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Message from the DASFAA 2009 Chairs

It is our great pleasure to present this volume of proceedings containing the pa-
pers selected for presentation at the 14th International Conference on Database
Systems for Advanced Applications (DASFAA 2009), which was held in Bris-
bane, Australia during April 21–23, 2009.

DASFAA 2009 received 186 submissions. After a thorough review process for
each submission by the Program Committee and specialists recommended by Pro-
gram Committee members, DASFAA 2009 accepted 39 full papers and 22 short
papers (the acceptance rates were 21% and 12%, respectively). This volume also
includes three invited keynote papers, presented by leading experts in database
research and advanced applications at DASFAA 2009: David Lomet (Microsoft
Research), Elisa Bertino (Purdue University), Robert Vertessy (Australian Bu-
reau of Meteorology). Other papers in this volume include nine demo papers or-
ganized by Marek Kowalkiewicz (SAP Research) and Wei Wang (University of
New South Wales), three tutorial abstracts organized by Yanchun Zhang (Victo-
ria University), Alan Fekete (University of Sydney) and Xiaoyong Du (Renmin
University of China), and one panel abstract organized by Athman Bouguettaya
(CSIRO, Australia) and Jeffrey Yu (Chinese University of Hong Kong).

Six workshops were selected by the Workshop Co-chairs, Lei Chen (Hong
Kong University of Science and Technology) and Chengfei Liu (Swinburne Uni-
versity of Technology), and were held in conjunction with DASFAA 2009. They
are the Second International Workshop on Managing Data Quality in Collab-
orative Information Systems (MCIS 2009), First International Workshop on
Benchmarking of XML and Semantic Web Applications (BenchmarX 2009),
First International Workshop on Data and Process Provenance (WDPP 2009),
First International Workshop on Mobile Business Collaboration (MBC 2009),
First International Workshop on Privacy-Preserving Data Analysis (PPDA) and
the DASFAA 2009 PhD Workshop. The workshop papers are included in a sep-
arate volume of proceedings also published by Springer in its Lecture Notes in
Computer Science series.

The conference received generous financial support from The University of
Melbourne, The University of New South Wales, The University of Sydney,
The University of Queensland, National ICT Australia (NICTA), the Australian
Research Council (ARC) the Research Network in Enterprise Information Infras-
tructure (EII), the ARC Research Network on Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), and the ARC Research Network for
a Secure Australia. We, the conference organizers, also received extensive help
and logistic support from the DASFAA Steering Committee, The University of
Queensland, Tokyo Institute of Technology, and the Conference Management
Toolkit Support Team at Microsoft.



VI Preface

We are grateful to Shazia Sadiq, Ke Deng, Qing Liu, Gabriel Pui Cheong
Fung, Kathleen Williamson, James Bailey, and many other people for their
great effort in supporting the conference organization. Special thanks also go
to the DASFAA 2009 Regional Chairs: Xiaofeng Meng (Asia), John Roddick
(Oceania), Torben Pedersen (Europe), and Jun Yang (America), and Best Paper
Award Committee Co-chairs Katsumi Tanaka (University of Kyoto), Kyu-Young
Whang (KAIST), and Lizhu Zhou (Tsinghua University).

Finally, we would like to take this opportunity to thank all Program Com-
mittee members and external reviewers for their expertise and help in evaluating
papers, and to thank all authors who submitted their papers to this conference.

February 2009
Ramamohanarao Kotagiri

Xuemin Lin
Xiaofang Zhou
Haruo Yokota
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Abstract. In this paper, we look at what is required to produce programs that 
are dependable. Dependability requires more than just high availability.  Rather, 
a program needs to be “right” as well, solving the problem for which it was de-
signed. This requires a program development infrastructure that can, by means 
of appropriate abstractions, permit the programmer to focus on his problem, and 
not be distracted by “systems issues” that arise when high availability is re-
quired.  We discuss the attributes of good abstractions. We then illustrate this in 
the programming of dependable systems. Our “abstraction” is a transparently 
persistent stateful programming model for use in the web enterprise setting 
where exactly-once execution is required. Work on this abstraction is reviewed. 
The new technical meat of the paper is in (1) describing how to reduce the per-
formance cost of using the abstraction; (2) extending the flexibility of using this 
abstraction; (3) and showing how to exploit it to achieve dependability.  

Keywords: dependability, abstraction, application persistence, availability, 
scalability, programming model, enterprise applications. 

1   Introduction 

Systems need to be dependable. But what exactly does that mean? Brian Randell and 
co-authors [1] defines dependability as the system property that integrates such at-
tributes as availability, safety, security, survivability, maintainability. This is more 
than just high availability (the fraction of the time that the system is operational), with 
which it is frequently confused. Rather, it encompasses systems that do what they are 
supposed to (correctness), can be modified to keep them up to date (maintenance), 
cover all the expected cases, handle exceptions as well as normal cases, protecting 
data appropriately, etc. It is no accident that dependable systems have been in short 
supply as achieving them is very difficult. 

Tony Hoare argues [14] that the price of reliability is utter simplicity- and this is a 
price that major software manufacturers find too high to afford.  Perhaps my view is 
colored by being employed by a software vendor, but I do not believe the difficulty 
stems from want of trying. Rather, it is extraordinarily difficult to make systems sim-
ple, without drastic reductions in functionality and the very aspects desired, such as 
availability. The key point is that unless it is easy, natural, and simple, programming 
for dependability may well compromise it.  

This difficulty has led to a very unsatisfactory state. Jim Gray [12] characterized 
the situation for availability as: (1) everyone has a serious problem; (2) the BEST 
people publish their stats; (3) the others HIDE their stats. This is not unexpected. It 
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represents a very basic human reluctance to own up to difficulties, especially when 
doing so makes companies look worse than their competitors. 

This is not simply an abstract problem.  It has business impact.  Dave Patterson 
[21] has characterized this as Service outages are frequent with 65% of IT managers 
reporting that their websites were unavailable over a 6-month period.  Further, out-
age costs are high with social effects like negative press and loss of customers who 
click over to a competitor. 

To summarize, dependability is essential and we do not currently achieve it consis-
tently. We all too frequently deploy undependable systems, which result in real and 
on-going economic costs. 

The rest of this paper focuses on abstraction as the key to realizing dependable 
programs. We first discuss some existing techniques employed to make systems scal-
able (increasing the hardware supporting the application permits the application to 
serve a corresponding increase in system load, e.g. number of users served) and 
highly available (no prolonged down times, high probability of being operational), 
important aspects of dependability. We argue that these techniques compromise other 
aspects of dependability, specifically correctness, maintainability, and simplicity. We 
next discuss the characteristics of good abstractions, and illustrate this with existing 
examples that have survived the test of time.   

The technical meat of this paper is a “new” abstraction, transparently persistent 
stateful programming, which we argue will enable dependable applications to be 
written more easily. We elaborate on this abstraction, showing how it can be made to 
work and provide availability and scalability. We then show that unexpected capabili-
ties can be added to this abstraction that increase deployment flexibility and perform-
ance, hence increasing its practical utility. 

2   The Current Situation 

The classical tool in our bag of dependability technology, in the context of enterprise 
programming where exactly-once execution is required, is transactions. All early 
enterprise systems used transactions, usually within the context of a TP monitor. So 
we start by taking a look at how transactions have been used and the implications and 
problems of using them. 

2.1   Using Transactions 

Database systems use transactions very successfully to enhance their dependability. 
TP monitors also use transactions to provide high availability for applications. How-
ever, transaction use with applications has some implications for the application and 
for the context in which the application operates. 

System context: TP monitors [8, 13] were developed in the context of “closed sys-
tems”, where an organization controlled the entire application from user terminal to 
mainframe computer. This provided a high level of trust among the elements of the 
system. In particular, it permitted an application with transactional parts to participate 
in a transaction hosted by a database or transactional queue. Such transactions were 
distributed, requiring two phase commit, but because of the level of trust, this was 
acceptable.   
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Programming model: The key to using transactions for application dependability 
is to have meaningful application execution state exist ONLY within a transaction. 
When the transaction commits, the essential state is extracted and committed to a 
database or queue [7]. This approach is also used in workflows [24]. An application is 
broken into a series of steps where each step executes a transaction that reads input 
“state” from a transactional queue, executes business logic, perhaps invoking a 
backend relational database, and writes output “state” to another transactional queue, 
followed by the commit of this distributed transaction. These applications have been 
called “stateless” (now a term that is a bit overloaded) in that no required execution 
state exists in the application outside of a transactional step.   

Web applications: The web setting, because of the trust issue and the uncertain re-
liability or latency of communication, frequently precludes the use of two phase 
commit. Thus, as shown in Figure 1, most web application code lives outside any 
transaction boundary. The key to making such systems available and scalable is again 
“stateless” applications, the idea being that since there is no essential program execu-
tion state that needs to be preserved in the executing application, it can fail without 
any consequence for availability (though clearly with some performance impact). The 
term stateless application continues to mean that application execution state outside of 
transactions is not essential for application availability, but the techniques used for 
managing what is the state of the application are frequently quite different, involving 
a mix of posting information to backend databases, including it in cookies that are 
returned to users, or replicating it elsewhere in the middle tier. 

Scalability: Stateless applications can enhance web application scalability as well. 
Because there is no execution state retained, an application can move to other applica-
tion servers easily simply by re-directing a request (perhaps with the appropriate 
cookie) to another application server. This permits new application servers to be eas-
ily added to the running system, hence providing scalability.   

The above discussion seems to suggest that any debate about the stateless applica-
tion approach is pretty much over. In the next subsection, we discuss why we do not 
think that is the case. 

TP App Server uses
transactions to access
the DBMSDBMS

Web Server

TP App Server

…

IP Sprayer

Web Server

TP App Server

Internet

Slide from Phil Bernstein

 

Fig. 1. A Typical e-commerce system deployment 
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2.2   Problems with Stateless Applications 

Stateless applications, and the distributed transactions that are sometimes used to 
provide durability (and hence availability) are indeed a way to provide highly avail-
able applications. But the approach is not without difficulties.   

Two phase commit: In a web setting, trust is frequently not present because the 
level of control necessary for it isn’t present. Web host systems frequently have little 
control over the sea of users running web browsers or other potentially unreliable or 
even malicious software. Thus they are reluctant to be hostage to the commits of 
users, or even of other systems that may be involved in an overall business transac-
tion. This has been called the “site autonomy” issue, and it is hard to envision distrib-
uted transactions being used with any frequency across organizations.   

Latency is also a very big issue in web systems. It is important for performance for 
transactions to commit promptly. Large latencies introduce corresponding delays in 
the release of locks, which interferes with concurrency in these systems. 

State management: Stateless frameworks force the application programmer to 
deal explicitly with state. Sometimes this is via cookie management, sometimes via 
storing information in a transactional queue, sometimes storing state in a database 
system. The application programmer needs to identify the state that is needed, and 
manage it explicitly. Then the programmer needs to organize his program into a se-
quence of steps (“string of beads”) where the “state” before and after the execution of 
a bead is materialized and persisted in some way. Thus, the program needs to be or-
ganized to facilitate state management. Because the programmer needs to manage 
state within his program, the concerns of availability and scalability get mingled with 
the business logic, making programs more difficult to write and maintain, and some-
times with worse performance as well.  

Error handling: With stateless programs, there is no meaningful program execu-
tion state outside of the transactions. The assumption is that any execution state that 
exists can be readily discarded without serious impact on the application. But this 
poses a problem when handling errors that occur within a transaction that might pre-
vent a transaction from committing.   

Since state outside of a transaction might disappear, it is very difficult to guarantee 
that code will be present that can deal with errors reported by a transaction. In classic 
transaction processing systems, after a certain number of repeated tries, an error mes-
sage would eventually be posted to a queue that is serviced MANUALLY. It then 
becomes people logic, not program logic, which deals with the remaining errors. 

3   Abstractions and Applications 

Transactions are a great abstraction, but not in the context of reliable, scalable, and 
highly available applications, as described in section 2.2. We need to take a fresh look 
at what abstraction to use to make applications robust. To guide us in this process, we 
first consider the characteristics of good abstractions, so that we have some basis for 
making judgments about any new proposed abstraction. 
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3.1   Characteristics of a Good Abstraction 

Good abstractions are hard to come by. This can readily be seen by simply observing 
the small number of abstractions that have made it into wide use—procedures, typed 
data and objects in programming languages, files, processes, threads in operating 
systems, and in databases, transactions and the relational model. There are surely 
other abstractions, but the list is not long. So why are good abstractions so few?  It is 
because there are difficult and sometimes conflicting requirements that good abstrac-
tions must satisfy. 

Clean and simple semantics: A good abstraction must be simple and easy to un-
derstand. But this is surely not sufficient. “Do what I mean” is simple but it is not, of 
course, implementable.   

Good performance and robustness: If performance is bad, then either program-
mers will not use it at all, or will greatly limit their use of it. If the implementations 
are not robust as well as performant, it will be impossible to interest enterprise appli-
cation programmers in using them. A system must perform well and provide reliable 
service as a basic property.  

Good problem match: An abstraction must “match” in some sense the problem 
for which it is being used. Without this match, the abstraction is irrelevant. The rela-
tional model has a tremendous relevance for business data processing, but is surely 
less relevant for, e.g. managing audio files.  

Delegation: When the characteristics above are present, the application program-
mer can not only exploit the abstraction for his application, but can frequently  
delegate to the system supporting the abstraction some “systems” aspect of his prob-
lem. This means that the programmer need no longer dedicate intellectual cycles to 
this part, permitting him to focus on the application business problem.   

Historical examples of abstractions resulting in successful delegation include:   

1. Transactions: a programmer using transactions delegates concurrency control and 
recovery to the system. This permits him to construct a program that is to execute 
within a transaction as if it were the only code executing.  

2. Relational model: a programmer using the relational model delegates physical 
database design and query processing/optimization to the system, permitting him 
to work on a “data independent” conceptual view. This permits him to focus on 
business relevant issues, not storage/performance relevant issues.  

3.2   A New Abstraction for Enterprise Applications 

We want to propose a new abstraction to help an application programmer deal with 
the complex difficulties introduced by the stateless programming model, with its 
application program requirement to explicitly manage state. Our new abstraction is, in 
truth, an old abstraction, that has been used by application programmers for years.  
We call it the stateful programming model, and when applied to enterprise internet 
applications, it is the transparently persistent stateful programming model. 

This seems hardly to be an abstraction at all. Application programmers, in simple 
contexts, naturally tend to write stateful applications. Such programs are easier to 
write and to understand, as the application programmer can focus on the requirements 
of the business, rather than the intricacies of managing state so that it will persist even  
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Fig. 2. A stateful application in the web context 

if systems crash, messages get lost, etc. Because of this focus on business require-
ments, such applications are easier to read and maintain, and are more likely to be 
correct as the program is not cluttered with state management code. This aspect of the 
program has been delegated to the system infrastructure.  

Figure 2 shows a stateful application in a web context.  Note that there is important 
application state between the interactions with suppliers A and B. It is application 
state that captures the fact that there remain 15 copies of a book that still need to be 
ordered after supplier A has only been able to commit to providing 35 copies. This 
information is captured in the execution state of the program, without the programmer 
needing to take any measures to otherwise “manifest” this state. Thus, the application 
programmer has, in a sense, delegated state management to the system. And this per-
mits the programmer to focus on what the business requires. 

3.3   It’s Been Tried and Failed 

We, of course, want stateful applications to work in a web context, and support mis-
sion critical functions. That means such applications must provide “exactly once” 
execution semantics, i.e. as if, despite a wide range of possible failures, the program 
has executed without failures and exactly once. We further want our application to be 
highly available and scalable. To accomplish these things transparently requires that 
our supporting infrastructure handle state management and state persistence. 

The problem for stateful applications, classically, has been that they fail to provide 
the properties we enumerated above. That is, the application cannot be a made trans-
parently scalable and available with exactly once execution semantics. Consider Fig-
ure 2 again. If the system crashes after the application’s transaction with Supplier A, 
the fact that it has arranged for 35 books from Supplier A and needs another 15 books 
from Supplier B is difficult to reconstruct. The user does not even know yet what the 
order number used for Supplier A was. So not only is application state lost when a 
crash happens, which is bad enough, but the state of backend resource managers may 
now reflect some of the changes induced by committed transactions of the stateful 
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application. Thus, we cannot simply restart the application and let it execute all over 
again. That strategy works for stateless applications, but not here.   

4   Phoenix/App: Transparent Persistence 

4.1   How Transparent Stateful Applications Might Work 

As indicated in section 2, the stateless application model forces the application  
programmer to manage state explicitly. Usually the infrastructure supports this by 
wrapping application steps automatically with a transaction. But transactions are an 
expensive way to persist state and require explicit state management. So why not use 
database style recovery for applications: use redo logging with occasional checkpoint-
ing of state, all done transparently by the enterprise application support infrastructure. 
This is an old technology [9, 10], but our Phoenix project [2, 3, 4, 15] applied it to 
enterprise applications. It was previously applied in the context of scientific applica-
tions, not to support exactly once execution, but rather to limit the work lost should 
systems crash while the application is executing. 

The way this works is that the redo log captures the non-deterministic events that a 
software component is exposed to. To recover the component, it is replayed, and the 
events on the log are fed to it whenever it reaches a point that in its initial execution 
experienced a non-deterministic event. Frequently such events are things like receiv-
ing a request for service (e.g. an rpc), or perhaps an application read of the state of 
some other part of the system (e.g. the system clock, etc.). 

Unlike scientific applications, with enterprise applications, we need to provide ex-
actly once execution. This requires “pessimistic logging”. Logging is pessimistic 
when there is enough logging (and log forces) so that no non-deterministic event is 
lost from the log that is needed to provide the exactly once property. Optimistic log-
ging permits later state to be lost, as with scientific applications. Pessimistic logging 
can require a log force whenever state is revealed to other parts of system (we refer to 
this as committing state). We focus on improving the performance of pessimistic 
logging. Many log forces can be eliminated– and our Phoenix project has published 
some slick methods [1]. 

The result is that Phoenix manages an application’s state by capturing its execution 
state on the redo log. Once the state is successfully captured, (1) it can be used to re-
instantiate the application for availability should its system crash; and (2) it can be 
shipped to other systems for scalability and/or manageability, i.e. the log is shipped to 
another part of the system. The application programmer need merely focus on writing 
a correct program to solve his business problem and then to declaratively characterize 
the attributes he wants of his software components. 

4.2   Transparent Robustness 

We want to provide robust, dependable applications.  If we are to do this, we need a 
“natural” programming model. Thus, the Phoenix goal has been to provide these 
enterprise attributes transparently using the stateful programming abstraction. If we 
can do this, then the application program need not include program logic for robust-
ness. That has been delegated to Phoenix. So how do we do this? 
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Fig. 3. The Phoenix .NET infrastructure for transparent persistence 

Phoenix is implemented using the Microsoft .Net infrastructure [19]. “.Net Remot-
ing” supports the development of component software for web applications. Among 
its facilities is the notion of a context such that messages (e.g. rpc’s) that cross a 
boundary between two contexts are intercepted by .Net and made available to the 
Phoenix infrastructure code. This is illustrated in Figure 3. The application program 
“sees” the standard .Net interfaces for communication between components. When 
.Net gives Phoenix the intercepted message, Phoenix logs it in order to provide ex-
actly once execution and application availability, scalability, and manageability. 
These requirements are captured in an interaction contract (CIC) which is shown in 
Figure 3 and described below.  

4.3   Component Types and Interaction Contracts 

Phoenix classifies application software components into three types [4] (subsequently, 
more types were introduced to support various kinds of optimizations). These are: 

1. Persistent (PCOM): PCOM’s represent a part of the application whose persistence, 
scalability, availability, etc. is being guaranteed by Phoenix. An application exe-
cuting at an app server, executing business logic and interacting with a backend 
database system might be represented as a PCOM. A PCOM exploits the transpar-
ently persistent stateful programming abstraction provided by Phoenix. Phoenix 
logs interactions and checkpoints state as required to provide this persistence. 

2. Transactional (TCOM): Some parts of a web application will execute transactions, 
e.g. SQL DB sessions. We call the components executing transactions TCOM’s. 
When a PCOM interacts with a TCOM, it must be aware that transactions can either 
commit or abort. If committed, the post-state of the transaction must be durably re-
membered, while if aborted, the pre-state of the transaction must be restored. 

3. External (XCOM): Applications are rarely self-contained. For example, an appli-
cation frequently is executed in response to end user input or from an input from 
an autonomous site not controlled by Phoenix. We call these components 
XCOM’s. We need do nothing for the persistence of XCOM’s (indeed there is  
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frequently nothing we can do). But we need to promptly capture via forced log-
ging, the interactions that a PCOM has with an XCOM to minimize the window in 
which, e.g. a user might need to re-enter data as a result of a system failure.  

 

Figure 4 illustrates the deployment of Phoenix components in support of a web ap-
plication. We characterize the end user as an XCOM, and a SQL Server database (actu-
ally a session with it) as a TCOM, while the mid-tier components execute application 
logic in a context that ensures its exactly once execution. 

Depending upon what component type a PCOM interacts with, Phoenix needs to 
provide different functionality for exactly once execution. This is captured in what we 
call interaction contracts [5, 6, 22], of which there is one for each “flavor” of compo-
nent. Where these interaction contracts are used is also shown also in Figure 4. 

1. Committed interaction contract (CIC): A CIC interaction is between a pair of 
PCOM’s. It must guarantee causality, i.e. that if the receiver PCOM remembers a 
message, then so must its sender PCOM, regardless of possible failures.  We fre-
quently enforce a stronger guarantee, i.e., that the sender guarantees that its state 
is persistent at the point when it sends a message. 

2. Transactional interaction contract (TIC): A TIC interaction is between a PCOM 
and a TCOM.  The PCOM may or may not remember that it has interacted with a 
TCOM should the transaction abort.   But if the transaction at the TCOM has com-
mitted, the PCOM must remember the interactions it had with the TCOM.  Transac-
tions permit Phoenix to log less aggressively during the TIC, but require that state 
persistence be guaranteed at the point of commit. 

3. External interaction contract (XIC): When a PCOM interacts with software not 
controlled by Phoenix we enforce an external interaction contract that does 
prompt log forces to reduce the window when failures may be unmasked to the 
duration of the interaction.  Thus, usually failures are not exposed, e.g. to end us-
ers.  Further, should software external to Phoenix provide messages to PCOM’s, or 
receive messages from PCOM’s, prompt logging minimizes the risk of a non-
exactly-once execution. 

 

Fig. 4. System schematic of deployed Phoenix components 
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5   Extending Phoenix 

Our Phoenix/App prototype is quite robust.  (Indeed, it can be tough to “kill” a Phoe-
nix supported application since the system so promptly brings it back to life.) None-
theless, there are some limitations that we would like to eliminate or at least ease. In 
particular, for scalability, we need to move the state of PCOMs from one app server 
(A) to another (B). This requires that we ship the log of PCOM events from A to B. 
We might do this regularly by mirrored logging, or periodically by copying the log 
from place to place. Alternatively, we might do our logging at a backend server where 
the log might be very widely available to app servers in the middle tier.  

While transparent to the application, this incurs costs of the sort that stateless pro-
grams incur when managing state. That is, the application must post the state explic-
itly in a place, e.g. a transactional database, where it can be read by other app servers. 
It would be nice, for example, if we did not need to have a logging facility in the 
middle tier. And it would be even nicer if we did not have to always incur the cost of 
shipping application state (from the log) across the middle tier, especially since the 
crash frequency of web applications is low. So, can we have persistent stateful appli-
cations without logging? The answer is “No”, but we can remove this requirement 
from parts of the system, especially parts of the middle tier, while still providing the 
customary Phoenix robustness attributes, and in particular permitting an application to 
be re-instantiated anywhere in the middle tier.   

5.1   e-Transactions 

A PCOM in the middle tier has great flexibility. It can serve multiple client PCOM’s, 
interact with multiple backend TCOMs, read XCOM generated external state, etc. 
Logging is required at a PCOM to capture the nondeterminism in the order of clients’ 
requests, and to capture the result of reads outside the Phoenix system boundary. The 
key to “eliminating” logging is to restrict what such PCOMs can do. 

There is precursor work called e-transactions [11] that removed the need for log-
ging in the middle tier. A deployment for e-transactions is illustrated in Figure 5. 
What is it about this deployment that makes middle tier logging unnecessary? 

1. All interactions are request/reply and have unique identifiers. 
2. Only a single client is served. This means that all mid-tier nondeterminism via 

servicing client calls can be captured at the client, on the client’s log. 
3. The single backend server provides idempotence via testable state. Calls from the 

middle tier to this server can be repeated without compromising exactly once 
execution. 

In this very simple scenario, the client tags its request with a request ID and logs it. 
The mid-tier, after doing whatever processing is required, forwards a request to the 
server using the same request ID. If there is a failure anywhere in the system, the 
request can be replayed based on the client log. The backend server’s idempotence 
ensures that the request is executed at most once. The request is replayed until the 
client receives a reply to the request. This guarantees that the request is executed at 
least once. The combination provides exactly once execution. 
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Fig. 5. e-transactions in which the middle tier does no logging, yet a stateful middle tier appli-
cation component is recoverable 

5.2   “Logless” Components 

Within the Phoenix framework, we can define a “logless” component type (LLCOM) 
that can provide application state persistence while doing no logging [16], and can be 
exploited more flexibly than e-transactions. LLCOM’s do not usually require additional 
logging or log forces from the components with which they interact.  Indeed, we can 
sometimes advantageously reduce some logging. To other components, the LLCOM 
can usually be treated as if it were a PCOM, though these components may be required 
to keep messages stable for longer periods.   

For LLCOM’s to provide persistence without logging, we, as with e-transactions, re-
strict all interactions to be request/reply. This satisfies a very large class of applica-
tions, and indeed is consistent with the way that enterprise applications are typically 
structured. We need more than this, however, and we describe this below. 

Functional Initiation: One source of nondeterminism is how components are 
named.  That nondeterminism must be removed without having to log it. Thus, an 
LLCOM must have what we call functional initiation, i.e., its creation message fully 
determines the identity of the LLCOM. This permits a resend of the creation message to 
produce a component that is logically indistinguishable from earlier incarnations. The 
initiating component (client) can, in fact, create an LLCOM multiple times such that all 
instances are logically identical. Indeed, the initiator component might, during replay, 
create the LLCOM in a different part of the system, e.g. a different application server. 
The interactions of the LLCOM, regardless of where it is instantiated, are all treated in 
exactly the same way. During replay, any TCOM or PCOM whose interaction was part of 
the execution history of the LLCOM responds to the re-instantiated LLCOM in exactly 
the same way, regardless of where the LLCOM executes. 

Determinism for Calls to an LLCOM: A middle tier PCOM’s methods might be in-
voked in a nondeterministic order from an undetermined set of client components. We 
usually know neither the next method invoked nor the identity of the invoking com-
ponent. Both these aspects are captured in PCOM’s via logging. So, as with  
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e-transactions, we restrict an LLCOM to serving only a single client PCOM (i.e., we 
make it session-oriented) and rely on this client PCOM to capture the sequence of 
method calls.1 Since our PCOM client has its own log, it can recover itself. Once the 
client PCOM recovers, it also recovers the sequence of calls to any LLCOM with which 
it interacts, and can, via replay, recover the LLCOM.  This single client limitation re-
sults in an LLCOM that can play the role, e.g., of a J2EE session bean [23]. Only now, 
the “session bean” has persistence across system crashes. 

Determinism for Calls from an LLCOM: An LLCOM’s execution must, based 
on its early execution, identify the next interaction type (send or receive) and with 
which component.  A next message that is a send is identified and re-created via 
the prior deterministic component replay that leads to the message send. To make 
receive interactions deterministic requires more. However, a receive message that 
is a reply to a request is from the recipient of the request message, and the reply is 
awaited at a deterministic point in the execution. Like e-transactions, what 
LLCOM’s need is idempotence from the backend servers for LLCOM requests. This 
is usually required in any case. Replay of the LLCOM will retrace the execution 
path to the first called backend server. That server is required, via idempotence to 
only execute the request once, and to return the same reply message. That same 
reply message permits the LLCOM to continue deterministic replay to subsequent 
interactions, etc.  

Figure 6 illustrates a deployment of an LLCOM in the middle tier. Note that there is 
only a single client, which is a PCOM, interacting with the LLCOM. The client’s log will 
thus enable the calls to the LLCOM to be replayed. Further, the only actions permitted 
of the LLCOM at the backend are idempotent requests. Reading of other state is not 
permitted as it can compromise LLCOM deterministic replay. However, unlike e-
transactions, our LLCOM can interact with multiple backend servers. 

 

 
 

                                                           
1 A bit more generality is possible, though it is both harder to define and more difficult to  

enforce.   
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6   Middle Tier Reads 

Requiring idempotence for servers executing updates has a long history in the context 
of TP monitors and queued transactions [8, 13, 24].  It is required to provide exactly-
once execution in the presence of failures. We do not usually require idempotence for 
interactions that merely read data without changing it.  However, an LLCOM that can-
not do such reads is fairly restricted. So, can we permit non-idempotent reads? Super-
ficially, it looks like the answer is “no”, but we have identified two situations that we 
explore next where this is possible [17]. 

6.1   Exploratory Procedures  

Generalized Idempotent Request (GIR): Exploratory reads are reads that precede 
an invocation of a request to a backend server. These reads permit the middle tier 
application to specify, e.g., items included in an order, the pickup time for a rental car, 
the departure time for a subsequent flight, etc. That is, an exploratory read permits an 
LLCOM to exploit information read outside of idempotent interactions in its dealings 
with a given backend service. In each case, the read is followed by the sending of an 
“idempotent” request to a backend service. We need to ensure that the backend server 
is “idempotent” (note now the quotes) even if exploratory reads are different on re-
play than during the original execution. Further, we need to prevent exploratory reads 
from having a further impact, so that the execution path of the LLCOM is returned to 
the path of its original execution. 

“Idempotence” is typically achieved not by remembering an entire request mes-
sage, but rather by remembering a unique request identifier which is a distinguished 
argument, perhaps implicit and generated, e.g., by a TP monitor. That technique will 
surely provide idempotence. Should an identical message arrive at a server, it will 
detect it as a duplicate and return the correct reply.  However, the use of request iden-
tifiers to detect duplicate requests enables support for a generalized idempotence 
property. A server supporting generalized idempotent requests (GIR’s) permits a 
resend of a message with a given request identifier to have other arguments in the 
message that are different. This is exactly what we need for exploratory reads to have 
an impact on backend requests.   

Idempotent requests (IR’s) satisfy the property: 
IR(IDX,AX) = IR(IDX,AX)�IR(IDX,AX) 

where IDx denotes the request identifier, AX denotes the other arguments of the re-
quest, and we use “�” to denote composition, in this case multiple executions.   

Generalized idempotent requests (GIR’s), however, satisfy a stronger property:  
GIR(IDX,A1) = GIR(IDX,AX)�GIR(IDX,A1) 

where A1 represents the values of the other arguments on the first successful execu-
tion of the request. A GIR request ensures that a state change at the backend occurs 
exactly once, with the first successful execution prevailing for both resulting backend 
state change and reply. 

E-proc: We require every exploratory read to be within an exploratory procedure  
(E-proc). E-proc’s always end their execution with a GIR request to the same server, 
using the same request identifier on all execution paths. Thus it is impossible to exit 
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from the exploratory procedure in any way other than with the execution of a GIR 
request to the same server using the same request identifier. (More flexibility is possi-
ble, e.g. see the next section, but describing and enforcing the required constraints is 
more difficult.) Since a GIR request can have arguments other than its request ID that 
differ on replay, and it is guaranteed to return the result of its first successful execu-
tion, exploratory reads within the E-proc can determine on first successful E-proc 
execution, what the GIR request does. 

Restricting exploratory reads to E-proc’s confines their impact to the arguments for 
the GIR request. We permit exploratory reads to update local variables, as these have 
local scope only, but we do not permit non-local variables to be updated from within 
an E-proc. The GIR influences subsequent LLCOM execution via the result that it re-
turns and by how it sets its output parameters. Hence, whenever the E-proc is re-
played, its impact on LLCOM execution following its return will be dependent only on 
the first successful execution of its GIR request.  

The net effect is that E-proc replay is “faithless”, not faithful. But the faithlessness 
is confined to the internals of the E-proc. At its return, the E-proc provides idempo-
tence. Thus, the LLCOM replay is faithful overall, in terms of its effects on backend 
services and on the LLCOM client. An LLCOM with an E-Proc for a rental car applica-
tion is shown in Figure 7. A customer wants a convertible when the deal is good, but 
otherwise a sedan. The exploratory read permits this choice, with execution guaran-
teed to be idempotent for the rental request, even when, during replay, the customer’s 
choice within the E-proc is different. 

Handling Aborts: Traditional stateless applications make it difficult to handle 
transaction aborts within an application because there is no persistent application code 
that can respond to the transaction failure. TP monitors usually automatically retry the 
failed transaction a number of times, which is fine for transient failures, e.g. system  
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crashes, deadlocks, etc.. Hard failures, e.g., application bugs, cannot be dealt with in 
this manner. For those failures, the TP system usually enqueues an error message on a 
queue for manual intervention. 

A PCOM stateful application can handle transaction failures because it has persistent 
execution state outside of transactions. It can inspect an error message (outside of a 
transaction), and provide code to deal with the failure. We want this capability for 
LLCOMs.  However, aborts are not traditionally idempotent. Rather, a backend server 
“forgets” the aborted transaction, erasing its effects from its state.   

Like a read, an abort outcome for a GIR leaves backend state unchanged.  By em-
bedding a GIR commit request within an E-proc, we are in a position to respond pro-
grammatically to responses reporting that the transaction has aborted. We can then 
include in the E-proc a loop that repeatedly retries the GIR request until that request 
commits. Further, we can use additional exploratory reads, and prior error messages, 
to change the arguments (but not the request identifier) of the GIR request in an effort 
to commit the transaction. Thus, an E-proc lets us respond programmatically and 
make multiple attempts to commit the request.  

However, we cannot leave the GIR with an abort outcome. The problem here is 
now the non-idempotence of aborts. Should an LLCOM executing the E-proc abandon 
its effort to commit the transaction and then fail, upon replay of the E-proc, its GIR 
request might commit the transaction. Subsequent state of the LLCOM will then di-
verge from its initial pre-failure execution. 

One way out of this “conflicted” situation is to provide a parameter to the GIR that 
permits the calling LLCOM to request an idempotent abort. Normally, we expect that 
several executions of the GIR request to be non-idempotent, permitting the request to 
be retried, perhaps with different values to arguments. But faced with repeated failure, 
requesting an idempotent abort permits the LLCOM execution to proceed past this 
request. Once the GIR abort is stable, subsequent logic in the LLCOM could, for exam-
ple, try other backend services. Idempotent aborts do require the cooperation of 
backend servers and are not now normally provided. This is unlike GIRs, where the 
usual implementation of idempotence already relies on request IDs. 

6.2   Wrap-up Procedures 

Exploiting the Client PCOM Log: We cannot use an E-proc to select which back end 
server to call. For example, we cannot use an E-proc to explore prices for rental cars 
and chose the web site of the rental company offering the best rates. To choose a 
backend server requires this choice to persist across system crashes. So the informa-
tion from non-idempotent reads that determines our decision needs to be stable, en-
countered during LLCOM replay, and used to persistently make the same choice. An 
LLCOM has no log. Further, the “log” at the backend server, which we exploit in E-
proc’s, requires that we know which server to invoke, which is not very useful here. 

With E-proc’s, backend logging provides idempotence and E-proc scope forces 
execution back to its original “trajectory”. Here we use client PCOM logging for a 
similar purpose. This permits added flexibility as logging at the client PCOM does not 
involve making any additional “persistent” choice (itself needing to be logged) for 
where the log is since there is only a single client PCOM. 
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Consider a travel site LLCOM with a read-only method that checks rental car prices 
and returns that information to our PCOM client. The client PCOM, after interaction with 
the user, proceeds to make a subsequent call indicating his choice of car and intention 
to rent. Again, the read-only method is NOT idempotent. Upon replay, the car prices 
returned might be very different. Despite the lack of idempotence, we can permit 
read-only LLCOM methods. When the car rates are returned to the client PCOM, the 
client forces this information to its log prior to initiating the LLCOM call requesting the 
car. The LLCOM uses the client supplied information to select the rental web site. 
Replay is deterministic because the client PCOM has made information from the non-
idempotent read(s) stable. The client can even avoid repeating the read-only calls to 
the LLCOM during its replay as it already has the answer it needs on its log.  Thus, the 
first successful read execution “wins”, and here we exploit client PCOM logging to 
guarantee this. Figure 8 shows how client logging, in this case with a read-only 
method, enables us to choose the rental company at which to make a reservation.   

Unlike dealing with an idempotent middle tier component, where log forcing is not re-
quired (though it can be useful for efficiency of client recovery), we now need the client 
PCOM to force the log prior to revealing state via a subsequent interaction since the read-
only method execution results in a non-deterministic event that is not captured in any 
other way. Thus, we need to identify LLCOM methods that need forced logging. 

WU-Proc: We can exploit client logging more generally, however we must preclude 
the LLCOM from making state changes that depend upon unlogged non-idempotent 
reads. The requirement is that activity preceding wrap-up reads be idempotent. Hence, 
the wrap-up reads may be preceded by invocations of E-proc’s within a wrap-up pro-
cedure (WU-proc). So long as this wrap-up reading of external state does not result in 
updates to LLCOM state outside of the WU-proc activation, it will have no  
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further impact, except via subsequent client requests—and hence after the client has 
logged the LLCOM reply. Thus, with WU-proc’s, the client must be aware that it is 
calling a WU-proc and force log the WU-proc reply. Subsequent client requests be-
come replayable because of the logging at the client PCOM.   

This is reminiscent of middle tier components returning a cookie to the client.  The 
client then returns the cookie to the web service so that the web service can restore the 
appropriate middle tier state for the client. However, here there is more flexibility.  
The client need not return the reply that it was sent (the “cookie”). Rather, it can do 
further local execution, perhaps interacting with an end user, before deciding what to 
do. For example, an end user might see the results of middle tier comparison shopping 
and make a choice that determines the web site the middle tier visits to consummate a 
purchase. Logging of the rate information at the client comes before we choose 
“Hertz” or “Avis”. Having logged, we can now select the car rental web site at which 
to place our reservation. And, of course, the client log needs to be forced before the 
“reserve” call is made to guarantee deterministic replay. 

7   Achieving Availability and Scalability 

In this section we provide some perspective on how one might put together an infra-
structure that supports multi-tier stateful web applications to achieve dependability 
using the concepts we have described. This involves not just our logless components, 
but the surrounding system elements that enable them. We start with these surround-
ing components and then discuss how to exploit logless middle tier components to 
provide scalability and availability.   

7.1   Enabling Logless Components 

The Client PCOM: We require that clients support persistent components (PCOM’s) in 
order for logless middle tier components be enabled. So how is this functionality 
provided? We could require that this client software be installed on every machine 
that intends to play the role of client for our enterprise applications. However, that is 
unnecessary. The EOS system [5] demonstrates a technique for “provisioning” a web 
browser with PCOM client functionality, while not requiring any modification to the 
web browser, in this case Internet Explorer (IE). One downloads DHTML from the 
middle tier to IE that permits IE to act as a PCOM in our multi-level enterprise applica-
tion.  For our purposes, this DHTML needs to include the functional create call that 
instantiates the logless middle tier session oriented component, the client logging of 
user input, and the logging of results returned from the middle tier. The DHTML also 
specifies how to recover a crashed middle tier LLCOM. Thus, an enterprise infrastruc-
ture in the middle tier can exercise control over the client system by providing the 
client functionality that it desires or requires. This includes the kind of forced logging 
that is required for wrap-up reads. 
 
The Backend Server: In order to provide persistence in the presence of system fail-
ures, idempotence is required for component interactions. Logging enables replay of 
the interactions to be avoided most of the time. But it does not cover the case where 
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the failure occurs during the interaction. When application replay once again reaches 
the interaction, it is uncertain whether the effect intended on the other component (in 
our case, the backend server) happened or not. Idempotence permits the recovering 
application to safely resubmit its request. Idempotence is required for the fault toler-
ance techniques of which we are aware. In TP systems, it is often a transactional 
queue that captures the request and/or reply to enable idempotence.    

In many, if not most, services that provide idempotence, detection of duplicate re-
quests relies on a unique identifier for the request message. The remaining arguments 
of the message are usually ignored, except in the actual execution of the request.  
When the request is completed, a reply message is generated, again identified and tied 
to the incoming request by means of the request identifier only. This style of imple-
mentation for idempotence already supports our generalized idempotent requests, 
though here we require the backend service to provide idempotence in exactly this 
way when checking for duplicates. 

Thus there is frequently nothing new that a backend web service need do to be-
come a GIR request server. The hard part has already been done.  Thus, the web ser-
vice interaction contract that we proposed in [15] can be readily transformed into a 
generalized form, usually without having to change the implementation. This contract 
is a unilateral contract by the web service, requiring nothing from the application. 
However, in its generalized form, it can support exploratory reads by logless persis-
tent session-oriented components.   

7.2   Exploiting Logless Components 

Scalability: Because there is no log for an LLCOM, we can re-instantiate an LLCOM at 
any middle tier site simply by directing its functional initiation call to the site. Should 
an LLCOM take too long to respond to a client request, the client can choose to treat 
the LLCOM and the server upon which it runs as “down”. At this point, the client will 
want to redeploy the component elsewhere. Note, of course, that the original middle 
tier server might not have crashed, but simply be temporarily slow in responding. 

 One great advantage of LLCOM’s is that whether a prior instance has crashed or 
not, one can initiate a second instance of it safely. This avoids a difficult problem in 
many other settings, i.e. ensuring that only a single instance is active at a time. The 
client simply recovers the LLCOM at a second server site by replaying its calls from its 
local log. The new instance repeats the execution of the first instance until it has ad-
vanced past the spot where the original instance either crashed or was seriously 
slowed. From that point on, the secondary instance truly becomes the primary. 

So what happens if the original LLCOM is, in fact, not dead, and it resumes execu-
tion? In this case, it will eventually return a result to the client PCOM. The client PCOM 
should always be in a position to terminate one or the other of the multiple LLCOM 
instances. An LLCOM might support a self-destruct method call that puts it out of its 
misery. In this case, the client PCOM might invoke that method. Alternatively, the 
middle tier infrastructure might simply time-out an idle LLCOM at some point, which 
requires nothing from the client. 

This failover approach is much simpler than is typically required for stateful sys-
tem elements. It avoids shipping state information; and it avoids any requirement to 
ensure that a primary is down before a secondary can take over.   



 Dependability, Abstraction, and Programming 19 

Availability: To a large extent, the persistent component at the client can choose the 
level of robustness for the middle-tier application. Replication is used for high avail-
ability in CORBA [18, 20]. Because there is no requirement to “kill” a primary before 
a secondary takes over, it is possible to use LLCOM’s in a number of replication sce-
narios. Clients can issue multiple initiation calls, thus replicating a mid-tier LLCOM. 
By controlling when and how it manages LLCOM instances, a client can achieve vary-
ing degrees of availability at varying costs.  
1. It may have no standby for its mid-tier session, but rather recover the existing 

session in place or create and failover to another instantiation should a failure oc-
cur.   

2. It might create a “warm standby” at another site that has not received any calls 
following its initiation call. The client would be expected to replay the opera-
tional calls, but recovery time would be shortened by avoiding standby creation 
during recovery. 

3. It might create a standby that it keeps current by continuously feeding it the same 
calls as the primary. Indeed, it can let the two mid-tier logless components race to 
be the first to execute. If one of them fails, the other can simply continue seam-
lessly in its execution.   

Replicas do not directly communicate with each other, and there is no explicit 
passing of state between them. Rather, they run independently, except for their inter-
actions with the client PCOM and their visits to the same collection of back end serv-
ers—where the first one to execute a service call determines how subsequent execu-
tion proceeds for all replicas. No replica needs to know about the existence of any 
other replica, and indeed, the middle tier application servers need not know anything 
about replication. They simply host the logless session components. 

8   Summary 

It has long been recognized that dependability is an essential attribute for enterprise 
applications. Software developers have known that database transactions are not 
enough, by themselves, to provide the level of guarantees that these applications re-
quire. Techniques for providing persistence in the presence of failures have been 
around for a long time, as have efforts to improve their performance.   

We have argued that transparently persistent stateful programming can be highly 
effective in providing dependability by permitting an application programmer to dele-
gate to application infrastructure the tasks of scalability and availability. This delega-
tion is essential as it is what enables the programmer to focus almost exclusively on 
the business logic of the application. And it is this focus that results in applications 
that are simpler, more maintainable, and more likely to be correct. 

Our Phoenix/App prototype at Microsoft Research demonstrated the feasibility of 
the general approach, which uses automatic redo logging to capture the non-
deterministic events that permit applications to be replayed to restore their state. This 
technology was subsequently extended to enable persistent session-oriented middle 
tier components that themselves do not need to log, greatly simplifying scalability and 
availability.  
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In this paper, we have shown how to extend these persistent session-oriented com-
ponents to enable them to read and respond to system state without requiring that such 
reads be idempotent. It requires a stylized form of programming, frequently called a 
“programming model” that includes E-proc’s and WU-proc’s.  However, the resulting 
model is only mildly restrictive and the payoff is substantial. 

The result is application state persistence with exactly once execution semantics 
despite system crashes that can occur at arbitrary times, including when execution is 
active within the component or when the component is awaiting a reply from a re-
quest. Because no middle tier log is required (i) performance for normal execution of 
middle tier applications is excellent and (ii) components can be deployed and rede-
ployed trivially to provide availability and scalability. Aside from the stylistic re-
quirements of exploratory and wrap-up reads, persistence is transparent in that the 
application programmer need not know about the logging being done elsewhere in the 
system to provide middle tier persistence.  
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Abstract. With the increased need of data sharing among multiple organiza-
tions, such as government organizations, financial corporations, medical hospi-
tals and academic institutions, it is critical to ensure that data is trustworthy so 
that effective decisions can be made based on these data. In this paper, we first 
discuss motivations and requirement for data trustworthiness. We then present 
an architectural framework for a comprehensive system for trustworthiness as-
surance. We then discuss an important issue in our framework, that is, the 
evaluation of data provenance and survey a trust model for estimating the con-
fidence level of the data and the trust level of data providers. By taking into ac-
count confidence about data provenance, we introduce an approach for policy 
observing query evaluation. We highlight open research issues and research di-
rections throughout the paper.  

Keywords: Data Integrity and Quality; Security; Policies. 

1   Introduction 

Today, more than ever, there is a critical need for organizations to share data within 
and across the organizations so that analysts and decision makers can analyze and 
mine the data, and make effective decisions. However, in order for analysts and deci-
sion makers to produce accurate analysis and make effective decisions and take  
actions, data must be trustworthy. Therefore, it is critical that data trustworthiness 
issues, which also include data quality and provenance, be investigated for organiza-
tional data sharing, situation assessment, multi-sensor data integration and numerous 
other functions to support decision makers and analysts. Indeed, today’s demand for 
data trustworthiness is stronger than ever. As many organizations are increasing their 
reliance on data for daily operations and critical decision making, data trustworthi-
ness, and integrity in particular, is arguably one of the most critical issues. Without 
integrity, the usefulness of data becomes diminished as any information extracted 
from them cannot be trusted with sufficient confidence.  

The problem of providing “good data” to users is an inherently difficult problem 
which often depends on the semantics of the application domain. Also solutions for 
improving the data, like those found in data quality, may be very expensive and may 
require access to data sources which may have access restrictions, because of data 



 The Challenge of Assuring Data Trustworthiness 23 

sensitivity. Also even when one adopts methodologies to assure that the data is of 
good quality, errors may still be introduced and low quality data be used; therefore, it 
is important to assess the damage resulting from the use of such data, to track and 
contain the spread of errors, and to recover.  

The many challenges of assuring data trustworthiness require articulated solutions 
combining different approaches and techniques. In this paper we discuss some com-
ponents of such a solution and highlight relevant research challenges.  

The rest of this paper is organized as follows. We start by a quick survey of areas 
that are relevant to the problem of data trustworthiness. We then present a compre-
hensive framework for policy-driven data trustworthiness, and discuss relevant com-
ponents of such framework. Finally, we outline a few conclusions. 

2   State of the Art 

Currently there is no comprehensive approach to the problem of high assurance data 
trustworthiness. The approach we envision, however, is related to several areas that 
we discuss in what follows. 

Integrity Models. Biba [3] was the first to address the issue of integrity in informa-
tion systems. His approach is based on a hierarchical lattice of integrity levels, and 
integrity is defined as a relative measure that is evaluated at the subsystem level. A 
subsystem is some sets of subjects and objects. An information system is defined to 
be composed of any number of subsystems. Biba regards integrity threat as that a 
subsystem attempts to improperly change the behavior of another by supplying false 
data. A drawback of the Biba approach is that it is not clear how to assign appropriate 
integrity levels and that there are no criteria for determining them. Clark and Wilson 
[4] make a clear distinction between military security and commercial security. They 
then argue that security policies related to integrity, rather than disclosure, are of the 
highest priority in commercial information systems and that separated mechanisms 
are required for the enforcement of these policies. The model by Clark and Wilson 
has two key notions: well-formed transactions and separation of duty. A well-formed 
transaction is structured such that a subject cannot manipulate data arbitrarily, but 
only in constrained ways that ensure internal consistency of data. Separation of duty 
attempts to ensure the external consistency of data objects: the correspondence among 
data objects of different subparts of a task. This correspondence is ensured by separat-
ing all operations into several subparts and requiring that each subpart be executed by 
a different subject.   

Semantic Integrity. Many commercial DBMS enable users to express a variety of 
conditions, often referred to as semantic integrity constraints, that data must satisfy 
[18]. Such constraints are used mainly for data consistency and correctness. As such 
semantic integrity techniques are unable to deal with the more complex problem of 
data trustworthiness in that they are not able to determine whether some data correctly 
reflect the real world and are provided by some reliable and accurate data source. 

Data Quality. Data quality is a serious concern for professionals involved with a 
wide range of information systems, ranging from data warehousing and business 
intelligence to customer relationship management and supply chain management. One 
industry study estimated the total cost to the US economy of data quality problems at 
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over US$600 billion per annum [5]. Data quality has been investigated from different 
perspectives, depending also on the precise meaning assigned to the notion of data 
quality. Data are of high quality “if they are fit for their intended uses in operations, 
decision making and planning” [6]. Alternatively, the data are deemed of high quality 
if they correctly represent the real-world construct to which they refer. There are a 
number of theoretical frameworks for understanding data quality. One framework 
seeks to integrate the product perspective (conformance to specifications) and the 
service perspective (meeting consumers’ expectations) [7]. Another framework is 
based in semiotics to evaluate the quality of the form, meaning and use of the data [8]. 
One highly theoretical approach analyzes the ontological nature of information sys-
tems to define data quality rigorously [9]. In addition to these more theoretical inves-
tigation, a considerable amount of research on the data quality has been devoted to 
investigating and describing various categories of desirable attributes (or dimensions) 
of data. These lists commonly include accuracy, correctness, currency, completeness 
and relevance. Nearly 200 such terms have been identified and there is little agree-
ment on their nature (are these concepts, goals or criteria?), their definitions or meas-
ures. Tools have also been developed for analyzing and repairing poor quality data, 
through the use for example of record linkage techniques [22]. 

Reputation Techniques. Reputation systems represent a key technology for secur-
ing collaborative applications from misuse by dishonest entities. A reputation system 
computes reputation scores about the entities in a system, which helps single out those 
entities that are exhibiting less than desirable behavior. Examples of reputation sys-
tems may be found in several application domains; E-commerce websites such as 
eBay (ebay.com) and Amazon (amazon.com) use their reputation systems to discour-
age fraudulent activities. The EigenTrust [10] reputation system enables peer-to-peer 
file sharing systems to filter out peers who provide inauthentic content. The web-
based community of Advogato.org uses a reputation system [19] for spam filtering. 
Reputation techniques can be useful in assessing data sources and data manipulation 
intermediaries; however their use for such purpose has not been yet investigated. 

3   A Comprehensive Approach 

Our envisioned approach [2] to data trustworthiness is based on a comprehensive 
framework composed of four key elements (see Figure 1). The first element is a 
mechanism for associating confidence values with data in the database. A confidence 
value is a numeric value ranging from 0 to 1 and indicates the trustworthiness of the 
data. Confidence values can be generated based on various factors, such as the trust-
worthiness of data providers and the way in which the data has been collected. The 
second element is the notion of confidence policy, indicating which confidence level 
is required for certain data when used in certain tasks. The third element is the com-
putation of the confidence values of a query results based on the confidence values of 
each data item and lineage propagation techniques [11]. The fourth element is a set of 
strategies for incrementing the confidence of query results at query processing time. 
Such element is a crucial component in that it makes possible to return query results 
meeting the confidence levels stated by the confidence policies.  
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Fig. 1. A framework for assuring data trustworthiness 

The notion of confidence policy is a key novel notion of our approach. Such a pol-
icy specifies the minimum confidence level that is required for use of a given data 
item in a certain task by a certain subject. As a complement to the traditional access 
control mechanism that applies to base tuples in the database before any operation, 
the confidence policy restricts access to the query results based on the confidence 
level of the query results. Such an access control mechanism can be viewed as a natu-
ral extension to the Role-based Access Control (RBAC) [12] which has been widely 
adopted in commercial database systems. Therefore, our approach can be easily inte-
grated into existing database systems.  

Because some query results will be filtered out by the confidence policy, a user 
may not receive enough data to make a decision and he/she may want to improve the 
data quality. To meet the user’s need, an approach for dynamically incrementing the 
data confidence level (the fourth element of our solution) is required. Our envisioned 
approach will select an optimal strategy which determines which data should be se-
lected and how much the confidence should be increased to satisfy the confidence 
level stated by the confidence policies.  

4   Assigning Confidence Levels to Data  

A possible approach to assign confidence levels, also referred to as confidence scores, 
to data is based on the trustworthiness of data provenance [1]. By data provenance we 
refer to information about the source of the data and the entities, such as agents, ap-
plications, users, who have accessed and/or manipulated the data before the data has 
been entered in the destination database. Though several research efforts have been 
devoted to data provenance [13, 14, 15, 16], the focus has mainly been on the collec-
tion and semantic analysis of provenance information. Little work has been done with 
respect to the trustworthiness of data provenance. Evaluating the trustworthiness of 
data provenance requires answering questions like “From which sources did the data 
originate from? How trustworthy are such data sources? Which entities (applications 
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or users or systems) handled the data? Are these entities trustworthy?” To address 
these challenges, Dai et al. [1] have proposed a data provenance trust model (trust 
model, for short) which estimates the confidence level of data and the trustworthiness 
of data sources. In what follows, we first survey such a trust model and then we dis-
cuss open research issues. 
 
A Data Provenance Trust Model. The model developed by Dai et al. [1] takes into 
account three different aspects that may affect data trustworthiness: data similarity, data 
conflict, and path similarity. Similar data items are considered as support to one another, 
while conflicting data items compromise the confidence level of one another. Besides 
data similarity and data conflict, the source of the data is also an important factor for 
determining the trustworthiness of the data. For example, if several independent sources 
provide the same data, such data is most likely to be true. We also observe that a data is 
likely to be true if it is provided by trustworthy data sources, and a data source is trust-
worthy if most data it provides are true. Due to such inter-dependency between data and 
data sources, the model is based on an iterative procedure to compute the scores to be 
assigned to data and data sources. To start the computation, each data source is first 
assigned an initial trust score which can be obtained by querying available information 
about data sources. At each iteration, the confidence level of the data is computed based 
on the combined effects of the aforementioned three aspects, and the trustworthiness of 
the data source is recomputed by using the confidence levels of the data it provides. 
When a stable stage is reached, that is, when changes to the scores (of both data and 
data sources) are negligible, the trust computation process stops.  

Table 1. An example data set 

RID SSN Name Gender Age Location Date 
1 479065188 Tom Male 38 Los Angeles 3pm 08/18/2007 
2 47906518 Tom Male 38 Los Angeles 3pm 08/18/2007 
3 479065188 Bob Male 38 New York 7pm 08/18/2007 
4 4790651887 Tom Male 38 Pasadena 3pm 08/18/2007 

 
Data similarity in this model refers to the likeness of different items. Similar items 

are considered as supportive to each other. The challenge here is how to determine 
whether two items are similar. Consider the example in Table 1. We can observe that 
the first two items are very similar since they both report the same locations of Tom at 
the same date. The only difference between these two items is a possible typo error in 
the person’s SSN. In contrast, the third item is different from the first two because it 
reports a totally different location. In order to determine sets of data items that are 
very similar likely describe the same real world item, the model employs a clustering 
algorithm. The clustering process results in a set of item; each such set represents a 
single real-world data item. For each item the effect of data similarity on its confi-
dence score is determined in terms of the number of items in the same cluster and the 
size of the cluster. The use of clustering techniques requires developing distance func-
tions to measure the similarities among items and the cost function which the cluster-
ing algorithm tries to minimize. The distance functions are usually determined by the 
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type of data being clustered, while the cost function is defined by the specific objec-
tive of the clustering problem. Well known approaches can be used for such func-
tions, such as the edit distance for string data types, or hierarchy-based distances for 
categorical data. 

Data conflict refers to inconsistent descriptions or information about the same en-
tity or event. A simple example of a data conflict is that the same person appears at 
different locations during the same time period. It is obvious that data conflict has a 
negative impact on the confidence level of items. There are various reasons for data 
conflicts, such as typos, false data items generated by malicious sources, or mislead-
ing knowledge items generated by intermediate parties. Data conflict largely depends 
on the knowledge domain of the specific application. Therefore, the trust model by 
Dai et al. [1] allows users to define their own data conflict functions according to their 
application-dependent requirements. To determine if two items conflict with each 
other, data users first need to define the exact meaning of conflict, which we call data 
consistency rules. Consider the example in Table 1 again. The attribute value of 
“SSN” in the first item is the same as that in the third item, but the attribute value of 
“Name” in the first item is different from that in the third one. This implies a data 
conflict, since we know that each single SSN should correspond to only one individ-
ual. We can further infer that there should be something wrong with either source 
providers (airports) or intermediate agents (police stations) whichever handled these 
two items. The data consistency rule we would use in this example is that if r1(“SSN”) 
= r2(“SSN”), then r1(“Name”) = r2(“Name”) (such rule can be simply modeled as 
functional dependency). If two items cannot satisfy the condition stated by such data 
consistency rule, these two items are considered conflicting with each other; if two 
items conflicts, their confidence level will in general be lower. To facilitate automatic 
conflict detection, a simple language needs to be provided allowing data users and/or 
domain experts to define data consistency rules; such language can then be imple-
mented by using the trigger and assertion mechanisms provided by DBMS.  

Path similarity models how similar are the paths followed by two data items from 
the sources to the destination. Path similarity is important in that it is used to evaluate 
the provenance independence of two or more data items. A path in the model by Dai 
et al. [1] is represented by a list of identifiers; the first element of such list is the data 
source, whereas the subsequent elements are the identifiers of all the intermediate 
parties that processed and/or simply retransmitted the data. The similarity of two 
paths is computed by comparing the lists corresponding to these paths.  

 
Open Research Issues. The above model is still preliminary and requires addressing 
several research issues which we discuss in what follows. 
• Similarity/dissimilarity of data. A key component of the model is represented by the 

factors concerning the similarity/dissimilarity of data. In addition to the techniques 
mentioned in the above paragraph, like the edit distance, one needs to include model-
ing techniques able to take into account data semantics. For example, consider the 
fourth item in Table 1; such item can be considered very similar (or supportive of the 
first two items) by observing that Pasadena is part of the Los Angeles area. Such an 
inference requires taking into account knowledge about spatial relationships in the 
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domain of interest. Possible approaches that can be used include semantic web tech-
niques, like ontologies and description logics. 

• Secure data provenance. An important requirement for a data provenance trust 
model is that the provenance information be protected from tampering when flow-
ing across the various parties. In particular, we should be able to determine the  
specific contribution of each party to the provenance information and the type of 
modification made (insert/delete/update). We may also have constraints on what the 
intermediate parties processing the data and providing provenance information can 
see about provenance information from previous parties along the data provisioning 
chain. An approach to address such problem is based on approaches for controlled 
and cooperative updates of XML documents in Byzantine and failure-prone distrib-
uted systems [20]. One could develop an XML language for encoding provenance 
information and use such techniques to secure provenance documents. 

• Data validation through privacy-preserving record linkage. In developing solutions 
for data quality, the use of record linkage techniques is important. Such techniques 
allow a party to match, based on similarity functions, its own records with records 
by another party in order to validate the data. In our context such techniques could 
be used not only to match the resulting data but also to match the provenance in-
formation, which is often a graph structure. Also in our case, we need not only to 
determine the similarity for the data, but also the dissimilarity for the provenance 
information. In other words, if two data items are very much similar and their 
provenance information is very dissimilar, the data item will be assigned a high 
confidence level. In addition, confidentiality of provenance information is an im-
portant requirement because a party may have relevant data but have concerns or 
restrictions for the data use by another party. Thus application of record linkage 
technique to our context thus requires addressing the problem of privacy, the exten-
sion to graph-structured information, and the development of similar-
ity/dissimilarity functions. Approaches have been proposed for privacy-preserving 
record linkage [22, 23]. However those approaches have still many limitations, such 
as the lack of support for graph-structured information. 

• Correlation among data sources. The relationships among the various data sources 
could be used to create more detailed models for assigning trust to each data source. 
For example, if we do not have good prior information about the trustworthiness of 
a particular data source, we may try to use distributed trust computation approaches 
such as EigenTrust [10] to compute a trust value for the data source based on the 
trust relationships among data sources. In addition, even if we observe that the same 
data is provided by two different sources, if these two sources have a very strong 
relationship, then it may not be realistic to assume that the data is provided by two 
independent sources. An approach to address such issue is to develop “source corre-
lation” metrics based on the strength of the relationship among possible data 
sources. Finally, in some cases, we may need to know “how important is a  
data sources within our information propagation network?” to reason about possible 
data conflicts. To address such issue one can apply various social network centrality 
measures such as degree, betweenness, closeness, and information centralities [21] 
to assign importance values to the various data sources. 
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5   Policies 

Policies provide a high level mechanism for expressing organizational requirements 
and policies and simplify administration and management. In our context, a key type 
of policy is represented by the confidence policy, regulating the use of the data ac-
cording to requirements concerning data confidence levels. Such a policy is motivated 
by the observation that the required level of data trustworthiness depends on the pur-
pose for which the data have to be used. For example, for tasks which are not critical 
to an organization, like computing a statistical summary, data with a medium confi-
dence level may be sufficient, whereas when an individual in an organization has to 
make a critical decision, data with high confidence are required. An interesting exam-
ple is given by Malin et al. [17] in the context of healthcare applications: for the pur-
pose of generating hypothesis and identifying areas for further research, data about 
cancer patients’ diseases and primary treatment need not be highly accurate, as treat-
ment decisions are not likely to be made on the basis of these results data alone; how-
ever, for evaluating the effectiveness of a treatment outside of the controlled envi-
ronment of a research study, accurate data is desired. In what follows, we first survey 
a policy model [2] addressing such requirement and then discuss open research issues. 
 
A Confidence Policy Model. A policy in the confidence policy model by Dai et al. 
[2] specifies the minimum confidence that has to be assured for certain data, depend-
ing on the user accessing the data and the purpose the data access. In its essence, a 
confidence policy contains three components: a subject specification, denoting a sub-
ject or set of subjects to whom the policy applies; a purpose specification, denoting 
why certain data are accessed; a confidence level, denoting the minimum level of 
confidence that has to be assured by the data covered by the policy when the subject 
to whom the policy applies requires access to the data for the purpose specified in the 
policy. In this policy model, subjects to which policies apply are assumed to be roles 
of a RBAC model, because this access control model is widely used and well under-
stood. However such policy model can be easily extended to the case of attribute-
based access control models, as we discuss in the research issues paragraph. 

