
Evolution Prospection

Luı́s Moniz Pereira and Han The Anh

Abstract. This work concerns the problem of modelling evolving prospective agent
systems. Inasmuch a prospective agent [1] looks ahead a number of steps into the
future, it is confronted with the problem of having several different possible courses
of evolution, and therefore needs to be able to prefer amongst them to decide the
best to follow as seen from its present state. First it needs a priori preferences for
the generation of likely courses of evolution. Subsequently, this being one main
contribution of this paper, based on the historical information as well as on a mix-
ture of quantitative and qualitative a posteriori evaluation of its possible evolutions,
we equip our agent with so-called evolution-level preferences mechanism, involv-
ing three distinct types of commitment. In addition, one other main contribution,
to enable such a prospective agent to evolve, we provide a way for modelling its
evolving knowledge base, including environment and course of evolution triggering
of all active goals (desires), context-sensitive preferences and integrity constraints.
We exhibit several examples to illustrate the proposed concepts.

1 Introduction

Prospective agent systems [1] address the issue of how to allow evolving agents
to be able to look ahead, prospectively, into their hypothetical futures, in order to
determine the best courses of evolution from their own present, and thence to pre-
fer amongst those futures. In such systems, a priori and a posteriori preferences,

Luı́s Moniz Pereira
Centro de Inteligência Artificial (CENTRIA), Universidade Nova de Lisboa,
2829-516 Caparica, Portugal
e-mail: lmp@di.fct.unl.pt

Han The Anh
Centro de Inteligência Artificial (CENTRIA), Universidade Nova de Lisboa,
2829-516 Caparica, Portugal
e-mail: h.anh@fct.unl.pt

K. Nakamatsu et al. (Eds.): New Advan. in Intel. Decision Techno., SCI 199, pp. 51–63.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

lmp@di.fct.unl.pt
h.anh@fct.unl.pt


52 L.M. Pereira and H.T. Anh

embedded in the knowledge representation theory, are used for preferring amongst
hypothetical futures, or scenarios. The a priori ones are employed to produce the
most interesting or relevant conjectures about possible future states, while the a
posteriori ones allow the agent to actually make a choice based on the imagined
consequences in each scenario. ACORDA [1] is a prospective logic system that im-
plements these features. It does so by generating scenarios, on the basis only of those
preferred abductions able to satisfy agents’ goals, and further selecting scenarios on
the basis of the immediate side-effects such abductions have within them.

However, the above proposed preferences have only local influence, i.e. for ex-
ample, immediate a posteriori preferences are only used to evaluate the one-state-far
consequences of a single choice. They are not appropriate when evolving prospec-
tive agents want to look ahead a number of steps into the future to determine which
decision to make from any state of their evolution. Such agents need to be able to
evaluate further consequences of their decisions, i.e. the consequences of the hypo-
thetical choices abduced to satisfy their goals. Based on the historical information as
well as quantitative and qualitative a posteriori evaluation of its possible evolutions,
we equip an agent with so-called evolution-level preferences mechanism.

For evolving agents, their knowledge base evolves to adapt to the outside chang-
ing environment. At each state, agents have a set of goals and desires to satisfy.
They also have to be able to update themselves with new information such as new
events, new rules or even change their preferences. To enable a prospective agent
to evolve, we provide a way for modelling its evolving knowledge base, including
the environment and course of evolution triggering of all active goals (desires), of
context-sensitive preferences and of integrity constraints. To further achieve this,
immediate a posteriori preferences are insufficient.

After deciding on which action to take, agents evolve by committing to that
action. Different decision commitments can affect the simulation of the future in
different ways. There are actions that, if committed to, their consequences are nev-
ermore defeated and thus permanently affect the prospective future. There are also
actions that do not have any inescapable influence on the future, i.e. committing
to them does not permanently change the knowledge base, like the previously de-
scribed ”hard” commitments – they are ”ongoing”. They may be taken into account
when, in some following future state, the agents need to consider some evolution-
level preferences trace. Other action commitments are ”temporary”, i.e. merely
momentary.

