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Image Color Space Transform with 
Enhanced KLT 

Roumen Kountchev and Roumiana Kountcheva1 

Abstract. The use of the Karhunen-Loève Transform (KLT) for the processing of 
the image primary color components gives as a result their decorrelation, which 
ensures the enhancement of such operations as: compression, color-based segmen-
tation, etc. The basic problem is the high computational complexity of the KLT. In 
this paper is offered a simplified algorithm for the calculation of the KL color 
transform matrix. The presented approach is based on non-recursive approach for 
the color covariance matrix eigenvectors detection. The new algorithm surpasses 
the existing similar algorithms in its lower computational complexity, which is a 
prerequisite for fast color segmentation or for adaptive coding of color images 
aimed at real time applications.    

Keywords: Karhunen-Loève transform, color transforms, color space models, 
color covariance matrix, eigenvalues and eigenvectors, angles of Euler rotation, 
color image compression. 

1   Introduction 

The methods for color image space transform recently attract significant interest 
because they influence the efficiency of the processing aimed at the information 
redundancy reduction and color features extraction. Many attempts have been 
made to model the color perception by researchers working in various fields: psy-
chology, computer vision, image processing and retrieval, computer graphics, etc. 
The color spaces used in image processing are derived from visual system models, 
adopted from technical domains or developed especially for image processing. 
The commonly used color space for image representation is based on RGB, XYZ, 
YCbCr, YUV, YCoCg, Lab, HSV/HSL, etc. color models [1-5]. All these color 
transform techniques do not depend on the image content. Unlike them, the Kar-
hunen-Loeve Transform (KLT) [6] highly depends on the image content. The 
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KLT is utilized as a tool to eliminate the image redundancy, because the transfor-
mation components are highly uncorrelated. The KLT has found many applica-
tions in traditional fields such as communications [7-9] and computer vision. In 
computer vision, it is used for a variety of tasks such as image segmentation, face 
and object recognition, motion estimation, object tracking, etc. [10-13]. The KLT 
is however used infrequently as it is dependent on the image statistics, i.e. when 
the statistics change the KLT matrix should be changed as well. Because of this 
signal dependence, general fast algorithm is not developed. Additional disadvan-
tage is its higher computational complexity in comparison with the deterministic 
image color space transforms. Some solutions of the problem have already been 
proposed. The basic methods used for the matrix eigenvectors calculation are 
given in [14]. One or the relatively simple methods is the iterative approach pro-
posed by Jacobi. In accordance with it, the KLT matrix is presented as a product 
of rotation matrices, which consecutively rotate the image vector around the corre-
sponding coordinate axis in the vector space. While this technique is quite simple, 
for big matrices it can take a large number of calculations. A more efficient ap-
proach for larger, symmetric matrices divides the problem into two stages. The 
Householder algorithm can first be applied to reduce a symmetric matrix into a 
tridiagonal form in a finite number of steps. Once the matrix is in this simpler 
form, an iterative method such as QR factorization (the matrix is represented by 
the product of upper triangular and orthogonal matrices) can be used to generate 
the eigenvalues and eigenvectors. The advantage of this approach is that the fac-
torization of the simplified tridiagonal matrix requires fewness iterations than the 
Jacobi method. Significant interest attracted the iterative methods for principal 
components extraction with neural networks which do not require the calculation 
of a covariance matrix [15-17]. These techniques update the estimate of the eigen-
vectors for each input training vector. While these algorithms have some advan-
tages over covariance-based methods, there are still some concerns over stability 
and convergence [18]. In particular, analytical solution for the components of the 
covariance matrix eigenvectors exists for the case when the color vectors depict 
first order stationary Markov process [6].   

The goal of this work is to present a simplified method for the calculation of the 
KLT matrix for the RGB image color space. The paper is arranged as follows: sec-
tion 2 introduces the principle of the direct calculation of the KLT matrix; in sec-
tion 3 is evaluated the computational complexity of the new method and are given 
some results obtained by means of the method modeling and the comparison with 
the determined transform YCbCr; section 4 is the Conclusion. 

