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Abstract. Graphs are widely used for modelling complicated data such
as: chemical compounds, protein interactions, XML documents and mul-
timedia. Retrieving related graphs containing a query graph from a large
graph database is a key issue in many graph-based applications such as
drug discovery and structural pattern recognition. Relational database
management systems (RDBMSs) have repeatedly been shown to be able
to efficiently host different types of data which were not formerly antici-
pated to reside within relational databases such as complex objects and
XML data. The key advantages of relational database systems are its
well-known maturity and its ability to scale to handle vast amounts of
data very efficiently. RDMBSs derive much of their performance from so-
phisticated optimizer components which makes use of physical properties
that are specific to the relational model such as: sortedness, proper join
ordering and powerful indexing mechanisms. In this paper, we study the
problem of indexing and querying graph databases using the relational
infrastructure. We propose a novel, decomposition-based and selectivity-
aware SQL translation mechanism of sub-graph search queries. Moreover,
we carefully exploit existing database functionality such as partitioned
B-trees indexes and influencing the relational query optimizers by selec-
tivity annotations to reduce the access costs of the secondary storage to
a minimum. Finally, our experiments utilise an IBM DB2 RDBMS as
a concrete example to confirm that relational database systems can be
used as an efficient and very scalable processor for sub-graph queries.

1 Introduction

Graphs are among the most complicated and general form of data structures.
Recently, they have been widely used to model many complex structured and
schemaless data such as XML documents [24], multimedia databases [18], so-
cial networks [3] and chemical compounds [16]. Hence, retrieving related graphs
containing a query graph from a large graph database is a key performance is-
sue in all of these graph-based applications. It is apparent that the success of
any graph database application is directly dependent on the efficiency of the
graph indexing and query processing mechanisms. The fundamental sub-graph
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search operation on graph databases can be described as follows: given a graph
database D = {g1, g2, ..., gn} and a graph query q expressed as find all graphs gi

which belongs to the graph database D such that q is a subgraph of gi. Clearly,
it is an inefficient and a very time consuming task to perform a sequential scan
over the whole graph database D and then to check whether q is a subgraph of
each graph database member gi. Hence, there is a clear necessity to build graph
indices in order to improve the performance of processing sub-graph queries.

Relational database management systems (RDBMSs) have repeatedly shown
that they are very efficient, scalable and successful in hosting types of data
which have formerly not been anticipated to be stored inside relational databases
such complex objects [7,21], spatio-temporal data [8] and XML data [6,14]. In
addition, RDBMSs have shown its ability to handle vast amounts of data very
efficiently using its powerful indexing mechanisms. In this paper we focus on
employing the powerful features of the relational infrastructure to implement an
efficient mechanism for processing sub-graph search queries.

In principle, XPath-based XML queries [4] are considered to be a simple
form of graph queries. Over the last few years, various relational-based indexing
methods [5,6,11,23] have been developed to process this type of XML queries.
However, these methods are optimized to deal only with tree-structured data and
path expressions. Here, we present a purely relational framework to speed up the
search efficiency in the context of graph queries. In our approach, the graph data
set is firstly encoded using an intuitive Vertex-Edge relational mapping scheme
after which the graph query is translated into a sequence of SQL evaluation
steps over the defined storage scheme. An obvious problem in the relational-
based evaluation approach of graph queries is the huge cost which may result
from the large number of join operations which are required to be performed
between the encoding relations. In order to overcome this problem, we exploit an
observation from our previous works which is that the size of the intermediate
results dramatically affect the overall evaluation performance of SQL scripts
[12,19,20]. Hence, we use an effective and efficient pruning strategy to filter
out as many as possible of the false positives graphs that are guaranteed to
not exist in the final results first before passing the candidate result set to an
optional verification process. Therefore, we keep statistical information about
the less frequently existing nodes and edges in the graph database in the form of
simple Markov Tables [2]. This statistical information is also used to influence the
decision of relational query optimizers by selectivity annotations of the translated
query predicates to make the right decision regarding selecting the most efficient
join order and the cheapest execution plan to get rid of the non-required graphs
very early out of the intermediate results. Moreover, we carefully exploit the fact
that the number of distinct vertices and edges labels are usually far less than
the number of vertices and edges respectively. Therefore, we try to achieve the
maximum performance improvement for our relation execution plans by utilizing
the existing powerful partitioned B-trees indexing mechanism of the relational
databases [10] to reduce the access costs of the secondary storage to the minimum
[13]. In summary, we made the following contributions in this paper:
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1) We present a purely relational framework for evaluating directed and labelled
sub-graph search queries. In this framework, we encode graph databases us-
ing an intuitive Vertex-Edge relational schema and translate the sub-graph
queries into standard SQL scripts.

