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Preface by Editor-in-Chief

This is the second volume of the Journal entitled “LNCS Transactions on Petri
Nets and Other Models of Concurrency” (ToPNoC). This special issue of ToP-
NoC focuses on a particular topic: Concurrency in Process-Aware Information
Systems. Like some of the volumes in the earlier “Advances in Petri Nets” se-
ries, this volume provides a comprehensive state-of-the-art overview on a more
focused topic. Process-Aware Information Systems have become one of the most
important application domains of Petri nets. For example, workflow technology
is driven by languages closely related to Petri nets, and various analysis tech-
niques ranging from workflow verification to process mining benefit from decades
of concurrency research. This explains why this first special issue of ToPNoC is
devoted to Process-Aware Information Systems.

As Editor-in-Chief of ToPNoC, I would like to thank the editor of this special
issue: Wil van der Aalst. Moreover, I would like to thank all authors and reviewers
whose efforts have contributed to this interesting and highly relevant ToPNoC
volume.

January 2009 Kurt Jensen
Editor-in-Chief

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC)



LNCS Transactions on Petri Nets and Other
Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models
of concurrency ranging from theoretical work to tool support and industrial
applications.

The foundation of Petri nets was laid by the pioneering work of Carl Adam
Petri and his colleagues in the early 1960s. Since then, an enormous amount of
material has been developed and published in journals and books and presented
at workshops and conferences.

The annual International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency started in 1980. The International Petri Net
Bibliography maintained by the Petri Net Newsletter contains close to 10,000
different entries, and the International Petri Net Mailing List has 1,500 sub-
scribers. For more information on the International Petri Net community, see:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all large
libraries and are also accessible online in Springerlink (electronically). Simulta-
neously the ToPNoC volumes form a Journal, and it is possible to subscribe to
ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– Revised versions of a selection of the best papers from workshops and tuto-
rials at the annual Petri net conferences

– Special sections/issues within particular subareas (similar to those published
in the Advances in Petri Nets series)

– Other papers invited for publication in ToPNoC
– Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible
for the quality of the journal. The members of the board assist in the reviewing
of papers submitted or invited for publication in ToPNoC. Moreover, they may
make recommendations concerning collections of papers proposed for inclusion
in ToPNoC as special sections/issues. The Editorial Board consists of prominent
researchers within the Petri net community and in related fields.

Topics

System design and verification using nets; analysis and synthesis, structure and
behavior of nets; relationships between net theory and other approaches; causal-
ity/partial order theory of concurrency; net-based semantical, logical and alge-
braic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to
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nets; higher level net models; timed and stochastic nets; and standardization of
nets.

Applications of nets to different kinds of systems and application fields, e.g.:
flexible manufacturing systems, real-time systems, embedded systems, defense
systems, biological systems, health and medical systems, environmental systems,
hardware structures, telecommunications, railway networks, office automation,
workflows, supervisory control, protocols and networks, the Internet, e-commerce
and trading, programming languages, performance evaluation, and operations
research.

For more information about ToPNoC, please see: www.springer.com/lncs/
topnoc.

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted
as PDF or zipped PostScript files to ToPNoC@cs.au.dk. All queries should be
addressed to the same e-mail address.
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Preface by Guest Editor

Process-aware information systems support operational business processes by
combining advances in information technology with recent insights from man-
agement science. Workflow management systems are typical examples of such
systems. However, many other types of information systems are also “process
aware” even if their processes are hard-coded or only used implicitly (e.g., ERP
systems). The shift from data orientation to process orientation has increased the
importance of process-aware information systems. Moreover, advanced analysis
techniques ranging from simulation and verification to process mining and ac-
tivity monitoring allow for systems that support process improvement in various
ways.

Information technology has changed business processes within and between
enterprises. More and more work processes are being conducted under the su-
pervision of information systems that are driven by process models. Examples
are workflow management systems such as FLOWer, FileNet, and Staffware; ad-
vanced middleware software such as WebSphere; enterprise resource planning
systems such as SAP and Oracle; as well as many domain specific systems. It is
hard to imagine enterprise information systems that are unaware of the processes
taking place. Although the topic of business process management using informa-
tion technology has been addressed by consultants and software developers in
depth, more fundamental approaches towards such Process-Aware Information
Systems (PAISs) have been rather uncommon. It wasn’t until the 1990s that
researchers started to work on the foundations of PAISs. Clearly, concurrency
theory is an essential ingredient in these foundations as business processes are
highly concurrent involving all types of routing logic and resource allocation
mechanisms.

PAISs play an important role in Business Process Management (BPM). There
exist many definitions of BPM. Here we will use the following definition: “Busi-
ness process management (BPM) is a field of knowledge that combines knowledge
from information technology and knowledge from management sciences and ap-
plies this to operational business processes”. BPM can be seen as an extension
of Workflow Management (WFM), which primarily focuses on the automation
of business processes.

The term “business process” should be interpreted in a broad sense. It also
encompasses other types of operational processes that need to be supported. For
example, scientific computing using grid technology is definitely included when
talking about process-aware information systems. The challenges in scientific
workflows go beyond classical workflows and, e.g., grid technology will enable
new forms of BPM.

Different models of concurrency have been used to model workflows, typically
aiming at their analysis. For example, a particular variant of Petri nets, called
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workflow nets, has been widely used for the modeling and analysis of workflows.
Moreover, many workflow management systems use a graphical notation close to
Petri nets. There are interesting challenges in the modeling of PAISs, e.g., high-
level Petri nets can be used to describe process languages and standards (EPCs,
YAWL, BPMN, BPEL, etc.) and the architectures of the systems supporting
these languages. The resulting models can be used for all kinds of analysis, e.g.,
verification and performance analysis. Moreover, there are also interesting chal-
lenges in the discovery of concurrent processes (cf. process mining techniques).

This special issue of ToPNoC focuses on concurrency in PAISs. The papers
in this ToPNoC volume address the various problems related to designing, im-
plementing, and analyzing PAISs. Many of the papers address the concurrency
aspect by using Petri nets. Different papers address the issue of language trans-
formations either for the purpose of interoperability or analysis. In many cases,
Petri-net-based analysis techniques are used to verify a certain property. There is
a special focus on interacting systems as these are more difficult to handle. This
focus is triggered by the emerging service-oriented architectures. Some papers
also address problems related to synthesis and process mining in a PAIS envi-
ronment. Note that information systems increasingly produce enormous event
logs that can be used for analysis purposes.

This volume of ToPNoC is interesting both for researchers working in concur-
rency theory and people working on business process management as it identifies
and addresses the challenges posed by PAISs. Moreover, it is also valuable for
practitioners involved in the development of new PAISs or the application of
existing systems.

This topical volume of ToPNoC contains 16 papers. The authors of these
papers were invited to submit a paper based on their expertise in this area. All
invited papers were reviewed by four referees. In the first round of reviews, some
papers were rejected, some were accepted (with minor revisions), and some were
asked to submit a revised version. Based on a second round of reviewing (again
by three or four referees), the final decisions were made. As Editor of the special
issue, I would like to thank the reviewers and authors for doing an outstanding
job. I would also like to thank the two secretaries involved in preparing the final
version of this volume: Ine van der Ligt (Eindhoven University of Technology)
and Dorthe Haagen Nielsen (University of Aarhus). I would also like to thank the
Springer LNCS/ToPNoC team for handling things in an efficient and effective
manner.

In the remainder of this preface, the contributions are briefly summarized.
The first paper titled “Process-Aware Information Systems: Lessons to Be

Learned from Process Mining” serves two purposes. On the one hand, it provides
an introduction to this special issue by giving an overview of the domain. On the
other hand, it presents a rather personal view on the research in this area and
the lessons that can be learned from recent insights provided by process mining.

The second paper “Model-Based Software Engineering and Process-Aware
Information Systems” by Ekkart Kindler aims to bridge the gap between Model-
Based Software Engineering (MBSE) and PAIS.
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The paper “Petri Net Transformations for Business Processes: A Survey”
by Niels Lohmann, Eric Verbeek, and Remco Dijkman focuses on the challenges
related to translating one process language to another. The authors discuss trans-
formations related to BPMN, YAWL, EPCs, Petri nets, and BPEL.

Frank Puhlmann and Mathias Weske discuss the π-calculus as a formal foun-
dation for PAIS in their paper “A Look Around the Corner: The Pi-Calculus”.
They use the workflow patterns to discuss the applicability of the π-calculus in
this domain.

The paper “newYAWL: Towards Workflow 2.0” by Nick Russell and Arthur
ter Hofstede focuses on a concrete workflow language: newYAWL. Using col-
ored Petri nets, the semantics of newYAWL and architectural considerations are
discussed.

Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, and Daniel Moldt
present a Petri-net-based organizational model called SONAR in their paper “A
Formal Model for Organisational Structures behind Process-Aware Information
Systems”. The goal is to devote more attention to organizational aspects in an
integrated manner.

The paper “Flexibility in Process-Aware Information Systems” by Manfred
Reichert, Stefanie Rinderle-Ma, and Peter Dadam focuses on one of the most
important challenges for PAISs: flexibility. After formulating some requirements,
it is shown how these are addressed in the ADEPT2 tool.

The paper “Business Grid: Combining Web Services and the Grid” by Ralph
Mietzner, Dimka Karastoyanova, and Frank Leymann discusses requirements
for the so-called “business grid”. While grids are studied in detail in the con-
text of e.g., scientific workflows, the grid community is disconnected from the
BPM community and this paper advocates the unification of results from both
domains.

Karsten Wolf focuses on service interaction in his paper “Does My Service
Have Partners?”. The paper provides results for both the controllability of single-
port services and multiple-port services.

The paper “Deciding Substitutability of Services with Operating Guidelines”
by Christian Stahl, Peter Massuthe, and Jan Bretschneider is related to the paper
by Karsten Wolf. Using the so-called “operating guidelines” three substitutabil-
ity notions are operationalized.

The paper “A Framework for Linking and Pricing No-Cure-No-Pay Services”
by Kees van Hee, Eric Verbeek, Christian Stahl, and Natalia Sidorova also looks
at services but now from a “pricing” point of view. It is shown how a Petri-net-
based framework can be used to compute the price of a service orchestration.

In his paper “Empirical Studies in Process Model Verification” Jan Mendling
addresses the need for more empirical research in this area. He discusses several
large-scale verification studies and the lessons that can be learned from this.

While most of the papers discussed so far mainly focus on the design and
analysis of process models or systems, the last four papers focus on process
mining, i.e., the analysis of behavior observed in real life (e.g., based on event
logs, example scenarios, or interactions).
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The paper “Process Mining: Overview and Outlook of Petri Net Discovery
Algorithms” by Boudewijn van Dongen, Ana Karla Alves de Medeiros, and Li-
jie Wen gives an overview of existing mining techniques. Using various quality
notions, 13 Petri-net discovery algorithms (all available in ProM) are reviewed.

The paper “Construction of Process Models from Example Runs” by Robin
Bergenthum, Jörg Desel, Sebastian Mauser, and Robert Lorenz proposes a novel
approach for the automatic construction of Petri nets based on example runs.
In this work, example scenarios rather than event logs are used as input.

Hong-Linh Truong and Schahram Dustdar address the need for the analy-
sis of service interaction in their paper “Online Interaction Analysis Framework
for Ad-Hoc Collaborative Processes in SOA-Based Environments”. The paper
presents the VOIA (Vienna Online Interaction Analysis) framework and dis-
cusses some experiments.

The paper “Exploiting Inductive Logic Programming Techniques for Declar-
ative Process Mining” by Federico Chesani, Evelina Lamma, Paola Mello, Marco
Montali, Fabrizio Riguzzi, and Sergio Storari concludes this special issue. The
paper combines inductive logic programming with a declarative language to dis-
cover less structured processes. The approach is implemented as a ProM plug-in
called DecMiner.

The papers in this ToPNoC volume provide a good overview of PAIS re-
search. Some papers focus on the foundations of PAIS, while others try to apply
existing (Petri-net-based) techniques to business process management. There-
fore, this volume provides a useful blend of theory, practice, and tools related to
concurrency and PAIS research.

January 2009 Wil van der Aalst
Guest Editor, Special Issue of ToPNoC on Concurrency in PAIS
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Process-Aware Information Systems: Lessons to
Be Learned from Process Mining

Wil M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. A Process-Aware Information System (PAIS) is a software
system that manages and executes operational processes involving peo-
ple, applications, and/or information sources on the basis of process mod-
els. Example PAISs are workflow management systems, case-handling
systems, enterprise information systems, etc. This paper provides a brief
introduction to these systems and discusses the role of process models
in the PAIS life-cycle. Moreover, it provides a critical reflection on the
state-of-the-art based on experiences with process mining. Process min-
ing techniques attempt to extract non-trivial and useful information from
event logs. One aspect of process mining is control-flow discovery, i.e.,
automatically constructing a process model (e.g., a Petri net) describ-
ing the causal dependencies between activities. The insights provided by
process mining are very valuable for the development of the next gener-
ation PAISs because they clearly show a mismatch between the models
proposed for driving these systems and reality. On the one hand, models
tend to oversimplify things resulting in systems that are too restrictive.
On the other hand, models fail to capture important aspects of business
processes.

1 Introduction

In the last two decades there has been a shift from “data-aware” information
systems to “process-aware” information systems [24]. To support business pro-
cesses, an enterprise information system needs to be aware of these processes
and their organizational context. Early examples of such systems were called
WorkFlow Management (WFM) systems [4,28,33,36,38,41,45,67]. In more recent
years, vendors prefer the term Business Process Management (BPM) systems.
BPM systems have a wider scope than the classical WFM systems and are not
just focusing on process automation. BPM systems tend to provide more support
for various forms of analysis (e.g., simulation) and management support (e.g.,
monitoring). Both WFM and BPM aim to support operational processes that
are often referred to as “workflow processes” or simply “workflows”. We will use
the generic term Process-Aware Information System (PAIS) to refer to systems
that manage and execute such workflows.

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 1–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 W.M.P. van der Aalst

In a Service Oriented Architecture (SOA) the information system is seen as a
set of connected services. A PAIS can be realized using such an architecture and
in fact it is very natural to see processes as the “glue” connecting services. The fit
between SOA and PAIS is illustrated by emerging standards such as BPEL [20]
and BPMN [68]. The focus on web services and SOA has stirred up enthusiasm
for process-orientation. As a result it is expected that in the future generic PAISs
will start to play a more important role. However, at the same time it should
not be forgotten that most PAISs are dedicated towards a particular application
domain or even a specific company.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Most workflow
management systems provide a graphical language which is close to Petri nets.
Although the routing elements are different from Petri nets, the informal se-
mantics of the languages used are typically token-based and hence a (partial)
mapping to Petri nets is relatively straightforward. This explains the interest in
applying Petri nets to PAISs.

The purpose of this paper is twofold. On the one hand, we aim to provide
an introduction to PAISs and the role of models in the development and con-
figuration of such systems. On the other hand, we would like to share some
insights obtained through process mining. Process mining exploits event logs of
real processes and uses these to discover models or check the conformance of
existing ones. Experiences with process mining show that there are typically
large discrepancies between the idealized models used to configure systems and
the real-life processes. Moreover, process mining has changed our perception of
models. For example, there is no such thing as the model. In any situation dif-
ferent models are possible all providing a particular view on the process at hand.
Based on our experiences using process mining, we would like to challenge some
of the basic assumptions related to PAIS and business process modeling.

The remainder of this paper is organized as follows. Section 2 provides a defini-
tion and classification of PAISs. The role of process models is discussed in Section 3
and Section 4 briefly introduces the concept of process mining. Section 5 presents
the lessons that can be learned from process mining. This section serves as a “re-
ality check” for PAIS research. Section 6 concludes the paper.

2 Process-Aware Information Systems

In this paper we adopt the following definition of a Process-Aware Information
System (PAIS): a software system that manages and executes operational pro-
cesses involving people, applications, and/or information sources on the basis of
process models [24]. Although not explicitly stated in this definition, it should
be noted that the process models mentioned are usually represented in some
graphical language, e.g., a Petri-net-like notation. The models are typically in-
stantiated multiple times (e.g., for every customer order) and every instance is
handled in a predefined way (possibly with variations).

Classical examples of PAISs are WorkFlow Management (WFM) systems and
Business Process Management (BPM) systems. These systems support
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operational business processes and are driven by an explicit process representa-
tion. Given the above definition, one can see that a text editor is not “process
aware” insofar as it is used to facilitate the execution of specific tasks without
any knowledge of the process of which these tasks are part. A similar comment
can be made regarding e-mail clients used to send and receive electronic mail.
A task in a process may result in an e-mail being sent, but the e-mail client is
unaware of the process it is used in. At any point in time one can send an e-mail
to any person without being supported nor restricted by the e-mail client. Text
editors and e-mail clients (at least contemporary ones) are applications support-
ing tasks, not processes. The same applies to a large number of applications used
in the context of information systems.

Process awareness is an important property for information systems and the
shift from task-driven to PAISs brings a number of advantages [24]:

– The use of explicit process models provides a means for communication be-
tween people.

– Systems driven by models rather than code have less problems dealing with
change, i.e., if an information system is driven by process models, only the
models need to be changed to support evolving or emerging business pro-
cesses.

– The explicit representation of the processes supported by an organization
allows their automated enactment. This may lead to a better performance.

– The explicit representation of processes enables management support at the
(re)design level, i.e., explicit process models support (re)design efforts.

– The explicit representation of processes also enables management support at
the control level. Generic process monitoring and mining facilities provide
useful information about the process as it unfolds. This information can be
used to improve the control (or even design) of the process.

A detailed introduction PAISs is beyond the scope of this paper. However,
to provide an overview of the important issues, we summarize the classification
given in [24]. In addition, we refer to the well-known workflow patterns [6,58,70].

2.1 Design-Oriented Versus Implementation-Oriented

Figure 1 summarizes the phases of a typical PAIS life-cycle. In the design phase,
processes are designed (or re-designed) based on the outputs of a requirements
analysis. In the configuration phase, designs are refined into an implementation,
typically by configuring a generic infrastructure for a process-aware information
system (e.g. a WFM system, a case handing system, or an EAI platform). After
configuration, the enactment phase starts: the operational processes are executed
using the configured system. In the diagnosis phase, the operational processes
are analyzed to identify problems and to find aspects that can be improved.

Different phases of the PAIS life-cycle call for different techniques and types
of tools. For example, the focus of traditional WFM systems is on the lower half
of the PAIS life-cycle. They are mainly aimed at supporting process configura-
tion and execution and provide little support for the design and diagnosis phase.
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Fig. 1. The PAIS life-cycle [7]

Business process modeling tools are design-oriented and may use all kinds of
analysis to evaluate designs. Besides classical analysis techniques such as sim-
ulation, more advanced techniques such as process mining come into play, i.e.,
process improvement by learning from running processes.

2.2 People Versus Software Applications

Another way of classifying PAISs is in terms of the nature of the participants (or
resources) they involve,and in particularwhether these participants are humans or
software applications. In this respect, PAISs can be classified into human-oriented
and system-oriented [28] or more precisely into Person-to-Person (P2P), Person-
to-Application (P2A) and Application-to-Application (A2A) processes [24].

In P2P processes the participants involved are primarily people, i.e. the pro-
cesses primarily involve tasks which require human intervention. Job tracking,
project management, and groupware tools are designed to support P2P pro-
cesses. Indeed, the processes supported by these tools usually do not involve
entirely automated tasks carried out by applications. Also, the applications that
participate in these processes (e.g. project tracking servers, e-mail clients, video-
conferencing tools, etc.) are primarily oriented towards supporting computer-
mediated interactions.

At the other end of the spectrum, A2A processes are those that only in-
volve tasks performed by software systems. Such processes are typical in the
area of distributed computing, and in particular distributed application integra-
tion. Transaction processing systems, EAI platforms, and Web-based integration
servers are designed to support A2A processes.

P2A processes are those that involve both human tasks and interactions be-
tween people, and tasks and interactions involving applications which act with-
out human intervention. Workflow systems fall in the P2A category since they
primarily aim at making people and applications work in an integrated manner.

Note that the boundaries between P2P, P2A, and A2A are not crisp. Instead,
there is a continuum of techniques and tools from P2P (i.e. manual, human-
driven) to A2A (automated, application-driven).
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2.3 Predictability of Processes

The degree of structure of the process to be automated (which is strongly linked
to its predictability) is frequently used as a dimension to classify PAISs [28].
Structured processes are easier to support than unstructured processes. More-
over, it is also obvious that smaller processes are easier to support than larger
ones. However, like in [13,24] we would like to elaborate on the predictability
aspect. As Figure 2 shows, we distinguish between unframed, ad hoc framed,
loosely framed, and tightly framed processes.

A process is said to be unframed if there is no explicit process model associated
with it. This is the case for collaborative processes supported by groupware
systems that do not offer the possibility of defining process models.

A process is said to be ad hoc framed if a process model is defined a priori but
only executed once or a small number of times before being discarded or changed.
This is the case in project management environments where a process model (i.e.
a project chart) is often only executed once. It is also the case in grid computing
environments, where a scientist may define a process model corresponding to a
computation involving a number of datasets and computing resources, and then
run this process only once.

A loosely framed process is one for which there is an a-priori defined process
model and a set of constraints, such that the predefined model describes the
“normal way of doing things” while allowing the actual executions of the process
to deviate from this model within certain limits.

tightly
framed

loosely
framed

ad hoc
framed

unframed

P2P P2A

groupware

project
management

process-aware
collaboration

tools

job tracking
systems

workflow

ad hoc
workflow

scientific
workflow

service
composition

case
handling

process-unaware
application integration

A2A

Fig. 2. Type of PAISs and associated development tools [24]
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Finally, a tightly framed process is one which consistently follows an a-priori
defined process model. This is the case of traditional workflow systems.

Figure 2 plots different types of PAISs and PAIS-related tools with respect
the degree of framing of the underlying processes (unframed, ad hoc, loosely,
or tightly framed), and the nature of the process participants (P2P, P2A, and
A2A) [24].

As with P2P, P2A, and A2A processes, the boundaries between unframed,
ad hoc framed, loosely framed, and tightly framed processes are not crisp. In
particular, there is a continuum between loosely and tightly framed processes.
For instance, during its operational life a process considered to be tightly framed
can start deviating from its model so often and so unpredictably, that at some
point in time it may be considered to have become loosely framed. Conversely,
after a large number of cases of a loosely framed process have been executed, a
common structure may become apparent, which may then be used to frame the
process in a tighter way.

The topic of flexibility in PAISs attracted a lot of attention in the scientific
community. Numerous researchers proposed ways of dealing with flexibility and
change. Unfortunately, few of these ideas have been adopted by commercial
parties. Moreover, it has become clear that there is no “one size fits all” solution,
i.e., depending on the application, different types of flexibility are needed. In [60]
a taxonomy is given where four types of flexibility are distinguished: (1) flexibility
by design, (2) flexibility by deviation, (3) flexibility by underspecification, and (4)
flexibility by change (both at type and instance levels). This taxonomy shows
that different types of flexibility exist. Moreover, different paradigms may be
used, i.e., even within one flexibility type there may be different mechanisms
that realize different forms of flexibility [63]. All of these approaches aim to
support ad hoc framed and/or loosely framed processes.

2.4 Intra-organizational Versus Inter-organizational

Initially, PAISs were mainly oriented towards intra-organizational settings. Fo-
cus was on the use of process support technologies (e.g. workflow systems) to
automate operational processes involving people and applications inside an or-
ganization (or even within an organizational unit). Over the last few years, there
has been a push towards processes that cross organizational barriers. Such inter-
organizational processes can be one-to-one (i.e. bilateral relations), one-to-many
(i.e. an organization interacting with several others) or many-to-many (i.e. a
number of partners interacting with each other to achieve a common goal).

The trend towards inter-organizational PAISs is marked by the adoption of
SOA and the emergence of web services standards such as BPEL et al.

3 Role of Models

In the previous section, we introduced PAISs and provided a classification. In
this section, we focus more on the role of models. First of all, we elaborate on the
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different purposes of models (to provide insights, for analysis purposes, or for
enactment). Second, we discuss differences between formal and informal models.
Finally, we differentiate between man-made and derived models.

3.1 Purpose

Models can serve different purposes. In fact, the same model can be used for
different objectives in the context of a PAIS.

Insight. When developing or improving a PAIS it is important that the differ-
ent stakeholders get insight into the processes at hand and the way that these
processes can or should be supported. Models can be used to discuss require-
ments, to support design decisions, and to validate assumptions. Moreover, the
modeling process itself typically provides new and valuable insights because the
modeler is triggered to make things explicit. It is interesting to use the metaphor
of a construction drawing for a house. Only when people are confronted with
concrete drawings they are able to generate requirements and make their wishes
explicit. This holds for houses but also for other complex artifacts such as infor-
mation systems.

Analysis. Using the metaphor of a construction drawing for a house, it is clear
that models can be used to do analysis (e.g., calculating sizes, strengths, etc.).
Depending on the type of model, particular types of analysis are possible or not.
Moreover, in the context of a PAIS, analysis may focus on the business processes
or on the information system itself. For example, the performance of a system
(e.g., response times) is not the same as the performance of the processes it
supports. Traditionally, most techniques used for the analysis of business pro-
cesses originate from operations research. Students taking courses in operations
management will learn to apply techniques such as simulation, queueing theory,
and Markovian analysis. The focus mainly is on performance analysis and less
attention is paid to the correctness of models. However, verification is needed to
check whether the resulting system is free of logical errors. Many process designs
suffer from deadlocks and livelocks that could have been detected using verifi-
cation techniques. Notions such as soundness [1,30] can be used to verify the
correctness of systems. Similar notions can be used to check interorganizational
processes where deadlocks, etc. are more likely to occur [9,39,42].

Enactment. In the context of a PAIS, models are often used for enactment,
i.e., based on a model of the process, the corresponding run-time support is
generated. In a WFM system, a model of a process suffices to generate the cor-
responding system support. In other environments, the set of processes is often
hard-coded. For example, although ERP systems like SAP have a workflow en-
gine, most processes are hard-coded into the system and can only be changed
by programming or changing configuration parameters. As a result, modifica-
tions are either time-consuming (because of substantial programming efforts) or
restricted by the set of predefined configuration parameters.
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3.2 Formality of Models

Related to the purpose of the model is the degree of formality.

Informal models. Informal models cannot be used for enactment and rigorous
analysis. Their main purpose is to provide insight, support discussion, etc. We
define a model to be informal if it is impossible to determine whether a particular
scenario (i.e., a trace of activities) is possible of not.

Formal models. A formal model is able to tell whether a particular sequence
of activities is possible or not. For example, given a Petri net it is possible
to determine whether a trace corresponds to a possible firing sequence. Even
declarative models may be formal. For example, given a model in Declare [47] or
plain LTL or CTL [40], it is possible to check whether a trace is possible or not.
Formal models typically allow for obtaining insights, analysis, and enactment.
However, they may be more difficult to construct than informal models.

The boundaries between formal and informal models seem well-defined. How-
ever, in practice one can see many semi-formal models (e.g., BPMN, UML activ-
ity diagrams, EPCs, etc.). These models started out as informal models without
any formal semantics. However, during the process, subsets have been formal-
ized and are supported by tools that assume particular semantics. The problem
is that some people interpret these models in a “formal way” while others use
these notations in a rather loose manner. Consider for example the EPC models
in SAP where at least 20 percent has serious flaws when one attempts to inter-
pret them in a somewhat unambiguous manner [44]. Besides the differences in
interpretation there is the problem that some of the informal concepts create
conundrums. For example, the informal semantics of OR-join in EPCs and other
languages creates the so-called “vicious cycle” paradox [2,34].

Figure 3 illustrates the relation between industry-driven languages, formal
(science-driven) models, and analysis models. The industry-driven languages can
be split into informal, semi-formal, and executable. Notations such as BPMN,
EPCs, etc. can be seen as semi-formal, i.e., subsets can be interpreted in a
precise manner. Languages like BPEL and many other workflow languages are
executable because they are supported by concrete workflow engines. Note that
these can be considered as formal although there may be different interpretations
among different systems. However, in the context of a single execution engine,
it is clear what traces are possible and what traces are not possible.

Languages like Petri nets and various process algebraic languages (CSP, CCS,
ACP, π-calculus, etc.), are formal and mainly driven by the academic community.
The focus is on a clear and unambiguous specification of the process and not
on a particular analysis technique. However, such formal languages can often be
mapped onto dedicated analysis models. For example, a Petri net can be mapped
onto an incidence matrix to calculate invariants or onto a coverability graph to
decide on reachability or boundedness.

Let us look at some examples bridging the three layers shown in Figure 3.
Woflan is able to translate Staffware, COSA, Protos, and WebSphere models into
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Fig. 3. Relationships among models

Petri nets and then analyze these using the coverability graph and incidence ma-
trix [62]. The toolset BPEL2oWFN/Fiona/LoLA can be used to analyze BPEL
models using open workflow nets as an intermediate format [39]. These examples
show the possible interplay between various languages.

3.3 Construction Approach

Finally, we distinguish between man-made models and derived models.

Man-made Models. Traditionally, one thinks of models as man-made, i.e.,
some designer is constructing the model from scratch. When developing a new
system or process, this is the only way to obtain models.

Derived Models. If there is already a process or system in place, it is also
possible to “derive” models. There are basically two approaches. One approach
is to try and reverse engineer models from the system itself, e.g., analyze the
code or configuration parameters. Another approach is to extract models based
on event logs, i.e., learn from example behavior observed in the past. The next
section on process mining will elaborate on the latter type of derived models.

4 Process Mining

After an introduction to PAISs and discussing the various roles of models in the
context of such systems, we now focus on a particular analysis technique: process
mining [12,14,15,19,21,22,23,26,32,35,43,52,64,65]. The reason for elaborating on
this particular analysis technique is that our experiences with process mining
have dramatically changed our view on PAISs and the role of models in these
systems. In fact, the goal of the paper is to provide a critical reflection on the
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state-of-the-art based on experiences with process mining. Therefore, we first
provide a short introduction to process mining and then elaborate on the lessons
learned.

Today’s information systems are recording events in so-called event logs. The
goal of process mining is to extract information on the process from these logs,
i.e., process mining describes a family of a-posteriori analysis techniques ex-
ploiting the information recorded in the event logs. Typically, these approaches
assume that it is possible to sequentially record events such that each event
refers to an activity (i.e., a well-defined step in the process) and is related to a
particular case (i.e., a process instance). Furthermore, some mining techniques
use additional information such as the performer or originator of the event (i.e.,
the person/resource executing or initiating the activity), the timestamp of the
event, or data elements recorded with the event (e.g., the size of an order).

Process mining addresses the problem thatmost organizations have very limited
information about what is actually happening in their organization. In practice,
there is often a significant gap between what is prescribed or supposed to happen,
and what actually happens. Only a concise assessment of the organizational reality,
which process mining strives to deliver, can help in verifying process models, and
ultimately be used in a process redesign effort or PAIS implementation.

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs. We con-
sider three basic types of process mining (Figure 4).

Discovery. There is no a-priori model, i.e., based on an event log some model is
constructed. For example, using the α-algorithm [15] a Petri net can be discov-
ered based on low-level events. Many algorithms have been proposed to discover
the control-flow [12,14,15,19,21,22,23,32,35,43,64,65] and few have been prosed
to discover other aspects such as the social network [11].

models
analyzes

records
events, e.g., 
messages,

transactions,
etc.

specifies
configures
implements

analyzes

supports/
controls

people machines

organizations
components

business processes

Fig. 4. Three types of process mining: (1) Discovery, (2) Conformance, and (3) Exten-
sion
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Conformance. There is an a-priori model. This model is used to check if reality,
as recorded in the log, conforms to the model and vice versa. For example,
there may be a process model indicating that purchase orders of more than one
million Euro require two checks. Another example is the checking of the four-eyes
principle. Conformance checking may be used to detect deviations, to locate and
explain these deviations, and to measure the severity of these deviations. For
examples, we refer to the conformance checking algorithms described in [54].

Extension. There is an a-priori model. This model is extended with a new
aspect or perspective, i.e., the goal is not to check conformance but to enrich the
model. An example is the extension of a process model with performance data,
i.e., some a-priori process model is used on which bottlenecks are projected.
Another example is the decision mining algorithm described in [53] that extends
a given process model with conditions for each decision.

Today, process mining tools are becoming available and are being integrated
into larger systems. The ProM framework [3] provides an extensive set of anal-
ysis techniques which can be applied to real process enactments while covering
the whole spectrum depicted in Figure 4. ARIS PPM was one of the first com-
mercial tools to offer some support for process mining. Using ARIS PPM, one
can extract performance information and social networks. Also some primitive
form of process discovery is supported. However, ARIS PPM still requires some
a-priori modeling. The BPM|suite of Pallas Athena was the first commercial
tool to support process discovery without a-priori modeling. Although the above
tools have been applied to real-life processes, it remains a challenge to extract
suitable process models from event logs. This is illustrated by recent literature
[12,14,15,19,21,22,23,32,35,43,64,65].

5 Lessons Learned

Now we would like to provide a critical reflection on the state-of-the-art in PAISs
based on our experiences with process mining. The insights provided by process
mining are very valuable for the development of the next generation PAISs be-
cause they clearly show a mismatch between the models proposed for driving
these systems and reality. On the one hand, models tend to oversimplify things
resulting in systems that are too restrictive. On the other hand, models fail to
capture important aspects of business processes.

In the remainder we present some of the main lessons learned through our
various process mining projects.

5.1 Models Do Not Reflect Reality

The first, and probably the most important, lesson is that models typically
provide a very naive view of reality. Reality is typically much more dynamic and
complex than what is captured in models. Models should abstract from details
and aspects not relevant for the purpose of the model. However, the discrepancies
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Fig. 5. Process discovered based on an event log with information about 2712 patients

that can be found between models and reality can typically not be justified by
reasons of abstraction.

To illustrate this consider the process model shown in Figure 5. This model
was discovered using ProM’s Heuristics Miner [64] based on the data of 2712 pa-
tients treated in a Dutch hospital. The log contained 29258 events (i.e., +/- 10.8
events per case) corresponding to 264 activities. The discovered process model
reflects the complexity of care processes. One may expect such “spaghetti-like
processes” in a hospital. However, we have found similarly unstructured pro-
cesses in many environments where one would expect more structured processes
(e.g., municipalities, banks, insurance companies, etc.). It is important to note
that the spaghetti-like process shown in Figure 5 is not due to limitations of the
process mining techniques used, i.e., it is completely caused by the real complex-
ity of the process.

Insights provided by process models such as the one shown in Figure 5 serve as
a reality check for any PAIS implementation. Without a complete understanding
of the processes at hand, the PAIS is destined to fail.

To illustrate the discrepancies between models and reality further, consider
Figure 6 taken from [55]. These models have been obtained when analyzing
one of the test processes of ASML (the leading manufacturer of wafer scan-
ners in the world). ASML designs, develops, integrates and services advanced
systems to produce semiconductors. In short, it makes the wafer scanners that
print the chips. These wafer scanners are used to manufacture semi-conductors
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(b) Discovered process model (a) Reference process model

Fig. 6. Two heuristic nets [43,64] showing the difference between (a) the translated
reference model for the test process on job-step level and (b) the discovered process
model based on log which was mapped onto the job-step level [55]

(e.g., processors in devices ranging from mobile phones ad MP3 players to desk-
top computers). At any point in time, ASML’s wafer scanners record events
that can easily be distributed over the internet. Hence, any event that takes
place during the test process is recorded. The availability of these event logs
and the desire of ASML to improve the testing process, triggered the case study
reported in [55]. If we apply ProM’s discovery to the low-level logs, we obtain
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Fig. 7. Screenshot of ProM’s Conformance Checker while analyzing the difference be-
tween the reference model and reality [55]

a spaghetti-like process similar to the one shown in Figure 5. However, using
domain knowledge the low level log can be translated to an event log at the
so-called job-step level. ASML also provided us with a reference model at the
job-step level. This model was used to instruct the test engineers. Figure 6(a)
shows the reference model. The discovered model is shown in Figure 6(b). It is
interesting to note that the discovered model allows for much more scenarios
than the reference model.

In Figure 7 we used ProM’s Conformance Checker while analyzing the devi-
ations in ASML’s test process. As shown the fitness is only 37.5 percent, i.e.,
roughly one third of the events can be explained by the model indicating that
“exceptions are the rule” [54]. By looking at the most frequent paths that appear
in Figure 6(b) and not in Figure 6(a) and at the diagnostics provided in Figure 7
it is possible to pinpoint the most important deviations. Note that deviations
are not necessarily a bad thing and may reflect (desirable) flexibility. We will
elaborate on this in Section 5.3.

The results presented in this section are not exceptional, i.e., many processes
turn out to be more spaghetti-like than expected. Nevertheless, most attention
in both academia and industry is given to the analysis and use of models and not
to the way to obtain them. Both sides take models as a starting point. Analysis
techniques, process engines, etc. focus on what to do with models rather than
obtaining faithful models. Therefore, we would like to stress the need for more
emphasis on the faithfulness of models. For example, analysis results are only
meaningful if the corresponding models are adequate.

5.2 A Human’s Characteristics Are Difficult to Capture

In the previous section, we focused in discrepancies between the control-flow as
modeled and the real control-flow. When it comes to resources similar problems
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emerge, especially if the resources are human. This mismatch becomes evident
when comparing the behavior of humans observed when using process mining
techniques and the behavior of humans assumed in simulation tools [10]. In the
remainder, we focus on the problems encountered when modeling people for
simulation purposes. However, the insights also apply to other analysis methods
and enactment support (e.g., software for work distribution).

In practice there are few people that only perform activities for a single pro-
cess. Often people are involved in many different processes, e.g., a manager,
doctor, or specialist may perform tasks in a wide range of processes. However,
simulation often focuses on a single process. Suppose a manager is involved in
10 different processes and spends about 20 percent of his time on the process
that we want to analyze. In most simulation tools it is impossible to model that
a resource is only available 20 percent of the time. Hence, one needs to assume
that the manager is there all the time and has a very low utilization. As a result
the simulation results are too optimistic. In the more advanced simulation tools,
one can indicate that resources are there at certain times in the week (e.g., only
on Monday). This is also an incorrect abstraction as the manager distributes
his work over the various processes based on priorities and workload. Suppose
that there are 5 managers all working 20 percent of their time on the process of
interest. One could think that these 5 managers could be replaced by a single
manager (5*20%=1*100%). However, from a simulation point of view this is an
incorrect abstraction. There may be times that all 5 managers are available and
there may be times that none of them are available.

Another problem is that people work at different speeds based on their work-
load, i.e., it is not just the distribution of attention over various processes, but
also a person’s absolute working speed influences his/her capacity for a particular
process. There are various studies that suggest a relation between workload and
performance of people. A well-known example is the so-called Yerkes-Dodson
law [69]. The Yerkes-Dodson law models the relationship between arousal and
performance as an inverse U-shaped curve. This implies that for a given indi-
vidual and a given type of tasks, there exists an optimal arousal level. This is
the level where the performance has its maximal value. Thus work pressure is
productive, up to a certain point, beyond which performance collapses. Although
this phenomenon can be easily observed in daily life, today’s business process
simulation tools do not support the modeling of workload dependent processing
times.

As indicated earlier, people may be involved in different processes. Moreover,
they may work part-time (e.g., only in the morning). In addition to their limited
availabilities, people have a tendency to work in batches (cf. Resource Pattern 38:
Piled Execution [58]). In any operational process, the same task typically needs
to be executed for many different cases (process instances). Often people prefer
to let work-items related to the same task accumulate, and then process all of
these in one batch. In most simulation tools a resource is either available or not,
i.e., it is assumed that a resource is eagerly waiting for work and immediately
reacts to any work-item that arrives. Clearly, this does not do justice to the
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way people work in reality. For example, consider how and when people reply to
e-mails. Some people handle e-mails one-by-one when they arrive while others
process all of their e-mails at fixed times in batch.

Also related is the fact that calendars and shifts are typically ignored in simula-
tion tools. While holidays, lunch breaks, etc. can heavily impact the performance
of a process, they are typically not incorporated in the simulation model.

All these observations show that it is very difficult to adequately capture human
activity in simulation models. As a result it is not uncommon that the simulation
model predicts a flow time of hours while in reality the average flow time is weeks.
In [10] the effects of some of these incorrect assumptions on the simulation results
are shown. Using process mining one can get insight into the way that humans
actually work and use this to build more faithful simulation models.

Note that the difficulties encountered when characterizing humans is not only
relevant for simulation but also for enactment support. It can be observed that
only few of the resource patterns [58] are supported by contemporary PAISs.
Moreover, insights such as the Yerkes-Dodson law are not used by today’s PAISs
and systems are unable to predict problems. The lack of understanding and
limited functionality impairs the successfulness of PAISs.

5.3 Spaghetti and Flexibility: Two Sides of the Same Coin

The topic of flexibility in the context WFM systems has been addressed by many
authors [16,18,25,27,47,48,51,66]. See the taxonomy in [60] or the flexibility pat-
terns in [63] to get an overview of the different approaches proposed in literature.
See also [8,17,28,31,46,50,59] for other classifications of flexibility. Researchers
proposed numerous ways of dealing with flexibility and change. Unfortunately,
few of these ideas have been adopted by commercial parties. Process mining can
expose the need for flexibility. Spaghetti-like processes as shown in Figure 5 and
the quantification of non-conformance illustrated by Figure 7 illustrate the need
for flexibility.

When building a PAIS for existing processes, process mining can be used
to identify the flexibility needs. When looking at the spaghetti-like processes
discovered using process mining, it becomes evident that one has to decide on
what kinds of variability are actually desired. Some deviations are good because
they correspond to adequate responses to requests from the environment. Other
deviations may be undesirable because they impair quality or efficiency.

It is easy to say that PAISs should provide more flexibility. However, process
mining also shows that it is very difficult to actually do this. It seems that much
of the research in this domain is rather naive. For example, it is ridiculous to
assume that end-users will be able construct or even understand process models
such as the one depicted in Figure 5.

5.4 Process Models Should Be Treated as Maps

There are dozens of process modeling languages. Most of these languages pro-
vide some graphical notation with split and join nodes of particular types (AND,
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XOR, etc.). Although there are important semantical differences between these
notations, the basic idea is always to draw a graph describing the routing of
process instances (cases). This seems to be a good approach as it is adopted by
most vendors and common practice in industry. Nevertheless, our experiences
with process mining have revealed several weaknesses associated with this clas-
sical approach. Diagrams like Figure 5 show that automatically derived models
are difficult to understand and lack expressiveness. This triggered us to look at
process models as ordinary geographic maps. The “map metaphor” reveals some
interesting insights.

– There is no such thing as “the map”. One may use city maps, highway maps,
hiking maps, cycling maps, booting maps, etc. depending on the purpose for
which it is intended to be used. All of these maps refer to the same reality.
However, nobody would aim at trying to construct a single map that suits
all purposes. Unfortunately, when it comes to processes one typically aims
at a single map.

– Another insight is that process models do not exploit colors, dimensions,
sizes, etc. It is remarkable that process models typically have shapes (nodes
and arcs) of a fixed size, and, even if the size is variable, it has no semantical
interpretation. Colors in process models are only used for beatification and
not to express things like intensity, costs, etc. On a geographic map the
X and Y dimension have a clear interpretation. These dimensions are not
explicitly used when drawing process models.

To illustrate the above, consider Figure 8 showing two times the same Petri net.
Although from a logical point of view the Petri nets are identical, the lower one
also shows frequencies, costs, and time. For example, it is shown that the path
(A, B, D) is much more frequent than the path (A, C, D). Moreover, activities
C and D are more costly than A and B. The X-dimension is used to reflect
time. The horizontal position corresponds to the average time at which activity
takes places after the model is initiated by placing a token on the input place. It
clearly shows that most time is spent waiting for the execution of D. Figure 8(b)
is still very primitive compared to the drawing of maps. Maps typically also use
colors and other intuitive annotations to indicate relevant information. Moreover,
maps abstract and aggregate. Abstraction is used to leave out things that are
less significant (i.e., dirt roads and small townships). Aggregation is used to take
things together. For example, the roads of a city are taken together into a single
shape. In terms of Figure 8, abstraction could mean that C is removed because
it is too insignificant. Aggregation should be used to group A, B, and C into a
single node because they typically occur together in a short time distance.

Today, electronic maps overcome some of the limitations of paper maps. As
indicated above one may use different maps (city maps, highway maps, etc.)
depending on the purpose. When using Google Maps or a car navigation system
like TomTom it is possible to dynamically zoom-in, zoom-out, change focus, or
change the type of information. Moreover, these electronic maps are increasingly
used to project dynamic information on. For example TomTom is able to show
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The thickness of an arrow or 
node indicates its frequency, 
e.g., activity B is more frequent 
than activity C.

The size of a node 
refers to the costs 
involved, e.g., D is  
more costly than A.

The X-dimension has a temporal interpretation, 
i.e., the time between A and B or C is shorter 
than the time between B or C and D.

time

(a) Ordinary Petri net just showing the control-flow logic.

(b) Petri net also showing other dimensions (frequency, time, and costs).

Fig. 8. Using the map metaphor for drawing process models

traffic jams, fuel stations with the lowest prices, weather information, etc. These
ideas can also be used for process models.

– Process models should allow for different views, i.e., it should be possible to
zoom-in and zoom-out seamlessly. The static decompositions used by con-
temporary drawing tools force the user to view processes in a fixed manner.
Moreover, decompositions typically address the needs of a technical designer
rather than an end-user. Hence the challenge is to be able to support easy
navigation and seamlessly zooming-in/out when viewing process models.

– It should be possible to project dynamic information on top of process mod-
els. For example, it should be possible to view current process instances
projected on the process model and to animate history by replaying past
events on the same process model. This is similar to showing real-time traf-
fic information by a car navigation system like TomTom.

The limitations related to the representation and visualization of process models
mentioned above became evident based on experiences gathered in many process
mining projects. It seems that the “map metaphor” can be used to present
process models and process information in completely new ways [29,37]. Few
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Fig. 9. ProM’s Fuzzy Miner implements some of the ideas learned from (electronic)
maps [29]

researchers have been investigating such ideas. Here we would like to point out
two ideas we have been working on. In the context of YAWL [5,37,61,72], we
showed that it is possible to show current work items on top of various maps.
Work items can be shown on top of a geographic map, a process model, a time
chart, an organizational model, etc. In the context of ProM, we have used the
“map metaphor” to enhance the so-called Fuzzy Miner [29]. As presented in [29],
four ideas are being combined in ProM’s Fuzzy Miner to draw maps of process
models.

– Aggregation: To limit the number of information items displayed, maps often
show coherent clusters of low-level detail information in an aggregated man-
ner. One example are cities in road maps, where particular houses and streets
are combined within the citys transitive closure (e.g., the city of Eindhoven
in Figure 9).

– Abstraction: Lower-level information which is insignificant in the chosen con-
text is simply omitted from the visualization. Examples are bicycle paths,
which are of no interest in a motorists map.

– Emphasis: More significant information is highlighted by visual means such
as color, contrast, saturation, and size. For example, maps emphasize more
important roads by displaying them as thicker, more colorful and contrasting
lines (e.g., motorway “E25” in Figure 9).

– Customization: There is no one single map for the world. Maps are spe-
cialized on a defined local context, have a specific level of detail (city maps
vs highway maps), and a dedicated purpose (interregional travel vs alpine
hiking).

Figure 10 shows screenshot of ProM’s Fuzzy Miner [29]. The left screen shows
a discovered model. Note that the thickness of each arc is determined by the
number of times this path is taken (i.e., frequency). Moreover, some nodes and
arcs have been left out because they are insignificant. The left screen shows
an animation based on historic information. This animation shows the actual
execution of cases on top of the discovered model.

It is obvious that the ideas presented here are not limited to process mining.
When developing, analyzing, or controlling a PAIS, such visualizations can be
very useful.
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Fig. 10. ProM’s Fuzzy Miner (left) and the corresponding animation facility (right)

5.5 Analysis Techniques Do Not Use the Information Available

The last lesson to be learned is related to the limited use of existing artifacts.
People tend to model things from scratch and do not use information that is
already recorded in information systems. In practice, it is time consuming to
construct a good process model. For example, when constructing a simulation
model one not only has to construct a model but also determine the input pa-
rameters. A pitfall of current approaches is that existing artifacts (models, logs,
data, etc.) are not used in a direct and systematic manner. If a PAIS is used,
there are often models that are used to configure the system (e.g., workflow
schemas). Today, these models are typically disconnected from the simulation
models and created separately. Sometimes a business process modeling tool is
used to make an initial process design. This design can be used for simulation
purposes when using a tool like Protos or ARIS. When the designed process is
implemented, another system is used and the connection between the implemen-
tation model and the design model is lost. It may be that at a later stage, when
the process needs to be analyzed, a simulation model is built from scratch. This
is a pity as the PAIS contains most of the information required. As a result the
process is “reinvented” again and again, thus introducing errors and unnecessary
work. The lack of reuse also applies to other sources of information. For example,
the PAIS may provide detailed event logs. Therefore, there is no need to “in-
vent” processing times, arrival times, and routing probabilities, etc. All of this
information can be extracted from the logs. Note that a wealth of information
can be derived from event logs. In fact, in [56] it is demonstrated that complete
simulation models can be extracted from event logs.
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Contemporary simulation tools tend to support experiments that start in an
arbitrary initial state (without any cases in the pipeline) and then simulate
the process for a long period to make statements about the steady-state be-
havior. However, this steady-state behavior does not exist (the environment of
the process changes continuously) and is thus considered irrelevant by the man-
ager. Moreover, the really interesting questions are related to the near future.
Therefore, it seems vital to also support transient analysis, often referred to as
short-term simulation [49,57,71]. The “fast-forward button” provided by short-
term simulation is a useful option, however, it requires the use of the current
state. Fortunately, when using a PAIS it is relatively easy to obtain the current
state and load this into the simulation model.

The above not only applies to simulation models. Also other types of analysis
can benefit from the information stored in and recorded by the PAIS [57].

6 Conclusion

Workflow management systems, case-handling systems, enterprise information
systems, etc. are all examples of PAISs. We introduced these systems by charac-
terizing them in several ways. Moreover, we elaborated on the role of process mod-
els in the context of such systems. After this introduction, we focused on lessons
learned from process mining. The goal of process mining is to extract information
from event logs. These event logs can be used to automatically generate models
(process discovery) or to compare models with reality (conformance checking).

Extensive experience gathered through various process mining projects, has
revealed important lessons for the development and use of PAISs. The first lesson
is that models typically provide a very naive view of reality. The second lesson
is that it is far from trivial to adequately capture the characteristics of human
actors. The third lesson is that the true need for flexibility can be seen by
analyzing spaghetti-like process models. The fourth lesson is that the way we
view processes can be improved dramatically by using the “map metaphor”. The
fifth lesson is that many artifacts (models and logs) remain unused by today’s
analysis approaches.

Although these lessons were triggered by the application of process mining
to many real-life logs, they are useful for the whole PAIS life-cycle. It does not
make any sense to talk about analysis or enactment, without a good and deep
understanding of the processes at hand.
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Abstract. Today, there are many graphical formalisms for modelling
software—among others the Unified Modeling Language (UML). And
there are different technologies that automatically generate code from
such models. We call these as well as any approach that takes models
more seriously than just a sketch or an illustration Model-based Software
Engineering (MBSE ). Most of today’s code generation approaches, how-
ever, focus on standard behaviour; application specific behaviour often
still needs to be programmed manually. The ultimate goal of MBSE,
however, is to generate all code automatically.

In the field of Process-aware Information System (PAIS) and workflow
management, models have been in the focus right from the beginning.
What is more, the models were used to define and enact application
specific behaviour or business logic by providing process models. This
way, they are one of the successful precursors of Model-based Software
Engineering.

In this paper, we will give an overview of the concepts and technologies
in MBSE, and its main ideas, principles, and concepts. We will point out
some differences to PAIS, but also some common ground, and we show
how both fields could benefit from each other. This way, we want to start
bridging the gap between MBSE and PAIS .

Keywords: Business Process Modelling, Model-based Software Engi-
neering (MBSE), Model-driven Architecture (MDA), Process-aware In-
formation Systems (PAIS), Process models.

1 Introduction

In the 90ties, Workflow Management Systems (WfMS ) [16,4,14,35,22] promoted
the idea that a system supporting the business processes of an enterprise or
administration could be realized based on process models. These process models
could be executed or, in the terminology of workflow management, enacted by
a workflow engine. This helped decreasing the development costs and increasing
the flexibility of the systems. What is more, the process models are much closer
to the world of the users and the application domain than modelling notations
and programming languages from classical software engineering. Today, many
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of the ideas from workflow-management live on—just under the more modern
names web services and service oriented architecture (SOA).

Here, we cannot give a detailed evaluation of the success and the impacts of
workflow management systems. For now, it should suffice that workflow man-
agement systems have shown that it is possible to build information systems
by making use of models without any programming. Of course, this works only
for a specific kind of information systems, which today are called Process-aware
Information Systems1 (PAIS ) [7].

About ten years later, the Object Management Group2 (OMG) promoted an
idea that takes the next step: the Model-driven Architecture (MDA) [25,21].
The MDA suggests to take models much more seriously during the software
development process and, ultimately, to get rid of any kind of programming
when making software. In particular, the MDA is meant for any kind of software
and not restricted to PAIS. Note that the MDA leaves some freedom on how to
achieve these goals and visions. Fowler [9] gives a nice overview on the different
directions, which he calls “camps”. Still, the MDA is tightly related to other
OMG standards and technologies such as the Unified Modeling Language (UML)
[30,29], the Meta-object Facility (MOF ) [27], the XML Metadata Interchange
(XMI ) [26], and the Query/View/Transformation (QVT ) [28]. Moreover, MDA
focuses on two specific kinds of models, which are called Platform Independent
Model (PIM ) and Platform Specific Model (PSM ), and on the transformations
between these models and to the final code. These kinds of models are, however,
relatively technical already. The models that are used in workflow modelling are
much closer to the domain and would be called Computation Independent Models
(CIM) in the MDA. But, MDA is not very explicit on how it deals with CIMs;
in fact, many publications on MDA do not even mention CIMs at all.

We believe that MDA had and will have a great impact on the way software
will be developed: focusing on modelling rather than on programming. And it
shares or carries on some visions of workflow management, and promotes them
for systems that are not specifically process-aware. But due to the use of more
technical models, the use of transformations for obtaining the final software,
and the focus on related OMG technologies, MDA does not subsume technolo-
gies from workflow management and other modelling approaches. Therefore, we
define a bit broader term here: Model-based Software Engineering (MBSE )3. We
call any kind of software or system development in which models are taken more
seriously than a nice sketch, illustration, or drawing MBSE. This can either be

1 Actually, PAIS has two slightly different meanings: as a characteristics of information
systems to be developed and as a technology for developing these kinds of systems.
In order to keep these two meanings apart, we use PAIS for the kind of information
systems only; we introduce the term Process-centric Software Engineering (PCSE )
for the technology.

2 See: http://www.omg.org/
3 Sometimes, the term Model-driven Development (MDD) is used for MDA-like ap-

proaches that are not focused on the OMG technologies; but in other publications
MDD is used as synonym for MDA; and, as MDA, MDD is an OMG trademark.
Therefore, we use the more neutral term MBSE here.

http://www.omg.org/
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Fig. 1. A simple Petri net
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Fig. 2. A meta model for Petri nets

more or less automatic code generation, some kind of analysis or verification, or
the execution of the models. In this sense, workflow management is Model-based
Software Engineering.

In this paper, we will discuss how ideas of MBSE can be used for the devel-
opment of PAIS, but also how concepts and lessons learned from workflow man-
agement systems—alongwith other concepts from software engineering—can help
making the dream of developing software without any programming come true. To
this end, we need to understand why this idea worked for PAIS already more than
ten years ago, but why there are still some deficiencies in general.

2 Model-Based Software Engineering

In this section, we present some more details on MBSE, its ideas, concepts, vi-
sions, and its limitations. We do this by discussing a simple example project: a
Petri net editor, which is realized in the Eclipse Modeling Framework (EMF )
[5] and the Graphical Modeling Framework4 (GMF ). Without going into all de-
tails, this example illustrates, how software can be generated fully automatically
from models: a class diagram capturing the domain of Petri nets and a model
representing their graphical appearance.

2.1 Example: A Petri Net Editor

We start with explaining the syntax of a simple version of Petri nets: Figure 1
shows a very simple example. The Petri net consists of two types of nodes,
which are called places and transitions, and arcs between them. The places are
graphically represented as circles, the transition are graphically represented as
squares, and the arcs are graphically represented as arrows pointing from one
node to another. Moreover, there can be any number of tokens on a place, which
are shown as black dots.

A Meta Model for Petri Nets. Above, we have explained the concepts of
Petri nets in natural language. Figure 2 shows how the concepts of Petri nets can
4 See http://www.eclipse.org/modeling/gmf/ .

http://www.eclipse.org/modeling/gmf/
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be expressed as a UML class diagram, as a so-called domain model. The classes
(represented as boxes) define the different concepts of Petri nets, the associations
(represented as arrows between the classes) represent the relationships between
these concepts. For example, the two associations between the class Arc and
Node say that each arc has exactly one source and exactly one target node.
Moreover, there is an inheritance between class Node and the classes Transition
and Place, which is graphically represented by a line starting with a triangle.
This inheritance says that transitions and places are a special kind of node.
Likewise, the class Object and the inheritance relation to Node and Arc say, that
nodes (and with it places and transitions) and arcs are objects of a Petri net. A
PetriNet consist of any number of such objects. This is represented by a special
kind of association, which is called composition; a composition is graphically
represented by a line that starts with a black diamond. The other composition
in that diagram says that a place can contain any number of tokens.

This use of class diagrams is standard in software engineering. Since we do
not assume that all readers are software engineers, we explained the diagram
and its notations anyway. Note that we call the diagram of Fig. 2 a meta model.
The reason is that it is a model of what Petri nets are. Since a Petri net itself is
a model already, this is a “model of a model”, which is called a meta model.

Actually, this meta model is a slightly simplified version of the meta model
that is used in the definition of the Petri Net Markup Language PNML [17,3],
an interchange format for different versions of Petri nets, which is currently
standardised as International Standard ISO/IEC-15909-2 [15,18]. The PNML
meta model was actually used to implement the PNML Framework, which helps
Petri net tool makers implementing the PNML standard [13] by providing an
API 5 for Petri nets. The PNML Framework was implemented using the EMF-
technology, which generates the API and some code from the class diagram.

Use of EMF-models. In this section, we briefly discuss how such a model
can be used for automatically implementing standard functionality by using the
EMF-technology. To this end, we interpret the above model as an EMF-model,
which technically is different from UML class diagrams, but conceptually means
the same.

Once we have created this meta model in EMF, we can fully automatically
generate program code that implements standard functionality. First and fore-
most, EMF generates an API, which consists of a set of classes and interfaces that
provide methods for creating Petri nets, and for adding, deleting, and changing
its objects and their relation. The generated program code will automatically
take care that the restrictions of the meta model are maintained, and that the
Petri net is consistent at all times.

In addition, EMF generates code for loading and saving Petri net models from
and to XML-files. This relieves us from programming own routines for reading
and writing XML-files, and in particular from using XML-parsers explicitly. The
XML-format in which the models are stored is defined by the XMI standard [26].
5 API stands for Application Programming Interface.
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XMI defines for any UML- resp. EMF-model, how its instances are represented
in XML. And EMF generates the code for loading and saving the instances in
exactly this format.

In many cases, using the XMI syntax is an easy way for loading and saving
models to files. PNML, however, comes with its own XML-format. Therefore, the
PNML Framework needs to provide some extra information on how to represent
the instances in PNML-syntax. This could be manually programmed code for
explicitly reading and writing the files. But, there is a technology that helps us
implementing these methods more easily: Java Emitter Templates (JET ). As
suggested by the name, this requires to write some templates for all the classes
of the model, which define the XML-syntax and are then used to generate the
code6 for loading and saving models in that format. JETs where used for the
realization of the PNML Framework (see [13] for details).

But, EMF provides even more: Often, different applications access and mod-
ify such a model more or less independently of each other. Then, the different
applications need to inform each other about changes; this is typically done by
some notification mechanism such as the observer pattern [10]. EMF generates
all the code for this notification mechanism automatically. This mechanism can
then be used for implementing an editor for the models using the Model-View-
Controler -principle (MVC )7. Actually, EMF can even generate a simple editor
for creating, viewing, and editing instances of the model in a tree-like structure
based on this MVC pattern.

Generating the Editor. For Petri nets, this automatically generated tree-
editor is of limited use. We rather want an editor in which Petri nets can be
edited in the graphical syntax as shown in Fig. 1. This is where GMF comes
in, which is meant to automatically generate graphical editors on top of EMF
models and the code generated by EMF.

To understand the main idea, let us ask the following question: In addition
to features of standard editors, what do we need to know for implementing
a specialised graphical editor for Petri nets? Basically, we need to know how
the different elements from the meta model from Fig. 2 should be represented
graphically. We gave this information already when we explained Petri nets in
the beginning of Sect. 2.1. Figure 3 illustrates this mapping a bit more formally:
Transitions are mapped to squares, places are mapped to circles, arcs are mapped
to arrows, and the tokens are mapped to filled circles. Now, Fig. 2 and Fig. 3
together give a full account of the concepts of Petri nets and their graphical
representation as explained in the first paragraph of Sect. 2.1.

Based on this (and a little more) information, the GMF can generate a fully
fledged Petri net editor. To this end, this information is entered via some GMF-
specific tool (so Fig. 3 is just an illustration), from which we can generate the

6 Here, we cannot go into the details of JET. For more details see the introductory
tutorial on JET at
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html

7 The MVC-Principle is attributed to Trygve Reenskaug back in 1979.

http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
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Fig. 4. The Petri net in abstract syntax

full code for the Petri net editor. But, we do not go into the technical details of
GMF here. Here, it may suffice that it takes about 15 minutes to provide this
information to GMF and to generate the graphical editor for Petri nets—with
all nice features you would expect: zooming, overview view, properties view, etc.
And of course, you can add, delete, and modify places, transition, and arcs—and
load and save Petri nets to and from files.

Altogether, we have seen that the EMF- and GMF-technology can be used
for modelling a complete Petri net editor; the editor can then be generated fully
automatically without writing a single line of code. Of course, acquiring the
skills in using this technology takes some time; and there are some caveats in
using EMF and, even the more, GMF. Still EMF and GMF show that MBSE
technologies made a big step forward. And we hope that EMF and GMF and
their application help overcoming the big mental blockade that still keeps our
way of thinking back at the programming level. In addition to EMF and GMF,
there are many other technologies and commercial tools that support a similar
kind of code generation: e. g. the Enterprise Architect, the Rational Software
Architect, and Together.

2.2 More Concepts

In the previous section, we have seen an example of how MBSE can be used
today. Next, we will discuss some more advanced concepts in order to better
understand the field.

Abstract and Concrete Syntax. First, we have a look at our Petri net
example again. The class diagram from Fig. 2 is a meta model for Petri nets, and
the Petri net of Fig. 1 is an instance of that meta model. But, an instance of a
class diagram can also be represented as an object diagram such as the one shown
in Fig. 4: It shows the objects of the Petri net as instances of the classes, and
it shows the links between them, which are instances of the associations of the
class diagram. The object diagram from Fig. 4 represents exactly the Petri net
from Fig. 1. The representation as object diagrams as shown in Fig. 4 is called
abstract syntax, the representation in its graphical form as shown in Fig. 1 is
called concrete syntax 8.
8 Personally, I prefer the term graphical syntax since this term is a bit more suggestive.
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Fig. 6. Meta model in abstract syntax

The abstract syntax (object diagram) comes with the used technology, UML
in our case. For a given notation, it is clear how its instances look like in abstract
syntax. And for automatically generating the Petri net editor in Sect. 2.1, we
needed to define a mapping from the abstract syntax to the concrete syntax.

The Meta Model Diagonal. At last, we change the perspective from someone
who develops some piece of software, such as our Petri net editor, to someone
who develops a tool that supports MBSE such as EMF and GMF: typically
called a CASE -tool9. So we actually move up one meta-level further: In this
perspective, the class diagrams are the models for which we need to define a
meta model.

In Sect. 2.1, we started out from a Petri net example, identified its concepts
and the relations between them, and then, in Fig. 2, came up with a meta model
for Petri nets. Now, we do the same thing for class diagrams. Figure 2 shows
an example of a class diagram: It consists of classes and associations between
them. For simplicity, we do not consider inheritance and compositions here. The
simplified10 meta model for class diagrams is shown as a class diagram in Fig. 5.

Again, we can represent instances of this meta model in two different ways.
In concrete syntax, such as the one shown in Fig. 2, or in abstract syntax as
an object diagram. For example, Fig. 6 shows the two classes Node and Arc of
Fig. 2 with the two associations between them in abstract syntax—the rest of
the diagram is omitted in order not to clutter the graphics.

The step from an example of a class diagram to its meta model is exactly the
same as from an example of a Petri net to its meta model. Still, it twists our brains
a bit more. The reason is that, on the next meta-level, we have a class diagram,
which very much looks like its instances in graphical syntax again—actually, it is
its own instance. This twist occurs whenever we develop a CASE-tool that uses
its own technology. And it is crucial conceptually as well as technically that at
some level in this hierarchy the next higher level will exactly look like the level
below. Conceptually, this means that we can express the concepts of a MBSE-
technology in itself. This way, the stack of “turtles over turtles” does not continue
indefinitely; rather it ends with a reference to itself. This is important, because
the technology that should be promoted by the CASE-tool can be used to develop

9 CASE stands for Computer Aided Software Engineering.
10 The meta models of EMF and UML are much more complicated [29,5].



34 E. Kindler

that very tool. Actually in the MOF, this would typically end on yet one level on
top of the diagram shown in Fig. 5: the so-called MOF-level 3; but, we do not go
into the details of MOF here (see [27] for details).

Figure 7 gives an overview on the models we introduced so far, and the differ-
ent levels: Petri nets are at level 0, the meta model11 for Petri nets is at level 1,
and the meta model for class diagrams is at level 2.

Usually, all these models are arranged vertically on top of each other. This,
however, does not leave room to distinguish between concrete and abstract syn-
tax, and leaves no room for defining the concrete syntax for a model. Therefore,
we arranged the models in concrete syntax on the main diagonal of a matrix.
The vertical dimension corresponds to the MOF levels, which are indicated on
the left side. The horizontal dimension is for the syntax. Each entry in the main
diagonal of the matrix represents a model in concrete syntax. On the right side
of such a model, we show the model represented in its abstract syntax, which
actually is an instance of the model sitting exactly on top of it. On the left side
of a model in the main diagonal, we show the mapping that defines the concrete
syntax for the instances of that model, i. e. its view. The instance in concrete
syntax immediately below it uses the graphical elements of that mapping.

Altogether the main diagonal shows models on the different levels, the upper
secondary diagonal defines the graphical syntax for the instances of the model,
and the lower secondary diagonal shows the abstract syntax of the models. Nor-
mally, we do not see much of the abstract syntax; this just reflects the internal
representation of the objects in the main memory, on which the API is working.
Moreover, this abstract syntax is used for externalising the models to a file. For
example XMI defines, how to map this abstract syntax to XML.

Note that Fig. 7 does not show all details. For example, the abstract syntax
representation of the Petri net meta model does only cover the Node and Arc
classes and the associations between them. And we did not even discuss the
definition of the concrete syntax for class diagrams, since it is quite sophisticated.
But, GMF is shipped with an editor for UML and EMF class diagrams that is
completely defined in GMF. This shows that editors for models that are a bit
more complicated than Petri nets can be defined that way.

Transformation Technologies. In order to make all this work, MBSE needs
some basis technologies. The most important ones are transformations between
different kinds of models (such as the platform independent and the platform
specific model in MDA) and from models to code. The first kind is called
Model-to-Model transformation (M2M ), the second kind is called Model-to-Text
transformation (M2T ). As indicated earlier, EMF makes use of Java Emitter
Templates (JET) for M2T-transformations. OMG features a separate standard,
which is called QVT, for the M2M-transformations in their MDA approach [28].
But, software companies have their own specific ways of doing their transforma-
tions and code generation (e. g. [33]). The CASE tool FUJABA12 greatly benefits

11 As mentioned earlier this would, typically, be called a model only.
12 See http://www.fujaba.de/

http://www.fujaba.de/
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Fig. 7. The meta model diagonal

from the use of Triple Graph Grammars (TGGs) [32] for M2M-transformations.
Actually, we believe that due to their conceptual clarity and its descriptive way
of defining relations between models, TGGs have a great potential in MBSE for
defining transformations and for keeping different models synchronized [20,11].
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2.3 Limitations

Though our Petri net editor is a great example for demonstrating the power
of MBSE, it also shows some of its limitations: The editor does not have any
specific functionality in addition to being an editor. If we want to equip it with
a simulation function or some analysis features, we need to write some program
code for that. Of course, that is not a restriction of MBSE in general, but a
limitation of the used EMF technology13, which focuses on the structural parts
of a model, and does not have concepts for modelling a specific behaviour. Still,
we believe that modelling non-standard behaviour is one of the weaknesses of
today’s MBSE technologies in general.

Actually, there are different concepts and technologies that allow the mod-
elling of behaviour and to generate program code from that. The most prominent
example might be Executable UML [24], which is featured by the OMG. Another
example are story patterns and story diagrams [8], which are at the core of the
FUJABA tool. This shows that, in principle, it is possible to model non-standard
or application-specific behaviour of some software.

The problem with these approaches is that they are often on a quite low level
of abstraction and do not easily integrate with other approaches. We believe
that one of the main reasons is that UML does not provide a canonical way for
integrating behavioural models with structural models. In a class diagram, for
example, the only concept relating to behaviour are methods, which are quite
close to programming already and often not exactly what we need in a domain
model. What is missing here is a concept of events (e. g. [23]), which can be used
to identify interesting or relevant points of the behaviour from the domain’s
point of view, and which then can be used for defining synchronizing and adding
different kinds of behaviour to these points.

This is why some application domains come with their own specific notation
for modelling the behaviour. These approaches are called domain specific mod-
elling (DSM ) and domain-specific languages (DSL) [6]. One example is workflow
management systems and PAIS. Another example is Triple Graph Grammars
(TGGs) for defining the relation between different kinds of models in a very
suggestive way; still these TGG models of a relation are executable, making a
transformation from one model to the other either by generating code for the
transformation or by interpreting the TGG [20]. But, by their very definition,
these approaches are not universal.

Altogether, MBSE technologies are working today; they are able to generate
code for standard behaviour. In some domains, it is possible to model application-
specific behaviour. But, there is no approach that works universally. Therefore,
some code still needs to be written manually. A universal approach for modelling
behaviour still needs to be found.

13 Note that we do by no means blame EMF for that. In fact, EMF might be so
useful already today since it restricts to what can be really done fully automatically:
generating all kinds of standard behaviour, which goes much beyond our Petri net
editor example; for example, it covers transactionality (see EMF Transactions).
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3 Process-Aware Information Systems

In the previous section, we have outlined the main idea of MBSE. One obser-
vation was that a universal approach for modelling behaviour (on the domain
level) is yet to be found. Amazingly enough, this works pretty well in the area of
Process-aware Information Systems (PAIS) and Workflow-Management Systems
(WfMS). WfMS allow us to model business processes in a notation very close to
the domain without forcing us to use artifacts just for the sake of the used tool
or technology. Still, these models can be enacted.