2   Direct Calculation of the KLT Matrix 

The color of every pixel in the digital image is represented in the color space by 

the vector [ ] t
321 CCCC ,,=

r
, whose coordinates (C1,C2,C3) correspond to the cho-

sen primary colors (for example, RGB, etc.). The general algorithm for efficient 
coding of digital color images based on preliminary color space transform com-
prises the following basic operations: 
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1. Direct (linear or nonlinear) transform of the vector C
r

 into a new color space 
aimed to obtain maximum uncorrelated components. When linear transforms are 

used, the corresponding transformed color vector [ ] t
321 LLLL ,,=

r
 is defined by 

the relation [ ]CTL
rr

= , where [T] is the color transform matrix of size 3×3; 

2. Coding of the transformed vector L
r

 components in correspondence with the 

relations )()()( 33
q
322

q
211

q
1 LL  ,LL  ,LL ψψψ ===  were )()()( ∗∗∗ 321   and  , ψψψ  

are functions, which correspond to the selected coding method for every compo-
nent (aimed at the reduction of its psycho-visual and/or statistical redundancy). As 

a result is obtained the coded vector [ ]tq
3

q
2

q
1q LLLLL ,,)( ==

rr
ψ , whose components 

are transferred to the decoder; 
3. Decoding of the vector components in correspondence with the relations 

)()()( q
3

1
33

q
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1
22

q
1

1
11 LL  ,LL  ,LL −−− =′=′=′ ψψψ , where 

)()()( 1
3

1
2

1
1 ∗∗∗ −−− ψψψ   and  ,  are the inverse transform functions. As a result is 

obtained the vector L′
r

; 

4. Inverse transform of the decoded vector [ ] t
321 LLLL ′′′=′ ,,

r
. When orthogonal 

transforms are used, the restored color vector [ ] t
321 CCCC ′′′=′ ,,

r
 is defined by the 

relation [ ] LTC ′=′ − rr
1 , where [T]-1 is the inverse transform matrix of size 3×3. 

The choice of the color space transform depends on the primary colors and the 
restored image quality, the compression ratio and the computational complexity re-
quired. In order to obtain high efficiency of the color image coding the components 

of the transformed color vector L
r

 for every pixel should be uncorrelated. This re-
quirement is satisfied by the KLT model only.  

In correspondence with this model the RGB color vector for the sth pixel 

[ ] t
ssss B,G,RC =

r
 is transformed into the vector [ ] t

ssss L,L,LL 321=
r

 using the ma-

trix [Φ] of the linear orthogonal KLT. The elements of the matrix Φij are defined 
by the statistical characteristics of the image pixels colors and could be calculated 
in the way described below. The covariance color matrix [KC] of size 3×3, is calcu-
lated first: 

[ ] ,)(

⎥
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=−= ∑

=
333231
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 (1) 

where t
c BGRm ],,[=

r
is the mean color vector. Let ∑

=
==

S

1s
ss x

S

1
xEx )(  is the 

operator for the calculation of the mean value of xs, for s = 1, 2, . . , S. Then the 
elements of the vector cm

r
 and of the matrix [KC] could be represented as follows:  



174 R. Kountchev and R. Kountcheva
 

),( sRER =    ),( sREG =      ),( sBEB =  (2)

,)B-BEkk  ,GGEkk  ,RREkk 22
s333
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Here S = М×N is the number of the pixels in the image with components Rs Gs Bs, 
whose mean values are correspondingly .B  ,G  ,R   

In this work below is presented one new approach for the calculation of the ei-
genvalues and eigenvectors of the covariance matrix [KC]. The eigenvalues 

321 λλλ ,,  of the matrix [KC] are the solution of its characteristic equation: 

,0cba|k|det 23
ijij =+++=− λλλλδ  (6)

where: 
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  (7)

The matrix [KC] is symmetrical and its eigenvalues are always real numbers. They 
can be defined using the Cardano relations [19] for the “casus irreducibilis” (or the 
so-called “trigonometric solution”): 
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The eigenvectors 321 ,, ΦΦΦ
rrr

 of the covariance matrix [KC] are the solution of the 

set of equations: 

[ ] mmmCK ΦλΦ
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=   and 1
3

1
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r
    for  m = 1, 2, 3.   (10)
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The last equation derives from the conditions for orthogonality and normalization 
of the obtained eigenvectors: 

⎩
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     for  s, k =1,2,3. (11)

Solving Eq. (10) are defined the components of the mth eigenvector 

[ ] ,,, t
3m2m1mm ΦΦΦΦ =

r
which corresponds to the eigenvalue mλ  (Eq. 8). Then: 

mm3mmm2mmm1m PD  ;PB  ;PA /// === ΦΦΦ      for  m=1,2,3 (12)
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The matrix [ ]Φ  whose rows comprise the components Φms of the eigenvectors 

mΦ
r

 is: 
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The color vector [ ] t
ssss B,G,RC =

r
 is then transformed into the vector 

[ ] t
s3s2s1s LLLL ,,=

r
 using the direct KLT: 
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 for  s = 1, 2,..., S. (16)