In addition, we specifically consider so-called inevitable actions that belong to
every possible evolution. By hard committing to them as soon as possible, the agent
can activate preferences that rule out alternative evolutions that are ipso facto made
less relevant.

The rest of the paper is organized as follows. Section 2 discusses prospective
logic programs, describing the constructs involved in their design and implemen-
tation. Section 3 describes evolving prospective agents, including single-step and
multiple-step look-ahead, and exhibits several examples for illustration. The paper
ends with conclusions and directions for the future.



Evolution Prospection 53

2 Prospective Logic Programming

Prospective logic programming enables an evolving program to look ahead prospec-
tively into its possible future states, which may include rule updates, and to pre-
fer among them to satisfy goals [1]. This paradigm is particularly beneficial to the
agents community, since it can be used to predict an agent’s future by employing
the methodologies from abductive logic programming [2, 4] in order to synthesize,
prefer and maintain abductive hypotheses. We next describe constructs involved in
our design and implementation of prospective logic agents and their preferred and
partly committed but still open evolution, on top of Abdual [3] - a XSB-Prolog im-
plemented system which allows computing abductive solutions for a given query.

2.1 Language

Let L be a first order language. A domain literal in L is a domain atom A or its
default negation not A. The latter is used to express that the atom is false by default
(Closed World Assumption). A domain rule in L is a rule of the form:

A← L1, . . . ,Lt (t ≥ 0)

where A is a domain atom and L1, . . . ,Lt are domain literals. An integrity constraint
in L is a rule with an empty head. A (logic) program P over L is a set of domain
rules and integrity constraints, standing for all their ground instances.

2.2 Preferring Abducibles

Every program P is associated with a set of abducibles A ⊆L . These, and their
default negations, can be seen as hypotheses that provide hypothetical solutions or
possible explanations to given queries. Abducibles can figure only in the body of
program rules.

An abducible A can be assumed only if it is a considered one, i.e. if it is expected
in the given situation, and, moreover, there is no expectation to the contrary [6].

consider(A)← expect(A),not expect not(A),A

The rules about expectations are domain-specific knowledge contained in the theory
of the program, and effectively constrain the hypotheses available in a situation.
Handling preferences over abductive logic programs has several advantages, and
allows for easier and more concise translation into normal logic programs (NLP)
than those prescribed by more general and complex rule preference frameworks. The
advantages of so proceeding stem largely from avoiding combinatory explosions of
abductive solutions, by filtering irrelevant as well as less preferred abducibles [5].

To express preference criteria among abducibles, we envisage an extended lan-
guage L �. A preference atom in L � is of the form a � b, where a and b are



54 L.M. Pereira and H.T. Anh

abducibles. It means that if b is assumed (i.e. abduced), then a � b forces a to be
assumed too (b can only be abduced if a is as well). A preference rule in L � is of
the form: a�b← L1, ...,Lt (t ≥ 0) , where L1, ...,Lt are domain literals over L �. A
priori preferences are used to produce the most interesting or relevant conjectures
about possible future states. They are taken into account when generating possible
scenarios (abductive solutions), which will subsequently be preferred amongst each
other a posteriori.

2.3 A Posteriori Preferences

Having computed possible scenarios, represented by abductive solutions, more fa-
vorable scenarios can be preferred a posteriori. Typically, a posteriori preferences
are performed by evaluating consequences of abducibles in abductive solutions. An
a posteriori preference has the form:

Ai� A j← holds given(Li,Ai), holds given(Lj,A j)

where Ai, A j are abductive solutions and Li, Lj are domain literals. This means that
Ai is preferred to A j a posteriori if Li and Lj are true as the side-effects of abductive
solutions Ai and A j, respectively, without any further abduction. Optionally, in the
body of the preference rule there can be any Prolog predicate used to quantitatively
compare the consequences of the two abductive solutions.

