaker component.
The Invokers are broker-specific components: they communicate with the inter-
connected brokers, invoking them with job requests and collecting the results.
In the JSDL extension, the middleware constraint field can be used to specify
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Fig. 2. Grid Meta-Broker architecture (on the left), and its simulation architecture
with GridSim (on the right)

proxy names for grids/VOs. This information is used by the Invokers to select
the valid proxy from the uploaded files for the actual job submission.

We have created a prototype that is mature enough to perform evaluation
test in a simulated environment. We have chosen the GridSim toolkit [9] for our
simulations, because it is one of the most widely used and accepted grid sim-
ulation tools. It can be used for simulating and evaluating VO-based resource
allocation, workflow scheduling, and dynamic resource provisioning techniques
in global Grids. It supports modeling and simulation of heterogeneous Grid re-
sources, users, applications, brokers and schedulers in a Grid computing environ-
ment. It provides primitives for the creation of jobs (called gridlets), mapping of
these jobs to resources, and their management, therefore resource schedulers can
be simulated to study scheduling algorithms. GridSim provides a multilayered
design architecture based on SimJava [10], a general purpose discrete-event sim-
ulation package implemented in Java. It is used for handling the interaction or
events among GridSim components. All components in GridSim communicate
with each other through message passing operations defined by SimJava.

Our general simulation architecture can be seen in the right part of
Figure 2. On the right-bottom part we can see the GridSim components used for
the simulated grid systems. Resources can be defined with different grid-types.
Resources consist of more machines, to which workloads can be set. On top of
this simulated grid infrastructure we can set up brokers. Brokers are extended
GridUser entities: they can be connected to one or more resources, they report
to the IS Grid load database (which has a similar purpose as a grid Information
System), different properties can be set to these brokers (agreement handling,
co-allocation, advance reservation, etc.), properties can be marked as unreliable,
different scheduling policies can be set for each broker, and resubmission is used,
when a job fails due to resource failure. The Simulator (User in the real world)
is an extended GridSim entity: it can generate a requested number of gridlets
(jobs) with different properties, start and run time (length). It is connected to
the brokers and able to submit jobs to them, the default job distribution is the
random broker selection (though at least the middleware types are taken into



206 A. Kertész, I. Rodero, and F. Guim

Fig. 3. Grid Meta-Broker evaluation results

account). In case of job failures a different broker is selected for job submission.
It is also connected to the Grid Meta-Broker (denoted with G M-B in the figure)
through its web service interface and able to call its matchmaking service. Before
the Meta-Broker is used for broker selection, it have to be configured with BPDL
descriptions, and the job requests need to be submitted in JSDL.

The first evaluation environment consisted of 6 brokers operating on four
resources each. Each resource had four machines. Three brokers used resources
with GRID X middleware and the other three used resources with GRID Y
middleware. Four properties were distributed among the brokers, each broker
had one unreliable property (50% failure) (this usually happens in real Grids).
Half of the jobs were set to GRID X, the rest to GRID Y. Each job had only
one property and all the four properties were distributed equally among the jobs.
The run time of the jobs took around 5 minutes each. 20 percent of the jobs had
no special property, the rest were assigned to two properties out of the four
(they were distributed equally). We evaluated four different scenarios, Figure 3
shows a table with their parameters. The first line means all the brokers used
random selection policy, 50 jobs were submitted into the system and 10 jobs were
submitted to each resource as background workload. We used the cleaned SDSC
Blue Horizon workload logs from the Parallel Workloads Archive [13]. The fifth
column shows the average simulation run time of the jobs, when we used random
distribution among the brokers. The sixth column shows the average simulation
run time for the jobs submitted to brokers selected by the Meta-Broker. Due
to the broker property distribution in the first simulation setup, a job with a
special property running on either middleware could surely successfully run only
on one specific broker. This caused overloading of some brokers even with the use
of the Meta-Broker, therefore we created a different environment. The second
time we set up 8 brokers operating again on 4-4 resources, but all having the
same GRID X middleware. The same property distribution was used for the
jobs. The brokers had 2-2 special properties again, but every second broker had
one unreliable property (in this case two brokers could run some job the same
time without any failures). In Figure 3 the last two lines contain additional
information in their last columns. This means we repeated the measurement
again, in a way that the brokers were aware of previous broker failures. In these
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cases the first run can be regarded as a teaching phase, therefore we measured
better performance.

On the right of Figure 3, we highlighted a diagram of the last evaluation
phase, which best demonstrates the difference of simulation run time with and
without the use of the Meta-Broker. The results show that the Grid Meta-Broker
provides less execution time by automating broker and grid selection for users.
During utilization it is able to adapt to broker failures and to avoid selecting
overloaded grids. Future work aims at enhancing its matchmaking algorithm and
introducing teaching phases for better adaptation.

4.2 The Second Solution: Meta-Brokering in HPC Centers with
eNANOS

In our past research we have implemented a brokering approach within the
eNANOS Resource Broker [11]. It performs the job scheduling based on FCFS
and the resource selection based on the matchmaking approach. It also uses hard
user criterion (requirements) and soft ones (recommendations) with a predefined
set of priorities for computing ranks (the resource with the highest rank is se-
lected for submission). Recently, this scheduling policy has been modelized in
the broker layer of Alvio. The Alvio Simulator is a C++ event driven simulator
that has been designed and developed to evaluate scheduling policies in high
performance architectures. It provides ways to evaluate environments from local
centers to meta-brokering solutions. Regarding the local architecture models,
like other simulators, given a workload and an architecture definition, it is able
to simulate how the jobs would be scheduled using a specific scheduling policy
(such as FCFS, or Backfilling policies). The main contribution of this simulator
at this level is that it does not only allow modelling the job workflow in the
system, but also allows simulating different resource allocation policies.

The other contribution of this simulator is the modelling of resource usage
with different jobs running in the system. The researcher is able to specify the
setup of the resources available in the architecture (eg. the amount of mem-
ory bandwidth in each node) and the amount of resources to be used by the
workload jobs. In scenarios for distributed architectures composed by several
HPC centers, the simulator allows to simulate multi-site systems (also known
as brokering system) and meta-brokering systems. Figure 4 presents the differ-
ent components that are instantiated inside the simulator in the meta-brokering
scenario. The meta-system entity is a conceptual component that models the
different elements that are included in the meta-environment. It can contain
a centralized meta-broker scheduling entity which potentially can implement
centralized-based policies (which is illustrated in Figure 4). It also allows to
evaluate P2P meta-brokering strategies. This meta-system component contains
a set of different virtual organization (VO) elements. Each of them contains a
global broker entity that is responsible for managing the jobs that users sub-
mit to the VO. Furthermore, it contains a set of centers that model the typical
HPC local resources introduced previously. Thus, the different centers of the
local-scenarios of the simulation model are also instantiated. For each of the
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Fig. 4. Meta-brokering Model with a Centralized Approach

center components a local scheduling policy, a resource selection policy and the
reservation table are created.

Similarly, we have proposed and implemented a prototype of the BestBroker-
RankPolicy. It basically selects the most appropiate broker to submit a job based
on a set of rank values corresponding to the different brokers rather than using
the local resource information. But for obtaining these values it can consider
resource information in an aggregated form and apply an impact factor to each
attribute. Since we consider forwarding jobs between brokers, we also consider
the average slowdown of the brokers as a QoS metric. An example of the resource
aggregated form can be found in [12] and the policy will be widely described
and evaluated in a separate paper. In the evaluation we have used traces from
the Grid Workloads Archive [14]. In particular we have used the workloads from
the DAS-2, Grid5000, and Sharcnet systems. We have selected some weeks of
each workload trace (around 10.000 jobs in total) with a maximum demand of
512 CPUs and avoiding failed jobs. We found that the average execution time
of the jobs depends on the workload, but in average a simulation took around 2
hours. We have defined 3 simulation environments, one for each workload with
its own broker instance. For the DAS-2 system we modelized 5 resources with
a total of 336 CPUs, 10 resources with a total of 574 CPUs for the Grid5000
system, and 10 resources with a total of 3200 CPUs for the Sharcnet system.
We have reduced the inter-arrival times for the jobs by a factor of two. This has
allowed us to increase the pressure to the system by incrementing the load. In
the evaluation we have simulated four different scenarios. First, we simulated the
scenario where each virtual organization schedules only their own jobs. Thus we
evaluated the performance of each of the different virtual organizations without
any connection among them. For the second time, we simulated interconnected
VOs using the same workloads. Thereby, we have evaluated the effect of the job
forwarding between the different grid brokers in a P2P fashion.

Table 1 shows the performance results for the four different scenarios. We
present the total workload execution time, and the 95th percentile and average
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Table 1. Evaluation results with Alvio

Workload Exec Time (h) Avg Wait (s) Avg SLD CPU Util
DAS-2 1,486 1,789 11,26 28 (8,33%)

Grid5000 1,565 4,850 13,06 39 (6,79%)
Sharcnet 1,596 3,011 15,78 200 (6,25%)
Overall 1,596 3,216 13,36 267 (7,12%)

Meta-brokering 1,410 274 1,34 314 (7,63%)

metrics for the wait time, slowdown and CPU utilization. The first three rows
of the table show the performance values for the three VOs. In all the three
scenarios we can notice that the processor utilization is relatively small. The
Grid5000 and Scharnet show similar values in terms of execution time and CPU
utilization. The DAS-2 shows substantially lower execution time, wait time, and
slowdown. The third row of the table shows the average of all the variables
considering all the three VOs. In the last row of the table, that contains the meta-
brokering approach, the system performance is around 11%, which is better then
considering the job forwarding. When the P2P meta-brokering is enabled the
average wait time is reduced by a factor of 11 times. Futhermore, the slowdown
is also reduced by a factor of 10 times. Thus these results indicate that this
approach potentially can provide good performance in large scenarios.

5 Conclusions and Future Work

In this paper we have shown the ongoing research directions in the field of grid
resource management and stated the necessary steps to be taken to establish a
higher level of grid interoperability with meta-brokering by expanding current
middleware limitations. We also have defined the essential requirements of a
novel grid middleware service called Meta-Broker, we have proposed a general
architecture, and we have shown how it can be realized in two different grid
environments. Finally, we have developed simulators to these environments to
evaluate our implemented prototypes with different workload samples. The re-
sults of our simulation-based evaluations show that our meta-brokering approach
has a significant gain compared to the approach based on independent brokering
systems. In particular, we have measured less total job execution times and iden-
tified significant improvement of the overall interoperable systems performance.
Our future work aims at investigating new meta-brokering scheduling policies
with SLA usage and enlarging the simulation scenarios to evaluate grid environ-
ments with more brokers. We also plan to validate our approach in real execution
environments such as the P-GRADE portal and the LA Grid infrastructure.
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Abstract. Security and fault-tolerance is a major issue for intensive
parallel computing in pervasive environments with hardware errors or
malicious acts that may alter the result. In [1,2] is presented a novel,
robust and secure architecture able to offer intensive parallel computing
in environments where resources may be corrupted. Some efficient result-
checking mechanisms are used to certify the results of an execution. The
architecture is based on a limited number of safe resources that host
the checkpoint server (used to store the graph) and the verifiers able to
securely re-execute piece of tasks in a trusted way.

This article focus on the effective construction of strongly secured
resources. Our approach combine both software and hardware compo-
nents to cover the full spectrum of security constraints. The proposed
computing platform is validated over a medical application and some
experimental results are presented.

1 Introduction

Nowadays, intensive parallel applications require often global computing plat-
forms composed of scattered resources that are interconnected through the In-
ternet. Such platforms, called grids [3], are more and more used since the 90’s.

As any open infrastructure using a public network, such an infrastructure is
the target for various threats, more precisely scans, Denial-of-Services (DoS), in-
trusions, applicative vulnerabilities and malwares (worms, virus, trojan horses).
Grid computing history revealed also selfish behavior as the incentives proposed
to the users attract cheaters who seek to obtain these rewards with little or
no contribution to the system. The cheating causes are manifold and sometimes
not even malicious. Yet the consequences can be modeled by intermediate results
tampering. For instance, this issue has been first illustrated in Seti@Home [4]
where a modified client were designed claiming it improves FFT computation
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but rather introduced rounding errors that canceled months of world-wide com-
putation. To sum up, large scale computing systems raise various concerns in
terms of security and data privacy. In particular:

– users and resources should be authenticated;
– only authorized users should be allowed to access and to use only the re-

sources of the grid allocated for their own purpose;
– communications should be ciphered to ensure privacy but also integrity;
– data should be securely stored;
– the system should remain operative even in case of failure of some grid

components or disconnections which are relatively frequent events. In other
words, the integrity of the execution should be guaranteed;

– the resources of the grid should be protected from malicious code;
– the infrastructure should not fail even if some parts of the grid are under

control of a pirate or, worse, a wicked system administrator, since, on quite
large grids, it is no longer possible to know neither to trust every remote
system administrator or computer owner.

Other constraints could intervene such as the mandatory interaction between
global and local security policies or the required Single Sign On (SSO) for users
authentication on the resources. In this article, we describe a computing plat-
form able to address these issues and propose its validation on a concrete medical
application. More precisely, section 2 details the secured large scale computing
platform used inside the SAFESCALE project to ensure the computation re-
silience despite crash faults and malware attacks that lead to computation alter-
ations. Our infrastructure assumes the availability of strongly secured resources
which run processes in a trusted and trustworthy way. Section 3 presents the
core of this paper with the construction of such secured resources. Our talk is
mainly oriented toward open-source solutions in computing grids based on Unix
or Linux operating systems which constitute major actors in this field. While
this building issue is generally treated with software only solutions, our approach
combines both software and hardware elements (i.e. Cryptopage secure proces-
sors) to deal with the full spectrum of security constraints. Finally, section 4
describes the validation of the proposed platform within a concrete medical ap-
plication. Our experimentations demonstrates the very low overhead induced by
the strongly secured resources described in this article.

2 The SAFESCALE Computing Platform

This section describes the SAFESCALE computing platform by first reminding
the general guidelines leading to secure computing grid.

A prerequisite would be to rely on safe resources. At this level, a few basic
protections could be applied, more precisely:

– the control of user rights, together with the limitation of available services
and the enforcing of quotas (either on I/O or processes);
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– an up-to-date system with an network firewall to limit and control the net-
work traffic, the opened ports and the way a dedicated service is launched;

– monitoring and audit tools such as anti-virus/spyware software to control
and report file change(s) and processes on the systems. This helps to detect
corruption attempts on the system integrity;

– the use of sandbox environments i.e. confined execution environments, which
could be used to run untrusted programs. The limitation could intervene ei-
ther at the level of the file system hierarchy seen by the executed process
(with tools such as chroot or BSD jail) or with runtime sandboxes through
virtual machines. The applications could also contain a sandbox mechanism
within themselves. Proof-carrying code (PCC) [5] is such a technique used
for safe execution of untrusted code. The basic idea is to require the code
producer to generate a formal proof that the code meets the safety require-
ments set by the code receiver.

This list is not exhaustive. Additionally, there is no need to develop too much
this aspect as this degree of control over the computing resources is far from
being guaranteed on large scale computing grids. We now focus on the generic
security concerns to be addressed, namely confidentiality, authentication, access
control and integrity.

Confidentiality. As for communication privacy, it is sufficient to rely on the
encrypted tunnels provided by Virtual Private Network (VPN), SSH (as used
on the SAFESCALE platform described in this paper), Ipsec or SSL, the later
being used in the Globus middleware.

As regards the confidentiality of the executed code, two approaches can be
generally distinguished. The first one relies on encrypted computations [6] yet
with poor efficiency and limited functionality [7]. The other one consists in var-
ious code transformation such as obfuscation [8]. The code is then transformed
at the source or binary level to render more complex its readability and also
change the data coding. Of course, often this slows down the execution and it
is not impossible for someone very motivated to reverse-engineer the obfuscat-
ing process since the code is available for execution and can be exercised at
will. Another alternative is to transform an algorithm that produces data from
input data into an isomorphic one that acts on ciphered input and produces
ciphered output. It is also possible to add some authentication mechanisms in
it to certify the computation done. For some simple algorithms there exist such
efficient isomorphic algorithms but, unfortunately, this seducing approach has
an intractable complexity for real life programs [9]. Since basic computations
(as, for example, floating point operations that are highly optimized in modern
processors), are transformed in elementary operations executed to emulate some
enciphered circuits, the expected efficiency on grids is no longer possible. In all
cases, as this last domain requires further studies, our platform does not yet
support this functionality.

Authentication & access control. Designing a robust authentication sys-
tem in distributed environments has been extensively studied [10,11,3].
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Efficient solutions depend on the grid topology. In multi-clusters environ-
ments, a Kerberos [12] approach should be privileged. On grids of clus-
ters topology, the authors of [10] demonstrate an adapted and efficient
solution based on LDAP servers that broadcast authentication information. The
SAFESCALE platform typically relies on this authentication system. Finally, for
grids of bigger size, the Globus [13] middleware is probably the most adapted,
more precisely through the GSI module (Grid Security Infrastructure) which
depends on a PKI (Public Key Infrastructure) to establish certification chains
between the entities of the grid (either users or services).

Integrity. Resilience in grid execution is a prerequisite that should be embedded
in the application: at this scale, component failures, disconnections or results
modifications are unfortunately part of operations, and applications have to
deal directly with repeated failures during program runs.

In [1,2], the authors present a robust and secure architecture able to deal with
intensive parallel computing in environments where resources could be corrupted.
The corruption could be caused by DDoS attacks, virus or trojan horses, as
expounded in the precedent section. The proposed approach uses a portable
representation of the distributed execution: a bipartite Direct Acyclic Graph
G = (V , E). The first class of vertices is associated to the tasks (in the sequential
scheduling sense) whereas the second one represents the parameters of the tasks
(either inputs or outputs according to the direction of the edge). Such a graph
is illustrated in Figure 1.

Using this representation, portable fault-tolerance
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Fig. 1. A data-flow graph
with five tasks

mechanisms for heterogeneous multi-threaded appli-
cations have been proposed [14]. Since we have a clean
separation of the applications in tasks that commu-
nicate only through their defined inputs and outputs
with no other side effect, each one can be run again in
case of trouble. Furthermore, efficient result-checking
mechanisms exploiting the graph have been developed
[1,15] and are able to assert the behaviour and the re-
sults of an execution. In particular, the EMCT certi-
fication algorithm will be considered in the sequel as
it induces a low overhead for the probabilistic certifi-
cation of programs composed by either independent,
recursive or divide-and-conquer tasks [16], even if the

error probability ε of EMCT is customized to a very low value (10−6 for instance).
The proposed approaches only require the existence of a checkpoint server

deployed on a set of strongly safe resources. This server stores the dataflow graph
of the execution provided by the Kernel for Adaptive, Asynchronous Parallel
and Interactive – KAAPI – application programming interface. KAAPI is a
C++ library that allows to program and execute multi-threaded computations
with dataflow synchronization between threads. In addition, EMCT requires the
deployment of verifiers that could securely re-execute some tasks in a trusted
way, therefore on strongly secure resources.
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Fig. 2. Overview of the SAFESCALE computing platform

The elements presented in this section finally lead to the SAFESCALE com-
puting platform presented in Figure 2 in which the resources have been divided
in two classes: a limited number of strongly safe resources that host the check-
point server and the verifiers and the other resources, mentioned as “unsafe”,
which constitute the real computing grid and which are scattered among the
different institutions (for example, the different hospitals involved in the experi-
ment described in section 4). It remains to detail the effective construction of the
safe resources used in the proposed architecture. This is one of the contributions
of this article and the purpose of the next section.

3 Building Strongly Secured Resources

Building safe resources is one of the most important challenge of system ad-
ministrators. The solution used generally combines various software solutions to
make the system more robust.

Software Components. We first assume that the software elements mentioned in
the previous section are deployed. Moreover even if the software components are
secure, there is an asymmetry in the trust for all the previous techniques: the
aim is to protect the computing infrastructure from the program execution and
there is no way for the users to have a certified and protected execution.

There is still a big issue with a full software approach: the operating system
on the computing nodes have the full control of the hardware and the software
running on the nodes. It is very useful to build very complex and powerful
computing environment but it may be very dangerous too for the (foreign) users
of these computing nodes. A computing node can easily discard a foreign process
with all its data if it looks malicious or exploits too many resources. In addition,
even if the operating system environment would be bug free, a foreign process
needs to be completely confident in the local software environment: this one
can discard the process, the data, read the program and the data, modify both,
execute the program step-by-step, and so on. Although DoS are unavoidable (the
local administrator could decide to switch off the power supply of the computer
anyway), computers should have a mechanism to mitigate this excess of power
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used in a malicious way or to signal a running process that a kind of DoS occurred
(such as a system call hijacking).

In the real life, operating systems and distributed computing environment are
huge pieces of software and it is unavoidable to have many bugs in them. Thus,
adding pieces of hardware to protect some processes from other parts running
out of their rails is quite interesting.

Hardware Components. During the last few years, several hardware architec-
tures such as xom [17], Aegis [18] and CryptoPage [19] have been proposed
to provide computer applications with a secure computing environment. These
architectures use memory encryption and memory integrity checking to guaran-
tee that an attacker cannot disturb the operation of a secure process, or can only
obtain as little information as possible about the code or the data manipulated
by this process even with some external physical attacks.

Fig. 3. Simplified CryptoPage secure high-performance processor

Some secrets can also leak out through the address bus of the processor (an
attacker can monitor the control flow graph of a running program and infer algo-
rithms or ciphering keys for example), some approaches try to cipher the address
bus more [20] or less [21]. Recently, we have proposed a processor architecture
that combines opaque secure mode execution with efficient memory encryption
and verification, resistant to replay-attack, with dynamic random remapping of
cache lines in memory page to hide memory usage and to avoid address trac-
ing [22]. The simplified architecture is represented on Figure 3. The white boxes
are the ones we have added to a plain processor architecture (the gray boxes).
Rounded boxes are computing or function elements and the squared boxes are
some storage elements.

A process cannot be stolen or tapped since its execution context is enciphered
with the public key of a given target processor. The confidentiality of the code
and the data is guaranty by a cipher (using a random session key) between the
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Fig. 4. Relative efficiency of different secure processor implementations (HIDE and
two CryptoPage versions) relative to a plain processor (normalized to 1)

internal cache and the memory. A data Hide-like address remapper [20] is added
to shuffle data each time a memory page is read into the processor. At this page
level, an efficient mechanism is also added to avoid a replay attack (when an
attacker replay an old data written and authenticated by the processor).

We implemented this architecture in the SimpleScalar simulator to have some
quantitative results. The performance on the SPEC CPUInt2000 benchmark are
represented on Figure 4 to compare HIDE [20] (which provide only address ci-
phering) and CryptoPage [22] (providing both address and data ciphering),
the latest being evaluated without or with lazy verification through specula-
tive insecure execution. This benchmark shows only an average slow-down of
around 3% for Cryptopage with address and data ciphering and lazy verification
through speculative insecure execution. This last mode is the one used on the
SAFESCALE platform for the strongly secured resources. It is finally impor-
tant to note that in our proposal, a foreign process needs to ultimately trust the
manufacturer of the processor which could have some wire-tapping or key-escrow
features in it, or more probably hardware bugs too.

4 Validation on a Healthcare Application

To validate the presented infrastructure, the following security-demanding
healthcare application is considered:
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– a picture A is compared to a set S of pictures stored in a distributed database;
– based on meta-data information, some images X ∈ S are extracted and

compared to A; the result of this comparison is a score sA(X) that measures
the correlation between pictures A and X ;

– finally, the sorted results are brought to the end users.

Among concrete instances of such a generic application is the RAGTIME soft-
ware that uses medical image comparison within PACS (Picture Archiving and
Communication Systems) to detect rare and hard to predict diseases [2]. Due
to numerical uncertainties brought by score computations, relevant results are
obtained if several images in S are identified as matching picture A. Also, such
an application may directly takes benefit from the computational power of a
global computing infrastructure:

– the number of pairwise comparison scores to compute is huge and scores may
easily be computed in parallel;

– for a given user that submits a picture A interactively to the system, the
system usage is irregular, from high when it submits a picture to zero when
the user has no picture to score. Thus, federating resources from several users
in a single grid, positively contributes to increase the system throughput for
any users;

– the application tolerates few errors, which are expensive to prevent in a grid
context. Indeed, the major result is to find several images in S that are
correlated to A, and thus bring together information on A. In this context,
the fact that only few scores have been faked (let say one or two) does
not affect the result. The critical point is here to ensure that almost all
computations have been correctly performed.

Experimental setup. This application has been run on the SAFESCALE com-
puting platform presented in section 2, deployed on Grid5000 (an experimental
grid platform gathering nine sites in France). This simulates up to np = 160
“unsafe” computing resources that execute in parallel n comparison tasks, each
resulting in a similarity score. A single strongly secured resource has been used
for this experiment, with (resp. without) the hardware components described in
section 3. Each configuration will be further referred as Config. 1 (resp. Con-
fig. 2 ), the first being in fact simulated in the SimpleScalar simulator, since we
do not have a real processor yet. Recall that this resource host the checkpoint
server and the verifiers such that the full certification process of the computa-
tions were done on this machine. Additionally, we make this resource responsible
for the sorting of the scores.

In the sequel, the error probability for the EMCT certification algorithm has
been set to ε = 10−3 and we try to detect the tampering of q = 1% of the score
computations. Note that in this case, the certification process consists in the re-
execution of Nε,q = 688 comparison tasks [1], all conducted on the single “safe”
resource. The application is run in three test cases where the total number of
comparison tasks is successively n = 1000, 10000 or 100000.
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Distributed scores computation based on work-stealing. Since the number of sim-
ilarity scores to be computed on the grid is huge, having a centralized allocation
strategy (when a processor becomes idle, it contacts the master processor to
obtain a new computation task) introduces contention and inefficiency. Instead,
a distributed solution based on KAAPI work-stealing has been developed. When
a processor becomes idle, it picks a victim at random and steals about half of is
computation queue. Such a solution ensure high performances on a global archi-
tecture where processor speed may vary. Indeed, let Π(t) be the instantaneous
computation speed (i.e the number of unitary operations per time unit) and
WA(X) be the number of unit operations to compute to score picture X against
A; then the time Tp to carried out the whole computation is, with high probabil-
ity, lesser than

∑
X∈S WA(X)

Π(t) + O(WA(X) + log n) which is merely optimal [23].

Experimental results. The results of our experiments are depicted in Figure 5.
They illustrate the limited overhead induced by the addition of the hardware
components to design the strongly secure resources. Indeed, the overhead is at
most 7.4%, which corresponds to the worst case on the SpecINT 2000 benchmark.
This is of course a very encouraging result.

5 Conclusion

Even if security in grid infrastructures is a major research area for a decade,
the fact that resources that compose the grid cannot be fully trusted prevents
a wide acceptance of such systems as a cheaper computation platform for high-
valued applications. The corruption either comes from hardware issues (such
as network disconnection) or from malicious acts (using malwares and software
vulnerabilities) in order to alter the computation and consequently its result.

The computing platform designed in the SAFESCALE project ensures a
correct and safe computation by combining efficient result-checking and fault-
tolerance algorithms with a limited number of strongly secure resources. The
result-checking algorithms rely on stochastic verifications by running again on
trusted verifiers, some parts of the global computation chosen by studying the
data-flow graph of the application. Since verifications can also be tampered, these
tasks need to be run on different computers in different entities to have forgeries
likely detected. But by using a limited number of strongly secure hardware re-
sources, the sensible and time-consuming tasks of verification can be executed
on some remote tamper-proof nodes with no fear about any attacker changing
these results. According to the number of trusted resources available in the grid,
our method needs more or less redundant verifications.

Apart from providing generic guidelines for the definition of a secure comput-
ing grid, this paper focus on the effective construction of the strongly secured
resources required by the SAFSCALE computing platform. Our proposal de-
pends on both software and hardware mechanisms which is relatively novel.
This architecture has been validated on a medical application consisting in sim-
ilarity computations between medical images. Our experiments demonstrate the
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low overhead induced by the hardware components proposed for the definition
of strongly secured resources.

Perspectives of the work presented in this article include concrete hardware
implementations to validate the simulations conducted in our experiments. Ad-
ditionally, we are now working on the automatic parallelization of application
into the KAAPI model, based on the PIPS source-to-source compiler [24].
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Abstract. In this paper, we describe Simbatch, an API which offers core func-
tionalities to realistically simulate parallel resources and batch reservation sys-
tems. The objective is twofold: proposing at the same time a tool to efficiently
predict parallel resources usage based on their simulations, and to realistically
study Grid scheduling heuristics that may be embedded in a Grid middleware or
in a tool that deploys it. Indeed, such predictions can be used in a Grid middleware
both for scheduling purposes, and to dynamically tune moldable applications in
function of the load of the chosen parallel resource in place of the Grid user. Sim-
batch simulation experiments show an average error rate under 2% compared to
real life experiments conducted with the OAR batch manager.

Keywords: Performance prediction, Batch systems simulation, Grid simulation,
Scheduling.

1 Introduction

Nowadays Grids are built on a clusters hierarchy model, as used for example by the
two projects EGEE 1 and GRID’5000 [9]. The production platform in the EGEE project
(Enabling Grids for E-science in Europe) aggregates more than 100 sites spread over
31 countries. GRID’5000 is the French Grid for the research, which aims to own 5000
nodes spread over France (9 sites are actually participating).

Parallel computing resources are generally managed via a batch reservation system
also called batch scheduler. Users wishing to submit parallel tasks to the resource have
to write scripts which notably describes the number of required nodes and the walltime
of the reservation. They are generally answered the starting time of their jobs.

The accessibility to the aggregated power of a federation of computing resources re-
quires mechanisms to monitor, handle/submit jobs, etc. This can be done with the help
of Grid middleware such as DIET [10] or NetSolve [11]. They aim to offer to Grid users
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the capacity to efficiently solve problems, while hiding the complexity of the platform.
In order to efficiently exploit the resource, Grid middleware should map the computing
tasks according to local scheduler policy and availability. There is consequently a two-
level scheduling: one at the Grid middleware level and the other one at the batch level.
Neither the conception and validation of such algorithms nor their implementation are
obvious. First, the execution of large scale experiments monopolizes the resources and
cannot be reproduced. So it seems to be necessary to define common bases in order to
simulate them and draw their profiles before trying to realize them in real life. Second,
to efficiently schedule real life experiments, a Grid middleware must be able to get per-
formance estimations on parallel resources. These have also to be used to dynamically
tune parallel jobs in accordance with the parallel resource availability [12,6].

Contributions of this work mainly focus on the conception of an API which extends
the functionalities of the Grid simulator Simgrid, allowing to easily simulate paral-
lel resources and batch system in Grid computing. Realistic models of PBS [1] (or
Torque [2]) and OAR [8] are built-in. The quality of the results obtained during the
validation of this work allows us to use it as a simulation-based performance prediction
tool embedded in the Grid middleware DIET.

2 Background

This section briefly describes our previous work, which has led to the design and contri-
butions presented in this paper. Grid-TLSE [13] aims to provide an International Expert
System for Sparse Linear Algebra relying on an international Grid computing environ-
ment which manages French and Japanese computing resources.

The architecture of Grid-TLSE [18] has been improved to the one [7] described
in Figure 1. The architecture relies on the integration of a “protocol” interoperability
between the French and Japanese middleware, respectively called DIET and AEGIS.
DIET, developed by the GRAAL INRIA team project at LIP / ÉNS Lyon, is built upon
the client/agent/server paradigm, and provides the GridRPC standard API [21]. This
Grid middleware is able to find an appropriate server (running a DIET Server Dae-
mon, SED), according to the information given in the client’s request (e.g., problem
to be solved, size of the data involved), the performance of the target platform (e.g.,
server load, available memory, communication performance) and the local availabil-
ity of data stored during previous computations. Scheduling, which can be application
specific, is distributed over a hierarchy of agents (Master and Local Agents). AEGIS

(Atomic Energy Grid InfraStructure) is the next version of the IT Based Laboratory
(ITBL) [14] middleware developed by the JAEA (Japan Atomic Energy Agency). In
AEGIS, supercomputers are isolated from the Internet by a firewall for security reasons.
Usually, a user of the AEGIS system connects to the computers through a Web portal,
which has the accessibility for all the computers within AEGIS. Therefore, the portal
equips file management, job submission, or the other basic functions for computation.
On the other hand, AEGIS also proposes a control API to meet the expectations of
advanced users.

The new architecture of Grid-TLSE, pictured in Figure 1, involves the following
mechanisms which are very similar to the standard DIET operations: (a) After the
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deployment of all DIET components on Grid’5000 (including a specifically designed
server daemon for the AEGIS system (SeDsAEGIS), and composed of both binaries and
configuration file(s)), each SED registers the services that it can solve to its agent in
the hierarchy; (b) When a user performs a request through the secure Grid-TLSE Web
portal, he must provide a certification file if he wants that his request can be executed
on Japanese resources; (c) After being processed by the Grid-TLSE Web portal, the
DIET client sends the corresponding request to the DIET hierarchy. The request is for-
warded down (eventually pruned if the service is not available downward); (e) After
having been sent back the identity of the host to contact, which can be managed either
by the AEGIS middleware or by the DIET middleware, the common AEGIS-DIET client
performs the call and the certificate may then be used. Once the problem solved, results
are sent back to the client and so, made available to the user through the Grid-TLSE
Web portal.

DIET is also able to obtain immediate information on parallel resources in order to
perform cycle-stealing and online tunable parallel moldable job (with the possibility to
set the number of processors to use at launch time) with as case of study, the sparse matrix
solver PASTIX library [6]. Cycle-stealing policy was clearly dependent on the context
of the work (analysis of a whole set of tasks without strict constraint on the experiment
finishing date), and the work only used the immediate availability of the platform to tune
the parallel jobs.

To improve these works, the DIET Grid middleware need estimations on when a job
can be executed by a batch scheduler, which is dependent on the number of resources
being requested. To be efficient, this number has to be chosen taking into account the
jobs that may soon release reserved nodes which can benefit to the submitted parallel
job (which would be launched later but with a smaller expected completion time). Fur-
thermore, if a slot can be used depending on the batch scheduling policy (Conservative
Backfilling for example), the Grid middleware may benefit of such information for its
decisions.

Hence, Simbatch has been designed to be used as a simulation-based performance
prediction tool to be used within DIET. Provided with information on the parallel system
state, it takes into account the scheduler policy to instantly respond the different idle
slots, with the number of processors that should be available as well as the duration of
the idle slots.
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3 Grid Simulators

There are numerous Grid simulators. Amongst them we can cite Bricks [24] for the sim-
ulation of client-server architectures; OptorSim [5], created for the study of scheduling
algorithms dedicated to the migration and replication of data; GridSim [23] and Sim-
grid [19], which are by definition toolkits that provide core functionalities for the sim-
ulation of distributed applications in heterogeneous distributed environments.

Nonetheless, except for GridSim and Simgrid, systems are not generic [16,22]: they
do not provide any API of reusable functions; moreover in an attempt to keep their
study simple the employed scheduling policy is always First Come First Served; at last,
they usually only implement sequential tasks, e.g., they do not model parallel tasks.

If the GridSim toolkit covers several mandatory functionalities, it is hard to use the
same code to at the same time address scheduling heuristic studies and performance
predictions that can be used online to dynamically tune parallel applications according
with the resource load. Furthermore, as it is written in JAVA, the use of GridSim, if
feasible, is contradictory within the context of the lightweight deployment of the DIET

Grid middleware.
Thus, we have chosen to integrate Simbatch [3] in the Simgrid toolkit to embed

in DIET an efficient performance prediction tool, in order to improve its quality of
service. In addition, its design also eases the conception and analysis of Grid scheduling
heuristics.

4 The Simbatch API

Simbatch is a C API consisting of 2000 lines of code. It uses data types and function-
alities provided by the Simgrid library to model clusters and batch systems. Simbatch
provides a library containing already three scheduling algorithms [20]: Round Robin
(RR), First Come First Served (FCFS) and Conservative Backfilling (CBF). The API
is designed to easily let the user integrate its own algorithms. In order to visualize the
algorithm behavior, a compliant output with the Pajé [4] software is available allowing
the draw of the Gantt chart of the execution.

4.1 Modeling

Clusters consist of a frontal computer relied to interconnected computing resources
following a specific topology. Resources of a cluster cannot be usually accessed directly
from outside the cluster: communications must be done through the frontal. The batch
manager system is run on the frontal node. Every jobs running on the nodes must have
been submitted to the batch system. It receives requests from users, schedules them on
the parallel resources and executes the corresponding task when needed. In this context,
scheduling means that the batch scheduler must determine the starting time for each
computing task and must allocate computing nodes for each of them. The computing
tasks are generally parallel and could have both input and output data.

In Simbatch, a parallel task submitted by a client is modeled by the addition of
different information to a Simgrid task data type such as the number of nodes, the
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walltime, the run time. Other models are directly inherited from Simgrid. As exposed
in Figure 2, the task treatment is made in the following manner:

1. The entryPoint process accept parallel tasks submission from the different
clients and put them in the right priority queue.

2. Thanks to the modeling unit, the scheduler assigns the starting time to the tasks and
reserves the computing resources needed for their execution. A global view of the
cluster is obtained by calculating the Gantt chart.

3. The submission module manages the sending of each task at the starting date on
the reserved resources. It controls the good respect of the reservation too. A task is
killed if the walltime is exceeded.

4. Because Simbatch is build on top of Simgrid, it lets this one simulate communi-
cations and executions. When a task finishes its life cycle, an acknowledgement is
sent to the batch process in order to update its global view of the cluster.

4.2 Using Simbatch

An experiment requires at least four files: a platform file, a deployment file, a batch
configuration file and a file describing the tasks which will be submitted to each parallel
resource, the external load.

Simgrid uses the platform file to describe resources which compose the simulated
platform. It contains the description of all resources such as nodes, network links, the
connectivity of the platform, etc.

Simbatch requires a deployment file in which the functions attached to the resources
are defined. Thus, to define the use of a batch scheduler on frontal nodes, one must
affect the SB_batch process provided by the Simbatch API to each frontal name.
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Likewise, one must declare for each computing resource of each cluster the execution
of the SB_node process provided by the Simbatch API.

The batch configuration file contains all information relative to each frontal node of
the platform, like the number of waiting queues and the scheduling algorithm.

The external load is generated by the tasks submissions of the simulated Grid plat-
form users. The file, whose name is recorded in the configuration file, describes the
tasks specifications such as dates of submission, numbers of processors, walltimes, etc.

It is also possible to simulate an internal load for each batch scheduler. It aims at
reproducing the submissions of tasks from clients who are directly connected to the
parallel resource, i.e., who are not actively participating to the simulated Grid platform.
There is at most the same number of internal load files than the number of frontal nodes
in the platform.

We give P.234 some of the files that we used for the experiments. The main code
shows a client submitting a task to a batch scheduler described as follows: use of an
external load, 3 priority queues, 5 nodes directly connected with a star topology and the
CBF algorithm. In addition, we have also modeled the Grid’5000 node of Lyon 2.

5 Experimental Validation

Tasks generation. In order to validate the results obtained with Simbatch, we have built
a workload generator using the GSL library [15]. It uses a Poisson’s law with parameter
μ = 300 to generate inter-arrival time. Tasks specifications are determined by flat laws.
Thus, CPU numbers are drawn from U(1; 7), execution durations from U(600; 1800)
and walltimes are obtained by balancing the corresponding execution duration by a
random number drawn from U(1.1; 3).

Some experiments have been conducted with communicating tasks. They are all in-
dependent but require the communication of input data from the frontal node to one
node allocated to the parallel task, and the communication of the output data back to
the frontal node. In order to do this, we have created 6 files with a size of respectively
1, 2, 5, 10, 15, 20 MB . One of this file is chosen randomly by a uniform law to be trans-
fered as input data, while another file is chosen in the same manner to be transfered as
output data.

Real experiments platform. OAR [8] is a batch reservation system developed by the
project MESCAL in Grenoble. It is deployed on each site of the Grid’5000 platform. The
scheduling algorithm used is CBF.

The 1.6 version of OAR has been installed on a cluster made of 1 frontal and 7
servers SuperMicro 6013PI equipped with a XEON processor at 2.4 GHz, each of them
relied to a 100 Mbits/sec switch.

Protocol of experimentation. We have modeled the real platform by creating com-
puting resources connected in a star topology. Then, thanks to our load generator, we
have submitted the same load to both platforms (real and simulated). In this purpose,
we have created a MPI computing task whose duration is given as parameter. The task

2 http://graal.ens-lyon.fr/simbatch

http://graal.ens-lyon.fr/simbatch
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is executed between two calls for time measuring in an OAR script. The precision of
the time measure is about 1 second, so it is negligible compared to the task duration.

6 Results and Discussion

6.1 Validation of the Integrated Scheduling Algorithms

We show in Figure 3 the result obtained for one simple experience, described in
Figure 1. One can see the Pajé Gantt chart on the top and beneath, the one obtained
with the Drawgantt OAR. The tasks execution order is strictly the same (as it has al-
ways been, tested with a extensive set of experiments [17]): task 3, 4, 5 benefit from
the backfilling and start their execution before task 2 which needs every nodes of the
cluster. However, we can point out that Simbatch doesn’t necessarily allocate the same
nodes than OAR (task 3).

6.2 Accuracy of Simbatch Simulations

Two sets of experiments have been conducted with the second protocol: only computing
tasks are involved in the first one, as the second one uses exclusively communicating tasks.

Experiments involving computing tasks. We have run numerous experiments for the
first set of experiments, representing about 130 hours of computing on the cluster. Only
computing tasks are involved. We present here a representative experiment for this set.

Table 1. Data used for experiment 1

Tasks 1 2 3 4 5

Processors number 1 5 2 1 3

Submission date 0 600 1800 3600 4200

Run time 10800 3300 5400 4000 2700

Reservation time 12000 4000 7000 5000 3500

Fig. 3. Gantt chart for experiment 1: Simbatch (top), OAR (bottom)
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Fig. 4. Error ratios for an experiment scheduled with the Simbatch CBF and the real-life CBF
implemented in OAR

The experiment consists in submitting the same set of 100 computing tasks to the real
platform and to the simulated platform: results obtained with OAR was exactly 80392
seconds (about 22h) while the simulator gave us 80701 seconds. So the total execution
time difference is only 308 seconds. It represents an error rate of 0.38%. This difference
is mainly due to the mechanisms for interrogating the Mysql database, submitting tasks
via ssh, etc., of OAR.

Figure 4 shows the error rate obtained for the flow metric in function of the tasks
execution date. The flow of a task is the time spent in the system, i.e., results from the
addition of the waiting time passed in the queue, of the run time and of the communi-
cation costs. We can point out that the error rate is constant and generally below 1%,
which is negligible compared to the precision of the measure. We can point out that for
each experiment we have few tasks with an error rate above the 1%. This phenomenon
is not due to a scheduling error due to some time precision here. In fact, some shorter
and small tasks (time and processor) can enter the system and take advantage of the
backfilling both with Simbatch and OAR. Because of the small gap between Simbatch
and OAR starting time (thus between their ending time as well), the task begins a little
later in reality, which can represent up to 15% and has only been observed once in our
experiments (the second maximum observed is 6%).

An arrow is also drawn at time 29454: it represents the date of the last submission. In
a dynamic environment, if we give to Simbatch every specification of a set of tasks sub-
mitted to a batch scheduler, then Simbatch should be able to make a reliable prediction
on the execution of this set.

Experiments involving communicating tasks. Since we obtained excellent results for
the simulation of batch scheduler for parallel tasks without communication costs, we
have decided to go further and we have tested Simbatch with experiments involving
communication costs. Hence, we transfer some data from the frontal node to one of the
allocated nodes for the parallel task. Once the computation done, we transfer back some
data from the same allocated node to the frontal.
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Fig. 5. Error ratios for an experiment involving communication costs scheduled with the Simbatch
CBF and the real-life CBF implemented in OAR

We have run the experiments on our platform with OAR and in simulation with
Simbatch. Then, we have measured the flow for each task and we have calculated the
error on the flow metric between simulation and real experiments.

Figure 5 depicts one representative experiment. The error rate is low, with an average
around 2%. However a few tasks have a higher error percentage. After having analysed
our results, we can point out that those tasks have the same profile, i.e., small compu-
tation time and few resources needed (typically 1 processor). When we analyse deeply,
we can conclude that those tasks are taking advantage of the backfilling in simulation
contrarily to the reality. In spite of the fact that some tasks are scheduled earlier in
simulation than in reality, the impact is very small on the other task flow: the duration
of the task which benefited from a backfilling represents a small percentage of other
task flow.

Thus, Simbatch obtains realistic results for simulated experimental studies. It allows
to easily model parallel resources managed by a batch scheduler. The good quality of
its simulation shows its relevancy in the study of scheduling algorithms for the Grid.
Furthermore, its use is straightforward as prediction module in a Grid middleware.

7 Conclusions and Future Works

The submission of parallel tasks by a Grid middleware is not straightforward, particu-
larly due to the lack of profiling functionalities in batch schedulers. Nonetheless, per-
formance estimations must be used to both efficiently schedule tasks on the Grid and
tune accordingly parallel tasks with the parallel resource load and scheduling policy.

As a step in the Grid-TLSE architecture, we have designed Simbatch. It can be embed-
ded in a Grid middleware to give accurate predictions. We have detailed those functional-
ities and we have specified the models we use. Then we have shown the facility for every
Simgrid user to use Simbatch thanks to the examples coming from our validation work.
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The main scheduling algorithms (Round Robin, First Come First Served and Conser-
vative BackFilling; the last two are respectively implemented in PBS, and in MAUI and
OAR) are integrated and have been validated by several simulation experiments. More-
over, we have compared results obtained from Simbatch simulations with the ones from
the real-life batch scheduler OAR. Simbatch shows very good precision with an error
rate in general less than 2%.

There are numerous perspectives. Among them, we want to test and eventually ex-
tend Simbatch to batch schedulers like SGE or Loadleveler; we want also to design
scheduling heuristics to take advantage of such predictions and integrate them in DIET

for immediate use in the Grid-TLSE system.
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Annexe A

<?xml version=’1.0 ’?>
<!DOCTYPE platform_description SYSTEM "surfxml . dtd">
<platform_description>

<process host="Client " function" c l i en t">
<argument value="0" />
<argument value="0" />
<argument value="0" />
<argument value="Frontale" /> <!−− Connection−−>

</ process>
<!−− The Scheduler process ( with some arguments )−−>
<process host="Frontale" function="SB_batch">

<argument value="0" /> <!−− Number of tasks−−>
<argument value="0" /> <!−− Size of tasks−−>
<argument value="0" /> <!−− Size of I /O−−>
<argument value="Node1" /> <!−− Connections−−>
<argument value="Node2" />
<argument value="Node3" />
<argument value="Node4" />
<argument value="Node5" />

</ process>
<process host="Node1" function="SB_node" />
<process host="Node2" function="SB_node" />
<process host="Node3" function="SB_node" />
<process host="Node4" function="SB_node" />
<process host="Node5" function="SB_node" />

</ platform_description>

Deployment file

<?xml version=’1.0 ’?>
<!DOCTYPE platform_description SYSTEM "surfxml . dtd">
<platform_description>

<cpu name="Client " power="97.34000000000000" />
<!−− One scheduler for one cluster of f i ve nodes−−>
<!−− Power of the batch i s not important −−>
<cpu name="Frontale" power="98.094999999999999" />
<cpu name="Node1" power="76.296000000000006" />
<cpu name="Node2" power="76.296000000000006" />
<cpu name="Node3" power="76.296000000000006" />
<cpu name="Node4" power="76.296000000000006" />
<cpu name="Node5" power="76.296000000000006" />
<!−− No discrimination for the moment−−>
<network_link name="0" bandwidth="41.279125" latency="5.9904e−05" />
<network_link name="1" bandwidth="41.279125" latency="5.9904e−05" />
<network_link name="2" bandwidth="41.279125" latency="5.9904e−05" />
<network_link name="3" bandwidth="41.279125" latency="5.9904e−05" />
<network_link name="4" bandwidth="41.279125" latency="5.9904e−05" />
<network_link name="5" bandwidth="41.279125" latency="5.9904e−05" />
<!−− Simple topologie−−>
<route src="Client " dst="Frontale"><route_element name="0" /></ route>
<route src="Frontale" dst="Node1"><route_element name="1" /></ route>
<route src="Frontale" dst="Node2"><route_element name="2" /></ route>
<route src="Frontale" dst="Node3"><route_element name="3" /></ route>
<route src="Frontale" dst="Node4"><route_element name="4" /></ route>
<route src="Frontale" dst="Node5"><route_element name="5" /></ route>
<!−− Bi−direct ionnal−−>
<route src="Node1" dst="Frontale"><route_element name="1" /></ route>
<route src="Node2" dst="Frontale"><route_element name="2" /></ route>
<route src="Node3" dst="Frontale"><route_element name="3" /></ route>
<route src="Node4" dst="Frontale"><route_element name="4" /></ route>
<route src="Node5" dst="Frontale"><route_element name="5" /></ route>

</ platform_description>

Platform description file

<?xml version="1.0" ?>

<config>
<!−− Global set t ings for the simulation−−>
<global>

<f i l e type="platform">platform.xml</ f i l e>
<f i l e type="deployment">deployment .xml</ f i l e>
<!−− Paje output : su f f i x has to be . trace−−>
<f i l e type=" t race ">simbatch . t race</ f i l e>

</ global>

<!−− Each batch deployed should have i t s own config−−>
<batch host="Frontale">

<plugin>l ibrrobin . so</ plugin>
<!−− Internal Load−−>
<wld> . / workload/ seed / 1 .wld</ wld>

<priority_queue>
<number>3</number>

</ priority_queue>
</ batch>

<!−− Other batchs−−>
</ config>

Configuration of the simulated batch system

# i n c l u d e < s t d i o . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t r i n g . h>
# i n c l u d e <msg / msg . h>
# i n c l u d e < s i mb at ch . h>
# d e f i n e NB_CHANNEL 10000

/∗ How t o c r e a t e and sen d a t a s k ∗/
i n t c l i e n t ( i n t arg c , char ∗ arg v )
{

j o b _ t j o b = c a l l o c ( j o b _ t , s i z e o f ( j o b ) ) ;
m_ t ask _ t t a s k =NULL;

s t r c p y ( job−>name , " t a c h e " ) ;
job−>n b _ p r o cs = 3 ; job−>p r i o r i t y = 1 ;
job−>w a l l _ t i m e = 6 0 0 ; job−>r e q u e s t e d _ t i m e = 1 8 0 0 ;
job−>i n p u t _ s i z e = 1 0 0 ; job−>o u t p u t _ s i z e = 6 0 0 ;
t a s k = MSG_ t ask _ crea t e ( job−>name , 0 , 0 , j o b ) ;
MSG_task_put( t ask , MSG_get_host_by_name( " F r o n t a l e " )

,CLIENT_PORT ) ;
}

i n t main ( i n t arg c , char ∗∗ arg v )
{

S B _ g l o b a l _ i n i t (& arg c , a rg v ) ;
M SG_ g l o b al _ i n i t (& ar g c , a rg v ) ;

/∗ Open t h e c h a n n e l s ∗/
MSG_set_channel_number (NB_CHANNEL ) ;
MSG_paje_output ( " s i mb at ch . t r a c e " ) ;

/∗ The c l i e n t who s u b m i t s r e q u e s t s ( w r i t e yo u r own )
∗ Params have t o be c a l l e d w i t h t h e same name ∗/

M S G _ f u n c t i o n _ r e g i s t e r ( " c l i e n t " , c l i e n t ) ;

/∗ R e g i s t e r s i mb a t ch f u n c t i o n s ∗/
M S G _ f u n c t i o n _ r e g i s t e r ( " SB_batch " , SB_batch ) ;
M S G _ f u n c t i o n _ r e g i s t e r ( " SB_node" , SB_node ) ;

MSG_ crea t e_ en v i ro nmen t ( " p l a t f o r m . xml " ) ;
MSG_ l au n ch _ ap p l i ca t i o n ( " d ep l o y men t . xml " ) ;

MSG_main ( ) ;

/∗ Clean e v e r y t h i n g up ∗/
SB_clean ( ) ;
MSG_clean ( ) ;

return EXIT_SUCCESS ;
}

Simgrid main code
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Abstract. The Desktop Grid technology consists mainly in exploiting
personal computer, geographically dispersed, to deliver massive compute
power to investigate complex and demanding problems in a variety of dif-
ferent scientific fields. However, as resources number increases, the need
for scalability and decentralization becomes more and more essential.
Since such properties are exhibited by Peer-to-Peer systems, we aim at
using them to create a decentralized desktop grid middleware. Neverthe-
less, in order to judge the efficiency of such P2P library, an experimental
performance evaluation of the provided functionalities is unavoidable.
Very few analysis of this kind have been reported, as most evaluations
are limited to complexity analysis and to simulations. Such experimental
analysis are important, especially when using P2P tools in grid comput-
ing context, when applications may have precise efficiency requirement.
In this paper, we focus on three libraries: Bonjour, Avahi and Pastry,
which provide generic API intended to serve as basis for specialized P2P
applications. We perform a performance evaluation of the scalability and
their capacity to register and browse an important number of services
over 300 hosts in Grid’5000 for recent versions of Pastry, Avahi and Bon-
jour. We provide detailed analysis explaining the behavior of each library
related to two criteria: the elapsed time for registration services and the
needed time to discover services. Our aim is to choose the most adequate
protocol for creating a decentralized middleware for desktop grid.