2) We describe an effective and very efficient pruning strategy for reducing the
size of the intermediate results of our relational execution plans by using a
simple form of statistical information in the form of Markov tables.

3) We describe our approach of using summary statistical information about the
graph database vertices and edges to consult the relational query optimizers
through the use of accurate selectivity annotations for the predicates of our
queries. These selectivity annotations help the query optimizers to decide the
right join order and choose the most efficient execution plan.

4) We exploit a carefully tailored set of the powerful partitioned B-trees re-
lational indexes to reduce the secondary storage access costs of our SQL
translation scripts to a minimum.

5) We show the efficiency and the scalability of the performance of our approach
through an extensive set of experiments.

The remainder of the paper is organized as follows: We discuss some back-
ground knowledge in Section 2. Section 3 describe the different components of
our relational framework for processing graph queries including the graph cod-
ing method, pruning strategy and the SQL translation mechanisms. We evaluate
our method by conducting an extensive set of experiments which are described
in Section 4. We discuss the related work in Section 5. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 Labelled Graphs

In labelled graphs, vertices and edges represent the entities and the relationships
between them respectively. The attributes associated with these entities and rela-
tionships are called labels. A graph database D is a collection of member graphs
D = {g1, g2, ..., gn} where each member graph gi is denoted as (V, E, Lv, Le)
where V is the set of vertices; E ⊆ V ×V is the set of edges joining two distinct
vertices; Lv is the set of vertex labels and Le is the set of edge labels.

In principal, labelled graphs can be classified according to the direction of
their edges into two main classes: 1) Directed-labelled graphs such as XML, RDF
and traffic networks. 2) Undirected-labelled graphs such as social networks and
chemical compounds. In this paper, we are mainly focusing on dealing with
directed labelled graphs. However, it is straightforward to extend our framework
to process other kinds of graphs. Figure 1(a) provides an example of a graph
database composed of three directed-labelled graphs {g1, g2, g3}.
2.2 Subgraph Search Queries

In principal, the subgraph search operation can be simply described as follows:
given a graph database D = {g1, g2, ..., gn} and a graph query q, it returns the
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Fig. 1. An example graph database and graph query

query answer set A = {gi|q ⊆ gi, gi ∈ D}. A graph q is described as a sub-graph
of another graph database member gi if the set of vertices and edges of q form
subset of the vertices and edges of gi. To be more formal, let us assume that
we have two graphs g1(V1, E1, Lv1, Le1) and g2(V2, E2, Lv2, Le2). g1 is defined as
sub-graph of g2 , if and only if:
1) For every distinct vertex x ∈ V1 with a label vl ∈ Lv1, there is a distinct

vertex y ∈ V2 with a label vl ∈ Lv2.
2) For every distinct edge edge ab ∈ E1 with a label el ∈ Le1, there is a distinct

edge ab ∈ E2 with a label el ∈ Le2.
Figure 1(b) shows an example of graph query q. Running the example query q

over the example graph database D (Figure 1(a)) returns an answer set consists
of the graph database member g1.

3 GraphREL Description

3.1 Graph Encoding

The starting point of our relational framework for processing sub-graph search
queries is to find an efficient and suitable encoding for each graph member gi in
the graph database D. Therefore, we propose the Vertex-Edge mapping scheme
as an efficient, simple and intuitive relational storage scheme for storing our
targeting directed labelled graphs. In this mapping scheme, each graph database
member gi is assigned a unique identity graphID. Each vertex is assigned a
sequence number (vertexID) inside its graph. Each vertex is represented by one
tuple in a single table (Vertices table) which stores all vertices of the graph
database. Each vertex is identified by the graphID for which the vertex belongs
to and the vertex ID. Additionally, each vertex has an additional attribute to
store the vertex label. Similarly, all edges of the graph database are stored in
a single table (Edges table) where each edge is represented by a single tuple in
this table. Each edge tuple describes the graph database member which the edge
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Fig. 2. Vertex-Edge relational mapping scheme of graph database

belongs to, the id of the source vertex of the edge, the id of the destination vertex
of the edge and the edge label. Therefore, the relational storage scheme of our
Vertex-Edge mapping is described as follows:
– V ertices(graphID, vertexID, vertexLabel)
– Edges(graphID, sV ertex, dV ertex, edgeLabel)