2.4 Active Goals and Context Sensitive Integrity Constraints

In each cycle of its evolution the agent has a set of active goals or desires. We intro-
duce the on observe/1 predicate, which we consider as representing active goals or
desires that, once triggered by the observations figuring in its rule bodies, cause the
agent to attempt their satisfaction by launching the queries standing for them. The
rule for an active goal AG is of the form:

on observe(AG)← L1, ...,Lt (t ≥ 0)

where L1,...,Lt are domain literals. During evolution, an active goal may be triggered
by some events, previous commitments or some history-related information. We
differentiate events that have temporary influence, i.e. affect only the current cycle
and thus are entered into its knowledge base as facts and removed when the influence
is finished, from ones that have permanent influence, i.e. affect every cycle issuing
from the current one and thus are entered to the knowledge base as facts and stay
there forever. Respectively, we provide two predicates, event/1 and asserts/1.

When starting a cycle, the agent collects its active goals by finding all the
on observe(AG) that hold under the initial theory without performing any abduc-
tion, then finds abductive solutions for their conjunction.



Evolution Prospection 55

Context sensitive integrity constraints

When finding abductive solutions, all integrity constraints in the knowledge base
must be satisfied. However, when considering an evolving agent, there is a vital
need to be able to code integrity constraints dependent on time points and exter-
nal changing environment. A context sensitive integrity constraint with the name
icName and a non-empty context is coded by using an active goal as follows:

on observe(not icName)← L1, ...,Ln (t ≥ 0)

icName← icBody

where L1,...,Lt are domain literals which represent the triggering context of the in-
tegrity constraint. Whenever the context is true, the active goal not icName must
be satisfied, which implies that the integrity constraint ← icBody must be satis-
fied. When the context is empty (t = 0) the integrity constraint becomes a usual one
which always must be satisfied.

2.5 Levels of Commitment

Each prospective cycle is completed by registering any surviving abductive solu-
tions (represented by their abducibles) into the knowledge base and moving to the
next cycle of evolution. Committing to each alternative abductive solution will cre-
ate a new branch of the so-called evolution tree. The history of the evolution is kept
by setting a time stamp for the abducibles that the agent commits to in each cycle.

As a program is evolving, the commitment can affect the future in different ways.
Based on their influence, we classify commitments in three categories. Firstly, there
are abducibles, representing actions or other options that, after committed to in a
state, will not be subsequently defeated, i.e. a commitment to reverse the committed
to actions is not allowed. This kind of commitment inscribes a permanent conse-
quence on the future and therefore plays the role of a fact in the knowledge base
for all future evolution states issuing from that state. Commitments of this sort are
called hard. In addition, there are commitments that, when committed to in a state,
can nevertheless be defeated by committing to their opposite abducibles at some
future state, but will keep on affecting the future (by inertia) up until then. Com-
mitments of this kind are called ongoing. Lastly, the weakest kind of commitments
are those immediately withdrawn in the following state and so have direct influence
only on the transition from the current state. They can have indirect influence when
in some future state the history of the evolution needs to be taken into account. We
call this kind temporary.

3 Evolving Prospective Agents

Informally, an evolution of a prospective agent is a sequence of time stamped sets of
commitments at each cycle of the evolution. The agent self-commits to abducibles,



56 L.M. Pereira and H.T. Anh

which are used to code available and preferred decision choices on all manner of
options. Depending on the capabilities and need, at each time point in the evolution
the agent acts just to satisfy the active goals and integrity constraints at hand, or
needs to look ahead a number of steps into the future in order to satisfy its long-
term and context triggered goals and constraints in a prospective way, taking into
account its possible futures and evolution-sensitive reachable decision choices.

3.1 Single-Step Prospective Agent

Each cycle ends with the commitment of the agent to an abductive solution. Alter-
native commitments can be explored by searching the space of evolutions.