1 Introduction

Grid Computing aim at providing a powerful infrastructure based on the ag-
gregation of large numbers of resources spanning multiple organizations. This
concept is rapidly emerging as the dominant paradigm for distributed problem
solving for a wide range of application domains. The middleware of grid comput-
ing is, however, so complex that it needs a lot of effort to maintain. Therefore
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it is natural, that single persons do not offer their resources but all resources
are maintained by institutions, where professional system administrators take
care of the environment and ensure the availability of the Grid. Examples of
such Grid infrastructures are the TeraGrid [1], EGEE [2] and Open Science Grid
(OSG) [3]. Complementary to grid computing, Desktop Grids leverage Internet
connected computers to support large computations. In this kind of system, a
single person can more easily add his personal computer (PC) to the grid. Desk-
top grid have been successfully used to address large applications with significant
computational requirements, including global climate predication (Climatpredic-
tion.net), protein structure prediction (Predictor@Home), search for extraterres-
trial intelligence (SETI@Home), gravitational wave detection (Einstein@Home),
and cosmic rays study (XtremWeb). While the successes of the above applica-
tions do demonstrate the potential of desktop grid, existing systems are often
centralized and suffer from being not able to scale due to centralized control. To
bypass this, we would profit from existing decentralized P2P systems in order
to organize the management of the desktop grid. Nonetheless, we face the fol-
lowing issue: (i)which kind of systems to choose? (ii) more exactly, what is the
maximum number of PC that can be managed by a system? (iii) If one machine
join the desktop grid, how many time needed to register this machine? By eval-
uating three ”famous” P2P systems with real experimentations on the testbed
GRID’5000[4], we provide quantitative answers to these questions.

Moreover, in this work, we assume that we have a high level middleware able
to virtualize the network (we have no more problems with firewall and NAT)
and we are able to run Bonjour, Avahi and Pastry on top of such middleware.
Instant Grid / Private Virtual Cluster [5,6] is one of the candidate for network
virtualization. Its main requirements are: 1) simple network configuration 2) no
degradation of resource security 3) no need to re-implement existing distributed
applications. Under these assumptions, it is reasonable to check if Bonjour [7,8],
Avahi [9] and Pastry [10,11] can scale up. The core idea behind these protocols is
to build self-organized overlay networks when nodes join a virtual organization.

The remainder of this paper is organized as follows. Section 2 motivates the
choice of the three systems Bonjour, Avahi and Pastry and presents an overview
of them. Section 3 describes our experimental setup to evaluate the performance
of the three systems. Section 4 and section 5 provide results from our experi-
ments in Grid’5000. Section 6 discusses related works. Section 7 summarizes our
contributions and gives future works.

2 ZeroConf vs. DHT

At the moment, the trend would be to use DHT, because of the scalability
property. In fact, the originality of our work is to evaluate DHT versus pub-
lish/subscribe system. We use the Pastry library to implement a DHT concept
and the two implementations of ZeroConf protocol for publish/subscribe sys-
tems. The choice of Avahi and Bonjour is justified by the fact that they are
two implementations of the ZeroConf protocol (Zero Configuration Networking)



Analysis of Peer-to-Peer Protocols Performance 237

which already proved its reliability in the field of the local area networks and
which can be extensible on wide area networks (by using the Unicast sending
protocol coupled with the DNS protocol). Among the protocols based on a DHT
(Distributed Hash Table) such as CAN [12] and CHORD [13], we chose Pastry
because, on the one hand, it offers the possibilities of replications and, on the
other hand, because there exists an open-source implementation [11].

2.1 Bonjour

Bonjour is an implementation by Apple of the ZeroConf protocol. The goal is to
obtain a functional IP network without dependency of an infrastructure compris-
ing DHCP or DNS servers. Bonjour is structured around three functionalities:
it allows the dynamic allocation of IP addresses without DHCP, it ensures the
resolution of names and IP addresses without DNS and carries out the research
of the services without directory server. At a technical level, Bonjour uses Link-
Local addresses. When DHCP fails or is not available, link-local addressing lets
a computer make up an IP address (of IPv4 type) for itself. In IPv4, link-local
address is selected by means of a pseudo-random generator in a defined range
of addresses (169.254.1.0-255). The checking of address uniqueness is done us-
ing three requests which are diffused on the link-local. If IP address is already
used (or requested) by another machine, then the machine tries another address
provided by the generator. When the machine finds a free address, it diffuses in
broadcast two ARP advertisements with the source IP address containing the se-
lected one. In fact, if at any time the machine obtains an address by DHCP then
it uses this address and leaves the process of self-configuration on the link-local.
Like link-local addressing, when DNS servers are unavailable or unreachable, the
machines can still refer the ones with the others by name by using the protocol
mDNS (multicast DNS). Bonjour uses DNS-SD protocol (DNS Service Discov-
ery) to discover the services published in a local area network. Since DNS-SD
is built on top of DNS, it works not only with mDNS but also with traditional
DNS for discovering remote services.

2.2 Avahi

Avahi is a system which facilitates service discovery on a local network. It allows
the programs to publish and discover services and hosts running on local network
without any specific configuration. Avahi is an implementation of DNS Service
Discovery and mDNS specifications for ZeroConf protocol. Avahi is mainly based
on mDNS implementation for Linux. It uses D-Bus (an asynchronous library for
communication between processes) for communication between user applications
and system.

2.3 Pastry

In this section we briefly sketch Pastry [10]. A Pastry system is a self-organizing
overlay network of nodes, where each node routes client requests and interacts
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with local instances of one or more applications. Any computer that is connected
to the Internet and runs the Pastry node software can act as a Pastry node,
subject only to application-specific security policies. Each node in the Pastry
P2P overlay network is assigned a 128-bit node identifier (nodeId). The nodeId
is used to indicate a node’s position in a circular nodeId space, which ranges from
0 to 2128 − 1. The nodeId is assigned randomly when a node joins the system. It
is assumed that nodeIds are generated such that the resulting set of nodeIds is
uniformly distributed in the 128-bit nodeId space. For instance, nodeIds could
be generated by computing a cryptographic hash of the node’s IP address. As a
result of this random assignment of nodeIds, with high probability, nodes with
adjacent nodeIds are diverse in geography. Assuming a network consisting of N
nodes, Pastry can route to the numerically closest node to a given key in less than
logb

2 N steps under normal operation (b is a configuration parameter with typical
value 4). Despite concurrent node failures, eventual delivery is guaranteed unless
nodes with adjacent nodeIds fail simultaneously ( is a configuration parameter
with a typical value of 16 or 32).

For the purpose of routing, nodeIds and keys are thought of as a sequence
of digits with base 2b. Pastry routes messages to the node whose nodeId is
numerically closest to the given key. This is accomplished as follows. In each
routing step, a node normally forwards the message to a node whose nodeId
shares with the key a prefix that is at least one digit (or b bits) longer than the
prefix that the key shares with the present node’s id. If no such node is known,
the message is forwarded to a node whose nodeId shares a prefix with the key as
long as the current node, but is numerically closer to the key than the present
node’s id.

Free-Pastry is an open-source implementation of Pastry intended for deploy-
ment in the internet. We have used in our experimental tests the release 2.0.

3 Description of the Experimental Setup

The experimental platform is Grid’5000, a highly reconfigurable and controllable
grid system, which gathers 9 sites geographically distributed in France. All sites
are connected by RENATER network (10 Gb/s). Our tests are applied only in
Orsay site, where nodes are connected by a network of 1 Gb/s. We almost used
the totality of the available machines in this site (more than 300 machines). All
machines have AMD Opterons processors and networks cards of 1 Gb/s.

We represent the nodes by services to build a virtual network on Grid’5000
platform. Indeed, on each machine we register a service, thus, if the service is
running then the machine is connected on the network, if not (we deactivate or
we remove the service) the machine is disconnected.

Our objective is to study the scalability and the response time of the tools
described above. In fact, we look for the maximum number of nodes which can
be supported by these tools and the response time necessary to discover a new
node which has been just connected on the network (depending on the grid
state). The same benchmarks criteria are applied for the three systems.
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3.1 Specific Environment on Grid’5000

Grid’5000 offers an infrastructure with standard images. To run our experimental
tests, we personalized an image to support Avahi, Bonjour and Free-Pastry.
Thus, we created a specific Linux kernel containing the necessary packages to
execute our codes. Thereafter, by using OAR [14]and Kadeploy [15] tools, we
reserve and we deploy the specific image on all reserved machines according to
the traditional procedure for the Grid’5000 users.

3.2 Sequential Registrations

In this test, the first step is to reserve N nodes on Grid’5000. The number
N represents the maximum nodes that can be used for the experiment. Each
node requests a registration for a given service at a given time. Initially, all
nodes have the needed codes to request a service but are inactive. Let δ be the
activation time. We activate sequentially all the requests (and we receive back
an acknowledgement). Indeed, the kth request will be activated at time k×δ. We
increase δ to analyze the behavior of the system when the delay between events
becomes larger. Obviously, at the beginning of the test, the registration number
is small, thus the registration time will be fast. We increase N until the saturation
value (i.e. the registration service no longer responds for a new registration). We
aim at analyzing the scalability of the system without overloading the network:
in this test, only one multicast appears at a given time.

3.3 Simultaneous Registrations

In the first test, the registrations are done sequentially. This leads to a lim-
ited number of communications to exchange information. In this experiment,
we stress the scalability of the system and its capacity to manage communica-
tions between registered nodes. Therefore, we request N (the number of reserved
nodes) simultaneous registrations and we compute the time to complete the reg-
istration step. If we obtain a “reasonable” response time, we increase N until
the saturation value. In others words, we are looking for the maximum regis-
tered nodes that the system handles when the network is overloaded by several
multicast packets at the same time.

3.4 Browsing Services

The other important metric is the time needed to browse a given service. Indeed,
in previous tests, we compute the registration time. We need also to compute
the discovering time which is the elapsed time between the registration end of a
unique service and the date at which a browser node has discovered this service.
The browsing program listens any new event, i.e. a new registration or deleting
services. With the two setup mentioned before, we can analyze the performance
of service discovery.
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4 Performance of Registration Services

4.1 Registration of Bonjour Services

Bonjour starts by making a DHCP request to obtain an address. In case of
absence of DHCP, it performs one (up to 3) ARP request(s); however when the
kernel is booted, an IP is already attributed, so we can not take into account
the elapsed time in this first phase. Bonjour should notify all machines that the
node has the service by updating all ARP caches. There could be an additional
management cost related to replacements in the cache but the default size of
ARP cache is 1040 entries which is higher than the number of services used in
the worst case of our experiments. Consequently, we can not reasonably charge
the management of ARP caches in the degradation of performances. Bonjour
proceeds by checking the uniqueness of service. An initial ARP advertisement
is made with one second waiting (Probe wait = 1s). If there has been not reply
in the second (it is well the case, because all the services were selected with a
single name), then the name is considered as unique.

In figure 1, the y-axis shows the percentage of services correctly registered at
time x. The sequential registration shows a better times than simultaneous one.
Indeed, the measurements taken on 308 machines give registrations times ranging
between 1015 and 1030 ms. Whereas, in the simultaneous version, elapsed time
varies between 1017 ms and 2307 ms. Comparing with the sequential case, we
find again the same constant (1015 ms) for simultaneous registration in the first
registration, but it becomes longer to reach the bus in turn and that costs about
10 to 30 ms, which generates an increase cumulated in the registration time from
1017 ms to 2307 ms.
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4.2 Registration of Avahi Services

On each node of the Avahi network, there is a running avahi-daemon. This
daemon implements the two protocols mDNS/DNS-SD of Zeroconf. To register
one service, Avahi publishes the service by a multicast send to all nodes, using D-
Bus as transport protocol, and updates the cache of each node. These protocols
showed a great effectiveness in services registration. Indeed, figure 1 shows that
Avahi gives almost same elapsed times in sequential and in simultaneous tests.
Elapsed time varies between 760 and 1110 ms which are better than ones given
by Bonjour.

4.3 Registration of Pastry Services

Contrarily to Avahi and Bonjour, Pastry shows a great difference between se-
quential tests and simultaneous ones. Indeed, figure 2 shows that in simultaneous
registration, until 160th service, elapsed time varies between 600 and 1000 ms.
Beyond that, registration time increases from one registration to another to
reach 320 000 ms. In addition, figure 2 shows that the sequential registration
gives better times. We mention that Pastry gives reduced times in comparison
to Avahi and Bonjour (30% of services, among 307, are registered in the interval
450-550 ms). Indeed, when we register a service, we require connection to the
same bootstrap machine (to avoid creating several rings). Thus, in simultaneous
case, the bootstrap can not answer all simultaneous requests, what causes a fast
growth of times since 160th service. Moreover, Pastry updates the leaf sets to
maintain the coherence of the system, and may be for this reason the simultane-
ous version times reach 320 s. Whereas in the sequential version, the bootstrap
receives only one request each minute; the update of the leaf sets and routing
tables is, thus, recovered so that we got reduced times (2 s maximum). Our
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measurements show that it is necessary to create a second bootstrap to initialize
a new ring when the number of simultaneous registrations overtake 160 services.

4.4 Synthesis

The comparison of the three libraries (Bonjour, Avahi and Pastry) from the
viewpoint of simultaneous registration times of approximately 300 services on the
platform Grid’5000 (one service by machine) shows that Avahi is the best since it
spends less time (last registered service needs 1000 ms). Bonjour requires 1300 ms
moreover to register the last service. Pastry gives times close to those given by
Avahi until 160 registrations, beyond this, it spends times definitely larger (until
320 000 ms) that those of Avahi and Bonjour. When we sequentially register one
service on each machine (we register about 300 services), we can mention that
there is not a great difference between the three libraries. In fact, Bonjour and
Avahi give similar results. Pastry spends almost same time to register 60% of
services, needs less times to register first 30% but more times than Avahi and
Bonjour for the rest (10%).

5 Performance of Discovery Services

The second metric is to measure the necessary time to browse a registered ser-
vice. Then for each system (Bonjour, Avahi and Pastry) we measure the elapsed
time between the registration end and the discovery time. We repeat the same
benchmarks for both simultaneous and sequential registration. For that, we ded-
icate one machine which runs the browser to discover services.

5.1 Discovery Behavior of Bonjour

Bonjour proves a good performance in discovering services. In fact, it is able to
discover 307 services registered on 307 machines (one service on one machine).
Furthermore, the discovery time doses not exceed 1 second. That leads us to
affirm that the implementation by Apple of DNS-SD functions is good and gives
satisfactory results.

5.2 Discovery Behavior of Avahi

As we have already mentioned, Avahi uses avahi-daemon and executes a re-
quest via D-Bus to publish a service by a multicast package. The machine which
launches the discovery program (a browser program which remains listening to
services) loses 60% of simultaneously registered services. Moreover, the discovery
time increases beyond 49 registrations to reach 900 s in the registration of the
73th service. Beyond that, the discovery program spends around 220 s to discover
a registered service (see figure 3). Contrarily to the simultaneous registration,
when we register the services in a sequential manner (for instance each minute),
the Browser is able to discover more services (303 among 307 registered services).
In addition, the discovery time is better (maximum 4 s) for 204 services except
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that 9 services need intervals of time of 2835-8686 s. The browser, which has the
avahi-daemon running on it, is unable to receive, at a given moment, all multi-
cast sends emitted by the nodes which registered the services at the same time
(simultaneous case). This can explain the loss of services in the simultaneous
version. Whereas, in sequential version the browser needs more time to discover
the four lost services.

5.3 Discovery Behavior of Pastry

In both types of sequential and simultaneous registrations, pastry provides good
discovery times (1 s maximum). Meanwhile, the number of discovered services
for simultaneous registrations, the browser discovers 270 among 293 services,
whereas for sequential registration, the browser discovers 275 of the 292 ser-
vices what corresponds to a light improvement in comparison to the previous
case. That can leads us to affirm that the Browser fails to recover all services
publications notifications when registrations exceed 270.

6 Related Work

Experiments and analysis of P2P networks have been conducted over the
Grid’5000 platform for the generic JXTA P2P framework [16]. In this article, the
goal of the performed benchmarks is similar to our goal. It concerns to answer
common and unanswered questions: how many rendezvous peers are supported
by JXTA in a given group and what is the expected time to discover resources
in such groups?

Two main protocols of JXTA have been evaluated in [16]: 1) the peer-view
protocol used to organize super peers, known as rendezvous peers, in a JXTA

overlay and 2) the discovery protocol, that relies on the peer-view protocol,
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used to find resources inside a JXTA network. All sites of Grid’5000 were used
and a mix of hundreds of rendezvous and normal peers, called edge peers, have
been deployed on at most 580 nodes. Results show that with default values for
parameters of the peer-view protocol, the goal of the algorithm is not achieved,
even with just 45 rendezvous peers. However, parameter tuning makes it possible
to reach larger configurations in terms of number of rendezvous peers. For the
discovery protocol, authors show that discovery time is rather smaller, provided
that all rendezvous peers satisfy a given property. These results give developers
a better view of the scalability of JXTA protocols.

Our results1 augmented with those of [16] clearly demonstrate that for open
source projects as well as for industrial software with production quality, there
is a strong need to test and evaluate the properties of the distributed system in
real large platform such as Grid’5000.

7 Conclusion and Future Work

With the growth of grids size, it is feasible to use P2P systems known for their
scalability and the management of high volatility. In this context, we studied in
this paper three protocols for resource discovery which are Bonjour, Avahi and
Pastry. The three protocols showed high performances except that Avahi failed
to discover all services in simultaneous version and Pastry spends a consider-
ably long time to register all services simultaneously. We are going to continue
working on the three protocols. Indeed, Bonjour is very powerful in registration
and discovery in both sequential and simultaneous versions. Pastry also proved
its performance in sequential registration and also in simultaneous case provided
when we does not exceed 160 registrations at a given moment, what does not
represent really a weakness point if we do not work with, let us say 10 million
nodes. Avahi has the advantage of being free with accessible source code, which
makes its study much easier than Bonjour. As technical point of view, the Ze-
roConf API does not offer full functionalities to build grid middleware, whereas
Pastry offers an open source API developed with Java containing the preliminary
functions necessary to the development of this middleware. Our final objective
is to build a Desktop Grid middleware based on one of these protocols.

As mentioned before, the initial question was:“how to decentralize the services
offered by Desktop Grids?”. Our idea is to capitalize on existing systems (for
instance on XtremWeb [17]) rather than inventing a completely new one. We
are currently implementing a prototype according to the following vision: a user
requests for a computation. He provides a tasks graph and codes implementing
his distributed application. The idea is to deploy locally a master node (according
to the XtremWeb terminology) and to request for participants. Negotiations to
select them should now take place. The Publish/Subscribe infrastructure is used
to solve the problem. For instance, each node multicasts, periodically, its state
(idle, slave, master) and also information about its local load or its use cost, in
1 For more results see the LIPN internal report on this URL: https://

hal.ccsd.cnrs.fr/docs/00/15/93/88/PDF/acdj.pdf
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order to provide metrics for choosing the participants. Under these assumptions,
the master node can select a subset of slave nodes according to a strategy that
could balance the “power” of the node and the “price” to use it. When a master
node finishes, it becomes free and returns to the sleeping state or, if it needs to
start a new job (because the user has many works to do) it is ready to accept it.
When a slave node finishes its tasks (as a slave), it has the possibility to become
a master or a slave node again but not necessarily for the same master. In
this way, we ensure an automatic load balancing schema and the whole system
becomes less centralized. Again, the key idea is to rely on existing Desktop
Grid middleware but also to control and coordinate multiple instances through
Publish/Subscribe systems.
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Abstract. Desktop grids, such as XtremWeb and BOINC, and service
grids, such as EGEE, are two different approaches for science communi-
ties to gather huge computing power from a large number of computing
resources. Nevertheless, little work has been done to combine these two
Grids technologies in order to establish a seamless and vast grid resource
pool. In this paper we address the security issues when bridging Service
Grid with Desktop Grid. We first present how to bridge EGEE resources
with our XtremWeb platform using the gliding-in mechanism. Then we
describe a new Desktop Grid security model to bridge this anonymous en-
vironment to the strongly securized Service Grid one. Finally we describe
an implementation of this security model in the XtremWeb middleware
and report on performance evaluation.

Keywords: Desktop Grid, Service Grid, BOINC, XtremWeb, Security.

1 Introduction

There is a growing interest among scientific communities to use Grid computing
infrastructures to solve their grand-challenge problems and to further enhance
their applications with extended parameter sets and greater complexity. Re-
searchers and developers in Service Grids (SG) first create a Grid service that
can be accessed by a large number of users. A resource can become part of the
Grid by installing a predefined software set, or middleware. However, the middle-
ware is usually so complex that it often requires extensive expert effort to main-
tain. It is therefore natural, that individuals do not often offer their resources in
this manner, and SGs are generally restricted to larger institutions, where pro-
fessional system administrators take care of the hardware/middleware/software
environment and ensure high-availability of the Grid. Examples of such infras-
tructures are EGEE, the NorduGrid, or the NGS (National Grid Service) in the
UK. Even though the original aim of enabling anyone to join the Grid with one’s
resources has not been fulfilled, the largest Grid in the world (EGEE) contains

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 247–259, 2009.
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around forty thousand processors. Anyone who obtains a valid certificate from a
Certificate Authority (CA) can access those Grid resources that trust that CA.
This is often simplified by Virtual Organization (VO) or community authoriza-
tion services that centralizes the management of trust relationships and access
rights.

Desktop Grids (DG), literally Grids made of Desktop Computers, are very
popular in the context of ”Volunteer Computing” for large scale ”Distributed
Computing” projects like SETI@home [ACK+02] and Folding@home. They are
very attractive, as ”Internet Computing” platforms, for scientific projects seek-
ing a huge amount of computational resources for massive high throughput com-
puting. DG uses computing, network and storage resources of idle desktop PCs
distributed over multiple LANs or the Internet. Today, this type of comput-
ing platform aggregates one of the the largest distributed computing systems,
and currently provides scientists with tens of TeraFLOPS from hundreds of thou-
sands of hosts. In DG systems, such as BOINC [And04] or XtremWeb [FGNC01],
anyone can bring resources into the Grid, installation and maintenance of the
software is intuitive, requiring no special expertise, thus enabling a large num-
ber of donors to contribute into the pool of shared resources. On the downside,
only a very limited user community (i.e., target applications) can effectively use
DG resources for computation. For instance the BOINC project features less
than 50 applications, and the top 5 projects share more than 50 % of the total
compute power. Because users are Internet volunteers, there cannot be secu-
rity model based on trust between users. Because of users anonymity, security
solution for DG relies on autonomous mechanism such as sandbox or result cer-
tification to prevent attacks from other users. As a consequence, DG systems
are not yet ready to be integrated in complex Grid infrastructure which requires
a high level user right management, authentication, authorization and rights
delegation.

Until now, these two kinds of Grid systems are completely separated and
there is no way to exploit their individual advantageous features in a unified
environment. However, with the objective to support new scientific communities
that need extremely large numbers of resources they can’t find in SG, the solu-
tion could be to interconnect these two kinds of Grid systems into an integrated
Service Grid–Desktop Grid (SG–DG) infrastructure. Our research are part of
the work conducted by a new European FP7 infrastructure project : EDGeS
(Enabling Desktop Grids for e-Science) [CMEM+08], which aims to build tech-
nological bridges to facilitate interoperability between DG and SG.

In this paper, we describe the research issues on how such an integrated SG–
DG infrastructure can be established from a security point of view. We first
review the security model of existing approaches to bridge the two classes of Grid
systems. Our technical contribution is two folds. First, we propose a new users
classification into Desktop Grids which allow to manage anonymous DG users
and SG users in a global SG-DG infrastructure. We detail expected modifications
in our XtremWeb middleware. Second, we present a bridge between the EGEE
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grid and XtremWeb based on the gliding in solution. We show that this solution
provides high security level, fault-tolerance, performance and scalability.

In the next section, we give an overview of the Service Grid and the Desktop
Grid security model. In Section 3, we describe the existing solution to bridge
Service Grid and Desktop Grid. In Section 4, we present our security architecture
and its implementation within the XtremWeb Desktop Grid and the integration
in the EGEE Grid. Performance evaluation is shown in Section5. In Section 6,
we present our concluding remarks.

2 Background

2.1 Security Model of Desktop Grids

In this section we review the security model of several Desktop Grid systems.
The BOINC [And04] middleware is a popular Volunteer Computing System

which permits to aggregate huge computing power from thousands of Internet
resources. A key points is the asymmetry of its security model : there are few
projects well identified and which belongs to established institutions (Univ. of
Berkeley, Univ of Haifa...) while volunteers are numerous and anonymous. The
notion of users exists in BOINC, which aims to manage volunteers contributions.
However, this user definition is close to the one of avatar : it allows users to
participate to forum and to receive credits according to the computing time and
power given to the project.

Despite anonymity, the security model is based on trust. Volunteers trust the
project they are contributing to. Security mechanism is simple and based on
asymmetric cryptography.

Security model aims at enforcing the trust between volunteers and the project
itself. At installation time, the project owners produce a pair of public/private
keys and store them in a safe place, typically in a machine isolated from the
network, as recommended on the BOINC web site. When volunteers contribute
for the first time to the project, they obtain the public key of the project. Project
owners have to digitally sign the project application files, so that volunteers can
verify that the binary codes downloaded by the BOINC client really belongs
to the project. This mechanism ensures that, if a pirate get access to one of
the BOINC server, he would not be able to upload malicious code to hundreds
of thousands resources. If volunteers trust the projects, the reverse is not true.
To protect against malicious users, BOINC implements a result certification
mechanism [Sar02], based on redundant computation. BOINC gives the ability to
project administrator to write their own custom results certifying code according
to their application.

XtremWeb is an Internet Desktop Grid middleware which also permits public
resources computing. It differs from BOINC by the ability given to every partic-
ipants to submit new application and tasks in the system. XtremWeb is a P2P
system in the sense that every participants can provide computing resources but
also utilize others participants’ computing resources. XtremWeb is organized
as a three-tiers architecture where clients consumes resources, worker provides
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resources and coordinator is a central agent which manages the system by per-
forming the scheduling and fault-tolerance of tasks. XtremWeb implements the
notion of user, used to facilitate the platform management and to separate be-
tween users’ tasks, results and applications. In contrast with BOINC, because
everyone can submit application, there cannot be any form of trust between
users, application, results and even the coordinator itself. Thus XtremWeb secu-
rity model is based on autonomous mechanisms which aims at protecting each
components of the platform from the others elements. For instance, to protect
volunteers’ computer from malicious code, a sandbox mechanism is used to iso-
late and monitor the running application, and prevent it to damage volunteers
system. Public/private keys mechanism are also used to authenticate the coor-
dinator to prevent results to be uploaded to an other coordinator.

The Xgrid system, proposed by Apple is a Desktop Grid designed to run on
a local network environment. Xgrid features ease of use and ease of deployment.
To work, the Xgrid system needs a Xgrid server, which can be configured with or
without password. If the server run without password, then every user in the local
environment can submit jobs and application; otherwise a password is needed to
do so. Computing nodes, in the Xgrid system can accept jobs or no, this property
is set on the computing nodes itself. Thus there is no real distinction between
users and there’s no possibility for a user or a machine to accept or refuse other
users’ application or work. While this solution is acceptable when used within a
single organization (lab or small company), this solution won’t scale to a Service
Grid setup which typically aims at several institutions to cooperate.

2.2 Security Model of Service Grids

The Grid Security Infrastructure (GSI) in EGEE enables secure authentication
and communication over an open network. GSI is based on public key encryption,
X.509 certificates, and the Secure Sockets Layer (SSL) communication protocol,
with extensions for single sign-on and delegation. In order to authenticate himself
to Grid resources, a user needs to have a digital X.509 certificate issued by a
Certification Authority (CA) trusted by EGEE; Grid resources are generally also
issued with certificates to allow them to authenticate themselves to users and
other services. The user certificate, whose private key is protected by a password,
is used to generate and sign a temporary certificate, called a proxy certificate
(or simply a proxy), which is used for the actual authentication to Grid services
and does not need a password. As possession of a proxy certificate is a proof of
identity, the file containing it must be readable only by the user, and a proxy
has, by default, a short lifetime (typically 12 hours) to reduce security risks if it
is stolen. A user needs a valid proxy to submit jobs; those jobs carry their own
copies of the proxy to be able to authenticate with Grid services as they run (so
that the job can access user data, for example). For long-running jobs, the job
proxy may expire before the job has finished, causing the job to fail. To avoid
this, there is a proxy renewal mechanism to keep the job proxy valid for as long
as needed. In terms of security a proxy is a compromise. Since the private key
is sent with it anyone who steals it can impersonate the owner, so proxies need
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to be treated carefully. Also there is no mechanism for revoking proxies, so in
general even if someone knows that one has been stolen there is little they can
do to stop it being used. On the other hand, proxies usually have a lifetime of
only a few hours so the potential damage is fairly limited.

Grid security is based on the concept of public key encryption. Each entity
(user, server...) has a private key which must be kept totally secure.

Each private key has its associated public key; they are referred as asymmetric
keys. Any encryption using one key can be decrypted using the associated one.
This mechanism is used to prove identity, to encrypt data and to check their
integrity.

Certificates are issued by a Certification Authority (CA) which has its own
certificate.

To check the validity of a certificate, the public key of the CA is then needed.
Potentially this could create an infinite regression, but this is prevented by the
fact that CA certificates, known as root certificates, are self-signed, i.e. the CA
signs its own certificate.

A system called VOMS (VO Management Service) is used in EGEE to manage
information about the roles and privileges of users within a VO. This information
is presented to services via an extension to the proxy. At the time the proxy
is created one or more VOMS servers are contacted, and they return a mini
certificate known as an Attribute Certificate (AC) which is signed by the VO and
contains information about group membership and any associated roles within
the VO.

To create a VOMS proxy the ACs are embedded in a standard proxy, which
is signed with the private key of the parent certificate. Services can then decode
the VOMS information and use it as required, e.g. a user may only be allowed
to do something if he has a particular role from a specific VO. One consequence
of this method is that VOMS attributes can only be used with a proxy, they
cannot be attached to a CA-issued certificate.

3 Bridging Service Grids and Desktop Grids

There exists two main approaches to bridge SG and DG (see Fig. 1). In this
section we present the principles of these two approaches and discuss them ac-
cording to security perspective.

The superworker approach. The superworker, proposed by the Lattice
[MBC08] project and the SZTAKI Desktop Grid [BGK+07], is a first solution.
This enables the usage of several Grid or cluster resources to schedule DG tasks.
The superworker is a bridge implemented as a daemon between the DG server
and the SG resources. From the DG server point of view, the Grid or cluster ap-
pears as one single resource with large computing capabilities. The superworker
continuously fetches tasks or work units from the DG server, wraps and submit
the tasks accordingly to the local Grid or cluster resources manager. When com-
putations are finished on the SG computing nodes, the superworker sends back
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Fig. 1. Bridging Service Grid and Desktop Grid, the superworker approach versus the
Gliding-in approach

the results to the DG server. Thus, the superworker by itself is a scheduler which
needs to continuously scan the queues of the computing resources and watch for
available resources to launch jobs.

Since the superworker is a centralized agent this solution has several draw-
backs : i) the superworker can become a bottleneck when the number of com-
puting resources increases, ii) the round trip for a work unit is increased because
it has to be marshalled/unmarshalled by the superworker, iii) it introduces a
single point of failure in the system, which has low fault-tolerance. On the other
hand, this centralized solution provides better security properties, concerning
the integration with the Grid. First the superworker does not require modifi-
cation of the infrastructure, it can be run under any user identity as long as
the user has the right to submit jobs on Grid. Next, as works are wrapped by
the superworker, they are run under the user identity, which conforms with the
regular security usage, in contrast with the approach described in the following
paragraph.

The Gliding-in approach. The Gliding-in approach to cluster resources
spread in different Condor pool using the Global Computing system (XtremWeb)
was first introduced in [LFC+03]. The main principle consists in wrapping the
XtremWeb worker as regular Condor task and in submitting this task to the
Condor pool. Once the worker is executed on a Condor resource, the worker
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pulls jobs from the DG server, executes the XtremWeb task and return the
result to the XtremWeb server. As a consequence, the Condor resources commu-
nicates directly to the XtremWeb server. Similar mechanisms are now commonly
employed in Grid Computing [TL04]. For example Dirac [TGSR04] uses a com-
bination of push/pull mechanism to execute jobs on several Grid clusters. The
generic approach on the Grid is called a pilot job. Instead of submitting jobs
directly to the Grid gatekeeper, this system submits so-called pilot jobs. When
executed, the pilot job fetches jobs from an external job scheduler.

The gliding-in or pilot job approach has several advantages. While simple,
this mechanism efficiently balance the load between heterogeneous computing
sites. It benefits from the fault tolerance provided by the DG server; if Grid
nodes fail then jobs are rescheduled to the next available resources. Finally, as
the performance study of the Falkon [RZD+07] system shows, it gives better
performances because series of jobs do not have to go through the gatekeeper
queues which is generally characterized by long waiting time, and communication
is direct between the worker running on the computing element (CE) and the
DG server without intermediate agent such as the superworker. From the security
point of view, this approach breaks the Grid security rule about Pilot Jobs. This
rule does not allow actual jobs owner to be different than pilot job owner. This
is a well known issue of pilot jobs and new solution such as gLExec [SKV+07]
are proposed to circumvent this security hole.

4 Bridging XtremWeb to EGEE

Our goal is to safely aggregate EGEE worker nodes in a single XtremWeb net-
work. In this network, we assume that the users connect to the dispatcher ad-
ministration domain to submit tasks. XtremWeb has the responsibility to ensure
user authentication, hosts (workers) integrity, application and results protection
and user execution logging.

In the rest of the paper, we based our study of the security model on the
gliding-in technology. XtremWeb Workers are submitted to EGEE computing
elements using JSDL wrappers.

4.1 User Authentication and Execution Logging

The coordinator site manages a list of authorized users as ACLs. It is the re-
sponsibility of the system administrator to register new users (and revoke non
desired ones) on the coordinator. After registration, the coordinator provides a
key to be used by the user for each subsequent connection. For each connection,
a challenge is ran in order to ensure that the user is registered on the coordi-
nator. All communications between the user XW client and the coordinator are
encrypted using SSL. Then the coordinator works as a proxy for the user: all
tasks are submitted to the workers through the coordinator credential. All exe-
cutions on the workers are logged in the security perspective: all tasks contain
a descriptor with the actual user credential so that workers and coordinator can
take appropriate corrective action (user revocation), in case of security problem.
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The design does not currently rely on certificates and presents a certain degree
of risk for “Man is the Middle” (MIM) attacks but risks are very limited since
1) attacks should origin from within EGEE subclusters only (due to TCP proto-
cols), and 2) workers and clients software include coordinator public key, then if
one is able to securely ensure worker and client binaries installation to dedicated
pools, the full system is not subject to MIM attacks since key exchanges will not
be necessary any more.

A certification system based on X.509 certificates is under integration in
XtremWeb. Subsequent experiments and futures XtremWeb installations will
implement one, based on Open-SSL, allowing extension of clients and workers
authentication by the coordinator.

4.2 Applications, Parameters and Results Protection

EGEE subclusters belonging to different administration domains fetch applica-
tions and tasks, and store results on the central coordinator. The only security
issue concerning applications, parameters and results transfers is then about
the connections between EGEE worker nodes and the coordinator. To ensure
connection security between domains, 1) every connection from any client and
worker to the coordinator is encrypted through SSL tunnels; 2) workers can
only connect to the coordinator for which they have the public key. These two
mechanisms prevent malicious participants to be able to intercept and read any
connection, to connect to the coordinator and EGEE worker nodes to connect
to a wrong XtremWeb coordinator.

4.3 Node Integrity

If, for any reason, a malicious user succeeds on accessing the system and launch-
ing an aggressive application, XtremWeb workers still protect their host by im-
plementing sand-boxing[AKS99, AR99, GWTB96] for binary applications. This
is a secure way to execute applications, providing rights to do some actions and
denying some others. One should note that Java applications are always executed
inside a virtual machine which includes security[GMPS97]; XtremWeb uses this
functionality in two levels, one for the worker itself and a more restrictive one
for the downloaded Java byte code. On the contrary, binary (or native) appli-
cations have access to the full hosting system by nature; workers are configured
to run any task of that type inside a sand-box which is fully customizable, from
memory usage to file system operations.

Java and sand-boxes, have performance costs[BSPF01]; one can then disable
this functionality on highly secured systems, such as clusters under a fully closed
firewall.

4.4 Access Confinement

XtremWeb 2.0.0 introduces mechanisms aimed to secure and confine distributed
resources usage; this is done thanks to the notion of user and access rights. These
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new features permit to extend user actions over the platform as well as to secure
resource usage and confine application deployment.

Access rights must be understood as linux file system ones (e.g. 0x755, uog+r
etc.) and are used to define data (which is also a new paradigm in XtremWeb
2.0.0 but not discussed in this deliverable), application and job accesses. The
default access is 0x755 which grants full access (read, write, execute) to owner,
and limited access (read, execute) to users belonging to the owner group, as
well as other users. Denying access to non group users, for example, consists to
set access rights to 0x750. The middleware includes the xwchmod command to
modify access rights.

Any user can insert its own applications in the platform. This feature could
lead to security hazards since this could allow users to insert malicious appli-
cations. This is solved by access rights. A standard user can only insert private
applications; any submitted jobs referring private applications are private too.
There is no way to modify this; even xwchmod cannot help to modify access
rights of private entities (applications or jobs). A private entity has its access
rights set to 0x700 which grants owner access only. A private entity will only be
managed by private workers which are described below.

Inserting group (i.e. access rights 0x750 ) entities needs advanced privileges.
All users belonging to the group can access group entities. Submitting a job for
a group application creates group jobs (i.e. access rights 0x750 ). A group job
can only be run by group workers which are described below.

Finally, inserting public (i.e. access rights 0x755 ) entities needs advanced
privileges too. All users can submit jobs for public applications. This creates
public jobs (i.e. access rights 0x755 ). A public job can only be run by public
workers which are described below.

User rights, associated with access rights, permit to define public, groups and
private levels, which grant allowed user actions. The three main level rights are
standard, worker and advanced. The standard level grants data management, job
submission and private application insertion as defined earlier. The advanced
level grants full access to the platform including private, group and public enti-
ties, as well as users, user groups and workers management.

To understand the worker right level, one must understand that workers run
using a registered identity. When a worker communicates with the coordinator,
it presents its identity. This identity defines user rights, among others.

The worker level right defines public workers. This level right permits to
delegate user rights to those public workers so that they can access entities as if
they were the entity owner. A public worker can bypass entities access rights in
order to update them even if their access rights do not allow that action. This
is used to update jobs status to COMPLETED when it has successfully been
computed, or to store jobs results and set results owner to the job owner. That
last can then download its results. At installation time, the platform includes
a specific user defined with worker level right, aiming to deploy public workers.
Workers can also be group ones. Group workers are public ones restricted to a
group. They use an identity belonging in a group, with worker user rights level.



256 G. Caillat et al.

Fig. 2. Worker levels and jobs levels

Group workers will compute jobs submitted by any user of their group only.
Finally, workers can be private. Private workers are identified whithout worker
user rights level. They can only compute private jobs.

The Figure 2 summarizes worker levels and the types of job they can run.
We see that private jobs are run on private workers only, groups jobs on group
workers only, and public jobs on public workers only.

5 Performance Evaluation

To demonstrate the full system, we ran an application over our SG/DG platform.
The application consists in a multi-parameters computation requiring a large set
of independent tasks. We submitted 185 tasks XtremWeb aggregating volunteers
resources and EGEE worker nodes.

Table 1 summarizes resource aggregated from XtremWeb and from EGEE.
Table 2 details these resource and shows four different types according to CPU

speed.
Figure 3 shows a good distribution of the jobs among resources; differences

comes from availability and resource types themselves. We can see that some
resources have only computed one job; this is because the bridge configures

Table 1. Available resources per platform

XtremWeb EGEE Total
Linux 1 10 11
Win32 1 0 1
Mac OS X 32 0 32
Total 34 10 44
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Table 2. Types of available resources

OS CPU CPU speed Total
Linux AMD64 2.3GHz 11
Win32 ix86 2.0GHz 1
Mac OS X ix86 2.0GHz 1
Mac OS X ix86 2.0GHz 10
Mac OS X PPC 1.0GHz 5
Mac OS X PPC 1.5GHz 6
Mac OS X PPC 2.0GHz 10
Total 3 4 44

Fig. 3. Jobs per host in a SG/DG platform

Fig. 4. Jobs execution delays
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resources aggregated from SG to run a single job. This ensures that DG appli-
cations do not overload SG resources.

The impact of the resource heterogeniety is even more visible on figure 4 which
presents the job execution time, sorted in increasing order.

6 Conclusion

Bridging Service Grids and Desktop Grids raises many issues. To enable actual
infrastructure, gathering both Grid and Internet users, application, computing
and storage resources requires new security model. In this paper we have re-
viewed the security requirements of DG and SG. The discussion about bridging
technologies convince us to select the gliding-in solution even if it stresses the
security requirements. Thus we have proposed a security model which distin-
guishes between anonymous users who are typically Internet volunteers and cer-
tified users who are the Grid users with a valid X.509 certificate delivered by the
EGEE author. We have implemented this security model within the XtremWeb
framework and showed that, when integrated with the EGEE infrastructure, this
ensures a high security level for both the Grid and the volunteers’ PC.
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Abstract. An interesting and as of yet under-represented aspect of pro-
gram development and optimization are data structures. Instead of ana-
lyzing data with respect to code regions, the objective here is to see how
performance metrics are related to data structures. With the advanced
performance monitoring unit of Intel’s Itanium processor series such an
analysis becomes possible. This paper describes how the hardware fea-
tures of the Itanium 2 processor are exploited by the perfmon and PAPI
performance monitoring APIs and how PAPI’s support for address range
restrictions has been integrated into an existing profiling tool to achieve
the goal of data structure oriented profiling in the context of OpenMP
applications.

1 Introduction

Parallel performance analysis is traditionally the domain of scientific applica-
tion developers. With the increasingly widespread adoption of multicore CPUs,
the number of developers that have to optimize their applications for parallel
performance can be expected to increase significantly.

The most common approaches for performance analysis are profiling and trac-
ing, the former often being preferred due to its lower overheads and more easily
comprehensible results and the latter finding most use for message passing ap-
plications. Most current tools, profiling as well as tracing, deliver their data
correlated to the program source code, e.g., percentage of execution time spent
in a particular function, number of bytes transferred in a particular MPI call, or
cache misses incurred due to a particular program statement.
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An aspect of program development that has received less attention, mostly due
to limited hardware support, is the dimension of data structures. The objective
here is to see how performance metrics are related to data structures in addition
to source code regions. With the advanced performance monitoring unit of Intel’s
Itanium processor series such an analysis becomes possible.

This paper describes how the hardware features of the Itanium 2 processor
are exploited by the perfmon and PAPI performance monitoring APIs and how
PAPI’s support for address range restrictions has been integrated into an existing
profiling tool to achieve the goal of data structure oriented profiling in the context
of shared memory applications.

The rest of this paper is organized as follows: In Sect. 2 we describe the basic
hardware capabilities of the Itanium 2 processor and how they are made available
through PAPI. We then describe how we integrated the address range restriction
capabilities into an existing profiling tool for OpenMP and made them available
to the user. In Sect. 3 we demonstrate the application of the extended tool to a
simple example application. In Sect. 4 we describe related work in the area and
in Sects. 5 and 6 we describe our plans for continuing our work and conclude,
respectively.

2 Data Structure Oriented Profiling

This section describes the hardware capabilities for data address range restricted
monitoring and how they are made available through the layers of perfmon2 and
PAPI in a profiling tool for OpenMP applications. perfmon2 is a generic low-
level interface to the Performance Monitoring Unit of modern microprocessors
which is currently implemented for Itanium, IA-32, x86-64, and PPC64 architec-
tures [9]. PAPI is a cross-platform interface to the hardware counters supported
by the performance monitoring unit (PMU) that includes portable routines as
well as a standard set of performance metrics [1]. PAPI is layered on top of
perfmon2 on perfmon2-supported architectures.

2.1 Hardware Capabilities and Their Availability through Perfmon
and PAPI

Event counting on the Itanium 2 processor can be qualified by a number of
conditions, including instruction address, opcode matching, and data address
ranges. Of the roughly 475 native events available on the Itanium 2, 160 of them
are memory related and can be counted with data address specification in place.
In addition to data address restrictions, the Itanium 2 supports restrictions with
respect to instruction addresses, which is however not discussed in this paper.

To specify the data address range qualification, four pairs of special registers
are available. The starting and ending addresses cannot be specified exactly,
since the hardware representation relies on powers-of-two bitmasks. The perf-
mon library used by PAPI tries to optimize the alignment of these power-of-two
regions to cover the addresses requested as effectively as possible with the four
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sets of registers available. Perfmon first finds the largest power-of-two address
region completely contained within the requested addresses. Then it finds suc-
cessively smaller power-of-two regions to cover the errors on the high and low
end of the requested address range. The effective result is that the actual range
specified is always equal to or larger than and completely contains the requested
range, and can occupy from one to four pairs of address registers. In some cases
this can result in significant overcounts of the events of interest, especially if
two active data structures are located in close proximity to each other. This
may require that the developer insert some padding structures before and/or
after a particular structure of interest to guarantee accurate counts (although
the padding may introduce additional perturbations).

The PAPI team has implemented a generalized interface for data structure
and instruction range performance instrumentation beginning with the PAPI
3.5 release. Since PAPI is a platform-independent library, care must be taken
when extending its feature set so as not to disrupt the existing interface or clut-
ter the API with calls to functionality that is not available on a large subset
of the supported platforms. To that end, the PAPI developers elected to ex-
tend an existing PAPI call, PAPI set opt(), with the capability of specifying
starting and ending addresses of data structures or instructions to be instru-
mented. The PAPI set opt() call previously supported functionality to set a
variety of optional capability in the PAPI interface, including debug levels, mul-
tiplexing of eventsets, and the scope of counting domains. This call was extended
with two new cases to support instruction and data address range specification:
PAPI INSTR ADDRESS and PAPI DATA ADDRESS. To access these options, a user
initializes a simple option specific data structure and calls PAPI set opt() as
illustrated in the code fragment below:

...
option.addr.eventset = EventSet;
option.addr.start = (caddr_t)array;
option.addr.end = (caddr_t)(array + size_array);
retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);
...

The user creates a PAPI eventset and determines the starting and ending
addresses of the data to be monitored. The call to PAPI set opt() then prepares
the interface to count events that occur on accesses to data in that range. The
specific events to be monitored can be added to the eventset either before or
after the data range is specified.

It is important that the user has some way to know what approximations have
been made, so that appropriate corrective action can be taken. For instance, to
isolate a specific data structure completely, it may be necessary to pad memory
before and after the structure with dummy structures that are never accessed.
To facilitate this, PAPI set opt() returns the offsets from the requested starting
and ending addresses as they were actually programmed into the hardware. If
the addresses were mapped exactly, these values are zero.
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2.2 Data Structure Monitoring Support in ompP

ompP is a profiling tool for OpenMP applications designed for Unix-like systems.
ompP differs from other profiling tools like gprof [4] or OProfile [7] in primarily
two ways. Firstly, ompP is a measurement based profiler and does not use pro-
gram counter sampling. The instrumented application invokes ompP monitoring
routines that enable a direct observation of program execution events (like en-
tering or exiting a critical section). An advantage of the direct approach is that
the results give exact counts, rather than sampled values, and hence they can
even be used for correctness testing.

The second difference lies in the way of data collection and representation.
While general profilers work on the level of functions, ompP collects and displays
performance data in the user model of the execution of OpenMP events [5]. For
example, the data reported for critical section contains not only the execution
time but also lists the time to enter and exit the critical construct (enterT and
exitT, respectively) as well as the accumulated time each thread spends inside
the critical construct (bodyT) and the number of times each thread enters the
construct (execC). An example profile for a critical section is given in Fig. 1.

R00002 main.c (20-23) (unnamed) CRITICAL

TID execT execC bodyT enterT exitT L3_MISSES

0 1.00 1 1.00 0.00 0.00 534 513

1 3.01 1 1.00 2.00 0.00 534 733

2 2.00 1 1.00 1.00 0.00 535 420

3 4.01 1 1.00 3.01 0.00 535 062

SUM 10.02 4 4.01 6.01 0.00 2 139 728

Fig. 1. Profiling data delivered by ompP for a critical section. execC denotes the execu-
tion count, enterT, exitT, bodyT, and execT are timing data in seconds for entering,
exiting, executing the body of the critical section. execT is the sum of all other reported
times.

Profiling data in a style similar to that shown in Fig. 1 for critical sections
are delivered for each OpenMP construct, with the columns (execution times
and counts) depending on the particular construct. Furthermore, ompP supports
the query of hardware performance counters through PAPI [1] and the mea-
sured counter values appear as additional columns in the profiles. In addition
to OpenMP constructs that are instrumented automatically using Opari [8], a
user can mark arbitrary source code regions such as functions or program phases
using a manual instrumentation mechanism. Function calls can be automatically
instrumented with compilers that support this feature.

Profiling data are displayed by ompP as flat profiles and as callgraph profiles,
giving both inclusive and exclusive times in the latter case. As an advanced
productivity feature, ompP performs overhead analysis in which four well-defined
overhead classes (synchronization, load imbalance, thread management, limited
parallelism) are quantitatively evaluated.
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To support data structure oriented profiling, mechanisms that allow the user
to specify the address range of data structures as well as changes in the result
reporting are required. Several methods for specifying the data structure to
be monitored have been implemented in ompP. First, for global and statically
allocated data structures, a data structure’s symbol name can be supplied when
invoking ompP. For static and global data structures the name can be associated
with the correct virtual address start and size of the symbol by invoking the nm
tool provided that the debug information is contained in the binaries. In addition
to this automatic conversion from symbol names to address ranges, the user
can manually specify name, data address start and range through environment
variables. For example:

# export OMPP_DATA_ADDR=0x6000000000022f80
# export OMPP_DATA_SIZE=34000
# export OMPP_DATA_NAME=tilearray
# ./ompp myprogram

For dynamically allocated memory or stack variables, the above mechanisms
are neither adequate nor convenient. For this reason, ompP also provides a pro-
grammatic way to select the address range, size and name to monitor. A devel-
oper can annotate the source code with direct calls to set up the monitoring.
For example:

double vec[1234];
...
ompp_papi_set_drange(vec, sizeof(vec), "vec")

will set up monitoring for the vec array. Alternatively it is possible to use source
code annotations in the form of pragmas (in C/C++) or special comments (FOR-
TRAN) that are translated to ompp papi set drange() calls by the Opari pre-
processor, for example:

#pragma pomp inst data(vec, sizeof(vec), "vec")

The latter technique has the advantage that has no compile- or link time depen-
dency on ompP remains because the annotations can just be ignored by compilers.