The confidence policies are thus based on the following three sets: R, Pu and R+. R 
is a set of roles used for subject specification; a user is human being and a role repre-
sents a job function or job title within the organization that the user belongs to. Pu is a 
set of data usage purposes identified in the system. R+ denotes non-negative real 
numbers. The definition of a confidence policy is thus as follows. 

[Confidence Policy]. Let r ∈ R, pu ∈ Pu, and β ∈ R+. A confidence policy is a tuple 
< r, pu, β >, specifying that when a user under a role r issues a database query q for 
purpose pu, the user is allowed to access the results of q only if these results have 
confidence value higher than β. 

The confidence policies <Secretary, summary, 0.1>, and <Manager, investment, 
0.8> specify, respectively, that a secretary can use data with low confidence value for 
the purpose a summary reports, whereas a manager must use data with high confi-
dence value when making investment decisions. 
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Open Research Issues. The development of policies for integrity management 
requires however addressing several research issues which we discuss in what  
follows. 

• Expressive power. A first issue is related to improve the expressivity of the confi-
dence policy model. The simple model outlined in the previous paragraph needs 
some major extensions. It should be possible to support a more fine-grained speci-
fication of confidence requirements concerning data use whereby for a given task 
and role, one can specify different confidence levels for different categories of data. 
The model should support the specification of subjects, in terms of subject attrib-
utes and profiles other than the subject role. If needed, exceptions to the policies 
should be supported; a possible approach is to support strong policies, admitting no 
exceptions, and weak policies, admitting exceptions. If exceptions are allowed for a 
policy (set of policies), the policy enforcement mechanism should support the gath-
ering of evidence about the need for exceptions. Such evidence is crucial in order to 
refine confidence policies. 

• Policy provisioning. An important issue is related to the confidence policy provi-
sioning. Provisioning refers to assigning confidence policies to specific tasks, users, 
and data and, because it very much depends from the applications and data seman-
tics, it may be quite difficult. To address such issue, one approach is the use of ma-
chine learning techniques. 

• Data validation policies. Even though confidence policies have a key role in our 
framework, policies are also required to manage data validation activities, periodi-
cally or whenever certain events arise. To address such requirement, one possibility 
is to design a data validation policy (DVP) language that includes the following 
components: (i) A set of events that trigger the execution of some validation ac-
tions. An event can be a data action (read, insert, delete, update) or a user-defined 
event such as a specific time or a particular situation; for example a source of cer-
tain data has been found to be invalid and thus the validation process needs to de-
termine which data, users and application programs may have been affected by the 
invalid data. Notice that it should also be possible to specify that a validation must 
be executed before any access is made by a given subject or set of subjects, or even 
when the data is being accessed (see also next section). (ii) A validation procedure 
which performs the actual integrity analysis of the data. Such procedure may be 
complex in that it can involve human users and may result in a number of actions, 
possibly organized according to a workflow. (iii) A set of actions to be undertaken 
as consequence of the validation. A large variety of actions are possible, such as 
blocking all accesses to data, blocking the execution of an application program, in-
voking some data repair procedures, making changes to the metadata associated 
with the data. It is important to notice that even though it would be desirable to per-
form data validation very frequently, the impact on performance may be significant; 
therefore the availability of a language, like the DVP language, will make easier for 
the data administrators to fine tune the system according to trade-offs among per-
formance, cost and integrity. 
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6   Policy Complying Query Evaluation 

A critical issue in enforcing confidence policies in the context of query processing is 
that some of the query results may be filtered out due to confidence policy violation. 
Therefore a user may not receive enough data to make a decision and he may want to 
improve the data quality. A possible approach [2] is based on dynamically increment-
ing the data confidence level. Such approach selects an optimal strategy which deter-
mines which data should be selected and how much the confidence should be  
increased to comply with the confidence level stated by the policies. Such approach 
assumes that each data item in the database is associated with a cost function that 
indicates the cost for improving the confidence value of this data item. Such a cost 
function may be a function on various factors, like time and money. As part of the 
approach several algorithms have been investigated to determine the increment that 
has the lowest cost. In what follows we first briefly discuss components of the system 
proposed by Dai et al. [2] and then we discuss open research issues. 
 
A Policy Complying Query Evaluation System.�The query evaluation system (see 
Figure 1) consists of four main components:  query evaluation, policy evaluation, 
strategy finding, and data quality improvement. We elaborate on the data flow within 
the system. Initially, each base tuple is assigned a confidence value by the confidence 
assignment component (based on the model described in Section 4). A user inputs 
query information in the form <Q, purpose, perc>, where Q is a normal SQL query, 
purpose indicates the purpose for which the data returned by the query will be used, 
and perc indicates percentage of results that the user expects to receive after the con-
fidence policy enforcement. The query evaluation component then computes the 
results of Q and the confidence level of each tuple in the result based on the confi-
dence values of base tuples. The intermediate results are sent to the policy evaluation 
component. The policy evaluation component selects the confidence policy associated 
with the role of the user who issued Q and checks each tuple in the query result ac-
cording to the selected confidence policy. Only the results with confidence value 
higher than the threshold specified in the confidence policy are immediately returned 
to the user. If less than perc of the results satisfy the confidence policy, the strategy 
finding component is invoked to devise an optimal strategy for increasing the confi-
dence values of the base tuples and report the cost of such strategy to the user. If the 
user agrees about the cost, the strategy finding component will inform the data quality 
improvement component to take actions to improve the data quality and then update 
the database. Finally, new results will be returned to the user. 
 
Open Research Issues. The development of policy complying query evaluation 
framework requires addressing several research issues which we discuss in what  
follows. 

• Cost models. In the above discussion, we assumed that cost models for the quality 
improvement are available for each tuple. However suitable cost models need to be 
developed, also depending on the optimization criteria adopted, like time and finan-
cial cost. 
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• Heuristics for confidence increases. Algorithms need to be devised for determining 
suitable base tuples for which the increase in the confidence values can lead to the 
minimum cost. Because it is likely that finding the optimal solution may be compu-
tationally very expensive, heuristics need to be devised. 

• Query based data validation strategies. Data validation and correction is often an 
expensive activity and thus needs to be minimized and executed when high-
confidence data are actually required. Also because data validation and correction 
may take some time, approaches must be in place to make sure that the data are cor-
rected by the time they are needed. To address such issue, approaches must be de-
vised that, based on knowing in advance the queries issued by the users and the 
timeline of these queries, are able to determine which data must be validated and 
corrected while at the same time minimizing the costs. 

7   Conclusions 

In this paper we have discussed research directions concerning the problem of provid-
ing data that can be trusted to end-users and applications. This is an important prob-
lem for which multiple techniques need to be combined in order to achieve good 
solutions. In addition to approaches and ideas discussed in the paper, many other 
issues needed to be addressed to achieve high-assurance data trustworthiness. In par-
ticular, data need to be protected from attacks carried through unsecure platforms, like 
the operating system, and unsecure applications, and from insider threats. Initial solu-
tions to some of those data security threats are starting to emerge. 
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Abstract. Australia is facing an unprecedented water scarcity crisis and gov-
ernments are responding with major policy, regulatory, market and infrastruc-
ture interventions. No matter what facet of water reform one is talking about, 
good intelligence on the country’s water resource base and how it is trending is 
a vital ingredient for good decision making. Though most individual water 
businesses and agencies have an adequate view of the water resources under 
their control, gaining a national view has always been a fraught exercise. In 
recognition of this problem, the Bureau of Meteorology has been tasked with 
the challenge of integrating water data sets collected across Australia by over 
250 organisations. In this paper, we look at how the Bureau is going about this 
task and at the suite of water information products that will arise from a coher-
ent national water data set.   
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Abstract. Query processing in the uncertain database has become increasingly
important due to the wide existence of uncertain data in many real applications.
Different from handling precise data, the uncertain query processing needs to
consider the data uncertainty and answer queries with confidence guarantees.
In this paper, we formulate and tackle an important query, namely probabilis-
tic inverse ranking (PIR) query, which retrieves possible ranks of a given query
object in an uncertain database with confidence above a probability threshold.
We present effective pruning methods to reduce the PIR search space, which can
be seamlessly integrated into an efficient query procedure. Furthermore, we also
tackle the problem of PIR query processing in high dimensional spaces, which
reduces high dimensional uncertain data to a lower dimensional space. The pro-
posed reduction technique may shed light on processing high dimensional un-
certain data for other query types. Extensive experiments have demonstrated the
efficiency and effectiveness of our proposed approaches over both real and syn-
thetic data sets, under various experimental settings.

1 Introduction

Uncertain query processing has become increasingly important due to the wide exis-
tence of data uncertainty in many real-world applications such as sensor data monitor-
ing [10], location-based services (LBS) [23], object identification [3], moving object
search [5], and so on. As an example, sensory data collected from different sites may
contain noises [10] because of environmental factors, device failure, or low battery
power. In LBS applications [23], for the sake of privacy preserving [24], it is a common
practice for a trusted third-party to inject synthetic noises into trajectory data of mobile
users. Therefore, in all these scenarios, it is very crucial to answer queries efficiently
and effectively over uncertain data.

In literature [4,12,9,14,20,8,29], the ranking query (a.k.a. top-k or ranked query) has
been extensively studied, which is useful in applications like decision making, recom-
mendation raising, and data mining tasks. In particular, in a database D, with respect
to any ad-hoc monotonic function (that computes scores of objects), a ranking query
retrieves k objects in the database that have the highest scores. In contrast, the quantile
query [22] returns an object in the database with the k-th rank, where k can be arbitrar-
ily large, for example, 50% of the database size. While the ranking or quantile query
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obtains object(s) from the database with k highest ranks or the k-th highest rank, re-
spectively, the inverse ranking query over precise data proposed by Li et al. [19] reports
the rank of a user-specified query object in the database. Specifically, given a database
D, a monotonic function f(·)1, and a query point q, an inverse ranking query returns
the rank of query point q among all the data points o ∈ D (or equivalently, the number
of points o satisfying f(o) ≥ f(q)).

Due to the inherent uncertainty in real application data, in this paper, we focus on
the inverse ranking query on uncertain data, namely probabilistic inverse ranking (PIR)
query, which, to our best knowledge, no previous work has studied in the context of
uncertain database. In particular, given an uncertain database DU and a user-specified
query point q, a PIR query computes all the possible ranks of q in DU with probability
greater than a pre-defined threshold α ∈ [0, 1).

The PIR query is important in many real applications such as financial or image data
analysis, sensor data monitoring, multi-criteria decision making, and business planning,
where we need to identify the importance (rank or priority) of a particular object among
its peers. For example, in a survey of the laptop market, customers are asked to specify
the ranges of attributes for laptop models that they prefer, including the price, weight,
size, and so on. Here, each customer’s preference can be considered as an uncertain
object (with uncertain attribute ranges). Now if a company wants to design a new model,
a data analyzer can specify a ranking function (e.g. the summation of price, weight, and
size), and issue a PIR query to obtain the rank of this new model (query point) among
all the customers’ preferences (uncertain objects). Intuitively, the company can make a
decision about the attributes of the new model such that it can attract as many customers
(having scores of preferences higher than this new model) as possible.

As another example [19], for a newborn baby, we may be interested in his/her health
compared with other babies, in terms of height, weight, and so on. In this case, we
can infer the baby’s health from his/her rank among other babies. Note that, newborn
babies in the hospital are confidential. Thus, for the sake of privacy preserving, these
data are usually perturbed by adding synthetic noises or generalized by replacing exact
values with uncertain intervals, before the public release. Thus, in these situations, we
can conduct a PIR query over uncertain data (perturbed or generalized data) in order to
obtain all possible ranks that a new baby may have with high confidence.

In this paper, we formulate and tackle the problem of PIR queries in the uncertain
database. Note that, previous techniques [19] on inverse ranking query in “certain”
database cannot be directly used, since the PIR problem has to deal with data uncer-
tainty during the query processing. In particular, due to the imprecise data attributes,
the ranking score of each uncertain object is a variable rather than an exact value. Thus,
the inverse ranking query in the context of uncertain database has to be re-defined, con-
sidering the confidence (accuracy) of the query results. Motivated by this, we formalize
the PIR problem, propose effective pruning methods to reduce the PIR search space,
and finally present efficient query procedure to answer PIR queries.

Specifically, we make the following contributions in this paper.

1. We formally define the problem of the probabilistic inverse ranking (PIR) query.

1 Function f(·) is monotonic iff: ∀i, o.Ai ≤ p.Ai �→ f(o) ≤ f(p), where x.Ai is the i-th
coordinate of point x.
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2. We propose a general framework for answering the PIR query.
3. We provide effective pruning methods to significantly reduce the search space, and

seamlessly integrate them into an efficient query procedure.
4. We extend the PIR solutions to the PIR query in high dimensional spaces.

In the sequel, Section 2 formalizes the PIR problem in the uncertain database. Sec-
tion 3 provides the framework for answering PIR queries, and illustrates the basic idea
of pruning methods in order to retrieve PIR results. Section 4 investigates the PIR query
processing by applying our pruning methods. Section 5 discusses the PIR query pro-
cessing in high dimensional space. Section 6 presents the query performance of our
proposed approaches. Section 7 reviews previous work on inverse ranking queries over
precise data, and uncertain query processing. Finally, Section 8 concludes this paper.

2 Problem Definition

2.1 Uncertainty Model

In an uncertain database DU , uncertain objects are assumed to definitely belong to the
database, and their attributes are imprecise and uncertain [26]. Thus, in literature, they
are often modeled by uncertainty regions [5]. Each uncertain object o can reside within
its uncertainty region, denoted as UR(o), with arbitrary distribution; moreover, object
o cannot appear outside UR(o). Formally, assuming the probability density function
(pdf) of object o’s data distribution is pdf(o0), we have

∫
o0∈UR(o) pdf(o0)do0 = 1 and

pdf(o0) = 0 for o0 /∈ UR(o). Following the convention of uncertain database [6,5,25],
uncertain objects in the database are assumed to be independent of each other.

Figure 1(a) illustrates an example of small uncertain database in a 2D space, which
contains 5 uncertain objects o1, o2, ..., and o5. In particular, each uncertain object oi

(1 ≤ i ≤ 5) is represented by an uncertainty region UR(oi) (i.e. shaded area) of
(hyper)rectangular shape [6,25], within which oi may appear at any location (however,
oi cannot appear outside its own shaded region).

2.2 The PIR Query

After giving the uncertainty model for uncertain objects, we formally define the inverse
ranking query over uncertain data as follows.

(a) Uncertainty Regions (b) The PIR Query

Fig. 1. Illustration of the PIR Query in the Uncertain Database
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Definition 1. (Probabilistic Inverse Ranking Query, PIR) Given an uncertain database
DU containing N uncertain objects, a query object q, a probability threshold α ∈ [0, 1),
and a monotonic function f(·), a probabilistic inverse ranking (PIR) query computes
all the possible ranks, k, of the query object q in the databaseDU each with probability
greater than α. That is, the PIR query returns the query object q’s rank k ∈ [1, N + 1],
if it holds that:

Prk-PIR(q, f(·)) =
∑

∀T={p1,p2,...,pk−1}⊆DU

⎛
⎝ ∏
∀pi∈T

Pr{f(pi) ≥ f(q)} ·
∏

∀pj∈DU \T
Pr{f(pj) < f(q)}

⎞
⎟⎠

> α (1)

Intuitively, probability Prk-PIR(q, f(·)) in Inequality (1) calculates the expected prob-
ability that query object q has the k-th rank in the database, with respect to mono-
tonic function f(·). More specifically, query object q has rank k, if and only if there
exists (k − 1) objects p1, p2, ..., and pk−1 in set T satisfying f(pi) ≥ f(q), for all
1 ≤ i ≤ k − 1, and the remaining objects pj ∈ D\T satisfy the condition that
f(pj) ≤ f(q). Thus, as given in Inequality (1), Prk-PIR(q, f(·)) sums up the probabili-
ties that q has rank k (i.e.

∏
∀pi∈T Pr{f(pi) ≥ f(q)} ·

∏
∀pj∈D\T Pr{f(pj) < f(q)}),

for all possible object combinations of T . If probability Prk-PIR(q, f(·)) is above the
threshold α, then rank k is considered as the answer to the PIR query; otherwise, we
will not report rank k.

Figure 1(b) illustrates a PIR example in the same uncertain database as Figure 1(a).
For simplicity, here we assume that a linear ranking function f(x) = x.A1 + x.A2
is specified by PIR. Note, however, that our proposed approaches in this paper can be
easily extended to the case of PIR with arbitrary monotonic function f(·). In the figure,
we are given a query object q and its score can be captured by the ranking function
f(q). Clearly, query object q cannot have rank k = 1, 2, or 6, since their corresponding
Prk-PIR(q, f(·)) probabilities are zero. Thus, for k = 3, 4, and 5, we can compute
their probabilities Prk-PIR(q, f(·)) in Inequality (1), and output ranks k as the PIR
query answers if Prk-PIR(q, f(·)) > α holds.

To the best of our knowledge, no previous work has studied the PIR problem over un-
certain data. Moreover, the work on inverse ranking query processing [19] over precise
data cannot be directly applied, since the proposed methods do not consider the uncer-
tain property of objects. Therefore, the only straightforward method is to sequentially
scan uncertain objects in the database, and determine the possible ranks of the query ob-
ject q with respect to f(·) by checking the PIR probability Prk-PIR(q, f(·)) according
to Definition 1. Finally, we output the final query answer if the PIR probability is above
the threshold α. Clearly, this method is inefficient in terms of both CPU time and I/O
cost. In order to improve the query performance, below, we present effective pruning
methods to reduce the PIR search space.

3 Probabilistic Inverse Ranking Search

3.1 General Framework

In this subsection, we present the general framework for answering PIR queries in
the uncertain database. Specifically, the framework consists of four phases, indexing,
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retrieval, pruning, and refinement phases. As mentioned in Section 2.2, the method that
sequentially scans the entire database is very inefficient in terms of both CPU time and
I/O cost. In order to speed up the PIR query processing, in the indexing phase, we con-
struct an aR-tree index I [18] over uncertain database DU . In particular, we assume
the uncertainty region of each object has hyperrectanglular shape [25,16,17], and we
can insert all the uncertainty regions into an aR-tree, utilizing the standard “insert” op-
erator in aR-tree. In addition, each entry of aR-tree nodes stores an aggregate, which
is the number of uncertain objects under this entry. Such aggregates can facilitate our
PIR query processing to quickly obtain the number of objects under an entry without
accessing leaf nodes.

When a PIR query arrives with a query object q, a monotonic function f(·), and
a probabilistic threshold α, we traverse the aR-tree and compute all possible ranks of
q with non-zero probability Prk-PIR(q, f(·)). Moreover, we also obtain a set, R0, of
objects that are involved in the calculation of Prk-PIR(q, f(·)) for these ranks. The
details will be described in Section 3.2. Next, in the pruning phase, we perform the
upper-bound pruning to further reduce the PIR search space, which will be discussed in
Section 3.3. Finally, for the remaining candidate ranks of q, we check Inequality (1) by
computing the actual probability Prk-PIR(q, f(·)), and return the final PIR answers.

3.2 Reducing the PIR Search Space

In this subsection, we illustrate how to reduce the search space of PIR queries. In par-
ticular, as shown in the example of Figure 1(b), no matter where uncertain objects o4
and o5 reside within their uncertainty regions, their scores are always higher than that
of query object q. Therefore, it is clear that query object q cannot be ranked as the
first or second place. Similarly, query object q cannot have the 6-th highest score, since
object o2 always has lower score than query object q. In other words, the probability
Prk-PIR(q, f(·)), for k = 1, 2, and 6, is equal to zero (≤ α), and ranks 1, 2, and 6 are
thus not answers to the PIR query.

Based on the observation above, we can reduce the search space of the PIR query
by ignoring those ranks that query object q definitely cannot have. That is, we first find
an interval [kmin, kmax] for k, where kmin and kmax are the minimum and maximum
possible rank values, respectively, such that probability Prk-PIR(q, f(·)) is not zero.

We can classify uncertain objects in the database into three categories (sets):
– R+: containing uncertain objects o with scores f(o) always larger than f(q);
– R0: containing uncertain objects o that might have score f(o) equal to f(q); and
– R−: containing uncertain objects o with scores f(o) always smaller than f(q).
As in the example of Figure 1(b), R+ = {o4, o5}, R0 = {o2, o3}, and R− = {o1}.

Note that, from the definition, the three sets have properties that R+ ∪R0 ∪R− = DU ,
and any two sets do not intersect with each other.

Among these three sets, R0 is the only set containing uncertain objects o with scores
f(o) whose relationships with f(q) are not definite. Thus, we have the following lemma.

Lemma 1. ([kmin, kmax]) Let kmin = |R+|+1 and kmax = |R+|+ |R0|+1. For any
rank k smaller than kmin or greater than kmax, it always holds that Prk-PIR(q, f(·))=
0, where Prk-PIR(q, f(·)) is given in Inequality (1).
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Proof. We consider the case where k < kmin. Clearly, there are (kmin − 1) (i.e.
|R+|) objects pi in R+ such that f(pi) ≥ f(q) definitely holds. However, as given
in Inequality (1), the cardinality of set T is exactly (k − 1), which is smaller than
(kmin − 1). Thus, there must exist at least one object pl ∈ R+ such that pl ∈ DU\T
and Pr{f(pl) < f(q)} = 0. Hence, probability Prk-PIR(q, f(·)) = 0, for k < kmin.
The case where k > kmax is similar and thus omitted. �
From Lemma 1, we find that, instead of paying expensive computation for Prk-PIR(q,
f(·)) where k ∈ [1, N + 1], we can restrict k values to a much smaller interval
[kmin, kmax], where kmin and kmax are defined in Lemma 1. As a consequence, we
can avoid the costly integrations for those rank with zero probabilities.

Specifically, we have the following lemma to rewrite the definition of the PIR query.

Lemma 2. (Equivalent PIR Query) Given an uncertain database DU , a query object
q, a threshold α ∈ [0, 1), and a monotonic function f(·), a PIR query retrieves all the
possible ranks, k ∈ [kmin, kmax], of the query object q in DU such that:

Prk-PIR(q, f(·)) =
∑

∀T={p1,p2,...,pk−kmin
}⊆R0

⎛
⎝ ∏
∀pi∈T

Pr{f(pi) ≥ f(q)} ·
∏

∀pj∈R0\T
Pr{f(pj) < f(q)}

⎞
⎟⎠

> α

(2)

Proof. Derived from the fact thatDU = R+ ∪R0 ∪R− and the definitions of sets R+,
R0, and R−. �
Lemma 2 indicates that, in order to obtain the probability that q has rank k∈[kmin, kmax]
in the database DU , we can compute the probability that q has rank (k − kmin + 1) in
set R0. The resulting probability can be verified by the condition in Inequality (2).

3.3 Upper-Bound Pruning

In this subsection, we propose an effective pruning method, namely upper-bound prun-
ing, to further reduce the search space of PIR queries. In particular, the heuristics of
our pruning method is as follows. Although Inequality (2) has significantly reduced
the PIR search space (compared with Inequality (1)), the direct computation of prob-
ability Prk-PIR(q, f(·)) is still very costly. Therefore, alternatively, we plan to find a
method to calculate its probability upper bound with a lower cost, which is denoted as
UB Prk-PIR(q, f(·)). That is, if this upper bound UB Prk-PIR(q, f(·)) is already
smaller than threshold α ∈ [0, 1), then rank k will not be our query result and it can be
safely pruned.

Next, we discuss how to obtain the upper bound UB Prk-PIR(q, f(·)). Specifically,
we can simplify probability Prk-PIR(q, f(·)) in Inequality (2) below.

Prk-PIR(q, f(·)) = S(|R0|, k − kmin) (3)

where for objects pj ∈ R0, we have:
S(j, a) = S(j − 1, a) · Pr{f(pj) ≤ f(q)} + S(j − 1, a− 1) · (1− Pr{f(pj) ≤ f(q)}),

S(j, 0) =
j∏

i=1

Pr{f(pi) ≤ f(q)},

S(a, a) =
a∏

i=1

Pr{f(pi) ≥ f(q)},

S(j, a) = 0, for j < a. (4)
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Assume all the objects pj in set R0 are in a sequence of p1, p2, ..., and p|R0|. Intu-
itively, S(j, a) is a recursive function which reports the probability that there are a out
of j objects having scores higher than q (i.e. f(q)) and the remaining (j − a) objects
with scores smaller than or equal to f(q).

From Eq. (3), the problem of finding upper bound probability UB Prk-PIR(q, f(·))
is equivalent to that of obtaining the upper bound of S(|R0|, k − kmin). In turn, ac-
cording to recursive functions in Eq. (4), we only need to compute the lower and upper
bounds of S(j, a), which can be summarized in the following lemma.

Lemma 3. We respectively denote the lower and upper bounds of probability Pr{f(pj)
≤ f(q)} as LB F (pj) and UB F (pj). Moreover, we also denote the lower and upper
bounds of S(j, a) as LB S(j, a) and UB S(j, a), respectively. Then, we have:

LB S(j, a) =

⎧⎪⎨
⎪⎩

(LB S(j − 1, a)− UB S(j − 1, a− 1)) · LB F (pj)
+LB S(j − 1, a− 1), if LB S(j − 1, a) > UB S(j − 1, a− 1);

(LB S(j − 1, a)− UB S(j − 1, a− 1)) · UB F (pj)
+LB S(j − 1, a− 1), otherwise.

(5)

and

UB S(j, a) =

⎧⎪⎨
⎪⎩

(UB S(j − 1, a)− LB S(j − 1, a− 1)) · LB F (pj)
+UB S(j − 1, a − 1), if UB S(j − 1, a) < LB S(j − 1, a− 1);

(UB S(j − 1, a)− LB S(j − 1, a− 1)) · UB F (pj)
+UB S(j − 1, a − 1), otherwise.

(6)

Proof. Since S(j, a)∈ [LB S(j, a), UB S(j, a)] and Pr{f(pj)≤f(q)}∈ [LB F (pj),
UB F (pj)], we can derive LB S(·, ·) and UB S(·, ·) recursively from Eq. (4). Details
are omitted due to space limit. �
Therefore, one remaining issue that needs to be addressed is how to obtain the lower
and upper bounds of Pr{f(pj) ≤ f(q)}. Our basic idea is to calculate the proba-
bility bounds by utilizing some offline pre-computed information for uncertain object
pj . Figure 2(a) illustrates this idea using a 2D example. Assume we pre-process un-
certain object pj by selecting a point s1 within the uncertainty region UR(pj). With
respect to coordinates of s1, we obtain 4 quadrants I, II, III, and IV. Note that, since the
PIR query can specify arbitrary monotonic function f(·), our pre-computed probability
bounds should be able to be correct for any f(·). Clearly, in our example, the probability
Pr{f(pj) ≤ f(s1)} is always lower bounded by the probability that pj falls into re-
gion III, denoted as LB F (s1), and upper bounded by the probability that pj falls into
regions (II ∪ III ∪ IV), denoted as UB F (s1). Thus, for point s1, its corresponding
pre-computed bounds are LB F (s1) and UB F (s1).

As a result, we have the following lemma to give lower and upper bounds of proba-
bility Pr{f(pj) ≤ f(q)}, denoted as LB F (pj) and UB F (pj), respectively.

Lemma 4. Assume we have l pre-selected points s1, s2, ..., and sl in an uncertain ob-
ject pj , where each point si has pre-computed probability bounds [LB F (si),
UB F (si)]. Given a monotonic function f(·) and a PIR query point q, without loss
of generality, let f(si+1) ≤ f(q) ≤ f(si) for 1 ≤ i < l. Then, we can set LB F (pj)
and UB F (pj) to LB F (si+1) and UB F (si), respectively.
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(a) (b)

Fig. 2. Illustration of Computing [LB F (pj), UB F (pj)] for any Monotonic Function f(·)

Proof. Based on the definition of LB F (si+1) and the fact that f(si+1) ≤ f(q), we
have LB F (si+1)≤ Pr{f(pj)≤ f(si+1)} ≤ Pr{f(pj)≤ f(q)}. Thus, LB F (si+1)
is a lower bound of probability Pr{f(pj) ≤ f(q)} (i.e. LB F (pj)). The case of
UB F (pj) is similar and thus omitted. �
Therefore, by Lemma 4, we can pre-compute probability bounds with respect to pre-
selected points in each uncertain object. As an example in Figure 2(b), when we want
to compute bounds LB F (pj) and UB F (pj) with respect to a monotonic function
f(·), among all pre-selected points, we can choose two points, say s1 and s2, that have
the closest scores to f(q), say f(s2) ≤ f(q) ≤ f(s1) (note: close scores can give
tight bounds). Then, we only need to let LB F (pj) = LB F (s2) and UB F (pj) =
UB F (s1). Intuitively, LB F (pj) is given by probability that pj falls into the region
filled with sloped lines (i.e. the rectangle with top-right corner s2) in Figure 2(b),
whereas UB F (pj) is the probability that pj is in the grey region with respect to s1.

In Lemma 4, for the l selected points, we need to store l pairs of probability bounds.
We found through experiments that the pruning ability can converge with small l value.

4 Query Processing

4.1 Pruning Nodes/Objects

In order to efficiently answer the PIR query, we need to traverse the aR-tree and reduce
the search cost by accessing as few nodes/objects as possible. As mentioned in Section
3.2, all the uncertain objects in the database can be partitioned into 3 disjoint sets, R+,
R0, and R−, with respect to score of query object (i.e. f(q)). In particular, to answer
a PIR query, we only need to obtain the cardinality (i.e. aggregate) of sets R+ and R0
(i.e. resulting in [kmin, kmax]), as well as the uncertain objects in set R0. Thus, those
objects (or nodes only containing objects) in R− can be safely pruned.

Therefore, one important issue to enable pruning a node/object is to identify its cat-
egory. Specifically, each node e (or uncertainty region of uncertain object) in aR-tree is
represented by a minimum bounding rectangle (MBR) in the form [e−1 , e+

1 ; e−2 , e+
2 ; ...;

e−d , e+
d ], where [e−i , e+

i ] is the interval of e along the i-th dimension. Given a monotonic
function f(·), the minimum and maximum scores for points in node e can be achieved
(due to monotonic property of f(·)) at d-dimensional points emin〈e−1 , e−2 , ..., e−d 〉 and
emax〈e+

1 , e+
2 , ..., e+

d 〉, respectively. Without loss of generality, we let LB score(e) =
f(emin) and UB score(e) = f(emax). We have the lemma of pruning nodes below.
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Lemma 5. (Pruning Nodes/Objects) Given a monotonic function f(·), a query object
q, and a node/object e, if it holds that UB score(e) < f(q), then node/object e is
in set R− and it can be safely pruned during PIR query processing; if it holds that
LB score(e) > f(q), then node e is in set R+, and we only need to count the aggregate
e.agg without accessing its children.

4.2 Query Procedure

Up to now, we have discussed how to prune nodes/objects during PIR query process-
ing without introducing false dismissals. Now we present the detailed query procedure
for answering PIR queries. In particular, our PIR query procedure traverses the aR-tree
index in a best-first manner. Meanwhile, the query procedure collects the aggregate
(i.e. count) of set R+ and the content of set R0. Note that, here the number of uncer-
tain objects under the nodes can be provided by aggregates in aR-tree nodes, without
the necessity of visiting their children. After we obtain a complete set R0, the upper-
bound pruning can be conducted over R0, as mentioned in Section 3.3. Finally, the
remaining candidates (ranks) can be refined by computing their actual probabilities
Prk-PIR(q, f(·)).

Figure 3 illustrates the pseudo code of the PIR query procedure, namely procedure
PIR Processing. Specifically, we maintain a maximum heap H in the form 〈e, key〉,
where e is an MBR node and key is defined as the upper bound of score for any point
in node e (i.e. key = UB score(e) defined in Section 4.1). Intuitively, nodes with high
score upper bounds are more likely to contain objects in R+ ∪ R0. Thus, we access

Procedure PIR Processing {
Input: aR-tree I constructed over DU , query point q, a monotonic function f(·), and a probability threshold α
Output: the PIR query result PIR rlt
(1) initialize an empty max-heapH accepting entries in the form 〈e, key〉
(2) R0 = φ; count(R+) = 0;
(3) insert (root(I), 0) into heapH
(4) whileH is not empty
(5) (e, key) = de-heapH
(6) if e is a leaf node
(7) for each uncertain object o ∈ e
(8) obtain lower/upper bound scores LB score(o) and UB score(o)
(9) if UB score(o) ≥ f(q) // o is in set R+ or R0
(10) if LB score(o) ≤ f(q) // o is in set R0
(11) R0 = R0 ∪ {o}
(12) else // o is in R+

(13) count(R+) = count(R+) + 1
(14) else // intermediate node
(15) for each entry ei in e
(16) obtain lower/bound scores LB score(ei) and UB score(ei)
(17) if UB score(ei) ≥ f(q) // ei contains objects in R+ or R0
(18) if LB score(ei) ≤ f(q) // ei may contain objects in R0
(19) insert 〈ei, UB score(ei)〉 into heapH
(20) else // ei contains objects in R+

(21) count(R+) = count(R+) + ei.agg

(22) kmin = count(R+) + 1; kmax = count(R+) + |R0|+ 1;
(23) PIR rlt = Upper-Bound Pruning (R0 , f(·), q, α, kmax − kmin + 1);
(24) Refinement (R0 , f(·), q, α, PIR rlt);
(25) return PIR rlt

}

Fig. 3. PIR Query Processing
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nodes of aR-tree in descending order of the score upper bound (i.e. key), and stop the
traversal when all nodes/objects in R+ ∪R0 are visited/counted.

5 The PIR Query in High Dimensional Spaces

Up to now, we have illustrated how to answer the PIR query over uncertain data through
a multidimensional index like R-tree [11]. Note, however, that the query efficiency of
multidimensional indexes often rapidly degrades with the increasing dimensionality,
which is also known as the “dimensionality curse” problem. That is, in the worse case,
the query performance through index is even worse than that of a simple linear scan
of the database. Therefore, in this section, we will discuss our PIR query processing
problem in high dimensional spaces (i.e. uncertain objects have many attributes).

In order to break the dimensionality curse, previous works usually reduce the dimen-
sionality of data objects and convert them into a lower dimensional points, on which
index is constructed and queries (e.g. range or nearest neighbor query) are answered
following a filter-and-refine framework. The existing reduction methods, such as SVD
[15] and DFT [1], satisfy the property (a.k.a. lower bounding lemma) that the distance
between any two reduced data points is a lower bound of that between their correspond-
ing points in the original space. Although previous methods can successfully answer
queries over precise data points, they are not directly applicable to uncertain scenario.

In the sequel, we propose an effective approach of dimensionality reduction over
uncertain data, namely uncertain dimensionality reduction (UDR). Specifically, as-
sume we have a d-dimensional uncertain object o with its uncertainty region UR(o) =
〈o.A−1 , o.A+

1 ; o.A−2 , o.A+
2 ; ...; o.A−d , o.A+

d 〉, where [o.A−i , o.A+
i ] is the uncertain in-

terval of object o along the i-th dimension. The UDR method first vertically divides
dimensions of object o into w portions (w < d), each of which contains the same
number, �d/w	, of dimensions (note: one portion may have less than �d/w	 dimen-
sions). Without loss of generality, let the j-th partition (1 ≤ j ≤ w) correspond
to [o.A−j·	d/w
+1, o.A+

j·	d/w
+1; ...; o.A
−
(j+1)·	d/w
, o.A+

(j+1)·	d/w
]. Next, our UDR
approach maps uncertain object o onto a w-dimensional region,
UR(o(r)) = 〈o(r).A−1 , o(r).A+

1 ; o(r).A−2 , o(r).A+
2 ; ...; o(r).A−w , o(r).A+

w〉,
where o(r).A−j = min{o.A−j·	d/w
+1, ..., o.A−(j+1)·	d/w
}, and o(r).A+

j =
max{o.A+

j·	d/w
+1, ..., o.A+
(j+1)·	d/w
}. Intuitively, o(r).A−j and o(r).A+

j are the min-
imum and maximum possible values of uncertain intervals for dimensions in the j-th
portion. Note that, heuristically, we want o(r).A−j and o(r).A+

j are as close as pos-
sible such that we can use them to obtain tight score lower/upper bounds during the
query processing (as will be discussed later). Therefore, we collect the mean statistics
of (o(r).A−i + o(r).A+

i )/2 for all objects in D along the i-th dimension (1 ≤ i ≤ d),
sort d resulting mean values, and select every �d/w	 dimensions corresponding to con-
secutive mean values as a portion. This way, we can reduce the dimensionality (i.e. d)
of each uncertain object to a lower w-dimensional space.

When a PIR query arrives with preference function f(·), we can traverse the in-
dex in the reduced space. For each object o we encounter, we can obtain its score
upper/lower bounds by using o(r).A−j (o(r).A+

j ) for parameters o.A−j·	d/w
+1, ..., and

o.A−(j+1)·	d/w
 (o.A+
j·	d/w
+1, ..., and o.A+

(j+1)·	d/w
) in preference function f(·). The
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case of computing score upper/lower bounds for nodes is similar. Thus, similar to the
query procedure discussed in Section 4.2, we collect the count of set R+, as well as
the content in set R0, in the reduced space. Then, the upper-bound pruning can be con-
ducted in the original d-dimensional space, and the remaining candidates are refined by
computing their actual PIR probabilities.

6 Experimental Evaluation

In this section, we evaluate the performance of the probabilistic inverse ranking (PIR)
query in the uncertain database. Specifically, we test the efficiency and effectiveness of
our approaches on both real and synthetic data sets. For the real data sets, we use 2D
geographical data sets2, denoted as LB and RR, which contain bounding rectangles of
53,145 Long Beach county roads and 128,971 Tiger/Line LA rivers and railways, re-
spectively, where these rectangles are treated as uncertainty regions for object locations.

In order to verify the robustness of our proposed methods, we also synthetically gen-
erate uncertain data sets as follows. To produce an uncertain object p, we first randomly
generate a center location Cp in a data space U = [0, 1000]d, where d is the dimen-
sionality of the data set. Then, we pick up a random radius, rp ∈ [rmin, rmax], for
uncertainty region of p, where rmin and rmax are the minimum and maximum possible
distances from p to Cp, respectively. As a third step, we randomly obtain a hyperrect-
angle that is tightly bounded by a hypersphere centered at Cp with radius rp. Here,
the hyperrectangle can be considered as uncertainty region UR(p) of object p. Finally,
we obtain 100 samples within UR(p) to represent the data distribution of object p in
UR(p). We consider the center location Cp of Uniform and Skew (with skewness 0.8)
distributions, denoted as lU and lS, respectively; moreover, we consider radius rp of
Uniform and Gaussian (with mean rmin+rmax

2 and variance rmax−rmin

5 ) distributions,
denoted as rU and rS, respectively. Thus, we can obtain 4 types of data sets, lUrU ,
lUrG, lSrU , and lSrG. Without loss of generality, we assume samples in the un-
certainty regions follow uniform distribution. Due to space limit, we only present the
experimental results on the data sets mentioned above. Note, however, that, for data sets
with other parameters (e.g. mean and variance of Gaussian distribution, the skewness
of skew distribution, or sample distributions in uncertainty regions), the trends of the
PIR query performance are similar and thus omitted.

For both real and synthetic data sets, we construct a multidimensional R-tree [11] by
inserting the uncertainty regions of each uncertain object via standard “insert” function
in the R-tree, where the page size is set to 4K. In order to evaluate the query perfor-
mance on the R-tree index, we also generate 100 query objects following the distribu-
tion of center location Cp in synthetic data sets or center of rectangles in real data sets.
Moreover, for the monotonic function f(·), we simply test the linear function given by
f(p) =

∑d
i=1 wi · p.Ai, where wi are weights uniformly distributed within [0, 1], and

p.Ai are coordinates of possible object position p.
In our experiments, we evaluate our PIR (as well as high dimensional PIR) query

processing, in terms of two measures, filtering time and speed-up ratio. Specifically, the

2 The two real data sets are available online at URL: http://www.rtreeportal.org/.
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filtering time is the time cost of the index traversal, which consists of both CPU time
and I/O cost, where we incorporate each page access by penalizing 10ms (i.e. 0.01
second) [21]. Furthermore, the speed-up ratio is defined as the time cost of the linear
scan method, mentioned in Section 2.2, divided by that of our proposed approaches.
All the experiments are conducted on Pentium IV 3.4GHz PC with 1G memory, and
experimental results are averaged over 100 runs.

6.1 Evaluation of the PIR Query

In the first set of experiments, we first illustrate the query performance of our PIR
query processing approach over both real and synthetic data sets. Specifically, Figure 4
illustrates the filtering time of the index traversal on 6 data sets LB, RR, lUrU , lUrG,
lSrU , and lSrG, where uncertain objects in the last 4 synthetic data sets have the radius
range [rmin, rmax] = [0, 3], probability threshold α = 0.5, dimensionality d = 3, and
data size N = 30K . In order to enable the upper-bound pruning, we pre-compute the
probability bounds as discussed in Section 3.3 by setting the number of pre-selected
points, l, per object to 15. The numbers over columns in the figure are the speed-up
ratios of our PIR processing method compared with the linear scan. We can see that
the required filtering time of our approach is small (e.g. 0.2-0.7 second), and the speed-
up ratio indicates that our method outperforms the linear scan by about two orders of
magnitude.

Next, we start to evaluate the robustness of our proposed PIR approach by varying
different parameters on synthetic data sets. Due to space limit, we only report α and N .

Figure 5 varies the probability threshold α specified by PIR queries. In particular,
we set α to 0.1, 0.3, 0.5, 0.7, and 0.9, where the radius range [rmin, rmax] = [0, 3],
dimensionality d = 3, data size N = 30K , and parameter l = 15. As expected, since
the probability threshold α is only used for the upper-bound pruning, that is, checking
whether or not the probability upper bound of each PIR candidate is smaller than α, the
filtering time of the index traversal remains the same. On the other hand, the speed-up
ratio of our approach compared with linear scan slightly increases with the increasing
α since fewer candidates need to be refined in the refinement phase.

In the next set of experiments, we perform the scalability test on the size of uncertain
data sets. Specifically, we vary the data size N from 10K to 100K , and let the radius
range [rmin, rmax] = [0, 3], probability threshold α = 0.5, dimensionality d = 3, and
parameter l = 15. Figure 6 depicts the experimental results over 4 types of data sets,
in terms of the filtering time and speed-up ratio. In figures, the filtering time increases

Fig. 4. PIR Performance vs. Real/Synthetic Data Sets
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(a) lU (b) lS

Fig. 5. PIR Performance vs. Probability Threshold α (Synthetic Data)

(a) lU (b) lS

Fig. 6. PIR Performance vs. Data Size N (Synthetic Data)

(a) filtering time vs. w (b) filtering time vs. d

Fig. 7. HD-PIR Performance vs. Parameters w and d (lS Synthetic Data)

smoothly with the increasing data sizes. Moreover, the speed-up ratio also becomes
higher, when the data size is larger, which indicates the good scalability and robustness
of our PIR query processing approach, compared with the linear scan method.

6.2 Evaluation of PIR Queries in High Dimensional Spaces

In this subsection, we present the experimental results of PIR query processing in high
dimensional spaces (denoted as HD-PIR). Due to space limit, we only report results
on lSrU and lSrG data sets by varying the reduced dimensionality w via our UDR
reduction method, as well as the original dimensionality d. In particular, Figure 7(a) il-
lustrates the filtering time of the HD-PIR query, where w = 2, 3, 4, data size N = 30K ,
radius range [rmin, rmax] = [0, 3], probability threshold α = 0.5, dimensionality
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d = 12, and parameter l = 15. When w increases, the filtering time slightly in-
creases, which is mainly due to the increasing I/O cost (as more dimensions take up
more space). Furthermore, since large w gives tight bounds of o(r).A−j and o(r).A+

j

(as mentioned in Section 5), the resulting number of PIR candidates to be refined
decreases when w is large. Thus, the speed-up ratio of our approach compared with
linear scan increases with the increasing w. Figure 7(b) demonstrates the HD-PIR
query performance where d = 9, 12, 15, w = 3, N = 30K , [rmin, rmax] = [0, 3],
α = 0.5, and l = 15. From the figure, we find that when d becomes large, the filter-
ing time of our HD-PIR query processing smoothly increases, whereas the speed-up
ratio slightly decreases. This is reasonable, since more HD-PIR candidates are needed
to be retrieved and refined.

7 Related Work

7.1 Inverse Ranking Query

In literature [4,12,9,14,20,8,29], there are many works on the top-k query, which is
useful in a wide spectrum of applications, including decision making, recommendation
raising, and data mining tasks. In particular, the top-k query retrieves k objects in a
database that report the highest scores with respect to a monotonic function. The quan-
tile query [22] retrieves an object in the database with the k-th highest score, where k is
arbitrarily large. Lin et al. [22] studied efficient quantile query processing in the stream
environment with precision guarantees. Inversely, Li et al. [19] proposed another im-
portant query type, inverse ranking query, which computes the rank of a user-specified
query point in the “certain” database, which has many practical applications to deter-
mine the importance (i.e. rank) of any query object among peers.

Note that, Li et al. [19] studied the inverse ranking query in a database that contains
precise data points. In contrast, our work focuses on the inverse ranking query over
uncertain data (i.e. the PIR query), which is more challenging. Specifically, the inverse
ranking query in the uncertain database has to be re-defined, as given in Definition 1,
which needs to consider the data uncertainty and provides the confidence of uncertain
query processing (i.e. α). Thus, techniques on inverse ranking query processing over
precise points cannot be directly used in our problem (since scores of uncertain objects
are now variables instead of fixed values).

7.2 Uncertain Query Processing

Uncertain query processing is very important in many applications. For instance, the
Orion system [7] can monitor uncertain sensor data; the TRIO system [2] propose
working models to capture the data uncertainty on different levels. In the context of
uncertain databases, various queries have been proposed, including range query [6,5],
nearest neighbor query [6,5,17], skyline query [25], reverse skyline query [21], and sim-
ilarity join [16]. In addition, in the probabilistic database, the top-k query [28,27,13] has
been studied under possible worlds semantics. In this paper, we consider PIR queries,
which, to our best knowledge, no previous work has studied in uncertain
databases.
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8 Conclusions

Uncertain query processing has played an important role in many real-world applica-
tions where data are imprecise and uncertain. In this paper, we study an important query
type in the context of uncertain database, namely probabilistic inverse ranking (PIR)
query. Specifically, given a query object q, a PIR query obtains all the possible ranks
that q may have in an uncertain database with probability above a threshold. In order to
efficiently answer the PIR query, we propose effective pruning methods to reduce the
PIR search space, and integrate them into an efficient query procedure. Furthermore, we
also investigate the PIR query in high dimensional spaces. Extensive experiments have
shown the efficiency and effectiveness of our proposed approaches to answer the PIR
query, as well as its variants over real/synthetic data, under various parameter settings.
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Abstract. Top-k queries have been well-studied in snapshot databases and data
streams. We observe that decision-makers are often interested in a set of objects
that exhibit a certain degree of consistent behavior over time. We introduce a
new class of queries called consistent top-k to retrieve k objects that are always
amongst the top at every time point over a specified time interval. Applying top-k
methods at each time point leads to large intermediate results and wasted compu-
tations. We design two methods, rank-based and bitmap, to address these short-
comings. Experiment results indicate that the proposed methods are efficient and
scalable, and consistent top-k queries are practical in real world applications.

1 Introduction

Many real world applications (e.g online stock trading and analysis, traffic management
systems, weather monitoring, disease surveillance and performance tracking) rely on a
large repository of historical data in order to support users in their decision making.
Often, the decisions made are based on the observations at a specific time point. Such
observations may not be reliable or durable if we need to have consistent performance
over a long time horizon. Indeed, the search for objects that exhibit consistent behavior
over a period of time will empower decision-makers to assess, with greater confidence,
the potential merits of the objects. We call this class of queries that retrieve objects with
some persistent performance over time as consistent top-k queries.

Example 1. Stock Portfolio Selection. Investors who select a portfolio of stocks for
long-term investment would have greater confidence in stocks that consistently exhibit
above industry average in growth in earnings per share and returns on equity. These
stocks are more resilient when the stock market is bearish. We can issue a consistent
top-k query to return a set of stocks whose growth in earnings per share or return on
equity are consistently among the top 20 over a period of time.

Example 2. Targeted Marketing. The ability to identify ”high value” customers is
valuable to companies who are keen on marketing their new products or services. These
customers would have been with the company for some time with regular significant
transactions. Marketing efforts directed to this group of customers are likely to be more
profitable than those to the general customer base. The consistent top-k query allows
these ”high value” customers to be retrieved and companies can develop appropriate
strategies to further their business goals.

Example 3. Awarding Scholarships. Organizations that provide scholarships have
many criteria for selecting suitable candidates. One of the selection criteria often requires
the students to have demonstrated consistent performance in their studies. The consistent
top-k query can be used to retrieve this group of potential scholarship awardees.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 51–65, 2009.
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Example 4. Researchers with Sustained Publications. Research communities have
started to track the publications of researchers in an effort to recognize their contri-
butions to the respective areas. Recent attempts have applied top-k queries to identify
authors with the most number of publications captured in online databases (e.g. dblp).
Another possible dimension is to recognize outstanding researchers with sustained con-
tributions. These authors can be identified using a consistent top-k query.

A consistent top-k query over a time series dataset returns a set of time series that are
ranked among the top k at every time point. The size of the answer set could range from
0 to k. In practice, some applications may require the size of answer set to be precisely
k. Figure 1 shows a sample publication dataset which records the number of conference
and journals papers of researchers in the past 5 years. A consistent top-3 query on this
dataset will yield {author2, author3}.
Consistent top-k vs. Top-k and Skyline Queries. Consistent top-k queries are differ-
ent from top-k and skyline queries. Consistent top-k queries aim to retrieve the set of
objects that show some consistent performance over time. But mapping a time series
dataset to a multi-dimensional dataset, and using top-k or skyline query methods may
not be able to retrieve the desired set of objects. Consider publications for the years 2001
and 2002 in Figure 1. A top-3 query over the period [2001-2002] requires a monotonic
function to be defined over the two years. Table 1 lists one such monotonic function,
the average publication count of researchers, in [2001-2002]. Based on this monotonic
function, a top-3 query will retrieve authors author1, author2 and author4. We ob-
serve that author1 and author4 are not consistent in their publications.
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Fig. 1. Example publication dataset with {author2, author3} being consistently in the top 3

Table 1. Average publication count of researchers in 2001 and 2002

id 2001 2002 Average #Publications

author1 14 5 9.5

author2 10 11 10.5

author3 8 9 8.5

author4 3 15 9.0

author5 1 2 1.5

author6 4 1 2.5
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Fig. 2. Mapping 2001 and 2002 publication counts in Figure 1 to a 2-D space

Now let us map the 2001 and 2002 publication counts of the researchers in Figure 1
to a two-dimensional space as shown in Figure 2. The x-axis and y-axis in Figure 2 rep-
resent the number of publications of the researchers in 2001 and 2002 respectively. A
skyline query retrieves a set of points from a multi-dimensional dataset which are
not dominated by any other points [1]. Figure 2 shows the results of a skyline query
(author1, author2, author4). Note that author1 and author4 are retrieved although
they do not have high publication counts in 2002 and 2001 respectively. Further,
author3 who has consistently published 8 or more publications in 2001 and 2002, is
not retrieved by the skyline query.

A consistent top-k query can be processed as a set of top-k queries over a continuous
time interval. For each time point in the time interval, we obtain the top-k answers and
compute their intersections. This naive approach is expensive with many redundant
computations. In this paper, we present a rank-based approach and a bitmap method to
evaluate consistent top-k queries efficiently. In the rank-based approach, the time series
at each time point are ranked; the time series with the highest value at a time point
has a rank of 1. The rank of a time series is affected when it intersects with other time
series. In Figure 1, author1 is ranked first in 2001 while author2 is ranked second. The
rank of author1 drops in 2002 because the time series for author1 intersects with that
of author2, author3 and author4 between the two years. Based on this observation,
we design an efficient algorithm to construct a compact RankList structure from a time
series dataset. With this structure, we can quickly answer consistent top-k queries.

The rank-based approach also provides us with insights to design the second bitmap
approach. If a time series has a rank of r, then it will be in the results for any top-
k query, where k ≥ r. Hence, our bitmap method assumes an application-dependent
upper bound K , and utilizes bitmaps to indicate whether a time series is a candidate
for a top-k query, k ≤ K , at each time point. Using the bitwise operation AND, we can
quickly determine whether a time series is part of the results of a consistent top-k query.

The key contributions of the paper are as follows:

1. We introduce the notion of consistent top-k queries and illustrate its relevance in
various applications.

2. We propose a technique that utilizes rank information to answer consistent top-
k queries. Algorithms to construct, search and update the RankList structure are
presented.
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3. We also design a bitmap approach to process both consistent top-k efficiently. Al-
gorithms for constructing the BitMapList, as well as searching and updating this
structure are detailed.

4. We present a suite of comprehensive experiment results to show the efficiency and
scalability of the proposed methods. We also demonstrate that consistent top-k
queries are able to retrieve interesting results from real world datasets.

To the best of our knowledge, this is the first work to address the problem of finding
objects which exhibit some consistent behavior over time.

2 Related Work

Many methods have been developed to process top-k queries. Fagin’s algorithm [2]
carries out a sorted access by retrieving a list of top matches for each condition in the
round-robin fashion until k objects that matches all the conditions are found. The TA
algorithm [3] generalizes Fagin’s algorithm by computing the score for each object seen
during a sorted access. Subsequent work reduces the access cost in the TA algorithm by
computing the probability of the total score of an object [4], and exploring bounds for
the score for early pruning [5].

Top-k queries can be mapped to multidimensional range queries [6,7]. The key issue
is to determine an appropriate search distance that would retrieve the k best matches.
This distance can be determined from the statistics on the relations [7] or from a multi-
dimensional histogram [6]. The method in [8] computes the search distance by taking
into account imprecision in the optimizer’s knowledge of data distribution and selectiv-
ity estimation while [9] adopts a sampling-based approach.

All the above studies are focused on retrieving top k answers at one time point. The
work in [10] designs two algorithms to address the problem of top-k monitoring over
sliding windows. The top-k monitoring algorithm re-computes the answer of a query
whenever some of the current top-k tuples expire, while the skyband monitoring al-
gorithm partially pre-computes future results by reducing top-k to k-skyband queries.
These methods are not applicable to consistent top-k queries because they assume ob-
jects in the sliding windows have constant values until they expire whereas each time
series may change its value at every time point.

3 Rank-Based Approach to Process Consistent Top-k Queries

A time series s is a sequence of values that change with time. We use s(t) to denote the
value of s at time t, t ∈ [0, T ]. A time series database TS consists of a set of time series
si, 1 ≤ i ≤ N . Given a time series database TS, an integer k, and a time point t, a top-k
query will retrieve k time series with the highest values at t. We use top-k(TS, k, t) to
denote the set of top k time series at t.

A consistent top-k query over a time interval [tu, tv] retrieves the set of time series
U =

⋂
Ut where Ut = top-k(TS, k, t) ∀ t ∈ [tu, tv]. Size of U ranges from 0 to k.

We can leverage the top-k operator in [6] to answer consistent top-k queries. This in-
volves mapping the top-k query at each time point to a range query. The search distance
is estimated using any methods in [7,6,8]. The basic framework is as follows:
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1. For each time point t in the specified time interval, estimate the search distance dist
such that it encompasses at least k tuples with values greater than dist. Note that
the search distance could vary for the different time points.

2. Use the estimated distances to retrieve the set of top k tuples at each time point,
and compute the intersection.

There are two drawbacks to this approach: the intermediate relation to store the top
k results at each time point is proportional to k and the number of time points; and
many of these computations are wasted. These drawbacks can be overcome if we rank
the time series s at each time point t according to their values s(t). This rank, denoted
by rank(s,t), is affected by the intersection of s with other time series between the time
points t− 1 and t.

We can construct an inverted list for each time series to store the rank information
(see Figure 3). Each entry in the list consists of the rank of the time series at the corre-
sponding time point. Note that it is only necessary to create an entry in the inverted list
of a time series when its ranking is affected by an intersection. Further, if an existing
time series does not have any value at some time point, then it will be ranked 0 at that
time point. We call this structure RankList.

A consistent top-k query can be quickly answered with the RankList structure by
traversing the list of each time series and searching for entries with rank values greater
than k. The result is the set of time series which do not have such entries in their lists.
For example, to answer a consistent top-3 query issued over the publication dataset in
Figure 1, we traverse the list of author1 in Figure 3 and find that the rank in the second
entry is greater than 3. Hence, author1 will not be in the answer set. In contrast, there
are no entries in the lists of author2 and author3 with rank values greater than 3, and
{author2, author3} are the results of the consistent top-k query. We stop searching a
list whenever an entry in the list with rank value greater than k is encountered.

RankList Construction and Search. Algorithm 1 shows the steps to construct the
inverted list structure RankLst that captures the rank information for each time series in
a dataset. The algorithm utilizes two arrays called PrevRank and CurrRank to determine
if the ranking of a time series at the current time point has been affected by some
intersection. Lines 3 and 5 initialize each entry in the PrevRank and CurrRank array to
0. This is because of the possibility of missing values for some time series. If a time
series s has a value at time t, CurrRank[s] will be initialized to 1 (lines 7-9). We scan
the database once and compare the values of the time series at each time point (lines
10-16). If the ranking of a time series s changes from time point t− 1 to t, we create an
entry in the inverted list of s to record its new rank (lines 17-22).

2001 1  2001 2  2001 3  2001 5  2001 6  2001 4 
2002 4  2003 1  2003 2  2002 1  2002 5  2002 6 
2003 3  2004 2  2004 3  2003 0     2003 4 
2004 1        2005 4     2005 6 

author1 author2 author3 author4 author5 author6

Fig. 3. RankList constructed for the publication dataset in Figure 1
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Algorithm 2 takes as input the inverted list structure RankLst for the time series
dataset, an integer k, and the start and end time points t start, t end. The output is S,
a set of time series whose rank is always higher than k over [t start, t end]. For each
time series s, we check if its rank is always higher than k in the specified time interval
(lines 4-18). The entry with the largest time point that is less than or equal to t start is
located (line 5). If the entry does not exist or there is no value of s or the rank value of
the entry is larger than k, then s is removed from S (lines 6-13). Otherwise, we check
the ranks of the entries for s until the end time point.

Algorithm 1. Build RankList
1: Input: TS - time series database with

attributes id, time and value
T - total number of time points in TS

2: Output: RankLst - RankList structure for TS
3: initialize int [] PrevRank to 0;
4: for each time point t from 0 to T do
5: initialize int [] CurrRank to 0;
6: let S be the set of tuples with time t;
7: for each tuple p ∈ S do
8: initialize CurrRank[p.id] to 1;
9: end for
10: for each pair of tuples p, q ∈ S do
11: if p.value < q.value then
12: CurrRank[p.id]++;
13: else
14: CurrRank[q.id]++;
15: end if
16: end for
17: for each time series s in TS do
18: if CurrRank[s] != PrevRank[s] then
19: Create an entry <t, CurrRank[s]> for time series s in RankLst;
20: PrevRank[s] = CurrRank[s];
21: end if
22: end for
23: end for
24: return RankLst;

RankList Update. Insertion involves adding new values to an existing time series or
adding a new time series into the dataset. This may affect the rankings of existing time
series. Hence, we need to compare the new value with the values of existing time series
at the same time point. Algorithm 3 takes as input a tuple <p, t, p(t)> to be inserted
and checks for the set of existing time series S whose values are smaller than p(t) at
time point t (lines 6-17). We obtain the rank of s ∈ S from the entry which has the
largest time point that is less than or equal to t and store it in the variable PrevRank
(line 7-8), and try to retrieve the entry <t, rank> for s. If it exists, we increase the rank
by 1, otherwise, we insert a new entry for s at t (lines 9-12). Updating the rank of s at
t may affect its rank at time t + 1. Lines 14-17 check if an entry exists for s at t + 1.
If it does not exist, we create an entry with PrevRank at t + 1 and insert into RankList
(lines 15-16). We update the rank for time series p of the new value at t using CurrRank
(lines 24-28). The algorithm also checks the entry for p at t + 1 (line 29). If the entry
does not exist, we insert an entry with rank 0 for p (lines 30-32). Similarly, the deletion
of a value from a time series dataset may affect entries in the RankList structure which
needs to be updated accordingly.
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Algorithm 2. RankList Search
1: Input: RankLst - RankList structure of TS;

t start, t end - start and end time points;
integer k;

2: Output: A - set of time series that are in top k
over [t start, t end];

3: initialize A to contain all the time series in TS;
4: for each time series s in A do
5: locate the entry <t, rank> for s in the RankLst with the largest time point that is less than or equal to t start;
6: if entry not exist then
7: A = A - s;
8: CONTINUE;
9: end if
10: while t≤ t end do
11: if rank > k or rank = 0 then
12: A = A - s;
13: break;
14: else
15: entry = entry.next;
16: end if
17: end while
18: end for
19: return A;

Algorithm 3. RankList Insert
1: Input: TS - database with attributes id, time and value

RankLst - RankList structure of TS;
<p, t, p(t)> - a tuple to be inserted;

2: Output: RankLst - updated RankList structure for TS
3: initialize int CurrRank to 1;
4: let S be the set of tuples with time t in TS;
5: for each tuple s ∈ S do
6: if p(t) > s.value then
7: locate the entry e for s.id in RankLst which has the largest time point that is less than or equal to t;
8: let PrevRank = e.rank;
9: if e.time = t then
10: increment e.rank by 1;
11: else
12: create an entry <t, PrevRank + 1> for s.id and insert into RankLst;
13: end if
14: locate the entry e at time t + 1 for s.id in RankLst;
15: if entry does not exist then
16: create an entry <t + 1, PrevRank> for s.id and insert into RankLst;
17: end if
18: else
19: CurrRank++; /* p(t) < s.value */
20: end if
21: end for
22: locate the entry e for p in the RankLst which has the largest time point that is less than or equal to t;
23: if e.rank �= CurrRank then
24: if e.time = t then
25: replace e.rank with CurrRank;
26: else
27: create an entry <t, CurrRank> for p and insert into RankLst;
28: end if
29: locate the entry e′ at time point t + 1 for p in RankLst;
30: if e′ does not exist then
31: create an entry <t + 1, 0> for p and insert into RankLst;
32: end if
33: end if
34: return RankLst;
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4 Bitmap Approach to Process Consistent Top-k Queries

The bitmap approach uses a set of bitmaps to encode if a time series s is in the result set
for a top-k query at a time point. The construction of the bitmap assumes an application-
dependent upper bound K where K >> k in a top-k query. For each time series s at a
time point t, if the rank of s at t is r, then the rth to the Kth bits are set to 1, r ≤ K .

Figure 4 shows the bitmap that is created for Figure 1 with K = 6. In Figure 4,
we observe that author1 has the most number of publications at time point 2001, i.e.
author1 is ranked 1. Hence, the bitmap for author1 at 2001 is 111111. Similarly, for
author6 whose rank is 4 at time point 2001, the fourth-bit from the left and its sub-
sequent bits are all set to 1. This produces a bitmap of 000111. Note that some of the
entries in Figure 4 are marked with a X to denote missing values. The bitmap repre-
sentation can easily handle missing values by mapping X to 111111 if the user allows
skipping of time points; if not, then the bits for X are all set to 0 (i.e. 000000).

author1 author2 author3 author4 author5 author6

2001 111111 011111 001111 000011 000001 000111

2002 000111 X X 111111 000011 000001

2003 001111 111111 011111 X X 000111

2004 111111 011111 001111 X X X

2005 X X X 0001111 X 000001

Fig. 4. Bitmap Structure

Algorithm 4. Build BitmapList
1: Input: TS - time series database with attributes id, time and value;

T - total number of time points in TS;
K - upper bound for top-k queries.