In this section, we will give a brief account on business-process modelling and
some reasons why we believe this idea worked.

3.1 Example: A Business Trip

We start with a simple Petri net model—a workflow net [34]—of a business trip,
which is shown in Fig. 8. The model shows the different tasks of a business trip
and the order in which they are executed. The tasks are represented as transitions
of the net. Initially, only the task “apply for trip” is enabled. After starting and
finishing this task, the tasks “support trip” (a superior countersigning the trip
application), and the task “book trip” are enabled concurrently. After the trip,
the employee may apply for reimbursement of the travel expenses. Note that, at
this stage, there might be an iteration: If the bills for the trip are rejected, the
billing activity will be repeated.

apply for trip

book trip

support trip approve trip

make trip write bill

approve bill reimburse bill

reject

in

out

Fig. 8. A model of a business trip

Together, with some other models representing the data and resources of the
process, this model can be used to enact the process. But, we do not discuss
these other models here. Rather, we discuss the concepts and terminology inde-
pendently of a concrete example.

3.2 Concepts of Business Process Modelling

This discussion follows the lines of AMFIBIA [2] but is roughly compatible with
other terminology [14,34,22]. The original intention of AMFIBIA was to iden-
tify the concepts necessary for modelling business processes in such a way that
they are independent from a particular modelling notation and that models for
different aspects of a business process can be easily integrated with each other.
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Fig. 9. The core concepts of BPM [2]
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Fig. 10. The main aspects of BPM [2]

Hence we called it A Meta-model For the Integration of BusIness process mod-
elling Aspects. But, it turned out that, based on these concepts, we could even
implement a workflow engine independently of a particular modelling notation,
which we call AMFIBIA too.

A business process involves a set of tasks that are executed in some enter-
prise or administration according to some rules in order to achieve certain goals.
Though the goals and objectives are very important for designing and under-
standing a process, this is the part of business processes that, typically, is mod-
elled only very informally or not modelled at all. The business process model is
a more or less formal and a more or less detailed description of the persons and
resources involved in the execution of a business process and its task and the
rules governing their execution.

An execution of a business process model is an instance of the business process.
Often, the instances of a business process are also called business processes. Since
this easily results in confusion, we use the term business process model for the
model and the term case for the instance. The same distinction, applies for tasks:
The term task refers to a task in the model; an instance of a task in some case is
called an activity. Note that, even within the same case, a task can be executed,
i. e. instantiated, many times due to iterations. These core concepts of business
processes are modelled in the class diagram of Fig. 9.

There are many different ways how business processes can be modelled, which
we call business process modelling notations, and when they come with a precise
meaning business process modelling formalisms. Independently, of the concrete
modelling notation, it is well accepted that there are three main aspects of busi-
ness processes that need to be modelled for a business process: control, informa-
tion, and organization (see Fig. 10). The control aspect defines the order in which
the different tasks of a business process are executed, where concurrent or par-
allel execution of different tasks is allowed. The organization aspect defines the
organization structure and the resources and agents, and the way in which they
may or need to participate in the different tasks. The information aspect defines
the information and documents that are involved in a business process, how it is
represented, and how it is propagated among the different tasks of the process.
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Typical process modelling notations cover different aspects in a single nota-
tion. For conceptual clarity, however, we separated the concepts of the different
aspects from each other in AMFIBIA [2]. In particular, AMFIBIA identifies the
events that are relevant for coordinating the behaviour of the different aspects
of a workflow engine. Typical examples of such events are “initialize process”
or “intitialize task”. Then, the different aspects of a workflow system can con-
tribute their behaviour to the overall system by triggering or by synchronizing
on these events—without knowing the details of other aspects. AMFIBIA uses
Aspect-oriented Modelling (AoM ) for modelling a workflow engine. The AM-
FIBIA engine was implemented by hand based on these models, but we have
shown that these kind of extended UML resp. EMF models can also be inter-
preted and executed directly [19].

3.3 Workflow Management

Typically, business process models are modelled in a notation that is quite close
to the domain and can be understood by managers and staff who are supposed
to manage and perform them (cf. our model for the control flow of a business trip
in Fig. 8). In order to enact these processes by a Workflow-Management System
(WfMS ), some more technical details need to be added to the models. This is
sometimes called the operational or technical aspect. The most important opera-
tional issue is which applications can be used for actually performing a task, and
how the information of the process model is mapped to such an application and
how information for the workflow can be extracted from it again. Conceptually,
this is a mapping from the tasks of a business process model to the applications
that are used for executing the tasks. In some cases, these applications are very
simple such as a simple form for entering some information; in other cases, these
applications can be heavy weight like text processors or numerical software. The
integration of such applications is quite a challenge and needs all kinds of tech-
nical and programming work, such as implementing adapters or wrappers. But
this is independent from an individual task or a specific process.

3.4 Discussion

Altogether, the business process models together with the operational informa-
tion can be used for executing them. In particular, the models fully define the
dynamic behaviour of the business process. This rises the question, why there are
still some problems with modelling the behaviour in MBSE? One might claim
that, even in workflow management, the most interesting part of the business
processes still needs to be programmed: the applications. But, we do not con-
sider that as a valid argument because that is work that could be done for all
“relevant” applications once and for all; at least it is not specific to a particular
business process. Moreover, the techniques from SOA and web services should
help achieving this more easily now.

Here, we give some reasons why we believe that modelling and enacting ap-
plication specific behaviour worked for business processes:
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1. There is a notation that is specific to a domain; actually in this context, it
might be better to talk about a field, because workflow-management covers
many different domains. Actually, there is a plethora of many different mod-
elling notations for workflows; basically, every workflow system comes with
its own notation. But, they are very similar, so that the existence of many
different notations is not the actual reason for the success; the reasons for
the many notations are the historical development of the field and marketing
considerations.

2. Therefore, we believe that it is not so much the different notations that made
workflow-management work. Rather, it was to make two concepts explicit:
the process and the task (resp. their instances cases and activities) as shown
in Fig. 9. This allows us to model, reason about, and coordinate tasks without
going into the details of how a task is implemented. Even more, the business
process notations do not even allow us to go into the details of a task because
this is considered to be atomic within a process.

3. One consequence of making the concepts of process and task explicit is
the natural distinction between coarse-grain and fine-grain behaviour. The
coarse-grain behaviour is the process and the coordination of its task, the
fine-grain behaviour is in the tasks. Actually, business processes modelling
does not even bother about the fine-grain behaviour, since this is within
the applications. Most importantly, there is a dedicated notation for the
coarse-grain behaviour: the process model.

4. A second consequence of the distinction between process and task is the
different time scale. Business processes and the scheduling of their tasks
are in the time scale of minutes, hours, days, and even month and years.
Reasonable response times on user interactions are in the area of seconds not
in the area of milli- or even nanoseconds. Therefore, it is possible to interpret
the models instead of generating code for executing them. When models
are interpreted, they must be taken seriously since this is what is actually
executed. This is an advantage over code generation since generated code
can be executed independently from the model, and people could change
it independently from the model—ultimately making the original models
irrelevant.

4 The Full Picture

The separate discussion of MBSE and PAIS in the previous two sections pretty
much reflects the separation of the two fields. Our definition of MBSE, however,
makes PAIS a part of MBSE, and we hope that this helps to get the best of
both fields for making modelling the main business when developing all kinds
of software and information systems. In this section, we give an overview on the
field and provide it with some more structure.

4.1 Overview of Approaches

Figure 11 gives an overview of MBSE. Within the rounded box of MBSE, you
see some specific approaches. We use the two dimensions to characterize these
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approaches. The horizontal dimension indicates the characteristics of the sys-
tems that are typically developed by these approaches (application domain).
The vertical dimension indicates how close the modelling notation or the set
of modelling notations are to the domain or to the technical realization14. The
position and dimension of the boxes for an approach indicate, which application
domains are typically covered and which modelling levels are covered.

Let us first have a closer look at the application domains, which are indi-
cated below the box for MBSE. In our context, the main distinction is between
general information systems and process-aware information systems. But, there
are other kinds of software and systems that are not considered as information
systems at all. One example are embedded systems, which typically do not need
to store data persistently but are highly interactive. Note that, according to our
definition, a PAIS is an information system that in some way supports user pro-
cesses explicitly. We call the technology for developing these kinds of systems by
providing explicit process models Process-centric Software Engineering (PCSE )
in order not to confuse the kind of systems to be developed with the technology
for developing them.

Even within a single application domain and even within a single system,
there are parts with completely different characteristics. This is indicated at the

14 The idea of the “technical” side is similar to what the MDA calls platform. However,
there are some modelling notations or programming languages that are independent
from a platform; still they are very technical: In order to model some concepts of a
domain, the notation forces us to introduce some artifacts that do not occur in the
domain itself. Therefore, we used the terms domain and technical here.
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bottom of Fig. 11: Most of today’s software systems are interactive or reactive,
which means that the system is in permanent interaction with its users or envi-
ronment. This contrasts with classical theoretically approaches to capture com-
putation as something that starts with some input, does some computation, and
then terminates with some output. Therefore, Harel and Pnueli distinguished be-
tween reactive systems and transformational systems [12]. Information systems
are reactive in nature. But, they have parts that are transformational in nature.
For example, the transformational part could be a procedure for analysing some
data, or software that calculates an image from the signals of a computer to-
mograph, or the simulation of some finite-element models, or the encryption or
decryption of some text. The transformational parts are much more algorithmic,
and are typically developed separately. Since algorithms are quite close to pro-
gramming, it is quite natural to program these parts directly. Therefore, they are
often out of the scope of MBSE, except that we need an interface for invoking
the algorithms. These transformational parts of software are indicated by the
shaded box in our figure.

Let us have a closer look at the different approaches within MBSE and their
characteristics now. The typical business process modelling notations are close
to the domain. That is why we placed them at the very top. Actually, we placed
this box partly outside MBSE since business process modelling does not always
have the purpose of developing or improving a software system. The notations for
workflows are more technical (or add additional models that are more technical).
Clearly, the WfMS approaches as well as all PCSE approaches are made for
supporting some form of process. Therefore, they are typically used only for the
development of PAIS.

The MDA covers all kinds of systems. And the MDA can be used for devel-
oping PAIS, even if the processes are not made very explicit in the notation.
Actually, there are some specific UML profiles for processes, but we consider
this as a half-hearted solution to PCSE. That is why MDA covers only a part of
PAIS as application domain. We consider the models of MDA to be a bit more
technical, so that we placed them a bit lower than PCSE. Actually, the MDA
[25] defines so-called computation independent models (CIM ) that are closer to
the domain. But, the MDA itself and most of the realizations do not give much
details on the use of CIM. That is why we have indicated that part of MDA by
a dashed line.

We also included Mathlab in this diagram as an example of a modelling ap-
proach that is often used in the design of embedded systems. And we included
Aspect-oriented Modelling (AoM ) in this schema, since we believe that this might
be one of the concepts that help to model behaviour close to the domain, and
to integrate different forms of behaviour models with each other.

This was actually the idea of AMFIBIA, and we have shown that a complete
workflow management system could be fully modelled (in particular covering
its behaviour) that way [2,19]. The most important concept was to make all
the relevant events explicit, so that the different aspects could contribute to
the behaviour by synchronizing on these events. The actual behaviour of the
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different aspects was then defined in terms of automata that were synchronized
with and triggered by the events.

4.2 Combining Powers

As pointed out earlier, PAIS resp. PCSE has its strength in modelling the coarse-
grain behaviour, and it does not deal with the fine-grain behaviour at all. By
contrast, classical MBSE does not have a universal concept for modelling be-
haviour, but the executable approaches work better on the fine-grain behaviour.
The question, now is how these strengths can be combined. In this section, we
briefly indicate some ideas, which of course need further research.

Coarse-grain and Fine-grain Behaviour. One lesson MBSE can learn from
PCSE is the clear separation of coarse-grain and fine-grain behaviour and the
way it is achieved. UML has different notations for modelling behaviour on
different levels and there are some UML profiles for processes. Still, it is not
clear how they work together and how they are integrated. A methodology for
consistently using these concepts such that they can automatically be integrated
is still missing. Making the concepts of process and task explicit in the structural
as well as in the behavioural models might be a step in that direction.

Actually, there are technologies that allow us to realize such an integration
of fine-grain and coarse-grain behaviour. Most prominently there is BPEL4WS
and WSDL for defining processes on top of web services [1] or in the terminology
of Peltz [31] for the orchestration and choreography of services. But, these are
on the technical side already. What would be needed is something closer to the
domain, that later allows a smooth transition to these technologies.

Modelling Events. As pointed out earlier, introducing an explicit concept of
events in a domain helps better capturing the domain and its behaviour. Then,
the events can be used for coordinating and synchronizing the behaviour of
different aspects. Moreover, the events can be used to coordinate the fine-grain
and the coarse-grain behaviour of a system, by synchronizing on them.

DSM only where Necessary. We pointed out already that there are many
different notations for modelling behaviour in specific domains. One such domain
are PAIS. But, this does not mean that everything needs to be domain specific.
For example, the information aspect could use the very same notations as in
MBSE. This would make it easier to use existing technologies from MBSE for
the development of PAIS and to switch between the two worlds.

This way, we would be able to use what ever is best from the two fields.

5 Conclusion

In this paper, we have given an overview of MBSE and suggested that PAIS,
resp. PCSE should be considered as a part of MBSE. We pointed out that
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one of the main factors for making WfMS and PAIS a success is the clear and
enforced separation between coarse-grain and fine-grain behaviour by making
the concepts of process and task explicit. In order to exploit that in general
software engineering, we need to have such an enforced separation and a way to
integrate the fine-grain and the coarse-grain behaviour in the final software.
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Abstract. InProcess-Aware Information Systems, business processes are
often modeled in an explicit way. Roughly speaking, the available busi-
ness processmodeling languages can bedivided into twogroups. Languages
from the first group are preferred by academic people but shunned by busi-
ness people, and include Petri nets and process algebras. These academic
languages have a proper formal semantics, which allows the corresponding
academic models to be verified in a formal way. Languages from the second
group are preferred by business people but disliked by academic people,
and include BPEL, BPMN, andEPCs. These business languages often lack
any proper semantics, which often leads to debates on how to interpret cer-
tain business models. Nevertheless, business models are used in practice,
whereas academic models are hardly used. To be able to use, for example,
the abundance of Petri net verification techniques on business models, we
need to be able to transform these models to Petri nets. In this paper, we
investigate anumberofPetri net transformations that already exist.For ev-
ery transformation, we investigate the transformation itself, the constructs
in the business models that are problematic for the transformation and the
main applications for the transformation.

1 Introduction

Today, Business Process Management (BPM) is becoming more and more im-
portant to the business, which explains the increased popularity of business
process modeling, and a plethora of similar but subtly different process model-
ing approaches has been proposed, including the Web Services Business Process
Execution Language (BPEL) [1], the Event-driven Process Chains (EPCs) [2],
the Yet Another Workflow Language (YAWL) [3], the Business Process Model-
ing Notation (BPMN) [4], process algebras [5] and Petri nets [6,7]. The result-
ing babel has raised the issue of comparing the relative expressiveness between
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languages and translating models defined in one language into equivalent models
defined in another language.

Academic people prefer languages like process algebras and Petri nets, as
these languages have proper formal semantics and, hence, one can check relevant
and interesting properties on corresponding models. Business people, however,
prefer languages like BPEL, EPCs, and BPMN, which more than often lack
these proper formal semantics. As a result, business processes found in practice
are modeled in a way that leaves room for interpretation. An exception to this
is YAWL, which has its roots in the academic world, but is actually used in
practice, and has a semantics in terms of reset nets (which will be explained
further on in this paper). YAWL supports the most frequent control-flow patterns
found in the current workflow practice. As a result, most workflow languages
can be mapped onto YAWL without loss of control-flow details, even languages
allowing for advanced constructs such as cancelation regions and OR-joins. If
we want to combine the best of both worlds, that is, to combine the ability
to calculate certain properties on a formal semantics and the actual, existing
in practice, business models, we need to transform these business models to
languages with a formal semantics. In this paper, we will cover a number of
transformations from business models in BPEL, EPCs, YAWL, and BPMN,
focusing on transformations onto Petri nets.

The remainder of this paper is organized as follows. Section 2 introduces the
concepts (like Petri nets and relevant properties). These concepts are presented
in an informal way, for a more formal description, we refer to the literature on the
transformations itself. This section also explains ‘workflow patterns’ (frequently
used constructs in business process modeling) and how these patterns can be
transformed into Petri nets. Finally, this section presents a running example,
which we use throughout the paper to illustrate the transformations. Sections 3,
4, 5 and 6 introduce the business modeling languages, their transformations
into Petri nets and the constructs that are difficult or impossible to transform.
Each transformation is explained by reference to the workflow patterns that the
language supports. For additional details on these transformations, we refer to
the existing literature on these transformations. Section 7 concludes the paper.

2 Preliminaries

This section first presents the different types of Petri net used to formalize the busi-
ness process modeling languages. Second, it explains some well-known patterns
from the area of business process modeling, their representation using Petri nets
and possible difficulties to represent them. Third, it presents an example business
process that wewill use throughout this paper to illustrate the modeling languages.

2.1 Petri Net Classes

We assume the standard definition of Petri nets [6,7] to consist of two finite
disjoint sets of places and transitions (graphically represented by circles and
squares) together with a flow relation (represented as directed arcs).
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A Petri net is called a workflow net [8] if it has a distinct source place, a
distinct sink place, and if all nodes lie on some path from this source place
to the sink place. Typically, a token in the source place signifies a new case,
whereas a token in the sink place signifies a completed case. All transitions in
the workflow net should contribute to forwarding some case from the new state
to the completed state.

A workflow net net is called sound [8] if any case can always complete in a
proper way (that is, without tokens being marooned) and if no transition is dead.
Note that the workflow net requirement is a structural requirement, whereas the
soundness requirement is a behavioral requirement. A workflow net is called
relaxed sound [9] iff every transition can help in forwarding some case from the
new state to the completed state. Note that this requirement is less strict than
the soundness requirement, as the option to complete properly might not be
guaranteed for every reachable marking.

A reset net [10] is a Petri net extended by reset arcs. A transition that is
connected to a place with a reset arc removes all tokens on that place upon
firing. Reset nets are more expressive than classical Petri nets: some forms of
verification are undecidable in reset nets, while they are decidable in classical
Petri nets.

An open net [11] is a Petri net extended with a set of interface places and
a set of desirable final markings. The interface places are partitioned to input
and output places. Open nets thereby extend classical workflow nets with an
asynchronous interface to explicitly model message exchange. An important cor-
rectness criterion for open nets is controllability [12]. An open net is controllable
if another open net exists such that their composition (where the communication
places of both nets have been glued) always ends up in a desired final marking.
Note that (relaxed) soundness does not imply controllability, or vice versa.

2.2 Workflow Patterns and Petri Nets

A collection of workflow patterns has been developed to analyze the expressive
power of languages for workflow and business process modeling. Patterns with
respect to the control-flow aspect, on which we focus in this paper, are described
in [13,14]. The expressive power of modeling languages can be explained in terms
of which patterns they support. (For an overview of support from languages in
this paper, see [14].) Therefore, we use the workflow patterns from [14] as a
frame of reference here. We show how some of them can be mapped to Petri
nets, or what the problems are when they cannot be mapped. This provides the
reader with information about which languages support which patterns and the
particularities of mapping these patterns to Petri nets. Hence, it gives a good
overview of the state-of-the-art in Petri net transformation of business process
modeling languages.

Figure 1 shows the mapping of some of the workflow patterns to Petri nets.
Transitions that represent tasks are given the labels A, B or C and transitions
that affect the flow of control, but that do not represent tasks are given more
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Fig. 1. Workflow patterns in Petri nets

descriptive labels. The so-called simple patterns can easily be represented in
Petri nets. These are:

– ‘Sequence’, a task is enabled after another task is completed;
– ‘Parallel Split’ (also called ‘AND-split’), all outgoing branches are enabled

at the same time;
– ‘Synchronization’ (also called ‘AND-join’), the process must wait for all in-

coming branches to complete before it can continue;
– ‘Exclusive Choice’ (also called ‘XOR-split’), the execution of one out of a

number of branches is chosen;
– ‘Simple Merge’ (also called ‘XOR-join’), the process continues when one

incoming branch completes.

Another pattern that can easily be represented by Petri net is the ‘Deferred
Choice’ pattern, which differs from the ‘Exclusive Choice’ pattern in the fact
that the branch is chosen by the environment rather than by the system itself.

Patterns that are harder to represent in Petri nets include the ‘Multi-choice’,
in which the execution of a number of branches is chosen, and the ‘Cancel Re-
gion’, in which the execution of a set of tasks is disabled. These patterns lead
to nets that become hard to read. For example, although the ‘Multi-choice’ in
Fig. 1 is still readable, it becomes hard to read when there any number out of
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Fig. 2. Example process modeled as a Petri net

three or four outgoing branches can be chosen. To make these patterns more
readable, another class of Petri net can be chosen. Figure 1 illustrates this for
the ‘Cancel Region’, which is both represented as a classical Petri net and as a
reset net.

Patterns that cannot be represented as a classical Petri net include the ‘Gen-
eral Synchronizing Merge’, which corresponds to a wait-and-see synchronizing
construct. To represent such patterns, we would need very sophisticated classes
of Petri nets, for which analysis might just be infeasible.

2.3 Example Process

We will illustrate each of the modeling techniques, using the same example pro-
cess. As example process we take an image editing process. First, the customer
uploads an image (u). Second, the following procedure is applied: The image is
finished (f) and concurrently a thumbnail is created (t). Afterwards the results
are evaluated (e). If a failure occurred or if the evaluation is negative, the pro-
cedure is repeated. Third, if the image is too big, it is stored temporarily and
only a link is sent to the customer (l); otherwise the image is sent by e-mail
(m). At any point during the second step, a failure occurs if the format in which
the figure is stored cannot be imported by the tool that are used to process the
image. The other steps are assumed to be infallible. Figure 2 shows the example
modeled as a workflow net.

3 BPMN

The Business Process Modeling Notation (BPMN) [4] is developed as a stan-
dard for business process modeling. This section briefly explains the language,
the main challenges when transforming BPMN models to Petri nets and the
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transformation itself. The section focuses on BPMN version 1.0, because at the
time that the transformation was developed that was the current version. There-
fore, comments on BPMN apply to version 1.0 only.

3.1 Language

BPMN is a rich language that provides the modeler with a large collection of
object types to represent various aspects of a business process, including the
control-flow, data, resources and exceptions. BPMN is mainly meant for model-
ing business processes at a conceptual level, meaning that it is mainly intended
for drawing process models that will be used for communication between stake-
holders in the processes. As a consequence, formal rigor and conciseness were
not primary concerns when developing the BPMN specification.

The three types of BPMN objects that can be used to represent the control-
flow aspect of a process are activities, events, gateways. Many subtypes of these
objects exist. Control-flow objects can be connected by sequence flows, which
are directed arcs that represent the flow of control from one object to the next.
Figure 3 illustrates some of these objects, by representing the example process
in BPMN and by relating the object types to the workflow patterns explained
in Sect. 2.2.

3.2 Transformation Challenges

Due to the large number of object types that constitute BPMN it is hard to
define a mapping and show (or prove) that the mapping works for all possible
combinations of these object types. Especially, because the mapping of a com-
position of object types is not the same as the composition of the mapping of
those object types. This complicates, for example, defining mapping rules for
interruptions of sub-process invocations.
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BPMN frequently introduces shorthands and alternatives for representing cer-
tain constructs. For example, an activity with multiple incoming flows will start
as soon as the control is passed to one of these flows. Hence, an activity with
multiple incoming flows behaves similar to an activity that is preceded by an
XOR-join. This further complicates the mapping.

Version 1.0 of the BPMN standard contains inconsistencies and ambiguities.
We uncovered several while defining the mapping [15]. This illustrates that defin-
ing a mapping to a formal language can be useful to uncover flaws in an informal
language.

3.3 Transformation and Application

In prior work we defined a mapping from a restricted version of BPMN to work-
flow nets [15]. The restrictions include that the BPMN models must have a single
start and a single end event. Also, activities with multiple concurrent instances
and some types of gateways cannot be used (in particular OR-gateways, which
represent the ‘Multi-choice’ and ‘General Synchronizing Merge’ patterns). The
mapping focuses on the control-flow aspect of processes.

The mapping is developed by defining mappings for each activity, events and
gateway object type, similar to the way in which Petri net mappings are defined
for each workflow pattern in Sect. 2.2. When transforming a model, first each
object is mapped onto a partial Petri net and second the partial Petri nets
are composed into a complete model. Although this approach works for many
constructs, some constructs cannot simply be mapped and then composed. The
mapping from BPMN to workflow nets allows the soundness of these nets to be
analyzed (see Sect. 2).

To the best of our knowledge the only other mapping from BPMN to a formal
language is from BPMN to CSP [16].

4 EPCs

Event-driven Process Chains (EPCs) [2] were developed to provide an intuitive
modeling language to model business processes. This section briefly explains
ECPs, the main challenges when transforming EPCs to Petri nets and the trans-
formation itself.

4.1 Language

Like BPMN, EPCs are meant for modeling business processes at a conceptual
level: EPCs are not intended to be a formal specification of a business process.
Instead, it serves mainly as a means of communication. There are, however, some
conceptual differences between BPMN and EPCs:

– BPMN supports the ‘Cancel Region’, whereas EPCs do not, and
– EPCs supports the ‘General Synchronizing Merge’, whereas BPMN does not.
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Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.
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4.3 Transformation and Application

The transformation to workflow nets as introduced in [20] explicitly targets the
verification of EPCs, and assumes that an OR-join is enabled as soon as any of
its inputs are enabled, and that an XOR-join with multiple inputs enabled will
be executed multiple times. This transformation results in a safe1 workflow net,
as it introduces a so-called shadow place for every place, and uses a number of
(optional) EPC reduction rules prior to transforming the EPC.

As mentioned above, an EPC allows for multiple start events and multiple
final events. However, the EPC designer might be aware of the fact that cer-
tain combination of start events will not occur, and that the process will behave
in such a way that certain combinations of final events are impossible as well.
Clearly, this knowledge of the designer is vital for the verification, but unfor-
tunately not included in the EPC. Therefore, the verification approach in [20]
proposes to query the user for this information. First, the user has to select
which combinations of start events are possible. Second, based on this informa-
tion a state space is build that possibly contains multiple subsets of final events.
Third, the user has to select the subsets of final events that indeed are possible.
For the example process, three subsets of final events were detected (next to a
number of deadlock states that also include non-final events, which are assumed
to be ignored by default), from which one (the subset containing both Image
sent and Link sent, which appears to be possible) needs to be ignored. Fourth,
the soundness property is checked on the resulting state space. If the state space
corresponds to a sound net, then the EPC is correct: A desired subset of final
events will always be reachable. Otherwise, the relaxed soundness property is
checked, where an OR-join (OR-split) transition is allowed to be non-relaxed
sound if and only if its inputs (outputs) are covered by relaxed sound OR-join
(OR-split) transitions. If the state space is relaxed sound, then the EPC can
be correct, although it allows for undesirable behavior. Otherwise, the EPC is
incorrect, as certain parts of the EPC cannot lead to any desired subset of final
events, when executed.

The example EPC can be correct, but allows for undesired behavior. For
example, if Finish image fails, then Create thumbnail should fail as well to be able
to reach a desirable subset of final events (that is, {Link sent}, or {Image sent}).

5 BPEL

The Web Services Business Process Execution Language (BPEL) [1], is a lan-
guage for describing the behavior of business processes based on Web services.
That makes BPEL a language for the programming in the large paradigm. Its
focus is — unlike modifying variable values in classical programming languages
such as C or Java— the message exchange and interaction with other Web ser-
vices. Advanced concepts such as instantiation, a complex exception handling,
1 A net is safe if and only if every place in every reachable marking contains at most

one token. As a result, the set of reachable markings is finite.
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Fig. 5. The example process as a BPEL process

and long running transactions are further features that are needed to implement
business processes.

5.1 Language

Activities organize the communication with partners, variable manipulation, etc.
They can be ordered using structured activities which makes BPEL similar to a
block-based language. To support the simple patterns depicted in Fig. 1, control
links can be used to express splits, choices and merges. Due to restrictions, BPEL
avoids the problems occurring with the OR-join.

Being an execution language, the exceptional behavior which also includes
cancelation of parts of the process is described in great detail in the BPEL
specification [1]. In addition, BPEL supports the concept of hierarchical scopes
that model local units to which a local exception management (implemented by
fault, termination, and compensation handlers) is bound.

Example Process. BPEL is an XML-based execution language without stan-
dardized graphical representation. Figure 5 shows a possible implementation of
the example process using BPEL, in a schematic way. The process “Image editing”
contains a sequence, which in turn contains receive “Upload image”, repeatUntil
“no failures”, and if “too big”, etc.

5.2 Transformation Challenges

The positive control flow of a BPEL process (i. e., the sheer business process)
can be straightforwardly mapped to Petri nets by defining a translation of each
of BPEL’s activity type. The biggest challenge is the transition from the positive
to the negative control flow. The BPEL specification defines the following steps
to be performed in case a fault occurs. (1) All running activities in the scope
of the faulty activity have to be stopped. (2) The fault handler of the scope is
called. (3) If the fault could be handled, the execution continues with the scope’s
successor. If the fault could not be handled, it is escalated to the parent scope.

This procedure requires a global state (i. e., all running activities are stopped)
to be reached before invoking a fault handler. Petri nets naturally model dis-
tributed systems with concurrently acting local components. The formalization
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of the enforcement of a global state with Petri nets is therefore cumbersome,
because it requires all components to synchronize. The stopping of originally
independently running activities can be achieved on two ways.

(a) The request to stop is propagated from the scope to each running activity.
(b) A global “variable” modeled by a place describes the “mode” of the scope;

that is, whether the scope’s internal activities should be executed or stopped.

Option (a) has the advantage that the BPEL process’s nature of a distributed
system is mirrored in the Petri net model: Activities embedded into a flow are
executed concurrently. However, this concurrency introduces a lot of intermedi-
ate states that model the situation in which a fault is detected by a scope yet
not fully propagated. With a global state like in (b), stopping can be modeled
more easily, but implicitly schedules originally concurrent activities.

A similar problem arises when modeling the dead-path elimination [1] which
requires to skip activities than cannot be executed due to their join condition.
Again, this can be achieved through propagation (of the information whether
a branch is executed or skipped) or global places (a global status place which
controls whether an activity is executed or skipped).

5.3 Transformation and Application

Though there exist many works to formalize BPEL using Petri nets (see [21] for
an overview), only two Petri net transformations are feature-complete; that is,
covering all mentioned activities and aspects of a BPEL process. These formal-
izations are from the Humboldt-Universität zu Berlin together with the Univer-
sity of Rostock (abbreviated with “HR”), and from the Queensland University
of Technology (“QUT”). A detailed comparison between these semantics can
be found in [22]. Here, it suffices to mention that the HR transformations uses
propagation (see Sect. 5.2) and selectively results in either a normal Petri net or
an open net, whereas the QUT transformation uses global places and results in
a workflow net.

HR Transformation to Petri nets. The HR transformation implemented in the
tool BPEL2oWFN [23] can be used to translate BPEL into a standard Petri
net without interface places. This Petri net can be analyzed for deadlocks or
other classical Petri net properties, soundness, as well as temporal logical for-
mulas. A case study is presented in [24] shows that the internal behavior of large
processes with nested scopes and complex exception handling can be analyzed
using the model checking tool LoLA [25]. Furthermore, the semantics could be
validated by proving deadlock-freedom of the patterns.

HR Transformation to Open Nets. With the explicitly modeled interface of the
open net, the communication behavior of the BPEL processes can be analyzed.
The tool Fiona [23] can check controllability [12], synthesize a partner pro-
cess which can be translated back to BPEL [26], or calculate the operating
guideline [27] of the net. This operating guideline characterizes all partners that
communicate deadlock-freely with the original net and can be used for service
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Fig. 6. The BPEL process transformed into an open net (a) and a synthesized partner
open net (b). To increase legibility, fault handling is not depicted.

discovery. An extension to formalize choreographies [28] further allows to apply
the mentioned analysis techniques to a choreography of many BPEL processes
instead of just a single process.

Figure 6(a) shows the result of transforming the BPEL process to an open
net. The net is controllable, and Fig. 6(b) shows a synthesized partner open
net. The composition of the open nets is free of deadlocks, and a desired final
marking of the composition always reachable.

QUT Transformation to Workflow Nets. The QUT transformation was devel-
oped to decide soundness on the resulting workflow net, using the WofBPEL
tool [29], which is a spawn-of of the workflow verification tool Woflan [30,31].
However, the transformation does not allow for improper completion and BPEL
processes by definition have the option to complete. Thus, the soundness check
boils down to a check on dead transitions. Next to the soundness check, the
WofBPEL tool can also check whether an incoming message can be handled by
multiple elements (which is considered an anomaly in BPEL) and can augment
the BPEL model with information on when to garbage collect queued messages.
Based on this information, the BPEL garbage collector can decide to remove for
a certain running instance certain incoming messages from the message queue
as it is certain that these messages cannot be handled anymore by the instance.

6 YAWL

The Yet Another Workflow Language (YAWL) [3] was originally conceived as a
workflow language that would support 19 of the 20 most frequent used patterns
found in existing workflow languages. As such, YAWL supports the ‘Multiple
Instance’ pattern, the ‘General Synchronizing Merge’ pattern, and the ‘Cancel
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Region’ pattern. The only pattern not supported by YAWL is the ‘Implicit Ter-
mination’ pattern (A process implicitly terminates when there is no more work
to do and the process is not in a deadlock.), and the authors of YAWL deliber-
ately chose not to support this pattern. Lately, the patterns have been revised
and extended [14], and YAWL is being extended to support the new patterns

6.1 Language

In YAWL, two objects are used to model the control-flow aspect of a pro-
cess: tasks and conditions. Loosely speaking the former correspond to activities
(BPMN) and functions (EPC), and the latter to events (both BPMN and EPC).
The BPMN gateways and EPC connectors are modeled by specifying the join
and split behavior of a task. Like EPCs, YAWL supports AND, XOR, and OR
splits and joins. Unlike EPCs, the semantics of the OR-join is well-defined, and
an engine exists that supports the execution of any YAWL model. As such, a
YAWL model can both act as a conceptual model and an IT model. Figure 7
shows a possible implementation of the example process using YAWL.

6.2 Transformation Challenges

The formalization of YAWL is straightforward, as it has a proper formal seman-
tics. Challenges in YAWL include the OR-join and the cancelation regions. The
YAWL OR-join comes with a semantics that includes backwards reasoning and
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coverability in reset nets, which is impossible to capture in a classical Petri nets.
The cancelations regions are hard to capture (though possible) in classical Petri
nets, but are straightforward to capture when using reset nets.

6.3 Transformation and Application

YAWL comes with a transformation to reset nets, which is straightforward except
for the OR-join [32]. Furthermore, there is also a transformation to workflow nets
that covers the behavior of the YAWL model [33]: any behavior exhibited by the
YAWL model will also be present in the Petri net, but not vice versa. Finally,
there is a transformation (see [34]) that is used to obtain a Petri-net-based
simulation model (using CPN tools [35]) for an operational YAWL model. To
keep things simple for the time being, this transformation assumes that there
are no cancelation regions, and that an OR-join is enabled a soon as any of its
inputs are enabled.

The transformation to reset nets that comes with YAWL is used by the YAWL
engine to check which tasks are enabled [32]. For an AND-join task and an XOR-
join task this check is quite simple (a task is enabled if and only if any of the
corresponding transitions in the reset net is enabled), but for an OR-join task this
check is quite complex and involves a coverability check on any corresponding
input place in the reset net that is not marked. As coverability is decidable for
reset nets, this procedure is decidable as well.

This transformation is also used to verify YAWL models [36]. In the absence
of OR-joins, a YAWL model can be transformed to a reset net, which can (pos-
sibly) be verified for soundness. If the reset net is to complicated to be checked
successfully, a set of reduction rules is given to simplify the reset net prior to
checking soundness [37].

The transformation from [33] is also used to verify YAWL models, but is re-
stricted to relaxed soundness. If the state space is too complex to be constructed,
transitions invariants can be used to estimate relaxed soundness. This approach
is correct (errors reported are really errors), but not necessarily complete (not
every error might get reported).

The other transformation to workflow nets is used to transform an existing
YAWL model into a colored Petri net that can be simulated by CPN Tools. If
an event log from the given YAWL model is provided during the transforma-
tion, then relevant information such as organizational details and performance
characteristics are included in the resulting simulation model.

7 Conclusion

Many transformations to Petri nets currently exist, and several of these trans-
formations struggle with concepts that are hard to handle in Petri nets, like
OR-joins and exceptions, but other transformations simply can abstract from
these concepts, either because the source language does not support the concept
as well, or because the application of the transformation allows for the abstrac-
tion. For example, YAWL and EPCs do not support exceptions, and some of
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the YAWL and EPC transformations can abstract from the OR-join because the
relaxed soundness property allows this.

Our experience indicates that transforming an informal and complex language
like BPEL to a low-level Petri net language is quite difficult without first hav-
ing formalized the language in a proper way. Many BPEL constructs require a
dedicated and possibly complex solution in Petri net terms, and to keep these
solutions nicely orthogonal (we do not want one solution to obstruct a second)
is not an easy task. Therefore, it seems sensible to:

– first, formalize the language using, for example, a high-level Petri net lan-
guage, and

– second, transform the high-level formalization to the target low-level Petri
net language.

Almost all transformations have been implemented in tools, and most of these
tools are included in the ProM framework [38]. For example, the transformations
from EPCs has been implemented in regular ProM conversion plug-ins, and the
transformations from BPEL have been implemented in tools for which ProM
conversion wrapper plug-ins have been implemented. The transformations from
YAWL models to reset nets and the transformations from BPMN to workflow
nets have been implemented in separate tools and it is expected that these
transformations will be included in the ProM framework in the near future.

The applications of the different transformations differ. Several transforma-
tions are used to verify the business process at hand, others are also used for
the actual execution of the business process (the transformation from YAWL to
reset nets is a good example for this). Furthermore, some transformations exist
that aim to simplify the source language, examples include the EPC reductions
and the well-known Petri-net reduction rules by Murata [7].

Informal languages often describe alternatives and shorthands to represent
process parts that have the same (formal) semantics. For the four languages
described here this holds only for BPMN. Other OMG standards also make use
of alternatives and shorthands. In our experience alternatives and shorthands are
most efficiently dealt with by creating a ‘normal form’ version of the language
and defining the mapping for this normal form. Alternatives and shorthands
should first be translated to the normal form. They will then be mapped to the
formalism of choice automatically.

From the transformation of a very detailed language such as BPEL into a
simple formalism like Petri nets, we learned that the applications of techniques
well-known in the field of compiler theory greatly systematize and simplify the
transformation. In particular, using high-level Petri nets as intermediate formal-
ism to explicitly model data aspects yields a better understanding of BPEL.
Only when a low-level pattern is actually needed (e.g., for verification), we ab-
stract from data aspects. In addition static analysis [39] allows for an improved
translation by collecting information on the context of each activity. This in-
formation can be used to chose the best fitting pattern (e.g., depending on the
presence of handlers or the chosen verification goal) from a pattern repository.
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This flexible model generation [40] has been shown to yield very compact trans-
formation results, and can be similarly applied to all presented source languages.
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Abstract. While Petri nets play a leading role as a formal foundation
for business process management (BPM), other formalizations have been
explored as well. This chapter introduces the π-calculus as a formal foun-
dation for BPM. The approach presented is pattern-centric, thus allowing
for direct comparisons between the π-calculus and different formaliza-
tions. In particular, selected basic and advanced control flow patterns as
well as service interaction patterns are discussed. The chapter further-
more introduces the application of bisimulation techniques for proving
soundness properties of business processes.

1 Introduction

This chapter introduces the formal specification and analysis of business pro-
cesses using a process algebraic approach. Just as Petri nets (e.g. [15,11]), pro-
cess algebra (e.g. [10,12,4]) can be defined in terms of transition system. In both
approaches, states—and transitions between them—are in the center of attrac-
tion. Process algebra is based on formal terms, whereas Petri nets are based
on bipartite graph structures. The combinations of process algebra and Petri
nets in the area of business process management (BPM) [2] have already been
investigated, for instance by Basten in [6].

By the end of the 20th century, however, new kinds of process algebra have
been developed, focusing on mobile systems [14]. These new kinds of process
algebra allow the representation of processes with dynamic structures, which is
in contrast to Petri nets, that capture processes with static structures. While
both approaches suffer from the inherent problem of transition systems, i.e. state
space explosion, mobile process algebra brings a new point of view into play. This
new point of view allows a direct representation of dynamic binding, as found
in today’s BPM systems realized as service-oriented architectures (SOA) [7].
Dynamic binding is represented via a technique called link passing mobility, that
directly resembles the evolution of a system with dynamic structures. Consider
for instance figure 1, that shows the classical SOA triangle in a different notation.
In the beginning, a service broker has knowledge about a number of service
providers. Also, the service requester has knowledge about the service broker.
What is wanted, however, is a direct connection between the service requester
and one single service provider. While in theory there could be static connections
to all service providers, such as a classic Petri net representation would require,
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link passing mobility directly captures the initial idea. The following sections
introduce the reader into a particular process algebra, the π-calculus [13], that
handles link passing mobility as a first class citizen. The introduction is strongly
focused on the area of business process modeling and specification. In particular,
we shortly introduce the π-calculus as the process algebra of choice in section 2.
The discussion of fundamental control flow and interaction patterns is given in
section 3 and 4. Section 5 introduces a basic theory of reasoning in the process
algebraic world—bisimulation—by discussing simple kinds of soundness.

2 The Pi-Calculus

The representation of business processes can be seen from different perspectives,
such as the functional viewpoint that focuses on the activities of a process, the
behavioral perspective that defines the ordering of the activities, the organiza-
tional perspective that specifies the required roles, and so on [8]. In this paper,
we focus on the behavioral perspective.

2.1 Syntax and Semantics

This chapter discusses the representation of the behavioral perspective using
the π-calculus. The π-calculus is a process algebra, that consists of names—
representing the unification of channels and data—and agents that interact on
names.

Definition 1 (Pi-Calculus). The agents of the π-calculus are given by:

P ::= M | P |P | νz P | A(x1, . . . , xn)
M ::= 0 | π.P | M + M .
π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

The informal semantics is as follows: P |P is the concurrent execution of P and
P , νz P is the restriction of the scope of the name z to P , i.e. z is only visible
in P and distinct from all other names, and A(y1, · · · , yn) denotes parametric
recursion over the set of agent identifiers. 0 is inaction, a process that can do
nothing, and M + M is the exclusive choice between M and M . The prefixes of
the calculus are given by π. The output prefix x〈ỹ〉.P sends a tuple of names
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ỹ via the co-name x and then continues as P . The input prefix x(z̃) receives
a tuple of names via the name x and then continues as P with z̃ replaced by
the received names. Matching input and output prefixes of different components
might interact, leading to an unobservable action (τ), e.g. a.A|a.B

τ−→ A|B. An
explicit representation of an unobservable action is given by the prefix τ.P and
the match prefix [x = y]π.P behaves as π.P if x is equal to y.

The actions of the agents are given by the input, output, and unobservable
prefixes, denoted as Act = {x〈ỹ〉, x(z̃), τ}. The evolution of the state of an agent
to a succeeding state is denoted by a transition bearing the corresponding action,

i.e. a〈w〉.A a〈w〉−→ A, where we assume an interleaved semantics.
Throughout this chapter, upper case letters are used for agent identifiers and

lower case letters for names. We abbreviate a set of components as
∏n

i=1 Pi, i.e.∏3
i=1 Pi = P1 | P2 | P3. We also omit the trailing 0 and omit the enumeration of

free names at agent identifiers if obvious. A detailed discussion on the semantics
applied in this chapter can be found in [16].

2.2 Bisimulation

An interesting property of two different agent terms is their behavioral equiva-
lence. Process algebra use the notion of bisimilarity or bisimulation equivalence
for this purpose. It denotes that two agents are able to mimic all their actions in
arbitrary directions, i.e. the first agent does an action, the second agent mimics
it, and thereafter the second agent does another action that the first agent needs
to mimic, etc. If there exists a bisimulation between two agents A and B, i.e.
they are bisimilar, we denote this as A ∼ B.

Of particular interest is the weak variant, i.e. weak bisimulation, that ignores
unobservable τ -actions. Hence, internal steps that are explicitly denoted as τ
as well as internal communication between components (also leading to a τ -
transition) are not included. This yields an equivalence criteria, denoted as A ≈
B, that only covers the external observable behavior of two agents. Formal details
are discussed for instance in [13].

3 Workflow Patterns

The research on the different perspectives of business process is strongly driven
by patterns, as for instance given by Workflow Patterns [1], Data Patterns [19],
Resource Patterns [20] or Service Interaction Patterns [5]. We use selected Work-
flow and Service Interaction Patterns to describe the fundamentals for formally
specifying interacting business processes in the π-calculus.1

From an abstract point of view, each business process can be seen as a directed
graph with nodes and edges. Additionally, types and properties need to be added
to the different nodes. While in our earlier work we referred to such structures
1 The whole set of formalized Data, Workflow, and Service Interaction Patterns can

be found in [16].
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Fig. 2. Business process with enumerated elements in BPMN

as process graphs [18,17], we rather focus on the patterns themselves in this
chapter. We provide a methodology for gluing the patterns together as required.

Basically, a business process in π-calculus is represented as an agent consisting
of a set of restricted names and a number of parallel components:

N
def
= (νe1 . . . )(

∏
Ni) . (1)

Each restricted name resembles an edge of a business process. Each component
resembles an arbitrary node. The restricted names and identifiers for the com-
ponents can be directly derived by labeling the elements of the graphical repre-
sentation of the business process, as shown in figure 2. We stick to the Business
Process Modeling Notation (BPMN) for illustration purposes. The approach,
however, is not fixed to a certain notation. Any graph-based notation, including
UML Activity Diagrams or Event-driven Process Chains, are applicable.

The components that represent the nodes of a business process are then refined
according to different patterns as shown in figure 3. The names e1 , e2 , . . . are
renamed according to the label of the corresponding edge. The identifiers of
the components are also renamed according to the label of the corresponding
node. The following subsections discuss the different patterns and provide an
illustrating example.

3.1 Sequence Pattern

A basic pattern found in business processes is the sequential execution of activi-
ties, as described by the Sequence Pattern. An activity N is enabled, once the pre-
ceding activity has finished execution. The π-calculus representation of the node
N is shown in figure 2. N waits for the preceding activity to finish, as denoted by
the occurrence of the name e1 , that represents the incoming edge. Afterwards, the
functional part is executed—abstracted via τ . Finally, the name e2 is emitted to
signal the successful execution of N . At the same time, via the parallel operator,
the remainder of the term N resets itself via recursion. This recursive definition is
required for loops, where multiple instances of an activity are required.

According to the pattern description, the node N2 of the business process
shown in figure 2 is formalized as follows, where the agent N2 defines the se-
mantics of the corresponding node N2 .

N2
def
= e1 .τ.(e2 | N2 ) .
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Fig. 3. Fundamental workflow patterns

Please note that N2 contains a recursive definition of itself at the right hand
side, allowing multiple instances to be created.

The initial and the final nodes of a business process can be seen as variants of
the Sequence Pattern. An initial node–i.e. a node with only an outgoing edge—
has no precondition for execution. It can simply start and emit its successful
execution via the name e1 afterwards. Since the initial node cannot be part of
a loop, it does not use recursion to reset itself. An according formalization for
the semantics of node N1 of figure 2 is given by:

N1
def
= τ.e1 .

The final node of a business process is represented similar to the initial node,
with the distinction that recursion is required, since the final node might be
reached multiple times. An example is given by the formalization of node N7:

N7
def
= e7 .τ.N7 .

3.2 Exclusive Choice/Simple Merge Pattern

Another common pattern is the exclusive choice between different paths of
execution—and afterwards joining them together. The associated patterns are
documented as Exclusive Choice and Simple Merge. The former pattern denotes
that a node N makes an exclusive choice between a number of directly following
nodes, whereas the latter enables a node N each time a directly preceding node
is activated.

The Exclusive Choice Pattern makes use of the π-calculus summation operator
to denote the exclusive choice between subsequent nodes. Otherwise, it resembles
the Sequence Pattern. The Simple Merge Pattern waits for one of the preceding
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activities to finish. Once one of them finishes execution, it behaves just like the
Sequence Pattern. Consider for instance the formalization of the node N6 of the
example shown in figure 2:

N6
def
= e5 .τ.(e7 | N6 ) + e6 .τ.(e7 | N6 ) .

The formalization of the Simple Merge Pattern furthermore resembles the se-
mantics of the Multiple Merge Pattern, since the subsequent node is activated
for each completion of a preceding node. Since both patterns only differ in their
assumptions (single execution vs. multiple executions), this overlapping does not
lead to problems. Instead, it provides the behavior required for looping parts of
the process model.

3.3 Parallel Split/Synchronization Pattern

Besides choosing a certain path for execution, a node can activate all of its di-
rect successors or wait until all of the directly preceding nodes have finished
execution. The corresponding patterns are known as Parallel Split and Synchro-
nization. The formalization of the former pattern is similar to the Exclusive
Choice pattern, with the difference that the names e2 and e3 are emitted in
parallel. The latter pattern—Synchronization—waits for the names e1 and e2
in a sequential order. This order captures the intended semantics accurately,
since an interaction via e2 can only occur after an interaction via e1 .

3.4 Discriminator Pattern

The final Workflow Pattern that we want to discuss in this chapter is the Dis-
criminator. A node with discriminator semantics waits for the completion of all
its directly preceding nodes, where it is assumed that all of them are activated
once. Once one of them finishes, the subsequent node is activated. The discrim-
inator node, however, resets itself only after all of the other directly preceding
nodes have finished execution.

The corresponding formalization in the π-calculus is achieved by mapping
the names e1 , e2 , and e3—that denote the incoming edges from the preceding
activities—to a restricted name h. The restricted name is only visible inside the
agent terms of the discriminator node. It enables an interaction between the
components of N1 and N2 each time an interaction on the names representing
the incoming edges occurs. The component N2 formalizes the intended seman-
tics. After an interaction via the restricted name h, two components are enabled.
The left-hand component enables a τ -action, that is followed by an emission of
the name e4 . The right-hand component collects the remaining interactions via
h, before the terms are reset via recursion.

4 Interaction Patterns

After we discussed the basics of representing internal business processes in the
π-calculus, we move on to interactions among them. Basically, an interaction
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Fig. 4. Fundamental interaction patterns

consists of different business processes, that are represented by their according
formalizations as described. The formalizations, however, need to be modified
to capture the sending and reception of messages among the participants of
the choreography. The discussion of interactions is based on two key concepts,
namely correlations and dynamic binding.

Correlations between different business processes are required if more than
one instance of a business process is required. A typical example would be a
service—such as a stock broker—that starts a new instance each time a request
arrives. The correlations between the different instances of the service and the
requestor need to be captured formally. Besides capturing the correlations, also
the creation of new instances needs to be specified.

Dynamic binding between interacting business processes is for instance re-
quired to correctly route the (response) messages of business processes acting as
services. Thus, it provides a mechanism for supporting correlations via callbacks.
Another use of dynamic binding is acquiring interaction partners at runtime via
service brokers.

The π-calculus supports the direct representation of simple correlations and
dynamic binding via the use of restricted names. A restricted name created inside
an agent formalization of a business process can be exposed to the outside and
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Fig. 5. Interacting processes in extended BPMN [9]

used as an exclusive response channel with built-in correlation. Furthermore,
π-calculus names can be passed around using link passing mobility, providing
the foundations for dynamic binding. A potential service could create a fresh,
restricted name and pass it on to a service broker. The service broker, in turn,
can forward it to potential requesters of the service.

An interaction between different business processes is given by a set BP of
formalized business processes according to equation 1. The members of the set
represent components of an agent wrapping them together. The wrapping agent
furthermore restricts all free names of the members of the set (given by ε =
fn(x)|x ∈ BP), thus creating an isolated system:

I
def
= νε

∏
BP . (2)

As done before, we refer to typical patterns between interacting business pro-
cesses, shown in figure 4. An example is shown in figure 5. It shows two interact-
ing business processes using an extended version of BPMN [9]. The extensions
allow the representation of correlations and dynamic binding in BPMN. The
upper pool of the figure is the same as discussed in section 3. The lower pool in-
troduces a service, that complements the process of the upper pool. Notable, the
pool is shown with a shadow, denoted that multiple instances could exist. While
the example only shows one customer, there could be more without changing the
service’s pool. The correlations between the customer and the service are shown
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using associated references. Their semantics as well as their formalization in the
π-calculus will be discussed in the next subsections.

4.1 Send Pattern

One of the two fundamental interaction patterns is the Send Pattern. The Send
Pattern has different variants, e.g. synchronous vs. asynchronous, dynamic or
static binding of the receiver, error handling, etc. We discuss dynamic and static
binding in subsequent patterns and omit error handling in this chapter. Regard-
ing synchronous and asynchronous messaging, the π-calculus formalization is
able to support both.

Figure 4 contains the π-calculus formalization for nodes of a process that
send messages. The upper formalization represents synchronous messaging. The
message, m, has to be sent before the agent term continues. The lower formal-
ization, in contrast, shown asynchronous messaging. The message is provided
anytime after the functional part of the node—represented by τ—has finished.
In the following, we consider only synchronous messaging. It can be adapted to
asynchronous as required.

4.2 Receive Pattern

The other fundamental interaction pattern is the Receive Pattern. In the common
case, it represents the blocking reception of a message. If a message should be
received in parallel to other activities, a parallel path should be introduced in
the corresponding business process. There are, however, exceptions such as the
Event-based Rerouting Pattern [16]. In this chapter, we stick to the common
case.

The formalization of the receive pattern that waits on a static, pre-defined
channel is straightforward. It simply waits for an additional name—the message
channel m—before enabling the τ -action.

4.3 Send/Receive with Static Binding Pattern

Using the Send and Receive Patterns as core building blocks, more elaborate
interaction behavior can be constructed. A typical construct is a Send/Receive
Pattern with Static Binding. In this case, the outgoing as well as the incoming
channel are pre-defined. The sending and the receiving node are connected via
the Sequence Pattern.

4.4 Send/Receive with Dynamic Binding Pattern

A more elaborate pattern is given given by Send/Receive with Dynamic Binding.
In this case, a unique channel—represented by a fresh, restricted π-calculus
name—is sent via an already known message channel. The sent channel is then
used later on in the process as a response channel. Figure 4 shows a graphical
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depiction of this pattern. The data object shown represents a channel reference
and the directed associations leaving it represent the points of use. The first
association points to the outgoing message flow, meaning that the reference is
sent via this channel. The second association points to activity N2 , meaning
that the reference represents the response channel. An extended discussion of
these extension can be found in [9].

The formalizations of the patterns make use of two distinguishing features of
the π-calculus: the creation of fresh, restricted names as well as link passing.
In agent N1 , a fresh, restricted name n is created first. This name is sent via
the previous known name m. Afterwards, it is forwarded via e2 to agent N2 . In
agent N2 , it is used as a response channel.

By applying the techniques described—restriction of names and link passing—
a correlation between the sending and the receiving nodes is given, regardless of
environments that process the request. A possible environment needs to apply
the Receive/Send with Dynamic Binding Pattern. This pattern first receives a
name n to be used as a reference via m in agent N1 . The name is forwarded via
e2 to agent N2 , where it is used as a response channel.

An application of this pattern is shown in figure 5. The customer creates
two references, acc and rej , that should be used as response channels for the
service invoked via the static channel s. Furthermore, the references are sent in
order, denoted by the numbers at the corresponding associations. First, the acc
reference is sent, followed by the rej reference. Those references are received by
the service, where they are stored in the placeholder references ok and nok . These
placeholder references can be seen as variables, that are filled with actual values
during the execution of the process. The references are then used to correlate
the nodes S3 and N4 as well as S4 and N5 . We give a formalization of the
node N2 :

N2
def
= νacc, rej e1 .τ.s〈acc, rej 〉.(e2〈acc, rej 〉 | N2 ) .

Node N2 creates the fresh, restricted names acc and rej and transmits them
via s. Afterwards, it forwards the restricted names via e2 using link passing
mobility. A corresponding formalization of the node S3 is given by:

S3
def
= s2 (ok ).τ.ok .(s4 | S3 ) .

Node S3 first receives the response channel (here denoted with the placeholder ok
that will be replaced with acc in the example). Afterwards, it emits via ok . The
reception of the initial message in S1 as well as the deferred choice represented
by the nodes N3 , N4 , and N5 , are represented by different patterns that will be
discussed below.

4.5 Receive with Instantiation

A common pattern between interacting business processes is the creation of new
instances based on the arrival of a message, denoted as Receive with Instantiation
Pattern. The representation of this pattern in the π-calculus is also shown in
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figure 4. This pattern is required to encapsulate a business process as a service,
since different instances might exist in parallel.

Technically, the arrival of a message via channel m triggers the contained
business process (represented by the cloud). In parallel, the agent N resets itself
via recursion. Since a formalized business process represented by SYS has its
own set of restricted names for internal routing, no interference can occur.

We give an example for the node S1 of figure 5:

SERVICE
def
= s(ok ,nok).(SYS | SERVICE ) and SYS

def
= (νs1 . . . s6 )(

6∏
i=1

Si)

with
S1

def
= τ.s1 〈ok ,nok〉 .

The agent SYS is defined according to equation 1. The agent S1 forwards the
names ok and nok that have been received in N .

4.6 Deferred Choice/Racing Incoming Messages Pattern

A last pattern that is typically required in interacting business processes is the
Deferred Choice/Racing Incoming Messages Pattern. While the Deferred Choice
is a Workflow Pattern, the Racing Incoming Messages is a Service Interaction
Pattern. The former pattern is more generic, since it states that a choice is made
on external events. These events are specified in the latter pattern, relating them
to incoming messages.

Depending on the graphical notation used, the Deferred Choice/Racing In-
coming Messages Pattern might be split across multiple nodes of a business
process. In case of BPMN, the pattern is spread across at least three nodes—
an Event-based Gateway and two Receive Tasks—, as shown in figure 4. The
different nodes are formally specified in one agent term N . The formalization
is similar to the Exclusive Choice Pattern, with the distinction that additional
names, representing the message channels, are required.

We give an example for the nodes N3 , N4 , and N5 of figure 5, that together
resemble a Deferred Choice/Racing Incoming Messages Pattern:

N3
def
= e2 (acc, rej ).τ.((acc.e5 + rej .e6 ) | N3 ) .

When this pattern is applied, the nodes directly following the Event-based Gate-
way are left out in the definition of the process according to equation 1. Hence,
the formal specification of the Customer from figure 5 is given by:

CUSTOMER
def
= (νe1 , e2 , e5 , e6 , e7 )(

∏
i∈{1,2,3,6,7}

Ni) .

The complete specification of the interaction between the Customer and the
Service can be constructed according to equation 2:

I
def
= (νs )(CUSTOMER | SERVICE) .
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The only free name according to CUSTOMER and SERVICE is s, that is used for
initial interaction with the service. The specified system is robust, meaning that
an arbitrary number of CUSTOMER agents might be added without interfering
expected operation of the system.

5 Analysis

A typical use of formal specifications of business processes and interactions
among them is a precise description of the behavior. This description can be
used as a foundation for discussing and implementing the processes and interac-
tions. Yet another important use case is the possibility of formally analyzing the
specified behavior. In particular, we are able to prove invariants on the formal-
ized business processes and interactions. Technically, these invariants are proved
using bisimulation techniques for the π-calculus. We stick to basic techniques in
this chapter and provide a more elaborate discussion in [17].

5.1 Structural Soundness

A first requirement for proving invariants on business processes is given by Struc-
tural Soundness. It can be defined informally as:

A graph representing a business process is structural sound if it has
exactly one initial node, exactly one final node, and all other nodes lie
on a path between the initial and the final node.

A business process needs to be structural sound for further analysis. The prop-
erty is derived from the definition of a Workflow Net [3].

5.2 Lazy Soundness

A business process can be analyzed by observing its behavior. The observation
of the initial and the final node are of particular interest, since they document
the begin and the end of a process instance. If the result is provided in the final
node, Lazy Soundness can informally be defined as follows:

A structural sound graph representing a business process is lazy sound
if in any case a result is provided exactly once.

To prove Lazy Soundness formally, we need to be able to observe the initial and
the final node of a business process. This is done by mapping the initial and the
final nodes of the business process according to Lazy/Interaction Soundness of
figure 4. Due to the addition of the free names i and o, we are able to observe
the occurrence of the corresponding nodes. Regarding the CUSTOMER agent,
the nodes N1 and N7 need to be specified as follows:

N1
def
= i.τ.e1 and N7

def
= e7 .τ.o.N .
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An agent that has been enhanced with the free names i and o can be compared
with another agent representing the invariant via weak bisimulation. The wanted
behavior is given by an agent

SLAZY
def
= i.o .

This agent behaves as follows. First, it is able to interact via i once. Afterwards,
it is able to emit via o once. If a more complex agent—representing a business
process—has the same observable behavior according to weak bisimulation, then
it fulfills the same invariant. Hence, after each occurrence of the initial node
(enhanced with i), the final node (enhanced with o) of the complex agent—
representing the business process—is observed.

Lazy Soundness is formally defined as follows:

Definition 2 (Lazy Sound). A structural sound business process mapped to a
π-calculus agent D according to the patterns shown in figure 4 is lazy sound, if
D ≈ SLAZY holds.

The business process of figure 2 is lazy sound, if we assume the Event-based
Gateway to be formalized using the Exclusive Choice Pattern. If we want to
consider the interactions with the environment—and hence apply the Deferred
Choice/Racing Incoming Message Pattern—we need to consider a possible en-
vironment, such as given by the Service.

5.3 Interaction Soundness

An invariant known as Interaction Soundness is derived by mapping a certain
process of an interaction according to the Lazy/Interaction Soundness Pattern.
When constructing the complete system I according to equation 2, the names i
and o must not be contained in ε: ε ∩ {i, o} = ∅. Interaction soundness can be
defined informally as:

A structural sound process graph G representing a business process is
interaction sound with respect to an environment E, if G is lazy sound
inside the composition of E and G.

The system I that is composed out of the agents CUSTOMER and SERVICE
is interaction sound according to the viewpoint of the Customer. This property
also holds for a certain Customer, if multiple Customers are engaged in the
interaction.

6 Conclusions

This chapter introduced the basic theory behind business process process man-
agement based on the π-calculus. We introduced the essentials of our earlier work
in this area, providing an overview of the key concepts. The difference is given
by the style of presentation. We focused on a pattern based approach, where we
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assume the knowledgeable reader to be able to arrange the different patterns in
a meaningful manner. An extended discussion, as stated, can be found in [16].

The presented techniques might be compared with existing Petri net-based
approaches. This comparison, however, can only be seen from an angle of expres-
siveness focusing on the concepts that are most important for a specific modeling
purpose. Since the π-calculus is Turing-complete—such as many extended Petri
net variants—, their formal modeling power is equal. What is different, however,
is the mindset behind. Petri nets have a strong focus on the description of behav-
ior in static systems. Correlations and dynamic binding can be introduced with
extensions. The main point, however, is the flow of tokens from place to place by
the firing of transitions. The π-calculus is an algebra, meaning that the current
state of the system is represented as an algebraic term. Using several laws, the
state can be transformed to a succeeding one. The approach is similar to a term
rewriting system. And since the terms are rewritten with each transition, the
structure represented by them is changed as well. Thus, the π-calculus describes
behavior in dynamic systems.

Another difference of the π-calculus—according to Petri nets—is the possi-
bility of describing interfaces with dynamic behavior, such as found in service-
oriented architectures. Reconsider for instance the Service from section 4. The
underlying formal specification is able to open new communication ports based
on received names. Hence, the behavior of the interface is changing. Initially,
only an interaction via a static channel is possible. Afterwards, several channels
are added for each participating Customer.

Besides the positive aspects of the π-calculus, also its drawbacks in the area of
BPM have to be considered. First of all, interactions between names always occur
between two components. It is not possible to receive names from different com-
ponents within the same interaction. For some settings, this might be a rather
strong restriction, since atomic actions cannot be represented. Furthermore—
such as in all state-space-relying approaches—the effort in deciding bisimulation
based on π-calculus terms is high, so that restrictions need to be established.
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Abstract. The field of workflow technology has burgeoned in recent
years providing a variety of means of automating business processes. It
is a great source of opportunity for organisations seeking to streamline
and optimise their operations. Despite these advantages however, the
current generation of workflow technologies are subject to a variety of
criticisms, in terms of their restricted view of what comprises a business
process, their imprecise definition and their general inflexibility. As a
remedy to these potential difficulties, in this paper we propose a series
of development goals for the next generation of workflow technology. We
also present newYAWL, a formally defined, multi-perspective reference
language for workflow systems.

1 Introduction

Workflow management technology provides support for the execution of business
processes. A workflow management system routes work to the right people or
software applications at the right time. While these types of systems have been
around in one incarnation or another for several decades (e.g. office automa-
tion systems originated in the seventies [26,11]), it wasn’t until fairly recently
that they reached a level of maturity where their broader uptake was feasible.
Workflow technology allows businesses to save time and money by providing
them with a means of taking charge of their processes. Not only does it sup-
port the execution of business processes, but they can also be more easily an-
alyzed, monitored, audited, and adapted. Increasingly now, the term Business
Process Management (BPM) is used to indicate that the field has moved be-
yond mere process specification and execution to encompass a holistic view of
the business process as a corporate asset that merits ongoing maintenance and
refinement.
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A business process can be viewed from a number of different viewpoints (see
e.g. [15]). The control-flow perspective deals with the control-flow dependencies
that exist between the various tasks in a business process, the data perspective
deals with the data required by and produced by these tasks, while the resource
perspective deals with the way in which tasks are allocated to resources. Starting
in the late 1990’s, the Workflow Patterns Initiative1 began cataloging patterns
in these perspectives. These patterns identify recurrent concepts that arise when
modelling business processes, and provide assistance with tool selection, process
specification and language development. Over time, process modelling languages,
workflow management systems, research prototypes, and (proposed) standards
in the BPM field have been examined in terms of these patterns, revealing their
relative strengths, weaknesses and opportunities for improvement.

Despite the rapid advances in BPM technology, there have been significant
obstacles to full realisation of the benefits that it promises to deliver. To some
degree, these obstacles can be explained through the lack of consensus in regard
to the conceptual, formal, and technological foundations of BPM. Moreover none
of the standards that have been proposed have achieved any degree of uptake. As
an example, consider the Workflow Management’s XPDL 1.0, introduced in the
1990’s. Not only does it lack a formal foundation, allowing it to be interpreted
in substantially different ways (cf. [17]), but it also has a very limited range
of functionality as demonstrated by its minimalistic support for the workflow
patterns (cf. [1]). More recent standards proposals also lack a formal foundation
(cf. BPEL, BPMN) and while their overall capabilities have noticeably improved
(e.g. as demonstrated by the extent of their workflow pattern support), they still
exhibit minimal support for the resource perspective [21]. It is also worth remark-
ing that the operation of a number of commonly utilised workflow constructs are
actually quite complex to capture precisely (an interesting illustration of this is
the concept of the OR-join in the control-flow perspective to which whole publi-
cations have been dedicated, see e.g. [2,25]). This also holds for interdependencies
between constructs in different perspectives (consider e.g. concurrency issues in
the control flow perspective and how these may affect resources). These consid-
erations underscore the fact that it is extremely difficult, if not impossible, to
describe a powerful business process language informally and be precise enough
to avoid ambiguities with respect to its interpretation at runtime.

Many of the challenges in the BPM field stem from a lack of a proper con-
ceptual and formal foundation. In this paper we will focus on this issue and
demonstrate that it is possible to fully define a comprehensive reference language
for both the specification and enactment of business processes. In doing so, in
Sect. 2 we first examine the field of BPM in an historical context. Then in Sect. 3
we propose a fundamental set of requirements for the next generation of workflow
languages. Section 4 proposes a concrete reference language, newYAWL [22,21],
which offers powerful support for the workflow patterns and is formally defined
using Coloured Petri nets. Finally Sect. 5 concludes the paper.

1 www.workflowpatterns.com
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2 Workflow 1.0: The Journey So Far

The introduction of workflow technology follows a historical trend where appli-
cation considerations have been progressively separated from file management,
data management and user interface considerations through the introduction of
operating systems, database management systems, and GUIs. Workflow manage-
ment systems take this trend a step further by making explicit the dependencies
that exist between various applications and the activities conducted by human
resources as well as the strategies that are associated with allocating work to
resources. An in-depth description of these historical developments can be found
in [24].

Another way of looking at modern workflow management from an historical
perspective is to consider the various fields that have influenced its development.
These include office automation, document management, advanced transaction
models and groupware. Coordination between various participants and applica-
tions in work processes are a primary concern in office automation. Similarly in
document management, information needs to be routed between a number of
participants and may be modified along the way.

Yet another way of looking at developments in the BPM field is by consid-
ering the lifecycle of business processes. In the past the emphasis has been on
process modelling and enactment, however in recent years there is the motiva-
tion to “close the loop” and include monitoring and diagnosis as part of the BPM
lifecycle, thereby viewing processes as continually adapting to changes in their
operating environment [10]. This trend is reflected in the emergence of the field
of process mining, where process deployments are analysed through the events
that they have generated during their execution [5].

It is striking that in the BPM field there has been an abundance of (proposed)
standards over the years, involving a number of standardisation bodies such as
WfMC, OASIS and OMG, however their impact has not been as profound or
long-lasting as it should have been. One explanation for this is that standards
were proposed before a sufficient understanding had been achieved of the con-
cepts involved. Another reason is the fact that these proposals were informally
defined, leaving scope for ambiguities and resulting in implementations of the
same standard exhibiting fundamental differences. In some cases the standards
were not sufficiently powerful and vendors defined their own extensions to ad-
dress this. For example Oracle BPEL’s support for the resource patterns [18] is
significantly stronger than what is proposed by the standard itself.

The informal definition of standards poses a significant problem with distinct
implementations choosing varying interpretations of individual constructs and
most recently there has been an increased effort (cf [19,9]) to provide a formal se-
mantics for widely used languages such as BPMN and BPEL. Even within widely
utilised offerings such as Staffware, the lack of a precise operational semantics
can result in the same design-time model yielding different runtime outcomes for
the same data inputs (cf [21]).

Increasingly, information systems need to be able to operate in dynamic en-
vironments where interactions are required with distributed, autonomous and
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evolving components. Technological developments in the BPM field need to fol-
low suit. Therefore, if tasks can be assigned to web services, web service compo-
sition can be achieved through the use of a workflow management system, and
Service-Oriented Architectures provide the principles upon which open and flex-
ible systems can be built. Ultimately aspects of this type of interaction also need
to be reflected at the modelling level, paving the way for new types of powerful
communication primitives (e.g. [8]).