The data reporting side of ompP has been changed to account for the addi-
tional data available through the address range restriction. The header section of
ompP’s profiling report lists the address range restrictions that are in effect and
the offsets that occur due to imprecise coverage of the range with Itanium 2’s
four coarse mode counters as shown below. This information is important when
interpreting the profiling reports to exclude the possibility to falsely attribute
data to neighboring data structures.

Data Address : 0x6000000000022f80
Data Size : 34000 (0x84D0)
Data Name : tilearray
Data Start Offs.: 0
Data End Offs.: 0
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For the bookkeeping of profiling data, ompP introduces execution overhead in
the measured application that is directly proportional to the number of region
enter or exit operations monitored. For reasonably “well behaved” applications,
such as the SPEC OpenMP benchmarks, ompP’s monitoring overhead usually is
below five percent of execution time with PAPI enabled. We could not observe
additional overhead using Itanium’s data address range restriction feature over
using the counters without this feature enabled.

3 Experimental Evaluation

In this section we show a simple application example of the data structure mon-
itoring capabilities of ompP. The program fragment shown in Fig. 2 implements
a very simple matrix × vector multiplication Ax = b and the purpose is to show
how the memory system related events can be restricted to only those occurring
for the matrix A as an example. Consider this program fragment in Fig. 2 and
note that data range monitoring is set up for the a array with the proper size.

integer n, i, j

parameter( n=12000 )

double precision a(n,n)

double precision b(n)

double precision c(n)

...

!$POMP INST DATA( a , n*n*8 , "a" )

!$OMP PARALLEL DO private(i,j)

DO i = 1, n

c(i) = 0.0;

DO j = 1, n

c(i)=c(i)+a(i,j)*b(j)

END DO

END DO

...

Fig. 2. Matrix × vector multiplication example for data address range restrictions

The execution of this application on a 4-way Itanium 2 (“Madison Processor”)
SMP machine with 1.3 GHz, 3 MB third level cache and 8 GB of main memory
resulted in a profiling report that shows the address range specification in place:

Data Address : 0x6000000000026f40
Data Size : 1152000000 (0x6DDD000)
Data Name : a
Data Start Offs.: 159552 (0x26f40)
Data End Offs.: 55800000 (0x35370c0)



Enabling Data Structure Oriented Performance Analysis 269

Note the extra covering of the array due to imprecise mode. After padding the
array at the beginning and at the end (with a similar sized pad1 and pad2 array,
in this case) and setting counters to measure load instructions (PAPI LD INS)
we get the profile shown below for the main parallel loop. Note that these num-
bers are exactly what one would expect to see: Each of the four threads works
on a sub-matrix of size 3 000 × 12 000 = 36 000 000 and has to bring this into
registers. Also note that the loads for the other data structures are not included.

R00002 main.f (30-37) LOOP
TID execT execC bodyT exitBarT PAPI_LD_INS

0 4.66 1 4.66 0.00 36 000 000
1 5.24 1 5.24 0.00 36 000 000
2 5.23 1 5.23 0.00 36 000 000
3 4.91 1 4.91 0.00 36 000 000

SUM 20.04 4 20.04 0.00 144 000 000

Next we analyzed the memory system performance of the code by measuring
the number of level three misses, as shown in the following profile:

R00002 main.f (30-37) LOOP
TID execT execC bodyT exitBarT L3_MISSES

0 5.01 1 5.01 0.00 33 735 611
1 5.24 1 5.24 0.00 35 447 540
2 5.22 1 5.22 0.00 35 470 957
3 5.14 1 5.14 0.00 35 004 338

SUM 20.61 4 20.61 0.00 139 658 446

Evidently, a very high percentage of the loads fail the L3 cache and have to go
to memory. Looking at the source code of the multiplication operation the reason
is obvious. The array is accessed with a stride of the matrix dimension and not
linearly, leading to very poor cache reuse. Changing the two indexes of the matrix
multiplication we arrive at a version with much better cache performance: Also
note the improved execution time (0.64 seconds vs. 5.20 seconds).

R00002 main.f (30-37) LOOP
TID execT execC bodyT exitBarT L3_MISSES

0 0.64 1 0.64 0.00 2 250 582
1 0.64 1 0.64 0.00 2 250 741
2 0.64 1 0.64 0.00 2 250 734
3 0.64 1 0.64 0.00 2 250 730

SUM 2.54 4 2.54 0.00 9 002 787

While the shown example is trivial, it demonstrates the main benefit of the
data address range restriction: contributions of individual elements can be sin-
gled out from the overall summed hardware counter values measured and hence
another dimension in which performance analysis can be conducted (that along
different data structures) opens up. If, for example, the same matrix a was ac-
cessed in several routines, or parallel loops, a restriction to a would show if it



270 K. Fürlinger et al.

is accessed with similar efficiency in all routines. A wrong indexing in one place
would stick out in comparison to the other cases, something that might go un-
noticed in the wealth of counter data produced by the overall routine, if the
restriction to the array was not in place.

4 Related Work

The value of analyzing programs with a focus on data structures has been recog-
nized before. There are proposals [6,2] for new or extended hardware monitoring
units that allow a more detailed analysis of cache behavior of data structures
such as uncovering the reason for eviction of cache lines.

With respect to actual hardware, the Itanium 2 processor is the only micro-
processor available today that allows data structure oriented profiling to be used
in practice. Although the dprof tool [10,3] exploits these capabilities with goals
similar to ours, the techniques used are different. dprof uses the Itanium’s EARs
(event address registers) that can sample load operations, their code and data
addresses and latency. This allows basically all data structures to be monitored
simultaneously. The association between virtual addresses and data structures
is accomplished by using the executable’s debug information and by capturing
malloc() calls. In comparison, our technique can only monitor one data struc-
ture at a time, but the results obtained are exact and not subject to sampling
inaccuracy. Also, the EARs only monitor load operations and the association to
which level of the memory hierarchy satisfied the load has to be done by ana-
lyzing the latency, while our technique allows us to monitor all events related to
the memory subsystem.

5 Future Work

We plan to explore the data address oriented profiling approach along several
directions in the future. First, to overcome the limitation of being able to mon-
itor only one address range at a time, we plan to combine the current direct
measurement technique with sampling in the following way: The developer will
be enabled to specify several data structures to be monitored and those will be
kept in a list. In addition, a PAPI overflow event can be set up (either based on
the elapsed CPU cycles or on the memory-system related event to be monitored)
and on each overflow the monitoring switches to another data structure. A com-
parison with the EAR-based approach as realized in dprof will show which of
the two approaches delivers better results in terms of accuracy and ease of use.

A second direction in which a more detailed investigation is warranted is the
area of the interaction of threads and data structure. In the current implementa-
tion, the same address range restriction is set up for each thread in ompP, while
a separate event set (and range) is supported by PAPI. With globally allocated
data structures shared across threads this is not a problem, but separate data
structures per thread are needed to fully support analysis of privatized arrays in
OpenMP.
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We plan to validate our data-structured oriented approach to performance
analysis by using it with applications having known problems with data access.
This investigation will compare the ease of our approach with the labor-intensive
manual instrumentation, modeling, and analysis that has been used to find and
fix these problems. Following this comparison, we plan to use our approach to
detect similar problems in large-scale applications.

6 Conclusion

We have discussed the hardware capabilities of the Intel Itanium 2 processor for
data address range restrictions and how those capabilities, which are available
through the PAPI interface, are used in a profiling tool for OpenMP applications
for data structure oriented profiling. From the user’s perspective, a central issue
is the ability to specify the data items to be measured which we have addressed
by offering code markup methods as well as runtime specification through en-
vironment variables. An appealing property is the exactness of the delivered
results – for load and store operations, for example, the measured data usually
fit exactly the expected results. Also, all memory system related events (160)
are available for measurement.

There are also some shortcomings with the data address range restrictions as
presented here. The most severe issue is the inexact coverage of the data address
range due to hardware restrictions which leads to offsets at the beginning and end
of the covered range. Padding is needed to move the monitored data structure
into an area surrounded by inactive regions of memory that will not disturb
the measurement. Naturally, such a padding could have adverse effects on the
application’s performance and defeat the purpose of discovering if and which
padding is required for optimization purposes. To circumvent this issue we plan
to investigate a mode where the range is not selected to be minimally including,
but maximally fitting the requested range. That would solve problems of wrong
attribution at the expense of less accurate results.
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Abstract. Based on some of our previous works, we show in this paper
the possibility of accelerating complex analyses (such as shape analyses,
dependence analyses...) thanks to a complete def-use chain analysis. In
particular, we put our efforts in accelerating the shape analysis tech-
nique developed in our research group. Using the gathered Def-Use(DU)
information, we have implemented a code slicing pass that computes the
relevant statements required by a client analysis. This work is part of a
heap-directed pointer analysis framework, where our final goal is the au-
tomatic parallelization of codes based on heap-stored dynamic/recursive
data structures.

1 Introduction

Fig. 1 shows the general framework where our heap-directed pointer analysis
makes contribution. Our final goal is the automatic parallelization of sequential
programs. For that purpose, we need to know if the program exhibits depen-
dences or not. When dealing with codes based on dynamic data structures, some
pointer analysis techniques fail to find hidden parallelism. An efficient data de-
pendence test is a required step in the detection of parallelism. With these kind
of codes, the data dependence test needs information about the properties of
the data structures traversed in the loops or in function bodies. This leads us
to shape analysis techniques which are able to capture, at compile time, the
shape of dynamically allocated data structures, i.e., those allocated at runtime
and accessed through heap-directed pointers. By definition, a shape analysis is
a static technique that achieves abstraction of dynamic memory, so it can help
to disambiguate, quite accurately, memory references in programs that create
and traverse recursive data structures. Our current dependence test is based in
the Shape Analysis Tool [1] that executes symbolically all code statements. The
shape analysis it performs is very costly, so a preprocessing pass was designed
to improve this situation. A slicing pass was added, based on the information
provided by an Interprocedural DefUse(DU) chain analysis. The aim of the sli-
cing is to reduce the number of statements to analyze, taking only the ones that
� This work was supported in part by the Ministry of Education of Spain under con-
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Fig. 1. General heap-directed pointer analysis framework

define the shape of the data structure. Thus, the shape analysis only executes
symbolically those statements, and not all statements of the program. As a re-
sult, the analysis time for the shape analysis is significantly reduced. We present
in this paper our slicing algorithm and show experimental evidence on how it
can accelerate a client shape analysis. This shape analysis is crucial for our data
dependence detection test as we have mentioned before.

Part of the DU Interprocedural analysis is based in the technique of Hwang
[2], which specializes in the identification of interprocedural DU chains of dy-
namic recursive data structures. It is an iterative data flow analysis that first
gathers local DU and alias information inside each procedure, then propagates
this local information through a special interprocedural graph, and finally com-
putes the DU chains in the program with an extra intraprocedural step over
each procedure. Thanks to this technique, not only intraprocedural DU chains
are detected, but interprocedural ones as well. The rest of DU chains due to
pointers (not accessing recursive fields) is computed through so-called Interpro-
cedural Static Single Assignment, ISSA. We put all this information to work in
a slicing pass. First, an initial group of seed statements (relevant to the shape
analysis criteria) are selected. These statements mark points of interest in the
code for the technique. The slicing pass is operated by a worklist algorithm that
ends when there are no more statements to analyze. The result of this slicing
pass is a subset of the statements in the program involved in the data structure
creation. Basically, we filter out other statements related to the structure traver-
sal which in fact do not contribute to the shape of the structure. Our goal is
to produce, with just the relevant creation statements, the same shape analysis
result which is obtained with the original code. As a consequence, we obtain a
good acceleration of the shape analysis (see the experimental results section),
taking less time to find the same result.

All our algorithms have been implemented in Java and integrated into the
Cetus compiler infrastructure [3], adding several new extra passes to this tool.
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We use Cetus parsing abilities to obtain an intermediate representation of the
code to analyze, where we can perform our passes.

The rest of this paper is organized as follows: we describe details of the basic
DU chain analysis in Section 2, and the slicing pass in Section 3. Experimental
results are introduced in Section 4. In Section 5 some related works can be found,
and finally we talk about conclusions and future work in Section 6.

2 DU Chain Analysis

DU information can be used to identify statements directly involved in the cre-
ation of recursive data structures that are referenced in the segment of code
under analysis. A DU chain establishes a relationship between the definition
statement where a link is created and each statement where it is used. With
that information we can automatically detect which statements actually define
the shape of dynamic memory and discard all other statements in a program.
For this purpose, we have implemented two algorithms: a interprocedural link DU
technique, based on Hwang’s work, and a interprocedural pointer DU technique,
based on ISSA representation. The interprocedural link DU technique, described
in Fig. 2, can be divided in four stages (four boxes in the figure). There is an
initial intraprocedural analysis on each local procedure of the program, where
DU tuples are created for each pointer accessing a recursive field, such as p->f.
Once the fixed point is reached, all local information of pointer accessing fields
is recorded, as a tuple, in a special graph called Interprocedural Flow Graph
(IFG), made of nodes and links. At the same time, information about how for-
mal and actual parameters are transformed inside each procedure is collected,
and used to build the corresponding IFG edges. The complete IFG of the pro-
gram is built in the stage two. There are four types of nodes (ENTRY, EXIT,
CALL and RETURN) and three different types of edges (Reaching, Binding and
Interreaching).

Fig. 2. Steps in the interprocedural link algorithm

In the following step, stage three of Fig. 2, tuples are propagated and trans-
formed along the whole IFG. This propagation step simulates the possible flow
of information that may occur between different procedures due to function call
sites. Contexts in function calls are preserved, so only realizable paths are tra-
versed. For this reason, propagation is split in two phases: in the first phase of
propagation, information goes from the caller procedures to callee procedures
(from an outer level to an inner one); in a second phase information goes in the
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int main (void){

node *a, *b, *c;

a=malloc();

b=malloc();

c=f(a,b);

g(a,b);

}

node f (node *x,node *y){

x->nxt=y;

x=y;

return x;

}

void g (node *s,node *t){

node *v;

v=f(s,t);

}

int main (void){

S1: a_0_1=malloc();

S2: b_0_1=malloc();

S3: c_0_1=f(a_0_1, b_0_1);

S4: c_0_1=x_1_0;

S5: a_1_1=x_1_0;

S6: b_1_1=y_0_0;

S7: g(a_1_1,b_1_1);

S8: a_2_1=s_1_2;

S9: b_2_1=t_1_2;

}

node f (node *x, node *y){

S10: x_0_0=Iphi(a_0_1, s_0_2);

S11: y_0_0=Iphi(b_0_1, t_0_2);

S12: x_0_0->nxt=y_0_0;

S13: x_1_0=y_0_0;

S14: return x_1_0;

}

void g (node *s, node *t){

S15: s_0_2=Iphi(a_1_1);

S16: t_0_2=Iphi(b_1_1);

S17: v_0_1=f(s_0_2, t_0_2);

S18: v_0_1=x_1_0;

S19: s_1_2=x_1_0;

S20: t_1_2=y_0_0;
(a) (b)

Fig. 3. (a) Code of a simple program;(b) ISSA-form of the code

other way, from callee procedures to caller procedures (from an inner level to
the outer one). When the fixed point is reached, DU information is passed from
the IFG to local Flow Graphs of procedures. Finally, a last intraprocedural pass
is done for the detection of interprocedural DU chains.

This is the general idea of how this technique works, however there are some
initial conditions to take into account for the correct execution of this analysis.

– a Flow Graph of the program is needed, so we have chosen the Control Flow
Graph (CFG) of the program provided by Cetus and we have extended it
with some useful properties, such as the depth level of each block in the
CFG.

– each variable of the code must have a unique and global identity in the
whole program. We have implemented the Interprocedural Static Single As-
signment(ISSA) form (Fig. 3) of the program. With these representation we
can guarantee that each variable has a unique and non-repeated identifier in
the whole program. We will explain more details about how it works later.

We have adapted both our platform of work, Cetus, and our codes to match
these pre-requisites. The accommodation of Cetus is possible because it is an
extensible infrastructure, in that way we have added several new passes to it.
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The ISSA pass can be considered as an extension of the original SSA form. The
original SSA form ensures that each variable has a unique identity inside each
procedure, not in the whole program, so there can be two variables with the same
name in different procedures. The SSA pass was already added to Cetus in one
of our previous works. We found out some ideas about how to extend traditional
SSA form to fulfill the requirements of the interprocedural technique [4]. Based
in these ideas, we added new special statements into some points of the program:
a)after each function call and b)at the beginning of each procedure body that
is called. The purpose of the first kind of statements is the matching between
actual and formal parameters when returning from the procedure. Within the
formal parameters, we need the last identifier used for them. The second kind
of statements have an inverse functionality, they summarize in one sentence all
actual parameters (one for each call to the procedure from different call-sites
in the program) connected with the same formal parameter. Thus, they look
like phi-statements in SSA form, so we called them Interprocedural phi, Iphi,
statements. In Fig. 3(a) and Fig. 3(b), we have a simple code written in C and
its ISSA-form. Sentences S4, S5, S6, S8, S9, S18, S19 and S20 are of type a).
Sentences S10, S11, S15 and S16 are of the second type, Iphi statements. Thanks
to the ISSA form, we developed other algorithm to capture DU chains not taken
into account by the interprocedural link DU technique described before.

void f(node *x, node *y){

node *z, *t;

z=(node*)malloc();

x->nxt=z;

t=y->nxt;

}

void main(){

node *p, *r, *q;

p=(node*)malloc();

q=(node*)malloc();

p->nxt=q;

r=p->nxt;

f(r,q);

}

Detected by Interp. Link Algorithm:

p->nxt=q; <-> r=p->nxt;

x->nxt=z; <-> t=y->nxt;

Detected by ISSA form:

q=(node*)malloc()); <-> p->nxt=q;

z=(node*)malloc()); <-> x->nxt=z;

(a) (b)

Fig. 4. (a) Code of a simple program;(b) Different DU chains detected

As an output of the complete DU chain analysis, we have two lists: the DU
chains detected by the interprocedural link DU technique, and the DU chains
detected by the ISSA form. In Fig. 4(a) and Fig. 4(b), we show a simple code
written in C, and some DU chains that would be detected by both processes.
There is an intraprocedural DU chain detected in main by the interprocedural
link technique, and another DU chain in procedure f that is detected thanks to
the ISSA technique.
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3 Slicing Process

Slicing is a technique that extracts statements, relevant to a particular criteria,
from a program. It has been applied to many fields, such as debugging, testing,
program comprehension, restructuring, downsizing and parallelization [5]. There
are also experiments about the good performance of program slicing in recursive
programs with dynamic pointer information [6].

void main(){

root=TreeAlloc(level);

TreeAdd(root);

return(0);

}

tree *TreeAlloc(int level){

if (level==0){

new=NULL;

}else{

new_level=level-1;

new=(struct tree *)malloc();

new->val=1;

left=TreeAlloc(new_level);

new->left=left;

left=NULL;

right=TreeAlloc(new_level);

new->right=right;

right=NULL;

}

return new;

}

int TreeAdd(tree *t){

if (t==NULL){

total_val=0;

}else{

tleft=t->left;

leftval=TreeAdd(tleft);

tleft=NULL;

tright=t->right;

rightval=TreeAdd(tright);

tright=NULL;

value=t->val;

total_val=value+leftval

+rightval;

t->val=total_val;

}

return total_val;

}

Fig. 5. Code from Treeadd program

We use, as Seed statements for this slicing process, the heap traversing state-
ments of the structure. They allow us to isolate the statements related to the
creation and connection of heap elements. For instance, in Fig. 5 we show the
TreeAdd code from the olden suite [7]. Since we are interested in the paralleliza-
tion of the TreeAdd procedure body, particularly our dependence test would
check if the two TreeAdd calls inside TreeAdd procedure are independent. In
this example, seed statements would be tleft=t->left and tright=t->right.
First, this group of selected statements is introduced in a worklist. During the
execution of the slicing algorithm, more statements can be added to the worklist.
While there are statements to analyze in the worklist, the process continues. Be-
ginning with the uses in the statement, the algorithm finds definitions for those
uses. Once definitions are reached and there are no more statements to analyze,
the algorithm finishes. Finally, we have an output list with all statements of in-
terest that contain information about where data structures are created. Fig. 6
shows the Treeadd program from Fig. 5 after applying the slicing algorithm.
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void main(){

;

return(0);

}

tree *TreeAlloc(int level){

if (level==0){

;

}else{

new=(struct tree *)malloc();

;

left=TreeAlloc(new_level);

new->left=left;

;

right=TreeAlloc(new_level);

new->right=right;

;

}

return new;

}

int TreeAdd(tree *t){

if (t==NULL){

;

}else{

;

;

;

;

;

;

;

}

return total_val;

}

Fig. 6. Sliced code from treeadd program. This code will be passed to the shape
analyzer

With the programs we have checked, this slicing pass has been the key to
reduce the analysis times of the shape analysis. We believe this slicing process
can be of great value to enable our shape analysis technique to analyze more
realistic benchmarks. The reason for this result is because the slicing process
only gets statements that modify the shape of data structures, and do not get
the ones traversing the structure. Usually, the number of statements modifying
the shape of data structures is small.

4 Experimental Results

For these tests we have considered some programs that are representative of
typical recursive data structures. Two codes have been taken from the olden suite
[7] and we also have two programs that make operations with sparse matrixes
(one computing the product of a sparse matrix by a sparse vector, and the other
the product of both sparse matrixes). Execution time has been measured in an
Intel(R) CoreTM 2 CPU1.86 GHz with 2 GB RAM.

Fig. 7 displays some metrics for the complete DU-chain analysis performed.
The purpose of this graphic is to help us detect the most expensive parts in
the analysis, in order to try to optimize them. Below, next to the names of
the codes, we can see the total times measured for the whole analysis. We have
divided the analysis times in five parts. Four of them (intra, ifg, propag, inter
which corresponds to the ones shown in Fig. 2) belong to the interprocedural
link algorithm, and a last part with the computation of ISSA DU chains and
the slicing pass (lastF ). The graphic shows the percentage of the total time
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Fig. 7. Measures for different stages in the DU chain analysis

Table 1. Analysis time measured for the shape analysis tool

Program Original
#stmts

Filtered
#stmts

Original
Time

Filt. Time %time
reduction

Mat-Vec 155 57 2.947s 0.531s 81.98%
Mat-Mat 200 80 27.1s 1.3s 95.20%
TreeAdd 42 17 5.518s 0.591s 89.28%
Power 272 60 4.919s 1.839s 62.61%

taken for every separate part of the analysis. The intraprocedural analysis part
collects all information required by the following stages, and turns out to be the
most expensive. Watching the graphic, we see that the computation of ISSA DU
chains and the slicing part are less than 20% of the total time in most cases. In
codes TreeAdd and power, stages ifg and propa are a negligible percentage of
the total time of the analysis.

Then in Table 1, we present some experimental evidence regarding the gath-
ered acceleration obtained by the shape analyzer, when comparing the analysis
times before and after the code slicing. First column shows the original size of
the program in number of statements. The following column shows the size af-
ter the slicing pass. The third column contains the execution times in seconds
of the shape analysis over the original program. The fourth column shows the
times in seconds for the same shape analysis but over the pruned program. In
all cases, sliced programs produce the same output graphs than their original
counterparts, capturing memory configuration without any loss in precision. In
addition, a time reduction of more than 60% is achieved, up to a 95,2% reduction
in the best case for the multiplication of matrixes program. These results prove
the effectiveness of our approach.
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5 Related Work

There are some initial works by Wolfe et al. that used SSA in parallelism [8] but
they do not deal with pointers. Then, Hendren et al. [9] proposed an interesting
SSA application for pointers. However, their extended SSA numbering has no
phi-nodes, so it cannot be used to get DU chains.

Harrold and Soffa’s work on interprocedural DU chains [10] inspired the algo-
rithm developed by Hwang and Saltz [4]. Part of the work presented in this paper
is based in this last approach. They also proposed a shape analysis application
for the interprocedural algorithm, quite similar to Ghiya and Hendren’s one [11].
Our shape analysis works in a different way, inspired by Sagiv et al.[12]. It gives
a representative graph with all collected information about heap locations in the
program.

Regarding other interprocedural approaches, Assman and Weinhard [13] pro-
posed a worklist algorithm using summary nodes and so-called storage shape
graphs with skeleton trees of definitions and uses of nodes. They used proce-
dure cloning which is quite expensive in large programs or with a high level of
recursion. Another interprocedural work, by Guyer and Lin [14], uses a work-
list algorithm based in the computation of DU chains. Their technique ac-
knowledges some performance reduction with programs based in recursive data
structures.

6 Conclusions and Future Work

In this paper, we have shown one of the possible applications for the complete DU
chain analysis implemented. We demonstrated how a shape analysis technique
can be accelerated thanks to a code slicing pass based on the precise informa-
tion applied by the DU chain technique. The DU analysis can be extended with
the automatic detection in the code of so-called induction pointers. They are
used in loops to traverse recursive structures, establishing the traversal pattern.
That pattern, along with the shape of the data structure, allows to detect de-
pendencies between accesses. Of course, induction pointers already introduce an
inherent dependence between different iterations of a loop, something known as
the pointer-chasing problem. However, there are techniques to overcome it, pro-
vided that no other dependencies exist [15]. Being able to automatically detect
induction pointers is the next pass for our compiler analysis framework, because
they are needed to identify loops that traverse recursive data structures. These
loops are candidate for parallelization in our approach. It is also important for
the dependence analysis to detect access paths in the program, so we also plan
to extend the current analysis for their automatic detection.

Besides, we are currently working in the implementation of a new dependence
test analysis based in the work presented in this paper. Some preliminary experi-
mental results show that a significant time reduction can be achieved comparing
executions between our current dependence analysis [16] and the new proposed
one. However all this recent work will be included in a future paper.
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Abstract. With support for C/C++, Fortran, MPI, OpenMP, and per-
formance tools, the Eclipse integrated development environment (IDE)
is a serious contender as a programming environment for parallel appli-
cations. There is interest in adding capabilities in Eclipse for conducting
workflows where an application is executed under different scenarios and
its outputs are processed. For instance, parametric studies are a require-
ment in many benchmarking and performance tuning efforts, yet there
was no experiment management support available for the Eclipse IDE.
In this paper, we describe an extension of the Parallel Tools Platform
(PTP) plugin for the Eclipse IDE. The extension provides a graphical
user interface for selecting experiment parameters, launches build and
run jobs, manages the performance data, and launches an analysis appli-
cation to process the data. We describe our implementation, and discuss
three experiment examples which demonstrate the experiment manage-
ment support.

Keywords: parallel, performance, experiment management, Eclipse.

1 Introduction

Integrated development environments (IDEs) help to facilitate software devel-
opment and maintenance. IDEs provide a consistent development environment,
numerous enhancements to the development process, and are the standard in
industrial software development. IDEs are not very common in parallel applica-
tion development, but improving toolkit functionality makes it possible to write,
compile, launch and run large-scale parallel applications on a local machine or
on a remote resource.

Parametric studies are necessary in many benchmarking and performance tun-
ing efforts. This is especially true for parallel applications, where scaling studies
are key to exploiting highly parallel hardware for maximum return. Paramet-
ric studies are helpful in finding scaling bottlenecks and communication design
flaws, and improving algorithmic efficiency. However, parametric studies can
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consist of hundreds or thousands of application configurations, and automated
parametric studies can be complex to perform. Traditional parametric studies
on parallel hardware requires scripts for building configurations, scripts for sub-
mitting batch jobs to the queue, scripts for data management, and the eventual
analysis processing at the end of the executions. Script programming is error
prone, and particularly costly if mistakes are not found until after hundreds of
processing hours have been consumed. Parametric study scripts are frequently
re-usable only with considerable effort, as the differences between two or more
parallel applications can be significant. There is a clear opportunity to improve
upon the parametric study process.

Eclipse [1] is a user configurable software development IDE with a plugin-
centric design. Plugins have been developed for a wide range of development
purposes. A TAU [2] performance analysis toolkit plugin for Eclipse has been
written, and can be used for instrumentation and measurement of C, C++,
Fortran and Java applications developed in Eclipse [3,4]. However, there was no
mechanism in the various plugins for experiment management with regards to
performance studies. For that reason, we extended the Parallel Tools Platform
(PTP) plugin for Eclipse to include a parametric study framework for the TAU
plugin in Eclipse. Users can set up a desired study, launch the experiment, and
the framework will automatically compile and execute the application with the
specified configuration combinations, storing the performance result after each
run in a PerfDMF [5] repository. When the experiment is complete, the multi-
experiment analysis and data mining tool PerfExplorer [6] is launched, and the
automated comparative analysis results are produced. While TAU, PerfDMF
and PerfExplorer are the tools we used in our experiments, consideration was
given to the implementation to ensure that other performance tools could be
used in the same framework.

The remainder of this paper is as follows. Section 2 will provide some back-
ground discussion of Eclipse and the plugin components involved. Section 3 will
describe the experiment management support implementation. Section 4 will
describe some analysis examples using the experiment management support.
Section 5 will describe related work in parametric study support, and Section 6
will describe our conclusions and future work.

2 Background

Eclipse. Eclipse[1] is a popular software platform with support for customized
IDE functionality. Its default set of plugins is designed for Java development, but
the Eclipse community has provided support for other languages such as C/C++
and Fortran. Support for high performance computing has also been provided
via the Parallel Tools Platform (PTP). Two distinct advantages of the Eclipse
platform are its portability and extensibility. The former is provided largely by
Eclipse’s Java-based implementation, which means it can be run consistently
on Windows, Macintosh and many Unix based OSes. Because Eclipse is open
source, users are free to modify and extend its functionality as they see fit. As a
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result, there is a diverse array of enhancements and plugins available to increase
Eclipse’s functionality for software development, as well as other tasks. A longer
description of Eclipse can be found in [3,4] and elsewhere.

Eclipse Plugins. There are four Eclipse plugin collections, or projects, that are
related directly to the integration of the TAU performance analysis tools. The
Java Development Tools (JDT) [7], the C/C++ Development Tools (CDT) [8],
the Photran Development Environment [9], and the Parallel Tools Platform
(PTP) [10] all facilitate the development of programs and the use of program-
ming paradigms that are supported by TAU and none include their own internal
mechanisms for performance analysis.

JDT. The JDT assists with Java development by providing a context sensitive
source editor, project management and development control facilities, among
other features.

CDT. Many of the CDT’s features are comparable to those of the JDT. How-
ever, the build system of the CDT is naturally quite different. It supports
both the use of external makefiles and an internally constructed “Managed”
makefile system. In either case the compilation and linking of programs
within the CDT is accomplished via user specified compilers and compiler
options.

Photran. Photran is a Fortran development environment, based on CDT. Pho-
tran has support for Fortran 77, 90 and 95.

PTP. PTP provides the ability to write, compile, launch and debug parallel
programs from within Eclipse. PTP supports both OpenMP and MPI based
parallelism, and is also based on CDT.

TAU. TAU [2] is a mature performance analysis system designed to operate
on many different platforms, operating systems and programming languages. In
addition to collecting a wide range of performance data it includes resources for
performance data analysis and conversion to third party data formats.

Many of TAU’s functions are closely bound to the underlying architecture of
the system where the analysis takes place. Therefore, TAU is generally config-
ured and compiled by the user to create custom libraries for use in performance
analysis. In addition to generating system specific libraries, this configuration
process allows specification of many performance analysis options allowing an
extremely diverse range of performance experiments to be carried out with TAU.
Each separate configuration operation produces a stub makefile and a library file
that is used to compile an instrumented program for analysis.

Instrumentation. TAU’s fundamental functionality is based on source code
instrumentation. At the most basic level this consists of registering the entry
and exit of methods within the program via calls to the performance analysis
system. Performance analysis of a given program can be focused on a given set
of functions or phases of the program’s execution by adjusting which functions
are instrumented. A common application of such selective instrumentation is to
exclude small, frequently called routines to help reduce performance monitoring
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overhead. TAU includes utilities to perform automatic instrumentation of source
code. TAU provides compiler scripts which act as wrappers of the compilers
described at TAU’s configuration. Use of these scripts in place of a conventional
compiler results in fully instrumented binary files without modification to the
original source.

Analysis. Depending on the configuration settings provided to TAU, it can
generate a wide variety of performance data. TAU includes utilities to convert
both its profile and trace output to a diverse array of other performance data
formats, allowing performance analysis and visualization in many third party
performance analysis programs. Performance profiles are automatically uploaded
to a PerfDMF [5] repository for analysis.

Additionally, TAU includes its own facilities for analysis of performance data.
The ParaProf[11] profile analysis tool, for example, provides a full set of graphical
tools for evaluation of performance profile data. PerfExplorer [12] is a multi-
experiment analysis and data mining tool, designed to provide parametric study
analysis and intelligent analysis of results using performance data, metadata,
analysis scripts, and inference rules.

TAU Plugin for Eclipse PTP. Currently, three separate TAU plugins have
been developed for Eclipse. Each allows performance analysis within the scope of
a different Eclipse IDE implementation, one for the JDT, one for the CDT and
one for the PTP. The TAU JDT plugin requires only the standard Eclipse SDK
distribution and allows TAU analysis of Eclipse Java projects. The TAU CDT
and TAU PTP plugins allow performance evaluation of C and C++ programs
within the standard, sequential, C/C++ IDE implementation and the PTP’s
parallel implementation respectively. Both the TAU CDT and TAU PTP plugins
support Fortran when the Photran plugin is installed.

The TAU CDT and PTP plugins extend the CDT and PTP launch configu-
ration systems, respectively. They allow the selection of a TAU stub makefile,
which will determine which TAU libraries are used at the program’s compi-
lation. The plugins also allow specification of selective instrumentation, other
TAU-specific compilation options and data collection options.

When an application is launched within Eclipse using the TAU plugins an
instrumented executable will be generated and run using the selected options.
This executable will then be run by the CDT or PTP launch management sys-
tem. When execution is complete profile data may be stored automatically in
a local PerfDMF database and viewed in ParaProf. Essentially, once the TAU
plugins for the desired IDEs have been installed and configured, obtaining per-
formance data from an Eclipse project is simplified to a sequence of mouse clicks.
A complete description of the plugins can be found in [3].

3 Design and Implementation

The initial implementation of the performance analysis work-flow system fol-
lowed a linear three-step process. Compilation, execution and analysis were per-
formed using the parameters specified by the user in the launch configuration
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Fig. 1. The Experiment Management user interface

interface. Each step was handled by the job management system provided by
the Eclipse API. However the respective jobs made assumptions about their
execution order. To add support for multiple parametric combinations it was
necessary to make significant changes to the existing work-flow system.

The first such change was to allow the user to specify lists of parameters
in a new UI component specific to parametric analysis, as shown in Figure 1.
The values available for parametrization are build optimization options, proces-
sor count, application arguments and run-time environment variables. Initially
we generated one set of parameters for each combination of list elements. Sub-
sequently we added the ability to limit parameter sets to those required such
as for weak scaling studies. This was accomplished by creating tuples from the
parameter lists, where each parameter list had the same number of potential val-
ues. Each index of the parameter lists were matched up (i.e. the first parameter
value in each populated list for one experiment, the second parameter value in
each populated list for the second experiment, etc.) In the case of weak scaling
studies, for each of M processor count values, there would be N input problems
(where M = N) so rather than generating M ∗ N experiments, there are only
N experiments.

The procedure for each parameter set generated is similar to the linear system
used in the earlier implementation. However, some modifications were needed
to improve efficiency and provide each step with data required from previous
steps. For example, because the build and launch steps are independent in the
Eclipse environment, only one build operation needs to be performed for each
set of build parameters. Each combination of launch parameters is run once on a
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(a) Parametric study workflow

Analysis Job

Build Job(s)

Run JobRun JobRun Job(s)

Post
Processing

Job

(b) Nested, queued jobs

Fig. 2. 2(a) shows the overall parametric study workflow. 2(b) shows the nesting of
jobs. There is an outer loop of build jobs and an inner loop of run jobs. Each run is
followed by a post-processing step, where performance data is uploaded to PerfDMF.
After all build and run jobs are complete, the analysis job is run.

single executable generated by a build step. Then the executable is rebuilt with
the next set of build parameters and the process repeats.

The single data structure previously responsible for management of the build,
execution, and analysis steps was divided into three task-specific components
to better support the decoupling of the steps in parametric analysis. Because
the launch and analysis jobs relied on data created by the build job, it had
been necessary to perform a full build before performing any of the subsequent
steps. Thus, another change necessitated by the more flexible parametric anal-
ysis system was to initialize the relevant data in the build job object upon its
instantiation rather than upon being run. This enables each job to be created
and put into a queue before any job is run. The jobs can then be run in succes-
sion. A similar dependency existed between the launch job and the post-launch
job - the performance data cannot be archived until the execution is complete.
These architectural changes will help with the future addition of more complex
work-flow capabilities.

The full operating procedure of the parametric analysis system, shown in
Figure 2, is as follows. Given the lists parameters from the user, a list of distinct
build and launch parameter sets is generated. For each build parameter set in
the list, a build job is created and placed in a job queue. After every such build
job, for each launch parameter set, launch and analysis jobs are created and
placed in the queue. When the queue is fully populated the first job is run. The
last action of each job is to initiate the subsequent job in the queue. The final
analysis job in the queue contains additional instructions to launch any final
analysis operations on the whole of the data generated by the parametric run.

As of this writing the parametric analysis system’s support for user specifi-
cation of build parameters remains rudimentary. The build system provided by
Eclipse contains compiler-specific options which must have valid values selected.
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Thus, providing a relatively simple UI for specification of arbitrary build param-
eters requires some foreknowledge of the implementation of Eclipse build-chains
for specific compilers. This is in contrast to the launch configuration system
where the user may specify arbitrary strings as environment variables or pro-
gram arguments.

The parametric analysis system was developed to inter-operate directly with
the TAU performance analysis system. However the Eclipse performance frame-
work is designed for more general applications. Presently the TAU plug-in is the
only component of the performance framework which fully exploits the capabili-
ties of the parametric analysis system. Fully incorporating support for arbitrary
analysis tools remains a priority.

4 Examples

To demonstrate the functionality of the experiment management support we
added to Eclipse PTP, we constructed a number of parametric study examples.
In this section, we describe two applications, Sweep3D and LU from NPB3.2.1,
used in three different parametric studies.

4.1 Sweep3d

Sweep3D [13] solves a 1-group, time-independent, discrete ordinates, 3D Carte-
sian geometry neutron transport problem. The main algorithm is a wavefront
process across the I and J dimensions, and is pipelined along the K dimension.
The algorithm gets its parallelism from the I, J domain decomposition. Sweep3D
is written in Fortran 77, and uses MPI. There is also a timer routine written
in C, but in this experiment, the timer routine was disabled, as we were using
TAU for instrumentation. The code was also modified to take the name of the
input file as a command line argument, to allow for parametric studies. This
was necessary, as the input file also specifies the domain decomposition in each
direction, and the total number of processes has to match the number of MPI
processes.

The first parametric study was a compiler optimization study. Sweep3D was
compiled with the GNU Fortran compiler [14], using four different optimization
settings: -O0 (no optimization), -O1 (some optimizations), -O2 (more optimiza-
tions), and -O3 (most optimized). The results of the parametric study are shown
in Figure 3.

In order to process the experiment, four build jobs were automatically con-
structed, each with a different compiler optimization setting. Each of the build
jobs had a corresponding run job, and a post-run job. The post-run job for each
execution was to save the TAU performance profiles into the PerfDMF database
for that application, creating a new experiment in the database. After all of the
build and run jobs were complete, there was one final post-processing job which
ran PerfExplorer and executed an analysis script. The script loaded the perfor-
mance data into PerfExplorer and generated two charts, one showing the total
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Optimization:
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(a) Compiler Options selected in Eclipse
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generates graphs 
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Fig. 3. The results of running the compiler optimization study - PerfExplorer is exe-
cuted, and the results of the study are visualized in two charts

runtime for the application for the four optimization settings, and one chart
showing the runtime for the three most time-consuming instrumented regions in
the application.

The second parametric study was a weak scaling study. This was an interesting
challenge, as for each “number of processors” value, there was a corresponding
input problem which scaled at the same rate as the number of MPI processes. In
our study, we used 100 grid cells per processor in each direction, and 100 planes
in the K direction. Therefore, for 2, 4, 6, and 8 processors, the problem size was
20,000, 40,000, 60,000 and 80,000 total grid cells, respectively. The results of the
study are shown in Figure 4.

In order to process the experiment, one build job was constructed, as only
one was necessary. Four run jobs were created, each with a different number
of MPI processes and a corresponding input file. Again, each of the run jobs
had a corresponding post-run job to save the performance profiles to PerfDMF.
After the one build and all four run jobs were complete, there was one final
post-processing job which ran PerfExplorer and executed an analysis script.
The script loaded the performance data and generated one chart showing the
runtime for the five most significant instrumented regions in the application.
The chart demonstrated that there was a slight increase in overhead in the main
computation routines (not uncommon, but ideally the time spent in computation
would stay level for all numbers of processors), and an increase in overhead in
the MPI communication routines, which is expected in scaling studies.

4.2 NPB 3.2.1 LU

The NAS (NASA Advanced Supercomputing) Parallel Benchmarks (NPB)[15]
are a set of programs designed to evaluate the performance of parallel systems.
NPB 3.2.1 includes serial, MPI and OpenMP implementations of computational
fluid dynamics algorithms. We elected to use the LU benchmark in order to
evaluate the OpenMP parallelism functionality in the experiment management
system. The LU benchmark uses successive over-relaxation to solve a diagonal
system by splitting it into block lower and upper triangular systems.
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(a) MPI weak scaling options in Eclipse
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(b) PerfExplorer output

Fig. 4. The results of running the MPI weak scaling study - PerfExplorer is executed,
and the results of the study are visualized in one chart

Our third parametric study was a strong scaling study. In this study, we
varied the number of threads available to the OpenMP runtime, and compared
the results from each execution of the benchmark. In our study, we constructed
the “A” class problem, which solves a 64 ∗ 64 ∗ 64 system in 250 iterations.
We requested a study with all integer values of threads between one and eight,
inclusive. The results of the study are shown in Figure 4.

In order to process the experiment, only one build job was constructed. Eight
run jobs were created, each with a different number of OpenMP threads. This
was accomplished by setting the OMP NUM THREADS variable to a different value
for each run. As with the other examples, each of the run jobs had a correspond-
ing post-run job to save the performance profiles to PerfDMF. After the one
build and all eight run jobs were complete, there was one final post-processing
job which ran PerfExplorer and executed an analysis script. The script loaded
the performance data and generated two charts, one showing the total runtime
for the application for each of the eight thread values, and one chart show-
ing the runtime for the ten most time-consuming instrumented regions in the
application.

5 Related Work

There are a few related experiment management systems, but to the best of
our knowledge, none of them are integrated into an application development
environment such as the Eclipse IDE, nor do they support resource managers
on large shared systems.

Prophesy [16] is an online database which uploads and stores data from in-
strumented parallel application runs. Prophesy applies the performance database
to manage multi-dimensional performance information for parallel analysis and
modeling. The data is accessible from a web interface, and various models can
be built, including curve fitting, parametric models, and kernel coupling. There
are data generation and submission (of the performance data to the Prophesy
database) utilities as part of Prophesy, but they are not automated.
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Fig. 5. The results of running the OpenMP strong scaling study - PerfExplorer is
executed, and the results of the study are visualized in two charts

Pythia-II [17] is a system for generating performance data from a large para-
metric space, with the goal of recommending optimized solutions to developers
from a number of alternatives. The Pythia-II system combines knowledge discov-
ery with recommender systems to mine performance data, and provide runtime
selection of application parameters. While Pythia-II has software for generating
performance data, it is for the purpose of searching within the recommender
system, and is not intended for general purpose parametric studies.

ZENTURIO [18] is an environment for generating parametric studies for par-
allel performance analysis. On completion of an application execution, the per-
formance data is automatically stored in a repository. The environment includes
a performance visualizer which can perform multi-experiment analysis. ZENTU-
RIO includes support for cluster and Grid computing.

Aksum [19] is a related multi-experiment performance analysis tool which
automatically instruments an application, builds and executes the application
with given parametric values, and analyzes the results with the goal of locating
performance bottlenecks.

6 Conclusion

The work reported here demonstrates initial steps toward integrating automated
performance analysis in the Eclipse IDE. In particular, we showed how para-
metric studies are made easier with Eclipse PTP and Experiment Management
support. Support for optimization settings, MPI processor counts, environment
variables, and application arguments were developed in Eclipse and used to gen-
erate experiments for execution with the TAU Performance System. The project
also expanded and improved the automation of analysis results using PerfEx-
plorer scripts.
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While successful, there are a few open issues and related problems for our
chosen solution. The Eclipse PTP support for launch managers is limited, and
not yet robust unless specific versions of supported MPI libraries are used. There
are four resource managers supported in Eclipse PTP (ORTE [20], IBMLL [21],
PE [22], MPICH2 [23]), but they were either not in use on our parallel systems,
or did not work as advertised. For this reason, despite the fact that we had a
128-core system at our disposal, we were unable to perform parametric studies
which ran on more than one node. The parametric studies can be performed
at large scale on any system that properly supports the PTP. Hopefully, more
robust support in the PTP will be provided for more systems in the future.

We are also investigating better ways to handle unusual combinations of pa-
rameters. Currently, either all combinations of all parameter values or matched
pairs are supported. Other possible ways to specify parameters include value
ranges or algorithmic expressions. There are also questions about whether val-
ues in the experiment management support override the values in the application
build and run configurations, or add to them. Flexible parameter mechanisms
would allows the tools to be more broadly applied. In addition, the larger prob-
lem of specifying complex combinations of parameters to the build process is as
yet unresolved, as described in Section 3.

In conclusion, we believe that as the Eclipse PTP support continues to im-
prove, we will see more parallel application development in Eclipse, and para-
metric studies submitted from IDEs will become more commonplace.
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Abstract. In this paper we present the analysis and optimization of
the Semtex CFD application on the basis of trace data obtained with
VampirTrace and visualized by Vampir. In the course of the paper the
evaluation of I/O performance with regard to globally shared I/O re-
sources and the detection of hidden remote memory accesses with the
help of special hardware performance counters will be highlighted.
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1 Introduction

This paper presents two aspects of the analysis and optimization process of the
parallel CFD (computational fluid dynamics) application Semtex on the SGI
Altix 4700 platform.

Computation and communication are the most prominent targets for per-
formance improvement. Yet, in this paper we investigate two effects related to
remote memory access in a NUMA environment and to extensive I/O activity.

The following Sect. 2 gives an overview of instrumentation and trace collection
with VampirTrace and trace visualization with the Vampir and VampirServer
tools. Section 3 depicts the checkpointing and communication mechanisms of the
Semtex CFD code and presents detailed detection of two interesting performance
flaws as well as the successful optimization of both. The paper ends with a short
conclusion and outlook.

2 Trace Collection and Visualization with Vampir

VampirTrace is a scalable and portable event tracing software for sequential
and parallel applications. It features tracing of applications on UNIX platforms
in C, C++ and Fortran supporting MPI, OpenMP and hybrid parallelism. It

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 295–304, 2009.
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includes support for automatic code instrumentation and a sophisticated run-
time measurement library. VampirTrace is developed at the Center for Informa-
tion Services and High Performance Computing (ZIH) at Technische Universität
Dresden in collaboration with the KOJAK project of research center Jülich [1]
and is available under a BSD open source license.

Vampir is an interactive trace visualization and analysis tool developed at ZIH,
TU Dresden. It allows detailed post-mortem investigation of dynamic parallel
run-time behavior as well as statistical summaries of arbitrary intervals of run-
time [2,3]. The successor version VampirServer uses a client-server approach with
distributed processing of trace data that allows an interactive work-flow for very
large data sets [4].

2.1 Performance Counter Support

Even though VampirTrace focuses on event tracing and collecting event-specific
information, it utilizes additional statistical information about dynamic run-time
performance. Most notably, it supports the PAPI performance counter library,
that defines a common interface for reading hardware performance counters [5].
On one hand, it makes common performance counters available with standard
names on almost all platforms. This includes the counters for floating point
operations or cache misses/hits for various cache levels. On the other hand,
PAPI allows to query a huge number of platform specific performance counters
that are rarely used. Yet, sometimes such counters allow insight into very special
performance issues, as shown in this paper.

2.2 Application Specific and System Wide I/O Tracing

Besides the classical targets of performance analysis computation and communi-
cation, another important component of HPC applications is input/output (I/O)
from/to files on mass storage systems. In particular, with expanding storage sizes
and working sets, the time spent for data accesses on the storage system makes
up more and more of the total application run time. Yet, the speed of storage
systems does not increase accordingly. Like the so called memory wall [6] that
inhibits faster computation because of inadequately slow memory accesses there
is a similar input/output wall for accesses to the storage systems.

This makes the analysis and optimization of the I/O behavior increasingly
important. This is especially true for data-intensive applications that scale well
with the number of processors. Usually, such codes scale with a constant working
set per CPU. Thus the data to be transferred to/from the storage system grows
linearly with the degree of parallelism exceeding the I/O capacity eventually.

Therefore, the recent development of VampirTrace contains some approaches
for gaining insight into dynamic I/O behavior of parallel applications [7,8]. This
includes instrumentation and tracing of application-level I/O calls as well as
system-wide I/O throughput of the global SAN (Storage Area Network) infras-
tructure. The former is important for detailed examination of user-space I/O
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requests. The latter is necessary to include the effects from concurrent I/O ac-
tivities of other applications – the SAN infrastructure cannot be used exclusively
like CPU or (parts of) the communication infrastructure (to some extent).

3 Tracing and Analysis of the Semtex Application

Semtex is a parallel CFD code which scales very well over 512 CPUs [9]. It is
very data intensive and is used regularly for highly parallel and long-running
simulations on the HPC infrastructure of ZIH.

Semtex employs an integrated checkpoint/restart mechanism in order to divide
a single simulation into convenient sections that fit well into the batch system pol-
icy and make it robust against system failures. Additionally, multiple checkpoints
retrieved at small intervals can be used to visualize the simulation. This allows for
verification of the correctness and refinement of the simulation, respectively.

The checkpoint mechanism saves the complete parallel working set of a sim-
ulation after a given number of time step iterations. For a visualization of the
simulation checkpoints are written every 200 iterations. If no visualization is
needed, the simulation runs for 5000 time steps (ca. 4h real-time on 128 CPUs)
after which a checkpoint is taken that is used as starting point by the next job.

Most of the simulations running at ZIH use a working set suitable for running
on 128 processors that results in checkpoints of 5 gigabytes in size. The less often
used next larger working set has checkpoints occupying 20 GB of disk space.

As simulations carried out with Semtex account for a large share of the CPU
hours used per year at ZIH, its I/O behavior has been subject to closer perfor-
mance analysis.

3.1 Instrumentation and Tracing of Semtex

For the analysis Semtex was at first instrumented using the automatic compiler
instrumentation offered by VampirTrace. A tracing run on 128 CPUs took 2h
16min for 2000 time steps including 10 checkpoints, and the trace data accu-
mulates to 56 gigabytes – including function calls, MPI specific information and
extensive I/O records for both, per-process I/O calls as well as system-wide I/O
throughput records. This data provides fine-grained information about the appli-
cation. Figure 1 shows a section of the overall run-time including two checkpoint
phases which can easily be identified.

Although VampirServer handles such large traces without problems, the over-
whelming details make an analysis cumbersome. The level of detail (and hence
the size of trace files) was reduced by employing VampirTrace’s filter abilities
which allow to record only a given number of calls per function or to skip certain
functions completely.