Example 1. Suppose agent John is going to buy an air ticket for traveling. He has
two choices, either buying a saver or a flexible ticket. He knows the flexible one
is expensive, but, if he has money, he does not wish a saver ticket because, if he
bought it, he would not be able to change or return it in any circumstance. The saver
ticket is one that, when committed to, the reverse action of returning is not allowed
(a hard commitment thus). However, if John does not have much money, he is not
expected to buy something expensive. Later, waiting for the flight, John finds out
that his mother is ill. He wants to stay at home to take care of her, thus needing to
cancel the ticket. This scenario can be coded as in Figure 1.

Line 1 is the declaration of program abducibles, and of which of these are ongo-
ing and hard commitments. The abducibles in the abds/1 predicate not declared as
ongoing or hard are by default temporary. Line 2 says there is unconditional expec-
tation for each abducible declared.

When John wants to travel, specified by entering event(travel), i.e. the fact
travel is temporarily added, which, in turn, triggers the only active goal ticket.
empty pocket is false and have money is true, hence there is expectation to the con-
trary of saver ticket but not of f lexible ticket (lines 5-6). Thus, there is only one
abductive solution: [ f lexible ticket]. The cycle ends by committing to this abduc-
tive solution. Since f lexible ticket is an ongoing commitment, it will be added in
every abductive solution of the following cycles until John knows that his mother
is ill, entering event(mother ill). The only active goal stay home now needs to be
satisfied.

In addition, the event mother being ill triggers saver ticket ic and
cancel ticket ic, context-sensitive integrity constraints in line 10. There is no
expectation to the contrary of cancel ticket and lose money, and the ongoing
commitment f lexible ticket is defeated, there being now three minimal abductive
solutions: [cancel ticket,not f lexible ticket], [lose money,not f lexible ticket],
[lose money,not cancel ticket].

In the next stage, a posteriori preferences are taken into account. Considering
the only a posteriori preference in line 11, the two abductive solutions that include
lose money are ruled out since they lead to the consequence lose money, which is
less preferred than the one that leads to cancel ticket. In short, agent John bought a



Evolution Prospection 57

1. abds([saver_ticket/0, flexible_ticket/0,
cancel_ticket/0, lose_money/0]).

ongoing_commitment([flexible_ticket]).
hard_commitment([saver_ticket]).

2. expect(saver_ticket). expect(flexible_ticket).
expect(cancel_ticket). expect(lose_money).

3. on_observe(ticket) <- travel.
ticket <- saver_ticket. ticket <- flexible_ticket.

4. expensive(flexible_ticket).
5. expect_not(saver_ticket) <- have_money.
6. expect_not(X) <- empty_pocket, expensive(X).
7. empty_pocket <- buy_new_car.

have_money <- not empty_pocket.
8. on_observe(stay_home) <- mother_ill.
9. stay_home <- cancel_ticket. stay_home <- lose_money.
10.change_ticket <- mother_ill.

on_observe(not saver_ticket_ic) <- change_ticket.
on_observe(not cancel_ticket_ic) <- change_ticket.
saver_ticket_ic <- saver_ticket, cancel_ticket.
cancel_ticket_ic <- cancel_ticket, ticket.

11.Ai << Aj <- holds_given(cancel_ticket, Ai),
holds_given(lose_money, Aj).

Fig. 1 Ticket example

flexible ticket to travel, but later he can cancel the ticket to stay at home to take care
of his mother because the flexible ticket is a defeasible ongoing commitment.

Next consider the same initial situation but suppose John just bought a new car,
by entering asserts(buy new car). empty pocket becomes true and have money be-
comes false. Hence there is expectation to the contrary for f lexible ticket (line 7)
and no expectation to the contrary for saver ticket (line 6). Therefore, the only
abductive solution is [saver ticket]. Since saver ticket is a hard commitment, it
is not defeated and later on, during evolution, it will always be added to every
abductive solution. Even when the mother is ill, saver ticket ic will prevent hav-
ing cancel ticket (line 10). Thus, the only abductive solution is the one including
lose money.