Figure 2 illustrates an example of the Vertex-Edge relational mapping scheme
of graph database. Using these mapping scheme, we employ the following SQL-
based filtering-and-verification mechanism to speed up the search efficiency of
sub-graph queries.
– Filtering phase: in this phase we use an effective and efficient pruning

strategy to filter out as many as possible of the non-required graph members
very early. Specifically, in this phase we specify the set of graph database
members contain the set of vertices and edges which are describing the sub-
graph query. Therefore, the filtering process of a sub-graph query q consists
of a set of vertices QV with size equal m and a set of edges QE equal n (see
Figure 1(b)) can be achieved using the following SQL translation template:

1 SELECT DISTINCT V1.graphID,Vi.vertexID
2 FROM Vertices as V1,..., Vertices as Vm, Edges as E1,..., Edges as En

3 WHERE
4 ∀m

i=2(V1.graphID = Vi.graphID)
5 AND ∀n

j=1(V1.graphID = Ej .graphID)
6 AND ∀m

i=1(Vi.vertexLabel = QVi.vertexLabel)
7 AND ∀n

j=1(Ej .edgeLabel = QEj.edgeLabel)
8 AND ∀n

j=1(Ej .sV ertex = Vf .vertexID AND Ej .dV ertex = Vf .vertexID);

(transTemplate)

Where each referenced table Vi (Line number 2) represents an instance from
the table V ertices and maps the information of one vertex of the set of
vertices QV which is belonging to the sub-graph query q. Similarly, each
referenced table Ej represents an instance from the table Edges and maps
the information of one edge of the set of edges QE which is belonging to
the sub-graph query q. f is the mapping function between each vertex of
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QV and its associated vertices table instance Vi. Line number 4 of the SQL
translation template represents a set of m−1 conjunctive conditions to ensure
that all queried vertices belong to the same graph. Similarly, Line number 5
of the SQL translation template represents a set of n conjunctive conditions
to ensure that all queried edges belong to the same graph of the queried
vertices. Lines number 6 and 7 represent the set of conjunctive predicates of
the vertex and edge labels respectively. Line number 8 represents the edges
connection information between the mapped vertices.

– Verification phase: this phase is an optional phase. We apply the verifica-
tion process only if more than one vertex of the set of query vertices QV have
the same label. Therefore, in this case we need to verify that each vertex in
the set of filtered vertices for each candidate graph database member gi is
distinct. This can be easily achieved using their vertex ID. Although the fact
that the conditions of the verification process could be injected into the SQL
translation template of the filtering phase, we found that it is more efficient
to avoid the cost of performing these conditions over each graph database
members gi by delaying their processing (if required) in a separate phase
after pruning the candidate list.

Clearly, an obvious problem of the SQL translation template of the filtering
is that it involves a large number of conjunctive SQL predicates (2m + 4n)
and join (m + n) Vertices and Edges tables instances. Hence, although this
template can be efficiently used with relatively small sub-graph search queries,
most of relational query engines will certainly fail to execute the SQL translation
queries of medium size or large sub-graph queries because they are too long and
too complex (this does not mean they must consequently be too expensive).
In the following subsections we will describe our approach to effectively deal
with this problem by carefully and efficiently decomposing this complex one step
evaluation step into a series of well designed relational evaluation steps.

3.2 Relational Indexes Support for Vertex-Edge Mapping Scheme

Relational database indexes have proven to be very efficient tools to speed up
the performance of evaluating the SQL queries. Moreover, the performance of
queries evaluation in relational database systems is very sensitive to the defined
indexes structures over the data of the source tables. In principal, using rela-
tional indexes can accelerate the performance of queries evaluation in several
ways. For example, applying highly selective predicates first can limit the data
that must be accessed to only a very limited set of rows that satisfy those pred-
icates. Additionally, query evaluations can be achieved using index-only access
and save the necessity to access the original data pages by providing all the data
needed for the query evaluation. In [15], He and Singh have presented an index-
ing scheme for processing graph queries which is very similar to R-Tree index
structure. However, R-tree indexing technique is not commonly supported by
many of the RDBMS systems where B-tree indexing is still the most commonly
used technique. Therefore, in our purely relational framework, we use a stan-
dard, powerful and matured indexing mechanisms to accelerate the processing
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performance of our SQL evaluation of the sub-graph queries, namely partitioned
B-tree indexes and automated relational index advisors.