Nevertheless, the overhead caused by the automatic instrumentation still
was very large – tracing time was about 2.5 times of original runtime.1 As a
1 This is a known problem when compilers have to decide whether to instrument or

inline a function – the Intel compilers used in this example favor instrumentation
over inlining, therefore much performance is lost.
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Fig. 1. Vampir’s Process Timeline display for a typical execution of Semtex

Fig. 2. Timeline display zoomed to a single checkpoint phase

consequence, the code was manually instrumented and afterwards, the tracing
introduced only a marginal overhead.

However, the automatic instrumentation was by no means useless. The avail-
able tracing data delivered invaluable insights into the workflow of Semtex that
were used to quickly identify interesting source code locations where instrumen-
tation calls have been inserted.

3.2 I/O-Related Performance Bottlenecks

For investigation of I/O related performance we looked closer on the checkpoint
phases in between the time step simulation. Figure 2 shows a zoomed time line
for a typical checkpoint phase. Process 0 is dominated by I/O activity shown
in yellow while the remaining processes spend this time in MPI calls. This is a
classic single writer situation, where one process is collecting all data from its
peers via message passing in order to write it to the file system.

This scheme is obviously unfavorable for a massively parallel program and
limits the otherwise good performance. In particular, it inhibits scalability as
checkpoint phases will grow linearly for growing CPU counts.

Further investigating the I/O behavior of Process 0 revealed additional per-
formance problems. All checkpoint phases turned out to follow a very regular
pattern of receiving and writing constant sized blocks of approximately 1.4 MB
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Fig. 3. Regular pattern of MPI receive (red) and write (yellow) activities with notable
variation in throughput. The upper counter shows the process-related write speed while
the lower one shows the global SAN throughput.

as shown in Fig. 3. Yet, the single write operations show quite differing speed as
shown in the bytes written performance counter, compare Sect. 2.2.

When inspecting I/O performance of any single process it is important to
consider the current utilization of the SAN infrastructure. Usually, the I/O net-
work is not exclusively used by an application but globally shared. Therefore,
the effect could have been caused from outside, i.e. any other application with
extensive I/O utilization. This is not the case in this example. The comparison
of the local counter bytes written and the global one HPC SAN write in Fig. 3
shows the same I/O throughput on average. Furthermore, the global I/O speed,
which is only available with a resolution of one sample per second (compare
Sect. 2.2), is almost constant during all checkpoint phases.

3.3 Optimization of I/O Performance

Our analysis of I/O behavior revealed two bottlenecks: On one hand, the single
writer problem, and on the other hand the fluctuating local write speed.

Both of these problems were solved by modifications to the checkpoint code.
From the trace analysis we learnt the following facts:

– The speed of single write calls of constant size is heavily fluctuating. Even
though most calls are fast, the regularly occuring very slow calls destroy the
over-all I/O performance – compare peaks in bytes written counter in Fig. 3.

– The speed of SAN I/O is the same during all checkpoint phases and near
zero just before and after these phases which confirms the reliability of the
application’s I/O measurements.
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– The time step iteration is interrupted by checkpoint phases from time to
time. Therefore, every I/O phase is followed by a computation phase without
I/O activity – see Fig. 1.

This led to the following hypothesis: The delays in I/O API calls on the ap-
plication level are caused by the caching I/O subsystem of the operating system.
Two different solutions are available to eliminate this problem. The first is using
direct I/O which bypasses the operating system’s file cache. Yet, it is rather
difficult to implement as special alignments and request sizes have to be used.
The second solution does not suffer from those restrictions. Since the write-only
scheme of checkpointing does not require instant write to disk, asynchronous I/O
can be used. This has the advantage of decoupling the I/O calls, that happen
during the checkpoint phases, and the actual I/O operations issued by the oper-
ating system, that may be performed concurrent to the following computation
phase. Furthermore, with modifying the checkpoint routine so that each process
writes its data on its own to the checkpoint file, the single writer problem is
addressed as well.

Table 1. Comparison of original and optimized Semtex checkpoint phases

# CPUs Checkpointing Time (% of total runtime) Improvement
O riginal version Optimized version

8 12.1 s (1.3%) 6.3 s (0.9%) 47.9%
128 106.8 s (8.4%) 35.5 s (3.9%) 66.8%
256 381.7 s (12.8%) 107.7 s (5.1%) 71.8%

Table 2. Comparison of checkpoint times, intermediate checkpoint phases only

# CPUs Checkpointing Time (% of total runtime) Improvement
O riginal version Optimized version

8 7.5 s (0.8%) 3.1 s (0.4%) 58.7%
128 64.7 s (5.1%) 15.8 s (1.8%) 75.6%
256 249.3 s (8.4%) 37.0 s (1.7%) 85.2%

Based on this hypothesis the checkpoint code of the Semtex application was
modified to use asynchronous MPI I/O functions. This yielded an improvement
in checkpointing speed of up to 85%, compare Tables 1 and 2.

Table 1 shows the times spent for checkpointing including the final checkpoint.
There the gain from asynchronous I/O is not as large as within intermediate
checkpoints (see Table 2). This comes from the fact that the application must
wait for completion of the I/O within the last checkpoint whereas this is not
necessary for intermediate checkpoints.

Table 2 further shows that the proportionate time needed for intermediate
checkpoints does not grow when increasing the number of processes from 128 to
256 (1.8% to 1.7%) which underlines the potential of asynchronous I/O.
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3.4 Performance Problems in Memory Copy Operations

In the course of the performance evaluation of Semtex’s I/O activities, an excep-
tional high fraction of almost 40% was observed to be spent for communication
during time step iterations. Figure 4 shows the profile of one such iteration. One
time step needs 1.5 seconds to complete from which 0.59 seconds are used for
data exchange. A look into the source code revealed that besides MPI functions,
the only other time-consuming calls could be those to memcpy which were then
enclosed by tracing calls for making them available for analysis (already included
in Fig. 4).

Fig. 4. A major part of one simulation step is spent on data exchange, which memcpy

is responsible for, besides MPI

Further investigation showed that the speed of memcpy calls is not constant.
On Process 0 the first call is faster than the remaining ones, compare Fig. 5.
The same happens for Process 1 whereas on Processes 2 and 3, the third call is
faster.

Apart from the difference in speed the copy operations themselves are sur-
prisingly slow. Each memcpy call copies 22 kBytes of data in 35μs (fast case)
or in 165μs (slow case) resulting in transfer rates of 640MB/s and 130MB/s,
respectively – the underlying architecture would allow for much more.

We found a combination of three phenomena responsible for these effects:

1. Glibc’s memcpy is not tuned for the Itanium architecture which causes the
copy operations to be rather slow.

2. Single-copy transfers of SGI’s Message Passing Toolkit (MPT, the MPI li-
brary in use) introduce hidden remote memory accesses.

3. The different speeds of memory copy operations arise from characteristics of
the Altix 4700 architecture in conjunction with the second phenomenon.

To understand the latter, both the workflow of the data exchange code and
the architecture of the Altix 4700 have to be taken into account. The Semtex
application uses a special data exchange scheme between all processes, which is
performed multiple times during every time step iteration of the simulation. It
is implemented as follows:
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Fig. 5. The Itanium’s hardware performance counter indicates unoptimized memory
accesses from remote processors

1. Allocate a temporary buffer for data exchange.
2. For each of the other processes do the following:

– Send own buffer to partner via MPI Isend.
– Receive data from partner via MPI Irecv into the temporary buffer.
– Wait for completion of the communication via MPI Waitall.
– Copy contents of temporary buffer to own buffer.

Therefore, Process 0 exchanges data with Process 1 first, then with Process 2, 3,
etc. The sequence is analogous for Process 1. Process 2 communicates first with
Process 0, then with Process 1, 3, 4, etc.

Figure 5 shows the details of one complete exchange on Process 0 for a small
run with 8 CPUs. The send-receive-copy pattern is executed for every peer pro-
cess, i.e. seven times in this example.

From this algorithm and the architecture of the Altix 4700, which consists of
dual-core Intel Itanium 2 processors2, we can conclude that the faster memcpy
calls belong to the data exchange happening between the cores of one CPU.

The findings so far suggest that the memcpy calls after communication with
processes located on other CPUs access remote memory and are therefore slower.
This is somewhat counter-intuitive because the code looks as if the copy routine
would access two local buffers – the temporary one and the permanent one.

Yet, the behavior can be explained considering the second phenomenon. For
saving memory bandwidth, MPT maps the communication buffers into the peer’s
address space and then uses a single copy operation to transfer the contents to
the destination buffer [10]. Unfortunately, the memory pages of the receiver’s
temporary buffer seem to be located at the remote party after this operation.

Evidence for this hypothesis is given by a special hardware performance
counter of the Itanium 2 processor. Below the time line, Fig. 5 shows the rate
of BUS MEMORY LT 128BYTE IO, which counts the number of less than full cache
line3 transactions from remote parties. The counter shows a high rate indicat-
ing excessive remote memory accesses that transfer less than 128 bytes. Those
2 At ZIH, in particular, there is one CPU per system board.
3 L2 and L3 cache line size is 128 bytes on the Itanium 2 processor.
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Fig. 6. Comparison of the original data exchange pattern (top) with the optimized
counterpart (bottom) for Process 0 for the 20’th time step iteration. Note the much
smaller duration of the optimized version (1.4s vs. 1.8s) and the significantly reduced
value of the counter showing small-sized remote memory accesses.

have double negative effects on transfer speed. Firstly, smaller transfer sizes
mean more remote accesses are needed for copying the same amount of data,
and secondly, each remote access suffers from higher latencies compared to local
memory accesses. This in turn leads to the poor performance of memcpy when it
eventually accesses remote memory.

For Process 0, the counter is low for the first memcpy belonging to the data
exchange with Process 1, and rises afterwards indicating ineffective accesses to
remote memory caused by memcpy. Looking at Process 2 (not shown here), the
third memcpy shows no peak, and this scheme continues to the last process.

3.5 Optimization of Communication Scheme

The performance of the data exchange code could be dramatically improved by
replacing the memcpy calls with the highly optimized fastbcopy call available
from MPT. This routine achieves copying speeds of 4500MB/s for local memory
and 1300MB/s when remote memory is involved.

A comparison of the original version with the optimized one is shown in
Fig. 6. The architectural optimization of the fastbcopy routine is depicted by
the BUS MEMORY LT 128BYTE IO counter which shows very low rates in the opti-
mized version (lower picture). Usage of this routine doubled the speed of data
exchange which allowed for more than 20% improvement in run-time per time
step iteration. Together with the I/O optimization, the total runtime of Semtex
was reduced by 25%.
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4 Conclusion and Outlook

This paper presented two interesting aspects of the performance analysis process
for the Semtex application. The proposed optimization steps were confirmed with
notable performance improvements for this application. Since this code is used
for long-term simulations with large degree of parallelism on the HPC resources
of ZIH, TU Dresden, the optimization accounts for a substantial number of CPU
hours saved!

Further work will focus on the I/O tracing components of VampirTrace, in
particular the availability of system-wide I/O monitoring in a platform indepen-
dent manner.
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7. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing Scalable Applications with Vampir, VampirServer and Vampir-
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Abstract. PEPC (Pretty Efficient Parallel Coulomb-solver) is a
complex HPC application developed at the Jülich Supercomputing Cen-
tre, scaling to thousands of processors. This is a case study of chal-
lenges faced when applying the Scalasca parallel performance analysis
toolset to this intricate example at relatively high processor counts. The
Scalasca version used in this study has been extended to distinguish iter-
ation/timestep phases to provide a better view of the underlying mech-
anisms of the application execution. The added value of the additional
analyses and presentations is then assessed to determine requirements
for possible future integration within Scalasca.

Keywords:Parallel/distributed systems, performance measurement &
analysis tools, application tracing & profiling.

1 Introduction

PEPC [7] is a 3-dimensional particle simulation code which employs a hierar-
chical, parallel tree algorithm implemented using MPI to compute the forces
on the particles. The code is presently used for various applications in plasma
physics and astrophysics. According to the author of the code, potential bottle-
necks lie in the domain decomposition routine, tree construction and tree ‘walk’,
the last of which requires significant point-to-point communication of multipole
information between processors, and is thereby sensitive to load imbalance.

This work presents Scalasca measurements and analyses of the application on
the IBM BlueGene/P system of the Jülich Supercomputing Centre. The Scalasca
toolset [1,2] is a highly scalable performance analysis toolset capable of both tak-
ing runtime summaries or collecting and automatically analyzing event traces.
The latter can be searched for complex event patterns which may indicate im-
portant performance bottlenecks. Scalasca performs trace analysis in parallel on
the same number of processors that was used to originally take the measurement.

In this work PEPC is analyzed using an extended version of Scalasca [6], pro-
viding the additional capability of phase instrumentation. This means that after
manually identifying the main time-stepping loop of the application and insert-
ing markers around the loop body, subsequent Scalasca measurements become
aware of individual iterations and support the analysis of the time-dependent
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behavior or of individual iterations, which corresponds to dynamic phases in
TAU [4]. After considering examples of such PEPC execution analyses and pre-
sentations, these are assessed to determine requirements for the potential future
integration of the corresponding capabilities with Scalasca.

2 Experimental Results

A 1024-way test case, which was run for 1,300 timesteps on a BlueGene/P sys-
tem, is used here as an example to show what we have learned about the perfor-
mance characteristics of the application using the tools provided by the extended
Scalasca toolset. This example was chosen as it shows not only interesting pat-
terns of time-varying behavior, but also performance problems, like serious load
imbalance growing rapidly over time.

Figures 1&2 show an example of the usefulness of having analysis data in-
dividually for all the iterations instead of having just a summary of the whole
program execution. Figure 1 shows the case where the iterations are not distin-
guished and only aggregate metrics are available. When looking at the point-to-
point communication metric, a few processes appear as hot-spots in the topology
pane, showing that there is some imbalance. This is important to recognize, how-
ever, additional insight can be extracted from the extended, phase-instrumented
analysis. When selecting in turn the individual iterations distinguished in Fig. 2,
the execution behavior can be observed evolving over time. During the first it-
erations, the communication is relatively balanced and there are no extreme
hot-spots visible. Over time some hot-spots appear and become increasingly
pronounced, and they move at different rates from one MPI rank to the next.
The number of hot-spots diminishes towards the end of the 1,300 steps, however,
the severities of the highest ones are increasing rapidly.

Figure 3 shows four different views of the same metric, point-to-point com-
munication count (i.e., the number of sends and receives), to compare the dif-
ferent kinds of information they provide. The Phase graph (upper left) gives an
overview of the evolution of the values over time. The meaning of the different
colors is as follows: for each timestep, the value for the process with the largest
time is shown in red, the median is shown in blue, and the smallest is shown in
green. Looking at this graph it is obvious that there is a serious communication
imbalance in the application, as the minimum and median values are relatively
low and constant throughout the execution, but the maximum value is growing
rapidly, and it rises many times higher than the minimum or median values.
This means that within each timestep most of the processes are behaving in a
relatively balanced fashion, but that there are a few processes being involved in
many more communications.

Which processes are responsible for the imbalance? On the Process graph (up-
per right), the x-axis shows the different process ranks, so the different colors
now distinguish the minimum, median and maximum value during the different
timesteps for the given process rank. It is not obvious which process is responsi-
ble as many processes show very high values, but again these can only be for a few
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Fig. 1. Scalasca analysis report explorer showing a PEPC runtime summary with sig-
nificant imbalance in the number of point-to-point communications (selected in left
pane). The 1,024 application processes are arranged according to the BlueGene/P
physical network topology (right pane).

Fig. 2. Scalasca analysis report explorer showing a PEPC runtime summary with
timesteps distinguished via phase instrumentation (centre pane)
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Phase graph Process graph

Linear-scale map Histogram-equalized map

Fig. 3. Different analysis presentations of point-to-point communication count metric

timesteps, as the minimum and median values are low for all of them (except
for the first and last few ranks where the median is somewhat higher).

The case is getting increasingly confusing, and we still do not see what is going
on here with these high values, but the Linear-scale map on the lower left makes
it much clearer. On a linear-scale map, the x-axis shows the iteration number,
the y-axis the process rank, and the values are color-coded from light yellow
(for the lowest value) to dark red (for the highest value, here 9000). The map
shows that at the beginning all processes start off relatively balanced, however,
after a few hundred timesteps a low number of hot-spots gradually appear whose
values get much higher over time than the average. What is interesting about
these hot-spots is that they are not bound to any given process, but rather they
move to neighboring processes in a systematic and coordinated manner. As they
migrate some hot-spots appear to merge, so after around 700 timesteps only five
hot-spots remain, each consisting of a few processes.

This movement of the hot-spots is responsible for the confusing values seen in
the Phase and Process graphs, so understanding their behavior in more detail
is useful. Taking a closer look at the light yellow area of the Linear-scale map
reveals that the values in the background are not exactly the same. There are
also some patterns there, but they are not very easy to see as their differences
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are small compared to the range of the graph. On the Histogram-equalized map,
light yellow and dark red still mean the same lowest and highest values as on
the Linear-scale map, but here the histogram of the map values is equalized so
that every color level is used for approximately the same number of points. This
produces the maximum contrast on the map and reveals previously invisible
details: there are many more systematic details down to the finest granularity
than there are visible on the Linear-scale map.

Figure 4 shows more metric graphs of the test case execution, including the
time taken by different activities and the number of bytes transferred in each
timestep. Where no explicit legend is given, the different colors have the same
meaning as before.

The Execution Time Breakdown graph uses a different coloring where yel-
low is the average time each process spent in pure computation (i.e. non-MPI
functions), the small green part is the useful time spent in MPI communication,
orange is the blocking time in situations like late sender, and magenta is synchro-
nization time at barriers. These values combine to the total execution time of
each timestep, averaged over all the processes. Execution time does not show any
differences between processes as execution times are synchronized every timestep
due to the collective communications.

The high peak values every 100th iteration are due to checkpointing. Also
notable on this graph is the evolution of the total execution time per iteration
along the 1,300 timesteps, gradually increasing more than twofold from around
5.5 seconds to more than 12 seconds. From the breakdown this is seen to be due
to the computational workload itself growing over time (as the pure computation
time is growing in the same way), however, MPI blocking and synchronization
times are growing as well.

On the Execution Time Proportions graph, the same data is normalized for
each iteration to show the fraction of execution time spent in each activity. This
graph shows that the proportion of pure computation time is shrinking from
around 78% down to 73%, while the proportion of MPI blocking time grows
from 3% to 6% and the proportion of MPI synchronization grows from 18% to
19%. MPI blocking time is therefore the fastest growing problem, even though
the time spent in synchronizations is still higher.

The Point-to-point Communication Time graph shows the load imbalance
very clearly, as the median and maximum times spent in point-to-point com-
munications are much higher than the minimum, and the median is around
halfway between the minimum and maximum. This means that the imbalance
in point-to-point communication time involves many or most of the processes.
Comparing with Point-to-point Late Sender Time, most of the time is actually
spent in situations where the receiver blocked waiting for the corresponding send
to be initiated, which suggests that some point-to-point messages are not sent in
time. This causes a majority of processes to spend more time in point-to-point
communication than is absolutely necessary (which is around the minimum value
shown in green).
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Execution Time Breakdown Execution Time Proportions

Collective Communication Time Communication Time Proportions

Point-to-point Communication Time Point-to-point Late Sender Time

Fig. 4. Graphs of time and bytes transferred in different communications in PEPC

The Collective Communication Time graph also shows an imbalance very
much like that seen on its point-to-point counterpart, however, with a much
higher minimum. Apparently, the minimum time for collective communication
in each timestep is longer than the corresponding point-to-point time, but every-
thing in excess of this minimum closely resembles the point-to-point late sender
time. The high peaks every 100th iteration are due to checkpointing activity in
those timesteps.
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Point-to-point Time Point-to-point Late Sender Time

Collective Time Point-to-point Bytes Sent

Fig. 5. Maps of time and bytes transferred in different communications in PEPC

Figure 5 shows some maps that help clarify the nature of the communication
time imbalance. The Point-to-point Time map shows how the above mentioned
communication time imbalance is distributed among the processes in a very
specific and systematic way. Generally the higher the MPI process rank, the
more time it spends in point-to-point communication. There are some exceptions
to this rule, as the processes which send more point-to-point messages take
somewhat longer than their neighbors, particularly the hot-spots which all have
very high communication times.

The Point-to-point Late Sender Time map shows a rather similar distribution,
with one major difference being the hot-spots. These show very low waiting time
in late sender situations, but they have a very high amount of time spent in
point-to-point communication. This means that they really communicate a lot
and then do not spend much time waiting, while all the others that must wait
for them do.

The Collective Time map also shows something interesting. It seems to be the
inverse of Point-to-point time, in the sense that the order of MPI ranks is reversed
here. Thehigher theMPI rank, the less time it spends in collective communications.
This suggests that thepriceof the communication imbalance inpoint-to-point com-
munications must be paid again in collective communications. First point-to-point
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Workload Particle Number

Fig. 6. Maps of application-specific metrics from log files written every 10th timestep

communication causes the processes to get out of balance, then the next collec-
tive communication synchronizes them again, and the processes which wait less in
point-to-point and are slightly ahead of the others have to wait more while the ones
that are later wait less. So in the end they accumulate the same amount of blocking
time, which, however, is distributed in reversed fashion across the processes.

This phenomenon is clearly shown in the Communication Time Proportions
graph in Fig. 4, which shows the process ranks on the x-axis, and the propor-
tion of MPI point-to-point communication time (yellow), point-to-point block-
ing time (green), collective blocking time (orange) and collective communication
time (magenta) on the y-axis. The most important aspect of this graph is the
diagonal border between point-to-point blocking time and collective blocking
time. The higher the MPI rank, the more point-to-point blocking time and the
less collective blocking time was diagnosed, with both waiting time categories
consuming around 80% of the total communication time. This highlights how
seriously this problem degrades communication efficiency.

But what causes the imbalance? Examining the Point-to-point Bytes Sent
graph in Fig. 5 it is clear that the hot-spot processes are sending much more
data than any other process. Point-to-point Bytes Sent and Received graphs (not
shown due to space restrictions) reveal that while all processes receive around the
same amount of data, the amount varies considerably between senders. Therefore
the hot-spot processes send much more data than other processes, and they send
data to all. This suggests that the hot-spot processes are the communication
bottleneck, as they send much more data than the others. Moreover, the data
are sent in process rank order, such that higher-ranked processes have to wait
for them to complete sending data to lower ranked processes before they receive
any data themselves.

Figure 6 shows maps of two application-specific metrics extracted from applica-
tion log files written every 10th timestep. On the Workload map we see the work-
load metric calculated by the application. According to the developers, PEPC
runs a workload-balancing algorithm every timestep where it balances this metric,
therefore it is no surprise that it really is balanced over the processes. It further
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shows some growth over time which correlates to the growing computational part
of the execution time. On the Particle Number map we see the number of simu-
lated particles assigned to each process. This means that the workload-balancing
algorithm assigns a very large number of particles to the hot-spot processes which
in turn causes a communication bottleneck to appear on those processes and leads
to the communication imbalance.

The TAU Paraprof 3D visualizer [4] is a third-party tool able to visualize
Scalasca analysis reports. 3D visualization is a promising complement to 2D
maps, as it can be easier to compare scales of data at different positions by
comparing the height of bars as opposed to comparing the brightness of colors.

3 Conclusion

In our analysis of the PEPC execution on BlueGene/P we have identified some
complex performance patterns, and have found a good potential for communica-
tion performance improvement. The PEPC developer team is actively working
on finding the causes that led to the serious imbalance in particle numbers that
we identified as the root cause of the point-to-point communication problem.
They are also looking at ways to modify the workload-balancing algorithm to
avoid this situation.

The depth of analysis we conducted in this case would not have been possible
without our prototype Scalasca extensions, namely phase instrumentation and
the different visualization techniques used to make the huge amounts of data
collected accessible to the user. During the course of the analysis, we have found
all the different kinds of visualization techniques (phase and process graphs,
linearly-scaled and histogram-equalized 2D maps, 3D visualization) useful in
many ways, as the insights they provide often complement each other.

We have also found that there are serious limitations concerning the visual-
ization of the huge amounts of data collected, as it can easily happen that on
the monitor or printer used for displaying the data, it is not possible to get suffi-
cient resolution to have one pixel for each process or iteration. Other groups also
identified this issue [8,9] and found different solutions, like zooming in on the
visualized data while also displaying a miniature map of the whole chart mark-
ing the zoomed region, or letting the user choose from different display options
when there is more than one data point for a single pixel, such as the maximum,
minimum, sum, or median of the values. These techniques can provide partial
solutions to the problem, but further investigation of this topic could also prove
to be valuable in the future.

Visualizing time-dependent behavior with an animation, where the user can
step through iterations to track changes of a metric over time, also seems to be an
interesting possibility that proved useful in understanding PEPC measurement
results. Furthermore, 3D visualization such as the one offered by TAU was found
to be extremely valuable and perhaps the most insightful of all the different
visualization techniques, but also the technically most challenging.
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Abstract. We take a look at the performance analysis tools Vampir,
Scalasca, Sun Performance Analyzer and the Intel Trace Analyzer and
Collector, which provide execution analysis of parallel programs for opti-
mization and scaling purposes. We investigate, from a novice user’s point
of view, to what extent these tools support frequently used programming
languages and constructs, discuss their performance impact and the in-
sight these tools provide focusing on the instrumentation and program
analysis. For this we analyzed codes currently used at the RWTH Aachen
University: XNS, DROPS and HPL.

1 Introduction

High end computing machines for scientific applications are highly parallel com-
puters, typically clusters of tightly connected shared memory parallel compute
nodes with an increasing number of processor cores. The dominating paradigms
for parallel programming in scientific computing are message passing with MPI,
multi-threading using OpenMP or a combination of both. However development
of parallel software is not an easy task.Tools have been developed to analyze and
visualize a parallel program’s runtime behavior and increase the users produc-
tivity in optimizing and tuning his code.

Performance analysis is typically performed in several phases. During the
measurement phase, information about the runtime behavior is collected by in-
strumentation or sampling. Sampling an application means that at runtime the
program is probed and a set of performance metrics is collected. This set usu-
ally contains the program counter, the call stack, memory usage and hardware-
counters. For program tracing the program is instrumented beforehand to collect
these metrics continuously as they occur [1]. In practice a developer has to care-
fully determine which method to use.

In the next step the data collected during the runtime measurement is ana-
lyzed, processed and finally presented to the developer for exploration.

Examples for such tools are the Intel tracing and analysis tools [2], the Sun
Performance Analyzer [3], Vampir [4] and Scalasca [5]. These tools, though in
continuous development, are already very sophisticated and their analyses are
useful when parallelizing and optimizing applications.
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In this work we investigate the usability of performance analysis tools and
issues that a novice user might encounter. We compare these tools by means of
benchmarks and real scientific applications and take a look at their performance
impact to the applications at runtime. We also try to point out typical problems
that a newcomer might run into. We focus on the runtime impact and therefore
on the measurement phase, since the procurement of measurement data is a
prerequisite for any analysis.

We recognize that this yields only a partial view of the usability, since we
do not investigate in detail the exploration phase. Additionally, the exploration
of the data is very subjective and difficult to rate as different users might have
different preferences. However we feel, that the procurement of measurements is
a crucial factor in the optimization of parallel programs, as measurements have
to be performed iteratively after each program change to check for performance
gains.

This paper is organized as follows: In section 2 we describe the tools under
investigation and our test environment. In section 3 we look at the runtime
performance impact on a few sample applications before we finally draw our
conclusion.

2 Description of the Tools, Codes and the Test
Environment

2.1 Tools

The performance analysis tools which we investigate in this paper are the Sun
Performance Analyzer (Analyzer), Vampir Trace and Analyzer (Vampir), Scal-
asca and the Intel Trace Analyzer and Collector (ITAC).

The Analyzer is the only tool using the sampling approach that we investi-
gated for this paper. The Analyzer can be applied to any program that runs
on Linux and Solaris, provided it has been dynamically linked. As the target
application is executed, the Analyzer interrupts the execution and collects de-
sired metrics, like the program counter, the callstack and CPU counters. This
information is stored in an internal buffer. Once this buffer is full, it is written to
storage. Additionally, the Analyzer provides a special dynamic library that wraps
the standard MPI library to obtain information about the MPI communication.

The ITAC, Vampir and Scalasca are instrumentation based tools, i.e. the
tools have to preprocess the target program to insert measurement code. This
instrumentation can be done at different levels, i.e. at the source-code level, at
the binary level or at runtime. The gathering of MPI information is performed
the same way as for the Analyzer by providing an MPI wrapper library. Vampir
and ITAC perform only measurements at runtime, whereas Scalasca additionally
performs the program analysis at the end of the program execution.

Vampir, Scalasca and the ITAC use function instrumentation mechanisms
provided by modern compilers, which inserts hooks for call handlers at the be-
ginning and the end of each function in the program. The tools then provide
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Table 1. Overview of programs and used datasets

Code Parallelization Language Lines of Code1 Source Files1

DROPS-OMP OpenMP C++ 29.735 39
DROPS-MPI MPI C++ 211.952 518

XNS MPI C and Fortran 47.866 102
HPL MPI C 35.163 150

a call handler which implements the measurement. Additionally, Vampir and
Scalasca also provide an additional code instrumentation tool for OpenMP in-
strumentation [6].

Like the Analyzer, measurement data is initially stored in an internal buffer
sharing the address space with the analyzed application. Once this buffer is filled
up, it is written to disk interrupting the application.

All introduced tools can be influenced for better test results by environment
variables or configuration files to modify default settings.

2.2 Codes Used for Testing

For this work we used the following codes, each representing a common pro-
gramming and parallelization paradigm (see table 1):

1. DROPS[7] is an adaptive two phase CFD solver, written in C++ using mod-
ern programming language constructs like templates and classes. It is an
example for a code using a very function-call intensive programming style
with lots of nested function calls typical for C++. DROPS is available either
with OpenMP [8] or MPI parallelization.

2. XNS[9] is a CFD solver based on finite elements written in Fortran and C.
The code has been successfully adapted to several platforms. The version
used for this work has been parallelized using MPI and is a representative
for mature codes using common Fortran and C constructs.

3. The high performance computing linpack benchmark (HPL)[10] is a widely
used benchmark for measuring system performance for the Top500 list
(www.top500.org). It is written in C using BLAS libraries together with
an MPI parallelization.

2.3 Test Environment

For our tests we used the Intel Xeon cluster of the RWTH Aachen University.
This cluster consists of 266 nodes with 2 Quadcore Intel Xeon Harpertown CPUs
running at 3GHz. Each node has 16GB of RAM, a DDR InfiniBand interconnect,
local scratch storage as well as a system wide network file system. The operating
system is Scientific Linux version 5.1. We compiled with version 10.1 of the 64 bit

1 Data taken from complete source tree.

www.top500.org
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Intel compilers and linked to the Intel MPI library, version 3.1. Due to compiler
issues we used the GNU compilers version 4.3 for the MPI Drops code. For HPL
we used the MKL version 10.0 to provide the BLAS functionality.

The tests were performed with the Intel Trace Analyzer and Collector (version
7.1.0.1), Scalasca (version 1.0), Sun Analyzer for x86 (version 7.7) and Vampir
Trace (version 5.4.4).

3 Application Performance

3.1 First Measurements

First we tested the tools in their basic, fully automated mode. This is how we
assumed, that a newcomer might approach these tools. The data sets selected
for these tests were chosen to be as small as possible with a maximum runtime
of about 10 minutes while trying to maintain the typical behavior of the given
application.

For Scalasca, Vampir and the ITAC we employed the recommended wrappers
for automatic instrumentation and execution. For the DROPS-OMP sources we
had to perform manual instrumentation of the header files since the automatic in-
strumentation does not process header files. It is recommended to apply Scalasca
in two steps. We therefore measured all our test applications with the summary
option first and then with the full trace. In oder to employ the Analyzer, we
proceeded as described in the documentation as well.

We performed a complete set of measurements for each tool with each code
with 8 MPI processes or 8 threads respectively on exclusive compute nodes.
For these experiments the wall time was measured to capture possible setup and
postprocessing overheads. We also set a limit of 100GB of measurement data per
process/node as local scratch storage was limited. Measurements surfpassing this
amount were aborted.

Both DROPS versions crashed during our first Scalasca profiling measure-
ments. We investigated the resulting cores with a debugger and easily concluded
that the instrumentation required a larger internal buffer to store the measure-
ment data. Once we had increased these buffers the measurements completed.
After these initial runs the instrumentation process terminated without a profile
recommending an increase off buffer sizes. With larger buffers we obtained a cor-
rect and complete profile. At this point we already repeated the measurements
for 3 times.

For DROPS-MPI we also encountered problems with Vampir. In this case the
output of the instrumentation delivered a ”Stack Underflow”. We were not able
to solve this problem with this Vampir Trace version. A later reinstrumenta-
tion with a newer VampirTrace 5.5 yielded correct measurements. However, this
newer version has different settings and we had to reconfigure it to behave like
the old version. Due to time constraints we were not able to repeat all measure-
ments with the new version of Vampir.

The measurements of both DROPS codes with Scalasca in tracing mode was
terminated as measurement had passed the 100 GB per process limit.
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We also could not generate valid measurements with the ITAC in collect
mode for both DROPS version and also for the HPL Code as the instrumentation
system continuously noted a ”file too large” message and finally crashed because
of a bad file descriptor. We were unable to resolve this for this work.

Once we had a full initial set of runtime measurements, we observed, that for
XNS and HPL the increase of runtime was acceptable, typically less than a factor
of 7, comparing to the uninstrumented code (refer to table 2 for a complete set
of runtimes). In contrast, both DROPS versions showed an enormous increase
in runtime for trace based measurements with factors greater than 19. This
occurred for Vampir and for Scalasca in both profile and trace mode.

For these first measurements we also list the runtimes as measured within the
applications (compare table 3), which exclude tool specific pre- and postprocess-
ing phases. These times show, that the applications are not only influenced by
the pre- and postprocessing but also by the perturbation of the code through
instrumentation. For HPL and XNS this perturbation is in the reasonable range
of 1% to 453%. For the DROPS codes this factor for the traced based measure-
ments is exrodinary high, with a factor of 27 to 868. The Analyzer performs in
this case with an acceptable 11% to 519% runtime increase.

We also note the amount of measurement data written to storage, as large
storage requirements can influence the usability of the tools (table 4). A brief
evaluation showed that Scalasca,Vampir and the ITAC typically generated large
amounts of data whereas the Analyzer was quite economical. Scalasca exhibits
no consistent behavior for the XNS and HPL codes whereas Vampir generated
little data for C and Fortran codes.

3.2 Refining the Collection of Runtime Performance Data

Once we had completed the initial measurements we investigated to what extend
the tools could be tailored to the tested applications. We especially tried to re-
duce the runtime overhead and the amount of data gathered by the measurement
tools.

In general, Scalasca, Vampir and the ITAC recommend that the user specifies
a filter to remove uninteresting functions from the measurement process, by
specifying a file with a list of function names that the analysis tool will ignore.
To assist the user, Scalasca provides a utility that generates a list of functions
from a previous gathered profile annotated with different kinds of information,
like the number of function invocations, whether the function was on the path to
an MPI call. By using this information we easily generated a filter that removed
any function calls except those that eventually lead to MPI functions. For the
OpenMP code we applied the same idea to the OpenMP constructs, filtering out
all functions not leading to an OpenMP parallel region.

Vampir provides a different mechanism that computes a filter with the in-
tention to reduce the measurement data to a given maximum percentage of the
original trace. We used a aggressive target of 10% of the original measurement
data for the first optimized measurement.
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Table 2. Initial measurements, walltime

Code Normal ITAC Scalasca Analyzer Vampir
Profile Trace

DROPS-MPI 123 s aborted 3974 s canceled 475 s 2347 s
DROPS-OMP 75 s aborted 24775 s canceled 80 s 55059 s

HPL 777 s aborted 784 s 988 s 1059 s 1123 s
XNS 68 s 336 s 98 s 430 s 327 s 120 s

Table 3. Initial measurements, timing from within applications

Code Normal ITAC
Scalasca

Analyzer Vampir
Profile Trace

DROPS-MPI 42 s aborted 3687 s canceled 218 s 1150 s
DROPS-OMP 63 s aborted 24711 s canceled 70 s 54711 s

HPL 751 s aborted 751 s 766 s 1021 s 757 s
XNS 53 s 113 s 54 s 135 s 240 s 60 s

Table 4. Initial measurements, size of measurement data

Code Normal ITAC
Scalasca

Analyzer VampirProfile Trace
DROPS-MPI - aborted 16 MB > 800 GB 276 MB 5.3 GB
DROPS-OMP - aborted 5.8 MB > 100 GB 4 MB 2.4 GB

HPL - aborted 53 kB 299 MB 43 MB 105 MB
XNS - 7.96 GB 550 kB 3.3 GB 320 MB 166 MB

Unfortunately the ITAC does not provide any such assistance for the definition
of a filter. From our experience with the first measurements, we specified a very
aggressive filter removing all but MPI communication functions from the trace.

In contrast to the tracing tools, the Analyzer does not have any filtering
facility. Instead one can reduce the sampling frequency, delay the start time for
measurement and define a data limit. We first decreased the sampling frequency
from 10 ms to one second for the first optimization attempt.

With these filters and option changes we repeated the overview measurements
with everything else remaining constant.

It should be noted that the filters differ between each tool yielding poten-
tial incomparable measurements. However, this sections aims to describe the
approach of a novice user and the results should be interpreted accordingly.

Table 5 shows the results from this measurement set. For the sake of overview
we omitted the measurements from the Scalasca profile run as the information
is available in the tables 2 - 4.

We observed that the ITAC aborted again with file I/O errors for the HPL and
the OpenMP version of DROPS. However DROPS-MPI successfully generated a
trace this time. An analysis revealed that the trace barely contained any usable
information at cost of a tremendous increase in runtime by a factor of 115. For
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Table 5. First attempt of tool adaption

Normal ITAC Scalasca Trace Analyzer Vampir
Time Time Data Time Data Time Data Time Data

DROPS-MPI 123 s 14233 s 401 kB >7705 s 47GB 267 s 276 MB 813 s 28MB
DROPS-OMP 75 s aborted 2201 s 1.6 GB 83 s 1.3 MB 42821 s 745 kB

HPL 777 s aborted 784 s 299 MB 967 s 12 MB 1113 s 8.1 MB
XNS 68 s 156 s 32MB 303 s 1.2 GB 294 s 313 MB 91 s 14MB

the well behaved XNS a speedup was observed with almost no usable content in
the trace.

With the filters we were now able to obtain a complete measurement for
DROPS-MPI with Scalasca. Even though the analysis system ran out of memory
during the analysis of the 47GB large tracefile we obtained a lower bound for
runtime for tracing and analysis. A quick investigation, showed that a total of 232
GB of memory would be necessary to analyze the obtained trace as all trace data
is loaded into memory. As with DROPS-MPI, the OpenMP version completed
its measurement within the 100GB limit. Instead of taking 24775 s the runtime
decreased to 2201 s with 1.4 GB of measurement data which the analysis system
was able to handle. For XNS and HPL we observed some improvements in terms
of runtime, however for XNS we lost information about computation functions
as they did not end in MPI calls.

For the Analyzer we obtained a slight decrease in measurement data for all
applications and some moderate gains in runtime. However, those gains were
countered by a decrease of information for all codes as the individual runtime
of functions was too short to be captured reliably. Further investigation showed
that the traces consisted mostly of MPI information.

With the 10% filter Vampir Trace even surpassed Scalasca in runtime- and
data improvements for the DROPS-MPI application. However this improvement
came at the cost of trace data, which failed to provide any information about the
application. An investiagtion of the filter showed that in the attempt to reduce
trace size the filter-generator had marked allmost all functions for removal. For
the OpenMP version of DROPS Vampir did improve in runtime, even though
almost no trace data was written, resulting in an unusable trace. For the HPL
and XNS codes some improvement in runtime was observed. The traces were
still informative, although the details about functions not leading to MPI calls
were unsatisfying for XNS.

3.3 Manual Optimization

As the first optimization step was unsatisfactory for XNS and the C++ based
DROPS applications, we investigated the available information and manually
specified custom tailored filters for each application. For this we tried to maintain
as much information about the typical behavior of the program as possible. To
reduce the substantial work overhead in this step and to increase comparability
we designed a single filter for each test code and adapted this filter to all tools.
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Table 6. Measurements for manual adaption attempt, total walltime

Normal ITAC Scalasca Trace Analyzer Vampir
Time Time Data Time Data Time Data Time Data

DROPS-MPI 123 s aborted >3654 s 17 GB 199 s 91MB 818 s 26MB
DROPS-OMP 75 s aborted n.a. >800 GB 91 s 4.3 MB 38013 s 2.1 GB

HPL 777 s aborted 988 s 299 MB 1031 s 4.3 MB 1123 s 8.1 MB
XNS 68 s 209 s 37 MB 335 s 1.2 GB 176 s 76MB 90 s 16MB

For the specification of the DROPS filter we looked at the information avail-
able from previous analyses. The most obvious fact that we found was that the
C++ code contained functions being called extremely frequently for each pro-
cess. For example the [ ] operator of the vector class is called more than 1.6
million times per process. Several other functions were called approximately as
often, many from the STL, others from the application, containing code targeted
for optimization. However, to improve the measurement process we added the
10 most frequently called non STL functions to the filter list.

For DROPS-OMP we encountered a similar situation and again performed
the same filter approach as for the MPI version.

For HPL we tried to further improve the fast results and filtered only the 3
most frequently called functions. When we looked at the XNS code and the pro-
files from previous runs, we learned that a large share of the runtime alteration
and data footprint was caused by the measurement of the application’s setup
process. We designed therefore a filter to remove all setup functions from the
measurement process. For the Analyzer we used the data limit and measure-
ment start option to trigger a segment of analysis during the execution of the
test codes. For this we used the default and smallest sampling intervall of 10
milliseconds.

With this setup and these filters we remeasured again (Table 6). With these
changes and adapted filters we hoped that the ITAC would finally create usable
information, however DROPS-MPI, DROPS-OMP and the HPL failed again
with the already known file I/O error rendering the ITAC useless for those
codes. For the XNS code we obtained a usable trace with enough information
to optimize the application. For Scalasca we managed to decrease the trace size
for DROPS-MPI whilst reducing the runtime again. However the analysis phase
was still not able to process the 17GB of compressed trace data. For HPL and
XNS the filters generated very useful measurement data which showed plenty of
information necessary to start working on bottlenecks and load imbalances in
the application.

For the Analyzer we observed an increase in performance. The information
gathered in the measurement window showed the same characteristics as the
information collected in the first run, outside this time window no information
was obtained. The limitation to a certain time window and measurement size
however helped to reduce the amount of data collected furthermore.



Comparing the Usability of Performance Analysis Tools 323

Table 7. All functions filtered

Normal ITAC Scalasca Trace Vampir
Time Time Data Time Data Time Data

DROPS-MPI 123 s 4338 s 32 kB 925 s 569 MB 913 s 6.6 MB
DROPS-OMP 75 s aborted 2193 s 1.6 GB 42833 s 668 kB

HPL 777 s 1645 s 30 kB 988 s 299 MB 1109 s 88 kB
XNS 68 s 165 s 31 kB 283 s 1.2 GB 94 s 5.1 MB

Table 8. Measurements with PMPI interface only

Normal ITAC Scalasca Trace Vampir
Time Time Data Time Data Time Data

DROPS-MPI 123 s 138 s 126 MB 219 s 30 MB 135 s 24MB
HPL 777 s 789 s 504 MB 784 s 87 kB 777 s 87 kB
XNS 68 s 373 s 24 MB 113 s 7.2 MB 103 s 7.1 MB

For Vampir the runtime of the instrumented applications yielded some ambigu-
ous behavior. While the runtime hardly changed for the MPI applications com-
pared to the previous measurement, the DROPS-OMP runtime improved by 11%
generating 2.1 GB of measurement data. This data was somewhat informative as
it showed much more detail about the applications. However, we were not able
to obtain reliable information due to corruption of the application’s runtime be-
haviour. For DROPS-MPI the filter was too aggressive showing only the main soft-
ware components and the MPI runtime information. For HPL and XNS we were,
as with Scalasca, able to obtain good results usable for performance analysis.

3.4 Limits of Tool Adaption

After both efforts of tailoring the tools to the codes, we investigated to what
extend one can employ filters and setup parameters for the tools, to achieve
the least impact on the target application. For this we specified filters that
removed all information from the trace. From our point of view, the resulting
measurement should then only be affected by the instrumentation overhead and
the book-keeping of the file-output system. In addition to these new filters we also
recompiled the applications without instrumentation and linked only the MPI
tracing libraries of each tool to measure the overhead introduced by the MPI
measurement system. Again we performed the same measurements as before.
We omitted in this case the measurement with the Analyzer, as there was no
way known to us to perform filtering or MPI-only measurements. Table 7 and 8
show the measurements obtained.

At this stage we were now able to confirm, that all tools were in principle
capable of performing analysis for all codes, as we now obtained traces from all
tools. We did not expect to obtain any noticeable amount of measurement data
with those filters and were surprised that Scalasca still generated rather large
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files for all codes (see table 7). A brief investigation showed, that even though we
had specified MPI functions to be filtered, the Scalasca system ignored this and
measured MPI functions regardlessly. As for all codes there was some noticeable
overhead with these all-discarding filters. This overhead was low for XNS and
HPL almost doubling the runtime. The instrumentation still had a large impact
on the C++ codes. This is possibly explained by the tremendous amount of
function calls.

As for the usage of the MPI wrappers we measured very minor perturbations
of the applications’ runtime and moderate amounts of data. With these traces
we were able to conduct some basic performance analysis of the MPI communi-
cation. The information of the MPI communication alone might not be enough
to conduct a complete performance analysis as the information is not sufficient
to spot the causes of all communication problems and load imbalances.

4 Conclusion

We applied four different performance analysis tools to a set of four represen-
tative parallel application codes. Our measurements revealed that on the one
hand the tools with proper configuration are quite suitable for analysis of C and
Fortran codes like XNS or HPL, though obtaining such a configuration is not
easy and requires a lot of practice for a newcomer. On the other hand our test
displayed some serious problems when working with tracing tools and complex
C++ codes as with both DROPS versions. In addition, we conclude that filter-
ing is a viable option to adapt a performance analysis tool to an application.
However, this tuning process can only start, once one has obtained a complete
profile, which almost takes as long as a full trace. Additionally, this tuning pro-
cess requires experience and foresight in order to utilize the full potential of the
investigated tools, which a novice user might not have.

Future work will include an analysis of the difficulties with the DROPS codes
and a scalability study of these tools on all four applications.
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Real-Time Online Interactive Applications on
the Grid (ROIA 2008)

Through the recent advancements in network technology, graphics cards and
displays, a new type of application — real-time online interactive applications
(ROIAs) — has become more and more popular. Everyday life has been affected
and transformed not only by the use of Web technology, but also by collabora-
tive multimedia applications, networked computer games, cooperative scientific
visualizations, networked virtual environments and real-time graphical displays.
Users and organizations dislocated all over the globe are enabled to work with
a variety of tools and graphical user interfaces to communicate and jointly solve
problems using sophisticated graphical interfaces. The grid and its technologies
are known to provide a sophisticated basis for ROIAs and collaborative work.

This workshop at Euro-Par 2009 in Las Palmas de Gran Canaria comprised
the best selected papers concerning the application and usage of real-time online
gird applications, as well as the technologies supporting them in scientific and
industrial contexts. The Workshop on Real-Time Online Interactive Applications
on the Grid has offered possibilities to discuss the benefits of these applications
for human users with a focus on up-to-date characteristics of hard-, soft and
middleware aspects, to show the latest results, products or research prototypes
to potential users, and to establish connections between developers and users of
associated technologies. The attendants were asked to present and discuss the
following topics:

– Interactive grid tools and environments
– Development of associated parallel and distributed computing solutions
– Integration of networking and grid computing technology
– Gaming approaches on the grid
– E-learning applications using grid technology
– Evaluation of existing ROIAs and practical experiences

Each of the submitted papers was reviewed by at least three international
experts in this domain. The highest ranking contributions are presented here.
We would like thank all colleagues and experts who helped in the reviewing
process.

The problem of data collection and real-time processing of high-energy physics
experiments is addressed by Bubak et al. in their contribution “Real-Time Per-
formance Support for Complex Grid Applications”. The authors present different
monitoring systems from this area and the issues which arise by coupling theses
systems.

Liška et al. present a framework designed for building real-time user-empowered
collaborative environments to work primarily on high-speed networks with true
high-bandwidth applications such as uncompressed high-definition video in their

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 327–328, 2009.
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contribution “CoUniverse: Framework for Building Self-Organizing Collaborative
Environments Using Extreme-Bandwidth Media Applications”. They discuss the
overall design of the system and describe in detail the prototype implementation.

The paper by Anthes et al. “Developing VR Applications for the Grid”, inves-
tigates the combination of virtual reality (VR) technology in combination with
a grid infrastructure. A fast-paced VR entertainment application based on the
inVRs framework is ported on the edutain@grid middleware, by exchanging its
network component.

Another contribution from the edutain@grid project, “An Information System
for Real-Time Online Interactive Applications”, by Nae et al. introduces a novel
information system that provides support for ROIA deployment and monitoring.
A variety of experiments are conducted which investigate the performance and
scalability of the system.

In “Securing Real-Time Online Interactive Applications in edutain@grid”,
Ferris et al. present analysis, design and implementation of security facilities
within the edutain@grid infrastructure. They describe their solutions to security
issues on the different layers on the infrastructure.

The contribution by Landersthamer et al., “The edutain@grid Portals — Pro-
viding User Interfaces for Different Kinds of Actors”, investigates the use of user
interfaces in order to interact with edutain@grid. Instead of relying on Web
portals only, they present approaches to connect with a C++ API to an edu-
tain@grid ROIA.

In the paper “Using RTF for Developing Multi-Player, Online” by Ploss et al.,
the creation of ROIAs by using a real-time framework in order to allow for scala-
bility by keeping up interactivity is demonstrated. Code examples illustrate their
approach and describe the development of such ROIAs in a detailed way.

Christoph Anthes
Thomas Fahringer

Dieter Kranzlmüller
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Abstract. One of the tasks in the EU IST int.eu.grid project is to
create a pilot application which exploits Grid computational resources,
based on the HEP application coming from the ATLAS project. When
bringing the HEP application to the Grid, one of the problems is how
to distribute the computations in an effective way to make the most
of available Grid resources. Some support from monitoring is needed to
assist in an optimal computation distribution. The HEP application is
supported with monitoring information coming from two systems: JIMS
and OCM-G. In this paper we present the issues of providing data for
Real Time Dispatcher, based on the functionality of the two monitoring
systems systems coupled into a single infrastructure. It is aimed to sup-
port fulfilling the real-time requirements posed by the HEP application.

Keywords: grid, monitoring, HEP, LHC, application optimization,
MBeans.