2: Output: BitmapLst - Bitmap structure for TS
3: for each time point t from 0 to T do
4: Let TSt be the set of time series in TS at t;
5: Sort TSt in descending order;
6: offset = 0;
7: for each time series s in TSt do
8: Create a bitmap b and set to 1 all the bits from 0 to (K-offset);
9: Create an entry <t, b> for time series s in BitmapLst;

10: offset++;
11: end for
12: end for
13: return BitmapLst;

BitmapList Construction and Search. Algorithm 4 shows the steps to construct the
bitmap representation. In Line 5, the time series at time t are sorted in descending order.
The bits for each time series are set according to their ranks at each time point (Lines 7
to 11). If a time series has rank r at time t, then we set the rth bit from the left and all
its subsequent bits to 1, that is, (K − r)th to the 0th bit from the right.

Algorithm 5 uses the bitmap encodings to find the set of time series that are consis-
tently within the top-k in the specified time interval. In Line 4, we create the bit mask,
topkMask where the kth bit from the left is set to 1. Lines 6 to 11 iterate through all the
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time points in the query interval, and perform a bitwise AND between the topkMask
and the corresponding bitmap entry, <t, b>, for a time series, s, at a given time point t.
In Line 12, we check whether result is non-zero. If result AND with topkMask is 1, the
time series s is added to the answer set for the consistent top-k query.

Algorithm 5. BitmapList Search
1: Input: t start, t end - start and end time points;

integer k;
2: Output: A - set of time series that are in top k

over [t start, t end];
3: A = {};
4: topkMask = (1 << k) ;
5: for each time series s in TS do
6: for each time point t between t start, t end do
7: result = topkMask & <t, b> for s ;
8: if ( result == 0 ) then
9: break;

10: end if
11: end for
12: if ( (result & topkMask) then
13: A = A ∪ s;
14: end if
15: end for
16: return A;

Algorithm 6. BitmapList Insert
1: Input: TS - database with attributes id, time and value

BitmapLst - Bitmap structure of TS;
<p, t, p(t)> - a tuple to be inserted;

2: Output: BitmapLst - Updated Bitmap structure for TS
3: let S be the set of tuples with time t, and value < p(t) in TS
4: for each tuple s ∈ S do
5: locate the bitmap b in BitmapLst;
6: b = b >> 1;
7: end for
8: Insert <p, t, p(t)> into TS;
9: Insert into BitmapLst bitmap for <p, t, p(t)> ;

10: return BitmapLst;

BitmapList Updates. The bitmap approach is insertion-friendly. When a new time se-
ries needs to be inserted, we only require the bitmap of the affected time series to be
right-shifted. Algorithm 6 takes as input a tuple <p, t, p(t)> to be inserted. The algo-
rithm retrieves the set of time series S whose values are smaller than p(t) at time point t
(line 3). It then retrieves the corresponding bitmap b from BitmapLst (line 5). b is then
right-shifted by one bit (line 6).

We use Figure 4 and Table 1 to illustrate the insertion algorithm. Suppose we want to
add the time series entry <author7, 2001, 80> into Table 1. The time series affected at
time point 2001 are {author4, author5, author6}. From Figure 4, we observe that their
corresponding bitmaps are {000011, 000001, 000111} respectively. The insertion of
this new entry causes their corresponding bitmaps to be right-shifted by 1. The updated
bitmaps for {author4, author5, author6} are {000001, 000000, 000011} respectively.
The newly inserted entry is then assigned a bitmap of 000111. Updating the bitmap
structure for deletion is similar and omitted due to space constraints.
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Table 2. Parameters of dataset generator

Parameter Range Default

Number of time series N [100, 500] 100

Number of time points T [5000, 20000] 10000

k [50, 250] 50

Length of query interval L [5000, 10000] 10000

Percentage of intersection points [2%, 10%] 5%

5 Performance Study

We present the performance analysis for the rank-based, bitmap, and top-k approaches.
The various algorithms including the top-k method in [6] are implemented in Java. All
the experiments are carried out on a 2GHz Pentium 4 PC with 1 GB RAM, running
WinXP. Each experiment is repeated 5 times, and the average time taken is recorded.

We use synthetic datasets to evaluate the efficiency of the proposed methods, and
three real world datasets to demonstrate the effectiveness of consistent top-k queries.
The data generator produces time series datasets with attributes id, time and value. Ta-
ble 2 shows the range of values for the various parameters and their default values. The
upper bound K for the BitmapList structure is set to 64. The real world datasets com-
prise of (a) the DBLP publication dataset; (b) a student dataset from our department;
and (c) the stock dataset from the UCR Time Series Data Mining Archive.

5.1 Experiments on Synthetic Datasets

We first present the results of experiments to evaluate the sensitivity and scalability of
the proposed methods.

Effect of Query Selectivity. The selectivity of consistent top-k queries is determined
by the value of k and the length of the query interval.

In the first set of experiments, we vary the value of k between 10 to 60 (inclusive) and
set the length of the query interval to be 10000. Figure 5(a) shows the the response time
of the three methods in log scale. We observe that the Rank and the Bitmap methods
outperforms the Top-k method by a large margin. The latter needs to process all the time
series at all the time points in the query interval regardless of the value of k. In contrast,
the Rank and Bitmap methods quickly eliminate those time series which would not be
in the consistent top-k. This helps to limit the increase in response time as k increases.

The second set of experiments varies the length of the query interval between 2000
and 10000 (inclusive). The result is shown in Figure 6(a). As expected, the response
time for the Top-k method increases when we increase the length of the query interval.
Figure 6(b) shows that the response time for the Bitmap method increases at a slower
pace than the Rank method, demonstrating the advantages of using bitwise operations.

Effect of Number of Intersection Points. Next, we examine whether the number of
intersection points has any effect on the runtime. We fix the number of time series to
be 100 and vary the percentage of intersection points among the time series from 2%
to 10%. This is achieved by controlling the ranking of the time series from one time
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point to another. Figure 7(a) shows the response time of the three methods in log scale.
Overall, the Rank and Bitmap methods outperform the Top-k method. A closer look also
reveals that increasing the percentage of intersection points has minimal impact on the
runtime of both the Bitmap and Rank methods (see Figure 7(b)).

Scalability. Finally, we analyze the scalability of the three approaches. The size of a
time series dataset is determined by the number of time points and the the number of
time series in the database. Figures 8(a) and 9(a) show similar trends where the Top-k
method does not scale well compared to the Rank and Bitmap methods. Figures 8(b)
and 9(b) indicate that the Bitmap approach consistently performs much better than the
Rank approach.

5.2 Experiments on Real World Datasets

We demonstrate the usefulness of consistent top-k queries in real world applications.

DBLP Dataset. We extract the number of papers published by researchers in sev-
eral database conferences (VLDB, SIGMOD, ICDE) from the DBLP dataset (http://
dblp.uni-trier.de/xml/) between 1807 to 2007. Each time point consists of a maximum
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Table 3. Top-10 database researchers by year

2007 2006 2005
Author #Pubs Author #Pubs Author #Pubs

Philip S. Yu 15 Jiawei Han 11 N. Koudas 9
N. Koudas 11 B.C. Ooi 8 S. Chaudhuri 8

Haixun Wang 11 N. Koudas 8 D. Srivastava 8
Jiawei Han 11 R. Ramakrishnan 8 Kevin Chen 7

D. Srivastava 10 Jun Yang 7 B.C. Ooi 7
H. V. Jagadish 9 H. V. Jagadish 7 C. Faloutsos 6
Kevin Chen 9 G. Weikum 6 D. J. DeWitt 6
AnHai Doan 8 D. Srivastava 6 A. Ailamaki 6

Christoph Koch 8 D. Agrawal 6 K.L. Tan 6
S. Chaudhuri 8 K.L. Tan 6 G. Weikum 6
2004 2003 2002

Author #Pubs Author #Pubs Author #Pubs
S. Chaudhuri 11 D. Srivastava 16 M. N. Garofalakis 9

B.C. Ooi 8 N. Koudas 9 D. Srivastava 7
Walid G. Aref 7 S. Chaudhuri 9 D. Agrawal 7

Alon Y. Halevy 7 Michael J. Franklin 8 J. F. Naughton 7
J. M. Hellerstein 7 J. F. Naughton 7 G. Weikum 6
Jennifer Widom 6 Stanley B. Zdonik 6 Dimitris Papadias 6

Jiawei Han 6 K.L. Tan 6 C. Mohan 6
D. Srivastava 6 L. V. S. Lakshmanan 6 N. Koudas 6

J. F. Naughton 6 Rakesh Agrawal 6 S. Chaudhuri 6
K.L. Tan 6 B.C. Ooi 6 Rajeev Rastogi 6

Table 4. Consistent Top-10 performance of database researchers

Year Researchers Year Researchers
2002-2004 D. Srivastava, S. Chaudhuri , J. F. Naughton 2002-2005 D. Srivastava, S. Chaudhuri
2003-2005 D. Srivastava, S. Chaudhuri, B.C. Ooi, K.L. Tan 2003-2006 D. Srivastava, B.C. Ooi, K.L. Tan
2004-2006 D. Srivastava, B.C. Ooi, K.L. Tan 2004-2007 D. Srivastava
2005-2007 D. Srivastava, N. Koudas

3-year period 4-year-period
Year Researchers
2002-2006 D. Srivastava
2003-2007 D. Srivastava

5-year period

of 7263 authors. We use consistent top-k queries where k = 10 to analyze the publica-
tions of researchers over the period 2002 to 2007.

Table 3 shows the top 10 database researchers with the highest publication count for
the years 2002 to 2007. The list of top 10 researchers fluctuates from year to year. Table
4 gives the consistent top-10 researchers over a 3-, 4-, and 5-year period which provide
more insights into researchers with sustained publications. For example, there are two
researchers (D. Srivastava and N. Koudas) who are consistently within the top-10 for
2005-2007. In addition, D. Srivastava has sustained his performance over a longer time
period (as evidence from the 3 to 5 years consistent top-k analysis). Such insights can-
not be easily gleaned from the results of top-k queries.

Student Dataset. We obtain a 8-year student dataset from our department. This dataset
has 3800 records that capture the students’ GPA for each semester. Other attributes
in the records include studentID, gender, entrance exam code and year of enrollment.
We group the students according to their year of enrollment and issue consistent top-k
queries to retrieve the top 20% students that show consistent performance throughout
their undergraduate studies. Figure 10 shows the percentage of consistent performers
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Fig. 10. Top 20% students for each batch group by entrance exam code

Table 5. Percentage gains of stocks retrieved by consistent top-k queries

k 2001 2002 2003 Total
10 8.3% 16.4% 34.8% 18%
20 6.76% 9.8% 17.97% 10.6%
30 7.5% 9.6% 6.75% 8.2%
40 10.9% 11.9% 13.3% 11.8%
50 5.2% 4% 7.2% 5.1%

grouped by entrance exam code (after normalization). The entrance exam code gives an
indication of the education background of the students.

We observe that from 1998 to 2000, the majority of the consistent performers (top
20%) are students with an entrance code 61. However, from 2001 onwards, the top
consistent performers shifted to students with entrance code 66. An investigation re-
veals that due to the change in the educational policy, the admission criteria for stu-
dents with entrance code 61 has been relaxed, leading to a decline in the quality of
this group of students. This trend has been confirmed by the data owner. The sud-
den increase in the quality of students with entrance code of 66 from 2001 onwards
is unexpected and has motivated the user to gather more information to explain this
phenomena.

Stock Dataset. The stock dataset from the UCR Time Series Data Mining Archive
records the daily prices for 408 stocks from 1995 to 2003. We retrieve the opening and
closing prices for each stock to determine their gains for each day. Based on the average
gains of all the stocks over the period 1997 - 2000, we issue a top-k query to retrieve
a set of k stocks, where k varies from 10 to 50. We also issue consistent top-k queries
to retrieve a second set of k stocks over the same period. We compare the performance
of these two sets of stocks over the period of 2001 - 2003 by computing their gains for
each year as well as their total gains over the three years.

Table 5 shows that the set of stocks retrieved by consistent top-k queries consistently
attain higher gains than the stocks retrieved by top-k queries. This strengthens our con-
fidence that consistency is important to identify the potential merits of stocks.
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6 Conclusion

In this work, we have introduced a new class of consistent top-k queries for time series
data. The consistent top-k query retrieves the set of time series that is always within top
k for all time points in the specified time interval T. We have examined how consistent
top-k queries can be answered using standard top-k methods and proposed two methods
to evaluate consistent top-k queries. The first method is a RankList structure to capture
the rank information of the time series data. The proposed structure can be easily im-
plemented on any relational database system. The second bitmap approach leverages
on bitwise operations to answer consistent top-k queries.

The results of extensive experiments on synthetic datasets indicate that both the rank
and bitmap approaches are efficient and scalable, and outperform top-k methods by a
large margin. Further, the bitmap approach is able to handle consistent top-k queries
better than the rank-based approach. We have also demonstrated that consistent top-k
queries are useful in three real world applications. In particular, we can easily iden-
tify researchers with sustained publications over the years, recognize shifts in student
quality as well as select a portfolio of stocks that have good potentials.

References

1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: IEEE ICDE, pp. 421–430
(2001)

2. Fagin, R.: Fuzzy queries in multimedia database systems. In: PODS, pp. 1–10 (1998)
3. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: ACM

PODS, pp. 102–113 (2001)
4. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guaran-

tees. In: VLDB (2004)
5. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases.

In: IEEE ICDE, pp. 369–380 (2002)
6. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:

Mapping strategies and performance evaluation. In: ACM TODS, pp. 153–187 (2002)
7. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: VLDB, pp. 397–410

(1999)
8. Donjerkovic, D., Ramakrishnan, R.: Probabilistic optimization of top n queries. In: VLDB,

pp. 411–422 (1999)
9. Chen, C.-M., Ling, Y.: A sampling-based estimator for top-k selection query. In: IEEE ICDE

(2002)
10. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over slid-

ing windows. In: ACM SIGMOD, pp. 635–646 (2006)



Effective Fuzzy Keyword Search over Uncertain
Data

Xiaoming Song, Guoliang Li, Jianhua Feng, and Lizhu Zhou

Department of Computer Science, Tsinghua University, Beijing 100084, China
songxm07@mails.tsinghua.edu.cn,{liguoliang,fengjh,dcszlz}@tsinghua.edu.cn

Abstract. Nowadays a huge amount of data were automatically gener-
ated or extracted from other data sources. The uncertainty and impre-
cision are intrinsic in those data. In this paper, we study the problem
of effective keyword search over uncertain data. We allow approximate
matching between input keywords and the strings in the underlying data,
even in the presence of minor errors of input keywords. We formalize the
problem of fuzzy keyword search over uncertain data. We propose effi-
cient algorithms, effective ranking functions, and early-termination tech-
niques to facilitate fuzzy keyword search over uncertain data. We propose
a lattice based fuzzy keyword search method to efficiently identify top-k
answers. Extensive experiments on a real dataset show that our proposed
algorithm achieves both high result quality and search efficiency.

1 Introduction

Keyword search is a proven and widely accepted mechanism for querying infor-
mation from various data sources. The database research community has intro-
duced keyword search capability into relational databases [5], XML databases [3],
graph databases [1], and heterogeneous data sources [4]. However, existing stud-
ies treated the data as precise data, but neglect the fact that the uncertain and
imprecise data are inherent in some data sources.

Recently, many algorithms [2,6] have been proposed to study the problem of
querying and modeling uncertain data. Most of them use the possible world se-
mantics and use the generation rule to manage the conflicts. But in the keyword-
search area, users want to get the top-k relevant answers and do not care about
the inner relationship. We assign a confidence between 0 and 1 to describe the
trustworthy of the data and incorporate it into a universal ranking mechanism
to find the most relevant results.

To the best of our knowledge, few existing works has explored the keyword
search problem over uncertain data. We in this paper proposed a fuzzy keyword
search method. We use edit distance to measure the similarity between a given
keyword and a string in the candidates to deal with imprecise data. We propose
a lattice based top-k search method to answer the keyword query. We devise a
universal ranking mechanism, which takes the textual similarity, edit distance
and the confidence into consideration.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 66–70, 2009.
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2 Gram-Based Fuzzy Keyword Search

2.1 Formulation

Fuzzy Match: Given a query string q and a candidate string s, a similarity
function f , a threshold δ, we say string q and string s fuzzy match if f(q, s) ≤ δ.

Definition 1. The Fuzzy Keyword Search Problem: Given a collection of docu-
ments D, a similarity function f , and a set of query strings Q = {k1, k2, · · · , kn},
a threshold δ, retrieve the relevant documents from D, which contain string si,
such that f(si, ki) ≤ δ for 1 ≤ i ≤ m. We use the edit distance to quantify the
similarity between two strings.

Definition 2. Q-gram: The gram with a fixed length of q is called q-gram. Given
a string s and a positive integer q, we extend s to a new string s′ by adding q−1
copies of a special character in the prefix that do not appear in the string and
q − 1 copies of another special character in the suffix. The set of q-grams of s,
denoted by G(s, q) is obtained by sliding a window of length q over the characters
of string s′.

2.2 Finding Similar Strings

In our proposed algorithm, we sort the string ids (denoted by sid) on each
inverted list in an ascending order. Given a query string s, we first get it’s set of
q-grams G(s, q). Let N = |G(s, q)| denote the number of lists corresponding to
the grams from the query string. We scan the N inverted lists one by one. For
each string id on each list, We return the string ids that appear at least T times
on the lists.

The answer set R returned is a set of candidate string ids. We then use a dy-
namic programming algorithm to eliminate the false positives in the candidates
R, and then get those string ids that have an edit distance smaller than or equals
to δ.

2.3 Finding Answers

We use inverted lists to index the documents. For each input keyword, there
will be a set of fuzzy matched strings. We first compute the union of docu-
ment ids for each fuzzy matched strings and get the list of document ids that
contain the keyword or its similar words. Then, we compute the intersection of
the union lists, which is exactly the set of document ids that contain all the
input keywords approximately. There are two basic methods to compute the
intersection. The first one is to merge-join the union lists. This method is inef-
ficient if there are large number of elements in each list. The second method is
to first select the union list with the smallest size, and then use the elements in
the shortest list to probe other lists using binary-search methods or hash-based
methods.
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3 Ranking

A document with a higher confidence is more trustable and should be ranked
higher in the answer list. So in the ranking mechanism, we need to take the
confidence together with the textual similarity into consideration.

TF ·IDF based methods for ranking relevant documents have been proved
to be effective for keyword search in text documents. We employ TF ·IDF
based methods for computing textual similarity. Given an input query Q =
{k1, k2, · · · , kn}, and a document. We present Formula (1) to compute
Simtext(Q,D),

Simtext(Q,D) =
∑

ki∈Q∩D
W(ki, D) (1)

where
W(ki, D) =

ntf ∗ idf

ntl
(2)

Besides, we incorporate the normalized text length (ntl) into our ranking
function to normalize text length of a document, as the longer the document the
more terms in it.

We consider both the edit distance, the confidence of a document, and the
textual similarity. Formula (3) shows the overall similarity between Q and D,

Sim(Q,D) =
1

(ed(Q, Q′) + 1)2
+ α ∗ Conf(D) + β ∗ Simtext(Q′,D), (3)

where Conf(D) denotes the confidence of the document, Q′ is reformulated
query from Q′ by considering similarity, and Simtext(Q′,D) denotes the text
similarity between Q′ and D. α and β are parameters to differentiate the impor-
tance of the three parameters.

4 Lattice Based Approach

A problem of the gram-based approach is that we need to find all the similar
strings within a threshold δ. How to choose a proper threshold δ is a no trivial
problem. In order to address this problem, we proposed a lattice-based approach
to progressively retrieve the answer. We assume that the edit distance between a
query string and data string dominates other ranking parameters, such as term
frequency, inverse document frequency, and confidence. That is, we prefer the
answers with a smaller edit distance. Thus, we can set α and β as very smaller
number.

The general idea of lattice based approach is to progressively retrieve the
answer set with threshold of the edit distance incrementing from 0 to another
threshold named maximum threshold, until we get the top-k answers.

The theoretical maximum edit distance between two strings equals to the sum
of the length of the two strings, max(ed(s1, s2)) = |s1|+ |s2|). In practice, we set
it to one fifth of the length of the given query string. The maximum threshold
is another early-termination condition.
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In the same way, if there are many answers for an edit-distance threshold, we
assume confidence dominate the textual similarity. Thus we set α� β. We can
apply the same lattice idea to address this issue.

5 Experimental Study

We used a real datasets crawled from Internet as our experimental data. The
data size is about 780 MB, and there are about 682 K paper items. Each paper
was treated as an independent document. In the experiment, as these papers
were got from different sources, they have different trustworthy. We synthetically
generated a confidence to each paper to simulate the uncertainty of the data.

The experiments were conducted on an Intel(R) Xeon(R) 2.0 GHz computer
with 4 GB of RAM running Linux, and the algorithms were implemented in
Java.

Figure 1 shows the precision comparison with 1 mistyping. The precisions of
the top-1 and top-3 answer sets are higher than that of top-10 answer sets. This
result proves that our ranking mechanism is very effective.
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Figure 2 shows effect of confidence in the ranking mechanism. The document
with high confidence tends to appear higher.

Figure 3 shows the time cost of the lattice-based approach is less than that
of the gram-based approach.

6 Conclusion

In this paper, we have studied the problem of fuzzy keyword search over un-
certain data. We have examined the gram-based method to answer keyword
queries approximately. We have proposed ranking functions to rank the answers
by considering the edit distance between input keywords and data strings, tex-
tual similarity, and confidence. We have developed lattice-based methods and
early-termination techniques to improve search efficiency. We have implemented
our algorithm, and the experimental results show that our method achieves high
search efficiency and result quality.
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Abstract. Continuous spatial queries retrieve a set of time-varying ob-
jects continuously during a given period of time.However,monitoringmov-
ing objects to maintain the correctness of the query results often incurs fre-
quent location updates from these moving objects. To address this prob-
lem, existing solutions propose lazy updates, but such techniques gener-
ally avoid only a small fraction of all unnecessary location updates because
of their basic approach (e.g., safe regions, time or distance thresholds). In
this paper, we introduce an Adaptive Safe Region (ASR) technique that re-
trieves an adjustable safe region which is continuously reconciled with the
surrounding dynamic queries. In addition,we design a framework that sup-
ports multiple query types (e.g., range and c-kNN queries). In this frame-
work, our query re-evaluation algorithms take advantage ofASRs and issue
location probes only to the affected data objects. Simulation results con-
firm that the ASR concept improves scalability and efficiency over existing
methods by reducing the number of updates.

1 Introduction

Significant research attention has focused on efficiently processing continuous
queries and its extension work that supports location-based services during the
recent past. Existing work [2,3,4] has provided significant insight into the cost of
the communication overhead by assuming a set of computationally capable mov-
ing objects that cache query-aware information (e.g., thresholds or safe regions)
and locally determine a mobile-initiated location update. However, the focus of
these solutions is mainly on static queries or simple types of queries (e.g., range
queries). In this paper, we propose a framework to support multiple types of dy-
namic, continuous queries. Our goal is to minimize the communication overhead
in a highly dynamic environment where both queries and objects change their
locations frequently. When a new query enters the system we leverage the trajec-
tory information that it can provide by registering its starting and destination
points as a movement segment for continuous monitoring. This assumption can
be easily extended to a more realistic scenario which may approximate a curved
road segment with several straight-line sub-segments. We propose an adaptive
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safe region that reconciles the surrounding queries based on their movement
trajectories such that the system can avoid unnecessary location probes to the
objects in the vicinity (i.e., the ones which overlap with the current query re-
gion). Furthermore, our incremental result update mechanisms allow a query to
issue location probes only to a minimum area where the query answers are guar-
anteed to be fulfilled. In particular, to lower the amortized communication cost
for c-kNN queries, we obtain extra nearest neighbors (n more NNs) which are
buffered and reused later to update the query results. Thus, the number of loca-
tion updates incurred from the query region expansion due to query movement
is reduced.

2 Related Work

Continuous monitoring of queries over moving objects has become an important
research topic, because it supports various useful mobile applications. Prabhakar
et al. [4] designed two approaches named query indexing and velocity constrained
indexing with the concept of safe regions to reduce the number of updates. Hu et
al. [2] proposed a generic framework to handle continuous queries with safe regions
through which the location updates from mobile clients are further reduced. How-
ever, these methods only address part of the mobility challenge since they are based
on the assumption that queries are static which is not always true in real world ap-
plications. A threshold-based algorithm is presented in [3] which aims to minimize
the network cost when handling c-kNN queries. To each moving object a thresh-
old is transmitted and when its moving distance exceeds the threshold, the moving
object issues an update. However, the system suffers from many downlink message
transmissions for refreshing the thresholds of the entire moving object population
due to frequent query movements. Cheng et al. [1] proposed a time-based location
update mechanism to improve the temporal data inconsistency for the objects rel-
evant to queries. Data objects with significance to the correctness of query results
are required to send location updates more frequently. The main drawback of this
method is that an object will repeatedly send location updates to the server when
it is enclosed by a query region.

In contrast, our proposed techniques aim to reduce the communication cost of
dynamic queries over moving objects and also support multiple types of queries.
We utilizes adaptive safe regions to reduce the downlink messages of location
probes due to query movements. Our ASR-based techniques surpass the afore-
mentioned solutions with higher scalability and lower communication cost.

3 The System Overview

The location updates of a query result point (result point for short) and a non-
result point (data point for short) are handled with two different mechanisms. An
adaptive safe region (ASR) is computed for each data point. A mobile-initiated
voluntary location update is issued when any data point moves out of its safe
region. For a result point, to capture its possible movement at the server side, we
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use a moving region (MR) whose boundary increases by the maximum moving
distance per time unit. The location updates of a result point are requested
only when the server sends server-initiated location probes triggered when the
moving region of a result point overlaps with some query regions. The details of
the ASR computation and an efficient mechanism that uses location probes for
continuous query updates are described in Sections 3.1 and 3.2, respectively.

3.1 Adaptive Safe Region Computation

We propose a novel approach to retrieve an ASR, which is effective in reducing
the amortized communication cost in a highly dynamic mobile environment. The
key observation lies in the consideration of some important factors (e.g., the ve-
locity or orientation of the query objects) to reconcile the size of the safe regions.
The following lemma establishes the ASR radius based on the observation.

Lemma 1

pi.ASR.radius = min(CDist(pi, qj) − qj .QR.radius),∀qj ∈ Q, where

CDist(pi, qj) =
{

pif ′ if θj ≤ π
2

and ∃f ′, or
piqs

j if θj > π
2

or �f ′

As an illustration of Lemma 1 (and to explain the symbol notation), consider Fig-
ure 1, where the set of queries Q = {qj, qk} are visited for retrieving the adaptive
safe region (the dashed circle) of the data point pi. The movement trajectory of
qj (and qk) is denoted by −→qj = [qs

j , q
e
j ]), where qs

j and qe
j are the starting and end-

ing points, respectively. We measure the Euclidian distance between a query and
a data point (CDist in Lemma 1) and then deduct the query range (denoted by
qj .QR.radius, where QR represents the query region of qj). Lemma 1 captures
two cases of CDist. The first case (CDist(pi, qj)) computes a distance pif ′ = qs

jf
in the worst-case scenario where both pi and qj move toward each other (under
the constraint of the maximum speed). f ′ represents the border point (on the
border of qj .QR while qj arrives at f on its movement segment), after which pi

would possibly enter the query region of qj . f is the closest point to qs
j on the

trajectory of qj , which satisfies the condition that the distance from pi to f is
equal to pif ′ + f ′f , where f ′f = qj .QR.radius = rj . Let pif ′ = x for short. We
can obtain the f and f ′ points by computing x first, which is considered the safe
distance for pi with respect to qj . x can be easily computed with the trajectory
information of qj by solving the quadratic equation: (x+ rj)2 = h2 +(qs

jm−x)2

(h is the height of triangle �piq
s
jm). f on −→qj exists only when θj (∠piq

s
jq

e
j ) is

less or equal to π
2 and piqe

j − qj .QR.radius < qs
j q

e
j (triangle inequality). If the

first case is not satisfied, we consider the second case (CDist(pi, qk)), which finds
the maximum non-overlapping area with qj .QR. Since θ > π

2 in the second case,
the query range of qj can never cover pi due to the opposing movement of qj .
In this example, the safe distance x (with respect to qj) is smaller than y (with
respect to qk), so x is chosen as the radius of the ASR of pi. In our system,
since a c-kNN query can be considered an order-sensitive range query, we use
the same principle to compute safe regions for each data object with respect to
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range queries and c-kNN queries. In case of a query insertion or query region
expansion of a c-kNN query, the ASRs of the affected data objects must be
reassigned according to current queries to avoid any missing location updates.

3.2 Query Evaluation with Location Probes

We propose an incremental query re-evaluation algorithms for both range and
c-kNN queries. While updating the query answers, on-demand server-initiated
location probes are issued whenever any location ambiguity exists. To handle a
range query, the query processor sends the on-demand location probes to those
result points that might move out of the current query regions. A MR for each
result point is indexed on the grid and the boundary increases at each time step
by the maximum moving distance until the result point is probed by the server.
Since the number of result points are relatively small, indexing MRs does not
significantly increase the overall server workload. For a data point, in addition to
its adaptive safe region, we also consider the current possible moving boundary to
serve as an additional indicator for the server to determine a necessary location
probe. To handle a c-kNN query, the cost of updating c-kNN queries is usually
higher than updating range queries. In our approach, the strategy to handle
such increasing unnecessary location updates incurred from a c-kNN query is
that the query processor computes (k + n) NNs for a c-kNN query instead of
evaluating exactly k NNs. This approach helps to reduce the number of future
query region expansions to retrieve sufficient NNs for the queries. Since a c-kNN
query is treated as an order-sensitive range query, we adopt the same principle
that is used for a range query to find the new answer set in the current query
regions first. A query region is expanded only when there are less than k NNs in
the result set. Finally, an order-checking procedure is performed to examine the
order of the result points and determine necessary location probes. Let q′j be the
last reported position of the query object qj . The OrderCheck procedure checks
each result point pi (the ith result point sorted by the mindist to q′j), where
i = 1 to k. A necessary location update of a kNN result point pi is issued when
the following condition is satisfied: dist(q′j , pi)+pi.MR.radius ≥ dist(q′j , pi+1) −
pi+1.MR.r, where pi.MR.radius (and pi+1.MR.radius) is the maximum moving
distance since the last update of pi. An example is shown in Figure 2. The result
set of q′1 is {p2, p1, p3} sorted by the distance between q′1 and their positions at
the server since the last updates. The OrderCheck procedure first checks p2 and
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p1. Since dist(q′1, p2) + r2 > dist(q′1, p1)− r1, the order of p2 and p1 might need
to be switched. The system needs to probe p2 and p1. After the location probes,
the order of the NNs becomes {p′1, p′2, p3}. Thus, the procedure checks the next
pair of p′2 and p3. Since dist(q′1, p

′
2) < dist(q′1, p3)− r3, the location probe of p3

is not necessary.

4 Experimental Evaluation

We evaluated the performance of the proposed framework that utilizes ASRs and
compared it with the traditional safe region approach [2,4] and a periodic update
approach (PER). The periodic technique functions as a baseline algorithm where
each object issues a location update (only uplink messages are issued in this
approach) every time it moves to a new position. We extended the safe region
approach (SR* ) to handle dynamic range and c-kNN queries where the result
points are monitored the same way as in ASR. We preserve the traditional
safe region calculations (maximum non-overlapping area) for the SR* approach.
Figure 3(a) shows the communication overhead of ASR, SR* and PER with
respect to the object cardinality, where all query and object sets move with a
mobility rate of 50%. ASR outperforms SR* and PER. The difference increases
as the number of objects grows. Figure 3(b) shows the impact of the number of
queries. Our algorithm achieves about 50% reduction compared with SR* and
90% reduction compared with PER.
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Fig. 3. Object and Query Cardinality

5 Conclusions

We have designed an ASR-based framework for highly dynamic environments
where mobile units may freely change their locations. The novel concept of an
adaptive safe region is introduced to provide a mobile object with a reasonable-
sized safe region that adapts to the surrounding queries. Hence, the commu-
nication overhead resulting from the query movements is greatly reduced. An
incremental result update mechanism that checks only the set of affected points
to refresh the query answers is presented. Experimental results demonstrate that
our approach scales better than existing techniques in terms of the communica-
tion cost and the outcome confirms the feasibility of the ASRs approach.
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Abstract. Wireless Multimedia Sensor Networks (WMSNs) have brought un-
precedented potentials for applications requiring ubiquitous access to multime-
dia contents such as still images. However, new challenges have arisen due to 
the extra sensor capacity and various requirements of multimedia objects in-
network processing. In this paper, we consider a large-scale WMSN comprising 
multiple storage nodes and many multimedia sensor nodes. In particular, we in-
vestigate the Optimal Compression and Replication (OCR) of multimedia data 
objects. In sharp contrast to earlier research, we integrate both computation and 
communication energy consumption as a joint optimization problem. We prove 
that the problem is NP-hard if storage nodes have limited storage capacities. We 
proposed a solution based on Lagrangian relaxation interwoven with the sub-
gradient method. Extensive simulations are conducted to evaluate the perform-
ance of the proposed solution.  

Keywords: Data compression and replication, Lagrangian relaxation, NP-hard, 
subgradient method, Wireless Multimedia Sensor Networks, Optimization. 

1   Introduction 

The unprecedented focus on Wireless Sensor Networks (WSNs) has made feasible for 
a wide range of applications [2], such as environmental monitoring, military surveil-
lance, and intelligent information gathering. A typical WSN consists of numerous tiny 
and battery-powered sensor nodes, which are densely distributed into the physical 
area feeding the base station with in-situ data. After deployment, replenishments of 
node batteries become either too expensive or impossible. Additionally, relatively 
slow advancements in battery technologies make the energy constraint the fundamen-
tal challenges in the WSN. As a consequence, power-efficient techniques have been 
an active research area attracting significant interdisciplinary efforts [5, 19]. 

The recent emergence of low-energy and low-cost multimedia devices, such as mi-
crophones and cameras, has fostered the development of the next generation WSN, 
known as Wireless Multimedia Sensor Network (WMSN) [1]. WMSNs have brought 
unprecedented potentials especially for applications requiring ubiquitous access to the 
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multimedia contents, such as audio and video streams, and still images. The extra 
sensor capacity and various requirements of multimedia objects in-network process-
ing also pose new and unique challenges. Since most of the multimedia sensors [1] 
are still operated under limited batter powers, it is imperative to provide effective and 
efficient collaboration amongst sensor nodes for voluminous multimedia data storage, 
computations, and transmissions. 

In-network storage [7, 16] is a powerful data management scheme. It facilitates en-
ergy-efficient sensor data storage and retrieval by allowing sensor nodes to replicate 
their data at some of the strategically chosen or pre-designated storage nodes. These 
storage nodes can be augmented general-purpose computers with relatively abundant 
resources, such as storage and power. They can be deployed proportionally according 
to different WMSN factors, such as network scale and node density. They play impor-
tant roles in balancing the deployment cost and the overall functionalities of the 
WMSN. They can also effectively mitigate the storage constraint of in-network mul-
timedia sensor nodes, and further enhance the availability of important historical data. 
Furthermore, the approach is also very energy-efficient since user-posed queries now 
can be answered directly by these storage nodes. In this paper, we consider such an 
in-network storage infrastructure for managing in-network sensory data. 

Unlike the traditional WSN with simple sensing modalities, naively distributing 
raw data to the storage nodes requires excessive bandwidth and energy consumption 
for the WMSN. Hence, energy-efficient data compression techniques are utilized in 
most of the WMSN applications, such as [10] and [13]. Nevertheless, overuse of these 
techniques can cause detrimental effects on the overall energy efficiency since they 
make computations comparable in energy consumptions to transmissions. To facili-
tate the motivations of the study, we show an example as follows.  

Motivational example. The example is illustrated in Fig. 1(a), where there are three 
nodes A, B, and C. Nodes A and B act as two candidates for hosting C’s data. Node C 
is a source node that generates 1 unit-sized raw data every time. The transmission cost 
from C to A is 10 units for every unit of data object, whereas from C to B it takes 11 
units for every unit of data object. Fig. 1(b) captures the different relationships be-
tween C’s energy consumptions and their respective compression ratios. For example, 
it costs C, 0.75 of a unit of energy for achieving a 10% compression ratio (i.e., 1 unit-
sized raw data becomes 0.9 unit-sized compressed data). Hence, we can see that the 
optimal replication plan for node C is to distribute its raw data with a 10% compres-
sion ratio to storage node A. The incurred total energy consumption is 9.75 (0.9 * 10 
+ 0.75), which is less than 10 (i.e., transmitting raw data only without any compres-
sion). Let us next consider a more common scenario, where node A can only store  
 

 

Fig. 1. A motivational example 
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another 0.7 unit of data from C, whereas node B can cater any data object size from 
C. If we still replicate C’s data object at A with 30% of compression, the incurred 
overall energy can be as much as 27 units (0.7 * 10 + 20). However, if we replicate 
C’s data object at B with a 20% compression ratio, the incurred overall energy can be 
10.7 (0.8 * 11 + 1.9). The more expensive transmission is leveraged by the judicious 
usage of compression ratio, which poses a stimulative optimization problem. 

In this paper, we initiate the study of the Optimization on data object Compression 
and Replication in WMSNs (OCR), where we consider the minimization of nodes’ 
overall energy consumption (i.e., computation + transmission). In particular, we con-
sider the OCR while multiple storage nodes (m) and multiple source nodes (n) are 
presented and each storage node has certain storage capacity. 

Contributions. We first present a model for the problem of the OCR, formulated as 
an optimization problem. In our model, decisions on data compression and data repli-
cation are made based on both computation and transmission energy cost. With lim-
ited storage capacities at storage nodes, we prove the NP-hardness of OCR. In order 
to efficiently solve the problem, we relax the problem formulation with Lagrangian 
dualization, and then decompose the relaxed problem into two sub-problems: Lagran-
gian problem and Lagrangian dual problem. We propose an efficient sequential search 
based algorithm for solving the Lagrangian problem, and a subgradient based method 
for the Lagrangian dual problem. Lastly, we evaluate our model on various perform-
ance metrics through extensive simulations. The results show that our solution consis-
tently and significantly outperforms the existing solution. 

Overview of the paper. The remainder of the paper proceeds as follows. Section 2 
summaries the related work. Section 3 describes the system model along with the 
problem formulation of the OCR. The formulated problem is also shown to be NP-
hard. Section 4 revolves around our Lagrangian relaxation based solution procedure. 
The proposed approach is eventually evaluated using extensive simulations in Section 
5, and section 6 concludes the paper.  

2   Related Work 

Data replication has been an active research topic in different environment, such as 
web [3, 4, 6, 9, 12, 13, 14] and WSN [5, 7, 15, 16]. Mainly data replication-related 
techniques can be used to alleviate server overloading, improve QoS (i.e., response 
time), and cope with inadequate bandwidth. 

In web environment, the placement of web proxies or mirrored web severs has 
been an active research topic in recent years. In [12], a dynamic programming method 
was proposed to find the optimal placement of web proxies in a tree. In [14], the prob-
lem of placing mirrored web servers to minimize the overall access distance was 
formulated as the p-median problem, which is NP-complete, and several heuristic 
algorithms were proposed. In [4], the same problem was investigated yet with the 
objective of minimizing the maximum distance between any clients to a mirrored 
server. The authors formulated the problem as the k-center problem (also is NP-
complete), and a greedy algorithm was proposed. Some of the research has been done 
on the replication of data objects at proxies since web proxies are widely used to 
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improve the quality of web data retrievals. The data replication problem in traditional 
database systems has been extensively studied [3, 6, 8], and it has been proven that 
optimal replication of data objects in general networks is NP-complete. Though nu-
merous approaches have been emerged for the data replication under the traditional 
web environment, they are not applicable to WMSN applications due to their web-
based assumptions, such as abundant resources on clients and relatively unlimited 
bandwidth. 

In WSN environment, data replication techniques are more energy-oriented. One of 
the prominent approach is Data-Centric Storage [16], known as DCS. The DCS is a 
distributed hash table based data dissemination approach for energy-efficient sensor 
data replications. In [7], the author discusses some of the issues existing in the preva-
lent DCS mechanisms in WSNs. The focus of the paper is to improve the fault-
resilience of the existing DCS schemes. A new method called Resilient Data-Centric 
Storage (R-DCS) is proposed to achieve both the minimization of the query retrieval 
traffic and the increase of the data availability. In [11], the authors investigate the 
hotspot issue that is intrinsic to most of the DCS schemes. A new Dynamic Balanced 
data-centric Storage (DBAS) scheme, based on a cooperative strategy between the 
base station and the in-network processing, was proposed to mitigate the hotspot 
problem. The data storage placement problem is discussed in [15], where the aim is to 
minimize the total energy cost for data gathering and data queries. In [18], the cache 
placement problem was first addressed in WSNs with the objective of minimizing the 
access cost under different constraints (i.e., maximum allowable update costs). For a 
tree topology, a dynamic programming based approach was proposed to compute the 
optimal solution. The author further proves that the problem is NP-hard for any gen-
eral graph topology. Most of these researchers focus on minimizing transmission 
energy costs since WSN energy consumption is dominated by data communications. 
On the contrary, we consider a joint optimization problem addressing both computa-
tion and communication energy consumptions. 

Data compression techniques are of paramount importance to WMSN applications. 
In [10], different image compression algorithms were proposed for a low-bandwidth 
wireless camera network. In [13], different video coding techniques were discussed 
along with their pros and cons. In this paper, we take an optimization approach to-
wards judiciously coordinating computation power spend on data compression. 

3   System Model and Problem Formulation 

3.1   System Model  

In this paper, we consider a system given in Fig. 2, in which a large-scale WMSN is 
deployed for the continuous surveillance application. The WMSN comprises of four 
types of nodes: a base station node, storage nodes, relay nodes, and source nodes. The 
base station is a powerful machine with abundant resources including processing, 
storage, and energy. It handles user queries with respect to the in-situ information 
within the monitored area. Storage nodes are the data centers storing all important 
environmental information (e.g. periodic image captures) that can be retrieved by the 
base station for answering user queries. They are relatively less powerful than the  
 



 Optimization on Data Object Compression and Replication in WMSNs 81 

 

Fig. 2. An auxiliary example of WMSN model 

Table 1. Primary notations 

Symbol Meaning 
si i-th source node 
rj j-th storage node 
bj Storage capacity of rj 
oi Multimedia data object generated by si 
zi Size of oi 
o-

i Compressed oi 
z-

i Size of o-
i 

fi Updating frequency of si 
�i Application-dependent compression parameter 

of si 
dij SPT distance from si to rj  
ti Transmission energy consumption of si 
ci Computation energy consumption of si 
xij Matrix element indicating the data replication 

of si at rj   

 
base station yet their power supplies can still be constant. One or more relay nodes 
can be chosen strategically to form different Shortest Path Trees (SPTs) for connect-
ing storage nodes and source nodes. These SPTs are also responsible for reliable  
in-network data transmissions. Lastly, source nodes are resource constrained, with 
limited processing capacity, storage, and power. They are normally equipped with 
advanced sensory devices for capturing multimedia contents (e.g. still images). Peri-
odically, they compress and send their sensed data to the storage nodes, and their 
reporting intensities/frequencies are application-dependent. 

3.2   Problem Formulation  

For the sake of convenience, Table 1 lists some of the primary notations used in the 
paper. The OCR problem is defined as follows. Suppose there is a set of m storage 
nodes R = {rj | 1 � j � m} and a set of n source nodes S = {si | 1 � i � n}, where m << 
n. We assume that the locations of m storage nodes are known to n source nodes. 
Therefore, for each source node si, it can use one of the storage node rj for hosting its 
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data replications. Each storage node, rj, has a limited storage capacity (in bytes), de-
noted by bj. The size of bj depends on the hardware configuration of rj. 

Let oi be the multimedia data object generated by si. We denote the size of oi by zi 
in bytes. We assume a uniform model for zi, which means it only depends on the node 
that generates it. It can be justified because source nodes with pre-programmed task 
loads are sufficient for most of the WMSN surveillance applications. 

Since source nodes are extremely power constrained, we consider two types of 
power consumptions associated with each source node si, namely computation power 
(ci) and transmission power (ti). The amount of each computation power, ci, is directly 
related to the energy consumption on the data compression. Given an original data 
object oi and its size zi, we denote o-

i and z-
i as the compressed data object and its size 

respectively. The smaller z-
i becomes, the more computation energy is required. Addi-

tionally, for each source node si ∈ S, we can know that z-
i � zi and z-

i > 0. Formally, 
we define each ci as below:  

,0:,1,)( >∀≤≤∀×−×= −
iiiiii inifzzc αα  (1) 

where �i is an application-dependent parameter indicating the unit energy consump-
tion per byte compressed. fi is the updating frequency of source node si, which can be 
derived by user queries, and it defines the temporal requirement of the WMSN  
application. 

For calculating each transmission power, ti, we define an abstract measure dij signi-
fying the distance between source node si and storage node rj. The value of dij depends 
on the underlying routing protocols and the metrics (e.g. bandwidth, energy, and 
delay) used in the system [20]. Since the focus of this paper is to explore the trade-off 
between computation powers and transmission powers, we take a more abstract ap-
proach for the distance calculation. Based on this premise, we assume that the value 
dij can be determined based on the hop-distance of the Shortest Path Tree (SPT) link-
ing si and rj. Eventually, we define each ti as the distance of data travelling multiplied 
by the size of the compressed data object during a certain time period: 

mjnifzdt iiiji ≤≤∀≤≤∀××= − 1,1,  (2) 

Equation (1) + (2) is the total power consumption ei of source node si: 
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We define a matrix X ∈ {0, 1}|S|*|R|, and denote each element xij of X as: 

�
�
�

=
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The overall power consumption of n source nodes is: 
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From the above power consumption function, we can see that overall power con-
sumption depends on not only the transmission power but also the computation 
power. The objective of the paper is to explore the trade-off benefits between these 
two types of power consumption, so that we can minimize the overall power con-
sumption for n source nodes in the network. The underlying problem is formulated as 
follows: 
Minimize 

E  (6) 

Subject to 

��
= =

=
n

i

m

j
ij nx

1 1

 (7) 

mjbzxj j

n

i

iij ≤≤≤×∀ �
=

− 1,:
1

 (8) 

where equation (6) describes the objective function and equation (7) constrains that 
each source node can choose one storage node only for replicating its data objects. 
The total size of the replicas at each storage node rj, should not exceed its capacity bj, 
which is described by equation (8). 

3.3   NP-Hardness of OCR  

In this section, we prove the NP-hardness of the OCR problem by first proving that a 
special case of it is NP-hard. We refer to this special case as the Constrained OCR 
(COCR), where each z-

i is assumed to be fixed. To facilitate our analysis, we first 
introduce the following definition. 

Definition 1. Partition Problem (PP): Given a list of integers {g1, g2, …, gn}, deter-
mine whether there is a set of I ⊆ {1, 2, …, n} such that �i∈ I. gi = �i∉ I. gi. 

The PP has been proved to be NP-hard [9]. In the following, we show that the PP is a 
special case of the COCR. 

Theorem 1. The COCR problem is NP-hard. 

Proof. Suppose there are n compressed multimedia data objects {o-
1, o-

2, …, o-
n} 

produced by n source nodes {s1, s2, …, sn} respectively and the sum of the sizes of n 

objects is �
=

=−
n

i
aiz

1
2 . We consider a special case of the COCR problem that replication 

of compressed data objects at a storage node is independent from others. Suppose 
there are m = 2 storage nodes (r1 and r2) and their respective storage capacities b1 and 
b2. Consider b1 + b2 = 2a, and each of r1 and r2 is configured with a storage capacity 
sized a. We first assume all source nodes have the same distance to each of the stor-
age nodes, i.e.:   
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nvunddvu vrur ≤≤>=∀ ,1,1,:,
21

 (9) 

We can always design each fi (updating frequency), zi (size of the original data ob-
ject), and z-

i (size of the compressed data object) in such a way to meet the following 
constraints. For 1� u, v � n and n > 1:  

vvvuuu fzzfzz ×−=×− −− )()(
 

(10) 

vvv

vvv

uuu

uuu

fzd

fzd

fzd

fzd

××

=××

=××

=××

−

−

−

−

2

1

2

1

 (11) 

The purpose of these two constraints is to make storage of all the data objects con-
tributing the same to the power consumption. That is, the selection of objects to be 
replicated at storage nodes can be arbitrary. Since compressed data objects have the 
same weight to be selected for replication at either r1 or r2, the optimal replication of 
them at r1 or r2 with total capacity 2a becomes choosing a subset of objects I = {o-

1, o
-

2, …, o-
i}, I ⊆ {o-

1, o
-
2, …, o-

n}, such that:  

� �∈ ∉
−− ==

I I
ii

i i
azz  (12) 

This is exactly the PP, which is NP-hard. Hence, the COCR problem is NP-hard.  

Theorem 2. The OCR problem is NP-hard. 

Proof. It is obvious that the COCR problem is polynomial time reducible to the OCR 
problem since it is a special case of the OCR problem. Therefore, the OCR problem is 
also NP-hard.                                                                                                                  

4   Our Solution 

The developed OCR problem model is difficult to solve for large-sized problem in-
stances. Largely it is due to the complex storage constraint coupled with the computa-
tion power (i.e., z-

i is dependent on the storage constraint of a particular rj). Therefore, 
we propose a heuristic algorithm which is based on Lagrangian relaxation of the for-
mulation given in (6) – (8). When the capacity constraint (8) is relaxed, i.e., removed 
from the constraint set and added to the objective function after being multiplied by a 
nonnegative parameter � (also called Lagrange multipliers), we obtain the following 
Lagrangian (lower bound) problem: 
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s.t.   (7)  

It can be seen from the above formula that LLB(�) � E holds for all values of � � 0. 
Hence, our aim is to find the biggest possible value of LLB(�) denoted as L*

LB. This 
problem is called Lagrangian dual problem and is given as follows: 

)(max
0

* λ
λ LBLB LL

≥
=  (14) 

With the help of the Lagrangian relaxation we can decompose the primal problem 
into two separable sub-problems (LLB(�) and L*

LB) with dramatically reduced com-
plexity. Firstly, with any given m-vector � we observe that the LLB(�) problem be-
comes a multiple-source shortest path problem with a modified cost function as the 
weight (w) for each edge between a source node and a storage node. Each weight, wi, 
essentially embodies each ei plus certain level of penalties based on the multiplication 
of the size of compressed data object (z-

i) and its �. For efficiently solving the LLB(�) 
sub-problem, we devise a Sequential Search-� algorithm (SS-�) shown as below: 

 
SS-� Algorithm 
START  
1: SET E = 0; wc = +�; pos = null; X = [xij = 0]; 
2: FOR i = 1 TO n 
3:       FOR j = 1 TO m  
4:             Find the minimal w*

i based on replicating o-
i at rj 

5:             IF w*
i � wc THEN 

6:                  SET wc = w*
i; pos = j; 

7:             END IF  
8:       END FOR    
9:       SET xipos = 1; E = E + wc; 
10:     SET wc = +�; pos = null; 
11: END FOR  
END 
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The algorithm starts with each source node si trying to find its optimal storage node 
ri based on its optimal weight w*

i, which can be calculated based on the formulation 
given in (13). The inner-loop of the algorithm (j =1 to m) drives this optimality explo-
ration by allowing si to determine where to replicate (xij) and how much to replicate 
(z-

i). Line 4 describes a procedure for finding the minimal weight based on replicating 
the compressed data object at a certain storage node. The complexity of the procedure 
largely depends on the total number of compression levels supported by the underly-
ing application. In order to facilitate the presentation, we assume that each source 
node has h (h > 0, h ∈ I) finite levels of compression and can lead to h different sizes 
of compressed objects {o-

i[1], o
-
i[2], …, o-

i[h-1], o
-
i[h]} with {z-

i[1], z
-
i[2], …, z-

i[h-1], z
-
i[h]} as 

their respective sizes. Furthermore, given two levels of compression p and q, if 1� p < 
q � h, then we say that z-

i[p] > z-
i[q] and intuitively more computation energy is re-

quired for achieving a more thorough compression. 

Theorem 3. Given a set of m storage nodes R and a set of n source nodes S each with 
one data object oi, the complexity of SS-� algorithm is O(nh). 

Proof. It is easy to know that the SS-� algorithm can converge. With the outer for-
loop, there are at most n loops. In each outer loop, it takes another O(mh) to find the 
minimal weight for each source node. Therefore, the whole algorithm ends in the time 
O(nmh). Given that m << n, so the SS-� algorithm can be completed in time O(nh).  

For solving the Lagrangian dual problem (L*
LB), we use the subgradient method. It is 

commonly used as a subordinate heuristic for iteratively improving the tightness of 
LLB(�) until it converges to the optimal solution. The method starts with a set of initial 
nonnegative Lagrangian multipliers �j[0] (for all j, 1 � j � m). A possible choice for 
the initial Lagrangian multipliers can be all zeros since the Lagrangian multipliers are 
penalty parameters that reflect the overcrowded status on each storage node. 

Adjustments are required for the Lagrangian multipliers so that solutions generated 
by the SS-� algorithm can gradually approach the optimal solution. Firstly, for a given 
vector of �[k] (e.g. k = 0), we use SS-�[k] to generate a solution denoted as LLB(�[k]), 
and then we update �[k] for the next iteration denoted as �[k+1] until the algorithm 
converges. Each value of �j[k+1] (for all j, 1 � j � m) can be derived by: 
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where [y]+ = max{0, y} and 	 is a prescribed sequence of step sizes. The value of 	 is 
vital to the subgradient method, and according to [17] the convergence is guaranteed 
when the given 	 value is satisfied with the following conditions (regardless the val-
ues of initial Lagrangian multipliers): 
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In this paper, we set 	[k] = 
 / (� + �k), where 
, �, and � are all constants and 
greater than zero. In summary, our solution procedure for solving the OCR problem 
can be described as follows:  
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Solution procedure 
Step 1: Set k = 0 and �j[k] = 0 for all j 
Step 2: Solve sub-problem LLB(�[k]) with algorithm SS-�[k]   
Step 3: Set k = k + 1 and update �j[k] for all j based on equa-
tion (15) 
Step 4: Repeat from step 2 until convergence.  

Table 2. Parameters and settings 

Parameter Setting 
m: no. of storage nodes {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
n: no. of source nodes  {10, 20, 30, 40, 50, 60, 70, 80, 

90, 100} 
dij: SPT distance {5, 6, 7, 8, 9, 10} 
zi: data object size {100, 110, 120, 130, 140} 
fi: updating frequency {1} 
LEV: compression level {5, 10, 15, 20, 25, 30, 35, 40} 
k: no. of iterations 1000 

5   Performance Evaluation 

We have conducted extensive experimental studies to evaluate the performance of our 
approach (LR-SUB). For comparison we consider a naive approach [15] that only 
relies on finding SPTs for source-storage transmissions without utilizing any com-
pression technique. In addition, the naïve algorithm also does not take account of the 
limited storage constraint. It can serve as a baseline for studying the worthiness of 
exploring the trade-off between energy consumptions on computation and transmis-
sion. We also include an algorithm called SS-0 (i.e., we fix and set all � values as 0). 
The SS-0 allows us to obtain the slackest lower bound of the primal problem since the 
storage constraint is not considered. We have implemented all three algorithms using 
C#. The total energy consumption (E) is used as the performance metric for evaluat-
ing all three algorithms. Table 2 presents parameters and their settings used through-
out the performance evaluation. We set the ratio between m and n to 1:10 so that for 
each generated storage node we generate 10 source nodes accordingly. The value of 
dij is randomly chosen from a set of values given in Table 2. Each uncompressed data 
object size, zi, is also randomly selected from 100 to 140. We set fi to a constant since 
it does not affect exploring the balanced benefits between computation and transmis-
sion consumption. In order to attain the convergence of LR-SUB, the total number of 
iterations (k) is set to be 1000, and 	[k] is set to be 4 / (2 + 1*k) during the k-th itera-
tion. We also define each storage capacity as follows: 
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where PER represents a percentage, and we then can tune the degree of the storage 
scarcity by varying PER. We allow a set of eight compression levels (LEV) represent-
ing the amount of data reduction can be achieved. For instance, an uncompressed data 
object with a size of 100, if we apply a LEV of 10, then the size of the compressed 
data object becomes 90. �i is an application-dependent parameter that determines the 
energy consumption ratio between computation and transmission. For brevity, the 
ratio is referred to as the Computation and Transmission energy Ratio (CTR). We 
adopt two models for CTR: a uniform model and a non-uniform model. For the uni-
form model, we consider a fixed ratio (e.g. 1:2), which implies a proportional rela-
tionship between energy consumptions on compressing one unit of data and sending 
one unit of data. In order to consider the possible worst case scenario, we also con-
sider a non-uniform model for CTR given as below: 

�
�
�

∈
∈

=
}40,35,30,25{,1:2

}20,15,10,5{,2:1

LEVif

LEVif
CTR  (18) 

For a particular experiment setting, we run it repeatedly for 5 times in order to get the 
mean values and standard deviations as well. 

5.1   Uniform CTR  

Fig. 3 shows three different experiments based on the uniform CTR model. We first 
study effects of varying CTR on the total energy consumption for a fixed network 
topology (200 source nodes and 20 storage nodes) with fixed storage capacities (PER 
= 100%). The experimental results are plotted in Fig. 3(a). Though the total energy 
consumptions derived from LR-SUB gradually increase while increasing CTR values, 
the LR-SUB can still achieve a higher energy-efficiency than the naïve approach and 
keeps outperforming the naïve algorithm. The consistency indicates that the joint 
optimization approach is more energy efficient. On the other hand, the gap between 
the LR-SUB and the SS-0 almost keeps constant showing that the LR-SUB solutions 
are always quality-bounded. For the second experiment, we fix CTR as 1:2 and PER 
as 100% while varying the network topology in terms of various numbers of source 
nodes and storage nodes. Fig. 3(b) shows the results for this experiment. The LR-SUB 
provides competitive solutions comparing with the SS-0 algorithm, and it is still more 
energy-efficient than the naïve algorithm regardless the network topology changes. 
The last experiment, Fig. 3(c), examines effects of various PERs on the results of LR-
SUB. We use different PERs from 60% to 240% while fixing the network topology 
(200 source nodes and 20 storage nodes) and the CTR (1:2). With extremely limited 
storage capacity on each storage node (e.g. 60%), it is possible that the LR-SUB in-
curs more energy than the naïve approach. Mainly the naïve approach does not con-
sider the storage constraint so the solution provided is not even feasible, whereas the 
LR-SUB can guarantee the feasibility of the derived solution while trying to bind the 
solution quality. Additionally, the benefits from compression are evened out since 
large number of source nodes are forced to choose “far away” storage nodes. Never-
theless, the performance of the LR-SUB dramatically improves if there are reasonable 
amount of storage spaces, and it can even achieve the optimal value (e.g. PER = 
240%) as the SS-0.  
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Fig. 3. Uniform CTR model. (a) varying CTR. (b) varying network topology. (c) varying PER. 

5.2   Non-uniform CTR  

The intuition behind adopting a non-uniform CTR is because whenever a storage node 
runs out of its storage space, if a CTR is still set to be uniformly increasing, then theo-
retically the optimal solution can still be achieved (i.e., by infinitely decreasing sizes of 
stored objects). Instead of being optimistic about the problem, we devised a worst case 
representative that can be encountered with the LR-SUB algorithm. Based on this CTR 
model (equation (18)), we first study the effects of various PERs on total energy con-
sumption (Fig. 4(a)). Meanwhile, we fix the network topology with a total of 200 
source nodes and 20 storage nodes. With the most stringent storage constraint (e.g. 
PER = 60%), the solution of LR-SUB has to compromise its quality for its feasibility 
(i.e., applying much more expensive LEVs to meet the storage requirement). However, 
we can observe that with gradually relaxing the storage constraint (from 60% to 
150%), the LR-SUB also gradually outperforms the naïve approach showing that it 
 

 

Fig. 4. Non-uniform CTR model. (a) varying PER. (b) varying network topology.  



90 M. Tang et al. 

can effectively utilize these additional storage spaces for finding a better solution.  
Fig. 4(b) shows different results of total energy consumption obtained from varying 
network topology while fixing PER as 100%. For a fixed PER, the results from LR-
SUB tend to deviate gradually from the SS-0 with increases of total number of source 
nodes. It is because more source nodes can potentially enlarge the shortage of storage 
spaces. Though the LR-SUB can incur more energy consumption than the naïve algo-
rithm for some cases, it can guarantee feasible solutions every time. 

6   Conclusion 

In this paper, we have examined an optimization problem on how to leverage data 
compression for in-network storage based WMSN infrastructures. The objective is to 
minimize both computation and transmission energy consumption. We have further 
delved into a NP-hard case where the storage nodes have limited storage capacities. In 
order to efficiently solve the problem, we proposed a novel solution procedure based 
on first dualizing the storage capacity constraint (Lagrangian relaxation), and then 
applied a sequential search based algorithm and a subgradient method to solve the 
relaxed Lagrangian problem and its dual problem respectively. Extensive simulations 
have been conducted for evaluating the performance of our solution procedure. Pre-
liminary results have shown that it is worthy of carefully balancing data compression 
and transmission, and our approach is more energy efficient than the state-of-the-art. 
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Abstract. The suppression scheme is a solution for limited energy con-
straints in sensor networks. Temporal suppression, spatial suppression and
spatio-temporal suppression are proposed to reduce energy consumption
by transmitting data only if a certain condition is violated. Among these
suppression schemes, spatio-temporal suppression is the most energy ef-
ficient than others because it combines the advantages of temporal sup-
pression and spatial suppression. A critical problem of these suppression
schemes is the transmission failure because every nonreport is considered
as a suppression. This causes the accuracy problem of query results. In this
paper, we propose an effective and efficient method for handling trans-
mission failures in the spatio-temporal suppression scheme. In order to
detect transmission failures, we devise an energy efficient method using
Bloom Filter. We also devise a novelmethod for recovering failed transmis-
sions which can save energy consumption and recover failed values more
accurately. The experimental evaluation shows the effectiveness of our ap-
proach. On the average, the energy consumption of our approach is about
39% less than that of a recent approach and the accuracy of the query re-
sults of our approach is about 55% more accurate than that of the recent
approach in terms of the error reduction.

Keywords: Sensor networks, Spatio-temporal suppression, Transmission
failures.

1 Introduction

Sensor networks give us new opportunities for observing and interacting with
the physical world. They are composed of a large number of sensor nodes and
each sensor node has capabilities of sensing, processing, and communication.
These sensor nodes are deployed in environments where they may be hard to
access and provide various useful data. Habitat and environmental monitoring
are representative applications of sensor networks. For example, in Great Duck
Island project[6], sensor nodes were deployed in the nests of the storm petrels
and biologists can collect various scientific data to analyze their lifestyle.

While sensor networks enable continuous data collection on unprecedented
scales, there are challenges because of the limited battery resources on each sen-
sor node. Since sensor nodes are usually deployed in an unattended manner, it is
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not easy to replace their batteries. Therefore reducing energy consumption is a
major concern in sensor networks. Batteries of sensor nodes are depleted by sens-
ing, computation, and communication. Among these tasks, communication is the
primary source of energy consumption. Thus several techniques were proposed
to resolve the limited energy constraint by reducing the communication.