In short, John made a hard commitment by buying a saver ticket, and later on,
when his mother is ill, he must relinquish the ticket and lose money to stay at home.

Inevitable Actions

There may be abducibles that belong to every initial abductive solution (before con-
sidering a posteriori preferences). These abducibles are called inevitable and will be
committed to whatever the final abductive solution is. Realizing that actually com-
mitting to some abducible changes the knowledge base, and may trigger preferences
that subsequently might help to rule out some irrelevant abductive solutions (or even
to provide the final decision for the current active goals), our agent is equipped with



58 L.M. Pereira and H.T. Anh

the ability to detect the inevitable abducibles, committing to them. Doing the in-
evitable first can lead to further inevitables.

Example 2. Suppose agent John wants to take some money. He can go to one of
three banks: a, b or c. All the banks are at the same distance from his place. In
addition, John needs to find a book for his project work. The only choice for him
is to go to the library. At first, John cannot decide which bank to go to. After a
moment, he realizes that in any case he must go to the library, so does it first.
Arrived there he notices that bank c is now the nearest compared to the others.
So he then decides to go to c. This scenario can be coded with the program in
Figure 2.

1. abds([lib/0, a/0, b/0, c/0]).
2. expect(lib). expect(a). expect(b). expect(c).
3. on_observe(take_money).

take_money <- a, not b, not c.
take_money <- b, not a, not c.
take_money <- c, not b, not a.

4. on_observe(find_book). find_book <- lib.
5. Ai << Aj <- dif_distance, hold(dist(Di), Ai),

hold(dist(Dj), Aj), Di < Dj.
6. dist(10) <- prolog(current_position(lib)), a.

dist(5) <- prolog(current_position(lib)), b.
dist(0) <- prolog(current_position(lib)), c.
beginProlog.

7. dif_distance :- current_position(lib).
8. go_to(lib) :- commit_to(lib).

current_position(C) :- go_to(C).
endProlog.

Fig. 2 Inevitable action example

There are two active goals take money and f ind book, and hence, three strict ab-
ductive solutions (i.e. consider only positive abducibles) that satisfy them: [a, lib],
[b, lib], [c, lib]. Since the abducible lib belongs to all abductive solutions, it is an
inevitable one. Thus, the actual commitment to lib, i.e. the action of going to the
library, is performed. This changes John’s current position (line 8). John’s new po-
sition is at different distances from the banks (line 7) which triggers the a posteriori
preference in line 5. This preference rules out the abductive solutions including a
and b since they lead to the consequences of having further distances in compari-
son with the one including c (line 6). In short, from this example we can see that
actually committing to some inevitable action may help to reach a decision for a
problem that could not determinedly and readily be solved without doing that first,
for there were three equal options competing.



Evolution Prospection 59

3.2 Multiple-Step Prospective Agent

While looking ahead a number of steps into the future, the agent is confronted with
the problem of having several different possible courses of evolution. It needs to be
able to prefer amongst them to determine the best courses from its present state (and
any state in general). The (local) preferences, such as the a priori and a posteriori
ones presented above, are no longer appropriate enough, since they can be used to
evaluate only one-step-far consequences of a commitment. The agent should be able
to also declaratively specify preference amongst evolutions through their available
historical information as well as by quantitatively or qualitatively evaluating the
consequences or side-effects of each evolution’s choices.. We equip our agent with
two kinds of evolution-level preferences: evolution result a posteriori pre f erence
and evolution history preference.