There are a series of important lessons that have been learnt during the first
phase of workflow development activities. The MOBILE [15] and WIDE [12]
projects have demonstrated the importance of taking multiple perspectives into
account when designing and enacting business processes, yet most contempo-
rary standards and offerings tend to be control-flow centric. Process flexibility
continues to be a focus of many workflow initiatives and a recent survey [23]
identified four distinct approaches (design, deviation, adaptation and change) to
its facilitation, however most offerings are only able to demonstrate capabilities
in one or two of these areas. The ADEPT [20] project is one of the most mature
research initiatives in terms of the flexibility support that it provides and is one
of the few research endeavours to approach commercial strength. Whilst many
process technologies tend to focus on the normal or expected sequence of exe-
cution events, it is the ability to handle the exceptional cases that marks their
effectiveness and not surprisingly there has been a wide body of research in this
area (cf [13,7,6,14]) much of which has still not made its way into mainstream
offerings.

The aforementioned issues point to the need for a reference language that can
offer guidance for future technology initiatives on the breadth of capabilitities
that they need to embody. Such a language should be able to precisely capture
the broad range of concepts which underpin contemporary business processes
and be formally defined in order to avoid any ambiguities in their interpretation.
YAWL [3] (Yet Another Workflow Language) was designed to provide compre-
hensive support for the original control-flow patterns [4] however it is increasingly
clear that it needs to be comprehensively overhauled in order to ensure that it
provides an appropriate level of support for the range of concepts described
above. In this paper we propose a radical extension, termed newYAWL, that
aims to achieve this goal and show that a comprehensive formalisation of its
operation is possible using Coloured Petri nets.

3 Workflow 2.0: Requirements for the Next Generation

It is clear from the preceding discussion that despite the inherent benefits of-
fered by workflow technology, they only deliver part of the solution required to
effectively automate contemporary business processes. Existing offerings tend to
focus on providing support for control-flow aspects and provide significantly less
facilities for managing other important aspects such as the data and resource
perspectives. Moreover they have a narrow view of the overall business process
management lifecycle and in many cases limit their area of operation to busi-
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ness process enactment with somewhat less consideration of other design-time
and ongoing operational issues (e.g. monitoring, refinement) that are associated
with the deployment of such processes. In an attempt to lay down a clear vi-
sion for future workflow technology, in this section, we identify a series of core
requirements that the next generation of workflow tools should seek to address.

REQ1: Multi-perspective support. Existing tools offer a control-flow centric
view of a business process both in terms of the way in which they are defined and
also in the manner in which they are deployed. Whilst the control-flow perspec-
tive is central to business processes, markedly more focus needs to be given to
other significant aspects. The data and resource perspectives in particular need
to be considered as first-class citizens and direct support for modelling and en-
acting the data repesentation, data passing, resource definition and work routing
issues encountered in the context of business processes is required.

REQ 2: Integrated modelling and enactment. Traditionally, the modelling
and enactment of workflows were considered to be distinct activities. Workflows
were described using high-level business process modelling formalisms that fo-
cused on capturing the "spirit" of the overall business objective. Often this activ-
ity was undertaken by business analysts and the results of this work were passed
to technical staff who mapped it to an equivalent workflow definition that con-
tained sufficient detail in order for the process to actually be enacted. Often the
modelling and enactment activities utilised differing technologies. Obviously the
gap between these technologies leaves open the potential for ambiguities and
inconsistencies to be introduced into the resultant automated business process.
For this reason, an approach to modelling workflow processes is required which
involves their specification in sufficient detail that they can be directly enacted.

REQ 3: Support for flexible process design and enactment. One of the
ongoing criticisms of production workflow systems is that they enforce rigid
processes on users that hamper rather than assist them in reaching their end
goals hence obviating any potential benefits in process automation. Consequently
there is now an increased focus on what process flexibility means and how it can
be facilitated. In order to offer material benefit in this area, an offering needs to
provide a wealth of design-time constructs for embodying flexibility in processes
as well as offering runtime facilities that allow for controlled deviation from
the prescribed process model, execution of underspecified process models, and
adaptation and change of processes during execution.

REQ 4: Language constructs mirroring those encountered in practice.
One of the fundamental difficulties associated with many workflow modelling
languages is the fact that their core constructs are developed in isolation from
the business processes that they are ultimately intended to facilitate. This leads
to difficulties in capturing many of the actual situations that are encountered in
practice. The only practical solution to resolving this impasse is to actually derive
the range of constructs within a workflow language from those encountered in the
real world. In order to do so, a comprehensive catalogue of the actual modelling
considerations encountered in practice is required.
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REQ 5: Deterministic runtime model. One of the common issues arising
in workflow languages stems from their informal definition. In most cases, the
constructs which make up the workflow modelling language are not formally de-
fined and consequently do not have a precise operational semantics. This means
that there is a degree of inherent ambiguity associated with their usage. In order
for this difficulty to be resolved, it is necessary to provide a precise operational
definition for each of the constructs in a workflow language.

REQ 6: Comprehensive concurrency support. One of the early drivers
for workflow technology was to provide more efficient ways to distribute the
activities associated with business processes throughout the resources within
an organisation. However in many cases current workflow offerings demonstrate
a surprising lack of support for managing the concurrency inherent in these
processes. There are considerations that arise at a number of levels including:
providing a means of facilitating concurrent task execution within a process in-
stance, managing the use of data elements by multiple concurrent activities,
handling timing issues associated with the trafficking of data elements between
concurrent activities both within and between a workflow and the broader oper-
ational environment, and managing the advertisement and distribution of work
between multiple resources in a predictable and reliable way. The next generation
of workflow technology needs to provide broad support for all of these needs.

REQ 7: Graceful handling of expected and unexpected exceptions.
One of the great benefits offered by widespread adoption of workflow technology
is that it offers organisations the opportunity to move towards a management
by exception regime. In this scenario, the handling of normal process instances
is automated as far as possible and only deviations from the expected behaviour
are subject to manual scrutiny. In order to acccomplish this, a process needs
to embody support for as much exception handling as possible in order to deal
with expected errors and similarly, it also needs to be resilient when experiencing
unexpected exceptions and provide users with the ability to intervene in a process
instance in order to instigate appropriate corrective action.

REQ 8: Recognition of the full BPM lifecycle. The first generation of work-
flow tools essentially focused on the automation of business processes. The em-
phasis being on the quantity rather than the quality of the automation achieved.
The next generation of workflow technology needs to refine this approach to busi-
ness process enablement and provide an increased range of options for analysing
the resultant automation both to ensure its correctness and consistency from a
design-time standpoint and also to examine its efficiency and effectiveness from a
runtime perspective. In addition to a broader range of design-time aids to assist
process developers, this also necessitates the recording of a much richer range of
execution results for subsequent analysis and reflection.

In the following section, we will present an overview of newYAWL, a workflow
reference language which aims to address these requirements and shows the form
that automated support for business processes may take in the future.
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4 newYAWL: A Blueprint for Workflow 2.0

This section provides an overview of the operational capabilities of newYAWL,
a reference language for workflow systems based on the workflow patterns.
newYAWL aims to lay a foundation for the next generation of workflow technol-
ogy and describes a workflow modelling and execution language that incorporates
comprehensive support for the control-flow, data and resource perspectives. It
has a deterministic execution model whose operational semantics are defined in
terms of Coloured Petri nets. This approach to characterising newYAWL means
that it not only has a precise static definition but also that its approach to
dealing with the dynamic issues that arise during execution is fully specified.

4.1 Language Overview and Format

newYAWL provides a comprehensive reference language for describing busi-
ness processes that are to be enacted as workflows. The language constructs
in newYAWL are informed by the various workflow patterns, hence they have
a direct correspondence with the fundamental elements which are actually en-
countered in real-world business processes and consequently have general appli-
cability. The newYAWL language is specified in two parts. It has a complete
abstract syntax which identifies the characteristics of each of the language ele-
ments and their configuration. Associated with this is an executable, semantic
model — presented in the form of Coloured Petri nets — which defines the
runtime semantics of each of the language constructs.

The abstract syntax for newYAWL provides an overview of the main concepts
that are captured in a design-time business process model. It is composed of
five distinct schemas, each of which is specified on a set-theoretic basis. Fig. 1
summarises the content captured by each of the individual schemas and the
relationships between them. Each process captured using the newYAWL abstract
syntax has a single instance of the newYAWL specification associated with it.
This defines elements that are common to all of the schemas and also captures

− tasks, conditions
− flow relation

− pre/postconditions etc.
− arc conditions
− joins, splits

new

− task interaction strategy

Work distribution model

− task routing
− constraints
− privileges

var− parameters

Data passing model

− task

− process
− subprocess

1:1

n:1

1:1

1:n
1:n

newYAWL specification

− global objects
− nets, scopes, tasks etc.

− variables
− decomposition hierarchy

− organisational structure
− users
− roles

− capabilities
− groups
− jobs

Organisational model

YAWL net

− net definition

Fig. 1. Schema definition for newYAWL abstract syntax
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the decomposition hierarchy. Each newYAWL specification is associated with
an instance of the organisational model that describes which users are available
to undertake tasks that comprise the process and the organisational context in
which they operate.

A newYAWL process can be made up of a series of distinct subprocesses
(where each subprocess specifies the manner in which a composite task is imple-
mented) together with the top-level process. For each of these (sub)processes,
there is an instance of the newYAWL net which describes the structure of the
(sub)process in detail in terms of the tasks that it comprises and the sequence in
which they occur. Associated with each newYAWL net is a data passing model
which defines the way in which data is passed between elements in the process
in terms of formal parameters operating between these elements. There is also
a work distribution model that defines how each task will be routed to users
for execution, any constraints associated with this activity and privileges that
specific users may have assigned to them. The collective group of schemas for a
specific process model is termed a complete newYAWL specification.

One of the virtues of specifying the operational semantics of newYAWL in
terms of Coloured Petri nets is that the CPN Tools [16] offering provides an
executable environment for models developed in this formalism. This means
a candidate newYAWL model can actually be executed in order to verify its
consistent operation. There is a two stage process for mapping a newYAWL
specification defined in terms of the abstract syntax to an initial marking of
the semantic model in CPN Tools. In the interest of brevity, this process is not
discussed here but full details of its operation can be found in [21].

The complete operational semantics for newYAWL is based on a series of
55 CPN models 2. Fig. 3 shows the top level model which illustrates the main
events during the lifecycle of a process instance as transitions and the informa-
tion elements required to support its execution as places. Each of the events
takes the form of a substitution transition indicating that it has a more de-
tailed underlying definition, however in summary, the start case transition is
responsible for initiating a new process instance. Then there are a succession
of enter→start→complete→exit transitions which fire as individual task in-
stances are enabled, the work items associated with them are started and com-
pleted and the task instances are finalised before triggering subsequent tasks in
the process model. Each atomic work item is distributed to a suitable resource
for execution via the work distribution transition. This cycle repeats until
the last task instance in the process is complete, at which point the end case
transition terminates the process instance. Data interchange with the operat-
ing environment is faciliated by the data management transition and the add
transition enables additional task instances to be dynamically instantiated for
designated (multiple instance) tasks.

The places in the newYAWL CPN model divide into two main groups: (1)
static places which capture the various components of a newYAWL process
model such as the flow relation, task details, variable declarations, parameter

2 Available from http://www.yawl-system.com/newYAWL.
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mappings, preconditions, postconditions, scope mappings and the hierarchy of
processes and subprocesses. These correspond to the design-time information
captured about a newYAWL process as illustrated in Fig. 1 and remain un-
changed during the execution of a process. (2) dynamic places which capture
the state of a process instance during its execution and include items such as the
current marking of each place in the flow relation, variable instances and their
associated values, locks which restrict concurrent access to data elements, de-
tails of subprocesses currently being enacted, folder mappings (identifying shared
data folders assigned to a process instance) and the current execution state of
individual work items (e.g. enabled, started or completed).

An indication of the information content of an actual instance of a newYAWL
process model is illustrated in Fig. 2 which shows a simple process for responding
to a customer request for foreign exchange services. On the basis of a customer
enquiry about a prospective deal, a quote is prepared and forwarded to them.
They have 24 hours to respond to the quote and confirm they wish to proceed,
otherwise it is withdraw. No later than 24 hours after the quote is issued, the
deal is finalised, either as a result of a specific customer response or because of a
timeout. For each of the tasks in the process, there is a specific routing strategy
describing who should undertake the task and a specific interaction strategy
indicating the basis on which it should should be distributed to a potential
resource for subsequent execution. For example, the quote task is to undertaken
by the resource that demonstrates the capability of being the advisor for the
customer and it is directly allocated to (only) them for execution where as the
finalise deal task is offered to all resources who are part of the back office
role with the expectation that one of them will elect to execute it at a future
time. The relevant data elements and data passing strategy are also part of a
newYAWL process model and the tvar entries indicate that certain task-level
data elements are passed between tasks. For example, the quote task receives the
cust-id and req-type parameters from the enquiry task and passes on the cust-
id, quote-id and timeout parameters to subsequent tasks. Despite the relative
simplicity of this example, it gives an insight into the breadth of information in

allocateI

enquiry quote confirm
deal

timeout

finalise
deal

R role(back office)

tvar: req−type
tvar: cust−id

tvar: outcome
tvar: quote−id

tvar: quote−id
tvar: timeout

tvar: quote−id
tvar: outcome

tvar: quote−id
tvar: cust−id offer

short. queue

R role(call centre)
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I

R automatic

N/AI

R cap(advisor)

Fig. 2. Indicative example of a newYAWL process model: customer request for foreign
exchange services
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various perspectives that potentially can be captured in a newYAWL process
model. Further details on the specifics of each of the perspectives are included
in the following sections.

4.2 Control-Flow Perspective

A process model in newYAWL is analogous to a Petri net (although they are
not the same and newYAWL includes some additional constructs such as the
cancellation region that are not available in Petri nets). It consists of tasks
(which correspond to executable activities) and conditions (that correspond to
states) connected in the form of a directed graph. There is a designated start and
end node for a process and there are two fundamental requirements pertaining to
model structure: (1) all nodes (i.e. tasks and conditions) must be on a path from
the start to the end node and (2) a condition may not be connected to another
condition. Processes may be hierarchical in form with block tasks mapping to
a corresponding subworkflow to which they pass control when invoked. Where
multiple arcs enter or exit a task, various forms of join and split conditions
are supported which describe the state requirements for task initiation and the
effects of completion. In Fig. 3 the flow relation and process hierarchy
places capture the details of individual newYAWL workflow models and the
hierarchy that they form.

Control-flow in newYAWL is managed in an analogous manner to that in
a Petri net and is based on the traversal of tokens through a process model.
Each control-flow token identifies the process model and process instance to
which it applies. In Fig. 3 the various control-flow tokens reside in the process
state place. Tokens are removed from this place by enabled tasks and returned
to it when they complete. The lifecycle of a task is illustrated by the enter,
start, complete and terminate block and exit transitions which identify
the various stages through which an enabled task passes as it progresses from
initiation to completion.

Each process has a unique identifier known as a ProcessID and each pro-
cess model has a unique BlockID (this is necessary as the hierarchy within a
process means it may contain several distinct process models defining subwork-
flows in addition to the top-level model). Each task within a process is identified
by a unique TaskID. In order to allow for and differentiate between concur-
rent execution instances, it is necessary to introduce some additional notions.
First an executing instance of a process is termed a case. It has a case identifier
CID which is unique for a given ProcessID. Hence the tuple (ProcessID,CID)
uniquely identifies all cases. Similarly an enabled task instance is known as a
work item. It has a more complex identification scheme denoted by the five-
tuple (ProcessID,CID,TaskID,Inst,TaskNr) where Inst identifies the specific
instance of the task that is being executed (thus allowing for distinct instances of
a task as may occur if it is in a loop for example) and TaskNrwhich allows distinct
concurrent execution instances of a multiple instance task to be differentiated.
By adopting this identification scheme, it is possible for the semantic model to
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Fig. 3. Overview of the operational semantics for newYAWL
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cater for multiple concurrent processes, process instances and task instances in
a common environment.

4.3 Data Perspective

newYAWL incorporates a series of features derived from the data patterns,
providing coverage of issues such as persistence, concurrency management and
complex data manipulation which are often absent from workflow languages.
It provides support for a variety of distinct scopes to which data elements
can be bound e.g. task, block, case etc. These are encoded in the variable
declarations place shown in Fig. 3. Data passing between process constructs
is based on the use of formal parameters which take a function-based approach to
data passing thus supporting inline transformations during data passing events.
These parameters are encoded in the parameter mappings place. A similar func-
tional approach is taken to specifying link conditions for OR-splits and XOR-
splits that allow the determination of which outgoing branches should be acti-
vated and preconditions and postconditions for tasks and processes. These are
encoded in the task details, and preconditions and postconditions places
respectively. Finally, the use of locks allows concurrent data usage to be managed
through an approach which requires tasks to specify data elements that they re-
quire exclusive access to (within a given process instance) in order to commence.
A task instance can commence execution if it can acquire locks on all required
data elements. It retains these locks until it has completed execution preventing
any other task instances from using the locked data elements concurrently. The
locks are recorded in the lock register place.

4.4 Resource Perspective

The resource perspective is responsible for describing the resources who under-
take a given business process and the manner in which associated work items
are distributed to them and managed through to completion. For each task,
a specific interaction strategy is specified which describes how the associated
work item will be distributed to users, and what degree of autonomy they have
in regard to choosing whether they will undertake it or not and when they will
commence exeuting it. Similarly, a detailed routing strategy can be defined which
identifies who can undertake the work item. Users can be specified by name, in
terms of roles that they perform, based on capabilities that they possess, in
terms of their job role and associated organisational relationships or based on
the results of preceding execution history. The routing strategy can be further
refined through the use of constraints that restrict the potential user population.
Indicative constraints may include: retain familiar (i.e. route to a user that un-
dertook a previous work item), four eyes principle (i.e. route to a different user
than one who undertook a previous work item), random allocation (route to a
user at random from the range of potential users), round robin allocation (route
to a user from the potential population on an equitable basis such that all users
receive the same number of work items over time) and shortest queue allocation
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(route the work item to the user with the shortest work queue). newYAWL also
supports two advanced operating modes piled execution and chained execution
that are designed to expedite the throughput of work by imposing a defined
protocol on the way in which the user interacts with the system and work items
are allocated to them.

4.5 newYAWL: Progress Towards Workflow 2.0

One of the major objectives of the newYAWL initiative was to advance the
state of the art in workflow systems by providing a reference language for multi-
perspective business processes (i.e. requirement REQ 1 in Sect. 3). In doing so, it
has also addressed many of the goals identified in Sect. 3 for the next generation
of workflow technology. The language constructs in newYAWL are based on the
fundamental requirements for business processes identified by the 126 workflow
patterns [21]. The experiential approach taken to characterising these patterns,
based on a comprehensive survey of commercial offerings, standards, modelling
formalisms and programming language theory, ensures a close correlation be-
tween the language constructs in newYAWL and those encountered in practice
(REQ 4). Moreover, the fact that these constructs span multiple perspectives
of a business process is also directly recognised in the breadth of the abstract
syntax for newYAWL.

newYAWL is formalised in terms of a series of CPN models, which provide a
precise interpretation for each of its language constructs and facilitates determin-
istic execution (REQ 5) of business processes captured in terms of its abstract
syntax. One of the major advantages of the approach taken to the language defi-
nition for newYAWL is that there is a clear mapping from the abstract syntax to
the runtime environment and a business process captured in terms of the abstract
syntax can be directly executed without requiring further information (REQ 2).
This means that business process models specified using newYAWL are applicable
throughout the BPM lifecycle. They are used directly in the modelling, implemen-
tation and enactment phases of workflow processes and, in conjunction with the
logging information recorded during execution, they provide the basis for compre-
hensive analysis of processes in retrospect. Moreover, the comprehensive descrip-
tion contained in a newYAWL business process when utilised in conjunction with
the proposed execution logs (which include not only details of task execution, but
also data transfer and the various stages of the lifecycle for individual work items)
means that the basis exists for comprehensive monitoring and analysis of business
processes during execution (REQ 8).

A significant consideration during the design of newYAWL was in ensuring
that the resultant language ultimately provided a broader range of facilities at
runtime than has been demonstrated by preceding workflow technology. The
broad range of workflow patterns it supports (118 fully and 1 partially out of
the complete set of 126 patterns) gives an indication of the breadth of its overall
capabilities, and it provides a range of useful features including support for com-
plex data structures in workflow data elements, a variety of integration facilities
with the operational environment, support for configurable exception handling
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(REQ 7), rich resource definition and the ability to specify a wide range of
work item distribution mechanisms for routing work to users and managing it
through to completion. It also demonstrates a range of facilities for flexible pro-
cess enactment (REQ 3) particularly in the areas of flexibility by design and
underspecification although less so in the areas of deviation, adaptation and
change. Further information on newYAWL can be found in [22] and [21] includ-
ing illustrative examples of its usage and detailed discussions of the language
design and validation. One area of the newYAWL feature set that merits special
attention, is the manner in which it facilitates concurrency in business processes
(REQ 6). The following section discusses this issue in detail with reference to
four specific issues that arise in the control-flow, data and resource perspectives.

4.6 newYAWL: Better Concurrency Support for Processes

In this section, we discuss the concurrency support provided by newYAWL with
reference to four specific examples: task enablement, concurrent data element
usage, work item distribution and deferred choice.

Task Enablement. One of the most complex activities in workflow execution
is managing the enablement of a task. This entails two distinct steps: (1) deter-
mining if the various prerequisites that apply to task enablement have been met
and (2) facilitating the actual enablement as a single atomic activity.

There are five requirements for a task to be enabled: (1) the precondition
associated with the task must evaluate to true, (2) all data elements which are
inputs to mandatory input parameters must exist and have a defined value, (3) all
mandatory input parameters must evaluate to defined values, (4) all locks which
are required for data elements that will be used by the work items associated
with the task must be available and (5) if the task is a multiple instance task,
the multiple instance parameter when evaluated must yield a number of rows
that is between the minimum and maximum number of instances required for
the task to be initiated. Only when all of these prerequisites have been met can
the actual enabling of a task occur. The enter transition, illustrated in Fig.
3, is responsible for managing task enablement which involves the simultaneous
completion of the following actions:

1. Removing the control-flow tokens marking input conditions to the task cor-
responding to the instance enabled from the process state place;

2. Determining which instance of the task this is;
3. Determining how many work item instances should be created. For an atomic

or composite task this will always be a single work item, however for a multi-
ple instance or composite multiple instance task, the actual number started
will be determined from the evaluation of the multiple instance parameter
contained in the parameter mappings place together with the current data
state in variable instances which will return a composite result contain-
ing a number of rows of data indicating how many instances are required.
In all of these situations, individual work items are created which share the
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same ProcessID, CID, TaskID and Inst values, however the TaskNr value
is unique for each work item and is in the range 1...number of work items
created;

4. For all work items corresponding to composite tasks, distinct subprocess
CIDs need to be determined from the process hierarchy place to ensure
that any variables created for subprocesses are correctly identified and can
be accessed by the work items for the subprocesses that will subsequently
be triggered;

5. Creating variable instances for data elements associated with the task using
the variable definitions corresponding to the task in the variabledefinition
place. Data elements are added to the variable instances place;

6. Mapping the results of any input parameters for the task instance as iden-
tified in the parameter mappings place to the relevant task data elements.
This uses data values from the variable instances place and updates any
required input variables in this place created in step 5;

7. Recording any variable locks that are required for the execution of the task
instance in the lock register place;

8. Creating work item distribution requests for the work item to be allocated to
a specific resource. These are added to the assign wi to resource place
for subsequent routing to resources; and

9. Finally, work items with an enabled status need to be created for this task
instance and added to the mi_e place which identifies work items correspond-
ing to enabled but not yet started tasks.

Concurrent Data Element Usage. An issue that was addressed many years
ago by the database community but which is surprisingly lacking in many work-
flow solutions is the ability to manage concurrent usage of data elements within
a process instance. newYAWL addresses this issue by introducing the notion of
locks which allow exclusive access to a data element to be retained by a specific
task instance during its execution. Locks are evaluated at the time of task en-
ablement and where a task requires a data element to which it cannot acquire
a lock, then its enablement is deferred until it can do so. In Fig. 3, the lock
register place holds details of locks that are currently pending.

Work Distribution. The main motivation for workflow systems is achieving
more effective and controlled distribution ofwork.Hence the actual routing ofwork
items to specific resources and managing the interaction with the resource as they
progress individual work items to completion are of particular importance. The
process of managing the distribution of work items is summarised by
Fig. 4which shows how the work distribution transition inFig. 3is implemented.
This transition coordinates the interaction between the workflow engine, and the
work item distribution, worklist handler, management interven- tion and
interrupt handler transitions.The specific functions provided by these transi-
tions are as follows:

– the work item distribution transition identifies the resources to whom
work items should be routed and manages the interaction(s) with individual
resources as work items are offered, allocated, started and completed;
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Fig. 4. Top level view of the work distribution transition

– the worklist handler transition corresponds to the user-facing client soft-
ware that advises users of work items requiring execution and manages their
interactions with the main work item distribution transition in regard to
committing to execute specific work items, starting and completing them;

– the management intervention transition provides the ability for a workflow
administrator to intervene in the work distribution process and manually
reassign work items to users where required; and

– the interrupt handler transition supports the cancellation, forced comple-
tion and forced failure of work items as may be triggered by other components
of the workflow engine (e.g. the control-flow process, exception handlers).

The distribution of work items to users from the workflow engine is initiated
via the work distribution transition which forwards work items to the work
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items for distribution place. The work item distribution transition then
determines how they should be routed to users. This may involve the services
of the workflow administrator in which case they are sent to the management
intervention transition or alternatively they may be forwarded directly to one
or several users via the worklist handler transition. The various places be-
tween these three transitions correspond to the range of requests that flow be-
tween them.

The status of work items in progress is maintained in the offered work
items, allocated work items and started work items places which are
shared between the work item distribution, worklist handler, management
inter- vention and interrupt handler transitions. Although much of the in-
formation about the state of work items is shared, the determination of when a
work item is actually complete rests with the work item distribution transi-
tion. It inserts a token in the completed work items place when a work item is
complete. Similarly, work item failures are notified via the failed work items
place. Work items that are subject to some form of interrupt (e.g. an exception
being detected and handled) are handled by the interrupt handler transition
which manages cancellation, forced completion and failure requests received in
the cancel work item, complete work item and fail work item places re-
spectively. The complexity of the activities comprising the work distribution
transition is underscored by the fact that each of them are also substitution tran-
sitions and in each case have a relatively complex underlying implementation.

Deferred Choice. The implementation of the deferred choice construct is prob-
lematic for many workflow systems that do not have a notion of state. An ex-
ample of such a situation in a process is where a commuter defers the choice as
to how to get to work until after they have left the house. The actual choice is
made when they either decide to walk to work or take the bus, and the selection
occurs at the instigation of the commuter when they actually commence on their
chosen mode of travel. At this point, the other travel option is abandoned and
ceases to be a possible alternative course of action. In newYAWL this construct
is facilitated by offering all of the tasks subject to the deferred choice to the
user(s) responsible for making the choice. Once one of them is selected by a re-
source, then the work items corresponding to the other tasks are removed from
resources’ work lists via a cancellation action.

5 Conclusions

Workflow technology offers great promise as a general purpose means of au-
tomating business processes, however in its current incarnation it is dogged by a
series of criticisms including its narrow view of what constitutes a business pro-
cess, the lack of formal foundations and its inability to characterise real-world
business scenarios. This paper has examined the capabilities of the current gen-
eration of workflow technology and proposed a series of development goals for
the next generation of workflow tools. As a first step towards these objectives,
it has also presented newYAWL, a formally defined workflow reference language
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founded on the workflow patterns, that meets the proposed development goals
and provides a yardstick against which the capabilities of future workflow offer-
ings can be assessed. newYAWL is currently being used as the design blueprint
for the next generation of the YAWL open-source workflow offering.
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Abstract. We present a formal model for the organisation of process-
aware information systems. Our approach focuses on the structures “be-
hind” business processes, like e.g. team formation and coordination. Our
Petri net based model directly integrates organisational concepts like
roles, teams etc. – allowing an alignment of business and IT. The ben-
efit of this modelling overhead is that business reorganisation processes
are carried out as formal model transformations. Additionally, the auto-
mated mapping of our models to multi-agent systems – in the spirit of the
model driven architecture idea – is directly supported by our approach.

1 Organisations as the Structure behind PAIS

In this paper we deal with the organisational structure relevant for process-aware
information systems (PAIS). Let us consider some simple scenario: Workflows
consist of (partially) ordered activities. Activities usually have to be executed by
some (human or artificial) agent. The capabilities, that an agent has to provide
in order to carry out an activity, is described by roles : Each activity is mapped
to one role. If an agent implements some role R then it is responsible for all
the activities mapped to R. One agent can of course implement several roles at
the same time (even all the roles of a given workflow) and several agents may
implement the same role.

For most scenarios this level of detail is sufficient when dealing with business
processes of PAIS. For our approach, however, we like to look a little bit more
behind the scenes and consider the assignment process. The process of assigning
roles to agents is called team formation. Each role of a workflow, that is not yet
assigned to some agent, is considered as a task in the team formation process.
Task implementation is two-fold: In typical team-frameworks (like the contract
net [1]) agents do not have to execute each task they are assigned to by themselves
– they may delegate this task to some other agents. Starting with an initial
task this iterated delegation constructs a directed tree with agents as nodes.
The root is the agent that considers the initial task as relevant. The leaves
are the agents that implement roles in the workflow (usually called executive
agents or contractors) and the inner nodes are agents which serve coordination
purposes (manager agents). A team consists of this delegation tree together
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with the workflow and its state. The processes of team formation, coordination,
negotiation within one team is called teamwork.

When an agent A delegates a task to the agents A1, . . . , An it generates one
subtask for each agent Ai (1 ≤ i ≤ n). Each agent Ai only has to implement
some “smaller” portion of the role R of the original task, but it is possible that
Ai implements this portion in a different way, i.e. they implement different roles
Ri. But when all the agents A1, . . . , An are working together (coordinated by
A) their implementation of the roles R1, . . . , Rn must be “as good” (or more
technical: bisimilar) as if A would have implemented R itself.
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Fig. 1. A Workflow System Fig. 2. An Organisation Chart

As our working example cf. Figure 1. It shows a workflow system with three
workflow teams: #1, #2, and #3. All these instances describe some producer/
consumer (P/C) interaction. Instance #1 and #2 are based on the same workflow
PC while #3 is based on a more complex one named PC 3. (We are not interested
in the details of this interaction for this moment.)

Above the workflows we have shown the delegation trees. All trees have agent
C as root, i.e. it is C that signals the need for P/C interaction. In all trees C
delegates to agent D which delegates to two agents, one for the producing and one
for the consuming part, but which agents are chosen is different: In instance #1
we have agent A implementing the role Producer and C implementing Consumer
(which are also the leaves of the tree, i.e. the executers) while in instance #2
we have agent B and C. In instance #3 we have the further complication that
B does not implement the role Producer itself, but rather delegates to E and F
which have the roles Producer1 and Producer2, respectively. To implement the
original Producer/Consumer-task started by C we have to make sure that E and
F (and the roles Producer1 and Producer2) together may serve the same purpose
as B when acting in the role of Producer.

Obviously we can drive this point a little bit further and ask for the structure
behind the teamwork itself. Following [2], this structure must provide enough
information to describe which agent may delegate to whom, but may include
additional information about the current workload of agents, their trustworthi-
ness, their prices (whenever market mechanisms are applied) etc. This structure
is called an (agent) organisation. The agents of a system occupy positions within
the organisation. For our working example we might guess that the delegation
network must look somehow similar to the chart in Figure 2, but we will soon
find out that this structure is not rich enough to explain e.g. why C may act as
a manager and executer while all other agents don’t; or why it is possible for D
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to choose between A and B (as in #1 and #2), while B has to delegate to both
E and F (as in #3).

When dealing with such scenarios we can rely on a rich literature how to
model workflows including the concepts like roles, activities, communication,
refinement, observation equivalence etc. Workflow nets [3] and their descendants
can be seen almost as the canonical approach both for theoretical and practical
purposes as they provide a simple, intuitive, and elegant model.

While the process perspective is sufficiently clear (at least for the scope of
this paper) the area of teamwork has not reached such a level. Teamwork has
its origin in the area of distributed artificial intelligence (DAI) where problem
solving is studied from the perspective of coordinating agents [4], in the area of
computer supported cooperative work (CSCW) [5], and in the area of decision
support systems [6]. For a recent survey on teamwork cf. [7]. There is also a
relationship to interorganisational workflows [12] and to web services [14].

When research on teams can be characterised as ongoing then research on or-
ganisations has just started to attract attention from researchers. Computational
organisation theory [8] can be characterised as the field at the borders of social
and economic sciences and DAI. In recent years organisation theory has had
an impact on the organisation centred design of (open) software systems, like
e-markets or web services [9]. Reorganisational aspects of workflow management
systems are studied in [10,11].

In this paper we propose a Petri net based organisational model, called Sonar
(Self Organising Net ARchitecture), that (a) should be simple enough to be easily
understood and analysed and (b) at the same time rich enough to capture the
interplay of concepts like workflows, teamwork, delegation etc. in such a detail
that we can automatically generate (i.e. compile) code from these organisational
models.

Moreover, our Sonar-model is reflective in the sense that the organisation
does not only shape the business processes by teamwork as described above (first
order processes), but also reorganises itself as a reaction to the business processes
(second order processes).

The paper gives a formal model for organisations and teams and is structured
as follows: Section 2 gives a formal model of organisations based on Petri nets.
The set of possible teams is modelled as a so-called R/D net. Section 3 describes
organisation nets and their behaviour, i.e. the team formation and planning
processes (which are the main activities in the early phase which precede the
‘core’ business processes). Section 4 describes how this formal model is used for
transformation on the meta-level, i.e. for business reorganisation processes. The
paper closes with a conclusion and an outlook.

2 Formal Organisations

A formal organisation describes the interplay of the delegation network, roles,
positions, workflows, task delegation etc. In the following we introduce a formal
model for organisations based on Petri nets.
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2.1 Distributed Workflow Nets

At the basis we define workflows with several participants. The model used here
is a multi-party version of workflow nets [3] where the parties are called roles.
Roles are used to abstract from concrete agents. For example, the two roles
Producer and Consumer have the same form of trading interaction no matter
which agent is producing or consuming. Figure 3 shows the Petri net PC that
describes the interaction between both roles: First the producer executes the
activity produce, then sends the produced item to the consumer, who receives
it. The consumer sends an acknowledge to the producer before he consumes the
item. Technically speaking roles are some kind of type for an agent describing
its behaviour. Note, that agents usually implement several roles.
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Fig. 3. The DWF Net PC (Producer/Consumer)

Each transition t of a distributed workflow (DWF) net D, which models an
activity, is assigned to the (atomic) role r(t) ∈ Rol with the meaning, that only
agents that implement this role r are able to execute the activity t. In Figure 3
all transitions are drawn below the role that they are assigned to (here: Producer
and Consumer). One can see from this figure that practical DWF nets are very
similar to UML interaction diagrams.

Roles are names which obtain behavioural meaning via a DWF net. Given a
set of atomic roles Rol the set R := 2Rol is the role universe. Each R ∈ R is
called a role. The singleton roles of the form R = {r} are identified with the
atomic role r itself.

A Petri net is a tuple N = (P, T, F ) where P is a set of places, T is a set of
transitions, disjoint from P , i.e. P ∩ T = ∅, and F ⊆ (P × T ∪ T × P ) is the
flow relation. A marking m is a multiset of places, i.e. a mapping m : P → N.
A Petri net K = (B, E, �) is called a causal net whenever �

∗ is a partial order.
The preset of a node y is •y := (_ F y) and postset is y• := (y F _). The set
of places with empty preset is ◦N = {x ∈ P ∪ T | •x = ∅}. The set of places
with empty postset is N◦ = {x ∈ P ∪ T | x• = ∅}. For causal nets ◦N are the
minimal and N◦ the maximal elements.

Workflow nets [3] are an established means to model workflow processes. A
workflow net is a Petri net N = (P, T, F ) with two distinguished places i and
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f with •i = f• = ∅ and each node lies on a path between i and f . To model
workflows involving several roles we generalise this notion for multiple start
and end points. Despite this, our model of DWF nets is very similar to the
Interorganizational Workflows of [12]. (We do not deepen on this connection
here because the interaction model itself does not lie in our main focus.) By
adding an initial transition, that removes one token from a fresh place i and
adding one tokens to all the places in ◦N , and one final transition, that removes
one tokens from all the places in N◦ and adds one to the fresh place f , we obtain
a workflow net from a DWF net.

Definition 1. A DWF net D = (N, r) is a is a Petri net N = (P, T, F ) (where
◦N and N◦ are non empty sets and each node lies on a path between ◦N and
N◦) together with a role labelling r : T → Rol .

The canonical initial marking is mi and the final marking is mf with:

mi(p) =

{
1, if p ∈ ◦N
0, otherwise

and mf (p) =

{
1, if p ∈ N◦

0, otherwise

Define the mapping R on DWF nets as R(D) := r(T ).

We require that all transitions in the preset of a place p are assigned to the same
role: r(t1) = r(t2) for all t1, t2 ∈ •p (and similarly for the postset). Whenever a
place p connects two transitions t1 and t2 with r(t1) = r(t2) = r it models some
local state of the agent that implement the role r. Whenever r(t1) = r(t2) then
the place p models a message buffer which is drawn horizontally (here: item and
acknowledgement).

The role inscriptions induce certain subnets, called role-components. The role
component D[R] is a Petri net module with interface places for in- and output
similar to [13] and successors, e.g. [14].

Definition 2. Given a DWF net D and a role R ⊆ R(D) we can restrict D to
the subnet D[R] = (PR, TR, FR), called the R-component of D, defined by the
nodes related to R: TR := r−1(R) and PR := (•TR ∪ TR

•).

In Figure 3 the role component PC [Producer] is indicated by the filled nodes. In
the introduction (cf. Figure 1), agent A executes PC [Producer] in #1 and B in
#2 while C executes PC [Consumer] in #1 and #2.

The composition N1 ‖ N2 of two nets is defined by place fusion and disjoint
union of transitions. For role components we have the following composition
property.

Theorem 1. For a DWF net D = (N, r) and roles R1, R2 ⊆ R(D) with R1 ∩
R2 = ∅ we have N [R1]‖N [R2] = N [R1 ∪ R2].

A Petri net processes (K, φ) consists of a causal net K and a locality preserv-
ing net morphism φ – cf. [15] and the appendix. Procwf (D) denotes the set of
all Petri net processes of D such that the minimal elements ◦K represent the
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initial marking: φ⊕(◦K) = mi and the maximal elements K◦ represent the final
marking: φ⊕(K◦) = mf (where φ⊕ is the multiset extension of φ).

Given two DWF nets D1 and D2 and roles R1 ⊆ R(D1) and R2 ⊆ R(D2) the
interaction refinement relation

D1[R1] � D2[R2] (1)

holds iff the subnet D1[R1] can be replaced by D2[R2] (and vice versa) in any
context without changing the behaviour at the interface.1 So, D1[R1] and D2[R2]
are indistinguishable from their input/output behaviour, i.e. their abstract mes-
sage processing.
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Fig. 4. Refined Producer/Consumer DWF Net PC 3

For example, Figure 4 presents the DWF net PC 3 that refines (with respect
to communication behaviour) the role Producer in the net PC of Figure 3 by the
roles Producer1 and Producer2 (Prod1, Prod2 for short):

PC [Prod] � PC 3[Prod1, Prod2]

A set of DWF nets D is called DWF universe, whenever R ∈ R(D1) ∩ R(D2)
for D1, D2 ∈ D then D1[R] cannot be distinguished from D2[R] with respect to
their communication behaviour.

In the instance #3 of our working example of Figure 1 agent B implements
its task, which is described by PC [Prod] by delegating subtasks to the agents E

1 This is formalised as a bisimulation where each message buffer place p is refined into
a subnet p′ → tp → p′′ and the bisimulation is defined only on the fresh transitions
tp; the original transitions are silent τ steps.
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and F which together implement PC 3[Prod1]‖PC 3[Prod2] = PC 3[Prod1, Prod2]
which is (as required) a proper refinement of PC [Prod].

For a given DWF universe D we denote the set of all DWF nets which contain
R as D(R):

D(R) = {D ∈ D | R ⊆ R(D)} (2)

2.2 Role/Delegation Nets and Teams

For the rest of this paper we assume a fixed DWF universe D and a fixed role
universe R. Teams are modelled as so called Role/Delegation (R/D) nets. A
R/D net is a Petri net (P, T, F ) where each task is modelled by a place p and
each task implementation (delegation/execution) is modelled by a transition t.
A place p with •p = ∅ models an initial task, while •p = ∅ models a subtask.
Transitions t ∈ T with t• = ∅ are called delegative, transitions with t• = ∅ are
called executive. Each place p is labelled by a role R(p) and each transition t
with a DWF net D(t). Since teams are trees it is a natural restriction to allow
exactly one place in the preset of a delegation: |•t| = 1. Also we assume for teams
that the model is a causal net, which guarantees that the delegation process is
conflict free. An example for an R/D net is given Figure 5 (the named boxes
around places and transitions will be explained in the following section).

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

t9

ConsProd

PC3

t4

Prod2

O6: Prod2

t8

p0
{Prod,

Cons}

O2: Prod

virtual firm

O5: Prod1

firm 2firm 1

O3: Cons

requester

O1: Prod,Cons broker

PC t6

O7: Prod

PC t3

firm 3

Fig. 5. Producer/Consumer Organisation

Definition 3. A R/D net is the tuple (N, R, D) where:

1. N = (P, T, F ) is a Petri net with |p•| > 0 for p ∈ P and |•t| = 1 for t ∈ T .
2. R : P → R is the role assignment.
3. D : T → D is the DWF net assignment.

An R/D net is called a team net if N is a connected causal net with exactly one
minimal node: |◦N | = 1.

In a team net all maximal nodes (i.e. the leaves) are transitions: N◦ ⊆ T . Since
|•t| = 1 by definition there exists a place p with •t = {p}.

In a well-formed organisation the roles of the DWF net D(t) are consistently
related to the roles of the places in the preset and the postset such that no role
behaviour is lost or added during the delegation.
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Definition 4. A R/D net (N, R, D) is well-formed if we have for all t ∈ T :

1. Static role compatibility. The roles in the preset belong to the DWF net:
R(•t) ⊆ R(D(t))

2. Role partition. Whenever |t•| > 0 holds, then the roles R(p) are disjoint for
all p ∈ t• and there is a DWF net implementing R(t•), i.e. D(R(t•)) = ∅.

3. Behaviour refinement. Whenever |t•| > 0 holds, then there exists for each
Dt ∈ D(R(t•)) a partition (Pr)r∈R(•t) of the postset t•, such that for all
r ∈ R(•t) we have the behaviour refinement Dt[R(Pr)] � D(t)[{r}].

The R/D net given in Figure 5 is well formed, since the initial place p0 requests
for an interaction of Prod and Cons. Activity t1 delegates both roles via p1 and
p2 to t2 and t4, respectively. The role Prod is refined properly by t2 since the
roles in its postset are Prod1 and Prod2 which are together behaviour-equivalent
to the role Prod.

2.3 Organisations

In the following we like to characterise team nets as the result of a team formation
which is controlled by an organisation (cf. Theorem 3 below). The organisation
structure is built up by organisational positions.2 Each position is responsible
for the delegation/execution of several tasks and can delegate subtasks to other
positions. Positions are modelled as disjoint subsets of P ∪ T of a R/D net.

Since each position decides autonomously which subtasks it generates we re-
quest that whenever t belongs to a position, then all generated subtasks p ∈ t•

belong to it, too, and whenever p belongs to a position, so are all t ∈ •p. As in
R/D nets the transitions are related to DWF nets and the places with roles.

The initial tasks (i.e. the places p with •p = ∅) are the starting points of
organisational activity.

Definition 5. A (formal) organisation net is the tuple Org = (N,O, R, D)
where (N, R, D) is a R/D net with N = (P, T, F ) and O is a partition on the
set P ∪ T where all O ∈ O satisfy the following delegation constraint (with
Ō := (P ∪ T ) \ O):

∀p ∈ O ∩ P : •p ⊆ O ∧ p• ⊆ Ō ∧ ∀t ∈ O ∩ T : •t ⊆ Ō ∧ t• ⊆ O

An element O ∈ O is called position. For each node n ∈ (P ∪ T ) the uniquely
defined position to which n belongs is denoted O(n).

The set of all positions in the postset of a place p is denoted by Odlg(p). It is
the set of all positions to which O(p) may delegate p to. For example in Figure 5
the position O3 may delegate p0 only to O1, i.e. Odlg(p0) = {O1}.
2 It is useful to distinguish between the type and the implementation to keep the

system architecture clean. In our concrete MAS architecture derived from a Sonar-
model each position is implemented by two agents: One models the formal position
and its duties and another models the “employee” implementing them.
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There is a close connection between organisation nets and the commonly used
organisation charts. In fact, organisation charts are a special sub-case of our
model. Organisation nets encode the information about delegation structures
– similar to charts – and also about the delegation/execution choices of tasks,
which is not present in charts. If one fuses all nodes of each position O ∈ O into
one single node, one obtains a graph which represents the organisation’s chart.
Obviously, this construction removes all information about the organisational
processes. The chart in the introduction (Figure 2) represents the result when
applying the construction to the organisation net in Figure 5.

Let (N,O, R, D) with N = (P, T, F ) be an organisation net. Those firing
sequences w ∈ T + that fire a marking m to the empty marking 0 are called task
delegation sequences, because after w has fired the net is empty, i.e. all tasks
have been assigned to positions. Thus, each task delegation sequences models a
team formation.

For the net in Fig. 5 we have t1t3t4, t1t6t4, and t1t2t8t9t4 as task delegation
sequences (modulo permutation of concurrent transitions). Since we like to know
whether it is possible to generate teams for all tasks, it is a natural question to
ask whether markings enable task sequences, or equivalent, whether 0 ∈ RS(m)
holds (where RS (m) denotes the set of markings reachable from m).

Definition 6. Let (N, R, D) be a R/D net.

– The marking m is called processable iff 0 ∈ RS(m) holds.
– The marking m is called strongly processable iff all m′ ∈ RS(m) are pro-

cessable.
– (N, R, D) is called (strongly) processable iff all its markings are (strongly)

processable.

Note, that R/D nets are unbounded in general and reachability may become a
complex question to decide. Fortunately, due to the special tree-like structure
we have the following properties (cf. Theorem 3.3 in [16]).

Theorem 2. 1. If the marking m is strongly processable, then it is processable.
2. (N, R, D) is strongly processable iff it is processable.
3. A marking m is processable iff the markings {p} with m(p) > 0 are.
4. It is decidable in linear time in the size of the R/D net N whether the marking

m is (strongly) processable.
5. If all markings {p} with p ∈ P are processable, then N is strongly processable.

3 The Organisation in Action

It is obvious that the organisational Sonar-model can be seen as a distributed
actor network where the positions O ∈ O are the actors/agents. This agent is
denoted by O, too, in the following. The subnet (P ∩O, T ∩O, F ∩O2) represents
the functionality of each agent O.

The actor network generated from the organisation net in Figure 5 is the
system described in the introduction (cf. Figure 2). E.g. the position O2 has to
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implement the role Prod which we obtain by computing R(•O2). The activities
O2 has to implement is PC [Prod], computed from D(t3)[R(t3)] where t3 is the
only executive transition of O2.

These position agents are implemented within the Mulan framework [17]
since Mulan is a Petri net based formalism which narrows the gap between
model and implementation, but in principle any agent-oriented programming
language could be adapted. The position agents are responsible mainly for three
basic kinds of organisational coordination: team formation, distributed planning,
and (on the meta-level) organisational transformation.

3.1 Team-Formation

The first phase of teamwork deals with team formation. Team nets can be char-
acterised as Petri net processes of an organisation net. Petri net processes (cf.
[15]) are a recognised alternative for describing the behaviour of Petri nets by
firing sequences. Processes are themselves Petri nets from the class of causal nets,
where no branching is allowed for the places. A process of a net N is defined as
a causal net K together with a net morphism φ = (φP , φT ).

A process has the progress property iff no transition is enabled in K◦, i.e. for
each subset X ⊆ K◦ there is no transition t ∈ T such that φ(X) = •t. The set
of all finite processes with the progress property is denoted K(N, m).

The following theorem states that each process with the progress property
introduces a team net. Given a process (K, φ) we define the mappings D and R
as RG(b) = R(φ(b)) and DG(e) = D(φ(b)) (cf. Theorem 4.2 in [16]).

Theorem 3. Let Org = (N,O, R, D) be a formal organisation. Then for each
p ∈ P and each process (K, φ) ∈ K(N, {p}) we have that G(K, φ) := (K, (R ◦
φ), (D ◦ φ)) is a team net. If Org is well formed, then G(K, φ) is, too.

This theorem allows us to characterise team formation processes in terms of the
theory of Petri net processes: Each Petri net process of a formal organisation
generates a team net.

Alternatively, a process (K, φ) can be constructed from the possible firings,
i.e. the enablement of transitions, of the net N . The construction is inductively
defined for a process net, by adding transitions according to the enabling con-
dition of the net N . The starting point is given by the initial marking, which
defines a simple process without any transitions, but only a place for each token
in the initial marking. For the progress property this unfolding is continued until
no transition is enabled.

This construction leads to the implementation of a distributed team formation
algorithm. In our model, team nets are formed through an iterated delegation
process. Whenever an agent O has been chosen as a team member to implement
the role belonging to a place b with φ(b) ∈ •O it selects one of the implementation
possibilities, i.e.

t ∈ (φ(b)• ∩ O)

This choice is equivalent to the extension of the process already constructed by
an event e with φ(e) = t. After choosing one element t such that t• = ∅ holds, the
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agent O further chooses one team member Ob′ from the set Odlg(φ(b′)) for each
b′ ∈ e•. This delegation process as a whole corresponds to the construction of the
possible firings of an organisation net and thus constructs the net’s processes and
hence team nets. The distributed team formation algorithm is given in pseudo-
code in Figure 6. Given an initial task the agents in the algorithm compute a
team net G, that assigns tasks to positions in a distributed manner.

when agent O receives (K, φ, b) do
choose t ∈ (φ(b)• ∩ O)
B′

t = {bp | p ∈ t•}
(K′, φ′) := ((B′, E′, F ′), φ′) where // extend process by t:

B′ = BK � B′
t, F ′ = FK ∪ {(b, e)} ∪ ({e} × B′

t)
E′ = EK � {e}, φ′ = φ ∪ {(e, t)} ∪ {(bp, p) | p ∈ t•}

for each b′ ∈ B′
t do

choose Ob′ ∈ Odlg(φ(b′))
send (K′, φ′, b′) to Ob′

initially choose p ∈ P with R(p) = R and •p = ∅
(K0, φ0) := (({b0}, ∅, ∅), {(b0, p)})
send (K0, φ0, b0) to O(p)

Fig. 6. Team-formation as a distributed algorithm

Example 1. If we like to implement the initial task p0 of Figure 5 we have
O3 = O(p0) as the starting agent. O3 passes control to O1, the only neighbour:
Odlg(p0) = {O1}. The agent O1 generates two subtasks: p1 and p2 according to
t1. For each of these subtasks one neighbour agent has to be activated. For p1 the
agent O1 has to choose between O7 and O2, for p2 we have only O3. O1 chooses
O7 and O3 according to t6 and t4 which become activated but cannot delegate
any further. So the algorithm terminates. The generated team corresponds to
the task delegation sequence t1t6t4 (modulo permutation): Gt1t6t4 . The team net
equals the net that is obtained from the net in Figure 5 by restricting it to P
and t1, t6, and t4.

3.2 Team-Planning: Distributed Coordination

The local planning of an agent A has to be consistent with all other agents’
plans, the team G, and sometimes with the team’s constraints (if any). This
process is usually called distributed coordination.

The set of maximal nodes K◦ of a team G = (N, R, D) induces a special DWF
net, called the team-DWF D(G). Each transition t ∈ N◦ is associated to the
DWF net D(t) and the role R(•t). The team-DWF is the composition of all role
components D(t)[R(•t)]:

D(G) :=
∥∥∥

t∈N◦
D(t)[R(•t)] (3)
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For well formed R/D nets this composition is always well-defined.
If we look at the team Gt1t6t4 from above, we obtain the team-DWF:

D(Gt1t6t4) = PC 3[Prod1]‖PC 3[Prod2]‖PC [Cons] = PC 3

For each node n ∈ P ∪ T of the team G we define a set of compromise plans
CP(n). These sets are defined recursively over the structure of the team net:
The maximal nodes t ∈ N◦ of a team G have no further constraints. Therefore
each Agent O(t) may choose any process of the set of all workflow processes
Procwf (D(G)) as its plan: CP(e) := Procwf (D(G)) for t ∈ N◦.

For each place p the compromise set is defined as equal to that of its postset:
CP(b) := CP(b•). Each agent corresponding to an inner transition t of the team
G chooses a subset of the intersection of all the compromise sets in its postset:

ξO(t)

(
{CP(p) | p ∈ t•}

)
⊆

⋂
p∈t•

CP(p)

The construction of compromise sets therefore relies on the family of mappings
(ξO)O∈O to reduce the space of compromises. Formally, we have:

CP(p) := CP(p•)

CP(t) :=

{
Procwf (D(G)), if t ∈ N◦

ξO(t)
({CP(p) | p ∈ e•}) if t ∈ TN \ N◦

(4)

The team compromise set CP(G) is the set finally computed for the root:
CP(G) := CP(◦N). The team planning has been successful whenever there is
at least one plan as a team compromise, i.e. CP(G) = ∅. Whenever there is no
such compromise for the team, the agents have to adapt the mappings (ξO)O∈O
in a distributed negotiation phase (we omit details here).

when agent O(t) receives CP from agent O(p), p ∈ t• then
CPO,p := CP

when agent O(t) has received CP from all agent O(p), p ∈ t• then

CPO,t :=

{
Procwf (D(G)), if t ∈ N◦

ξO(t)

({CP(p) | p ∈ e•}) if t ∈ TN \ N◦

send CPO,t to O(•t)

Fig. 7. Team-planning as a distributed algorithm

This calculation directly leads to a simple distributed algorithm (cf. Figure 7)
which can be seen as an abstract version of the well known partial global planning
protocol [18]. Each agent has the variables CPO,n for all nodes belonging to O,
i.e. for all n ∈ O. The messages flow from the leaves to the root of the team.
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Example 2. Look at the team Gt1t6t4 from above. The leaves of Gt1t6t4 are the
transitions t8, t9, and t4. The composition of all these components is the team-
DWF D(Gt1t6t4) = PC 3 = PC 3[Prod1]‖PC 3[Prod2]‖PC [Cons].

The tree of the team has the following structure (with leaves at the left and
the root at the right):

t8 PC 3[Prod1]
t9 PC 3[Prod2]

t2 PC 3[Prod1, Prod2]

t4 PC [Cons]
t1 PC 3

Coordination processes this trees from the leaves to the root: The agent O2,
which implements the delegation t2, integrates the compromise sets CP(t8) and
CP(t9) of its child nodes into CP(t2). Due to Theorem 1 the set CP(t2) contains
only processes of the DWF net

PC 3[Prod1]‖PC 3[Prod2] = PC 3[Prod1, Prod2].

In the second step CP(t2) and CP(t4) are combined by the agent O1 into
CP(t1) ⊆ CP(t2) ∩ CP(t4).

3.3 Teamwork Parameters

Both aspects – formation and planning – can be realised in different ways which
can be combined in an independent manner. Team formation can be parame-
terised by the degree of obligation. Possible alternatives are:

1. Each position agent has to accept each task assigned to him.
2. Before assigning task to others each agent asks his neighbours to evaluate

the costs. After this biding phase the delegating agent chooses the cheapest
agent who must not refuse.

3. Agents even have the freedom to reject an assignment after the bidding
provided that there is at least one agent willing to receive the assignment.

Similarly, compromise planning can be parameterised in different ways:

1. Agents have the possibility to restrict the plans of agents of lower authority,
i.e. restriction is related to the organisation structure.

2. Agents have the possibility to restrict the plans of those agents which are in
lower branches of the team.

3. No agent has the possibility to restrict the other agents’ plans. Compromise
negotiation is a peer to peer process.

The team formation process presented in this paper is based on direct assign-
ment while the team planning relies on team based restriction where the parent
positions restrict the options of the child positions.

These parameters are independent from each other leading to a two dimen-
sional scheme for organisational teamwork:
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planning
formation organisation based team based peer to peer
direct assignment hierarchies
bidding federations
reject option markets

The common modes of teamwork – like hierarchies, federations, and markets
(cf. [7] for other) – can be identified as instances of this scheme.

4 Transformation: Business Reorganisation Processes

So far we have considered a formal organisation as a context that frames the
behaviour of the actors (i.e. software agents) occupying positions in the organ-
isational framework. Now we turn to processes that target at the organisation
itself. In this respect, we distinguish organisational processes of first and of sec-
ond order. First-order processes have already been examined: Teams are formed
to accomplish some task and the organisation is referred to as a static con-
text. Second-order processes, on the other hand, are reorganisation processes
that transform the organisation, which is consequently referred to as a variable.
These second-order processes introduce the reflective character into our model.

Second-order processes fit neatly into our approach of teamwork-based organ-
isational processes. Organisational transformations are carried out by transfor-
mation teams. Just as teams for first-order processes they are generated by Petri
net processes of organisation nets. Each transition of second order DWF-nets
additionally carries a transformation instruction.

We cannot give full details on the formal apparatus behind transformation and
transformation teams in our model. Instead, we return to our running example
of the production scenario in order to illustrate the basic concepts. Up to now,
the requester part has no inner substructure. Requesting some product as the
starting point and consuming this product upon reception is subsumed under
one single position. Figure 8 illustrates a new evolution stage in the production
scenario where the requester has been reorganised.

PC

PC2 PC2

PC

Prod1

PC

DMCons1

PC

PC3

p1 p2

p3 p4 p6 p7

t2 t5
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Fig. 8. Refined Organisation
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First of all, the original requester may now decide whether it consumes the re-
quested product himself or whether it delegates the consumption (transformation
step alternative refining, cf. Figure 9). For example, imagine the casewhere the sup-
plier delivers micro processors that the requester incorporates into personal com-
puters as end-products. Now the requester has decided to expand its business and
order different kinds of micro processors for assemblage. But as it cannot accom-
plish the higher workload itself it has to delegate some of the work to subordinates.

As a second step, the delegated part of the work in Figure 8 comprises different
subtasks and thus induces different subordinates in different roles (transforma-
tion step delegation splitting, cf. Figure 10). Referring to the micro processor
example, one particular type might be delivered in varying production quality
(Does anyone remember the 486SX which was the 486DX with a malfunction-
ing float pointing unit?). The quality of a particular processor decides upon the
means of assemblage.3 Thus, in addition to different positions for assemblage
there exists one position to judge the quality of incoming products.

We assume that the DWF net PC 2 exists (not presented here) that refines
the role Consumer in the net PC of Figure 3: The role Decision Maker (DM)
decides whether Consumer1 or Consumer2 (short: Cons1 and Cons2, resp.) receives
the item. The DWF net PC 2 has to be a refinement of PC with respect to
communication behaviour: PC [Cons] � PC 2[Cons1, DM, Cons2].

The transformation of the organisation is based on net rewriting as a special
form of graph transformation [19]. We demand our transformation rules to pre-
serve the well-formedness of organisations nets. Figure 9 and 10 show two such
rules ρ1 and ρ2 which preserve well-formedness. The first rule ρ1 takes a delega-
tion from p to t and introduces an alternative delegation transition t1 which im-
plements the role Cons by delegating to the roles Cons1, DM, and Cons2 which are
implemented by the new transition t2 which is labelled by the protocol PC 2. The
well-formedness is preserved since the role-component PC 2[Cons1, DM, Cons2] is
an interaction refinement of PC [Cons]. The second rule ρ2 splits the delegation
from a transition t1 to a place labelled with the three roles Cons1, DM, Cons2
to three places labelled with one of the three nodes: R({p1}) = R({p3, p4, p5}).
The three activities are executed independently by the same DWF net that
has to equal to the original one D(t2), i.e. D(t2) = D(t3) = D(t4) = D(t5). The

3 Of course there has to exist an agreement between the requester and supplier as
to whether and to what conditions the supplier is willing to accept lower quality
products. We do not address such subtle issues here.
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well-formedness is preserved since the role-component PC 2[Cons1, DM, Cons2] is
interaction equivalent to the composition PC 2[Cons1]‖PC 2[DM]‖PC 2[Cons2].

The refined organisation of Figure 8 is generated by applying ρ1 and then r2
to the organisation in Figure 5 and is therefore well formed too.

5 Conclusion and Outlook

We have presented a Petri net-based approach to model formal organisations.
The resulting formal organisational model, called Sonar, integrates structural
as well as functional and interactional features of organisations. In this respect,
we provide a structuring metaphor for distributed information systems and at
the same time a formal model of distributed business processes that comprise
participants in different roles and contexts.

In addition, each model of a formal organisation implicates a network of ac-
tors/agents to actually carry out the organisational specifications. We establish
a close link between organisational specifications and their deployment as multi-
agent systems. Not only business processes for task accomplishment themselves
but also their genesis in the form of team formation and team planning are de-
scribed by distributed algorithms that operate on the underlying Petri net model
of the corresponding formal organisation.

Business processes are carried out by teams. The organisation may be seen as
a network of actors (embodied by its associated network of position agents) that
carries out first-level business processes to accomplish business tasks as well
as second-level business processes (i.e. business reorganisation) to reflectively
transform itself. Thus, we arrive at a self-contained model for the organisation
of process-aware information systems.

Turning to future work, we consider different issues related to our intention to-
wards the network of agents as an effective distributed and domain-independent
level of implementation (middleware). In the context of this paper it was suf-
ficient to associate each position with exactly one agent. But in the case of an
open system environment with agents belonging to different stakeholders enter-
ing and leaving on a continual basis, we propose to refine this agent into a posi-
tion/member pair. The organisation contracts each position to a member agent
that carries out actions and makes decisions. But member agents must connect
to the corresponding position agents and use them as (controlling and coordi-
nating) proxies to the organisation. Consequently, this approach distinguishes
between the organisational and the domain layer of applications. In addition our
model allows for further refinement of positions to (sub)organisations.
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Abstract. Process-aware information systems (PAIS) must be able to
deal with uncertainty, exceptional situations, and environmental changes.
Needed business agility is often hindered by the lacking flexibility of
existing PAIS. Once a process is implemented, its logic cannot be adapted
or refined anymore. This often leads to rigid behavior or gaps between
real-world processes and implemented ones. In response to this drawback,
adaptive PAIS have emerged, which allow to dynamically adapt or evolve
the structure of process models under execution. This paper deals with
fundamental challenges related to structural process changes, discusses
how existing approaches deal with them, and shows how the various
problems have been exterminated in ADEPT2 change framework. We
also survey existing approaches fostering flexible process support.

1 Introduction

In many application domains process-aware information systems (PAIS) will be
not accepted by users if rigidity comes with them [1,2,3,4]. Instead, it should be
possible to quickly implement new processes, to enable on-the-fly adaptations
of running ones, to defer decisions regarding the exact process logic to runtime,
and to evolve implemented processes over time. Consequently, process flexibility
has been identified as one of the fundamental needs for any PAIS and different
enabling technologies have emerged [5,6,7,8]. They support adaptive processes
[9,10,11], declarative models [7], late modeling [12,13], and data-driven processes
[14,15]. Basically, we need to be able to deal with uncertainty, to cope with
exceptions, and to evolve processes over time:

– Ability to deal with uncertainty. The implemented process is based on a
loosely or partially specified model, where the full specification is made dur-
ing runtime and may be unique to each process instance. Rather than en-
forcing control through a rigid, or highly prescriptive model, that attempts
to capture every aspect, the model is defined in a more declarative or incom-
plete way that allows individual instances to determine their own processes.

– Ability to adapt processes. The implemented process is able to react to ex-
ceptions, which may or may not be foreseen and which affect one or a few
instances. Generally, it must be possible to adapt the structure and/or state
of the process model of a particular instance. Respective adaptations, how-
ever, must not affect other instances being executed on this model as well.

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 115–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



116 M. Reichert, S. Rinderle-Ma, and P. Dadam

– Ability to evolve processes. A process model has to be changed when the busi-
ness process evolves. One challenge concerns the handling of long-running,
active instances, which were initiated based on the old model, but now need
to comply with the new specification. Potentially, thousands of active in-
stances may be affected.

This paper focuses on structural adaptations of process models at different levels.
Adaptations of single process instances (e.g., to add, delete or move activities)
become necessary to deal with exceptional situations and often have to be ac-
complished in an ad-hoc manner [11]. Model changes at the process type level,
in turn, have to be continuously conducted to evolve the PAIS [9,5]. It must be
also possible to dynamically migrate running process instances to new model
versions. Important challenges are to perform instance migrations on-the-fly, to
guarantee compliance of migrated instances with the new model version, and to
avoid performance penalties. Our ADEPT2 change framework addresses these
challenges and explicitly covers the latter two kinds of flexibility; i.e., the adap-
tation and evolution of processes. However, through its ability to support late
binding of sub-processes and to dynamically evolve or define these sub-processes,
ADEPT2 is also able to support late modeling, and thus to deal with certain
kinds of uncertainty.

The ultimate ambition of structural process adaptations during runtime is
to ensure correctness of the modified instances afterwards. First, structural and
behavioral soundness have to be guaranteed already at the model level (i.e.,
without considering instance states). Second, when performing instance adapta-
tions this must not lead to flaws (e.g., deadlocks); i.e., none of the guarantees
ensured by formal checks at build time must be violated due to the runtime
adaptation. As example consider Fig. 1 where the model on the left-hand side
is structurally modified by arranging parallel activities B and C in sequence af-
terwards. The instance running on the old model (with B being enabled and C
being completed) does not comply with the new model version since its marking
cannot be transferred to it (B must be completed before C may start). Such unde-
sired runtime situations are denoted as dynamic change bug [16]. To exterminate
them adequate correctness criteria are needed; e.g., to decide whether a given
process instance is compliant with a modified process model and – if yes – how
to adapt instance states when migrating the instance to the new model version.

In the following we deal with different correctness notions for dynamic process
changes and discuss the strengths and weaknesses of the approaches relying on

DA B C

C

A D

B
Process 
Instance I:

Change ∆

dynamic change bug 

Fig. 1. Dynamic change bug
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them. Based on these considerations we show how we deal with respective issues
in ADEPT2, which constitutes one of the very few adaptive PAIS which allows
for structural process changes during runtime at instance and type level. Section
2 introduces fundamental challenges emerging in the context of dynamic process
changes and discusses existing approaches for dealing with them. Section 3 shows
how ADEPT2 tackles the different challenges and exterminates dynamic change
bugs. This includes both the control and the data flow perspective as well has
the viewpoint of users. We survey alternative solutions for process flexibility in
Section 4 and conclude with a summary in Section 5.

2 Fundamental Challenges of Dynamic Process Changes

2.1 Basic Notions

When implementing a new process in a PAIS its logic has to be explicitly de-
fined based on the provided process meta model. For each business process to be
supported, a process type represented by a process schema (i.e., process model) is
defined. For one particular process type several schemes may exist representing
the different versions and the evolution of this type over time. Based on a pro-
cess schema an arbitrary number of new process instances can be created and
executed. The PAIS orchestrates them according to the defined process logic.

For defining structural process adaptations two options exist. On the one
hand, respective schema adaptations can be defined based on a set of change
primitives (e.g., to add or delete edges). Following this approach, realization of
a particular structural adaptation usually requires the application of multiple
change primitives. To specify structural adaptations at this low level of abstrac-
tion, however, is a complex and error-prone task. Another, more favorable option
is to base structural adaptations on high-level change patterns [6,17], which ab-
stract from the concrete schema transformations to be conducted (e.g., to add
a process fragment parallel to an activity or to move a fragment to a new posi-
tion). Instead of specifying a set of change primitives the user applies one or few
high-level change operations to define the required structural change.

Definition 1 (Process change). Let PS be the set of all process schemas and
let S, S’ ∈ PS. Let further Δ = <op1, . . . , opn> denote a process change which
applies change operations opi i = 1, . . . , n, n ∈ N sequentially. Then:

1. S[Δ> S′ if and only if Δ is correctly applicable to S. S’ is the process schema
resulting from the application of Δ to S (i.e., S’ ≡ S + Δ). We call a change
Δ correctly applicable to a schema S if all formal pre-conditions of Δ are
met for S or resulting schema S’ is a correct process schema according to the
correctness criteria set out by the process meta model of interest.

2. S[Δ>S’ if and only if there are process schemas S1, S2, . . . , Sn+1 ∈ PS with
S = S1, S’ = Sn+1 and for 1 ≤ i ≤ n: Si[Δi>Si+1 with Δi = <opi>

We assume that change Δ is applied to a sound process schema S [18]; i.e., S
obeys the specific correctness constraints set out by the used process meta model
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(e.g., bipartite graph structure for Petri Nets). We denote this as structural
soundness. We further claim that S’ must obey behavioral soundness; i.e., any
instance executed on S’ must not run into a deadlock or livelock. This can be
achieved in two ways. Either Δ itself preserves soundness based on pre-/post-
conditions of the applied change patterns [11], or Δ is first applied on a schema
copy and soundness of the resulting schema version S’ is checked afterwards.

Another basic notion used in the following is process trace. Such trace sequen-
tially logs the entries about the start and completion of process activities.