The suppression is one solution to reduce communication using the tempo-
ral/spatial correlation of sensor readings. Each sensor node transmits its sensor
reading only if the value of the sensor reading violates a certain condition related
to the temporal/spatial correlation. In the temporal suppression scheme, sensor
nodes do not transmit their readings, if the current reading is similar to the last
transmitted reading. The base station assumes that any nonreport values are
unchanged from the previously received ones. In the spatial suppression scheme,
there are several groups of sensor nodes having similar sensor readings. Each
group has one leader node and this leader node reports for its group. Both of
these suppression schemes can lower energy consumption by reducing the num-
ber of transmissions. And it is possible to combine these two approaches. For
example, sensor nodes are grouped by using the spatial correlation, and the
leader and member nodes use the temporal suppression. The leader node makes
the representative value for the group based on sensor readings received from its
member nodes. This approach can greatly reduce the communication using the
temporal and spatial correlation of sensor nodes.

However this suppression has a critical weakness. This problem is caused by
the fact that every nonreport is considered as a suppression. Sensor networks
are prone to transmission failures due to interference, obstacles, and congestions,
etc. In the suppression scheme, these transmission failures create ambiguity. A
nonreport may either be a suppression or a failure but there is no way to differ-
entiate between them. [10] proposed a framework, BaySail (BAYesian analysis of
Suppression and fAILures), to deal with transmission failures in the suppression
scheme. Each node adds some redundant information on every report which con-
sists of the last r transmission timestamps and direction bits indicating whether
each report is increased or decreased compared to the previously reported sen-
sor reading. Using this information, the base station estimates missing readings
using the Bayesian inference. Therefore the missing readings are estimated more
accurately. However this approach cannot be applied to the spatio-temporal sup-
pression scheme.

The spatio-temporal suppression scheme is to combine the advantages of both
spatial and temporal suppression schemes and can reduce more energy consump-
tion. In this suppression scheme, leader nodes make their representative values
based on their member nodes’ sensor readings, and transmit these representa-
tive values to the base station. Therefore transmission failures can be classified
into two categories such as failures within each group and failures from each
leader node to the base station. BaySail only considered the latter transmis-
sion failures. It is difficult to apply BaySail approach on transmission failures
within groups because the Bayesian inference is complex and time-consuming
while leader nodes have very limited resource constraints compared to the base
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station. If we do not resolve transmission failures within groups in using the
spatio-temporal suppression scheme, the leader node will treat every nonreport
as a suppression and make the representative value based on these inaccurate
data and then transmit this to the base station. Thus we need a new method to
deal with transmission failures more effectively in the spatio-temporal suppres-
sion scheme.

In this paper, we propose an effective and efficient method to resolve the
transmission failures in the spatio-temporal suppression scheme. Our approach
can detect transmission failures more energy efficiently and recover the failed
values more accurately. The contributions of this paper are as follows:

– We extend the transmission failure handling for the spatio-temporal sup-
pression scheme.

– We devise an energy efficient method to distinguish a suppression and a
transmission failure while considering resource constraints of leader nodes.
Some additional information related to the previous transmissions has to
be added on every report to distinguish suppression and transmission fail-
ure although this increases energy consumption. We propose a method to
represent this information compactly and to identify transmission failures
effectively.

– We devise an effective method to recover the value of a failed transmission.
Since sensor networks have very limited energy constraints, we propose an
energy efficient method to notify the transmission failure to the sender while
recovering the failed value more accurately.

– We experimentally evaluate our approach against other approaches to deal
with transmission failures. Experimental results show the effectiveness of
our approach in the spatio-temporal suppression scheme. On the average,
the energy consumption of our approach is about 39% less than that of
BaySail and the accuracy of the query results of our approach is about 55%
more accurate than that of BaySail in terms of the error reduction.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated works of reducing energy consumption and handling transmission failures
in sensor networks. In Section 3, we describe our proposed approach to resolve
transmission failures in the spatio-temporal suppression scheme. The experimen-
tal results are shown in Section 4. Finally, in Section 5, we conclude our work.

2 Related Work

The suppression is proposed to reduce energy consumption in sensor networks.
In suppression, data is transmitted only if a certain kind of condition is violated.
Suppression schemes can be classified into three categories such as temporal
suppression, spatial suppression and spatio-temporal suppression.

The temporal suppression scheme uses the temporal correlation of sensor read-
ings. If the current value is different from the previously transmitted value by
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more than a certain threshold, this value is transmitted. [7] and [4] use tempo-
ral suppression. [7] uses bounded filters to suppress stream data. If the current
value lies inside a bounded filter, the data source does not transmit this value.
In [4], dual Kalman Filter is used to suppress data as much as possible. The
server activates a Kalman Filter KFs and at the same time, a sensor activates a
mirror Kalman Filter KFm. The dual filters KFs and KFm predict future data
values. Only when the filter at a sensor KFm fails to predict future data within
the precision constraint then the sensor sends updates to KFs.

The spatial correlation between sensor nodes is used in the spatial suppression
scheme. In this scheme, a node suppresses its sensor reading if it is similar to
those of its neighboring nodes. There is a group of nodes having similar values
and one node is selected to represent the group. [5] proposes the spatial suppres-
sion scheme using a small set of representative nodes. These representative nodes
constitute a network snapshot and are used to provide approximate answers to
user queries.

The spatio-temporal suppression scheme combines the advantages of both of
the above schemes. [2] uses replicated dynamic probabilistic models for groups.
These groups are made using the disjoint-cliques approach and then build models
for each of them. Both the base station and sensor nodes maintain a pair of
dynamic probabilistic models of how data evolves and these models are kept
synchronized. The base station computes the expected values of sensor readings
according to the model and uses it as the answer. Data is transmitted only if the
predicted value is not within the error bound. [9] suggests a novel technique called
CONCH (Constraint Chaining) combining both suppression schemes. Based on
the minimum spanning forest covering all sensor nodes, CONCH temporally
monitors spatial constraints which are differences in values between neighboring
nodes. For each edge in the minimum spanning forest, one node is designated
updater and the other one is designated reporter. Updater triggers a report if
its value has changed. Reporter triggers a report if the difference between its
node’s value and reporter ’s value has changed. The set of reports collected at
the base station is used to derive all node values. To cope with transmission
failures, it uses multiple, different forests over the network. Failure probabilities
are integrated into edge weights to get more reliable forests. If transmission
failure occurs, reported difference values from each forest are inconsistent. To
recover the failed values, the maximum-likelihood approach is used.

All these suppression schemes can reduce energy consumption by suppressing
the transmission. But they do not consider transmission failures except CONCH.
But the method used in CONCH is only applicable to their approach. In a gen-
eral suppression scheme, since every nonreport is considered as a suppression,
it causes the accuracy problem. Because transmission failures are prone to sen-
sor networks, it is needed to resolve this problem. [10] addresses this problem
and proposes a solution in the temporal suppression scheme. It adds some re-
dundant information about the previous transmissions to every report and in-
fers the failed value using the Bayesian inference. However, this approach does
not consider the spatio-temporal suppression scheme. In the spatio-temporal
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suppression scheme, there are two kinds of transmission failures which are fail-
ures from a member node to a leader node and failures from a leader node
to the base station. Although this approach can be applied to failures from a
leader node to the base station, it cannot be used at a leader node due to re-
source constraints of sensor nodes. Therefore we need a new approach to resolve
transmission failures in the spatio-temporal suppression scheme.

3 Proposed Approach

The goal of our approach is to resolve transmission failures more energy effi-
ciently and accurately in the spatio-temporal suppression scheme. We assume
that sensor nodes are grouped according to the spatial correlation and each group
has a leader node. Each leader node makes a representative value for its group
and transmits this to the base station using a temporal suppression policy. In
other words, the transmission will occur only when the current representative
value for a group has been changed more than a user-specified threshold com-
pared to the previously transmitted one. We consider the cases when the user
queries are in the form of an aggregation of sensor readings. Therefore, the rep-
resentative value of a leader is the aggregation of sensor readings of the group
to which the leader belongs. For the general cases where the user queries require
individual sensor readings, a leader sends all received readings after possible
compression. Therefore, the extension of the proposed method to general cases
is straightforward. The representative value for each group is made by aggre-
gating over received values and the previous values for the suppressed values.
Any aggregation functions such as MIN, MAX, SUM, and AVG can be used
for making the representative value. Member nodes are also using the temporal
suppression. We assume that the min value and the max value of sensor readings
are known previously. In this section, we describe the details of our approach to
handle transmission failures in the spatio-temporal suppression scheme.

3.1 Overall Approach

In the spatio-temporal suppression scheme, there are two kinds of transmission
failures, that is, failures from a member node to a leader node and those from
a leader node to the base station. As mentioned, since sensor nodes have very
limited resource constraints, we cannot apply a complex method to resolve trans-
mission failures from a member node to a leader node. Therefore, we devise a
method which does not require much resource to deal with transmission failures
within groups.

First, we have to distinguish a suppression and a transmission failure. We use
the compressed history of the previous transmissions to distinguish them. This
history information consists of timestamps of the previous transmissions and we
compress the history information using Bloom Filter. Based on this compressed
history information, we can identify transmission failures using the membership
test of Bloom Filter.
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Table 1. Notation

Notation Description
Ttransmitted the set of timestamps of previous transmissions
Tsucceeded the set of timestamps of succeeded transmissions
Tfailed the set of timestamps of failed transmissions
Tsuppressed the set of timestamps of suppressions
Ttest the set of timestamps for transmission failure detection
tlast the timestamp of the last received data
tcurrent the timestamp of the currently received data
tprevS the earlier timestamp of a pair of adjacent timestamps in Tsucceeded

tnextS the later timestamp of a pair of adjacent timestamps in Tsucceeded

tduration the difference between tprevS and tnextS , i.e. tduration = tnextS − tprevS

vprevS the sensor reading value at tprevS

B compressed history information (Bloom Filter)
m Bloom Filter size
h1, h2, ..., hk k hash functions used in Bloom Filter
B[hi] the bit position in Bloom Filter by applying hi

x sampling interval specified in the user query
δ user-specified error threshold
Dreceived data buffer for successfully received data
Dsent data buffer for transmitted data

After detecting transmission failures, a leader node or the base station requests
the retransmission for failures to senders. A retransmission request is constituted
of two successfully transmitted timestamps having failed transmissions between
them and the quantization is applied to reduce the size of this.

When a member node receives the retransmission request, it can identify two
successfully transmitted timestamps having transmission failures between them.
Thus the node can calculate differences between failed values and the sensor
value of the first timestamp in the retransmission request. The quantization is
applied to each difference and this data is transmitted.

Finally, the leader node can recover failed values using the received quantized
value. We can recover the range of a failed value based on the sensor value of
the first timestamp in the retransmission request. We assign the average value
of the range to the corresponding failed value.

In the case of transmission failures from a leader node to the base station, we
can apply our approach or the Bayesian inference of BaySail because the base
station has no resource constraints. But our approach shows better performance
than BaySail according to experimental results.

Table. 1 summarizes the notation used in this paper.

3.2 Transmission Failure Detection

In the suppression scheme, if we don’t use any specific method to distinguish a sup-
pression and a transmission failure, every nonreport is considered as a suppression.
This causes the accuracy problem of query results. Therefore we add timestamps
of previous transmissions on every report and use Bloom Filter[1] to compress this
history of transmissions. Bloom Filter is a space-efficient probabilistic data struc-
ture that is used to test whether an element is a member of a set.

Fig. 1 shows the algorithm of compressed history information. We make m-
bit Bloom Filter to represent the set of timestamps of previous transmissions
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Algorithm CompressHistoryInfo
Input Previously transmitted timestamp set Ttransmitted = {t1, t2, ..., tn}
Output m-bit Bloom Filter B

begin
1. for each timestamp t in Ttransmitted

2. Compute h1, h2, ..., hk

3. Set B[h1(t)] = B[h2(t)] = ... = B[hk(t)] = 1
4. return B
end

Fig. 1. Algorithm of Compressed History Information

Algorithm FailureDetection
Input Received Bloom Filter B, tlast, tcurrent, Dreceived

Output The set of failed transmission timestamps Tfailed,
the set of succeeded transmission timestamps Tsucceeded

begin
1. ttest := tlast

2. while ttest < tcurrent

3. ttest += x
4. Insert ttest into the set of test timestamps Ttest

5. for each timestamp t in Ttest

6. for each hash function hi

7. Compute hi(t)
8. if all B[hi(t)] == 1
9. if data of t is not in the data buffer Dreceived // Transmission Failure
10. Insert t into the set of failed timestamps Tfailed

11. else // Transmission Success
12. Insert t into the set of succeeded timestamps Tsucceeded

13. else // Suppression
14. Insert t into the set of suppressed timestamps Tsuppressed

15. return Tfailed, Tsucceeded

end

Fig. 2. Algorithm of Transmission Failure Detection

Ttransmitted. It has n timestamps. The number of histories (the number of times-
tamps in Ttransmitted) affects the accuracy of query results. The consecutive
transmission failures cause the history information losses. If the number of his-
tories is large, it consumes more energy but lowers the loss rate of the history in-
formation. We vary the number of histories in our experiments and show its effect
on the energy consumption and the accuracy. For each timestamp in Ttransmitted,
we compute k hash functions h1, h2, ..., hk with range {0, ..., m− 1} and all bit
positions B[h1(t)], B[h2(t)], ..., B[hk(t)] are set to 1 in Bloom Filter (Line (2),
Line (3)). This Bloom Filter is added to data when data is transmitted.

When receiving such a report at a leader node or at the base station, it
applies the membership test of Bloom Filter to distinguish a suppression and a
transmission failure. Fig. 2 shows the algorithm of transmission failure detection.

To detect transmission failures, we make the test timestamp set Ttest from the
timestamp of the last received data tlast (Line(1) - Line(4)). Since the sampling
interval is specified in the user query, we can know the timestamps of possible
transmissions. If the sampling interval is x seconds, we know that the data will
be transmitted every x seconds. Therefore, to make the Ttest, we start tlast and
add x to the previously generated test timestamp until it reaches the currently
received timestamp tcurrent. After that, we check a timestamp t in the Ttest
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whether this is in the reported Bloom Filter or not (Line(5) - Line(13)). To
check whether t is in the Bloom Filter, we apply k hash functions to t. If all k
bits of hi(t) are set in the reported Bloom Filter and the leader node or the base
station has data transmitted at t, the data is successfully transmitted (Line(11)).
If all k bits of hi(t) are set but the data of the corresponding time is not in the
leader node or the base station, we know that the transmission is failed at that
time (Line(9)). If any hi(t) is not set in the reported Bloom Filter, the data is
suppressed (Line(13)).

Bloom Filter may yield false positives. To minimize the false positive rate,
k = ln 2 × (m/# of histories) hash functions are used [1]. Note that if m =
10×# of histories, the false positive rate is less than 1%[3]. Therefore, we use
m = 10 × # of histories bits for Bloom Filter and find the optimal number
of hash functions based on that. In our approach, a false positive means that a
suppression is identified as a transmission failure. Specifically, a certain times-
tamp is considered as transmitted in the reported Bloom Filter but actually it
is not. Since the data of this timestamp is not in the leader node or the base
station, it is considered as a transmission failure. Although this causes unnec-
essary retransmission of suppressed data, it does not decrease the accuracy of
query results but may slightly increase the accuracy.

3.3 Retransmission Request

Using the membership test of Bloom Filter, we can find timestamps of failed
transmissions. After detecting transmission failure, we make a retransmission
request to the sender. A retransmission request consists of nodeID and two suc-
cessfully transmitted timestamps, tprevS and tnextS , having failed transmissions
between them. Fig. 3 shows the algorithm of retransmission request.

Algorithm RetransmissionRequest
Input tcurrent, Tfailed, Tsucceeded

Output Retransmission request R

begin
1. for i = 0; i < length(Tsucceeded) - 1; i++
2. tprevS := Tsucceeded[i]
3. tnextS := Tsucceeded[i+1]
4. if tnextS − tprevS > x
5. for j = 0; j < length(Tfailed) - 1; j++
6. tprevF := Tfailed[j] // tprevF , tnextF : local variables
7. tnextF := Tfailed[j+1]
8. if tprevS < tprevF && tprevF < tnextS

9. if tnextF < tnextS

10. j++
11. else
12. tduration := tnextS - tprevS

13. n := tduration / x
14. nbinary := convert n into binary string
15. R := Request(nodeID, tprevS , nbinary)
16. return R
end

Fig. 3. Algorithm of Retransmission Request
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We search Tsucceeded and Tfailed to find two timestamps having failed trans-
missions between them (Line(1) - Line(11)). If we find these two timestamps,
we make the retransmission request (Line(12) - Line(15)). To reduce the energy
consumption, we transmit the first timestamp of success transmission tprevS and
the difference tduration = tnextS − tprevS after encoding it. If the sampling inter-
val is x, the range of tduration is {0, 1x, 2x, ..., nx} where n is a positive integer.
So we represent the tduration using n (Line(12) - Line(14)). We use a small num-
ber of bits for representing n more compactly. After making the retransmission
request, we transmit this to the corresponding sender.

3.4 Failed Value Retransmission

Whenever the sensor node receives the retransmission request, it retransmits
the values of failed transmissions. But a naive retransmission of failed values
consumes much energy. Therefore, we use the quantization to reduce energy
consumption for the failed value retransmission.

Before applying the quantization, we have to decide how many bits will be
used in the quantization. We can decide the number of bits for the quantization
before starting the query processing. The number of bits is determined by the
user-specified error threshold δ and the range of the input. The difference of the
min value vmin and the max value vmax of sensor readings is the range of the
input. By dividing the range of the input by the user-specified error threshold
vmax - vmin / δ, we can get the number of intervals to represent the sensor values.
The number of intervals has to satisfy # of intervals ≤ 2# of bits. Therefore, we
can choose the minimum number of bits satisfying this condition.

Algorithm ValueRetransmission
Input Request R(nodeID, tprevS , nbinary), Dsent

Output Retransmission message retransmissionMSG

begin
1. retransmissionMSG := NULL
2. Calculate tnextS from tprevS and nbinary

3. Find transmitted data between tprevS and tnextS in Dsent

4. num of failures := the number of transmitted data between tprevS and tnextS in Dsent

5. for i = 0; i < num of failures; i++
6. diff := vprevS - vfailed // vfailed is the value of the i-th failed transmission
7. interval := �|diff |/δ� + 1
8. binary := convert interval into binary string
9. signIndex := i * num of bits // num of bits is the number of bits necessary for binary
10. if diff < 0
11. quantizedValue[signIndex] := 1

// quantizedValue is an array to store binaries for the transmitted values
12. else
13. quantizedValue[signIndex] := 0
14. for k = 0, nbit = 1; k < length(binary); k++, nbit++ // Quantized Value Setting
15. if binary[k] == 1
16. quantizedValue[signIndex + nbit] := 1
17. else if binary[k] == 0
18. quantizedValue[signIndex + nbit] := 0
19. retransmissionMSG := (nodeID, tprevS , quantizedValue)
20. return retransmissionMSG
end

Fig. 4. Algorithm of Failed Value Retransmission
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Algorithm Recovery
Input Received retransmissionMSG
Output Recovered values for failed transmissions

begin
1. if retransmissionMSG != NULL
2. for i = 0; i < num of failures; i++
3. signIndex := i * num of bits
4. if quantizedValue[signIndex] == 1
5. sign := -1
6. else
7. sign := 1
8. for j = signIndex + 1, nbit = 1; j < signIndex + num of bits; j++, nbit++
9. if quantizedValue[j] == 1
10. binary[nbit] := 1
11. interval := convert quantizedValue into decimal number
12. rangeL := ((interval - 1) * δ) + vprevS

13. rangeH := (interval * δ) + vprevS

14. recoveredValue := (rangeL + rangeH) / 2
15. Insert recoveredValue into corresponding failed data value in Dreceived

end

Fig. 5. Algorithm of Failed Value Recovery

Fig. 4 shows the algorithm of the failed value retransmission. Based on the
received retransmission request, the node identify two timestamps of successful
transmissions, tprevS and tnextS (Line(1)). From this, the sensor node can find
the number of failed transmissions (Line(3)). We calculate the difference between
failed value vfailed and the value vprevS for each failed transmission (Line(6)).
The difference belongs to a certain interval (L, H] where L = �|diff |/δ�× δ and
H = (�|diff |/δ�+ 1)× δ. We transform (diff/δ)+ 1 into the bit representation
using the quantization (Line(7) - Line(18)). For example, let the number of bits
for quantization be 3. If the user-specified error threshold δ is 5 and the difference
diff is 12, this belongs to the interval of (2×5, 3×5]. Then the quantized value
for 3 is 011 and it is transmitted to the leader node or the base station.

3.5 Failed Value Recovery

Finally, the leader node or the base station can recover the failed values using
received quantized data. Fig. 5 shows the algorithm of failed value recovery.

We can recover the failed values based on vprevS because each quantized value
represents the interval to which failed value belongs. Let q1, q2, ..., qn be quantized
values for failed values. Because qi is the bit representation of diffi/δ + 1, we
can get the range (L, H] of the difference using qi (Line(1) - Line(13)). Then we
assign the average value of the range to the corresponding failed value (Line(14)).
In the above example used in the failed value retransmission, let vprevS be 33.
If we receive 011 at the leader node or the base station, the range of difference
value is (10, 15]. Thus the original failed value belongs to (33 + 10, 33 + 15] and
we assign 45.5 as the failed value.

When a failure occurs during the transmission of a retransmission request or a
failedvalue retransmission, the requestor resends the request after a certainwaiting
time. This is possible because the requestor is expecting the retransmission. The
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experimental result shows that this type of failures has little effect on the transmis-
sion cost and the accuracy.

4 Experimental Evaluation

We perform the experimental analysis to validate our approach using our own
simulator. The simulated network consists of one group that is a rectangular
grid. We performed experiments for multiple groups, but the pattern of the
result for multiple groups was similar to that for a single group. Sensor nodes
are placed on grid points and we varied the size of the group as 3 × 3, 4 ×
4, and 5 × 5. We assume that the leader node of the group is placed at one
hop distance from the base station. The minimum spanning tree is built over
all member nodes where each member node can reach to the leader node with
the number of hops as small as possible. Sensor readings follow the Gaussian
model and are produced at the user-specified sampling rate. Each sensor node
generates sensor readings which follow a Gaussian distribution with the mean μ
and the standard deviation σ. The ranges of μ and σ are 0 to 100 and 0 to 20
respectively. These two parameters for each sensor node are randomly generated
between their ranges. The user-specified sampling rate is 10 seconds and the
error threshold is 5.

We compare the performance using the energy consumption and the accuracy
of query results. The comparison schemes are as follows:

– ACK: The acknowledgement is used to detect transmission failures. If a
sensor node does not receive an acknowledgement, the corresponding data
is retransmitted.

– BF: All member nodes and leader nodes are using our proposed approach
utilizing Bloom Filter to resolve transmission failures.

– BF + BaySail: Our proposed approach BF is used within groups and
BaySail is applied to transmissions from the leader node to the base station.

– Leader BaySail: A leader node uses BaySail to resolve transmission fail-
ures. This assumes that the leader node has no resource constraints.

– BS BaySail: Each node transmits its data to the base station using BaySail.
This is the original BaySail proposed in [10]. There is no concept of a group
in the spatio-temporal suppression scheme.

We change the failure rate from 10% to 50% and vary the number of history
information from 1 to 5. Each experiment is run for 5 times and the results are
averaged.

4.1 Energy Consumption

We measure the energy consumption using the amount of transmitted data be-
cause the larger the amount of transmission, the more energy is consumed. The
basic data sizes used in our experiments are as follows:



An Effective and Efficient Method for Handling Transmission Failures 103

Component Size (bits)
Acknowledgement 40

(B-MAC protocol [8])
NodeID 32

Sensor Reading 32
Timestamp 32

The energy consumption for 5×5 grid is shown in (a), (c), (e), (g), (i) of Fig. 6.
H is the number of histories used in BF and BaySail. We do not show the results
for 3×3 and 4×4 due to the space limitation. But they also have similar results
to those of 5 × 5. BF consumes less energy than the other schemes in almost
all cases. ACK’s consumption steeply increases when the failure rate increases.
Since it has to retransmit the original data until it is successfully transmitted.
Energy consumption of BF also increases when the failure rate increases because
the number of retransmission requests and value retransmissions increase in ac-
cordance with the increased failure rate. Although the number of retransmission
requests and value retransmissions increase when the failure rate is high, BF
does not require too much energy due to Bloom Filter and the quantization
technique. BaySail has the constant energy consumption when failure rates are
varied because it transmits a fixed size of data having history information only
once and failed values are inferred at the base station. The number of histories in
BF and BaySail increases the size of transmitted data. But the transmitted data
size of BF is much less than that of BaySail because BF compresses the history
information using Bloom Filter. Specifically, we set the size of Bloom Filter to
10 times larger than the number of histories to reduce the false positive rate less
than 1%. But this is very small compared to the history size used in BaySail. In
the case that the number of histories is 3, the history size is 96 bits in BaySail
while 30 bits in BF. Therefore BF does not increase the size of transmitted data
severely when the number of histories increases. Consequently, BF is more en-
ergy efficient than other schemes. We compare the energy consumption between
BF and the original BaySail (BS BaySail) by calculating the reduction of the
transmission cost of BS BaySail by using BF. Let the average of the transmis-
sion costs for all numbers of histories and all failure rates for BS BaySail be
T (BS BaySail) and that for BF be T (BF). Then (T (BS BaySail)−T (BF))/T (BS
BaySail) is about 0.39.

4.2 Accuracy

We evaluate the accuracy of query results using the relative error rate. Relative
error rate is calculated by |(recovered value− original value)/original value|,
where recovered value is the estimated value after applying our approach to
handle transmission failures. The query result is an aggregated value of the
group and we use AVG as the aggregation function. We assume that ACK can
successfully retransmit failed values in the end. (b), (d), (f), (h), (j) of Fig. 6
show the result of the accuracy for each scheme. BF shows better accuracy than
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(a) Energy Consumption (H = 1) (b) Accuracy (H = 1)

(c) Energy Consumption (H = 2) (d) Accuracy (H = 2)

(e) Energy Consumption (H = 3) (f) Accuracy (H = 3)

(g) Energy Consumption (H = 4) (h) Accuracy (H = 4)

(i) Energy Consumption (H = 5) (j) Accuracy (H = 5)

Fig. 6. Results for 5 × 5 grid
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all other schemes. As for the energy consumption, we compare the accuracy
between BF and the BS BaySail by calculating the reduction of the relative
error rate of BS BaySail by using BF. Similarly as above, the reduction by using
BF is 55%.

In BF, each failed value is represented as the difference from the previously
successfully transmitted data value, and this difference is retransmitted using
the quantization. The quantization is used to reduce energy consumption while
guaranteeing that the recovered values are not different from the original values
more than the user-specified error threshold. Therefore we can recover the failed
value more accurately while using less energy than the other schemes. When
the transmission failure rate increases, the relative error rate of each scheme
also increases. The number of histories also affects the relative error rate. If
the transmission failure rate is high, the probability of consecutive transmission
failures is also high. Thus the history information could be lost. For example,
let the number of histories is 1. If data is transmitted at tn, tn+1, tn+2 but data
is successfully transmitted only at tn+2, then the history information about tn
is lost and it is considered as a suppression. Therefore the relative error rate is
higher than those for larger numbers of histories.

We set the minimum number of bits for the value quantization to satisfy
# of intervals ≤ 2# of bits. The number of intervals is calculated by (vmax −
vmin)/δ where vmax, vmin and δ are the max value, min value for sensor readings,
and the user-specified error threshold respectively. If we use a value smaller than
δ to calculate the number of intervals, the interval becomes narrowed and the
number of bits for the quantization increases. Using this quantization bits and
interval, we can get a tighter range for a failed value. This can increase the
accuracy while consuming more energy.

5 Conclusion

Sensor networks usually have very limited energy resources. To reduce energy
consumption, suppression schemes are proposed. Among these suppression sche-
mes, spatio-temporal suppression can dramatically reduce the energy consump-
tion. But the critical weakness of suppression is the transmission failure because
this is considered as a suppression. This causes the accuracy problem in the
query result.

We propose an effective and efficient method for handling transmission failures
in the spatio-temporal suppression scheme. In the spatio-temporal suppression,
transmission failures can occur from the member node to the leader node of a
group and from the leader node to the base station. In resolving transmission fail-
ures, we have to consider the resource constraints of each sensor node. Therefore,
we devise an energy efficient method to distinguish a suppression and a failure
using Bloom Filter. History information of previous transmissions is inserted
into Bloom Filter and we can effectively identify failures using the membership
test of Bloom Filter. After detecting transmission failures, the receiver notifies
the transmission failures to the sender, which retransmits these failed values
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using quantization. This quantization can reduce the size of transmitted data
and recover the failed values more accurately. The experimental results show that
our approach resolves the transmission failures energy efficiently and accurately.
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Abstract. To support large-scale sensor network applications, in terms
of both network size and query population, an infrastructure with multi-
ple base stations is necessary. In this paper, we optimize the allocation of
queries among multiple base stations, in order to minimize the total data
communication cost among the sensors. We first examine the query allo-
cation problem in a static context, where a two-phase semi-greedy allo-
cation framework is designed to exploit the sharing among queries. Also,
we investigate dynamic environments with frequent query arrivals and
terminations and propose adaptive query migration algorithms. Finally,
extensive experiments are conducted to compare the proposed techniques
with existing works. The experimental results show the effectiveness of
our proposed query allocation schemes.

1 Introduction

Wireless sensor networks (WSNs) are widely used in many applications, such as
environmental monitoring, smart home environment and road traffic monitoring
etc. To ease the deployment of Wireless Sensor Network (WSN) applications,
researchers have proposed techniques to treat the sensor network as a database.
This approach operates as follows: user interests are expressed as queries and
submitted to a powerful base station; the base station disseminates the queries
into the sensor network, more specifically, to the sensor nodes that are involved
in the queries; the sensor nodes generate, process and transfer sensory data back
to the base station, which will then correspondingly return the query result back
to the users. However, sensor nodes are quite resource-constrained with limited
processing capacity, storage, bandwidth and power.

To better realize the potential of WSNs, several query processing techniques
have been specially designed to optimize the processing of each query [16,8,10,1].
For example, for aggregation queries, a tree-like routing structure is often utilized
and in-network aggregation is done at intermediate nodes to reduce the amount
of data sent to the base station [17,4,6]. To further enable the sensor network
to scale well with the number of users and queries, multi-query optimization
techniques have been investigated to minimize the energy consumption among
sensors. These techniques either exploit the commonality among all running
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queries at a particular base station as a whole [13,11], or enable new queries to
salvage the routing/aggregation subtree of existing queries [6].

All the above works focused on WSNs with a single base station. However, for
a large scale WSN, it is necessary and beneficial to have multiple base stations.
Firstly, it provides the WSN with better coverage and scalability. The limited
radio range of sensor nodes leads to multi-hop routing, where the nodes nearer
to the base station need to relay the messages for other nodes and hence become
the bottleneck [4,10]. Using multiple base stations can alleviate this problem.
Secondly, multiple base stations provide the WSN with better reliability [5]. The
communication among sensor nodes are prone to failures, due to collision, node
failure and environmental noise etc. With more base stations in the network, the
average number of hops each datum travels is fewer, and correspondingly the
reliability of the data transmission is better. Lastly, it extends the life time of
the WSN. The sensor nodes nearer to the base stations are likely to have higher
load and the energy consumption there is greater than other nodes; with more
base stations, the burden of nodes nearer to each base station can be relieved.

Thus, we study how to perform multi-query optimization within a WSN with
multiple base stations, to minimize the total communication cost among sen-
sor nodes. We assume that, once the queries are sent out to the WSN, the
WSN can exploit the sharing of data communication among queries from the
same base station to minimize the communication cost by using the existing
approaches [13,11]. Within this context, the allocation of queries to the base
stations plays a critical role as it determines how much sharing can be exploited
by the WSN.

In our previous work [12], we proposed similarity-aware query allocation algo-
rithms for region-based aggregation queries, namely SDP-K-Cut approach and
greedy query insertion algorithm (incremental insertion + heuristic ordering).
However, more investigations suggest that both of them do not scale well enough
with large number of queries, because the SDP-K-Cut approach is too memory-
consuming and time-consuming, while the incremental query insertion is sensi-
tive to the insertion sequence of queries. Moreover, they do not consider the effect
of query termination, which would happen frequently in a dynamic environment.

In this paper, we address the limitations identified above to better support
large-scale WSNs. For static environment, we design a semi-greedy allocation
framework, which comprises a greedy insertion phase and an iterative refinement
phase. Furthermore, we propose adaptive migration algorithms to deal with the
effect of query termination which was not addressed before. This adaptive scheme
also serves as an online refinement of the incremental query insertion algorithm in
dynamic environment. An extensive performance study is conducted to compare
the performance of the proposed techniques with some simpler schemes as well
as previous work. The results show that our techniques can effectively minimize
the communication cost of a large-scale WSN.

The rest of this paper is organized as follows. In Section 2, we formulate
our query allocation problem and examine existing works. Sections 3 and 4 de-
scribe the semi-greedy query allocation framework and adaptive query migration
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algorithm for static and dynamic environment respectively. In Section 5, we
present our experimental results and finally, we conclude the paper in Section 6.

2 Preliminaries

Consider a large scale sensor network that comprises K base stations and hun-
dreds of (say N) sensor nodes. The base stations are powerful machines, with
abundant processing, storage, and memory capacity and can be recharged eas-
ily. On the other hand, the sensor nodes are resource constrained, with limited
processing capacity, storage, bandwidth and power. Thus, we focus on conserv-
ing the resources of sensor nodes. More specifically, we focus on minimizing the
communication cost among sensor nodes, instead of that among base stations
which is comparatively negligible.

To exploit the sharing among queries, one solution is to tightly integrate
our query allocation work with a specific multiple query optimization scheme
that runs at each base station, such as [13,11]. This means the query allocation
scheme has to be aware of the cost models used by the specific multi-query
optimization scheme at each base station. In this paper, to be general, we adopt
a more flexible approach. To guide query allocation, we exploit the inherent
sharing among queries without knowledge of the specific underlying multiple
query optimization scheme.

2.1 Problem Statement

Our query allocation problem is defined as follows. Suppose there are K base
stations and currently M queries are running in the sensor network of size N .
For a query qi running exclusively at a specific base station bj , a number of radio
messages will be incurred to transmit the sensory data to the base station, and
we refer to the number of radio messages as the communication cost, denote as
cij . We further denote the query set allocated to base station bj as Qj, and the
amount of sharing (redundant requests) among these queries as Sj . Then the
objective of the query allocation problem, to minimize the communication cost
among sensor nodes in order to answer the queries, can be expressed as:

minimize

K∑
j=1

(
∑

qi∈Qj

cij − Sj)

To determine the optimal allocation, we need to find the optimal balance
between minimizing

∑K
j=1

∑
qj∈Qj

cij and maximizing
∑K

j=1 Sj .

2.2 System Model

In this paper, we adopt the following assumptions and simplifications of the
system model.

First, we focus on region-based aggregation queries, such as SUM, MAX and
AVG. More specifically, they belong to the category of distributive and algebraic
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aggregation queries, as defined in [4]. A region-based query specifies a fixed set
of nodes that are involved in the query and hence simplifies the cost estimation
and sharing estimation. Our method can be generalized to other queries as long
as the sharing among queries can be estimated, e.g., by semantics exploration
or maintaining a statistical model such as [2]. As it is an independent problem,
we do not study it in this paper.

Second, for each base station, a routing infrastructure (a routing tree or a rout-
ing Directed Acyclic Graph (DAG)) rooted at the base station is constructed.
Each such routing infrastructure only involves those sensor nodes that are nec-
essary to process the queries allocated to the corresponding base station.

Third, in-network aggregation [13,11] with multi-query optimization is per-
formed in the routing infrastructure.

Finally, it is assumed that there is a controller which maintains the query
allocation information for all the base stations and optimizes the allocation
of queries. Such a controller-based architecture is often used in load manage-
ment within locally distributed systems which are under centralized administra-
tions [15].

With the above assumptions, we can compute the cost function as follows. cij

is computed by counting the number of sensors involved in processing query qi

(including those in the query region and those used to relay the message to the
base station). This is because each sensor node only has to send (or relay) one
message (due to in-network aggregation).

To estimate the value of Sj , we keep bitmap mj of size N maintained for base
station bj, whose default values are zero. If a sensor node x is queried by qi,
where qi ∈ Qj , we check the value of mj [x]. If it is 0, we set it to 1. Otherwise,
some other queries have already requested data from a sensor node x at base
station bj , and this cost is shared and correspondingly we add 1 to Sj .

Fig. 1. A scenario with multiple base stations and queries
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Note that, if different parts of the network have different reliability in trans-
mission, a weight factor should be assigned to each queried node to represent its
reliability during the computation of cij and Sj .

Figure 1 shows an example of how the query cost c and sharing S are computed
in our model. Each of the small circles denotes one sensor, while each rectangular
region represents one query and each triangle denotes a base station. q1 covers
25 sensors and its minimal distance to b1 is 5, so c11 = 30. Likewise, we can
compute c12 to be equal to 28. If both q1 and q3 are allocated to b1, the regions
E5 and E7 can be shared, hence S1 = |E5| + |E7|. It is worth noting that
when q1, q2 and q3 are all allocated to b1, since E7 has been shared twice,
S1 = |E3|+ |E5|+ |E6|+ 2 ∗ |E7|.

2.3 Existing Works

Query and/or operator allocation have been studied in both traditional dis-
tributed database systems [9] and stream processing systems [7,18]. However,
these techniques cannot be applied here. Apart from the different application
context, our objective is to minimize the communication cost inside the sensor
network instead of among the base stations. Moreover, here we endeavor to max-
imize the sharing of the data collection cost among various queries allocated to
the same base station, which is typically not considered in existing works.

In this section, we review methods that allocate queries among base stations in
wireless sensor networks. More specifically, we examine the best naive solutions
Nearest and Partition, and then review the similarity-aware query allocation
algorithm SDP-K-Cut proposed in [12].

Nearest : This strategy minimizes
∑K

j=1
∑

qj∈Qj
cij . For each query qi, we

assign it to its nearest base station bj, where bj has the smallest distance to the
query region of qi. In this way, since the number of sensors in the query region
is fixed, bj also incurs the smallest allocation cost for qi. We note that Nearest
also has the tendency to assign similar queries to the same base station because
the region-based aggregation queries whose nearest base station is the same are
inherently likely to have overlap with each other; however, it does not explicitly
exploit the sharing when making its decision.

Partition: This strategy maximizes
∑K

j=1 Sj . One can simply divide the net-
work into non-overlapping subregions (e.g., according to the voronoi graph for
the base stations) and get each base station to take care of the subregion that
is closest to it. Each query is then partitioned into sub-queries according to the
partitioned subregions, and each sub-query is allocated to its respective base
station. Finally, the partially aggregated results for sub-queries are further ag-
gregated through communication among base stations to get the final result of
the original aggregation query. In this way, it maximizes the sharing among sub-
queries because such sharing can all be automatically captured at each sensor
node. However, it sacrifices the benefit of in-network aggregation and introduces
considerable relaying overhead for each partitioned query.

SDP-K-Cut : This scheme attempts to minimize
∑K

j=1
∑

qj∈Qj
cij and maxi-

mize
∑K

j=1 Sj. It models the problem in an undirected complete graph
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G = (V, E, W), where each vertex denotes either a query or a base station,
each edge weight denotes either the cost of assigning the particular query to the
particular base station, or the negative value of the amount of sharing between
two queries. In this way, the problem of assigning each query to the base station
that incurs the least communication cost while allocating similar queries to the
same base station, is essentially to partition V into K disjoint sets so that the
sum of the weight of the edges between the disjoint sets is maximized. Thus,
the query allocation problem is approximated as a classical Max-K-Cut prob-
lem. The Max-K-Cut problem is then relaxed into a semidefinite programming
problem (SDP), and the algorithm in [3] is adapted to solve it.

Given a static set of queries, the SDP-K-Cut approach can generate good
query allocation plans. However, its high complexity in terms of time and space
makes it impractical to be deployed if the number of queries is huge. Also,
upon the insertion of a new query, the SDP-K-Cut algorithm has to recompute
from scratch instead of incrementally optimizing the new query set based on
the previous status. Therefore, it is computationally too expensive to deploy the
scheme in a dynamic context where queries frequently arrive and depart.

3 A Semi-greedy Allocation Framework

In this section, we design a semi-greedy allocation framework for static environ-
ment where queries are known apriori. The framework comprises two phases.
In the first phase, an allocation plan is generated quickly. The plan essentially
determines how the set of queries are to be allocated to the base stations. In the
second phase, the generated plan is iteratively refined.

3.1 Greedy Insertion

For the first phase, we adopt the Greedy Insertion scheme [12], which comprises
incremental insertion and heuristical ordering.

Incremental : this strategy greedily assigns one query at a time to the base
station that results in the smallest additional cost for that query. The additional
cost acij incurred by qi at bj (i.e., cij subtracted by the amount of sharing
between qi and the other queries at bj) reflects not only the amount of non-
sharing region but also the cost of executing qi at bj by itself. In this way,
Incremental is able to efficiently find the best allocation for the new query,
which incurs the least communication cost inside the sensor network and does
not affect other allocated queries.

Since the order in which queries are assigned may affect the optimality of the
query plan, two heuristics have also been proposed to order the queries before
they are assigned:
– Area: Queries are ordered in descending order of the areas of their query

regions.
– Diff : Queries are ordered in descending order of the values of function

diff(qi) = cim − cij , where cij is the cost of the minimum allocation of
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qi and cim is the cost of the sub-minimum allocation. More formally, cij =
min(ci1, ci2...ciK), and cim = min(ci1, ...cij−1, cij+1, ...ciK).

Greedy Insertion phase essentially benefits to-be-assigned query. However, a
query that has already been assigned cannot benefit from the queries that are
subsequently allocated if the latter are not allocated to the same base station.
Hence, it is sensitive to the sequence of query insertion. The task of phase 2 of
the semi-greedy framework is to attempt to relieve the sensitivity.

3.2 Iterative Refinement

Our proposed iterative refinement phase aims to further optimize the query
allocation plan generated by the above greedy insertion phase, before the queries
are physically disseminated into the sensor network.

The algorithm is shown in Algorithm 1. It runs in multiple iterations. Within
each iteration, it tries to refine the current allocation plan (lines 5-11). If a plan
better than the current one is found, it will replace the current plan with the best
plan in this iteration and continue the refinement process by restarting another
iteration (lines 12-14), otherwise it will stop as no more refinement can be found
(lines 15-16).

Algorithm 1. Iterative Refinement Algorithm
Input: The initial query allocation plan QB[0..M − 1]
Output: The refined query allocation plan QB[0..M − 1]

SmallestCost ← CompCost ();1

while True do2

Count ← 0; Changed ← 0;3

while Count < M do4

Qnode ← FindNextQuery (QList); /*Qnode =(qid,bid,costdiff);*/5

reallocate qqid from bQB[qid] to bbid;6

TmpCost ← CompCost ();7

if costdiff > 0 and TmpCost < SmallestCost then8

SmallestCost ← TmpCost; TempQB[0..M-1] ← QB[0..M-1];9

Changed ← 1;10

Count++; Remove qqid from QList;11

if Changed == 1 then12

QB[0..M-1] ← TempQB[0..M-1];13

Restore QList to contain all queries;14

else15

QB[0..M-1] ← TempQB[0..M-1]; Break;16

return QB[0..M-1];17

In each iteration, one chance is given for each of the M queries in the whole
query list QList to reallocate itself, and hence it takes M rounds. As shown
in line 5, in each round, the function FindNextQuery (QList) examines all the
choices of reallocating a query in the current QList to another base station and
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returns the query qqid whose reallocation results in the largest cost reduction
costdiff . Note that the largest cost reduction costdiff could be a negative
value here. In line 6, we update the bitmaps of the base stations affected by
the reallocation of query qqid, and update the current allocation plan by setting
QB[qid] to bid. Then, in line 7, we recompute the cost of the current plan
QB[0..M-1] and store it in Tmpcost. If the current plan has a cost smaller than
SmallestCost, the cost of the best plan we have visited, then it caches the current
plan at TempQB[0..M-1] and set SmallestCost as the current cost (lines 8-10).
Before we continue to start the next round to reallocate the next query, we
remove the current query qqid from the QList(lines 11). Note that if extra gain
can be further achieved through reallocating qqid again after the reallocation of
other queries, it will be exploited in the next iteration.

It is worthy to note that, the algorithm still continues the refinement (lines 4-
11) even if the current cost TmpCost is larger than the one before the refinement.
This is to capture the opportunities where performance gain can be achieved
through the relocation of multiple queries altogether, and allows the algorithm
to jump out of the local optima.

4 Adaptive Migration Algorithm

In many of the real sensor applications, new users may issue new requests and
existing users’ demands may have been satisfied and their running queries ter-
minate as well. This calls for adaptive algorithms that are able to adjust to the
dynamic context. We adopt Incremental for query insertion since it is able to ef-
ficiently find the best allocation for newly inserted query without affecting other
running queries. However, Incremental on the other hand does not involve any
re-allocation of running queries to benefit from the newly inserted query. To deal
with this deficiency and also to deal with the effect of termination of queries,
existing queries may need to be re-allocated if necessary.

We note that migration during running time incurs overhead for the commu-
nication inside the sensor network. Taking the detailed query message dissemina-
tion mechanism into consideration [4,13], for a specific query qi to migrate from
base station bj to bk, bj needs to send its query abort message to relevant sensor
nodes that are within the query region of qi, which incurs cost cij ; similarly, bk

needs to send query insert message for qi at cost cik. That is, a one time cost of
(cij + cik) will be incurred. If this particular migration improves the cost by Δc
at each epoch, it takes at least (cij + cik)/Δc epochs for the migration gain to
compensate for the migration cost. Therefore, migration needs to consider the
trade-off between the possible gain and the migration overhead.

Below, we present the adaptive query migration techniques, which include the
following two parts:
– A migration detection algorithm detects when it is beneficial to perform

query migration. It considers the trade-off between migration gain and its
overhead mentioned above.

– A migration algorithm selects which queries to be migrated. Basically, it
greedily selects the most beneficial migrations.
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Migration Detection. To detect when to perform the migration, the controller
maintains some information of the current queries at the system. Recall that the
controller maintains bitmap mj (j=0,...,K-1) for base station bj to denote whether
a sensor is involved in the queries from bj. Here, we extend mj to be a countmap,
which denotes the number of queries from bj that request data from each sensor.
Furthermore, the controller also dynamically keeps a M*K two dimensional matrix
a[ ][ ] to record the additional cost of allocating each query to each base station. For
instance, a[i][j] keeps the additional cost of allocating qi to bj .

To detect whether a query should be migrated, we associate a pressure value
pi with each query qi. In general, a higher pi value represents a higher benefit to
migrate query qi. In particular, pi is defined as a[i][bid]− a[i][j], where bid is the
id of the base station that qi is currently allocated to, and j is the id of another
base station bj which satisfies a[i][j] == MIN(a[i][0], ..., a[i][bid− 1], a[i][bid +
1], ...a[i][K − 1]). One can note that pi is essentially the gain (of migrating qi)
that can be achieved at each epoch.

The migration detection algorithm is presented from line 1 to line 10 in Al-
gorithm 2. It considers two factors. First, if the gain of a migration is high, the
migration should tend to be performed. Second, if there is too frequent query ar-
rival/termination, where the benefit for migration is not stable, migration should
tend to be suppressed to avoid the thrashing effect and migration overhead.

We provide more details here. If there is a gain through migration (pj is posi-
tive), the algorithm accumulates the gain over the epochs (lines 3-5). Otherwise,
if pj is negative and its accumulated value is positive, it means that other query
insertion/termination has reduced the additional cost for qj on the current base
station or increased the additional cost for qj to be reinserted into other base sta-
tions, during a short period of time, before qj triggers migration. This suggests
that there is frequent insert/termination of queries in the system to adjust the
query allocation by itself, and hence we discourage migration by resetting the
accumulated value of pj to restart the accumulation and increasing parameter
fj to increase the migration threshold (lines 9-10). When the accumulated value
has reached the adaptive threshold fj ∗ pj , which suggests either the extra gain
in each epoch pj is big and/or the dynamics of queries is not frequent, under
the assumption that query workload and patterns in the past is similar to that
in the future under most cases, we choose to trigger the migration (lines 6-7).

Now we present how to maintain the parameters that are required to imple-
ment the above migration detection algorithm. As shown in Algorithm 2, when
a new query qi arrives, we record the additional cost of allocating it to each base
station (lines 11 to 14).

Furthermore, the qi will also affect the optimal allocation decision of other exist-
ing queries. First, for another query qj allocated to the same base station as qi, if the
countmap value for a sensor at (x,y) in their overlapped area is equal to two (line
20), it means that data at (x,y) which was exclusively requested by qj before is now
shared by both qi and qj . Hence, with qi, the additional cost of qj on its assigned
base station bbid decreases, the probability that other base station is better for qj

reduces, and we correspondingly reduce the pressure value pj . Second, for a query
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qj at another base station that overlapswith qi, if the overlapped area is exclusively
requested by qi at base station bbid (line 24), the additional cost of qj on bbid (i.e.
a[j][bid]) should be decreased. However, pj may not increase as a[j][bid] may not
be the smallest among all the a[j][ ] values. Therefore, we recompute pj instead of
directly increasing pj (line 23).

Symmetrically, when existing query terminates, the parameters are adjusted
in a similar way, as shown in “Upon Termination of qi” part of Algorithm 2.

Algorithm 2. Migration Detection Algorithm

Migration detection:

for each data fetching epoch do1

for j=0; j<M; j++ do2

if p[j] > 0 then3

if fj == 0 then fj ← qj .area/p[j];4

Accumulate[j] ← Accumulate[j] + p[j];5

if Accumulate[j] >= p[j] ∗ fj then6

Migrate (); fj=0; Accumulate[j]=0;7

else8

if Accumulate[j] > 0 then9

Accumulate[j] ← 0; fj + +;10

Upon New Arrival of Query qi:

for j =0; j<K; j++ do11

a[i][j] = cij ;12

for all (x,y) in qi.area do13

if (x,y) of mj >= 1 then a[i][j] ← a[i][j]-1;14

if a[i][bid]==MIN(a[i][0],...a[i][K-1]) then15

Allocate qi to bbid;16

Update mbid and QB[i] accordingly; Compute p[i];17

for all qj overlaps with qi do18

for all (x,y) in qi.area
⋂

qj .area do19

if QB[j] == bid AND (x, y)ofmbid == 2 then20

a[j][bid] ← a[j][bid] − 1; p[j] ← p[j] − 1;21

if QB[j] 
= bid AND (x, y)ofmbid == 1 then22

a[j][bid] ← a[j][bid] − 1; Recompute p[j];23

Upon Termination of Query qi:

Update mQB[i] accordingly;24

for all qj overlaps with qi do25

for all (x,y) in qi.area
⋂

qj .area do26

if QB[j] == QB[i] AND (x, y)ofmQB[i] == 1 then27

a[j][QB[i]] ← a[j][QB[i]] + 1; p[j] ← p[j] + 1;
if QB[j] 
= QB[i] AND (x, y)ofmQB[i] == 0 then28

a[j][QB[i]] ← a[j][QB[i]] + 1; Recompute p[j];
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Fig. 2. A Scenario to illustrate migration detection algorithm

Below, we illustrate by example the process of keeping track of information
needed for migration detection, such as migration pressure p[ ] and additional
cost matrix a[ ][ ]. As shown in Figure 2, suppose queries q1, q2 and q3 are
allocated to base station b2. Now:

1. Query q4 arrives at the system. a[4][1] = 12 + 1 = 13, a[4][2] = 12 + 12 −
|E9| = 22, while a[4][1] = MIN(a[4][1], a[4][2]), hence q4 is assigned to b1,
QB[4] = 1 and p[4] = a[4][1] − a[4][2] = −9. Since q4 overlaps with q2,
a[2][1] = a[2][1]− |E9|, and p[2] = p[2] + |E9|.

2. Query q2 terminates from the system. q1 overlaps with q2, and their previous
sharing E3 is now exclusively for q1, so a[1][2] = a[1][2] + |E3|, p[2] = p[2] +
|E3|; similarly, for q3, a[3][2] = a[3][2] + |E6|, p[3] = p[3] + |E6|. For q4,
a[4][2] = a[4][2] + |E9| and p[2] = p[2]− |E9|.

Migration Algorithm. Once the above migration detection issues request to
perform migration, the migration algorithm shown in Algorithm 3 will be run.
In each round, through function FindNextQuery as we introduced in Section 3.2,

Algorithm 3. Migration Algorithm
Input: The initial query allocation plan QB[0..M − 1]
Output: The query allocation plan after migration QB[0..M − 1]

while True do1

Qnode ← FindNextQuery (QList);2

if costdiff > 0 then3

migrate qqid from bQB[qid] to bbid; /*Through information update at4

the coordinator, such as countmap etc.*/

else5

Break;6
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we pick the query that will result in the largest cost improvement to migrate.
It is worthy to note that the migration here only modifies the query allocation
plan by changing the information kept at the controller, such as countmap etc,
and the intermediate plan is not disseminated into the sensor network. This
migration process repeats until no beneficial query migration exists any more,
and the final migration plan is disseminated into the network. In this way, local
optimum can be achieved.

5 Experimental Study

In the experiments, we assume N sensor nodes are deployed uniformly in a two-
dimensional grid square. For every 100 sensor nodes, there is one base station
at the center. Each query is expressed as a rectangular region ((x1, x2), (y1, y2)),
where (x1, y1) is randomly selected from any point in the network, and the
lengths on the x-axis (x2− x1) and y-axis (y2− y1) satisfy the uniform distribu-
tion. We also assume lossless communications among the sensor nodes.

It is worthy to note that our query allocation method is general, and it is
not constrained to distribution of sensors/base stations, the region shape of
the queries and the assumption of lossless communication in the experiments.
Through the cost estimation function, the properties of the network can be
captured and the process of query allocation decision is the same.

5.1 Importance of Leveraging Query Sharing

Firstly, we evaluate the importance of leveraging query sharing. We compare the
performance of Nearest and Partition proposed in Section 2.3 with the following
two strategies:

Collection: it is a data collection approach, instead of a query-driven approach.
Each sensor sends its raw data to its nearest base station.

Random: Each query is randomly allocated to a base station.
Note that even though Random, Nearest and Partition are oblivious of the

query similarity during allocation, queries allocated to the same base station
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may still benefit from data sharing through the multiple query optimization at
the base station.

As shown in Figure 3, Nearest and Partition perform much better than Ran-
dom and Collection. Collection scales well with the number of queries, but its
communication cost is generally much higher than necessary, because it is always
fetching all the data from the network to satisfy possible queries and it cannot
take advantage of in-network aggregation. Random cannot effectively make use
of the underlying multiple query optimization scheme, and hence its cost grows
linearly with the number of queries, which makes it unattractive for large scale
networks. On the other hand, Nearest and Partition both scale well with the
number of queries and incur low communication cost.

5.2 Performance in the Static Context

In this section, we compare the effectiveness of our semi-greedy query allocation
framework against the naive Nearest and Partition, in a static environment,
under large-scale scenarios. As for small-scale scenarios with fewer queries and
base stations, the results are similar with the ones in [12]. Due to space limit,
we do not show them here. Interested readers are referred to [14] for details.

From the experimental results in Figures 4, we observe that neither Nearest
nor Partition always outperforms the other but both strategies perform worse
than our schemes. This is expected because both of them excel in one aspect
but neglect the other aspect as explained in Section 2.3. Figure 4 also shows the
performance of each strategy in our semi-greedy allocation scheme, under various
network size, average query region, and number of queries. More specifically, the
greedy insertion phase, no matter with area-based sorting or diff-based sorting,
have considerable improvement over our shown not-so-bad baselines Nearest and
Partition. The iterative refinement is further shown to effectively reduce the
communication cost in the process of refining the initial query allocation plans.
As a side note, it is also efficient and converges fast, taking less than 10ms.

5.3 Performance in the Dynamic Context

In this section, we evaluate the effectiveness of the adaptive migration algorithm
in the dynamic context. Basically, we evaluate the following two aspects.

Firstly, we evaluate its ability to improve the current query allocation and
compare the performance of migration algorithm (Algorithm 3) against SDP-
K-Cut. The current query allocation is the allocation by incremental insertion
algorithm Incremental. Since SDP-K-Cut is only suitable for static scenario, here
we only note down the cost of Incremental after a specific number of queries have
been inserted and running in the network; we take the same point of time as
migration point and run our migration Algorithm 3, and see the amount of
gain in cost we can achieve; the same set of queries will then be allocated by
SDP-K-Cut as a whole and we compare their costs.

Figure 5 shows that migration effectively bridges the gap between Incremental
and SDP-K-Cut. It is essentially one kind of online refinement strategy. When
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the number of queries is bigger, there will be more cases that previously inserted
query cannot benefit from the newly inserted query, and hence Incremental is
further from being optimal. Through greedily exploiting the sharing among all
the queries, much communication cost inside the network can be reduced. In this
experiment, our migration algorithm is able to achieve around 70% of the gain
SDP-K-Cut can obtain, at the cost of migrating around 10% of the number of
queries that SDP-K-Cut needs to migrate.

Secondly, we examine the query migration detection (Algorithm 2) and migra-
tion algorithm (Algorithm 3) as a whole and evaluate its integration with the in-
cremental insertion algorithm. Queries arrive and terminate whenever they want,
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Fig. 6. Evaluating adaptive migration in large-scale WSN over random queries with
N=900, QR=6*6

but the average frequency of arrival and duration is controlled, and the average
number of queries remains the same. After a set of 300 queries terminates, we
note down the total communication cost in the network so far and use the cost
of communication per epoch as the metric to compare different approaches. As
shown in Figure 6, when the average interval of query arrival/termination is low,
the performance gain of Migration+Incremental over Incremental is less than
the situation when the interval is higher (e.g., a comparatively steady environ-
ment). This is because when there is frequent insertion/termination, migration
has less job to do, since incremental insertion itself has high chance to reduce
the migration pressure. From the above, we can see that migration algorithm
can effectively adapt to the frequency of query arrivals and terminations.

6 Conclusion

In this paper, we have studied the query allocation problem in large scale sen-
sor network, with the objective to minimize the total data communication cost
among the sensor nodes. We designed a semi-greedy query allocation algorithm,
which enhanced the existing greedy insertion scheme with iterative refinement to
enable greater sharing among queries. We also proposed adaptive optimization
algorithms to handle the dynamic change of query set.

The experimental results showed that the proposed query allocation schemes
outperform the existing methods in both static and dynamic environments with-
out introducing much overhead. The results also suggested that a good allocation
scheme should take both the inherent sharing among queries and the power of
in-network aggregation into consideration.
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Abstract. Graphs are widely used for modelling complicated data such
as: chemical compounds, protein interactions, XML documents and mul-
timedia. Retrieving related graphs containing a query graph from a large
graph database is a key issue in many graph-based applications such as
drug discovery and structural pattern recognition. Relational database
management systems (RDBMSs) have repeatedly been shown to be able
to efficiently host different types of data which were not formerly antici-
pated to reside within relational databases such as complex objects and
XML data. The key advantages of relational database systems are its
well-known maturity and its ability to scale to handle vast amounts of
data very efficiently. RDMBSs derive much of their performance from so-
phisticated optimizer components which makes use of physical properties
that are specific to the relational model such as: sortedness, proper join
ordering and powerful indexing mechanisms. In this paper, we study the
problem of indexing and querying graph databases using the relational
infrastructure. We propose a novel, decomposition-based and selectivity-
aware SQL translation mechanism of sub-graph search queries. Moreover,
we carefully exploit existing database functionality such as partitioned
B-trees indexes and influencing the relational query optimizers by selec-
tivity annotations to reduce the access costs of the secondary storage to
a minimum. Finally, our experiments utilise an IBM DB2 RDBMS as
a concrete example to confirm that relational database systems can be
used as an efficient and very scalable processor for sub-graph queries.

1 Introduction

Graphs are among the most complicated and general form of data structures.
Recently, they have been widely used to model many complex structured and
schemaless data such as XML documents [24], multimedia databases [18], so-
cial networks [3] and chemical compounds [16]. Hence, retrieving related graphs
containing a query graph from a large graph database is a key performance is-
sue in all of these graph-based applications. It is apparent that the success of
any graph database application is directly dependent on the efficiency of the
graph indexing and query processing mechanisms. The fundamental sub-graph
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search operation on graph databases can be described as follows: given a graph
database D = {g1, g2, ..., gn} and a graph query q expressed as find all graphs gi

which belongs to the graph database D such that q is a subgraph of gi. Clearly,
it is an inefficient and a very time consuming task to perform a sequential scan
over the whole graph database D and then to check whether q is a subgraph of
each graph database member gi. Hence, there is a clear necessity to build graph
indices in order to improve the performance of processing sub-graph queries.

Relational database management systems (RDBMSs) have repeatedly shown
that they are very efficient, scalable and successful in hosting types of data
which have formerly not been anticipated to be stored inside relational databases
such complex objects [7,21], spatio-temporal data [8] and XML data [6,14]. In
addition, RDBMSs have shown its ability to handle vast amounts of data very
efficiently using its powerful indexing mechanisms. In this paper we focus on
employing the powerful features of the relational infrastructure to implement an
efficient mechanism for processing sub-graph search queries.

In principle, XPath-based XML queries [4] are considered to be a simple
form of graph queries. Over the last few years, various relational-based indexing
methods [5,6,11,23] have been developed to process this type of XML queries.
However, these methods are optimized to deal only with tree-structured data and
path expressions. Here, we present a purely relational framework to speed up the
search efficiency in the context of graph queries. In our approach, the graph data
set is firstly encoded using an intuitive Vertex-Edge relational mapping scheme
after which the graph query is translated into a sequence of SQL evaluation
steps over the defined storage scheme. An obvious problem in the relational-
based evaluation approach of graph queries is the huge cost which may result
from the large number of join operations which are required to be performed
between the encoding relations. In order to overcome this problem, we exploit an
observation from our previous works which is that the size of the intermediate
results dramatically affect the overall evaluation performance of SQL scripts
[12,19,20]. Hence, we use an effective and efficient pruning strategy to filter
out as many as possible of the false positives graphs that are guaranteed to
not exist in the final results first before passing the candidate result set to an
optional verification process. Therefore, we keep statistical information about
the less frequently existing nodes and edges in the graph database in the form of
simple Markov Tables [2]. This statistical information is also used to influence the
decision of relational query optimizers by selectivity annotations of the translated
query predicates to make the right decision regarding selecting the most efficient
join order and the cheapest execution plan to get rid of the non-required graphs
very early out of the intermediate results. Moreover, we carefully exploit the fact
that the number of distinct vertices and edges labels are usually far less than
the number of vertices and edges respectively. Therefore, we try to achieve the
maximum performance improvement for our relation execution plans by utilizing
the existing powerful partitioned B-trees indexing mechanism of the relational
databases [10] to reduce the access costs of the secondary storage to the minimum
[13]. In summary, we made the following contributions in this paper:
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1) We present a purely relational framework for evaluating directed and labelled
sub-graph search queries. In this framework, we encode graph databases us-
ing an intuitive Vertex-Edge relational schema and translate the sub-graph
queries into standard SQL scripts.

2) We describe an effective and very efficient pruning strategy for reducing the
size of the intermediate results of our relational execution plans by using a
simple form of statistical information in the form of Markov tables.

