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M.H. Korayem 

Abstract. Planning of robot trajectory is a very complex task that plays a crucial 
role in design and application of robots in task space. This paper is concerned with 
path planning of flexible robot arms for a given two-end-point task in point-to-
point motion, based on indirect solution of optimal control problem. We employ 
the finite element method to modeling and deriving the dynamic equations of robot 
manipulator with flexible link, so in the presence of all nonlinear terms in dynamic 
equations open loop optimal control approach is a good candidate for generating 
the path that optimizes the end effector trajectory. Then the Hamiltonian function is 
formed and the necessary conditions for optimality are derived from the Pon-
tryagin's minimum principle. The obtained equations establish a two point bound-
ary value problem which is solved by numerical techniques. Finally, simulations 
for a two-link planar manipulator with flexible links are carried out to investigate 
the efficiency of the presented method. The results illustrate the power and effi-
ciency of the method to overcome the high nonlinearity nature of the problem. 

Keywords: Flexible Manipulator, Finite Element, Optimal Trajectory, Optimal 
Control. 

1   Introduction 

Flexible robot arms have some advantages over rigid ones, such as their capability 
to assure faster motions and a higher ratio of payload to arm weight. However, due 
to the flexible nature of the system, their dynamic equations are highly non-linear 
and complex.  
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Wang et al. have solved the optimal control problem with direct method using 
the B-Spline functions in order to determine the maximum payload of a rigid ma-
nipulator [1]. The assumed mode expansion method is used by Sasiadek and 
Green [2, 3] to derive the dynamic equation of fixed base flexible manipulator. In 
[4, 5] a formulation based on Iterative Linear Programming (ILP) is presented to 
determine the Maximum Allowable Dynamic Load (MADL) of flexible manipula-
tors. Indeed, the linearizing procedure and its convergence to the proper answer is 
a challenging issue, especially when nonlinear terms are large and fluctuating, e.g. 
in problems with consideration of flexibility in links or having high speed motion. 
As a result, in none of the previous mentioned work which is based on the ILP 
method, the link flexibility has not been considered either in the dynamic equation 
or simulation procedure. 

None of these published works have used Finite Element Method (FEM) to 
model and analysis for their systems. One of the main advantages of FEM over the 
most of other approximate solution methods to modeling the flexible links is the 
fact that in FEM the connection are supposed to be clamp-free with minimum two 
mode shape per link. Another significant advantage of FEM, especially over ana-
lytical solution techniques is the ease with which nonlinear conditions can be han-
dled. The finite element method has been used to solve very complex structural 
engineering problems during the past years. The maximum payload of flexible 
mobile manipulator is determined along the given trajectory by using the finite 
element approach in [6], so finding the optimal path is not considered in it. 

Optimal control can be used in both open loop and close-loop strategies. How-
ever, because of the off-line nature of the open loop optimal control in spite of the 
close-loop ones, many difficulties such as system nonlinearities and all types of 
constraints may be catered for and implemented easily, so it generally used in ana-
lyzing nonlinear systems such as trajectory optimization of different types of ro-
bots [7, 8]. It solved by direct and indirect approaches. But, since direct method 
leads to the approximate solution and this approach is time consuming and quite 
ineffective due to the large number of parameters involved [9], indirect methods is 
a good candidate for the cases where the system has a large number of degree of 
freedom or optimization of the various objectives is targeted [10]. 

Open-loop optimal control method is proposed as an approach for trajectory op-
timization of flexible link mobile manipulator for a given two-end-point task in 
point-to-point motion [11]. But in mentioned paper combined Euler–Lagrange for-
mulation and assumed modes method is used for driving the equation of motions 
with considering the simply support mode shape and one mode per link. So beside 
the advantages of this paper over than ILP based ones it can not expressed realisti-
cally the behavior of links besides it connection to the motors.   

In this paper, for path planning of Elastic manipulators, an indirect solution of 
the optimal control problem is employed. Dynamic equations are derived using the 
FEM. Hamiltonian function is formed, and necessary conditions for optimality are 
obtained from the Pontryagin's minimum principle. These equations establish a 
Two Point Boundary Value Problem (TPBVP) solved by MATLAB. In compari-
son with other method the open-loop optimal control method does not require  
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linearizing the equations, differentiating with respect to joint parameters and using 
of a fixed-order polynomial as the solution form. Finally, a two-link elastic ma-
nipulator is simulated to demonstrate the capability of the method. 