Definition 2 (Trace). Let PS be the set of all process schemas and let A
be the total set of activities (or more precisely activity labels) based on which
process schemas S ∈ PS are specified (without loss of generality we assume
unique labeling of activities). Let further QS denote the set of all possible traces
producible on process schema S ∈ PS. A particular trace σS

I ∈ QS of instance
I on S is defined as σS

I = < e1, . . . , ek > (with ei ∈{Start(a), End(a)}, a ∈ A,
i = 1, . . . , k, k ∈ N). The temporal order of ei in σS

I reflects the order in which
activities were started and/or completed over S.1

2.2 Under Which Conditions May Process Instances Be Adapted?

Most approaches dealing with structural instance adaptations [16,19,10,5,8] focus
on correctness; i.e., applying a change to a running instance must neither violate
its structural nor behavioral soundness. The correctness criteria used by adaptive
PAIS vary and have led to different implementations [9]. Basically, there are
structural and behavioral correctness criteria. While criteria from the former
group try to structurally relate the process schema before the change to the
resulting schema version [16,8] (e.g., using inheritance relations for realizing the
schema mapping), the latter are based on execution traces; i.e., they compare
which traces are producible on a process schema before and after its change.
Structural criteria. One approach relying on structural criteria in connec-
tion with dynamic changes exists for WF Nets [16]. A WF Net is a labeled
place/transition net representing a control flow schema [16,20]. A sound WF Net
has to be connected, safe, and deadlock free as well as free of dead transitions.
Furthermore, sound WF Nets always properly terminate. Behavior of a process
instance is described by a marked WF net. Core idea of the corresponding change
framework is as follows: An instance I on schema S (represented by a marked
WF Net) is considered as compliant with the modified schema S′ := S +Δ, if S
and S′ are related to each other under given inheritance relations; i.e., either S
is a subclass of S′ or vice versa. The following two kinds of inheritance relations
are used [16]: A schema S is a subclass of another schema S′ if one cannot distin-
guish behaviors of S and S′ anymore either (1) when only executing activities of
S which also belong to S′ or (2) when arbitrary activities of S are executed, but
only effects of activities being present in S′ as well are taken into account. Thus,
Inheritance Relation (1) works by blocking and Inheritance Relation (2) can be

1 An entry of a particular activity can occur multiple times due to loopbacks.
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realized by hiding a subset of the activities from S. More precisely, blocked ac-
tivities are not considered for execution. Hiding activities implies that they are
renamed to the silent activity τ . (A silent activity τ has no visible effects and
is used, for example, for structuring purposes.) Consider the example from Fig.
2 where the newly inserted activities X and Y are hidden by labeling them to
the silent activity τ . Thus, S′ is a subclass of S. Further inheritance relations
can be obtained by combined hiding and blocking of activities. Based on these
inheritance relations we can state the following correctness criterion:

Criterion CC 1 (Compliance under inheritance relations) Let S be a
process schema which is correctly transformed into another schema S’ by ap-
plying change Δ. Then instance I on S is compliant with S’ if S and S’ are
related to each other under inheritance (see [16] for a formal definition).

CC 1 ensures structural and behavioral soundness of instance I after applying
change Δ to it. The question remains how to ensure CC 1; i.e., how to check
whether Δ is an inheritance preserving change and therefore S and S′ are related
under inheritance. [16] defines precise conditions with respect to S and S′. When
inserting a new net N into S, S and S′ will be related under inheritance if N
and S have exactly one place in common. This will be the case, for example, if a
cyclic structure Nc is inserted into S (resulting in S’) as shown in Fig. 2. Since S′

is a subclass of S when hiding X and Y in Nc, soundness of I on S′ is guaranteed.
Checking inheritance of arbitrary process schemes is PSPACE-complete [16].

A B

Instance I on S:

A B

X τY τ

I on S’: 

Nc

Fig. 2. Inheritance preserving change: insertion of cyclic structure

Using inheritance relations restricts the set of applicable changes to additive
and subtractive ones. There is no adequate relation based on hiding/blocking
activities in connection with order-changing operations. Nevertheless, this ap-
proach covers many relevant changes and copes with them without need for
accessing instance states. It can be used for both correctness checks on single
instances and on instance collections (e.g., WF Nets with colored tokens). It is
debatable whether it also works with concurrent changes. Assume, for example,
that instance I on S is changed resulting in instance-specific schema SI , which
is related to S under inheritance. Assume further that at process type level S
is changed to S’ (which is again under inheritance with S). Then it has to be
analyzed whether SI and S’ are also related to each other under inheritance.
Behavioral criteria. A widely-used correctness property is the trace-based
compliance criterion introduced by [19]. Intuitively, change Δ on schema S (i.e.,
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S[Δ > S′) can be correctly applied to instance I on S iff the execution of
I, taken place so far, can be ”simulated” on the new schema version S′ as
well. [19] bases compliance on trying to replay trace σS

I of I on S′. If this is
possible, behavioral soundness can be guaranteed when migrating I to S′ [19,5].
In summary, compliance is fundamental for changing both, single instances and
instance collections. Basically, it also allows for concurrent changes. We discuss
respective extensions in Section 3.5. Finally, the idea of preserving traces by
structural changes based on Petri Nets is described in [21,10].

2.3 How to Adapt Instance States After Dynamic Changes?

In addition to decide whether change Δ can be correctly applied to an instance,
it becomes necessary to properly and correctly adapt instance states afterwards.
Structural approaches. [16] provides transfer rules based on the aforemen-
tioned inheritance relations (cf. Criterion CC 1) to cope with marking adapta-
tions in the context of WF net changes. After applying change Δ to schema S
(i.e., S[Δ > S′), necessary marking adaptations are realized by mapping mark-
ings of instances running on S onto markings on S′. Adapting markings after
inserting parallel branches, for example, is complicated since in some cases we
have to insert additional tokens to avoid deadlocks. Fig. 3 shows an example. By
just mapping the token of s3 on S to place s3 on S’, a deadlock is produced. [16]
proposes to insert an additional token on s5 (progressive transfer rule). Though
the resulting marking on S’ is correct, the semantics of newly inserted tokens is
debatable, particularly, if colored tokens (i.e., data flows) are considered as well.

Transfer rules insert new control tokens to avoid deadlocks in the sequel 

A B C D

progressive 
transfer rule

X

A B C D

Instance I: Transfer Rule 

s3 s3

s5

Fig. 3. Marking adaptation policy in [16,20]

Another approach has been proposed for Flow Nets [10] for which an explicit
mapping between the markings of the net before and after the change has to be
specified. This is done manually by adding flow jumpers; i.e., transitions mapping
tokens from the old to the new net (cf. Fig. 4). Both single instances or instance
collections can be migrated. The handling of concurrent changes at instance
and type level, however, is cumbersome, since several new net versions have to
be merged with the old net via flow jumpers. Manually specifying mappings
between instance markings is not a realistic option in practice. As it can be see
from Fig. 4 respective mappings already become complex for simple scenarios.

Behavioral approaches. Checking compliance means to replay instance traces
on the changed process schema. Thus, marking adaptations come for free. How-
ever, at the presence of thousands of running instances, replaying whole traces
becomes too expensive. In Sect. 3 we introduce a more sophisticated approach
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D

I on S with marking m: I on SCOC with marking m: 

flow jumper old change region N1

new change region N2

N1

Fig. 4. Marking mapping (Synthetic Cut Over Change) [10]

for automatically checking compliance and adapting instance markings. It has
been realized in ADEPT2 [5] and utilizes specific properties of the ADEPT2
meta model as well as the semantics of the ADEPT2 change patterns.

2.4 Discussion

Generally, a correctness criterion is needed which preserves structural and behav-
ioral soundness of the dynamically adapted instances (cf. Fig. 5). This criterion
should be valid independent from the used process meta model. Nonetheless, it
is always applied in the context of a concrete meta model and change framework.
Like serializability in database systems, defining a proper correctness notion is
only one side of the coin. The other is to check it efficiently, particularly at the
presence of a multitude of instances. When applying the criterion for a particu-
lar meta model, logical optimizations for checking it can be based on exploiting
meta model properties as well as the semantics of the applied change operations.
Additional optimizations are conceivable at the implementation level.

Framework-specific 

Meta-model independent 

General correctness 
criterion for dynamic 

process change 

Implementation-specific 

Logical realization 
for process meta 

model

Optimizations and 

implementation

Fig. 5. Correctness of process change – general view

3 Dynamic Process Changes in ADEPT2

We now elaborate compliance as meta model independent correctness criterion
in the context of a concrete process meta model (i.e., ADEPT2 WSM Nets [5]).
We show how compliance can be efficiently checked and instance markings be
automatically adapted when performing dynamic instance changes.

3.1 WSM Nets

Well-Structured Marking-Nets (WSM Nets) as applied in ADEPT2 can be used
to represent process schemes by attributed serial-parallel graphs (cf. Fig. 6a).
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Consider Fig. 6a, which depicts an example of a WSM Net. A WSM Net S
is structurally sound if the following constraints hold: S has a unique start
and a unique end node. Except for these start and end nodes each activity
node has at least one incoming and one outgoing control edge e ∈ CtrlE2.
Structuring nodes such as AND-Splits, XOR-Split, AND-Joins, and XOR-Joins
can be distinguished based on their node type (6a). Loop backs can be explicitly
modeled via loop edges e ∈ LoopE (cf. Fig. 6a). Basically, WSM Nets are block-
structured, where control blocks (sequences, branchings, loops) can be nested,
but must not overlap. We additionally allow to relax this block structure and
to synchronize the execution order of activities from parallel branches by means
of so-called sync links e ∈ SyncE if required. Such sync links must not cross
the boundary of a loop block; i.e., an activity from a loop block must not be
connected with an activity from outside the loop block via a sync link (and vice
versa). Furthermore, Sfwd = (N, CtrlE, SyncE) constitutes an acyclic graph
which allows to exclude deadlocks due to cyclic ”wait-for” dependencies.

For WSM Nets, data flow is realized by associating process data elements to
activities by read and write edges (cf. Fig. 6a). For activities with mandatory

c) Trace I
S
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Fig. 6. WSM Net with running instance, traces, and marking rules

2 i.e.; S is connected.
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input parameters linked to global data elements, it has to be ensured that
respective data elements are always written by a preceding activity at runtime
independent of which execution path is chosen.

Taking the WSM Net S from Fig. 6a new process instances can be created and
executed (cf. Fig. 6b). Thereby, the execution state of an instance I is captured
by marking function MSI =(NSSI , ESSI ) where SI denotes the instance-specific
schema of I. MSI assigns to each activity n its current status NS(n) and to
each edge e its current marking ES(e). Markings are determined according to
well defined firing rules. Based on the local context of an activity (i.e., incoming
and outgoing edges), the activity marking can be determined [11]; markings of
already passed regions and skipped branches are preserved (except loop backs).
Activities marked as Activated are ready to fire (i.e., enabled) and can be
worked on. Their status then changes to Running and afterwards to Completed.
Activities belonging to non-selected execution branches obtain marking Skipped
and can no longer be selected for execution (e.g., activity D in Fig. 6). Concern-
ing data elements, different versions of a data object can be stored, which is
important for the handling of partial rollback operations.

To cope with exceptional situations, instances can be individually modified
by applying high-level change patterns (e.g., to insert or move activities). For
such individually modified instances the instance-specific schema deviates from
the original one they were started on. Respective instances are denoted as bi-
ased. To capture information about instance-specific changes, logically, each in-
stance I runs on an instance-specific schema SI with S[ΔI > SI ; ΔI denotes
the instance-specific bias. For unbiased instances, ΔI =<> and consequently
SI ≡ S hold. According to the change patterns framework presented in [6,22],
Tab. 1 presents some high-level change operations, which can be used to de-
fine or structurally modify process schemes. A high-level change operation real-
izes a particular variant of a change pattern (e.g., serial or parallel insertion of
activities). In ADEPT2 these change operations include formal pre- and post-
conditions. They automatically perform necessary schema transformations while
ensuring structural soundness. One typical example of such a change operation
is the insertion of an activity and its embedding into the process context.

Currently, we are working on an extension of the ADEPT2 meta model to
further increase expressiveness and to cover frequent workflow patterns (see
[23] for details). Generally, there exists a trade-off between expressiveness of
a meta model and support for structural adaptations in imperative approaches.
ADEPT2 has been designed with the goal to enable the latter, i.e., to allow for
the efficient implementation of adaptation patterns, restrictions on the process
meta model are made. Similar restrictions in terms of expressiveness hold for
other approaches supporting structural adaptations [24,8]. On the other hand,
YAWL is a reference implementation for workflow patterns and therefore allows
for a high degree of expressiveness [25]. Structural adaptations have not yet been
addressed in YAWL and their implementation would be more difficult due to the
higher expressiveness (see Section 4 for more details).
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Table 1. A selection of high-level change operations on process schemas

Change pattern Design choice Effects on schema S
AP1: Insert activity

serial inserts the activity between directly succeeding
ones

insert between node sets
without condition inserts the activity parallel to existing ones

with condition conditional insert of the activity
AP2: Delete activity deletes the activity from schema S
AP3: Move activity

serial moves the activity to position between directly suc-
ceeding activities

move between node sets
without condition moves the activity parallel to existing ones
with condition conditional move of the activity

3.2 Checking Compliance in ADEPT2

In Section 2 two approaches for ensuring correctness of dynamically adapted
instances are presented. CC 1 enables correctness checks for process changes
without taking instance state into account. However, this comes for the price of
a restricted set of change patterns (e.g., no order-changing operations). On the
other side, traditional compliance [19] uses full instance information as captured
by execution traces. Doing so allows for all kinds of change patterns. However,
traditional compliance has turned out to be too restrictive (e.g., in conjunction
with loops). Apart from this it is expensive to check. ADEPT2 follows an elegant
compromise between these two compliance criteria abolishing their particular
limitations. This is achieved by extending traditional compliance to overcome
its restrictiveness. Furthermore, precise conditions for ensuring compliance are
elaborated, which only take dedicated instance information into account. First
of all, we formalize traditional compliance criterion CC 2:

Criterion CC 2 (Compliance of unbiased instances) Let S be a sound
process schema and let I be an unbiased process instance running on S with
associated execution trace σS

I . Assume that change Δ transforms S into another
sound process schema S′ (i.e., S[Δ > S′). Then: I will be compliant with S’ (i.e.,
it can migrate to S’) if its execution trace σS

I can be correctly replayed on S’.

CC 2 depends on the representation (i.e. view) of trace σS
I . One is the Start/

End view on σS
I . It logs both start and end events of executed activities (cf. Fig.

6c). Taking this view on σS
I we obtain an instance with correct marking when

replaying it on S′ [9]; i.e., I can continue execution based on S′ afterwards while
structural and behavioral soundness are preserved. However, this view is too re-
strictive in conjunction with changes of cyclic process structures [5]. If a loop is
affected by a change, but has already undergone some iterations, the respective
instance will be always considered as non-compliant with S′ (i.e., trace entries
related to finished iterations cannot be replayed on the adapted schema) though
a migration of this instance would not lead to errors in the sequel. ADEPT2
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Fig. 7. Adapting markings for WSM Nets

therefore applies a reduced representation σS
I red of σS

I , which corresponds to a
(logical) projection of σS

I only on current loop iterations; i.e., for loop activities
we only consider entries written during the last iteration of the respective loop
(cf. Fig. 6d). Note that this approach is fostered by the block-structuring of WSM
Nets. In addition, data flow correctness can be ensured by enriching execution
traces with information about data access; i.e., read and write access on data
elements. This is crucial in connection with dynamic process changes [5]. We dig
into data flow correctness in Section 3.4.

CC 2 constitutes a logical correctness notion similar to serializability in data-
base systems. Another challenge is to efficiently check it. A naive solution would
be to try to replay instance traces on S′ and to verify whether resulting instance
states on S′ are correct. Obviously, this can cause a performance penalty if a
multitude of instances shall be migrated. Generally, a change framework has to
provide methods which ensure CC 2 and can be efficiently checked. ADEPT2
provides methods which make use of the semantics of the applied change opera-
tions (cf. Tab. 1) and the model-inherent markings of WSM Nets for all change
patterns supported [5,6]. Contrary to many approaches (e.g., [26,16]), ADEPT2
is able to deal with order-changing operations as well. (A discussion on the com-
plexity of compliance checking for different change patterns and a comparison
with other approaches can be found in [9].) As example consider Fig. 7 where
activity B is moved to the position between activities A and D. Instead of re-
playing complete trace σS

I of I on S′, according to the ADEPT2 compliance
conditions for moving activities, the following has to be checked: I is compli-
ant with S′ if for all newly inserted control edges in CtrlEadd

Δ their destination
activities are not running or completed yet. In the latter case (i.e., state of re-
spective activities is Running or Completed), the state of the associated source
node is Completed and compliance can be only ensured if the entries of source
and destination node within trace σS

I red have the right order (i.e., END entry of
source node before START entry of destination node). For our example from Fig.
7, the destination activities of edges in CtrlEadd

Δ (i.e., C and D) have not been
started yet. Consequently, activity B can be moved as described for instance I.

As can be seen from this example, moving activities is one of the few cases,
where we might have to exploit additional information from trace σS

I red. In
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connection with newly added control edges, the associated orders must be already
reflected by the entries of the trace. If the destination activities of the new control
edges have not been started yet, the right order will be always guaranteed.
Otherwise, the actual order has to be checked based on the execution trace. For
inserting and deleting activities, checking node states is sufficient (see [27,28] for
a complete summary of compliance conditions and respective proofs).

3.3 Adapting Instance Markings in ADEPT2

We have described how CC 2 can be ensured and which information is needed.
Our goal was to prevent access to whole instance traces. By holding this maxim
we now discuss how compliant instances can be automatically migrated to an
adapted schema. One challenge, not adequately solved by other approaches, con-
stitutes the efficient and correct adaptation of instance markings. According to
CC 2, the marking of a migrated instance must be the same as it can be obtained
when replaying its (reduced) trace on the new schema version. How extensive
marking adaptations turn out depends on the kind and scope of the change. Ex-
cept from initialization of newly added nodes and edges, no marking adaptations
become necessary if the instance has not yet entered the change region. In other
cases more extensive marking adaptations are required. An activated activity X,
for example, will have to be deactivated if control edges are inserted with X as
target activity. Conversely, a newly added activity will have to be activated or
skipped if all predecessors already have marking COMPLETED or SKIPPED.

We utilize information on the change context to decide on marking adapta-
tions. We illustrate this by means of an example. Consider Fig. 7 where B is
moved to the position between A and D. The algorithm first determines which
nodes and edges have to be potentially (re)marked. In the given case these sets
can be determined based on the inserted and deleted control edges. Then, the
algorithm steps through the initial node and edge sets and adapts instance mark-
ings step by step. In Fig. 7, these steps are denoted as intermediate steps. First of
all, for newly inserted control edge A −→ C, an adaptation has to be done; since
source node A is already completed, A −→ C is marked as True Signaled. Con-
sequently, in the next step, destination node C has to be marked as Activated
since all incoming edges have marking True Signaled. For the other newly in-
serted edge B −→ D and deleted edge A −→ B no marking adaptation becomes
necessary. Thus, the algorithm terminates with the desired marking of I on S′.

Based on the compliance criterion, the dynamic change bug as discussed in
literature (e.g. [29,16] is not present anymore in ADEPT2. More precisely, the
application of the change operation as depicted in Fig. 1 would be rejected in
ADEPT2 based on the corresponding compliance conditions. Furthermore, even
for order-changing operations, markings can be automatically adapted without
need for interacting with users. Basically, the described approach for ensuring
compliance can be transfered to other process meta models as well. We have
shown this for BPEL [30] and for Activity Nets [31].
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3.4 Data Flow Correctness

So far, we have not considered data flow correctness in connection with process
changes. Basically, we have to ensure correctness of the modeled data flow when
directly changing it (e.g., by adding or deleting data edges) as well as when
adapting the associated control flow structure. Regarding the latter, ADEPT2
will only allow for control flow changes if data flow correctness can be preserved
afterwards [28]. As example take process schema S from Fig. 7 and assume that
B writes data element d and C reads it afterwards. Regarding this scenario, data
flow correctness would be not preserved if we conducted the depicted adaptation
(i.e., to move B from its position between A and C to the position parallel to
C). Since B would then be ordered in parallel to C, we could not guarantee any
longer that B writes d before C reads this data element. As another scenario,
assume that change Δ inserts two activities A and B in an arbitrary schema
S, where A is writing data element d, which is read by B afterwards. In this
case, Δ would not be correctly applicable, if A is inserted within one branch of
an alternative branching. In this case, it cannot be ensured that A is activated
during runtime and d is written accordingly.

read data 
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Fig. 8. Data Consistency Problem

Altogether, to avoid such structural flaws, a given sequence of change oper-
ations can be only applied in ADEPT2 if structural and behavioral soundness
is guaranteed afterwards. In the given example, the structural pre-conditions of
the move operation would disallow the application of the intended change since
in schema in S′ the read access of C to d has no preceding write access to this
data element.

Another challenge is to preserve the correctness of the data flow schema when
changing it. As example consider the scenario depicted in Fig. 8. Activity C has
been started and has already read value 5 of data element d1. Assume that, due
to a modeling error, read data edge (C, d1, read) shall be deleted and read data
edge (C, d2, read) be inserted instead. Consequently, C should have read value
2 of data element d2 (instead of data value 5). Such inconsistent read behavior
has to be prohibited since it can lead to errors and inconsistencies in the sequel
(e.g., if instance execution is aborted and therefore has to be rolled back). Using
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any representation of execution trace σS
I as introduced so far, this erroneous case

cannot be detected, i.e., the the instance would be classified as compliant.
We need an adapted form of σS

I considering data flow as well. We denote
σS

I
dc as data-consistent trace representation of σS

I with σS
I

dc = <e1, . . . , ek>:
ei ∈ {START(a)(d1,v1),...,(dn,vn) END(a)(d1,v1),...,(dm,vm)}, a ∈ A where tuple
(di, vi) describes a read/write access of activity a on data element di ∈ DS

with associated value vi (i = 0, . . . , k). Using this data-consistent representation
of σS

I the problem illustrated in Fig. 8a is resolved.

3.5 Concurrent Process Adaptations

Being able to cope with changes of single instances or a collection of instances
in isolated manner is crucial to meet practical needs. However, changes do not
always occur separately from each other. Assume that instance I on schema
S is modified due to an exception resulting in instance-specific schema SI (i.e.
S[ΔI > SI). If later S is changed as well due to new legal regulations resulting
in S′ (i.e. S[Δ > S′), the challenge is to decide how to cope with concurrent
changes ΔI and Δ (cf. Fig. 9): May I migrate to S′ and - if yes - how does
the instance-specific change (i.e., bias) turn out on S′? The latter question is
particularly interesting if ΔI and Δ are overlapping; i.e., they have some or all
change effects in common (e.g., deletion of same activity). Then ΔI has to be
adapted on S′ since S′ already reflects parts of ΔI . Fig. 9 illustrates the different
cases in connection with dynamic change. If S is transformed into S′, the user
might want to exclude some of the instances due to specific constraints. For all
others, migration to S′ is desired. First, we have to distinguish between instances
still running according to S (unbiased instances) and those individually modified
(biased instances). For biased instances it is further important to know whether
concurrent schema and instances changes are disjoint or overlap since further
migration strategy depends on that. For all instances we need adequate correct-
ness criteria (see [28,32] for respective extensions of compliance and migration
strategies).
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3.6 How Users Interact with ADEPT2?

So far, ADEPT2 has been applied in several domains including healthcare,
automotive development, construction engineering, logistics, and e-negotiation
[1,2,33,34]. While for some applications the provided ADEPT2 clients were suf-
ficient to adequately assist users in adapting their processes [34,1], in other cases
specific client components were implemented based on the application program-
ming interfaces offered by ADEPT2. AgentWork [33], for example, provides a
rule-based planning component for the healthcare domain that automatically
derives adaptations of patient treatment processes to be applied in a given con-
text. Here, users only have to approve the suggested instance changes, which are
then automatically carried out by the system; i.e., ADEPT2 serves as engine to
implement the changes. CONSENSUS [1], in turn, uses the existing ADEPT2
clients to realize the flexibility and dynamism needed to accommodate to the
various contingencies and obstacles that can appear during e-negotiations.

In all these case studies the provision of high-level change patterns and the
change framework described were considered as strong points in favor of ADEPT2.
Based on the lessons learned we are currently extending the meta model for WSM
nets with additional workflowpatterns [23]. Furthermore, we developed techniques
targeting at improved user assistance. In [35], for example, we present an approach
which uses conversational case-based reasoning to allow for the reuse of previously
applied ad-hoc changes in similar problem context. We are also developing mech-
anisms to incorporate semantical constraints into adaptive PAIS in order to pro-
hibit semantically counterproductive changes [36]. ADEPT2 expresses semantic
constraints in terms of rules and verifies them during buildtime, runtime, and in
connection with process changes. We further provide an authorization component,
which allows to restrict process changes to authorized users, but without nullify-
ing the advantages of a flexible PAIS by handling authorizations in a too rigid way
[37]. Finally, we are investigating the concept of process views in connection with
dynamic process changes [38]. Basic idea is to provide abstract views to users and
to allow them to apply changes to these views and to propagate the view updates
back to the underlying process.

4 Discussion

To effectively deal with exceptions through structural process adaptations and
to enable process evolution have been major design goals of the ADEPT2 tech-
nology. In the previous sections we have presented basic issues and concepts to
attain these goals and to enable dynamic structural changes of different process
aspects. This section provides a survey on the state-of-the art (see also [9,17]),
but extends it with a summary of approaches dealing with uncertainty as well.
Furthermore we discuss alternative solutions for enabling process flexibility in-
cluding declarative approaches [7] and case handling [14]. For a discussion of
techniques for process evolution we refer to [9,17].
Dealing with Exceptions. While expected exceptions are usually considered
during buildtime by specifying exception handlers to resolve the respective
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exceptions during runtime [39], non-anticipated situations, in turn, may re-
quire structural adaptations of single process instances [3,11]. A comprehensive
overview of exception handling mechanisms is provided by [40]. Depending on
the type of exception different handling strategies can be pursued (e.g., to roll
back parts of the process), which are described as exception handling patterns in
[40]. Exception handling often requires combined use of such patterns resulting
in rather complex routines. The Exlet approach [41], for example, addresses this
problem by allowing for the combination of different exception handling pat-
terns to an exception handling process called Exlet. Similarly, [42] suggests the
usage of meta workflows for coordinating exception handling. While exception
handling patterns are well suited for dealing with expected exceptions, non-
anticipated situations, in turn, often require structural adaptations of individual
process instances as well [39]. Besides ADEPT2, several other approaches sup-
port ad-hoc changes [8,24,6], however, only the ADEPT2 framework allows for
high-level change patterns (e.g., to insert, move or delete activities and pro-
cess fragments, respectively) instead of change primitives (e.g., to add or delete
nodes and edges in the process graph) [6]. To ensure correctness of run-time
changes, soundness needs to be guaranteed. When conducting instance-specific
changes, using change primitive (e.g., WASA2 [8] or CAKE2 [24]), soundness of
the resulting process schema cannot be guaranteed and correctness of a process
schema has to be explicitly checked after applying the respective set of prim-
itives. ADEPT2, in turn, associates pre-/ post-conditions with the high-level
change patterns, which allows to guarantee soundness. Finally, PAISs support-
ing instance-specific adaptations should be able to cope with concurrent changes
as well. While many system prohibit concurrent process instance changes (e.g.,
FLOWer [14], WASA2 [8]), ADEPT2 supports them based on optimistic concur-
rent change techniques; CAKE2, in turn, supports concurrent process instance
changes using pessimistic locking [24].

Dealing with Uncertainty. Flexible PAIS must be also able to cope with un-
certainty. Common to existing approaches is the idea to defer decisions regarding
the exact control-flow to runtime [13,17]. Instead of requiring a process model to
be fully specified prior to execution, parts of the model can remain unspecified
and be refined during run-time when more information is available. Examples
for such techniques are Late Binding, Late Modeling and Late Composition of
Process Fragments. Finally, data-driven processes provide for some flexibility
regarding the exact control-flow as well [15,14,43].

Late binding allows to defer the selection of activity implementations to run-
time; i.e., the implementation of the respective activity is chosen out of a set
of process fragments at runtime either based on rules or user decisions [17].
As example consider Worklets [13], which allow for late binding of sub-process
fragments to activities. At buildtime, the respective activity is modeled as a
placeholder. Late Modeling and Composition, in turn, are techniques which go
one step beyond by allowing parts or whole of the process to be defined during
runtime [12,44]. Late Modeling allows for modeling selected parts of a process
schema at runtime. At buildtime a placeholder activity as well as constraints for
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modeling the respective sub-process are defined. Usually, the modeling of the
placeholder activity needs to be completed before its execution can start. Even
more flexibility is provided by Late Composition. It allows users to compose ex-
isting process fragments on-the-fly; e.g., by dynamically introducing control de-
pendencies between them. There is no predefined schema, but the (sub-)process
instance is created in an ad-hoc way by selecting from the available fragments
and obeying the predefined constraints. For both techniques, the model being
dynamically defined may or may not be controlled by constraints. Complete lack
of constraints can defeat the purpose of a PAIS, where as too many constraints
may introduce rigidity that compromises the dynamic process [45].

[46,12] propose an approach for the late modeling of process fragments. A
part of the process (termed Pocket of Flexibility) is deemed to be of a dynamic
nature and is defined through a set of activities and a set of constraints defined
on them. At runtime, the undefined part is detailed for a given process instance
based on tacit knowledge and obeying the prescribed constraints. In contrast,
the approach provided by DECLARE [44,7] enables late composition of process
fragments. Basically, the whole process is defined in a declarative way. However,
DECLARE can also be used in combination with imperative languages (e.g.,
YAWL). In this scenario, not the entire process model is described in a declar-
ative way, but only sub-processes. Like in the Pocket of Flexibility approach a
process model is defined as a set of activities and a set of constraints. During
runtime process instances can be composed whereby any behavior is allowed
which is not prohibited by any constraints. Data-driven processes as supported
by the case handling tool FLOWer [14] do not predefine the exact control-flow,
but orchestrate the execution of activities based on the data assigned to a case.
Thereby, different kinds of data objects are distinguished. Mandatory and re-
stricted data objects are explicitly linked to one or more activities. If a data
object is mandatory, a value will have to be assigned to it before the activity
can be completed. If a data object is restricted for an activity, this activity needs
to be active in order to assign a value to the data object. Free data objects, in
turn, are not explicitly associated with a particular activity and can be changed
at any time during a case execution and consequently provide for flexibility dur-
ing run-time. [47] compares workflow management and case handling with means
of a controlled experiment. Recently, additional paradigms for the data-driven
modeling and adaptation of large process structures have emerged. In particular,
they allow for the transformation of data model changes to process adaptations
as well as for sophisticated exception handling procedures [48,15].

5 Summary and Outlook

We have provided a general discussion on flexibility issues in adaptive PAIS
and we surveyed the state-of-the-art. As core of any approach enabling dynamic
process changes, adequate correctness notions are needed. When implementing
them within a PAIS and making use of the formal properties of the underlying
process meta model as well as change framework, different optimizations can
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be realized. Similarly, optimized techniques for the automated adaptation of in-
stance states can be provided when migrating process instances to a modified
schema. Along these challenges, we have discussed different correctness criteria
and their application to specific process meta models. On one side we have con-
sidered structural criteria and their (logical) realization within Petri-net based
PAIS. On the other side, we have analyzed approaches using traces for deciding
whether an instance is compliant with a modified schema. Since both kinds of ap-
proaches come along with limitations, we have presented the ADEPT2 approach.
ADEPT2 uses consolidated instance data and exploits the semantics of the ap-
plied change operations in order to abolish the limitations of pure structural and
behavioral approaches. Finally, we have addressed issues related to concurrent
changes, data flow correctness, and use of ADEPT2. Future work will extend our
analysis of correctness criteria for dynamic process change. We will elaborate to
what degree existing correctness notions can be relaxed to increase the number
of compliant process instances [32]. Furthermore, there are still many open ques-
tions regarding the realization of concurrent process changes (e.g., how to deal
with partly overlapping changes) and the management of the process variants
resulting from instance changes. In this context, we are developing intelligent
analysis techniques to learn from process changes [49,50,51]. Finally, we are cur-
rently working on issues related to the dynamic adaptation of organizational
rules and access constraints [52,53], to process variant management [54], and to
process model refactoring [55].
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Abstract. The common overarching goal of service bus and Grid middleware is 
"virtualization" – virtualization of business functions and virtualization of re-
sources, respectively. By combining both capabilities a new infrastructure 
called "Business Grid" results. This infrastructure meets the requirements of 
both business applications and scientific computations in a unified manner and 
in particular those that are not addressed by the middleware infrastructures in 
each of the fields. Furthermore, it is the basis for enacting new trends like Soft-
ware as a Service or Cloud computing. In this paper the overall architecture of 
the Business Grid is outlined. The Business Grid applications are described and 
the need for their customizability and adaptability is advocated. Requirements 
on the Business Grid like concurrency, multi-tenancy and scalability are ad-
dressed. The concept of "provisioning flows" and other mechanisms to enable 
scalability as required by a high number of concurrent users are outlined. 

1   Introduction 

Traditionally the scientific computing and enterprise computing communities are two 
distinct groups. These communities have both developed architectures of middleware 
and applications to meet the demands of their fields in a domain-specific manner. As 
a result two different fields with corresponding infrastructures have evolved. The 
current trend we observe is that researchers in both fields investigate the applicability 
of approaches, technologies and techniques from the other field. With the advent of 
Web services the need for common solutions becomes apparent, since both fields use 
extensively the Web service stack [44]. Both communities identify needs that can be 
addressed by approaches from the other field. For example, the deficiency of the in-
frastructures used for scientific workflows are mainly related to reliability and scal-
ability. The infrastructures for enterprise applications on the other hand lack the 
dynamic provisioning of resources and data needed for new service delivery models 
as well as for data and computing intensive applications. Both fields, however, im-
pose strict requirements on their respective infrastructure concerning the need for 
concurrency, i.e. the ability to support a large number of simultaneous users without 
diminishing the performance of the applications. This is aided by the virtualization of 
resources in the Grid [8] and of functionalities in the enterprise service bus (ESB)  
[3,22]. Virtualization standardizes the access to resources and functionality exposed 
as services respectively, thus hiding the idiosyncrasies that heterogeneous systems 
otherwise exhibit. The Grid therefore offers homogeneous and standardized access to 
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resources, whereas the ESB offers homogeneous and standardized access to applica-
tions, by exposing them as services. 

We argue that the better approach to meet the requirements of both domains is to 
leverage existing approaches instead of creating isolated infrastructures featuring 
redundant and repeating functionalities. We therefore propose a unified infrastructure 
that is composed of the infrastructures developed by both the scientific computing and 
the enterprise computing communities. We call this infrastructure the “Business 
Grid”. The Business Grid virtualizes services and resources in a unified manner and 
thus enables interchangeability of services and resources transparently for the applica-
tions. It is a composable infrastructure which can be developed as a mix of existing 
implementations of middleware from both domains. The proposed middleware is 
reliable, scalable, secure and exhibits high availability. Applications for both scien-
tific and enterprise computing make transparent use of the Business Grid. The Busi-
ness Grid does not discriminate between either type of applications thus allowing 
scientific applications to be a part of an enterprise application and vice versa. Further 
motivation for the Business Grid is the current trend towards new business models in 
dynamic markets such as Software as a Service (SaaS) and Cloud computing. As 
emerging approaches towards support for SaaS and Cloud computing already make 
use of technologies of scientific and enterprise computing we see the Business Grid as 
the intuitive middleware choice to support those new models. This combination of 
Grid and conventional enterprise service middleware, technology standards and infra-
structures is novel and fosters reusability and standardization. 

In this paper we begin with an overview of Web service technology and Grid to fa-
cilitate the discussion. Following this we identify the similarities in requirements 
towards the respective middleware in the two domains and reveal the differences in 
coverage of needed middleware functionality in both domains. Based on this com-
parison we list requirements for the Business Grid and investigate to what extend they 
are met by related projects and approaches from to the enterprise and Grid commu-
nity. In Section 5 we introduce an architecture designed to address the requirements to 
the Business Grid. Summary and conclusions are published in the last section. 

2   Web Services and Grid – Background Information 

To ease the following discussion, in this section we present a summary of necessary 
background information. We describe existing research results that combine Web 
services and Grid and thus demonstrate the mutual interest of both communities to 
collaborate towards meeting the demands in their respective domains.  

2.1   Web Services  

Web services are the technology currently used to implement Service Oriented appli-
cations; it has been built right from the beginning to enable seamless integration of 
applications. The Web service technology provides a component model for using 
applications, rather than programming them. The technology is specified in terms of a 
stack of modular and composable specifications, called the “WS stack” [44] or simply 
WS*. Web services are about virtualization of software/applications. Applications are 
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exposed as services at network endpoints (a.k.a. ports). Web services are described in 
WSDL1 in terms of the messages they consume and produce, while the messages are 
grouped into operations and interfaces (a.k.a. port types). The interface description 
excludes any kind of platform or implementation specific information. One interface 
description may be implemented by multiple applications, accessible at different 
ports/endpoints over various transport protocols and using different message encod-
ing; this is reflected in the so-called binding. The binding is the novelty WSDL intro-
duces in comparison to other component models. It is defined separately from the 
service interface description. Thus, not only implementation and platform specifics 
are abstracted away but also the access mechanisms. Any combination of an abstract 
interface and binding is possible. The location of an implementation of an interface 
description and a binding are combined by the so-called services, while applications 
are made available at multiple ports (endpoints) of a service. The piece of middleware 
supporting virtualization in service-oriented applications is called the service bus 
[3,22]. The service bus is a composable middleware and supports numerous commu-
nication and transport protocols as needed by the applications using it. All services 
are exposed on the bus via virtual endpoints and described in terms of WSDL inter-
faces descriptions. The concrete implementations of the virtual endpoints are in gen-
eral wrappers or adapters of the applications that expose the application as a service 
on a bus. There are infrastructure features on the bus like service discovery, routing, 
data mediation, service composition, and service invocation. These features are in-
strumental in supporting the major operations a bus implements: (1) publish, (2) find 
and bind, (3) invoke. Services use the bus for communication and use its infrastruc-
ture features; infrastructure features themselves are also exposed on the bus as ser-
vices. There are already multiple non-commercial and commercial service bus 
implementations; the later are extensively used in enterprise-strength applications. 

2.2   Grid 

Originally, in the mid-1990s the term “the Grid” emerged as a name for a distributed 
IT infrastructure for advanced science and engineering applications [7,8]. The intent 
of the Grid was then to virtualize computing resources to make them available to 
scientific collaborations that needed more computing power than the computing re-
sources available in their domains (their local IT infrastructures). Applications that 
run on such Grids are mainly focused on scientific applications that perform computa-
tions on and produce large amounts of potentially distributed data. In [7] Foster et al. 
define the Grid as a solution to the problem of “flexible, secure, coordinated resource 
sharing among dynamic collections of individuals, institutions and resources.” These 
dynamic collections of individuals, institutions and resources are referred to as “vir-
tual organizations” [7]. Virtual organizations can be different groups of scientists 
working on a common goal but can also be different companies that join forces or are 
in a supplier-requestor relationship in order to reach a certain (mostly computing 
intensive) business goal. The fundamental paradigm behind these virtual organiza-
tions is that they not only share files or documents but actually share access to pro-
grams and even hardware resources. The sharing of computing resources from 
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multiple organizations that form a virtual organization requires a standardized archi-
tecture for the Grid as well as interfaces, to enable interoperability among Grid re-
sources. Therefore the Grid community introduced the Open Grid Services 
Architecture OGSA [9]. OGSA follows the principle of service oriented architecture 
(SOA) providing a standardized set of services important in a Grid environment (such 
as registry, authorization monitoring, data access and others) [8]. The technology to 
realize the OGSA is Web services, thus allowing Grid services to be described and 
used in a standardized and interoperable manner. The Open Grid Services Infrastruc-
ture (OGSI) and its successor the Web Service Resource Framework (WSRF) [5,32] 
are specifications that define how to specify stateful Web services that represent state-
ful resources (such as computers or storage) as they are present in Grid environments. 

As the internet transforms into a ubiquitous integration platform and more increas-
ingly powerful computing resources become available, more and more organisations 
(both from science and business) see the potential of the Grid to improve the utiliza-
tion of idle resources from other (parts of their) organizations to perform computing 
intensive tasks or even sell otherwise idle computing cycles to other organizations and 
thus increase the utilization rates of their data centres. The Grid therefore transforms 
from an infrastructure for scientists into an infrastructure for enterprises.  

2.3   Web Services and Grid 

Web services used in a business context are usually stateless. This means that a Web 
service does not remember the messages that have been previously sent to it by a 
certain requestor and that a Web service has no observable properties. But in order to 
virtualize Grid resources as Web services, the notion of state is needed for Web ser-
vices. Since WSDL does not provide support to explicitly describe state of a Web 
service, the Web Service Resource Framework has been created. The basic idea be-
hind WSRF is to provide a standardized framework that allows specifying how state-
ful resources are virtualized using Web services. The combination of a resource and a 
Web service is therefore called a WS-Resource. WSRF defines the life time of re-
sources, the notion of resource properties, the grouping of WS-Resources, and a stan-
dardized means to report faults in a set of composable specifications.  

In order to compose Grid services and in particular WSRF services the BPEL 
service orchestration language has been utilized in several research projects  
[6, 24, 37, 39]. These examples emphasize the need and the willingness of the two 
communities to combine technologies from Grid and SOA-based enterprise comput-
ing. Even though Grid technologies and the WS technology are already applied in a 
combination to provide solutions for enterprises or scientists, for example in the 
EGEE project and its predecessor the DataGrid2 project or the IBM WebSphere 
Business Grid components, the Grid infrastructures are still considered as different 
from the service buses. ESBs and Grids are similar in the functionality they provide, 
but they target different user groups and application domains. Therefore concepts 
and techniques in both field repeat and overlap, but some features of the one envi-
ronment are missing in the other environment and vice versa. For instance, scien-
tific computations need transactionality and to be reliable, which has been 

                                                           
2 http://www.eu-egee.org , http://eu-datagrid.web.cern.ch 
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successful addressed by ESBs; on the other hand, businesses also need to perform 
data intensive computations and also rely on provisioning of resources that are out-
side of their organizational boundary. Therefore it is completely natural to reuse 
existing concepts, approaches and technology to address the needs of both domains.  

3   The Need for Business Grid 

We argue for the creation of one infrastructure that can serve the needs of both com-
munities – business and scientific computations, so that both fields can benefit from 
the advances in the state-of-the-art of the one or the other area. In this work and in 
this section in particular, we identify the need of such an infrastructure - the Business 
Grid that addresses the demands of the two worlds.  

3.1   Business World Requirements to the Service Bus/Middleware  

Service-based business applications are typically compositions of services. They rely 
on the service bus as middleware. Additionally, business users depend on the exis-
tence of tools to support them during application/service development, deployment 
and execution. Human participants need to be seamlessly involved, especially in busi-
ness processes. Business critical applications need to be reliable and scale with an 
increasing number of concurrent users. In business scenarios quality of services (QoS) 
are extremely important as they must be ensured in order to satisfy service level 
agreements (SLAs) between provider and consumers. Violation of SLAs might result 
in loss of customers and/or even hefty penalties. These features require support on 
behalf of both the platforms on which the actual service implementations run and the 
service bus. Reliability, scalability and availability of the service bus are of utmost 
importance. These are ensured by dynamic service discovery and composition, reli-
able messaging, fault and exception handling, load balancing, message routing [3], 
transactional support [34], coordination protocol support, message transformation and 
correlation, SLA negotiation, QoS-aware composition of services [41], monitoring of 
services and infrastructure as well as auditing [16] – all enabled by the infrastructure 
services of the bus. New computing paradigms such as utility computing and resulting 
application delivery models such as SaaS impose further requirements on the bus. 
Dynamic provisioning and de-provisioning of both hardware and software resources 
must be handled by the bus as new customers of SaaS applications can subscribe and 
unsubscribe dynamically to and from these applications. The SaaS delivery model 
heavily relies on the multi-tenancy of SaaS applications [4,26]. Multi-tenancy means 
that several customers (tenants) use the same instance of the application. This enables 
SaaS providers to offer the same application to multiple customers thus increasing the 
revenue of the application. From a tenant’s point of view a multi-tenant enabled ap-
plication is perceived and behaves as if that tenant was the sole user of the applica-
tion. In order to ensure the multi-tenancy of SaaS applications these applications as 
well as the underlying middleware must be highly scalable, reliable and ensure a very 
high degree of concurrency.  
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3.2   Scientific Computing Requirements to the Grid  

Scientific computations are generally based on large amounts of data and are long-
running and computing intensive. They can be executed on the Grid using computing 
and storage resources. Thus scientific experiments analysis can be performed on re-
sources borrowed from other organizations whose resources are currently idle. This 
implies that resources are inherently transient, as resource providers can dynamically 
add and remove resources from the Grid and can lend them only for a particular time 
period. This requires migration of computations from one machine to another, trans-
ferring data sets and even integrating data sets from different resources for single 
computational task. Scientists define the sequence of computation units and rely on 
the Grid to provide the resources, do the scheduling of computation tasks, workload 
management, life cycle management, discovery of services, and exposing the services 
with the corresponding meta-data on the Grid. The Grid infrastructure deals with all 
issues related to the use of transient resources. This is typically done using resource 
brokers. There are techniques for instrumentation of Grids for monitoring, which 
helps auditing, analysis, troubleshooting and fault detection, and facilitate improve-
ment of program executions. Currently, no monitoring infrastructure satisfies all re-
quirements imposed on Grid monitoring systems [8].  

Also, still missing is a general accepted way of composing scientific tasks and re-
sources [11]. The ability to mix Grid resources and services in a single composition is 
also needed; for this, automatic unified discovery of Grid services, which may be 
either resources or computing applications, must be supported. Reliability and robust-
ness are not yet achieved completely. There is no standardized way to include humans 
in Grid applications [19,10]. Granting access of one application to multiple distinct 
users is also not supported. Additionally, users need to be able to control the applica-
tions functionality and to flexibly change it even during its execution. Grid services 
expose resources via interfaces providing much more details than the users can cope 
with, which renders the Grid infrastructure cumbersome to use for non-IT personnel. 
Cloud computing is a current development in the area of SOC and is considered a 
layer on top of the existing Grid and Service Bus infrastructures. “A distinguishing 
feature of Cloud interfaces are that instead of exposing the largest possible amount of 
semantics for a specific domain, Clouds tend to expose a minimal amount of seman-
tics to the end-user, while still being useful” [14]. 

3.3   Requirements on the Business Grid and Existing Approaches 

In this section we present the combined requirements on the Business Grid and iden-
tify approaches for each of the requirements. We thus show that the existing ap-
proaches need to be combined and extended to fully address all the expectations.  

Reliability and Scalability 
Requirements for a Business Grid include the reliability and scalability of the whole 
computing infrastructure. Companies, executing business critical applications in a 
Business Grid will expect and require providers to scale up to a large amount of con-
current users reliably. Providers therefore must ensure that their Grid as a whole actu-
ally meets the agreed upon reliability and availability levels despite of single entities 
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of the Grid that may be transient, i.e. become available or disappear from the Grid 
dynamically. This becomes even more critical as different customers might actually 
use the same resources in the same Grid and thus create even more concurrent load on 
the whole system. Load-balancing and clustering are some of the approaches applied 
by both, business and Grid infrastructures. Scalable middleware (such as application 
servers) that provides infrastructure services such as load-balancing, failover man-
agement, virtualization, hot-pools and clustering is a result of enormous effort in the 
business domain. Similarly, a lot of effort has been employed in the Grid domain to 
create Grid resource brokers with scheduling functionality. 

Quality of Service Aware Discovery 
Quality of services plays a role in both business and scientific domains. Several Busi-
ness Grid users might have the same functional requirements (such as run application 
x) with different non-functional requirements. For example, a small company might 
be satisfied if the infrastructure that runs its application only supports one concurrent 
user, while a big company demands that the infrastructure scales up to 100s of  
concurrent users. Therefore resources in the Business Grid must be annotated with 
non-functional properties, usually called policies in the business domain, so that the 
Business Grid middleware can discover the appropriate resources for the computing 
tasks. The contracts on QoS between Business Grid users and providers are Service 
Level Agreements (SLAs) [41]. Standards to describe agreements and SLAs are WS-
Agreement, WS-Policy and WSLA3. Most of them are already implemented by the 
bigger middleware providers. 

In the business domain the middleware (the ESB [3]) uses policies used for service 
selection. The ESB selects a concrete implementation of a virtual service to handle a 
request based on the policies [43]. This mechanism can also be used to increase the 
reliability of the whole system since non-available services can be substituted by 
available ones or highly concurrent load can be balanced between different services. 
The Business Grid must support similar features for computing resources and thus 
serve the function of a combined ESB and resource broker [8, 42,20].  

A supporting role for enacting these features is played by the discovery compo-
nents that are also exposed as services on the bus. Discovery components classify 
services according to their functional and non-functional properties and may also 
maintain ranking of services according to multiple criteria. Since the Business Grid 
exposes all services and resources in a homogeneous way (through standard inter-
faces) it is a must to be able to expose services and processes as resources, and also 
provide information about their state. This will improve discovery additionally, be-
cause of the capability to discover them according to state information, not only func-
tional and non-functional properties. Existing approaches already involve the use of 
semantics for describing functional and non-functional properties of services and 
resources and thus improve discovery. Examples include the work in [22, 28,37] and 
the projects like SUPER, ASG and DIP4; these projects address various additional 
issues that are out of the scope of this paper.  

                                                           
3 Web Service Level Agreement. 
4 www.ip-super.org , www.asg-platform.org , http://dip.semanticweb.org/ 
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Flexible Service and Resource Composition 
The Business Grid must be able to compose atomic resources into composite re-
sources that support more advanced functionality and qualities of service; composing 
them may need a business/integration logic definition. In the business domain service 
orchestration languages, such as BPEL, are used to compose services into higher-level 
services. Service orchestration techniques are adapted to orchestrate Grid services and 
resources in several projects [6, 24, 37, 39]. Furthermore such a collection must sup-
port the dynamic addition and removal of resources as they register or deregister from 
the Grid while maintaining a constant service level. Therefore a composite resource 
must be highly dynamic/flexible but act as a stable single resource to the client.  

Flexibility of resource compositions can be improved by means of approaches that 
already exist in the business domain, such as process evolution and ad-hoc changes, 
fault and exception handling, as well as dynamic deployment/provisioning [27] and 
discovery of services on the bus [14]. Several approaches based on models from con-
currency theory (such as Petri nets) allow the modeling and verification of service 
compositions [1] and can be applied for the verification of adaptations in service com-
positions [35]. A subset of the above mentioned flexibility approaches are supported 
partly or to the full by industry vendors and research prototypes [16,25]. However, 
flexibility of resource compositions using workflows, although required, is not yet 
addressed by the Grid community.  

Human Involvement 
Furthermore the management of human tasks that integrate humans in Business Grid 
applications is a requirement for the Business Grid. Human participants/users there-
fore need to be represented on the Business Grid as Grid resources [36]. The Business 
Grid should not make any assumptions on whether a specific resource/service is im-
plemented by a computer program or is performed by or with the aid of a human. 
Therefore the Business Grid must support advanced task management capabilities as 
well as dynamic staff queries that can be used to assign work to a dynamically chang-
ing group of humans from different virtual organizations. In the business domain the 
WS-HumanTask specification describes a standardized way to perform task manage-
ment across different business processes and services. Human tasks can be integrated 
in service orchestrations using the BPEL4People extension for BPEL.  

Monitoring and Management 
In order to ensure traceability of the execution of applications and maintain the required 
service levels monitoring and auditing capabilities on all levels – processes, services and 
resources, infrastructure, SLAs, policies, KPIs (Key Performance Indicators) – are nec-
essary. Thus reaction to unexpected situations or fluctuations in the levels of service 
quality can be enabled. Business Grid applications can also be adapted to include feed-
back from the analysis of monitoring and audit data. In the ideal case the Business Grid 
includes elements of self-healing, self-managing autonomous systems [18], for example 
the Business Grid must detect and react to critical thresholds and events so that violation 
of SLAs can be prevented. Debugging of Business Grid applications must be enabled by 
capturing events published from all parts of the overall distributed infrastructure. Moni-
toring and Management is a must in the business domain and is often required by law. 
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Research projects like SUPER, MASTER, COMPAS5 strive to ensure support for this, 
but Grid applications are out of their scope. 

Tool Support 
Since businesses concentrate on business processes the IT infrastructure needs to 
support them seamlessly and enable development automation and a low barrier to 
entry. Therefore the tools for modeling and/or development of business applications 
need to be provided as part of the Business Grid distributions. These include service 
interface generation, service discovery when composing applications and processes, 
message mapping support, routing procedures modeling and generation. Semantics 
can be involved to fill in the gap between the business world and the IT support [14, 
28]. Additionally, composition and decomposition of SLAs, policies and mapping to 
KPIs also need to be supported by tools. Tools exist in both domains that allow the 
modelling of either general-purpose workflows (such as BPEL or Petri net editors) or 
domain-specific workflows (such as in biology, mechanics, manufacturing etc.); they 
need to be integrate into the Business Grid. 

Concurrency 
Both business and Grid applications and infrastructures are inherently required to 
support concurrency. The use of the term concurrency is manifold. Business applica-
tions need to support a large number of users simultaneously, whereas Grid infrastruc-
tures need to deal with applications that are concurrently run on several resources in a 
distributed environment.  

The Business Grid must support all dimensions of concurrency. The infrastructure 
must support the concurrent access to resources via resource sharing and virtualiza-
tion techniques. Business Grid applications must additionally support a large number 
of concurrent users. An example where both dimensions are necessary are Software as 
a Service applications with large numbers of concurrent users that run on a large set 
of shared resources and must guarantee service level agreements.  

In the business domain several approaches to achieve concurrency exist. One ap-
proach is to determine the expected amount of concurrent users a system should sup-
port up front and then scale the system and infrastructure accordingly. Therefore 
performance-modeling and capacity-planning methods for certain middleware com-
ponents such as application servers, or Web servers exist. Another approach is to use 
dynamic provisioning to dynamically adapt the infrastructure to new concurrency 
requirements. Techniques from autonomic computing such as autonomic feedback 
loops [18] that trigger the provisioning of new resources can be used. Neither of the 
domains supports all concurrency dimensions completely and combining the existing 
approaches and extending them is a must. 

4   The Business Grid Architecture 

To meet the above requirements the Business Grid must virtualize both resources and 
services. Hence the underlying Business Grid middleware must be a combination of 
an ESB and a Grid, and therefore the Business Grid virtualizes both resources and 
                                                           
5 www.master-fp7.eu, www.compas-ict.eu 
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services as Business Grid Resources. Business Grid Resources may be conventional 
Web services or WS-Resources. Applications comprised of several services (that can 
also be processes) therefore are seen as a collection of Business Grid Resources and 
may also be made available on the Business Grid as Business Grid Resources. These 
Resources are visible on the Business Grid only as virtual resources but each of them 
is implemented by a multitude of alternative concrete resources. A service requestor 
sends a request including the addressing information, or non-functional properties for 
the appropriate service, to the virtual service endpoint, which then is distributed to the 
right resource. 

The Business Grid is a composable infrastructure in terms of the functions it sup-
ports. Additionally, multiple Business Grid implementations using different technolo-
gies and programming languages can be composed to form a more complex 
infrastructure. The communication among Business Grid Resources is enabled by the 
communication backbone that supports any kind of communication and transport 
protocols, and expose stable Web Service interfaces (see Fig. 2).  The type of the 
Business Grid Resource (Web service or WS-Resource) remains transparent for the 
applications. The implied resource pattern of WSRF specifies that for resources virtu-
alized with WSRF, a Web service (e.g. a server service) serves as a front-end to a set 
of similar resources (i.e. a set of servers) and distributes messages sent to one of the 
resources to the right resource by examining the addressing information contained in 
the message (e.g. EPR [44]). Having examined the addressing information the mes-
sage is either forwarded to the appropriate resource or service. The Business Grid 
Resources are classified into two main groups: infrastructure/middleware resources 
and application resources. Infrastructure resources have a specific function to carry 
out on the Business Grid.  

 

Fig. 1. Business Grid architecture 
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The Business Grid takes over the discovery and invocation of Business Grid Re-
sources on behalf of clients. For this it uses the communication backbone and a dis-
covery component. Discovery components are used to register services and resources 
and their characteristics. Workflows can also be registered as services and discovered 
by the Business Grid in a similar manner. Sometimes the request message does no 
match the messages a Business Grid Resource can consume. In such a situation the 
so-called message transformation service is used, which performs the transformation 
from one format to the other. Message routing and correlation are also part of the 
middleware services. All infrastructure components may be implemented in terms of 
multiple concrete applications and may be of distributed nature. 

Composite Business Grid Resources are executed on orchestration engines; in the 
case of BPEL processes this would be a BPEL engine. In this case the BPEL engine 
plays the role of a service container [3, 14,22] and exposes orchestrations (processes) 
as Business Grid Resources. Since provisioning flows (presented in detail in the next 
section) can also be implemented in BPEL [17,27] the engine executing them can be 
considered to play the role of an infrastructure service, too.  

Composite Business Grid Resources may involve human participants, for which 
facilities for human task management must be made available. 
Monitoring and auditing facilities enable real time tracing of status of services, re-
sources, the infrastructure and human participants. Additionally, the data collected for 
monitoring is stored persistently to enable auditing and analysis.  

In addition to the monitoring tools and dashboard analysis tools are also of great 
value. Analysis can be performed on the data about the performance of the infrastruc-
ture, the infrastructure services, and the scientific and business processes. Complex 
data and process mining algorithms can be applied to provide insight to the function-
ing of the Business Grid to users and developers.  

Management tools for configuring and fine tuning the infrastructure are also a 
must; these are usually under the control of authorized administrators.  

Process modeling tools are needed to support business users in creating business 
processes and scientists in crating scientific workflows. Similarly provisioning flow 
modeling needs to be supported. These tools need to enable intuitive modeling of 
processes in any of the domain specific languages, e.g. BPMN for business experts. 

Service implementation support should be enabled in terms of automatic genera-
tion of interfaces for services, service deployment, generation of code skeletons based 
on service interfaces, etc. Generation of resource interfaces upon their subscription to 
the Business Grid is also a must. Additionally, tools need to implement algorithms for 
composing and decomposing policies and SLAs; these tools need to be extensible and 
allow for the definition/implementation of new algorithms that consider new QoS 
characteristics and even KPIs. These tools are of great importance for modeling QoS-
aware service compositions.  

5   Dynamic Provisioning of Business Grid Resources  

Similar to an ESB that distributes service request to services that meet the required 
service level agreements the Business Grid middleware must distribute computing 
requests to resources that meet the required non-functional properties. As the Grid is a 
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dynamic infrastructure to which computing resources dynamically register and dereg-
ister, the dynamic provisioning of Business Grid Resources is a must for a Business 
Grid middleware. This improves the flexibility of applications which is demanded by 
both domains. Additionally it enables users to dynamically subscribe and unsubscribe 
to Business Grid applications as it is required for the realization of the SaaS delivery 
model.  

Dynamic provisioning of new Business Grid Resources is done in the following 
cases: (a) if it is detected that the quality of services of current resources falls below a 
certain threshold and thus will violate the service levels agreed by customer and pro-
vider; (b) because an application has not been deployed on the Grid.  

For example, if a new customer subscribes to an application that runs on the Busi-
ness Grid, the middleware examines if the user can be served by the currently avail-
able resources. Methods from concurrency theory can be used to determine the 
dynamic scheduling of resources in advance. If this is not the case the middleware 
must invoke a so-called provisioning flow that can provision the application on more 
resources so that it meets the service level the user requires (Fig. 2).  

Provisioning services are (Grid) Web services for resource management that are 
provided by a Grid infrastructure (such as the Globus toolkit) or a provisioning en-
gine, such as IBM’s Tivoli Provisioning Manager [13] or OpenQRM [33]. These 
provisioning services must be exposed for use on the Business Grid. This allows inte-
grating the infrastructure of arbitrary providers/vendors into the Business Grid. For 
example, the operations provided by third party cloud providers (such as Amazon 
EC2 [2]) can be utilized as provisioning services on the Business Grid, too.  

Provisioning flows [27] are orchestrations of provisioning services. Since provi-
sioning services are Business Grid Resources, provisioning flows can be realized in 
WS-BPEL [30]. Furthermore, WS-BPEL allows the integration of people into the 
provisioning flow via the BPEL4People [31] extension.  

Provisioning flows themselves are again provided as provisioning services so that 
they can be composed into higher-level provisioning flows. Provisioning services are 
annotated with provider policies that describe their non-functional properties and the 
guaranteed quality of services. For example, a provisioning service that can set up an 
 

 

Fig. 2. Virtualization and dynamic provisioning on the Business Grid 



148 R. Mietzner, D. Karastoyanova, and F. Leymann 

application on a single server might have a policy attached that does not make any 
statement about the availability of the application, while a provisioning service pro-
vided by a sophisticated provisioning engine that installs the application on a cluster 
of servers guarantees an availability of 99.9999%. Depending on the requirements of 
the user, expressed through a policy in the request, the Business Grid middleware then 
chooses the provisioning service that fulfills these requirements by matching the re-
questor and the provider policies.  

The indirection via the Business Grid infrastructure (which itself can be distributed 
as a Grid of enterprise service buses) allows to deal with transient resources that are 
sometimes available and sometimes not. When a resource leaves the Business Grid 
the Business Grid infrastructure detects this (either by polling or because the resource 
deregisters) and automatically runs a corresponding provisioning flow that provisions 
another resource so that it can replace the leaving resource. Additionally, through 
dynamic provisioning the Business Grid infrastructure can automatically add more 
resources to an application when needed and thus increase the amount of concurrent 
users that can use the application. The infrastructure can balance the load on resources 
by dynamically redirecting requests to resources that have available computing 
power. Therefore Business Grid Resource are not only annotated with policies that 
describe static quality of services such as that it can be run under transactions or that 
it must be invoked with encrypted messages, but also with dynamic properties that 
may be derived from underlying infrastructure, such as its utilization or available 
storage. This combination of static and dynamic properties is advertised as a policy by 
the resource and is used by the Business Grid middleware to decide to which resource 
the request is routed.  

6   Business Grid Applications 

Applications for business as well as for science can be deployed on the Business Grid. 
Applications are exposed as WS-Resources, i.e. via abstract endpoints [3], regardless 
of their implementation paradigm. The applications play the role of a service re-
quester in SOA terms when they use services via the Business Grid. However, appli-
cations may also play the role of a service provider if used by other applications. The 
Business Grid is the gateway for the applications, which means that the whole com-
munication between the application and any other WS-Resources is tackled by the 
middleware; any service calls are sent to a single logical entry point implemented by 
the middleware. Users can interact with applications via their user interfaces that may 
be utilizing the service interface of the application. Applications may choose to use 
the Business Grid for discovery of WS-Resources only. 

Business Grid applications may possess their own management and monitoring fa-
cilities, possibly provided by the platform they are executed on, however for the pur-
poses of configuration, management and monitoring on the Business Grid, they must 
expose such functionalities via management and monitoring interfaces in addition to 
the interface through which the service operations are made available. Applications 
describe their requirements toward partner services using policies, which may be 
derived from KPIs [45]. The fact that other applications use the Business Grid re-
mains transparent for each application; applications are built with the assumption that 
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they are the only users of the infrastructure. It is up to the Business Grid to maintain 
proper operation and enable reliability, scalability and emulate the isolation of appli-
cations when used by them. Flexible Business Grid applications rely heavily also on 
dynamic binding to services via the Business Grid as well as on dynamic staff query 
resolution across several virtual organizations in the case humans are the resources 
responsible for carrying out a function. 

7   Conclusions 

In this paper we argue that there is a need for a new kind of infrastructure that ad-
dresses the requirements of both scientific applications and enterprise applications. 
We call this infrastructure the Business Grid: it combines and unifies approaches for 
Grids and ESBs. It allows for the development, execution and monitoring of both 
scientific applications, which are data and computation intensive and current business 
applications that are reliable and scalable. The Business Grid leverages existing tech-
niques from both fields to combine them in a powerful computing infrastructure with 
superior characteristics. 

One contribution of this work is that we identify the similarities in requirements 
towards Grids and ESBs and the similarities and overlaps, as well as differences in 
addressing problems in both areas. The main requirements a Business Grid is ex-
pected to meet are: (i) robustness and reliability, a requirement that comes from both 
Business and Grids, and (ii) support for data and computing intensive applications, a 
need not yet met by conventional ESBs. Solutions to these demands draw on hard-
ware and software provisioning techniques.  We have also introduced the architecture 
of the Business Grid, which we devised considering existing middleware and Grid 
architectures. A Business Grid is a composable infrastructure that virtualizes both 
services and resources in a unified manner. It can be implemented by a combination 
of Grid and ESB middleware implementations and in fact virtualizes these implemen-
tations. Any application from the business world and scientific computing can be run 
on this infrastructure. 

In this work we do not argue that there is a need of a totally new infrastructure to 
address the needs of two domains, but rather we promote reuse of research results and 
technologies that if applied in combination enable a powerful abstraction applicable in 
both business and scientific applications.  
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Abstract. Controllability for service models is a similar criterion as
soundness for workflow models: it establishes a necessary condition for
correct behavior of a given service model. Technically, controllability is
the problem to decide, for a given service, whether it can interact cor-
rectly with at least one other service. Parameters to the problem are
the established correctness criterion (e.g. deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (centralized partners versus
independently acting partners), or the shape of communication (asyn-
chronous versus synchronous).

In this article, we survey and partly extend various recent results
concerning the verification of controllability for Petri net based service
models. Significant extensions include the study of livelock freedom as
correctness criterion as well as the new results on autonomous multi-port
controllability.

1 Introduction

Service oriented computing [15,29,14,1] is a paradigm that can be applied in
the management of interorganisational workflows, for the programming-in-the-
large, for loosely coupled interaction and aggregation over the web, and probably
for many more use cases. It is centered around the concept of a service, i.e.
a self-contained and self-explaining software unit that offers an encapsulated
functionality over a well-defined interface.

These days, the language WS-BPEL [2] is one of the most important lan-
guages for the specification of services in practice. WS-BPEL specifications can
be transformed into formal models using one of the various formal semantics,
among which some [33,24,13] are feature complete, i.e. cover all exceptional be-
havior including fault handling, compensation handling, and termination han-
dling. Petri nets are particularly useful as a formal model of services as there is
even a translation from Petri nets back to WS-BPEL [20].

A service is controllable if it has at least one partner such that the composition
of both is well-behaving. This question can be asked for several notions of “well
behaving” as well as for various settings concerning the shape of services and
their mutual communication.

In this article, we collect results concerning controllability in different settings.
In particular we vary the correctness criterion (deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (single partners, several partners with
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different degrees of coordination), the shape of communication (asynchronous ver-
sus synchronous), and study the incorporation of additional constraints. The re-
sults include published work, results from a number of diploma (master) theses,
and some original work. Original contributions include the study of controllability
for livelock freedom and the generalization of results on autonomous controllabil-
ity.Status and origin of the results is reported in the respective sections.

Controllability may be used as a tool for verifying service models. An uncon-
trollable service is certainly malfunctioning (while a controllable service may or
may not be correct). Our decision procedures are able to synthesize a particular
correctly interacting partner. This partner can be transformed into executable
code. This possibility may have interesting applications, e.g. in the synthesis
of adapters between incorrectly interacting services [5,6,11,4]. Additionally, the
synthesized partner may form the basis for a characterization of all partners of
a services and resulting applications for service discovery [23] or substitutabil-
ity considerations [35]. In Sect. 5, we show how additional constraints can be
placed in the construction of a correctly interacting partner. Section 6.1 stud-
ies nonstandard models of communication. Finally, we discuss related work and
summarize our results.

In the remainder of this article, we first introduce notations for Petri net mod-
els for services and define basic properties. Section 3 investigates controllability
for services with just one partner under different correctness criteria. In Sect. 4,
services with multiple partners are considered.

2 Petri Net Models of Services

We start from place/transition nets N = [S, T, F, m0] with the usual meaning of
the constituents and the standard firing rule. We denote with m

t−→N that t is
enabled in marking m of net N , with m

t−→N m′ that firing t in m of net N leads
to m′, and with m

∗−→N m′ that m′ is reachable from m in net N using some
firing sequence, including the empty sequence. Let RN (m) = {m′ | m

∗−→N m′}
be the set of markings reachable from m in N . For modeling services, we refine
place/transition nets to open nets—the net class used in [33,24] for defining a
formal semantics of WS-BPEL.

Definition 1 (Open net). N = [S, T, F, m0, Si, So, MF ,P ] is an open net iff
[S, T, F, m0] is a place-transition net, Si ⊆ S is the set of input channels such
that F ∩ (T × Si) = ∅ (no arc has its sink in Si), So ⊆ S, Si ∩ So = ∅ is the
set of output channels such that F ∩ (So × T ) = ∅ (no arc has its source in
So), MF is a finite set of markings called final markings such that no m ∈ MF

enables any transition, for all markings in MF ∪{m0}, all places in the interface
I := Si ∪So are unmarked, and P is a partition of I with elements called ports.
An open net with empty interface (|I| = 0) is called a closed net. An open net
with just one port (|P| = 1) is called single-port net. An open net with more than
one port (|P| > 1) is called a multi-port net. Open net N is called normal iff
every transition of N is connected to at most one interface place. For a normal
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open net N , define mapping l : T → I ∪{τ} such that l(t) is the unique interface
place adjacent to t if one exists, and l(t) = τ if t is not adjacent to any interface
place.

Input and output channels represent the interface of a service which is assumed
to have an asynchronous message-passing nature. Synchronous communication
shall be studied in Sect. 6.1. Channels are grouped into ports. A port represents
the interface of the service to a particular partner. It corresponds to the concept
of partner links in WS-BPEL which is typically specified using the language
WSDL. For single-port nets, we usually omit P . In the sequel, we shall only
study normal open nets. This restriction is not significant, as every open net can
be transformed into an equivalent normal open net [23]. Final markings model
the successful completion of the modeled service. In the sequel, we shall use
indices to distinguish the constituents of different open nets.

For an open net, its inner structure is defined by removing the interface places.
We define some properties of an open net by referring to its inner structure. For
a mapping f , let f |M be the restriction of f to arguments in M .

Definition 2 (Inner structure, Boundedness, Responsiveness). Given
an open net N = [S, T, F, m0, Si, So, MF ,P ], the corresponding inner structure
Inner(N) is the closed net Inner(N) = [S \ I, T, F \ ((I ×T )∪ (T × I)), m0 |S\I

, ∅, ∅, MF |S\I , ∅]. N is bounded iff RInner(N)(m0 |Inner(N)) is finite. N is re-
sponsive iff, from each reachable marking in Inner(N), a marking is reachable
in Inner(N) which is final or which enables a transition t which is connected to
some interface place (({t} × IN ) ∪ (IN × {t}) = ∅).
Figure 1 shows three bounded and responsive open nets. Net (a) and (b) are
normal while (c) is not. Ports are visualized by dashed boxes. Final markings
are those markings where no transition can fire in the inner of the respective
net. Throughout this article, we study bounded and responsive open nets. For
unbounded open nets, even simple controllability problems are undecidable [28].
The property of responsiveness rules out services which run into deadlocks or
endless loops without communication. Both boundedness and responsiveness can
be verified using standard state space verification techniques [8]. Translations
from single WS-BPEL processes to open nets are responsive by construction.
Deadlocks are avoided by a concept called dead path elimination. Using this
concept, control flows through a disabled activity by explicitly skipping it. This
way, there cannot be any permanently blocked point of control. Loops always be
left as, on our level of abstraction, the exit condition is modeled as a nondeter-
ministic choice.

Services are connected by simply connecting appropriate interface places. In-
formally, we may compose services which are connected via at most one pair of
ports such that different nets use different ports.