The components of the vector [ ] t
ssss L,L,LL 321=

r
 could be coded using various 

methods (decimation and interpolation, filtration, orthogonal transforms, quantiza-

tion, etc.) in correspondence with relations ),L(L s11
q

s1 ψ=  ,)L(L s22
q

s2 ψ=  

)L(L s33
q

s3 ψ=  and then is obtained the coded vec-

tor t
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q
s )]L(  ,)L( ,)L([)L(L ψψψψ ==

rr
. 
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For the restoration of the vector q
sL
r

components, are applied inverse functions in 

correspondence to relations ,)L(L̂ q
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and is obtained the decoded vector [ ] t
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r
. Using the inverse KLT the 
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r

 is transformed into the restored color vector [ ] t
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r
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is the matrix of the inverse KLT. 
Unlike the deterministic transforms, the restoration of the primary color vectors 

[ ]t
ssss B̂,Ĝ,R̂Ĉ =

r
 with the inverse KLT (Eq. 17) needs not only the transformed 

color vectors [ ] t
ssss L,L,LL 321=

r
, but the elements Φij of the matrix [ ]Φ  as well. 

The number of these elements is reduced when the ability of the matrix [ ]Φ  to 
represent the transform of the initial color space in correspondence with Eq. 17 as 
three rotations around each coordinate axis R, G and B, is used. The three angles 
of the Euler rotation (α,β,γ ) define the position of the transform coordinate axes 

),,( 321 LLL  in respect to the original color space. Using this quality of the matrix 

[ ]Φ  it is represented by the product of the following 3 rotation matrices for the 
axes (R, G, B) [19]: 
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The determinant of the KLT matrix should be checked carefully, since the Euler 
theorem applies only to matrices with a determinant of 1, but the determinant of 
the KLT matrix may be -1 as well. In this case, one of the rows should be inverted 
to produce the matrix of determinant 1 prior to decomposition. The matrix of the 
inverse KLT in this case is defined by the relation: 

[ ] [ ][ ][ ])()()( 323
1 αΦβΦγΦΦ −−−=−  (22) 

Hence, in order to define [ ] 1−Φ  for the decoding are needed the Euler angles α, 

β and γ only. These angles are calculated using Eqs. (19 - 21), when the elements 
of the matrix [ ]Φ  are known: 
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The elements of the matrix [ ] 1−Φ  are then restored using Eqs. (21-23) and 

knowing the angles α, β and γ. As a result to the decoder are transferred the values 

of angles α, β, γ only, instead of the 9 elements of the matrix [ ] 1−Φ , i.e. the num-

ber of needed coefficients is 3 times smaller.  

3   Estimation of the Enhanced KL Color Transform  

On the basis of Eqs. (1-15) used for the direct calculation of the eigenvalues and 
eigenvectors of the color covariance matrix and the Euler angles (Eq. 23), was  
developed the algorithm for enhanced KL image color space transform. It offers 
acceleration of the transform calculations because of the reduced number of 
mathematical operations in comparison with the numerical methods used for the 
general approach with covariance matrix of arbitrary size [6, 19].The computa-
tional complexity of the new algorithm was compared with that of the QR  
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algorithm for calculation of the eigenvalues 321 λλλ ,, . The number of the operation 

needed for their calculation for a square matrix of size n×n when QR decomposi-
tion of the matrix in the step k is used [20] is given in Table 1. 

Table 1 Computational complexity of the QR decomposition in the k-th step 

Operation Number of operations  
multiplications             2(n − k + 1)2  
additions                      (n − k + 1)2 + (n − k + 1)(n − k) + 2 
divisions 1 
square roots                  1 

Summing these numbers over the (n−1) steps for equal weight of the operations in 
Table 1 is obtained: 

))((]))(()([)( 7n
6

17
n

3

4
1n4kn1kn1kn3nSS 2

1n

1k

2 ++−=+−+−++−= ∑
−

=
. 

(24)

Then, for n=3 from Eq. (24) follows that SS(3) = 55.  
For the case with the direct calculation of 321 λλλ ,,  using Eqs. (7-9) is  

obtained: 

SS(3) = 28 multiplications + 19 additions = 47.  (25) 

Hence, the computational complexity for the direct calculation of the matrix 
[KC] eigenvalues in respect of the QR decomposition is 14.5 % lower. Further re-
duction is obtained as a result of the direct calculation of the [KC] eigenvectors in 
accordance with Eqs. (10-14). 