3) We describe our approach of using summary statistical information about the
graph database vertices and edges to consult the relational query optimizers
through the use of accurate selectivity annotations for the predicates of our
queries. These selectivity annotations help the query optimizers to decide the
right join order and choose the most efficient execution plan.

4) We exploit a carefully tailored set of the powerful partitioned B-trees re-
lational indexes to reduce the secondary storage access costs of our SQL
translation scripts to a minimum.

5) We show the efficiency and the scalability of the performance of our approach
through an extensive set of experiments.

The remainder of the paper is organized as follows: We discuss some back-
ground knowledge in Section 2. Section 3 describe the different components of
our relational framework for processing graph queries including the graph cod-
ing method, pruning strategy and the SQL translation mechanisms. We evaluate
our method by conducting an extensive set of experiments which are described
in Section 4. We discuss the related work in Section 5. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 Labelled Graphs

In labelled graphs, vertices and edges represent the entities and the relationships
between them respectively. The attributes associated with these entities and rela-
tionships are called labels. A graph database D is a collection of member graphs
D = {g1, g2, ..., gn} where each member graph gi is denoted as (V, E, Lv, Le)
where V is the set of vertices; E ⊆ V ×V is the set of edges joining two distinct
vertices; Lv is the set of vertex labels and Le is the set of edge labels.

In principal, labelled graphs can be classified according to the direction of
their edges into two main classes: 1) Directed-labelled graphs such as XML, RDF
and traffic networks. 2) Undirected-labelled graphs such as social networks and
chemical compounds. In this paper, we are mainly focusing on dealing with
directed labelled graphs. However, it is straightforward to extend our framework
to process other kinds of graphs. Figure 1(a) provides an example of a graph
database composed of three directed-labelled graphs {g1, g2, g3}.
2.2 Subgraph Search Queries

In principal, the subgraph search operation can be simply described as follows:
given a graph database D = {g1, g2, ..., gn} and a graph query q, it returns the
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Fig. 1. An example graph database and graph query

query answer set A = {gi|q ⊆ gi, gi ∈ D}. A graph q is described as a sub-graph
of another graph database member gi if the set of vertices and edges of q form
subset of the vertices and edges of gi. To be more formal, let us assume that
we have two graphs g1(V1, E1, Lv1, Le1) and g2(V2, E2, Lv2, Le2). g1 is defined as
sub-graph of g2 , if and only if:
1) For every distinct vertex x ∈ V1 with a label vl ∈ Lv1, there is a distinct

vertex y ∈ V2 with a label vl ∈ Lv2.
2) For every distinct edge edge ab ∈ E1 with a label el ∈ Le1, there is a distinct

edge ab ∈ E2 with a label el ∈ Le2.
Figure 1(b) shows an example of graph query q. Running the example query q

over the example graph database D (Figure 1(a)) returns an answer set consists
of the graph database member g1.

3 GraphREL Description

3.1 Graph Encoding

The starting point of our relational framework for processing sub-graph search
queries is to find an efficient and suitable encoding for each graph member gi in
the graph database D. Therefore, we propose the Vertex-Edge mapping scheme
as an efficient, simple and intuitive relational storage scheme for storing our
targeting directed labelled graphs. In this mapping scheme, each graph database
member gi is assigned a unique identity graphID. Each vertex is assigned a
sequence number (vertexID) inside its graph. Each vertex is represented by one
tuple in a single table (Vertices table) which stores all vertices of the graph
database. Each vertex is identified by the graphID for which the vertex belongs
to and the vertex ID. Additionally, each vertex has an additional attribute to
store the vertex label. Similarly, all edges of the graph database are stored in
a single table (Edges table) where each edge is represented by a single tuple in
this table. Each edge tuple describes the graph database member which the edge
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Fig. 2. Vertex-Edge relational mapping scheme of graph database

belongs to, the id of the source vertex of the edge, the id of the destination vertex
of the edge and the edge label. Therefore, the relational storage scheme of our
Vertex-Edge mapping is described as follows:
– V ertices(graphID, vertexID, vertexLabel)
– Edges(graphID, sV ertex, dV ertex, edgeLabel)

Figure 2 illustrates an example of the Vertex-Edge relational mapping scheme
of graph database. Using these mapping scheme, we employ the following SQL-
based filtering-and-verification mechanism to speed up the search efficiency of
sub-graph queries.
– Filtering phase: in this phase we use an effective and efficient pruning

strategy to filter out as many as possible of the non-required graph members
very early. Specifically, in this phase we specify the set of graph database
members contain the set of vertices and edges which are describing the sub-
graph query. Therefore, the filtering process of a sub-graph query q consists
of a set of vertices QV with size equal m and a set of edges QE equal n (see
Figure 1(b)) can be achieved using the following SQL translation template:

1 SELECT DISTINCT V1.graphID,Vi.vertexID
2 FROM Vertices as V1,..., Vertices as Vm, Edges as E1,..., Edges as En

3 WHERE
4 ∀m

i=2(V1.graphID = Vi.graphID)
5 AND ∀n

j=1(V1.graphID = Ej .graphID)
6 AND ∀m

i=1(Vi.vertexLabel = QVi.vertexLabel)
7 AND ∀n

j=1(Ej .edgeLabel = QEj.edgeLabel)
8 AND ∀n

j=1(Ej .sV ertex = Vf .vertexID AND Ej .dV ertex = Vf .vertexID);
(transTemplate)

Where each referenced table Vi (Line number 2) represents an instance from
the table V ertices and maps the information of one vertex of the set of
vertices QV which is belonging to the sub-graph query q. Similarly, each
referenced table Ej represents an instance from the table Edges and maps
the information of one edge of the set of edges QE which is belonging to
the sub-graph query q. f is the mapping function between each vertex of
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QV and its associated vertices table instance Vi. Line number 4 of the SQL
translation template represents a set of m−1 conjunctive conditions to ensure
that all queried vertices belong to the same graph. Similarly, Line number 5
of the SQL translation template represents a set of n conjunctive conditions
to ensure that all queried edges belong to the same graph of the queried
vertices. Lines number 6 and 7 represent the set of conjunctive predicates of
the vertex and edge labels respectively. Line number 8 represents the edges
connection information between the mapped vertices.

– Verification phase: this phase is an optional phase. We apply the verifica-
tion process only if more than one vertex of the set of query vertices QV have
the same label. Therefore, in this case we need to verify that each vertex in
the set of filtered vertices for each candidate graph database member gi is
distinct. This can be easily achieved using their vertex ID. Although the fact
that the conditions of the verification process could be injected into the SQL
translation template of the filtering phase, we found that it is more efficient
to avoid the cost of performing these conditions over each graph database
members gi by delaying their processing (if required) in a separate phase
after pruning the candidate list.

Clearly, an obvious problem of the SQL translation template of the filtering
is that it involves a large number of conjunctive SQL predicates (2m + 4n)
and join (m + n) Vertices and Edges tables instances. Hence, although this
template can be efficiently used with relatively small sub-graph search queries,
most of relational query engines will certainly fail to execute the SQL translation
queries of medium size or large sub-graph queries because they are too long and
too complex (this does not mean they must consequently be too expensive).
In the following subsections we will describe our approach to effectively deal
with this problem by carefully and efficiently decomposing this complex one step
evaluation step into a series of well designed relational evaluation steps.

3.2 Relational Indexes Support for Vertex-Edge Mapping Scheme

Relational database indexes have proven to be very efficient tools to speed up
the performance of evaluating the SQL queries. Moreover, the performance of
queries evaluation in relational database systems is very sensitive to the defined
indexes structures over the data of the source tables. In principal, using rela-
tional indexes can accelerate the performance of queries evaluation in several
ways. For example, applying highly selective predicates first can limit the data
that must be accessed to only a very limited set of rows that satisfy those pred-
icates. Additionally, query evaluations can be achieved using index-only access
and save the necessity to access the original data pages by providing all the data
needed for the query evaluation. In [15], He and Singh have presented an index-
ing scheme for processing graph queries which is very similar to R-Tree index
structure. However, R-tree indexing technique is not commonly supported by
many of the RDBMS systems where B-tree indexing is still the most commonly
used technique. Therefore, in our purely relational framework, we use a stan-
dard, powerful and matured indexing mechanisms to accelerate the processing
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performance of our SQL evaluation of the sub-graph queries, namely partitioned
B-tree indexes and automated relational index advisors.

Partitioned B-tree Indexes Partitioned B-tree indexes are considered to be
a slight variant of the B-tree indexing structure. The main idea of this index-
ing technique has been represented by Graefe in [10] where he recommended
the use of low-selectivity leading columns to maintain the partitions within the
associated B-tree. For example, in labelled graphs, it is generally the case that
the number of distinct vertices and edges labels are far less than the number
of vertices and edges respectively. Hence, for example having an index defined
in terms of columns (vertexLabel, graphID) can reduce the access cost of sub-
graph query with only one label to one disk page which is storing a list of graphID
of all graphs which are including a vertex with the target query label. On the
contrary, an index defined in terms of the two columns (graphID, vertexLabel)
requires scanning a large number of disk pages to get the same list of targeted
graphs. Conceptually, this approach could be considered as a horizontal parti-
tioning of the Vertices and Edges table using the high selectivity partitioning
attributes. Therefore, instead of requiring an execution time which is linear with
the number of graph database members (graph database size), having parti-
tioned B-trees indexes of the high-selectivity attributes can achieve fixed execu-
tion times which are no longer dependent on the size of the whole graph database
[10,13].

Automated Relational Index Advisor Leveraging the advantage of relying
on a pure relational relational infrastructure, we are able to use the ready made
tools provided by the RDBMSs to propose the candidate indexes that are effec-
tive for accelerating our query work loads. In our work, we were able to use the
db2advis tool provided by the DB2 engine (our hosting experimental engine) to
recommend the suitable index structure for our query workload. Through the use
of this tool we have been able significantly improve the quality of our designed
indexes and to speed up the evaluation of our queries by reducing the number
of calls to the database engine. Similar tools are available in most of the widely
available commercial RDBMSs.

3.3 Statistical Summaries Support of Vertex-Edge Mapping Scheme

In general, one of the most effective techniques for optimizing the execution
times of SQL queries is to select the relational execution based on the accurate
selectivity information of the query predicates. For example, the query optimizer
may need to estimate the selectivities of the occurrences of two vertices in one
subgraph, one of these vertices with label A and the other with label B to choose
the more selective vertex to be filtered first. Providing an accurate estimation for
the selectivity of the predicates defined in our SQL translation template requires
having statistical information that contain information about the structure of
the stored graph data. Additionally, these statistics must be small enough to
be processed efficiently in the short time available for query optimization and
without any disk accesses. Therefore, we construct three Markov tables to store
information about the frequency of occurrence of the distinct labels of vertices,
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Fig. 3. Sample Markov tables summaries of Vertex-Edge mapping

distinct labels of edges and connection between pair of vertices (edges). Figure 3
presents an example of our Markov table summary information. In our context,
we are only interested in label and edge information with low frequency. There-
fore, it is not necessary and not useful to keep all such frequency information.
Hence, we summarize these Markov tables by deleting high-frequency tuples up
to certain defined threshold freq. The following subsection will explain how we
can use these information about the low frequency labels and edges to effectively
prune the search space, reduce the size of intermediate results and influence the
decision of the relational query optimizers to select the most efficient join order
and the cheapest execution plan in our decomposed and selectivity-aware SQL
translation of sub-graph queries.

3.4 Decomposition-Based and Selectivity-Aware SQL Translation
of Sub-graph Queries

In Section 3, we described our preliminary mechanism for translating sub-graph
queries into SQL queries using our Vertex-Edge mapping. As discussed previ-
ously, the main problem of this one-step translation mechanism is that it cannot
be used with medium or large sub-graph queries as it generate SQL queries that
are too long and too complex. Therefore, we need a decomposition mechanism
to divide this large and complex SQL translation query into a sequence of in-
termediate queries (using temporary tables) before evaluating the final results.
However, applying this decomposition mechanism blindly may lead to inefficient
execution plans with very large, non-required and expensive intermediate results.
Therefore, we use the statistical summary information described in Section 3.3
to perform an effective selectivity-aware decomposition process. Specifically, our
decomposition-based and selectivity-aware translation mechanism goes through
the sequence of following steps:
– Identifying the pruning points. The frequency of the labels of vertices and

edges in addition to the frequency of edge connection play a crucial role in our
decomposition mechanism. Each vertex label, edge label or edge connection
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with low frequency is considered as a pruning point in our relational evalua-
tion mechanism. Hence, given a query graph q, we first check the structure of
q against our summary Markov tables to identify the possible pruning points.
We refer to the number of the identified pruning points by NPP .

– Calculating the number of partitions. As we previously discussed, hav-
ing a sub-graph query q consists of a m vertices and a set of n edges requires
(2m + 4n) conjunctive conditions. Assuming that the relational query en-
gine can evaluate up to number of conjunctive condition equal to NC in
one query then the number of partitions (NOP ) can be simply computed as
follows : (2m + 4n)/NC

– Decomposed SQL translation. Based on the identified number of pruning
points (NPP ) and the number of partitions (NOP ), our decomposition
process can be described as follows:
• Blindly Single-Level Decomposition. if NPP = 0 then we blindly de-

compose the sub-graph query q into the calculated number of partition
NOP where each partition is translated using our translation template
into an intermediate evaluation step Si. The final evaluation step FES
represents a join operation between the results of all intermediate evalu-
ation steps Si in addition to the conjunctive condition of the sub-graphs
connectors. The unavailability of any information about effective prun-
ing points could lead to the result where the size of some intermediate
results may contain a large set of non-required graph members.

• Pruned Single-Level Decomposition. if NPP >= NOP then we
distribute the pruning points across the different intermediate NOP par-
titions. Therefore, we ensure a balanced effective pruning of all interme-
diate results, by getting rid of the non-required graph database member
early which consequently results in a highly efficient performance. All in-
termediate results Si of all pruned partitions are constructed before the
final evaluation step FES joins all these intermediate results in addition
to the connecting conditions to constitute the final result.
• Pruned Multi-Level Decomposition.if NPP < NOP then we distribute

the pruning points across a first level intermediate results of NOP par-
titions. This step ensures an effective pruning of a percentage of NPP/
NOP % partitions. An intermediate collective pruned step IPS is con-
structed by joining all these pruned first level intermediate results in addi-
tion to the connecting conditions between them. Progressively, IPS is used
as an entry pruning point for the rest (NOP − NPP ) non-pruned parti-
tions in a hierarchical multi-level fashion to constitute the final result set.
In this situation, the number of non-pruned partitions can be reduced if
any of them can be connected to one of the pruning points. In other words,
each pruning point can be used to prune more than one partition (if pos-
sible) to avoid the cost of having any large intermediate results.

Figure 4 illustrates two example of our selectivity-aware decomposition pro-
cess where the pruning vertices are marked by solid fillings, pruning edges
are marked by bold line styles and the connectors between subgraphs are
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Fig. 4. Selectivity-aware decomposition process

marked by dashed edges. Figure 4(a) represents an example where the num-
ber of pruning points is greater than the number of partitions. Figure 4(b)
represents an example where one pruning vertex is shared by the different
partitioned sub-graphs because the number of pruning points is less than the
number of partitions.

– Selectivity-aware Annotations. In principal, the main goal of RDBMS
query optimizers is to find the most efficient execution plan for every given
SQL query. For any given SQL query, there are a large number of alternative
execution plans. These alternative execution plans may differ significantly in
their use of system resources or response time. Sometimes query optimizers are
not able to select the most optimal execution plan for the input queries because
of the unavailability or the inaccuracy of the required statistical information.
To tackle this problem, we use our statistical summary information to give in-
fluencing hints for the query optimizers by injecting additional selectivity in-
formation for the individual query predicates into the SQL translations of the
graph queries. These hints enable the query optimizers to decide the optimal
join order, utilizing the most useful indexes and select the cheapest execution
plan. In our context, we used the following syntax to pass the selectivity infor-
mation to the DB2 RDBMS query optimizer:

SELECT fieldlist FROM tablelist

WHERE Pi SELECTIVITY Si

Where Si indicates the selectivity value for the query predicate Pi. These
selectivity values are ranging between 0 and 1. Lower selectivity values (close
to 0) will inform the query optimizer that the associated predicates will
effectively prune the number of the intermediate result and thus they should
be executed first.

4 Performance Evaluation

In this section, we present a performance evaluation of GraphREL as a purely
relational framework for storing graph data and processing sub-graph queries.
We conducted our experiments using the IBM DB2 DBMS running on a PC with
2.8 GHZ Intel Xeon processors, 4 GB of main memory storage and 200 GB of
SCSI secondary storage. In principle, our experiments have the following goals:
1) To demonstrate the efficiency of using partitioned B-tree indexes and selec-

tivity injections to improve the execution times of the relational evaluation
of sub-graph queries.
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2) To demonstrate the efficiency and scalability of our decomposition-based and
selectivity-aware relational framework for processing sub-graph queries.

4.1 Datasets

In our experiments we use two kinds of datasets:
1) The real DBLP dataset which presents the famous database of bibliographic

information of computer science journals and conference proceedings [1]. We
converted the available XML tree datasets into labelled directed graphs by
using edges to represent the relationship between different entities of the
datasets such as: the ID/IDREF, cross reference and citation relationships.
Five query sets are used, each of which has 1000 queries. These 1000 queries
are constructed by randomly selecting 1000 graphs and then extracting a
connected m edge subgraph from each graph randomly. Each query set is
denoted by its edge size as Qm.

2) A set of synthetic datasets which is generated by our implemented data gen-
erator which is following the same idea proposed by Kuramochi et al. in [17].
The generator allows the user to specify the number of graphs (D), the aver-
age number of vertices for each graph (V), the average number of edges for
each graph (E), the number of distinct vertices labels (L) and the number
of distinct edge labels (M). We generated different datasets with different
parameters according to the nature of each experiment. We use the notation
DdEeV vLlMm to represent the generation parameters of each data set.

4.2 Experiments

The effect of using partitioned B-tree indexes and selectivity injec-
tions. Figures 5(a) and 5(b) indicate the percentage of speed-up improvement
on the execution times of the SQL-based relational evaluation sub-graph queries
using the partitioned B-tree indexing technique and the selectivity-aware an-
notations respectively. In these experiments we used an instance of a syntactic
database that was generated with the parameters D200kV 15E20L200M400 and
a DBLP instance with a size that is equal to 100 MB. We used query groups
with different edge sizes of 4,8,12,16 and 20. The groups with sizes of 4 and 8 are
translated into one SQL evaluation step, the queries with sizes of 12 and 16 are
decomposed into two SQL evaluation steps and the queries with of size 20 are
decomposed into three SQL evaluation steps. The reported percentage of speed
up improvements are computed using the formula: (1− G

C ) %. In Figure 5(a) G
represents the execution time of the SQL execution plans using our defined set of
the partitioned B-tree indexes while C represents the execution time of the SQL
execution plans using the traditional B-tree indexes. Similarly, in Figure 5(b) G
represents the execution time of the SQL execution plans with the injected selec-
tivity annotations while C represents the execution time of the SQL execution
plans without the injected selectivity annotations. The results of both experi-
ments confirm the efficiency of both optimization techniques on both data sets.
Clearly, using partitioned B-tree indexes has a higher effect on improving the
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Fig. 5. The speedup improvement for the relational evaluation of sub-graph queries
using partitioned B-tree indexes and selectivity-aware annotations

execution of the SQL plans because it dramatically reduce the access cost of
the secondary storage while selectivity annotations only improve the ability to
select the more optimal execution plans. Additionally, the effect on the synthetic
database is greater than the effect on the DBLP database because of the higher
frequency on the vertex and edge labels and thus reducing the cost of accessing
the secondary storage is more effective. The bigger the query size, the more join
operations are required to be executed and consequently the higher the effect
of both optimization techniques on pruning the cost of accessing the secondary
storage and improving the execution times.

Performance and Scalability. One of the main advantages of using a rela-
tional database to store and query graph databases is to exploit their well-know
scalability feature. To demonstrate the scalability of our approach, we conducted
a set of experiments using different database sizes of our datasets and different
query sizes. For the DBLP data sets, we used different subsets with sizes of
1,10,50 and 100MB. For the synthetic datasets, we generate four databases with
the following parameters: D2kV 10E20L40M50, D10kV 10E20L40M50,
D50kV 30E40L90M150 and D100kV 30E40L90M150. For each dataset, we gen-
erated a set of 1000 queries. Figures 6(a) and 6(b) illustrate the average execution
times for the SQL translations scripts of the 1000 sub-graph queries.

In these figures, the running time for sub-graph query processing is presented
in the Y-axis while the X-axis represents the size of the query graphs. The running
time of these experiments include both the filtering and verification phases. How-
ever, on average the running time of theverificationphase represents 5%of the total
running time and can be considered as have a negligible effect on all queries with
small result set. Obviously, the figures show that the execution times of our system
performs and scales in a near linear fashion with respect to the graph database and
query sizes. This linear increase of the execution time starts to decrease with the
very large database sizes (DBLP 100MB and Synthetic D100kV 30E40L90M150)
because of the efficiency of the partitioned B-tree indexing mechanism which
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Fig. 6. The scalability of GraphREL

decouples the query evaluation cost from the total database size. . To the best
of our knowledge, this work is the first to successful demonstrate a feasible ap-
proach of processing large subgraph queries up to 20 vertices and 20 edges over
graph databases with such very large sizes up to 100 MB.

5 Related Work

Recently, graph database has attracted a lot of attentions from the database
community. In [9], Shasha et al. have presented GraphGrep as a path-based ap-
proach for processing graph queries. It enumerates all paths through each graph
in a database until a maximum length L and records the number of occurrences
of each path. An index table is then constructed where each row stands for a
path, each column stands for a graph and each entry is the number of occur-
rences of the path in the graph. The main problem of this approach is that many
false positive graphs could be returned in the filtering phase. In addition, enu-
merating the graphs into a set of paths may cause losing some of their structural
features. Some researchers have focused on indexing and querying graph data
using data mining techniques such as: GIndex [22], TreePi [25] and Tree+Δ
[26]. In these approaches data mining methods are firstly applied to extract the
frequent subgraphs (features) and identify the graphs in the database which con-
tain those subgraphs. Clearly, the effectiveness of these approaches depends on
the quality of the selected features. In addition, the index construction time of
these approach requires an additional high space cost and time overhead for enu-
merating all the graph fragments and performing the graph mining techniques.
Moreover, all of these approaches deal with relatively small graph databases
where they assume either implicitly or explicitly that the graph databases can
completely or the major part of them fit into the main memory. None of them
have presented a persistent storage mechanism of the large graph databases. In
[27] Jiang et al. proposed another graph indexing scheme called GString. GString
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approach focus on decomposing chemical compounds into basic structures that
have semantic meaning in the context of organic chemistry. In this approach the
graph search problem is converted into a string matching problem and specific
string indices is built to support the efficient string matching process. We believe
that converting sub-graph search queries into sting matching problem could be
an inefficient approach specially if the size of the graph database or the sub-
graph query is large. Additionally, it is not trivial to extend GString approach
to support processing of graph queries in other domain of applications.

6 Conclusions

Efficient sub-graph query processing plays a critical role in many applications
related to different domains which involve complex structures such as: bioinfor-
matics, chemistry and social networks. In this paper, we introduced GraphRel
as a purely relational framework to store and query graph data. Our approach
converts a graph into an intuitive relational schema and then uses powerful in-
dexing techniques and advanced selectivity annotations of RDBMSs to achieve
an efficient SQL execution plans for evaluating subgraph queries. In principle
GraphREL has the following advantages:
1) It employs purely relational techniques for encoding graph data and process-

ing the sub-graph search query. Hence, it can reside on any relational database
system and exploits its well known matured query optimization techniques
as well as its efficient and scalable query processing techniques.

2) It has no required time cost for offline or pre-processing steps.
3) It can handle static and dynamic (with frequent updates) graph databases

very well. It is easy to maintain the graph database members and no special
processing is required to insert new graphs, delete or update the structure of
existing graphs.

4) The selectivity annotations for the SQL evaluation scripts provide the rela-
tional query optimizers with the ability to select the most efficient execution
plans and apply an efficient pruning for the non-required graph database
members.

5) As we have demonstrated in our experiments, using the well-known scalability
feature of the relational database engine, GraphREL can achieve a very high
scalability and ensure its good performance over very large graph databases
and large sub-graph queries.
In the future, we will experiment our approach with other types of graphs

and will explore the feasibility of extending our approach to deal with similarity
queries and the general subgraph isomorphism problem as well.
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Abstract. Graph-structured databases and related problems such as reachability
query processing have been increasingly relevant to many applications such as
XML databases, biological databases, social network analysis and the Seman-
tic Web. To efficiently evaluate reachability queries on large graph-structured
databases, there has been a host of recent research on graph indexing. To date,
reachability indexes are generally applied to the entire graph. This can often be
suboptimal if the graph is large or/and its subgraphs are diverse in structure. In
this paper, we propose a uniform framework to support existing reachability in-
dexing for subgraphs of a given graph. This in turn supports fast reachability
query processing in large graph-structured databases. The contributions of our
uniform framework are as follows: (1) We formally define a graph framework
that facilitates indexing subgraphs, as opposed to the entire graph. (2) We pro-
pose a heuristic algorithm to partition a given graph into subgraphs for indexing.
(3) We demonstrate how reachability queries are evaluated in the graph frame-
work. Our preliminary experimental results showed that the framework yields a
smaller total index size and is more efficient in processing reachability queries on
large graphs than a fixed index scheme on the entire graphs.

1 Introduction

Recent interests on XML, biological databases, social network analysis, the Semantic
Web, Web ontology and many other emerging applications have sparked renewed in-
terests on graph-structured databases (or simply graphs) and related problems (e.g.,
query processing and optimization). In this paper, we focus on querying large graphs.
In particular, we are interested in a kind of fundamental queries from classical graph-
structured databases – reachability query. Specifically, given two vertices u and v, a
reachability query returns true if and only if there is a directed path from u and v (de-
noted u � v); otherwise, the query returns false.

Reachability queries have many emerging applications in graph-structured databases.
For example, in XML, the ancestor and descendant axes of XPATH can be implemented
with reachability queries on the graph representation of XML. Reachability queries are

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 138–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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also useful for building a query language [1] for the Semantic Web. As required by
these applications, it is desirable to have efficient reachability query processing.

Example 1. Consider a directed graph that represents a social network of a set of re-
searchers, where the vertices correspond to researchers and the edges correspond to the
co-authorship relationship between two researchers, as shown in Figure 1. Social net-
work analysis may often require reachability queries. For example, we may ask whether
a researcher “Alice” has an Erdös number. A simple way to answer this query is to check
whether “Alice” is reachable from “Paul Erdös”.

To provide some background on reachability queries, we review existing naı̈ve evalu-
ation algorithms for reachability queries and the indexes for different kinds of graphs.
There are two naı̈ve alternatives for evaluating reachability queries on a graph: (1) A
reachability query can be evaluated using a traversal of the graph. The runtime is
O(|G|), where |G| denotes the size of the graph G. (2) A reachability query can also be
evaluated by precomputing the transitive closure of the graph, whose size is quadratic to
the graph size in the worst case. A reachability query can then be a simple selection on
the transitive closure. It is clear that these two approaches are not scalable. Much index-
ing technique has been proposed for optimizing reachability queries on trees [2,3], di-
rected acyclic graphs (DAGs) [4,5,6,7,8], and arbitrary graphs [9,10,11] (see Section 5).
These indexes have demonstrated some performance improvement on the graphs with
certain structural characteristics.

Unlike relational data, graph-structured data may vary greatly in its structure; e.g.,
trees, sparse/dense DAGs and sparse/dense cyclic graphs. It is evident that the structure
of the graphs has an impact on the performance of reachability indexes on graphs. For
instance, dual labeling [11] works best for sparse graphs but performs suboptimally on
dense graphs. Hence, a single reachability index is sometimes not ideal to graphs that
have different structures. Given these, we raise the following issues and propose some
solutions for these issues in this paper:

1. A notion of data granularity is missing in graph-structured databases. Let us con-
sider an example from relational databases. One may build a B+ tree on a subset of
the attributes of a relation for range queries and a hash index on some other sub-
sets of attributes for equi-joins. In comparison, to date, a graph index (such as dual
labeling [11]) is either applied to the entire graph, or not applied at all. Is there a
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general approach to seamlessly support multiple indexes? For example, one may
apply dual labeling [11] to one subgraph and 2-hop [10] to another?

2. Structural differences between subgraphs have not been considered by state-of-
the-art reachability indexes. Many real graphs such as Web graphs, telephone call
graphs, and global social network graphs have different structures, both locally and
globally. Real graphs, as a whole, are typically sparse with a constant average de-
gree [12]. However, there may be local dense subgraphs. Hence, we need to address
structural differences and determine suitable indexing techniques for subgraphs. Is
it possible to detect different substructures from a graph and apply suitable indexes
to these substructures?

3. Different reachability indexing techniques require different query evaluation al-
gorithms. Is it possible to support multiple indexes and yet reuse existing query
evaluation algorithms without modifying the indexes?

To address the above issues, we propose a uniform framework for indexing graphs.
With the framework, we can flexibly use any existing index for reachability queries on
subgraphs of a graph. An overview of our framework is shown in Figure 2. Our frame-
work consists of two components: (1) Graph framework construction through graph
partitioning and (2) reachability query evaluation on the graph framework with differ-
ent indexes. As a proof of concept, our current prototype supports two state-of-the-art
indexes for reachability queries, namely Interval [7] and HOPI [13].

In summary, we define a graph framework to represent a graph as a set of parti-
tions and a graph skeleton. Each partition can use any existing reachability index. In
conjunction with the framework, we define a cost function and propose a heuristic al-
gorithm for graph partitioning. We illustrate how existing query evaluation techniques
can be extended to our graph framework. In particular, a reachability query is casted
into inter-partition and intra-partition reachability queries on indexes. We present our
experimental evaluation on our framework with both synthetic and real graphs.

The remainder of the paper is organized as follows: In Section 2, we define notations
used in this paper, our graph framework and the evaluation of reachability queries using
the graph framework. The graph framework construction is presented in Section 3. In
Section 4, we present an experimental study to evaluate the effectiveness and efficiency
of our approach. Related work is discussed in Section 5. We conclude this work and
present future work in Section 6.
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2 Labeling Graph Framework for Reachability Query

In this section, we define our graph framework to represent reachability information
of an arbitrary graph. In brief, the graph framework comprises information of strongly
connected components, partitions of a graph and connections between partitions. We
evaluate reachability queries efficiently by applying multiple indexing techniques to
the graph framework. We defer the details of the construction of the graph framework
to Section 3.

We describe the notations used in this work in Section 2.1. In Section 2.2, we present
the definition of our graph framework and its properties. In Section 2.3, we show how to
apply multiple indexes to the graph framework and how to process reachability queries
in the graph framework.

2.1 Preliminaries

We denote a directed graph to be G = (V, E), where V is a (finite) set of vertices, and
E is a (finite) set of directed edges representing the connection between two vertices.
We define an auxiliary function reach(v1, v2) that returns true iff v1 can reach v2.

Definition 1. The condensed graph of G is denoted as G∗ = (V ∗, E∗), where a ver-
tex v∗i ∈ V ∗ represents a strongly connected component Ci in G and each edge
(vi, vj) ∈ E∗ iff there is at least one edge (u, v) ∈ E such that u ∈ Ci and v ∈ Cj .

The condensed graph can be computed efficiently using Tarjan’s algorithm with time
complexity O(|V |+|E|) [19].

We use Gi to denote a subgraph of G and Vi to denote the set of vertices in Gi. We
define a (non-overlapping) partitioning of graph as follows:

Definition 2. A partitioning of graph G P (G) is {G1, G2, ..., Gk}, where ∀ i ∈ [1...k],
k ≤ |V |, ∪k

i=1Vi = V , Vi ∩ Vj = ∅, where i �= j.

Example 2. Consider the graph shown in Figure 3(a). We partition the graph on the
left into three partitions V1={0, 1, 2, 3, 4, 5}, V2={6, 7, 8, 9} and V3={10, 11, 12}. G1,
G2 and G3 is a dense subgraph, a subtree and a sparse subgraph, respectively.

Based on this partitioning, we define a partition-level graph as follows.

Definition 3. Given a partitioning P (G), the partition-level graph Gp(G) is (Vp, Ep),
where each vertex vi ∈ Vp represents a partition Gi in P (G) and an edge (vi, vj) ∈ Ep

if there is an edge (u, v) ∈ E such that u and v are vertices in Partitions Gi and Gj ,
respectively.

Example 3. Consider the graph G and its partitioning P (G) in Example 2. The partition-
level graph Gp(G) is shown in Figure 3(b). Vertices 1, 2 and 3 in Gp represent Partitions
G1, G2 and G3, respectively.

Next, let us consider the relationships between two partitions Gi and Gj that has not
been captured by the partition-level graph. We define a partition-level skeleton graph
Gps(G) to capture the connecting vertices of partitions of a graph G.
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Definition 4. Given a partition-level graph Gp(G), the partition-level skeleton graph
Gps(G) is (Vps, Eps), where Vps ⊆ V , v ∈ Vps is either a source or a target vertex of
an inter-partition edge and Eps is the set of inter-partition edges.

With the above, a graph skeleton is defined as follows:

Definition 5. Given a graph G and a partitioning of G, P (G), the graph skeleton
S(G) is a 3-ary tuple (Gp, Gps,M), where Gp=(Vp, Ep) is the partition-level graph,
Gps=(Vps, Eps) is the partition-skeleton graph and M : Vp → 2Vps is a mapping
function that takes a partition vi as input and gives a subset of Vps: {v | v ∈ Vps and
v ∈ Gi} as output.

To illustrate the mapping functionM, we give an example in Figure 3.

2.2 Graph Framework

Given the previous preliminary definitions, we propose our graph framework.

Definition 6. A graph framework of a graph G, denoted as H(G), consists of a strongly
connected component index C(V ), a partitioning of the condensed graph P (G∗) and a
graph skeleton S(G∗): H(G)= (C(V ),P (G∗), S(G∗)).

We remark that the proposed graph framework has the following properties:

– The graph framework supports multiple reachability indexing techniques. Different
partitions may use different indexing techniques.

– The graph skeleton, which contains the inter-partition information, can be indexed
in order to facilitate query processing. For example, we could apply the hash index
to accelerate the search on the mapping M and any reachability indexes to the
graph Gp and Gps in S(G∗).

– The graph framework consists of indexed subgraphs. Hence, the query evaluation
on the graph framework can be transformed into the query evaluation on relevant
indexed subgraphs.
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2.3 Query Processing on Graph Framework with Reachability Indexing

In this subsection, we present an algorithm for evaluating a reachability query on our
graph framework with multiple reachability indexes, as shown in Algorithm 1.

Algorithm 1. A query evaluation algorithm on the graph framework
evaluate-query

Input: a graph framework H(G): (C(V), P (G∗), S(G∗)) with indexes, two input vertices x and y,
where x, y ∈ V

Output: true if x can reach y, false otherwise
1: if C(x)==C(y)
2: return true
3: denote Gi(Gj) to be the partition of x(y)
4: if Gi = Gj

5: return true if x � y in Gi, false otherwise
6: if Gi 
� Gj with respect to Gp in S(G∗)
7: return false
8: else Vi=M(i), Vj=M(j)
9: for each vertex vi ∈ Vi

10: for each vertex vj ∈ Vj

11: if vi � vj with respect to Gs in S(G∗)
12: return true if x � vi in Gi and vj � y in Gj

13: return false

Algorithm evaluate-query returns true if vertex x is able to reach vertex y. It
returns false otherwise. The first step is to obtain the strongly connected component
for vertices x and y. If they are in the same strongly connected component, the query
returns true (Lines 1-2). Next, we compute the partitions where x and y reside, i.e., Gi

and Gj (Line 3). If the two input vertices are in the same partition, we use the index
of the partition to answer the reachability query (Lines 4-5). Next, if we find that Gi

cannot reach Gj by using the index of Gp in S(G∗), then u is not able to reach v and
the query returns false (Lines 6-7). Otherwise, we apply the mappingM to obtain the
set of vertices in Gs related to partitions Gi and Gj , i.e., Vi and Vj (Line 8). We test
whether there is a vertex vi ∈ Vi that is able to reach Vj . If so, we return true if x is
able to reach vi in Gi and vj reaches y in Gj (Lines 9-12). Otherwise, we return false
(Line 13). The correctness of this algorithm can be easily derived from the definition of
the graph framework.

Complexity. The time complexity of query processing on graph framework is index-
dependant, i.e., it is determined by the reachability indexes applied to the graph frame-
work. For example, assume that vertices x and y are not in the same partition and
partition i, containing x, is indexed with interval labeling [7] with query time com-
plexity O(|Vi|) and partition j, containing y, is indexed with HOPI labeling [20] with
query time complexity O(|Ej |1/2). The partition-level graph Gp and partition-level
graph Gs are indexed with dual labeling [11] with constant query time complexity.
Hence, in this particular example, the overall complexity of evaluate-query is
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O(|Eij |(|Vi|+|Ej |1/2)), where Eij denotes the set of inter-partition edges connecting
the partition i and partition j.

3 Graph Framework Construction

Given an input graph G, we construct a graph framework as follows: (1) compute con-
densed graph G∗; (2) compute a partitioning of G∗, P (G∗), using a heuristic algorithm
proposed in Section 3.1; (3) based on P (G∗), compute the graph skeleton S(G∗). The
key in graph framework construction is to compute P (G∗). Once P (G) is computed,
the graph skeleton S(G) can simply be constructed as follows:

1. compute the partition-level graph Gp;
2. compute the set of inter-partition edges EI ;
3. compute the subgraph Gs which is induced by the edge set EI ; and
4. compute the mappingM between a partition and a set of vertices in Gs.

Hence, in this section, we focus on the details of determining P (G∗) of a given graph
G. First, we propose the objective function of our graph partitioning problem and the
heuristic algorithmic strategy to solve the problem. Next, we present how to estimate
the query cost of a graph and a graph framework, which is used in the heuristic graph
partitioning.

3.1 Heuristics for Graph Partitioning

In this subsection, we present the objectivity of our graph partitioning problem. Next,
we present the overall procedure for constructing the graph framework.

The graph partitioning problem considered in this work can be formulated as follows:
Given a graph G=(V , E), determine k non-overlapping subsets of V1,..., Vk such that:

1. ∪k
i=1Vi = V , Vi ∩ Vj = ∅ where i �= j; and

2. the estimation of query time; i.e., the number of labels accessed during query pro-
cessing, is minimal,

where k is determined during partitioning.

Overall algorithm. Let E(G) and E(H(G)) denote the query costs on a graph G and a
graph framework H(G), respectively. Our heuristic graph partition algorithm works as
follows: Given a k-partitioning of a graph P (G) and its corresponding graph framework
H(G), we create a new (k+1)th partition for a set of vertices P ′(G) if the resulting new
graph framework H ′(G) reduces the query cost; i.e., E(H ′(G))≤ E(H(G)) (shown in
Algorithm 2). Hence, in Algorithm 2, the main strategy is to determine whether further
partitioning reduces the cost.

More specifically, we start with a partitioning of G that all the vertices are in the
same partition (Line 1). Consider the current k-partition P (G). We find the partition
Gmax whose cost is maximum among all other partitions in P (G) (Line 3). Next, we
assign a set of vertices in G′ to a new partition Gk+1: for every vertex v in Gmax, we
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Algorithm 2. The heuristic graph partition algorithm partition(G)

Input: a digraph G
Output: a partitioning of G, P (G)
1: let k=1, Cpre=E(G), Cdecre=0, P (G)={G}
2: do
3: Gmax=arg max

1≤i≤k
{E(Gi)}, Gi ∈ P (G)

4: Vk+1 = ∅
5: for each vertex v of Gmax

6: if E(Gmax \ v) < E(Gmax)
7: Vk+1 = Vk+1 ∪ v
8: k + 1-partitioning P ′(G)={P (G) \ Vk+1, Gk+1}

/∗ where Gk+1 is the subgraph induced by Vk+1 ∗/
9: call refinement procedure, P (G)=Refinement(G, P ′(G))
10: Cdecre=E(P (G))-Cpre, Cpre=E(P (G)), k = k + 1
11: while Cdecre <0
12: return P (G)

place it into the new partition if its removal from Gmax decreases its cost (Lines 5-7).
This results in a k + 1-partitioning P ′(G) (Line 8). In order to optimize the quality of
the k + 1 partitions, we invoke the partition refinement procedure Refinement(G,
P ′(G)) (Line 9) to obtain Pr(G). We proceed to the next partitioning iteration if the
cost has been reduced in the current iteration. Otherwise, Algorithm 2 terminates and
returns Pr(G) (Lines 10-12).

Partition refinement. Next, we present the details of the refinement procedure (Algo-
rithm 3) used in Algorithm 2. In the refinement procedure, we improve the quality of
a given k-partitioning. We apply a search technique to find a better k-partitioning with
a lower cost. Initially, Algorithm 3 starts with a partitioning of graph P (G) (Line 1).
Then, for each vertex, we search for a good assignment that minimizes the cost: We find
the best target partition pid for a vertex v such that the new k-partitioning produced by
assigning v to Partition pid has the minimal cost among all other k-partitionings pro-
duced by other assignments (Lines 3-6). The partitioning algorithm terminates if the
new partitioning found does not decrease the cost or the iteration number is up to a user
input value m; otherwise, Algorithm 2 search for other possible assignments (Lines
7-9).

Complexity. Let the number of iterations needed in the refinement procedure be m.
The complexity of the whole partition procedure is O(mk2(|V | + |E|)), where k is
the number of partitions. We remark that the values of m and k are often small in real
applications.

3.2 Query Cost Estimation

In this subsection, we discuss how to model the costs, E(G) and E(H(G)). One of
the important properties of our framework is that it is able to support multiple reach-
ability indexes, where any single specified reachability index is a special case of our
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Algorithm 3. Partition Refinement Refinement(G, P (G))

Input: a digraph G, initial k-partitioning P (G), iteration number m
Output: a new k-partitioning of G, Pr(G)
1: Cpre=E(P (G)), Cdecre=0, i=0
2: do
3: for each vertex v ∈ V of G
4: let Pj (G) denotes a new partitioning resulted by removing v into partition j in P (G)
5: pid(v)=arg min

1≤j≤k
{E(Pj(G)) − E(P (G))}

6: P (G)=Ppid(G)
7: Cdecre=E(P (G))-Cpre, Cpre=E(P (G)), i++
8: while Cdecre <0 and i < m
9: return P (G)

framework. However, the accuracy of E(G) or E(H(G)) is highly dependant on the
cost model of reachability indexes involved. Hence, to compute the value of E(G) and
E(H(G)), the pre-condition is that involved reachability indexes have a reasonable cost
model. As an illustration, we implement two state-of-the-art indexes, Interval [7] and
HOPI [13] in our prototype of the graph framework. It has been known that the time
complexity for a reachability query on the HOPI and Interval indexes are O(|E| 12 ) and
O(|V |), respectively. Therefore, the query time estimation for E(G) can be modeled by
Equation 1.

E(G) = min(C1|V |, C2|E|
1
2 ), (1)

where C1 and C2 are the unit cost in real measurements.
Based on E(G), the estimated query time on H(G), which consists of a k-partitioning

P (G) and a graph skeleton S(G), is defined as follows:

E(H(G)) =
k∑

i=1

E(Gi) + E(Gp) + E(Gs), (2)

where k is the number of partitions.

4 Experimental Evaluation

In this section, we perform an experimental study to evaluate the effectiveness and ef-
ficiency of our proposed techniques. All experiments were run on a machine with a
3.4GHZ CPU. The run-times reported are the CPU times. We implemented all the pro-
posed techniques in C++. Regarding graph indexes, we used the HOPI implementation
from [13] and we implemented the Interval scheme for DAGs [7]. We also used the
implementation of a recent path-tree approach from Jin et al. [8].

4.1 Index Size and Query Performance Evaluation on Real Data

We used a collection of real graphs in this experiment. We report the statistics of the real
graphs in Table 1. Among them, “days”, “hep-th-new” and “eatRS” are obtained from
a Web graph repository [21]; and the other real graphs are provided by Jin et al. [8].
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Table 1. Statistics of real graphs

Tree-like graphs |V | |E| |V |∗ |E|∗ Other graphs |V | |E| |V |∗ |E|∗
kegg 14271 35170 3617 3908 days 13332 243447 13332 148038
vchocyc 10694 14207 9491 10143 hep-th-new 27770 352807 20086 130469
mtbrv 10697 13922 9602 10245 eatRS 23219 325624 15466 19916
agrocyc 13969 17694 12684 13408 hpycyc 5565 8474 4771 5859
anthra 13736 17307 12499 13104 nasa 5704 7942 5605 6537
human 40051 43879 38811 39576 xmark 6483 7654 6080 7025

Table 2. Index size comparison on real graphs.

Tree-like graphs HOPI Interval Ptree Our Other graphs HOPI Interval Ptree Our

kegg 9488 10078 1703 2884 days 199788 227364 – 199826
vchocyc 33920 20196 830 1216 hep-th-new 268524 244748 – 204802
mtbrv 34312 20406 812 1204 eatRS 31032 67952 – 31034
agrocyc 43664 26728 962 1362 hpycyc 16576 11658 4224 2118
anthra 42888 26146 733 1160 nasa 49954 12852 5063 1644
human 84916 79058 965 1438 xmark 44112 14038 2356 1880

In the first set of experiments, we compared the index size of our graph framework
with two popular approaches – Interval [7] and HOPI [20] and a recent path-tree ap-
proach [8] (PTree). The results are shown in Table 2. The reported index size is the
number of integers in the indexes.

From the results presented in Table 2, we found that the index size of our approach
is clearly smaller than that of the HOPI and Interval approaches. The reason is simple:
for each subgraph in our framework, our approach chose a relatively better one between
the two approaches. In addition, our approach is comparable to the Ptree approach. For
graphs that are not “tree-like”, our approach achieved a much smaller index size than
the Ptree approach (the bold numbers in Table 2). Although our approach is sometimes
worse than the Ptree approach for “tree-like” graphs, our approach is more general than
the Ptree approach since the Ptree approach could be a special case of our approach
(where the Ptree approach is applied to all partitions). However, since an accurate cost
model for the Ptree approach has not been available, we did not apply the Ptree approach
to any partition (subgraph) in our framework.

Next, we investigate the time for index construction and query processing. Here we
only compared our methods with HOPI and the Interval approach. This is because the
CPU time measurer and the query evaluator of these three approaches are all imple-
mented by us while the Ptree approach is provided by its authors. All three approaches
run on MS Windows while the Ptree approach runs on Linux. Hence, a comparison of
indexing and query time between our approach and the Ptree approach may be affected
by many implementation issues. When comparing the index construction time and the
query time, we used two metrics, i.e., SL, and SH to evaluate our approach, where

SL=min (HOPI, Interval)
our , and SH=max (HOPI, Interval)

our . SL measures the performance
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Table 3. Construction time comparison on real graphs (ms)

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 473.694 3.92742 4.19078 0.94 113 days 9484.38 93.113 9096.3502 0.01 1.04
vchocyc 1125 7.22463 7.3448 0.98 153 hep-th-

new
56281.3 66.7182 71.7037 0.93 785

mtbrv 1140.63 5.47139 8.26619 0.66 138 eatRS 1718.75 33.1035 1728.2479 0.02 0.995
agrocyc 1500 7.18841 9.66451 0.74 155 hpycyc 609.375 4.52743 5.76455 0.79 106
anthra 1453.13 7.01311 9.72699 0.72 149 nasa 1203.13 3.46655 4.4054 0.79 273
human 4343.75 38.9534 59.8715 0.65 73 xmark 1000 3.80507 4.83549 0.79 207

Table 4. Total query time comparison on real graphs (ms)

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 1315.07 1107.55 1097.85 1.008 1.2 days 7854.39 6645.64 7929.75 0.84 0.99
vchocyc 4136.98 2667.57 2674.55 0.997 1.5 hep-th-

new
5576.43 7265.8 5641.19 0.99 1.3

mtbrv 4128.25 2672.27 2738.87 0.98 1.5 eatRS 3397.71 3514.07 3442.64 0.987 1.02
agrocyc 4286.65 2839.21 2797.93 1.015 1.5 hpycyc 3818.74 2599.91 2520.07 1.03 1.5
anthra 4254.57 2782.02 2767.95 1.005 1.5 nasa 5672.01 2739.5 2720.18 1.007 2.08
human 5003.2 3957.09 3901.01 1.014 1.28 xmark 5178.59 2677.69 2698.7 0.99 1.91

comparison between our method and the best of the two static methods. SH measures
the performance gain if an inefficient static method is chosen.

Table 3 illustrates that the Interval approach requires two traversals to construct the
index and therefore always has the smallest indexing construction time. As known from
previous work [9], the HOPI indexing time for large graphs can often be costly. Since
a combination of HOPI and Interval is applied to our prototype implementation, the
construction time of our approach is roughly between these two. In particular, the time
depends on the percentage of the partitions using each of these indexing approaches. If
most of the partitions are using HOPI, the construction time is closer to HOPI, such as
the graph “days” and “eatRS”, as shown in Table 3.

To study query performance, we issue one million random reachability queries on
the indexes constructed for the real graphs. We used an in-memory IO simulation to es-
timate the IO cost. The IO simulation performs the following: Reachability labels (i.e.,
indexes) are stored in pages with the size 4KB. During query processing, we maintain a
buffer with the size 4MB. When we check whether two vertices are reachable, we first
obtain the ID of pages where the labels of two vertices are kept. Then we access the
buffer to read the labels from required pages. If those pages are in buffer, we read the
labels from pages directly. Otherwise, before reading labels from those pages, we insert
each page into buffer or replace an old page in buffer using LRU replacement policy. Fi-
nally, we report the total query time and the number of labels accessed during query pro-
cessing in Table 4 and 5, respectively. The average values of SL in the total query time
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Table 5. Number of labels accessed during query processing on real graphs

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 663830 415144 407876 1.02 1.63 days 14986610 32996064 14957887 1.0 2.2
vchocyc 3251476 246004 242602 1.02 13.4 hep-th-

new
8869499 47682220 8749328 1.01 5.45

mtbrv 3285414 248322 245036 1.01 13.4 eatRS 1333936 3181514 1333963 1.0 2.39
agrocyc 3292830 241414 237890 1.01 13.8 hpycyc 3017708 787830 770372 1.02 3.92
anthra 3298963 205832 206216 0.99 16 nasa 8993648 655730 655716 1.0 13.72
human 2160820 78618 80188 0.98 27 xmark 6838694 583146 583262 1.0 11.72
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Fig. 4. Index size and construction time comparison on synthetic data

and the number of labels accessed are 0.99 and 1.006, respectively. These indicate that
our approach is comparable to (or slightly better than) the best of Interval and HOPI
approaches in the total query time and the number of labels accessed. Moreover, the
average values of SH in the total query time and the number of labels accessed are 1.44
and 10.38, respectively. This supports that our approach avoids the cost of selecting an
inefficient static method. In all, our approach is both IO efficient and time efficient.

4.2 Index Size and Query Performance Evaluation on Synthetic Data

In Section 4.1, we compared our approach with Interval, HOPI and the Ptree approach
on real graphs. In order to have a full control over graph structures, we implemented our
own graph generator which controls the percentage of tree-like components and graph-
like components. The generator works as follows: First, we generate a set of tree-like
DAGs and a set of dense DAGs with the maximum fan-out of spanning tree F=6, the
branch depth of spanning tree D=6. Then, we generate a large graph with n vertices by
connecting p (×100%) dense graphs to 1-p (×100%) of tree-like graphs, where n and
p are the two input parameters.

We generate a set of random graphs with n around 30k, and varying p from 0 to 0.9.
The indexing size and index construction time comparison of Interval, HOPI, and our
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Fig. 5. Total query time and number of labels accessed comparison on synthetic data

approach is shown in Figure 41. Similar to the previous experiment, the index size of
our approach is significantly better than HOPI and Interval. Regarding the construction
time, we find that the construction time of our approach is comparable to the Interval
approach when the graph is sparse and slightly worse than the Interval approach when
the graph is dense. However, the construction time of our approach is much smaller
than that of the HOPI approach.

Figure 5 shows the total query time and the number of labels accessed of one million
random queries. It is clear that our approach has a better query performance and is more
IO efficient than the best of HOPI and Interval.

5 Related Work

There has been a large body of work on indexing for reachability queries on graphs.
Due to space constraints, we list a few (non-exhaustive) examples in this section.

Dietz [3] assigns an interval to each vertex in a tree. A vertex can reach another
vertex iff its interval is properly contained in the interval of the other vertex. There has
been a host of work that demonstrates good query performance of the interval approach.
Wu et al. [2] propose to use prime numbers to encode reachability information of a tree.
A vertex is labeled with a product of prime numbers. A vertex is reachable from another
vertex iff its label is divisible by the label of the other vertex. Wu and Zhang [5] extend
this work [2] to support DAGs. Wang et al. [11] combine the interval approach for trees
and a technique for indexing non-tree edges of a graph. The technique has a constant
query time and small index size. Schenkel [10] and Cheng [13] extend 2-hop labeling
scheme, originally proposed by Cohen et al. [9], to efficiently index a large collection of
XML documents. Trißl et al. [14] propose an efficient relational-based implementation
that bases on the interval and 2-hop labelings to index directed graphs.

All the aforementioned techniques index an entire graph. In contrast, our work fo-
cuses on a framework that supports applying different indexing techniques to different
subgraphs. Hence, this work is orthogonal to any specific indexes.

1 In this experiment, we did not compare the index size of our approach with Ptree [8], as our
files storing the random graphs cannot be recognized by the Ptree implementation in Linux.
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Perhaps [15,8] are the most relevant works. In [15], it proposes a hierarchical labeling
scheme that identifies spanning trees for the interval labelings [3] and dense subgraphs
in remainder graphs for 2-hop labeling [9]. While the problem being studied is similar
to ours, their approach is tightly coupled with interval labelings and compression of
the reachability matrix. Hence, it is not straightforward to incorporate arbitrary graph
indexes into their technique. In addition, our method for identifying substructures for
indexing is different. In [8], it applies a path-decomposition method to partition a DAG
into paths. Next, a path-path graph is proposed to capture the path relationship in a
DAG and is indexed with interval labelings. Each node u in a DAG is assigned with an
X label denoting the DFS order, a Y label denoting the path order and the interval labels
I of u’s corresponding path in the path-path graph. The reachability query between two
nodes u and v can be answered by comparing their X , Y , and I labels. Although we
are working on building graph framework through graph partitioning, our partitioning
method is to decompose the input graph into arbitrary subgraphs. That is, the structure
of each partition is more general than paths.

Graph partitioning has been one of the classical problems in combinatorial opti-
mization. The problem optimizes an input objective function. In general, this is an NP-
complete problem. Various heuristics, e.g., [16,17,18], have been proposed to find an
optimal partition, with respect to the objective function. In this paper, our objective
function is different from those solved by previous algorithms.

6 Conclusions and Future Work

In this paper, we proposed a uniform framework for efficiently processing reachability
query on large graphs. Specifically, a graph is represented by a set of partitions and inter-
partition connections. Subsequently, (possibly different) graph indexes can be applied
to each partition. This facilitates a seamless application of the state-of-the-art of graph
indexing on subgraphs represented in the graph framework. Our experimental study
verified the effectiveness and efficiency of our framework. In our experiment with a
large variety of synthetic graphs and real graphs, our framework consistently produced
relatively small indexes when compared to the best index of a non-partition approach.
In addition, our experiment showed that the framework improves the query processing
performance over the non-partitioning methods.

We would like to point out that our proposed method has some limitations. We plan
to extend our work in the future: First, our framework is proposed to enhance reach-
ability query performance. Yet, reachability queries can be a part of other query for-
malisms. We are studying the connection between reachability queries and other query
formalisms. Second, our query evaluation algorithm is proposed to evaluate one query
at a time on a single machine. We plan to study distributed reachability query evaluation
on a graph framework.

Acknowledgements. We are grateful to Jiefeng Cheng and Dr. Ruoming Jin for pro-
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M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp.
961–979. Springer, Heidelberg (2006)

14. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: SIG-
MOD, pp. 845–856 (2007)

15. He, H., Wang, H., Yang, J., Yu, P.S.: Compact reachability labeling for graph-structured data.
In: CIKM (2005)

16. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell
system technical journal 49(1), 291–307 (1970)

17. Karypis lab: Family of Multilevel Partitioning Algorithms,
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

18. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

19. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

20. Schenkel, R., Theobald, A., Weikum, G.: Hopi: An efficient connection index for com-
plex xml document collections. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
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Abstract. Partitional graph clustering algorithms like K-means and Star neces-
sitate a priori decisions on the number of clusters and threshold for the weight 
of edges to be considered, respectively. These decisions are difficult to make 
and their impact on clustering performance is significant. We propose a family 
of algorithms for weighted graph clustering that neither requires a predefined 
number of clusters, unlike K-means, nor a threshold for the weight of edges, 
unlike Star. To do so, we use re-assignment of vertices as a halting criterion, as 
in K-means, and a metric for selecting clusters’ seeds, as in Star. Pictorially, the 
algorithms’ strategy resembles the rippling of stones thrown in a pond, thus the 
name ‘Ricochet’. We evaluate the performance of our proposed algorithms us-
ing standard datasets and evaluate the impact of removing constraints by com-
paring the performance of our algorithms with constrained algorithms: K-means 
and Star and unconstrained algorithm: Markov clustering. 

Keywords: Clustering, Weighted Graph clustering, Document clustering, K-
Means Clustering, Star Clustering. 

1   Introduction 

Clustering algorithms partition a set of objects into subsets or clusters. Objects within 
a cluster should be similar while objects in different clusters should be dissimilar, in 
general. With a scalar similarity metric, the problem can be modeled as the partition-
ing of a weighted graph whose vertices represent the objects to be clustered and 
whose weighted edges represent the similarity values. For instance, in a document 
clustering problem (we use instances of this problem for performance evaluation) 
vertices are documents (vectors in a vector space model), pairs of vertices are con-
nected (the graph is a clique) and edges are weighted with the value of the similarity 
of the corresponding documents (cosine similarity) [1, 2]. Partitional clustering graph 
algorithms, as the name indicates, partition the graph into subsets or regions. It is 
trying to identify and separate dense regions from sparse regions in order to maximize 
intra-cluster density and inter-cluster sparseness [3]. 

Partitional graph clustering algorithms like K-means and Star require crucial a pri-
ori decisions on key parameters. The K-means clustering algorithm [4] requires the 
number of clusters to be provided before clustering. The Star clustering algorithm [5] 
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requires a threshold for the weight of edges to be fixed before clustering.  The choice 
of the value of these parameters can greatly influence the effectiveness of the cluster-
ing algorithms. 

In this paper, we propose a family of novel graph clustering algorithms that require 
neither the number of clusters nor a threshold to be determined before clustering. To 
do so, we combine ideas from K-means and Star. The proposed algorithms build sub 
graphs, assigning and dynamically reassigning vertices. We call the first vertex as-
signed to a sub graph the seed. The algorithms use degree of vertices and weights of 
adjacent edges for assignment and they use weights of adjacent edges for reassign-
ment. During reassignment, some sub graphs disappear. The algorithms stop when 
there is no more reassignment. We call the intermediary and resulting sub graphs, 
clusters (for the sake of simplicity we may use cluster and sub graph interchangeably 
in the remainder of this paper). Pictorially, the algorithms’ strategy resembles the 
rippling (iterative assignment) caused by stones (seeds) thrown in a pond, thus the 
name ‘Ricochet’. Our contribution is the presentation of this family of novel cluster-
ing algorithms and their comparative performance analysis with state-of-the-art algo-
rithms using real world and standard corpora for document clustering. 

In the next section we discuss the main state-of-the-art weighted graph clustering 
algorithms, namely, K-means, Star and Markov Clustering. In section 3, we show 
how we devise unconstrained algorithms spinning the ricochet and rippling metaphor. 
In section 4, we empirically evaluate and compare the performance of our proposed 
algorithms. Finally, we synthesize our results and contribution in section 5. 

2   Related Works 

K-means [4], Star [5] and Markov Clustering (or MCL) [6] are typical partitional 
clustering algorithms. They all can solve weighted graph clustering problems. K-
means and Star are constrained by the a priori setting of a parameter. Markov Cluster-
ing is not only unconstrained but also probably the state-of-the-art in graph clustering 
algorithms. Our proposal attempts to create an unconstrained algorithm by combining 
idea from K-means and Star. We review the three algorithms and their variants. 

K-means clustering [4] divides the set of vertices into K clusters by choosing ran-
domly K seeds or candidate centroids. The number of clusters, K, is provided a priori 
and does not change. K-means then assigns each vertex to the cluster whose centroid 
is the closest. K-means iteratively re-computes the position of the centroid based on 
the current members of each cluster. K-means converges because the average distance 
between vertices and their centroids monotonically decreases at each iteration. A 
variant of K-means efficient for document clustering is K-medoids [7]. We use K-
medoids to compare with our proposed algorithms. 

Unlike K-means, Star clustering [5], does not require the indication of an a priori 
number of clusters. It also allows the clusters produced to overlap. This is a generally 
desirable feature in information retrieval applications.  

For document clustering, Star clustering analytically guarantees a lower bound on 
the topic similarity between the documents in each cluster and computes more accu-
rate clusters than either the older single link [8] or average link [9] hierarchical  
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clustering. The drawback of Star clustering is that the lower bound guarantee on the 
quality of each cluster depends on the choice of a threshold  on the weight of edges 
in the graph.  

To produce reliable document clusters of similarity , Star algorithm prunes the 
similarity graph of the document collection, removing edges whose cosine similarity 
in a vector space is less than . Star clustering then formalizes clustering by perform-
ing a minimum clique cover with maximal cliques on this -similarity graph. Since 
covering by cliques is an NP-complete problem [10, 11], Star clustering approximates 
a clique cover greedily by dense sub-graphs that are star shaped, consisting of a single 
Star center and its satellite vertices.  

The selection of Star centers determines the Star cover of the graph and ultimately 
the quality of the clusters. [12] experimented with various metrics for the selection of 
Star centers to maximize the ‘goodness’ of the greedy vertex cover. The average met-
ric (i.e. selecting Star centers in order of the average similarity between a potential 
Star center and the vertices connected to it) is a fast and good approximation to the 
expensive lower bound metric [5] that maximizes intra-cluster density in all variants 
of the Star algorithm. The average metric [12] is closely related to the notion of aver-
age similarity between vertices and their medoids in K-medoids [7]. 

Markov Clustering tries and simulates a (stochastic) flow (or random walks) in 
graphs [6]. From a stochastic view point, once inside a region, a random walker 
should have little chance to walk out [13]. The graph is first represented as stochastic 
(Markov) matrices where edges between vertices indicate the amount of flow between 
the vertices. MCL algorithm simulates flow using two alternating operations on the 
matrices: expansion and inflation. The flow is eventually separated into different 
regions, yielding a cluster interpretation of the initial graph. MCL does not require an 
a priori number of expected clusters nor a threshold for the similarity values. How-
ever, it requires a fine tuning inflation parameter that influences the coarseness and 
possibly the quality of the result clusters. We nevertheless consider it as an uncon-
strained algorithm, as, our experience suggests, optimal values for the parameter seem 
to be rather stable across applications. 

Chameleon [14] is a hierarchical clustering algorithm that stems from the same moti-
vation as the one that prompted our proposal: the need for dynamic decisions in place of 
a priori static parameters. However, in effect, Chameleon uses three parameters: the 
number of nearest neighbours, the minimum size of the sub graphs, and the relative 
weightage of inter-connectivity and closeness. Although the authors [14] observed that 
the parameters have a mild effect on 2D data, the users always need to preset the values 
of parameters and their effects are unknown for other types of data such as documents 
(high dimensional data). In a more recent paper [15], the author of Chameleon combines 
agglomerative hierarchical clustering and partitional clustering. Their experimental 
results suggest that the combined methods improve the clustering solution.  