Definition 3 (Composition of open nets). Two open nets N1 and N2 are
composable iff there exist a port P1 ∈ P1 and a port P2 ∈ P2 such that ∅ =
S1∩S2 ⊆ P1∪P2, T1∩T2 = ∅, Si1∩Si2 = ∅, and So1∩So2 = ∅. The composition
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Fig. 1. Two single-port open nets (a,c) and a multi-port open net (b)

N1⊕N2 of two composable open nets N1 and N2 is the net N with the following
constituents: S = S1 ∪ S2, T = T1 ∪ T2, F = F1 ∪ F2, m0 = m01 ⊕ m02,
Si = (Si1 ∪ Si2) \ (P1 ∪ P2), So = (So1 ∪ So2) \ (P1 ∪ P2), MF = {m ⊕ m′ |
m ∈ MF1, m

′ ∈ MF2}, and P = (P1 ∪ P2) \ {P1, P2}. Thereby, m1 ⊕ m2 is the
marking satisfying (m1⊕m2)(s) = m1(s) for s ∈ S1, and (m1⊕m2)(s) = m2(s)
for s ∈ S2.

For the markings involved in this definition, the composition operation ⊕ is
well defined, as none of them marks interface places. If the result of multiple
composition does not depend on the order of application (up to isomorphism),
we use the notation N1 ⊕ N2 ⊕ · · · ⊕ Nk for the composition of k open nets. In
Fig. 1, open nets (a) and (c) are composable to net (b). Composition of all three
leads to a closed net.

Services are executed in composition with other services. Consequently, be-
havioral properties are only defined for closed nets, i.e. complete service chore-
ographies.

Definition 4 (Behavior). A closed net N is deadlock-free (DF) if, for every
m ∈ RN (m0) \ MF , there is a transition enabled in m. N is livelock-free (LF)
if, for all m ∈ R(m0), RN (m) ∩ MF = ∅. N is quasi-live (QL) if, for all t ∈ T ,
there is an m ∈ R(m0) such that m

t−→N .

The composition of the three nets in Fig. 1 forms a closed net with properties
DF , LF , and QL. The well-known property of soundness of workflow nets [36]
closely corresponds to the properties LF and QL. Note that the composition of
responsive nets is not necessarily deadlock-free, livelock-free, or quasi-live.

Definition 5 (Controllability, Strategy). Let X ⊆ {DF, LF, QL} and k ∈
N \ {0}. Let N be a normal, bounded, and responsive open net with |P| = j, for
some j. N is X, k-controllable if there exist normal, bounded, and responsive
single-port services N1, . . . , Nj such that N∗ = N ⊕N1⊕· · ·⊕Nj is a closed net
holding all properties in X, and, for all markings m reachable from m∗

0 in N∗,
and all s ∈ IN , m(s) ≤ k. In this case, [N1, . . . , Nj ] is called an X, k-strategy
of N . Denote StratX,k(N) the set of all X, k-strategies for a given open net N .
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In Fig.1, all depicted nets are X, k-controllable for any X ⊆ {DF, LF, QL} and
all k > 0. For net (b), the ordered pair consisting of nets (a) and (c) forms
an X, 1strategy, for net (a), the composition of nets (b) and (c) forms an X, 1-
strategy, and for net (c), the composition of (a) and (b) forms an X, 1-strategy.

The introduction of the parameter k establishes an artificial limit on the
number of pending messages in a single channel. Technically, it assures (for any
value) boundedness of N∗ which is a pre-requisite for the algorithms studied in
the sequel. Pragmatically, it could either represent a reasonable buffer size in the
middleware, be the result of a static analysis of the communication behavior of
a service, or simply be chosen sufficiently large. Note that N and N1, . . . , Nj are
required to be responsive while N∗ is intentionally not required to be responsive
(N∗ is not the model of a service but rather the representation of a transition
system).

Open nets have been proposed in various contexts. For the modeling of in-
terorganizational workflows or services, they have been proposed under vari-
ous names and with different but mostly insignificant syntactic restrictions in
[19,18,25,26,31,27].

3 Controllability of Single-Port Services

We decide controllability of a single-port service N through the attempt of con-
structing a particular strategy of N . We actually construct a transition system
which forms the state space of the inner of the strategy. This transition system
can, however, be transformed into a Petri net by either transforming it straight-
forward into a Petri net state machine, or using the sophisticated theory of
regions [12,3,10]. As these translations are well understood, this paper shall only
consider the construction of the transition system. For simplicity, a transition
system that corresponds to a strategy is called strategy, too.

In the first part of this section, we describe the principles of constructing a
strategy. Then we illustrate our approach with an example. In the last part, we
discuss techniques for improving the performance of our construction.

3.1 Constructing a Strategy as Transition System

Throughout this section, let N be a normal, bounded, and responsive open net.
In a first step, we overapproximate the behavior of arbitrary N ′ which are

composable to N by a partner transition system TS0. Then, we iteratively re-
move states (and edges) which cause violations of the properties to be preserved.
If the resulting transition system is empty, we shall conclude uncontrollability
of N . Otherwise, the remaining transition system represents a strategy of N .

TS0 is inductively defined. We use sets of markings of N and an additional
item # for the definition of states of TS0. The core idea is to identify a state
q of TS0 with the set of markings that N can be in while TS0 is in q. Item #
is used to represent final states. For final states, we immediately implement the
restrictions required in Def. 1.
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Definition 6 (Overapproximation of arbitrary partners). For a set of
markings M of N , define closure(M) = {m′ | m ∈ M, m

∗−→N m′}. Let TS0 =
[Q, E, q0, QF ] (consisting of a set Q of states, a set E ⊆ Q × (IN ∪ {τ}) × Q
of edges, an initial state q0 ∈ Q), and a set QF ⊆ Q of final states be defined
inductively as follows.

– q0 = closure({m0}); q0 ∈ Q;
– If q ∈ Q then

• if # /∈ q then q′ = q ∪ {#} ∈ Q, [q, τ, q′] ∈ E, and [q, τ, q] ∈ E;
• if x ∈ Si and # /∈ q then q′ = q + x := closure({m + [x] | m ∈ q}) ∈ Q

and [q, x, q′] ∈ E;
• if x ∈ So then q′ = q − x := {m − [x] | m ∈ q, m(x) > 0} \ {#} ∈ Q and

[q, x, q′] ∈ E.

Thereby, [x] is a marking with [x](x) = 1 and [x](y) = 0, for y = x. Operations
+ and − on markings are defined pointwise. Let QF = {q ∈ Q | # ∈ q}.
TS0 represents arbitrary N ′ composable to N in the sense that TS0 can simulate
the behavior of N ′. The following lemma exhibits the corresponding simulation
relation.

Lemma 1. Let TS0 = [Q, E, q0, QF ] be constructed as defined above. Let N ′

composable with N and consider the relation ρ ⊆ RInner(N ′)(m0Inner(N ′)) × Q
inductively defined as follows:

– m0Inner(N ′)ρq0

– If mρq and m
t−→N m′, then there is a q′ such that {#} /∈ q′, [q, l(t), q′] ∈ E,

and m′ρq′;
– If mρq and m ∈ MFN ′ then mρ(q ∪ {#}).

With this ρ, marking m∗ is reachable in N ⊕ N ′ if and only if there exists a
q ∈ Q such that m∗ |Inner(N ′) ρq and m∗ |N∈ q.

ρ is actually a simulation relation between N ′ and TS0. Uniqueness of ρ is easily
verified since, for every state q of TS0 and every x ∈ I ∪ {τ}, there is exactly
one edge with source q and label x (in Def. 1, q′ id always uniquely determined
from q and x). τ -steps in TS0 from q \ {#} to q ∪ {#} are executed exactly if
the corresponding marking in N ′ is final.

For the main claim, observe that the edge relation of TS0 just reflects the
impact of producing or consuming tokens in the interface of N which in turn
corresponds to firing transitions in N ′ which are adjacent to interface places.

In the subsequent steps, we modify TS0 (by removing states and edges) such
that the assertions of Lemma 1 are preserved at least for all strategies of N . For
establishing the preservation result, we argue that the removed states cannot be
related to any reachable state of a strategy. To this end, we consult the compo-
sition TS ⊕ N of a transition system TS (like TS0) with N . This composition
is straightforward: a state in the composed system consists of a state of TS and
a marking of N , and enabled transitions of the two subsystems are arbitrarily
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interleaved. The only remarkable feature is that a transition [q, x, q′] of TS with
x ∈ Si adds a token to x, a transition [q, x, q′] with x ∈ So removes a token from
x (and is only enabled if such a token is present), and a transition [q, τ, q′] does
not touch the marking of N at all.

Definition 7 (Transformation of TS0 to DF, k-strategy). Let TS1 be the
transition system that is obtained from TS0 by removing all states q which con-
tain a marking m where, for some x ∈ IN , m(x) > k (removing a state is always
meant to include removal of all adjacent edges as well as removal of all states
which become unreachable. Given a transition system TSi (i > 0), transition
system TSi+1 is obtained by removing, for all q ∈ Qi, state q if

– [q, τ, q] is the only edge with source q in TSi, or
– there exists an m ∈ q where

• no state [q′, m′] is reachable in TSi⊕N from [q, m] where m′ ∈ MF , and
• no transition t with l(t) = τ is reachable in TSi ⊕ N from [q, m].

Let QFTSi+1 = {q ∈ QTSi+1 <| # ∈ q}. Let TS∗ be TSj for the smallest j with
TSj = TSj+1.

Theorem 1. N is DF, k-controllable if and only if QTS∗ = ∅.
Proof (idea). The construction terminates as TS1 is finite, due to boundedness
of N and the restriction to k tokens on interface places (TS1 can actually be
constructed directly, i.e. without explicitly constructing the possibly infinite TS0
first). Let N ′ be a DF, k-strategy of N and consider the simulation relation ρ of
Lemma 1. No marking of Inner(N ′) can be related to any removed state q as
otherwise

– N ′ would not be a ∅, k-strategy (q not present in TS1), or
– N ′ ⊕ N would contain a deadlock (as the responsive net N cannot perform

τ -transitions forever, and neither a final marking nor a communicating tran-
sition are reachable).

Due to the removal of τ -edges in the first item, TS∗ is responsive. Consequently,
if N has any DF, k-strategy, simulation relation ρ to TS∗ exists and must have
states in its co-domain, so Q = ∅. On the other hand, a nonempty TS∗ as such
is a DF, k-strategy. q.e.d.

Note that final states only play a minor role for DF -controllability. For LF, k-
controllability, we need to modify the transformation. In particular, final states
of TSi become more important.

Definition 8 (Transformation of TS0 to LF, k-strategy). Proceed as in
Def. 7, but remove q if there exists an m ∈ q where no state [q′, m′] is reachable
in TSi ⊕ N from [q, m] where q ∈ QFTSi and m′ ∈ MF .

It is easy to verify that the removed states cannot be related to states of any
strategy.
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Corollary 1. N is LF, k-controllable if and only if the modified construction
yields QTS∗ = ∅.
As all transformations preserve the assertions of Lemma 1 for all strategies of
N , we can use the constructed partner for verifying quasi-liveness.

Corollary 2. Let TS∗∗ be obtained from TS∗ by removing state ∅. N is
{DF, QL}, k-controllable if and only if it is DF, k-controllable and TS∗∗ ⊕ N is
quasi-live (where TS∗ is constructed as in Def. 7). N is {LF, QL}, k-controllable
if and only if it is LF, k-controllable and TS∗∗ ⊕ N is quasi-live (where TS∗ is
constructed as in Def. 8).

State ∅ may be an element of Q. It represents states which may be present in a
strategy but are actually unreachable in composition with N . This happens if N ′

waits for the receipt of an x which is not being sent by N . For DF -controllability
and LF -controllability, this state does not harm. For quasi-liveness it is, how-
ever, necessary to take care of ∅ ∈ Q. Due to Lemma 1 and the subsequent
constructions, all states [q, m] with q ∈ Q∗ and m ∈ q are actually reachable.

3.2 Example

Consider Fig. 2 with the depicted marking as initial marking and MF = {[γ]}.
The net is normal, bounded, and responsive. Consider first DF, 1-controllability.
Figure 3 shows the relevant part of transition system TS0. Boxes represent states
(with adjacent numbers). The content of a state consists of the markings depicted
within the box (one marking per line).

1 2

5

7

64

3

a

b

c

d

e

Fig. 2. Example net for studying single-port controllability

We depicted only one state (2′) containing #. For the remaining states, cor-
responding #-states are rather irrelevant as they do not contain final markings
of N . All other absent states violate the bound of 1 for tokens on the interface.
States 1 and 4 are shown as examples of such states (with infinite contents in
state 1). These states are removed during the transformation from TS0 to TS1
(in practice, their generation would be stopped upon first appearance of a second
token on an interface place). That is, TS1 consists of states 0, 2, 2′, 3, 5, 6, 7.

During further transformation, state 7 is removed as presence of marking
[δ] contradicts responsiveness. In consequence, state 6 and afterward state 5
are removed since γc (and then γcd) become states from which neither a final
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Fig. 3. Relevant part of TS0 as computed for the net in Fig.2

marking nor a communicating transition is reachable. For states 0, 2, 2′, 3, there
is no reason to remove them. So these states form a transition system that
witnesses the existence of a DF, 1-strategy.

The same result is obtained if LF, 1-controllability is considered instead, since
[2′, γ] is reachable from every marking in the system composed of N and TS∗.

If the set of final markings of N is set to MFN = {[δ]} instead, results for
DF, 1-controllability remain unchanged as the net can loop forever. The net would,
however, become LF, 1-uncontrollable as, after removing states 7 and the corre-
sponding state 7′ (not depicted), the composed system would not have a remaining
final state and our procedure would remove all remaining states of TS∗.

3.3 Implementation

The results of this section have been implemented in the tool Fiona [21]. A
number of optimizations can be applied. First, states of Q can be represented
by simple references to states in the composed system TSi ⊕ N . Second, the
removal of states can be interleaved with the generation of TS1. Third, the
stubborn set method [34] and BDD-based symbolic representations [7] can be
applied in order to reduce the size required for storing TSi ⊕N , or TS∗. Fourth,
the constructed strategies enjoy a number of regularities that can be exploited.
For instance, subsequent send (receive, resp.) transitions in TS∗ appear in all
permutations (reflecting the asynchronous nature of communication). Receive
transitions cannot be disabled by send transitions. Send transitions cannot be
disabled by receive transitions. Fifth, we can investigate N for obtaining upper
limits for the future number of consumable tokens on certain message channels.

Despite a devastating theoretical complexity somewhere in the double exponen-
tial area, it turns out that our approach is indeed applicable to interesting exam-
ples. The services in our benchmark set stem from WS-BPEL processes that we
obtained from small and medium size companies (23), WS-BPEL processes from
tutorials in WS-BPEL engines, the WS-BPEL specification, or text books on WS-
BPEL (21), and from UML activity diagrams (40). The UML diagrams actually
model workflows describing the claim management of a real insurance company.
We cut these workflows into services according to the annotated role information.

Using some of the optimizations stated above, computing a DF, 1-strategy
(as transition system) took less than a second for 66 of these 84 processes and
between 1 and 10 seconds for another 17 processes. In the single remaining case,



Does My Service Have Partners? 161

computation required 143 seconds. In this time, Fiona investigated an initial
transition system (TS1) of 108733 states. The final system (TS∗) consists of
11280 states. The harmful service had a rather exceptional interface consisting
of 16 output places but 0 input places. Thus, Fiona had to investigate all possible
orders of receiving 16 messages. Another source of complexity would be a non-
trivial internal behavior of a service. Fortunately, our translation from WS-BPEL
to open nets uses a number of Petri net reduction rules for simplifying this
internal behavior.

As far as DF -controllability is concerned, results in this section stem from
[32,25,37,21]. The approach to LF -controllability is original work.

4 Controllability of Multi-port Services

Let N = [S, T, F, m0, Si, So, MF ,P ] be a multi-port service. Depending on as-
sumptions on the coordination of partners of N , we distinguish three scenarios.
In the first scenario, partners may communicate with each other arbitrarily. Con-
trollability in this setting (run-time coordination) is equivalent to the single-port
controllability of N∪ = [S, T, F, m0, Si, So, MF ,

⋃P ] as one of the partners Ni

may just execute a strategy of N∪ while the remaining partners just transmit
messages from Ni to N and vice versa.

In the second scenario, partners of N communicate with N , but not with
each other. They may, however, act in a coordinated fashion (build-time coor-
dination), i.e. single partners cannot be exchanged. This setting is discussed in
the first subsection.

In the third scenario, we deal with controllability under the assumption that
there is neither run-time coordination nor build-time coordination between the
partners of N .

The following example may illustrate the difference. Net (a) of Fig. 4 depicts
a service. Assume that a and b belong to different ports. Then the two pairs of
transition systems in the right part depict multi-port strategies of the net. The
partners do not communicate with each other at run-time. However, by executing
a, the left partner must somehow “rely” on the fact that the right partner does
not execute b. By not executing a, this partner relies on the emission of b by
the other partner. In this sense, the two partners act coordinatedly. If we rule
out build-time coordination, we would like to qualify the net as uncontrollable.
We believe that the absence of build-time coordination is typical in practical
applications: consider a service of a travel agency which has customers and flight
reservation systems among its partners. The customers should not talk directly
to the flight reservation, and they should not even know the program that the
flight reservation service is running for its communication with the travel agency.

4.1 Decentralized Control

The presence of build-time coordination is immediately reflected in Def. 5. This
is demonstrated using Fig. 4. Net (a) is controllable as the strategies (c) and (d)
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ba

(a)

a

b

(b)

a

(c)

b

(d)

Fig. 4. An open net (a). In the single-port strategy (b), there is a choice between
sending an a and sending a b. In the two multi-port strategies (c) and (d), one partner
can send a message while the other one has to remain silent (consists of a single state
which is both initial and final).

prove. In these strategies, one of the two partners is depicted as a single (initial
and final) state which says that this partner remains silent. However, in being
silent, the respective partner relies on the fact that the respective other partner
does not remain silent. The other way round, a partner who performs an activity
(sending a or b) relies on the silence of the respective other partner. Net (a) is
only controllable by pairs of partner where each partner acts in a coordinated
fashion with the other one. This coordination is a build-time coordination. At
run-time, there is no direct communication between the partners.

Results for multi-port controllability exist only for acyclic services. For these
services, properties DF and LF coincide.

For deciding multi-port controllability, we observe that, for every multi-port
strategy [N1, . . . , Nj ] of N , its composition N1 ⊕ · · · ⊕ Nj is in fact a single-
port strategy of N∪. Consequently, it must be possible to embed N1 ⊕ · · · ⊕ Nj

into the transition system TS∗ considered in the previous section. Additionally,
transitions of different Ni do not interfere with each other, that is, they occur
arbitrarily interleaved in N1 ⊕ · · · ⊕ Nj .

The idea for deciding multi-port controllability is thus to start from the single-
port strategy TS∗ of N∪ and to remove edges which violate the requirement
of arbitrary interleaving with edges that belong to different ports. Arbitrary
interleaving is violated if one of the following conditions hold in TS∗ for some a
and b from different ports:

– a enables b: q
ab−→ but not q

b−→ ;
– a disables b: q

a−→ , q
b−→ , but not q

ab−→ ;
– a and b are not independent: q

ab−→ q′, q
ba−→ q′′, but q′ and q′′ are not

independent.

The resulting algorithm is nondeterministic since independence can sometimes be
enforced by removing different edges (for example, if a disables b, we can remove
either the a-successor or the b-successor of q). Thus, the computed strategy is not
necessarily unique. However, every multi-port strategy is at most as permissive
as one of the strategies that can be computed by investigating all continuations
of a non-deterministic choice.

For the formalization of the involved concepts in [32], it was necessary to
consider an unrolling of TS∗ to a tree. This way, the restriction to acyclic services
(where the resulting tree is finite) comes into play.
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As an acyclic net may not have livelocks (beyond deadlocks), the result covers
LF, k-controllability as well. For extending the results to QL, k-controllability,
we need to consider all possibilities for non-deterministic choices.

As an example, we study net (a) in Fig.4. Part (b) of this figure depicts
the single-port strategy as computed in the previous section. In this strategy,
actions a and b belong to different ports and should thus be independent. In the
strategy (b), however, they disable each other. Dependency can be resolved by
either removing the a-edge or the b-edge, leading to the strategies (c) and (d).
The example shows that nondeterminism is almost unavoidable for multi-port
control since otherwise, there would be no way to break the symmetry from
the symmetric strategy (b) to the asymmetric strategy (c) (or the asymmetric
strategy (d)).

b

a

(a)

a

b

b

a
b

b

a

(b)

Fig. 5. An open net (a) with a single-port strategy (b) where all actions are independent

Figure 5 shows another example. The example illustrates that it is important
to treat the node ∅ in TS0 rather carefully. In fact, Lemma 1 states that such
a state is unreachable in the composed system. Nevertheless, its presence (re-
peated due to the transformation into a tree) is important for reasoning about
dependency or independence of activities. In fact, activities a and b are inde-
pendent, so the single-port strategy (b) of net (a) can be transformed into a
multi-port strategy where one partner executes a and the other one b. In the
resulting composed systems, reachable states correspond to the reachable states
(nonempty nodes) of strategy (b).

The results of this section summarize results in [32].

4.2 Autonomous Control

The concept of autonomous control is concerned with the absence of built-time
coordination. The idea of autonomous control is to define general constraints on
the behavior of each partner such that, if every partner obeys the constraints
(regardless how), proper behavior (here: DF) of the overall system is guaranteed.
The constraints are such that they can be verified by only considering the given
multi-port service N and a particular partner. Autonomous controllability is
then defined as the satisfiability of the given constraints at every port of N .

The constraints are summarized in the notion of cooperative partners. As
the conditions are quite technical, we rephrase them in parenthesis as “rules of
engagement” for the considered partner N ′ of N .
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Definition 9 (Cooperative partner). Let N be a multi-port service and N ′

a single-port service that is composable to N . Let P ∈ PN be the unique port
of N where P ∩ SN ′ = ∅. Let both services be normal, bounded, and respon-
sive. For a set X of places, let 0X be the marking with 0 tokens on all places in
X. N ′ is DF, k-cooperative w.r.t. N iff the following conditions hold for every
m ∈ RInner(N⊕N ′)(m0):
(1) For all s ∈ P ∪ IN ′ , m(s) ≤ k (do not violate the message bound of k);
(2) If m /∈ MFInner(N⊕N ′) and m |Inner(N)∈ MFInner(N) then there is a t ∈
TN ∪ TN ′ where m ⊕ 0IN⊕N′

t−→N⊕N ′ (If N is in a final state and no transition
is executable, you must be in a final state, too, and no messages may be pending
on your channels));
(3) If m |Inner(N) /∈ MFInner(N) then there is a t ∈ TN ∪ TN ′ where m ⊕
0IN⊕N′

t−→N⊕N ′ , or, for all t′ ∈ TN , m |Inner(N)
t′−→Inner(N) implies l(t) /∈ P .

(If N is blocking then you must be able to execute a transition unless all transi-
tions out of the blocking marking of N are under the control of other ports than
yours).

Observe that this definition only involves N and N ′ and is completely inde-
pendent of other partners connected to N . Nevertheless, the following theorem
holds.

Theorem 2. If |PN | = k, N1, . . . , Nk are composable to N and DF, k-
cooperative w.r.t. N such that N ⊕ N1 ⊕ · · · ⊕ Nk is well-defined (i.e., all Ni

use different ports of N) then N ⊕ N1 ⊕ · · · ⊕ Nk is deadlock-free and cannot
reach a state with more than k tokens on an interface place of any involved net.

Proof. It is easy to see that reachability in Inner(N ⊕ Ni) overapproximates
reachability in N ⊕N1 · · · ⊕Nk. Thus, k-boundedness of interface places follows
immediately from Item 1 of Def. 9.

Let m ∈ RN⊕N1⊕···⊕Nk
be a deadlock. Thus, m /∈ MFN⊕N1⊕···⊕Nk

. Consider
first the case that m |Inner(N) /∈ MFInner(N). As N is assumed to be responsive,

there is a t ∈ TN where m |Inner(N)
t−→Inner(N). Since m is a deadlock in N ⊕

N1 ⊕ · · · ⊕ Nk, there is an s ∈ SiN such that m(s) = 0 and [s, t] ∈ FN . Let Ni

be the partner that is connected to the port of N containing s. Then, Item 2 of
Def. 9 asserts existence of a transition t′ that can fire in mN⊕Ni⊕0 which implies
fireability of t′ in m in N ⊕ N1 ⊕ · · · ⊕ Nk. Thus, m would not be a deadlock.
Consider now the case that m |Inner(N)∈ MFInner(N). Then there must be an i
where m|Inner(N⊕Ni) /∈ MFInner(N⊕Ni). Now, Item 3 of Def. 9 asserts existence
of a transition t′ that can fire in mN⊕Ni ⊕ 0 which implies fireability of t′ in m
in N ⊕ N1 ⊕ · · · ⊕ Nk. Again, m would not be a deadlock. q.e.d.

Consider open net (b) in Fig. 1. This net makes an internal decision and then
opens two parallel threads. In each thread, one partner sends a message to the
net after which the respective other partner gets a message from which it can
deduce the outcome of the internal decision. Finally, depending on the initial
decision, one of the partner must send an additional message.



Does My Service Have Partners? 165

Partner (a) is cooperative while partner (c) is not. The most important situ-
ation in this regard is the marking reached after firing one transition in (b). In
this marking, a cooperative partner must send a message. If both partners are
cooperative (behave like net (a)), the composed system is deadlock-free. If one
partner is cooperative (like in the depicted situation), the system may or may
not work correctly (in this case, it does). If, however, both partners behave like
(c), the marking mentioned above is a deadlock in the composed system.

Net (a) in Fig. 4 does not have cooperative partners which accords to the
intuition about this service. Thus, the following definition is useful.

Definition 10 (Autonomous controllability). A multi-port service N is au-
tonomously controllable iff, for every port of N , there is a cooperative partner.

The conditions for cooperative behavior are such that a cooperative partner can
be computed using basically the same idea as in Sect. 3. The result is (in the case
of an autonomously controllable service) a most permissive cooperative partner.
For single-port nets, single-port controllability, multi-port controllability, and
autonomous controllability coincide.

The result in this subsection is a generalization of results in [32]. There, we
restricted services to acyclic ones.

5 Controllability under Additional Constraints

In this section, we study the following problem: Is there an X, k-strategy N ′ for a
given service N such that N ′ satisfies some additional specification? Additional
specifications include, but are not restricted to the enforcement or exclusion of
exchanged messages. Enforcing a message a means that every run (execution
sequence) in the composed system contains a state where interface place a is
marked. Excluding a means that no run of the composed system contains a
state where a is marked.

There are several motivations for such additional specification. First, they al-
low the owner of N to validate certain features of N (“can the service be used
with payment by credit card”, “can the service terminate without using some
abortion feature”, etc.). Second, a specification can express a user’s choice of
particular features to be used or not to be used. In this case, controllability does
not only decide whether these choices are consistent with N . The actual value of
this approach is that the computed strategy can in fact be used as code to be run
by the partner. In a third scenario, a service N can be projected to some subbe-
havior for fitting into the requirements of some service repository. For instance,
if a service offers various goods, including books and toys, restricted versions of
the same service could be registered with service repositories specialized to toy
vendors, as well as specialized service repositories that collect book sellers.

Many additional specifications can be dealt with through product construc-
tions involving N . We synchronize additional structures with N such that every
strategy of the modified net is a strategy of N which satisfies the additional
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specification. This way, the new problem is reduced to standard controllability
questions.

Let N∗ be a closed net which is disjoint to N in all its constituents. Assume
further that there is a labeling of transitions λ : TN ∪ TN∗ → L ∪ {τ} into some
set L. Then the synchronous product N ⊗ N∗ of N and N∗ can be defined as
follows. We take the disjoint union of places of N and N∗. As transitions, we use
the set {[t, t∗] | t ∈ TN , t∗ ∈ TN∗ , λ(t) = λ(t∗) = τ}∪{t | t ∈ TN ∪TN∗ , λ(t) = τ}.
Arcs and initial marking are added canonically, the interface is the one of N .
Final markings are all those markings where both the projection to N and the
projection to N∗ is a final marking of the respective net.

With the construction, we aim at not altering the firing behavior of N . This
can be achieved by requiring the following property for N∗.

Definition 11 (Monitor net). Closed net N∗ is a monitor net for N w.r.t.
labeling λ iff, for all markings m reachable in N ⊗ N∗, and every l ∈ L, if
some transition t with label l is activated in the projection of m to N , then some
sequence of τ-labeled transitions can be fired in the projection of m to N∗ such
that a transition t∗ with label l in N∗ becomes enabled.

Due to the defined monitor property, every sequence of N can be transformed
into a sequence of N ⊗ N∗ which establishes the same behavior in the N -part
of N ⊗ N∗. The only difference is that reaching a final state in N does not
necessarily correspond to reaching a final state in N ⊗ N∗. This way, only a
subset of successful runs of N corresponds to successful runs in N ⊗ N∗.
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Fig. 6. A vending machine with various constraints attached

In Fig. 6, we added constraints to an open net that models a vending machine
where, after inserting a coin and pressing a button, coffee (C) or tea (T) is
released. The parts painted with bold lines are the respective monitor nets.
Overlapping transitions are meant to carry the same label. If, in the constraint
net in part (a), the marking with a token on the bottom place is final, the
constraint models the property “enforce coffee”. A strategy of the composed net
will inevitably use the service such that message C is emitted by the machine.
Part (b), with the initial marking as final marking of the monitor net, models the
“exclude coffee” property. A net where message C can be sent by the machine
cannot be a strategy of the net. Part (c) shows a more complex monitor net. With
the empty marking as final marking, it enforces a behavior where, after having
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received coffee, a coin must be inserted. As this constraint is not satisfiable in
this particular vending machine, the composed net becomes uncontrollable.

In this section, results of [22] have been extended with the explicit definition
of the monitor property.

6 Controllability for Alternative Communication Models

In this section, we study the impact of the communication model on the previous
results. So far, we assumed asynchronous message passing and did not take
into consideration any semantic dependency between message contents. For both
assumptions, there may be cases where they are inappropriate.

6.1 Synchronous Communication

It is commonly agreed that services, in particular web services, communicate
asynchronously. For service models, however, the shape of communication may
depend on the chosen level of abstraction. It is thus desirable to have a formalism
where the mode of communication (synchronous versus asynchronous) can be
chosen individually for each channel.

The model of open nets can be extended with synchronous communication
channels. One particular option is to represent each such channel by a label. The
labels are attached to transitions in the considered open nets N and N ′. If a
transition carries a label other than τ , it can only fire if, at the same time, a
transition with same label is fired in the respective other net. If a transition can
carry more than one label, we fire a step U of transitions in TN ∪ T ′

N such that
the sum of label occurrences in U ∩ TN is equal to the sum of label occurrences
in U ∩ TN ′ , for each individual label. Using this idea, composition of N and N ′

can be executed in a similar fashion as in Sect. 5.

a ba

b

c

d

Fig. 7. An open net with synchronous channels a, b, and asynchronous channels c, d

In Sect. 2, we mentioned that every open net can be transformed into an
equivalent normal open net (where every transition is connected to at most one
interface place). Unfortunately, a corresponding result for synchronous channels
does not hold. Consider Fig. 7 with a final marking where the post-places of the
transitions labeled a and b are marked. If this service is in the initial marking,
reachability of a malfunctioning state can be avoided only if the partner fires
a transition which carries both a and b as label, i.e., takes care that the two
transitions carrying these labels are fired simultaneously.



168 K. Wolf

However, every open net with both asynchronous and synchronous channels
can be transformed into one where every transition which is linked to an asyn-
chronous channel does not carry labels for synchronous channels. Thus, a sim-
ilar construction as in Def. 6 can be applied where, in addition to transitions
for asynchronous messages, transitions are created which correspond to steps of
synchronous channels. Then, the constructions of Defs. 7 and 8 can be applied
as before.

The result in this subsection has been reported in [38]. The same study ex-
tends the notion of independent transitions to synchronous channels and thus
generalizes multi-port controllability to open nets with synchronous channels.

Another approach to synchronous communication can be found in [16]. There,
N and N ′ are connected via signal arcs between transitions. The source transi-
tion of a signal arc fires according to the usual transition rule. The sink transi-
tion, however, fires only if a step consisting of both source and sink transition
is enabled. This means that a sent message is lost if the receiving net is not
ready to process it. This asymmetric means of synchronization has interesting
applications in technical systems where signal arcs represent pulsed electronic
signals. In the area of web services, we have not yet identified a scenario where
pulsed signals are an appropriate way of modeling communication.

6.2 Semantic Dependencies between Messages

So far, we treated exchanged messages as being completely independent of each
other. As a consequence, every message can be created and sent at any point
in time. In reality, however, certain dependencies between messages exist. For
instance, it does not always make sense to send a message “filled form” before
having received a message “empty form”. Likewise, “credit approved” or “credit
rejected” should never be sent before having received those data on which this
decision depends.

send empty

receive filled

a

b

a'

b'

Fig. 8. Modeling a semantic dependency between messages: If N ′ is a strategy of N
(depicted in normal ink) plus K (depicted in bold) then N ′ plus K is a strategy of N
that does not send a filled form before having received the empty one

We found that many relevant semantic dependencies between messages can
be implemented as a Petri net fragment K which are placed between the net N
to be controlled, and the actual strategy N ′. In Fig. 8, unit K corresponds to “b
cannot be sent before having received a”, i.e. a could model an empty form an
b the filled version of that form.

In the example, it is easy to see that (plain) controllability of N⊕K implies that
N is controllable such that the specified restrictions are met. N ′ ⊕K is a strategy
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that witnesses this property. The other way round, a strategy N ′ of N that obeys
the specified restrictions can be easily transformed into a strategy for N ⊕ K.

The treatment of semantic dependencies has been investigated in [17].

7 Related Work

The synthesis of controllers in general has been extensively studied on the basis
of the work by Wonham and Ramadge [30]. Our setting is, however, situated
not in the center of their focus, so we could not find directly applicable solutions
fitting to our settings.

In the area of workflows, the verification of soundness [36] is certainly a sim-
ilar approach that aims at providing a necessary criterion for correct behavior.
Our focus on deadlock freedom, livelock freedom, and quasi-liveness is directly
inspired by the notion of soundness of workflow nets. There is a version of sound-
ness for workflows, called relaxed soundness [9], that involves controller synthesis.
In this case, however, the controller is sitting inside the workflow and may ob-
serve parts of the internal state (white box) while our setting sees the controller
as sitting outside the service (black box).

Results on constraints are closely related to product constructions in classical
automata theory.The study of autonomous controllability is related to the problem
ofprotocol separation forwhichwe are only aware of some singular ad-hoc solutions.

Controllability is closely linked to the concept of realizability of service chore-
ographies. Here, the question is whether there are services which interact ac-
cording to a pattern of interaction.

8 Conclusions and Future Work

The behavior of services can be modeled using open nets. This class of models is
bidirectionally linked to the industrially relevant language WS-BPEL. Controlla-
bility for services is a criterion which is similar to the notion of soundness for work-
flow nets. We decide controllability by the construction of (the transition system
of) a corresponding strategy. This strategy is quite useful as it can be transformed
into code that represents the communication with the given service. With the pro-
posed techniques, verification of controllability is feasible for realistic services.

Controllability can be studied in various settings. Among the parameters defin-
ing a setting are the behavioral property to be established in the composition
(deadlock freedom, livelock freedom, quasi-liveness, or others), the shape of the in-
terface (single-port, multi-port with or without build-time coordination between
the partners), the nature of the message passing model (synchronous vs. asyn-
chronous, with or without considering semantic dependencies), and the presence
of additional constraints on the set of strategies (enforce or exclude activities).

We showed that several settings can be dealt with either by adapting the orig-
inal procedure or by modifying the given open net. However, the space of studied
settings is far from being exhaustive. Furthermore, some settings required restric-
tions like acyclicity of the given service. Thus, more research efforts are required for
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an exhaustive coverage of all relevant settings. A useful side effect of our approach
is the synthesis of an actual strategy. There has already been a significant amount
of work that uses the synthesized strategy for a characterization of all strategies.
There seem to be a number of other useful applications of this synthesis, e.g. in
adapter generation. Other potential applications for a synthesized partner need
to be explored. Furthermore, we should investigate decision procedures for con-
trollability which do not require the synthesis of a strategy. In this point, there
are only few results linking the structure of an open net and its controllability.
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Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

19. Kindler, E., Martens, A., Reisig, W.: Inter-operability of Workshop Applications –
Local Criteria for Global Soundness. In: van der Aalst, W.M.P., Desel, J., Oberweis,
A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 235–253. Springer,
Heidelberg (2000)

20. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net
Models into Human-readable Abstract BPEL Processes. In: Proc. Modellierung,
vol. LNI P-127, pp. 57–72 (2008)

21. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

22. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

23. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

24. Lohmann, N., Verbeek, H.M.W., Ouyang, C., Stahl, C., van der Aalst, W.M.P.:
Comparing and Evaluating Petri Net Semantics for BPEL. Computer Science Re-
port 07/23, Eindhoven University of Technology (2007)
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Abstract. Deciding whether a service S can be substituted by another
service S′ is an important problem in practice and one of the research
challenges in service-oriented computing. In this paper, we define three
substitutability notions for services. Accordance specifies that S′ cooper-
ates with at least the environments that S cooperates with. S and S′ are
equivalent if they cooperate with the same environments. To guarantee
that S′ cooperates with a fixed subset of environments that S cooperates
with, the notion of restriction can be used. For each substitutability no-
tion we present a decision algorithm. To this end we apply the concept
of an operating guideline of a service as an abstract representation of all
environments the service cooperates with.

Keywords: Open nets, Operating guidelines, Service substitutability.

1 Introduction

In the paradigm of service-oriented computing (SOC) [1], a service serves as a
building block for designing flexible business processes by composing multiple
services. Such a (composed) service is subject to changes. There may hardly ever
be a total renewal or upgrade of the overall service. Instead, individual services
will be replaced by better ones, because the service was too expensive or some
new functionality has been added, for instance. Service substitutability, that is,
deciding whether a service can be substituted by another service, is one of the
most notable SOC research challenges.

Obviously, a service S can be substituted by another service S′ if no environ-
ment can distinguish them, that is, they are equivalent. In practice, however,
more flexible notions than equivalence are relevant as well. In general, substitut-
ing S by S′ either should gain or preserve properties of the overall service.

In order to guarantee that substituting S by S′ indeed gains and/or preserves
specific properties, support of formal methods is needed. To this end we need
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to characterize different properties of substitutability, resulting in different sub-
stitutability notions. In the next step, we have to develop algorithms to decide
substitutability for each notion.

In this paper, we restrict ourselves to the service protocol, that is, to the
behavior of a service and abstract from other important aspects like quality of
service and semantics. As our formal model we use open nets, a special class of
Petri nets. An open net has an interface for communication with other open nets
via asynchronous message passing. To meet different application scenarios that
are relevant in practice we introduce three substitutability notions: accordance
(S′ cooperates with at least every environment S cooperates with), equivalence
(S and S′ cooperate with the same environments), and restriction (S′ cooperates
with at least a fixed subset of environments S cooperates with). Furthermore,
a constraint-conforming substitutability notion is derived which is more fine-
grained than restriction. For each such notion we present a decision algorithm
based on the concept of an operating guideline as an abstract representation of
all environments a given service can cooperate with. Operating guidelines have
been suggested to support service discovery so far. In this paper, we show that
operating guidelines are well-suited for deciding substitutability of services, too.
To this end we use known results, extend some notions, and also provide new
results on operating guidelines. An extended version of this article has been
published as a technical report [2].

The remainder of this paper is structured as follows. Sections 2 and 3 present
the preliminaries. There, we recall our service models, open nets and service
automata, as well as operating guidelines. Then, in Sect. 4 we introduce the
notion of accordance. Restriction is explained in Sect. 5. From accordance and
restriction we derive in Sect. 6 two further substitutability notions. Related work
is discussed in Sect. 7 and finally, conclusions are drawn in Sect. 8.

2 Service Models

In this section, we introduce open nets, a special class of Petri nets, as a formal
model for services and service automata as a technique to analyze the interaction
behavior of open nets.

2.1 Open Nets

We assume the usual definition of a (place/transition) Petri net N = [P, T, F ]
(see [3], for instance) and use the standard notation to denote the preset and
postset of a place or a transition: •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

A marking of a Petri net N is a mapping m : P → �. We use a multiset
notation to denote markings and write m = [p1, p1, p2] for a marking m with
m(p1) = 2, m(p2) = 1, and m(p) = 0 for all p ∈ P \{p1, p2}. If Q ⊇ P , a marking
m : P → � extends canonically to m : Q → � by m(p) = 0 for each p ∈ Q \ P .

Open nets (introduced in [4] using the term “open workflow nets”) are a
special class of Petri nets. An open net has an interface that consists of a set
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(c) Composition Nshop ⊕ Nclient

Fig. 1. (a) An open net Nshop modeling an online shop. In the initial marking [p1], it
waits for a login from a client. After the client logged in, the shop concurrently waits
for an order which it then will deliver and it waits for a confirmation of the terms of
payment and sends an invoice afterwards. Finally, the shop reaches the single final
marking [p6, p7]. (b)-(c) An open net Nclient modeling a client of the shop with its final
marking [p9, p10] and the composition of shop and client.

of input places and a set of output places for asynchronous communication with
an environment. This idea is based on the module concept for Petri nets which
was proposed by Kindler [5]. Suitability of open nets for modeling services has
been proven through an implemented translation (see [4], for instance) from the
industrial service description language WS-BPEL [6] into open nets.

As a global name space, we assume a set MC of message channels given. For
technical reasons, we require that the special symbols τ (representing a non-
communicating step) and final (used to denote final states) are not in MC.

Definition 1 (Open net). An open net N = [P, Pin , Pout , T, F, m0, Ω] consists
of a Petri net [P, T, F ] together with

– two disjoint sets Pin ⊆ (P ∩ MC) of input places such that •pin = ∅ for
all pin ∈ Pin and Pout ⊆ (P ∩MC) of output places such that pout

• = ∅
for all pout ∈ Pout ,

– a distinguished initial marking m0, and
– a set Ω of final markings s.t. no transition of N is enabled at any m ∈ Ω.

Let Pio = Pin ∪ Pout denote the interface of N . We further require that neither
the initial nor a final marking marks any interface place p ∈ Pio .

The behavior of an open net (i.e. enabledness and firing of transitions) is defined
using the standard (place/transition) Petri net semantics (see [3], for instance).
In order to assign an intuitively consistent meaning to final markings, we restrict
our approach to open nets where a marking in Ω does not enable any transition.
As an example, Fig. 1(a) shows an open net model of an online shop.

Interaction of open nets is represented by their composition. Two open nets
N1 and N2 are composable if they only share interface places and the input places
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of N1 are exactly the output places of N2 and vice versa (i.e. Pin1 = Pout2 and
Pin2 = Pout1). For two markings m1 of N1 and m2 of N2, their composition
m1⊕m2 is defined by (m1⊕m2)(p) = m1(p)+m2(p). From now on, if two open
nets N1 and N2 are composed, we implicitly assume they are composable.

Definition 2 (Composition of open nets). The composition of two (com-
posable) open nets N1 and N2 is the open net N = N1 ⊕ N2 defined as follows:
P = P1 ∪ P2, Pin = ∅, Pout = ∅, T = T1 ∪ T2, F = F1 ∪ F2, m0 = m01 ⊕ m02 ,
and Ω = {m1 ⊕ m2 | m1 ∈ Ω1, m2 ∈ Ω2}.
A marking m of an open net N is a deadlock in N iff m is no final marking of N
and m does not enable any transition of N . This definition of a deadlock differs
from the standard definition in literature as we discriminate between terminating
(final) states and non-terminating states (i.e. deadlocks). Deadlock-freedom is a
fundamental correctness criterion for cooperating services. In contrast, an open
net representing a service in isolation usually has deadlocks. As an example, each
of the open nets in Fig. 1(a) and Fig. 1(b) on its own has a deadlock, whereas
the open net in Fig. 1(c) is deadlock-free.

Definition 3 (Strategy). An open net M is a (open net) strategy for an open
net N if their composition is deadlock-free. Strat(N) denotes the set of all strate-
gies for N .

If Strat(N) = ∅, then N is called controllable, otherwise N is uncontrollable.
Uncontrollable services are fundamentally ill-designed. Note that according to
Definition 3, the strategy notion is symmetric, that is, M is a strategy for N iff N
is a strategy for M . In Sect. 3 we will show how to decide controllability of a given
service N by synthesizing a strategy M , thus fixing one side of this symmetry.
If N is uncontrollable, then the synthesis produces an “empty strategy”.

Obviously, the client Nclient in Fig. 1(b) is a strategy for the shop Nshop in
Fig. 1(a) (and vice versa). Hence, Nshop is controllable (and so is Nclient).

The set Strat(N) is of particular importance as it gives a semantics of an open
net N in terms of N ’s deadlock-free interacting environments. In Sections 4 – 6,
we introduce several substitutability notions which all are based on comparing
the corresponding sets of strategies.

2.2 Service Automata

Service automata [7] form the basis of operating guidelines and are used for
representing the behavior of open nets. We will firstly introduce service automata
and then present a back and forth translation between open nets and service
automata that uses the set MC as interconnection. A service automaton is closely
related to the reachability graph of the inner of an open net, that is, the inner
of an open net N is the open net inner(N) where all interface places of N as
well as all their adjacent arcs are removed.

Definition 4 (Service automaton). A service automaton is an automaton
A = [Q, Iin , Iout , δ, q0, Ω] that consists of
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Fig. 2. Three service automata of the online shop, its client, and their composition

– a set Q of states,
– two disjoint sets Iin ⊆ MC of input channels and Iout ⊆ MC of output

channels, with Iio = Iin ∪ Iout is the interface of A,
– a nondeterministic transition relation δ ⊆ Q × (Iio ∪ {τ}) × Q,
– a distinguished initial state q0 ∈ Q, and
– a set Ω ⊆ Q of final states, s.t. q ∈ Ω and (q, x, q′) ∈ δ implies x ∈ Iin .

For a transition (q, x, q′) ∈ δ, x is called the label of (q, x, q′). An x-labeled
transition is a sending transition if x ∈ Iout , a receiving transition if x ∈ Iin ,
and an internal transition if x = τ . To emphasize the direction of an interface
channel x ∈ Iio in the graphical representation of a service automaton, we add
an exclamation mark, !x, if x ∈ Iout , or a question mark, ?x, if x ∈ Iin .

Figure 2 shows three service automata which correspond to the three open
nets of Fig. 1.

In the following, we lift notions defined for open nets to service automata.
Two service automata are composable if they have disjoint sets of states and

the input channels of one automaton are the output channels of the other au-
tomaton and vice versa. From now on, we assume all composed service automata
are composable. The composition A⊕B of composable service automata A and
B introduces an internal message bag (i.e. a multiset) of currently pending mes-
sages that were sent by one automaton, but not yet received by the other one.
That way, a prior x-labeled sending transition of A is represented in A⊕B by an
internal (i.e. τ -labeled) transition that adds one x element to the message bag
M . Correspondingly, a prior transition receiving an x is represented by a now
internal transition removing an x from the message bag. Prior internal transi-
tions remain as internal transitions in A⊕B. This is formalized in the following
definition. Therefore, let bags(MC) denote the set of all multisets over MC.

Definition 5 (Composition of service automata). For two (composable)
service automata A and B, their composition is the service automaton
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A ⊕ B = [Q, Iin , Iout , δ, q0, Ω] defined as follows: Q = QA × QB × bags(MC),
Iin = Iout = ∅, δ ⊆ Q × {τ} × Q, q0 = [q0A , q0B , ∅], Ω = ΩA × ΩB × {∅}, such
that the transition relation δ contains the elements
– ([qA, qB, M ], τ, [q′A, qB, M ]) iff (qA, τ, q′A) ∈ δA,
– ([qA, qB, M ], τ, [qA, q′B, M ]) iff (qB, τ, q′B) ∈ δB,
– ([qA, qB, M ], τ, [q′A, qB, M − [x]]) iff (qA, x, q′A) ∈ δA, x ∈ IinA, M(x) > 0,
– ([qA, qB, M ], τ, [q′A, qB, M + [x]]) iff (qA, x, q′A) ∈ δA, x ∈ IoutA,
– ([qA, qB, M ], τ, [qA, q′B, M − [x]]) iff (qB, x, q′B) ∈ δB, x ∈ IinB, M(x) > 0,
– ([qA, qB, M ], τ, [qA, q′B, M + [x]]) iff (qB, x, q′B) ∈ δB, x ∈ IoutB.

In the rest of this paper, we will only consider the connected part of the service
automaton A ⊕ B which contains the initial state.

A state q is a deadlock in A if q /∈ Ω and at most receiving transitions leave
q. Hence, a service automaton cannot leave a deadlock by its own.

Definition 6 (Strategy). A service automaton A is a strategy (service au-
tomaton) for a service automaton B if their composition is free of deadlocks.

In analogy to open nets, let Strat(A) denote the set of all strategies for a service
automaton A. A is controllable iff Strat(A) = ∅.

2.3 Translating Open Nets into Service Automata and Back

In [4] we have shown that it is possible to translate each open net N into a service
automaton AN which is basically the reachability graph of inner(N). The set
MC is used as a common name space of N and AN , as both the interface places of
N and the interface of AN are subsets of MC. For example, the service automata
of Fig. 2 correspond to the open nets of Fig. 1 under this translation.

Additionally, it is easily possible to translate a service automaton A into an
open net NA by constructing a Petri net state machine out of A or by applying
the theory of regions [8], for instance.

Open nets are well-suited to model services as they have a more implicit and
compact model and are thus more understandable for service designers than
service automata. Service automata, in contrast, adequately model service be-
havior and thus are well-suited to analyze services. The value of the back and
forth translation is that we can change arbitrarily between these two formalisms
without loosing information w.r.t. Strat . Hence, it is sufficient to develop our
analysis techniques for service automata, but to model on the Petri net level.

3 Operating Guidelines

Operating guidelines were first introduced in [7] and generalized in [4]. Basically,
an operating guideline OGA of a service automaton A is a special service au-
tomaton B where each state q of B is annotated with a Boolean formula φ(q).
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Such a Boolean annotated service automaton (BSA) Bφ can be used to charac-
terize a set of service automata [7,4]. Therefore, we define a matching relation
between a service automaton C and a BSA Bφ. Bφ characterizes C iff C matches
with Bφ. An operating guideline OGA of a service automaton A is a special BSA
where C matches with OGA iff C is a strategy for A.

A literal of our Boolean formulae is a channel in MC or one of the special
literals τ and final (representing an internal transition and a final state, respec-
tively). Let, for the rest of this paper, MC+ denote the set MC ∪ {final , τ}. As
Boolean connectors, we only use ∨ (Boolean or ) and ∧ (Boolean and). Let BF
be the set of all such Boolean formulae over MC+. As usual, we fix the truth val-
ues true and false . A Boolean assignment is a mapping β : MC+ → {true, false}
assigning to each literal a truth value. Furthermore, an assignment β satisfies a
formula φ ∈ BF , β |= φ, if φ evaluates to true using standard propositional logic
semantics.

The restriction of BSAs to deterministic structures and negation-free formu-
lae eases the decision procedures in the upcoming sections while providing all
sufficient information needed for operating guidelines.

Definition 7 (Boolean annotated service automaton, BSA). A Boolean
annotated service automaton (BSA) Bφ = [B, φ] consists of a deterministic
service automaton B = [Q, Iin , Iout , δ, q0, Ω] and a Boolean annotation function
φ : Q → BF. Thereby, a service automaton is deterministic if it has no internal
transitions and each state has at most one x-labeled outgoing transition.

For matching a service automaton C with a BSA Bφ, the present outgoing
transitions of a state q of C constitute an assignment for φ(q):

Definition 8 (Assignment). An assignment of a service automaton C assigns
to each state q of C a Boolean assignment βC(q) : MC+ → {true, false} defined
by

βC(q)(x) =

⎧⎪⎨
⎪⎩

true, if x = final and there is a state q′ with (q, x, q′) ∈ δC ,

true, if x = final and q ∈ ΩC ,

false , otherwise.
A BSA is used to characterize a set of service automata. Let therefore be the
matching of a service automaton with a BSA defined as follows:

Definition 9 (Matching). Let C be a service automaton and Bφ be a BSA.
C matches with Bφ if there is a weak simulation relation � ⊆ QC × QB such
that for each (qC , qB) ∈ �: βC(qC) |= φ(qB). Let Match(Bφ) denote the set of
all service automata that match with Bφ.

The weak simulation relation [9] � in Definition 9 together with possible τ lit-
erals in φ allow the deterministic Bφ for characterizing deterministic as well
as nondeterministic service automata [4]. Figure 3(a) shows an example BSA.
Figures 3(b) – 3(d) demonstrate the matching.

Definition 10 (Operating guideline, OG). A BSA OGA = Bφ is an oper-
ating guideline (OG) of a service automaton A iff Match(OGA) = Strat(A).
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Fig. 3. (a) A BSA Bφ. The annotation φ(q) is depicted inside the state q. (b) – (d)
Three service automata C, D, and E. C matches with Bφ: for instance, the assignment
βC(r1) assigns true to the literals ?a and ?b (because both transitions leave the state
r1), satisfying the annotation ?a∧ ?b. However, D and E do not match with Bφ: state
s1 does not satisfy the annotation of state q1; and the !c-labeled transition leaving
state t1 causes B not simulating E.

According to this definition, an operating guideline is a special BSA. For uncon-
trollable service automata A (i.e. Strat(A) = ∅) we fix an OG that consists of
a single state that is annotated with false, assuring that no service automaton
matches with this OG.

Figure 4 depicts an OG of the online shop of Fig. 2(a). Applying Definition 9
we conclude that the client of Fig. 2(b) matches with this OG.

In [4] we have presented an algorithm to compute an operating guideline of a
service where the inner of the service (cp. Sect. 2.2) has finitely many reachable
states. For services without this restriction, we were able to show that control-
lability is undecidable [10]. The OG construction algorithm computes a special
strategy. Therefore it starts with an overapproximation of compatible behavior
of any strategy and then removes deadlock-causing states iteratively. Finally, the
annotations are derived from information collected during the computation. If
the service is uncontrollable, the algorithm eventually removes all states. The
algorithm is implemented in our tool Fiona [11].1

4 Accordance

In this section, we define our first substitutability notion, accordance. A service
A′ accords with a service A if A′ cooperates with at least the environments that
A cooperates with. In other words, if the composition of A and an environment
B is deadlock-free, then deadlock-freedom is preserved if A is substituted by A′.

4.1 A Notion of Accordance

Given a service automaton A, it might be necessary to change or add some
functionality of A by substituting it by a new version A′. With accordance, we
demand that this substitution must not affect any client of A: every current
client of A has to be supported by A′ as well. Because we assume that A does
1 Fiona is available at http://www.service-technology.org/fiona

http://www.service-technology.org/fiona
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q1: !terms ∨ !login ∨ !order

q2: !login ∨ !order q3: !terms ∨ !order q4: !terms ∨ !login

q5: ?invoice ∨ !order q6: !login q7: !terms ∨ ?deliver
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Fig. 4. An operating guideline of the online shop of Fig. 2(a). To characterize also
nondeterministic strategies, each Boolean annotation φ(q) is implicitly extended to
φ(q)∨ τ and thus evaluated to true if the matched service automaton has an outgoing
τ -transition in the corresponding state (cp. Definition 8).

not know each client that uses A, A′ must support each potential client of A, i.e.
all elements in Strat(A). An application for accordance is the upgrade of a web
shop which should not affect any client. This motivates the following notion of
accordance between service automata A and A′. To this end A and A′ must be
interface equivalent (i.e. IinA = IinA′ and IoutA = IoutA′).

Definition 11 (Accordance). Let A and A′ be interface equivalent service
automata. A′ substitutes A under accordance (short: A′ accords with A) iff
Strat(A) ⊆ Strat(A′).

Accordance guarantees that every strategy for A is a strategy for A′ as well. In
other words, if A′ accords with A, then every client of A is also a client of A′.
In addition, accordance allows for new clients of A′. Thus, accordance seems to
be the right notion to achieve the goal mentioned above.

The notion of accordance has been first introduced in [12]. However, the de-
cision procedure for accordance was limited to acyclic finite state services there.
In this paper, we extend this procedure to cyclic finite state services.

4.2 Deciding Accordance

In order to decide accordance of A and A′, we need to compare Strat(A) and
Strat(A′). The problem is that the set Strat may correspond to a large (in fact
infinite) set of service automata. With the operating guidelines of A and A′ we
have, however, a finite representation of Strat(A) and Strat(A′). In the following,
we show how accordance can be decided by using operating guidelines. To this
end we define a relation � for operating guidelines. Informally, OGA � OGA′

iff there is a simulation relation between the states of OGA and OGA′ such that
the annotations in OGA imply the annotations in OGA′ .

Definition 12 (Relation � of OGs). Let A and A′ be interface equivalent ser-
vice automata and let OGA = [Q, Iin , Iout , δ, q0, Ω, φ] and OGA′ = [Q′, I ′in , I ′out ,
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q1: ?a ∧ ?b

q2: !c ∧ !d q3: !e ∧ !f

q4: final q5: final q6: final

?a ?b

!c !d !e !f

(a) OGsmall

s1: ?a ∧ ?b

s2: !c ∨ !d s3: !e ∨ !f

s4: final s5: final s6: final

?a ?b

!c !d !e !f

(b) OGbig

Fig. 5. Two operating guidelines with OGsmall � OGbig. For instance, (q2, s2) ∈ ξ with
φ(q2) ⇒ φ(s2), and (q4, s4) ∈ ξ and (q4, s5) ∈ ξ with φ(q4) ⇒ φ(s4) and φ(q4) ⇒ φ(s5).

δ′, q′0, Ω
′, φ′] be the corresponding operating guidelines. Then, OGA � OGA′ iff

there is a simulation relation ξ ⊆ Q×Q′ such that for all (q, q′) ∈ ξ, the formula
φ(q) ⇒ φ′(q′) is a tautology.

The relation � is a preorder, that is, it is reflexive and transitive. By help of the
next theorem we show that OGA � OGA′ iff A′ accords with A and thus it can
be used to decide accordance of A and A′. An example is depicted in Fig. 5.

Theorem 1 (Checking accordance). Let A and A′ be two service automata
and let OGA and OGA′ be the corresponding operating guidelines. Then, OGA �
OGA′ iff Strat(A) ⊆ Strat(A′).

For the proof of this theorem we rely on a fact about operating guidelines as
constructed in [4]. As we cannot repeat the whole approach of [4], we only include
the following proposition and prove Theorem 1.

Proposition 1. For every operating guideline OGA = [Q, Iin , Iout , δ, q0, Ω, φ]
(of some controllable service automaton A) and all q ∈ Q, the formula φ(q)
(1) uses only literals x where there is some q′ ∈ Q with (q, x, q′) ∈ δ, and
(2) is satisfied for the assignment assigning true to all literals in φ(q).

Proof (of Theorem 1). Let OGA = [Q, Iin , Iout , δ, q0, Ω, φ] and OGA′ = [Q′, I ′in ,
I ′out , δ′, q′0, Ω′, φ′] be the OGs of service automata A and A′, respectively.

(⇒): Let OGA � OGA′ and let B be an arbitrary strategy service automaton
for A. We show that B is a strategy for A′, too.

Because of B ∈ Strat(A) there is by Definition 9 a simulation relation � ⊆
QB × Q between the states of B and OGA and, because of OGA � OGA′ there
is by Definition 12 a simulation relation ξ ⊆ Q × Q′ between the states of OGA

and OGA′ . Define a relation �′ ⊆ QB × Q′ between the states of B and OGA′

such that (qB , q′) ∈ �′ iff there is a state q of OGA such that (qB , q) ∈ � and
(q, q′) ∈ ξ. We show that �′ is a simulation relation.

Let qB ∈ QB and suppose there is a transition (qB , x, q′B) ∈ δB. From �
being a simulation relation follows that there is a q ∈ Q with (qB , q) ∈ �,
(q, x, q1) ∈ δ, and (q′B, q1) ∈ �. By ξ being a simulation relation there is a q′ such
that (q, q′) ∈ ξ, (q′, x, q′1) ∈ δ′, and (q1, q

′
1) ∈ ξ. According to the definition of �′

we have (qB, q′) and (q′B , q′1) in �′, and hence we conclude that �′ is a simulation
relation between the states of B and OGA′ .
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Next we show for all (qB, q′) ∈ �′ that qB satisfies φ′(q′). As B matches with
OGA, for all states qB with (qB, q) ∈ �, qB satisfies φ(q) (for the assignment
described in Definition 9). By OGA � OGA′ we know φ(q) ⇒ φ′(q′) for all
(q, q′) ∈ ξ. Hence, qB satisfies φ(q′) for all (qB, q′) ∈ �′, too.

Thus, B is a strategy for A′ and, hence, we conclude Strat(A) ⊆ Strat(A′).
(⇐): Let Strat(A) ⊆ Strat(A′). We show that OGA � OGA′ .
Consider the underlying service automaton B = [Q, Iin , Iout , δ, q0, Ω] of OGA.

By construction, the transition systems of B and OGA are isomorphic and hence
there is a weak simulation relation � between the states of B and OGA. From
Proposition 1 we conclude that B satisfies the annotations of OGA. Hence, B is
a strategy for A and thus, by Strat(A) ⊆ Strat(A′), a strategy for A′. Being a
strategy for A′, there is a simulation relation �′ ⊆ QB ×Q′ between the states of
B and OGA′ . As B and OGA are isomorphic, �′ constitutes a simulation relation
ξ ⊆ Q × Q′ between the states of OGA and OGA′ , too.

Next we show for all (q, q′) ∈ ξ, φ(q) ⇒ φ′(q′). Let q ∈ Q and let β be
an arbitrary assignment to literals occurring in φ(q) where φ(q) is true. Remove
from B all transitions (q1, x, q2) where β(x) is false. By Definition 9, the resulting
service automaton is still a strategy for A and thus a strategy for A′. Using
Definition 9 again, we can see that β satisfies φ′(q′) as well. Thus, φ(q) ⇒ φ′(q′)
is a tautology for all (q, q′) ∈ ξ. Hence we conclude OGA � OGA′ . ��
The value of this theorem is that accordance can be checked independently of
the environments that A cooperates with and only A and A′ have to be known
to decide accordance. In order to design a service automaton A′ that accords
with A, a designer can either try and check the resulting service or he derives
A′ from A by applying accordance-preserving transformation rules [12].

For an implementation of the criteria in Theorem 1, finding the relation ξ is
the crucial task. As both OGA and OGA′ are deterministic, this task actually
amounts to a depth-first search through OGA which is mimicked in OGA′ . The
time and space required for finding ξ is thus linear in the number of states and
edges of OGA. This size, in turn, is equal to the number of states and edges of
a particular strategy for A. The accordance check based on Theorem 1 has been
implemented in our tool Fiona.

5 Restriction

In this section, we introduce another substitutability notion, restriction. Re-
striction is — as accordance— used to compare the sets of environments of two
service automata A and A′. The goal of restriction is to preserve at least a fixed
subset of the environments of A by A′ (instead of all environments of A as in
the accordance setting).

5.1 A Notion of Restriction

Given a service automaton A, we may want to preserve at least a fixed subset
S ⊆ Strat(A) of its strategies when substituting A by a service automaton A′.
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This means, every service automaton S ∈ S is a strategy for both A and A′.
In contrast to the notion of accordance, here we assume that A has knowledge
of its environments. To motivate the need of such a substitutability notion,
consider again an upgrade of a web shop. Applications for restriction include:
the upgraded shop only supports behavior which is used by major clients and
all other clients have to adjust their services; the shop restricts itself to its
core competencies and rejects all unprofitable strategies; the shop restricts its
behavior to certain scenarios such as payment by credit card, for instance. These
considerations lead to the following definition of restriction.

Definition 13 (Restriction). Let A and A′ be interface equivalent service au-
tomata and let S = {S1, . . . , Sn} ⊆ Strat(A). Then, A′ substitutes A under
restriction to S (short: A′ preserves S) iff S ⊆ Strat(A′).

According to this definition, at least every service automaton in S is a strategy for
A′, meaning, the substitution preserves at least strategies S. Hence, restriction
seems to be the right notion to achieve the above mentioned goal.

5.2 Deciding Restriction

The aim of this section is to introduce a decision procedure whether substituting
a service automaton A by a service automaton A′ preserves a set S ⊆ Strat(A) of
strategies. Therefore, we have to check that every service automaton S ∈ S is a
strategy for A′. This decision procedure becomes particularly complex if the set
S contains many service automata and we want to check several A′. Therefore,
we consider the following alternative: since the notion of a strategy is symmetric,
it is equivalent to check whether A′ is a strategy for all S ∈ S. In other words,
A′ ∈ ⋂

S∈S Strat(S) must hold.
We will show that the intersection

⋂
S∈S Strat(S) of sets of strategies can

be represented by the product of the operating guidelines of all service automata
S ∈ S. We start by defining the product OGA⊗OGB of two operating guidelines
OGA and OGB of service automata A and B as an operating guideline which
characterizes exactly the intersection Strat(A)∩Strat(B). To this end OGA and
OGB must be interface equivalent, that is, their underlying automata must be
interface equivalent.

Definition 14 (Product of OGs). Let OGA = Cφ1
1 and OGB = Cφ2

2 be two
(interface equivalent) operating guidelines with Ci = [Qi, Iin i, Iout i, δi, q0i, Ωi],
i ∈ {1, 2}. Define � ⊆ Q1 × Q2 inductively as follows: let (q01, q02) ∈ �. If
(q1, q2) ∈ �, (q1, x, q′1) ∈ δ1, and (q2, x, q′2) ∈ δ2, then (q′1, q

′
2) ∈ �.

Then, the product OGA ⊗OGB = [Q, Iin , Iout , δ, q0, Ω, φ] of OGA and OGB

is defined by

– Q = {(q1, q2) | (q1, q2) ∈ �},
– Iin = Iin 1 = Iin2, and Iout = Iout1 = Iout2,
– ((q1, q2), x, (q′1, q

′
2)) ∈ δ iff (q1, x, q′1) ∈ δ1 and (q2, x, q′2) ∈ δ2,

– q0 = (q01, q02),
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q1: ?a ∧ final

q2: !c ∨ !d q3: final

?a

!c

!d

(a) OG1

s1: ?a

s2: !c ∨ final s3: final

?a

!c

?a

(b) OG2

q1s1: ?a ∧ final

q2s2: !c q1s3: ?a ∧ final

?a

!c

?a

(c) OG1 ⊗ OG2

Fig. 6. Two operating guidelines and their product

– Ω = {(q1, q2) ∈ Q | q1 ∈ Ω1, q2 ∈ Ω2}, and
– φ((q1, q2)) = φ1(q1) ∧ φ2(q2), for all (q1, q2) ∈ Q.

In a way, the product of operating guidelines is defined analogously to the prod-
uct of finite automata [13]. Figure 6 shows two interface equivalent operating
guidelines and their product (with � = {(q1, s1), (q2, s2), (q1, s3)}). We assume
!d is an output channel of OG2, even though there is no !d-labeled transition
in OG2. Note that the annotations of OG1 ⊗ OG2 are equivalently minimized:
the annotation of state φ(q1s1) = (?a ∧ final) ∧ ?a is equivalent to ?a ∧ final.
Furthermore, the annotation φ(q2s2) = (!c∨ !d)∧(!c∨final) can be minimized to
(!c)∧(!c∨final) (which is equivalent to !c) because there is no outgoing !d-labeled
transition at state q2s2.

Next, we prove that the product of two operating guidelines characterizes in-
deed the intersection of the strategies represented by these operating guidelines.

Theorem 2 (Product OG characterizes intersection). Let OGA and OGB

be operating guidelines and OG⊗ = OGA ⊗ OGB be their product. Then,
Match(OG⊗) = Match(OGA) ∩ Match(OGB).

Proof. Let OGA = [QA, IinA, IoutA, δA, q0A, ΩA, φA], OGB = [QB, IinB, IoutB,
δB, q0B, ΩB, φB ] and OG⊗ = OGA ⊗ OGB = [Q, Iin , Iout , δ, (q0A, q0B), Ω, φ].

(⇒) Let C ∈ Match(OG⊗) and let �⊗ be a simulation relation between C
and OG⊗. We will show that C ∈ Match(OGA) and C ∈ Match(OGB), too.

Let (qC , (qA, qB)) ∈ �⊗ be arbitrary. As �⊗ is simulation relation there is a
sequence σ such that qC is reached from q0C via σ in C and (qA, qB) is reached
from (q0A, q0B) via σ in OG⊗. By construction of OG⊗, q0A and q0B are reached
via σ in OGA and OGB , too. By Definition 9 again, we have (qC , qA) ∈ �A and
(qC , qB) ∈ �B. Let there be an x-transition leaving qC . From C ∈ Match(OG⊗)
and Definition 9 (i.e. the weak simulation relation), we can conclude that there
is an x-transition leaving (qA, qB), too. By the construction of δ in Definition 14,
there is an x-transition leaving qA and one leaving qB. Hence, qA of OGA and
qB of OGB simulate qC , too.

Furthermore, we conclude from C ∈ Match(OG⊗) and Definition 9 that the
assignment βC(qC) satisfies φ((qA, qB)). Hence, by the construction of φ in Def-
inition 14, βC(qC) also satisfies φA(qA) and φB(qB). Consequently, C matches
with OGA and OGB and therefore C ∈ Match(OGA) ∩ Match(OGB).

(⇐) Let C ∈ Match(OGA) and C ∈ Match(OGB). We show that C ∈
Match(OG⊗).
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By C ∈ Match(OGA) and Definition 9 there is a simulation relation �A be-
tween C and OGA. Let (qC , qA) ∈ �A be arbitrary. As �A is simulation relation
there is a sequence σ such that qC is reached from q0C via σ in C and qA is
reached via σ in OGA. By C ∈ Match(OGB) and Definition 9, there is a simula-
tion relation �B and a state qB such that (qC , qB) ∈ �B and qB is reached via σ
in OGB. By the construction of δ in Definition 14, (qA, qB) is reachable in OG⊗
via σ, too. The rest of the proof follows the same argumentation as above. ��
The product ⊗ of operating guidelines is commutative and associative, that is,
for operating guidelines OGA,OGB,OGC holds OGA ⊗ OGB = OGB ⊗ OGA

and (OGA ⊗ OGB) ⊗ OGC = OGA ⊗ (OGB ⊗ OGC). So we conclude that the
product operating guideline represents exactly the intersection of all strategy
sets for service automata in S:

Corollary 1. Let S = {S1, . . . , Sn} be a set of interface equivalent service au-
tomata and let OGSi be the operating guideline of Si, for all 1 ≤ i ≤ n. Let
OG⊗ denote the product of all OGSi . Then, Match(OG⊗) =

⋂
S∈S Strat(S).

With the help of the above corollary we can prove a theorem which shows that
substituting A by A′ preserves S iff A′ is a strategy represented by the product
operating guideline OG⊗.