1 Introduction

The objective of the EU IST Interactive European Grid (int.eu.grid) project [1]
is to deploy an advanced Grid empowered infrastructure in the European Re-
search Area (ERA). Within the project, research on its pilot application from the
domain of High Energy Physics (HEP application) [4] is aimed at using the in-
teractive grid environment to support processing of data coming from the biggest
particle accelerator - the Large Hadron Collider (LHC). The current architecture
of the High-Level Trigger (HLT), part of this system, requires building a mas-
sive computer farm of order of 1000s processors employed just for the selection
of the most interesting collisions; it heavily involves the network infrastructure.
So far in the local processing model exploited in the ATLAS TDAQ system,
the data on the events were transferred for pre-processing to local computing
farms. The idea behind the HEP application gridification is to delegate part of
pre-processing tasks to computer resources available on the Grid.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 329–338, 2009.
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The High Energy Physics application (HEP) poses hard challenges related to
the Grid environment, specifically, in case of LHC experiments, their require-
ments go far beyond the ones typically involving storage and computational is-
sues. The main task of the ATLAS TDAQ system is to select interesting events
out of 1 Giga interactions per second generated in collisions at the LHC acceler-
ator and record them on permanent storage with frequency of O(300 Hz). The
system is based on two levels of online selection algorithms. The TDAQ system
is logically divided into a fast First Level Trigger (L1), and High Level Trigger
system (L2) which involves the next two selection stages. The First Level Trigger
(L1) provides an initial reduction of the LHC’s 40 MHz nominal bunch crossing
rate to 75 kHz. Given a mean ATLAS event size of 1.6 Mbyte, this corresponds
to a throughput of ca. 120 GB/s. The first stage of L2 reduces the event rate
further to 3.5 kHz, which corresponds to a total throughput of about 6 GByte/s
out of the event building system. The data fragments of events accepted by the
first stage of L2 algorithms are collected by the event building nodes (SFIs) (see
Fig. 1) from detector buffers. The resulting complete event fragments are then
sent to the Event Filter Processors (EFPs) (see Fig. 1) for the last selection
stage (i.e. the second stage of L2).

To enable the filtering of events during the second stage of L2, a need of 1600
EFP nodes (dual-CPU machines) is foreseen. To meet this challenge, it is proposed
to extend the EFP system by the possibilities of a Grid infrastructure to allocate
necessary processing power with fast access to get the data processed in realtime
(O( 1s)). A non-timely response to an event leads to the irreversible loss of the
data coming from the real LHC experiment. Taking into account that submission
of jobs to the Grid may take quite an amount of time, the use of the pilot jobs idea
[2,3] is a proper solution. Just before the experiment starts, jobs are submitted to
the Grid. These jobs allocate resources and establish a communication channel.
They start waiting for tasks obtained from the experiment.

To use this idea, some middleware support for the HEP application is needed.
The Real-Time Dispatcher (RTD) is a software solution dedicated to facilitate
the delegation of computations to the Grid infrastructure. It coordinates the dis-
tribution of data obtained from the ATLAS TDAQ system to remote processing
tasks (PT). A remote processing task is a grid job which is submitted in advance
to wait for data to work on. The data is sent by a proxy processing task (proxy
PT) which is running on local resources in CERN. The proxy PT is behaving
in the same manner like an ordinary local processing task with the exception
of delegating an actual computation to a remote PT. When remote PTs obtain
the data from the proxy they perform the computations and return the result
which is further used by the ATLAS TDAQ system to judge whether this data
could describe some interesting collisions from the scientific viewpoint. On hav-
ing returned a result the remote PT is ready for getting the next data to process.
So the main RTD’s purpose is to bind the proxy and a remote PT. When the
proxy PT starts, it requests a remote PT to be assigned. As RTD has a pool
of remote PTs, it must decide which one will be connected with the requesting
proxy PT. The selected remote PT should process the coming events’ data at
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Fig. 1. The idea of HEP application

the fastest rate. Thus to make proper decisions, the RTD needs to be provided
with needed information by a monitoring facility. For this goal we exploited two
monitoring facilities, one for obtaining data on network load, while for better
performance and less resource usage (mainly, main memory) we decided to use
another lightweight monitoring facility which provides fast access to the data
regarding the processing performance of the nodes where remote PTs run.

Fig. 1 presents a general concept of the HEP application. One can see how the
local processing (on CERN PT Farm) is augmented by the use of Grid resources
(based on the int.eu.grid’s infrastructure) with RTD, proxy, and remote PTs.

In the following sections, we focus on the requirements for the monitoring
support from the HEP application and make a brief overview of the monitoring
systems we used to fulfill these requirements. Then the issues of coupling these
systems are discussed. We will give details of co-operation of these facilities over
the application life-time to match the real-time application requirements. The
last section includes conclusions and future work.

2 Monitoring Requirements for the HEP Application

As mentioned above, RTD needs some monitoring information to choose a re-
mote PT which should process the events’ data at the fastest rate. To make this
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choice, the RTD is to be provided with the information on the network load and
resources usage of the worker nodes where remote PTs are running. Information
on the load of a network link is important to determine whether a given grid site
is able to receive the data fast enough. On the other side, knowing the resource
usage of worker nodes (CPU load and the amount of available memory), we can
distribute computations to less loaded nodes. Making use of this information,
RTD can choose the most appropriate remote PT at the moment. To fulfill the
monitoring requirements from the HEP application we decided to use two mon-
itoring systems: JIMS and OCM-G. These monitoring systems will be described
concisely in the following subsections before we proceed to the discussion on an
integrated monitoring infrastructure for the HEP application.

2.1 JIMS Monitoring Infrastructure

JIMS – the JMX-based Infrastructure Monitoring System [5] is based on the Java
Management Extensions platform (JMX) where monitored resources are repre-
sented as MBeans (Managed Beans), simple Java objects, installed on MBean
Servers. JIMS can automatically adapt itself to operating systems, kernels, and
IP protocols. It provides an auto-configuration facility (cluster and Grid level
auto-configuration) and dynamic deployment of proper monitoring sensors. All
these features make it well suited for Grid environments.

Figure 2 presents the JIMS architecture. It consists of three types of agents.
The role an agent performs depends on the modules where the agent is deployed.
One agent provides the global discovery service which delivers an integration
layer, it finds all running SOAP Gateway agents, thus provides an overall view
of the Grid. The proxy agent, in turn, finds and provides access to all currently
running monitoring agents on a cluster. An ordinary monitoring agent, which
is running on a worker node, provides monitoring information collected by its

Fig. 2. JIMS components
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sensor modules, i.e. MBeans. The figure gives a few examples of the information
the sensors can provide.

2.2 OCM-G Monitoring System

OCM-G – OMIS-Compliant Monitoring system for the Grid [6,7] is a system for
on-line monitoring of interactive Grid applications. It supports parallel/
distributed applications running across multiple sites. Due to the efficient request-
reply mode of operation, OCM-G can underly development-support tools, specifi-
cally, performance analysis tools, like the GPM [8] performance measurement tool.
It provides special support for monitoring applications exploiting message-passing
and other programming paradigms. OCM-G can also provide information on the
nodes where the application processes are running.
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Fig. 3. OCM-G components distributed on the Grid

As shown in Figure 3, the OCM-G system comprises three types of monitor
modules. Main Service Manager (MainSM) is a central component, one per each
user. It is an access point to the system for a user. The location of MainSM is
configurable. Service Managers (SM) are located in each site of the Grid, typi-
cally, on Computing Element machines (CE). Local Monitors (LM) are located
on each Worker Node (WN) where the application processes (AP) under moni-
toring run and they actually perform the monitoring tasks. Application Modules
(AM) are parts of OCM-G that are linked to the application processors.
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2.3 Monitoring Strategy for the HEP Application

As the main monitoring data provider for RTD, the JIMS system has been
chosen. JIMS is meant to be deployed in each site of the Virtual Organization,
intended to support the HEP application (HEP VO). HEP VO is responsible
for providing a necessary environment to run the HEP application on the Grid.
Available grid resources are carefully checked during a certification procedure.
Next, SLA [10] is signed and resources are included into a HEP VO. The HEP
VO is endowed with a portal which simplifies the usage and management of VO.

JIMS will measure the available bandwidth to sites where events’ data are
processed. For this purpose, only one JIMS agent is needed, probably, on a
computing element. In addition to the network load, RTD needs to obtain some
data about worker nodes status: CPU load and memory usage, very frequently
and rapidly. JIMS could provide this information but to do this it should be
installed also on every worker node of HEP VO. To save resources of worker
nodes (mainly, main memory) we decided to take the advantages of the OCM-G
monitoring system, instead. For collecting monitoring information, OCM-G uses
a monitor which is much more lightweight than a JIMS agent as to the memory
required for its operation. Moreover, on a worker node the OCM-G monitor is
started together with an application process, thus, the monitoring system don’t
exploit resources of the worker nodes where the application in not running at
the moment. For this reasons we decided to monitor WNs using OCM-G which
is intended to provide monitoring information to a JIMS agent. Next, RTD will
obtain this information from JIMS. In the next section, we will give some details
of the integration of OCM-G into JIMS .

3 Integration Mechanism

To integrate OCM-G with JIMS we needed to implement a new sensor module
for JIMS. As sensor modules JIMS exploits MBeans. An MBean runs in a JIMS
monitoring agent (MBean server) and provides some monitoring functionality.
Thus, we created an MBean which hides the OCM-G system and provides the
data about nodes’ CPU load and memory usage through its exposed interface.

When loaded and started by a JIMS agent, the MBean spawns OCM-G’s Main
Service Manager process and connects to it. Then the Main Service Manager is
waiting for Local Monitors to connect to (a Local Monitor is actually connected
to Main Service Manager using a Site Service Manager). A Local Monitor is
started whenever a remote PT is launched on a worker node. This is done by
a script which also stops the Local Monitor when the remote PT exits. Local
Monitors find the Main Service Manager’s contact by reading a configuration file
with host and port information. The list of currently monitored worker nodes
can be obtained by reading the NodeList MBean’s attribute. The value of this
attribute is a comma separated list of hosts’ names.

The MBean provides the user with the operations to start (start) and stop
(stop) the underlying OCM-G system (Main Service Manager process). But
these operation are rather not used directly as they are invoked by the MBean
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when JIMS agent starts and stops. For the client, the interesting operations are
those which provide needed monitoring information. At the moment, there are
six operations provided by the MBean. All these operations take a host name
as an argument. The first three ones: getNodeLoadAvg1, getNodeLoadAvg5,
getNodeLoadAvg15 return the load average values for a given worker node (i.e.
the number of jobs in the run queue or waiting for disk I/O averaged, respec-
tively, over 1, 5, and 15 minutes). They are the same as the load average values
returned by uptime and other programs. The next operation, getNodeMemFree,
returns the amount of available host’s main memory. Invoking the last opera-
tion, getNodeSwapFree, we can get the amount of remaining swap space. When
one of the MBean’s operations is called, the MBean constructs a proper request
and submits it to the OCM-G system. When an OCM-G’s reply arrives, it is
processed and returned within an MBean’s operation result.

OCM-G is installed on HEP VO sites as an experiment software [9]. There-
fore, the VO software manager is responsible for installation, configuration, and
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updating the software. The advantage is that a contact with a site administrator
for these activities is not needed. JIMS agent is installed on a single host in the
site (possibly, CE) and runs as a service. This agent has our MBean deployed and
is an access point to the monitoring information collected by OCM-G’s Local
Monitors running on site’s WNs. Using the JIMS infrastructure the data from
all sites can be supplied to RTD. In order to facilitate a client’s interaction with
JIMS, there has been added a possibility to access all discovered agents using a
single connection. Earlier, to find the address of an agent, a client had to con-
nect to the Discovery Service first. Then, when the client obtained the address,
it could connect to an agent directly. Now, all agents provide the Discovery Ser-
vice and have an ability to forward a client request to other discovered agents.
Thus, using a single connection with a chosen agent, a client can also interact
with other agents. This makes easier gathering monitoring information from all
the sites involved in the HEP application.

Figure 4 presents an overview of OCM-G and JIMS components and relation-
ships between them. In one site its components are shown in details while in the
two remaining ones the details are hidden. The RTD is connected to a JIMS agent.
This agent serves as a JIMS Gateway for the site so it is accessible from outside.
The agent also provides Discovery Service and owing to this the RTD can access
other JIMS agents in the other sites. Within the depicted JIMS agent, there can
be seen two MBeans. Our MBean is connected with the OCM-G system and there
are OCM-G’s monitors on the worker nodes where PTs are running.

The information provided by the OCM-G MBean can be accessed in different
ways, e.g. through e.g. JIMS GUI. In Figure 5 a GUI, called JIMS Manager is

Fig. 5. OCM-G MBean in the JIMS Manager window
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shown. On the left top panel (Grids and Clusters) there is a list of known JIMS
agents which were specified in a configuration file. With selecting one of these
agents we can start a process of finding other ones that will be shown on the left
bottom panel (Worker Nodes). In the figure, on the left, there is an open tab
for a one of the discovered agents. A list of MBeans the agent runs is presented.
Once the OCM-G’s MBean is selected, on the right there are shown our MBean’s
operations.

4 Conclusion and Future Work

The solution for middleware support, in particular, this related to monitoring
functionality, presented in this paper was designed for the HEP event process-
ing problem, which poses some rigorous time requirements for data processing.
Usually, large delays in the event processing end up in the overloading of the
queues holding the data coming from the trigger.

In this paper we focused on the requirements for monitoring support for Real
Time Dispatcher in choosing proper remote Processing Tasks for performing
computations within the High Energy Physics application explored as a pilot
application in the int.eu.grid project. The designed monitoring strategy and
the idea of how we had integrated OCM-G monitoring system into the JIMS
infrastructure for the monitoring of the HEP application were shown.

At the moment, a working version of our solution is tested with RTD and
remote PTs. In the future we intend to improve the reliability of OCM-G by an
elimination of Main Service Manager component. This component is important
when OCM-G is used independently on the Grid. It gathers monitoring informa-
tion coming form all Site Service Managers (one per site). In our scenario, we’ve
got one OCM-G system per site so the Main Service Manager is not needed and
the Site Service Manager should be accessed by a client (OCM-G MBean) di-
rectly. Our further focus will be on the comparative study of the functionality of
the monitoring infrastructure under discussion and similar systems, which will
involve experiments with MonALISA [11], a distributed, auto-configuring and
auto-deploying monitoring system that can provide quasi-real-time information
about huge number of nodes. This will also enable us to study the scalability of
of our monitoring system.
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Abstract. In this paper, we present a framework called CoUniverse, de-
signed for building real-time user-empowered collaborative environments
to work primarily on high-speed networks with true high-bandwidth
applications such as uncompressed high-definition video. The system is
designed for unreliable experimental infrastructures and therefore its op-
eration relies heavily on self-organizing principles—this is also useful ap-
proach for extending it to larger infrastructures. When media stream
bitrate is comparable to a capacity of the links, the additive assumption
no longer holds and the system needs to have a sophisticated schedul-
ing. The scheduler is conceived as a flexible plug-in for the CoUniverse
framework. In this paper, we present a formal scheduling model based on
constraint programming including evaluation of its prototype implemen-
tation. CoUniverse is designed to utilize external media applications, so
that a wide variety of existing tools can be used. The whole system has
been prototyped and demonstrated, e. g., during international demon-
stration on the GLIF 2007 workshop.

1 Introduction

The Grid environment is nowadays understood not only as a manner how to
share computational resources or data storage facilities but may be understood
in a more general way as an infrastructure for sharing of various types of capac-
ities and for virtual collaboration. In this context it also includes high-quality
collaborative environment. High-quality collaborative environment must be able
not only to transmit media streams with the best possible quality, but also it
has to be capable of accommodating changes in the underlying infrastructure.
While multipoint transmissions of low-latency uncompressed high-definition me-
dia streams at 1.5 Gbps provide the desired quality, they have very high demands
and lack adaptivity to changing networking conditions. Bitrate of such media
streams becomes comparable even to the current highest-speed network links
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(10 GbE or OC-192) and thus scheduling of media streams to network links
needs to be done carefully. Furthermore such an environment comprises large
number of components which can become very hard to orchestrate manually.
Manual orchestration of components makes virtually impossible reacting to net-
work events in time short enough to minimize impact of events on the users’
experience.

In this paper, we propose a self-organizing collaborative environment frame-
work for real-time network transmissions called CoUniverse. CoUniverse is
designed as an application middleware capable of orchestrating collaborative
environments like the one described above. Careful separation of control plane
from data plane within CoUniverse allows for optimization of these two networks
for different purposes. For the control plane, CoUniverse framework uses peer-to-
peer (P2P) network communication substrate which adds necessary robustness
and reliability even on experimental infrastructures. We have designed CoUni-
verse as self-organizing system capable of automated user-empowered steering
and encapsulation of legacy media applications (i.e., third-party components of
the collaborative environment which are completely unaware of the middleware).
Our framework is also capable of responding to changes and outages of the un-
derlying Grid (network and processing) infrastructure. CoUniverse introduces
a concept of pluggable scheduler to address the self-organization aspect of the
framework by the means of planning the transmissions of the media streams over
particular network links and creating corresponding configuration for respective
collaborative environment components. Not only that the streams with constant
parameters can be configured to individual links, but strategies for using alter-
native streams and/or adjusting stream parameters may be defined. This allows
for using, e.g., 250Mbps compressed stream instead of 1.5Gbps uncompressed
when links required for 1.5Gbps stream are not available.

This paper is further structured as follows. Basic design principles used for
proposing architecture of CoUniverse are discussed in Section 2. Resulting pro-
posed architecture including overview of basic components and organization of
the network is described in Section 3. The system has been prototyped including
preliminary version of the scheduler as discussed in Section 4. The system has
already been demonstrated during several events and its evaluation especially
with focus on performance of current version of the scheduler is given in Sec-
tion 5. Because the field of collaborative environments is rapidly moving forward,
we brief related work in Section 6. The paper is concluded by tackling future
research tasks and proposing further applications for CoUniverse in Section 7.

2 Design Principles

The CoUniverse is organized as one or more collaborative Universes, where the
actual collaboration takes place, and a Multiverse, used for registration and
lookup of clients and Universes. The collaborative Universes are intended to
accommodate collaborative groups of limited sizes [1] and thus can implement
functionality that may be hard or impossible to deploy at large. This includes
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features like sophisticated scheduling and aggressive monitoring of components
and network that provides basis for fast reaction to problems that may occur.
On the contrary the Multiverse provides a very limited functionality, it has to
scale well with respect to large number of participating nodes.

In terms of self-organization, CoUniverse is capable of reacting to events in
the system, namely to events raised by users, nodes, and by the monitoring.
It includes applications being started/terminated, network links being turned
up/down, changes in link parameters (capacity, loss, latency, jitter), nodes being
added to and removed from the Universe and nodes being reconfigured.

CoUniverse needs to have a scheduler to support applications with media
streams comparable to network link capacity. The scheduling objectives may
vary: for simple interactive applications with fixed quality, it usually includes
minimization of media distribution latency and possibly minimization of num-
ber of nodes involved in the network. For more complex applications where
quality is an adjustable parameter, maximization of the quality may also be in-
cluded. Output of the scheduler has to include not only the plan itself, but also
a workflow describing how to implement the plan, as there are many functional
dependencies. For instance, network links need to be allocated prior to starting
media applications that will send data over them.

Because the CoUniverse is designed to integrate high-bandwidth applications,
it is necessary to interface with services provided by advanced networks like
lambda services [2] or network resource allocators [3].

The whole system follows the user-empowered paradigm [4,5] as much as pos-
sible. The CoUniverse doesn’t require administrative privileges especially over
the network and components which means that the system is able to run entirely
in user space.

3 Proposed Architecture

3.1 Network Organization

As discussed above, the CoUniverse is organized as one or more collaborative
Universes and a Multiverse. From the networking point of view each Universe
consists of a control plane used for control communication of all components of
the Universe and one or more data planes used for actual data exchange between
Universe components. Both control plane and data planes are forming an overlay
networks on top of an actual physical network infrastructure.

The Multiverse and the control planes of collaborative Universes are based on
a P2P networking substrate which provides necessary robustness for the Multi-
verse and the control planes. Moreover a P2P substrate provides functions like
clients and Universes description, naming and addressing, lookups and reliable
data transfers.

The data planes of the collaborative Universes are based on available physical
networking infrastructure. The data planes are optimized for maximum perfor-
mance and minimum latency when transmitting data between the components
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of the Universe. As data planes are virtual overlays over a physical network-
ing substrate, they exist only in case when there is an Application Group (see
bellow) to utilize it. The system is designed with user-empowered paradigm in
mind and thus it naturally relies on using application-level media “routers” and
distributors (reflectors, Active Elements [5]) for multipoint data distribution.

3.2 Collaborative Universe

Collaborative Universes, as shown in Figure 1, consist of nodes, each of which
runs Universe Peer client. Universe peers are providing a base for communica-
tion among the Universe components, managing underlying node configuration
and steering media applications configured on the very node. Nodes within the
Universe are aggregated into network sites, usually representing all nodes of a
single site participating in the collaborative Universe. To give more precise defi-
nition, a network site is a set of collocated nodes, where each site may have one
or more users participating. Expressed using terminology defined below, typical
property of all nodes within one site is that there are no consumers consuming
data from producers from the same site (this definition doesn’t include media
distributors).

Each network node is configured by specifying (i) a list of its physical net-
work interfaces and their parameters, (ii) a list of Media Applications which are
installed on the node, and (iii) a network site the node belongs to. A Media
Application is any application which is used to create the collaborative environ-
ment and which produces or consumes a media stream (e. g., videoconferencing
clients, audioconferencing clients, data distributing Active Elements (AE) [6],
etc.). All Media Application producers (except AEs) are producing exactly one
media stream which is then sent to exactly one consumer.

Media applications are organized into Application Groups (AG). AGs are
then generalizing a particular functionality of the collaborative environment

Fig. 1. Scheme of the Collaborative Universe with its components. Different colors for
Media Application squares mean different media applications.
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(e. g., audio or video conferencing, desktop sharing etc.). Media applications
within an AG are orchestrated using an Application Group Controller (AGC).
AGC is a service running on top of at least one of the regular Universe peers.

The purpose of the AGC is to collect node configurations from all peers within
the collaborative universe, assemble a topology of universe data planes, invoke
a scheduler to schedule the media streams of corresponding media applications
to a physical network links, create a configuration for each media application
based on scheduled media streams and finally send the configuration together
with data plane topology to respective universe peer. The universe peer in charge
then adjusts the configuration of steered media application so that it corresponds
to respective scheduled media stream. The scheduler within the AGC is invoked
either manually (especially for the first time) or automatically as a reaction to
a change Collaborative Universe state (e. g., new node appeared, a node is not
reachable using a particular network link etc.).

3.3 Monitoring

Each Universe peer comprises monitoring of steered media applications, network
links of a physical networking substrate which might be used to build the data
plane for the media applications and the network links that are actually part of
some data plane. Monitoring of the data planes network links is more aggressive
than monitoring of network links of generally available physical networking sub-
strate since the links of data planes are actually used for media applications data
exchange. At the same time, the links that are not used in any of the Universe
data planes need to be monitored less frequently just so that the AGC eventually
has a notion of their state when some event in the Universe occurs and those
links might be used for some newly scheduled media streams.

3.4 Visualization

Visualisation gives an overview of an actual collaborative Universe state to the
user. Our goal is to provide a dynamic visualisation displaying on one hand
topology of the physical network between nodes of the collaborative Universe,
which might be used to build the data planes, and on the other hand active
(currently scheduled) media streams. Visualisation of active media streams is
extremely useful especially when incorporating data from network and applica-
tions monitoring. Moreover, users can also easily find out whether the schedule
chosen for a given network topology has the desired effect (i.e., users can see,
talk to, or collaborate with each other in the way it was intended in a particular
collaborative universe).

3.5 Scheduling Network Model

In order to describe the scheduling algorithms implemented into the CoUniverse
framework, we need to introduce formal notation first. In this section, only the
notation is described, while the actual constraints used for scheduling are avail-
able in Section 4.
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Let I be a set of all network interfaces, i ∈ I a network interface. Furthermore
let N be a set of all nodes in the Universe, n ∈ N a particular node. Then
node(i) = n where n ∈ N is a node n with configured network interface i.

Let l = (i, j) be a network link for i, j ∈ I. Then L = I × I denotes a set of all
network links and we denote a particular network link as l ∈ L. We can define
following properties of a network link l: begin(l) = i such that l = (i, j)∧ i, j ∈ I
is the originating interface i of the link l, end(l) = j such that l = (i, j)∧ i, j ∈ I
is the ending interface j of the link l. cap(l) denotes the link capacity.

Finally, let P be a set of producers where p ∈ P is a media application pro-
ducer, C a set of consumers where c ∈ C is a media application consumer and
M set of media distributors where m ∈ M is an Active Element (AE). Pro-
ducers, consumers and media distributors are running on the nodes n ∈ N . Let
consumers(p) where p ∈ P be a set of consumers for a particular producer p. Thus⋃
p

consumers(p) is a set of all active consumers, i.e., those that have requested

a data stream from some producer. In the opposite direction, producer(c) is
the requested producer for the consumer c. Furthermore we define node(p) = n
where n ∈ N ∧p ∈ P , node(c) = n where n ∈ N ∧c ∈ C and node(m) = n where
n ∈ N ∧ m ∈ M as a parent nodes of the producer p, the consumer c and the
media distributor m. A media application producer p ∈ P is producing a media
stream with minimal bandwidth min_b(p) and maximal bandwidth max_b(p).

4 Prototype Implementation

A prototype implementation of CoUniverse1 uses a current stable version of
JXTA [7] P2P framework to implement CoUniverse control plane. Both Multi-
verse and collaborative Universes are implemented as user name and password au-
thenticated private JXTA peer groups separated from public JXTA P2P network.
Current implementation of Multiverse lacks most of the functionality mentioned
in previous section and is used just for Universe registration and static lookup.

Current prototype implementation of the CoUniverse uses just one AGC to or-
chestrate all applications within the collaborative universe. We are using a single
AGC to simplify the implementation and to avoid synchronization issues between
several AGCs running at the same time. We implemented an interface for steering
of generic media applications. In the current implementation of CoUniverse, the
Universe Peer is able to control a variety of UltraGrid flavors [8] for both uncom-
pressed and compressed full 1080i HD video transmissions—compared to descrip-
tion in [8], bitrates from 250 Mbps to 1.5 Gbps are now also supported, based on
several compression and bitrate reduction algorithms. Amongst other supported
applications are: VideoLan Client2 for HDV video transmissions, VIC3 for low
bandwidth videoconferencing (used as a fallback for building of the collaborative
environment) and RAT3 tool for audio transmissions.
1 Java sources and JAR archive of the CoUniverse are available at https://

www.sitola.cz/CoUniverse
2 http://www.videolan.org/
3 http://mediatools.cs.ucl.ac.uk/nets/mmedia/
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Media streams scheduler was implemented as a constraint-based solver using
a Choco solver library4. The solver searches for a solution which is a mapping
of media streams on particular network links. Formally we are looking for a set
of stream links SL = L × P . Scheduler plans the stream links so that (l, p) = 1
where (l, p) ∈ SL for a stream link that is planned to be actively used for the
data distribution in the Universe and (l, p) = 0 where (l, p) ∈ SL for an unused
stream link. For sake of brevity in the text below, we say that stream link (l, p)
exists iff (l, p) = 1.

Speaking in terms of network model given in previous section the constraints
for the solver look as follows:

Stream links constraints. Parent network link l of the stream link must have
sufficient capacity to transmit the media stream p. Each stream link must have
producer or media distributor on its beginning node and each stream link must
have a consumer receiving data using the stream link.

Producer constraints. More than one consumer for a particular producer means
that there cannot be any direct stream link between consumers and respective
producer as the producer has to send the media stream through at least one
media distributor.

Consumer constraints. The media stream for each active consumer is received
using exactly one stream link. There are no media streams for any of inactive
consumers (i.e., those that hasn’t requested any data from any producer) and
each active consumer has to be covered by the requested producer either directly
or through some media distributor.

Data distribution tree constraints. The number of used stream links for producers
with only one consumer is greater or equal to the number of producers. That
means data may go either directly, or through some forwarding media distributor
(typically in case that direct sending is not available for one reason or another).
The number of stream links obviously must not exceed the number of all the
media distributors in the network plus one. Moreover a minimal number of used
stream links is greater or equal to the number of consumers for given producer
plus one for a multipoint data distribution.

AE constraints. A single media distributor instance can only serve for distri-
bution of data from a single producer. Any media distributor is not scheduled
together with another consumer for the same producer on a single node and
there has to be at least the same number of egress media streams as ingress
media streams for a particular AE.

Link capacity constraint. A single constraint for link capacities is stressing that
the bandwidth requirements of all the scheduled stream links (l, p) must not
exceed the capacity of the link l the stream links are bound to.
4 http://choco-solver.net/
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Fig. 2. Visualization of scheduled stream links in CoUniverse during SC’07
demonstration

Another available constraint is based on an elimination of intra-site links (i.e.,
links (l, p), where node(begin(l)) and node(end(l)) belong to the same site). This
can speed up the scheduling up to 10× for many scenarios, but it may also disable
some useful solutions, e. g., those where media distributors are collocated in the
same site with producers and/or consumers. In case of need, this can be however
circumvented by moving media distributors to a separate site.

Based on its settings, the solver can return just a single first match solution or
a solution optimized for a minimal media streams distribution latency between
the nodes. Based on the network topology and configured media applications
the solver may also return a number of equivalent (and even optimal) solutions.
In such case the first solution is used and deployed within the collaborative
universe.

Because Java lacks any reliable tools for network connectivity monitoring, we
have implemented a custom client-server based ping tool. The tool measures
not only availability of the peers through the native network, but also network
round-trip time, which is an important parameter for latency minimization in
our scheduler model. Each universe peer is running the server part implicitly
and then is pinging all other known universe peers. In section 3, we mentioned
that we need more aggressive monitoring of those network links which are part of
some data plane and are used for media applications data exchange than of those
network links which are just generally available in the network substrate. This
is implemented by a priority and default classes of links which are monitored. A
ping client is invoked each second for each network link with scheduled media
stream (which is put into the priority class) and each 10 seconds for network
links in the default class.

In our prototype, we have implemented a semi-static visualization (see
Figure 2) of the collaborative Universe. The visualization is updated with every
new scheduling of media streams within the Universe. Currently the visualization
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shows only active scheduled media streams with some rudimentary description
and static parameters of the media streams. However, even such a simple visu-
alization is helpful to check that the collaborative Universe is started up and
configured as was intended to.

5 Prototype Implementation Evaluation

Performance and scalability of the CoUniverse environment heavily relies on
the scheduler, therefore we have performed a number of simulations with vari-
ous network topologies and data distribution schemes and measured the time
necessary to obtain a schedule for given network topology and distribution
scheme.

We chose a full mesh m:n, 1:n tree and direct 1:1 data distribution schemes
as a test cases for evaluation of the scheduler performance and scalability. The
network topologies were given by the data distribution schemes and a number of
sites in the collaborative universe. The m:n distribution scheme test case topol-
ogy was generated so that each site had one node with an UltraGrid media
application producer a node with UltraGrid consumer for each other site and a
node with AE. This scenario simulates full-mesh collaboration among peers. The
1:n tree distribution test case was generated so that one site had an UltraGrid
producer node and UltraGrid consumers node for all other sites in the topology,
every other site comprised of one UltraGrid producer node and one UltraGrid
consumer node. This scenario is realistic, e.g., for virtual classroom type envi-
ronment, where the lecturer gives his talk in multiple remote rooms in parallel.
A corresponding number of AE nodes was generated with respect to the fact
that one AE can replicate 1,5 Gbps media stream from an UltraGrid producer
to at most 6 UltraGrid consumers where 10 Gbps network link is available. Fi-
nally direct 1:1 data distribution was a simple test case with generated pairs of
UltraGrid producer nodes and UltraGrid consumer nodes, where each UltraGrid
consumer was receiving the media stream from a particular preconfigured Ultra-
Grid producer. This is sort of an artificial scenario to show scalability limits. All
nodes had one 1 Gbps and one 10 Gbps network interface configured in all three
test cases.

All measurement results were obtained on a 2 GHz Pentium M machine with
1 GB of RAM running a Linux operating system. A 1.2.05 version of Choco
solver library was used. Table 1 shows excerpt of measured times necessary to
find feasible plans for above mentioned test cases with the Choco solver set
up to return all feasible solutions and the corresponding times measured for the
Choco solver set up to return just the first feasible solution and exit immediately.
The table shows that Choco solver scales reasonably for 1:n and direct 1:1 data
distribution schemes with up to 25 nodes in the network topology. The worst
scheduler performance was observed for m:n data distribution scheme. For such
a scheme we were able to obtain a schedule in a reasonable amount of time for
up to 12 nodes aggregated into 3 sites.
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Table 1. MatchMaker evaluation
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m:n 2 6 60 6 2 0,308 0,178
m:n 3 12 264 12 3 0,447 0,510
m:n 4 20 760 20 4 1986,047 1970,540
1:n 2 5 40 5 1 0,169 0,181
1:n 4 11 220 11 1 0,285 0,360
1:n 6 17 554 17 1 0,758 0,753
1:n 7 20 760 20 1 0,924 1,110
1:n 8 24 1104 24 2 3,747 8,914
1:n 10 30 1740 30 2 17,518 37,299
1:1 2 4 24 4 0 0,187 0,187
1:1 5 10 180 10 0 0,343 0,333
1:1 8 16 480 16 0 0,862 0,979
1:1 11 22 924 22 0 1,900 2,009
1:1 14 28 1512 28 0 3,382 3,344
1:1 17 34 2244 34 0 5,745 6,160
1:1 20 40 3120 40 0 9,727 10,161

5.1 Demonstrations

A prototype implementation of CoUniverse was evaluated during SuperCom-
puting’07 event and a demonstration at GLIF 2007 meeting. The CoUniverse
was used to orchestrate a network of twelve nodes using a high quality, high
bandwidth HD video transmissions and audioconferencing to create a multi-
point-to-multipoint collaborative environment connecting three sites (Louisiana
State University, USA with Charles University, Czech Republic and Academia
Sinica, Taiwan).

Creating such a collaborative environment means in praxis configuring and
steering of more than two dozens of media applications and Active Elements
to bring up the media streams connecting all the sites. Configuring all media
applications and AEs at dozen of machines presents a huge amount of manual
work which is overwhelming for users of such environment. Moreover there must
be at least one user of the collaborative environment having precise idea how
to create the media streams between all media applications and AEs based on
knowledge of available physical network substrate between all participating sites.
Last but not least the users are not able to ensure resiliency and fast recovery of
such an environment in case of any network, node or media application failure,
because it might mean even newly configuring of all nodes and applications.

Both issues were well addressed deploying CoUniverse. Although creating
node configurations for all nodes in the Universe is initially quite time consum-
ing as well, users have to create just a local configurations describing network
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interfaces of the local machine and the location of local media applications. The
SuperComputing’07 demonstration showed that CoUniverse is also able to re-
spond to changing networking conditions when parts of 10 GbE infrastructure
used for the HD video transmissions went down and back up for a couple of
times during the demonstration.

6 Related Work

As mentioned in the introduction, some extent of self-organization is usually
built into the all but the simplest collaborative tools. H.323 and SIP tools that
are considered a sort of industrial standard as a videoconferencing platform
can accommodate changes in available link capacity by changing compression
parameters of media streams. Isabel [9] platform has similar properties by means
of flow server and also features programmable floor control [10], which is however
on the level of GUI programmability only.

Probably closest to CoUniverse idea is currently VRVS EVO [11], which allows
self-organization of the collaboration network. It is however a closed system that
doesn’t incorporate external tools and namely it is designed to work only with
a low and standard-definition media streams that have bandwidth requirements
significantly lower than the link capacity. From user perspective, VRVS EVO
can be viewed as a system similar to Skype in terms of both self-organization of
the network and usage of low quality media streams.

Another important videoconferencing platform is AccessGrid [12]. Access-
Grid is capable of providing high-definition media streams. However, AccessGrid
doesn’t have any self-organizing properties. The fail-over mechanisms are only
very simple and have to be initiated manually by the user, e. g., by selecting
unicast media transport instead of multicast. Compared to the other systems, it
may seem simple, but it follows several of CoUniverse design principles which the
other systems are not compliant with: user-empowered paradigm at least for the
collaborative system components (which are open-source and may be installed
by end-users arbitrarily) and it is also extensible and incorporates external ap-
plications (e. g., UltraGrid to support high-definition media streams).

7 Conclusions and Future Work

In this paper, we have designed a framework for advanced self-organizing collab-
orative environments called CoUniverse and described its prototype implemen-
tation. The system is targeted to incorporating high-end multimedia tools while
utilizing advanced high-speed networks with their specialized services.

While the CoUniverse has been designed primarily with the high-end video-
conferencing systems in mind, it can be very useful beyond this domain. Any
component-based applications with real-time orchestration requirements can be
supported. For example, if a scientific instrument, that is generating real-time
data, is needed to be incorporated into the Grid infrastructure and the data is
supposed to be distributed to one or more locations in real-time, the CoUniverse
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can be used to control the data distribution, including the components along
the path: data source (i.e., some component that is a direct interface from the
instrument to the computer network), data distributors, as well as data receivers
(be it storage or real-time visualization systems). It can also allocate dedicated
network circuits (e.g., lambda services) prior to starting data distribution and
deallocate them after the data transmission is finished. All that is needed to
create such an application workflow is to implement a CoUniverse modules for
the respective services.

Even though we have already implemented and successfully demonstrated a
prototype of the CoUniverse, it still leaves many unanswered questions stated in
the introduction to this paper. One big issue is optimization of the scheduling
algorithms in order to support larger infrastructures. It should also better utilize
knowledge of network structure, even if it is only partial. We want to include
scheduling for native multipoint applications. Another issue that needs to be
further investigated is programmability of the whole system by its users. This
is also important in the context of the scheduler, which may need to be able to
incorporate user-defined constraints on its behavior.
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Abstract. In the recent years advancements in the development of Net-
worked Virtual Environments (NVEs) can be observed in many domains.
Although this technology is available, it is still a challenging task to
design and produce these virtual worlds. To ease the creation of such
environments the inVRs framework was developed.

Besides this also grid environments have advanced from traditional
batch processing systems in the area of scientific computation. Nowadays
highly responsive and interactive grid jobs can be supported: Real-time
Online Interactive Applications (ROIAs) constitute a potential domain.

The edutain@grid middleware provides an approach to use the ad-
vantages of Grid technology, like Virtual Organisations (VOs), dynamic
resource allocation, etc. and additionally fulfils the requirements of highly
interactive real-time applications.

The rtfOdrom application acts as a prototype application to demon-
strate the interconnection between Grid computing and Virtual Reality.

1 Introduction

Multi-user environments with participants all over the world have become more
common and are well accepted by the industry. Community platforms like Sec-
ond Life or multi-player games like World of Warcraft are just a few to mention.
Networked Virtual Environments (NVEs) are becoming more and more valu-
able, for training simulations or collaborative visualisations, since the required
graphics and real-time needs can be fulfilled due to the advancement in network
infrastructure and the development of graphics boards. Collaborators from all
over the world try to solve large scale problem by simulations and parameter
studies using distributed computing power.

This distributed computing power has become available through Grid com-
puting [9]. Grid architectures provide many other features than just providing
computational resources. They offer for example user and resource management
in the form of Virtual Organisations (VOs).

One of the main issues in NVEs and Virtual Reality (VR) applications in
general is the real-time interactivity, which is seldomly supported by Grid mid-
dleware. Traditional Grid computing architectures provide batch processing

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 352–360, 2009.
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mechanisms, which can be used comfortably to manage distributed computing
power, but they are not usable for interactive data manipulation or visualisation.

The advantages of both domains can be combined by merging functional-
ity of the inVRs framework [2] and the edutain@grid middleware [8]. inVRs is
designed to support the creation of efficient NVEs by offering a highly modu-
lar architecture and consistent communication mechanisms, while edutain@grid
supports Real-time Online Interactive Applications (ROIAs) using a Real-time
Framework (RTF) for scalable and interactive communication and the GRIA
Grid middleware [15] to support the establishment of VOs.

This paper provides an overview how these different worlds of computational
resource management and real-time interactivity can be combined. As an exam-
ple application rtfOdrom, a VR racing game which is executed on different Grid
servers, is described.

The second section gives an overview on the related work, while section three
focuses on the architecture of the inVRs framework. The exchangeability of mod-
ules and the structure of the network module are drawn out in detail. Section
four and five introduce the architectures of the RTF and edutain@grid. The fol-
lowing sections concentrate on the combination of these frameworks and describe
rtfOdrom as an example for a real-time application running on the Grid. Finally
the last section concludes the paper and gives an outlook into future work.

2 Related Work

Although much research has been done in the fields of Grid computing and Virtual
Reality (VR) virtually no approaches exist which try to combine both areas.

Many ways exist for the development of VR applications. Typically three
different categories of approaches are common. The first approach is to develop
a the VR application from scratch, by using low-level APIs or scene graphs.
The second way is the use of fully developed NVEs like DIVE [6] or Graphical
User Interfaces (GUIs) like the EON Studio. Finally VEs often make use of
frameworks e.g. VRJuggler [12] or DIVERSE [13]. While the first two solutions
lack genericity and flexibility, the framework approach can be used to adapt the
network capabilities to the needs of Grid computing.

In the area of Grid computing a variety of middleware solutions has been
provided. Most of them focus on traditional batch processing approaches. In
the CrossGrid project [5] data for a flooding simulation was computed on Grid
resources and reduced to real-time display and finally displayed in VR systems
like the CAVE [7]. Other approaches like AGJuggler try to make use of the
AccessGrid in order to display VEs using Grid resources [11].

The key issues with these approaches is that they either make use of the
encrypted communication mechanisms provided by the underlying Grid middle-
ware, or they perform significant offline computation beforehand in order to dis-
play a static result or set of results in real-time after the computation. rtfOdrom
in combination with the RTF and the inVRs framework allows for non-encrypted
communication and thus provides the required real-time capabilities.
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3 inVRs Architecture

The inVRs framework offers a clearly structured approach for the design and
creation of highly interactive and responsive VR applications in order to improve
the development process of VEs and NVEs.

It consists of three independent modules, for interaction, for navigation, and for
network communication, two interface layers that allow the abstraction of user in-
put and output display, as well as a system core which stores and manages the state
of the VE. An architecture draft of inVRs has been previously described in [2].

Fig. 1. The Architecture of the inVRs Framework

Figure 1 provides an overview of the inVRs architecture showing the individ-
ual components. The flow of data as displayed in this diagram is typically from
top to bottom. Input gathered by the devices is parsed by the input interface
and exposed to the modules in a data structure describing an abstract controller
in order to provide a unified interface. The modules access the abstract con-
troller and generate navigation and data which is processed by the system core
managers. The event manger handles discrete reliable events while the transfor-
mation manager is responsible for a flow of transformation data packets. More
detail on event and transformation management is provided in [1]. Events and
transformation data are applied on the user database and the world database
which are used to store the state of the VE. The content of these databases is
then finally rendered each display frame via the output interface.

In the current implementation inVRs uses OpenSG [14] as a scene graph for
rendering the graphical output on a single or multiple stereoscopic displays.
Audio output is supported by OpenAL a well known audio library. The input
can be retrieved from a variety of sources which could either be regular desktop
devices like mice or keyboards, or it can be gathered from VR tracking systems,
wands or datagloves.

3.1 Module Exchange

One of the key features behind the design of the framework is its modularity. The
need for this becomes clear if we take a look at different application domains.
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Some VEs only need a single module e.g. an architecture walkthrough may only
need the navigation module. Others such as a networked collaborative safety ap-
plications have obviously different requirements. For more interactive VEs like
training or phobia treatment applications, both, the interaction as well as the
navigation module can be used by interconnecting them through the system core.
If an application is designed for multiple users the network module is addition-
ally connected to the core. State changes and entity transformations of the virtual
world are in this case transmitted via the network module to the remote partici-
pants of the VE.

To achieve this flexibility of module exchange the individual modules are
implemented following a plug-in pattern, thus the network module can be easily
exchanged in order to support Grid applications. The communication between
the managers of the system core and the network module is handled by a high-
level interface, which has to be implemented by each inVRs module.

3.2 Network Module

Figure 2 gives an overview on the network module. The communication mecha-
nisms of the system core communicate with the high-level layer of the module via
message queues. Geometrical transformations are sent to the network module as
unreliable messages and events are sent to be transmitted in a reliable way.

Fig. 2. A High-Level view on the Network Module
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The low-level layer shows in a generic view three different aspects which have
to be considered for developing an inVRs network application. The message pro-
tocol is used for the distribution of geometrical transformations, state updates,
and system messages. The network topology handles the connection establish-
ment and communication between the different interconnected nodes, while the
database distribution is responsible for storing and managing the states of the
virtual world.

This low-level layer of the module has been completely replaced by the commu-
nication mechanisms of the Real-time Framework (RTF) in order to be executed
on the edutain@grid middleware.

4 RTF Architecture

The RTF was designed to support the scalability of multi-user games by keeping
up to the needs of high interactivity.

It is composed of multiple modules which provide controlling, monitoring,
communication, streaming, and data storing functionality. Via the controlling
module it is possible to startup or shutdown application server instances or mi-
grate server applications from one host to another. The monitoring module can
be used to integrate monitoring functionality into application servers. Stream-
ing and data storing functionality are also available for the support of audio
and video data transmission and to achieve persistence in networked applica-
tions. For the communication between the application clients and the servers
the Communication and Computation Parallelisation (CCP) Module is used.
This module is integrated into the server and client applications and manages
the network connection and communication. It supports different network proto-
cols and provides functionality for the automatic synchronisation of application
state information between servers and clients.

The RTF implements a client server architecture which splits up the VE into
domains an distributes it over several servers. The VE is populated by entities,
which are either static or dynamic objects or avatars representing a single client
instance. Entities can travel between domains via portals. On the client side the
process of being transferred between domains is transparent to the application
even if the destination domain is managed by another server the client’s avatar
is currently residing on. This is achieved by establishing network connections to
potential destination servers when the avatar gets close to a portal to another
domain. The migration itself is then achieved by changing the communication
destination to the new server.

5 edutain@grid Architecture

The edutain@grid architecture is separated into three different layers, the busi-
ness layer, the management layer and the real-time layer.

The business layer is the top layer of the system. It is responsible for the
management of the different business relationships between the different actors in
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the edutain@grid system. From the consumer’s point of view this layer provides
functionality for login and account management or billing information.

Below the business layer acts the management layer. This layer provides the
functionality of resource allocation, monitoring and capacity management. It
manages the distribution of the different server applications and supports load
balancing mechanisms in order to fulfil Quality of Service (QoS) parameters
defined in the business layer.

The third layer in the edutain@grid architecture is the real-time layer. This
layer focuses on the real-time communication between the application servers
and the client applications. It supports advanced communication functionality
like the automatic distribution of game entities or e-learning application data
from the servers to the clients. Furthermore this layer supports different network
communication protocols and allows to integrate monitoring functionality into
the application servers.

The edutain@grid middleware provides interesting features which can be used
to support virtual worlds, like a high scalability, which is achieved by the RTF
component of the real-time layer. Features like portals provide a user-interface
for the end user on many sides of the system (e.g. client, hoster, coordinator).

This middleware has been combined with the inVRs framework in order to
connect both worlds.

6 Combining the Three Solutions

In order to interconnect the three approaches the RTF middleware was inte-
grated in the inVRs framework as an individual network module.

The inVRs network module does not follow the principles of a classical client
server approach. It is up to the individual modules to maintain a consistent view
of the VE of their respective area they are responsible for. The reasoning behind
this is that it is more efficient to treat synchronization issues on a per module
level rather than on a per application instance level, as different modules may
have different needs. The inVRs physics module for example has to distribute the
results of the physics simulation to all participants in the VE in order to obtain
consistent and vivid object behaviour. However the inVRs architecture does
not rule out the possibility of application instances participating in a common
network behaving in a different way. In fact the representation of the VE stored
locally in the world database of an application instance is designed to be modified
by a remote instance without causing any consistency issues. This enables to
implement a client server architecture on top of the inVRs framework where the
behaviour of entities, both in the RTF and inVRs sense, is organized solely by
the server.

Another concept common to the inVRs and the RTF is the idea of having a
single user in the VE per application instance. Glinka et al. have described the
combination of RTF and legacy applications in [10].
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7 The rtfOdrom Example Application

The rtfOdrom is a multi-user VR racing game based on netOdrom, which was
originally developed using the inVRs framework, with a simple peer-to-peer in-
terconnection to support two players. A detailed overview of the architecture of
the original netOdrom application is described in [3].

In the rtfOdrom is a vehicle corresponds to a RTF-client. The virtual world
where the race is taking place is distributed over several RTF servers. The ve-
hicles controlled by the user are represented by users in the inVRs framework.
There are also movable obstacles on the racing track which are implemented
entities. A physics engine is provided manoeuvring the vehicles and managing
vehicle-vehicle and vehicle-obstacle collisions.

The rtfOdrom was primarily designed for testing purposes. Beside focusing
on testing RTF components the rtfOdrom was also used to conduct experiments
regarding which components of a multi-user application may follow a loose con-
sistency model. Parts of the racing simulation are accessing directly the local
world database rather than relying solely on world database updates of the
server. In particular it was important to hide the latency associated with user
input arising from network lag. Therefore it is inevitable to simulate the vehicle
movement within the local application instance which is a behaviour not sup-
ported by the RTF framework but corresponds to the approach taken by most
inVRs applications.

In order to prevent the clients and servers WorldDatabase state from drifting
apart the physics engine has been modified on the client side. Artificial forces and
momenta are applied to entities in the local world database in such a way that
the state of the server is eventually reached. A description of the implemented
physics engine is given by Bressler et. al [4].

8 Conclusions and Future Work

This paper has given an overview of the issues of the combination of Grid com-
puting and VR applications. A brief introduction into the inVRs framework was
given which can be incorporated to overcome these issues.

Through the exchange of the inVRs network module with the edutain@grid
middleware it was demonstrated that the advantages of grid computing can be
used to support interactive and vivid virtual worlds. As an example additional
computing resources could be provided in case the computational load on on of
the servers used rises above a given threshold.

It is still challenging to display data generated by computational Grid in real-
time, but by using automatic geometry reduction mechanisms and storing the
post-processed data on ROIA servers it could be even possible to display the
data of such applications in real-time.
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Abstract. The edutain@grid European project [1] is developing a sup-
port platform for deployment, management and execution of Real-Time
Online Interactive Applications (ROIA) on Grid. In this paper we present
an information system designed by the edutain@grid project which pro-
vides support for ROIA deployment and monitoring, and offers a generic
frontend for ROIA-specific optimisations. We conduct a variety of exper-
iments that justify various decisions of our design, and investigate the
performance and scalability of our system with respect to various types
of queries.

Keywords: Real-time Online Interactive Applications, Information Sys-
tem, Relational Databases, MySQL.

1 Introduction

The IST-034601 edutain@grid project [1] is focusing on enabling Grid support
for general Real-time Online Interactive Applications (ROIA), with particular
focus on online games and e-learning applications, including massively multi-
user applications embracing large user communities. To achieve this goal, the
project classifies ROIA as a new class of Grid applications with the following
distinctive features that makes them unique in comparison to traditional param-
eter study or scientific workflows, highly studied by previous Grid research [2]:
(1) the applications often support a very large number of users connecting to
a single application instance; (2) the users sharing an application interact as
a community, but they have different goals and may compete (or even try to
cheat) as well as cooperate with each other; (3) users connect to applications in
an ad-hoc manner, at times of their choosing, and often anonymously or with
different pseudonyms; (4) the applications mediate and respond to real-time user
interactions, and typically involve a very high level of user interactivity; (5) the
applications are highly distributed and highly dynamic, able to change control
and data flows to cope with changing loads and levels of user interaction; (6)
the applications must deliver and maintain certain Quality of Service (QoS)
parameters related to the user interactivity even in the presence of faults.
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Two of the main objectives of the edutain@grid project are automatic deploy-
ment of ROIA and load balancing of ROIA sessions by starting new servers or
migrating users from overloaded servers to less loaded or newly started ones. To
achieve these goals, static information about ROIA deployment procedures and
dynamic ROIA session monitoring information needs to be collected and pro-
cessed. To this end, we designed as part of the edutain@grid management layer
an information system where all management services store relevant information
about the running ROIA session and the underlying system information.

We present the detailed design of the database schema describing our infor-
mation system in Section 2. In Section 3 we present experimental results that
justify our design and investigate its scalability to various query types. Section 4
concludes the paper and outlines future work.