Partitioned B-tree Indexes Partitioned B-tree indexes are considered to be
a slight variant of the B-tree indexing structure. The main idea of this index-
ing technique has been represented by Graefe in [10] where he recommended
the use of low-selectivity leading columns to maintain the partitions within the
associated B-tree. For example, in labelled graphs, it is generally the case that
the number of distinct vertices and edges labels are far less than the number
of vertices and edges respectively. Hence, for example having an index defined
in terms of columns (vertexLabel, graphID) can reduce the access cost of sub-
graph query with only one label to one disk page which is storing a list of graphID
of all graphs which are including a vertex with the target query label. On the
contrary, an index defined in terms of the two columns (graphID, vertexLabel)
requires scanning a large number of disk pages to get the same list of targeted
graphs. Conceptually, this approach could be considered as a horizontal parti-
tioning of the Vertices and Edges table using the high selectivity partitioning
attributes. Therefore, instead of requiring an execution time which is linear with
the number of graph database members (graph database size), having parti-
tioned B-trees indexes of the high-selectivity attributes can achieve fixed execu-
tion times which are no longer dependent on the size of the whole graph database
[10,13].

Automated Relational Index Advisor Leveraging the advantage of relying
on a pure relational relational infrastructure, we are able to use the ready made
tools provided by the RDBMSs to propose the candidate indexes that are effec-
tive for accelerating our query work loads. In our work, we were able to use the
db2advis tool provided by the DB2 engine (our hosting experimental engine) to
recommend the suitable index structure for our query workload. Through the use
of this tool we have been able significantly improve the quality of our designed
indexes and to speed up the evaluation of our queries by reducing the number
of calls to the database engine. Similar tools are available in most of the widely
available commercial RDBMSs.

3.3 Statistical Summaries Support of Vertex-Edge Mapping Scheme

In general, one of the most effective techniques for optimizing the execution
times of SQL queries is to select the relational execution based on the accurate
selectivity information of the query predicates. For example, the query optimizer
may need to estimate the selectivities of the occurrences of two vertices in one
subgraph, one of these vertices with label A and the other with label B to choose
the more selective vertex to be filtered first. Providing an accurate estimation for
the selectivity of the predicates defined in our SQL translation template requires
having statistical information that contain information about the structure of
the stored graph data. Additionally, these statistics must be small enough to
be processed efficiently in the short time available for query optimization and
without any disk accesses. Therefore, we construct three Markov tables to store
information about the frequency of occurrence of the distinct labels of vertices,
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Fig. 3. Sample Markov tables summaries of Vertex-Edge mapping

distinct labels of edges and connection between pair of vertices (edges). Figure 3
presents an example of our Markov table summary information. In our context,
we are only interested in label and edge information with low frequency. There-
fore, it is not necessary and not useful to keep all such frequency information.
Hence, we summarize these Markov tables by deleting high-frequency tuples up
to certain defined threshold freq. The following subsection will explain how we
can use these information about the low frequency labels and edges to effectively
prune the search space, reduce the size of intermediate results and influence the
decision of the relational query optimizers to select the most efficient join order
and the cheapest execution plan in our decomposed and selectivity-aware SQL
translation of sub-graph queries.

3.4 Decomposition-Based and Selectivity-Aware SQL Translation
of Sub-graph Queries

In Section 3, we described our preliminary mechanism for translating sub-graph
queries into SQL queries using our Vertex-Edge mapping. As discussed previ-
ously, the main problem of this one-step translation mechanism is that it cannot
be used with medium or large sub-graph queries as it generate SQL queries that
are too long and too complex. Therefore, we need a decomposition mechanism
to divide this large and complex SQL translation query into a sequence of in-
termediate queries (using temporary tables) before evaluating the final results.
However, applying this decomposition mechanism blindly may lead to inefficient
execution plans with very large, non-required and expensive intermediate results.
Therefore, we use the statistical summary information described in Section 3.3
to perform an effective selectivity-aware decomposition process. Specifically, our
decomposition-based and selectivity-aware translation mechanism goes through
the sequence of following steps:
– Identifying the pruning points. The frequency of the labels of vertices and

edges in addition to the frequency of edge connection play a crucial role in our
decomposition mechanism. Each vertex label, edge label or edge connection
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with low frequency is considered as a pruning point in our relational evalua-
tion mechanism. Hence, given a query graph q, we first check the structure of
q against our summary Markov tables to identify the possible pruning points.
We refer to the number of the identified pruning points by NPP .