Theorem 3 (Restriction check with product OGs). Let A and A′ be ser-
vice automata and let S = {S1, . . . , Sn} ⊆ Strat(A). Let OGSi , 1 ≤ i ≤ n, be the
operating guideline of Si and let OG⊗ denote the product of all OGSi . Then, A′

preserves S iff A′ ∈ Match(OG⊗).

Proof. We will show that Match(OG⊗) characterizes all service automata A′

that can substitute A while preserving S.
We have: Match(OG⊗) =

⋂
S∈S Strat(S) (by Corollary 1) = {A′ | for all S ∈

S : A′ ∈ Strat(S)} = {A′ | for all S ∈ S : S ∈ Strat(A′)} (because strategy is
symmetric) = {A′ | A′ preserves S} (by Definition 13). ��
In order to decide whether substituting A by A′ preserves S ⊆ Strat(A), we
have to construct the operating guideline for each S ∈ S and then calculate the
product of these operating guidelines. Time and space complexity for calculating
the product of two operating guidelines is proportional to the product of their
states. Therefore, this complexity effort only pays off if we check several A′. The
restriction check based on Theorem 3 has been implemented in our tool Fiona.

Intuitively, the fewer strategies shall be preserved by the substitution (i.e. the
smaller S is), the more service automata A′ exist that may substitute A (i.e.
the bigger is Match(OG⊗)). Because accordance requires all strategies for A to
be preserved by A′, but restriction requires only a subset of A’s strategies to be
preserved by A′, there are less services A′ that accord with A than services A′

that satisfy restriction. For S = Strat(A), restriction coincides with accordance.
As an advantage, the notion of restriction provides with OG⊗ an abstract rep-

resentation of all substituting service automata A′. So, with the help of OG⊗,
a service automaton A′ can be derived from OG⊗, such that A′ substitutes A
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while preserving S. For instance, the underlying service automaton of OG⊗ itself
serves as a valid A′. Theorem 3 states that every element in Match(OG⊗) can
be used to substitute A. Together with the transformation of a service automa-
ton A′ into a corresponding open net NA′ , we are immediately able to derive
substituting open nets as well.

In case of accordance, in contrast, we can only check an already given A′

whether it accords to A or not. To support the construction of according services,
we developed accordance-preserving transformation rules to derive from A a
service automaton A′ that accords with A by construction [12].

6 Derived Substitutability Notions

In this section, we introduce two more substitutability notions. Both notions can
be derived from the notions of accordance and restriction.

6.1 Equivalence

The first substitutability notion we derive is a notion of equivalence for service
automata. This can be achieved easily by restricting the notion of accordance.
Two service automata are equivalent iff they have the same set of strategies.

Definition 15 (Equivalence). Let A and A′ be interface equivalent service
automata. Then, A′ equivalently substitutes A (short: A′ and A are equivalent)
iff Strat(A) = Strat(A′).

Obviously, in order to check equivalence of two service automata, we can check
equivalence of their respective operating guidelines. Since equivalence means
accordance in both directions, we apply Theorem 1 in both directions.

Corollary 2 (Checking equivalence with OGs). Two operating guidelines
OGA and OGB are equivalent iff OGA � OGB and OGA � OGB.

6.2 Constraints

For many substitutability scenarios the three notions of substitutability we have
introduced so far are well-suited. However, there are other scenarios in practice
that require less restrictive notions. Accordance demands to preserve all strate-
gies for a given service, even those which are practically infeasible: consider that a
service A has to interact with two other services, B and C. Assume that A sends
a request to either service B or C and concurrently expects an acknowledgement
from the respective service. There is a strategy S for A such that S receives the
request which A has sent to B and acknowledges on behalf of C. This is, in fact,
a valid strategy, but practically impossible if B and C do not communicate with
each other. This problem arises in the decentralized setting [14]. Such strategies
need not to be preserved when substituting A by A′.
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c1:
∨

x∈Iio x

c2: true

a

Iio \ {a}

Iio

(a) enforce(a)

c1: true

c2: false

a

Iio \ {a}

Iio

(b) exclude(a)

Fig. 7. Generic constraint automata to enforce or exclude a communication action a

As another example, if we want to restrict the set of strategies to profitable
strategies or to enforce or exclude certain scenarios (e.g. payment by credit card),
then restriction is too inflexible, because we would have to identify all infeasible
strategies.

These examples motivate the introduction of a notion of a constraint. Such
a constraint can been seen as a behavioral pattern or communication scenario.
We will show how to restrict a set of strategies to those strategies that enforce
or exclude certain behavioral patterns. In [15] such constraints have been intro-
duced to characterize all strategies for a service that conform to a constraint.
This approach is used to filter service registries for services that fit respective
strategies and for validating services by checking whether there exist strategies
that access certain features. In contrast to [15], we are interested in services that
preserve all strategies that conform to a constraint.

In the following, we define the notion of a constraint BSA Cψ . Intuitively,
Cψ is a BSA that constrains send and receive actions of an operating guideline
OGA. Here, to constrain means to enforce or to exclude the respective actions
of OGA.

Definition 16 (Constraint BSA). Let A and C be two interface equivalent
service automata. Let OGA be an operating guideline of A and let ψ be an an-
notation to C. Then, Cψ is a constraint BSA for OGA.

Intuitively, OGA represents the set of strategies for A and the constraint BSA
Cψ describes the behavior we want to allow or disallow in the restricted subset of
strategies. Therefore, their product characterizes all strategies for A that conform
to Cψ. Figure 7 depicts generic constraint automata for enforcing or excluding
a communication action a.

Given a product OGA ⊗Cψ, each service automaton A′ where OGA′ charac-
terizes exactly these strategies is a well-suited candidate for substituting A. This
yields a more fine-grained notion of substitutability under restriction which is
covered by the following definition.

Definition 17 (Constraint-conforming substitution). Let A, A′ be service
automata and OGA, OGA′ be the corresponding operating guidelines. Let Cψ be
a constraint BSA for OGA. Then, the substitution of A by A′ conforms to Cψ

iff Match(OGA′) = Match(OGA ⊗ Cψ).

In analogy to our accordance check based on Theorem 1, this definition provides
a verification method only. That is, a given A′ can be checked whether it is a
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valid constraint-conforming substitution of A or not. The notion of constraints
and the substitutability check based on Definition 17 has been implemented in
our tool Fiona.

7 Related Work

Compatibility (e.g. [16]) is the ability of two services N and M to interact prop-
erly. The literature distinguishes between structural and behavioral compatibil-
ity. Structural compatibility demands that the interfaces of both services match
whereas behavioral compatibility demands the control flow of the composition
N ⊕ M to fulfill some property such as deadlock-freedom. Thus, the notion of
a strategy we used in this paper is a synonym for compatibility: M and N are
(structural and behavioral) compatible if and only if they are strategies.

A service implementation N ′ is consistent (e.g. [16]) with a service specifi-
cation N if every compatible service M for N is compatible to N ′. Thereby,
consistency is a synonym for conformance, a notion used in process theory (e.g.
[17,18,19]). Conformance is a refinement relation between services (i.e. a pre-
order). In this paper, we have introduced two consistency notions: accordance
which guarantees (the compatibility notion) deadlock-freedom and restriction
for which we have extended compatibility to support specific behavior besides
deadlock-freedom. Remember that restriction required the preservation of a cer-
tain set of strategies.

Substitutability is a collection of consistency notions (together with their cor-
responding compatibility notions) and each consistency notion corresponds to
a specific substitutability scenario. The problem of deciding substitutability is
strongly related to the compositionality problem (e.g. [20]) which refers to con-
structing a system from components while preserving certain properties of the
whole system such as the absence of deadlocks and livelocks.

Various substitutability notions can be found in literature. However, most of
them lack of an asynchronous communication model as it is necessary in the
context of SOC or efficient decision algorithms; or they are too restrictive.

Vogler presents in [20] a livelock and deadlock preserving equivalence between
Petri nets with interfaces. However, there is no direct implication in either di-
rection between the equivalence of Vogler and accordance.

For workflow nets (WFNs) [21] the notion of inheritance [22] is used two relate
two WFNs that can be substituted. Inheritance bases on branching bisimulation.
As a difference, the inheritance approach assumes a synchronous communication
model (i.e. transition fusion). In [12] accordance has been proven to be strictly
coarser than projection inheritance.

Similarly, accordance is also strictly coarser than saturated bisimulation as
introduced in [23], because the latter does not allow to reorder sending messages.

In [24,25,26], automata models are used to decide substitutability. All these
approaches use only synchronous communication whereas we consider asyn-
chronous message passing. Benatallah et al. [26] present four notions of sub-
stitutability. In this paper, we cover all of them.
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Bravetti and Zavattaro [17] present a conformance relation which is stricter
than accordance because besides deadlocks it also excludes livelocks and infinite
runs. As the main difference, they present only a sufficient criterion to decide
conformance whereas our algorithm to decide accordance is sufficient and nec-
essary and it is implemented in our analysis tool Fiona.

Castagna et al. [18] introduce a conformance notion that formalizes the ab-
sence of deadlocks and livelocks in finite-state systems. In contrast to accordance
and other conformance notions, their conformance notion only demands the ter-
mination of the environment but not the termination of the process itself.

In [2] we have proven that accordance is coarser than stuck-free conformance
in [19]. Stuck-freedom formalizes like accordance the absence of deadlocks in the
system. As two uncontrollable processes are not necessarily structurally related,
accordance seems to be different from most preorders in literature. Thus, there
seems to be no obvious relationship between accordance and a known preorder.
A detailed comparison of accordance and other preorders is, however, outside
the scope of this paper.

Pathak et al. [27] focus on a substitutability notion that preserves certain
properties of a service S to be substituted. The properties are expressed by a
μ-calculus formula φ. Then, a μ-calculus formula ψ is calculated such that all
services S′ that satisfy ψ can substitute S. Due to the expressiveness of the μ-
calculus, this approach generalizes our constraint-conforming substitution, but
it assumes a synchronous communication model.

Finally, the idea of using annotated automata as a representation of a set of
automata has been first published in [28].

8 Conclusion

We have investigated the problem whether a service S can be substituted by an-
other service S′. Based on our formal models of open nets and service automata,
we have defined different substitutability notions for services: accordance, re-
striction (in two variants), and equivalence. That way we can formally support
various substitutability scenarios which may occur in practice.

As our substitutability notions compare the infinite sets of all deadlock-free
interacting services for S and S′, the presented decision algorithms apply the
concept of an operating guideline as a finite representation of these sets of ser-
vices. That way we can decide accordance and equivalence for S and S′. In
addition, we defined the notion of a product operating guideline to specify the
intersection of the services represented by several operating guidelines. Product
operating guidelines are well-suited to characterize all deadlock-free interacting
services for a fixed set of services and can therefore be used for deciding restric-
tion and its more fine-grained variant of constraint-conforming substitutability.

We implemented all decision algorithms presented in this paper in our anal-
ysis tool Fiona. The main functionality of Fiona is to calculate an operating
guideline of a service modeled as an open net. With the help of the compiler
BPEL2oWFN [11] we can translate WS-BPEL processes into our formal model
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open nets. Using Fiona we can decide on the open net model whether these
WS-BPEL processes can be substituted according to one of the presented sub-
stitutability notions. That way we can apply our results to practical applications.

In ongoing research, we will work on other termination criteria than deadlock-
freedom. This includes the absence of livelocks and the absence of infinite runs.
We will also continue working out a precise relationship of our accordance notion
with preorders known from process algebra.
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15. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral Constraints for Services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)



Deciding Substitutability of Services with Operating Guidelines 191

16. Decker, G., Weske, M.: Behavioral Consistency for B2B Process Integration. In:
Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 81–95. Springer, Heidelberg (2007)

17. Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Composition. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer,
Heidelberg (2007)

18. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
SIGPLAN Not. 43(1), 261–272 (2008)

19. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer,
Heidelberg (2004)

20. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

21. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

22. van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Approach to Tack-
ling Problems Related to Change. Theor. Comput. Sci. 270(1-2), 125–203 (2002)

23. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congruence for
Web Services. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
240–256. Springer, Heidelberg (2007)

24. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

25. Beyer, D., Chakrabarti, A., Henzinger, T.: Web service interfaces. In: Ellis, A.,
Hagino, T. (eds.) WWW 2005, pp. 148–159. ACM, New York (2005)

26. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing
Web Service Protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

27. Pathak, J., Basu, S., Honavar, V.: On Context-Specific Substitutability of Web
Services. In: ICWS 2007, pp. 192–199. IEEE Computer Society Press, Los Alamitos
(2007)

28. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E.J.: Matchmaking for
business processes based on choreographies. Int. J. Web Service Res. 1(4), 14–32
(2004)



A Framework for Linking and Pricing
No-Cure-No-Pay Services

K.M. van Hee1, H.M.W. Verbeek1, C. Stahl2,1,�, and N. Sidorova1

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,h.m.w.verbeek,n.sidorova}@tue.nl

2 Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

stahl@informatik.hu-berlin.de

Abstract. In this paper, we present a framework that allows us to or-
chestrate web services such that the web services involved in this orches-
tration interact properly. To achieve this, we predefine service interfaces
and certain routing constructs.

Furthermore, we define a number of rules to incrementally compute
the price of such a properly interacting orchestration (i.e. a web service)
from the price of its web services. The fact that a web service gets only
payed after its service is delivered (no-cure-no-pay) is reflected by con-
sidering a probability of success. To determine a safe price that includes
the risk a web service takes, we consider the variance of costs.

1 Introduction

In the future, the world of web services will most likely behave in a way similar
to business units in a real economy. Web services will sell services to their clients,
that may be web services themselves. In order to produce these services, they may
buy services from other web services. So each web service has two (inter)faces:
a sell-side and a buy-side. In order to deliver one service, a tree of other web
services forming a supply chain may be needed. Two services in the chain are
linked if the buy-side of the one is connected to the sell-side of the other. When
designing web services, one should take into account that the execution of a
partner web service may be successful or it may fail. Examples of web services
that might be used by other web services are public web services providing the
stock market prices, weather forecasts, and news items. Other examples of web
services that could be used in supply chains are computations, such as actuarial
computations and risk analysis computations. Also services providing movies,
television, and telephone services could be part of such a web service supply
chain.

Web services will be paid for by a system of micro payments [1]. We assume
a no-cure-no-pay system, which implies that a service is paid for if and only if
� Funded by the DFG project “Substitutability of Services” (RE 834/16-1).
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the service is successfully delivered. There are at least two important questions
for such world of services: Firstly, how do we guarantee that two linked services
work properly together? Secondly, what should be the price of service in order
to be profitable?

For the first question we have to define what it means for two services to
work properly together. Informally, this means that a service request is always
followed by a response: Either the requested service is delivered, or a message
is sent saying that the requested service cannot be delivered. We provide in this
paper a framework where this property is guaranteed. In our framework, each
web service contains a sell-side process that represents the protocol for selling
a service. Internally, there is a process for the orchestration of the services.
A service is built up from tasks that are either elementary or compound. An
elementary task is either executed by the web service itself or it is outsourced to
another web service. In the latter case the task contains a buy-side process that
takes care of the purchase of a service. The sell-side of the service and buy-side
processes of all the tasks of the orchestration together form the choreography of
the world of web services. They are designed in such a way that two arbitrary
services fit together properly.

To answer the second question, we devote the second part of the paper to the
pricing mechanism for services. For the price of a service we have to take into
consideration that a service may fail. Since we assume a no-cure-no-pay system,
a web service may have to pay all or some of its service providers while it fails
to deliver its service to its client. This can be due to stochastic phenomena, such
as the availability of servers. That way, a web service takes risks. Therefore,
it is a nontrivial problem to determine the price of a service. We develop a
method to determine the expectation μ and the variance σ2 of the cost of the
service. Assuming a normal distribution for service cost C, we may say that
the cost of service is less or equal to μ + 1.65 · σ with probability 95%. This
assumption may be justified by the fact that a service is built up by several
independent services and by the famous central limit theorem of statistics, the
convolution of independent identical distributions can be approximated by a
normal distribution. We also provide an exact probabilistic bound for the cost
of a service.

The paper is structured as follows. Section 2 introduces Petri nets and some
probability notions. The framework for linking web services is presented in
Sect. 3. Here, web services are considered as components and the choreogra-
phy and orchestration processes are modeled as Petri nets. Then, in Sect. 4, we
present our pricing model for web services. We show how to compute the ex-
pected cost and the cost variance of a web service in an inductive way. Related
work is presented in Sect. 5 and finally, Sect. 6 concludes the paper.

2 Preliminaries

Petri nets and workflow nets. We assume the usual definition of a (place/
transition) Petri net N = (P, T, F ) (see [2,3], for instance) and use the standard
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notation to denote the preset and postset of a place or a transition: •x = {y |
F (y, x) > 0} and x• = {y | F (x, y) > 0}.

The state of a net is a marking m which is a distribution of (black) tokens
over the set of places. A transition t is enabled if each place p of its preset
holds at least F (p, t) tokens. An enabled transition t can fire in a marking m
by consuming F (p, t) tokens from the every preset place p and producing F (t, q)
tokens for every postset place q, yielding a marking m′. The firing of t is denoted
by m

t−→ m′, reachability of a marking m′ from a marking m by a firing of a
(possibly empty) sequence of transitions is denoted by m

∗−→ m′. The set of all
reachable markings is denoted N [m〉.

A workflow net (WF-net) [4] is a Petri net N that is specifically tailored
towards modelling workflow processes. A workflow net N = (P, T, F ) has exactly
one input place i, i.e. •i = ∅, and one output place o, i.e. o• = ∅, and every place
and transition belongs to some path from i to o.

An important correctness property of workflows is soundness [4], which com-
prises the requirements that for every transition sequence that fires starting from
the initial marking a marking can be reached where only o is marked, and no
transition is dead in N . Soundness can be automatically checked by a number
of Petri net tools, like the tool Woflan [5,6].

Some notions of probability. A service consists of tasks. Each task t has
a random variable Xt with a Bernoulli distribution: Xt = 1 indicates success
whereas Xt = 0 indicates failure. Furthermore, the probability of success for a
task t is IP[Xt = 1] = st.

Each task t (either elementary or compound) has a random variable Ct de-
noting the cost of the task. In case t is a compound task, Ct includes the costs
of the tasks it contains. This random variable depends in general on Xt and has
the following characteristics:

– IE[Ct] = μt, cost expectation,
– σ2(Ct) = σ2

t , cost variance.

In Sect. 4 we will see that, to compute the cost variance, we need to compute
the following auxiliary variable:

– IE[Ct|Xt = 1] = νt, cost expectation in case of success.

We use the well known inequality of Chebyshev [7] for a non-negative random
variable Y

IP[Y ≥ c] ≤ IE[ϕ(Y )]
ϕ(c)

for each non-decreasing function ϕ and any positive number c. In particular,

IP[|Ct − μt

σt
| ≥ c] ≤ IE[(Ct−μt

σt
)2]

c2 =
1
c2

and therefore

IP[Ct ≥ μt + c · σt] ≤ IP[|Ct − μt

σt
| ≥ c] ≤ 1

c2 .
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Running example. We will restrict ourselves to orchestration processes that
are constructed using the four routing constructs sequence, parallel composition,
choice, and iteration. Therefore, we can present an orchestration process in a
tree-like fashion, where the leaf nodes in the tree correspond to elementary tasks
and the non-leaf nodes correspond to compound tasks, where every compound
task uses one of the four routing constructs.

This allows us to represent the orchestration processes in a process algebraic
notation where the sequence operator is denoted by ·, parallel composition by
||, choice by +, and iteration by ∗. We will assume that ∗ binds strongest, then
·, then +, and last ||. This notation will be very useful for the derivation of the
cost formulas in Sect. 4.

As running example, consider an image editing process p. The customer up-
loads an image (task u). Then, the following procedure is applied: The image is
finished (task f) and concurrently a thumbnail is created (task t). Afterwards the
results are evaluated (task e). In case the evaluation is negative, the procedure is
repeated. Finally, if the image is too big, it is stored temporarily and only a link
is sent to the customer (task l); otherwise the image is sent by e-mail (task m).
The process can be expressed in our process-algebraic notation as follows (note
that we have to unfold the iteration (f ||t) · e once as the iteration is executed at
least once): p = u · (f ||t) · e · ((f ||t) · e)∗ · (l + m).

For the example, we assume that the following characteristics are given:

– In 90% of the cases, the upload succeeds.
– In 95% (80%) of the cases, finishing (creating the thumbnail) succeeds which

costs the customer e 20 (e 10).
– In 99% of the cases the evaluation succeeds which costs another e 5; in only

20% of the cases the loop has to be repeated.
– In 30% of the cases, the image is too big; the storing is charged with e 10

whereas the sending of the images costs e 1.

Note that we have two kinds of probabilities: the probability of a choice in the
orchestration, here used for the iteration, and the probability of failure of a
service. If some task of a service fails, the whole service fails. The question now
is, what should the service provider charge the consumers to make any profit,
and what are the risks involved? In the following, we present a mathematical
framework to answer this question.

3 Web Services Framework

In the web services domain, Petri nets provide a good formalism to model web
services that communicate with each other through an interface, which is typ-
ically modeled by interface places (see [8], for example). For this reason, we
distinguish interface places from other places. An interface place can either be
an input place or an output place. An input place has no (internal) input arcs,
whereas an output place has no (internal) output arcs. As a result, a web service
is not allowed to communicate with itself.
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Fig. 1. The sell-side of a web service

A web service has a sell-side process and an orchestration process. The orches-
tration process has to be executed in order to deliver the service. The orchestration
process consists of tasks. We distinguish elementary tasks, outsourced tasks, and
compound tasks. An elementary task is modeled as a Petri net transition. An out-
sourced task is in fact a subnet that contains a buy-side process. A compound task
is a subnet containing elementary or outscourced tasks. In fact, the whole orches-
tration process can be considered as one (compound) task. As mentioned in the
introduction, we can distinguish between a sell-side and a buy-side of a web service.
Typically, when some service wants to use another service, that is, if the former
consumes a service that is being provided by the latter, the former first requests
a quote from the latter. Based on the offer from the provider (which is optional,
as the provider may decide not to offer the service), the client decides to either
accept or reject the offer. If the offer is accepted, the provider actually provides
the service, which might either succeed or fail. This result is communicated to the
client, which pays the provider if the result was a success (no-cure-no-pay).

To provide the service, the provider might have to consume third-party ser-
vices in some order. Clearly, the provider needs to orchestrate these third party
services on-the-fly to achieve its goal. In contrast, the negotiation between the
provider and the customer belongs to the choreography process.

Choreography. The choreography in the framework consists of the sell-side
process of the web service and the buy-side processes of the outsourced tasks.
Figure 1 visualizes the sell-side of a web service, whereas Fig. 2 visualizes the buy
side of a task. As usual, circles represent places and squares represent transitions.
For the ease of reference, sad smileys have been used for the failure places and
happy smileys for the success places.

Underlying assumption for the sell-side is that it can handle a predefined
number of requests simultaneously. This number corresponds to the number of
tokens which are initially put into the place idle. Thus, if the maximum number
of requests is being handled, then no offer can be made for the next request.

The buy-side of an outsourced task contains a buy-side process in which first a
request for a proposal is sent to a potential supplier. The process is the “mirror”
of the sell-side process except that the buy-side process handles requests in a
sequential order.
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Fig. 2. A task in the buy-side of a web service

Orchestration. The web service can perform an elementary task like a compu-
tation, an outsourced task that requests a service from another web service like
retrieving some information from an underlying database, or a compound task
that needs to orchestrate a number of (sub)tasks. In principle, such an orches-
tration can be arbitrarily complex, but in this paper we consider four operations
to construct compound tasks:

1. sequence, i.e. performing a number of tasks in a given order,
2. parallel composition, i.e. performing a number of tasks simultaneously,
3. choice, i.e. performing one task chosen from several tasks, based on some

decision, and
4. iteration, i.e. performing a task as long as some condition holds.

Nevertheless, we would like to stress that the framework can be extended with
additional operations if needed (as long as soundness is guaranteed, see further
down in this section). Reason for restricting to this set of operations in this paper
is that these four types are sufficient to explain the matters at hand, whereas
additional ones might only distract the reader.

Figure 3 visualizes these four basic orchestration types. Again, we use the sad
smileys for the failure places and the happy smileys for the success places, and
we use grey boxes to visualize the orchestrated tasks. For the sake of simplicity,
we used only two tasks for the sequence, parallel composition, and choice, but
it is not hard to see that this scheme can be extended to any number.

Figure 4 depicts the example service using the web service framework, con-
taining one choreography component (the sell-side process of the service), nine
orchestration components (which are compound tasks), and nine elementary
tasks. Six of the elementary tasks are outsourced tasks, which form the buy-side
processes of the service.

Soundness. Clearly, any task should lead to either a success or a failure, i.e. if
a task starts with one token in its start place, then for any reachable marking
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Fig. 4. The running service using the framework

it should be possible to reach the marking with only one token either in place
success or in place failure. We call this the soundness of a task. This soundness
concept differs a little from the one given in Sect. 2, namely we have two final
places (success and failure) instead of one. By the construction of Fig. 5 these
notions can be unified. In order to analyze soundness of a task, we distinguish
two parts: soundness of the choreography part and of the orchestration part.

For the choreography part we connect the buy-side of one task to the sell-side
of another service as displayed in Fig. 6. We first neglect the three places start,
failure and success at the bottom. Then, soundness is not difficult to verify, e.g.
by brute force model checking since the set or reachable markings is finite. It is
also easy to verify this property by observing that the upper (the buy-side) and
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Fig. 5. Checking orchestration soundness
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Fig. 6. Buy-side and sell-side combined

lower part (sell-side) of the model are almost symmetrical state machine nets
where each choice is made by only one of them. When considering places start,
failure and success at the bottom, we need the assumption that if a token is put
into start, eventually there will be a token in either failure or success. Under this
assumption the system is sound. So we introduce here the concept of conditional
soundness : the choreography part is sound if the invoked tasks are sound.

For the orchestration part we use the same conditional soundness. Any or-
chestration is sound if and only if its tasks are sound. This is straightforward to
check using only Fig. 3. So we only have to check the soundness of elementary
tasks, which are just transitions. In case the framework is extended by some
new orchestration operations, we have to make sure that the orchestration is
still sound if and only if the tasks are sound.

4 Pricing Model

The probability of success of a task t is st. The cost Ct of task t is a random
variable, with expectation μt, conditional expectation νt, given the service does
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not fail and variance σ2
t . With these four characteristics we will determine a safe

price and the risk in case of failure. The price should compensate the loss in case
the service fails. So a lower bound for the price is μt/st which gives an expected
reward of (μt/st) · st which equals to the expected cost. However, the service
must have an earning capacity to cover losses, so we choose a price μt/st + b
where b is a parameter to be determined. The expected profit will be b · st which
is the difference between the expected reward and the expected cost. In order to
determine b, we have to calculate the risk. There are several ways to define the
risk.

An obvious definition of risk is the probability that the real cost exceed the
expected reward. So IP[Ct ≥ μt + b · st] should be small enough. If we accept a
5% risk we have to choose b such that

IP[Ct ≥ μt + b · st] = IP[
Ct − μt

σt
≥ b · st

σt
] ≤ 0.05.

Assuming a normal distribution for Ct, we derive from the standard normal
distribution, that b · st = 1.65 and so b = 1.65 · σt/st and therefore the price
of the service is (μt + 1.65 · σt)/st. The assumption of normality is justified
by the fact that a service is built up by several independent services and so the
central limit theorem [7] justifies a normal approximation. We also have an exact
probabilistic bound based on the Chebyshev inequality (see Sect. 2)

IP[
Ct − μt

σt
≥ b · st

σt
] ≤ IE[(

Ct − μt

σt
)2 ≥ (

b · st

σt
)2] =

σ2
t

b2 · s2
t

= 0.05

since IE[((Ct − μt)/σt)2] = 1. This gives b = (σt/st)/
√

0.05 = 4.47 · σt/st which
is almost three times as large as the former bound.

A second way to define the risk is the expected cost, under the condition that
the task fails. Since we will calculate νt this can be expressed as μt−νt ·st. Note
that this quantity is independent of the price. A third way is to define the risk
is IE[max(0, Rt −Ct)] where Rt is a random variable that represents the reward
for a task t, so Rt = 0 in case of a failure and Rt = μt/st + b in case of success.
This measure for risk, however, requires knowledge of the complete distribution
of Ct. Therefore we will use the first interpretation of risk.

In the rest of this section we will calculate the four characteristics (success
probability, cost expectation, cost variance and conditional cost expectation) in
an inductive way: For an elementary task t we assume they are given. This is
reasonable, because such values can be estimated from log files, for instance.
For a compound task we will derive the characteristics for the four orchestration
constructs sequence, parallel, choice, and iteration. We use Xt as the random
variable that indicates if the task t is a success (Xt = 1) or a failure (Xt = 0).
So this random variable has a Bernoulli distribution. Note that Ct and Xt are
dependent. The reason for this is in the sequence construct: the cost in case of
failure might be less than the cost of success. In the rest of the paper we assume
that each invocation of a task instance is (stochastically) independent of all other
instances, in particular for a = b we have Xa and Ca are mutually independent
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of Xb and Cb. For a complete set of the proofs we refer to a technical report [9].
For the convenience of the reviewers, all proofs are listed in an appendix of this
article which will be removed in a final version. To illustrate the techniques, we
give the proofs for the sequence and the iteration.

Sequence. Assume that we have a sequence construct a ·b that contains (in the
given order) tasks a and b. Thus, a ·b prescribes that first a has to be completed,
after which b can be started. First, we compute the success probability (sa·b) for
a · b; second, we compute its cost expectation (μa·b); third, we compute the cost
variance (σ2

a·b); and fourth, we compute the conditional cost expectation of a · b
in case of success (νa·b). In all cases, we assume that these characteristics for a
and b are known (by induction, if you will).

For the following proofs two properties are important: Xa·b = Xa · Xb and
Ca·b = Ca + Xa · Cb.

Theorem 1 (Success probability of a · b)
sa·b = sa · sb.

Proof
sa·b = IP[Xa·b = 1] = IP[Xa · Xb = 1] = IP[Xa = 1 ∧ Xb = 1]

= IP[Xa = 1] · IP[Xb = 1] = sa · sb

Theorem 2 (Cost expectation of a · b)
μa·b = μa + sa · μb

Proof
μa·b = IE(Ca·b) = IE(Ca + Xa · Cb) = IE(Ca) + IE(Xa) · IE(Cb) = μa + sa · μb

For the proof of the next theorem, we need a lemma (for a proof see [9]).

Lemma 1
IE(C2

a·b) = σ2
a + μ2

a + sa · (σ2
b + μ2

b) + 2 · μb · νa · sa

Theorem 3 (Cost variance of a · b)
σ2

a·b = σ2
a + sa · σ2

b + (sa − s2
a) · μ2

b + 2 · (νa − μa) · sa · μb

Proof
σ2

a·b = IE(C2
a·b) − (IE(Ca·b))2

= σ2
a + μ2

a + sa · (σ2
b + μ2

b) + 2 · μb · νa · sa − (μa + sa · μb)2

= σ2
a + μ2

a + sa · (σ2
b + μ2

b) + 2 · μb · νa · sa − μ2
a − s2

a · μ2
b − 2 · μa · sa · μb

= σ2
a + sa · σ2

b + (sa − s2
a) · μ2

b + 2 · (νa − μa) · sa · μb

Theorem 4 (Conditional cost expectation of a · b if success)
νa·b = νa + νb

Proof
νa·b = IE[Ca·b|Xa·b = 1] = IE[Ca + Xa · Cb|Xa = Xb = 1]

= IE[Ca|Xa = Xb = 1] + IE[Xa · Cb|Xa = Xb = 1]
= IE[Ca|Xa = 1] + IE[Cb|Xa = Xb = 1] = IE[Ca|Xa = 1] + IE[Cb|Xb = 1]
= νa + νb
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Parallel composition. Assume that we have a parallel construct a||b that
contains tasks a and b. Thus, a||b prescribes that both a and b have to be
executed, and that they can be executed in parallel. Like with the sequence
construct, the parallel construct a||b is successful if both a and b are successful.
The following theorems use the properties: Xa||b = Xa ·Xb and Ca‖b = Ca + Cb.

Theorem 5 (Success probability of a||b)
sa||b = sa · sb.

Theorem 6 (Cost expectation of a||b)
μa||b = μa + μb

Theorem 7 (Cost variance of a||b)
σ2

a||b = σ2
a + σ2

b

Theorem 8 (Conditional cost expectation of a||b if success)
νa||b = νa + νb

Choice. Assume that we have a choice construct a + b that contains tasks
a and b, and that the alternatives (a and b) are chosen with an independent
random variable A, with IP[A = 1] = α = 1 − IP[A = 0]. If A = 1, then a will
be chosen, else if A = 0, then b will be chosen. The following theorems use:
Xa+b = A · Xa + (1 − A) · Xb and Ca+b = A · Ca + (1 − A) · Cb.

Theorem 9 (Success probability of a + b)
sa+b = α · sa + (1 − α) · sb.

Theorem 10 (Cost expectation of a + b)
μa+b = α · μa + (1 − α) · μb

Theorem 11 (Cost variance of a + b)
σ2

a+b = α · σ2
a + (1 − α) · σ2

b + α · (1 − α) · (μa − μb)2

Theorem 12 (Conditional cost expectation of a + b if success)
νa+b = νa·α·sa+νb·(1−α)·sb

α·sa+(1−α)·sb

Iteration. Assume that we have an iteration construct a∗, which contains the
task a, and that the i-th iteration is chosen with an independent random variable
Yi, with IP[Yi = 1] = α = 1 − IP[Yi = 0]. To compute iteration characteristics
we can simply unfold the iteration once using an alternative, a sequence, and a
skip action τ , which has the following characteristics: sτ = 1, μτ = 0, σ2

τ = 0,
and ντ = 0. Thus, a∗ = τ + a · a∗, where τ has probability 1 − α and a · a∗

has probability α. In terms of random variables we have the recursive equation:
P = Y · T + (1− Y ) ·A ·P where P stands for the process a∗, T stands for task
τ and A for task a. We get the following characteristics:

Theorem 13 (Success probability of a∗)
sa∗ = 1−α

1−α·sa
.
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Proof
sa∗ = sτ+a·a∗ = (1 − α) · sτ + α · sa·a∗ = 1 − α + α · sa·a∗

= 1 − α + α · sa · sa∗ = 1−α
1−α·sa

Theorem 14 (Cost expectation of a∗)
μa∗ = α·μa

1−α·sa

Proof
μa∗ = μτ+a·a∗ = (1 − α) · μτ + α · μa·a∗ = α · μa·a∗ = α · (μa + sa · μa∗)

= α·μa

1−α·sa

Theorem 15 (Cost variance of a∗)
σ2

a∗ = α·(σ2
a+(sa−s2

a)·μ2
a∗+2·(νa−μa)·sa·μa∗ )+(1−α)·α·μ2

a·a∗
1−α·sa

Proof
σ2

a∗ = σ2
τ+a·a∗ = (1 − α) · σ2

τ + α · σ2
a·a∗ + (1 − α) · α · (μτ − μa·a∗)2

= α · σ2
a·a∗ + (1 − α) · α · μ2

a·a∗

= α · (σ2
a + sa · σ2

a∗ + (sa − s2
a) · μ2

a∗ + 2 · (νa − μa) · sa · μa∗)+
(1 − α) · α · μ2

a·a∗

= α · sa · σ2
a∗ + α · (σ2

a + (sa − s2
a) · μ2

a∗ + 2 · (νa − μa) · sa · μa∗)+
(1 − α) · α · μ2

a·a∗

= α·(σ2
a+(sa−s2

a)·μ2
a∗+2·(νa−μa)·sa·μa∗ )+(1−α)·α·μ2

a·a∗
1−α·sa

Theorem 16 (Conditional cost expectation of a∗ if success)
νa∗ = νa·α·sa

1−α·sa

Proof
νa∗ = ντ+a·a∗ = ντ ·(1−α)·sτ+νa·a∗ ·α·sa·a∗

(1−α)·sτ+α·sa·a∗ = νa·a∗ ·α·sa·a∗
(1−α)+α·sa·a∗

= (νa+νa∗ )·α·sa·a∗
(1−α)+α·sa·a∗ = νa·α·sa·a∗+νa∗ ·α·sa·a∗

(1−α)+α·sa·a∗ = νa·α·sa·a∗+νa∗ ·α·sa·a∗
(1−α)+α·sa·a∗

= νa·α·sa·a∗
(1−α)+α·sa·a∗ + νa∗ ·α·sa·a∗

(1−α)+α·sa·a∗ = νa·α·sa·a∗
(1−α)+α·sa·a∗ + νa∗ · α·sa·a∗

(1−α)+α·sa·a∗

= νa·α·sa·a∗
(1−α)+α·sa·a∗ /(1 − α·sa·a∗

(1−α)+α·sa·a∗ ) = νa·α·sa·a∗
1−α =

νa·α·sa· 1−α
1−α·sa

1−α

= νa·α·sa

1−α·sa

Applying our proposed cost model for the example process p we can (incre-
mentally) compute the following values for the four characteristics (see Fig. 7):

– sp = 0.64; i.e. the service succeeds in about 64% of the cases.
– μp = 34.95, i.e. the provider has expected costs of about e 34.95.
– σ2

p = 427.81 is the cost variance
– νp = 44.90 are the conditional cost in case of success

Hence σp/sp = 32.31 and μp/sp = 54.60. We assume the provider wants to
accept a risk of 5%. If we apply the normal approximation, we obtain b = 53.31
and so the price of the service μp/sp + b should be e 107.91. The expected
profit b ·sp equals e 34.11. If we apply the exact Chebyshev inequality we obtain
b = 142.16 and then the price becomes e 199.02. Then the expected profit equals
e 90.98 which is obviously larger. In both cases is the expected cost, given the
service fails, μp − νp · sp, equals e 6.21. It is not difficult to repeat this exercise
for other choices of the risk.
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[ 0.71 | 36.21 | 283.51 | 41.20 ]
[ 1.00 | 3.70 | 17.01 | 

3.70 ]
[ 0.75 | 30.76 | 27.04 | 35.00 ] [ 0.94 | 7.24 | 266.50 | 6.20 ]

[ s | 2 |

Fig. 7. The characteristics of the running service

5 Related Work

In our previous work [10], we have developed an SOA-based architecture frame-
work which is similar to the service component architecture (SCA) [11]. In this
article, we extended this work by a web service framework which allows to check
the soundness property compositionally. The goals of this part of our work are
close to the ones of Milanovic [12], where the author seeks for correctness proofs
for compositions of web services. The framework there is based of abstract state
machines, the same four basic operations are considered (the iteration is how-
ever left out of consideration in the correctness part), and proof obligations are
generated to show the correctness of the composition.

In [13], Diaz et al. represent a translation from WS-CDL to timed automata
and from timed automata to WS-BPEL to generate web services. The correctness
is checked by model checking properties of the obtained timed automata.

Furthermore, we have presented a method to compute the cost of a web ser-
vice. There is a long list of publications dealing with cost of services. However,
to the best of our knowledge none of them takes the risk (i.e. the variance of
cost) into consideration.

Magnani and Montesi [14] present rules to calculate the cost of BPMN mod-
els. These rules cover operations like sequence, parallel, choice, and loop. How-
ever, there are no rules given for calculating the probability of success of these
operations.

Cardoso et al. [15] present a QoS model for time, reliability, and cost of work-
flows. Each task has a QoS attribute. Based on these attributes, the cost of the
overall workflow can be computed using the METEOR workflow system. In [16],
Zeng et al. present a framework for QoS-aware service selection. Price is one of
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the nonfunctional properties which are taken into account. Paoli et al. [17] ad-
dress the problem of designing a composed system that has to guarantee certain
quality criteria such as security, completion time, and also cost. It is shown how
these criteria can be computed on the structure of a service. To this end, quality
evaluation rules (similar those in [15]) for sequence, parallel, switch, and loop
are proposed. To summarize, all three approaches cover a broader spectrum of
QoS criteria than cost. However, probabilities for successful termination and for
the price calculation of activities and services are not considered.

In [18], Brocke and Lindner present a general framework for the evaluation of
the financial consequences of outsourcing, while in [19] Günter et al. investigate
pricing mechanisms appropriate for web services. This is, however, far beyond
the scope of this paper. In [20], Ding proposes a method of value-based pric-
ing where the price is a function reflecting the expected value of the product.
This method can be used, for example, to derive the price of each elementary
task.

6 Conclusion

In this paper, we have presented a web services framework to design service or-
chestrations that are sound by design. To this end, service interfaces and routing
constructs are designed in such a way that two arbitrary services always interact
properly.

In order to provide a certain functionality, web services often have to buy
some functionality from other web services. In such a setting calculating cost of
a web service is an important issue, because a web service can only survive on the
market if it is profitable. To this end, we have provided an approach to compute
the expected cost of a sound service orchestration (i.e. web service). Since we
consider no-cure-no-pay services, that is, a customer only pays for a delivered
service, the proposed approach takes probabilities for successful execution of a
web service into account. We also consider the risk involved by calculating the
cost variance. The approach is compositional in the sense that the cost of the
whole web service is computed from the cost of all tasks. Therefore we developed
rules to compute the cost, the probability of success, and the cost variance for
the constructs sequence, parallel, choice, and iteration.

So far the proposed approach is subject to some restrictions. With sequence,
parallel, choice, and iteration we only consider a restricted set of operations to
construct compound tasks. Concepts such as cancelation and compensation of
tasks are also not considered. Furthermore, it might be interesting to see to
what extent processes other than no-cure-no-pay processes can be supported in
a similar way with our approach.

In ongoing research we plan to extend our web service framework with more
types of choreography protocols, in particular protocols that will ease cancela-
tion of (parts of) services and allow for compensation mechanisms. An other
extension we consider is to relax the assumption that all tasks in an iteration
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are independent of each other. This is more realistic, however, it requires more
knowledge (data) about the performance of tasks.
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Abstract. Despite the large body of knowledge on formal analysis tech-
niques for process models, in particular Petri nets, there has been a no-
table gap of empirical research into verification. In this paper we compare
the few studies that report results from applying verification techniques
to real-world process model collections. For this comparison we are par-
ticularly interested in the different approaches, their computational per-
formance, and the number of errors found. Our comparison reveals that
most of the samples have error rates of 10% to 20%. Some of the stud-
ies have established a connection between error probability and process
model metrics, as well as between model understanding and both metrics
and modeling competence of the model reader. Based on these results,
we discuss implications and directions for future research.

1 Introduction

Even though workflow and process modeling have been used extensively over the
past 30 years, we know surprisingly little about the factors that contribute to the
quality of a process model and how respective quality assurance can be facilitated
in real-world projects. This observation contrasts the large body of knowledge
that is available on the formal analysis and verification of desirable properties, in
particular for Petri nets. Furthermore, there is a notable disconnection between
these mostly formal contributions and high-level conceptual work on guidelines
and quality frameworks, e.g. [1,2,3]. Clearly, an empirical research agenda is
needed to acquire new insights on quality and usage aspects of process modeling
[4,5] and its relationship to validation and verification (V&V).

It is a fundamental insight of software engineering that design errors should
be detected as early as possible [6,7,4]. The later errors are detected, the more
rework has to be done, and the more design effort has been at least partially
useless. This also holds for the consecutive steps of analysis, design and imple-
mentation in the business process management life cycle [8,9]. Yet, there are only
a few papers that discuss validation and verification (V&V) as part of process
design, e.g. [10], and the support for V&V activities is rather poor in current
process modeling tools [11]. On the other hand, there are clearly quality issues
with real-world process models. Recent studies report a significant rate of models
with control flow errors in industry process model collections [11,12,13,14,15].
The mentioned lack of V&V features in tools as well as the lack of modeling
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competence in large-scale modeling projects [8] contribute to such high error
rates. These rates are particularly problematic when design models with unde-
tected errors are forwarded to the implementation phase, to the frustration of
system engineers. Therefore, the so-called gap between business process design
and implementation phase, i.e. the limited reuse of conceptual process models
in later design stages, might be partially caused by a lack of quality assurance
in the early design phase.

Against this background, this paper aims to compare five recent studies on pro-
cess model verification for real-world model collections, namely [11,12,13,14,15].
Such a comparison is beneficiary for the process verification community. It offers
conclusions on the performance of verification approaches, though limited, and on
the value of verification as a means of quality assurance. For instance, the decom-
position approach used in [14] can be combined with reachability analysis in fu-
ture research. Furthermore, the comparison is important for the process modeling
community. The studies highlight issues with process modeling practice that have
implications for the design activity and its tool support. Error patterns and their
relative frequency allow us to derive guidelines that contribute to a less error-prone
modeling style. The Seven Guidelines of Process Modeling (7PMG) [16] demon-
strate that empirical insights can be directly fueled back into the design process.

The remainder of the paper is organized as follows. In Section 2 we introduce
validation and verification as two complementary activities for quality assurance
of process models. We discuss how both relate to each other and which techniques
have been applied in verification studies. Section 3 presents findings from these
verification studies and compares them in terms of error rates and performance.
Building on these results, Section 4 discusses explanations of error rates and
implications for process modeling. Finally, Section 5 concludes the paper.

2 The Scope of Verification

Validation and verification (V&V) are integral parts for establishing confidence
in the quality of a process or a workflow model. Section 2.1 defines the scope of
both validation and verification. Our focus will be the control flow of the process
model. Section 2.2 introduces Event-driven Process Chains (EPCs), a modeling
language that is considered in several verification studies, and define the notion of
error. We use EPCs also because they include a superset of routing elements that
are found in languages like BPMN, UML and YAWL. Furthermore, we illustrate
typical verification issues by the help of an example. Finally, Section 2.3 presents
verification techniques that have been used in recent empirical studies.

2.1 Validation Versus Verification

The importance of V&V was recognized in software engineering from the start.
As programming is in essence a problem-solving task, it implies that the validity
of the solution must be established [17]. In this context, the IEEE Standard
Glossary [18] defines Validation and Verification (V&V) as
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“the process of determining whether the requirements of a system or
component are complete and correct, the products of each develop-
ment phase fulfill the requirement or conditions imposed by the pre-
vious phase, and the final system or component complies with specified
requirements.”

Different authors distinguish validation and verification as two complementary
quality assurance steps [19,20,21,22].

Verification. In essence, verification addresses both the general properties of
a model and the satisfaction of a given formula by a model (see Figure 1).
Related to the first aspect, formal correctness criteria play an important role
in process modeling. Several criteria have been proposed including soundness
for Workflow nets [23], relaxed soundness [24], or well-structuredness (see
[25,26] for comparisons). The second aspect is the subject of model checking
and involves issues like separation of duty constraints, which can be verified,
for example, by using linear temporal logic (LTL) [27]. The key characteristic
of verification is that it relates to the internal correctness of a process model.
Since it operates on the formal structure of the process model, it can be
conducted without considering the real-world process.

Validation. In contrast to that, validation addresses the consistency of the
model with the universe of discourse, i.e. the real-world process (see Fig-
ure 1). As it is an external correctness criterion, it is more difficult and more
ambiguous to decide. While verification typically relies on an algorithmic
analysis of the process model, validation requires the consultation of the
specification and discussion with process stakeholders. Although validation
requires human judgement as a key characteristic, it should be noted that
formal methods are useful to support it. For instance, simulation, animation
or derivation of natural-language statements facilitate the validation of a
process model by users.

The relationship between validation and verification in process modeling has
been discussed in [10]. Most notably, the authors propose to perform first veri-
fication, then validation. In this way, validation is only conducted if verification
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succeeds. People involved with the real-world process have to be consulted if the
verification problem cannot be resolved based on the existing documentation.
If one of the steps points to problems, the model has to be modified appropri-
ately followed by a new iteration of verification and validation. A consequence of
this procedure is that validation will be conducted less often than verification.
This speeds up the design time and reduces cost: since verification is performed
automatically by the help of tools, it is cheaper and faster than validation.

2.2 Formal Errors of Process Models

Four of the recent verification studies [11,12,13,15] use Event-driven Process
Chain (EPC) business process models as input. Therefore, we briefly introduce
EPCs and some potential correctness issues of their control flow. For formaliza-
tion of EPC syntax and semantics refer to [28,29].

The Event-driven Process Chain (EPC) is a business process modeling lan-
guage for the represention of temporal and logical dependencies of activities in
a business process [31]. EPCs offer function type elements to capture the activi-
ties of a process and event type elements describing pre- and post-conditions of
functions. Furthermore, there are three kinds of connector types (i.e. AND, OR,
and XOR) for the definition of complex routing rules. Connectors have either
multiple incoming and one outgoing arc (join) or one incoming and multiple
outgoing arcs (split). Control flow arcs are used to link elements.

The informal (or intended) semantics of an EPC can be described as follows.
The AND-split activates all subsequent branches in a concurrent fashion. The
XOR-split represents a choice between exclusive alternative branches. The OR-
split triggers one, two or up to all of multiple branches based on conditions.
In both cases of the XOR- and OR-split, the activation conditions are given in
events subsequent to the connector. Accordingly, splits from events to functions
are forbidden with XOR and OR since the activation conditions do not become
clear in the model. The AND-join waits for all incoming branches to complete,
then it propagates control to the subsequent EPC element. The XOR-join merges
alternative branches. The OR-join synchronizes all active incoming branches, i.e.,
it needs to know whether the incoming branches may receive tokens in the future.
This feature is called non-locality since the state of all (transitive) predecessor
nodes has to be considered.

Figure 2 shows an EPC of the SAP Reference Model that was analyzed in a
recent verification study [13]. This figure illustrates nine errors that were found.
In essence, there are two types of errors that may occur in an incorrect process
model: deadlocks and lack of synchronization. In the simplest case, a deadlock
results from a combination of an XOR-split with an AND-join: while the split
only activates one control path, the AND is waiting for both to be completed. A
deadlock can be therefore described as a situation where synchronizing joins do
not receive control from enough incoming branches to proceed. In the figure, the
errors 4 and 9 are potential deadlocks because the AND can receive control from
one input branch but, in that case, it is not guaranteed that it also gets control
from the other. Error 8 is a deadlock according to the semantics of [29] because
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Fig. 2. The Refurbishment Processing in Plant Maintenance EPC from the SAP Ref-
erence Model [30, p.153] with errors being highlighted
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the OR-join waits for itself via the branch from within the loop. A process model
suffers from a lack of synchronization if multiple branches are activated, but not
synchronized later at XOR-joins. Instances of this error type are errors 1, 2, 3,
5, 6, and 7 where multiple incoming branches can be active at the same time.

We define an error of a process model as a structural pattern that results in
a deadlock or in a lack of synchronization. In order to identify errors, the formal
behavior of the process has to be analyzed. This behavior is often defined based
on states and transitions. Different correctness criteria can be verified using the
graph of reachable states (reachability graph). They differ in computational com-
plexity and in the precision of pinpointing errors. The following section presents
the verification approaches of the five studies considered in this paper.

2.3 Verification Approaches

Verification is of particular importance to process modeling. Careless design can
easily lead to process models with deadlocks or lack of synchronization which
can have a serious business consequences if these models are used as workflows
in operations. There are different aspects of a process model (e.g. control flow,
data flow or resource allocation), and we focus on control flow here. The need
for verification techniques stems from the fact that the complexity of the be-
havior specified in a process model is difficult to analyze for a human modeler
[13]. This complexity is often referred to as the state explosion problem which
is inherent to the specification of concurrency [19]. This problem imposes con-
straints on the applicability of state space analysis since the reachability graph
can become exponentially large or even infinite. Therefore, reduction and decom-
position techniques are used in order to improve the performance of verification.
Below we discuss the correctness criteria that have been used in recent studies
and the way they are implemented to verify industry-scale process models. First,
we introduce soundness as the classical correctness criterion for process models
as a reference. Then, relaxed soundness, an interactive verification approach,
EPC soundness, single-entry-single-exit decomposition, and structuredness are
discussed. These have been used in the five studies.

Soundness. Soundness is an important and prominent correctness criterion for
business process models and was first introduced in [23]. The original sound-
ness property is defined for a Workflow net, a Petri net with one source and
one sink, and requires that (i) for every state reachable from the source, there
exists a firing sequence to the sink (option to complete); (ii) the state with
a token in the sink is the only state reachable from the initial state with at
least one token in it (proper completion); and (iii) there are no dead transi-
tions [23]. It has been shown that soundness of a Workflow net is equivalent
to liveness and boundedness of the corresponding short-circuited Petri net
[23]. Therefore, several liveness and boundedness analysis techniques [32,33]
are directly applicable to the verification of soundness. Tools like Woflan fa-
cilitate the verification of soundness in practice [34,35]. Soundness identifies
all deadlocks and lack of synchronization for process models with one start
and one end node.
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Relaxed Soundness. The soundness property of workflow models has stimu-
lated the specification of several soundness derivatives, mainly because some
soundness aspects proved to be too restrictive in certain application do-
mains. In [24] the authors argue that business processes are often concep-
tually modeled in such a way that only the desired behavior results in a
proper completion. Since such conceptual models are not used for workflow
execution, deadlocks are resolved by the people working in the process in a
cooperative and ad-hoc fashion. The authors define a process to be relaxed
sound if every transition in a Petri net representation of the process model is
included in at least one proper execution sequence [24]. The relaxed sound-
ness property is used in a study on the verification of the SAP Reference
Model [36,12]. For this study the authors automatically transform the 604
EPCs of the reference model to YAWL nets which are then analyzed using
the WofYAWL tool. WofYAWL uses Petri nets analysis techniques including
reduction rules and transition invariants to avoid calculating the whole state
space [37]. Relaxed soundness does not necessary identify all deadlocks and
lack of synchronization.

Interactive Verification. In [38,11] the authors introduce an interactive ap-
proach for the verification of EPCs. In a first step, reduction rules are au-
tomatically applied on the original EPC. Then, the user has to specify the
meaningful combinations of start events that can initiate the process. After
that, the EPC is translated to a Workflow net and the state space is gen-
erated. Then, the user decides for each final state whether it is intended or
not. Given these pieces of information, the EPC is classified as correct if the
Workflow net is sound, as maybe correct if the net is relaxed sound, and in-
correct otherwise. The approach is applied to the procurement module of the
SAP Reference Model. The verification is facilitated by an analysis plug-in
for ProM [11]. The interactive approach can identify all those deadlocks and
lack of synchronization that occur for all start combinations.

EPC Soundness. Since EPCs may have multiple start and end events, the
original soundness definition for workflow nets cannot be directly used for
them. Therefore, the property of EPC soundness is proposed in [29]. It builds
on the identification of a set of initial markings that covers all start events.
The EPC soundness definition demands that (i) there exists such a non-
empty set of initial markings, and (ii) that for each initial marking in this
set proper completion is guaranteed. Furthermore, (iii) there must be a set
of final markings reachable from some of these initial markings such that
there exists at least one final marking in which a particular end arc holds a
token. If that is fulfilled, proper completion is guaranteed for a set of initial
markings that cover all start arcs. The EPC soundness property is stricter
than the relaxed soundness criterion since it requires a guarantee of proper
completion. Therefore, using it might reveal more errors. EPC soundness
is used in another verification study of the SAP Reference Model [13]. The
authors use a two-step approach using first reduction rules and then, if neces-
sary, state space calculation. EPC soundness can identify all those deadlocks
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and lack of synchronization that occur for all start combinations in which a
particular start event participates.

Decomposition. The approach reported in [14] builds on the decomposition
of a workflow graph (essentially a free-choice Workflow net) into single-
entry-single-exit (SESE) components. Such components can be calculated
in linear time using depth-first search techniques [39]. The authors identify
some heuristics for sound and for unsound components. In essence, these
heuristics match EPC reduction rules as described in [30]. For their study,
the authors use an implementation that reads process models in the format
of the IBM WebSphere Business Modeler. The verification is conducted for
a sample of 340 workflow graphs. The decomposition approach identifies all
those deadlocks and lack of synchronization that are defined in the heuristics.

Reduction. Another heuristic for checking the correctness of process models is
used in [15]. The authors identify reduction rules for structured EPC models
and heuristics to correct simple connector mismatch errors. The verification
is performed for 285 EPCs from student projects, theses, text books, and
scientific papers. This approach identifies all those deadlocks and lack of
synchronization that can be traced back to variants of unstructuredness.

The different approaches have in common that they use reduction and decom-
position techniques to address the state explosion problem. The performance of
these approaches partially comes at the cost of precision, for instance, fast de-
composition does not reveal all errors. While there is a complete set of reduction
rules for free-choice Petri nets [40], none of the techniques used in the studies
is complete. Therefore, reduction rules and state space analysis are often com-
bined to balance performance and completeness [13,11]. In practice, reduction
is at least that powerful that the reduced process models can be analyzed with
state space techniques [13].

3 Verification Results

In this section we discuss the results from the five verification studies. The sam-
ples used in these studies include:

1. SAP Reference Model: The development of the SAP reference model started
in 1992 [41, p.VII] and continued until version 4.6 of SAP R/3, released in
2000 [42]. It includes 604 EPCs for documentation of the system.

2. Service Model: This collection of EPCs stems from a German process reengi-
neering project in the service sector, conducted with academic supervision.
The models that were defined in this project include 381 EPCs.

3. Finance Model: This collection contains the EPCs of a process documenta-
tion project in the Austrian financial industry. It includes 935 EPCs.

4. Consulting Model: This collection covers a total of 83 EPCs from three differ-
ent consulting companies. The models are mainly used as reference models
to support consulting activities of the companies.
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Table 1. Verification Studies

Sample Ref. Criterion Models Error Error Average Average
Models Rate Arcs Time (sec)

SAP RM [12] Relaxed Sound 604 34 5.6% 21 46.6
SAP Procurement [11] Interactive 40 4 10.0%
SAP RM [13] EPC Sound 604 126 20.9% 21 1.8
Services [13] EPC Sound 381 37 9.7%
Finance [13] EPC Sound 935 31 3.3%
Consulting [13] EPC Sound 83 21 25.3%
BPM Books [13] EPC Sound 113 25 21.4%
Workflow 1 [14] Decomposition 140 0 0.0% 67 0.06
Workflow 2 [14] Decomposition 200 24 12.0% 126 0.08
Academia [15] Reduction 285 107 37.5%

5. BPM Books: This sample is built from four German textbooks on EPC
process modeling [43,44,45,46] and includes 113 EPCs.

6. Workflow 1 and Workflow 2: These samples include IBM workflow models
from industry projects [14]. The first includes 140 workflows, the second 200.

7. Academia: This collection includes documentation EPCs from student and
industry projects from the University of Leipzig [15].

The different background of the samples highlights limitations of doing a compar-
ison. Most notably, samples have been created for different purposes and using
different languages. We would assume that workflow models were more rigor-
ously defined and that restrictions in the IBM workflow language (one start, one
end node) might provide less opportunities for errors. There are indeed low error
rates with the workflow samples as Table 1 reveals. This table shows the num-
ber of models, the number of models that had errors, and the error rate for all
samples. For some samples we have also indications of size (average number of
arcs) and average processing time. We discuss the table below. In particular, we
consider three aspects. Section 3.1 compares figures on the performance of the
verification algorithm for the studies that report them. Section 3.2 analyzes the
error rates of the different samples. Finally, Section 3.3 investigates explanations
for the variation in error rates across the samples.

3.1 Verification Performance

Information on the performance of verification is only reported in a few stud-
ies. Table 1 summarizes the average number of arcs and the average processing
time per model in seconds. The analyses reported in [12] and [13] operate on the
same sample, therefore they can be easily compared. The EPC soundness verifi-
cation using reduction rules is about 20 times faster than the relaxed soundness
analysis using WofYAWL. Still, it needs to be mentioned that the WofYAWL
processing time includes the conversion of an EPC to a YAWL model by a
command-line tool and the internal conversion of a YAWL net into a Petri net in
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WofYAWL. Without further information it is difficult to estimate which share the
conversion contributes to overall processing. Still, it is reasonable that the simple
element-wise conversion would not be too expensive. The slow processing might
be explained by the inherent complexity of invariant calculation. WofYAWL uses
invariant detection algorithms [47] that are exponential in space in the worst
case. In contrast to that, the approach based on reduction rules benefits from
reducing the models quite quickly. As reported in [30] that approach eliminates
on average more than 91% of the model elements. Furthermore, it has a polyno-
mial complexity since it uses reduction rules. In contrast to that, the approach of
[14], that builds on calculating the program structure tree, is linear in complex-
ity, see [39]. This fact is clearly visible in the relative performance: while the SAP
reference model is analyzed by reduction in 1.8/21 = 0.09 seconds per edge, the
larger library 2 sample of [14] only requires 0.08/126 = 0.0006 seconds per edge.
This is about 150 times faster. Such performance figures clearly demonstrate the
feasibility of improving performance of process model verification in practice.

3.2 Average Error Rates

The average error rates of the different samples in Table 1 give a good indication
of how many errors can be expected in process model collections in practice. It
must be mentioned that none of the verification approaches is complete. Accord-
ingly, all figures have to be interpreted as lower bounds as non of the applied
techniques guarantees all errors to be detected. Furthermore, the different ap-
proaches differ in precision: for example, the EPC soundness verification points
to 126 errors in the SAP reference model while the relaxed soundness analysis
only finds 34 problematic processes. Most of the approaches find a considerable
amount of errors in the different samples: Library 1 has the lowest rate of 0%,
followed by the Finance sample (3.3%) up to 37.5% in the Academia sample
used in [15]. Altogether, from the 2741 distinct models of the studies 371 are not
correct. This yields an error rate of 13.53%. The large variation in error rates
raises the question why different samples are less error-prone. In the next section
we discuss some of the factors.

3.3 Variation in Error Rates

Based on cognitive considerations like bounded rationality [48] and limited infor-
mation processing capabilities of humans [49], it has been hypothesized that the
understanding of a process model has a significant impact on error probability
[30]. In the process of constructing a model, understanding relates to two factors:
the structure of the model and the modeling capabilities of the modeler. These
two factors have been investigated in prior research, namely [12,13,50,51,52]. In
the following we summarize the findings.

Different sets of structural metrics of process models have been analyzed for
their potential to explain and predict error probability [12,13,52]. The authors
use logistic regression as a statistical tool. This way, it can be estimated how the
value of a particular metric influences error probability. The relaxed soundness
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study [12] uses a set of simple count metrics (number of functions, events, and
connectors of different type) and the SAP reference model as a sample for the
estimation. It is shown that a substantial part of the variation can be explained
as measured by the Nagelkerke R2 value of about 30% as a coefficient of deter-
mination. In [13] the authors extend this work by using a larger sample of about
2000 models (SAP reference model plus the Service, Finance, and Consulting
sample) and a set of more sophisticated ratio metrics including structuredness,
connector heterogeneity, and depth. The resulting model explains more than
90% of the variation as measured by the Nagelkerke R2 value. Accordingly, the
fact whether a process model contains errors seems to be largely influenced by
its size, its degree of structuredness and similar metrics.

The experiments reported in [50] and [51] investigate both model structure
and competence of the model reader as determinants for model understanding.
The questionnaires of these experiments use different process models and ask
the participants questions that reveal whether the content of the model is inter-
preted correctly. The first experiment is conducted on paper with a sample of 73
graduate students from Eindhoven University of Technology, the University of
Madeira, and the Vienna University of Economics and Business Administration
[50]. It shows that the average degree of connectors is negatively correlated to
understanding and that those students being trained in Petri nets concepts per-
form better. The second experiment was conducted as an online questionnaire.
It was filled out by 46 respondents [51]. The result show a strong correlation
between theoretical process modeling knowledge and understanding of the dif-
ferent models. From the structural metrics the degree of separability,1 i.e. how
easy can the model be separated in two disconnected parts, had a strong cor-
relation with understanding. Apparently, the simpler models were understood
better. It is interesting to note that in both experiments participants tended
to overestimate their ability to correctly read the models. This confirms earlier
observations [49].

These findings suggest that errors do not occur arbitrarily, but in specific
constellations. This has several implications as the following section discusses.

4 Implications

In this section we discuss implications of the verification studies. In particular,
Section 4.1 identifies implications for the way business process modeling is con-
ducted in practice. Then, Section 4.2 highlights some facts that tool vendors
should consider. Finally, Section 4.3 points to some directions of future research.

4.1 Implications for Process Modeling

The results of the different studies confirm that process models in practice suffer
from quality problems. Furthermore, the studies suggest that industry process

1 This is the ratio of cut vertices to all nodes of the process model.
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Table 2. Seven Process Modeling Guidelines [16]

G1 Use as few elements in the model as possible
G2 Minimize the routing paths per element
G3 Use one start and one end event
G4 Model as structured as possible
G5 Avoid OR routing elements
G6 Use verb-object activity labels
G7 Decompose a model with more than 50 elements

model collections are likely to have error rates of 10% to 20%. Clearly, there
are differences in error rates, and there are different structural metrics that are
closely connected with error probability. Based on these connections and on
work on activity labeling [53], Mendling, Reijers, and Van der Aalst propose a
set of seven process modeling guidelines (7PMG) that are supposed to direct the
modeler to creating understandable models that are less prone to errors [16].

Table 2 summarizes the 7PMG guidelines. Each of them is supported by
empirical insight into the connection of structural metrics and errors or under-
standing. The size of the model has undesirable effects on understandability and
likelihood of errors [50,12,13]. Therefore, G1 recommends to use as few elements
as possible. G2 suggests to minimize the routing paths per element. The higher
the degree of elements in the process model the harder it becomes to understand
the model [50,13]. G3 demands to use one start and one end event, since the
number of start and end events is positively connected with an increase in error
probability [13]. Following G4, models should be structured as much as possi-
ble. Unstructured models tend to have more errors and are understood less well
[13,15,52,50]. G5 suggests to avoid OR routing elements, since models that have
only AND and XOR connectors are less error-prone [13]. G6 recommends using
the verb-object labeling style because it is less ambiguous compared to other
styles [53] Finally, according to G7 models should be decomposed if they have
more than 50 elements.

These guidelines have to be considered as directions for achieving a good ver-
ification result. They are founded on the insight that there are alternative ways
of expressing the same behavior in a process model. Clearly, a rework of a pro-
cess model should not affect the validation goal. Creating small models might help
to achieve several guidelines, for instance G1, but it reduces the precision of the
model. Therefore, the guidelines should be followed if the validity is not reduced.

4.2 Implications for Tool Vendors

The amount of errors in the model samples from practice emphasizes the impor-
tance of verification. Most of the samples have error rates between 10% and 20%.
While verification has been discussed for some time, the studies demonstrate that
different approaches can handle large sets of several hundred business process
models on a common desktop computer. In particular, the performance of the
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decomposition approach is that good (linear time) that a continuous verification
would be possible every time the designer modifies parts of a model.

While the verification techniques are apparently mature enough to deal with
large models from practice, there seems to be too little attention paid to verifi-
cation issues by tool vendors. Indeed, tool vendors should be interested in these
techniques since the lack of respective features has a negative impact on the pro-
ductivity of the business process modeling exercise: models cannot be reused for
system development, business users cannot interpret the models properly, and
conclusions can hardly be drawn from the models regarding process performance.
Building on validation and verification features, the tool vendors can easily pro-
vide a greater benefit to their customers and help to improve the process of
designing business process models.

4.3 Implications for Future Research

The results of the five studies have several implications of future research. In
this section we focus on some of them, in particular, error explanation and auto-
repair, derivation of behavior-equivalent models, novel verification techniques,
and concepts for process model quality assurance.

Explanation. The Petri net analyzer Woflan already emphasizes the need for
redesign assistance in case the verification of a model fails [35]. The ap-
proaches of the studies we considered address this issue as well. The reduc-
tion rule approach for EPC soundness generates SVG graphics of the process
model with errors being highlighted (cf. Figure 2). The work on structured-
ness proposes an auto-repair for certain error patterns like connector mis-
match in structured blocks [15]. The problem with such an approach is that
there are usually at least two options to repair a model: changing the split
behavior or changing the join behavior. Which of them is applicable must be
decided by the domain expert who knows the real-world process. In a more
sophisticated subgraph structure errors can be caused by the combination
of multiple splits and multiple joins. Recommendations for repairing such
structures would be a valuable contribution of future research.

Behavior-Equivalent Models. Some work has been done on the creation of
behavior-equivalent process models. Most notable is the work on Petri net
synthesis from a labeled transition system [54,55]. This work has been used
to eliminate OR-joins from process models [56]. Further research discusses
the untangling of unstructured loops and the derivation of structured BPEL
from arbitrary Petri nets [57,58]. A desirable contribution would be to change
a process model in such a way that the behavior is kept, but the structure
optimized, e.g. along the lines of the seven process modeling guidelines. De-
signers would highly appreciate such a feature that would contribute to more
understandable models.

Verification Techniques. In the comparison we have seen the power of the
program structure tree decomposition. To our best knowledge this technique
has not yet been applied to the analysis of Petri nets. The EPC soundness
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study highlights the benefit of combining reduction and reachability graph
analysis. A similar approach can be taken to increase the precision of the
program structure tree verification.

Quality Assurance. Validation and verification techniques are discussed in
different neighboring disciplined of process modeling, namely requirement
engineering [59], knowledge-based systems [60], simulation [61], or concep-
tual modeling [62]. Some validation and verification techniques for process
models are discussed in [10,9]. Yet, an overarching framework and a sys-
tematic analysis of how suitable of such techniques from other areas are for
process modeling is missing.

Despite these technical challenges, the analysis of process models is a field where
commercial tool support is lagging behind academic concepts. There is a need
for a closer collaboration between academia and industry in order to make veri-
fication techniques available in a broader range of tools.

5 Conclusions

In this paper we discussed verification of process models and findings from em-
pirical studies on it. Most of the approaches use some kind of decomposition
technique, or a combination of reduction and reachability analysis. The best per-
formance shows the linear time decomposition approach based on the program
structure tree. The precision of the different approaches is difficult to compare
since different model collections are used and a benchmark verification sample
is not available. The comparison of the studies reveals that most of the samples
have error rates of 10% to 20%. Some of the studies have established a connection
between error probability and process model metrics, as well as between model
understanding and both metrics and modeling competence of the model reader.
These findings have implications for the way process models are constructed.
In this context, we discussed the seven process modeling guidelines. The high
error rates are a clear signal to tool vendors to add verification features to their
tools. Finally, there are still several challenges for future work. In particular, we
identified a need for further research into error repair, derivation of behavior-
equivalent models, combined verification techniques, and quality assurance for
process models.
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Abstract. Within the research domain of process mining, process dis-
covery aims at constructing a process model as an abstract representation
of an event log. The goal is to build a model (e.g., a Petri net) that pro-
vides insight into the behavior captured in the log. The theory of regions
can be used to transform a state-based model or a set of words into
a Petri net that exactly mimics the behavior given as input. Recently
several papers appeared on the application of the theory of regions for
process discovery.

This paper provides an overview of different Petri net based discovery
algorithms from both the area of process mining and the theory of re-
gions. The overview encompasses five categories of algorithms, for which
common assumptions and problems are indicated. Furthermore, based on
the shortcomings of the algorithms in each category, a set of directions
for future research in the process discovery area is discussed.