2 Database Schema

In the following section we present the database schema used by the information
system in detail. For performance reasons, we establish no generic schema ca-
pable of supporting all types of data structures because such a generic solution
would not explore most of the benefits databases provide and would not satisfy
type-specific needs. As a result, we define the database schema as a composition
of independent, generic, type-specific schemas called from here on beans, each
bean consisting of one or more customised tables. We describe these schemas in
the following sections.

2.1 Host Bean

Fig. 1. Bean table

The host bean is designed to store all ROIA-relevant
information about the resources available to the
edutain@grid platform (e.g. machines with their
connection details). It is defined as a simple tuple of
primitive types without any complex nested struc-
tures. Since such un-nested types of tuples are ex-
actly the kind of structure a database is working
with, it can easily be mapped to a single table. Its
schema is shown within Figure 1.

As stated by the host bean definition, the host-
name field is representing the primary key. Since no
use cases have been stated by the edutain@grid requirements [3] for querying
hosts by anything else than their name, no additional indices have been added.

2.2 ROIA Type Bean

The ROIA type beans are a representation of the ROIA characteristics, com-
pletely and uniquely defining individual ROIA such as name, version, interaction
complexity, load model, or hardware requirements. Similarly to the host bean,
the ROIA type bean can be mapped to the database as shown in Figure 2.
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Fig. 2. ROIA bean table

The key is given by a combination of both the
name and the version of a ROIA. Since no use case
for querying ROIAs by their versions have been
stated by the edutain@grid requirements [3], no ad-
ditional index structure is so far necessary.

2.3 Start-Up Descriptor Bean

The ROIA deployment and start-up information is stored in the start-up de-
scriptor bean which represents a mapping between the resources and the ROIA
deployed on them. The start-up descriptor bean has a more complex data struc-
ture which, unlike the previous very simple types, is represented through a tuple
containing a list of arguments and a map describing the state of environment
variables to be set upon execution. Since lists and maps are not supported by
databases directly, they had to be decomposed to match the simple tuple-like
scheme as requested by any relational database.

When applying standard decomposition rules, any start-up descriptor has to
be distributed among three tables. The first table called startupdescriptor con-
tains everything defined by the tuple the start-up descriptor is describing with-
out the list and map-like structures, which can be represented through primitive
types. The other two tables contain all elements stored within the list and the
map, respectively. However, this approach would require a join across all three
tables whenever a start-up descriptor has to be read. Further, any resulting set
would contain the cross product of the items stored in the list and map struc-
tures which potentially produces a lot of unnecessary overhead and increases the
result set parsing complexity.

As a consequence, we unified the list and map-like structures into a single
table called startupdescriptorparameter against common decomposition rules.
The downside of this approach might be a slightly bigger disc space consumption
caused by potentially unused fields. However, this drawback is rather limited
considering the small number of descriptors to be managed. Based on these
considerations, the resulting database schema for this data type is as shown in
Figure 3.

To be capable of assigning references within the startupdescriptorparameter
table to the basic startupdescriptor table, we add the corresponding primary
and foreign keys. As the referential integrity is not checked by the database, any

Fig. 3. Start-up descriptor bean table
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entry within the argument list will be inserted into the parameter table using
the key values of its associated descriptor along with an auto generated index
number to ensure a correct reconstruction of the argument order. Environment
entries use the name field to represent environment variables and the value field
to define their corresponding state.

Based on this schema, a single join is required whenever reading a descriptor
from the database. Additionally, the number of rows to be transferred between
the database server and client during this read operation is reduced from the
product (as it would be based on the original three table approach) to the sum
between the number of arguments and the environment variables.

2.4 Record Types Bean

The last type of beans handled by the information system are the record types
bean used to store measurement values produced by a service monitoring edu-
tain@grid entities (e.g. ROIA sessions, ROIA servers, resources). The bean
records are elements consisting of a single tuple without any nested structures.
However, based on the potentially high number of entries and the requirement
of providing good performance on insert and query operations, we applied a few
special modifications.

A record on its own consists of a metric, a source identifier, a start and end
timestamp, a type indicating how the resulting value has been aggregated, and
the actual value. We support two record types in a similar way, based on the
type of value to be stored. The simple record type is supporting a single double
value, whereas the extended record type supports an array of bytes.

Based on this distinction, two tables each covering all records of a single
type would theoretically be sufficient. However, another problem we encountered
was to determine the key field ordering. Most queries cover only a single type
of metric, which means that the metric should be the first key field and the
back-end database tree storing the table content should be sorted according
to its value. Unfortunately, this results into out-of-order inserts, since various
metrics are getting inserted over time, while experiments showed us that in-
order inserts could be executed faster (see Section 3.1). Therefore, we consider
that the start timestamp should be selected as the main key element to speed
up the insert operations, while the frequent metric-based query is slowed down
since the metric-based clustering within the sorting tree is lost.

To overcome this problem and gain advantage of both solutions, we designed
a separate table for each metric and, therefore, metric based-clustering can be
provided such that entries are sorted according to their timestamps. The main
disadvantage is that reading multiple metrics within a single request requires to
unify multiple tables. However, since there is no known requirement for such a
scenario in the edutain@grid use cases [3], we decided to accept this disadvantage.

Figure 4 shows the resulting table schema where the x symbol within the
name of the record table has to be substituted by the unique key of the asso-
ciated metric (e.g. for the metric name CONNECTION COUNT the resulting
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Fig. 4. Record bean table

record table name is record CONNECTION COUNT ). The record metric ta-
ble is mainly intended for documentation issues as it is created and updated
whenever the system is started but never read. All its information is extracted
from an internal, hard-coded enumeration-like class type. The record tables on
the right contain the corresponding measurements. Since the starting timestamp
has been chosen as the first field within the primary key, quick start time-based
range queries are supported and insertions are executed in-order decreasing the
insert time.

3 Experiments

As ROIA are very dynamic applications which can generate large amounts of
monitoring data in short time intervals, we optimised our information system’s
performance with a special emphasis on the data storing speed. In this section
we report several experiments we carried out to evaluate the performance of
our information system implemented on top of the MySQL [4] database plat-
form, which we run on a four dual core processor server with 16 gigabytes of
shared memory, a 1000BASE-T network connection, and desktop machines used
as clients.

3.1 In-Order and Out-of-Order Insertion

The following experiment evaluates the differences between in-order and out-
of-order insertion of monitoring data into our information system. One of the
most critical requirements of the information system is the capability to process
new monitoring data quickly to fulfill the ROIA real-time QoS requirements.
Since monitoring data is usually provided ordered according to some kind of
timestamp, the benefits resulting from the in-order insertion should be exploited.

We designed the experiment by generating a random list of five million par-
tially random monitoring entries as described in Table 1. We ordered the result-
ing list according to the starting time of its entries, memorised it, and used it in
a similar way within all successive experiments.

Each experiment starts by creating a new table to store the generated records
in the database. For the first run, the table is created using a composed primary
key which does not use any of the timestamps as its first component. In our case,
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we used the quadruplet [id, type, start, end] as key. Afterwards, the generated
record list is inserted into the created table in batches of 20 thousand items and
the execution time is measured and recorded. After all items have been inserted,
the table is cleaned up and the insertion is started again for seven times to
eliminate eventual noises.

Table 1. Random data generation

Field Value
Id Random value ∈ [0..99]

Start time Linear incremented by 100
End time Start time + 100

Type Random value ∈ [0..9]
Value Random value ∈ [0, 1)

After the insertion test for the out-
of-order key has finished, we continue
the experiment by dropping the previ-
ous table and recreating it using an in-
order key, in this case: [start, end, id,
type]. The complete test procedure is
repeated for the new table and the re-
sults are stored. Finally, since MySQL
is supporting multiple ways for physi-
cal table handling, we covered in this experiment the two most important ones:
the index sequential access method (MyISAM) and the InnoDB using a B-tree-
based approach.

Even though the MyISAM-based databases have a major flow of not sup-
porting real transactions which are required by our information system for data
integrity, we still performed this experiment for the sake of performance com-
parison.

Figure 5(a) shows the results collected using the MyISAM storage engine
and inserting elements out-of-order. Every point in the graph represents the
average time required to insert the 20 thousand entries in the seven repetitions
of the experiment. Obviously, the time required to insert new values is increasing
with the number of preexisting elements and becomes quite unpredictable above
approximately 750 thousand entries. Therefore, the tables using this storage
engine should be limited in size.

Figure 5(b) shows the results of the same experiment with the same storage
engine but using a primary key allowing in-order insertion of elements. It can be
clearly observed that the time required to insert additional in-order elements is
much more stable than for the out-of-order case. The average time of inserting
new elements is approximately at the same level as in the best case of the out-
of-order insertions. Further, the time required to insert new elements remains
constant as the size of the table increases.

The last graph in Figure 6 investigates the impact of the storage engine on
this experiment by showing the in-order results of the experiment using the
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alternative transaction-safe InnoDB
storage engine. The pattern is similar
to the MyISAM in-order insertion, al-
though the actual time values are twice
as high.

The corresponding out-of-order ex-
periment using InnoDB produced a
pattern similar to the corresponding
MyISAM experiment, however, the actual times for inserting new elements were
orders of magnitude higher. Because of the slow progress, this experiment was
aborted.

3.2 JDBC Usage

The goal of the next experiment is to evaluate the various ways of executing
database operations using the Java Database Connectivity (JDBC) toolkit [5].
Most JDBC operations can be performed in multiple ways. For instance, querying
information can be performed through ordinary statement or prepared statement
instances, where the latter is potentially caching internallyprocessed compiled ver-
sions. While for querying information the decision towards prepared statements is
clear (since in this case the query must only be compiled once), for data manipula-
tion operations the problem of choosing the right option remains open.

We designed three types of experiments which we executed for three times
using a MySQL server (version 5.0.22) on a remote location through a MySQL
Connector/J (version 5.1.6).

The first experiment concentrates on timing six different techniques of in-
serting new tuples into a database table. Next to simple statements or prepared
statements, we included their batched counterparts, as well as two versions using
the extended insert syntax of SQL which inserts multiple tuples using a single
call. The experiment starts by creating a new test table containing a key and
a value field (both integers), where the key is used as primary key. This step
is followed by 10 thousand items inserted using each technique. After each test,
the table is cleared to provide equal starting conditions for the next run.

The second experiment performs a similar benchmark for update operations.
It first creates and pre-fills the table and afterwards uses multiple techniques to
perform 4000 simple update operations on the table to reach a common resulting
state. Before each additional technique, the table is restored to its initial state.

Finally, a last experiment performs the same experiment for the delete com-
mand. Eight different techniques are deleting 5.000 entries within the same table.
The classic statement and prepared statement as well as their batched counter-
parts are included. Additionally, database entries may be deleted using stored
procedures which can be batched too. The pre-compiled operations managed by
databases are supported since MySQL version 5 and are intended to reduce the
amount of traffic between the database server and client. Further, the extended
delete syntax allows to define a where clause which indicates the tuples to be
deleted and which can be used to specify multiple tuples at once.
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Figure 7(a) shows the average times in milliseconds required to insert 10.000
entries. It can be observed that the traditional statements and prepared state-
ments have the worst performance. The sometimes recommended batched ver-
sion required a reduced execution time and the version using the extend insert
syntax turned out to be the fastest. Additionally, although most of the times the
prepared version seems to be slightly faster, the simple version is doing better
for the extend syntax.

Figure 7(b) shows the average times measured during the update test. Un-
fortunately, there is no extended syntax for the update statement, however, the
batched and the not batched versions of the operations are still supported. Again,
the gap between the stand alone and batched variant can be observed, as well
as a slight improvement when using prepared statements.
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Finally, Figure 7(c) shows the results of the delete experiments where an im-
provement of the batched versions compared to the none-batched once is obvious.
However, this effect is not working for stored procedures. The extended syntax
does not provide any benefit compared to the other variants.

3.3 Parallelism

The goal of this final rather small experiment was to determine whether there
is a difference in accessing multiple tables in parallel using different threads.
The reason for this test is the separation of the measurement record bean types
among multiple tables, each of them featuring a certain type of measurement.
Since most access operations only focus on a single type, the access is reduced
to a single table which, combined with the locking mechanism of the database,
can speedup access.

For evaluating whether separate tables have an impact on the information
system’s performance, we developed load producer clients which generate high
load for specific time intervals (for this experiment we selected a ten minute
interval). Each load producer generates ten simple records and five additional
extended records with random content, and adds them to the database. This
sequence is timed and continuously repeated for the specified (ten minute) time
interval. The experiment output is the number of insert cycles completed in the
given amount of time. We executed this experiment on one and four tables all
scenarios being evaluated using a single, respectively four threads.

Table 2. Speedup and efficiency

1 thread 4 Threads Speedup Efficiency
1 table 103686 264108 2.55 63.8%
4 tables 112604 324685 2.88 72.1%

Figure 7(d) shows the
results of this experi-
ment. As expected, the
number of completed in-
sertion cycles scales with
the number of threads.
By increasing the num-
ber of tables, the inter-
nal locking mechanism is
more efficient even for the single threaded version. The total lock cycle count
increases by approximately 8%. The results from Table 2 demonstrate that the
distribution of the data correlates with an increased efficiency.

4 Conclusions

In this paper we presented the design and evaluation of an information system
for ROIA as part of the edutain@grid project [1]. The novelty of our approach
is a performance-tunable information system that provides a at the same time
a flexible and generic frontend, which makes it suitable for being applied to
ROIA. We designed the information system as a relational database on top of
the MySQL platform consisting of three main beans: the host bean, the ROIA
type bean, and a record types bean. We conducted a thorough set of experiments
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for validating our design and for testing the responsiveness and scalability of the
system to various kinds of queries.

Our experiments show first the great potential of inserting data in-order into
the information system by reducing time required to insert new entries on one
hand, and by keeping the data processing time predictable even after insertion
of millions of entries, on the other hand. The MyISAM storage engine proved to
be faster than the InnoDB in this particular use case, however, InnoDB is the
only one providing the required transaction management.

For the insert operation, the JDBC extend syntax provides the best solution
although its implementation requires advanced complexity. Since the length of
an insert statement is no longer predefined (and therefore limited), it may hap-
pen that the overall length exceeds the maximum data package size accepted by
the database server. For the update operation, the batched mode of the prepared
statements provides the best performance. Fortunately, its realisation does not
introduce any additional hazards except the effort of handling transactions. Fi-
nally for the delete operations, the result is rather open. The difference between
the batched and prepared statements is rather small and may be neglected.

Finally, we observed that the separation of the measurement values among
multiple tables does not harm parallel efficiency. However, the internal locking
mechanism of the database seems to be capable of handling parallel operations
well. Therefore, the data separation on multiple tables appears to have only
limited impact. However, the experiment shows that the metric separation does
not have any negative side effects when used in parallel too. To investigate the
reasons of limiting the parallel efficiency, we need to perform more sophisticated
experiments as part of the future work.
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Abstract. This paper presents the analysis, design and implementation of secu-
rity facilities within the edutain@grid infrastructure, to support secure hosting 
of Real-Time On-line Interactive Applications (ROIA). The edutain@grid  
project aims to develop a novel, sophisticated and service-oriented Grid infra-
structure which provides a generic, scalable, reliable and secure service infra-
structure for ROIA. The class of applications that comprise ROIA have  
requirements that present obvious challenges to security infrastructure design 
and implementation. In particular, the requirement to maintain real-time interac-
tivity, particularly within the virtual world subclass of ROIA, precludes a 
heavyweight solution for securing ROIA. The edutain@grid project is extend-
ing ‘business Grid’ infrastructure that supports Service Level Agreements 
(SLA) for non-real-time data storage and processing. This infrastructure is 
based on GRIA and uses Transport Layer Security (TLS) and Web Services Se-
curity to secure web service interactions for the provision of data storage and 
processing. The edutain@grid project is also developing the Real-Time Frame-
work (RTF), which provides communication and parallelisation functionality 
and API for application developers to create distributed ROIA that can be de-
ployed to and hosted by instances of edutain@grid. The requirements, analysis, 
design and implementation of security facilities within RTF and the upper busi-
ness layers of edutain@grid are presented below. We argue that the security fa-
cilities provide a suitable compromise between security and performance that 
will be attractive to the edutain@grid actors and stake holders. 

Keywords: Real-time, Grid, Trust and Security, Business. 

1   Introduction 

Emerging Grid technologies [1] have the capability to substantially enhance on-line 
games and similar applications. Just as the World Wide Web enables people to share 
content over standard, open protocols, the Grid enables people and organizations to 
share applications, data and computing power over the Internet in order to collaborate, 
tackle large problems and lower the cost of computing. 

The edutain@grid project [2, 3] aims to develop a novel, sophisticated and service-
oriented Grid infrastructure which provides a generic, scalable, reliable and secure 
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service infrastructure for a new class of ‘killer’ applications of the Grid: Real-Time, 
On-Line, Interactive Applications (ROIA). ROIA include a broad sub-class of com-
mercially important applications based on virtual environments, including massively 
multiplayer on-line gaming applications (MMOG), and interactive training and other 
e-learning applications. The edutain@grid project is aiming to provide an infrastruc-
ture to make such applications easier to develop, more economic to deploy and oper-
ate, and more capable of meeting the Quality of Experience expected and demanded 
by end-users. 

Grid middleware systems such as Globus [4], gLite [5] and UNICORE [6] enable 
high-throughput applications by sharing computational resources for processing and 
data storage to meet the needs of individual and institutional users. ROIA such as 
multiplayer on-line computer games are soft real-time systems with very high interac-
tivity between users. Large numbers of users may participate in a single ROIA in-
stance, and are typically able to join or leave at any time. Thus ROIA typically have 
extremely dynamic distributed workloads, making it difficult to host them efficiently. 
Initiatives such as Butterfly Grid [7] and Bigworld [8] have applied Grid computing 
to on-line gaming with some success, enabling ‘scalable’ or ‘elastic’ terms for hosting 
such games. However, these ‘scalable’ hosting services are only as scalable as the 
hoster supporting them, and typically do not guarantee how far this will be. The edu-
tain@grid project addresses these challenges using ‘business Grid’ developments 
such as GRIA [9, 10], but extending them to support scalable, multi-hosted ROIA 
applications, allowing scaling beyond the limits of any one hoster. 

The focus for this paper is the support provided by edutain@grid for secure, real-
time communications. In Section 2, we present an overview of the business actors 
supported by edutain@grid, between which secure, real-time communications must 
be established. Section 3 describes the edutain@grid architecture and discusses the 
requirements for secure real-time communication. Section 4 describes how this is 
addressed using business layer services to exchange keys and set up the required real-
time communications. Section 5 describes the security features incorporated into the 
Real-Time Framework [11]. Finally, Section 6 presents the conclusions of the work 
described, and discusses possible directions for future work. 

2   Business Actors and Value Chains in edutain@grid 

To ensure business models for Grid-based ROIA will be economically viable, it was 
necessary that the edutain@grid infrastructure be generic enough to support a wide 
range of value chains needed to address different market conditions in these sectors. 
The analysis revealed an extensive hierarchy of business roles (actors). These include 
providers who host services by which the ROIA is delivered, consumers who access 
the ROIA by connecting to these services and facilitators who play other business 
roles in the creation of ROIA application software, its distribution to providers and 
consumers, and the operation of ROIA instances. Three important sub-classes of 
ROIA providers were also identified that must be supported by the project: 

• Hosters: organisations that host (usually computationally intensive) processes that 
support a ROIA virtual environment including interactions of users with this envi-
ronment and with each other. 
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• Co-hosters: other hosters participating in the same ROIA instance; if more than 
one hoster is involved in a single ROIA, each will regard the others as ‘co-hosters’. 

• Coordinator: an organisation that makes a ROIA accessible to consumers, and 
coordinates one or more hosters to deliver the required ROIA processes. 

Today, on-line game hosters exist, but there are no ‘co-hosters’ or ‘coordinators’ 
because there is only one hoster per game instance. The edutain@grid project re-
moves this limitation, enabling new business models for managing risks of ROIA 
hosting and delivery, and providing unlimited scalability for ROIA provision. The 
corresponding value chains are established via bipartite agreements, which also pro-
vide the basis for security, following the pattern used in the NextGRID project [12, 
13] and with GRIA in the SIMDAT project [14]. The edutain@grid project allows for 
a wide range of topologies, of which a typical example is shown in Fig. 1: 

CoordinatorCoordinatorCo-HosterCo-Hoster

DistributorDistributor

Software
Licence

Hosting
SLA

Customer
Account

ROIA
Com-

mission

HosterHoster

Application 
developer
Application 
developer

CustomerCustomer

Hosting
SLA

 

Fig. 1. A typical edutain@grid value chain 

In this example, the ROIA application is commissioned by a distributor from an 
application developer, and operated by a coordinator who also hosts ROIA processes, 
as shown by the dotted line indicating that the coordinator and one of the hosters are 
actually the same organisation. Other co-hosters can then be brought in to handle 
peaks in demand, or if the ROIA becomes so popular that one organisation cannot 
host it all any more. For a more in-depth analysis of edutain@grid value chains and 
their implications for SLA terms, see [15]. The challenge for developers of ROIA is 
to secure real-time communications between the actors in such value chains, bearing 
in mind that customers will not be certified by a trusted certification authority in ad-
vance, and both customers and co-hosters can join or leave the ROIA at any time. 

3   Architecture and Security Requirements 

The first implementation of the edutain@grid framework was produced in early 2008, 
and is now being extended to incorporate the security features described in this paper. 
The prototype focuses on the core edutain@grid actors: the coordinator, the hoster (or 
co-hoster), and the customer. The framework is based on a Service Oriented Architec-
ture, organised in four layers, as shown in Fig. 2: 
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Fig. 2. Prototype edutain@grid architecture 

The real-time layer provides a framework [11, 16] for ROIA developers to create 
scalable applications capable of running across multiple sites. The management layer 
handles the allocation and management of resources (and ROIA processes) by hos-
ters. The business layer deals with the creation and enforcement of hosting SLAs and 
customer agreements, including dynamic updating of security policies to ensure 
ROIA can only be accessed under a valid agreement. There is also a client layer 
which provides programming interfaces to use services from the other three layers. 

The focus for this paper is the establishment and use of secure ROIA links support-
ing real-time communications; between ROIA clients used by customers and ROIA 
processes (services) operated by hosters, and also between different ROIA processes 
even when located at different co-hosters. For more details of other aspects of the 
edutain@grid architecture and implementation, see [17]. The main security require-
ments identified are as follows: 

• the underlying communication protocol should be based on UDP, since the need 
for real-time interactivity precludes the use of TCP packet-level handshaking over 
WAN communication links; 

• communications should provide integrity protection at the datagram level, and 
support authentication of the sender’s identity and other attributes, which may be 
used for authorisation decisions within the ROIA application; and 

• communications may provide confidentiality of datagram content: this may not be 
necessary in on-line games where performance is more important than confidenti-
ality, but is likely to be needed in many e-learning applications. 
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These requirements have to be met in the context of the business relationships in 
the ROIA delivery value chain. The business layer of edutain@grid handles this using 
web services based on management services from the GRIA 5.2 middleware [10] plus 
some custom ROIA services developed by the edutain@grid project and the real-time 
layer implementation of secure communications depends on the business layer to 
handle trust decisions, manage roots of trust and to ‘bootstrap’ security in RTF. 

4   Business Layer Services 

The business layer in edutain@grid is responsible for ensuring that only authorised 
actors can manage a ROIA instance and connect to its ROIA processes. The first step 
is to establish business agreements and form ROIA value chains between customers 
and hosters via a coordinator. There are two types of business agreements supported 
in the current implementation: 

• Service Level Agreements (SLA) for hosting ROIA services, established between a 
hoster and a coordinator; 

• Customer Accounts established between a customer and a coordinator to which the 
customer’s ROIA access can be billed. 

In each case, the service provider publishes the agreement terms it intends to make 
available. The service consumer then requests an agreement on those terms, and the 
service provider can then decide whether to accept or reject the agreement. At present, 
the decision whether to approve or reject a request is done manually via internal inter-
faces at the hoster, but in principle, one could automate this by using a business credit 
checking agency, etc. Normally, the coordinator will form an agreement with at least 
one hoster and then offer terms to customers, who can open accounts using a similar 
procedure. The edutain@grid implementation allows customers to open and manage 
accounts without using a ROIA (e.g. gaming software) client – they could do this 
using a web browser to access the coordinator’s account service, for example. 

These agreements provide the roots of trust for securing subsequent actions to 
launch and access the ROIA itself. Fig. 3 shows the main business layer services and 
the workflows used to do this. The coordinator first creates a ROIA Global Session 
resource at its own Global Session Service to hold information (including security 
policies) associated with each instance of the offered ROIA. The coordinator can then 
provision the ROIA by creating a ROIA Local Session using a hoster’s Local Session 
Service, which handles the contribution to the ROIA by that hoster. Before creating 
the requested ROIA Local Session, the hoster checks the credentials of the coordina-
tor with the hoster’s own SLA Service. This ensures that only coordinators who have 
agreed an SLA can use the hoster’s ROIA hosting facilities. The coordinator may use 
several ROIA Local Sessions at different hosters, depending on the scale of resources 
needed to support the ROIA instance when it starts up. The coordinator then sends 
them a token validation policy to verify tokens issued for the ROIA Global Session 
and by each other. All the Local Session Services then signal the edutain@grid man-
agement layer to start the ROIA processes, issue them with identification keys, set 
policies so they can recognise other ROIA processes in the same ROIA (Global Ses-
sion), and start monitoring the ROIA. 
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Fig. 3. ROIA Provisioning by the Coordinator and Hoster(s) 

At this point, ROIA processes will be running at (potentially multiple) hoster sites, 
so customers can access the ROIA. The customer signs on to its account via the ROIA 
client application (Step 1 of Fig 4), obtaining an X509 certificate signed by the coor-
dinator identifying him as a customer. Customers can set up additional pseudonyms at 
the Customer Account Service, so the certificate need not reveal their true identity, 
which is helpful in on-line gaming applications where customers rarely use their real 
names. The ROIA client can then use the certificate to get other short-lived tokens 
expressing its role in the Global Session (e.g. teacher, student, superhero, etc), and the 
address of a hoster it should connect to. The ROIA client then contacts the hoster’s 
Local Session Service to get details of the ROIA Process it should connect to. The 
certificate and other tokens issued by the coordinator match the policies previously 
sent to the hoster, so the hoster can immediately decide if a connection request should 
be accepted. These tokens are also short-lived, so it isn’t necessary to revoke them. 
Therefore, the hoster doesn’t have to make call-backs to revocation lists, though it 
does mean the ROIA client has to renew tokens at the coordinator before they expire. 
By pushing validation policies to hosters in advance, and issuing short-lived tokens 
that don’t need to be revoked, it is possible to use tokens for real-time connections 
without the usual overheads associated with X509 certification. 

The ROIA process then reports the new connection via the hoster’s management 
layer to the Local Session Service. This informs the Global Session Service (if neces-
sary), and reports the usage to the SLA Service, so it can check that the total usage at 
this hoster remains within the terms of the SLA with the coordinator. At some point, 
the customer will disconnect, when he stops using the ROIA or when his actions in 
the ROIA means his connection should move to a different hoster. The Local Session 
Service is again informed, allowing continued management of the ROIA within the 
terms of the coordinator’s SLA with hosters. It is also possible that the hoster’s man-
agement layer will at some point predict that the load on its services will exceed the  
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Fig. 4. Accessing The ROIA 

SLA limits. That too can be reported via the Local Session Service to the coordinator, 
allowing ‘global’ management action to be taken. Actions that could be taken are the 
transfer of load to another hoster, or to reduce load by disabling access for some cus-
tomers (if permitted under the Customer Account agreement), before the SLA is 
breached. 

5   Real-Time Framework 

The real-time layer in edutain@grid comprises Real-Time Framework (RTF) [11] that 
supports protocols for using tokens issued by the business layer to control application-
level access. RTF is implemented as a C++-library providing parallelization and 
communication API for application developers to easily develop distributed ROIA. 

For securing the communication between the client and ROIA Process, as well as 
between ROIA Processes, we chose DTLS [18] as it supports encrypted unreliable 
communication (unlike TLS [19]), can be easily integrated in RTF and needs no oper-
ating system support (unlike IPSec). DTLS can also handle the authentication of the 
communication endpoints during the connection setup. 

Fig. 5 shows the main RTF components and the workflows used to establish se-
cured connections and access control using keys and tokens from the business  
layer: 

• the Authentication & Authorization Service (AAS) stores certificates and other 
security tokens used for the client authentication and authorization; 

• the Communication and Distribution Services (CDS) establish RTF connections 
and manage the parallelization and communication of the distributed ROIA; 

• the ROIA is implemented by the application developer on top of RTF CDS; and 
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• the Policy Decision Point (PDP) intercepts client messages before they are deliv-
ered to the ROIA – this is an optional component that can be provided by the ap-
plication developer or the coordinator. 

When the ROIA Process is started, the Local Session Service passes a process-
unique identity certificate along with trusted keys and policies for authentication and 
authorization within the ROIA instance. The ROIA Process stores these for later use 
in its AAS. A trust chain is thus established from the Coordinator through the ROIA 
Local Session down to the ROIA Processes. 
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Fig. 5. Creating Real-Time Connections 

If a ROIA Client now connects to the ROIA Process (Step 1, Fig. 5) using the con-
nection details that it received from the ROIA Local Session Service, then the RTF’s 
CDS uses the stored certificate and trusted authority for the DTLS handshake and 
authentication (Step 2). Thus the client and ROIA process can authenticate each other 
as belonging to the same ROIA instance. Once the handshake is completed, the ROIA 
Link is associated with the customer’s distinguished name (DN) which is based on the 
login or pseudonym he set up with the Coordinator. If the PDP approves the new 
connection (Step 3), the ROIA is notified about the newly joined client (Step 4). 

Clients communicate with the ROIA Process by sending messages of various, ap-
plication-dependent types, e.g. to move their avatar, pick up objects, etc. Each mes-
sage type is identified by a unique integer attribute. An application-specific PDP can 
be plugged into the RTF during the ROIA Process start-up, and used to determine 
whether messages should be forwarded to the ROIA. Decisions may be based on the 
client identity alone, but may also use other user attributes passed with the identity 
certificate to the ROIA Process in the form of SAML tokens issued by the business 
layer. These are stored in the AAS for use in subsequent decisions. For example, if a 
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client can get a SAML token from the business layer saying it is a teacher in an e-
learning ROIA, that client would be able to send administrative message types that 
change the structure of an ongoing e-learning lesson, while other clients could not. 

If a ROIA Client wants to gain additional rights within a ROIA, it requests SAML 
tokens at the Coordinator (Step 1, Fig. 6). These SAML tokens are then pushed by the 
ROIA Client towards the ROIA Process (Step 2). The authentication and authoriza-
tion service intercepts these tokens, verifies them against its trusted authority and 
stores them (Step 3) for later use by the PDP. This way, the client can add rights as 
needed during run-time by providing additional SAML tokens. 
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Fig. 6. Application Level Access Control 

6   Conclusions and Future Work 

The edutain@grid project has developed a framework for grid-based multi-hosting of 
Real-Time Online Interactive Applications (ROIA), including scalable online gaming 
and virtual e-learning environments. In achieving this goal, the project has had to 
address the challenge of securing real-time communications in a way that is consistent 
with business relationships, by devising a unified architecture for business and real-
time communication security. Our approach is based on three main developments: 

• the use of Web Services based on GRIA to support the creation of business-level 
agreements, secured using a dynamic policy implementation in conjunction with 
Web Service message-level security specifications including WS-Security, WS-
Trust, X.509 and SAML [20]; 

• the use of DTLS for secure real-time data-gram transport within RTF, using trusted 
keys provided and distributed between actors by the business-level Web Services; 
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• the use of a simple username-password sign-on procedure allowing users (most of 
whom are not experts in information security) to obtain and use X509 and SAML 
credentials without having to manage keys and tokens. 

Evaluation studies will now be carried out: testing the performance of secure real-
time protocols and the ability of policy/token management protocols to keep up, and 
evaluating the overall edutain@grid business processes, security, usability, quality of 
service, etc. 

Future work is expected to include the addition of support for configurable RTF 
security properties (e.g. ciphers, key-lengths, whether to use encryption as well as 
authentication), so enabling a range of different trade-offs between security and per-
formance requirements. We also plan to investigate options for secure multi-cast RTF 
communications by extending the key and policy management used to bootstrap RTF 
security in the business layer. 
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Abstract. In recent years grid computing has evolved from simple batch
processing systems to highly interactive applications. One approach
heading in that direction is the edutain@grid project. This project aims
to enable the computing power of current grid systems to the area of
online computer games and e-learning applications. The shift from tra-
ditional scientific computing applications into the domain of business
oriented applications has led to the involvement of a variety of actors.
All of these organisations and persons have different needs considering
the access to the system.

To communicate with the edutain@grid system a novel combination
of portals had to be developed. Three types of portals allow the stake-
holders to get access to this system. These portals allow a unified and
consistent interface approach hiding the complexity of traditional grid
applications in order to support users from all different fields to work
with edutain@grid in an intuitive way.

1 Introduction

Grid computing [11] has come far in the recent years. Traditional approaches
from the area of batch processing have evolved to support interactive applications
even in the area of real-time interactivity. An example for the change of Grid
applications to support more interactive applications was the CrossGrid project
[8], where the computation results of a flooding simulation could be displayed in
real-time.

One of the novel approaches to bring more interactivity to the Grid is the
edutain@grid project [9] which supports real-time interactive online applications
(ROIAs) mostly from the field of e-learning and computer games. The two appli-
cation domains have commonalities: they support a large amount of concurrent
users and they both have to provide instantaneous feedback to the user input.
Computational power is needed in these areas mainly for interaction processing
of the connected participants of multi-user sessions.
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To create support for such applications the portals in edutain@grid follow
a different approach than traditional portals. They are considered as a user
interface to the different layers and components of edutain@grid, rather than
combining and exposing information from different resources in a single view.

Becaues of the real-time constraints of the edutain@grid applications it is not
sufficient anymore to restrict portals to web interface technology. Other low-
level technology in the form of a C++ API has to be used to interconnect to the
interfaces of ROIAs to edutain@grid.

The following Section of the paper will introduce the related work focusing on
available portal frameworks. Section three to six describe the different portals for
different groups of actors in edutain@grid. The last sections provide an outlook
into future work by showing up enhancements of the edutain@grid portals and
conclude the paper.

2 Related Work

Portals in the context of Grid computing are typically considered to be web
interfaces which aggregate information gathered from different web resources.
This composition of information is often enhanced with the possibility of user
interaction.

In order to ease the design and implementation of such portals many frame-
works have been developed in the recent years. The most prominent examples
are Jetspeed [3] and Gridsphere [2]. Other commonly used solutions are jPortlet,
uPortal, LifeRay, and PGrade [4] which is built on top of Gridsphere.

A good overview on the mentioned examples can be found in [6], where the
previously listed frameworks are described in detail and their functionality and
architectures are compared.

The edutain@grid project enhances this portal concept from traditional web
portals by providing for example an additional C++ portal API in oder to create
a full portal framework which supports the needs of the different actors. A similar
approach by offering a portal framework is chosen by Gannon et al. [12].

In the area of computer games Steam [5] could be considered as a community
portal where users are able to create accounts and communicate via forums for
a large set of games.

3 The edutain@grid Portals

The main approach of the edutain@grid middleware lies in the Grid support
for ROIAs. It does not only consider newly developed ROIAs using parts of the
middleware but it also includes the support of legacy applications. The main
differences of edutain@grid to traditional Grid computing do not only lie in the
real-time constraints of the executed jobs, but also in the nature of the life-time
of a job.

The portals of the edutain@grid project support the three layers of edu-
tain@grid, namely the business layer, the management layer and the real-time
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layer by offering different approaches. They provide a traditional interface ap-
proach in the form of web portals for the management layer and the business
layer as well as a low-level C++ API based approach as implemented in the
client portal API which interconnects with ROIAs executed on the real-time
layer.

An early draft on the portal architecture has been previously published by
Anthes et al. [7] while more detail on the edutain@grid overall architecture can
be found in [9]. This work provides a more precise insight into the developed
portals and the interconnections within the edutain@grid architecture.

4 The Business Portal

The business portal is developed for coordinators who manage the distribution
of applications on the different hosters. It provides functionality to manage con-
tracts between hosters and the coordinator about provided hosts, SLAs and
pricing. The functionality is provided via a standard GRIA web portal which
follows the classic web portal approach so that the portal is accessible via an
arbitrary web browser. It is directly connected to the business layer of the edu-
tain@grid system which is implemented through GRIA web services [1].

5 The Management Portal

The management portal was developed for hosters which participate in this sys-
tem by providing computing resources. It is implemented as a web portal which
can be accessed via any web browser. The portal provides resource management
and monitoring functionality to allow the hosters to keep an overview about
their participating machines.

The management portal acts as administration interface for the participating
hosters in edutain@grid. It is implemented as web portal using the Gridsphere
portal framework. The main functionality of the portal are the configuration of
participating machines in the edutain@grid middleware, the display of the status
of these machines and controlling functions.

The portal itself is configured to provide three different views to the hosters:
the configuration view, the monitoring view and the controlling view.

In the configuration view the hoster is able to manage and configure the ma-
chines which should participate in the edutain@grid system. The view consists of
three separate portlets, the HostConfigurationPortlet, the ROIATypeConfigura-
tionPortlet and the ROIADescriptorConfigurationPortlet. Each of these portlets
allows to modify the configuration for the hoster’s local site. The configuration
itself is stored and managed by the management layer. The portlets provide a
graphical interface in order to modify this configuration via the portal. Figure 1
shows the different portlets of the configuration view.

The first portlet in the configuration view is the HostConfigurationPortlet. This
portlet is used to define which machines are available at the hoster’s site. It dis-
plays a list of all configured machines together with the port settings used for the
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Fig. 1. Management Portal: Configuration view

connection of the edutain@grid management layer to the host. In order to connect
the configured machines to the edutain@grid system a separate program has to be
started on the single hosts, the ROIAServerStarter. This light-weight application
listens on the defined port for commands from the management layer in order to
start server applications on the host. To provide an overview if all configured hosts
are able to communicate with the edutain@grid middleware the portlet displays
a status box for each host which shows if the ROIAServerStarter application is
running. Via this portlet it is possible to add new hosts, modify the port settings
of participating hosts or remove hosts from the edutain@grid middleware.

The second portlet is the ROIATypeConfigurationPortlet. This portlet allows
to define the different application types which can be hosted on the server ma-
chines. A configuration for a ROIAType currently consists of the name and the
version of the application.

The last configuration portlet is the ROIADescriptorConfigurationPortlet. It
allows for the configuration of the deployed applications on the participating
hosts. This configuration is used by the management layer in order to start up
the applications on the server machines. Every configuration entry currently con-
tains the ROIAType, the host where it is deployed, the working path where the
application is installed, the executable which can be started by the ROIAServer-
Starter, command line arguments which are passed to the executable at startup
time and the number of threads.
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Fig. 2. Management Portal: Monitoring view

The monitoring view of the management portal consist of multiple instances
of the MonitoringPortlet. This portlet allows for displaying the visualisation of
monitoring data gathered by the edutain@grid middleware. Several monitoring
targets like the incoming and outgoing bandwidth, the number of connected
users but also application internal data like the saturation of the application
loop are provided by the management layer which can be displayed per portlet
instance. The configured monitoring data is displayed by a java applet which
uses the visualisation library of the ASKALON tool-set for cluster and grid
computing [10]. To update the monitoring data in the java applet a monitoring
service is running in the management portal. At startup of the java applet a
socket connection is established between the applet and the monitoring service.
The service streams the monitoring data via this connection to the visualisation
applet which displays the data in form of diagrams. Figure 2 shows an example
of the monitoring view with three active MonitoringPortlets.

The controlling view of the portal consists of a single portlet, the Control-
lingPortlet. The portlet allows the user to view which hosts are involved in the
different ROIA sessions. Via this portlet the hoster can manually start and stop
ROIAProcesses on his local machines. This functionality is intended to be used
for testing purposes whenever a new application is deployed on different hosts.
The controlling view is shown in Figure 3.
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Fig. 3. Management Portal: Controlling view

6 The Client Portal API

The client portal is developed for the end users of the edutain@grid system
which are either computer game players or participants in e-learning application.
It provides functions to get information about hosted applications, to commu-
nicate with other users and to connect to running applications. The portal is
implemented as a C++ API which will be included in the application clients to
provide a common way of access for the different types of client applications.
The communication is achieved via web service calls which allows a secure and
standardized way of data transmission.

In order to connect a client application to an application server which is hosted
by edutain@grid a communication from the client to the edutain@grid middleware
is necessary. This communication is achieved via the client portal. The client por-
tal provides an interface for the client applications to log in to the system, find
running application servers, connect to a running server application, etc..

In current computer game clients or e-learning client applications such func-
tionality is provided by an integrated portal. This portal is usually designed
to match to the appearance of the application itself. To achieve this property
also within edutain@grid clients the client portal functionality is needed to be
integrated into these applications. Therefore the portal does not follow the tra-
ditional portal definition but is implemented as a C++ library. The API of this
library is kept at a high abstraction level so that this portal hides the complexity
of the underlying GRIA grid middleware from the application developers and
the end users.

To be able to connect to a server application the client portal API provides
a function to login to the system. The login function takes a username and
password as credential. This information is forwarded via a web service call to
the edutain@grid business layer. The business layer then checks the credential
for validity and returns a security token if the login was successful. This security
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token is later on used in every other communication between the client and the
edutain@grid middleware to authenticate the user.

For connecting the client to a running application server a list of available
servers has to be provided to the client. Therefore the client portal API pro-
vides a method which allows to request all running server instances of a defined
ROIAType. The ROIAType is usually preset by the type of the client application
in order to find matching server applications. The request is forwarded to the
business layer via a web service call. The business layer then checks if the user is
allowed to request this information. If so the list of available server applications
is replied to the client portal.

After an appropriate server application is selected the client has to get the
connection details of the server where the application is hosted. Therefore the
client portal API sends an request to the business layer for the IP address and
the port of the host for the specified server application. Figure 4 shows the
communication chain of this request. At first the client portal API sends a request
to the business layer via web service calls containing information about the
desired application server. In order to obtain this information the business layer
has to communicate with the management layer of the edutain@grid system. This
layer is responsible for managing the resources at the different hoster sites. The
management layer itself has a connection to all available server hosts. Via this
connection the layer can obtain the IP and port information of the server host.
This information is returned to the business layer and forwarded to the client
portal API as web service call result. The application then gathers the connection
details from the client portal API and uses this information to establish the
real-time connection to the application server. This example shows that the
complexity of the underlying grid communication is successfully hidden from
the client application.

Fig. 4. Client Portal example: Communication path for establishing connection be-
tween ROIA-Client and ROIA-Server

7 Conclusions and Future Work

This paper has shown approaches how to support ROIAs in the edutain@grid
project by providing a novel portal concept. To offer interfaces for the different
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kind of actors the definition of portals has been extended beyond the use of web
interfaces.

To communicate efficiently with ROIAs a C++ portal API was provided and
described. It is obvious that web portals are not sufficient to support modern
computer games, thus Login mechanisms and look-up functionality has been
offered in order to be seamlessly integrated into the applications.

To control such applications and to allow for enhanced debugging possibilities
on the management layer real-time monitoring, monitoring visualisation and
control functionality is offered by the management portal.

In the client portal API community functionality like friend lists or chat should
be added in order to support standard game functionality. Packaging the approach
of the different portals would lead to a portal framework, which could be used as
a generic solution for a class of of interfaces for interactive grid applications.
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Abstract. Real-Time Online Interactive Applications (ROIA) include
a broad spectrum of online computer games, as well as challenging dis-
tributed e-learning applications, like virtual classrooms and collaborative
environments. Development of ROIA poses several complex tasks that
currently are addressed at a low level of abstraction. In our previous
work, we presented the Real-Time Framework (RTF) - a novel middle-
ware for a high-level development and execution of ROIA in single- and
multi-server environments. This paper describes a case study in which a
simple but representative online computer game is developed using RTF.
We explain how RTF supports the design of data structures and their
automatic serialization for network transmission, as well as determining
and processing user actions when computing a new game state; the chal-
lenge is to provide the state updates to all players in real time at a very
high frequency.

1 Introduction

Real-Time Online Interactive Applications (ROIA) form a novel class of techni-
cally challenging distributed applications. They include for example e-learning
applications, like virtual classrooms, as well as a broad spectrum of online com-
puter games reaching from fast-paced action games to large-scale massively mul-
tiplayer online games (MMOG). In order to support high numbers of users, the
processing of the application state needs to be implemented in an efficient, scal-
able manner, e.g., via parallelization and distribution on multiple servers. The
communication among participating processes in a ROIA session (clients and
servers) needs to be efficient and optimized for highly frequent data transfers.
Since generic development approaches able to handle multiple aspects of scalable
ROIAs are still lacking, developers implement ROIAs from scratch and at a low
level of abstraction, which is error-prone and time-consuming.

The Real-Time Framework (RTF) [5] is a novel middleware developed at the
University of Münster as part of the European edutain@grid [2] project. RTF
simplifies the development process of ROIAs in which users continuously inter-
act and concurrently modify a shared application state. RTF is implemented
as a C++ library which is optimized for efficient processing and supports the

� This work is supported by the EU through IST-034601 edutain@grid project.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 390–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Case Study on Using RTF for Developing Multi-player Online Games 391

eventual consistency update model and light-weight UDP communication. RTF
enables a high-level development of scalable ROIAs and transparently integrates
monitoring and controlling functionality for dynamic resource management. Fur-
thermore, RTF supports various distribution concepts (zoning, instancing and
replication) which allow to overcome the saturation of computational and net-
work resources caused by a growing number and/or increasing density of online
users.

Our previous work [4] described the high-level concepts of RTF, showed how
its distribution mechanisms can be used to implement scalable online games and
how the RTF-based approach compares to existing development methods. The
process of application development using RTF comprises two groups of tasks:
1) basic tasks like designing data structures to model the application state,
distributing the processing between client and server including communication,
and introducing new entities, and 2) parallelization tasks of organizing a scalable
distributed processing when using multiple servers.

In this paper, we present a case study on using RTF for developing a simple
but still quite challenging example ROIA – a multiplayer online computer game.
Because of lack of space, we omit the developer tasks needed for the multi-server
case; they are left for a future publication. We describe RTF from the developer
perspective, in order to show how a particular application can be designed on a
high level of abstraction.

The remainder of the paper is as follows. Section 2 describes the fundamental
Real-Time-Loop processing model for ROIA and gives a short overview of RTF.
Section 3 provides an in-depth view of a development use case for an online
computer game. Section 4 describes both the case study and RTF in the context
of dynamic resource management. Finally, Section 5 concludes the single-server
development case using RTF and outlines the multi-server aspect.

2 Real-Time Loop in Multiplayer Games

The majority of today’s online games typically simulate a spatial virtual world
which is conceptually separated into a static part and a dynamic part. The static
part covers, e. g., environmental properties like the landscape, buildings and
other non-changeable objects. Since the static part is pre-known, no information
exchange about it is required between servers and players. The dynamic part
covers objects like avatars, non playing characters (NPCs) controlled by the
computer, items that can be collected by players or, generally, objects that can
change their state. These objects are called entities and the sum of all entities is
the dynamic part of the game world. Both parts, together, build the game state
which represents the game world at a certain point of time.

For the creation of a continuously progressing game, the game state is repeat-
edly updated in an endless real-time loop [1,9]. Figure 1 shows one iteration of
the server real-time loop for multiplayer games based on the client-server ar-
chitecture. A loop iteration consists of three major steps: At first the clients
process the users’ input and transmit them to the server (step 1 in the figure).



392 A. Ploss, F. Glinka, and S. Gorlatch

Fig. 1. Real-Time Loop for entity-based ROIAs

The server then calculates a new game state by applying the received user ac-
tions and the game logic, including the artificial intelligence (AI) of NPCs and
the environmental simulation, to the current game state (step 2). As the result
of this calculation, the states of several dynamic entities have changed. The final
step 3 transfers the new game state back to the clients. The figure shows one
server involved in each step, but in a multi-server scenario this may be a group
of server processes distributed among several machines.

Figure 2 shows an overview of the use of RTF in a session of a ROIA. The devel-
oper implements the application-specific processing following the Real-Time-Loop
processing model. This application-specific part can use other application-specific
components, like graphics engine, depending on the purpose of the software (client-
or server side). To implement the processing, the application developer uses the
parallelization and communication functionality provided by RTF. RTF automat-
ically deals with the distribution, both, between client/ server and among multiple
servers, and with the communication among all processes participating in a session
of the ROIA.

RTF transparently implements the transmission of events between clients
and servers and of state updates to clients and other servers (right-hand side
of the figure). RTF automatically gains introspection to the application state
(performance characteristics) and is thus aware of the current distribution sta-
tus. This information can be provided to an external, application-independent

Fig. 2. Overview of the Real-Time Framework used in a ROIA
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management system (left-hand side of the figure), which is then able to perform
dynamic resource management for the ROIA via RTF. This monitoring and
controlling by a resource management system is transparent for the application.

3 Case Study: Development of an Online Game

As a development example we will use a simple online game (RTFDemo), which,
however, incorporates all fundamental (technical) features of a ROIA:

– Game world is simulated as a 3D virtual environment;
– Each player has one avatar;
– Players can move their avatars (using keyboard and mouse);
– Players interact by shooting other player’s avatars (direct hit);
– Entities are solely controlled by the game logic.

To implement the basic ROIA state processing, the developer addresses the
following tasks: 1) data structure design to model the application state, 2) appli-
cation state processing to distribute the computations between clients and server
using events and state updates, and 3) Area of Interest management, as well as
some general tasks, like creating and introducing new entities. In the following
we will describe how these tasks are addressed using RTF.

3.1 Task: Data Structure Design

The dynamic state of a ROIA is usually described as a set of entities which
represent avatars or non-player characters in the game world. Besides entities,
events are the other important structure in a virtual environment for represent-
ing user inputs and game world actions. Hierarchical data structures for events
and entities in complex virtual worlds have to be serializable for efficient network
communication.

Describing the Entity State. When using RTF, entities and events are im-
plemented as object-oriented C++ classes. The developer defines the semantics
of the data structures according to the game logic. The only semantics of entities
that are predetermined by RTF is the information about their position in the
virtual world. Entities, therefore, are derived from a particular base class Local

of RTF that defines the representation of a position for entities. This is neces-
sary since the distribution of the game state processing across multiple servers
is based upon the location of an entity in the game world. Besides the require-
ment of inheriting from Local, the design of the data structures is completely
customizable to the particular game logic.

In order to enable platform independence, RTF defines primitive data types
to be used (e. g., gcf_int8). Also, easy-to-use complex data types for vectors
and collections are provided to the developer. Overall, more complex entity and
event data structures can be easily defined using these primitives.

We start to develop our application RTFDemo from a class to model the state
of a player’s avatar:
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1 class Avatar : public emf:: Local {

2 public:

3 /* process a new avatar state */

4 void think(const double& passedSec );

5 void move(emf:: Vector movement);

6 [..]

7 DECLARE_SERIALIZABLE_PUBLIC(Avatar , TypeAvatar )

8 private:

9 AvatarType avatarType ; // type of the Avatar (enum)

10 emf::Vector velocity ; // movement

11 emf::Vector orientation ; // direction

12 gcf_uint16 health; // cur hitpoints

13 gcf_uint16 maxHealth ; // max hitpoints

14 gcf:: Annotation annotations ; // State changes , Actions

15 DECLARE_SERIALIZABLE_PRIVATE(Avatar) };

Listing 1. Class Avatar models the state of a player’s avatar

Listing 1 shows our class Avatar inheriting from Local (line 1) in which the posi-
tion and dimension of the entity are described. Other attributes describe the game-
dependent state of the avatar (lines 9-14).Attributes canbeprimitive types (health
, maxHealth) including enumerations (AvatarType in line 9), classes (velocity and
dimension), or even more complex containers of classes (annotations). Methods
think and move (lines 5 and 6) implement the modification of the avatar state.