The efficiency of the new method regarding the bit-rate and the restored image 
quality was evaluated for RGB color images (24 bpp) of various sizes. For the 
evaluation was used DCT-based JPEG-like compression algorithm. Some of the 
results obtained are given in Table 2. It is obvious that for same (or very close) 
quality the bit-rate obtained with the KL transform is lower (in average more  
than 10%). 

For the evaluation of the influence of the new approach on the color compo-
nents’ energy distribution was used a database of 4 image groups. Some of the test 
images are shown in Fig.1: deserts and beaches (a, b); forest (c, d); interiors (e, f) 
and city (g, h). The goal of the experiments was to prove the efficiency of the pro-
posed algorithm: the energy concentration mainly in one component, the decorre-
lation of the three components and the MSE minimization. 

The algorithm performance was also compared with that of YCbCr and HSV 
color transforms. For this the relative energy for each color component of the 
transformed image was calculated. The energies concentrated in each of the three 
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Table 2 Comparative results for the bit-rate/PSNR relation for the direct KLT approach 
versus YCbCr (Rec. 601.2) for a group of RGB color test images (24 bpp) 

KLT YCbCr No. Image (pixels) 
Bit-rate 

bpp 
PSNR 

dB 
Bit-rate 

bpp 
PSNR 

dB 
1 Amber (88x128) 1,36 29,06 1,42 29,05 
2 Chris (88x128) 1,46 28,99 1,53 28,98 
3 Canyon (600x480) 1,63 26,37 1,69 26,37 
4 Lena (512x512) 1,11 30,90 1,48 30,85 
5 Myanmar (1024x768) 1,45 26,10 1,50 26,09 
6 Phong (800x608) 0,14 37,36 0,18 37,68 

transformed components were represented as percentage of their sum. The results 
obtained for the energy distribution within individual image groups were very 
close. In each group was observed that the principal eigenvector of each image is 
close to the principal eigenvector of the group. So instead of calculating a KLT for 
each image of each group we could calculate a single transform for all images in 
each group. The energy distribution for one of the tested image groups (forest) is 
given in Table 3. 

The color transforms YCbCr and HSV were performed for same database of 
color images and the relative power for each of the three components of the color 
transforms was calculated. In Fig. 2a is shown the relation of the relative energies 
of the first and the second component and Fig. 2b represents the relation of the 
relative energies of the first and the third component. The graphics show that the 
relationship between the energies of the first and the second component for the 
color transforms YCbCr and HSV is close but this is not the same for the KL color 
transform. As opposed to the other color transforms the energies of the three bands 
are strongly uncorrelated: most energy is concentrated in the first component; the 
energies in the second and third component are much smaller. From the data given 
in Table 2 for the tested image groups is assumed that the relation between the 
components in the K-L color space is roughly 4:2:1, this means that the first com-
ponent can be left untouched, the second is twice as small as the original and the 
third is four times as small as the original.  

a)   b)   c)    d)   

e)   f)   g)   h)  

Fig. 1 Some of the test images used for the experiments 
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Table 3 Energy distribution of the components 321 ,, LLL for each image group  

Group Energy of L1 [%] Energy of L2 [%] Energy of L3 [%] 
Desert/Beach            64.30 18.40 17.30 
Forest 76.99 21.63  1.38 
Indoor 48.66 35.51 15.82 
City 58.53 23.66 17.81 

 

Fig. 2 Distribution of the color compo-
nents’ energies 

 

  

 

4   Conclusion 

The presented algorithm for direct calculation of the KLT matrix for the RGB im-
age color space does not require the use of numerical methods for the calculation 
of the eigenvalues and eigenvectors of the color covariance matrix. Further en-
hancement of the KLT algorithm performance can be achieved if the principles of 
distributed arithmetic are used. More experiments could be performed concerning 
the use of the integer numbers arithmetic for the presented approach. 

The experimental results obtained confirmed the direct KLT efficiency: it of-
fers lower computational complexity and bit rate for same quality. Another advan-
tage is that the algorithm is universal in respect of the initial color space.  
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One more advantage is that the algorithm permits the corresponding transform 
matrices for some large image classes to be calculated in advance. Then, on the 
basis of the color histogram analysis the processed images could be easily classi-
fied and the most suitable matrix to be used.  

The main application areas of the direct KL color transform, presented above, 
are:  

o fast color segmentation for automatic target recognition and image 
classification (image data mining); 

o adaptive and more efficient coding of color images. 
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