2   Modeling of Robot Arms with Multiple Flexible Links 

The finite element method is used to derive dynamic equations of flexible manipu-
lators. The overall approach involves treating each link of the manipulator as an 
assemblage of n elements of length iL . For each of these elements the kinetic en-

ergy ijT  and potential energy ijV , (where i and j are referred to the number of 

links and the number of elements respectively) are computed in terms of a selected 
system of n generalized variables )...,( ,2,1 nqqqq = and their rate of change 

q& . These energies are then combined to obtain the total kinetic energy, T, and po-

tential energy, V, for the entire system. Finally, using Lagrange equations the 
equations can be written in compact form as:  

,)(),()( UqGqqCqqM =++ &&&  (1) 

By defining the state vector as: 

[ ] [ ]TT qqXXX &== 21 , (2) 

Eq. (1) can be rewritten in state space form as: 

[ ] [ ]UXDXNXXXX
T

)()(221 +== &&&
, (3) 

where ))(),(( 121
1 XGXXCMN +−= −  and 1−= MD . Then optimal control prob-

lem is imposed to determine the position and velocity variable )(1 tX and 

)(2 tX and the joint torque U(t) which optimize a well-defined performance meas-

ure when the model is given in Eq. (3) 

3   Formulation of the Optimal Control Problem 

The basic idea to improve the formulation is to find the optimal path for a speci-
fied payload. For the sake of this, the following objective function is considered 

∫=
ft

t
tU

dtUXLJMinimize
0

),(0
)(

, (4) 

where 
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RW
UXUXL += . (5) 

Integrand L(.) is a smooth, differentiable function in the arguments, 

KXXX T
K =2||||  is the generalized squared norm, W is symmetric, positive  

semi-definite (k×k) weighting matrix and R is symmetric, positive definite (k×k) 
matrix. The objective function specified by Eqs. (4) and (5) is minimized over the 
entire duration of the motion. The designer can decide on the relative importance 
among the angular position, angular velocity and control effort by the numerical 
choice of W and R which can also be used to convert the dimensions of the terms 
to consistent units. According to the Pontryagin's minimum principle, the follow-
ing conditions must be satisfied, 

ψ∂∂= HX&  (6) 

XH ∂∂−=ψ&  
(7) 

UH ∂∂=0  (8) 

where by defining the nonzero costate vector [ ]TTT
21 ψψψ = , the Hamiltonian 

function can be obtained as:  

[ ]UXDXNXUX TT

RW
)()()(5.0)U,Η(X, 221

22

2 ++++= ψψψ .  (9) 

So, according to Eq. (7), the optimality conditions can be obtained by differentiat-
ing the Hamiltonian function with respect to states, costates and control as  
follows: 

[ ] [ ]TT
UXDXNXXX )()(221 +=&&  (10) 

[ ] [ ]TT XHXH 2121 ∂∂∂∂−=ψψ &&  (11) 

02 =+ ψTDRU  (12) 

The control values are limited with upper and lower bounds, so using Eq. (12) the 
optimal control are given by:  

⎪
⎩

⎪
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=
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+−−−

+−+
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2
1

2
1

2
1

2
1

ψ
ψψ

ψ
. (13) 

The actuators which are used for medium and small size manipulators are the 
permanent magnet D.C. motor. The torque speed characteristic of such D.C. mo-
tors may be represented by the following linear equation: 
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221221 , XKKUXKKU −−=−= −+ . (14) 

Where [ ]T
snssK τττ L211 = , [ ]mnsnmsdigK ωτωτ L112 = , [ ]Tnθθθθ &&&& ...21= , 

sτ  is the stall torque and mω  is the maximum no-load speed of the motor. The 

boundary values will be expressed as below:  

ffff XtXXtX

XXXX

2211

202101

)(,)(

;)0(,)0(

==
==

 (15) 

In this formulation, for a specified payload value, 4m differential equations given 
in Eq. (11) are used to determine the 4m state and costate variables. The set of dif-
ferential Eq.(11), the control law Eq. (13), and the boundary conditions construct a 
standard form of TPBVP, which is solvable with available commands in different 
software such as MATLAB or MATEMATHICA. 

4   Simulation for a Flexible Planar Manipulator 

In this Section, simulations are carried out for a two-link planar flexible manipula-
tor as shows in figure 4.1. This manipulator must carry a concentrated payload 
with mass of 1 kg during the overall time 1=ft second.  
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Fig. 4.1  Two-link manipulator with flexible links 
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The necessary parameters of the flexible manipulator are summarized in the 
Table 4.1. 

Table 4.1 Simulation parameters 

  Parameter Value Unit 

Length of Links L1 = L2 = 1 m 

Mass of Links m1 =  m2= 5 Kg 

Moment of Area of Links I1 = I2 = 5e-9 m4 

Module of Elasticity of Links E1 = E2=2e10 2Kg.m  

Max. no Load Speed of Actuators 1sw = 2sw =3.5 rad/s 

Actuator Stall Torque 1sτ = 2sτ = 30 N.m 

By defining the state vectors as follows:  

[ ]
[ ] .