– Calculating the number of partitions. As we previously discussed, hav-
ing a sub-graph query q consists of a m vertices and a set of n edges requires
(2m + 4n) conjunctive conditions. Assuming that the relational query en-
gine can evaluate up to number of conjunctive condition equal to NC in
one query then the number of partitions (NOP ) can be simply computed as
follows : (2m + 4n)/NC

– Decomposed SQL translation. Based on the identified number of pruning
points (NPP ) and the number of partitions (NOP ), our decomposition
process can be described as follows:
• Blindly Single-Level Decomposition. if NPP = 0 then we blindly de-

compose the sub-graph query q into the calculated number of partition
NOP where each partition is translated using our translation template
into an intermediate evaluation step Si. The final evaluation step FES
represents a join operation between the results of all intermediate evalu-
ation steps Si in addition to the conjunctive condition of the sub-graphs
connectors. The unavailability of any information about effective prun-
ing points could lead to the result where the size of some intermediate
results may contain a large set of non-required graph members.

• Pruned Single-Level Decomposition. if NPP >= NOP then we
distribute the pruning points across the different intermediate NOP par-
titions. Therefore, we ensure a balanced effective pruning of all interme-
diate results, by getting rid of the non-required graph database member
early which consequently results in a highly efficient performance. All in-
termediate results Si of all pruned partitions are constructed before the
final evaluation step FES joins all these intermediate results in addition
to the connecting conditions to constitute the final result.

• Pruned Multi-Level Decomposition.if NPP < NOP then we distribute
the pruning points across a first level intermediate results of NOP par-
titions. This step ensures an effective pruning of a percentage of NPP/
NOP % partitions. An intermediate collective pruned step IPS is con-
structed by joining all these pruned first level intermediate results in addi-
tion to the connecting conditions between them. Progressively, IPS is used
as an entry pruning point for the rest (NOP − NPP ) non-pruned parti-
tions in a hierarchical multi-level fashion to constitute the final result set.
In this situation, the number of non-pruned partitions can be reduced if
any of them can be connected to one of the pruning points. In other words,
each pruning point can be used to prune more than one partition (if pos-
sible) to avoid the cost of having any large intermediate results.

Figure 4 illustrates two example of our selectivity-aware decomposition pro-
cess where the pruning vertices are marked by solid fillings, pruning edges
are marked by bold line styles and the connectors between subgraphs are
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marked by dashed edges. Figure 4(a) represents an example where the num-
ber of pruning points is greater than the number of partitions. Figure 4(b)
represents an example where one pruning vertex is shared by the different
partitioned sub-graphs because the number of pruning points is less than the
number of partitions.

– Selectivity-aware Annotations. In principal, the main goal of RDBMS
query optimizers is to find the most efficient execution plan for every given
SQL query. For any given SQL query, there are a large number of alternative
execution plans. These alternative execution plans may differ significantly in
their use of system resources or response time. Sometimes query optimizers are
not able to select the most optimal execution plan for the input queries because
of the unavailability or the inaccuracy of the required statistical information.
To tackle this problem, we use our statistical summary information to give in-
fluencing hints for the query optimizers by injecting additional selectivity in-
formation for the individual query predicates into the SQL translations of the
graph queries. These hints enable the query optimizers to decide the optimal
join order, utilizing the most useful indexes and select the cheapest execution
plan. In our context, we used the following syntax to pass the selectivity infor-
mation to the DB2 RDBMS query optimizer:

SELECT fieldlist FROM tablelist

WHERE Pi SELECTIVITY Si

Where Si indicates the selectivity value for the query predicate Pi. These
selectivity values are ranging between 0 and 1. Lower selectivity values (close
to 0) will inform the query optimizer that the associated predicates will
effectively prune the number of the intermediate result and thus they should
be executed first.