1 Introduction

Many researchers have investigated the process discovery problem, i.e. the prob-
lem of how to synthesize a process model from event logs. In this paper, we
provide an overview of the existing algorithms in the field of process discov-
ery, where we focus our attention on algorithms tailored towards constructing
Petri nets instead of other process models such as EPCs, YAWL models or even
Markov Chains. We refer to [2,4] and the www.processmining.org website for a
more complete overview of the whole research domain.

The research area of process mining focusses on extracting information about
processes by examining event logs. Practical experience has shown that typical
information recorded in these logs includes information about which activities are
performed, at what time, by whom and in the context of which case (i.e., process
instance). By explicitly using the case context, process discovery algorithms are
capable of constructing process models (i.e. Petri nets in our case) that accurately
describe the process, as it takes place in real life.

As an illustration, consider the log in Table 1. This event log contains six
instances (or cases) of a process for attending to a one-day conference. The events
are the “tasks” that have been performed by the participants of this conference.
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Table 1. An event log

Id Process Instance
1 Start, Get Ready, Travel by Train, Conference Starts, Ask Question, Join Guided Tour,

Join Dinner, Go Home, Travel by Train, End
2 Start, Get Ready, Travel by Car, Conference Starts, Give a Talk, Ask Question,

Ask Question, Ask Question, Ask Question, Join Guided Tour, Join Dinner, Go Home,
Pay for Parking, Travel by Car, End

3 Start, Get Ready, Travel by Train, Conference Starts, Give a Talk, Ask Question,
Join Guided Tour, Join Dinner, Go Home, Travel by Train, End

4 Start, Get Ready, Travel by Car, Conference Starts, Give a Talk, Join Guided Tour,
Join Dinner, Go Home, Pay for Parking, Travel by Car, End

5 Start, Get Ready, Travel by Train, Conference Starts, Give a Talk, Join Guided Tour,
Join Dinner, Go Home, Travel by Train, End

6 Start, Get Ready, Travel by Car, Conference Starts, Join Guided Tour, Join Dinner,
Go Home, Pay for Parking, Travel by Car, End

By looking at these instances, one could remark that (i) participants use the
same means of transportation to go to the conference and to come back home,
(ii) not all participants give talks, and (iii) some participants have not asked
questions, although some of them have asked multiple questions, etc. Based on
this log and these observations, process mining tools could be used to retrieve a
Petri net like the one in Figure 1. Such a Petri net can then be used for further
analysis, for example by focussing on the deviations between the recorded and
the intended behavior.

A problem similar to process discovery arises in areas such as hardware design
and control of manufacturing systems. There, the so called theory of regions is
used to construct a Petri net from a behavioral specification (e.g., a language or
a state space), such that the behavior of this net corresponds with the specified
behavior (if such a net exists). The general question answered by the theory of
regions is: Given the specified behavior of a system, what is the Petri net that
represents this behavior?.

Mainly, two types of region theory can be distinguished, namely state-based
region theory [8, 9, 11, 12, 18] and language-based region theory [13, 7, 23]. The
state-based theory of regions focusses on the synthesis of Petri nets from state-
based models, where the state space of the Petri net is bisimilar to the given
state-based model. The language-based region theory, considers a language over
a finite alphabet as a behavioral specification. Using the notion of regions, a
Petri net is constructed, such that all words in the language are firing sequences
in that Petri net.
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Fig. 1. Example of a Petri net that could be mined for the event log in Table 1
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In this paper, we discuss the wide variety of currently available process dis-
covery algorithms in Section 3 and we show their differences based on the sev-
eral perspectives explained in Section 2. Additionally, we discuss the existing
tool support for process discovery techniques in Section 4 and future directions
for developments in this area in Section 5. Our conclusions are presented in
Section 6.

2 Comparison

One of the aims of this paper is to present an overview of the current process
discovery techniques that can mine Petri nets. Since this overview also contains
a comparison of these techniques, this section explains which factors have been
taken into account during this comparison. Understanding these factors helps in
comprehending the analysis of the current status (cf. Section 3) and the ideas for
future directions (cf. Section 5). The factors to be considered during the evalu-
ation are supported control-flow constructs, assumptions about log completeness,
supported levels of abstraction and underfitting/overfitting of discovered models.1

These factors are respectively explained in Subsections 2.1 to 2.4.

2.1 Supported Control-Flow Constructs

Process discovery algorithms mine a process model describing the relations be-
tween tasks in an event log. From event logs, one can find out information about
which tasks belong to which process instances, the time at which tasks are ex-
ecuted, the originator of tasks, etc. Therefore, the mined process model is an
objective picture that depicts possible flows that were followed by the cases in
the log (assuming that the events were correctly logged). Because the flow of
tasks is to be portrayed, process discovery techniques need to support the cor-
rect mining of the common control-flow constructs that appear in process models.
These constructs are sequences (seq), parallelism (par), choices (cho), loops (lo),
non-free-choice (nfc), invisible tasks (it) and duplicate tasks (dt) [4]. Figure 1
shows an example of a Petri net with all these constructs.

2.2 Completeness of Information in Logs

Process discovery algorithms mine process models based on data contained in
event logs. Therefore, the notion of completeness is very important. Note that,
like in any data mining or machine learning context, one cannot assume to have
1 Runtime is not included in our comparison for several reasons. First, we feel that

it cannot be established fairly for all algorithms. Some have a runtime linear or
exponential in the size of the log, others exponential in the number of activities to
which the log refers and so on. Second, process discovery is a technique typically
applied to single logs in case-study settings. In these settings, fast lead times are
rarely essential, hence it does not matter how much time algorithms take. Finally,
we feel that algorithms should be selected for other properties than their runtime.
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seen all possibilities in the “training material” (i.e., the event log at hand).
Therefore, all algorithms presented in this overview make some assumptions on
completeness. For some, the information about which tasks directly succeed or
precede others is sufficient. For others, the frequency of tasks (or events) is also
taken into account. Furthermore, some assume the log to contain all the possible
behavior (what is rather unrealistic for real-life settings). In the following we
elaborate on the notions of log completeness that are used by the algorithms in
Section 3.

The most stringent notion of completeness is called global completeness (GC).
If an algorithm assumes global completeness, then it assumes that the log shows
all possible behavior of the process. However, often information is not complete,
or cannot even be complete, which is the case in the model of Figure 1, where the
transition “Ask Question” can be executed an infinite number of times. Global
completeness is a typical theoretical notion. In practice, the probability of a
log being globally complete can be assumed to be 0, e.g. the probability of two
patients following the same path through a hospital is 0.

Most algorithms discussed in this paper use different notions of completeness.
An notion that is used often is called “completeness of direct succession” (DS)
where it is assumed that “if two transitions can follow each other directly, then
this has occurred at least once in the log”. This can be extended with a similar
notion for loops of length 2, where it is assumed that “if a transition can follow
itself with one transition in between, then this has occurred at least once” (DS+),
or by considering long-term successions as well (DS++).

A less restrictive variant of this is the completeness of causal dependencies,
which states that “if two transitions are causally dependent, then they succeed
each other directly at least once” (CD).

Finally, the algorithms that use heuristic approaches typically have complete-
ness assumptions relating to the frequencies of succession. For one, if there is a
causal dependency between two transitions, then the direct successions of these
transitions should reflect that, which is called “event significance” (ES). Another
notion is “trace significance” (TS) which states that the most relevant behavior
in terms of cases appears most frequently in the log.

2.3 Abstraction Levels

All techniques presented in Section 3 assume the events within the log to be at the
same level of abstraction. Mostly this is expressed by the fact that each transition
in the log corresponds to exactly one event class, e.g. the start of activity A, or
the completion of activity B. Nonetheless, there are some exceptions which is
why we feel it is important to consider this perspective.

Most algorithms assume a direct correspondence between the events-classes
in the log and the transitions in the model, i.e. each transition refers to a single
event class (1:1).2 Some algorithms assume knowledge about the start and end

2 We denote the abstraction level by (x:y) to indicate that (i) each transition corre-
sponds to y event classes in a log and (ii) each event class corresponds to x transitions.
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of activities and therefore relate each transition to two event classes (1:2), i.e.
the assumption is made that transition executions are not atomic.

Sometimes, assuming that each event class is represented by a single tran-
sition is not a good idea. Consider again Figure 1. If you travel by train on
the way to the conference, then you travel by train back. These two transitions
labelled “Travel by Train” would be logged as the same event class, hence the
resulting Petri net should reflect this by a (1..*:1) correspondence (each event
corresponds to one or more transitions). If an algorithm sets a global maximum
on the number of transitions per event, we use the (1..n:1) notation.

Transitions, such as the one skipping “Give a Talk” in Figure 1, do not refer
to any event in the log and some algorithms introduce those as well, indicated by
(1:0..1).

2.4 Underfitting vs. Overfitting
Finally, we investigate the balance between underfitting and overfitting [16, 3]
for all algorithms. Let L be a log and M be a model.

– M is overfitting L if M does not generalize and is sensitive to particularities
in L. In an extreme case, M could merely be a representation of the log
without any inference, e.g. a tree-like Petri net where each transition corre-
sponds to 1 event (and not 1 event-class). A mining algorithm is producing
overfitting models if the removal or addition of a small percentage of the
process instances in L would lead to a remarkably different model.

– M is underfitting L if M allows for “too much behavior” that is not sup-
ported by L. Two simple examples of underfitting models are (i) the model
without places where each transition corresponds to 1 event class and (ii)
the “flower-model”, where each transition both consumes a token from and
produces a token in a single, initially marked, place.

To illustrate the problem between overfitting and underfitting, consider some
process in a hospital. When observing such a process over a period of years it
is very likely that many patients follow a “unique process”, i.e., seen from the
viewpoint of a particular patient it is very unlikely that there is another patient
that has exactly the same sequence of events. Therefore, it does not make sense
to assume that the event log contains all possible paths a particular case can
take. In fact, it is very likely that the next patient will have a sequence of events
different from all earlier patients. Therefore, one cannot assume that an event
log is “complete” and one is forced to generalize to avoid overfitting. However,
at the same time underfitting (“anything is possible”) should be avoided.

In our discussion of Petri net discovery algorithms, we will not quantify the
notion of under/overfitting. Instead, we provide a qualitative insight into the
position of each algorithm.

3 Current Status

In this section, we present several categories of mining algorithms. The cate-
gories encompass the algorithms listed in Table 2. For each of these categories,
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we explain the assumptions on the log, with respect to completeness and we show
which control flow constructs can be discovered. Furthermore, Table 2 shows the
abstraction level of each algorithm and the balance between under- and overfit-
ting. This balance is expressed using a slider representation. The position of the
slider shows where the discovered model of the algorithm should be put when the
default parameter values are used. If the algorithm uses search methods to im-
prove its results, but can be stopped during the search, the arrow shows to which
direction the mined model would generally move. Note that the state discovery
algorithm can discover a Petri net at any point in the spectrum, depending on
the parameters, but does not define default parameters. Therefore, we did not
include the slider for that algorithm.

The following sections contain details about how current techniques to mine
Petri nets from event logs work. The algorithms discussed in Subsections 3.1
and 3.2 construct Petri nets in three stages, namely abstraction, induction and
construction. The algorithms in Subsection 3.3 take a more global approach
and all the traces in the event log are considered when constructing a process
model (i.e., these algorithms do not abstract from the log first). Subsection 3.4
discusses algorithms that are based on the language-based theory of regions and
Subsection 3.5 presents an algorithm that uses state-based region theory.

3.1 Abstraction-Based Algorithms

This section will summarize the abstraction-based mining algorithms. These
algorithms construct a net based on an abstraction of the log and most of them
are derived from the α-algorithm [5], so we call them α-series algorithms. As a
result, the mining procedures of these algorithms are very similar.

Table 2. Comparison of Petri net discovery algorithms

Algorithm Complete- Constructs Abstraction Fitness
ness seq par cho lo nfc it dt underfitting        overfitting

a DS + + + +/- - - -    1:1

a + DS+ + + + + - - -    1:1

tsinghua-a CD + + + + - - -    1:2

a ++ DS++ + + + + + - -    1:1

a # DS+ + + + + - + -    1:0..1

a * DS + + + +/- - - +/- 1..n:1

Heuristic Miner ES + + + + +/- + -    1:0..1

Genetic Alg. TS + + + + + + -    1:0..1

Dupl. GA TS + + + + + + + 1..n:0..1

LangReg Basis GC + + + + + - -    1:1

LangReg Sep GC + + + + + - +    1:1

LangReg ILP none + + + + + - -    1:1

State Discovery none + + + + + + + 1..*:0..*
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This mining procedure consists of three phases: the abstraction phase, the in-
duction phase and the construction phase. In the abstraction phase, any event in
each event trace in the event log is scanned and basic ordering relations between
tasks are recorded. These relations contain information about the number of di-
rect successions between tasks. For example, the basic ordering relations based
on Table 1 show that activity “Start” is directly followed by “Get Ready”, but
that “Get Ready” is never directly followed by “Start”.

In the induction phase, advanced ordering relations are induced from the basic
ones and new tasks (e.g., invisible tasks and duplicate tasks) may be created from
scratch. Advanced ordering relations for example show whether tasks are causally
dependent, or in parallel. From our log in Table 1, the advanced ordering relations
record that “Start” is causally followed by “Get Ready”, but that “Travel by
Car” and “Travel by Train” are in a choice relation (not in parallel, and not
causally dependent).

In the construction phase, the final model is constructed from the advanced
ordering relations according to some heuristic rules. The principle for adding
places with arcs between tasks is that if there is a causal relation between any
two tasks, there should be at least one place connecting them, e.g. place “b” in
Figure 1 expresses the causal dependency between “Start” and “Get Ready”.

All α-series algorithms make some assumptions about the given log. There are
totally three most important assumptions. The first one is that there should be
no noisy data in the log. In other words, no event is missing or redundant or in a
wrong place. The second one is that the given log should be complete according
to the basic ordering relations (like the follows relation). The last one is that
the process model generating the log (we call it the potential model) should be
expressed in Petri nets properly and must not contain some special constructs
(i.e., short loops, non-free-choice constructs, invisible tasks, duplicate tasks and
OR-split/join constructs). For different algorithms, the contents of the latter two
assumptions may be a little different. Once the above assumptions are satisfied,
the correctness of the construction phase can be proved theoretically.

The α-algorithm assumes that the potential model is a sound Structured
Workflow Petri net (SWF-net) without short loops. SWF-nets are a subclass of
workflow nets (WF-nets) in which the net structure explicitly shows its behavior.
Consequently, in SWF-nets (i) choice and synchronization are not mixed, and
(ii) if there is a synchronization, all of its preceding transitions will have fired [5].
Short loops are loops of length 1 or 2 in the Petri net. The model in Figure 1 is not
an SWF-net, due to places “m” and “n” (non-free-choice), the black transition
(invisible task), and the duplication of the “Travel by Train” transition. The
“Ask Question” transition is an example of a short loop.

In [5], the authors show that given a log from an SWF-net that is complete
with respect to the follows relation, the model used to generate the log can
be discovered. In the abstraction phase, direct successions of events in the log
are considered. Then, in the induction phase, causal dependencies and parallel
dependencies between activities are induced, which are used in the construction
phase to construct the Petri net.
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The α-algorithm was the first of the abstraction-based algorithms and all
other abstraction based algorithms are extensions thereof. These extensions aim
at extending the class of nets to which the potential model can belong, while
maintaining the property that: “if the log is a complete log generated by a model
belonging to the given class, then that model can be rediscovered”. Typically
however, extending the class of potential models also puts extra demands on the
completeness of information in the log.

The α+-algorithm is the first extension of the α-algorithm. It adds support
for short loops in sound SWF-nets [6]. With this extension, the restriction of not
having short loops is lifted (e.g. in Figure 1 transition “ask question” is a short
loop), however changes are made in all three phases.

In the abstraction phase, an extra demand is put on the information contained
in the log. Specifically, the log should not only be complete with respect to the
follows relation, but it should also explicitly show the occurrence of each length-
two loop (i.e., if transitions t1 and t2 are in a length two loop, then both the
subsequences “t1, t2, t1” and “t2, t1, t2” should appear at least once in the log).
The induction phase is changed in such a way that activities involved in short
loops are not considered to be in parallel, but to be causally dependent. In
the construction phase, the process model without the transitions appearing in
length-one loops is first constructed in a way very similar to the original α-
algorithm. In a post-processing phase, length-one-loop tasks are inserted to the
right position of the model.

The tsinghua-α-algorithm concentrates on event logs containing non-
atomic events [28]. Each execution of a task t is associated with a pair of events
referring to the start and completion of that task. In the constructed Petri net,
transitions belong to such non-atomic tasks, but they can be decomposed into
transitions representing the start and completion of a task.

The potential model is a sound SWF-nets not containing short loops on the
atomic level. However, as tasks are not atomic, short-loops can exist in the con-
structed model. The abstraction phase is similar to the abstraction phase of the
α-algorithm. However, in the induction phase, causal and parallel dependencies
between tasks are inferred based on the overlap of tasks in time, i.e. if one task
started before another completed then they are assumed to be in parallel. The
construction phase is similar to that of the α+-algorithm.

The α++-algorithm aims at finding non-free-choice constructs [27]. As a
result, the potential model is beyond a sound SWF-net, but not exactly defined
(i.e., in contrast to the other abstraction-based algorithms, there is no given class
of model that can always be rediscovered from a complete log). In Figure 1, places
“m” and “n” control the choice after “Go Home”. These are typical examples of
places which can be discovered by this algorithm.

In the abstraction phase, relations are established between events that follow
each other not directly, but on a larger distance. This distance is then used in
the induction phase to derive indirect causal dependencies between activities. In
the construction phase, specific non-free-choice constructs are introduced based
on these indirect dependencies.
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The α#-algorithm is an extension of the α+ algorithm, such that some Petri
nets not in the class of sound SWF-nets can be discovered on a complete log [29].
However, the exact class of potential models is not defined, as is the case for the
α++-algorithm.

The idea of the α#-algorithm is that based on the causal and parallel de-
pendencies derived on the activities in the induction phase, invisible transitions
are introduced, such as the black transition in Figure 1, which skips the “Give
a Talk” transition. These invisible transitions change the state of a Petri net,
without appearing in the log. This way, a larger collection of logs still result in a
sound Petri net, although this Petri net is no longer an SWF-net. Non-free-choice
constructs are not introduced by this algorithm.

Similar to the α#-algorithm, the α∗-algorithm extends the α algorithm to
allow for the discovery of Petri nets not in the class of SWF-nets [22]. The
difference with the α#-algorithm is that instead of invisible transitions, duplicate
transitions are used (i.e., multiple transitions carrying the same label such as the
“Travel by Train” transition in Figure 1).

In the abstraction phase, information about the locations where events occur
is recorded, together with the direct predecessors and successors (so-called P/S-
tables). This information is then used in the induction phase to identify which
events correspond to multiple transitions. However, the heuristic rules used to
do this identification are not effective enough to cover all logs (i.e., the resulting
model might be unsound).

By now, we have reviewed all abstraction-based algorithms. However, there
is still not a single abstraction-based algorithm that can handle all the special
constructs in a sound SWF-net. The proper use of invisible tasks, non-free-choice
constructs and duplicate tasks needs further investigation.

3.2 Heuristic-Based Algorithms

Although the different algorithms presented in Subsection 3.1 can handle many
of the control-flow constructs outlined in Subsection 2.1, they are all unable
to handle a common factor in real-life event logs: the presence of noise. Noise
can appear in two situations: event traces were somehow incorrectly logged (for
instance, due to temporary system misconfiguration) or event traces reflect ex-
ceptional situations. In short, noise is any low-frequent behavior in a log. For
instance, in our example of Figure 1, one conference attendee that pays for park-
ing and still travels by train would result in noise in the log.

The algorithms presented in Section 3.1 do not take the frequency of ordering
relations into account when inferring the advanced ordering relations to build the
process model. Therefore, in this section we present an algorithm that considers
the frequency of tasks when building process models: the Heuristics Miner
(HM) [25,26].

The Heuristics Miner can deal with noise and can be used to express the
main behavior (i.e., not all the details and exceptions) registered in an event
log. It supports the mining of all common constructs in process models (i.e.,
sequence, choice, parallelism, loops, invisible tasks and some kinds of



234 B.F. van Dongen, A.K.A. de Medeiros, and L. Wen

non-free-choice), except for duplicate tasks. The HM algorithm has two main
steps. In the first step, a dependency graph is built. This dependency graph con-
tains the causal dependencies that are going to be kept when building the Petri
net model. In contrast to the abstraction-based algorithms, the Heuristics Miner
takes the frequencies of the basic ordering relations into account during the com-
putation of the strength of the causal relations. By default, the algorithm creates
one dependency to the best causal successor and predecessor of a given task.

In a second step, the semantics of the split/join points in the dependency
graph are set. Using the frequencies of the dependencies the type of the split/join
is decided. Consider Figure 1 again. If there is no noise in the log and “Go Home”
occurs 100 times in the log, then the succeeding “Travel by Train” and “Pay for
Parking” together also occur 100 times. However, if noise is present, these may
occur more than 100 times. If they both occur 100 times, this indicates a parallel
relation (“Go Home” is always followed by both “Travel by Train” and “Pay for
Parking”). Using threshold values, a decision is made whether there should be a
choice or a parallel construct in the Petri net.

3.3 Search-Based Algorithms

Although the use of heuristics has led to the development of algorithms that
are more robust to noise, these algorithms are still very much based on local
information in the log. In other words, the way of inferring the ordering rela-
tions is pretty much based on which tasks directly precede or follow each other.
Furthermore, none of the algorithms in Subsections 3.1 and 3.2 is able to handle
all common constructs and be robust to noise at once. Apparently, it is difficult
to develop heuristics to address all these issues at the same time. In this sense,
process mining techniques using genetic algorithms have been developed to ben-
efit from the global search that these algorithms provide. The algorithms are the
Genetic Algorithm Miner (GA) and the Duplicates Genetic Algorithm
Miner (DGA) [15,16]. In the following we elaborate on the main characteristics
of these algorithms. However, before doing so, let us introduce the main concepts
behind genetic algorithms.

Genetic algorithms are adaptive search methods that try to mimic the process
of evolution [19]. These algorithms start with an initial population of individu-
als. Every individual is assigned a fitness measure to indicate its quality. In the
case of the GA and DGA, an individual is a possible process model and the fit-
ness is a function that evaluates how well an individual is able to reproduce the
behavior in the log. Populations evolve by selecting the fittest individuals and
generating new individuals using genetic operators such as crossover (combining
parts of two or more individuals) and mutation (random modification of an in-
dividual). Additionally, it is common practice to directly copy a number of the
best individuals in a current population (the elite) to the next population. This
way, one ensures that the best found individuals are kept in future populations.
Every individual in a population has an internal representation, which defines
the search space of a genetic algorithm. Together, the internal representation, the
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fitness measure and the genetic operators constitute the three main issues to be
addressed when developing genetic algorithms. The remainder of this subsection
explains how the GA and the DGA address these three issues.

The internal representation of the GA supports all constructs but duplicate
tasks. Thus, the process models returned by this algorithm will contain at most
one task for each unique task label in the log. Furthermore, the fitness measure
used by the GA makes sure that individuals with a maximal fitness can correctly
parse most of the process instances (traces) in the log and, ideally, not more
than the behavior that can be derived from those traces. The reason for this is
that these algorithms aim at mining a model that reflects as close as possible
the behavior expressed in an event log. If the mined model allows for lots of
extra behaviors that cannot be derived from the log, it does not give a precise
description of what is actually happening. In other words, this model underfits
the log. If the model captures all the behavior, it may overfit the log. The genetic
operators work over the input and output sets of tasks. The input set of a task
contains all the input places of this task and all the input tasks of these input
places. In a similar way, the output set of a task has all of its output places plus
the output tasks of these places. Thus, the genetic operators work by removing
or adding places and tasks from/to these sets.

The DGA algorithm is an extension of the GA one to also support the discov-
ery of process models containing duplicate tasks. In this sense, it has extended
the internal representation used by the GA so that every unique task label in
a log can have up to a maximum number of duplicates in the mined process
model. Note that a maximum number is set to guarantee a finite search space.
The assumption used to set the maximum number of duplicates per task is that
no duplicate tasks should share input or output elements. Furthermore, since
the inclusion of duplicates bring into the search space more individuals that can
overfit the log, a dimension to punish for unnecessary unfolding (or duplication)
of tasks has been added to the fitness used by the GA algorithm. Finally, the
genetic operators were refined to take into account the existence of duplicates
when recombining or mutating individuals.

Since these algorithms are geared to benefit discovery of process models that
capture the most frequent behavior in a log, they work better when the traces
in a log are grouped based on some similarity criteria (for instance, the order in
which tasks appear in these traces). Additionally, note that the computational
time required to run these algorithms is as least exponential to (i) the maximum
number of tasks in individuals (because it impacts the size of the search space)
and (ii) the number of unique traces in a log (since the fitness measure is based
on how well individuals can replay these traces).

3.4 Language-Based Region Algorithms

A problem similar to process discovery arises in areas such as hardware design
and control of manufacturing systems. There, the so called theory of regions
is used to construct a Petri net from a behavioral specification (e.g., a state
space or a language), such that the behavior of this net corresponds with the
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specified behavior, if such a net exists. If such a net does not exist, the best
upper approximation is constructed.

In this section, we consider language-based region theory and its application in
process mining. In [23], the authors show how for different classes of languages
(step languages, regular languages and partial languages) a Petri net can be
derived such that the resulting net is the Petri net with minimal additional
behavior in which the words in the language are possible firing sequences. The
classes of Petri nets described in [23] are general Petri nets, elementary nets,
and inhibitor nets however the theory for elementary and inhibitor nets is not
backed by an implementation. Duplicate transitions and invisible transitions are
not supported.

The application of language-based region theory seems natural, i.e. each ac-
tivity in the log corresponds to a letter in an alphabet and each trace to a word
in the language defined by the log. By also including all prefixes of all traces,
a prefix-closed language is defined, which we introduced as a pre-requisite for
language-based region theory.

The application of the theory of regions to process mining has recently re-
ceived more attention. In [10] for example, language-based regions are proposed
to synthesize process models from event logs. In [10], the authors provide two
methods to derive Petri nets from event logs, namely by using a basis representa-
tion or a separating representation, which are also mentioned in [23]. In [30], an
approach based on Integer Linear Programming is introduced, which uses ideas
from abstraction based process discovery, i.e. causal dependencies to guide the
search for places.

Regions are defined by the solution space of a linear inequation system and
most of the time, the number of different regions of a language is infinite, as
the sum of two regions is a region again. Therefore, three finite representations
are typically considered, all of which follow a similar search procedure. They
start with a Petri net containing only transitions (i.e. a maximal underfitted
net). Then, places are added to restrict the behavior of the Petri net. How many
places are added depends on the representation.

In the Basis Representation, the set of places is chosen such that their cor-
responding regions form a basis for the non-negative integer solution space of the
linear inequation system. Although such a basis always exists for homogeneous
inequation systems, it is worst-case exponential in the number of equations [23],
which in process mining is equal to the number of events in the log, and thus,
the basis representation is worst-case exponential in the number of events in
the log. Although [10] provides some ideas on how to remove redundant places
from the basis, these procedures still require the basis to be fully constructed.
Therefore, the result is a completely overfitted model, which is only valid under
the assumption that the log is globally complete.

To reduce the size of the resulting Petri net, the authors of [23, 10] propose
a Separating Representation. In this representation, places are only added
to the Petri net that separates the allowed behavior (as recorded in the log) from
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behavior of which is known that it is not allowed. This representation requires
the user to specify undesired behavior (i.e., behavior that is not recorded in the
log and should not be supported by any model).

In [23, 10] the authors propose the separating representation for regular and
step languages. They propose a method to automatically construct unwanted
behavior, using the behavior not in the log, hence the log is assumed to be
globally complete. Again, this leads to a model that is overfitting the log.

In [30] the authors present an approach for control flow discovery that uses
Integer Linear Programming techniques to find places. However, in contrast
to the basis and separating representations, the Petri net constructed is not
exact (i.e., it is a Petri net that can reproduce the log under consideration), but
it might allow for much more behavior than observed.

In contrast to the two other representations, the ILP representation does not
try to generate a completely overfitted Petri net. Instead, it stops the search for
places as soon as all causal dependencies between transitions are expressed. The
way these causal dependencies are computed is comparable to the procedure we
discussed when presenting abstraction based algorithms. For each dependency,
the authors then search for a place, such that (i) this place expresses that causal
dependency, and (ii) this place is as expressive as possible (i.e., it has a minimum
number of incoming arcs and a maximum number of outgoing arcs). Hence,
the number of places in the Petri net is at most quadratic in the number of
activities in the log. Note that no assumptions are made about the completeness
of the log (i.e., the causal dependencies only guide the search for places), but if
no causal dependencies are found, then a completely underfitting model is the
result.

3.5 State Discovery Algorithms

So far, all algorithms presented in this paper focus on the ordering of events in
the log and use that to derive a Petri net. A state discovery algorithm takes
a different approach towards mining. They use the log to translate each case into
a sequence of states and the transitions between these states. All cases are then
combined into a transition system describing the log and the transition system
is converted into a Petri net.

In [21], an extensive discussion is presented on how to define states based
on the information in the log. One way of defining a state, is by considering
the prefix of each event to be the state of the model prior to executing the
event. However, more advanced techniques are presented, considering the past
and future behavior of each event in the log, as well as arbitrary data attributes.
In this phase, unlabelled (or invisible) transitions are introduced in the transition
system.

To construct a Petri net from a transition system, state-based region theory
is used [8, 9, 11, 12, 18]. This theory focusses on the synthesis of Petri nets from
state-based models, where the state space of the Petri net is bisimilar to the given
state-based model. Initially the theory could be applied only to a restricted set of
transition systems. However, over time the approach has been extended to allow
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for the synthesis from any finite transition system. The resulting Petri net might
contain duplicate transitions (referred to as label-splitting in region theory).

4 Tool Support

Ever since the first work on process mining appeared, good tool support has
proven essential [2]. Over the years, many implementations have been presented
by different authors and although most of these implementations served their
purpose as a testbed for the author’s algorithms on simple examples, they were
not so suitable in real-life situations, where logs easily contain thousands of cases
referring to dozens of events each.

Around 2003, a first attempt was made to develop a single tooling plat-
form that was (i) easy to extend with new algorithms, (ii) applicable to real-
life examples and (iii) easy to use. This attempt led to the development of
the ProM framework (prom.sourceforge.net), of which currently version 5.0 is
the latest release, containing over 250 implementations of algorithms, catego-
rized in import/export plugins, conversion plugins, analysis plugins and mining
plugins.

As intended, ProM can handle large, industrial sized, log files as well as many
different modelling paradigms, such as Petri nets, EPCs, Heuristic nets and so
on. Furthermore, the ideas implemented in ProM have been adopted by industry
and have become part of industrial tools, such as the social network analysis
in Aris PPM and the process mining components of Protos. Furthermore, a
Dutch company called Futura Technology (www.futuratech.nl) uses ideas and
concrete implementations of ProM to provide custom process mining services to
industry.

Although ProM, together with its tutorials, satisfies the requirements above,
we feel that it has reached its limits. More and more we see that real life logs
contain information that was never considered to be present in logs, such as data
modifications, event triggers, organizational structures, and so on. As the logs
required by ProM do not allow for semantic information to be added directly
onto the data in the log, the interpretation of each data attribute is different for
each plugin thus reducing the ease of use for end-users of the tool.

Furthermore, the tight coupling between the implementations of algorithms
and the user interfaces to control the settings of these algorithms is becoming a
bottleneck when ProM is applied in an industrial setting. Companies like Philips,
for example use ProM to monitor their processes, using a custom-built user
interface which took 9 months to develop.

5 Future Directions

This section presents the three directions we believe future discovery algorithms
should focus on. The underlying assumption is that tool support for these future
directions should also be provided.
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5.1 Support Different Abstraction Levels

In the previous section, we presented many different algorithms to construct
Petri nets from logs. Most of these algorithms make a similar assumption on the
relation between the Petri net and the underlying log, namely that each tran-
sition not used solely for routing purposes represents one event of the log (an
exception is the tsinghua-α algorithm which assumes that each transition repre-
sents 2 events). From a theoretical point of view, this is a reasonable assumption
as the firing sequences of the resulting Petri net relate directly to traces in the
log. Nonetheless, the assumption that all events in the log are logged on the same
abstraction level has proven to be invalid in practice.

In practice, event logs usually contain many events on very different levels of
abstraction. For example, a user logging on to an information system is on a very
different abstraction level than a data attribute in a database being changed
by an application. Many attribute changes for example might correspond to
one activity which is performed by the user. An example of a process mining
technique which takes into account these different abstraction levels is the work
presented in [20]. There, events are clustered using heuristics to generate a model
representing the process on different, hierarchical, abstraction levels. However,
the so-called “fuzzy models” used in that work lack executable semantics and
hence are not very useful for analysis and simulation purposes. Nonetheless, as
shown by the authors of [24], companies like Philips appreciate the models and
use them in an industrial setting.

Therefore, future process discovery algorithms should target the mining of pro-
cess models with different abstraction levels. In fact, it would be nice if the al-
gorithm could identify the nature (i.e., more structured or unstructured) of the
behavior registered in the event log and provide the discover model at the best
insightful abstraction level.

5.2 Consider Event Properties

In Section 3.5, we discussed how to derive state information from a log. In [3]
the authors do not only use the events in the log to derive state information, but
they also use so-called “properties” of events. These properties give information
which describe the events in more detail. For example, when an insurance claim is
rejected, the event entitles “send rejection letter” might also contain information
about the amount of the claim and the reason why the claim was rejected.
Obviously, not all of these properties are directly useful for process discovery.
However, many properties provide great insights into the context of an event,
which can help in discovery.

Consider, for example, an activity entitled “archive claim”, which seems to
occur at several points in a log from an insurance company. Mining such a log
might prove to be very difficult due to the seemingly random occurrences of
that activity. However, when looking at the properties of the events, it might
become clear that the “archive claim” activity is always performed as the last
activity before handing the claim over to another department, hence the Petri
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net discovered from the log should contain multiple transitions referring to the
claim being archived by different departments. Furthermore, recent work on cycle
time prediction [17] has shown that considering data attributes recorded in a log
indeed provides great insights into the underlying process.

Using properties of events, we feel that it should be possible to determine
equivalence classes of events using classical data mining techniques. This allows
for existing process discovery algorithms such as the ones presented in this paper
to be applied in a broader context.

5.3 Semantic Information

Currently, all techniques see the events in the log as syntactic labels. However, it
would be nice if the semantics behind the labels could be taken into account. For
instance, consider the example of the claim archiving again. Previously, we stated
that properties might be logged directly which indicate the department in which
the “archive claim” activity is executed. However, sometimes this information is
not available directly, but indirectly using semantic information. Suppose for ex-
ample that the log only shows who executed the activity “archive claim”. Then the
organizational model of the insurance company provides the department to which
the person belongs, i.e. the department is derived from the person using semantic
information.

The idea of using semantic information in process discovery is currently being
investigated in the context of the European project SUPER [1]. Actually, the work
in [14] provides an outlook on how process mining techniques can benefit from
semantic information. Furthermore, as the experiences in [24] indicate, companies
can typically provide the semantic information relating to different properties.

6 Conclusion

In this paper, we have provided a critical overview of the 13 Petri net discov-
ery algorithms currently available in the process discovery area. The overview
includes a comparison of these algorithms based on four different perspectives:
(i) assumptions about the completeness of event logs, (ii) supported control-flow
constructs, (iii) provided abstraction levels for correspondence between transi-
tions in Petri nets and event classes in logs, and (iv) bias to mine under-/over-
fitting models. Based on this analysis and the current tool support to process
discovery techniques, we have proposed an outlook with the following three di-
rections: (i) there is a need to support different levels of abstraction, especially
while mining less structured behavior, (ii) more contextual information (like
event properties) should be considered when performing process discovery, and
(iii) the meaning (or semantic) of labels in event logs should be incorporated
when mining process models. When addressed, these three future directions will
advance the feedback provided by techniques in the process discovery research
area towards more insightful and robust models.
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Abstract. This contribution suggests a novel approach for a systematic and au-
tomatic generation of process models from example runs. The language used for
process models is place/transition Petri nets, the language used for example runs
is labelled partial orders. The approach adopts techniques from Petri net synthe-
sis and from process mining. In addition to a formal treatment of the approach, a
case study is presented and implementation issues are discussed.

1 Introduction

Business process modelling and management has attracted increasing attention in recent
years [1,2,3]. However, little attention has been paid to the first phases of business
process modelling, i.e., to the question of how to derive a valid process model in an
informal setting.

The usual approach to process model construction and validation is shown on the left
hand side in Figure 1. A domain expert edits a formal process model. Simulation tools
generate single runs of that process model which can also be viewed as formal objects,
such as occurrence sequences representing possible sequential occurrences of activities
or occurrence nets representing occurrences of activities and their causal ordering. Then
the expert checks whether these runs correspond to possible executions of the intended
process. In the negative case, he changes the process model and iteratively repeats the
simulation.

In this paper, we consider Petri net process models. There are many simulation tools
that are able to generate sequential runs. Our VipTool generates and visualizes causally
ordered occurrence nets [4,5].

The aim of this paper is to suggest a proceeding in the opposite direction. We call
causally ordered executions of the process to be modelled scenarios. We assume that
the domain experts know some or all scenarios of the process to be modelled better
than the process itself. Actually, experts might also know parts of the process model
including parts of its branching structure, but in this case scenarios can be derived from
this partially known process model. Experience shows that in various application areas
processes are specified in terms of example scenarios (an evidence are the commonly
used sequence diagrams in UML to specify scenarios).

� Supported by the project ”SYNOPS” of the German Research Council.
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Fig. 1. Old and new approach

In a first step, an expert formalizes the scenarios, yielding formal runs. In other
words, he provides formal models of the scenarios. In our setting, the scenarios are
formalized in terms of labelled partial orders representing occurrences of process activ-
ities and their mutual order relation. In a second step, a process model is automatically
generated from these formal runs. For this step, we apply algorithms developed for Petri
net synthesis [6,7,8] and for process mining [9,10]. This procedure is shown on the right
hand side of Figure 1.

The synthesized process model has at least the specified runs, but it might have ad-
ditional runs. In a third step, additional runs are generated and presented to the expert.
Runs that also represent legal scenarios are added to the set of runs specifying the pro-
cess. If a run represents a behaviour which was not intended then the process model is
changed accordingly.

In the following section we provide the necessary formalism to specify runs. The par-
tial order approach taken in this paper avoids to consider all possible orderings of con-
current occurrences of activities as it was necessary in a sequential approach. However,
in case of branching due to alternatives, the number of necessary example runs can be
quite large (or even infinite). Therefore, we develop a term based specification of runs in
section 3, where the atoms of the terms are comparably small labelled partial orders. Sec-
tion 4 deals with the synthesis of a p/t-net process model from such term specification.
In section 5 we tackle the problem of hierarchical process definitions. Section 6 provides
a case study supported by our tool VipTool. In section 7 we discuss related work.

2 Specifying Runs

The core idea of our approach is to specify behaviour of a process in terms of single
runs, playing the role of example runs of the process. Therefore, the process model to
be generated should at least have the behaviour given by these runs.

We claim that modelling a single run is an easy and intuitive task, also for domain
experts unexperienced in modelling. There are many possibilities to describe scenarios
(also textual descriptions are adequate) and formalization of scenarios in terms of runs
is relatively easy (on this level of single instances). Using scenarios in requirements
engineering has received significant attention in the last years in the field of software
modelling (see section 7). In this paper we focus on scenarios to model business pro-
cesses. In this area, scenarios do not necessarily have to be designed from scratch. In
many cases it is possible to exploit already existing descriptions of scenarios supported
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by the business process. In an enterprise, typical sources of scenario descriptions are log
files recorded by information systems (process mining focuses on this source of infor-
mation), process instructions for employees or textual and formal process descriptions
from some requirements analysis.

In the first step of the design approach, single runs of the process are identified. This
leads to a preferably complete description of the behaviour of the process. In this paper,
we consider labelled partial orders (LPOs) to specify single runs formally. LPOs are a
very general formalism and most languages used in practice can be mapped to LPOs.

Definition 1 (labelled partial order). A labelled partial order (LPO) is a triple lpo =
(V, <, l), where V is a set of events, < is an irreflexive and transitive binary relation on
V , and l : V → T is a labelling function with set of labels T .

The behaviour specified by an LPO includes its so called prefixes and sequential-
izations. An LPO (V ′, <′, l′) is called a prefix of another LPO (V, <, l) if V ′ ⊆ V ,
(v′ ∈ V ′∧v < v′) =⇒ (v ∈ V ′), <′ =< ∩ (V ′×V ′) and l′ = l|V ′ . An LPO (V, <′, l)
is called a sequentialization of another LPO (V, <, l) if <⊆<′.

Two LPOs (V, <, l) and (V ′, <′, l′) are called isomorphic if there is a bijective map-
ping ψ : V → V ′ such that l(v) = l′(ψ(v)) for v ∈ V , and v < w ⇐⇒ ψ(v) <′ ψ(w)
for v, w ∈ V . Isomorphic LPOs model the same behaviour. Therefore, we consider
LPOs only up to isomorphism, i.e., isomorphic LPOs are not distinguished.

An LPO models a single run by specifying ”earlier than”-dependencies between events,
where an event represents an occurrence of the process activity given by its label. LPOs
offer the following advantages in process modelling compared to sequential approaches
where behaviour is given in terms of occurrence sequences [4]:

• A natural and intuitive representation of the behaviour of processes: Since concur-
rency plays an important role in process models, it is appropriate to model concurrency
also in single runs of a process. In particular, instead of considering sequential runs and
detecting the concurrency relation from a set of runs, it is easier and more intuitive to
work with partially ordered runs.
• An efficient representation of the behaviour of processes: A single LPO represents a
set of sequential runs, which can be quite large (exponential in the number of transition
occurrences) in the presence of concurrency.
• A high degree of expressiveness: First, considering sequential runs, concurrency can-
not be distinguished from non-deterministic resource sharing. Second, LPOs explicitly
model causal dependencies between transition occurrences, which allows the explicit
modelling of the flow of objects and of information in processes (this is not even im-
plicitly possible with sequential runs).
• Efficient analysis algorithms for business process models: In many cases, analysis
techniques applied to LPOs are more efficient than those working on sequential runs
[5,11].

We start our process generation procedure with a collection of LPOs (runs) representing
scenarios of the process. An example of such a set of LPOs is shown in Figure 2 for
the workflow triggered by a damage report in an insurance company. In all shown runs,
a received claim is negatively evaluated and a refusal letter is sent. In the first run, the
refusal letter is sent after the damage and the insurance of the client was checked. In
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Fig. 2. Example for a collection of LPOs representing scenarios of a process

runs 2 and 3 only one check is performed before the negative evaluation and the sending
of the refusal letter. In all runs, after the assignment and the registration of the claim,
reserves are set aside.

Before formalizing scenarios, the domain expert should specify initial and final con-
ditions for the considered process (see [12]) or some other kind of reference to the
environment of the process in order to embed the process into its context. Moreover, he
should identify the possible activities because they appear as labels in the runs. This is
of particular importance when more than one expert provides example runs, because all
occurrences of the same activity have to be labelled by the same activity name.

3 Composed Runs

In case of large processes the procedure of considering complete runs as described in the
previous section may still be difficult for domain experts. In particular, it suffers from
the fact that the number of runs that have to be specified might grow exponentially with
the number of alternatives and can be even infinite if the process contains loops. Also,
single example runs may become very large and difficult to handle. The problem can
be solved by partly incorporating the process structure in the specification. The idea is
that it is possible for a domain expert to only specify parts of runs, called run segments,
which can be as small as desired and also can be used to locally specify alternative or
iterative parts of runs (avoiding the explicit specification of all alternative runs). Com-
plete runs are then given by specifying appropriate compositions of run segments. This
possibility to modularly develop runs by means of run segments makes the specification
of runs easier, faster and more intuitive for domain experts. Sometimes such approach
is even necessary, e.g. for complete specifications in the case of iterations or if some
domain expert actually only knows parts of runs.

Figure 3 depicts a run segment showing the registration process, several run segments
describing possible evaluation procedures of the claim, a run segment modelling the
payment of the insurance company and the three singleton runs for building reserves,
gathering information for the payment by asking queries and the completion of the
workflow. In this section, we specify a set of runs by means of such run segments.

Run segments can be related in four ways:
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Fig. 3. Example for a collection of run segments in terms of LPOs

– A run segment LPO2 occurs after another segment LPO1 (sequence).
– Either LPO1 occurs or LPO2 but not both (alternative).
– A run segment LPO1 can recur arbitrarily often (iteration).
– Two segments LPO1 and LPO2 occur concurrently (concurrency).

Similar to the approach for scenario integration based on statecharts in [13], higher
level structures of runs are built by concatenating and nesting blocks according to the
relationships sequence (;), alternative (+), iteration (∗), and concurrency (||). For the
run segments of Figure 3, we assume that they are related as depicted in Figure 4 to
faithfully model the underlying workflow. That means, the workflow starts with the
”Registration” of the claim. Then one of the evaluation runs is performed concurrently
to the subprocess of setting aside reserves for the claim. The four possibilities of evalu-
ation are alternatives. The run modelling the positive case is a sequential composition of
the three single run segments ”Positive Evaluation”, ”Queries” and ”Payment”. Asking
additional queries can be iterated arbitrarily often until a sufficient degree of informa-
tion is reached. Finally, after the execution of all other run segments, the process is
finished by the run segment ”Completion”. Figure 4 uses a graphical representation of
the four composition templates for runs by means of a block structure ( ; -composition
is depicted by arcs, +, ∗ and || by respective symbols). Since the binary composition
operators are associative, the readability of the graphical representation is improved by
composing more than two blocks in figures (e.g. the +-composition of the four alterna-
tive evaluation possibilities). We call such a behavioural specification generated by the
composition of single run segments a composed run. Composed runs nicely integrate
modular scenario specifications (run segments) which may be given by different experts
and support the specification of infinite behaviour (by the iteration operator).

Since single run segments are given by LPOs, the semantics of a composed run R is
defined as a set of LPOs Lpo(R) modelling possible behaviour each, called the set of
runs defined by a composed run. The set of runs defined by the composed run depicted
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Fig. 4. A composed run over the set of run segments depicted in Figure 3 (screenshot of VipTool)

in Figure 4 comprises the runs shown in Figure 2 and the infinite set of runs illustrated
in Figure 5 (activity ”Ask Additional Queries” can be iterated).

Definition 2 (composed run). Given a finite set of single run segments A, a composed
run over A is inductively defined as follows:
Each single run segment lpo of A and the empty LPO λ = (∅, ∅, ∅) are composed runs.
Let R1 and R2 be composed runs. Then R1;R2 (sequential composition), R1 + R2
(alternative composition), (R1)∗ (iteration) and R1 ‖ R2 (concurrent composition)
are composed runs.

Assume two LPOs lpo1 = (V1, <1, l1), lpo2 = (V2, <2, l2) with disjoint sets of
events. We define:

– lpo1; lpo2 := (V1 ∪ V2, <1 ∪ <2 ∪ (V1 × V2), l1 ∪ l2),
– lpo1 ‖ lpo2 := (V1 ∪ V2, <1 ∪ <2, l1 ∪ l2),
– lpo0

1 := λ and lpon
1 := lpon−1

1 ; lpo1 for n > 0.

The set of runs Lpo(R) of a composed run R over A is a possibly infinite set of LPOs.
Given a composed run R, we first inductively define a set of LPOs K(R) represented
by R. The set Lpo(R) is the prefix and sequentialization closure of K(R). We set
K(λ) = {λ} and K(lpo) = {lpo} for lpo ∈ A. For composed runs R1 and R2,

– K(R1 + R2) = K(R1) ∪ K(R2),
– K(R1;R2) = {lpo1; lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)},
– K((R1)∗) = {lpo1; . . . ; lpon | lpo1, . . . , lpon ∈ K(R1), n ∈ N

+} ∪ {λ},
– K(R1 ‖ R2) = {lpo1 ‖ lpo2 | lpo1 ∈ K(R1), lpo2 ∈ K(R2)}.

A problem excluded so far is that some runs may overlap. That means, the knowledge
about one run segment may be distributed on several experts, each knowing only a part
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Fig. 5. Infinite set of runs of the composed run of Figure 4, where the claim is positively evaluated

of the segment. In the simplest case these parts can be treated as single run segments that
can be composed as shown above. But this is not possible if the parts contain common
events. Then they have to be fused to one single run segment. The situation of runs
having common events occurs if several experts have different views to one process
execution, i.e. they observe different subsets of all events of the respective run, whereas
respective other parts of the run are hidden.

We propose the following concept to fuse run segments. Given several parts of one
segment, first the involved people have to determine which events observed by one ex-
pert coincide with which events observed by another expert. This problem has to be
solved by an appropriate communication between the experts and is part of the spec-
ification process. The experts have to agree on a fusion equivalence relation, defined
on the set of events of all parts of the considered run segment, such that different ob-
servations of one event are equivalent. Obviously, only events having the same label
(referring to the same activity) can be equivalent. Also, the orderings given by different
observations must not contradict each other. This has to be ensured in an adjustment
phase by the modelers. The fusion of the parts is then given by a new LPO, which has
an event for each equivalence class. If two events are ordered in some part of the run
segment, then their respective classes are ordered in this LPO. Thus, each dependency
observed (respectively modelled) by some expert is regarded in the fused run segment.

Fig. 6. Two possible parts of the run segment ”Registration” shown in Figure 3
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No further dependencies are introduced. Conversely, we assume concurrency between
events if no expert detected any dependency. This is motivated by the idea that parts of
one run observed by different experts tend to be concurrent.

A simple example is shown in Figure 6. Assume that the run segment ”Registration”
of Figure 3 is not given directly, but rather by two parts of the run segment, as shown in
Figure 6. If the two events labelled by ”Receive Claim” coincide, the described fusion
approach generates the fused run ”Registration” of Figure 3.

Definition 3 (fusion). Assume LPOs lpoi = (Vi, <i, li), i ∈ {1, . . . , n} with pairwise
disjoint sets of events, modelling different parts of one run segment.

An equivalence relation ∼ on
⋃n

i=1 Vi fulfills the fusion requirement if

v ∼ v′, v = v′, v ∈ Vi, v
′ ∈ Vj =⇒

i = j ∧ li(v) = lj(v′) ∧ ∀v′′ ∈ Vi, v
′′′ ∈ Vj , v

′′ ∼ v′′′ : (v <i v′′ =⇒ v′′′ <j v′).
In this case, the fused LPO of lpoi = (Vi, <i, li), i ∈ {1, . . . , n} w.r.t. ∼ is defined by
lpo = (V, <, l), where
• V = {[v]∼ | v ∈ ⋃n

i=1 Vi},
• [v]∼< [v′]∼⇐⇒ (∃v′′∈ [v]∼, v′′′∈ [v′]∼, i ∈ {1, . . . , n} : v′′, v′′′ ∈ Vi, v

′′ <i v′′′),
• l([v]∼) = li(v) (for v ∈ Vi).

The fused LPO is well defined because of the fusion requirement.

4 Synthesizing a Process Model

The next step in the design approach starts with a specification of a process by means of
a composed run. The aim is to automatically create a Petri net model from the composed
run. Petri net based models are the standard to compactly represent processes in the
area of workflow design and Petri nets offer a huge repertoire of analysis methods.
Formally, the composed run is defined as a term over the alphabet of single run segments
employing the composition operators ; , + , ∗ and || . In [6], we show how to synthesize
a place/transition net (p/t-net) from such a term.

The activities of the process are modelled by the transitions of the synthesized Petri
net. The places together with their connections to the transitions and their markings
define dependencies between the activities. As usual, places are drawn as circles, tokens
in places represent the initial marking, transitions are drawn as rectangles and the flow
relation as arcs annotated with values of the weight function (arcs with weight 0 are not
drawn, the weight 1 is not shown). Note that events of a composed run having the same
label model different occurrences of the same transition. Therefore, it is not possible to
convert a composed run into a Petri net the naive way by adding places in between run
segments and within run segments putting places in between ordered events.

A run of a p/t-net N is given by an LPO with event labels referring to transitions,
such that the events can occur, respecting the concurrency and dependency relations
of the LPO. Thus, a run describes executable behaviour of the net in the sense that
the transition occurrences given by the events are possible in the net, only using the
dependencies specified by the run for the flow of tokens. The set of all runs of N is
denoted by Lpo(N).
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Definition 4 (p/t-net). A (marked) p/t-net is a quadruple N = (P, T, W, m0), where
P is a finite set of places, T is a finite set of transitions satisfying P ∩ T = ∅, W :
(P×T )∪(T×P ) → N is a weight function defining the flow relation, and m0 : P → N

(N denotes the non-negative integers) is an initial marking.
A multi-set of transitions τ : T → N is called a step (of transitions). A step τ is

enabled to occur (concurrently) in a marking m : P → N of a p/t-net if and only if
m(p) ≥ ∑

t∈τ τ(t)W (p, t) for each place p ∈ P . In this case, its occurrence leads to

the marking m′(p) = m(p) +
∑

t∈τ τ(t)(W (t, p) − W (p, t)), abbreviated by m
τ−→

m′. A finite sequence of steps σ = τ1 . . . τn, n ∈ N, is called a step occurrence
sequence enabled at m and leading to mn, denoted by m

σ−→ mn, if there exists a
sequence of markings m1, . . . , mn such that m

τ1−→ m1
τ2−→ . . .

τn−→ mn.
Given an LPO lpo = (V, <, l), two events v, v′ ∈ V are called independent if

v < v′ and v′ < v, denoted by v co v′. A co-set is a subset C ⊆ V fulfilling: ∀v, v′ ∈
C : v co v′. A cut is a maximal co-set. For a co-set C and an event v ∈ V \C we write
v < (>)C, if v < (>) v′ for an element v′ ∈ C and v coC, if v co v′ for all elements
v′ ∈ C. Given a marked p/t-net N , an LPO lpo = (V, <, l) with l : V → T is called
a run of N if m0(p) +

∑
v∈V ∧v<C(W (l(v), p) − W (p, l(v))) ≥ ∑

v∈C W (p, l(v))
for every cut C of lpo and every place p. The set of runs of a p/t-net N is defined by
Lpo(N) = {(V, <, l) | (V, <, l) is a run of N}.
A p/t-net N synthesized from a specified composed run R by the algorithm presented
in [6] is a best upper approximation to R in the sense that

– Lpo(R) ⊆ Lpo(N) and
– ∀(N ′) : (Lpo(R) ⊆ Lpo(N ′)) =⇒ (Lpo(N) ⊆ Lpo(N ′)).
Synthesizing an upper approximation is useful, because the behaviour explicitly

specified by R should definitely be included in the behaviour of the synthesized model.
The best upper approximation property ensures that only necessary additional behaviour
is added to the synthesized net. Thus, computing a best upper approximation may be
seen as a natural completion of the specified behaviour R by a Petri net.

After the generation of a process model in this way, in a follow-up validation step
runs of the synthesized net which have not been specified are visualized. An expert is
interactively asked whether these runs are legal or not. In the positive case, they are
added to the specification. In the negative case, changes of the net to prohibit such runs
are proposed to the expert. These changes always have the problem that the changed
net does not anymore allow all specified runs. But it is possible to automatically com-
pute such changes which prohibit a minimal number of specified runs. Additionally,
since the specified behaviour is often incomplete and also the synthesized net tends to
be incomplete, reasonable continuations of runs of the net are generated following cer-
tain heuristics and presented to the expert. The applied technique is deduced from the
concept of wrong continuations [14,8,11]. Runs of the net are extended by appropriate
events, and it is asked whether such additional runs model intended behaviour or not.
To only propose a reasonable choice of such possible additional runs, different heuris-
tic criteria such as considering runs occurring only once as a wrong continuation of the
specified behaviour or runs prohibited by certain places can be applied. If such runs
are desired, the net is changed accordingly and the runs are added to the set of runs
specifying the process.
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Finally, further heuristics to improve the readability of the net, as e.g. known from
process mining [9], as well as partial order based validation techniques, as e.g. sup-
ported by VipTool [4], and verification techniques can be applied to further improve the
process model.

5 Hierarchy

For large processes, knowledge about the process and its behaviour is often distributed
in several involved people’s minds. Some domain experts might have knowledge about
the general process where single activities are on a high level of abstraction and have to
be refined. Providing runs of this process leads to a corresponding model. Other people
might know the behaviour of some details of the process, i.e. about the refinement of an
activity of the main process, which defines a subprocess.

The paper [12] deals with synthesis of process models from this kind of distributed
knowledge on process behaviour on different abstraction levels. Its results are mainly
based on the observation that for partial order behaviour (in contrast to sequential order
behaviour) subprocesses and the main process can first be synthesized independently
and then be integrated. This section provides the core idea of this approach.

In the underlying design procedure, a special class of Petri nets is considered to
model processes: connected p/t-nets with two distinguished sets of input and output
transitions. In Figure 7 such nets are shown, where the input (output) transitions are
depicted with two ingoing (outgoing) arcs.

Actually, in [12] no arc weights are considered. Moreover, the nets are required to
have a certain 1-boundedness property (no reachable marking assigns more than one
token to a place). The aim is that input and output transitions strictly alternate. This
property ensures that the refinement step of the design procedure is correct. In [14],
we show how 1-boundedness can be guaranteed by the considered synthesis algorithm.
Nevertheless, in the present paper we consider the definition of processes based on
general p/t-nets, because the synthesis algorithm is a lot more efficient in this case
[15,10,8] (it is possible to apply fast standard linear programming techniques, while in
the case of 1-boundedness integer linear programming methods are needed). To still
allow the refinement procedure for transitions from [12], it has to be ensured that never
a second instance of some subprocess is started (by an initial transition) before a prior
instance of the same subprocess is finished (by a final transition). This can be achieved
by adding to a transition t, before it is refined, a self-loop place pt with W (pt, t) =
W (t, pt) = m0(pt) = 1. Refining t by a subprocess, the place pt has an outgoing arc
with weight one to every input transition of the subprocess and an ingoing arc with
weight one from every output transition of the subprocess (see Figure 7). Now we can
guarantee the desired property by requiring that in the subprocess extended by pt, input
and output transitions can only occur strictly alternatingly, i.e. it is not possible that
two input transitions occur without an intermediate output transition and vice versa. To
avoid deadlocks, it additionally has to be required that from each reachable marking of
the subprocess extended by pt, there is a firing sequence including an output transition.

Formally, the refinement steps in our setting are defined as follows: We consider one
main process. A subprocess refines a transition (to which a self-loop place was added)
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Fig. 7. Top: Two abstract processes. Bottom: The refinement of the left process w.r.t. t and the
right process.

which either belongs to the main process or to another subprocess. It replaces the transi-
tion, the transition’s input places are connected to the input transitions of the subprocess
with arcs having the same weights, whereas the output transitions are connected to the
output places of the transition by arcs having the same weights (see Figure 7). If we
require the above behavioural restrictions for the subprocess, the external behaviour of
the subprocess resembles the behaviour of the transition, with the difference that first
the input tokens are consumed and later the output tokens are produced. That means,
the behaviour of the main process is preserved when refinement is applied. The order
of refinements does not matter.

Definition 5 (refinement). A process net is a connected p/t-net (P, T, W, m0) with two
distinguished sets of input and output transitions Ti, To ⊆ T .

Let N = (P, T, W, m0) be a process net with a transition t and let N t = (P t, T t,
W t, mt

0) be a process net with input transitions T t
i and output transitions T t

o . Assume
w.l.o.g. that the elements of P and of P t as well as of T and of T t are disjoint. The
refinement of N w.r.t. transition t and process N t is defined as (P ∪ P t, T ∪ T t \
{t}, WN,Nt, m0 ∪ mt

0), where WN,Nt is defined by

WN,Nt(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W (x, y) if x, y ∈ P ∪ T \ {t},
W t(x, y) if x, y ∈ P t ∪ T t,
W (x, t) if x ∈ •t ∧ y ∈ T t

i ,
W (t, y) if x ∈ T t

0 ∧ y ∈ t•,
0 otherwise .

It only remains to tune the considered synthesis algorithm to the definition of process
nets. The sets of input and output transitions have to be regarded in the synthesis algo-
rithm to create reasonable process models.

Therefore, first the sets of input transitions Ti and output transitions To have to be
defined. To ensure that a process starts with an input transition, finishes with an output
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transition and in between no input and output transitions occur, we require for the spec-
ification given by the composed run R that
• every non-empty LPO (V, <, l) in the set of runs Lpo(R) of R contains exactly
one event v0 ∈ V (called initial event) labelled by an input transition of the process
(l(v0) ∈ Ti),
• the initial event v0 of every non-empty LPO (V, <, l) ∈ Lpo(R) is a unique minimal
event, i.e. it fulfills v0 < v for every v ∈ V \ {v0},
• every LPO (V, <, l) in the set of runs Lpo(R) of R which is not prefix of another
LPO in Lpo(R), called maximal LPO of Lpo(R), contains exactly one event vmax ∈ V
(called final event) labelled by an output transition of the process (l(vmax) ∈ To),
• the final event vmax of every maximal LPO (V, <, l) ∈ Lpo(R) is a unique maximal
event, i.e. it fulfills v < vmax for every v ∈ V \ {vmax}.
With these requirements, it is ensured that a net synthesized from R∗ (∗ is considered
because a subprocess can be invoked arbitrarily often) fulfills the above behavioural
requirements for subprocesses.

In the running example of the business process of an insurance company, the only
input transition is ”Receive Claim” and the only output transition is ”Complete Claim”.
Therefore, the formulated requirement is fulfilled by our example composed run shown
in Figure 4.

Figure 7 shows an example of a subprocess net refining a transition of a main process.
Notice that this subprocess is equipped with a memory feature: In the first invocation
of the subprocess, only the sequence cd is executable, in a second invocation only ab
is possible, in a third one again cd, and so on. This memory feature was not possible
if we would expect the subprocess to start with the empty marking, as it is the case for
workflow nets [1].

6 Case Study and Tool Support

In this section we briefly illustrate the proposed synthesis procedure by the small case
study which was already used for examples. We recently implemented appropriate syn-
thesis features into our Petri net toolset VipTool, which offers a flexible xml-based open
plug-in architecture. New plug-ins of VipTool allow to graphically specify a composed
run and then to automatically synthesize a net from such specification. The refinement
aspects of the business process design procedure of [12] are not yet supported by Vip-
Tool. Thus we consider the generation of a main process to show the applicability of
the implemented synthesis algorithm.

The new editing functionalities for composed runs allow to compose LPOs drawn
with other plug-ins of VipTool by respective composition operators. The composition of
LPOs is graphically supported by a visualization of composed runs by block structures
as introduced in this paper (compare Figure 4). The new editor also offers an alternative
visualization in the form of UML activity diagrams (see Figure 8). The new algorithm
to synthesize a net from a composed run is described in [16]. It combines the idea of
wrong continuations of LPOs [14,11], which proved to yield nice synthesis results, with
the notion of regions introduced in [6]. A synthesized net can be loaded, visualized,
layouted, edited and analyzed by other plug-ins of VipTool.
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Fig. 8. Screenshot of VipTool showing the composed run from Figure 4 represented as an activity
diagram and the corresponding run segments drawn in VipTool

Figure 8 shows the specification of the running example depicted as an activity di-
agram in VipTool. The possible runs of this workflow have been depicted in Figures
2 and 5. The workflow starts by receiving a claim submitted by a client, followed by
two concurrent activities ”Assign Claim Expert” and ”Register Claim” (segment ”Reg-
istration”). The first one models the assignment of a claim expert in charge for this
claim, the latter is concerned with the registration of the client and the loss form. Then,
concurrently reserves for the claim are established (segment ”Reserves”) and the evalu-
ation of the claim is started. The evaluation comprises four alternative runs. Each begins
with two concurrent activities ”Check Damage” and ”Check Insurance”. ”Check Insur-
ance” represents checking validity of the clients insurance, ”Check Damage” models
checking of the damage itself. The segment ”Positive Evaluation” models the situation
that both checks are evaluated positively, meaning that an acceptance letter is sent af-
ter the two checks. If one evaluation is negative, the company sends a refusal letter.
Thus, the activity ”Send Refusal Letter” is performed after the two ”Check” activi-
ties if one is evaluated negatively (segment ”Negative Evaluation 1”). If a negative
evaluation of one ”Check” activity already causes sending a refusal letter, while the
other ”Check” activity has not been performed yet, this second ”Check” activity has
to be disabled (i.e. it does not occur in a respective run), since it is no more neces-
sary (segments ”Negative Evaluation 2” and ”Negative Evaluation 3”). In the case of
a positive evaluation, either the damage is immediately estimated and payed (segment
”Payment”), or before the damage is estimated additional queries to improve estima-
tion of the loss (segment ”Queries”) are repeatedly asked until sufficient information
is collected. If the evaluation of the claim (including possibly paying the damage) and
the segment ”Reserves” are finished, the process can be completed by the segment
”Completion”.

Figure 9 shows the net automatically created with the synthesis algorithm of VipTool
from the specification depicted in Figure 8 (actually the synthesis algorithm generated
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Fig. 9. Screenshot of VipTool showing the user interface of the editor for Petri nets

two more places which have been deleted by a plug-in of VipTool searching for im-
plicit places). Although the net seems to be complex on the first glance, it represents
a very appealing model of the described business process. In fact, the net exactly has
the specified behaviour (no additional, not specified runs) and there is no more compact
possibility to describe the complex control flow of this business process by a Petri net.

The example illustrates that directly designing a Petri net model of a business process
is often challenging, while modelling runs and synthesizing a net is more easy. Manu-
ally developing a complex Petri net such as our example net for the described workflow
is an error-prone task.

7 Discussion

In the field of software engineering, the main approaches to system modelling have
been structured analysis and structured design, developed in the late 1970’s, as well as
object-oriented analysis and design, starting in the late 1980’s [17]. In the 1990’s it was
recognized on a broad front that requirements engineering – the elicitation, documenta-
tion and validation of requirements - is a fundamental aspect of software development
and requirements engineering emerged as a field of study in its own right. Scenarios,
firstly introduced by Jacobson’s use cases [18], proved to be a key concept for writ-
ing system requirements specifications. Important advantages of using scenarios in re-
quirements engineering include the view of the system from the viewpoint of users,
the possibility to write partial specifications, the ease of understanding, short feedback
cycles and the possibilities to directly derive test cases [19,20]. Modelling software
systems by means of scenarios received much attention over the past years. The dozens
of popular scenario notations including e.g. the ITU standard of Message Sequence
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Charts, UML Sequence Diagrams, UML Communication Diagrams, UML Activity Di-
agrams and UML Interaction Overview Diagrams as well as Live Sequence Charts, are
an evidence for this development. Several methodologies to bridge the gap between the
scenario view of a system and state-based system models, which are closer to design
and implementation, have been proposed [21,22]. There are analytic, fully-automated
synthetic and interactive synthetic software engineering methods to construct design
models from scenarios. In a more radical approach [17] it is even suggested that a sce-
nario specification may be considered not just the system’s requirements but actually
its final implementation.

In this paper we suggested focusing on scenarios to design business processes. Look-
ing at scenarios to specify the requirements of a business process has similar advantages
as in the software engineering domain. We developed a comprehensive methodology to
model business processes which on the one hand regards the specifics of business pro-
cesses and on the other hand exploits the benefits of scenario modelling. The approach
starts by specifying example scenarios of the process in terms of (composed) runs
and establishing respective necessary preconditions and relationships. Then a fully-
automated synthesis algorithm generates a Petri net model of the process from the
example scenarios which is afterwards interactively adjusted. In the domain of busi-
ness processes modelling such construction methodology of process models focusing
on example scenarios is an innovative approach. Most of the methods known from soft-
ware engineering are not suited for business process design, because there are several
differences which have to be regarded. E.g., in software modelling [17,22,21] the fo-
cus is on components or objects, communication (dependencies) between components
and the distinction between inter- and intra-object behaviour, while in business process
modelling [1,2,3] the emphasis is on global activities, dependencies through pre- and
post-conditions of activities, and resources for activities. Modularity comes into play
by appropriate refinement and composition concepts. In business process modelling so
far (partially ordered) scenarios have only rarely been used and their application was
restricted to analysis of process models, e.g. [4,23]. An exception, where scenarios are
directly used in the design phase, is process mining [9]. But usually process mining
is very much adjusted to scenarios of event logs and restricted to sequential scenar-
ios. Nevertheless, there is one approach, called multi-phase mining [24,25,26], where
the final phase [25] algorithmically generates a process model from a finite collection
of arbitrary partially ordered scenarios given e.g. by instance EPCs [25] or message
sequence charts [26] (by directly translating dependencies from the scenarios to the pro-
cess model). In contrast to this approach, we build our modelling methodology on for-
mal methods known from Petri net synthesis [8,6]. The advantage compared to [24,25]
is that our approach generates reliable results for all kinds of specifications (also in the
presence of very complex routing structures). However, our techniques may be inferior
w.r.t. performance issues.

8 Future Research

Results from practical application and evaluation will be important for further develop-
ment of our methodology. The suggested approach to design business processes is based
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on several assumptions, but we believe that it could be helpful in many cases. However,
this research is still in an initial phase and we do not have experiences from real ap-
plications. Future work includes defining of success criteria and empirical research.
In particular, it would be interesting to identify and characterize settings in which our
approach is superior to other approaches.
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Abstract. Today’s collaboration in e-science and business environments is no
longer limited to the boundary of a single organization. People belonging to dif-
ferent organizations collaborate together to achieve a common goal by establish-
ing virtual teams. The current trend is to rely on SOA-based tools and services
for virtual teams and their collaborative processes because SOA offers many tech-
nologies to simplify the integration and interoperability of services belonging to
different organizations and to allow the user to easily access existing services
and tools. In complex environments comprising distributed software services and
people, we need to understand how people and software services interact in or-
der to adapt activities and services to the change of their operating environments
as well as to allow them to self-manage their behaviors during the collabora-
tion. We observed that there is a lack of tools supporting the analysis of interac-
tions in such ad-hoc collaborative processes at runtime. In this paper we present
our VOIA(Vienna Online Interaction Analysis) framework which aims at analyz-
ing interactions within collaborative processes in SOA-based environments. We
present a comprehensive list of interaction metrics and patterns associated with
ad-hoc collaborations and techniques used to determine these metrics and pat-
terns. We discuss how metrics and patterns can be used in process adaptation and
illustrate VOIA’s capabilities with several experiments.

1 Introduction

Today’s collaboration in e-science and business environments is no longer limited to
the boundary of a single organization. People belonging to different organizations col-
laboratively work together to achieve a common goal. In this context, they establish a
team, often a virtual team [1], and conduct a collaborative process implementing their
common goal. The current trend is to rely on SOA (Service-Oriented Architecture) to
implement tools and services for virtual teams and their collaborative processes be-
cause SOA offers many technologies to simplify the integration and interoperability of
services belonging to different organizations and to allow the user to easily access ex-
isting services and tools. Examples of such SOA-based collaboration tools and services
are the inContext [2], ECOSPACE [3] and COIN [4] systems. Given these systems, one
important aspect is to understand how people and software services interact in order to
adapt activities of people and software services to the change of their operating environ-
ments as well as to allow them to self-manage their behaviors during their collaboration.
Hence, metrics and patterns associated with interactions are a valuable source of infor-
mation. An interaction metric is a quantitative measure that can be used to characterize

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 260–277, 2009.
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and evaluate how an individual service or human is involved in interactions with an-
other service or human1. We consider an interaction pattern as a reoccurring structure
of interactions that is analyzed from a set of interactions, for example, the interactions
among a set of services might follow a one-to-many model [5].