RTF Serialization. RTF provides automatic serialization of the entities and
events defined in C++, implements marshalling and unmarshalling of data types
and optimizes the bandwidth consumption of the messages. While the developer
specifies entities and events as usual C++ classes, RTF provides a generic com-
munication protocol implementation for all data structures following a special
class hierarchy. All network-transmittable classes inherit from the base class
Serializable of RTF. The Serializable interface can be a) implemented by the
developer, or b) automatically implemented using the serialization mechanism
provided by RTF which is generated using convenient pre-processor macros. For
all entities and events implemented in this manner, RTF automatically generates
network-transmittable representations and uses them at runtime.

Non-entity classes, like actions, are directly derived from Serializable,
whereas the Avatar automatically inherits the Serializable interface via Local.
The DECLARE_SERIALIZABLE_* statements (lines 7 and 15 in Listing 1) generate
code for the implementation of the Serializable interface. TypeAvatar (line 7) is
a system-wide unique integer to distinguish Avatar from other Serializables.

1 [..] // application -specific code goes here

2 #include <gcf/GenericSerializerImpl .cpp >

3 IMPLEMENT_SERIALIZABLE_DERIVED(Avatar , emf::Local ,

4 ADD_ATTRIBUTE (Avatar , velocity , Unreliable , Public)

5 [..] // dito for all network -transmittable attributes

6 ADD_ATTRIBUTE_DEFAULT (Avatar , annotations ) )

Listing 2. Implementation of the avatar



A Case Study on Using RTF for Developing Multi-player Online Games 395

Listing 2 shows the use of RTF’s automatic serialization mechanism. The
IMPLEMENT_SERIALIZABLE statement (line 3) generates the implementation of the
Serializable interface. The developer needs to describe attributes that should
be transmitted over the network. For example, the ADD_ATTRIBUTE statement
(line 4) adds the velocity attribute to the description of the serialized form of
the Avatar. The automatic serialization mechanism can handle delta updates,
i.e., only transmitting changed information, and differentiated updates for dif-
ferent processes. In order to use delta updates, the developer tracks modification
to attributes in a mask provided by RTF. To use differentiated updates, the de-
veloper can specify different types of visibilities for attributes (Public in line 4).
The developer also specifies for each process its level of visibility.

3.2 Task: Application State Processing

The central aspect of the development approach using RTF is the real-time loop
model (Figure 1). Most contemporary multiplayer games are based on such a
loop whose iterative updates are called ticks. RTF allows the game developer to
implement his own real-time loop in the well-understood manner and, moreover,
provides him a substantial support for implementing and running this loop on
both the server- and client side.

The client side needs to 1) determine the user actions, and 2) display the
current game state. The server side has to perform 1) processing of the events,
and 2) updating of the game state.

Client: Determine User Actions. At first, we read the user’s input (from key-
board/mouse). Then we determine the desired action and send it to the server,
using the ClientCCPModule (Listing 3, line 5). Serialization and transmission
are done by RTF transparently.

1 void ClientActionFactory :: sendActionMove (){

2 serverPos = mAvatar -> getLocation ().getPos();

3 emf::Vector newPos = mGraphicManager ->getPlayersPosition

();

4 ActionMove moveEvent (newPos -serverPos );

5 mClientCCP ->sendEvent (moveEvent ); }

Listing 3. Send a user action via ClientCCPModule from client to server.

Server: Process User Actions On the server side, events are automatically
received by RTF and appended to the event queue. We process these events and
calculate the new game state as shown in Listing 4.
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1 // emf:: EventManager & em = ccpModule .getEventManager ();

2 // emf:: ClientManager & cm = ccpModule .getClientManager ();

3 void Server:: processEvents () {

4 for(emf::Event* e=em.popEvent (); e!= NULL; e=em.popEvent ()

) {

5 switch(e->getEvent ().getType ()) {

6 case ActionMove :: TYPE: {

7 Avatar &actor = (Avatar&)

8 cm.findClient (e->getSender ())->getAvatar ());

9 ActionMove & actionMove = (ActionMove &)e->getEvent ();

10 actor.move(actionMove .getMovement ());

11 } break; } } }

Listing 4. Process Events

We access RTF’s event queue via the EventManager (line 4) and use the RTF
type identification to determine the correct class of the event (lines 5 and 6).
The move action refers to a specific entity (line 7) which can be retrieved from
RTF via the ClientManager, which allows to determine the client which has sent
an event and get the avatar from that client (line 8). After having determined
the event’s type and actor, the action is applied to the game state (line 10).

Server: Process New Game State. At this step, the active entities are
updated accordingly to the game rules and game logic. As our implementation
applies move actions directly to the entity state, we do not have to move players’
avatars in this step anymore. But we have to update the rest of the game state,
e. g., to move the non-player characters:

1 void Server:: updateAllEntities () {

2 std::map <gcf:: DGObjectID , emf:: Local*>:: const_iterator

it

3 = om.getActiveObjects ().begin();

4 for(; it != om.getActiveObjects ().end(); it++) {

5 switch(it->second ->getType ()) {

6 case Avatar:: TYPE:

7 Avatar& avatar = (Avatar&) *it ->second;

8 avatar.think(ticklength ); // let every active

9 [..] } } } // process other types of entities etc.

Listing 5. Update all Entities

Server Real-Time Loop. The complete processing cycle for the server is shown
in Listing 6. During the onBeforeTick (Listing 6, line 2) and onFinishedTick (line
6) calls, RTF fills the event queue and sends the state updates to the clients. There-
fore, the game application should not modify the game state concurrently to these
calls. The call in line 6 processes the AoI Management which we will deal with in
section 3.3.
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1 while(! serverQuit ) {

2 ccpModule .onBeforeTick (); // inform RTF about begin of

tick

3 processEvents ();

4 updateAllEntities ();

5 interestManagement .update();

6 ccpModule .onFinishedTick (); // inform RTF about end of

tick

7 [..] } // sleep , check for server quit etc.

Listing 6. Server Real-Time Loop

Client Real-Time Loop. The real-time loop on the client side looks similar
to the one on the server side, but works with a specific client-side version:

1 while(mInputProcessor ->mContinue ) {

2 // sleep , calculate time since last tick

3 mClientCCP .onBeforeTick ();

4 // Capture input and send actions (e.g.,

sendActionMove )

5 mInputProcessor ->capture(inputTimer .getTicklength ());

6 updateEntities (timeSinceLastTick ); // apply state

updates

7 mGraphicManager ->renderFrame (); // render a frame

8 mClientCCP .onFinishedTick (); }

Listing 7. Client Real-Time Loop

After determining user actions and sending them to the server (line 5), newly
arrived updates from the server are processed (line 6) and the new game state
is displayed on the screen (line 7). The client loop is completed by surrounding
onFinishedTick (line 8) and onBeforeTick (line 3) calls, during which incoming
events sent by the server are enqueued and game state updates are applied.

3.3 Task: AoI Management

An Area of Interest (AoI) concept assigns each avatar in the game world a specific
area where dynamic game information is relevant and thus has to be transmitted
to the avatar’s client. AoI optimizes network bandwidth by omitting irrelevant
information in the communication. RTF supports the custom implementation of
arbitrary AoI concepts by offering a generic publish/subscribe interface. The en-
gine continuously determines which entity is relevant for a client and notifies RTF
of each change of an “interested” relation through a client.subscribe(entity)

and client.unsubscribe(entity) call. RTF automatically takes care that the en-
tity is available/ updated at the client or removed from it. RTF automatically
replicates a new entity to other processes (clients or servers) according to the
AoI management. Clients will be informed about (dis-) appearing entities via the
ClientCCPModuleListener interface.
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1 void Client:: objectAppeared (emf:: Local& obj) {

2 switch(obj.getType ()) {

3 case gcf:: TypeAvatar : {

4 Avatar& avatar = static_cast <Avatar&>(obj);

5 mGraphicManager ->AvatarAppeared (avatar); break; } } }

Listing 8. Notification about new entities (client-side)

Listing 8 shows the implementation of the objectAppeared callback for
RTFDemo. During this callback the application can perform procedures to han-
dle the newly appeared object, e. g., preparing the entity for introduction to the
graphics engine (line 5).

3.4 General Tasks: Client Connection and Entity Creation

A general task that occurs independently of the continuously state update is
introducing new entities to the application state when they are created. A typical
example for introducing new entities is a client connecting to the session or a
newly spawned NPC. RTF informs the application about connecting clients with
the clientConnected callback of the ClientListener interface.

1 // Place a walking NPC in the world.

2 Avatar& npc = *new Avatar(Avatar:: ZONE_TRAVELER ,

3 emf::Space (2400, FLAT_HEIGHT , 750, 40.0f, 85.0f, 40.0

f),

4 emf:: Vector(50,0,0), emf::Vector(1,0,0) );

5 ccpModule .getObjectManager ().registerActive (npc);

Listing 9. Introducing new entities to the application state

Listing 9 shows how new entities can be introduced to the application state. The
server creates anew instance of the Avatar class (line 2) and registers thisnew entity
with RTF by invoking the registerActive method of the ObjectManager (line 5).

4 Benefits of Using RTF

After all the described basic tasks are solved and the desired game logic is im-
plemented, our RTFDemo game appplication is ready to operate online sessions
with multiple users using a single server. Fortunately, RTF’s development and
runtime support for ROIA goes beyond this single-server case. RTF supports
multi-server distribution of the application state processing to implement scal-
able ROIAs and, furthermore, dynamic monitoring and controling of ROIAs
during runtime. This allows to operate ROIAs using distributed resources and,
with the possibility of allocating additional resources on peak-loads and increas-
ing resource usage efficiency, as described in [6].

RTF supports the ROIA distribution approaches zoning, instancing, and repli-
cation on a high level. Each of these approaches allows to scale a different aspect
of a ROIA. for example, zoning scales the overall size of the application state,
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i.e., the number of users, by identifying independent parts of application state.
First scalability experiments that demonstrate the performance of RTF’s zoning
support are covered in [6]. Another work [7] evaluates the scalability of the First
Person Shooter game Quake 3 using RTF’s replication support and compares
the performance of the original Quake 3 with the version using RTF.

5 Conclusion and Related Work

The main novel features of our RTF middleware are as follows: (1) Highly opti-
mized and dynamic real-time communication links adapt to changes in the dy-
namic distributed environment and can automatically and transparently redirect
the communication to new servers; (2) Hidden background mechanisms allow the
runtime transfer and redistribution of parts of a game onto additional resources
without noticeable interruptions for the users; (3) A high-level interface for the
game developer abstracts the game processing from the location of the partici-
pating resources; (4) Monitoring data are gathered in the background and used
by a management system for capacity planning.

Our case study has demonstrated how an example online game can be devel-
oped using RTF on a high level of abstraction. Some game development studios
re-use existing solutions, e. g., successful game engines like Unreal or Quake, or
use optimized libraries for particular tasks like network communication. When
using only a communication library, like Torque Network-Library [3], or HawkNL
[8], developers have to build data structures and serialization mechanisms from
scratch, while using an existing engine requires the use of predefined entities
and events, which reduces flexibility. In contrast, RTF provides an optimized
high-level entity and event concept enabling automatic serialization while still
providing full design flexibility. In a future publication, we will cover in detail
how RTF solves additional implementation tasks for multi-server processing, like
distribution and scalable parallel processing, transparently for the user.
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vol. 5168, pp. 466–477. Springer, Heidelberg (2008)

http://www.opentnl.org/


400 A. Ploss, F. Glinka, and S. Gorlatch

7. Ploss, A., Wichmann, S., Glinka, F., Gorlatch, S.: From a Single- to Multi-Server
Online Game: A Quake 3 Case Study using RTF. In: ACE 2008, Yokohama, Japan
(December 2008) (to appear)

8. H. Software. HawkNL, http://www.hawksoft.com/hawknl/
9. Valente, L., Conci, A., Feij, B.: Real Time Game Loop Models for Single-Player

Computer Games. In: SBGames 2005 (2005)

http://www.hawksoft.com/hawknl/


E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, p. 401, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Abstractions for Distributed Systems (DPA 2008) 

The computing infrastructure of tomorrow will be very different from that of yester-
day. In this rapidly evolving landscape, the development of applications that can re-
main neutral to underlying infrastrutural changes remains a challenge. The goal of the 
Workshop on Abstractions for Distributed Systems is to try to address how utilizing 
distributed systems can be made easier via the use of abstractions –– support for 
commonly occurring patterns, which could be either programming patterns, applica-
tion usage patterns or infrastructure usage patterns. 

This workshop aimed to determine where programming abstractions are important 
and where non-programmatic abstractions are likely to make greater impact in ena-
bling applications to effectively utilize distributed infrastructure. The workshop had a 
balance of applications and topical infrastructure developments (such as abstractions 
for Clouds). 

Shantenu Jha 
Dan Katz 

Manish Parashar 
Omer Rana 

Murray Cole 



Co-design of Distributed Systems Using Skeleton
and Autonomic Management Abstractions�

M. Aldinucci1, M. Danelutto1, and P. Kilpatrick2

1 Dept. Computer Science, Univ. of Pisa, Italy
2 Dept. Computer Science, Queen’s Univ. of Belfast, UK

Abstract. We discuss how common problems arising with multi/many-
core distributed architectures can be effectively handled through co-design
of parallel/distributed programming abstractions and of autonomic man-
agement of non-functional concerns. In particular, we demonstrate how
restricted parallel/distributed patterns (or skeletons) may be efficiently
managed by rule-based autonomic managers. We discuss the basic princi-
ples underlying pattern+manager co-design, current implementations in-
spired by this approach and some results achieved with a proof-of-concept
prototype.

Keywords: Algorithmic skeletons, design patterns, distributed
programming abstractions, autonomic computing, grids, clouds, multi/
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1 Introduction

The development of parallel and distributed programs is recognized to be a chal-
lenging task. The management of the concurrent activities and communications
together with the non-functional concerns, such as performance, security, fault
tolerance, all require substantial efforts during both the design and implemen-
tation phases and in debugging, tuning and maintenance of the application.

The sustained evolution in parallel and distributed architectures makes ap-
plication development even harder, as technological improvements and archi-
tectural model changes must be catered for. On the one hand the increasing
prevalence of multi- and many-core systems necessitates the use of some kind
of parameterisation of the code to support hundreds or even thousands of par-
allel activities, as it is inconceivable that a programmer may design, implement
and manage hundreds or thousands of different activities. On the other hand,
the emergence of first grid and now cloud architectures, with their inherent het-
erogeneity and dynamicity, has thrown into stark relief the burden of handling
non-functional concerns.

Researchers in two distinct areas have tried separately to tackle these issues,
but to date there is not a comprehensive methodology to attack the distributed
� This work has been partially supported by EU FP6 NoE CoreGRID, EU FP6 STREP

GridCOMP and Italian FIRB Insyeme projects.
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application problem in general. On the one hand, algorithmic skeletons provide
programmers with higher-level abstractions that can be used as building blocks
for complex parallel and distributed applications [6]. This addresses the need for
structuring. On the other hand, autonomic computing has, with some success,
provided means to manage some non-functional aspects important in parallel and
distributed applications, such as those related to performance (self-configuration
and self-optimization) and fault tolerance (self-healing) [13].

In this paper we present an approach which is based on combining algorithmic
skeletons and autonomic computing. It advocates a structure/management co-
design approach to system development. Skeleton and autonomic management
abstractions are given, and the required interfaces allowing interaction between
the two are discussed. Refinements to component-based and services-based im-
plementations are then described briefly and results presented.

The proposed approach also provides an attractive separation of concerns
between system and application programmers. System programmers have re-
sponsibility for providing suitable skeleton frameworks taking care of issues such
as process communication, etc., and also for ensuring appropriate management
of non-functional concerns. This frees the application programmer to focus on
selecting a suitably parameterized skeleton and supplying the core functional
code; and, for specifying non-functional concern requirements via, for example,
some sort of service level agreement (SLA) (although this latter remains a con-
siderable challenge and is currently only achievable to a modest degree).

The rest of the paper is as follows: Section 2 introduces abstractions for the basic
skeleton and autonomic computing concepts, Section 3 proposes a methodology
for the co-design of computation structure and autonomic management, Section 4
describes an implementation derived using this methodology and presents exper-
imental results achieved within the GridCOMP project. Section 5 explores the
challenge of multi-concern management and Section 6 concludes the paper.

2 Programming Abstractions

We introduce here two “generic” programming abstractions: one to capture
the structure of a parallel/distributed application and one to deal with non-
functional concern management. The co-design of these two abstraction will
eventually lead to a much more powerful and effective programming abstraction,
whose preliminary implementation and results are briefly outlined in Sec. 4.

2.1 Structuring Abstractions

Successful parallel and distributed applications usually implement some well-
known and efficient parallel or distributed computation design pattern [16].
These patterns can be recognized as useful distributed programming abstrac-
tions to be implemented and optimized once and for all, and then provided to
the application programmers, in such a way that the effort of developing efficient
distributed applications is factorized across several similar application designs.
A natural choice to provide such abstractions to the application programmer
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is the algorithmic skeleton concept [7,6]. An algorithmic skeleton is a paramet-
ric, reusable, efficient implementation of a commonly used parallel/distributed
computation pattern. The application programmer can pick up an algorithmic
skeleton, instantiate it with suitable code and data parameters and obtain imme-
diately a working application. Depending on the skeleton framework available,
algorithmic skeletons can be (more or less) arbitrarily nested to obtain increas-
ingly complex parallel and distributed applications.

Consider a classical skeleton, often used to model distributed computations
running on classical distributed architectures, such as COW/NOWs and grids:
the divide and conquer pattern. This pattern can be abstracted as a higher order
function:

(D&C t b d c) x = if(t(x)) then b(x) else c((map(D&C t b d c)(d(x)))

where the parameters represent: the function deciding if a termination case has
been reached (t : α → boolean1), the function computing the base case (b :
α → β), the function splitting a non-base case into sub-cases (d : α → [α])
and the function combining the results of sub-cases (c : [β] → β). By providing
the appropriate parameters the user can obtain the working divide&conquer
function (D&C t b d c) : α → β. For example, in order to get a working D&C
sort function the user should provide a t indicating when the sorting has to be
performed sequentially, a b sequentially computing the sort for base cases, a d
for splitting (long) lists into a list of (shorter) sublists and finally a c function
for combining ordered sublists into an ordered list. All the details relating to
the actual computation of the sort according to the divide&conquer pattern are
hidden (or “embedded”) within the D&C higher order function.

More generally, complex and richer sets of skeletons are provided that al-
low the user to express a computation as a skeleton/pattern composition. The
following core (abstract) skeleton set has been defined (in slightly different
forms) in a large number of skeleton frameworks, including P3L [4], Muesli [14],
Lithium/muskel [3,8], SkeTo [15], ASSIST [2] and Calcium [5]:

S = seq(C) | farm(S) | pipe(S, S) | map(S) | reduce(S)

C = 〈some function code in any suitable host language〉
In this case, farm denotes the embarrassingly parallel, stream apply-to-all pat-
tern, pipe denotes the usual stream parallel computation in stages, map and
reduce model the corresponding data parallel collective operations, and, finally,
seq just wraps sequential code in such a way it can be used as a parameter in
another skeleton.

These higher-order functions can be provided in a way suitable for to the
programming model adopted by the user. For example, as library objects for
OO programmers, or as composite components or plain services for component
and service-oriented programmers.
1 We denote with f : α → β the type of a function processing items of type α to

produce results of type β.
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Algorithmic skeletons may be used to raise the level of abstraction presented
to the programmer of parallel and distributed applications by abstracting (and
confining in the implementation level) all those aspects not directly related
to the function the programmer wants to compute and to the kind of paral-
lel/distributed patterns to be exploited. Those details are dealt with in the
implementation of the algorithmic skeleton and thus do not directly concern
the application programmer. Furthermore, some quantitative aspects that have
an impact on the skeleton implementation and, as a consequence, on its per-
formance, can be abstracted through parameters, thus allowing easy skeleton
tuning by the application programmer or, as alternative, viable ways to control
skeleton behaviour in the implementation (i.e. in the compiling tools and/or in
the run time support). For example, consider the parallelism degree. This could
either be one of the parameters provided by the application programmer as a
kind of SLA when instantiating the skeleton, or it could be a parameter com-
pletely managed by the implementation. In the former case, the programmer
may make several test runs before identifying the “optimal” parallelism degree
for his application, possibly without the need of recompiling the application2.
In the latter case, the run time system may adjust the parallelism degree upon
recognition that the performance of the application does not fit that predicted
by the abstract performance model.

2.2 Management Abstractions

When managing parallel and distributed applications, several non-functional
concerns such as performance, fault tolerance, security and adaptivity may re-
quire consideration on an on-going basis with little or no input from the user.
These concerns can be handled at two different levels: either directly at the
application code level or within some autonomic manager interacting with the
application code. In the former case, the burden lies completely with the appli-
cation programmer; in the latter case, it becomes a system programmer concern.
Furthermore, in the latter case many more autonomic aspects can be included
in the manager, making it potentially even more effective, leveraging on the fact
that it is implemented as an independent activity. In both cases, however, what
typically has to be implemented is a control loop:

(AM m a p e)(C) = (AM m a p e)(e (p (a (m C))) C)

where m represents the monitoring actuated on the current computation, a rep-
resents the analyse activity identifying a suitable policy to be executed, p is the
function providing plans to implement a given policy and finally, e is the execute
function, applying plans to computations (C) in order to adapt the computation
according to the chosen policy.

As in the case of structuring abstractions, if users are provided suitable ab-
stractions modelling this kind of autonomic controller, they can obtain running,
2 Assuming the compiled application will run with some kind of -np, MPI-like

parameter.
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optimized autonomic manager by specializing the general, second order, recur-
sive function with appropriate parameters.

For example, consider performance tuning in an embarrassingly data parallel
computation. In this case, the user may provide a monitor function computing
current throughput (time spent computing a single data item and time spent to
retrieve input data and to deliver (partial) results), an analyse phase that will
consider whether the grain limit for this computation has been reached (i.e. the
grain such that the time spent to deliver input data to and retrieve results from
remote computing elements equals the time spent to compute the data item
locally), a plan phase determining either to increase or to decrease the allocated
computational resources and finally an execute function applying the planned
activities on the current computation to implement policy decisions.

Autonomic managers may be used to raise the level of abstraction presented
to the programmer of parallel and distributed applications by abstracting all
those aspects directly related to management of their non-functional concerns.
To enhance further the abstraction level presented to the autonomic manager
designers/implementors, we found it beneficial to express the autonomic cycle
behaviour through business rules rather than via the functions mentioned above.
In this case, the system programmer is given a set of monitoring and actuation
actions, that can be used to get measures about the current computation and
to implement adaptive actions, respectively. Then he may completely customize
the autonomic manager behaviour by providing if-then rules where the if part
is a first order predicate on the monitored values and the then part corresponds
to the plan/execute component of the control loop. The autonomic manager
periodically scans the (prioritized) rules available, identifies the fireable ones
(those whose if predicate evaluates to true) and finally applies the adaptive
actions specified in the corresponding then part.

3 Structuring and Management Co-design

In this section we propose a co-design approach to developing the structure
and management of distributed systems. The aim is to devise a methodology
for identifying and implementing distributed programming abstractions which
model parallel/distributed computation patterns and handle non-functional fea-
tures. This methodology may be used to make available programming abstrac-
tions that i) can be used (i.e. instantiated according to the general programming
model chosen3) to implement applications matching exactly the particular par-
allel/distributed pattern defined by the abstraction, and ii) take care of relevant
non-functional aspects via autonomic managers, where the non-functional re-
quirements are specified by the user via a SLA.

In order to be able effectively to co-design distributed application structuring
and non-functional concern management, we must identify first suitable interac-
tion patterns between the two. In other words, we have to establish which plays an
active role and which a passive role, and how the active actor may impact upon the
3 OO, component based, service based, ...
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passive counterpart. It seems natural to consider the managers as being the active
entities and the skeletons the passive ones as autonomic managers are devoted to
taking decisions that have to be applied in the execution of an application.

The second step concerns identification of the kind of malleability supported
by the passive actor. This requires definition of those parameters which may
be controlled from outside an algorithmic skeleton, and thus, as a consequence,
which adaptive actions can be ordered by the manager. Triggering of the adap-
tive actions requires definition of the observable measures of the skeleton that
can be sampled via monitoring and, in turn, definition of the policies and plans
to be considered in the manager. If the skeleton does not provide suitable mech-
anisms to monitor relevant parameters then, no matter how good the abstract
performance model we have in the manager, it is not possible to perceive in the
manager that the computation is not performing as expected and thus trigger
some adaptation action. Similarly, if the skeleton implementation does not pro-
vide effective actuation mechanisms, then the manager cannot implement any
kind of corrective policy. Therefore the skeleton implementation must provide
appropriate monitoring and actuation interfaces for the manager.

Skeleton malleability can be achieved via appropriate parameters. Thus we
will assume that each of the skeletons considered has more that just the func-
tion parameters outlined in Sec. 2.1. In particular, we will consider that each of
the skeletons has a parameter specifying the parallelism degree of the skeleton
itself. In addition, a skeleton may have a boolean parameter stating whether
the communications involving that skeleton should be secured or not. Whether
this should be an actual parameter or some kind of meta-data (e.g. provided
via annotations) is beyond the scope of this work. With these parameters avail-
able, one can easily envisage managers interacting with running skeletons by
setting/resetting those parameters via appropriate setter/getter methods pro-
vided by the skeleton interface.

The factors listed determine the nature of the co-design that can be used
for structuring skeletons and autonomic managers. It is clear that the more
effects we want to control via the manager, the more monitoring and actuators
methods should be implemented in the managed skeletons. It is equally clear
that the better interaction we have among manager and managed entities, the
better autonomic management policies we can implement.

The methodology mentioned at the beginning of this section, can thus be
summarized as follows.

1. First, the skeleton set used to structure our application is identified.
2. Then the malleable skeleton interface is designed and implemented allowing

i) monitoring of the measures of interest for implementing the autonomic
management policies and ii) actuation of the decisions taken by the auto-
nomic manager.

3. Finally, autonomic manager control loop is implemented that i) gathers the
relevant monitoring values from the malleable skeleton, ii) activates the rule
engine and iii) finally executes the fireable rules through the actuation mech-
anism interface of the malleable skeleton.
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The result will be a programming framework where application programmers
build applications by instantiating the skeleton/manager programming abstrac-
tions with suitable parameters and devote to the implementation4 most (all) of
the cumbersome activities needed to develop efficient, autonomically managed
parallel/distributed applications.

4 Implementation and Results

The approach described in Section 3 has been experimented with in several
projects, and the table in Fig. 1 recalls the distinguishing features of the corre-
sponding prototypes. The more important experiments have been made in the
framework of the CoreGRID FP6 NoE while designing the GCM (Grid Com-
ponent Model) and then within GridCOMP, the spin-off FP6 STREP aimed at
providing an open source reference implementation of GCM.

Fig. 1. Different features of several co-designed skeleton+autonomic manager frame-
works (GCM Behavioural skeleton framework [1], SCA service autonomic task farm
experiment [9], muskel full Java skeleton library [8])

In this context, the behavioural skeleton concept has been developed [1] within
the reference GCM implementation built on top of ProActive middleware [17].
A behavioural skeleton (BS) is a component modeling a common parallelism
exploitation pattern on parallel and distributed architectures and providing an
autonomic manager taking care of the performance non-functional aspects re-
lated to the parallelism exploitation pattern considered. In GCM, task farm and
data parallel behavioural skeletons have already been implemented and the im-
plementation of a pipeline behavioural skeleton is undergoing. The task farm BS
models embarrassingly parallel computations, the data parallel BS models sev-
eral kinds of data parallel computations, including those sharing a state among
their parallel activities, and the pipeline BS models computation in stages. All
the current behavioural skeletons handle only performance issues in their auto-
nomic managers.

4 To the system programmers, but this activity is needed just once, when the skele-
ton/manager pairs are designed and implemented.
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Fig. 2. Abstract schema of Behavioural skeleton: P represents the functional interface,
the grey part represents component “membrane”, i.e. the non-functional part of the
composite GCM component, AC is the the autonomic controller providing a monitor-
ing and actuator interface to the manager. The W are the inner components whose
parallel/distributed interaction is managed by the skeleton.

Autonomic managers in behavioural skeletons are implemented using a JBoss
rule engine [12]5. Rules establish manager policies. The precondition part uses
methods provided by an autonomic controller (AC) bean associated with the
implemented skeleton (see Fig. 2). Actuation mechanisms are provided also as
methods of the same AC bean, and they are called while executing the action part
of fireable rules. The rules are evaluated in a control loop: once the execution
of the currently (higher priority) fireable rule action part is terminated, the
evaluation of the precondition part starts again. Rules currently included in the
autonomic managers allow increase and decrease of the resources allocated to a
BS in such a way that a user supplied performance contract (SLA) is ensured in
the presence of variations in the load and availability of the computing and inter-
networking resources used to run the application. Performance contracts, in turn,
are expressed in terms of throughput via JBoss rules submitted (statically, at
the beginning of the application execution, or dynamically, while the execution
progresses) to the autonomic manager of the BS.

Separation of concerns is achieved as proposed in Section 3 as behavioural
skeletons are implemented by system programmers and application programmers
need only choose one of the available BS and provide the appropriate parameters
to get a fully working, performance optimized application.

Using the GCM BS prototype we developed several synthetic applications
and GridCOMP partners developed more realistic use cases, including biometric
identification and fluid-dynamic parameter sweeping applications [11]. Typical
results achieved with the GCM BS are shown in Fig. 3. The plot relates to an

5 Jboss uses Drools, that is “a business rule management system (BRMS) with a
forward chaining inference based rules engine, more correctly known as a production
rule system, using an enhanced implementation of the Rete algorithm” according to
Wikipedia (http://en.wikipedia.org/wiki/Drools)

http://en.wikipedia.org/wiki/Drools
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Fig. 3. GCM behavioural skeletons at work

application looking up items in a databases. Several user provided databases are
supplied, each with its own stream of items to be searched. Comparing input
items with an item in the database takes a non-negligible time. The user-specified
contract requires that each worker should have between 100 and 150 database
entries to compare, in order to get a reasonable response time (grey bar in the
second graph). The dimensions of the databases supplied are plotted on the first
graph and the actual database partition size in workers is the line plot of the
second graph. The autonomic manager of the data parallel BS reacts by adding
and removing workers (third graph) in such a way that the requested partition
size varies within the contract range and an acceptable service time is achieved
(fourth plot). These results have been achieved by running the application on
three different architectures: a Fast Ethernet NOW, GRID 5000 [10] and an SMP
multicore core architecture (up to 8 cores). In all cases, the BS autonomic man-
agers reacted as expected and performance has been adapted to the varying load
conditions of the target architecture. Experiments are ongoing that demonstrate
that the same results can be achieved when heterogeneous NOWs of single and
multi-core machines are targeted.

These results assess the concepts and methodologies discussed here. Further-
more, in [9] we discussed a similar implementation providing a WorkPool service
computing independent tasks according to a task farm skeleton, whose execution
is managed by a WorkpoolManager service using a JBoss drools engine and in-
terfacing (monitor and actuator interfaces) the managed skeleton to the manager
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via a suitable interface bean. With this prototype6 we demonstrated that the
co-design methodology described in Sec. 3 can be easily exported to other pro-
gramming frameworks (the service framework in this case) while preserving the
programmer’s investment and fulfilling the “minimal disruption” requirement
stated by Cole in his skeleton “manifesto” [6].

5 Multiple Non-functional Concern Management

While the proposed approach has been shown to be effective for a range of under-
lying programming paradigms, there remain significant challenges, not least in
addressing systems where multiple non-functional concerns are to be managed si-
multaneously. For example, the manager may be required to handle performance,
security and fault tolerance aspects of the pattern/skeleton at hand. Thus, in
the general case, monitoring may involve different, possibly independent values,
independent policies may exist relative to the different non-functional concerns
and, finally, decisions taken in relation to different policies may be somehow
inconsistent or even conflicting.

Therefore some meta policy may be needed to handle autonomic management
of different non-functional concerns. The simplest such policy is the weighted
one. Different non-functional concerns are given a weight (or a priority) and ei-
ther those with higher weight/priority are considered first (i.e. the corresponding
policies are considered and the corresponding actions taken) or, in the case of
policies whose effects can be somehow “scaled” a weighted policy effect is con-
sidered (i.e. policy i actions are executed with weight wi). However this strategy
cannot be applied in the general case, as in the general case it makes no sense
to execute an action “with weight wi”. We need more complex strategies, and
these strategies can probably best be implemented using some business rule en-
gine such that used to implement the rules relating to autonomic management
of a single concern.

In this case, we have to distinguish rules used to implement intra-non-functional
concern policies (ground rules) from those implementing inter -concern policies
(meta rules). In addition to normal priority-based handling of rules, system pro-
grammers should be able to exploit meta-rules before actually actuating fireable
ground-rules, but after knowing which exact ground rules are fireable and the rel-
ative priorities.

For example, consider the case where both performance and security are being
managed. Suppose we have a rule stating that we can add more resources to the
current computation if it is under performing, and another stating that a resource
can be managed without the need to use secure communications and that both
are fireable. Application of either rule will probably increase the performance of
the application and so there should be some meta-rule stating how they should
be applied: both, and if so which one first, or just one, and then which one.
6 The prototype is implemented on top of the Tuscany [19] implementation of SCA,

the Service Component Architecture [18] and is referred to as “SCA service” in
Fig. 1.
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This simple example indicates how complexity escalates when even straight-
forward concerns are combined. The challenge of determining policies for dealing
with multiple non-functional concerns in concert is huge but we believe the idea
of meta-rules will at least provide a framework in which these issues can be
addressed.

6 Conclusions

We discussed how co-design of parallel/distributed computation structuring and
autonomic management can facilitate the development of distributed systems by
enforcing a separation of concerns at two levels. First, suitable abstractions may
be provided to the application programmer, ensuring that he can concentrate
on the core functional code and on specifying non-functional requirements as a
SLA. In turn, many of the more challenging aspects of the distributed system
development are left in the hands of the system programmer who is well placed
to deal with these challenges. Second the system programmer is further aided by
the separation of structure from (non-functional concern) management together
with clear guidelines as to how the two should interface.

Preliminary results indicate that the approach is reasonable and feasible, both
in the case COW/NOWs and of multi- many-core networks.

The proposed programming abstractions and co-design approach appears also
to be suitable for implementing cloud programming environments, as they de-
couple programming effort from specific knowledge of the target architecture
while, at the same time, preserving those positive aspects deriving from effi-
cient implementation of both structuring and management patterns. Indeed, in
the case of non-functional aspects in cloud computing, an approach similar to
that proposed is essential, as the application programmer typically will have no
possibility of directly managing such concerns.
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Abstract. This paper discusses large-grain programming issues in data 
intensive applications designed for Grids and distributed infrastructures. We 
outline how Grid-based and service-oriented programming mechanisms can be 
developed as a collection of Grid/Web/Cloud services and investigate how they 
can be used to develop distributed data analysis tasks and knowledge discovery 
applications exploiting the SOA model. Then we discuss a strategy based on the 
use of services for the design of open distributed knowledge discovery tasks 
and applications on Grids and distributed systems. Some examples of 
frameworks developed according to this approach are outlined. 

Keywords: Grid services, distributed programming abstractions, distributed 
data mining, knowledge discovery. 

1   Introduction 

Bigger and more complex problems must be solved today by using distributed 
computing technology and systems. Increasingly complex applications implemented 
on distributed systems like Grids, peer-to-peer (P2P) networks and Clouds are data 
bound (or data intensive). This means that they access and use large amounts of data 
that often are stored in distributed repositories or data centers. 

Data sources available now and in a near future in digital formats are larger and 
larger and the number of applications in science and business that use them profitably 
are many and are increasing. This required the use of distributed computing 
infrastructures such as Grids, P2P and Cloud systems both to store/access them and 
process them in an efficient way by exploiting distributed programming and parallel 
programming techniques and tools. 

The information stored in digital data archives is enormous and its size is still 
growing very rapidly. IDC estimated that in 2006 the humankind has created about 
161 exabytes (161 billion gigabytes) of digital information and the production trend 
will be more than linear in the next years. Whereas until some decades ago the main 
problem was the shortage of information, the challenge now seems to be  

• the very large volume of information to deal with and  
• the associated complexity to process it and to extract significant and useful   

parts or summaries. 

This results in large data availability that if will not be appropriately managed will 
become a data deluge that will not allow users to handle that massive amount of data 
and extract useful and understandable information and knowledge from it. 
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In fact, today the main problem is not storing data, but it is query, analyze, mine, 
and process large data sets. Techniques and development models coming from 
distributed programming, parallel computing, service oriented programming, and 
workflow design are vital to develop data intensive applications in high performance 
distributed computing infrastructures that are available today. 

This paper discusses large-grain programming issues in data intensive applications 
designed for Grids and distributed infrastructures. We outline how Grid-based and 
service-oriented programming mechanisms can be developed as a collection of 
Grid/Web/Cloud services and investigate how they can be used to develop distributed 
data analysis tasks and knowledge discovery applications exploiting the SOA model. 
Then we discuss a strategy based on the use of services for the design of open 
distributed knowledge discovery tasks and applications on Grids and distributed 
systems. 

2   Distributed Data Analysis Patterns 

In conjunction with the data availability trend, we register today advancements in the 
area of distributed computing infrastructures that become more and more pervasive, 
dynamic, heterogeneous and large scale. In this new and evolving scenario, the 
development of data intensive applications must be high level with respect to the 
underlying computing and data management platforms. Therefore, is vital to design 
and implement programming abstractions and mechanisms that help designers to 
develop distributed applications on these processing infrastructures. 

In designing abstractions and mechanisms for high level programming of data 
intensive applications and systems several issues should addressed to provide general 
solutions and avoid to miss important functionality and/or performance goals. Among 
the main issues that must be considered are: 

• Management of input data, internal data, and output data. Mechanisms must 
be devised to program data input, transformations and output in data 
intensive applications. Here the main question is if the programming 
abstractions that today are included in programming tools are sufficient to 
handle with massive data management. 

• Dynamic data access. The issue mentioned in the previous item is even more 
complex when data used in distributed applications are dynamic as it occurs 
in data streaming applications or in elastic computing environments where to 
accessible data can change in size, content and properties. 

• Data dependency. In distributed systems that aggregate resources on demand 
or on their availability, formalisms capable to express dynamic data 
dependency could be of great help to programmers. Access to databases, file 
systems or Web repositories could change in time in recent and future 
distributed infrastructures. This requires to allow designers expressing in 
dependency of data in programming applications. Constructs and 
programming models that link operations (instructions, methods or services) 
to available data will help. 

• Dynamic task graphs/workflows. In dynamic environments like Grids, P2P 
systems and Clouds, many applications could be programmed as dynamic 
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task graphs or dynamic workflows (e.g., service workflow) that adapt to the 
available resources or to the application requirements that can change in time 
(especially for long running applications). This research area is promising 
and need to be investigated also considering high level building blocks for 
programming task graphs and workflow in distributed systems. In such 
dynamic scenario, also data dependency can play a role.  

• Data parallelism vs task parallelism. Abstractions for expressing parallelism 
and concurrency in data intensive applications is one of the key elements in 
designing high performance applications. When operations on data are 
independent, data parallel constructs can be effectively used and are to be 
preferred to task parallel patterns. However, we must be aware that in several 
data intensive application classes abstractions that are more complex than 
data parallel operations are needed. In distributed query executions, in 
parallel data mining and similar cases, task parallelism is needed to express 
complex and dynamic algorithms. Combination of both models must be 
considered in languages and environments that aim to be general and provide 
support for different programming approaches. 

• Parallel data mining and/or distributed data mining. As today we are much 
more able to store and access data than analyze them, data mining algorithms 
and applications must be facilitated through the definition of parallel and/or 
distributed abstractions for programming data mining tasks on high 
performance infrastructures such as clusters, Grids, P2P systems and Clouds. 
The example of the MapReduce [1] pattern used to program highly parallel 
data mining and data analytics applications is significant in this context. 
Moreover, it should be considered if and how to integrate parallel constructs 
to be used in tightly coupled systems with distributed abstractions to be used 
for data mining in loosely coupled systems that are geographically 
distributed. 

• Programming level(s) for distributed mining operations/taks/patterns. 
Abstractions for programming data mining algorithms can be defined at 
different levels and these levels influence operation grain size and 
complexity, abstraction, number of process/thread typically involved, 
communication model, etc. Figure 1 shows three levels with different 
programming models, languages, libraries and services. Each of them 
represent a class of abstractions that offer different mechanisms for 
programming data analysis algorithms. Some of them in several cases are 
not orthogonal and can be used in complex distributed applications where, 
for example, communication primitives, thread creation methods, master-
slave patterns, should put together with Web services, mushups, and 
workflows. 

After discussing some main issues in designing abstractions for programming 
distributed data intensive applications, in the remainder of the paper we focus on the 
study of a service based approach for providing abstractions for distributed data 
mining in service oriented distributed infrastructures.  



418 D. Talia 

 

 

Fig. 1. Different programming levels that provide different abstractions for parallel and 
distributed programming 

3   Grid/Web Services for Distributed Data Mining 

Distributed infrastructures like Grids and Clouds extend the distributed and parallel 
computing paradigms allowing resource negotiation, dynamical allocation, 
heterogeneity, open protocols and services. As Grids and Clouds became well 
accepted computing infrastructures it is necessary to provide data mining services, 
algorithms, and applications [2].  

Those services may help users to leverage capability of Grids, Clouds and, in 
general, service oriented Internet infrastructures, in supporting high-performance 
distributed computing for run their data mining tasks and applications. For example, 
by exploiting the SOA model and the Web Services Resource Framework (WSRF) in 
Grids it is possible to define basic services for supporting distributed data mining 
tasks and data analytics applications. These services can be also interoperable with 
other services developed with different technologies and also with legacy code that 
will be exposed as a service. 

Those data analysis services can address all the aspects that must be considered in 
data mining and in knowledge discovery processes such as 

• data selection and transport services, 
• data querying services, 
• data analysis services, 
• knowledge models representation services, and 
• visualization services.  
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According to this approach we can provide service oriented programming 
abstractions for distributed data mining that can be used at different levels form single 
operations on data to distributed data mining patterns and complete KDD processes 
run as service-based workflows on geographically remote sets of machines. Figure 2 
summarizes four classes of data mining services that can be implemented in dynamic 
large scale distributed infrastructures. 

 

Fig. 2. Four classes/levels of services that can be developed to facilitate the high level 
programming of distributed data mining tasks and KDD processes in Grids, Clouds or P2P 
networks. Services developed at one level can be used to implement services in the lower levels 
(in the figure).  

It is worth to notice that services provided at one level can be used to implement 
services in other levels, thus, referring Figure 2, single step services can used to 
implement single data mining tasks or distributed data mining patterns. This 
incremental approach avoids the re-implementation of already available operations, 
tasks or patterns. 

More significantly, we must point out that this collection of data mining services 
can constitute an Open Framework for Service-based Data Mining that allows 
developers to program distributed KDD processes as a composition of single and/or 
aggregated services available over a Grid or in a Cloud computing framework. Those 
services can exploit other basic Grid/Cloud/P2P services for data transfer, replica 
management, data integration and querying. 

By exploiting this Open Framework for Service-based Data Mining in Grids, 
Clouds and dynamic distributed infrastructures it is possible to develop data mining 
services accessible every time and everywhere. This approach will  result in  

• Service-based distributed data mining applications; 
• Data mining services for virtual organizations; 
• Distributed data analysis services on demand; 
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Therefore, we could have a sort of knowledge discovery eco-system composed of a 
large numbers of decentralized data analysis services that will help users to face the 
availability of massive amounts of data both in business and science. 

A question that could be raised after presenting the discussed approach is: Can be 
distributed data mining services considered programming abstractions? A quick 
response to this question could be: Apparently not, at least in a traditional 
programming approach. However, in our opinion the correct response should be: Yes, 
if we consider user and application requirements in handling data and in 
understanding what is useful in it. The approach can be a step towards distributed 
programming patterns for services in which we can have 

• Basic services as simple operations; 
• Complex services and their complex composition as libraries/patterns of 

operations; 
• Service programming languages for composing them. 

4   Some Service Frameworks for Distributed Data Mining 

To validate our approach and experiment the design and use of distributed data 
mining services we recently developed a few systems. They are the Knowledge Grid 
[3], Weka4WS [4], Mobile Data Mining Grid Services [5], and Mining@home [6]. It 
is out of the scope of this paper to describe these systems; however, just to give the 
reader some info on them we report here about their main features. 

The Knowledge Grid is a Grid service-based environment providing knowledge 
discovery services that can be used in high performance distributed applications. It 
includes high-level abstractions and a set of services by which users can integrate 
Grid resources to be used in each phase of a knowledge discovery process. The 
Knowledge Grid architecture is composed of two groups of services classified on the 
basis of their roles and functionalities. Indeed, two main aspects characterize a 
knowledge discovery process performed in accordance with the Knowledge Grid 
philosophy. The first is the management of data sources, data sets and tools to be used 
in the whole process. The second is concerned with the design and management of  
a knowledge flow that is the sequence of steps to be executed in order to perform a 
complete knowledge discovery process by exploiting the advantages coming from a 
Grid environment. 

The goal of Weka4WS is to extend the Weka open source framework to support 
remote execution of the data mining algorithms in service-oriented Grid 
environments. To enable remote invocation, each data mining algorithm provided by 
the Weka library is exposed as a WSRF-compliant Web service which can be easily 
deployed on the available Grid nodes. Thus, Weka4WS also extends the Weka GUI to 
enable the invocation of the data mining algorithms that are exposed as Web services 
on remote machines. 

Other than the two mentioned frameworks supporting the development of data 
mining applications on "wired" Grids, we implemented a mobile data mining system 
based on a wireless service oriented architecture. Here we refer to mobile data mining 
as the process of using mobile devices for running data mining applications involving 
remote computers and remote data. The availability of client programs on mobile 
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devices that can invoke the remote execution of data mining tasks and show the 
mining results is a significant added value for nomadic people and organizations. 
Those users need to perform analysis of data stored in repositories far away from the 
site where they work, thus mobile mining services allow them to generate knowledge 
regardless of their physical location. We implemented pervasive data mining of 
databases from mobile devices through the use of standard and WSRF-compliant Web 
services. By implementing mobile Web services, the system allows remote users to 
execute data mining tasks on a Grid or on the Internet from a mobile phone or a PDA 
and receive on those devices the results of a data analysis task. The mobile data 
mining Grid services have been implemented using the WSRF Java library provided 
by GT4 and a subset of the Weka library as data mining algorithms. The mobile client 
has been implemented by the Sun Java Wireless Toolkit, a widely adopted suite for 
the development of J2ME applications. 

Finally, in the Mining@home work we aimed at exploring the opportunities 
offered by the volunteer computing paradigm for making feasible the execution of 
compute-intensive data mining jobs that have to explore very huge data sets. 
Mining@home introduces a novel data-intensive computing model, which is able to 
efficiently carry out mining tasks by adopting the volunteer computing paradigm. The 
network exploits caching techniques across a super-peer network to leverage the cost 
of spreading large amounts of data to all the computing peers. 

5   Summary and Conclusion 

New high performance parallel and distributed infrastructures allow us to attack new 
problems, but the efficient exploitation of their computing and storing power requires 
to solve more challenging problems. 

New programming models and environments are required to design and implement 
efficient software systems and applications that can benefit of new dynamic, 
heterogeneous and pervasive infrastructures that are available today and those that 
will be available in the next years. In this paper we discussed requirements and 
features of distributed programming paradigms from the perspective of massive data 
analysis and focused on distributed data mining as a field where service oriented 
programming can help to compose complex applications and build knowledge 
discovery eco-systems constructed by a large numbers of decentralized data analysis 
services. 

As data is becoming a big player, programming data analysis applications and 
services is a must in distributed infrastructures. New ways to efficiently compose 
different distributed models and  paradigms are needed and relationships between 
different programming levels  must be addressed. 

In a long-term vision, pervasive collections of data analysis services and applications 
must be accessed and used as public utilities. Researchers and professionals must be 
ready for managing with this scenario and appropriate and efficient programming 
paradigms must be developed to support designers and programmers in their 
challenging task.  
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Abstract. The Proactive Parallel Suite offers multiple layers of abstrac-
tion for parallel and distributed applications which include both pro-
gramming and the environment/deployment abstraction layers.

At the core of ProActive’s programming abstractions are active objects
with transparent futures and wait-by-necessity. Other abstractions offered
by ProActive, such as typed groups, algorithmic skeletons, and hierarchi-
cal distributed components among others; are constructed on top of active
objects. This pluralism of abstractions offers programmers a wide choice
of expressiveness for coding parallel and distributed applications.

Additionally, an environment/deployment layer offers abstractions that
simplify the interaction with the infrastructure. A deployment descriptor
and a super-scheduler abstractions manage deployment of application on
distributed resources, while the IC2D tool provides an abstraction to mon-
itor debug and profile parallel and distributed applications.

1 Introduction

The relevance of parallel programming is evident. There has never been a point
in time where we have had a dearer need for parallel programming abstractions
to harness the power of increasingly complex parallel systems [40]. On one side
large scale distributed-memory computing such as cluster and grid computing
[29]; and on the other parallel shared-memory computing through new multi-core
processors [7].

The difficulties of parallel programming have led to the development of many
parallel programming models, each having its particular strengths. One thing
which they have in common is that parallel programming models pursue a
balance between abstractions (simplicity) and details (expressiveness). As appli-
cations increase in complexity, a single programming abstraction lacks expres-
siveness to adequately satisfy the whole application. Instead an approach where
multiple abstractions are used for particular parts of the application is better
suited. This papers describes a library providing such pluralism of programming
models, the ProActive Parallel Suite.
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The ProActive Parallel Suite is a 100% Java library, which aims at achieving
seamless programming for concurrent, parallel, distributed, and mobile comput-
ing. It does not require any modification of the standard Java execution envi-
ronment, nor does it make use of a special compiler, pre-processor, or modified
virtual machine. Released under the GPL license, ProActive is a Java library for
parallel, distributed, and concurrent computing; also featuring mobility and secu-
rity in a uniform framework. With a reduced set of simple primitives, ProActive
provides a comprehensive API which simplifies the programming of applications
distributed on Local Area Networks (LAN), clusters, and Grids.

ProActive provides two levels of abstractions. First, a set of programming
model abstractions such as: active objects, typed groups, algorithmic skeletons,
distributed components, etc. The programming model abstractions are all im-
plemented on top of the core programming abstraction, active objects, because
they provide good properties such as determinism and orthogonality of future
update policies [21]. Second, ProActive is also concerned with the complexity of
deploying distributed applications. ProActive provides deployment descriptors
which abstract low level information from the application source code. Users
can deploy their applications on different infrastructures by providing the cor-
responding deployment descriptor, without changing the application code. Also,
for more dynamic environments, ProActive supports batch like deployment of
applications through an active object based scheduler. Additionally, ProActive
provides a monitoring, debugging and profiling tool IC2D. Among others, IC2D
provides a visual representation of an application’s active objects and their
communication.

This paper is organized as follows. Section 2 describes the related work. Sec-
tion 3 describes the parallel programming abstractions in ProActive, starting
with the active object model in Section 3.1, typed groups in Section 3.2, Cal-
cium’s algorithmic skeletons in Section 3.3, and the GCM hierarchical compo-
nents in Section 3.4. Then Section 4 describes the Environment and Deployment
abstractions. Finally Section 5 provides the conclusions and future work.

2 Related Work

ASSIST [2] is a programming environment which provides programmers with a
structured coordination language. The coordination language can express par-
allel programs as an arbitrary graph of software modules. The graph describes
how a set of modules interact with each other using a set of typed data streams.
The modules can be sequential or parallel. Sequential modules can be written
in C, C++, or Fortran; and parallel modules are programmed with a special
ASSIST parallel module (parmod).