Our proposed family of algorithms, like Chameleon, is dynamic (we dynamically 
reassign vertices to clusters). However, our algorithms need no parameters. In spite of 
the absence of parameters, we hope to achieve effectiveness comparable to the best 
settings of K-means, Star and MCL. We also hope to produce more efficient algo-
rithms than K-means, Star and MCL. 
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3   A Family of Unconstrained Algorithms 

Ricochet algorithms, like other partitional graph clustering algorithms, alternate two 
phases: the choosing of vertices to be the seeds of clusters and the assignment of ver-
tices to existing clusters. The motivation underlying our work lies in the observation 
that: (1) Star clustering algorithm provides a metric of selecting Star centers that are 
potentially good cluster seeds for maximizing intra-cluster density, while (2) K-means 
provides an excellent vertices assignment and reassignment, and a convergence crite-
rion that increases intra-cluster density at each iteration. By using Star clustering 
metric for selecting Star centers, we can find potential cluster seeds without having to 
supply the number of clusters. By using K-means re-assignment of vertices, we can 
update and improve the quality of these clusters and reach a termination condition 
without having to determine any threshold. 

Hence, similar to Star and Star-ave algorithms [12], Ricochet chooses seeds in de-
scending order of the value of a metric combining degree with the weight of adjacent 
edges. Similar to K-means, Ricochet assigns and reassigns vertices; and the iterative 
assignment of vertices is stopped once these conditions are met: (1) no vertex is left 
unassigned and (2) no vertex is candidate for re-assignment.  

The Ricochet family is twofold. In the first Ricochet sub-family, seeds are chosen 
one after the other (‘stones are thrown one by one’). In the second Ricochet sub-
family, seeds are chosen at the same time (‘stones are thrown together’). We call the 
former algorithms Sequential Rippling, and the latter Concurrent Rippling. The algo-
rithms in the Sequential Rippling, because of the way they select seeds and assign or 
re-assign vertices, are intrinsically hard clustering algorithms, i.e. they produce dis-
joint clusters. The algorithms in the Concurrent Rippling are soft clustering algo-
rithms, i.e. they produce possibly overlapping clusters.  

The algorithms in the Sequential Rippling can be perceived as somewhat straight-
forward extensions to the K-means clustering. We nevertheless present them in this 
paper for the purpose of completeness and comparison with the more interesting algo-
rithms we propose in the Concurrent Rippling. 

3.1   Sequential Rippling 

3.1.1   Sequential Rippling (SR) 
The first algorithm of the subfamily is call Sequential Rippling (or SR). In this 
algorithm, vertices are ordered in descending order of the average weight of their 
adjacent edges (later referred to as the weight of a vertex). The vertex with the 
highest weight is chosen to be the first seed and a cluster is formed by assigning all 
other vertices to the cluster of this first seed. Subsequently, new seeds are chosen 
one by one from the ordered list of vertices. When a new seed is added, vertices are 
re-assigned to a new cluster if they are closer to the new seed than they were to the 
seed of their current cluster (if no vertex is closer to the new seed, no new cluster is 
created). If clusters are reduced to singletons during re-assignment, they are as-
signed to the nearest non-singleton cluster. The algorithm stops when all vertices 
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Fig. 1. Sequential Rippling Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Balanced Sequential Rippling Algorithm 

have been considered. The pseudocode of the Sequential Rippling algorithm is 
given in figure 1. The worst case complexity of Sequential Rippling algorithm is O 
(N3) because in the worst case the algorithm has to iterate through at most N verti-
ces, each time comparing the distance of N vertices to at most N centroids. 

3.1.2   Balanced Sequential Rippling (BSR) 
The second algorithm of the subfamily is called Balanced Sequential Rippling (BSR). 
The difference between BSR and SR is in its choice of subsequent seed. In order to 
balance the distribution of seeds in the graph, BSR chooses a next seed that is both a 
reasonable centroid for a new cluster (i.e. has large value of weight) as well as suffi-
ciently far from the previous seeds. Subsequent seed is chosen to maximize the ratio 
 

Given a Graph G = (V, E). V contains vertices, |V| = N. Each vertex has a weight which is 
the average similarity between the vertex and its adjacent vertices. E contains edges in G 
(self-loops removed) with similarity as weights.  
 
Algorithm: SR ( )  
Sort V in order of vertices’ weights 
Take the heaviest vertex v from V 
listCentroid.add (v)  
Reassign all other vertices to v’s cluster 
While (V is not empty)  
     Take the next heaviest vertex v from V 
     Reassign vertices which are more similar to v than to other centroid 
     If there are re-assignments 
          listCentroid.add (v) 
          Reassign singleton clusters to its nearest centroid 
For all i � listCentroid return i and its associated cluster 

Algorithm: BSR ( ) 
Sort V in order of vertices’ weights  
Take the heaviest vertex v from V 
listCentroid.add (v) 
Reassign all other vertices to v’s cluster 
Reassignment = true 
While (Reassignment and V is not empty) 
     Reassignment = false 

     Take a vertex v �listCentroid from V whose ratio of its weight to  
      the sum of its similarity  to existing centroids is the maximum 
     Reassign vertices which are more similar to v than to other centroid 
     If there are re-assignments 
          Reassignment = true 
          listCentroid.add (v) 
          Reassign singleton clusters to its nearest centroid 
For all i � listCentroid return i and its associated cluster 
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of its weight to the sum of its similarity to the centroids of already existing clusters. 
This is a compromise between weight and similarity. We use here the simplest possi-
ble formula to achieve such compromise. It could clearly be refined and fine-tuned.  

As in SR, when a new seed is added, vertices are re-assigned to a new cluster if 
they are closer to the new seed than they were to the seed of their current cluster. The 
algorithm terminates when there is no re-assignment of vertices. The pseudocode of 
Balanced Sequential Rippling algorithm is given in figure 2. The worst case complex-
ity of Balanced Sequential Rippling algorithm is O (N3) because in the worst case the 
algorithm has to iterate through at most N vertices, each time comparing the distance 
of N vertices to at most N centroids.  

3.2   Concurrent Rippling 

Unlike sequential rippling which chooses centroids one after another, concurrent 
rippling treats all vertices as centroids of their own singleton clusters initially. Then, 
each centroid concurrently ‘ripples its influence’ using its adjacent edges to other 
vertices. As the rippling progresses, some centroids can lose their centroid status (i.e. 
become non-centroid) as the cluster of smaller weight centroid is ‘engulfed’ by the 
cluster of bigger weight centroid. 

3.2.1   Concurrent Rippling (CR) 
The first algorithm of the sub-family is called Concurrent Rippling (CR). In this algo-
rithm, for each vertex, the adjacent edges are ordered in descending order of weights. 
Iteratively, the next heaviest edge is considered. Two cases are possible: (1) if the 
edge connects a centroid to a non-centroid, the non-centroid is added to the cluster of 
the centroid (notice that at this point the non-centroid belongs to at least two clusters), 
(2) if the edge connects two centroids, the cluster of one centroid is assigned to the 
cluster of the other centroid (i.e. it is ‘engulfed’ by the other centroid), if and only if 
its weight is smaller than that of the other centroid. The two clusters are merged and 
the smaller weight centroid becomes a non-centroid. The algorithm terminates when 
the centroids no longer change. The pseudocode of Concurrent Rippling algorithm is 
given in figure 3.  

Making sure that all centroids propagate their ripples at equal speed (lines 8 - 10 of 
Algorithm: CR () in figure 3), the algorithm requires the sorting of a list whose total 
size is the square of the number of vertices. Concurrent Rippling algorithm requires O 
(N2logN) complexity to sort the N-1 neighbors of the N vertices. It requires another O 
(N2logN) to sort the N2 number of edges. In the worst case, the algorithm has to iterate 
through all the N2 edges. Hence, in the worst case the complexity of the algorithm is 
O (N2logN). 

3.2.2   Ordered Concurrent Rippling (OCR) 
The second algorithm of the sub-family is called Ordered Concurrent Rippling 
(OCR). In this algorithm, the constant speed of rippling is abandoned to be approxi-
mated by a simple ordering of adjacent edges according to their weights to the vertex 
(i.e. OCR abandons line 1, and lines 8 – 10 of Algorithm: CR () in figure 3).  
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The method allows not only to improve efficiency (although worst case complexity is 
the same) but also to process only the best ‘ripple’ (i.e. heaviest adjacent edge) for 
each vertex each time. The pseudocode of Ordered Concurrent Rippling algorithm is 
given in figure 4. The complexity of the algorithm is O (N2logN) to sort the N-1 
neighbors of the N vertices. The algorithm then iterates at most N2 times. Hence the 
overall worst case complexity of the algorithm is O (N2logN). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Concurrent Rippling Algorithm 

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by their similarity 
to v from highest to lowest.  
If v is a centroid (v.centroid == 1); v.cluster contains the list of vertices � v assigned to v 
 
Algorithm: CR ( )  
1. Sort E in order of the edge weights 
2. public CentroidChange = true 
3. index = 0 
4. While (CentroidChange && index < N-1 && E is not empty) 
     5. CentroidChange = false 
     6. For each vertex v, take its edge evw connecting v to its next 
         closest neighbor w; i.e. w = v.neighbor [index] 
     7. Store these edges in S  
     8. Find the lowest edge weight in S, say low, and empty S 
     9. Take all edges from E whose weight >= low 
     10. Store these edges in S  
     11. PropagateRipple (S) 
     12. index ++  
13. For all i � V, if i is a centroid, return i and i.cluster 
 
Sub Procedure: PropagateRipple (list S) 
/* This sub procedure is to propagate ripples for all the centroids. If the ripple of one 
centroid touches another, the heavier weight centroid will engulf the lighter centroid and 
its cluster. If the ripple of a centroid touches a non-centroid, the non-centroid is assigned 
to the centroid. A non-centroid can be assigned to more than one centroid, allowing 
overlapping between clusters, a generally desirable feature */ 
 
While (S is not empty)  
     Take the next heaviest edge, say evw, from S 

     If v �x.cluster for all x � V  
               If w is a centroid, compare v’s weight to w’s weight 
                    If (w.weight > v.weight)   
        add v and v.cluster into w.cluster         
                         Empty v.cluster  
                         If v is a centroid 
                              v.centroid = 0 
                              CentroidChange = true 
                    Else 
        add w and w.cluster into v.cluster         
                         Empty w.cluster 
                         w.centroid = 0 
                         CentroidChange = true 
               Else if w is not a centroid 
                    v.cluster.add (w) 
                    If v is not a centroid 
                         v.centroid = 1 
                         CentroidChange = true
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Fig. 4. Ordered Concurrent Rippling Algorithm 

3.3   Maximizing Intra-cluster Similarity 

The key point of Ricochet is that at each step it tries to maximize the intra-cluster 
similarity: the average similarity between vertices and the centroid in the cluster.  

Sequential Rippling (SR and BSR) try to maximize the average similarity be-
tween vertices and their centroids by (1) selecting centroids in order of their 
weights and (2) iteratively reassigning vertices to the nearest centroids. As in [12], 
selecting centroids in order of weights is a fast approximation to maximizing the 
expected intra-cluster similarity. As in K-means, iteratively reassigning vertices to 
nearest centroids decreases the distance (thus maximizing similarity) between 
vertices and their centroids.  

Concurrent Rippling (CR and OCR) try to maximize the average similarity be-
tween vertices and their centroids by (1) processing adjacent edges for each vertex in 
order of their weights from highest to lowest and (2) choosing the bigger weight ver-
tex as a centroid whenever two centroids are adjacent to one another. (1) ensures that 
at each step, the best possible merger for each vertex v is found (i.e. after merging a 
vertex to v with similarity s, we can be sure that we have already found and merged 
all vertices whose similarity is better than s to v); while (2) ensures that the centroid 
of a cluster is always the point with the biggest weight. Since we define a vertex 
weight as the average similarity between the vertex and its adjacent vertices; choosing 
a centroid with bigger weight is an approximation to maximizing the average similar-
ity between the centroid and its vertices.  

Further, although OCR is, like its family, a partitional graph clustering algorithm; 
its decision to only process the heaviest adjacent edge (hence the best possible 
merger) of each vertex at each step is compatible to the steps of agglomerative single-
link hierarchical clustering. We believe therefore that OCR combines concepts from 
both partitional and agglomerative approaches. As in [15], such combination has been 
experimentally found to be successful than either of the methods alone. 

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by their similarity to 
v from highest to lowest. If v is a centroid (i.e. v.centroid == 1); v.cluster contains the list 
of vertices � v assigned to v 
 
Algorithm: OCR ( )  
public CentroidChange = true 
index = 0 
While (CentroidChange && index < N-1) 
     CentroidChange = false 
     For each vertex v, take its edge evw connecting v to its next closest  
     neighbor w; i.e. w = v.neighbor [index] 
     Store these edges in S  
     PropagateRipple (S) 
     index ++  
For all i � V, if i is a centroid, return i and i.cluster 
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4   Performance Analysis 

In order to evaluate our proposed algorithms, we empirically compare, the perform-
ance our algorithms with the constrained algorithms: (1) K-medoids (that is given the 
optimum/correct number of clusters as obtained from the data set); (2) Star clustering 
algorithm, and (3) the improved version of Star (i.e. Star Ave) that uses average met-
ric to pick star centers [12]. This is to investigate the impact of removing the con-
straints on the number of clusters (K-Medoids) and threshold (Star) on the result of 
clustering. We then compare, the performance of our algorithms with the state-of-the-
art unconstrained algorithm, (4) Markov Clustering (MCL), varying MCL’s fine-
tuning inflation parameter.  

We use data from Reuters-21578 [16], TIPSTER–AP [17] and a collection of web 
documents constructed using the Google News search engine [18] and referred to as 
Google. The Reuters-21578 collection contains 21,578 documents that appeared in 
Reuter’s newswire in 1987. The documents are partitioned into 22 sub-collections. 
For each sub-collection, we cluster only documents that have at least one explicit 
topic (i.e. documents that have some topic categories within its <TOPICS> tags). The 
TIPSTER–AP collection contains AP newswire from the TIPSTER collection. For the 
purpose of our experiments, we have partitioned TIPSTER-AP into 2 separate sub-
collections. Our original collection: Google contains news documents obtained from 
Google News in December 2006. This collection is partitioned into 2 separate sub-
collections. The documents have been labeled manually. In total we have 26 sub-
collections. The sub-collections, their number of documents and topics/clusters are 
reported in Table 1. 

By default and unless otherwise specified, we set the value of threshold  for Star 
clustering algorithm to be the average similarity of documents in the given collection.  

In each experiment, we apply the clustering algorithms to a sub-collection. We 
study effectiveness (recall, r, precision, p, and F1 measure, F1 = (2 * p * r) / (p + r)), 
and efficiency in terms of running time.  

In each experiment, for each topic, we return the cluster which best approximates 
the topic. Each topic is mapped to the cluster that produces the maximum F1-measure 
with respect to the topic: 

 

topic (i) = maxj {F1 (i, j)} .   (1) 

 
where F1 (i, j) is the F1 measure of the cluster number j with respect to the topic num-
ber i. The weighted average of F1 measure for a sub-collection is calculated as: 
 

F1 = � (ti/S) * F1 (i, topic (i)); for 0 � i � T . (2) 

S = � ti; for 0 � i � T (3) 

where T is the number of topics in the sub-collection; ti is the number of documents 
belonging to topic i in the sub-collection. For each sub-collection, we calculate the 
weighted-average of precision, recall and F1-measure produced by each algorithm.  
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Table 1. Description of Collections 
 

Sub-collection # of docs # of topic Sub-collection # of docs # of topic 

reut2-000.sgm 981 48 Reut2-001.sgm 990 41 

reut2-002.sgm 991 38 Reut2-003.sgm 995 46 

reut2-004.sgm 990 42 Reut2-005.sgm 997 50 

reut2-006.sgm 990 38 Reut2-007.sgm 988 44 

reut2-008.sgm 991 42 Reut2-009.sgm 495 24 

reut2-010.sgm 989 39 Reut2-011.sgm 987 42 

reut2-012.sgm 987 50 Reut2-013.sgm 658 35 

reut2-014.sgm 693 34 Reut2-015.sgm 992 45 

reut2-016.sgm 488 34 Reut2-017.sgm 994 61 

reut2-018.sgm 994 50 Reut2-019.sgm 398 24 

reut2-020.sgm 988 28 Reut2-021.sgm 573 24 

Tipster-AP1 1787 47 Tipster-AP2 1721 48 

Google1 1019 15 Google2 1010 14 

For each collection, we then present the average (using micro-averaging) of results 
produced by each algorithm. 

Whenever we perform efficiency comparison with other graph-based clustering algo-
rithms (Markov), we do not include the pre-processing time to construct the graph and 
compute all pair wise cosine-similarities. The pre-processing time of other graph-based 
clustering algorithms is the same as our proposed algorithm that is also graph-based. 
Furthermore, the complexity of pre-processing, O (n2), may undermine the actual running 
time of the algorithms themselves. We however include this pre-processing time when 
comparing with non graph-based clustering algorithms (K-medoids) that do not require 
graph or all pair wise similarities to be computed. This is to illustrate the effect of pre-
processing on the efficiency of graph-based clustering algorithms. 

4.1   Performance Results 

4.1.1   Comparison with Constrained Algorithms 
We first compare the effectiveness and efficiency of our proposed algorithms with 
those of K-medoids, Star, and (an improved version of Star) Star-ave, in order to 
determine the consequences of combining ideas from both algorithms to obtain an 
unconstrained family. There is, of course, a significant benefit per se in removing the 
need for parameter setting. Yet the subsequent experiments show that this can be 
done, only in the some cases, at a minor cost in effectiveness. 

In figure 5, we can see that the effect of combining ideas from both K-means and 
Star in our algorithms improves precision on Google data. Our algorithms also  
maintain recall therefore improving the F1-value. In particular, CR is better than  
K-medoids, Star and Star-ave in terms of F1-value. BSR and OCR are better than K-
medoids and Star in terms of F1-value. In terms of efficiency (cf. figure 6), CR and 
OCR are faster than Star and Star-ave. K-medoids is much faster than all the graph-
based clustering algorithms because it does not require computation of pair wise simi-
larities between all the documents. 
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    Fig. 5. Effectiveness on Google                         Fig. 6. Efficiency on Google 

 
On Tipster-AP data (cf. figure 7), BSR and OCR yield a higher precision and F1-

value than Star and Star-Ave. On Tipster-AP data, OCR performs the best among our 
proposed algorithms and its effectiveness is comparable to that of a K-medoids sup-
plied with the correct number of clusters K. CR and OCR are also faster than Star and 
Star-ave (cf. figure 8). 

 

 
 
 
 
 
 

 
 
 
 

 

 
On Reuters data (cf. figure 9), in terms of F1-value, OCR performs the best among 

our algorithms. OCR performance is better than K-medoids and is comparable to Star 
and Star-Ave. In terms of efficiency (cf. figure 10), OCR is faster than Star and Star-
Ave but slower than K-medoids which does not require pair wise similarity computa-
tion between all the documents. 

In summary, BSR and OCR are the most effective among our proposed algorithms. 
BSR achieves higher precision than K-medoids, Star and Star-Ave on all data sets. OCR 
achieves a balance between high precision and recall, and obtains higher or comparable 
F1-value than K-medoids, Star and Star-Ave on all data sets. Since our algorithms try to 
maximize intra-cluster similarity, it is precision that is mostly improved. 

In particular, OCR is the most effective and efficient of our proposed algorithms. 
In terms of F1, OCR is 8.7% better than K-medoids, 23.5% better than Star, and 7.9% 
better than Star-Ave. In terms of efficiency, OCR is 56.5% slower than K-medoids 
(due to pre-processing time), 6.3% faster than Star and 6.5% faster than Star-Ave. 
When pre-processing time is not factored in (cf. Figure 11 and 12), the graph-based 
algorithms: Star, Star-Ave, CR, OCR are all faster than K-medoids (results on Reuters 
are consistent but not shown due to space constraints). This shows that it is mostly 
 

   
     Fig. 7. Effectiveness on Tipster-AP                               Fig. 8. Efficiency on Tipster-AP 
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pre-processing that has adverse effect on the efficiency of graph-based clustering 
algorithms. In the next section, we compare our best performing algorithms: BSR and 
OCR, with the unconstrained algorithm: Markov Clustering. 

4.1.2   Comparison with Unconstrained Algorithms 
We first illustrate the influence of MCL’s inflation parameter on the algorithm’s per-
formance. We vary it between 0.1 and 30.0 (we have empirically verified that this 
range is representative of MCL performance on our data sets) and report results for 
representative values. 
As shown in figure 13, at a value of 0.1, the resulting clusters have high recall and 
low precision. As the inflation parameter increases, the recall drops and precision 
improves, resulting in higher F1-value. At the other end of the spectrum, at a value of 
30.0, the resulting clusters are back to having high recall and low precision again. In 
terms of efficiency (cf. figure 14), as the inflation parameter increases, the running 
time decreases, indicating that MCL is more efficient at higher inflation value. From 
figure 13 and 14, we have shown empirically that the choice of inflation value indeed 
affects the effectiveness and efficiency of MCL algorithm. Both MCL’s effectiveness 
and efficiency vary significantly at different inflation values. The optimal value seems 
however to always be around 3.0. 

       Fig. 11. Efficiency on Google                                  Fig. 12. Efficiency on Tipster-AP     

        Fig. 9. Effectiveness on Reuters                                     Fig. 10. Efficiency on Reuters 
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      Fig. 13. Effectiveness of MCL      Fig. 14. Efficiency of MCL 

 
We now compare the performance of our best performing algorithms, BSR and 

OCR, to the performance of MCL algorithm at its best inflation value as well as at its 
minimum and maximum inflation values, for each collection. 

On Google data (cf. figure 15), the effectiveness of BSR and OCR is competitive 
(although not equal) to that of MCL at its best inflation value. Yet, BSR and OCR are 
much more effective than MCL at the minimum and maximum inflation values. In 
terms of efficiency, both BSR and OCR are significantly faster than MCL at all infla-
tion values (cf. figure 16). 

 

 
 
 
 
 
 
 
 
 

 
 

 
 

On Tipster-AP data (cf. figure 17), BSR and OCR are slightly less effective than 
MCL at its best inflation value. However, both BSR and OCR are much more effec-
tive than MCL at the minimum and maximum inflation values. In terms of efficiency 
(cf. figure 18), OCR is also much faster than MCL at all inflation values. 

The same trend is noticeable on Reuters data (cf. figure 19). BSR and OCR are 
slightly less effective than MCL at its best inflation value. However, BSR and OCR 
are more effective than MCL at the minimum and maximum inflation values. In terms 
of efficiency (cf. figure 20), OCR is much faster than MCL at all inflation values. 

In summary, although MCL can be slightly more effective than our proposed algo-
rithms at its best settings of inflation parameter (9% more effective than OCR), one of 
our algorithms, OCR, is not only respectably effective but is also significantly more 
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  Fig. 19. Effectiveness on Reuters                     Fig. 20. Efficiency on Reuters 

efficient (70.8% more efficient). Furthermore OCR does not require the setting of any 
fine tuning parameters like the inflation parameter of MCL that, when set incorrectly, 
can have adverse effect on its performance (OCR is in average, 334% more effective 
than MCL at its worst parameter setup). 

5   Conclusion 

We have proposed a family of algorithms for the clustering of weighted graphs. 
Unlike state-of-the-art K-means and Star clustering algorithms, our algorithms do not 
require the a priori setting of extrinsic parameters. Unlike state-of-the-art MCL clus-
tering algorithm, our algorithms do not require the a priori setting of intrinsic fine 
tuning parameters. We call our algorithms ‘unconstrained’. 

Our algorithms have been devised by spinning the metaphor of ripples created by 
the throwing of stones in a pond. Clusters’ centroids are stones; and rippling is the 
iterative spread of the centroids’ influence and the assignment and reassignment of 
vertices to the centroids’ clusters. For the sake of completeness, we have proposed 
both sequential (in which centroids are chosen one by one) and concurrent (in which 
every vertex is initially a centroid) versions of the algorithms and variants. 

After a comprehensive comparative performance analysis with reference data sets 
in the domain of document clustering, we conclude that, while all our algorithms  
are competitive, one of them, Ordered Concurrent Rippling (OCR), yields a very 
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respectable effectiveness while being efficient. Since all our algorithms try to maxi-
mize intra-cluster similarity at each step, it is mostly precision that is improved.  

However, like other graph clustering algorithms, the pre-processing time to build 
the graph and compute all pair-wise similarities in the graph remains a bottleneck 
when compared to non graph-based clustering algorithms like K-means. We are ex-
ploring other ways to reduce this pre-processing time using indexing, stream process-
ing or randomized methods.  

We have therefore proposed a novel family of algorithms, called Ricochet algo-
rithms, and, in particular, one new effective and efficient algorithm for weighted 
graph clustering, called Ordered Concurrent Rippling or OCR. 
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Abstract. Recently, due to its wide applications, (similar) subgraph search has
attracted a lot of attentions from database and data mining community, such as
[13,18,19,5]. In [8], Ke et al. first proposed correlation sub-graph search problem
(CGSearch for short) to capture the underlying dependency between sub-graphs
in a graph database, that is CGS algorithm. However, CGS algorithm requires
the specification of a minimum correlation threshold θ to perform computation.
In practice, it may not be trivial for users to provide an appropriate threshold θ,
since different graph databases typically have different characteristics. Therefore,
we propose an alternative mining task: top-K correlation sub-graph search(TOP-
CGSearh for short). The new problem itself does not require setting a correlation
threshold, which leads the previous proposed CGS algorithm inefficient if we ap-
ply it directly to TOP-CGSearch problem. To conduct TOP-CGSearch efficiently,
we develop a pattern-growth algorithm (that is PG-search algorithm) and utilize
graph indexing methods to speed up the mining task. Extensive experiment re-
sults evaluate the efficiency of our methods.

1 Introduction

As a popular data structure, graphs have been used to model many complex data objects
and their relationships, such as, chemical compounds [14], entities in images [12] and
social networks [3]. Recently, the problems related to graph database have attracted
much attentions from database and data mining community, such as frequent sub-graph
mining [7,17], (similar) sub-graph search [13,18,19,5]. On the other hand, correlation
mining [15] is always used to discovery the underlying dependency between objects,
such as market-basket databases [2,10], multimedia databases [11] and so on. Ke et al.
first propose correlation sub-graph search in graph databases [8]. Formally, correlation
sub-graph search (CGSearch for short) is defined as follows [8]:

Given a query graph Q and a minimum correlation threshold θ, we need to report all
sub-graphs Si in graph database, where the Pearson’s correlation coefficient between
Q and Si (that is φ(Q, Si), see Definition 4) is no less than θ.

Actually, the larger φ(Q, Si) is, the more often sub-graphs Q and Si appear together
in the same data graphs. Take molecule databases for example. If two sub-structures
S1 and S2 often appear together in the same molecules, S1 and S2 may share some
similar chemical properties. In Fig. 1, we have 5 data graphs in database D and a query

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 168–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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sub-graph Q and the threshold θ = 1.0. In Fig. 1, for presentation convenience, we
assume that all edges have the same label ‘x’. The number beside the vertex is vertex
ID. The letter inside the vertex is vertex label. Since only φ(Q, S2) = 1.0 ≥ θ, we
report S2 in Fig. 1. φ(Q, Si) = 1.0 means Si (or Q) always appears in the same data
graph g, if Q (or Si) appears in data graph g. In CGSearch problem, each sub-graph
Si of data graphs in database D is a candidate, which is quite different from (simi-
lar) sub-graph search in previous work. In (similar) sub-graph search problem [13,18],
it reports all data graphs that (closely) contain query graph Q. Therefore, only data
graphs are candidates. Thus, the search space of CGSearch problem is much larger
than that of (similar) sub-graph search, which leads CGSearch to be a more challenging
task.

Furthermore, CGSearch is also different from frequent sub-graph mining. As we
all know, all frequent sub-graph mining algorithms are based on “down-closure prop-
erty”(that is Apriori property)[?] no matter they adopt bread-first search [9] or depth-
first search [17]. However, Apriori property does not hold for φ(Q, Si). It means that
we cannot guarantee that φ(Q, Si) ≥ φ(Q, Sj), if Si is a sub-graph of Sj . Therefore,
for CGSearch problem, we cannot employ the same pruning strategies used in frequent
sub-graph mining algorithms.

In order to address CGSearch, Ke et al. propose CGS Algorithm [8], which adopts
“filter-and-verification” framework to perform the search. First, according to a given
minimum correlation coefficient threshold θ and a query graph Q, they derive the
minimum support lowerbound(sup(g)). Any sub-graph gi whose support is less than
lowerbound(sup(g)) cannot be a correlation sub-graph w.r.t 1 query Q. Then, in the
projected database (all data graphs containing query graph Q are collected to form the
projected database, denoted as Dq), frequent sub-graph mining algorithms are used to

find candidates gi by setting minimum support lowerbound(sup(g))
sup(Q) (that is filter process).

After that, for each candidate gi, the correlation coefficient is computed to find all true
answers (that is verification process).

However, CGSearch in [8] requires users or applications to specify a minimum cor-
relation threshold θ. In practice, it may not be trivial for users to provide an appropri-
ate threshold θ, since different graph databases typically have different characteristics.
Therefore, in this paper, we propose an alternative mining task:top-K correlation sub-
graph search, TOP-CGSearch, which is defined:

Given a query graph Q, we report top-K sub-graphs Si according to the Pearson’s
correlation coefficient between Q and Si (that is φ(Q, Si)).

Obviously, the above methods in CGSearh [8] cannot be directly applied to the
TOP-CGSearch problem, since we do not have the threshold θ. Simply setting a large

1 With regard to.
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threshold and then decreasing it step by step based on the number of answers obtained
from the previous step is out of practice, since we need to perform frequent sub-graph
mining algorithms to obtain candidates in each iterative step. Furthermore, we also need
to perform verification of CGSearch [8] in each iterative step.

Can we derive top-K answers directly without performing frequent sub-graph mining
algorithms for candidates and expensive verification several times? Our answer in this
paper is YES. For TOP-CGSearch problem, we first derive a upper bound of φ(Q, Si)
(that is upperbound(φ(Q, Si))). Since upperbound(φ(Q, Si)) is a monotone increas-
ing function w.r.t.sup(Si), we develop a novel pattern-growth algorithm, called PG-
search algorithm to conduct effective filtering through the upper bound. During mining
process, we always maintain β to be the K-largest φ(Q, Si) by now. The algorithm
reports top-K answers until all un-checked sub-graphs cannot be in top-K answers. Fur-
thermore, in pattern-growth process, we only grow a pattern P if and only if we have
checked all its parents Pi (see Lemma 2). Therefore, we significantly reduce the search
space (the number of sub-graphs that need to be checked in PG-search algorithm ).
Finally, we utilize existing graph indexing techniques [13,18] to speed up the mining
task. In summary, we made the following contributions:

1. We propose a new mining task TOP-CGSearch problem. For TOP-CGSearch, we
develop an efficient “pattern-growth” algorithm, called PG-search algorithm. In
PG-search, we introduce two novel concepts, Growth Element(GE for short) and
Correct Growth to determine the correct growth and avoid duplicate generation.

2. To speed up the mining task, we utilize graph indexing techniques to improve the
performance in PG-search algorithm.

3. We conduct extensive experiments to verify the efficiency of the proposed methods.

The rest of the paper is organized as follows: Section 2 discuss preliminary background.
PG-search algorithm is proposed in Section 3. We evaluate our methods in experiments
in Section 4. Section 5 discusses related work. Section 6 concludes this work.

2 Preliminary

2.1 Problem Definition

Definition 1. Graph Isomorphism. Assume that we have two graphs G1 < V1, E1,
L1v, L1e, F1v , F1e > and G2 < V2, E2, L2v, L2e, F2v , F2e >. G1 is graph isomorphism
to G2, if and only if there exists at least one bijective function f : V1 → V2 such that:
1) for any edge uv ∈ E1, there is an edge f(u)f(v) ∈ E2; 2) F1v(u)= F2v(f(u)) and
F1v(v)= F2v(f(v)); 3) F1e(uv)= F2e(f(u)f(v)).

Definition 2. Sub-graph Isomorphism. Assume that we have two graphs G′ and G, if
G′ is graph isomorphism to at least one sub-graph of G under bijective function f , G′

is sub-graph isomorphism to G under injective function f .

If a graph S is sub-graph isomorphism to another graph G, we always say that graph G
contains S.
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Definition 3. Graph Support. Given a graph database D with N data graphs, and a
sub-graph S, there are M data graphs containing S. The support of S is denoted as
sup(S) = M

N . Obviously, 0 ≤ sup(S) ≤ 1.

Definition 4. Pearsons Correlation Coefficient
Given two sub-graphs S1 and S2, Pearson’s Correlation Coefficient of S1 and S2, de-
noted as φ(S1, S2), is defined as:

φ(S1, S2) =
sup(S1, S2)− sup(S1)sup(S2)√

sup(S1)sup(S2)(1 − sup(S1))(1− sup(S2))
(1)

Here, −1 ≤ φ(S1, S2) ≤ 1

Given two graphs S1 and S2, if φ(S1, S2) > 0, then S1 and S2 are positively correlated;
otherwise, they are negatively correlated. In this paper, we focus on positively correlated
sub-graph search.

Definition 5. (Problem Definition) Top-K Correlation Sub-graph Search (TOP-
CGSearch for short) Given a query graph Q and a graph database D, according to
Definition 4, we need to find K sub-graphs Si (i=1...K) in the graph database D,
where φ(Q, Si) are the first K largest.

Note that, in this work, we only focus on positively correlated sub-graphs, if there ex-
ist less than K positively correlated sub-graphs, we report all positively correlated sub-
graphs. Now we demonstrate top-K correlation sub-graph search with a running example.

EXAMPLE 1(Running Example). Given the same graph database D with 5 data graphs
and a query graph Q in Fig. 1, we want to report top-2 correlated sub-graphs in D
according to Definition 5. In this example, the top-2 answers are S1 and S2, where
φ(Q, S1) = 1.0 and φ(Q, S2) = 0.61 respectively. For the other sub-graphs Si,
φ(Q, Si) < 0.61.

2.2 Canonical Labeling

In order to determine whether two graphs are isomorphism to each other, we can assign
each graph a unique code. Such a code is referred to as canonical label of a graph
[4]. Furthermore, benefiting from canonical labels, we can define a total order for a
set of graphs in a unique and deterministic way, regardless of the original vertex and
edge ordering. The property will be used in Definition 8 and 12. It is known that the
hardness of determining the canonical label of a graph is equivalent to determining
isomorphism between graphs. So far, these two problems are not known to be either in
P or in NP-complete [4]. There are many canonical labeling proposals in the literature
[17]. In fact, any canonical labeling method can be used in our algorithm, which is
orthogonal to our method. A simple way of defining the canonical label of a graph is to
concatenate the upper-triangular entries of graph’s adjacency matrix when this matrix
has been symmetrically permuted so that the obtained string is the lexicographically
smallest over the strings that can be obtained from all such permutations.
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Fig. 2. Canonical Labels and Pattern Growth

Fig. 2(a) shows an example about obtaining the canonical label of a graph. In Fig.
2(a), we permutate all vertex orderings. For each vertex ordering, we can obtain a code
by concatenating the upper-triangular entries of the graphs adjacency matrix. Among
all codes, the code in Fig. 2(a)a is the lexicographically smallest (‘0’ is smaller than
all letters). Thus, in Fig. 2(a), “aab x0x” is the canonical code of the graph. Fig. 2(a)a
shows the canonical form of the graph.

Definition 6. Canonical Vertex Ordering and ID. Given a graph S, some vertex or-
dering is called Canonical Vertex Ordering, if and only if this ordering leads to the
canonical code of graph S. According to canonical vertex ordering, we define Canoni-
cal Vertex ID for each vertex in S.

The vertex ordering in Fig. 2(a)a leads to canonical code, thus, the vertex ordering in
Fig. 2(a)a is called canonical vertex ordering. Vertex ID in Fig. 2(a)a is called canonical
vertex ID.

2.3 Pattern Growth

Definition 7. Parent and Child. Given two connected graphes P and C, P and C have
n and n+1 edges respectively. If P is a sub-graph of C, P is called a parent of C, and
C is called a child of P .

For a graph, it can have more than one child or parent. For example, in Fig. 2(b), C2
has two parents that are P1 and P2. P1 have two children that are C1 and C2.

During mining process, we always “grow” a sub-graph from its parent, which is
called pattern growth. During pattern growth, we introduce an extra edge into a parent
to obtain a child. The introduced extra edge is called Growth Element (GE for short).
The formal definition about GE is given in Section 3.1.

3 PG-Search Algorithm

As mentioned in the Section 1, we can transfer a TOP-CGSearch problem into a
threshold-based CGSearch. First, we set threshold θ to be a large value. According
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to CGS algorithm [8], if we can find the correct top-K correlation sub-graphs, then
we report them and terminate the algorithm. Otherwise, we decrease θ and repeat the
above process until we obtain the top-K answers. We refer this method as “Decreas-
ing Threshold-Based CGS” in the rest of this paper. Obviously, when K is large, we
have to set θ to be a small value to find the correct top-K answers, which is quite in-
efficient since we need to perform CGS algorithm [8] several times and there are more
candidates needed to be investigated. In order to avoid this shortcoming, we propose a
pattern-growth search algorithm (PG-search for short) in this section.

3.1 Top-K Correlation Sub-graph Query

The search space (the number of candidates) of TOP-CGSearch problem is large, since
each sub-graph Si in graph database is a candidate. Obviously, it is impossible to enu-
merate all sub-graphs in the database, since it will result in a combinational explosion
problem. Therefore, an effective pruning strategy is needed to reduce the search space.
In our algorithm, we conduct effective filtering through the upper bound. Specifically,
if the largest upper bound for all un-checked sub-graphs cannot get in the top-K an-
swers, the algorithm can stop. Generally speaking, our algorithms work as follows:
We first generate all size-1 sub-graph (the size of a graph is defined in terms of num-
ber of edges, i.e. |E|) Si, and insert them into heap H in non-increasing order of
upperbound(φ(Q, Si)), which is the upper bound of φ(Q, Si). The upper bound is
a monotone increasing function w.r.t sup(Si). The head of the heap H is h. We set
α = upperbound(φ(Q, h)). We compute φ(Q, h) and insert h into result set RS. β is
set to be the Kth largest value in RS by now. Then, we delete the heap head h, and
find all children Ci(see Definition 7) of h through pattern growth. We insert these Ci

into heap H . For the heap head h, we set α = upperbound(φ(Q, h)). We also compute
φ(Q, h), and then insert h into result set RS. The above processes are iterated until
β ≥ α. At last, we report top-K answers in RS.

In order to implement the above algorithm, we have to solve the following techni-
cal challenges: 1)how to define upperbound(φ(Q, Si)); 2)how to find all h’s children;
3)Since a child may be generated from different parents (see Fig. 2(b)), how to avoid
generating duplicate patterns; and 4)how to reduce the search space as much as possible.

Lemma 1. Given a query graph Q and a sub-graph Si in the graph database, the upper
bound of φ(Q, Si) is denoted as:

φ(Q,Si) ≤ upperbound(φ(Q,Si)) =

√
1 − sup(Q)

sup(Q)
∗
√

sup(Si)
1 − sup(Si)

(2)

Proof. Obviously, sup(Q, Si) ≤ sup(Si), thus:

φ(Q,Si) = sup(Q,Si)−sup(Q)sup(Si)√
sup(Q)sup(Si)(1−sup(Q))(1−sup(Si))

≤ sup(Si)−sup(Q)sup(Si)√
sup(Q)sup(Si)(1−sup(Q))(1−sup(Si))

= sup(Si)(1−sup(Q))√
sup(Q)sup(Si)(1−sup(Q))(1−sup(Si))

=
√

1−sup(Q)
sup(Q)

∗
√

sup(Si)
1−sup(Si)
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Theorem 1. Given a query graph Q and a sub-graph Si in a graph database D, the
upper bound of φ(Q, Si) (that is upperbound(φ(Q, Si))) is a monotone increasing
function w.r.t sup(Si).

Proof. Given two sub-graphs S1 and S2, where sup(S1) >sup(S2), we can know that
the following formulation holds.

upperbound(φ(Q,S1))
upperbound(φ(Q,S2))

=

√
sup(S1)
sup(S2)

√
1 − sup(S2)
1 − supp(S1)

> 1

Therefore, Theorem 1 holds.

Property 1. (Apriori Property) Given two sub-graph S1 and S2, if S1 is a parent of S2
(see Definition 7), then Sup(S2) < Sup(S1).

Lemma 2. Assume that β∗ is the K-largest φ(Q, Si) in the final results. Given a sub-
graph S with |S| > 1, the necessary condition for upperbound(φ(Q, S)) > β∗ is that,
for all of its parents Pi, upperbound(φ(Q, Pi)) > β∗.

Proof. According to Property 1, we know that Sup(S)≤ Sup(Pi). Since upperbound
(φ(Q, S)) is a monotone increasing function w.r.t sup(S), it is clear that upperbound
(φ(Q, Pi)) ≥ upperbound( φ(Q, S)) > β∗. Therefore, Lemma 2 holds.

According to Lemma 2, we only need to check a sub-graph, if and only if we have
checked all its parents Pi. It means that we can adopt “pattern-growth” framework
in the mining process, that is to generate and check a size-(n+1) sub-graph S from its
parent Pi after we have verified all S’s parents. Furthermore, according to monotone in-
creasing property of upperbound(φ(Q, S)), we always “first” grow a sub-graph P with
the highest support. We refer the method as “best-first”. In order to combine “pattern-
growth” and “best-first” in the mining process, we define Total Order in the following
definition.

Definition 8. (Total Order) Given two sub-graphs S1 and S2 in graph database D,
where S1 is not isomorphism to S2, we can say that S1 < S2 if either of the following
conditions holds:

1) sup(S1) > sup(S2);
2) sup(S1) == sup(S2) AND size(S1) < size(S2), where size(S1) denotes the
number of edges in S1.
3) sup(S1) == sup(S2) AND size(S1) == size(S2) AND label(S1) < label(S2),
where label(S1) and label(S2) are the canonical labeling of sub-graphs S1 and S2
respectively.

Furthermore, as mentioned in Section 2, we only focus on searching positively cor-
related graphs in this paper. Thus, according to Definition 4, if φ(Q, Si) > 0, then
sup(Q, Si) > 0, which indicates that Q and Si must appear together in at least one
graph in D. Therefore, we only need to conduct the correlation search over all data
graphs that contain query graph Q, which is called projected graph database and de-
noted as DQ. A projected database of the running example is given in Fig. 3(a). Similar
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with [8], we focus the mining task on the projected database DQ. It means that we al-
ways generate candidate sub-graphs from the projected graph database through pattern
growth. Since |DQ| < |D|, it is efficient to perform mining task on DQ.

At the beginning of PG-Search algorithm, we enumerate all size-1 sub-graph Si in
the projected graph database and insert them into the heap H in increasing order of
total order. We also record their occurrences in each data graph. Fig. 3(b) shows all
size-1 sub-graph Si in the projected graph database in the running example. “G1 <
1, 2 >” in Fig. 3(b) shows that there is one occurrence of S1 in data graph G1 and the
corresponding vertex IDs are 1 and 2 in graph G1 (see Fig. 1). In Fig. 3(b), the head
of the heap H is sub-graph S1. Therefore, we first grow S1, since it has the highest
support. For each occurrence of S1 in the projected database DQ, we find all Growth
Elements (GE for short) around the occurrence.

Definition 9. Growth Element. Given a connected graph C having n edges and an-
other connected graph P having n−1 edges, P is a sub-graph of C (namely, C is a child
of P ). For some occurrence Oi of P in C, we use (C \ Oi) to represent the edge in C
that is not in Oi. (C \Oi) is called Growth Element (GE for short) w.r.t Oi. Usually, GE
is represented as a five-tuple (< (vid1, vlable1), (elabel), (vid2, vlabel2) >), where
vid1 and vid2 are canonical vertex IDs (defined in Definition 6) of P (vid1 < vid2).
vlable1 and vlable2 are corresponding vertex labels, and elabel is the edge label of
GE. Notice that vid2 can also be “*”, and “*” means the additional vertex for P .

To facilitate understanding GE, we illustrate it with an example. Given a sub-graph S1
in Fig. 4(a), there is one occurrence of S1 in data graph G1, which is denoted as the
shaded area in Fig. 4(a). For the occurrence, there are three GEs that are also shown
in Fig. 4(a). Growing S1 (parent) through each GE, we will obtain another size-2 sub-
graph (child) in Fig. 4(b). The numbers beside vertexes in each sub-graph Si are canon-
ical vertex IDs in Si. The numbers beside vertexes in data graph G are just vertex IDs,
which are assigned arbitrarily. Notice that, canonical vertex IDs in a parent may not
be preserved in its child. For example, in Fig. 4(b), the canonical vertex IDs in S1 are
different from that in S6. Given a size-(n+1) sub-graph Si (child), it can be obtained by
growing from different size-n sub-graphs (parents). For example, in Fig. 5(a)a, we can
obtain sub-graph S6 by growing S1 or S5. Obviously, duplicate patterns will decrease
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the performance of mining algorithm. Therefore, we propose the following definition
about correct growth to avoid the possible duplicate generation.

Definition 10. Correct Growth. Given a size-(n+1) sub-graph C(child), it can be ob-
tained by growing some size-n sub-graphs Pi (parent), i=1...m. Among all growthes,
the growth from Pj to C is called correct growth, where Pj is the largest one among
all parents according to Total Order in Definition 8. Otherwise, the growth is incorrect
one.

For example, in Fig. 5(a), S9 has two parents, which are S1 and S5. Since S5 is larger
than S1 (see Definition 8), the growth from S5 to S6 is a correct growth, and the growth
from S1 to S6 is an incorrect growth. Obviously, according to Definition 8, we can
determine whether the growth from P to C is correct or incorrect. We will propose
another efficient method to determine the correct growth in Section 3.2.

Now, we illustrate the mining process with the running example. In the running ex-
ample, we always maintain β to be the K largest φ(Q, Si) by now (K = 2 in the
running example). Initially, we set β = −∞. First, we conduct sub-graph query to ob-
tain projected graph database DQ, which is shown in Fig. 3(a). Then, we find all size-1
sub-graphs (having one edge) in the projected database DQ. In Fig. 3(b), we insert them
into heap H in increasing order according to Total Order in Definition 8. We also record
all their occurrences in the graph database. Since S1 is the head of heap H , we compute
α = upperbound(φ(Q, S1)) = 1.63 and φ(Q, S1) = 0.61. We inset S1 into result set
RS. Now, β = −∞ < α, the algorithm continues.

We find all growth elements (GEs for short) around S1 in DQ, which are shown in
Fig. 5(b). Since G3 is not in the projected database, we do not consider the occurrences
in G3 when we find GEs. For each GE, we check whether it leads to a correct growth.
In Fig. 5(b), only the last one is a correct growth. We insert the last one (that is S10)
into the max-heap H , as shown in Fig. 6. Now, the sub-graph S2 is the heap head. We
re-compute α = upperbound(φ(Q, S2)) = 1.0, φ(Q, S2) = 1.0, and insert S2 into
RS. We update β to be Top-2 answer, that is β = 0.61. Since β < α, the algorithm
still continues. The above processes are iterated until β ≥ α. At last, we report top-2
answers in RS.

(a) How to Find GE

a b
x1 3

(b) Grow Sub-graph by GE

Fig. 4. Finding GE and Grow Sub-graph by GE
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3.2 PG-Search Algorithm

As discussed in Section 3.1, the heap H is ranked according to Total Order in Defini-
tion 8 (see Fig. 3(b) and 6). In Definition 8, we need sup(Si). Therefore, we maintain
all occurrences of Si in heap H . According to the occurrence list, it is easy to obtain
sup(Si). However, it is expensive to maintain all occurrences in the whole database
D, especially when |D| is large. On the other hand, we need to find GE around each
occurrence in the projected database DQ (see Fig. 5(b)). Therefore, we need to main-
tain occurrences in the projected database. Furthermore, the projected database DQ is
always smaller than the whole database D. In order to improve the performance, in our
PG-search algorithm, we only maintain the occurrence list in the projected database
instead of the whole database.

However, Definition 8 needs sup(Si). Therefore, we propose to use indexsup(Si) to
define Total Order instead of sup(Si), where indexsup(Si) is derived from sub-graph
query technique.

Recently, a lot of graph indexing structures have been proposed in database liter-
ature [13,18] for sub-graph query. Sub-graph query is defined as: given a sub-graph
Q, we report all data graphs containing Q as a sub-graph from the graph database.
Because sub-graph isomorphism is a NP-complete problem [4], we always employ a
filter-and-verification framework to speed up the search process. In filtering process,
we identify the candidate answers by graph indexing structures. Then, in verification
process, we check each candidate by sub-graph isomorphism. Generally speaking, the
filtering process is much faster than verification process.

Definition 11. Index Support. For a sub-graph Si, index support is size of candidates
in filtering process of sub-graph Si query, which is denoted as indexsup(Si).

Actually, sup(Si) is the size of answers for sub-graph Si query, which is obtained in
verification process. According to graph indexing techniques [13,18], we can identify
the candidates without false negatives. Therefore, Lemma 3 holds.

Lemma 3. For any sub-graph Si in the graph database, sup(Si) ≤ indexsup(Si),
where indexsup(Si) is the size of candidates for sub-graph Si query.
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Furthermore, indexsup(Si) also satisfy Apriori Property. For example, in gIndex [18],
if Q1 is a sub-graph of Q2, the candidates for Q2 query is a subset of candidates for Q1.
It means the following property holds.

Property 2. (Apriori Property) Given two sub-graph S1 and S2, if S1 is a parent of S2
(see Definition 7), then indexsup(S2) < indexsup(S1).

Lemma 4. Given a query graph Q and a sub-graph Si in the graph database, the upper
bound of φ(Q, Si) is denoted as:

φ(Q, Si) ≤ upperbound2(φ(Q, Si))

=
√

1−sup(Q)
sup(Q) ∗

√
indexsup(Si)

1−indexsup(Si)
(3)

Proof. According to Lemma 1 and 3:

φ(Q, Si) ≤
√

1−sup(Q)
sup(Q) ∗

√
sup p(Si)

1−sup p(Si)

≤
√

1−sup p(Q)
sup(Q) ∗

√
index sup p(Si)

1−index sup p(Si)

Theorem 2. Given a query graph Q and a sub-graph Si in a graph database D, the
upper bound of φ(Q, Si) (that is upperbound2(φ(Q, Si))) is a monotone increasing
function w.r.t indexsup(Si).

Proof. It is omitted due to space limited.

In order to use graph index in the PG-Search algorithm, we need to re-define Total
Order and Correct Growth according to Index Support as follows.

Definition 12. (Total Order) Given two sub-graphs S1 and S2 in graph database D,
where S1 is not isomorphism to S2, we can say that S1 < S2 if either of the following
conditions holds:

1) indexsup(S1) > indexsup(S2);
2) indexsup(S1) == indexsup(S2) AND size(S1) < size(S2), where size(S1) de-
notes the number of edges in S1.
3) indexsup(S1) == indexsup(S2) AND size(S1) == size(S2) AND label(s1) <
label(s2), where label(S1) and label(S2) are the canonical labeling of sub-graphs S1
and S2 respectively.
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Lemma 5. According to Definition 12, if sub-graphs S1 < S2, then upperbound2
(φ(Q, S1)) ≥ upperbound2(φ(Q, S2)).

Definition 13. Correct Growth. Given a size-(n+1) sub-graph C(child), it can be ob-
tained by growing some size-n sub-graphs Pi (parent), i=1...m. Among all growthes,
the growth from Pj to C is called the correct growth, where Pj is the largest parent
among all parents according to Total Order in Definition 12. Otherwise, the growth is
incorrect one.

Algorithm 1. PG-search algorithm

Require: Input: a graph database D and a query graph Q and K
Output: the top-K correlated sub-graph.

1: We conduct sub-graph Q search to obtain projected graph database DQ.
2: Find all size-1 sub-graph Si (having one edge), and insert them in max-heap H in order of

Total Order in Definition 8. We also main their occurrences in projected graph database DQ.

3: Set threshold β = −∞.
4: For heap head h in max-heap H , we perform sub-graph query to obtain sup(h). Then, we

set α = upperbound2(φ(h, Q)) where upperbound2(φ(h,Q)) is computed according to
Equation 3.

5: For heap head h in max-heap H , we compute φ(h, Q) and insert it into answer set RS in
non-increasing order of φ(h, Q).

6: Update β to be the Top-K answer in RS.
7: while (β < α) do
8: Pop the current head h into the table T .
9: Find all GEs around the occurrences of h in the projected graph DQ.

10: for each GE g do
11: Assume that we can get a sub-graph C through growing h by growth element g.
12: if The growth from h to C is correct growth then
13: Insert P into max-heap H according to Total Order in Definition 12. We also main-

tain the occurrence list for C in the projected graph database DQ.
14: else
15: continue
16: Set α = upperbound2(φ(Q,h)), where h is the new head in H .
17: For the new heap head h in max-heap H , we perform sub-graph query to obtain sup(h),

and compute φ(h, Q). Then insert it into answer set RS in non-increasing order of
φ(h, Q).

18: Update β to be the Top-K answer in RS.
19: Report top-K results in RS

We show the pseudo codes of PG-search algorithm in Algorithm 1. In PG-search al-
gorithm, first, given a query Q, we obtain projected graph database DQ by performing
sub-graph Q query (Line 1). Then, we find all size-1 sub-graphs Si(having one edge) in
DQ, and insert them into max-heap H in increasing order according to Definition 12.
We also need to maintain the occurrences of sub-graphs Si in the projected database
DQ(Line 2). The threshold β is recorded as the top-K φ(Q, Si) in result set RS by now.
Initially, we set β = −∞ (Line 3). We set α = upperbound2(Q, h), where h is the
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heap head in H (Line 4). For heap head h in max-heap H , we perform sub-graph search
to obtain sup(h), and compute φ(h, Q). We also insert h into result set RS (Line 5).
Then, we update β to be the Top-K answer in RS (Line 6). If β ≥ α, the algorithm
reports top-K results (Line 7). Otherwise, we pop the heap head h (Line 8). We find all
GEs with regard with h in the projected graph database DQ (Line 9). For each GE g,
if growing h through g is not a correct growth, it is ignored (Line 15). If the growth
is correct, we obtain a new sub-graph C. We insert it into heap H according to Total
Order in Definition 12 (Line 13). Then, we set α = upperbound2(φ(Q, h)), where h is
the new head in H (Line 16). For the new heap head h, we perform sub-graph search to
obtain sup(h) and compute φ(h, Q). We insert h into result set RS (Line 17). Update
β to be the Top-K answer in RS (Line 18). We iterate Lines 7-21 until β ≥ α (Line 7).
As last, we report top-K answers (Line 19).

Notice that, in Line 4 and 16 of PG-search algorithm, we utilize graph indexing
technique to support sub-graph query to obtain sup(h). In Line 13, we also utilize
indexes to obtain indexsup(h), which is obtained in filtering process.

In order to determine the growth from h to C is correct or not (Line 12), we need to
generate all parents Pi of h, and then perform sub-graph Pi query (only filtering pro-
cess) to obtain indexsup(Pi). At last, we determine whether h is the largest one among
all Pi according to Definition 12. Obviously, the above method leads to numerous sub-
graph query operations. We propose another efficient method for the determination as
follows:

As we know, at each mining step, we always pop the heap head hi from the heap H
(Line 8). We can maintain all hi into a table T , which is maintained in memory. For a
growth from size-n sub-graph P to size-(n + 1) sub-graphs C, we generate all parents
Pi of C. If all parents Pi except for P have existed in the table T , the parent P must be
the largest one among all parents Pi (see Lemma 8 and proof). Therefore, the growth
from P to C is correct one. Otherwise, the growth is incorrect. In the method, we only
perform graph isomorphism test in table T . Furthermore, graph canonical labeling will
facilitate the graph isomorphism. For example, we can record canonical labels of all
sub-graphs in table T . The hash table built on these canonical labels will speed up the
determination.

We first discuss Lemma 6 and Lemma 7, which are used to prove the correctness of
Lemma 8 and Theorem 3.

Lemma 6. Assume that h1 and h2 are heads of heap H (Line 8) in PG-Search algo-
rithm in i−th and (i + 1)−th iteration step (Lines 8-18). According to Total Order in
Definition 12, we know that h1 < h2.

Proof. 1)If h2 exists in heap H in i−th iteration step: Since the heap H is in increasing
order according to Definition 12 and h1 is the heap head in i−th iteration step, it is
straightforward to know h1 < h2.
2)If h2 does not exist in heap H in i−th iteration step: According to PG-search algo-
rithm, h2 must be generated by growing the heap head h1 in i−step. It means that h1 is
a parent of h2. According to Property 2, indexsup(h1) ≥ indexsup(h2). Furthermore,
size(h1) < size(h2). Therefore, according to Definition 12, we know that h1 < h2.

Total Order in Definition 12 is “transitive ”, thus, Lemma 7 holds.
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Lemma 7. Assume that h1 and h2 are heads of heap H in PG-Search Algorithm in
i−th and j−th iteration step (Lines 8-18), where i < j. According to Definition 12, we
know that h1 < h2.

As discussed before, in PG-search algorithm, we maintain the heap head h of each step
into the table T . The following lemma holds.

Lemma 8. For a growth from size-n sub-graph P to size-(n + 1) sub-graphs C, we
generate all parents Pi of C. If all parents Pi except for P have existed in the table T ,
the parent P must be the largest one among all parents Pi.

Proof. (Sketch) Since all parents Pi except for P have existed in the table T , it means
all Pi exist before P in heap H . According to Lemma 7, we know Pi < P . Therefore,
P is the largest one among all parents Pi.

Theorem 3. Algorithm Correctness. PG-search algorithm can find the correct top-K
correlated sub-graphs.

Proof. (Sketch) Assume that β ≥ α at nth iteration step of PG-search algorithm, where
α = upperbound2(φ(Q, h)) and h is the heap head at nth step. According to Lemma
7, h′ < h, where h′ is the heap head at jth step, where j > n. According to Lemma 5,
we know that upperbound2(φ(Q, h′)) < upperbound2(φ(Q, h)) = α. Since β ≥ α,
α > upperbound2 (φ(Q, h′)). It means that, in latter iteration steps, we cannot find
top-K answers. Therefore, PG-search algorithm can find all correct top-K answers, if
the algorithm terminates when β ≥ α (Line 7). The correctness of PG-search algorithm
is proved.

4 Experiments

In this section, we evaluate our methods in both real dataset and synthetic dataset. As
far as we know, there is no existing work on top-K correlation sub-graph search prob-
lem. In [8], Ke et al. proposed threshold-based correlation sub-graph search. As dis-
cussed in Section 1, we can transfer top-K correlation sub-graph search into threshold-
based one with decreasing threshold. In the following section, we refer the method as
“Decreasing Threshold-Based CGS”(DT-CGS for short). We implement “DT-CGS” by
ourselves and optimize it according to [8]. All experiments coded by ourself are imple-
mented by standard C++ and conducted on a P4 1.7G machine of 1024M RAM running
Windows XP.

1) Datasets. We use both real dataset (i.e. AIDS dataset) and synthetic daset for perfor-
mance evaluation.
AIDS Dataset. This dataset is available publicly on the website of the Developmen-
tal Therapeutics Program. We generate 10,000 connected and labeled graphs from the
molecule structures and omit Hydrogen atoms. The graphs have an average number of
24.80 vertices and 26.80 edges, and a maximum number of 214 vertices and 217 edges.
A major portion of the vertices are C, O and N. The total number of distinct vertex
labels is 62, and the total number of distinct edge labels is 3. We refer to this dataset as
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AIDS dataset. We randomly generate four query sets, F1, F2, F3 and F4, each of which
contains 100 queries. The support ranges for the queries in F1 to F4 are [0.02, 0.05],
(0.05, 0.07], (0.07, 0.1] and (0.1, 1) respectively.

Synthetic Dataset. The synthetic dataset is generated by a synthetic graph generator
provided by authors of [9]. The synthetic graph dataset is generated as follows: First, a
set of S seed fragments are generated randomly, whose size is determined by a Poisson
distribution with mean I. The size of each graph is a Poisson random variable with mean
T. Seed fragments are then randomly selected and inserted into a graph one by one until
the graph reaches its size. Parameter V and E denote the number of distinct vertex
labels and edge labels respectively. The cardinality of the graph dataset is denoted by
D. We generate the graph database using the following parameters with gIndex in [18]:
D=10,000, S=200, I=10, T=50, V=4, E=1.
2) Experiment 1. Benefiting from graph indexing techniques, we can only maintain the
occurrences in the projected database, as discussed in Section 3.2. In the experiment,
we evaluate the indexing technique in PG-search. We use GCoding indexing technique
[20] in the experiment. First, in Fig. 7(a) and 7(c), we fix the query sets F1 and vary K
from 10 to 100. Fig. 7(a) and Fig. 7(c) show the running time and memory consumption
respectively. Second, in Fig. 7(b) and 7(d), we fix K to be 50 and use different query
sets F1 to F4. In “PG-search without Index”, we need to maintain the occurrence list
in the whole database. Therefore, it needs more memory consumption, which is shown
in Fig. 7(c) and 7(d). Observed from Fig. 7(a) and 7(b), it is clear that “PG-search” is
faster than “PG-search without Index”.
3) Experiment 2. In the experiment, we compare PG-search with decreasing threshold-
based CGS (DT-CGS for short). We fix query sets F1 and vary K from 2 to 100. Fig.
9(a) reports running time. We also report the final threshold β for top-K query in Fig.
9(b). Observed from Fig. 9(a), PG-search is faster than DT-CGS in the most cases. In
DT-CGS, it is difficult to set an appropriate threshold θ. Therefore, in the experiments,
we always first set θ = 0.9, and then decrease it by “0.02” in each following step
based on the number of answers obtained from the previous step. For example, in Fig.
9(a), when K = 2, 5, the running time in DT-CGS keeps the same, because the final
threshold are β = 1.0 and β = 0.95 respectively (see Fig. 9(b)). It means that we can
find the top-2 and top-5 answers, if we set θ = 0.9 in the first step in DT-CGS. As the
increasing of K , the performance of DT-CGS decreases greatly. Fig. 9(b) explains the
cause. When K is large, the final threshold β is small. Thus, we have to perform CGS
algorithm [8] many times according to decreasing threshold θ. Thus, it leads to more
candidates in DT-CGS.

Furthermore, we observed that the increasing trend of running time in PG-search
is much slower than that in DT-CGS algorithm. In PG-search algorithm, we need to
compute φ(Q, h) in each iteration step and h is the head of heap H . Therefore, we can
regard h as a candidate answer. Fig. 9(c) reports candidate size in PG-search and DT-
CGS algorithm. Observed from Fig. 9(c), we also find the increasing trend of candidate
size in PG-Search is much slower than that in DT-CGS. We have the similar results on
other query sets in the experiments. Due to space limit, we do not report them here. We
also compare PG-search with DT-CGS on synthetic datasets in Fig. 9. The experiment
results also confirm the superiority of our method.
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Fig. 7. Evaluating Indexing Technique in PG-search Algorithm in AIDS datasets
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Fig. 8. PG-search VS. Decreasing Threshold-based CGS on AIDS Dataset
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Fig. 9. PG-search VS. Decreasing Threshold-based CGS on Synthetic Dataset

5 Related Work

Given a query graph Q, retrieving related graphs from a large graph database is a key
problem in many graph-based applications. Most existing work is about sub-graph search
[13,18]. Due to NP-complete hardness of sub-graph isomorphism, we have to employ
filtering-and-verification framework. First, we use some pruning strategies to filter out
false positives as many as possible, second, we perform sub-graph isomorphism for each
candidate to fix the correct answers. Furthermore, similar sub-graph search is also im-
portant, which is defined as: find all graphs that “closely contain” the query graph Q.