,

121086422

11975311

TT

TT

xxxxxxQX

xxxxxxQX

==

==
&

 (16) 

The sate space form of Eq. (16) can be written as: 

6...1;)(, 22212 ===− iiFxxx iii && , (17) 

where F2(i) can be obtained from Eq. (3). And the boundary condition can be ex-
pressed as:  

)0(1x = π /2  rad , )0(3x = 3/2 π× rad   

)(1 ftx = π /6  rad,     )(3 ftx =π /3 rad 

000

6100

7755

22

====

===

)t(x)(x)t(x)(x

...i,)t(x)(x

ff

fii
 

(18) 

In order to derive the equations associated with optimality conditions, penalty ma-
trices can be selected as: 

So the objective function is obtained by substituting Eq. (19) Into Eq. (5) as below 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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=
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2
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Then, by considering the costate vector as [ ]1221 ... ϕϕϕϕ = , the Hamilto-

nian function can be expressed from as: 

( )
( ).,

;,,,,,
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 (19) 
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where 12,..,.1, =ixi&  can be substituted from Eq. (17). Using Eq. (11) differentiat-

ing the Hamiltonian function with respect to the states, result in costate equations 
as follows: 

12,,1, L& =
∂
∂−= i
x

H

i
iϕ    (22) 

The control function in the admissible interval can be computed using Eq. (11), by 
differentiating the Hamiltonian function with respect to the torques ),( 21 ττ  and 

setting the derivative equal to zero.  
Then, by applying motors torque limitation, the optimal control becomes: 

⎪
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After that, from Eq. (14) the extrimal bound of control for each motor becomes: 

422212422212

212111212111

;

;

xkkUxkkU
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−−=−=

−−=−=
−+

−+

 (24) 

Consequently, substituting computed control equations (23) and (24) into Eqs. 
(17) and (22), obtain 16 nonlinear ordinary differential equations that with 16 
boundary conditions given in Eq. (18), constructs a two point boundary value 
problem. A number of methods exist for solving these problems including shoot-
ing, collocation, and finite difference methods. In this study, BVP4C command in 
MATLAB® which is based on the collocation method is used to solve the ob-
tained problem. The details of the numerical technique used in MATLAB to solve 
the TPBVP are given in [12]. This problem can be solved using the BVP4C com-
mand in MATLAB®. 

In this simulation, the payload is considered to be 1 kg and the purpose is to 
find the optimal path between initial and final point of payload in such a way that 
the minimum amount of control value can be applied and the angular velocity val-
ues of motors be bounded in 2. 

By considering the penalty matrices as W= (2, 2, 0, 0, 0, 0) and R=diag (0.1), 
the first path with appropriate amount of control value is determined, but the angu-
lar velocities are greater than 2 rad/s. Therefore for decreasing the velocities, W 
must be increased. A range of values of W= (w, w, 0, 0, 0, 0) used in simulation 
are given in Table 4.2.  
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Table 4.2 The values of w used in simulation 

  3 2 1 Case 

500 50 2 w  

Figs. 4.2 and 4.3 show the angular velocities of the first and second joints. It 
can be found that by increasing the w, maximum values of angular velocity reduce 
from -8.6 rad/s to -1.6 rad/s. 
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Fig. 4.2 Angular velocity-joint 1 Fig. 4.3 Angular velocity-joint 2 
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Computed torqueses of motors are plotted in Figs. 4.4 and 4.5. As it can be 
seen, increasing the w causes to raise the torques. This result is predictable, be-
cause increasing the w, decreases the proportion of R and the result of this is in-
creasing the control values.  
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Fig. 4.4  Torque of motor 1 Fig. 4.5  Torque of motor 2 

As show in figures (4.2- 4.5), there is not the solution that satisfies all the de-
sired objectives simultaneously, e.g. the optimal path with minimum effort has 
maximum velocity and the optimal path with minimum velocity has maximum ef-
fort. Consequently, in this method, designer compromises between different objec-
tives by considering the proper penalty matrices.  
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5   Conclusions 

In this paper, formulation for the path planning of flexible robot arms in point-to-
point motion, based on the open-loop optimal control approach is presented. Dy-
namic equations are derived using finite element method and an efficient solution 
on the basis of TPBVP is proposed. In comparison with other method the open-
loop optimal control method does not require linearizing the equations, differentiat-
ing with respect to joint parameters and using of a fixed-order polynomial as the 
solution form. Moreover via changing the penalty matrices values, various optimal 
trajectories with different specifications can be obtained which able the designer to 
select a suitable path through a set of obtained paths.  By a simulation study the ap-
plication and validity of the algorithm is investigated. Results illustrate the power 
and capability of the method to overcome the high nonlinearity nature of the opti-
mization problem in spite of using complete form of obtained nonlinear equations. 
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