3.2.1 Evolution Result a Posteriori Preference

A posteriori preference is generalized to prefer between two evolutions. An evo-
lution result a posteriori preference is performed by evaluating consequences of
following some evolutions. The agent must use the imagination (look-ahead capa-
bility) and present knowledge to evaluate the consequences of evolving according
to a particular course of evolution. An evolution result a posteriori preference rule
has the form:

Ei ≪ E j← holds in evol(Li,Ei),holds in evol(Lj,E j)

where Ei, E j are evolutions and Li, Lj are domain literals. This preference implies
that Ei is preferred to E j if Li and Lj are true as side-effects of evolving according
to Ei or E j, respectively. Optionally, in the body of the preference rule there can be
recourse to any Prolog predicate, used to quantitatively compare the consequences
of the two evolutions for decision making.

Example 3. During war time agent David, a good general, needs to decide to save
one city, a or b, from an attack. He does not have enough military resources to save
both. If a city is saved, citizens of the city are saved. Normally, a bad general, who
just sees the situations at hand would prefer to save the city with more population,
but a good general would look ahead a number of steps into the future to choose the
best strategy for the war as a larger whole. Having already scheduled for the next
day that it will be a good opportunity to make a counter-attack on one of the two
cities of the enemy, either a small or a big city, the prior action of first saving a city
should take this foreseen future into account. In addition, it is always expected a
successful attack on a small city, but the (harder) successful attack on the big city
would lead to a much better probability of making further wins in the war. It is ex-
pected to successfully attack the big city only if the person who knows the secret



60 L.M. Pereira and H.T. Anh

1. abds([save/1, big_city/0, small_city/0]).
on_going_commitment([save(_)]).

2. expect(save(_)).
3. on_observe(save_place) <- be_attacked.

save_place <- save(a). save_place <- save(b).
4. on_observe(not save_atmost_one_ic) <- lack_of_resources.

save_atmost_one_ic <- save(a), save(b).
5. save_men(P) <- save(City), population(City, P).

alive(X) <- person(X), live_in(X, City), save(City).
6. population(a, 1000). population(b, 2000).

person(john). live_in(john, a). knows(john, secret_inf).
7. Ai << Aj <- holds_given(save_men(Ni), Ai),

holds_given(save_men(Nj),Aj), Ni > Nj.
8. on_observe(attack) <- good_opportunity.

attack <- big_city. attack <- small_city.
9. expect(small_city).

expect(big_city) <- alive(Person),knows(Person, secret_inf).
10.pr(win, 0.9) <- big_city. pr(win, 0.01) <- small_city.
11.Ei <<< Ej <- holds_in_evol(pr(win,Pi), Ei),

holds_in_evol(pr(win,Pj), Ej), Pi > Pj.

Fig. 3 Saving a city example

information about the enemy (John) is alive in the city to be saved beforehand. The
described scenario is coded with the program in Figure 3.

Line 1 is the declaration of abducibles. Save a city is an ongoing commitment
since it has direct influence on the next state, but is defeasible. The context sensi-
tive integrity constraint in line 4 implies that at most one city can be saved since
the lack of resources is a foreseen event. Thus, there are two abductive solutions:
[save(a),not save(b)] and [save(b),not save(a)].

If the general is a bad one, i.e. is a single-step prospective agent, the a posteri-
ori preference in line 7 would be immediately taken into account and rule out the
abductive solution including save(a), since it leads to the saving of 1000 people,
which is less preferred than the one including save(b) which leads to the saving
of 2000 people (lines 5-6). Then, on the next day, he can attack the small city,
but leads to the consequence that the further wining of the whole conflict is very
small.

Fortunately David is a good general, capable of prospectively looking ahead, at
least two steps in the future. David sees three possible evolutions:
E1 = [[save(a),not save(b)], [big city,save(a)]]
E2 = [[save(a),not save(b)], [small city,save(a)]]
E3 = [[save(b),not save(a)], [small city,save(b)]
In the next stage, the evolution result a posteriori pre f erence in line 11 is taken
into account, ruling out E2 and E3 since both lead to the consequence of a smaller
probability to win the whole conflict when compared to E1.