However, the above similar subgraph search is structure-based. Ke et al. first propose
correlation mining task in graph database, that is correlation graph search (CGSearch
for short)[8]. CGSearch can be regarded as statistical similarity search in graph



184 L. Zou, L. Chen, and Y. Lu

database, which is different from structural similarity search. Therefore, CGSearch pro-
vides an orthogonal search problem of structural similarity search in graph database.
CGSearch in [8] requires the specification of a minimum correlation threshold θ to per-
form the computation. In practice, it may be not trivial for users to provide an appropri-
ate threshold θ, since different graph databases typically have different characteristics.
Therefore, we propose an alternative mining task: top-K correlation sub-graph search,
TOP-CGS.

Correlation mining is always used to discovery the underlying dependency between
objects. The correlation mining task finds many applications, such as market-basket
databases [2,10], multimedia databases [11]. In [16], Xiong et al. propose an all-strong-
pairs correlation query in a market-basket database. In [6], Ilyas et al. use correlation
discovery to find soft functional dependencies between columns in relational database.

6 Conclusions

In this paper, we propose a novel graph mining task, called as TOP-CGS. To address
the problem, we propose a pattern-growth algorithm, called PG-search algorithm. In
PG-search, we first grow the sub-graph Si with the highest support and maintain the
threshold β to be the K-largest correlation value φ(Q, Si) by now. We increase β in
need until we find the correct top-K answers. Furthermore, in order to improve the per-
formance, we utilize graph indexing technique to speed up the mining task. Extensive
experiments on real and synthetic datasets confirm the efficiency of our methods.
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Abstract. As a promising technology for tracing the product and hu-
man flows, Radio Frequency Identification (RFID) has received much
attention within database community. However, the problem of missing
readings restricts the application of RFID. Some RFID data cleaning
algorithms have therefore been proposed to address this problem. Never-
theless, most of them fill up missing readings simply based on the histor-
ical readings of independent monitored objects. While, the correlations
(spatio-temporal closeness) among the monitored objects are ignored.
We observe that the spatio-temporal correlations of monitored objects
are very useful for imputing the missing RFID readings. In this paper,
we propose a data imputation model for RFID by efficiently maintain-
ing and analyzing the correlations of the monitored objects. Optimized
data structures and imputation strategies are developed. Extensive sim-
ulated experiments have demonstrated the effectiveness of the proposed
algorithms.

1 Introduction

Radio Frequency Identification (RFID) [1,2] is experiencing fast developments
in recent years. Today, an increasing number of products in our everyday life are
attached with RFIDs, which provide fast accessibility of specifications as well
as spatio-temporal information of the products. A RFID application is mainly
composed of readers and tags. Readers are transponders capable of detecting
tags within a distance from them. Tags are attached to the monitored objects.
They can either actively transmit or passively respond to a unique identification
code when they are close enough to a reader. By means of RFID technology,
objects in the physical world can be easily identified, catalogued and tracked.
With the tracking function, RFID can be widely applied in applications such as
supply chain management [3], human activity monitoring and control [4], etc.

In RFID tracking applications, a huge amount of RFID readings generate a
large number of rapid data streams containing spatio-temporal information of
the monitored objects. However, there are many dirty data within the spatio-
temporal RFID streams. Especially, missing readings are very common because

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 186–200, 2009.
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of various factors such as RF collision, environmental interruption, and metal
disturbance. Therefore, the RFID data streams usually contain a large percent-
age of defective spatial-temporal information. Data imputation, as a kind of data
cleaning techniques, is quite important to improve the quality of RFID readings.

Existing studies [5,6] on physical RFID data imputation focus mainly on the
analysis of historical readings of independent monitored objects, and ignore the
correlations of trajectories of monitored objects. We observe that in many RFID
applications, objects are being perceived as moving in swarms. Groups of the
monitored objects such as humans, vehicles, herds and commodities are often
moving together within many local tracks. For example, in a smart RFID mu-
seum scenario, many visitors are expected to move around the premises with
their friends or family. Obviously, the positions of partners within a group are
very useful for estimating the positions of missing RFID tags within the group.
However, there are three important challenges in applying such group moving
information to RFID data imputation:

– Mutation. The partnership of the monitored objects may change over time.
For example, visitors may re-choose their partners because of the mutative
interests about exhibition in the museum scenario.

– Chaos. People or objects in different groups may accidentally merge at
the same location simultaneously. For example, a special show will attract
unacquainted visitors at the same time.

– Ambiguity. When readers cannot obtain a reading from a tagged object in
the monitoring space, we say an empty reading occurs. An empty reading
can be generated from two cases: missing reading (readers fail to read a
tag although the tag is covered by their sensing regions) or vacant reading
(happens when the tagged object is not covered by any sensing region of
a reader). It is difficult to identify whether an empty reading is a missing
reading or a vacant one.

Figure 1 illustrates the above challenges. The circle and rectangle represent
people from different organizations . Chaos can be found in region1 where o1 and
o3 gather. When o1 moves to region2, a mutation occurs because o1’s partner will
change to o5. Ambiguity exists between o6 and o7 when they both are not read
by readers since we cannot distinguish whether it is because the tags have been
moved out the sensing regions of readers (vacant readings) or they are disturbed
(missing readings).

To our knowledge, this is the first paper that seeks to utilize the grouped
trajectory information of monitored objects for RFID data imputation. Algo-
rithms on handling the above challenges are proposed. The paper is organized
as follows. Section 2 outlines the related work. Section 3 introduces the corre-
lation model of RFID monitored objects. Section 4 proposes the techniques to
efficiently maintain the correlations. Section 5 illustrates the optimized data im-
putation methods for improving accuracy. Section 6 provides the experimental
analysis and Section 7 concludes the paper.
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Fig. 1. Challenges for using group moving information

2 Related Work

The proliferation of RFID has generated new problems for database commu-
nity. Many data cleaning techniques [5,6,8,9] have been proposed to improve
the accuracy of RFID data collected from noisy environments. One important
goal of RFID data cleaning is to fill up the missing readings in noisy commu-
nication conditions. For such data imputation based on physical readings, one
commonly used technique is smoothing filter. All missing readings will be filled
up if one reading is successfully read within one smoothing window. For exam-
ple, a pipeline framework, which allows users to set the size of the smoothing
window, is used to clean various dirty data in [5]. However, a fixed smoothing
window size cannot well capture the dynamics of tag motion. A statistics-based
approach is proposed in [6] to dynamically adjust the size of smoothing windows.
Whereas, the method is only applicable to the situation of a single reader due
to the limitation of the statistics model. For a general RFID application with
multiple regions across the space, the statistics model will be ineffective. The
cost optimization problem for historical readings based methods is discussed in
[7], when additional context features and transition models are supposed to be
predicted.

Different from the physical data imputation, some work has focused on clean-
ing data related to specific application semantics. For example, Khoussainova et
al. [8] propose a cleaning strategy based on a probabilistic model. Rao et al. [9]
propose to delay the data imputation to the time when queries are issued. The
definition of dirty data is associated with specific applications. Moreover, it can
only be applied to static data in a database, and not to the RFID streaming
applications. Our spatio-temporal closeness model is also substantially different
from the one in general sensor networks [10] as our model is used in the context
of RFID, where moving objects are tracked.

3 RFID Monitored Objects Correlation Model

For simplicity, we assume that an RFID reader r periodically senses readings
from a tagged object o if o is in the sensing region of r. Suppose R, O represent
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the sets of reader IDs and object IDs respectively. A RFID reading is modelled as
a ternary tuple p =< i ∈ R, j ∈ O, t >, representing an object oi is detected by
a reader rj at time stamp t. In our RFID model, we assume that RFID readers
are independent, i.e., no sensing regions of two readers cover with each other.
The sensing region of a reader ri is called a logic region Υi. The space that is
not covered by any logic region is called the dead region, denoted as Υ̃ . Those
tagged objects in any logic region are supposed to be detected by a reader if no
missing readings occur. While, those tagged objects will not be sensed by any
readers if they are in Υ̃ .

All the detected objects within Υi at time stamp t is denoted as Υi(t) =
{oj |∃p =< i, j, t >}, While Υ̃ (t) represents all the tagged objects in the dead
region at time stamp t. We define all the objects with empty readings at time
t as Ø(t) and all the objects with missing readings at time t as φ(t). Therefore,
we have Ø(t) = φ(t)

⋃
Υ̃ (t). If we use Δ(t) to represent all the tagged objects

in the RFID working space at time t, we have Δ(t) = Ø(t)
⋃

(
⋃

i Υi(t)). Note
that Δ(t) is dynamic because tagged objects join and leave the RFID working
space dynamically. Readers deployed at the entrances and exits can identify the
changes of Δ(t) . We define a function Rt(oi) specifying the logic region that an
object belongs to:

Rt(oi) =
{

k iff oi ∈ Υk(t)
∗ iff oi ∈ Ø(t) (1)

We can use a discrete stream S(oi) specifying the logic regions of an object
locating at a series of time stamps. For example, S(o1) = 1111∗ ∗ ∗ 222 ∗ ∗ ∗ ∗33.
Note that a ∗ in a discrete stream is an empty reading. It can either be a missing
reading or a vacant reading. During the estimation process, ∗ is replaced with 0
if it is estimated as a vacant reading. Otherwise, k ∈ R replaces with ∗ when it
is estimated as a missing reading and oi is estimated at the logic region Υk. A
discrete stream S(oi) is transformed to a fully estimated stream, noted as S̃(oi),
if all ∗s in S(oi) have been estimated. An example of fully estimated stream is
S̃(o1) = 1111002222000033. We also define the actual stream S̄(oi) of an object
as a sequence of the actual positions (k for Υk and 0 for Υ̃ ) of oi in different time
stamps. For example, S̄(o1) = 1111000222000333. If we ignore those consecutive
repetitive readings and those empty readings within a discrete data stream S(oi),
we get a logic stream Ŝ(oi). For example, Ŝ(o1) = 123.

We can measure the error number e(S̃(oi)) of an estimated stream by counting
the number of incorrect estimated entries in S̃(oi), comparing with the actual
stream S̄(oi). For example, e(S̃(o1)) = 2. Given a number of observed streams
S(oi) (i ∈ O), our problem is to achieve the following two level goals:

– Level1: Recover Ŝ(oi) from S(oi), which is enough for some simple location
sequence query in RFID applications.

– Level2: Estimate S̃(oi) from S(oi), so that e(S̃(oi)) can be as small as pos-
sible. S̃(oi) is quite useful for the exact spatio-temporal queries of tagged
objects.
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Note that the pure temporal smoothing method or its variance cannot even be
applicable for the first level goal. For example, for S(o1) = 1111∗∗∗∗∗∗∗∗∗∗33,
we may get S̄(o1) = 13 if those empty readings are simply ignored. For the
level2 goal, because the staying periods of different objects in some regions may
be quite different, the size of smoothing window cannot be efficiently defined.
Furthermore, the dynamic smoothing window technique will not work due to
the reader number limitation [6].

To utilize the group moving information for estimating the empty readings,
we need define the correlation of moving tagged objects effectively. One intuition
is that if two objects stay in the same region for a longer time, they will have
higher probability to be the partners. We first assume that there are no missing
readings, the correlation of two tagged objects oi and oj , denoted as λt

1(oi, oj)
can be defined as follows:

λt
1(oi, oj) =

⎧⎨
⎩

λt−1
1 (oi, oj) + 1 iff ∃k, oi, oj ∈ Υk(t)

λt−1
1 (oi, oj) iff oi, oj ∈ Υ̃ (t)

0 otherwise.

(2)

The above definition handle both the chaos and the mutation problems. The
correlation of two objects increases if they stay in the same logic region longer.
While, the correlation drops to zero if two objects are probably in different logic
regions, which happens in mutation scenarios. However, the ambiguity is still a
problem for such a definition because an empty reading in S(oi) can also be a
missing reading. If we can distinguish between Υ̃ (t) and φ(t), the correlation can
be modified as:

λt
2(oi, oj) =

⎧⎪⎪⎨
⎪⎪⎩

λt−1
2 (oi, oj) + 1 iff ∃k, oi, oj ∈ Υk(t)

λt−1
2 (oi, oj) iff oi, oj ∈ Υ̃ (t)∨

(oi ∈ φ(t)
∧

oj /∈ Υ̃ (t))
∨

(oj ∈ φ(t)
∧

oi /∈ Υ̃ (t))
0 otherwise.

(3)

However, in real cases, what we can see is Ø(t) instead of Υ̃ (t). When oi ∈ Ø(t),
it may be in the same or different places with oj , keeping the correlation stable
is the tradeoff choice according to the three challenges.

Thus ,we present our basic correlation definition as:

λt(oi, oj) =

⎧⎨
⎩

λt−1(oi, oj) + 1 iff ∃k, oi, oj ∈ Υk(t)
λt−1(oi, oj) iff oi ∈ Ø(t)

∨
oj ∈ Ø(t)

0 otherwise.
(4)

Based on the correlations among objects, given a tagged object oi, the ref-
erence partner of oi can be defined as Pt(oi), such that � ∃oj , λ

t(oi, oj) >
λt(oi,Pt(oi)). Note that there may be multiple objects maximizing the correla-
tion to an object oi. We randomly choose one of them as Pt(oi).

In order to incrementally maintain λt(oi, oj) from λt−1(oi, oj), a complete
graph is required, namely G(t) = (V, E), in which the vertex set is V = Δ(t)
and the edge set is E = {(oi, oj , κ)|∀oi, oj ∈ Δ(t) ∧ i < j, κ = λt(oi, oj)}. The
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vertex is fully linked with weights and it cannot be divided into sub-graphs. A
matrix Mt, Mt[i][j] = λt(oi, oj) can be employed for dynamic maintenance of
such a graph. The algorithm is easy to be implemented, but the time and space
complexity are both O(N2), where N = |Δ(t)|. The cost is quite high in RFID
applications when the number of monitored objects is huge. Using the adjacency
list to maintain the graph will not reduce the time complexity either. Therefore,
we need to re-consider the λt(oi, oj) definition and therefore compress the graph
structure based on the the concept of reference partner.

Obviously, reference partner can be utilized in the correlation definition when
an empty reading occurs. The optimized correlation definition is given in equa-
tion(5). Note that λ will be replaced with λ̄ in computing Pt(oi) in this case.
Furthermore, the optimized correlation definition can lead to improved mainte-
nance model which will be illustrated in the next section.

λ̄t(oi, oj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̄t−1(oi, oj) + 1 iff (∃k, oi, oj ∈ Υk(t))∨
(oi ∈ Ø(t)

∧
oj /∈ Ø(t)

∧Rt(Pt−1(oi)) = Rt(oj))∨
(oj ∈ Ø(t)

∧
oi /∈ Ø(t)

∧Rt(Pt−1(oj)) = Rt(oi))∨
(oi ∈ Ø(t)

∧
oj ∈ Ø(t)

∧
Rt(Pt−1(oi)) = Rt(Pt−1(oj)))

0 otherwise.

(5)

4 Optimized Maintenance of Correlation

4.1 Properties of Optimized Correlation

The optimized correlation has some desired properties which can be utilized
for reducing the maintenance cost. They are: (1) λ̄t(oi, oi) ≥ λ̄t(oi, oj); (2)
λ̄t(oi, oj) = λ̄t(oj , oi); (3) oi ∈ Υk(t) ∧ oj ∈ Υl(t) ∧ k �= l ⇒ λ̄t(oi, oj) = 0.
Furthermore, an advanced property for λ̄t can be inferred as follows:

Theorem 1. ∀i, j, k,Suppose λ̄t(oi, ok) = max{λ̄t(oi, ok), λ̄t(oi, oj), λ̄t(oj , ok)}
⇒ λ̄t(oi, oj) = λ̄t(oj , ok)

Proof. Suppose λ̄t(oi, ok) = κ1 > λ̄t(oj , ok) = κ2, according to equation (5),
λ̄t−κ2(oi, ok) = κ2 − κ1 and λ̄t−κ2(oj , ok) = 0. At the time point t − κ2, if
ok, oi, oj /∈ Ø(t), At−κ2(oi) = At−κ2(ok) �= At−κ2(oj). Hence, λ̄t−κ2(oi, oj) = 0.
If ok ∈ Ø(t), oi, oj /∈ Ø(t), At−κ2(oi) = At−κ2(Pt−κ2−1(ok)) �= At−κ2(oj). By
analogy of other situations, we can prove λ̄t−κ2(oi, oj) = 0. Also, ∀t − κ2 <
τ ≤ t, we can infer Aτ (oi)(or Aτ (Pτ−1(oi))) = Aτ (ok)(or Aτ (Pτ−1(ok))) =
Aτ (oj)(or Aτ (Pτ−1(oj))). So λ̄τ (oi, oj) = λ̄τ−1(oi, oj) + 1 and λ̄t(oi, oj) =
κ2 = λt(oj , ok). Also, the situations for λ̄t(oi, ok) = λ̄t(ok, oj) and λ̄t(oi, ok) >
λ̄t(ok, oj) can be inferred in the similar way.

Based on the properties of λ̄, we can get a sub-graph Gk(t) = (V, E) for
each Υk(t) ,where the vertex set is V = Υk(t) and the edge set is E =
{(oi, oj , κ)|∀oi, oj ∈ Υi(t) ∧ i < j, κ = λ̄t(oi, oj)}. Also, Ø(t) will correspond
to a special sub-graph G∗(t).We have ∀oi, oj ∈ Gl(t)⇒ λ̄t(oi, oj) �= 0. Likewise,
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oi ∈ Gl(t), oj ∈ Gk(t), l �= k ⇒ λ̄t(oi, oj) = 0. We name this kind of sub-graph
as λ̄−Graph in this paper.

According to Theorem 1, we can compress a λ̄−Graph into a corresponding
λ̄− list where λ̄ values of consecutive objects in the list are recorded.

Theorem 2. A λ̄-Graph can be transformed into a λ̄-List without any loss.

Proof. We prove it by mathematical induction. For |Gl(t)| = 1 or |Gl(t)| = 2,
it is a list. Suppose |Gl(t)| = n can be represented by a list |Ll(t)| = n. For a
new object oi, ∃oj ∈ Ll(t)(|Ll(t)| = n), λ̄t(oi, oj) = max{∀ok ∈ Ll(t), λ̄t(oj , ok)}.
Furthermore, we can get a tree |Tl(t)| = n+1 by linking oi with oj . Suppose ok is
one neighbor of oj in |Ll(t)| = n. According to Theorem 1, λ̄t(oi, ok) ≤ λ̄t(oj , ok).
If λ̄t(oi, ok) < λ̄t(oj , ok), by cutting the link of oi and ok and re-linking oj and
ok, we can get a list |Ll(t)| = n + 1 (an example is shown in Figure 2 for
|Lk(t)| = 4 ). If λ̄t(oi, ok) = λ̄t(oj , ok), replace the edge between oi and oj with
edge between oi and ok. |Lk(t)| = n + 1 can be obtained as well by repetitively
executing the above rule until it reaches the head or tail of the list (an example
is shown in Figure 2 for |Lk(t)| = 5). Hence, |Gk(t)| = n + 1 can be represented
by |Lk(t)| = n + 1.
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Fig. 2. An illustration of transforming λ̄-Graph to λ̄-List

When the detailed implementation is concerned, a linked list Lt
i can be de-

signed to represent a λ̄ list Li(t). The element eid of the linked list is denoted
as < id, λ̄ >, where λ̄ represents the correlation of oid and its previous node. In
fact, we can build a λ̄-List from the very beginning and transform Lt−1 to Lt in
the incremental manner based on the following principles.

– Regrouping principle. For any two objects oi, oj of different sub-lists,
λ̄t(oi, oj) =0. So when they are combined into a new λ̄-list. We just need
to link them directly and assign the λ̄ value at the linking position as 1
according to our λ̄ definition.
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– Splitting principle. Suppose ek, em and en are three consecutive elements
in a λ̄-List and λ̄t(ok, om) = λ̄t(om, on) = κ. According to Theorem 1,
λ̄t(ok, on) ≥ κ. However, if λ̄t(ok, on) > κ, em can be inferred to be inserted
into a λ̄-List having contained ek and en, at t− κ + 1. Whereas according to
the regrouping principle, em will not lie between ek and en. Therefore, we
can testify λ̄t(ok, on) = κ. Furthermore, combining it with Theorem 1, for
any two objects oi, oj in λ̄-List, λ̄t(oi, oj) can be obtained by calculating the
minimal λ̄ between oi and oj . Thus, a list can be split into some sub-lists
when some λ̄ value drops to 0. Note that Pt(oi) will be the oi’s neighbor in
a λ̄-list according to the analysis above.

4.2 Optimized Maintenance Strategies

In this section, we will propose three incremental λ̄ maintenance strategies
based on different splitting and regrouping principles. The proposed mainte-
nance strategies show different performances in various conditions. Suppose
N = |Δ(t)|, Nr is the number of logic regions plus a dead region and No = N/Nr

represents the average number of objects in each region. Besides, there is a hid-
den metric Pc reflecting the average probability that a object will change its
partners at the next time stamp.

Multiple Scans (MS) Strategy. In order to compute Lt from Lt−1, we can
scan each Lt−1

i for multiple times. At each time, we abstract the objects in
the same Lt

j. We illustrate the procedure in Figure 3. Suppose the input is
Υ1(t) = {o8, o9, o10, ...}, Υ2(t) = {o14, o22, ...} and Ø(t) = {o5, o20, o26, ...}. 1-1
represents the first step in the first loop. minλi representing the minimum λi

in Lt−1
i for each loop will be maintained in an incremental manner. For the

objects in Ø(t), reference partner is required to determine which list to insert.
For example, Pt−1(o5) = o20 ∧ Rt(o20) = ∗, therefore, o5 will be inserted into
the special list Lt

∗ for the dead region. While Pt−1(o26) = o22 ∧Rt(o22) = 2, so
o26 will be inserted into the region list Lt

2.
The key steps of the MS algorithm is illustrated in Algorithm 1. The processing

cost is related to Pc. If Pc = 0, the average complexity to maintain a Lt−1
i is

just O(No). If Pc = 1, the average complexity to maintain a Lt−1
i will be O(N2

o ).
Therefore, the total time complexity to transform Lt−1 to Lt will be between
O(NoNr) and O(NoN).

t-1:

Region-1 10 8 14 5 20 22 26 969 9 2 4 8 5

Region-1

t:

10

3

3 9
9+1 1-1

min{9,2,6,4,8,5}+1

1-3 insert

Region-2 Pre-sub-list

1insert 2-3

Pre-sub-list    Dead Region

1
insert

7 3-1

2-1 min{2,6,4}+1 2-2

3-2

Fig. 3. An illustration of the MS procedure



194 Y. Gu et al.

Algorithm 1. The Multiple Scans Algorithm
Input: Lt−1

Output: Lt

1. for Lt−1
i ∈ Lt−1 do

2. while Lt−1
i 
= ∅ do

3. reset minλi

4. α = Lt−1
i .head

5. if α ∈ Ø(t) then
6. α = Pt−1(α)
7. for β = oi ∈ Lt−1

i do
8. maintain minλi

9. if β ∈ Ø(t) then
10. β = Pt−1(β)
11. if Rt(α) = Rt(β) then
12. β.λ = minλi + 1
13. L̂t−1

Rt(α)
.add(β)

14. Lt−1
i .remove(β)

15. Lt
Rt(α).link(L̂t−1

Rt(α)
)

Single Scan (SS) Strategy. Compared to MS, SS scans each sub-list Lt−1
i for

only once. It inserts each oi in the sub-list into the corresponding Lt
j . However,

in order to maintain the λ̄, for each Lt
j , the current minλj must be maintained.

All the Lt
j must be scanned to maintain the minλj with each insertion. We

illustrate the basic procedure in Figure 4 with the same input of Figure 3.

t-1:

Region-1 10 8 14 5 20 22 26 969 9 2 4 8 5

Region-1

t:

10
3

3 9
2

8

1 insert

Region-2 Pre-sub-list

1insert 3

Pre-sub-list   Dead Region

1
insert

7
5

6 7

4

min correlation at each time:
inf ,2 (inf ),9,2,2,2,2,2(inf )

min correlation at each time:
inf ,9,0(inf ),2,2,2(inf ),8(inf ),5

min correlation at each time:
inf ,9,9,0(inf ),6(inf ),4,8,5

Fig. 4. An illustration of the SS procedure

The key steps of the SS algorithm is illustrated in Algorithm 2. The average
complexity to maintain a list is O(NoNr). The total complexity to transform
from Lt−1 to Lt will be O(NrN).

Interval Tree-Based Scan (ITS) Strategy. When computing the λ̄ of any
two objects, we can construct an interval tree to calculate the λ̄ directly, instead
of incrementally maintaining minλi. First, all λ̄ values will be indexed as an
ordered array. The leaf nodes of the tree are all the objects, and the internal
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Algorithm 2. The Single Scan Algorithm
Input: Lt−1

Output: Lt

1. for Lt−1
i ∈ Lt−1 do

2. for β = oi ∈ Lt−1
i do

3. if β ∈ Ø(t) then
4. β = Pt−1(β)
5. for each Lt

i do
6. if minλi > β.λ then
7. minλi = β.λ
8. if β is the first in Lt−1

i to insert Lt
Rt(β) then

9. minλRt(β) = 0
10. β.λ = minλRt(β) + 1
11. minλRt(β) = ∞
12. Lt

Rt(β).add(β)
13. Lt−1

i .remove(β)

nodes are the index of the children nodes with smaller λ̄. The bounds of the
index interval for each parent node is recorded. The complexity to construct
such a tree for a sub-list will be O(NologNo). However, the extra space cost for
the inter nodes is required. To calculate λ̄t(oi, oj), from the root node, dichotomy
is used until finding the corresponding left bound node and the right bound node.
Then, the two correlation scores will be compared. The smaller one is the result.
Note that in the list structure, λ̄t−1(oi, oj) is stored in the node representing
oj . Therefore, the corresponding left bound index should be incremented by 1.
For example, in Figure 5 which illustrates the procedure of ITS, to compute
λ̄t−1(o8, o9), namely λ̄t−1(oindex=2, oindex=8), the left index bound should be 3
and the right index bound should be 8. The scan of the tree needs O(logNo)
time complexity. In this way, total time complexity to transform Lt−1 to Lt will
be O(N logNo).

MS, SS and ITS are suitable for different scenarios. MS is suitable for the
situation when Pc is small and SS is suitable for the situation when Nr is small.
ITS can be efficient when Pc and Nr are both large. Because no algorithm can be
dominant over others in all cases, we can make the choice adaptively according
to the applications.

t-1:

Region-1 10 8 14 5 20 22 26 969 9 2 4 8 5

index=1 index=2 index=3 index=4 index=5 index=6 index=7 index=8

/

index=2

9

9 9 2

index=4

6 4

index=6

8 5

index=8  [1,2]   [3,4]   [5,6]   [7,8]

2index=4 index=6 54

  [1,4]   [5,8]
index=4

2 4
  [1,8]

2

  Min{2,4}=2

Fig. 5. An illustration of correlation computation based on interval tree
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5 Remedy-Based RFID Data Imputation Strategy

Defining and maintaining the correlations are only the basis of the data imputa-
tion strategy. One way of data imputation is to construct the missing readings
directly based on Pt−1. We call it the direct imputation. However, the direct im-
putation may cause regular errors due to the change of partners. For example,
for S(o1)=111***222 and S(o2)=11*****33, if P3(o2) = o1 and P7(o2) = o1, the
direct imputation may result in S̃(o2) = 111000233. But obviously, the real case
is much more likely S̃(o2) = 110000033, interpreted as o1 leaves o2 and leads to
a different region. Therefore, we introduce a remedy-based RFID data imputa-
tion strategy. Instead of implementing imputation right away, the remedy-based
RFID data imputation will check the states of two objects in the next logic des-
tination region. Although the imputation is delayed, it is very useful to improve
the accuracy of the results. Especially, the remedy-based RFID data imputation
is quite useful for those objects having no substantial partners with them. We
illustrate the strategy in Algorithm 3.

Algorithm 3. Remedy-based RFID Data Imputation
1. if oi ∈ Ø(t) ∧ Pt−1(oi) /∈ Ø(t) then
2. oi → PList.add(Pt−1(oi))
3. if oi /∈ Ø(t) ∧ Pt(oi) /∈ Ø(t) then
4. if oi → PList 
= Ø then
5. Sα = oi → PList.searchbyID(Pt(oi))
6. if Sα 
= Ø then
7. for α ∈ Sα do
8. oi.interpolate(α.t, α.r)
9. oi → PList.removeALL()

The algorithm can be combined with the correlation maintenance strategy
directly by introducing an adjunctive data structure PList, which is used to
reserve the possible reference partners. We denote the size of PList as NP and
the additional search cost O(NP ) will be incurred when the imputation is trigged.
However, it is trivial compared to the maintenance of correlations. The response
delay of imputation is potentially determined by the time spent during the dead
region for the corresponding objects.

As a pre-processing method, data imputation will serve the user’s query. How-
ever, remedy-based imputation may lead to inaccurate results for the upper
query because of the delay. RFID-oriented query can be based on database [11]
or data stream [12]. For database query [11], the RFID readings will be inserted
into a table, e.g., R-Table, and SQL query can be executed over the table. In
this way, as long as the query is not incurred before the imputation judgement
is finished, there will be no problems. Correspondingly, oi.interpolate(α.t, α.r)
in the database context will be interpreted the following SQL:

UPDATE R-Table Set Region=α.r WHERE Object=oi.id AND time=α.t.
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But for the RFID data stream processing, automata model is usually em-
ployed to detect complex event pattern [12]. The data will not be stored into
the database and query is executed in the continuous manner. For the common
queries involving sequence, simultaneous, conjunction and disjunction, although
the response will be delayed but the correct results can be guaranteed. However,
for the query when negation operation is involved, there may be false positive
result produced. For example, for the query SEQ(A, NEG(B))w , which repre-
sents some object doesn’t come to region B after leaving region A within w
period, if the imputation cannot be finished within w, a false composite event
will be notified. Fortunately, we can employ a similar version of algorithm 3 as
the alternative method to solve the problem. The main idea is to first utilize di-
rect imputation method. Then, delete the imputation data later once it is judged
to be unreasonable. It can be obtained by simply modifying algorithm 3. Note
that this alternative method is not suitable for the occasions when algorithm 3
is applicable. Therefore, we need to choose the proper remedy-based RFID data
imputation strategy according to the query categories.

6 Experiments

6.1 Experiment Settings

In this section, we report the evaluation of our proposed model by simulated
experiments, in terms of the efficiency and accuracy. All experiments were con-
ducted on a PC of 2.6G Hz with 1G memory. The algorithms were implemented
with C++. We designed three kinds of simulated data sets in a museum scenario.

– DataSet1. The locations of the monitored objects (visitors) are totally ran-
dom at any time. In this case, objects hardly have stable partners, and Pc

will be very high.
– DataSet2. Most monitored objects will have partners at each time stamp.

The partners may change casually.
– DataSet3. All the monitored objects will have their partners all the time.

The partners seldom change during the whole simulation period.

6.2 Maintenance Cost

We evaluate the processing time of three correlation maintenance strategies in
this section. In order to better illustrate the flexibility in complex situation, the
results of tests on dataset1 are given in Figure 6. In this case, Pc can be inferred
by computing min(No, Nr), which helps us to observe its impacts on computa-
tional cost. The granularity of simulation time represented by T is second and
the total cost during the simulation is used to illustrate the efficiency.

In Figure 6(a), we tested the efficiency of different correlation maintenance
models. We can find that the list-based model based on the correlation λ̄ will be
much more efficient than the graph-based model based on the correlation λ. The
matrix-based graph maintenance is very time-consuming. The advantage of ITS
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Fig. 6. Processing time comparison of different correlation algorithms

over adjaceny-list-based method will become quite prominent with the increase of
N . In Figure 6(b), we compared the different optimization maintenance methods
when N = 5000. ITS will consume some computational costs in constructing the
tree and index, which is comparable to the maintenance of correlations in this
scale of N . Therefore, compared to MS and SS, the cost of ITS will be higher.
The contrast of MS and SS is not very obvious in this situation.

In Figure 6(c) and Figure 6(d), we studied the impacts of N and Nr on the
computational cost of various correlation maintenance methods when a huge
number of objects are involved. As we can see from these two figures, neither MS,
SS nor ITS can dominate the others under different values of N and Nr, which
is substantially accordant with our theory analysis. For dataset2 and dataset3,
similar results can be found for the computational time of different correlation
maintenance methods.

6.3 Accuracy

Because the direct imputation and remedy-based imputation methods will incur
very low computational cost compared to the maintenance of correlations, we
simply studied the accuracy of different correlation definitions and data imputa-
tion strategies. The compared methods include direct imputation and remedy-
based imputation based on λ and λ̄ (opt-λ in Figure 7). The error rates for
our level1 goal and level2 goal of different imputation methods are illustrated in
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Fig. 7. Error ratio comparison of different data imputation strategies

Figure 7. For the level1 goal, we compared with the temporal smoothing method,
which is the ideal method in this case if imputation is simply based on the tem-
poral information. We take Dataset2 and Dataset3 as the testing datasets to
illustrate the accuracy evaluation because partnerships in Dataset1 can hardly
be preserved.

From Figure 7(a)-(d), we can see that the accuracy under the λ̄ definition
and the λ definition is quite close. While, the remedy-based method will im-
prove the accuracy in Dataset2 where more mutations exist. Even for the level1
goal, compared to the temporal-smoothing method, the correlation-based impu-
tation method will be more accurate, especially when the missing ratio is large.
Compared to dateset2, the accuracy of our proposed imputation model is better
in dataset3 where partners seldom change. Moveover, our methods can also gain
relatively higher accuracy in the very noisy environment(e.g., with 40% missing
ratio).

7 Conclusion

In this paper, we have proposed a novel RFID data imputation mechanism based
on analyzing the correlations of monitored objects. Basic correlation model is
first inferred to solve the three key challenges: mutation, chaos and ambiguity.
The λ̄ correlation is proposed to gain important correlation relationship between
objects. Using this relationship, related optimization strategies about correlation



200 Y. Gu et al.

maintenance are discussed. A remedy-based data imputation strategy is intro-
duced to improve the accuracy. Finally, we have identified the effectiveness of
the proposed models and methods through extensive experimental studies.
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Abstract. This paper investigates the problem of writing data to passive RFID 
tag memory and proposes a reprocessing model for assuring the atomicity and 
durability of writing transactions in volatile RF communications. This study is 
motivated by the need to support persistent writing transactions of RFID tag 
data despite asynchronous and intermittent RF connections. The problem arises 
when the tag disappears from the interrogation area of the reader before all data 
is written completely. The disconnection during the process of a write operation 
causes the tag data to be inconsistent. To solve the problem, we propose an 
asynchronous wake-up reprocessing model for resuming unsuccessful write op-
erations. The basic idea is to use a continuous query scheme for asynchronously 
detecting re-observations of unsuccessfully written tags. To achieve this, we 
employ a continuous query index, which monitors the tag stream continuously 
and finds unsure tags efficiently. We also discuss implementation issues for the 
proposed model. This shows that the reprocessing model processes unsuccess-
ful operations completely and avoids inconsistent data, despite volatile charac-
teristics in the RF communications. 

Keywords: RFID, Write Transaction, Tag Memory, Continuous Query. 

1   Introduction 

Radio Frequency IDentification (RFID) has been evolving into a distributed memory 
space [1]. Beyond simple identification, some RFID applications need to keep addi-
tional information about the product, such as price, expiry dates, and ownership in the 
passive RFID tag memory. As the tag memory enables self-description of tagged 
items, it is possible to access information about a tagged item without connecting to 
an information system. 

Many industrial processes, such as supply-chain management, asset management, 
and manufacturing process management, require additional memory in the RFID tags 
[2]. In the automotive industry, for example, production information is maintained in 
passive tags attached to automotive components. The information in the tag refers to 
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manufacturing status and is accessed for quality assurance purposes, such as recalling 
defective components during the components’ journey through the assembly process. 

Accessing the data in a passive RFID tag’s memory requires following two steps 
[3]. Firstly, the middleware requests a tag inventory operation to a specified reader. 
The reader broadcasts an RF signal and waits for the tags’ reply signals. And then, the 
reader lists up the inventoried tags and return them to the middleware. Secondly, the 
middleware investigates inventoried tags. If a matching tag is found, it sends access 
operations to the reader. These access operations include read, write, lock, and kill. 

An RFID transaction is a unit of logical work comprising tag access operations. To 
preserve the consistency of data in the tag’s memory, the RFID transaction should 
execute the access operations correctly. RFID transaction processing is similar to 
mobile transaction processing [4] because they both involve disconnection of wireless 
communication. However, the RF communication has different characteristics. 
Firstly, the connection between the reader and the passive tag is volatile. The commu-
nication range between the reader and the tag is limited to less than 10 meters in the 
case of passive RFID tags [5]. Tags frequently move out of the range of a reader dur-
ing the writing of data to the tag’s memory. At that time, therefore, the data in the 
tag’s memory might not be written correctly. Second characteristic is uncertainty. The 
RFID reader cannot guarantee 100% accuracy for tag access because of various inter-
ferences such as tag orientation, packing materials, and other obstacles [6]. A reader 
might not receive a reply message after sending a write message. If the tag disappears 
or the message is lost during processing of the write operation, the reader cannot de-
termine whether the write operation was successfully processed or not.  

The problem of processing RFID write operations is that these characteristics of 
RF communication will lead to inconsistent states of the tag data. A mobile client can 
handle these situations by immediately reconnecting to the host, because it maintains 
the operational status of the session. However, because a passive RFID tag has no 
internal power, it receives operational energy from the RF signal sent by readers. If it 
moves out of the field-of-view of the reader, the tag becomes unpowered and session 
information will be re-initialized. Data in the tag’s memory will remain inconsistent. 
Therefore, a reprocessing mechanism is required that guarantees the correct execution 
of write operations. VTMS [7] is proposed to handle this problem. However, it is a 
backup storage service and a recovery mechanism for the operation is not provided. 

We may consider that the middleware re-executes the write operation to the reader 
until the operation is processed completely. However, we do not know when the tag 
will be observed again and which reader will observe the tag. While a reader is per-
forming an inventory operation for re-executing a write operation, another application 
may access the inconsistent data of the tag via another reader. Therefore, the middle-
ware should re-execute the write operation to all readers. However, this approach 
would lead to middleware overload because the number of operations will be in-
creased significantly. For example, assume that 1000 write operations are requested 
by the middleware, with 10% of them being unsuccessfully processed. This would 
mean that 5000 operations are required to handle 100 unsuccessful operations if 50 
readers are connected to the middleware. 
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To solve this problem, we propose a reprocessing model for write operations, 
which handles suspended write operations caused by volatile and uncertain RF  
communications. Our approach is the asynchronous detection of re-observation of 
unsuccessful tags using a continuous query scheme when the tags are observed again. 
We employ a Continuous Query Index (CQI) to enhance the search for unsure tags. 
Inventoried tags from readers are stabbed into the CQI to check whether the tag re-
quires re-execution or not. To do this, we specify an asynchronous wake-up reproc-
essing model based on the CQI scheme. 

The main contribution of our work is that we develop a complete reprocessing 
model for overcoming the limitations of RF communications. Our model eliminates 
incompleteness in write operations by reprocessing unsuccessful operations. By using 
a continuous query scheme, our model enhances the performance of detecting unsuc-
cessfully written tags. Our model gives consistent data access to passive RFID tags 
without requiring consideration of RF characteristics. 

The remainder of this paper is organized as follows. We analyze the characteristics 
of RF communications and specify our work in Section 2. In Section 3, we present an 
asynchronous wake-up reprocessing model based on a CQI scheme for ensuring com-
plete execution. In Section 4, we present middleware architecture for the proposed 
model with implementation results. A summary is presented in Section 5. 

2   Problem Definition 

We first describe the access mechanism of RFID tag memory. Then, we analyze the 
characteristics of RF communications and discuss problems in processing write  
operations. 

2.1   Accessing the Tag Memory Data 

A request-to-write operation from a user application specifies a target tag and target 
readers to detect the tag, in addition to the data. When the middleware receives the 
request, it requests a tag inventory operation to the target readers. The reader identi-
fies a population of tags using a sequence of air-protocol commands [3]. Then, it 
reports the inventoried tags list to the middleware. The middleware compares the 
target tag with the inventoried tags and performs a write operation if the tag is found. 
The reader sends the write commands to the tag and receives a reply from the tag. 
This access to tag memory by the middleware is illustrated in Fig. 1. 

Low-Level Reader Protocol specification (LLRP) [8] defines APIs for the reader. 
In the LLRP, the write operation is specified by the C1G2Write parameter. It specifies 
an OpSpecID, a memory bank, a word pointer, the data, and an access password. 
Because a single write command from the reader to the tag can write only one word in 
the tag’s memory [3], a C1G2Write performs multiple write commands to the tag.  

The result of a C1G2Write includes the number of words successfully written to 
the tag and the result of the operation, as shown in Table 1. If NumWordsWritten is 
not equal to the length of the data to be written, the result will be nonzero and will 
include information about the error state of execution of the write operation. Based on 
the LLRP, we may classify the result of an operation as one of four cases: 
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- Successful, where the operation has been processed successfully. 
- Temporarily Failed, where the operation has not been processed successfully 

because of environmental reasons such as insufficient power. The operation 
may succeed after a retrial of the request. 

- Permanently Failed, where the operation has failed because of memory over-
run or access privileges. The operation will not succeed by simple retrial. It 
will be necessary to abort the operation. 

- No Response, where the reader has failed to receive a reply to a write com-
mand from a tag. The middleware cannot determine whether the data has been 
written successfully or not, because the tag’s state remains unknown. 

 

Fig. 1. Protocol for RFID operations [3][8] 

Table 1. C1G2WriteOpSpecResult parameter [8] 

Parameter Description 
OpSpecID Identifier of OpSpec 
NumWordsWritten The number of words written as a result of this OpSpec 

Result 

0    Success 
1    Tag memory overrun error 
2    Tag memory locked error 
3    Insufficient power to perform memory-write operation 
4    Non-specific tag error 
5    No response from tag 
6    Non-specific reader error 

2.2   A Problem with Processing Write Operations 

The tag is called inconsistent when the write operation is not successfully executed, 
leaving the data indeterminate or partially written. Let us explain this state using the 
result of a write operation. Figure 2 shows three possible scenarios for a No Response 
result that causes tag data inconsistency. Figure 2(a) illustrates tag disappearance 
caused by volatile RF communications. If the tag moves outside the range of the 
reader after the reader has sent the write command, the reader cannot determine 
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Fig. 2. Error cases for No Response 

whether the command has been executed or not. Figure 2(b) shows that a message 
sent by the reader is lost and the operation is not processed. Figure 2(c) shows that the 
write operation is successfully processed in the tag and the tag data is successfully 
updated, but the reply message is lost. 

The problem is that these characteristics will cause the tag state to be inconsistent. 
For all cases in Fig. 2, the reader does not receive a reply message and simply returns 
No Response. However, the tag memory may be already written or may be un-
changed. Because a passive tag is not self-powered, it cannot maintain session and 
control information, and it will be re-initialized when the tag moves outside the inter-
rogation area. As a result, its inconsistent data may be accessed by other applications. 

To ensure the atomicity of the operation, tag inconsistency should be eliminated by 
processing the write operation again. It is possible to consider reader-level reprocess-
ing to handle this problem. Currently, smart readers have been developed that perform 
retrial of operations as well as single execution of access operations [8]. However, the 
tag is floating in the reader space, and we cannot anticipate which reader will observe 
the tag next. If the tag is observed by another reader, it is inevitable that inconsistent 
data will be accessed. 

3   Asynchronous Wake-up Reprocessing Model 

In this section, we present an Asynchronous Wake-up (AW) reprocessing model for 
finalizing unsuccessful operations. We start with an introduction to the proposed 
model and discuss an asynchronous detection mechanism using a CQI scheme. Then, 
we present the execution mechanism of our model to complete the operations. 

3.1   Introduction of AW Reprocessing Model 

The objective of the AW reprocessing model is to enable write operation completion 
in volatile RF environments. Our model suspends execution of unsuccessful opera-
tions and separates them from other operations that are registered in the middleware 
for normal execution. When the tag’s re-observation is detected, our model wakes up 
the execution of the unsuccessful operation. We start the discussion of our model with 
some definitions. 
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Definition 1. A write operation w is called unsure if a result of w is No Response. A 
w is called partially completed if the NumWordsWritten in the result is less than 
w.length. A w is called incomplete if it is either unsure or partially completed. 

Definition 2. An unsure tag is a target tag of an incomplete operation. 
 
If an operation is determined to be incomplete after execution, our model starts by 
inserting the operation into the unsure list. Each record in the unsure list is defined as 
a tuple of seven predicates (id, tid, offset, length, data, nww, pid), where the tid is the 
identifier of unsure tag, offset, length and data describe the write operation, nww is 
the number of words written successfully, and pid is the identifier of the parent opera-
tion which has resulted as incomplete. 

The unsure list is used for the asynchronous detection of an unsure tag’s re-
observation. Inventoried tags from all readers should be checked whether they are 
unsure or not. Simple processing flow in the AW reprocessing model is illustrated in 
Fig. 3. When a tag is identified by Reader#B, its presence in the unsure list is 
checked. In this example, it matches the second record, where it is found that one 
word has already been written and one word remains to be written. Therefore, a write 
request for the word “34” is sent to Reader#B. 

 

Fig. 3. Processing flow in the AW Reprocessing Model 

3.2   Detection of the Tag’s Re-Observation Using CQI 

Detecting the tag’s re-observation using the unsure list takes role of the continuous 
query processing. Inventoried tags from all readers are flowed to the middleware as 
stream, and each record in the unsure list should be compared continuously with the 
stream to determine whether the inventoried tag is an unsure tag or not. Therefore, 
detecting the tag’s re-observation is the same as the continuous query processing 
where the records in the unsure list represents queries and each tag in the inventoried 
tags is a data to the continuous query processing. 

Obviously, sequential scanning of the unsure list will be costly when there are 
many unsure tags. The purpose of the CQI [9] is to find a matching tag in the unsure 
list for an input tag stream more efficiently than via sequential scanning. The index 
stores records in the unsure list. The middleware can search for a matching tag by 
stabbing the index using inventoried tags. The role of the CQI is depicted in Fig. 4(a). 
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The CQI for the unsure list can be constructed as a one-dimensional index. Index 
key of the unsure list is the tid field. The rid dimension is not required because detect-
ing the re-observation of an unsure tag does not consider which reader will be in-
volved. However, there is a consideration in designing a CQI. Normal tags should be 
filtered out as soon as possible. The number of records in the unsure list is very small 
relative to the huge volume of the input tag stream. Only a few of the tags in the 
stream are expected to be unsure tags. 

The extendable hashing method is suitable as a structure for the CQI. If bucket 
overflow occurs during insertion, this method doubles the directory size without cre-
ating and linking the new bucket. Even if a query result does not exist, the number of 
I/O operations is bounded by one directory access and n item accesses, where n is the 
bucket size. Therefore, this method can quickly filter out nonexistent tags in the in-
dex. A CQI based on the extendable hashing is illustrated in Fig. 4(b), where a reverse 
raw hex value of the tid is used as the hash key. 

 

Fig. 4. CQI for the unsure list 

3.3   Resuming Incomplete Operation After Re-observation 

A flow chart of this reprocessing is shown in Fig 5. After a tag in the unsure list is 
found via the CQI in the Step 1, the next step is to wake up and resume the opera-
tion. For ease of explanation, we first discuss reprocessing of unsure operations for 
a simple case, which assumes that only single-word data is to be written and the 
reply result is either Success or No Response. Then, we will discuss more general-
ized cases. 

In Step 2, the middleware verifies tag data with respect to the success or otherwise 
of the previous execution of the operation by sending a read command to the tag. 
When the reply is Success then checking of the returned data is required. If the data is 
verified as correct, then the operation is completed. If not, Step 3 is invoked to exe-
cute a write operation. If the middleware receives No Response, then Step 4 is in-
voked. It is also possible to force a rewrite of the data without verifying. However, the 
write command is less reliable than the read command because it requires more en-
ergy and a shorter communication range [10]. Therefore, read-before-write is more 
efficient than a simple rewrite. 



208 W. Ryu and B. Hong 

 

Fig. 5. Control flow for reprocessing unsure operations 

In Step 3, the middleware sends a write command to reprocess the write operation. 
If the reply is Success then the reprocessing is complete. If the reader returns No Re-
sponse, the operation is still incomplete, and so Step 4 is invoked. In Step 4, the mid-
dleware checks the connection to determine whether the tag is disappeared or the 
connection is temporarily unavailable. This check is achieved by sending an 
REQ_RN [3] command to the tag. The REQ_RN command requests a handle for 
accessing tag memory. If the tag is in the field-of-view of the reader, it returns a valid 
handle and Step 2 should be invoked for verification. If return of a handle fails, the 
middleware determines that the tag has disappeared and Step 1 should be invoked. 

Let us consider an extension of our model from the unsure operation to the incom-
plete operation. A single write operation may require execution of multiple write 
commands, and the operation can be resulted to be partially completed. Resuming 
mechanism for the incomplete operation is basically the same as that of the unsure 
operation. Since we can find out how many words are written successfully, resuming 
the operation continues until the number of words written is equal to the length of 
data by investigating the replies to the write operation. 

An algorithm for resuming incomplete operation is described in Algorithm 1. In 
the Resume() function, tag data is verified only when the previous write operation has 
resulted in No Response. The write operation is requested only for the remaining data 
and w.nww is increased by checking the reply. If the write operation results in Tempo-
rarily Failed, a forced re-write without verification is required because the tag mem-
ory is unchanged. The function Check_Connection_and_Resume() checks the 
connection between rid and w.tid. If the connection is still alive, this function calls 
Resume() again recursively. When the connection is lost, this function returns false 
and the operation will sleep again until the tag is re-observed. 

Rollback() is called when the write operation results in Permanently Failed. Be-
cause the Permanently Failed error is the logical error, the operation cannot be proc-
essed further. It is required to roll-back the operation to keep consistency of the tag 
data. The role of Rollback() is to recover already written memory area to the original 
data. Rolling back the incomplete operation is similar to Resume() because it requires 
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Algorithm 1. Resume an incomplete operation 

Algorithm Resume (w, rid) 
w is a record of unsure list 
rid is a reader identifier which re-observed w.tid 
begin 
    if w.isUnsure = true then 
        reply = read(w.tid, w.offset+w.nww, 1) 
        if reply.result = Success then 
            w.isUnsure = false 
            if reply.data is equal to w.data[w.nww] then 
                w.nww = w.nww + 1; 
                if w.nww = w.length then return Success 
            end if 
        else if reply.result is No Response then  
            return Check_Connection_and_Resume (w, rid) 
        end if 
    end if  
     
    reply = write(w.tid, w.offset+w.nww,  
                    w.length-w.nww, w.data + w.nww) 
    w.nww = w.nww + reply.nww; 
    if reply.result = Success then 
        return Success; 
    else if reply.result = No Response then 
        w.isUnsure = true 
        return Check_Connection_and_Resume (w, rid) 
    else if reply.result = Temporarily Failed then 
        return Check_Connection_and_Resume (w, rid) 
    else if reply.result = Permanently Failed then  
        return Rollback (w, rid) 
    end if 
End 

internal reprocessing to write the original data recursively. When the tag is re-
observed, Rollback() is called again to roll back the operation completely. Therefore, 
the operation remains in the unsure list. 

3.4   Reporting to the Application 

When a write operation is processed in the middleware, a result of the operation is 
reported to the client as either Success or Fail with error code. When a write operation 
is determined to be incomplete, the operation cannot be reported as Success or Fail. A 
new return message is required to notify that the operation is incomplete. 

A Presumed Completed message is sent to the application to indicate this status 
when the operation is resulted to be incomplete. The Presumed Completed means that 
the operation is not yet successfully processed but it will be internally processed com-
pletely. When the operation is processed successfully, the operation returns a Success 
message to the application. Interaction between the middleware and the client is illus-
trated in Fig. 6, which shows an example of the reprocessing sequences for one read 
command execution and one write command execution. 
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Fig. 6. Example sequence diagram for incomplete operation reprocessing 

Table 2. List of message sent to the client 

Message Description 
Presumed Completed A Write operation is determined to be incomplete. 
Success Reprocessing of a operation is completed successfully 

Presumed Failed 
A logical error has occurred during reprocessing an operation and 
the operation is remained as inconsistent 

Failed 
A write operation is completely rolled back, or timeout has occurred 
during reprocessing the operation 

Table 2 lists up notification messages that are sent to the client as a result of 
the reprocessing. When the incomplete operation results in Permanently Failed, 
the middleware sends a Presumed Failed message to the application to notify that 
an error has occurred and the operation will be rolled-back automatically. When 
the rolling-back of the operation is completed, a Failed message is sent to the 
client. 

3.5   Completing the Operation 

The main purpose of the proposed model is to guarantee complete writing to the 
tag memory despite volatile RF communications. In our model, incomplete opera-
tions will not be removed from the unsure list until the operation is processed 
completely. However, there is one exception to this rule, for which an incomplete 
operation cannot be reprocessed completely. This is when re-observation of a tag 
does not occur. Sometimes, an unsure tag is not observed again for reasons as 
malfunction of the tag, physical corruption, or movement to another site. We call 
this situation starvation of re-observation of an unsure tag. It may also cause  
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middleware overload, because the increased size of the unsure list will affect mid-
dleware performance. Therefore, the middleware should handle tags that are not 
observed during a long period.  

To achieve this, our model includes a timeout value for each write-request from the 
application, and the middleware will remove an unsure tag from the unsure list and 
send a Failed message to the application if the operation’s timeout period expires. 
Detecting expiration for incomplete operations can be achieved by using a priority 
queue structure. The priority queue is constructed by using the expiration time for 
each unsure tag in the unsure list. The middleware then periodically checks the prior-
ity queue to enable detection of any expired unsure tag. 

4   RFID Middleware Design and Implementation 

Figure 7 shows a block diagram of the RFID middleware architecture for implement-
ing the proposed reprocessing model. We add three new components to the middle-
ware for the proposed model, which are shown in the highlighted area of Fig. 7. The 
detailed description of each component is as follows. 

 
- Unsure Tag Filter: the component that receives the inventoried tag stream and 

checks whether each tag is unsure or not. To achieve this, it generates a stab-
bing query to the unsure tag index for each inventoried tag. 

- Unsure Operation Manager: the component that manages incomplete opera-
tions. This maintains two modules: the unsure list, and the unsure tag index 
described in Section 3.2.  

- Unsure Operation Processor: the component that performs the resume function 
for a re-observed tag. The resume function is described in Algorithm 1. 

 
If an operation’s execution is assessed as incomplete by the Operation Executor, 

the Operation Processor passes the incomplete operation request to the Unsure Opera-
tion Manager, which will insert the operation into the unsure list and the unsure tag 
index. The Unsure Tag Filter receives the input tag stream before any filtering by the 
Tag Filter. The Unsure Tag Filter checks if the input tag is unsure by stabbing into the 
unsure tag index. If the tag is not found in the index, it is passed to the Tag Filter for 
normal execution. If the tag is found in the index, it is reported to the Unsure Opera-
tion Manager, which will resume the unsure operation by a request to the Unsure 
Operation Processor. The Unsure Operation Processor performs the resume algorithm 
by requesting relevant operations of the Operation Executor. 

We have implemented a prototype of the RFID middleware and simulated using 
virtual reader which supports various tag access operations. Our RFID middleware 
provides reprocessing of incomplete operations as well as processing of access opera-
tions and filtering of tag events. It is designed to be fully compatible with the ALE 1.1 
standard specification [11], which is the standard interface for RFID middleware 
proposed by EPCglobal Inc. [12]. 
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Fig. 7. Middleware architecture for the AW reprocessing model 

 

Fig. 8. A Screenshot of the ALE monitoring program 

Figure 8 shows a snapshot of an ALE monitoring program which monitors running 
queries registered to the middleware. All user requests are listed in the left side of 
windows and detailed description of the selected request is shown in the middle. 
Matched tags are shown at right side of the window with operation results. If an op-
eration is resulted to be incomplete, the operation is marked as Presumed Completed. 
In Fig. 8, two write operations are resulted to be incomplete.  

Incomplete operations are immediately registered to the unsure list and are moni-
tored separately. Figure 9 shows the state of incomplete operations with related in-
formation. When the tag is re-observed, the operation is resumed and the state 
information of the operation is updated. A tag highlighted by dotted box is processed 
successfully after a few minutes later, and the state of the tag is changed from Pre-
sumed Completed to Success. 
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Fig. 9. Monitoring incomplete operations 

5   Conclusion 

The disconnection problem of RF communication during processing of a write opera-
tion from an RFID reader to a passive RFID tag will cause inconsistency of data in 
the tag memory. The volatile and uncertain characteristics of RF communications are 
caused by tag operations not being self-powered, limited reader range, and surround-
ing environments that interfere with communication. Unsuccessful write operations 
can cause data inconsistency, and so the atomicity and durability of writing transac-
tions cannot be guaranteed. 

To solve this problem, we have proposed an asynchronous wake-up reprocessing 
model for write operations. Our model suspends the execution of incomplete opera-
tions and separates them from other operations. Using a CQI scheme, re-observation 
of an unsure tag is detected asynchronously, following which the middleware wakes 
up the incomplete operation and resumes it internally. We define a step-by-step 
mechanism for reprocessing incomplete operations as well as a resumption algorithm. 
Our model processes incomplete operations completely without any inconsistent data 
access. We have verified this by implementing the proposed model within the RFID 
middleware. 

The main contribution of our work is that we have developed a complete reproc-
essing model for overcoming the limitations of RF communications. In future work, 
we aim to extend our work to RFID transactions that support concurrent executions, 
and to enhance the CQI method that provides better performance. 
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Abstract. Existing query scheduling strategies over data streams mainly focus
on metrics in terms of system performance, such as processing time or memory
overhead. However, for commercial stream applications, what actually matters
most is the users’ satisfaction about the Quality of Service (QoS) they perceive.
Unfortunately, a system-oriented optimization strategy does not necessarily lead
to a high degree of QoS. Motivated by this, we study QoS-oriented query schedul-
ing in this paper. One important contribution of this work is that we correlate the
operator scheduling problem with the classical job scheduling problem. This not
only offers a new angle in viewing the issue but also allows techniques for the
well studied job scheduling problems to be adapted in this new context. We show
how these two problems can be related and propose a novel operator scheduling
strategy inspired by job scheduling algorithms. The performance study demon-
strates a promising result for our proposed strategy.

1 Introduction

Many typical applications of Data Stream Management System (DSMS) involve time-
critical tasks such as disaster early-warning, network monitoring, on-line financial analy-
sis. In these applications, output latency (as the main QoS measure) is extremely crucial.
Managing system resources to maintain a high QoS is particularly important for applica-
tions that have Service Level Agreements (SLA) with the clients, where each client may
have its own QoS requirement as to when query answers should be delivered.

In traditional DBMS, where data are pull-based, the output delay depends only on
the query cost. However, in a DSMS, where data are pushed from scattered sources
and their arrivals are out of the DSMS’s control, the output latency becomes tuple-
dependent. Input tuples may have experienced different degrees of delay (due to, for
instance, the varying data transmission condition) before arriving at the system. There-
fore, the query executor has to continuously adapt to the ever changing initial input
delay to ensure results to be produced in a timely manner. Given the unpredictable
workload and the limited resource, a DSMS may not always be able to meet all the QoS
requirements. When that happens, efforts should be made to satisfy as many clients as
possible to maximize the profits or minimize the loss.

Strategies proposed in this paper can be viewed as our initial effort towards QoS-
oriented adaptive query processing for data streams. In this work, we take the output
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latency as the main QoS metric since it is the key parameter for typical online appli-
cations. Given that each input tuple is attached with a timestamp indicating when it is
generated, a result tuple is said to meet the QoS if the time difference between the out-
put time and the input timestamp is no more than the user-specified delay threshold. It
is important to note that the output latency defined here embraces both query processing
time and various delays incurred during query processing and data transmission. The
latter are variables that fluctuate over time beyond query engine’s control.

Several query scheduling strategies have been proposed to improve the query per-
formance in a DSMS. However, the main objective of these algorithms is to minimize
the average query processing time [5,10,12] or memory consumption [1]. Few of them
deal with the issue of optimizing the total user satisfaction. Our proposed QoS-oriented
metric complements the above work by considering a more realistic scenario. As can be
seen later, a QoS-oriented perspective leads to an entirely different scheduling strategy
from the existing work. In summary, contributions of this paper are:

1. Proposition of QoS-oriented query scheduling in a system-oriented context for con-
tinuous query processing;

2. An in-depth analysis of how the operator scheduling problem can be transformed
into a job scheduling problem;

3. A novel planning-based scheduling strategy which is designed based on the above
transformation and addresses the QoS-oriented multi-query optimization issue;

4. Extensive experimental studies that verify the effectiveness of the solution.

The rest of the paper is organized as follows: Section 2 introduces the problem to be
solved and surveys the related work. Section 3 transforms the operator scheduling issue
to a job scheduling problem to facilitate our problem analysis. Section 4 details the pro-
posed scheduling algorithm. Section 5 demonstrates the effectiveness of the proposed
strategy through our experimental study. Finally we conclude the paper in Section 6.

2 Preliminaries

2.1 Metric Definition

As mentioned before, the quality requirement is defined as the maximum tolerable de-
lay of output tuples. To evaluate the QoS performance of the system, we define the
following QoS penalty function.

Definition 1. Given a query Q, let T i
out denote the time when an output tuple i is pro-

duced and T i
in be the maximal timestamp of all the input tuples that contribute to the

tuple i. And L is the predefined QoS threshold for query Q. The penalty function for
tuple i is:

Ui =
{

0 if T i
out − T i

in ≤ L
1 otherwise

(1)

Accordingly, the query level QoS can be evaluated by taking the normalized aggregation
of the tuple level penalties:∑n

i=1 Ui

n
, n is the total number of output tuples (2)

Intuitively, a query’s quality is inversely proportional to the value in Equation 2.
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Fig. 1. A query graph example

In a multi-query environment, we seek to achieve high output quality across all par-
ticipating queries. Each query qi is assumed to be associated with a weight wi to indicate
its importance: A higher wi implies a higher priority of qi. Now, the penalty function U
over all queries is the weighted sum of those of the individual queries:

U =
m∑

j=1

wj

∑nj

i=1 Ui

nj
(3)

where, m is the number of participating queries.
For unbounded input streams, the objective function should be defined within an

observation period. Then the parameter n in the equation refers to the total number of
output tuples produced in the recent observation period (say last five hours). Note that
the length of the period does not affect our algorithm. It should be meaningful to the
application. For example, if its length is 5 hours, then our algorithm is optimizing the
objective function defined on the last 5 hours.

2.2 System Models

Similar to existing work on stream processing, we model the entire Continuous Query
(CQ) plan with a Directed Acyclic Graph (DAG). Vertices with only outgoing edges
represent input streams and those with only incoming edges represent output streams.
Other vertices are query operators. Edges connecting vertices are tuple queues that
link the adjacent operators. Data flows are indicated by arrows. For example, Fig-
ure 1 shows a query graph with three input streams (I1, I2, I3) and six output streams
(O1, O2, ..., O6). Each output stream corresponds to exactly one registered query in the
system (O1 is the output for query Q1, and O2 for query Q2 ... so on and so forth).
Also there are seven query operators (op1, op2, ..., op7) in this plan. Some operators are
dedicated to a single query (such as op7 for query Q6) while others are shared among
several queries (such as op4 for query Q3, Q4 and Q5).