Condor [35] is a distributed computing system for batch processing. Condor
provides job management, scheduling, resource monitoring and resource man-
agement. One of the key features of Condor is its matchmaking mechanism.
Both jobs and resources describe their requirements using a ClassAd language,
and the matchmaking determines if a resource is suitable for the execution of
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a job. Jobs can be ordered using DAGMan to define the dependencies between
jobs, and a Master-Worker system is available for parameter search applications.
Condor also monitors the job’s progress and informs of completion to the user.

GAT stands for Grid Application Toolkit [6,34], which defines a platform in-
dependent API to access resources and services. The API focuses, among others,
on resource management (job submission and migration), and data management
(file transfer, file access and communication pipes). A GAT Engine dispatches
API calls to available services via adaptors. Adaptors are the interface between
the GAT Engine and the third party services. They are analogous to providers
in Java CoG. When a call to the API arrives, the GAT Engine executes suitable
adaptors until one succeeds, or all fail, to perform the operation.

Globus Toolkit [30] is a rich set tools capable of interoperating to run ap-
plications on distributed and Grid infrastructures. These tools are concerned
with deployment, data management, monitoring, and security among others.
For deployment Globus provides GRAM which is the module responsible of the
resource acquisition, configuration, executable staging, and program’s execution.
Data management is achieved by a set of tools, such as GridFTP used for data
movement; but also others such as the Data Replication Service which handles
replication of data.

Grid Superscalar [8] is an environment to program parallel applications for the
Grid using imperative languages such as C++ and Perl. The program is specified
as a set of tasks with input/output files in an interface description language.
Grid Superscalar analyzes the dependencies between tasks and executes them
sequentially or in parallel after having transferred the required data.

Java CoG Kit stands for Java Commodity Grid Kit [38], and provides services
using simplified interfaces for lower level providers, in particular for the Globus
Toolkit [31]. The Java CoG Kit’s abstraction model follows a provider pattern,
where abstract and generic concepts specified by programmers are translated into
provider specific implementation entities. In the case of file transfer abstractions,
file transfer operations are no different from other tasks, in the sense that a file
transfer operation must be submitted for execution as a file-transfer-task [37,39].

SAGA stands for Simple API for Grid Applications, and has the same objec-
tive as GAT: to construct a uniform API for the development of Grid applica-
tions [32]. Indeed, SAGA is an API standardization effort within the Open Grid
Forum (OGF). The SAGA API is concerned with functional features such as
job submission and management, file input/output, replica management, remote
procedure calls, etc; and non-functional features such as permissions, security,
monitoring, etc.

Unicore [28] is a middleware oriented towards application Grid services, where
services are setup on a pre-configured Grid environment. Remote clients submit
jobs to the Unicore’s Grid gateway, which chooses suitable resources to run the
jobs. A job is composed of one or more typed tasks. Each tasks triggers the
execution of a predefined Grid service, in accordance with the type of the task.
Tasks are arranged using a workflow, and can be executed in parallel or not.
All tasks belonging to the same job share a jobspace file system. Besides the
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workflow, the job description also specifies which files must be imported into the
jobspace before the execution of the job, and which files must be exported after
the job is finished.

3 Parallel Programming Abstractions

ProActive provides several programming abstractions. This section describes
only the following ones: active objects, typed groups, algorithmic skeletons, and
components; which we believe provide a good overview of ProActive’s pluralism
of abstractions. Readers interested on some other specific programming model in
ProActive, such as the Branch & Bound [19], Master-Slave, or Monte Carlo [16]
APIs should refer to the ProActive documentation for further details [33].

3.1 Active Objects with Transparent Futures

At ProActive’s core lies a uniform active object programming model abstraction.
As shown in Figure 1, active objects are remotely accessible via method invoca-
tions, which are automatically stored in a queue of pending requests. Each active
object has its own thread of control and is granted the ability to decide in which
order the incoming method calls are served. Method calls on active objects are
asynchronous with automatic synchronization. This is achieved using transpar-
ent future objects as a result of remote methods calls, and synchronization is
handled by a mechanism known as wait-by-necessity [18].

Active objects are instantiated using the ProActive API, as shown in Listing 1,
by specifying the class of the root object, the instantiation parameters, and an
optional location node. Invoking the method foo() on b returns a future of

3− A future object
is created and returned

1− Object A performs
a call to method foo

2− The request for foo
is appended to the queue

5− The body updates the future
with the result of the execution of foo

6− Object A can use the result
throught the future object

4− The thread of the body
executes method foo on object B

Object B

Proxy Body

Object A

Future

Result

Local node Remote node

Object BObject A

Fig. 1. Execution of a remote method call
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Object[] params= ...; //Constructor parameters

// instantiate active object of class B on a remote node

B b = (B) ProActive.newActive("B", params, node);

// use active object as any object of type B

R r = b.foo();

...

// possible wait-by-necessity

System.out.println(r.printResult());

Listing 1. Active Object instantiation and method invocation

type R. Where R is the return type of the method foo, not a wrapper type.
The computation can continue until a wait-by-necessity is reached. The thread
accessing the future will be blocked only if the result is not yet available when
it is actually required.

Active objects may migrate from any Java Virtual Machine (JVM) to any
other using the provided migration mechanism. An active object with its pending
requests (method calls), futures, and passive (mandatory non-shared) objects can
migrate from JVM to JVM through the migrateTo(...) primitive. The migration
can be initiated from outside the active object, but it is the responsibility of
the active object to execute the migration, this is known as weak migration.
Automatic and transparent forwarding of requests and replies provide location
transparency, as remote references toward active mobile objects remain valid.

ProActive uses by default the RMI Java standard library as a portable com-
munication layer, supporting the following communication protocols: RMI, HTTP,
Jini, RMI/SSH, and Ibis [36].

3.2 Typed Groups

An extension of the active object abstraction corresponds to the typed group com-
munication model [9]. Group communication is an important feature for high-
performance and Grid computing, for which MPI is generally the only available
coordination model [10]. Group communication allows triggering method calls on
a distributed group of active objects with compatible type, dynamically gener-
ating a group of results. It has been shown in [9] that this group communication
mechanism, plus a few synchronization operations (WaitAll, WaitOne, etc.), pro-
vides similar patterns for collective operations such as those available in MPI,
but in a language centric approach [10].

The typed group communication mechanism [9] is built upon the ProActive
elementary mechanism for asynchronous remote method invocation with auto-
matic futures. The group mechanism must be thought of as a replication of more
than one (say N) ProActive remote method invocations towards N active objects.
Of course, the aim is to incorporate some optimizations into the group mecha-
nism implementation, in such a way as to achieve better performances than a
sequential achievement of N individual ProActive remote method calls. In this
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Object[][] paramsArray = {{...},{...},...}; Node[] nodes =

{...,...,... }; A ag = (A) ProActiveGroup.newActiveGroup("A",

paramsArray, nodes); ... ag.foo(...); // A group communication

// A method call on a typed group

V vg = ag.bar();

// To wait and capture the first returned member of vg

V v = (V) ProActiveGroup.waitAndGetOne(vg);

// To wait all the members of vg are arrived

ProActiveGroup.waitAll(vg);

Listing 2. Typed Group Communications

way, the mechanism is a generalization of the remote method call mechanism of
ProActive.

The availability of such a group communication mechanism simplifies the
programming of applications with similar activities running in parallel. Indeed,
from the programming point of view, using a group of active objects of the same
type, subsequently called a typed group, takes exactly the same form as using
only one active object of this type. This is possible due to the fact that the
ProActive library is built upon reification techniques.

Listing 2 shows an example using typed group communication. The cre-
ation of a group is analogous to the creation of an active object but using the
newActiveGroup primitive. A group communication call is transparent and the
result is stored in a future. The API allows for several utility methods like
waitAndGetOne which waits for a single result from the group, and waitAll
which waits for all results.

3.3 Algorithmic Skeletons

Algorithmic skeletons (skeletons for short) are a high level programming model
for parallel and distributed computing, introduced by Cole in [24]. Skeletons take
advantage of commonprogrammingpatterns to hide the complexity of parallel and
distributed applications. Starting from a basic set of patterns (skeletons), more
complex patterns can be built by nesting the basic ones. All the parallelization and
distribution aspects are implicitly defined by the composed skeletal structure.

As a skeleton framework we use Calcium [20,22,23], which is greatly inspired
on Lithium [3,4,5,27] and its successor Muskel [26]. Calcium is written in Java
and is provided as a library. The Calcium framework is capable of evaluat-
ing the same skeleton program on different execution environments. Currently
it supports parallel environments using threads, distributed environments us-
ing ProActive’s active objects, and Grid like environments using the ProActive
Scheduler (see Section 4.2).

In Calcium, skeletons are provided as a Java library. The library can nest task
and data parallel skeleton in the following way:
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� ::= seq(fe) | farm(�) | pipe(�1,�2) | while(fb,�) |
if(fb,�true,�false) | for(i,�) | map(fd,�, fc) |
fork(fd, {�i}, fc) | d&c(fd, fb,�, fc)

Each skeleton represents a different pattern of parallel computation. All the
communication details are implicit for each pattern, hidden away from the pro-
grammer, and are classified in two types: task parallel or data parallel. The task
parallel skeletons are: farm for task replication; pipe for staged computation; seq
for wrapping execution functions; if for conditional branching; and while/for
for iteration. The data parallel skeletons are: map for single instruction multi-
ple data; fork for multiple instruction multiple data; and d&c for divide and
conquer.

The nested skeleton pattern (�) relies on sequential blocks of the application.
These blocks provide the business logic and transform a general skeleton pattern
into a specific application. We denominate these blocks muscles, as they provide
the real (non-parallel) functionality of the application. In Calcium, muscles come
in four flavors:

Execution fe : P → R

Division fd : P → {R}
Conquer fc : {P} → R

Condition fb : P → boolean

Where P is the parameter type, R the result type, and {X} a list of parameters
or results of type X .

//Initialization

Skeleton<BlastParams,File> blast = ...;

Environment env = new ProActiveEnv(...);

Calcium calcium = new Calcium(env);

Stream<BlastParams,File> stream =

calcium.getStream(blast);

//Input Parameters

stream.input(new BlastParams("/home/query.1"));

stream.input(new BlastParams("/home/query.2"));

//...

//Output Results

File alignment1 = stream.getResult();

File alignment2 = stream.getResult();

Fig. 2. BLAST Skeleton Program
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For the skeleton language, muscles are black boxes invoked during the compu-
tation of the skeleton program. Multiple muscles may be executed either sequen-
tially or in parallel with respect to each other, in accordance with the defined
�. The result of a muscle is passed as a parameter to other muscle(s). When no
further muscles need to be executed, the final result is delivered to the user.

Figure 2 shows an example. BLAST [15] corresponds to Basic Local Alignment
Search Tool. It is a popular tool used in bioinformatics to perform sequence align-
ment of DNA and proteins. In short, BLAST reads a query file and performs an
alignment of this query against a database file. The results of the alignment are
then stored in an output file. A BLAST parallelization using skeleton program-
ming is shown in the figure. The strategy is to divide the database until a suit-
able size is reached and then merge the results of the BLAST alignment. The code
shown in the figure represents the usage API. An initialization phase defines the
skeleton program (portrayed graphically in the example), and then instantiates
Calcium with a specific environment. The skeletonprogram is then associatedwith
a stream which is used to input parameters and collect the results.

3.4 Grid Component Model (GCM)

The Grid Component Model (GCM) [25] abstraction extends Fractal [17] for
distributed and Grid computing [12]. As in Fractal, GCM allows for hierarchi-
cal composition, separation of functional and non-functional interfaces; but also
considers deployment, collective communications [14], and autonomic behavior
[1] among others.

ProActive’s GCM implementation is built upon the active object model. Each
component is implemented with an active object and (non-)functional requests
are served from the active object queue. Invocations on component interfaces
inherit asynchronism from the remote method calls of active objects. The re-
sult of an invocation is also a transparent future which can be passed to other
components.

Fig. 3. Fractal based Grid Component Model
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Figure 3 shows graphical example of a GCM component. External interfaces
provide interaction with the environment while internal interfaces are binded
with sub-components. The interface on the sides represent server (left) and client
(right), while interfaces on the top correspond to non-functional services: life
cycle, reconfiguration, etc.

Among others, GCM extends Fractal by providing multicast and gathercast
interfaces [14]. Multicast interfaces provide abstractions for one-to-many com-
munications, by transforming a single invocation into a list of invocations. The
transformation is customizable (broadcast, split, etc), and the result of such invo-
cation is a list of result or its reduction. The symmetrical interfaces are gathercast
which provide abstractions for many-to-one communications by transforming a
list of invocations into a single invocation. Gathercast interfaces can coordinate
the invocation which is automatically redistributed to the invoking components.

4 Environment and Deployment Abstractions

4.1 Deployment and Scheduling

Descriptor Based. The deployment of distributed applications is commonly
done manually through the use of remote shells for launching the various virtual
machines or daemons on remote computers and clusters. In heterogeneous in-
frastructure the deployment complexity increases thus making the deployment
task central and harder to perform by the application.

To address this issue, ProActive provides a deployment descriptor abstrac-
tion [11], which allows the deployment of applications on heterogeneous sites

Fig. 4. Deployment Descriptor Layout



432 D. Caromel and M. Leyton

without changing the application’s source code. All infrastructure information
related with the deployment of applications on the infrastructure is described
in a deployment descriptor (XML). Thus, eliminating references inside the code
to: machine names, resource acquisition protocols (local, rsh, ssh, lsf, globus-
gram, unicore, pbs, lsf, nordugrid-arc, etc...), and communication/lookup proto-
cols (rmi, jini, http, etc...).

The deployment descriptor’s architecture is shown in Figure 4. The infrastruc-
ture section contains the information necessary for acquiring remote resources.
Once acquired, ProActive nodes are instantiated on the remote resources. The
nodes are then linked with the application code via a virtual-node abstraction.
In the application’s code, a virtual-node name corresponds to a reference on
the nodes that will be acquired during the deployment. While, on the deployment
descriptor, the virtual-node corresponds to a set of deployment operations that
will yield resources with instantiated nodes.

Consequently, the parsing of the deployment descriptor, and associated de-
ployment operations, are triggered from the application code by calling one single
method of the ProActive library. The deployment can be configured by changing
the

application → virtual-node→ nodes

mapping, to run the application on a different infrastructure, without modifying
a single line of code in the application.

4.2 Scheduler

Batch schedulers provide an abstraction of resources to clients. Clients submit
tasks and the scheduler is in charge of executing them on available resources.
Thus, a scheduler allows several clients to share a same pool of resources. In this
section, we present a super-scheduler (scheduler for short), capable of federat-
ing other schedulers. Clients can interact with the scheduler through different
mechanism: command-line, API, GUI, and description files. In addition to the
super-scheduler, we describe a resource manager, which is in charge of acquiring
and managing resources.

The Scheduler is the central entity with which clients interact using a remote
Java API, or by submitting a Job Description. A Job describes the batch process
to be executed. The description specifies the code, which can be in Java by
extending the Executable interface or any native executable; required data files;
and a script for validating resources.

Currently three kinds of jobs are supported: in Task Flow Jobs, clients de-
scribe the flow and dependencies of tasks to execute; in Parameter Sweeping
a single task is executed in parallel with multiple data; and in ProActive Ap-
plications clients submit a regular ProActive distributed application.

The scheduler also supports customized allocation policies, and provides a
FIFO policy by default. Basic non-functional concerns such as security and fault-
tolerance are handled both at the ProActive middleware and scheduler levels.
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Fig. 5. Scheduler Global Overview

Finally, the management, deployment, and selection of resources is handled by
a second entity, named the resource manager. Figure 5 shows a global overview
of the whole system.

The Resource Manager (RM) is responsible for acquiring and managing
resources. The RM is built on top of the deployment descriptors which provide
an abstraction of how resources can be acquired.

The static acquisition of resources is handled by deployment descriptors, while
the dynamic management of these resources is done by the RM. A scheduler can
ask resources from a RM, and the RM will deliver a resource through a node
abstraction. Once the scheduler no longer requires a node, it is returned to RM
for cleaning, pooling or releasing.

Fig. 6. IC2D Example Snapshot
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The scheduler can also request specific resources, that fulfill some requirements
in order to execute a particular task. Requirements can be verified with a script
attached to the task, the RM uses this script to test resources. A successful
execution of this script on a given resource validates the node.

4.3 IC2D Monitoring, Debugging, and Profiling

Graphical visualization and monitoring of any ongoing ProActive applications
is possible with IC2D (Interactive Control and Debugging of Distribution) tool
[13]. IC2D provides a graphical representation of hosts, java virtual machines,
nodes, active objects with their queue of requests, and messages as shown in
Figure 6. In the figure, outermost squares represent hosts while inner squares
correspond to java virtual machines and nodes. The ellipsis correspond to active
objects and the queue of pending requests is represented by dots inside active ob-
jects. Communications between active objects are shown by lines. Additionally,
IC2D allows the monitoring of migrations, which can also be triggered through
IC2D with a drag-and-drop.

When interfaced with Timit a profile of the application can be generated. The
profile contains information such as time spent sending/waiting for requests, a
timeline of activity for each active object, memory usage, and thread usage
among others.

5 Conclusions

The ProActive Parallel Suite offers a variety of abstractions to ease the pro-
gramming and execution of parallel and distributed applications. The program-
ming abstraction layer is based on an active object model with transparent first
class futures and wait-by-necessity. On top of this programming model, other
abstractions are provided such as typed groups, Calcium’s algorithmic skele-
tons, and GCM components among others. ProActive’s programming models
pluralism allows programmers to choose the most adequate abstractions for their
application.

ProActive also provides an environment/deployment abstraction. The deploy-
ment process is simplified with deployment descriptors or a scheduler for more
dynamic environments. Additionally, the IC2D tool provides abstract to moni-
tor, debug, and profile parallel and distributed applications.

The current and future work of ProActive has many directions. For exam-
ple the deployment mechanism is currently undergoing a complete re-write and
extension. The new deployment labeled GCM Deployment, will harness all the
experience gathered in the deployment of ProActive applications. Besides a sim-
plified an easier description of infrastructure resources, the GCM Deployment
considers an application side descriptor.

At the programming abstraction level, for active objects we are currently
working on providing advanced update policies. For GCM components we are
currently working on better MPI like collective communications, integration
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with webservices, tailored monitoring, reconfiguration, and compositional non-
functional aspects.
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Abstract. In the seek of more computing power, two sources of complexity are
to face. On one hand, it is possible to aggregate a large amount of computing
power (and storage) at the price of very complex resources such as grids. On
the other hand, such available computing power allows to imagine more complex
applications such as code coupling applications to achieve more realistic simula-
tions. Component models appear as a solid foundation to handle simultaneously
both sources of complexity. However, component models need to provide ad-
equate abstractions to offer a simple programming model while enabling high
performance on any kind of resources. This paper reviews several abstractions
dedicated for scientific applications: data sharing between components, master-
worker relationships, parallel to parallel component communications and collec-
tive communications among components.

1 Introduction

In order to better simulate the reality, applications are always looking for more comput-
ing power – as well as storage space. A huge computing power is available but at the
price of a huge complexity to harness it such as in grids, with recently multi-core multi-
CPU nodes. Moreover, to make use of such a computing power, applications turn out to
get more and more complex. For example, code coupling applications aim to compose
several (complex) codes coming from independent teams.

Hence, there is a clear need of a programming model that can handle simultaneously
both sources of complexity so as to hide the infrastructure complexity (heterogeneity,
volatility, etc.) while providing a simple model to efficiently build applications from
several pieces of code.

Software component technology appears to provide an interesting foundation to
reach such a goal. Software components aim at handling code reuse [1] and distributed
software component models such as CCM [2] or SCA [3] have already dealt with code
and resource heterogeneity. Generic and hierarchical component models such as FRAC-
TAL [4] provide a foundation where more specific component models such as GCM can
be defined [5]. Dedicated high performance models have also been proposed such as
CCA [6].
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However, a common limitation of these models is that their programming model
is very close to their execution model. It is very annoying for application portability
as the programmer has to know the infrastructure architecture when designing its ap-
plication. Moreover, it is not any longer satisfactory as more and more resources are
volatile. Therefore, several researches have been conducted to increase the abstraction
level of component models. For example, behavioral skeletons have been recently added
to GCM [7]. Such an improvement of the abstraction level of component models a) im-
proves the productivity by avoiding duplicating the effort for recurring composition
patterns; b) reduces the complexity by embedding expertise in a "simple" concept; and
c) hides the implementation details and thus enables resource independent composi-
tion. Hence, the challenge is to simplify application development while keeping high
performance.

This paper presents four abstractions – namely data sharing, master-worker
paradigm, parallel component and collective communications. These abstractions take
place at the different levels of a component model: the port level (data sharing and
collective communication), the component level (parallel component), and the assem-
bly level (master-worker paradigm and collective communications). Our aim is to show
that it is possible to simplify application development while keeping high performance.

The remaining of this paper discusses the four abstractions. Section 2 deals with data
sharing between components. The support of the master-worker paradigm in component
models is studied in Section 3. Section 4 is devoted to parallel components and Section 5
focuses on collective communications between components. Section 6 concludes the
paper.

2 Data Sharing

2.1 Presentation

The shared memory paradigm is an attractive programming paradigm that allows data to
be shared by multiple concurrent entities. Its advantage relies on the ease of program-
ming: multiple entities (threads, processes, etc) can concurrently read/write data in a
global space without any need to explicitly handle data localization, transfer and persis-
tence. This concept has been successfully applied in several contexts: (1) multithreading
within the same process, (2) data segment sharing among multiple processes running
on the same host, (3) global data sharing across a cluster of workstations through Dis-
tributed Shared Memory (DSM) systems, and (4) grid data sharing services such as
JUXMEM [8] in grid environments. Such a service transparently manages data local-
ization and persistence in a dynamic, large-scale, distributed environment. A common
objective of underlying data sharing systems is to hide the complexity of data shar-
ing management. They also deal with non-functional concerns related to the nature of
targeted execution resources and processes placement. Resources volatility and perfor-
mance are examples of such specificities.

Sharing data among multiple computation entities is appropriate for some applica-
tions where data structures are complex and access patterns are irregular. Such applica-
tions may be component based applications. Hence, it is interesting to bring the benefits
of the shared memory paradigm into component models.
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Fig. 1. Overview of data shared ports

interface AccessPort {
float* get_pointer();
long get_size();
// Synchronization primitives
void acquire();
void acquire_read();
void release();

}

Fig. 2. Example of data port API accessing an ar-
ray of floats

2.2 Limitations with Existing Component Models

In a classical way, interactions between components are done through well-defined
ports. In fact, in existing component models, ports only enable explicit data transfer
where the data is part of an exchanged message. Consequently, it is not easy to share
data between components. When several components want to modify a same data, the
functional code of a component should deal with data persistence, data consistency and
fault tolerance issues. This therefore leads to an increased code complexity.

2.3 Data Shared Port Model

In [9], we proposed an additional family of ports named data shared ports (Figure 1).
A data port logically attaches a shared data to a component. It can be of two kinds: a
shares port to give an access to a shared data and an accesses port to enable a component
to access a data exported through a shares port. These ports rely on a transparent data
access model.

The proposed model provides a user view divided in two parts: an internal view
that allows the implementation of a component to access a data and an external view
that allows a component to share a data. In the internal user view, an interface named
AccessPort, is implicitly associated to a data port. This interface is shown in Figure 2.
It is available through accesses ports as well as shares ports. It allows a component
with a shares port to also access the associated data. The AccessPort interface provides
get_pointer and get_size operations to respectively retrieve a pointer to the
shared data and its size. It also provides synchronization primitives, like acquire and
release. The acquire_read primitive sets a lock in a read-only mode so that
multiple readers can simultaneously access the shared data, whereas acquire sets a
lock in an exclusive mode.

In the external view, a component which aims to access a data through an accesses
port should have this port connected to a shares one. Such a connection implies passing
the reference of the shared data from the shares component to the accesses component.
It is assumed that the shared data is previously allocated and associated to the shares
port. That is done through a dedicated interface provided only on the shares port side.

The global user view of data ports allows data to be shared between components
without worrying about the mechanism used to share the data. Such a mechanism can
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be a memory shared between components collocated within a same process, a shared
memory segment for components in two different processes but deployed on the same
host, a DSM for a cluster or a grid data-sharing service like JUXMEM for a grid. The
choice of a particular mechanism is expected to be done by the execution/deployment
framework once execution resources and the placement of components are known. This
choice determines which implementation of data port interfaces is to be used. The ability
to use several implementations does not require to modify the user code of components.

2.4 Implementation

The proposal was projected on CCM [9] and CCA [10]. The projection is based on ex-
tending the specification of these models with the possibility to define and use data
ports. For the particular case of CCM, data ports are defined in an extended IDL3. We
realized a prototype implementation based on classical CCM concepts, where the ex-
tended IDL3 is translatable to classical IDL3 definitions. To manage the shared data,
different mechanisms were tested, like NFS and JUXMEM. This prototype is a proof
of the concepts presented in Section 2.3 and of the facilities offered to the user. More
details about the realized prototype as well as an application example using data ports
can be found in [9].

3 Master-Worker Paradigm

3.1 Presentation

In the MASTER-WORKER programming paradigm, several instances of a same code
(workers) have to be executed simultaneously with different parameter values sent by
a master code. This paradigm is widely used in distributed and embarrassingly parallel
applications like parametric applications. The relevance of this paradigm promoted nu-
merous research activities to propose dedicated software environments. Examples are
SETI@Home [11], XtremWeb [12] and BOINC [13] for Global Computing systems or
DIET [14], NetSolve [15], Ninf-G [16] and Nimrod/G [17] for Network Enabled Server
environments. A common objective of these environments is to lower the time taken by
programmers to design, implement and deploy MASTER-WORKER applications. They
offer transparent management of load balancing and dependability issues to enable ef-
ficient execution on a given computing infrastructure.

However, most of the proposed environments only focus on the MASTER-WORKER

paradigm. Even if some of them provide another paradigm, like task farming in Ninf-
G, they remain very specialized environments. Therefore, they are not sufficient to deal
with multi-paradigm applications like code coupling applications.

3.2 Limitations with Existing Component Models

In opposition to MASTER-WORKER environments, existing component models require
the designer to manage worker components (their number and load balancing.) Con-
sequently, the code complexity is increased. This complexity is further increased since
a designer has also to implement an adequate request transport policy. Such a policy
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can be very complex and can depend on the underlying execution infrastructure. For
instance, the policy is probably not the same when using PC clusters with thousands
of processors or grids with heterogeneous processors and failures. Thus, code re-use is
also limited.

As a result, existing component models do not offer a high level of abstraction to
design those parts of an application that follow the MASTER-WORKER paradigm.

3.3 Collection Overview

In [18], we proposed to improve the support of the MASTER-WORKER paradigm in com-
ponent models. For that, we proposed a high level MASTER-WORKER design model for
which an overview is given in Figure 3. The proposal is based on the concept of col-
lection. A collection is defined as a set of exposed ports, bound to some internal com-
ponent type ports. A collection behaves like a component: it can be connected to other
components and/or collections. However, such a composition is done in an abstract ar-
chitecture description, which represents the user’s view of the application. In this view,
the number of component instances inside the collection as well as the mechanism to be
used to distribute incoming requests are unknown. Ideally at deployment time – when
resources are known – a collection is turned into a concrete assembly. Hence, at run-
time, the collection is made of some internal component instances and of an instance
of a request transport pattern. A pattern represents an implementation of an algorithm
that specifies how to transfer requests from the master to worker components and how
to schedule them. Its implementation is expected to be realized by experts and it may be
based on software components. Figure 3 shows an example of a component based pat-
tern (Round-Robin pattern) and a non component based one which reuses the already
existing environment DIET. It also shows a collection instantiation with n workers and
a Round-Robin pattern instance.

The interest of patterns is to enable the separation of request transport concerns. Sev-
eral request transport algorithms, like Round-Robin, load balancing, request sequenc-
ing or others can be used within an application. Moreover, a pattern can be replaced by
another without any other change in the application. The need of pattern replacement

Fig. 3. Overview of the generic MASTER-WORKER model
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appears when the number of requests or their loads lead to slow down the execution.
In such a situation, the request transport algorithm and/or the number of workers may
be a bottleneck. In [19] we studied how an adaptability framework can be integrated
within the concept of collection to support dynamic modifications of collection’s con-
tent. However, it is out of the scope of this paper.

3.4 Implementation

To illustrate the feasibility of the proposed generic model, we extended three specific
component models: CCM [18], GCM/FRACTAL [18] and CCA [10]. Theses extensions
provide specifications for collection and pattern concepts (description and usage). This
section gives an overview of the CCM extension.

To describe a collection, the IDL3 of CCM was extended and a Collection De-
scription Language (CDL) was defined. The extended IDL3 introduces a keyword
collection to define a collection ports in a similar way as for components. The
CDL allows the description of a collection content. To use a collection in an assembly,
the CCM assembly language was extended with 14 new XML elements. This extension
preserves the CCM composition principle.

To describe a pattern, many solutions are possible. We used for instance the XSLT
language to both describe a pattern architecture and realize its introduction in a collec-
tion. As cited in Section 3.3, a pattern may be based on non component technology.
In this case, its architecture introduces the concept of adapter components. An adapter
component is a proxy component responsible to translate a master (resp. a MASTER-
WORKER environment specific) request to the used MASTER-WORKER environment
specific (resp. worker) request. Thus, the architecture of a pattern as well as a concrete
assembly may be heterogeneous. To support such an assembly, we proposed an exten-
sion of the CCM assembly language. Such an assembly was realized for reusing DIET.

A set of experiments using the CCM extension was done to illustrate the benefits of
the proposal. Results can be found in [20].

4 SPMD Parallel Components

4.1 Presentation

The Single Program Multiple Data (SPMD) paradigm is a paradigm where multiple
instances of a single program are run in parallel, each one in its own process. The
number of instances to use is a parameter of the application and these instances can
communicate thanks to a well founded communication model based on message passing
and collective communications.

This paradigm is well suited for scientific simulations where a meshing of the space
to simulate is done. Each process works on a different set of meshes and the interaction
at the boundaries are handled by message exchange between processes.

In order to couple SPMD codes it must be possible for each code to call methods
implemented by others. The efficient implementation of such M × N method calls
requires that no single process is in charge of the communications between the codes
but rather that each process participate in the communication.
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4.2 Limitations with Existing Component Models

Component models that do not natively support parallel components have no technical
limitation that prevent component implementation to dynamically create new processes
to implement parallel component. However, there is also no support for that. This means
that the code handling the placement of new processes has to be replicated in every
component. This also makes it difficult to obtain an optimal planning as each component
instance does not have the informations about the placement of the processes of other
component instances. Finally, this leads to the centralization of all interaction with a
given component instance on the single process known by the component model which
creates a bottleneck.

4.3 Parallel Component Overview

In [21], we proposed a model to allow the implementation and efficient coupling of
parallel components. The implementation of a parallel component is done as a classical
component implementation. The instantiation of such a component does however lead
to the multiple instantiations of this implementation. The number of instances to create
is a parameter set in the assembly.

Efficient M ×N method calls are allowed by letting each process of the caller (resp.
callee) provide (resp. receive) a part of each parameter and then receive (resp. provide)
a part of the result. The ports used to couple the component are described as classi-
cal use/provide ports in what is called the user component interface description. The
distribution of the data inside each component is a detail of the implementation and is
therefore described in a side XML description that is part of the component implemen-
tation. The fact that ports of parallel component are described as classical use/provide
ports also allows to handle the case where a non parallel component is connected to the
port of a parallel component.

The implementation of the component is based on a component interface description
that is slightly different from the user component interface: the internal component
interface. In this interface, the parameters that have been described as distributed in the
distribution description are replaced by their distributed equivalent data type (a matrix
can for example be replaced by a vector for a (block(1),∗) distribution).

4.4 Implementation

This model has been implemented as a CCM extension. The internal component inter-
face is automatically generated together with a GridCCM glue layer and a manager by
using the user component interface description and the XML data distribution descrip-
tion. The GridCCM glue code is then inserted in the user implemented component when
it is compiled.

When the parallel component is instantiated, it is in fact the manager that is instan-
tiated. This manager is then responsible for the multiple instantiations of the user im-
plementation according to the parameters set in the assembly. Similarly, when a client
gets a handle on a parallel component, it is in fact a handle on the manager. When two
parallel components are connected, their manager transparently exchange information
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Fig. 4. Behavior of a method call in GridCCM

in order to connect the GridCCM layers of both components according to the redistri-
bution that must be done.

When the user implementation calls a method on one of its use ports, the behavior
is the one described in Figure 4. The call is intercepted by the GridCCM layer of the
caller component that sends the data to the GridCCM layers of the callee component
according to the data redistribution schema. Then this callee GridCCM layer calls the
method on the callee user implementation. The same process is repeated for the return
of the result of the method call.

5 Collective Communications

5.1 Presentation

As it has been said in the previous section, the most common interaction paradigm
between processes of a SPMD parallel code is the use of message passing. Two kinds
of operations exist: point to point operations that involve two processes (a sender and
a receiver) and collective communication operations that involve a group of processes.
As there is no assumption made on the number of processes with this latter kind of
operations, it is well suited to SPMD codes where the number of processes is not known
when the code is written.

The simplest collective operation is the barrier synchronization operation where
each process is blocked in the call until all processes have called it. Other collective
operations involve an exchange of data. For example in the allgather operation, each
process receives a copy of the data of all processes in the group as shown in Figure 5
and in the broadcast operation, a specific process designed as the root sends its data to
all the other processes in the group as shown in Figure 6.

Efficient implementation of these operations is greatly dependant on the resources on
which the processes are executed and is still an active research domain. Effective imple-
mentation on distributed resources such as clusters requires communications to be done
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Fig. 5. The allgather collective operation Fig. 6. The broadcast collective operation

in parallel as much as possible to take part of all communication links. There should
therefore be no central process involved in all communications. In the case of grids, the
different properties (namely bandwidth and latency) between intercluster links and the
backbone link interconnecting clusters must also be taken into account.

5.2 Limitations with Existing Component Models

The next step after the introduction of SPMD parallel components as described in the
previous section is to let the replicated entities in parallel components be implemented
with components. In this case, communications between these instances has to be de-
scribed by ports. While it is quite easy to reuse existing communication paradigms such
as events or remote method call to provide a semantic similar to point to point message
passing, there is no straightforward solution for the use of collective communication
operations.

5.3 Collective Communications Model

In [22], we proposed a model to use collective communication operations between
components. A component that use collective communication has to describe a use
port with a dedicated CollComm interface. This interface is very similar to the MPI
interface in order to ease the transition from MPI to component collective communi-
cation except for the groups that are not described by a parameter for each call. In-
stead, groups are described in the assembly, they are created by the instantiation of a
CollCommProvider component that provides the CollComm interface. The com-
ponent instances whose use ports are connected to the provide port of this instance are
part of the group. A component instance can be part of more than one group if it declares
several use ports of the CollComm interface as shown in Figure 7.

5.4 Implementation

Collective communications have been implemented as a CCM extension. As a classi-
cal centralized implementation of the CollCommProvider component would lead
to bottlenecks, the component implementation model has been extended to allow ef-
ficient implementations. Some concepts have been added: AnyToAny connections and
replicating implementations.
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Fig. 7. Collective communication usage in
the assembly

Fig. 8. A replicating component

A AnyToAny connection provides a semantic similar to use/provide connections but
with any number of component participating. Each component has to provide the inter-
face of the connection, in return it can call an operation of the interface on any compo-
nent participating in the connection.

A replicating component implementation is defined by a replicate component, a repli-
cation level (process,node, cluster,grid ...), internalAnyToAnyconnectionsandamapping
of the ports of the component to ports of the replicate as shown in Figure 8. At runtime,
the component is replaced by a set of instances of the replicate. The number of instances
is determined by the replication level and the usage of the component. For example if the
replication level is set to process and that components connected to a provides port of the
component are spread amongst three different processes, then three instances of the repli-
cate will be created, one on each process where the component is used. Internal AnyToAny
connections are used to connect all the replicate instances and the connections to the ports
of the component are replaced by connection to the mapped ports.

6 Conclusion

Software component appears to be a very promising concept to be a programming en-
tity. It allows to improve productivity, to reduce complexity and to hide implementation
details. This paper showed how four important abstractions for scientific applications
can fit well into component models without impacting performance. These four abstrac-
tions impacted the various levels of a component model: data sharing can be provided
through a new kind of port while parallel components require a new kind of compo-
nent; the master-worker paradigm and the collective communications mainly involve
the assembly level.

However, this paper does not claim to be exhaustive. In particular, this paper does
not deal with abstractions that required to modify the kind of the assembly level such
as workflow [23] or skeletons [24].
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Future researches can be divided into two branches. First, most of the abstractions re-
quires parameter selection to perfectly fit to the actual resources. Hence, strategies and
algorithms are needed to achieve automatically selection. This is particular very im-
portant for volatile resources so as to have self-* implementations of the abstractions.
Second, the implementation of all these abstractions into an efficient and coherent run-
time is challenging. Moreover, new abstractions may appear. Thus, we need a flexible
mechanism. A promising technique is to use model transformation to transform pro-
gramming abstractions to execution entities.
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Abstract. We discuss the usefulness of group-based abstractions for
the modeling of distributed applications. We suggest that groups can be
considered at a higher level of abstraction, and group concepts can be
supported as distributed programming constructs in high-level models
and languages. We illustrate this approach by discussing GroupLog, an
abstract model that uses groups to specify a structured space of interac-
tions, and the collective behavior of cooperating group members.

1 Introduction

Distributed system applications and systems, as illustrated by the Web, P2P,
Mobile, and the Grid, now exhibit more tightly-coupled interactions, new forms
of dynamic behavior, and varying scale in terms of their components. Group
models allow their structuring in terms of well-identified collections of au-
tonomous entities. Groups help to manage the logical characteristics that are
shared by the group members, such as common computational or commu-
nication behaviors, common goals in multi-agent systems, access to common
resources and information, cooperation to ensure service functionalities under
specific performance, quality of service, or cost constraints. Group models also
offer potentially scalable solutions, by allowing hierarchies, and exploiting global
and local coordination and communication strategies.

Group based communication has been a topic of intense investigation in the
past decades, addressing issues such as efficient multicast protocols in LANs
and WANs, atomicity and causality in the semantics of message delivery, consis-
tency of distributed process views, transparent fault-tolerance and replication,
and management of dynamic process groups [16,13,9]. As a result, significant
abstractions have been proposed and consolidated in distributed group program-
ming libraries and platforms. As a significant example, among others, we note
the influence of abstractions such as virtual synchrony [8,2,17], and their integra-
tion into programming libraries and toolkits [3]. More recently, there have been
efforts to support flexible adaptation of group concepts to different applications
and environments, for instance exercising stronger or weaker forms of consis-
tency, different semantics for message delivery, efficient handling of large-scale
groups, or ad-hoc groups in mobile environments [10,23,9,17,21].

Such long-term research had a significant influence on a diversity of ap-
plication domains requiring online collaboration between distributed entities
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(users or software agents). Examples can be drawn from multiple fields, namely
for computer supported cooperative work (CSCW), groupware, multi-agent sys-
tems, and peer-to-peer systems. A more recent trend, related to online interaction
and information sharing in social networks, is increasing the pressure to improve
the computational support for group abstractions.

In summary, groups provide an adequate approach to handle scalability, mo-
bility and dynamism in a distributed system. Although there have been several
attempts to exploit the above dimensions at different contexts and with distinct
levels of concern, many aspects still need improvement towards a more effective
use of groups as an organisation and cooperation paradigm. In particular, we
claim there is the need and opportunity to raise the level of abstractions pro-
vided by group-based models, in order to address the high-level specification of
applications or the organization of services in a large-scale distributed computing
system.

In this paper, we discuss, from a global perspective, the importance of abstrac-
tions and models (section 2), followed by a review of the relevance of group-based
abstractions as an approach to application distribution and organization (section
3). We present a brief outline of the GroupLog approach, its implementation and
applications. The paper concludes by discussing open issues and future research
(section 5).

2 Abstraction and Models

The importance of adequate abstractions is well recognized, as well as the dif-
ficulty to achieve an appropriate compromise between the transparency level
provided by each abstraction and its efficient implementation under current
technology constraints. Concerning distributed computing abstractions, there is
now a significant body of abstractions that address several critical dimensions,
for example related to time, communication, failure, composition of services,
decomposition and distribution of computation and data, coordination of dis-
tributed processes, and more recently service and resource abstractions. Also, for
some application domains, specific abstractions were incorporated into support
problem-solving environments.

Emerging application and computing enviornments have raised new chal-
lenges and open issues. For example, how to design large-scale applications and
systems with hundreds or thousands of distributed entities, concerning their
dynamic organizations and problem-solving approaches. Also, how to support
novel forms of collaboration, with a multiplicity of observers and controllers,
for example in virtual organizations or social networks, with highly dynamic
behaviors.

An important concern is to try to understand how such issues are better
supported by high-level programming abstractions and models, and how these
models can be mapped into intermediate frameworks and lower level program-
ming interfaces.
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3 Group-Based Abstractions

We briefly review the main dimensions of group-based abstractions and their
relevance to support the structuring of distributed applications. See [9,13] for
compreehensive surveys.

3.1 Group Abstractions

A group is a collection of cooperating entities, addressed by a unique and global
name, as a single entity in the system. In a general model, a group can have a hi-
erarchical structure, including elementary entitities and composite entities (that
is, groups), as members. In dynamic groups, members can enter and leave during
the group lifetime. Group models may provide support for the group members
to observe common and consistent views of the group history. The group history
is defined by an agreed ordering on the set of events related to modifications of
the group membership, and to the communication events within the group and
with its environment. Depending on the applications, there are different require-
ments for the consistency degrees for the group views, ranging from the strong
guarantees provided by virtual synchrony models, to their absence. Different ap-
plication scenarios, eg with mobility or large-scale, require distinct semantics for
the views consistency, as well as the ordering of message delivery to the group
members. Several platforms and programming APIs [3,1,23] support a flexible
composition of the group communication protocols, allowing the application to
select the appropriate semantics.

As mentioned, dynamic process groups have been the subject of a long-term
research and a compreheensive survey is out of the scope of this paper. Group
models have been exploited to support applications and services in distributed
systems, by relying on the cooperation among group members to ensure improved
reliability, fault-tolerance and performance through replication, parallelism or
decomposition of work, internal to the group [17,9].

We believe there are still aspects that remain to be explored regarding the
use of groups as an organisation paradigm at a higher level of abstraction, to
exploit scale, dynamism, shared knowledge, and information, and cooperation.

3.2 Groups as Distributed Programming Abstractions

The group concept has been intensively explored at the operating system and
the middleware levels [9], and has been used for application development, but
comparatively fewer proposals have attempted its integration into high-level pro-
gramming frameworks [14,18,22,4,6,5,11].

Groups can be considered at a higher level of abstraction, and group concepts
can be supported as distributed programming constructs in high-level models
and languages. Group abstractions can be defined neutral to any specific pro-
gramming platform or system architecture, in order to allow their adaptation
to a diversity of contexts. Multiple instantiations of such high-level abstractions
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can then be defined, and their semantics adapted according to the program-
ming language framework, to the system architecture characteristics, and to the
application scenarios.

In a general group model, clients may address the group as an atomic entity
in a transparent way, by addressing a well-defined group interface corresponding
to a set of entry-points. The group’s internal behavior can be hidden from the
outside. For example, the group can support a reactive behavior, on reaction to
external invocations of its interface, or it can have a pro-active, goal-oriented
behavior. The clear separation between the group interface and the internal
behavior allows to exploit local policies, internal to a group, in a transparent
way. The internal organization of the group in terms of multiple member enti-
ties allows to exploit cooperation, shared state, or to manage components with
common properties.

Group specification, identification and discovery. In order to develop a flexible
framework to exploit the diversity of the dimensions associated to group models,
we consider two levels of concern.

Group specification. At this level, abstractions are defined for the organization
of distributed systems and applications in terms of groups of entities. In order to
allow distinct instantiations, each elementary entity can have different semantic
interpretations, depending on the considered active computational entities, such
as processes, objects, agents, or services. The model allows the specification of
a group as a structuring unit, with a public interface, that can be exposed as a
set of methods, for example in a object-oriented context, or as a set of ports, in
a service-oriented context. The model also defines primitives for dynamic group
management, communication among the group members, and a semantics for the
consistency of views observed by the group members. Different forms of com-
munication must be supported, in order to capture the most commons patterns
of interaction occurring in applications. In particular, the group members must
have transparent access to a form of group shared state.

Group identification and discovery. At this level, strategies are defined for the
dynamic identification and discovery of groups in a distributed environment.

In a first step, we identify the relevant attributes that guide dynamic group
identification and formation.

As well-identified patterns of behavior emerge in a distributed environment, or
common goals are dynamically identified by multiple cooperating agents, groups
can be automatically generated by a system, in response to the detection of
relevant events. The motivation behind this perspective is to provide a mech-
anism to help capture and identify common attributes in distributed and dy-
namically evolving entities. The identification can be guided by the definition
of the attributes that represent the common profiles of the members of each
type of group. The relevant groups can be defined by an initial list of distinctive
attributes, which are then used by a group discovery mechanism to detect poten-
tial candidate members, and to automatically aggregate them into the identified
groups.
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In this second step, we consider global coordination strategies, by creating or
eliminating groups and dynamically managing their membership. Groups may be
created or destroyed, and their lifetime managed, depending on the information
kept and updated in information repositories. It is possible to consider short-term
policies, based on information on local repositories, and more global long-term
policies, based on a higher-level interpretation of aggregated information.

This can be useful to dynamically form ad-hoc groups which may be due
to a spontaneous definition of communities of interests, like the ones formed
by geographical proximity of mobile users. It also enables to exploit a dynamic
management of the cooperation among distributed entities, in reaching common
goals, or in sharing common knowledge and functionalities. This approach is
exploited in the MAGO system (Section 4) to identify common user interests
and profiles in a dynamic environment supporting collaborative mobile users.

The above strategies can also be useful to guide strategies for autonomic
management of complex distributed systems and applications. For example, to
support intelligent strategies for optimization of resource management depending
on cost and resource usage characteristics. In related work, we have exploited
this idea for the coordination of utility managed multi-agent groups [7]. In this
system, in a first stage multiple selfish agents each try to optimize their local
utilities. Then, in a second stage, groups are dynamically formed by agents trying
to identify partners which enable the agents to achieve a higher local utility
through collaboration among group peers.

Similar concerns appear in related works (see [21] for a survey of ongoing
research). For example, Abramson and Mittu [21] , have identified a number of
issues for managing agent groups in large scale distributed open environments:
dynamic group formation, role allocation, synchronisation of beliefs, communi-
cation selectivity, information sharing.

4 The GroupLog Approach

As an illustration of the above mentioned approach, a brief presentation of Grou-
pLog is given in the following. Then three experiments are described, as an
application of the approach in distinct contexts.

4.1 Overview

The GroupLog approach is based on the following main principles:

– Two main program structuring entities are defined: elementary entities, and
groups, as collective entities. These concepts capture respectively, the com-
putation and the collective coordination aspects, and are defined in an or-
thogonal way.

– An elementary entity represents the basic computational aspect that is en-
capsulated within an autonomous program unit. It has a well-defined public
interface that hides its internal behavior. Different interpretations are al-
lowed for an elementary entity depending on the programming framework,
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Fig. 1. GroupLog entities

as a process, an object, an agent, or a service, its interface entry points being
interpreted as a set of methods, predicates or ports.

– An entity exhibits a well-defined behavior, depending on its current state
and on the invoked interface entry point. The GroupLog approach is neutral
concerning the semantics defining the internal behavior of each elementary
entity. This definition is left to each specific instantiation of the model that
must specify the behavior concerning the creation and elimination of ele-
mentary entities, as well as the actions in response to the invocation of the
interface. This allows interpretations of elementary entities as reactive ele-
ments, or as agents with pro-active behavior and internal concurrency.

– Groups are considered as programming units supporting an organization
and cooperation paradigm, and may be structured forming hierarchies. A
group has a well-defined public interface for interaction with its environ-
ment, that is defined in the same way as the interface of an elementary
entity. Thus groups and elementary entities are not distinguished from their
outside. Separation between the group interface and its internal behavior
allows implementing local policies within a group, in a transparent way.

– Both elementary and collective entities can have multiple instances that can
be created and destroyed dynamically. Group membership changes dynam-
ically, as new entities can enter and leave the groups. The group internal
behavior is defined by the collective behaviors of its members. A group hides
its membership to its environment but allows the internal redirection of com-
munication through the group interface. An entity can belong to one or more
groups, so it can inspect the list of its current groups and their membership.

– Groups encapsulate confined interaction spaces, and allow interactions
among group members to be more easily managed due to smaller scales,
thus enabling more appropriate coordination paradigms. In particular, in-
teractions within the group rely on different forms of communication that
can be combined: point-to-point, multicast, and access to a shared group
space. The latter is represented as a multi–set of tuples and is accessed by
primitives based on the Linda coordination model[12]. GroupLog integrates



456 J.C. Cunha, C.P. Morgado, and J.F. Custódio
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the above types of interactions in the context of a dynamic group member-
ship, in order to guarantee the consistency of the views that are observed by
the group members, according to a virtual synchrony model [8].

4.2 Instances of the GroupLog Model

A GroupLog system is a collection of distributed entities, that communicate
through well-defined interfaces, and join groups to participate in collective ac-
tivities, and having access to shared spaces within each group.

Distinct instances of the model have been defined and implemented at distinct
abstraction levels:

– A logic-based instance of GroupLog [4,6,5] exploits the expressiveness and
declarativeness of logic programming. It finds applications in areas where
there is the need of an inference capability modeled by logic based agents, and
a multi-agent coordination model. GroupLog in logic is defined at two levels:
L1, defines an agent as a logic entity with well-defined interface, knowledge
and behavior, and L2 defines groups of agents. The implementation relies
on a PVM-Prolog layer that we have implemented for group management,
communication and shared space management.

– An object-oriented instance of GroupLog, JgroupSpace [15], defines a Java
API for group management, message and event based communication, and
access to a group shared tuple space. It relies on a distributed implementation
on top of JGroups[3,1].

– A high-level model for collaborative interactive applications, MAGO [19,20],
exploits the GroupLog approach to support the modeling of distributed ap-
plications where multiple entities exhibit different forms of interaction and
mobility. Collaboration and sharing of information are supported in the con-
text of dynamically formed groups as illustrated in Figure 3. The MAGO
system supports the concept of implicit groups, for the automatic identi-
fication and creation of groups, related to the dynamic detection of users’
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common profiles and interests. MAGO is implemented as a layered architec-
ture (Figure 4), with an interface to an external information system, and
relies on JGroupSpace as the supporting platform.

5 Conclusions and Future Work

Emerging large-scale and dynamic distributed applications and computing en-
vironments pose a diversity of challenges. Namely they require hierarchical and
dynamic organizations, confinement of local and global policies, more flexible
and efficient forms of communication and information sharing, varying scale and
locality (physical and logical), distinct semantics for interaction with distinct
consistency guarantee, and knowledge-based approaches.

From our experiments with GroupLog, we conclude it is desirable to define
group concepts at a high-level of abstraction, and then to map and adapt them to
specific programming language frameworks and application scenarios. In order to
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provide a flexible framework to ease such mappings, we have identified two levels
of concern, one related to the specification of the group models, and the other
related to the mechanisms and strategies for group identication and manage-
ment. Such framework should allow distinct semantics for the group concepts,
in order to enable, for example, stronger or weaker semantics for the consis-
tency of the group views. While several group communication platforms already
provide significant support for example concerning the composition of distinct
group protocols, there is still the need to provide increased flexibility to adapt
to distinct application scenarios.

In our future work, we consider the evolution of GroupLog abstractions to
model large-scale distributed Grid applications, by exploiting decentralized co-
ordination strategies and concepts emerging from social networks, to increase
the efficiency of coordinating large groups, and to provide high-level semantic
models for group behavior [21].
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