4 Performance Evaluation

In this section, we present a performance evaluation of GraphREL as a purely
relational framework for storing graph data and processing sub-graph queries.
We conducted our experiments using the IBM DB2 DBMS running on a PC with
2.8 GHZ Intel Xeon processors, 4 GB of main memory storage and 200 GB of
SCSI secondary storage. In principle, our experiments have the following goals:
1) To demonstrate the efficiency of using partitioned B-tree indexes and selec-

tivity injections to improve the execution times of the relational evaluation
of sub-graph queries.
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2) To demonstrate the efficiency and scalability of our decomposition-based and
selectivity-aware relational framework for processing sub-graph queries.

4.1 Datasets

In our experiments we use two kinds of datasets:
1) The real DBLP dataset which presents the famous database of bibliographic

information of computer science journals and conference proceedings [1]. We
converted the available XML tree datasets into labelled directed graphs by
using edges to represent the relationship between different entities of the
datasets such as: the ID/IDREF, cross reference and citation relationships.
Five query sets are used, each of which has 1000 queries. These 1000 queries
are constructed by randomly selecting 1000 graphs and then extracting a
connected m edge subgraph from each graph randomly. Each query set is
denoted by its edge size as Qm.

2) A set of synthetic datasets which is generated by our implemented data gen-
erator which is following the same idea proposed by Kuramochi et al. in [17].
The generator allows the user to specify the number of graphs (D), the aver-
age number of vertices for each graph (V), the average number of edges for
each graph (E), the number of distinct vertices labels (L) and the number
of distinct edge labels (M). We generated different datasets with different
parameters according to the nature of each experiment. We use the notation
DdEeV vLlMm to represent the generation parameters of each data set.

4.2 Experiments

The effect of using partitioned B-tree indexes and selectivity injec-
tions. Figures 5(a) and 5(b) indicate the percentage of speed-up improvement
on the execution times of the SQL-based relational evaluation sub-graph queries
using the partitioned B-tree indexing technique and the selectivity-aware an-
notations respectively. In these experiments we used an instance of a syntactic
database that was generated with the parameters D200kV 15E20L200M400 and
a DBLP instance with a size that is equal to 100 MB. We used query groups
with different edge sizes of 4,8,12,16 and 20. The groups with sizes of 4 and 8 are
translated into one SQL evaluation step, the queries with sizes of 12 and 16 are
decomposed into two SQL evaluation steps and the queries with of size 20 are
decomposed into three SQL evaluation steps. The reported percentage of speed
up improvements are computed using the formula: (1 − G

C ) %. In Figure 5(a) G
represents the execution time of the SQL execution plans using our defined set of
the partitioned B-tree indexes while C represents the execution time of the SQL
execution plans using the traditional B-tree indexes. Similarly, in Figure 5(b) G
represents the execution time of the SQL execution plans with the injected selec-
tivity annotations while C represents the execution time of the SQL execution
plans without the injected selectivity annotations. The results of both experi-
ments confirm the efficiency of both optimization techniques on both data sets.
Clearly, using partitioned B-tree indexes has a higher effect on improving the
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Fig. 5. The speedup improvement for the relational evaluation of sub-graph queries
using partitioned B-tree indexes and selectivity-aware annotations

execution of the SQL plans because it dramatically reduce the access cost of
the secondary storage while selectivity annotations only improve the ability to
select the more optimal execution plans. Additionally, the effect on the synthetic
database is greater than the effect on the DBLP database because of the higher
frequency on the vertex and edge labels and thus reducing the cost of accessing
the secondary storage is more effective. The bigger the query size, the more join
operations are required to be executed and consequently the higher the effect
of both optimization techniques on pruning the cost of accessing the secondary
storage and improving the execution times.

Performance and Scalability. One of the main advantages of using a rela-
tional database to store and query graph databases is to exploit their well-know
scalability feature. To demonstrate the scalability of our approach, we conducted
a set of experiments using different database sizes of our datasets and different
query sizes. For the DBLP data sets, we used different subsets with sizes of
1,10,50 and 100MB. For the synthetic datasets, we generate four databases with
the following parameters: D2kV 10E20L40M50, D10kV 10E20L40M50,
D50kV 30E40L90M150 and D100kV 30E40L90M150. For each dataset, we gen-
erated a set of 1000 queries. Figures 6(a) and 6(b) illustrate the average execution
times for the SQL translations scripts of the 1000 sub-graph queries.