In short, the agent with better capability of looking ahead will provide a more
rational decision for the long term goals.



Evolution Prospection 61

3.2.2 Evolution History Preference

This kind of preference takes into account information from the history of evolu-
tions. The information can be quantitative, such as having in the evolution a maximal
or minimal number of some type of commitment, or having the number of commit-
ments greater, equal or smaller than some threshold. It also can be qualitative, such
as time order of commitments along an evolution. Such preferences can be used a
priori upon the process of finding possible evolutions. However, if all preferences
(of every kind) coded in the program have been applied but there is still more than
one possible evolution, an interaction mode with the user is turned on to ask for
user’s additional preferences. Similarly, if no solution can satisfy the preferences,
the user may be queried about which might be relaxed, or which relaxation option
to consider. Now the evolution history preferences are used a posteriori, given by
the user in a list, so as to choose the most cherished evolutions. An evolution history
preference can exhibit one of these forms, where C is an abducible:

1. max(C)/min(C)/greater(C,N): find the evolutions having number of commitments
to C maximal/minimal/greater than N.

2. smaller(C,N)/times(C,N): find the evolutions having number of commitments to
C smaller than/equal to N.

3. prec(C1,C2)/next(C1,C2): find the evolutions with commitment C1 preceding/
next to C2 in time.

Example 4. Agent John must finish a project. He has to schedule his everyday ac-
tions so that he can finish it on time. Everyday he either works or relaxes. He relaxes
by going to the beach, to a movie or watching football. Being a football fan, when-
ever there is a football match on TV, John relaxes by watching it. The described
scenario is coded in Figure 4.

In line 5 we can see how an evolution history preference is used a priori in
the predicate working days/2. There are two reserved predicates plan pre f/1 and
plan ending/1 that allow for asserting a priori evolution history preferences and the
necessary number of look ahead steps. At the beginning, the agent tentatively runs
the active goals to collect all a priori evolution preferences and decide how many
steps are needed to look ahead. In this case, the agent will look ahead five steps
taking into account the a priori evolution history preference times(work,2). There
are six possible evolutions: E1 = [[beach], [ f ootball], [ f ootball], [work], [work]],
E2 = [[movie], [ f ootball], [ f ootball], [work], [work]],
E3 = [[work], [ f ootball], [ f ootball], [beach], [work]],
E4 = [[work], [ f ootball], [ f ootball], [movie], [work]],
E5 = [[work], [ f ootball], [ f ootball], [work], [beach]],
E6 = [[work], [ f ootball], [ f ootball], [work], [movie]]
Since there are several possible evolutions, the interaction mode is turned on for
John to give a list of evolution history preferences. Suppose, he prefers the evolu-
tions with maximal number of goings to the beach, entering the list [max(beach)].
Three possible evolutions E1, E3 and E5 remain. John is asked again for prefer-
ences. Suppose he likes going to the beach after watching football, thereby entering
[next( f ootball,beach)]. Then the only possible evolution is now E3.



62 L.M. Pereira and H.T. Anh

1. abds([beach/0, movie/0, work/0, football/0]).
2. expect(beach). expect(movie). expect(work).
3. on_observe(everyday_act).

everyday_act <- work. everyday_act <- relax.
relax <- beach. relax <- movie. relax <- football.

4. expect(football) <- prolog(have_football).
expect_not(beach) <- prolog(have_football).
expect_not(work) <- prolog(have_football).
expect_not(movie) <- prolog(have_football).

5. on_observe(on_time).
on_time <- deadline(Deadline), project_work(Days),

prolog(working_days(Deadline, Days)).
deadline(5). project_work(2).

6. beginProlog.
:- import member/2 from basics.
have_football :- current_state(S), member(S, [1,2]).
working_days(Deadline, Days) :-

assert(plan_pref(times(work, Days))),
assert(plan_ending(Deadline)).

endProlog.