While existing research has been focused on defining and detecting patterns in work-
flows [5,6,7,8,9,10,11], most of them concentrate on rigid, well-defined processes and
workflows in businesses and aim at supporting offline workflow mining. Support for
runtime analysis of patterns in dynamic collaboration environments has got little atten-
tion. In complex, dynamic collaboration environments, ad-hoc collaboration processes
are not pre-defined; their dynamic, ad-hoc activities are defined on-demand. These ac-
tivities may be combined with well-defined workflows and composition patterns, but
not necessarily. In such environments, metrics and patterns characterizing the collabo-
ration and its activities are relevant because they can provide valuable insights into the
collaborative process to support runtime adaptation. However, existing offline mining
techniques are not suitable because they are not designed (and cannot be tested) with
evolving collaborative processes. Existing mining techniques typically require complete
log data and do not deal with runtime aspects, such as runtime processing data from var-
ious services and runtime provisioning of interaction metrics and patterns. Furthermore,
most existing work focus on either human-to-human interactions (e.g., social networks
analysis) or service-to-service interactions (e.g., performance analysis or service inter-
action pattern analysis), whereas SOA-based collaboration environments include diverse
types of interactions among humans and services that should be considered together.

Runtime analysis of interactions in such environments poses many research chal-
lenges. First, data is obtained and analyzed while the collaborative process just contin-
ues to evolve as new activities emerge. This requires us to deal with different types of
events collected at different levels, such as activities, interactions and service-specific
events. Secondly, metrics and patterns have to be determined for both humans and soft-
ware services according to different needs of clients, such as determining metrics and
patterns based on collaboration contexts, e.g., in individual, group or the whole collab-
oration levels, and on user-specific conditions, e.g., in particular time period and with
a specific threshold. All these challenges imply that runtime analysis frameworks must
be flexible and customized: new metrics and patterns analyses can be easily added and
analysis requests are user-customized. Currently, there is a lack of such frameworks
supporting tools for detecting metrics and patterns in collaborative work. Providing
such metrics and patterns to clients at runtime is what motivates our work. In this pa-
per, we contribute to techniques to support online interaction analysis for collaborative
processes in SOA-based environments, namely (1) a classification of interaction met-
rics and patterns covering human-to-human, human-to-service, and service-to-service
interactions at different levels, and (2) the design and implementation of a flexible and
customizable software framework supporting runtime interaction analysis.

The rest of this paper is organized as follows: Section 2 presents related work. We
describe a motivating scenario in Section 3. Preliminaries on terminologies and models
are presented in Section 4. Section 5 describes a holistic view of interaction metrics
and patterns. The architecture and implementation of VOIA is presented in Section 6.

1 For metric definition, see http://en.wikipedia.org/wiki/Metrics, last access: 26 August 2008.
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Interaction analysis techniques are detailed in Section 7. Section 8 presents experiments
to demonstrate VOIA. Section 9 summarizes the paper, presents remaining issues, and
gives an outlook to the future work.

2 Related Work

In our work, we develop techniques to determine metrics and patterns in collabora-
tive processes carried out by teams. A collaborative process includes various activities
which are associated with humans, artifacts, and software services. Our approach is to
study the interaction at multiple levels of abstraction, from the way how humans use ser-
vices, to how services interact with each other, and how a human interacts with another
human through the utilization of services.

Some existing works analyze and define patterns for workflows and services [8,5]
and (performance) metrics for workflows [12]. Understanding workflows and business
processes has attracted a lot of research efforts. This includes, for example, research
on performance monitoring and analysis of workflows [13,12] and on mining of work-
flow logs [6]. Tools and techniques for monitoring and analyzing performance of Web
services focus on extracting logs comprising of service invocations and analyzing the
logs to provide performance metrics. However, they focus on metrics associated with
individual services, rather than with interaction patterns. When analyzing performance
metrics associated services, we apply well-defined metrics from existing works, such
as in [12], and focus on the analysis of patterns.

Recent work on mining workflow logs, especially work done by van der Aalst et al.,
has introduced several novel techniques to determine the relationship between humans
and services. ProM [6] introduces many process mining features. Information can be
shown, e.g., using social network and clustering. Several issues such as analyzing the
conformance between a process model and its execution logs [14] are addressed. [15]
discusses how to apply process mining to less structured processes in CSCW (Computer
Supported Cooperative Work) systems. These works, however, do not support online
analysis of dynamic collaborations. We note that although activity-based collaboration
systems exist [16], they do not support the analysis of the collaboration.

In our previous works [17,11,10], we focus on the analysis of patterns in well-defined
workflows and email activities. In [17], we have discussed the importance of mining
patterns at multiple levels of abstraction. These papers addressed Web service logging,
workflow structure discovery and session reconstruction. Patterns, like proxy and bro-
ker, and social network were presented and patterns, like proxy and broker, were de-
tected from social networks. We have reused previous patterns. However, neither the
analysis of patterns in collaborative work in SOA-based environments nor the online
interaction analysis has been performed. In particular, the analysis of patterns in this
paper differs from these works. Patterns are not detected from social networks but from
streams of events during runtime. Furthermore, these works focus on the analysis of
particular patterns, rather than provide a classification of patterns and metrics and a
generic software framework which is flexible and customizable.

Recently, the concept of complex event processing (CPE) [18] has been utilized to
analyze complex events in SOA environments. However, CPE frameworks, such as Es-
per [19], just provide fundamental tools for handling complex events and existing work
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focuses on detecting service behaviors through events. We utilize Esper for filtering and
matching events and implementing primitive metrics and patterns analysis.

In this paper, we focus on analyzing patterns for collaborative work, rather than on
the definition of patterns which are well addressed elsewhere [8]. One of the major dif-
ferences between our work and existing work is that existing work focuses on offline
analysis with the assumption that logs are produced by existing workflow systems. Our
work differs as we focus on online analysis. Our assumption is that in modern collab-
oration, collaborative work is continuously being performed. Thus, interaction analysis
tools are required during runtime.

3 Collaboration Scenario and Research Approach

In our work, we consider dynamic collaboration environments in which teams utilize
different collaboration services for their collaborative work. Team members define and
perform activities which require the involvement of many other services and humans.
The upper part of Figure 1 illustrates the dynamic collaboration environment, for exam-
ple, in the inContext project [20]. In such an environment, both humans and software
services exist. Humans use services to perform their activities, while services can in-
teract with each other to fulfil requests from humans. Services will follow the SOA
model, thus they can be easily integrated together, providing seamless access virtu-
ally from anywhere. The SOA-based service model also simplifies the monitoring and
maintenance of services, making the acquisition of multiple sources of log information
at different levels in the widely distributed system possible and easier.

Using services, people perform their collaboration, of which processes are typi-
cally not modeled beforehand. Furthermore, the execution of collaborative processes is
continuous and evolving, thus in many cases we will not know in advance when a
process finishes. Interactions between humans and services are highly concurrent and
distributed as multiple activities are executed in parallel. These activities involve ser-
vices and people spanning different geographical locations and organizations. There-
fore, offline analysis, which either requires complete, centralized information or the
completion of the process in order to analyze the process, is not suitable. In addition,
the need for adapting activities of and resources for collaboration is required at runtime,
due to highly dynamics of modern collaborations (e.g., team member is often on the
move). Thus, online analysis techniques are more suitable. The middle part of Figure 1
shows that the Online Interaction Analysis analyzes log events obtained from services
and provides metrics and patterns back to the services in the dynamic collaboration
environment.

However, online interaction analysis for such an environment is a very challenging
task due to highly concurrent and distributed actions, such as concurrent executions of
distributed services, concurrent interactions among services and humans, and concur-
rent requests from various clients. Which metrics and patterns associated with inter-
actions are useful for optimizing collaborative work and resources used for the work
at runtime? How can we correlate metrics and patterns from different levels of col-
laboration context, such as individual, group and the whole collaboration? How do we
support the customization of metrics and patterns analysis so that different clients can
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Fig. 1. Online interaction analysis environment and metrics/patterns view

utilize the metrics and patterns differently? How to handle diverse events from various
services? How to manage and provide these metrics and patterns to concurrent clients
at runtime? We propose to provide a holistic view of patterns and metrics associated
with services and interactions at multiple levels, ranging from the individual (services
or human), to the group (of humans or services or the mix of them), and to the whole
collaboration. The bottom part of Figure 1 shows the holistic view of interaction met-
rics and patterns that are associated with interactions. Then, we determine metrics and
patterns based on different levels, client requests and periods of time, and provide and
manage XML-based metrics and patterns at runtime.

4 Models

Before describing metrics and patterns and the analysis framework, in this section, we
present our models of activities and services and humans in collaborations and data
required for the interaction analysis.

4.1 Activity, Service, and People in Collaboration

In our model, collaboration is defined as a joint work between different people. Collab-
oration can be simple, e.g., including only a single task like review of a
document, or complex, e.g., a real project. An activity describes a task of a collabora-
tion, for example, review a document. An activity may consist of sub activities,
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but we do not distinguish between atomic activity and composite activity. An activ-
ity specifies various related information required for the execution of the activity. An
activity instance represents all information associated with a particular execution of an
activity; information includes, for example, start and end times, initiator, and associated
service instances. An activity might be associated with a set of activity instances. Given
an activity, we capture all changes in activities and activity instances in activity events.

A collaboration service is a service that is used in the collaboration; collaboration
services are involved in the execution of activities. Collaboration services can be used
to communicate between two team members, such as Notification Service and
Instant Messaging, to host files such as Document Repository Service,
and to store and manage activities such as Activity Store Service. Furthermore,
there are middleware services which provide facilities for the operation of the collab-
oration such as Service Registry and Logging Service. In our model, we
assume that services are well-defined based on the SOA principle. Most services are
SOAP-based or RESTful (however, in our implementation, we tested only with SOAP-
based services). Service instance is a particular deployment and running of a service in
a particular hosting environment. A service invocation is a particular invocation of a ser-
vice operation of a service instance. Information about service invocations is captured in
interaction events. An interaction event consists of information related to the invocation,
such as request and response message, service endpoint reference, consumer endpoint
reference, etc., which are captured at the level of the hosting environment without the
knowledge of service instances (e.g., by using SOAP intercepting mechanism). Further-
more, a service instance can also provide application-specific events about its operation.
We call such events service events.

During a collaboration, people can initiate an activity, perform an activity or receive
a message and handle the message sent by other people. In our model, we assume that
a person defines a flow of activities that he/she has to perform. In our work, activities
within a collaboration might be modeled in advance and executed in a pre-defined order
or defined on-demand. Therefore, we do not assume that the structure of the collabora-
tion and its execution order are known beforehand. Rather, we consider a collaboration
to be a set of activities. The goal of this paper is to use online analysis techniques to
detect metrics and patterns associated with interactions among humans and services in
collaborations, but not on the detection of the process structure of the collaboration (like
the work on discovering workflow structure from logs [21]). How to execute, manage
and change the activities and the flow of activities are beyond of the scope of this paper.

4.2 Data for Interaction Analysis

To analyze collaboration processes, we rely on three sources of events: activity events,
interaction events, and service events. In the following, we discuss the structure of data
used in our online interaction analysis.

Each activity in our model is identified by a unique activityURI. When an actor
performs an action to change the status of an activity, such as executing or delegat-
ing the activity, an event will be fired. In principle, we can use any activity model in
collaboration, such as IBM UAM (Unified Activity Model) [16], Caramba [22] or the
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inContext Activity Model2 to define activities. In our implementation, we use the in-
Context Activity Model which can be used to describe artifacts, involved people, and
resources in detail. Given an activity event describing actions related to activities and
activity instances, we assume that the activity event includes activityURI .

As mentioned before, an activity event describes changes in an activity and activity
instance. This kind of event is captured by the Activity Store Service which
maintains existing activities and by Activity Execution Service which exe-
cutes the activity. Listing 1.1 presents a sample of an activity event which indicates that
an activity has been created.

<a c t i v i t y E v e n t x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"
ac t ionURI ="http://www.in-context.eu/ns/action/tCoordinationAction#6575"
a c t i v i t y U R I ="http://www.in-context.eu/Activity/Activity#226"
t imes tamp ="1207840402595">

<ExecutedByFoafAgent>
h t t p : / /www. v i t a l a b . tuwien . ac . a t / p r o j e c t s / i n c o n t e x t / TEST LINH1# M ar t in

</ ExecutedByFoafAgent>
<C o o r d i n a t i o n T y p e>

<Act iv i tyChangeT ype>C r e a t e</ Ac t iv i tyChangeT ype>
</ C o o r d i n a t i o n T y p e>

</ a c t i v i t y E v e n t>

Listing 1.1. Example of an activity event

The second source of data used in the analysis is the interaction event which is cap-
tured in the Web services hosting environment. By using Web services handlers and
SOAP interceptors, we can collect low level data of Web services invocations, such as
SOAP messages. From this data, interaction events are generated and provided as an
input for the analysis process. Activity events can be correlated to interaction events by
using activityURI (for example, in the inContext project, the client modified the
SOAP message header to include activity-related information). Listing 1.2 presents an
example of an interaction event.

<I n t e r a c t i o n E v e n t>
<c l i e n t E n d p o i n t>8 5 . 1 8 . 4 8 . 3 4</ c l i e n t E n d p o i n t>
<m e s s a g e C o r r e l a t i o n I D>000 a1460−25ba−4fa8−b766−9c3b50aa8c2b</ m e s s a g e C o r r e l a t i o n I D>

<messageType>Response</ messageType>
<s e r v i c e E n d p o i n t>h t t p : / / srvweb02 . s o f t e c o . i t / cg i−b i n / SOAP . c g i / Eadt / Tasks / D o c S e r v i c e
</ s e r v i c e E n d p o i n t>
<e v e n t S o u r c e I D>AL−invoke@128 . 1 3 1 . 1 7 2 . 2 0 8</ e v e n t S o u r c e I D>

<t imeStamp>1207212091812</ t imeStamp>
</ I n t e r a c t i o n E v e n t>

Listing 1.2. Example of interaction event in which not all entries are available

The third source of events is service event which is provided by specific services.
This type of events is optional and dependent on specific services. Since our goal is to
provide a client-customized mining system, VOIA is designed to accept specific service
events. However, the analysis of the patterns and metrics related to service-specific
events are left to the client.

2 http://www.in-context.eu/uploads/files/20070530D4.2v1.0Design20and20implementation20
of20Context20Tunnelling.pdf
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5 A Holistic View of Interaction Metrics and Patterns

Understanding interactions among humans and services in collaborative work high-
lights characteristics of not only individual humans and services but also of groups of
them as well as the whole collaboration. For providing useful information in under-
standing interactions and in adapting the collaboration based on interactions, we focus
on defining and providing quantitative information associated with interactions.

We classify three kinds of interactions associated with humans and services within
the dynamic collaboration environments:

– Service-to-service interaction: is the interaction between two services, e.g., a ser-
vice si calls another service sj .

– Human-to-service interaction: is the interaction between a human and a service,
e.g., how services are selected and used by a human. By saying human-to-service
interaction, we mean a person needs and uses a service for his/her activities.

Table 1. Examples of interaction metrics and patterns for service-to-service

Level Metric/Pattern Name Description
Individual ExecutionTime The average execution time of a service.

NumServiceCalls The number of invocations of a service.
NumUnavailableCalls The number of times unavailability.
NumFailureCalls The number of failures.
NumConsumers The number of consumers that call a service.

Group ServiceInteraction The interaction between two services,
ServiceInteraction(si, sj), represents the num-
ber of times that service si calls service sj .

UsageDistribution The percent of usages distributed among services.
UsageIsolatedPattern Reflect whether a service is typically used in an isolated

manner. Let Sj be a set of services invoked by a service
s. Service s is in an isolated manner when count(Sj) <
τ where ServiceInteraction(s, sj) > 0, ∀sj ∈ Sj . τ
is a user-defined threshold and count(Sj) is the number
of services in the set Sj .

UsageCompositePattern Reflect whether a service is typically used together
with other services in activities. Let Sj be a set
of services invoked by a service s. Service s is in
a composite manner when count(Sj) > τ where
ServiceInteraction(s, sj) > 0, ∀sj ∈ Sj , τ is a
user-defined threshold.

OneToManyPattern Related to one-to-many invocation, also called as one-
to-many send, multicast, or scatter [5]. Let Sj be a set
of services invoked by a service s. Service s and Sj are
in this pattern when ServiceInteraction(s, sj) > τ ,
∀sj ∈ Sj , within a period of time t. t and τ are user-
defined values.

Collaboration as in the Group level Similar to those in the group level but they are deter-
mined based on all information available in the collabo-
ration.
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Table 2. Examples of human-to-service interaction metrics and patterns

Level Metric/Pattern Name Description
Individual UsageTime Describe how much time that a human uses a service.

NumHumanServiceCalls Number of service invocations initiated by a human.
TypicalServiceUsageTime Identify the typical usage time that a human uses a ser-

vice by eliminating outliers and calculating the mean
value of a data set of UsageTime for the service.

UsageCompositePattern Reflect whether a set of services is used together by a
human. Services {s1, · · · , sn} are considered in this
pattern when they are called by a human h in a pre-
defined period of time.

Group HumanServiceInteraction The interaction between a human and a service,
HumanServiceInteraction(h, s), represents the
number of times that human h calls service s.

UsageDistribution Given a human, it reflects the usage distribution
among services he/she calls.

DurationUsage Determine the typical usage time that a human uses a
service.

Collaboration as in the Group level Similar to those in the group level but they are deter-
mined based on all information available in the col-
laboration.

– Human-to-human interaction: is the interaction between human and human, e.g.,
how a team member interacts with another one in order to perform activities. We de-
termine interactions between two persons only by means of analyzing services they
use in their communication and collaboration, e.g., Notification Service.

This classification differs from other works which focus on either human-to-human
interactions (social networks) or service-to-service interactions by considering all types
of interactions among humans and services. This consideration is necessary as these
types of interactions are inherent in collaboration processes. Metrics and patterns are
associated with these types of interactions. However, unlike other works which typi-
cally do not consider global versus local views on metrics and patterns, in our work, for
each type of interaction, metrics and patterns are determined for specific time period
at three levels: individual (for individual human or service), group (a team or a set of
services), and collaboration (all available services and humans within a collaboration).
This way takes into account the context of the collaboration in determining the metrics
and patterns. The main reason is that interactions of a particular human or service are
dependent on the context of the collaboration, such as a human might typically act as a
proxy in a group but not in another group or within a set of services, a service might be
well utilized, but not in the global view. Therefore, metrics and patterns characterizing
the interactions should be determined differently. The metrics and patterns associated
with three types of interactions at three levels provide a holistic view of interaction met-
rics and patterns in VOIA. This view allows us to utilize metrics and patterns differently,
dependent on specific purposes and contexts.
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Table 3. Examples of interaction metrics and patterns for human-to-human interaction

Level Metric/Pattern Name Description
Individual NumCallers Number of callers.

NumCallees Number of callees.
NumInteractions Number of interactions.
NumAssignedActivities Number of assigned activities.
NumDelegatedActivities Number of delegated activities.
BrokerIndicator Determines the broker role of an individual.
ProxyIndicator Determines the proxy role of an individual.
MasterIndicator Determines the master/slave role of an individual.

Group TotalInteractions Total number of interactions.
AvgNumCallers Average number of callers in a group.
AgvNumCallees Average number of callees in a group.
AvgNumHumanInActivity Average number of human involved in an activity.
BrokerPattern Related to broker pattern [10], including number of

broker patterns, the structure of the broker pattern.
ProxyPattern Related to proxy patterns [10], including number of

proxy patterns,the structure of the proxy pattern.
MasterSlavePattern Related to master/slave pattern [10], including num-

ber of master/slave patterns, the structure of the mas-
ter/slave pattern.

CoauthoringPattern Related to co-authoring pattern, including the struc-
ture of co-authoring pattern. Two members hi and hj

are in a coauthoring pattern when they both work on
the same n activities, n is a user-defined value.

Collaboration as in the Group level Similar to those in the group level but they are deter-
mined based on all information available in the col-
laboration.

Note that the list of patterns and metrics is non exhaustive and many of them are
common, well-understood and presented in literature [17,11,10,6,8,5,12]. Depending
on specific needs, these patterns and metrics are utilized differently. However, VOIA
aims at providing a rich catalog of metrics and patterns suitable for different clients.
We would like to stress that the main objective of VOIA is not to define patterns and
metrics but provide a framework which the determination of new patterns and metrics
can be easily plugged in.

Table 1 presents metrics and patterns associated with service-to-service interactions.
Many performance metrics at individual level are well-defined, e.g. in [12]. At the group
level, we determine many novel patterns.

Table 2 describes metrics and patterns related to human-to-service interactions. Met-
rics and patterns are determined by analyzing humans who initiated or invoked services
in their activities.

Table 3 describes metrics and patterns related to human-to-human interactions. In
particular, we focus on metrics and patterns associated with broker, proxy, master/slave
interactions.
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6 VOIA Architecture and Implementation

Figure 2 depicts the architecture of VOIA which includes many components and pro-
vides Web services interfaces. In our architecture, the Event Preprocessing of VOIA ac-
cepts different types of events, such as Activity Event, Service Event, and
Interaction Event, and pre-processes these events suitable for VOIA’s Metric/-
Pattern Detection. These events are collected at different services, such as Activity
Service, Logging Service, Communication Service, and Access
Layer. As mentioned before, events consist of data collected at different levels, rang-
ing from Web middleware/container level (by using Web Handlers and SOAP intercep-
tors, such as Interaction Event) to application level (by capturing application
logs, such as Service Event).

Events processed by Event Preprocessing are passed to Metric/Pattern Detection
which determines primitive metrics and patterns. The Metric/Pattern Detection ana-
lyzes events based on a set of pattern specifications and templates stored in Pattern
Specification and Template to identify which metrics or patterns occurred. Such de-
termined metrics and patterns are passed to the Interaction Analysis which provides
high level analysis of patterns and metrics for interactions. During runtime, clients of
VOIA can specify pattern specifications and submit the specifications to the VOIA
service which informs the clients when patterns/metrics met the specifications exist.
Thus, the clients can utilize the resulting metrics and patterns for online adaptation.
The end-user can use the VOIA portal to manage VOIA and explore results produced
by VOIA.

We have implemented the core of VOIA and provide it as a Web service based on
JAX-WS[23]. The Web service provides fundamental interfaces for other clients to send
events and pattern specifications and templates. VOIA can subscribe other services,
such as Logging Service, to be informed with events or any services can send
events to VOIA via a pre-defined interface. The Metric/Pattern Detection employs the
Esper engine [19] to process events based on pattern expressions.

Fig. 2. Vienna Online Interaction Analysis (VOIA)
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7 Analysis Techniques

The fundamental difference between our approach and existing ones is that our inter-
action analysis is conducted online. The metrics and patterns discussed in Section 5
are provided by either Metric/Pattern Detection or Interaction Analysis components,
depending on the complexity of the analysis. The first component is used to determine
primitive metrics and patterns which can be identified by applying pattern specification
and template directly. The latter implements complex analyses which require different
algorithms besides the primitive metrics and patterns.

As the data used for the analysis concurrently arrives in a stream of events, primitive
patterns and metrics will be determined on the fly. For any analysis, a time window
- specifying a period of time - or space window - specifying a number of events - or
a combination of time and space windows will be specified. Together with the level
(individual, group, or the collaboration), they determine the context of the analysis.

7.1 Primitive Metric and Pattern Detection

The Metric/Pattern Detection utilizes a set of predefined pattern specification and pat-
tern templates in order to determine relevant metrics and patterns. We have defined sev-
eral pattern specifications and templates based on that well-known metrics and patterns
can be determined. Each pattern specification or template is described by

– Pattern name: is used to identify a pattern specification or template
– Result handler: is used to handle the result of a pattern specification or template.
– Pattern expression: is used to filter events and determine primitive metrics and pat-

terns. It is described in Event Processing Language (EPL) [24].

All pre-defined pattern specifications and templates are stored in Pattern Specification
and Template in XML form. A new pattern template can be defined by specifying the
above-mentioned information. Unless we need specific treatment for pattern result han-
dler, generic handler can be used. A result handler actually implements the algorithm
to determine the corresponding pattern/metric. Result handlers adhere a pre-defined in-
terface defined by VOIA so that a new handler can be plugged into VOIA. Note that
VOIA provides mechanism for writing handlers.

Given a pattern specification/template, VOIA will create an EPL statement and a
result handler object using a reflection mechanism. When events arrive to VOIA, in the
Event Preprocessing component, a CEP engine which is developed atop Esper will use
pattern expressions to process as well as to filter relevant events. Then, the engine passes
processed events to corresponding result handlers. Depending on pattern expressions,
some primitive patterns can be detected in the Event Preprocessing whereas the result
handler will process patterns and metrics and provide results. The result is described
in XML. For primitive metrics and patterns, we provide a generic result handler that
provides the result of a specification or template. Note that by ”primitive metrics and
patterns”, we mean metrics and patterns which can be directly determined by issuing
EPL-based pattern specification and template to the Event Preprocessing. There are
metrics and patterns as well as other high level information associated with interactions
which need particular analysis besides EPL-based pattern specification and template.
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To explain how primitive patterns/metrics can be detected, let us consider that a
client would like to determine a NumHumanServiceCalls (how many time a hu-
man calls a service). Listings 1.3 and 1.4 describe one example of the corresponding
pattern expression and the resulting metric. In Listing 1.3, an EPL-based request is used
to select all humans (determined by userID) and services they use (determined by
serviceEndpoint) from interaction event in the last 30 minutes and then to return
only humans who call a service more than 10 times. The corresponding result is given
in Listing 1.4. Although it is a simple example, various parameters can be customized
to detect the metric for different purposes.

<p a t t e r n name="NumHumanServiceCalls" r e s u l t h a n d l e r ="voim.NumberServiceCallHandler">
s e l e c t user ID , c o u n t ( s e r v i c e E n d p o i n t ) a s NumHumanServiceCall , s e r v i c e E n d p o i n t from

I n t e r a c t i o n E v e n t . w i n : t i m e (30 min ) group by s e r v i c e E n d p o i n t , u s e r I D
h a v in g c o u n t ( s e r v i c e E n d p o i n t ) > 10

</ p a t t e r n>

Listing 1.3. Example of query for determining NumHumanServiceCall when a human uses
a service more than 10 times in last 30 minutes

<us e r ID>
h t t p : / /www. v i t a l a b . tuwien . ac . a t / p r o j e c t s / i n c o n t e x t / TEST LINH1# Linh

</ u s e r ID>
<s e r v i c e E n d p o i n t>h t t p : / / madrid . v i t a l a b . tuwien . ac . a t : 8 0 8 0 / a x i s 2 /

s e r v i c e s / a c t i v i t y s e r v i c e</ s e r v i c e E n d p o i n t>
<NumHumanServiceCall>13</ NumHumanServiceCall>

</ NumHumanServiceCal ls>

Listing 1.4. Example of a NumHumanServiceCalls result

7.2 Complex Interaction Analysis

The use of Metric/Pattern Detection helps to identify several patterns and metrics at run-
time. However, many high-level information cannot be obtained from this component,
for example, social network of people or a network of service interactions. The Inter-
action Analysis is used to analyze interaction information which cannot be determined
by using pattern specifications or templates directly. The Interaction Analysis utilizes
information provided by Metric/Pattern Detection and provides high-level information.
A result handler in Interaction Analysis component will receive events which are the
output of Metric/Pattern Detection handlers and will analyze these events to provide
interaction metrics and patterns. Table 4 presents some high level analyses provided.

7.3 Extensibility and Customization of Interaction Analysis

Extensibility and customization are two major requirements for VOIA as different anal-
yses are required for different purposes and because in dynamic collaboration environ-
ments various types of events can be used for detecting metrics and patterns. There are
two ways to provide new interaction mining analysis: by providing new pattern spec-
ification and template and by developing a new plugin. In the first case, the client of
VOIA can utilize existing result handlers and focus on writing the specification and
template that detect their interesting metrics and patterns. This way is particular useful
when dealing with service-specific events. In this case, a new pattern specification and
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Table 4. Example of high level interaction analyses

Name Description
ServiceInteractionNetwork Describe interaction network between services. We use

ServiceInteraction(si, sj) to build the network of service
interactions in which the node is a service, the edge is the
interaction between two services.

HumanInteractionNetwork Describe the social network between human. We use NumCallees,
NumCallers and NumInteractions in human-to-human met-
rics to build the network. We can also further identify which is a
typical service used for the interaction between two persons.

HumanInAllActivity Describe a network mapping activities to humans. This can be used
to detect different types of activities typically performed by a hu-
man. Detailed information can be, e.g., the type of activities that a
person typically performs.

template can be submitted to VOIA service during runtime. VOIA is acting like a met-
rics and patterns processing engine. In the latter case, a new plugin can be developed
and straightforwardly integrated into VOIA, by (1) providing a pattern specification or
template, and (2) a result handler which implements a generic handler interface pro-
vided by VOIA. Based on that, a new entry for Pattern Specification and Template can
be created and VOIA will execute the new plugin.

7.4 Managing and Providing Resulting Metrics and Patterns

To access analysis results during runtime, any client can query or subscribe the results
hold in a result handler based on pattern name by invoking Web services operations.
Results can be also sent to the client based on notification mechanism. Thus, clients can
easily obtain mining results from our framework to perform runtime adaptation.

Given a pattern or metric detected at a specific time, typically such a metric and
pattern will be delivered to the corresponding client who initiates the pattern specifi-
cation/template. However, we also manage such pattern and metric for later use. The
information is stored in Historical Results. As in online analysis, a result handler will
have a new result when events meet pattern specification or template. First, each re-
sult handler will keep only n latest results; n is pre-defined. Instead of providing a big
XML document including analysis results, we provide a collection of small documents
which are also used as events to notify interested clients. Each result is associated with
a timestamp. When a result is determined based on space (e.g., number of events in a
window) or time (time period associated with a window), we associate the result with
the time window to identify the valid period of the result. We do not merge results pro-
vided by a handler into a big document. Instead, the list of results will be stored into
an XML database. Management features can be used to remove unneeded results. As
many results are produced at runtime, aggregating them into a more meaningful infor-
mation is challenging. Currently, we consider them only historical data and let the client
analyze the historical results for its own purpose. For accessing historical data, clients
just specify a time period together with an XQuery-based request and a pattern name.
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8 Experiments

In this section, we present some experiments to illustrate how VOIA can provide useful
metrics and patterns for understanding and adapting collaboration environments. Our
experiments are based on the inContext testbed including various collaboration ser-
vices such as Document Repository Service, Notification Service,
and Activity Service. All of them are SOAP-based services. We gathered events
from collaborations executed in the inContext testbed and analyzed the collected
events. To test VOIA’s functionalities and performance, we performed two
experiments.

In the first experiment, we analyzed events produced by the inContext testbed. These
events were generated from the usage of different services during the integration and
testing of the inContext system. Thus, patterns might or might not reflect some use
cases3. Most events in this experiment are interaction events. In the second experiment,
we randomly generated a collaboration based on a tree of activities. The tree of activ-
ities is generated based on (1) a list of 11 users, a list of 3 roles, 5 levels of a tree,
average number of activities per level is 5, a list of more than 20 real services, a list
of possible human activity handling strategies including delegate, split, perform, reject,
assign.

Figure 3 presents a snapshot of the service interaction network from the first exper-
iment(for brevity, we removed the hosting URI from the graph). This network evolves
during the runtime analysis. The information is provided in XML and exported into
a dot format visualized by GraphViz4. From that information, we can determine how
services were used and then devised service selection strategies. We then examined
how humans use services. Listing 1.5 presents the result of human-to-service calls for
UserT est which is used to access data from two services. Of more than 20 Web ser-
vices in the testbed, only TeamService and DocumentService are interacted
with UserTest. It is due to the fact that these services were used by the user to ac-
quire the information about other people and to store and search relevant documents.
Such activities still involve heavily humans. The information obtained from this type of
analysis can be useful, e.g., for determining typical services used by team members to
improve runtime service provisioning strategies.

In the second experiment, we examined the proxy pattern. Listing 1.6 presents the
result of proxy indicator pattern. Out of 971 activity events, 38 proxy cases were found.
For each person involved, we can determine who typically acts as a proxy. This kind of
analysis can be useful, for example, for selecting team members and determining trust
in collaborative networks of enterprises.

To test the performance of the engine, we wrote a test client that reads events from
local file systems and invokes the VOIA service. The test was performed in an Intel
Centrino Duo Core 1.83 GHz, 2GB RAM, Windows XP notebook with 10 patterns.
Overall, VOIA can handle a high volume of events in a time-responsive manner: it took
9035 ms to process 6775 interaction events (in the first experiment) and 2218 ms for
971 activity events (in the second experiment).

3 The inContext system includes real services and a research system for the EU project inContext
4 http://www.graphviz.org/
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Fig. 3. A snapshot of service interaction network detected

<NumHumanServiceCal ls>
<e n t r y>

<us e r ID>U s e r T e s t</ u s e r ID>
<s e r v i c e E n d p o i n t>

h t t p : / / o s l o . v i t a l a b . tuwien . ac . a t : 8 0 8 0 / a x i s 2 / s e r v i c e s / TeamService
</ s e r v i c e E n d p o i n t>
<NumHumanServiceCall>57</ NumHumanServiceCall>

</ e n t r y>
<e n t r y>

<us e r ID>U s e r T e s t</ u s e r ID>
<s e r v i c e E n d p o i n t>

h t t p : / / s rvweb02 . s o f t e c o . i t / cg i−b i n / SOAP . c g i / E ad t / Tasks / DocSe rv ice
</ s e r v i c e E n d p o i n t>

<NumHumanServiceCall>256</ NumHumanServiceCall>
</ e n t r y>

</ NumHumanServiceCalls>

Listing 1.5. Example of human-to-service NumHumanServiceCalls metrics

<P r o x y I n d i c a t o r t o t a l ="38" a t ="13.04.2008 15:00:21">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Martin" v a l u e ="7">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Schahram" v a l u e ="11">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Vasko" v a l u e ="2">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Florian" v a l u e ="2">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Atif" v a l u e ="3">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Shariq" v a l u e ="3">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Lukasz" v a l u e ="3">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Christoph" v a l u e ="3">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Linh" v a l u e ="2">
<P r o x y I n d i c a t o r name="http://.../incontext/TEST_LINH1#Kamran" v a l u e ="2">

</ P r o x y I n d i c a t o r>

Listing 1.6. Example (simplified) of proxy-related metrics for people
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9 Conclusions

Motivated by the lack of online interaction analysis tools in collaborative work and the
need of acquiring insightful information for runtime adaptation of collaborative work-
ing environments, we presented VOIA (Vienna Online Interaction Analysis) framework
which is capable of detecting and providing metrics and patterns associated with human
and service in dynamic collaborations. The main contribution of our work is that we
provide a Web service-based system that is capable of performing runtime analysis of
interaction patterns and metrics. We have provided a rich view of metrics and patterns
associated with interactions that spans different levels, including individual, group, and
collaboration views, and that characterizes different types of interactions, including
service-to-service, human-to-service, and human-to-human. Our system is flexible and
customizable, allowing for the inclusion of new analysis and supports client-customized
mining. If clients of VOIA understand the structure of their events, they can also define
pattern specifications and templates for determining patterns and metrics at runtime. By
supporting online analysis, VOIA can provide useful information for runtime adaptation
in collaborative working environments.

Various future steps have to be done to fully support online interaction analysis of
collaborative processes in SOA-based environments. We are working on determining
trust in collaborations in networks of enterprises based on our proposed metrics and
patterns. While online analysis allows the client to freely define the analysis they want,
the challenge is how to manage the result of different analyses. Currently, we have
just stored the result, thus advanced techniques for managing mining results will be
studied. Our future work foresees to provide further testing of the systems and support
more types of events. We will enhance the pattern specification and template catalog
by incorporating new patterns. Another major effort is to perform runtime adaptation
based on patterns that motivates this work, but has not been addressed in this paper.
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Abstract. In the last few years, there has been a growing interest in
the adoption of declarative paradigms for modeling and verifying pro-
cess models. These paradigms provide an abstract and human under-
standable way of specifying constraints that must hold among activities
executions rather than focusing on a specific procedural solution. Min-
ing such declarative descriptions is still an open challenge. In this paper,
we present a logic-based approach for tackling this problem. It relies on
Inductive Logic Programming techniques and, in particular, on a modi-
fied version of the Inductive Constraint Logic algorithm. We investigate
how, by properly tuning the learning algorithm, the approach can be
adopted to mine models expressed in the ConDec notation, a graphical
language for the declarative specification of business processes. Then, we
sketch how such a mining framework has been concretely implemented
as a ProM plug-in called DecMiner. We finally discuss the effectiveness
of the approach by means of an example which shows the ability of the
language to model concurrent activities and of DecMiner to learn such a
model.

1 Introduction

When facing the problem of defining and developing a Business Process (BP), we
can mainly identify two different and complementary roles: the business analyst,
a domain expert aiming at improving the performances of her company, and
the IT-expert, who has the responsibility of bringing business-level models to an
effective underlying implementation. The complementarity of these roles leads
to different perspectives about the process to be developed: while the IT-expert
typically adopts a procedural style of modeling, dealing with implementation
aspects and trying to obtain an executable process, the business analyst follows
a more declarative approach (see Figure 1). Indeed, at a business level it is very
important to represent in an intuitive and concise way the domain and problem
under study, rather than focusing on a specific solution. In this respect, the
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Fig. 1. Declarative and procedural perspectives when modeling Business Processes

model will typically involve business rules, covering best practices and internal
constraints as well as internal/external regulations and compliance requirements.

The importance of adopting a declarative style of modeling has been recently
pointed out by van der Aalst and Pesic [18]: we agree with their claim that
declarative languages fit better complex, unpredictable processes, where a good
balance between support and flexibility is of key importance. To this end, in [18]
they propose a new graphical language for specifying process flows in a declara-
tive manner. The language, called ConDec, does not completely fix the control
flow among activities, but rather envisages a set of constraints expressing poli-
cies/business rules for specifying either what is forbidden as well as mandatory
in the process. Therefore, the approach is inherently open and flexible, because
workers can perform actions if they are not explicitly forbidden. ConDec adopts
an underlying semantics by means of Linear Temporal Logics (LTL), and can
also be mapped onto a logic programming-based framework called SCIFF (So-
cial Constrained IFF) [2,4], which was originally developed for the specification
and verification of global interaction protocols in open Multi-Agent Systems but
has recently been applied in the context of BPs and SOA (Service-Oriented
Architecture) Choreographies. SCIFF provides a declarative language based on
Computational Logic, where constraints are imposed on activities in terms of re-
active rules (namely Integrity Constraints). Such reactive rules mention in their
body occurring activities, i.e., events, and additional constraints on their vari-
ables in the style of Constraint Logic Programming (CLP) [12]. SCIFF rules
contain in their head expectations over the course of events. Such expectations
can be positive, when a certain activity is required to happen, or negative, when
a certain activity is forbidden to happen.

An important topic related to declarative process specification, which is still
an open challenge, concerns their discovery starting from execution traces, i.e.,
declarative process mining. Indeed, up to now, the goal of process mining has
been the discovery of procedural process models (such as Petri Nets or Event-
driven Process Chains [21,24]). We claim the necessity of mining also declarative
models, to enable the possibility of inferring essential process constraints, easily
understandable by business analysts and not affected by procedural details.

In this paper, we present a logic-based approach to address this issue. It
relies on Inductive Logic Programming (ILP) techniques and, in particular, on
a modified version of the Inductive Constraint Logic (ICL) algorithm [15]. The
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algorithm takes as input a set of process execution traces, previously labeled
as compliant or not, and produces a set of SCIFF rules which correctly classify
them. This algorithm has been further modified, by properly tuning it and relying
on the mapping presented in [4], for learning ConDec models. Then, we describe
how the whole approach has been implemented as a plug-in of the ProM [23]
process mining framework. The plug-in, called DecMiner, is capable of mining
ConDec models starting from a set of process execution traces. The plug-in
envisages different phases, ranging from the classification of traces into compliant
and non-compliant subsets to the choice of which ConDec constraints have to be
considered and finally to the presentation of the mined model. The effectiveness
of the approach is illustrated by considering an example inspired by the one
presented in [17] that involves the management of a hotel and spa.

Our previous papers on process mining [14,13] focused on the algorithm for
learning SCIFF rules and presented only a sketch of the technique for the trans-
lation into ConDec. In this work we describe how we automated this process and
implemented it into the DecMiner ProM plug-in.

The paper is organized as follows. Section 2 describes the declarative languages
we consider, namely SCIFF and ConDec, and the mapping between ConDec
and a subset of SCIFF rules. Section 3 presents the learning process and the
DecMiner plug-in. Section 4 discusses the experiments performed for validating
the approach. Section 5 presents related works and, finally, Section 6 concludes
the paper and discusses future work.

2 Declarative Specification of Business Processes

In this section, we first briefly introduce the SCIFF language, a logic-based
language originally developed for specifying and verifying interaction protocols in
open Multi-Agent Systems [2]. We then briefly describe ConDec [18], a graphical
language supporting the intuitive modeling of declarative constraints on the flow
of activities. Finally, we sketch how SCIFF can be exploited to formalize ConDec
models as well as to extend its expressiveness, relying on the results presented
in [4].

2.1 An Overview of the SCIFF Framework

The SCIFF framework [2] is based on abduction, a reasoning paradigm which
allows to formulate hypotheses (called abducibles) accounting for observations.
In most abductive frameworks, integrity constraints are imposed over possible
hypotheses in order to prevent inconsistent explanations. SCIFF considers a
set of interacting peers as an open society, formalizing interaction protocols by
means of a set of global rules (constraints) which constrain the external and
observable behavior of participants.

To represent that an event ev happened (i.e., an atomic activity has been
executed) at a certain time T , SCIFF uses the symbol H(ev, T ), where ev is a
term and T is a variable or a number indicating the time. Hence, an execution
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trace is modeled as a set of executed (happened) events. For example, we could
formalize that bob has performed activity a at time 5 as follows: H(a(bob), 5). Fur-
thermore, SCIFF introduces the concept of expectation, which plays a key role
when defining global interaction protocols, choreographies, and more in general
event-driven processes. It is quite natural, in fact, to think of a process in terms
of rules of the form: “if ev1 happened, then ev2 is expected to happen.” Positive
expectations are denoted by E(ev, T ) meaning that ev is expected to happen
at time T . To satisfy a positive expectation, an execution trace must contain
a matching happened event. Negative expectations are denoted by EN(ev, T )
meaning that ev is expected not to happen at time T . To satisfy a negative
expectation an execution trace must not contain a matching happened event.

SCIFF Integrity Constraints (ICs for short) are forward rules of the form
body → head, where body can contain literals (i.e. a logical atom or its negation)
and happened events, and head contains a disjunction of conjunctions of expec-
tations and literals. In this paper, we consider a syntax of ICs that is a subset of
the one in [2]. In this simplified syntax, an IC C is a logical formula of the form

Body → DisjE1 ∨ . . . ∨ DisjEn ∨ DisjEN1 ∨ . . . ∨ DisjENm (1)

We will use Body(C) to indicate Body and Head(C) to indicate DisjE1 ∨ . . .∨
DisjEn∨DisjEN1∨ . . .∨DisjENm of a rule C. Body is of the form b1∧ . . .∧bl

where the bis are literals. Some of the literals may be of the form H(ev, T )
meaning that event ev has happened at time T . DisjEj is a formula of the
form E(ev, T ) ∧ d1 ∧ . . . ∧ dk where ev is an event and the dis are literals. All
the formulas DisjEj in Head(C) will be called positive disjuncts. DisjENj is a
formula of the form EN(ev, T )∧d1∧ . . .∧dk where ev is an event and the dis are
literals. All the formulas DisjENj in Head(C) will be called negative disjuncts.

The event ev can be a term. The literals bis and dis refer to predicates defined
in a SCIFF knowledge base. Variables in common to Body(C) and Head(C) are
universally quantified (∀) with scope the whole IC. Variables occurring only in
positive disjuncts are existentially quantified (∃) with scope the disjunct itself.
Variables occurring only in negative disjuncts are universally quantified (∀) with
scope the disjunct itself. An example of an IC is

(IC.1) H(a(bob), T ) ∧ T < 10

→ E(b(alice), T1) ∧ T < T1 ∨
EN(c(mary), T2) ∧ T < T2 ∧ T2 < T + 10

The meaning of the IC.1 is the following: if bob has executed action a at a time
T < 10, then we expect alice to execute action b at some time T 1 later than T
(∃T 1) or we expect that mary does not execute action c at any time T 2 (∀T 2)
within 9 time units after T .

The interpretation of an IC is the following: if there exists a substitution of
variables such that the body is true in an interpretation representing a trace,
then one of the disjuncts in the head must be true. A positive disjunct means
that we expect event ev to happen with T and its variables satisfying d1∧. . .∧dk.
Therefore the disjunct is true if there exist a substitution of variables occurring
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in it such that ev is present in the trace and the dis are satisfied. A negative
disjunct means that we expect event ev not to happen with T and its variables
satisfying d1 ∧ . . . ∧ dk. Therefore the disjunct is true if for all substitutions of
variables occurring in it and not appearing in Body either ev does not happen
or, if it happens, its properties violate d1 ∧ . . . ∧ dk.

The main and original application of the SCIFF framework and its proof pro-
cedure is to verify whether an execution of the process concretely adheres to
the specification, i.e., to perform compliance checking. SCIFF is seamlessly able
to check compliance both at run-time, by dynamically collecting and reason-
ing upon occurring events, or a posteriori, by analyzing the log of an observed
execution trace.

Roughly speaking, SCIFF combines occurred events with the specified rules,
to suitably generate the corresponding expectations; then expectations are veri-
fied against the execution trace: a positive expectation must have a correspond-
ing matching event, whereas a negative expectation forbids the presence of a
matching event. If such conditions are not met (i.e., a positive/negative expec-
tation is not/is matched by a corresponding event), then the expectations are
violated, and the execution trace is evaluated as non-compliant.

A posteriori compliance checking has been wrapped into a ProM plug-in called
SCIFFChecker [3], which can be exploited to classify MXML execution traces
as compliant or non-compliant w.r.t. a high-level declarative criterion. Such a
criterion is specified by configuring reactive business rules expressed in a natural
language-like manner and by automatically mapping them onto the underlying
formalism.

2.2 ConDec and Its SCIFF Mapping

ConDec [18,16] is a graphical language suitable for the declarative specification
of flexible Business Processes. Flexibility is provided since ConDec does not fix
a completely specified process flow, but rather imposes only the (minimal) set
of constraints that must be satisfied when executing the process activities. Con-
straints are policies/business rules which can be exploited to describe both what
is mandatory and what is forbidden in the process. They are mainly organized
into three basic groups: (i) existence constraints, unary relationships constraining
the cardinality of activity executions; (ii) relation constraints, positive relation-
ships between two activities used to specify what should be executed when a
given situation holds; (iii) negation constraints, the negated version of relation
ones, imposed to forbid the execution of a certain activity when a given situation
holds.

We have provided a complete mapping of ConDec relationships to SCIFF [4].
Table 1 shows some basic ConDec constraints, together with their corresponding
formalization. For example, the existence constraint specifies that the involved
activity must be executed at least once; this can be expressed in SCIFF by simply
stating that the activity is expected to happen. The responded existence between
A and B imposes the existence of B only if activity A is executed, without
putting any temporal condition between the two executions. Temporizing such
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Table 1. Mapping of some ConDec formulas onto SCIFF

Name SCIFF Mapping

A

1..*

existence true →E(A,T)

A B responded existence H(A, TA) → E(B, TB)

A B response H(A, TA) → E(B, TB) ∧ TB > TA

A B precedence H(B, TB) → E(A,TA) ∧ TA < TB

A B succession
H(A, TA) → E(B, TB) ∧ TB > TA

H(B, TB) → E(A,TA) ∧ TA < TB

A B negation response H(A, TA) → EN(B, TB) ∧ TB > TA

a constraint leads either to a response or precedence constraint, depending on
what kind of ordering is imposed between the two activities. For example, re-
sponse states that if activity A has been performed, then B must be performed
afterward; the “after” ordering can be modeled in SCIFF by putting a “greater
than” CLP [12] constraint among the execution time associated to B and the
one associated to A, i.e. TB > TA. The precedence constraint is modeled in a
similar way, by inverting the constraint to express a “before” relationship.

Finally, ConDec supports also negative constraints, i.e., constraints used to
forbid the execution of certain activities. They are mapped to SCIFF similarly
to positive relation constraints but imposing negative expectations instead of
positive ones (see, for example, the negation response constraint in Table 1, which
states that after activity A it is not possible to execute B anymore, being TB

universally quantified with scope the disjunct where it appears).
SCIFF can be used not only to formalize ConDec, but also to support different

extensions to the language, such as: (i) considering conjunction of events in
relationships (e.g., to model synchronizing responses, namely responses which
trigger only when two or more events occur); (ii) involving quantitative temporal
constraints, such as deadlines and delays; (iii) constraining also data involved in
the activities execution, such as originators.

2.3 Running Example

In order to explain how the declarative mining approach works, we use a pro-
cess model that is inspired to [17] as a running example. This model describes a
simple process of renting rooms and services in a hotel and spa. Every process
instance starts with the registration of the client name and her preferred way
of payment (e.g., credit card). Data can also be altered at later time (e.g the
client may decide to use another credit card). During her stay, the client can
require one or more room, laundry and massage services. Each service, identified
by a code, is followed by the respective registration of the service costs into the
client bill. Of course, each service cost must be registered only if the service has
been effectively provided to the client and only one time. Moreover, if the client
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chooses a shiatzu massage, the spa presents her a special offer. The cost related
to nights spent in the hotel must be billed. It is possible for the total bill to be
charged at several stages during the stay.

This process was modeled by using eleven activities and eleven constraints. Ac-
tivities register client data, check out and charge are about the check-in/check-
out of the client and expenses charging. Activities room service, laundry service,
and massage service log which services have been accessed to by the client, while
billings for each service are represented by corresponding activities. For each ac-
tivity, a unique identifier is introduced to correctly charge the clients with the
billings for the services they effectively made use of. Moreover, for the mas-
sage related activities, an additional parameter is used to specify the massage
type (aromatic or shiatzu). Finally, the activity shiatzu offer maps the busi-
ness policy of offering a special packet/discount to clients interested in shiatzu
massages.

Business related aspects of our example are represented as follows:

– (C.1) every process instance starts with activity register client data. No lim-
its on the repetitions of this activity are expressed, hence allowing alteration
of data;

– (C.2) bill room service must be executed after each room service activity,
and bill room service can be executed only if the room service activity has
been executed before;

– (C.3) bill laundry service must be executed after each laundry service ac-
tivity, and bill laundry service can be executed only if the laundry service
activity has been executed before;

– (C.4) bill massage service must be executed after each massage service, and
bill massage service can be executed only if the massage service activity has
been executed before;

– (C.5) shiatzu offer must be executed after a massage service activity with
type shiatzu;

– (C.6) check out must be performed in every process instance;

– (C.7) charge must be performed in every process instance;

– (C.8) bill nights must be performed in every process instance.

– (C.9) bill room service must be executed only one time for each service iden-
tifier;

– (C.10) bill laundry service must be executed only one time for each service
identifier;

– (C.11) bill massage service must be executed only one time for each service
identifier;

The SCIFF representation is composed by the following ICs:
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(C.1) true

→ E(register client data, T rcd)) ∧ Trcd = 1.

(C.2) H(room service(rs id(IDrs)), T rs)

→ E(bill room service(rs id(IDbrs)), T brs) ∧
IDrs = IDbrs ∧ Tbrs > Trs.

H(bill room service(rs id(IDbrs)), T brs)

→ E(room service(rs id(IDrs)), T rs) ∧
IDbrs = IDrs ∧ Trs < Tbrs.

(C.3) H(laundry service(la id(IDls)), T ls)

→ E(bill laundry service(la id(IDbls)), T bls) ∧
IDls = IDbls ∧ Tbls > T ls.

H(bill laundry service(la id(IDbls)), T bls)

→ E(laundry service(la id(IDls)), T ls) ∧
IDbls = IDls ∧ T ls < Tbls.

(C.4) H(massage service(ma id(IDms), type(TY ms))), Tms)

→ E(bill massage service(ma id(IDbms), type(TY bms)), T bms) ∧
IDms = IDbms ∧ TY ms = TY bms ∧ Tbms > Tms.

H(bill massage service(ma id(IDbms), type(TY bms))), T bms)

→ E(massage service(ma id(IDms), type(TY ms)), Tms) ∧
IDbms = IDms ∧ TY bms = TY ms ∧ Tms < Tbms.

(C.5) H(massage service(ma id(IDms), type(TY ms)), Tms) ∧ TY ms = shiatzu

→ E(shiatzu offer , T bms) ∧ Tbms > Tms.

(C.6) true

→ E(check out, T co).

(C.7) true

→ E(charge, T ch).

(C.8) true

→ E(bill nights, T bn).

(C.9) H(bill room service(rs id(IDbrs1)), T brs1)

→ EN(bill room service(rs id(IDbrs2)), T brs2) ∧
IDbrs1 = IDbrs2 ∧ Tbrs2 > Tbrs1.

(C.10) H(bill laundry service(la id(IDbls1)), T bls1)

→ EN(bill laundry service(la id(IDbls2)), T bls2) ∧
IDbls1 = IDbls2 ∧ Tbls2 > Tbls1.

(C.11) H(bill massage service(ma id(IDbms1), type(TY bms1))), T bms1)

→ EN(bill massage service(ma id(IDbms2), type(TY bms2)), T bms2) ∧
IDbms1 = IDbms2 ∧ TY bms1 = TY bms2 ∧ Tbms2 > Tbms1.
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1 C.10

1 C.11

Fig. 2. A ConDec model augmented with a data-related perspective

One thing to observe is that, for constraint (C.1), the ConDec init constraint
has been mapped in SCIFF by imposing that the “register client data” activity
is expected to happen at time 1 (the first activity in an execution trace).

As described in Section 2.2, SCIFF can be used not only to formalize ConDec,
but also to support different extensions to the language. These extensions are
useful in the formalization of the hotel and spa process model. Let us consider the
following constraints: after having chosen a massage service, this service must
be billed to the client and a massage service must be billed only if the client
has effectively received the service; if the client has chosen a shiatzu massage,
then she can also take advantage of a special offer. In order to link each different
service with its specific bill, we attach to the execution of these activities an
identifier. Moreover, the second statement deals with a specific execution of the
massage service, namely the one in which the client has actually chosen a shiatzu
massage; so we attach a type attribute to massage services. This information has
been included into the terms representing events in the SCIFF language and the
two sentences mapped to the integrity constraints (C.4) and (C.5).

We could incorporate such a data-related perspective directly at a graphical
level, by representing activities together with their data and annotating the
ConDec constraints with data condition (such as TY ms = shiatzu in C.5).
Figure 2 shows how the model discussed above can be graphically rendered with
annotations.

3 Learning Models

In this section, we describe the approach adopted for mining ConDec models.
We first briefly review some concepts of Inductive Logic Programming and the
ICL algorithm in particular, then we discuss how ICL has been applied to learn-
ing SCIFF constraints and finally we illustrate the DecMiner ProM plug-in for
mining SCIFF and ConDec constraints.



Exploiting Inductive Logic Programming Techniques 287

3.1 Inductive Logic Programming Techniques

The idea of exploiting Inductive Logic Programming (ILP) for declarative pro-
cess mining comes form the similarities between learning a SCIFF theory, com-
posed by a set of Social Integrity Constraints, and learning a clausal theory
as described in the learning from interpretation setting of ILP [15]. Besides
the fact that both SCIFF and clausal theories can be used to classify a set of
atoms (i.e., an interpretation) as positive or negative, they have strong similar-
ities in the structure of the logical formula composing the theory. Then, thanks
to the mapping of ConDec into SCIFF rules, it is possible to learn ConDec
models.

A clause C is a formula in the form b1 ∧ · · · ∧ bn → h1 ∨ · · · ∨ hm where bi are
logical literals and hi are logical atoms. A formula is ground if it does not contain
variables. An interpretation is a set of ground atoms. Let us define head(C) =
{h1, . . . , hm} and body(C) = {b1, . . . , bn}. Sometimes we will interpret clause C
as the set of literals {h1, . . . , hm,¬b1, . . . ,¬bn}.

The clause C is true in an interpretation I iff, for all the substitutions θ
grounding C, (I |= body(C)θ) → (head(C)θ ∩ I = ∅). Otherwise, it is false. A
set of clauses (i.e. a theory) is true in an interpretation I iff all the clauses are
true in I.

Sometimes we may be given a background knowledge B with which we can
enlarge each interpretation I by considering, instead of simply I, the inter-
pretation given by M(B ∪ I) where M stands for a model, such as the least
Herbrand model of Clark’s completion [5]. By using a background knowledge
we are able to encode each interpretation parsimoniously, by storing only once
the rules that are not specific to a single interpretation but are true for every
interpretation.

The learning from interpretation setting of ILP is concerned with the following
problem: given a clausal language L, a set P of positive interpretations, a set
N of negative interpretations and a definite clause background theory B, we
want to find a clausal theory H ∈ L such that for all p ∈ P , H is true in the
interpretation M(B ∪ p), and for all n ∈ N , H is false in the interpretation
M(B ∪ n). Given a disjunctive clause C (theory H) we say that C (H) covers
the interpretation I iff C (H) is true in M(B ∪ I). We say that C (H) rules out
an interpretation I iff C (H) does not cover I.

The clausal language L is used in order to restrict the search space. It is
usually described in an intensional way using a specific representation language.
The description of L in this language is called language bias (LB).

An algorithm that solves the above problem is ICL [6]. In it, a function named
Inductive-Constraint-Logic performs a covering loop in which negative interpre-
tations are progressively ruled out and removed from the set N . At each iteration
of the loop, a new clause is added to the theory and the negative examples ex-
cluded by it are removed from N . The loop ends when N is empty or when no
clause is found.

The clause to be added in every iteration of the covering loop is returned
by another procedure (namely, Find-Best-Clause). It looks for a clause by using
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beam search with p("|C) as a heuristic function, where p("|C) is the probability
that an example interpretation is classified as negative given that it is ruled out
by the clause C. This heuristic is computed as the number of ruled out negative
interpretations over the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many positive interpretations
as possible and rule out as many negative interpretations as possible. The search
starts from an initial beam composed of the most specific clauses present in the
language bias that is returned by the function MostSpecific(LB). The clauses in
the beam are then gradually generalized. The maximum number of generalization
steps is a user-defined parameter.

The generality order that is used is θ-subsumption [19], a relationships be-
tween two clauses that can be checked syntactically and is stronger than impli-
cations. Generalizations of a clause C are obtained by adding a literal to the
body or an atom to the head of C. The language bias of ICL defines the literals
that can be added to clauses. Moreover, the language bias defines also the set of
most specific clauses.

3.2 Application of ICL to SCIFF Learning

ICL has been effectively used to learn SCIFF ICs in Declarative Process Model
Learner (DPML) [14]. Each IC is seen as a clause that must be true in all the
positive interpretations (compliant execution traces) and false in some negative
interpretations (non-compliant execution traces). A theory, composed of a set of
ICs, must be such that all the ICs are true when considering a compliant trace
and at least one IC is false when considering a non-compliant one.

If we define a generality order and a generalization operator for ICs, we can
apply an algorithm similar to ICL for learning ICs. The generality order can be
defined in this way: an IC C is more general than an IC D (written C ≥ D) if
there exists a substitution θ for the variables of body(D) such that body(D)θ ⊆
body(C) and for each disjunct d in the head of D: if d is positive, then there
exist a positive disjunct c in the head of C such that dθ ⊇ c; if d is negative,
then there exist a negative disjunct c in the head of C such that dθ ⊆ c.

A generalization of an IC C can be obtained in the following ways: adding
a literal to the body, adding a disjunct to the head, removing a literal from a
positive disjunct in the head or adding a literal to a negative disjunct in the
head. The language bias takes the form of a set of assertions that are couples
(BS, HS): BS is a set that contains the literals that can be added to the body
and HS is a set that contains the disjuncts that can be added to the head. Each
element of HB is a couple (Sign, Literals) where Sign is either + for a positive
disjunct or - for a negative disjunct, and Literals contains the literals that can
appear in the disjunct.

When adding a disjunct to the head, the generalization operator behaves
differently depending on the sign of the disjunct: in the case of a positive disjunct,
the disjunct formed by the E literal plus all the literals in the language bias for
the disjunct is added; in the case of a negative disjunct, only the EN literal is
added.
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3.3 Learning ConDec Models and SCIFF Rules: The DecMiner
Plug-in

DPML has been further extended in this work in order to be able to learn both
ConDec models and SCIFF ICs and re engineered as a mining plug-in of the
ProM [23] process mining framework, named DecMiner.

DecMiner learns a ConDec model, by first learning SCIFF ICs and then trans-
lating them into ConDec constraints using the mapping introduced in Section
2.2. In order to ease the translation, we provide DecMiner with a special lan-
guage bias that allows only ICs that can be translated into ConDec. We generate
this language bias automatically starting from a set of general templates, one for
each ConDec constraint, that can be instantiated to generate specific assertions
for the language bias. The number of all possible assertions can be huge, while
the user could be interested to models defined only by a small, yet meaningful
set of ConDec constraints. For this reason, we let the user the possibility of
selecting a subset of activities A and a subset of ConDec constraints T . Then,
our approach uses only the instantiation of these constraints with the selected
activities for learning the model. Besides providing as output a model that fits
the user requirements, smaller constraint sets allow also better performances of
the learning algorithm.

The accuracy and learning time depends on the choice of these subsets. They
influence the accuracy of the learned model because an activity relation discrimi-
nating between compliant and non-compliant execution traces cannot be learned
if the appropriate template and/or activities were not chosen. The time com-
plexity is linear in the number of traces and in the number of constraints. With
respect to the number of activities, it is quadratic if there are binary constraints,
and linear if there are only unary constraints.

An advantage of mining ConDec constraints through SCIFF is that the ap-
proach can be extended to induce constraints involving more than two activities,
for example constraints having a conjunction of preconditions or a disjunction
of postconditions, and constraints with conditions over data.

DecMiner implements all the data preparation and learning phases of the min-
ing process described above and guides the user by means of its graphical user
interface. In the first phase, named “Classification”, the user uses the graphical
interface shown in Figure 3 to browse the execution traces and label some of
them as compliant (positive) or not compliant (negative). In the second phase,
named “Activities”, the user can choose among all the activities and their as-
sociated parameters the information that she considers important for learning
the declarative model. In the third phase, named “Templates”, the user uses
the graphical interface shown in Figure 4 to choose the set of existence, relation
and negation ConDec templates to be used in the mining phase. The fourth
phase, named “Mining”, is started when the “Start mining” button is pressed.
In this phase the language bias for ICL is generated, by instantiating the cho-
sen templates with the chosen activities, and the learning algorithm is applied,
producing the declarative model. In the fifth phase, named “Results”, the learned
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Fig. 3. DecMiner plug-in: trace classification

SCIFF rules and ConDec constraints are presented to the user1. The current
version of the tool can be downloaded from the web2.

4 Experiments

In order to evaluate the effectiveness and robustness of the learning approach,
we followed a typical machine learning experimentation methodology: first, we
create an artificial process model, described in Section 2.3, which presents some
difficulties for the learning approach to be tested; second, we randomly generate
from such model several training and testing datasets; third, we apply the learn-
ing approach on the training datasets obtaining models; finally, we compare the
learned models with the original one and compute the classification accuracy of
the learned models on the testing datasets.

Given the ConDec and SCIFF process models described in Section 2.3, we
generated five training and five testing datasets. The generation of each of them
is made in two phases. In the first, a Java application randomly creates an
execution trace. In the second phase, the SCIFF Checker (presented in Section
2) is used to classify each trace as compliant or non-compliant with respect to
the correct hotel process. The process is repeated until a dataset containing 2000
compliant traces and 2000 non-compliant traces has been generated.

1 The ConDec model is shown by using the DECLARE tool
http://is.tm.tue.nl/research/declare/

2 http://www.unife.it/dipartimento/ingegneria/informazione/informatica/pr

ocessmining/
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Fig. 4. DecMiner plug-in: ConDec template selection

DecMiner has been then applied to each training dataset. By applying the
learned models to the classification of the testing sets, we computed the classi-
fication accuracy, defined as the number of compliant traces that are correctly
classified as compliant plus the number of non-compliant traces that are cor-
rectly classified as non-compliant divided by the total number of traces. The
average accuracy achieved by DecMiner was 100%.

Comparing the original hotel process model with those learned by using the
five training sets, we observe that sometimes there are differences in the learned
constraints. This happens because some of the randomly generated training sets
do not contain the traces that allow to distinguish the behaviors of similar con-
straints.

This is the case, for instance, of the precedence(A,B) and responded existen-
ce(A,B) constraints. They share a common set of labeled execution traces (BA
labeled as compliant, B labeled as compliant and A labeled as non-compliant)
and cannot be distinguished until a trace containing AB is labeled as compliant
or non-compliant. In the first case, DecMiner learns a responded existence(A,B)
constraint otherwise it learns a precedence(A,B). In real applications, this be-
havior can be considered an advantage because it allows dynamic adaptation
and refinement of the learned process models when new traces are classified as
compliant and non-compliant and added to the training set. If the traces distin-
guishing the behavior of two constraints are not present in the dataset, DecMiner
learns the constraint that comes first in the language bias.

We also investigated the robustness of DecMiner to noise in the classification
of traces: we repeated the experiments by considering training sets with an
increasing portion of misclassified examples. Table 2 shows that the performances
of DecMiner degrade gracefully with the increase of the amount of noise.
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Table 2. Accuracy as a function of noise

Errors Accuracy
2% 99.72 %

10% 98.85 %
20% 97.29 %

As for other ILP systems, the learning phase depends not only on the training
set but also on the language bias: by restricting it to different subsets of the Con-
Dec constraints, it is possible to learn different models. Each model corresponds
to a different perspective about a real process, pointing out different aspects.
The 100% accuracy achieved in the former experiment is a consequence of the
chosen language bias: all the templates were added with those referring to the
constraints in the original hotel and spa model put at the top of the language
bias. We evaluated the influence of language bias on classification accuracy, by
randomly mixing the ConDec templates in the bias. Despite this change, the
accuracy achieved by DecMiner considering datasets without noise remains high
(99.97%).

Results achieved by our approach on other real and artificial datasets (e.g.,
the cervical cancer screening process, the netbill e-commerce protocol and an
auction protocol) are reported in [14] and [13].

5 Related Works and Discussion

Process mining is an active research field. Notable works in such a field are
[1,21,24,11,7,9]. Agrawal et al. [1] introduced the idea of applying process mining
to workflow management. The authors proposed an approach for inducing a
process representation in the form of a directed graph encoding the precedence
relationships. van der Aalst et al. [21] presented the α-algorithm for inducing
Petri nets from data and identified for which class of models the approach is
guaranteed to work. The α-algorithm is based on the discovery of binary relations
in the log, such as the “follows” relation. In [24] van Dongen and van der Aalst
described an algorithm which derives causal dependencies between activities and
uses them for constructing instance graphs, presented in terms of Event-driven
Process Chains. [11] is a recent work where a process model is induced in the
form of a disjunction of special graphs called workflow schemas.

We differ from these works because we use a representation that is declarative
rather than procedural, without sacrificing expressiveness. Moreover, we learn
from compliant and non-compliant traces, rather than from compliant traces.

[7,9] are closer to our work because they deal with mining (partially) declar-
ative specifications. In [7] the learning starts from process runs that are high
level specification of a set of process traces and are represented by means of Petri
nets. Mining is performed by merging the different runs for the same process.
The model that is obtained is hybrid, in the sense that it may contain sets of
activities that must be executed but for which no specific order is required. We
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differ from this work because we start from traces rather than runs: while runs
specify already a partial order among activities, traces are simply a sequence of
events representing activity executions. Therefore, runs are already very infor-
mative of the process model.

[9] related BPM to the field of planning in artificial intelligence: activities in
business process are seen as planning operators with pre-conditions and post-
conditions. Representing a process in this way requires the specification of fluents
besides activities, i.e., properties of the world that may change their truth value
during the execution of the process. The adoption of fluents allows to explicitly
express pre-conditions and post-conditions of activities. Thus fluents introduce
a new dimension to BPM that needs further explorations. Our work remains in
the traditional domain of BPM in which the pre-conditions and post-conditions
of activities are left implicit. The approach for learning process models of [9]
involves iterating planning and operator refinement: given the current definition
of the pre-conditions and post-conditions of the activities, a plan for achieving
the business goal is generated and presented to the user which has to specify
whether each activity of the plan can be executed. In this way the system collects
positive and negative examples of activities executions that are then used in
a learning phase. In order to avoid asking the user to classify activities, [10]
proposed an approach for automatically generating negative events, i.e., events
that are used as negative examples. In the future we plan to investigate the
extension of this approach to the automatic generation of negative traces.

With respect to performance evaluation, a direct comparison with [21,24] is
unfair since we adopted accuracy (since we have compliant and non-compliant
traces in the test set) while they adopt fitness.

In this special issue, [22] and [8] face the problem of mining a process rep-
resentation in the form of a Petri net, while [20] extracts metrics and patterns
from collaborative processes in SOA-based environments.

6 Conclusions and Future Work

We propose a methodology for analyzing a log containing several traces labeled
as compliant or non-compliant. From them we learn a set of declarative con-
straints expressed as SCIFF rules able to accurately classify a new trace, and
corresponding to a ConDec model.

The proposed methodology is based on Inductive Logic Programming and, in
particular, on the ICL algorithm. Such an algorithm is adapted to the problem
of learning integrity constraints in the SCIFF language. By considering not only
compliant traces, but also non-compliant ones, our approach can learn a model
which expresses also what is forbidden. Furthermore, the learned SCIFF ICs are
easily mapped into ConDec constraints. We call the resulting system DecMiner.

In order to test the proposed methodology, we performed an experiment on
a case study regarding the management of a hotel and spa. The results show
that DecMiner nearly recovers the correct model. Other experiments have been
documented in [14,13].
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In the future, we plan to apply DecMiner to university students’ careers, where
positive traces are careers of students that graduated on time, and negative ones
are careers of students who did not finish their studies in the prescribed time.

Moreover, we plan to investigate the development of a mining-checking cy-
cle, in which learning is interleaved with classification of traces into positive or
negative either manually by the user or automatically using the SCIFF Checker
plug-in with a user specified model. In this way the user can improve an initial
model of the process by experimenting different languages biases.

Acknowledgments. This work has been partially supported by the FIRB
project “TOCAI.IT” and FAR projects by University of Bologna and University
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