In these figures, the running time for sub-graph query processing is presented
in the Y-axis while the X-axis represents the size of the query graphs. The running
time of these experiments include both the filtering and verification phases. How-
ever, on average the running time of the verificationphase represents 5%of the total
running time and can be considered as have a negligible effect on all queries with
small result set. Obviously, the figures show that the execution times of our system
performs and scales in a near linear fashion with respect to the graph database and
query sizes. This linear increase of the execution time starts to decrease with the
very large database sizes (DBLP 100MB and Synthetic D100kV 30E40L90M150)
because of the efficiency of the partitioned B-tree indexing mechanism which
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Fig. 6. The scalability of GraphREL

decouples the query evaluation cost from the total database size. . To the best
of our knowledge, this work is the first to successful demonstrate a feasible ap-
proach of processing large subgraph queries up to 20 vertices and 20 edges over
graph databases with such very large sizes up to 100 MB.

5 Related Work

Recently, graph database has attracted a lot of attentions from the database
community. In [9], Shasha et al. have presented GraphGrep as a path-based ap-
proach for processing graph queries. It enumerates all paths through each graph
in a database until a maximum length L and records the number of occurrences
of each path. An index table is then constructed where each row stands for a
path, each column stands for a graph and each entry is the number of occur-
rences of the path in the graph. The main problem of this approach is that many
false positive graphs could be returned in the filtering phase. In addition, enu-
merating the graphs into a set of paths may cause losing some of their structural
features. Some researchers have focused on indexing and querying graph data
using data mining techniques such as: GIndex [22], TreePi [25] and Tree+Δ
[26]. In these approaches data mining methods are firstly applied to extract the
frequent subgraphs (features) and identify the graphs in the database which con-
tain those subgraphs. Clearly, the effectiveness of these approaches depends on
the quality of the selected features. In addition, the index construction time of
these approach requires an additional high space cost and time overhead for enu-
merating all the graph fragments and performing the graph mining techniques.
Moreover, all of these approaches deal with relatively small graph databases
where they assume either implicitly or explicitly that the graph databases can
completely or the major part of them fit into the main memory. None of them
have presented a persistent storage mechanism of the large graph databases. In
[27] Jiang et al. proposed another graph indexing scheme called GString. GString
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approach focus on decomposing chemical compounds into basic structures that
have semantic meaning in the context of organic chemistry. In this approach the
graph search problem is converted into a string matching problem and specific
string indices is built to support the efficient string matching process. We believe
that converting sub-graph search queries into sting matching problem could be
an inefficient approach specially if the size of the graph database or the sub-
graph query is large. Additionally, it is not trivial to extend GString approach
to support processing of graph queries in other domain of applications.

6 Conclusions

Efficient sub-graph query processing plays a critical role in many applications
related to different domains which involve complex structures such as: bioinfor-
matics, chemistry and social networks. In this paper, we introduced GraphRel
as a purely relational framework to store and query graph data. Our approach
converts a graph into an intuitive relational schema and then uses powerful in-
dexing techniques and advanced selectivity annotations of RDBMSs to achieve
an efficient SQL execution plans for evaluating subgraph queries. In principle
GraphREL has the following advantages:
1) It employs purely relational techniques for encoding graph data and process-

ing the sub-graph search query. Hence, it can reside on any relational database
system and exploits its well known matured query optimization techniques
as well as its efficient and scalable query processing techniques.

2) It has no required time cost for offline or pre-processing steps.
3) It can handle static and dynamic (with frequent updates) graph databases

very well. It is easy to maintain the graph database members and no special
processing is required to insert new graphs, delete or update the structure of
existing graphs.

4) The selectivity annotations for the SQL evaluation scripts provide the rela-
tional query optimizers with the ability to select the most efficient execution
plans and apply an efficient pruning for the non-required graph database
members.

5) As we have demonstrated in our experiments, using the well-known scalability
feature of the relational database engine, GraphREL can achieve a very high
scalability and ensure its good performance over very large graph databases
and large sub-graph queries.
In the future, we will experiment our approach with other types of graphs

and will explore the feasibility of extending our approach to deal with similarity
queries and the general subgraph isomorphism problem as well.
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