Fig. 4 Football example

4 Conclusions and Future Work

We have shown how to model evolving prospective logic program agent systems,
including single-step and multiple-step ones. Besides declaratively specifying local
preferences such as a priori and a posteriori ones, in order to let a prospective agent
look ahead a number steps into the future and prefer amongst their hypothetical
evolutions, we provide a new kind of preference, at evolution level, that can evaluate
long-term consequences of a choice as well as analyze different kinds of information
about the evolution history, which is kept by annotating such information with time
stamps for each evolution cycle. In addition, active goals triggered by external events
and context-sensitive integrity constraints provide flexible ways for modelling the
changing knowledge base of an evolving prospective agent. We exhibited several
examples to illustrate all proffered concepts. By means of them, we have, to some
degree, managed to show multiple-step prospective agents are more intelligent than
the single-step ones, in the sense that they are able to give more reasonable decisions
for long-term goals. In addition, the decision making process at each cycle during
an evolution of our agent was, in many cases, enhanced by committing to so-called
inevitable abducibles.

There are currently several possible future directions to explore. First of all, in
each cycle the agent has to satisfy a set of active goals and sometimes he cannot
satisfy them all. There are goals more important than others and it is vital to satisfy
them while keeping the others optional. The agent can be made more focussed by
setting a scale of priorities for the active goals so it can focus on the most important
ones. We can make a scale by using preferences over the on observe/2 predicates



Evolution Prospection 63

that are used for modelling active goals. Similarly, since there are integrity con-
straints that must be satisfied and there are also ones that are less important, we can
prefer amongst integrity constraints by making them all context-sensitive and then
prefer amongst the on observe/2 predicates used for modelling them.

When looking ahead, the prospective agent has to search the evolution tree for
the branches that satisfy his goals and preferences. From this perspective we can
improve our system with heuristic search algorithms such as best-first search, i.e. the
most promising nodes will be explored first. We also can improve the performance
of the system by using multi-threading which is very efficient in XSB, from version
3.0 [7]. Independent threads can evolve on their own and they can communicate
with each other to decide whether some thread should be canceled or kept evolving,
based on the search algorithm used.

On a more general note, it appears the practical use and implementation of abduc-
tion in knowledge representation and reasoning, by means of declarative languages
and systems, has reached a point of maturity, and of opportunity for development,
worthy the calling of attention of a wider community of potential practitioners.

References

1. Pereira, L.M., Lopes, G.: Prospective Logic Agents. In: Neves, J., Santos, M.F., Machado,
J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 73–86. Springer, Heidelberg (2007)

2. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. Handbook
of Logic in Artificial Intelligence and Logic Programming 5, 235–324 (1998)

3. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in Well-Founded Semantics and Gener-
alized Stable Models via Tabled Dual Programs. Theory and Practice of Logic Program-
ming 4(4), 383–428 (2004)

4. Kowalski, R.: The logical way to be artificially intelligent. In: Toni, F., Torroni, P. (eds.)
CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 1–22. Springer, Heidelberg (2006)

5. Pereira, L.M., Lopes, G., Dell’Acqua, P.: On Preferring and Inspecting Abductive Models.
In: Gill, A., Swift, T. (eds.) PADL 2009. LNCS. Springer, Heidelberg (2009)

6. Dell’Acqua, P., Pereira, L.M.: Preferential theory revision. Journal of Applied Logic 5(4),
586–601 (2007)

7. XSB-PROLOG system freely, http://xsb.sourceforge.net

http://xsb.sourceforge.net

	Evolution Prospection
	Introduction
	Prospective Logic Programming
	{\it Language}
	{\it Preferring Abducibles}
	{\it A Posteriori Preferences}
	{\it Active Goals and Context Sensitive Integrity Constraints}
	{\it Levels of Commitment}

	Evolving Prospective Agents
	{\it Single-Step Prospective Agent}
	{\it Multiple-Step Prospective Agent}

	Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