In this problem setting, we assume complete and ordered query results are desired.
For each input stream, tuple arrivals are ordered by their timestamps. Each query oper-
ator can only process tuples from its input queue in a First-Come First-Served (FCFS)



218 J. Wu, K.-L. Tan, and Y. Zhou

manner so that the tuple order is preserved throughout the query execution. Since each
input tuple has a timestamp indicating the tuple creation time and each query has a
predefined QoS threshold, whenever a new input tuple arrives, the system can com-
pute the deadline for producing the corresponding output in order to satisfy the QoS
requirement. For example, given Q1’s QoS threshold L1, if an input tuple p ∈ I1 with
timestamp T p

in arrives at time t, then the deadline to produce the corresponding output
tuple for query Q1 is T p

in + L1. And the available time left for query processing, which
is called Remaining Available Time (RAT), will be T p

in + L1 − t. If it actually requires
Cp amount of CPU time, which is called Remaining Processing Time (RPT), for the
system to process the tuple, then qualified output can be possibly produced only when
Cp ≤ T p

in + L1 − t (i.e. RPT ≤ RAT).
However, it is not always easy to find out the deadlines of producing the qualified

output especially when a query involves more than one input stream. For example,
tuples from I1 alone cannot determine the deadlines for the resultant output tuples of
query Q3 since their deadlines also depend on timestamps of inputs from I2. Queries
involving multiple streams will be discussed in detail in Section 4.3.

2.3 Problem Statement

The formal problem statement can be put as follows: Given the query operator graph,
continuously allocate a time slot for each operator to process each of its input tuples
such that the objective function U , defined in Equation 3, is minimized.

2.4 Related Work

Our work mainly concerns two areas: 1) operator scheduling in stream systems; 2) job
scheduling algorithms that minimize the number of late jobs.

The issue of operator scheduling has been studied with different objectives. For ex-
ample, The Chain algorithm [1] schedules the operators in a way such that runtime
memory overhead can be minimized. In the rate-based scheduling algorithm proposed
by Urhan et al. [12], the objective is to maximize the output rate at the early stage of
query execution. There are also scheduling algorithms proposed for optimizing query
response time (a.k.a. output latency) [5] or its variant metric (such as slowdown in [10]).
However, the objectives in these work are more system-oriented in the sense that the op-
timal solution is the one that maximizes the system performance, but not users’ satisfac-
tion. In contrast, we adopt a QoS-oriented view, which brings in the user requirements as
another dimension of the issue. Such slight difference, however, renders totally different
problem settings, and hence completely different solutions. Probably the most relevant
work to us is the one done by Carney et al. [3]. They provide interesting scheduling
solutions to account for QoS-oriented requirements. However, their approach is only
targeted at the scenario where operators are not shared among the queries. This is a
strong assumption because stream applications often involve multi-query processing
with operators shared among different queries. Scheduling over shared operators, as
illustrated in this paper, can be far more complicated.
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Fig. 2. Transform operator scheduling to job scheduling

The job scheduling problem (particularly, the problem of minimizing late jobs) has
been studied over the years. Various algorithms were proposed to address this class of
problem with different constraints. Karp [6] proved the weighted number of late jobs
problem in general, denoted as 1||∑wjUj , is NP-hard. But it is solvable in pseudopoly-
nomial time [8]. Polynomial algorithm is available if the processing time and the job
weight can all be oppositely ordered [7]. In the more recent work [9], solutions were
proposed to solve the same class of problem with the condition that job release time is
not equal. However, to the best of our knowledge, no work has been done that can di-
rectly address the multi-query scheduling problem due to the complication of operator-
sharing and precedence constraints that are unique in DSMS. Existing approaches are
either too general or too restrictive to be applied directly in our context.

3 From Operator Scheduling to Job Scheduling

We show in this section how operator scheduling problem can be approximated by a job
scheduling model. This provides a new angle to view the issue and allows us to borrow
ideas from a well studied subject to develop low-cost operator scheduling algorithms.

In a typical single machine job scheduling problem, people look for a plan that al-
locates each job the appropriate time slot for execution so that the objective function is
optimized. Each participating job Ji is associated with a processing cost ci, a deadline
di and a penalty value ui. Ji is on time if its completion time ti ≤ di; otherwise, the
job is late and the penalty ui will be incurred.

Analogously, in continuous query processing, we can treat the work done by a query
operator in response to the arrival of a new input tuple as a job. For example, for the
query plan shown in Figure 2, the arrival of a tuple p ∈ I1 (indicated by the box with
solid lines) with timestamp ts = 10 triggers five jobs to be created in the system, each
corresponds to one involved operator (Let Jx denote the job performed by operator opx
in the figure). The estimation of jobs’ processing cost, deadline and penalty value are
explained in the rest of this section.
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Processing Cost. The job processing cost is the product of two parameters: unit pro-
cessing cost and cardinality of the input size. Unit processing cost is the time taken for
the operator to process one tuple from its input queue. Cardinality of the input size is
determined by the multiplicity (or selectivity) of all upstream operators along the path
from the input stream node to the current operator. For the example in Figure 2, let ρ1
and ρ2 denote the multiplicity of op1 and op2 respectively, then the input cardinality for
op3 is simply ρ1ρ2. If c3 is the unit processing cost for op3, the job cost of J3 would
be ρ1ρ2c3.

Deadline. Unlike traditional job scheduling problem, not all jobs are given explicit
deadlines here. Firstly, it is important to distinguish two types of jobs in this context:
Leaf-Job (L-Job) and NonLeaf-Job (NL-Job). L-Job refers to jobs performed by the last
operator in a query tree. Examples of L-Jobs are J3, J4 and J5 in Figure 2. Intuitively,
for L-Job, its deadline coincides with the due date by which the query output should
be produced. The value can be calculated by adding the input tuple timestamp with the
respective query QoS threshold. For example, the deadline for J3 would be 35 (input
timestamp ts = 10 plus Q1’s QoS threshold L1 = 25).

NL-Job refers to jobs performed by non-leaf operators. The output of an NL-Job
becomes the input of some other NL-Job or L-Job in a query plan. J1 and J2 are
examples of NL-Jobs in Figure 2. Computing deadline for NL-Job with fan-out equal
to 1 is relatively easy. Basically, it can be derived backwards from its only immediate
downstream job. For example, to compute J2’s deadline, we just need to know the
deadline and processing cost of job J3. For simplicity, assume the multiplicity of all
operators in the example is 1 and the unit cost of each operator is indicated by the
number in the corresponding bracket shown in the figure. Hence J3’s processing cost
is ρ1ρ2c3 = 1 × 1 × 2 = 2. And J2’s deadline is simply J3’s deadline minus J3’s
processing cost, 35− 2 = 33. This essentially gives the latest date by which J2 has to
finish such that it is possible for the downstream job J3 to complete on time.

Unfortunately, to define deadline for NL-Job with fan-out greater than 1 is much
more involved. This is because different downstream jobs have different QoS require-
ments and due dates. Consider job J1 in the figure whose fan-out is 3. The three im-
mediate downstream jobs J2, J4 and J5 require J1 to complete latest by 32, 32 and
38 respectively in order for themselves to complete on time. There is no single defi-
nite deadline that can be determined for J1 in this case. Here, we use two due dates,
namely MinDue and MaxDue, to characterize the situation. The definition of MinDue
and MaxDue are given as follows:

Definition 2. The MinDue of job i is the latest time by which i has to complete such
that there exists a feasible plan with all its downstream jobs to be scheduled on time.

Definition 3. The MaxDue of job i is the latest time by which i has to complete such
that there exists a feasible plan with at least one of its downstream jobs to be scheduled
on time.

The significance of MinDue and MaxDue can be viewed as follows: If an NL-Job com-
pletes before its MinDue, then no downstream jobs will be overdue because this NL-
Job cannot complete early enough. On the other hand, if the NL-Job completes after its
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MaxDue, then no downstream jobs can possibly complete on time. Section 4 will show
how MinDue and MaxDue are used in the proposed scheduling algorithm.

The MaxDue for an NL-Job is in fact just the maximum date among the deadlines
derived from each of its downstream jobs. In the example, J1’s MaxDue would be
max{32, 32, 38} = 38. However, to compute MinDue is a bit complicated because of
the schedule feasibility check. Due to space constraints, we omit the detail here. In-
terested reads can refer to [13] for the algorithm to compute MinDue. In the above
example, the result MinDue for J1 would be 31 (not 32). And the corresponding feasi-
ble schedule for its downstream jobs to complete on time is J2 → J4 → J5. All the
job deadlines in the example are shown inside boxes with dotted lines in Figure 2.

Job Penalty. To determine the penalty value associated with each job is another issue.
In our objective function, the (weighted) penalty is only defined over each output tuple.
That can be seen as the penalty applied to a late L-Job. However, for NL-Job, such
penalty value is undefined since its completion does not affect the objective function in
a direct way. Nevertheless, a late NL-Job, which causes its downstream L-Jobs to be
late, does influence the overall QoS. We shall see how this subtlety is handled in our
proposed scheduling algorithm in Section 4.

4 Scheduling Algorithm

The distinct features about multi-query scheduling as described in the previous section
reveal that the problem is much harder to solve than a traditional job scheduling issue.
This mainly stems from two reasons: 1) Jobs may be shared among different queries.
2) Job precedence constraints (given by the query plan tree) have to be observed. In
what follows, we propose a novel dynamic planning-based heuristic, which effectively
schedules the query operators to achieve a good overall QoS in polynomial time.

4.1 Job Set for Scheduling

Since the system deals with continuous queries running over potentially unbounded
data streams, the scheduling strategy has to be an online algorithm. Here we propose a
planning-based online strategy. Instead of selecting individual job, the scheduler selects
a set of jobs from the received input tuples for each scheduling round. As we shall see,
the planning-based approach enables the scheduler to take a holistic view when making
the current scheduling decision, rendering a better output quality. However, the question
that immediately follows is how large the job set should be. In other words, how far the
scheduler should look ahead. If it looks too far, the plan may be outdated if later the
subsequent arrivals of input tuples trigger jobs with earlier deadlines to be generated.
This causes rescheduling that inflicts unnecessary overhead. On the other hand, if the
lookahead is too short, poor decision may be reached due to lack of global deliberation.
Hence, the ideal scenario is to include the minimum number of jobs enough to construct
the global optimal (or quasi-optimal) plan for a near future.

To this end, we propose the following job selection criterion: All jobs to be included
for scheduling must have their deadlines earlier than those of future jobs to be generated
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Fig. 3. Choosing the appropriate job set for scheduling

by the system. This rule can be enforced because input tuples are ordered according to
their timestamps and processed in a FCFS manner by the operators. The monotonicity
allows us to find a point in time which all future jobs’ deadlines are bound to be beyond.

This point can be obtained by finding the earliest deadline among all the latest gen-
erated jobs associated with each operator. For example, Figure 3 shows a snapshot of
a query graph with two input streams and four operators that produce three output
streams. The graph shows there are three tuples buffered at each of the input queue
(p1, p2, p3 at I1 and q1, q2, q3 at I2). These tuples virtually generate 12 jobs (boxes
with dotted lines) for the system. Job performed by operator opx with reference to in-
put tuple py (or qy) is denoted as Jx

y in the figure. (Again, assume the query operators
selectivity or multiplicity is 1 for simplicity) Their deadlines are indicated in the cor-
responding boxes. For NL-Job with fan-out greater than 1, we take its MinDue for our
consideration. Therefore, among all the latest jobs for each operator (i.e. J1

3 , J2
3 , J3

3 ,
J4

3 ), the one associated with op1 (i.e. J1
3 ) has the earliest deadline d = 45, which is

essentially the cut-off point: All jobs with deadlines less than or equal to 45 will be
included for scheduling (i.e. those indicated as shaded boxes) while others are left for
the next round of scheduling. The selected job set will be considered for scheduling in
the algorithms depicted in the next section.

4.2 Scheduling Heuristic

In Section 3, we show that the uncertainties about NL-Job, in terms of both deadline
and job penalty, greatly increase the problem complexity. In addition, precedence con-
straints among jobs with reference to the same input tuple further complicates the issue.
For example, in Figure 3, any upstream job J1

y , y ∈ {1, 2, 3} has to be scheduled before
the downstream job J2

y and J3
y to make the plan meaningful. In fact, the entire schedul-

ing problem can be categorized as 1|prec|∑wjUj
1 in standard notation [4]. It is an

1 Denoting the problem of finding a non-preemptive schedule on a single machine such that the
job precedence constraints are satisfied and the total weighted penalty function is minimized.
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NP-hard problem and generally no good solutions or heuristics are known. To design a
heuristic for this problem faces two challenges: 1) The produced plan must be feasible
with all precedence constraints observed. 2) The benefits of executing NL-Jobs must
be assessed in an efficient and intelligent way. We show how these two challenges are
tackled in our proposed algorithm.

Evaluating Job Value. Denoting jobs with values (or utilities) is the essential step in a
scheduling algorithm. In our problem setting, a duly completed job avoids penalty being
applied to the objective function. Therefore, its value can be quantified as the amount
of Penalty Reductions (PR) contributed to the system provided it is completed on time.

For L-Jobs, which are located at the bottom of the query tree, their PR values are cal-
culated as follows: At the beginning of each scheduling cycle, the system calculates the
current QoS of the L-Job’s corresponding query according to equation 2. The amount
of PR by completing the current L-Job, say job j, is therefore approximated as

w × (
∑n

i=1 Ui +
∏

ρj

n +
∏

ρj
−
∑n

i=1 Ui

n +
∏

ρj
) =

w
∏

ρj

n +
∏

ρj
(4)

In the above equation, w is the weighting factor assigned to the given query, Ui is the
penalty function defined in equation 1, and

∏
ρj is the production of multiplicities of

all operators along the path from the first operator that takes the input stream to the leaf
operator (i.e. the one performing the L-Job).

Unfortunately, computing PR for NL-Jobs is not straightforward. With the premise
that the system will not be overloaded, we may reasonably assume that the number of
late jobs in each scheduling cycle does not constitute a significant portion of the total
number of jobs in that cycle. In other words, most NL-Jobs should be finished around
their MinDues since a delayed NL-Job will seriously affect all the downstream jobs. In
view of this, we adopt an optimistic approach in our heuristic: We assign an NL-Job’s
PR to be the sum of PRs of its immediate downstream jobs. Experiments show that this
gives a very good estimation for the PR of an NL-Job.

Algorithm Sketch. The heuristic consists of two phases. Line 1 to 7 of Algorithm 1
sketch the first phase. As our intention is to maximize the potential NL-Job value
(the optimistic view), the algorithm allocates all NL-Jobs at the earliest possible time
without considering any L-Job in this phase. The sequence among NL-Jobs are deter-
mined according to their MinDue. By doing so, it implicitly enforces the precedence
constraints because an upstream job always has an earlier MinDue than its down-
stream jobs. When an NL-Job is allocated a time slot, its scheduled completion time
is recorded. This information will be used to check how much laxity is left between the
current scheduled completion time and the due date.

In phase II of the heuristic (Line 8 to 30), L-Jobs are inserted into the schedule pro-
duced in phase I in a greedy manner. At the very outset, it is necessary to introduce the
concept of Penalty Reduction Density (PRD) for NL-Job. The idea is similar to value
density in job scheduling [11]. Essentially, it is the ratio between the value and the cost
for a given job. Since for NL-Job, its value (in terms of PR) drops from maximum to
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Algorithm 1. Job Scheduling Algorithm
Notations:
N : the set of all NL-Jobs
L: the set of all L-Jobs
P : Queue that records the final schedule
x.cost: the time cost for processing job x
x.time: current scheduled completion time for job x
x.due: deadline of job x if x is an L-Job; MinDue if x is an NL-Job
x.maxdue: MaxDue of NL-Job x
x.pr: the value (in terms of Penalty Reduction) of a job x
x.prd: Penalty Reduction Density of an NL-Job x

1: t:=0
2: while N is not empty do
3: Find job i in N with the earliest MinDue
4: N := N\{i}
5: i.time := t + i.cost
6: Append i at the end of P
7: t := i.time
8: while L is not empty do
9: Find job j in L with the earliest deadline

10: L := L\{j}
11: if CheckAncestor(j) returns FALSE then
12: Append j at the end of P /* j will miss the deadline */
13: else
14: Search from the beginning of P and find the first job k s.t. k.time ≥ j.due − j.cost
15: Let Q denote the set that consists of job k and all jobs after k in P
16: pen := 0 /* accumulated penalty */
17: for all job m ∈ Q do
18: if m.time < m.due then
19: p := min{m.cost, max{0, m.time + j.cost − m.due}}
20: else if m.time ≥ m.due AND m.time < m.maxdue then
21: p := min{m.maxdue − m.time, j.cost}
22: else
23: p := 0
24: pen := pen + m.prd × p
25: if j.pr > pen then
26: Insert j into P right before job k
27: for all job n ∈ Q do
28: n.time := n.time + j.cost
29: else
30: Append j at the end of P /* j will miss the deadline */

zero as the completion time moves from below MinDue to above MaxDue, we can
evaluate the PRD of an NL-Job using the following formula:

PRD =
PR

MaxDue−MinDue
(5)
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With PRD, we are able to estimate the potential penalty incurred with respect to the
tardiness of an NL-Job completion.

Phase II of the algorithm goes as follows: All L-Jobs are considered for scheduling
one by one ordered by their due dates. Firstly, function CheckAncestor() verifies the
ancestor jobs are scheduled early enough for the current L-Job to complete on time
(Line 11). This checking is straightforward and runs in O(log n) time. If the checking
is passed, the L-Job will be tentatively allocated a latest possible time slot such that it
can be completed by the due date. For all NL-Jobs whose completion times are deferred
due to the insertion of the new L-Job, their potential losses, in terms of loss in PR, are
assessed by multiplying the job tardiness with the job PRD (Line 17 to 24). And their
aggregate value is compared against the new L-Job’s PR. The new job can secure the
tentative time slot only if its PR is greater than the total loss of PR of all NL-Jobs
affected; otherwise, the L-Job is appended at the end of the schedule and treated as a
late job. The total runtime of the heuristic is O(n2).

4.3 Multi-stream Queries

As mentioned at the beginning, for queries taking multiple input streams, the response
time is defined as the difference between the result tuple delivery time and the maximal
timestamp among all the contributing input tuples. However, quite often the system has
no clue as to which particular contributing input tuple carries the largest timestamp
value when they just arrive at the query engine. In the sequel, jobs triggered by the
arrivals of these tuples will be assigned earlier deadlines than what is necessary (if
those tuples indeed are not the one that carries the largest timestamp in the final output).
Although such miscalculation only means some jobs will be unnecessarily scheduled
in advance and no serious consequence will result most of time, it would be better to
identify the delay or time difference among the input streams such that an offset can
be applied to improve the deadline prediction. This is an issue related to input stream
coordination. Strategies [2,14] have been proposed to identify the synchronization issue
among the streams. However, this is an area where ideal solution has not been found.
We will study this problem further in our future work.

4.4 Batch Processing

Tuple based operator scheduling offers fine-grained control over query execution. How-
ever, it leads to substantial overhead due to frequent context switches among operators.
Batch based strategy effectively reduces such overhead by processing a series of tuples
in one shot. The batch processing discussed in this section refers to grouping input tu-
ples (from the same data source) such that they collectively trigger one job to be created
for each involved operator. (as opposed to tuple based scheduling where every input tu-
ple triggers one job for an involved operator) This not only helps cut down the number
of context switches as mentioned, but also helps reduce the runtime of the scheduling
algorithm since fewer jobs need to be scheduled in the system.

An important issue to consider here is the appropriate size for each batch. Given the
dynamic input characteristics, we propose a dynamic criterion to determine the batch
size as follows: Sequential tuples from the same input may form a single batch if 1)
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The timestamp difference between the head tuple and the tail tuple in the batch does
not exceed aμ, where μ is the average laxity (defined as RAT-RPT ) of jobs currently
in the system and a is a runtime coefficient. 2) The timestamp difference of any two
consecutive tuples is no more than bτ , where τ is the average inter-arrival time of the
corresponding input stream and b is a runtime coefficient.

Criteria 1 essentially constrains the length of the batch. The reference metric is the
average laxity of the jobs currently in the system. The intuition here is job’s laxity
should be positively related to the length of delay that input tuples can tolerate. (Con-
sider the delay experienced by the first tuple in the batch.) In our experiment, we set
a = 1. It means the timestamp difference between the head tuple and tail tuple in the
batch cannot be greater than the average jobs’ laxity value in the system. Criteria 2 es-
sentially determines the point that can mark the end of a batch. In our experiment, we
set b = 2. It means if timestamp difference of two consecutive tuples is greater than two
times of the average inter-arrive time, they will be separated into two batches.

Another issue here is to set the appropriate deadline of a job batch. The easiest way is
to find a representative tuple from the batch and set the batch deadline according to that
tuple’s deadline. In our experiment, we choose the first tuple in the batch (which has
the earliest timestamp value) as the representative tuple because it produces the most
stringent deadline that guarantees no output tuples generated from the batch will be late
if that deadline can be met.

5 Experimental Evaluation

5.1 Experimental Setup

We implemented our proposed algorithm as part of the QoS-aware DSMS prototype
system. The system mainly consists of three components: query engine, statistical man-
ager and query scheduler. The query engine is able to process queries involving se-
lection, projection, join and aggregation. The statistical manager monitors information
such as unit processing cost of each operator, input data rate as well as current QoS of
each registered query and reports them to the scheduler, which then makes scheduling
decisions based on these information.

The multi-query plan used for the experiment is generated randomly. The number
of involved operators ranges from 24 to 48 and the number of involved queries are be-
tween 12 and 32. Each query has been given a QoS threshold, whose value is an integer
between 500 to 10000 (ms). Also a weighting factor (integer between 1 and 10) is as-
signed for each query. We use three different data streams for our experiment. They are
generated by a data generator which produces input streams following Poisson process
with customizable mean inter-arrival time. Each produced tuple is given a timestamp
indicating its generation time. Input tuples have to go through a “delay” operator before
they can be processed. The “delay” operator essentially simulates the input transmission
delay from data source to the query engine.

For comparison, we also implemented three other scheduling strategies: Earliest
Deadline First (EDF), Least Laxity First (LLF)2 and a random approach. All

2 The strategy schedules the job with minimum slack time (i.e. min{RAT-RPT} among all jobs
with RAT ≥ RPT) to execute.
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Fig. 7. QoS Score with increasing input
transmission delay (batch-based)

experiments were conducted on an IBM x255 server running Linux with four Intel
Xeon MP 3.00GHz/400MHz processors and 18G DDR main memory.

5.2 Performance Study

For ease of presentation, we convert the value of the objective function (defined in equa-
tion 3 in terms of weighted penalty aggregation) to a percentile QoS score as follows:

QoS score =
Uworst − U

Uworst
(6)

where U denotes the penalty value obtained from the experiment and Uworst denotes
the worst possible penalty value. (i.e. the penalty value when all output tuples are late)

Strategy Comparison. We use the same set of queries and data to evaluate the per-
formance of all four scheduling strategies. The experiment is designed as follows: We
use two different ways to slowly increase the system workload over time and observe
the resultant QoS score. In the first case, we achieve this by improving the data rate
until the workload is equivalent to 80% of the system capacity. In the second approach,
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we keep the workload constant while slowly increasing the transmission delay of in-
put tuples (achieved through the “delay” operator). This essentially reduces the RAT
for input tuples leading to scheduling contentions. Results from Figure 4 and 5 clearly
indicate that in both cases our heuristic approach performs better than other strategies.
In particular, we can see that for EDF, the QoS score starts to drop significantly when
the input load exceeds certain level. This can be explained by the Domino Effect: When
system load becomes heavy, an EDF scheduler can perform arbitrarily badly because
it consistently picks the most urgent task to execute, which may be already hopeless to
meet the deadline. The LLF also performs worse than our heuristic due to its lack of
vision to foresee the potential gain of scheduling NL-Jobs. The same set of experiments
is also performed when all four strategies are running in batch-based scheduling mode
(refer to Figure 6 and Figure 7). And similar conclusions can be reached.

Tuple-Based vs. Batch-Based Scheduling. We focus on performance comparison be-
tween tuple-based scheduling and batch-based scheduling in this section. Since the EDF
strategy may perform arbitrarily badly, we do not include it for our consideration. Fig-
ure 8 plots the average QoS score achieved by the other three strategies for both tuple
level scheduling and batch level scheduling. It turns out that batch-based scheduling
outperforms tuple-based scheduling for all three strategies. This is mainly attributed
to reduced number of context switches among query operators as well as decreased
scheduling overhead. We also conducted experiments on input data with bursty na-
ture. The performance contrast is even more obvious between tuple-based strategy and
batch-based strategy. Due to space constraints, the details are not reported here.

Multi-query Scalability. A commercial stream system often runs a large number of
similar queries, each for one subscribed user. That means within the query engine, op-
erators are largely shared by different queries. This experiment examines the scalability
of different scheduling strategies (excluding EDF for the same reason as above) in terms
of query sharing. The degree of sharing is measured by the ratio between the number of
queries to the number operators in the system. As depicted in Figure 9, with the increase
of the query sharing, the superiority of our heuristic over other scheduling approaches
become more and more evident. This is because our algorithm adopts a planning-based
approach, which is able to look ahead to assess the potential value of each job for the
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entire system, while other strategies do not possess such clairvoyance when making the
scheduling decision.

6 Conclusions

For a service-oriented data stream system, QoS-based query scheduling is an indispens-
able component. We propose a new multi-query scheduling strategy that aims to turn
a DSMS into a true real-time system that can meet application-defined deadlines. The
strategy is based on a novel transformation of our query scheduling problem to a job
scheduling problem. Experimental study demonstrates a promising result of our pro-
posed strategy. As part of the future plan, we will extend the current work to cater for
applications with more generalized QoS specifications.
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Abstract. Cluster analysis has played a key role in data understanding.
When such an important data mining task is extended to the context
of data streams, it becomes more challenging since the data arrive at a
mining system in one-pass manner. The problem is even more difficult
when the clustering task is considered in a sliding window model which
requiring the elimination of outdated data must be dealt with properly.
We propose SWEM algorithm that exploits the Expectation Maximiza-
tion technique to address these challenges. SWEM is not only able to
process the stream in an incremental manner, but also capable to adapt
to changes happened in the underlying stream distribution.

1 Introduction

In recent years, we are seeing a new class of applications that changed the tra-
ditional view of databases as a static store of information. These applications
are commonly characterized by the unbounded data streams they generate (or
receive), and the need to analyze them in a continuous manner over limited
computing resources [2,4]. This makes it imperative to design algorithms that
compute the answer in a continuous fashion with only one scan of the data
stream, whilst operating under the resource limitations. Among various data
mining tasks, clustering is one of the most important tasks. Research in data
stream clustering reported so far has mostly focused on two mining models, the
landmark window [1,5] and the forgetful window [3,4]. While these two mining
models are useful in some data stream applications, there is a strong demand
to devise novel techniques that are able to cluster the data streams in a sliding
window model which is the most general and also the most challenging mining
model since it considers the elimination of outdated data.

We propose in this paper algorithm SWEM (clustering data streams in a time-
based Sliding Window with Expectation Maximization technique) to address the
above challenges. SWEM consists of two stages which are designed to strictly
address the problem of constrained memory usage and one-pass processing over

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 230–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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data streams. Furthermore, we develop in SWEM two important operations,
namely splitting and merging micro components, in order to automatically adapt
to changes happened frequently in stream distributions. Various experimental
results confirm the feasibility of our proposed algorithm.

2 Problem Formulation

We focus on the time-based sliding window model. Let TS0, TS1, . . . , TSi denote
the time periods elapsed so far in the stream. Each time period contains multiple
data points xi = {x1

i , x
2
i , ..., x

d
i } (in d-dimensional space) arriving in that inter-

val. Given an integer b, a time-based sliding window SW is defined as the set of
records arriving in the last b time periods SW = {TSi−b+1, . . . , TSi−1, TSi}. TSi

is called the latest time slot and TSi−b is the expiring one. We also assume that
the stream evolves with time and data points are generated as a result of a dy-
namic statistical process which consists of k mixture models. Each model corre-
sponds to a cluster that follows a multivariate normal distribution. Consequently,
any cluster Ch, 1 ≤ h ≤ k, is characterized by a parameter: φh = {αh, μh, Σh}
where αh is the cluster weight, μh is its vector mean and Σh is its covariance
matrix. Accordingly, our clustering problem is defined as the process of iden-
tifying parameters ΦG = {φ1, ..., φk} that optimally fit the current set of data
points arriving in the last b time periods in the stream.

3 Algorithm Description

Initial Phase: We compute m distributions (also called micro components)
modelling the data within each time slot of the sliding window. Let ΦL =
{φ1, ..., φm} be the set of parameters of these local components where each
MC	, 1 ≤ � ≤ m, is assumed to follow a Gaussian distribution characterized
by φ	 = {α	, μ	, Σ	}. For the initial phase where SW = {TS0}, the initial values
for these parameters will be randomly chosen.

In our framework, each data point belongs to all components yet with dif-
ferent probabilities. Given x, its probability (or weight) in a component �th is:
p(φ	|x) = α�×p�(x|φ�)

p(x) = α�×p�(x|φ�)∑
m
i=1 αi×pi(x|φi)

, in which p	(x|φ	) = (2π)−d/2|Σ	|−1/2

exp
[
− 1

2 (x− μ	)T Σ−1
	 (x− μ	)

]
. We also assume data points are generated in-

dependently and thus, the probability of n records in TS0 is computed by the
product: p(TS0|ΦL) =

∏
xi∈TS0

p(xi|ΦL) =
∏n

i=1
∑m

	=1 α	×p	(xi|φ	), and in log
likelihood form Q(ΦL) = |TS0|−1 log

∏
x∈TS0

∑m
h=1 α	 × p	(xi|φ	) which defines

the average log likelihood measure.
In the first stage, SWEM employs the EM technique to maximize Q(ΦL).

Once the algorithm converges, the set of micro components are approximated
by keeping a triple T	 = {N	 = |S	|, θ	 = Σxi∈S�

xi, Γ	 = Σxi∈S�
xix

T
i } for each

MC	 (where S	 is the set of data points assigned to MC	 to which they have
the highest probability). The important property of T	 is that it is sufficient
to compute the mean and covariance of MC	. Concretely, μ	 = N−1

	 θ	 and
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Σ	 = N−1
	 Γ	 − N−2

	 θ	 × θT
	 . Furthermore, its additive property guarantees the

mean and covariance matrix of a merged component can be easily computed from
the triples of each member component. With these sufficient statistics, SWEM
computes the k global clusters φh ∈ ΦG in the second stage:

E-step: p(φh|T�) =
α

(t)
h

×ph( 1
N�

θ�|μ(t)
h

,Σ
(t)
h

)∑k
i=1 α

(t)
i ×pi(

1
N�

θ�|μ(t)
i ,Σ

(t)
i )

M-step: α
(t+1)
h = 1

n

∑m
�=1 N� × p(φh|T�); μ

(t+1)
h = 1

nh

∑m
�=1 p(φh|T�) × θ�;

Σ
(t+1)
h = 1

nh

[∑m
�=1 p(φh|T�)Γ� − 1

nh

∑m
�=1

(
p(φh|T�)θ�

)(
p(φh|T�)θ�

)T
]

where nh =
∑m

	=1 N	 × p(φh|T	).

Incremental Phase: In this phase SWEM utilizes the converged parameters in
the previous time slot as the initial values for the mixture models’ parameters.
This helps minimize the number of iterations if the stream’s characteristic does
not vary much. However, in case the stream’s distribution significantly changes,
it is necessary to re-locate components. We develop splitting and merging oper-
ations in order to discretely re-distribute components in the entire data space.

AnMC	 is split if it is large enoughandhas thehighestvariance sum (i.e., its data
are most spread). Assume dimension e having largest variance is chosen for split-
ting, parameters for two resulting components MC	1 and MC	2 are approximated
by: μe

	1
=
∫ μe

�

μe
�
−3σe

�
x× p	,e(x|φ	)dx; μe

	2
=
∫ μe

�+3σe
�

μe
�

x× p	,e(x|φ	)dx; (σe
	1

)2 =∫ μe
�

μe
�−3σe

�
x2 × p	,e(x|φ	)dx − (μe

	1
)2; (σe

	2
)2 =

∫ μe
�+3σe

�

μe
�

x2 × p	,e(x|φ	)dx − (μe
	2

)2.
For other dimensions, their means and variances are kept unchanged. On the other
hand, two components are merged if they are small and close enough. The closeness
is measured based on Mahalanobis distance: Avg(Di,j) = 1

2 [(μi − μj)T Σ−1
j (μi −

μj)+(μj−μi)T Σ−1
i (μj−μi)]. Parameters for the merging component is computed

relied on the additive property:α	 = α	1+α	2 ; μ	 = α�1
α�1+α�2

×μ	1+
α�2

α�1+α�2
×μ	2 ;

Σ	 = Γ�

n(α�1+α�2 ) −
θ�×θT

�

(n(α�1+α�2))2 . In that, θ	 = n × (α	1 × μ	1 + α	2 × μ	2);

Γ	 = n[α	1(Σ	1 + μ	1μ
T
	1

) + α	2(Σ	2 + μ	2μ
T
	2

)].

Expiring Phase: This phase is applied when the window slides and the oldest
time slot is expired from the mining model. ΦG = {φ1, . . . , φk} is updated by
subtracting the statistics summarized in ΦL = {φ1, φ2, ..., φm} of the expiring
time slot. SWEM controls this process by using a fading factor λ (0 < λ < 1)
to gradually remove these statistics. At each iteration t, it reduces the weight of
each expiring MC	 by N

(t)
	 = λ(t)N	. Equivalently, the reducing amount denoted

by r
(t)
	 is r

(t)
	 = (1 − λ)λ(t−1)N	. The following theorem guarantees the number

of iterations t can be any arbitrary integer while the total reducing weight on
each expiring component approaches its original value.

Theorem 1. Let t be an arbitrary number of iterations used by the SWEM
algorithm. Then for each expiring micro component MC	: limt→∞

∑
t r

(t)
	 = N	

In specific, E-step updates: p(φh|T	) =
α

(t)
h
×ph( 1

N�
θ�|μ(t)

h
,Σ

(t)
h

)∑k
i=1 α

(t)
i ×pi( 1

N�
θ�|μ(t)

i ,Σ
(t)
i )
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Table 1. Average log likelihood values returned by stdEM, SWEMw/oG and SWEM

D2.K10.N100k D4.K5.N100k D10.K4.N100k
TS stdEM w/oG SWEM stdEM w/oG SWEM stdEM w/oG SWEM

2 -10.436 -10.512 -10.512 -19.252 -19.276 -19.276 -47.846 -47.869 -47.869
4 -10.427 -10.446 -10.446 -19.192 -19.215 -19.215 -47.933 -48.010 -48.010
6 -10.451 -10.604 -10.716 -19.164 -19.220 -19.326 -47.702 -47.712 -47.726
8 -10.444 -10.700 -10.735 -19.188 -19.226 -19.245 -47.859 -47.884 -47.886

10 -10.439 -10.523 -10.579 -19.202 -19.247 -19.258 -47.759 -47.820 -47.873
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M-step: n
(t+1)
G = n

(t)
G −∑m

�=1 r
(t+1)
� ;n(t+1)

h = α
(t)
h × n

(t)
G −∑m

�=1 p(φh|T�) × r
(t+1)
� ;

α
(t+1)
h = n

(t+1)
h

n
(t+1)
G

where μ
(t+1)
h = θ

(t+1)
h

n
(t+1)
h

; Σ
(t+1)
h = 1

n
(t+1)
h

[
Γ

(t+1)
h − 1

n
(t+1)
h

θ
(t+1)
h θ

(t+1)
h

T
]
,

where θ
(t+1)
h = θ

(t)
h −∑m

�=1 p(φh|T�) × r
(t+1)
� × θ�

N�
.

4 Experimental Results

Our algorithms are implemented using Visual C++ and the experiments are con-
ducted on a 1.9GHz Pentium IV PC with 1GB memory space running Windows
XP platform.

Clustering Quality Evaluation: Using the notations and method described in [1],
three datasets D2.K10.N100k, D4.K5.N100k and D10.K4.N100k are gener-
ated. Unless otherwise indicated, the following parameters are used: b = 5;
m = 6K (where K is the number of global clusters), Avg(Di,j) = 1, λ = 0.8,
and each TSi = 10k data points. Table 1 shows the average log likelihood results
returned by our experiments. It is observed that the clustering results of SWEM
are very close to those of stdEM (a standard EM algorithm working without any
stream constraints). Analogically, SWEM’s clustering quality is almost identical
to that of SWEMw/oG (a algorithm that derives global models by simply re-
clustering all sets of micro components). This result verifies the efficiency of our
gradually reducing weight technique.
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Parameter Sensitivity: Using D4.K5.N100k.AB, a combination of two com-
pletely different stream distributions, we test the sensitivity of SWEM to various
parameters. Figures 1, 2 and 3 report the accuracy of SWEM when the num-
ber of MC	, merging threshold Avg(Di,j), and fading factor λ are respectively
varied. We make the following observations. The average log likelihood becomes
stable when m = 6K (indicating that m need not be set too large, yet SWEM
is still able to achieve high clustering quality); Avg(Di,j) is set around 1 and λ
is between 0.8 and 0.9.

Comparison with CluStream: It is observed from figures 4 and 5 that both the
quality and execution time of SWEM are better than those of CluStream. This
is understood by the difference in two algorithms’ design. Whenever a signifi-
cant change happens in the stream’s distribution, SWEM re-distributes the set
of micro components in the entire data space by using split and merge opera-
tions, CluStream, instead, simply creates a new cluster for a new point which
cannot be absorbed by any clusters and merge other old ones. This causes the
clusters’ weights very imbalance and usually leads to a poor approximation of
CluStream. Analogously, while SWEM minimizes the number of iterations by
using the converged parameters of the previous time interval, CluStream always
tries to update new data points into the set of micro clusters being maintained
so far in the stream. This degrades the performance of Clustream and requires
it more time to converge.

5 Conclusions

In this paper, we have addressed the problem of clustering data streams in one of
the most challenging mining model, the time-based sliding window. We proposed
SWEM algorithm that is able to compute clusters with a strictly single scan over
the stream and work within confined memory space. Importantly, two techniques
of splitting and merging components were developed to address the problem of
time-varying data streams. SWEM has a solid mathematical background as it is
designed based on the EM technique. Such a mathematically sound tool has been
shown to be stable and effective in many domains despite the mixture models it
employs being assumed to follow Gaussian distributions.
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Abstract. We propose a two-dimensional information retrieval model
for querying inside multimedia database where numerous media streams
are semantically synchronized. The model exploits spatio-temporal ar-
rangement of synchronized media streams during query evaluation phase.
The output is a list of on-demand, dynamically integrated multimedia
presentations satisfying a set of query keywords.

Keywords: comprehensive multimedia databases, multiple synchro-
nized media streams, 2D information retrieval model.

1 Introduction

Multiple synchronized media streams have a wide range of applications includ-
ing business, entertainment and education. Several commercial systems such as
MPmeister[4] are already available for creating archives of high quality syn-
chronized media stream contents. However, search capability inside synchro-
nized streams is supported only at a coarse-grained level by these conventional
systems[1]. The objective of this paper is to provide the basic essences of a
formal query framework that is capable of extracting a list of substreams of
synchronized media matching a set of user-specified keywords.

The fundamental problem of partial stream retrieval can be attributed to the
fact that a single media fragment may not contain all the keywords specified
by a user. Furthermore, even if a fragment does contain all the keywords, it
may still lack the surrounding context, which would make the answer incompre-
hensible to the user. Therefore, traditional approaches of query processing with
predetermined answer boundaries are not applicable. It should be noted that
these boundaries may vary depending upon the keywords specified in the query.
Therefore, it is impractical to index all such possible boundaries beforehand as
the volume of index would grow exponentially. We propose a new query mech-
anism that determines the boundary at the query time, thus eliminating this
� Both authors have equally contributed to this paper.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 236–240, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Two-Dimensional Retrieval in Synchronized Media Streams 237

k1k1, k2

c
f

temporal dimension

m
ed

ia
di

m
en

si
on

1 2 3 4 5 6 7 8 9

1
2
3
4

Lecture Slides (B)

Textbook

Lecture Slides (A)

Lecture Video

c→a chunk (denoted by [x, y] coordinates in 2D space)

f→a fragment (a set of adjacent chunks bounded by a rectangle in 2D space)

Fig. 1. Two-dimensional representation of a comprehensive multimedia database

problem of exponential number of indexing. The following section explains the
formal description of our query model.

2 2D Retrieval in Synchronized Media Streams

2.1 Comprehensive Multimedia Database

A comprehensive multimedia database (CMD) may comprise several multiple
synchronized media streams. However, for the sake of simplicity, here we shall
consider only one such multiple synchronized media streams. Intuitively, each
media stream is divided into a set of non-overlapped chunks — the smallest
conceptual unit that is feasible to be indexed. A chunk thus may represent an
image, a video shot, a PowerPoint/pdf slide, or a book page. Each chunk can be
referenced by two dimensional coordinates of a rectangular coordinate system
in which [x, y] refers to a chunk of a particular media stream. For example,
[4, 3] represents Slide 4 of Lecture Slides (A) (i.e. Media Stream 3) in Fig. 1.
The CMD thus stores a set of two dimensional coordinates for representing syn-
chronized media streams as well as links to physical media chunks the coordinates
reference to. The CMD also stores metadata associated with each chunk. For ex-
ample, keywords k1 , k2 are associated with the chunk [4, 1], whereas keyword
k1 is associated with the chunk [6, 1].

A fragment on the other hand, is a set of adjacent chunks bounded by a rect-
angle in the 2D coordinate space. For example, in Fig. 1, a fragment f is denoted
by {[7, 3], [8, 3], [7, 4], [8, 4]}. A chunk can therefore be considered as a
singleton fragment. We use the term ‘fragment’ to denote a chunk unless a clear
distinction is required.

2.2 Query Algebra

In order to realize an answer model that we described in the previous section,
we require certain algebraic operations. These operations are basically classified
as (1) selection and (2) join operations.
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Definition 1 (Selection). Supposing F be a set of fragments in a CMD, and P
be a predicate which maps a document fragment into true or false, a selection
from F by the predicate P, denoted by σP, is defined as a subset F′ of F such
that F′ includes all and only fragments satisfying P. Formally, σP(F) = {f | f ∈
F, P(f) = true}.

Hereafter, the predicate P is also called a filter of the selection σP.
The simplest filter is for the keyword selection of the type ‘keyword = k ’ which

selects only those fragments in CMD having the metadata ‘k ’.

Definition 2 (Fragment Join). Let f1, f2, f be fragments in CMD. Then, frag-
ment join between f1 and f2 denoted by f1 � f2 is the minimum bounding rect-
angle (MBR) in a 2D space that contains the two input fragments f1 and f2.

Figure 2 shows the operation between two fragments {[4, 2]} and
{[7, 4], [8, 4]}. Note that the resulting fragment may include those chunks
not contained in either of the input fragments.

Next, we extend this operation to a set of fragments. called pairwise fragment
join, which is the set-variant of fragment join.

Definition 3 (Pairwise Fragment Join). Let F1 and F2 be two sets of frag-
ments in CMD, pairwise fragment join of F1 and F2, denoted by F1 � F2, is
defined as a set of fragments yielded by taking fragment join of every combina-
tion of an element in F1 and an element in F2 in a pairwise manner. Formally,

F1 � F2 = {f1 � f2 | f1 ∈ F1, f2 ∈ F2}.

Given two fragment sets F1 = {f11, f12} and F2 = {f21, f22}, F1 � F2 produces
a set of fragments {f11 � f21, f11 � f22, f12 � f21, f12 � f22}.

We now define powerset fragment join — another variant of the fragment join
operation.

Definition 4 (Powerset Fragment Join). Let F1 and F2 be two sets of frag-
ments in a CMD, powerset fragment join between F1 and F2, denoted by F1 �∗ F2,
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is defined as a set of fragments produced by applying fragment join operation to
an arbitrary number (but not 0) of elements in F1 and F2. Formally,

F1 �∗ F2 = {� (F′1 ∪ F′2) | F′1 ⊆ F1, F
′
2 ⊆ F2, F

′
1 �= φ, F′2 �= φ}

where � {f1, f2, . . . , fn} = f1 � . . . � fn.

Obviously, powerset fragment join grows exponentially and becomes very expen-
sive as the sizes of the input fragment sets get larger.

However, powerset fragment join can be logically transformed into the follow-
ing equivalent algebraic expression.

F1 �∗ F2 = (F1 � F1 � F1 � F1) � (F2 � F2 � F2 � F2)

where the expression (F � F � F � F) denotes the fixed point of a fragment set F.
Obviously, this new expression not only looks much simpler but also less costly
to evaluate.

2.3 Query Evaluation

Definition 5 (Query). A query is denoted by QP{k1, k2, ..., km} where kj is
called a query term for all j = 1, 2, . . . , m and P is a selection predicate.

We write k ∈ keywords(c) to denote that query term k appears in the metadata
associated with a chunk c.

Definition 6 (Query Answer). Given a query QP{k1, k2, ..., km}, answer A to
this query is a set of media fragments defined to be
{ f | (∀k ∈ Q)∃ c ∈ f : c is a boundary chunk of f ∧

k ∈ keywords(c) ∧ P(f) = true }.

Intuitively, a potential answer candidate to a query is a fragment consisting of
several consecutive chunks in one or more media streams and each keyword in
the query must appear in at least one chunk that constitutes the fragment. In
addition, the fragment must satisfy the selection predicate(s) specified in the
query.

A query represented by {k1, k2} and a selection predicate P against a CMD
can be evaluated by the following formula.

QP{k1, k2} = σP(F1 �∗ F2)
= σP((F1 � F1 � F1 � F1) � (F2 � F2 � F2 � F2))

where F1 = σkeyword=k1 (F), F2 = σ,keyword=k2 (F) and F = {c | c is a chunk in CMD}.
Fig. 3 shows an example query and an intuitive answer to this query. It is not

difficult to see that the definitions given above are enough to precisely generate
this answer (colored rectangle).
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3 Conclusions

In this paper, we presented our preliminary work on partial retrieval of synchro-
nized media streams. Our future work includes filtering and ranking of search
results.
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Abstract. Current streaming applications have stringent requirements on query
response time and memory consumption because of the large (possibly unbou-
nded) size of data they handle. Further, known query evaluation algorithms on
streaming XML documents focus almost exclusively on tree-pattern queries
(TPQs). However recently, requirements for flexible querying of XML data have
motivated the introduction of query languages that are more general and flexible
than TPQs. These languages are not supported by known algorithms.

In this paper, we consider a language which generalizes and strictly contains
TPQs. Queries in this language can be represented as dags enhanced with con-
straints. We explore this representation to design an original polynomial time
streaming algorithm for these queries. Our algorithm avoids storing and process-
ing matches of the query dag that do not contribute to new solutions (redun-
dant matches). Its key feature is that it applies an eager evaluation strategy to
quickly determine when node matches should be returned as solutions to the user
and also to proactively detect redundant matches. We experimentally test its time
and space performance. The results show the superiority of the eager algorithm
compared to the only known algorithm for this class of queries which is a lazy
algorithm.

1 Introduction

Current streaming applications require efficient algorithms for processing complex and
ad hoc queries over large volumes of XML streams. Unfortunately, existing algorithms
on XML streams focus almost exclusively on tree-pattern queries (TPQs). A distin-
guishing restrictive characteristic of TPQs is that they impose a total order for the nodes
in every path of the query pattern.

We consider a query language for XML, called partial tree-pattern query (PTPQ)
language. The PTPQ language generalizes and strictly contains TPQs. PTPQs are not
restricted by a total order for the nodes in a path of the query pattern since they can
constrain a number of (possibly unrelated) nodes to lie on the same path (same-path
constraint). They are flexible enough to allow on the one side keyword-style queries
with no structure, and on the other side fully specified TPQs.

In this paper, we address the problem of designing an efficient streaming algorithm
for PTPQs. Our focus is on demanding streaming applications that require low response
time and memory consumption.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 241–246, 2009.
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2 Query Language

A partial tree-pattern query (PTPQ) specifies a pattern which partially determines a tree.
PTPQs comprise nodes and child and descendant relationships among them. Their nodes
are grouped into disjoint sets called partial paths. PTPQs are embedded to XML trees.
The nodes of a partial path are embedded to nodes on the same XML tree path. However,
unlike paths in TPQs the child and descendant relationships in partial paths do not nec-
essarily form a total order. This is the reason for qualifying these paths as partial. PTPQs
also comprise node sharing expressions. A node sharing expression indicates that two
nodes from different partial paths are to be embedded to the same XML tree node. That
is, the image of these two nodes is the same – shared – node in the XML tree.

We represent PTPQs as node and edge labeled directed graphs. The graph of a PTPQ
can be constructed by collapsing every two nodes that participate in node sharing ex-
pressions into a single node. The nodes in the graph are annotated by the (possibly
many) PPs they belong to. The output node of a PTPQ is shown as a black circle. Fig-
ure 1 shows the query graph of PTPQ Q1. For simplicity of presentation, the annotations
of some nodes might be omitted and it is assumed that a node inherits all the annotating
PPs of its descendant nodes. For example, in the graph of Figure 1, node C is assumed
to be annotated by the PPs p2 and p3 inherited from its descendant nodes D and F .

The answer of a query on an XML tree is a set of results, where each result is the im-
age of the output node in a match of the query on the XML tree. The formal definitions
of a PTPQ and its embedding to an XML tree as well as the expressiveness results on
PTPQs can be found in the full version of the paper [1].

3 Eager Evaluation Algorithm

In this section, we describe our streaming evaluation algorithm for PTPQs. The algo-
rithm is called Eager Partial TPQ Streaming evaluation on XML (EagerPSX). Let Q
be the input query to be evaluated on a stream of events for an XML tree T . Algorithm
EagerPSX is event-driven: as events arrive, event handlers (which are the procedures
startEval or endEval), are called on a sequence of query nodes whose label match the
label of the tree node under consideration. Algorithm EagerPSX is stack-based. With
every query node X in Q, it associates a stack SX .

3.1 Open Event Handler

Procedure startEval is invoked every time an open event for a tree node x arrives.
Let X be a query node whose label matches that of x. Procedure startEval checks if
x qualifies for being pushed on stack SX : node X is the root of Q or the stacks of all
the parent nodes of X in Q are not empty and for each parent Y of X , the top entry of
stack SY and x satisfy the structural relationship (‘//’ or ‘/’) between X and Y in Q. If
it does, x is called an ancestor match of X .

Avoiding redundant matches. Because the answer of a query comprises only the em-
beddings of the output node of the query, we might not need to identify all the matches
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Fig. 1. (a) XML Tree, (b) Query Q1 Fig. 2. (a) XML Tree, (b) Query Q2, (c) Snap-
shots of stacks

of the query pattern when computing the answer of the query. Whenever a matching
of a query node is found, other matches of the same node that do not contribute to a
possible new matching for the output node are redundant and can be ignored.

A match of a query node X can be redundant in two cases. In the first case, X is a
predicate node (a non-ancestor node of the output node of Q). Consider, for instance,
evaluating the query Q1 of Figure 1(b) on the XML tree T1 of Figure 1(a). The nodes a1,
b1, e1 and f1 which are matches for the predicate nodes A, B, E and F , respectively,
contribute to the match d1 of the output node D. The nodes a2, . . . , an, b2, . . . , bn,
e2, . . . , en, f2, . . . , fn which are also matches of the predicate nodes can be ignored
since they all contribute to the same match d1 of the output node. Note that these nodes
correspond to O(n4) embeddings of the query with the same match for the output node.
Avoiding their computation saves substantial time and space. By avoiding redundant
predicate matches, our evaluation algorithm exploits the existential semantics of queries
during evaluation.

In the second case, X is a backbone node (an ancestor node of the output node of Q).
Consider again the example of Figure 1. Backbone node C has n matches {c1, . . ., cn}.
Note that before nodes c2, . . ., cn are read, both r and c1 have already satisfied their
predicates. Therefore, any match of the output node D that is a descendant of c1 (e.g.,
d1) can be identified as a solution and thus should be returned to the user right away.
The nodes {c2, . . ., cn} need not be stored. Storing these nodes unnecessarily delays
the output of query solutions, and wastes time and memory space. It is important to
note that redundant backbone node matches contribute to a number of pattern matches
which in the worst case can be exponential on the size of the query.

Our algorithm exploits the previous observations using the concept of redundant
match of a query node. Redundant matches are not stored and processed by our algo-
rithm. Note that most previous streaming algorithms either do not handle redundant
matches [2,3] or avoid redundant matches for TPQs only [4].

Traversing the query dags. When node X is a sink node of query Q, Procedure startE-
val examines whether there are matches that become solutions by traversing two sub-
dags GP and GB in that sequence. Dags GP and GB are a sub-dag of Q rooted at an
ancestor node of X that consist of predicate nodes and backbone nodes, respectively.
Procedure startEval traverses dag GP in a bottom-up way and evaluates for each query
node the predicate matches encoded in the stacks. After then, it traverses dag GB in a
top-down manner. It examines for each node its matches encoded in the stack, checking
if there are candidate outputs (associated with the matches) become solutions and can
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be returned to the user. Redundant matches will be detected and pruned during each
traversal. A traversal is terminated when either there is no more matches to examine, or
some match that has been examined before is encountered.

Example. Consider evaluating query Q2 of Figure 2(b) on the XML tree of Figure 2(a).
When 〈v4〉 (the start event of v4) is read, procedure startEval traverses the sub-dag
(path in this case) Z/V starting with V. Subsequently, startEval goes up to Z . Then,
it evaluates the predicates for the entry z3 in stack SZ . Procedure startEval ends its
traversal at z1. Figure 2(c) shows the snapshot of the query stacks at this time. Procedure
startEval proceeds to traverse the sub-dag (path in this case) Z//W starting with Z.
It terminates its traversal on W since stack SW is empty. Later, when 〈u6〉 is read,
startEval traverses the sub-dags Y//U and Y//W in that sequence. As a result, node
w5 is found to be a solution and is returned to the user. Note that when 〈w7〉 is read,
node w7 is returned as a solution right away.

3.2 Close Event Handler

When a close event for a tree node x arrives, for each query node X whose label matches
that of x, Procedure endEval is invoked to pop out the entry of x from SX and checks if
x is a candidate match of X . Node x is called a candidate match of X if x is the image
of X under an embedding of the sub-dag rooted at X to the subtree rooted at x in T .
If this is the case and X is a backbone node, each candidate output (a candidate match
of the output node) stored in the entry of x is propagated to an ancestor of x in a stack,
if X is not the root of Q, or is returned to the user, otherwise. If x is not a candidate
match of X , the list of candidate output stored in the entry of x is either propagated to
an ancestor of x in a stack, or is discarded, depending on whether there exists a path in
stacks which consists of nodes that are candidate matches of the query nodes.

3.3 Analysis

We can show that Algorithm EagerPSX correctly evaluates a query Q on a streaming
XML document T . Under the reasonable assumption that the size of Q is bounded by
constant, Algorithm EagerPSX uses O(|T |) space and O(|T | ×H) time, where |T |
and H denote the size and the height of T , respectively. The detailed analysis can be
found in [1].

4 Experimental Evaluation

We have implemented Algorithm EagerPSX in order to experimentally study its ex-
ecution time, response time, and memory usage. We compare EagerPSX with PSX
[5] and Xaos [2]. Algorithm PSX is the only known streaming algorithm for PTPQs
and it is a lazy algorithm. Algorithm Xaos supports TPQs extended with reverse axes.
All the three algorithms were implemented in Java. The experiments were conducted
on an Intel Core 2 CPU 2.13 GHz processor with 2GB memory running JVM 1.6.0 in
Windows XP Professional 2002. We used three datasets: a benchmark dataset, a real
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dataset, and a synthetic dataset. The synthetic dataset is generated by IBM’s XML Gen-
erator 1 with NumberLevels = 8 and MaxRepeats = 4. It has the size of 20.3MB and
includes highly recursive structures. In the interest of space, following we only report
the results on the synthetic dataset. Our experiments on the other two datasets confirm
the results presented here. Additional experimental results can be found in [1].

On each one of the three datasets, we tested 5 PTPQs ranging from simple TPQs
to complex dags. Both EagerPSX and PSX supports all five queries but Xaos only
supports the first three.

The execution time consists of the data and query parsing time and the query eval-
uation time. Figure 3(a) shows the results. As we can see, PSX has the best time
performance, and in most cases it outperforms Xaos by at least one order of magni-
tude. EagerPSX uses slightly more time than PSX , due to the overhead incurred by
eagerly traversing the query dags.

The query response time is the time between issuing the query and receiving the
first solution. Figure 3(b) shows the results. As we can see, EagerPSX gives the best
query response time for both simple and complext queries. Compared to PSX and
Xaos, EagerPSX shortens the response time by orders of magnitude. EagerPSX
starts to deliver query solutions almost immediately after a query is being posed.

1 http://www.alphaworks.ibm.com/tech/xmlgenerator
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Figure 4 shows the memory consumption of the three algorithms. As we can see, the
memory usage of EagerPSX is stable for both simple and complex queries. Figure 4(b)
shows the maximal number of stored candidate outputs of the three algorithms. Among
the three algorithms, EagerPSX always stores the lowest number of candidate outputs.
This is expected, since EagerPSX uses an eager evaluation strategy that allows query
solutions to be returned as soon as possible.
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Abstract. Though skyline queries in wireless sensor networks have been
intensively studied in recent years, existing solutions are not optimized
for multiple skyline queries as they focus on single full space skyline
queries. It is not efficient to individually evaluate skyline queries espe-
cially in a wireless sensor network environment where power consump-
tion should be minimized. In this paper, we propose an energy-efficient
multi-skyline evaluation (EMSE) algorithm to effectively evaluate mul-
tiple skyline queries in wireless sensor networks. EMSE first utilizes a
global optimization mechanism to reduce the number of skyline queries
and save on query propagation cost and parts of redundant result trans-
mission cost as a consequence. Then, it utilizes a local optimization mech-
anism to share the skyline results among skyline queries and uses some
filtering policies to further eliminate unnecessary data transmission and
save the skyline result transmission cost as a consequence. The experi-
mental results show that the proposed algorithm is energy-efficient when
evaluating multiple skyline queries over wireless sensor networks.

1 Introduction

Wireless sensor networks (WSNs) are being widely deployed in many environ-
ment monitoring applications because of the decrease in hardware prices and the
increase in reliability of wireless communications. For example when studying
the behavior of various bird species, ornithologists utilize feeder sensors to deter-
mine the places where birds appear most frequently. The same feeder sensor can
be equipped with a sound sensor, which can be used to detect the sound of birds.
Therefore, the ornithologists can also monitor the sounds of birds. Other than
environmental monitoring, WSNs have been successfully used in health care,
home automation, traffic control, and battlefield surveillance, etc. WSNs indeed
bring new opportunities as they allow to safely collect data from hazardous envi-
ronment. But due to the limitation of current hardware, most sensors are battery
powered and wireless communication is one of the major consumer of the sensor
energy. Thus, the challenge for WSNs is to fulfill various monitoring tasks with
a minimum communication cost which will also extend the life of WSNs.
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In response to the energy-saving challenge raised by WSNs, many proposals
have come out to answer various types of energy-efficient query processing like
average [7], top-k [10] and median [4]. In this paper, we investigate a new concept,
called subspace skylines, over WSNs. As the new proposal is based on skyline [1],
we will recall its definition:

Definition 1. Given a set T of tuples in a |D|-dimensional space D, the skyline
of D returns the tuples that are not dominated by the others. Here, tuple t dom-
inates tuple t′, if it holds that: 1) t[i] ≤ t′[i] (no worse than) for each dimension
i ∈ D, and 2) t[j] < t′[j] (better than) for at least one dimension j ∈ D.

As mentioned above, energy is the critical resource of WSNs and wireless com-
munication is a major consumer. A skyline approach can help find the critical
nodes in the network and minimize the volume of traffic in the network. Based
on the knowledge obtained from skyline, we can reduce the sampling rate of the
skyline sensors or retrieve data from nearby sensors in order to save energy and
extend the lifetime of the whole WSN. Here, a node ni dominates a node nj if
ni.en ≤ nj .en, ni.tr ≥ nj .tr and at least one of the following inequalities holds:
ni.en < nj .en, ni.tr > nj .tr. The nodes not dominated by any others are the
skyline nodes. Given a set of objects, the skyline query retrieves the complete set
of skyline objects. Figure 1 shows an example of skyline in such an application,
here a, c, d and h are skyline nodes, and the skyline is {a, c, d, h}.

In general, in environment monitoring applications, multiple sensing devices
are installed on each sensor node and sensor readings consist in acquiring mul-
tiple attributes, each corresponding to a type of the physical measurement from
a sensing device. Under this scenario, each sensor reading can be modeled as a
multi-dimensional vector and each entry in the vectors represents one type of
sensing value. In addition, users may be interested in retrieving data in various
subspaces (subspace skylines. Formal definition is given in Section 3) since dif-
ferent users have different preferences. For example, we are currently involved in
the process of building a real-time in-situ beach water monitoring system using
WSNs. In this system, we use sensors to monitor the quality of water by sam-
pling several parameters, such as E. coli bacteria, pH, salinity, and turbidity.
The researchers from civil engineering department would like to ask various of
subspace skyline queries over the system for different analysis purposes: “give
me the places where E.coli is high and PH. is low” or “give me the places where
E.Coli bacteria level is high, salinity is low and turbidity is low”. Therefore, for
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Fig. 1. An example of skyline query



Energy-Efficient Evaluation of Multiple Skyline Queries 249

an environmental monitoring application like the above-mentioned example, it
is quite common to have multiple skyline queries in difference subspaces which
are posed into the WSN simultaneously to gather interesting information.

Skyline queries in WSNs have received considerable attention [14, 15,3] in re-
cent years, most existing work has focused on energy-efficient evaluation of only
single skyline query in WSNs. We can naively apply the previous approaches to
evaluate multiple subspace skylines one by one. Obviously, this will no longer be
an energy-efficient approach because it will neglect the consanguineous correla-
tions among the subspace skylines, which is exactly the base of our energy saving
approach. Thus, in this paper, we propose a novel approach, called Energy-
efficient Multi-Skyline Evaluation (EMSE), to evaluate multiple skyline queries
in WSNs. EMSE employs two kinds of optimization mechanisms (global opti-
mization and local optimization) to reduce both the skyline query propagation
cost and skyline result transmission cost. The contributions of this paper are
summarized as follows:

1. Through the comprehensive analysis of the relationship between a subspace
skyline and its parent space skyline, we propose a global optimization mech-
anism on the base station.

2. Based the analysis of the skylines on different subspaces, we propose a local
optimization mechanism on intermediate nodes.

3. The extensive simulations show that the proposed algorithm performs effec-
tively on reducing the communication cost and saves energy on evaluating
multiple skyline queries in WSNs.

2 Related Work

Chen et al. [3] address the problem of continuous skylines monitoring in sensor
networks and presented a hierarchical threshold-based approach (MINMAX) to
minimize the transmission traffic in sensor networks. Our previous work [14, 15]
investigated the problem of maintaining sliding windows skylines in WSNs, which
seek the skylines over the latest data that are constrained by a sliding window,
in which several types of filter are installed within each sensor to reduce the
amount of data transmitted and save the energy consumption as a consequence.
All existing work has focused on a single skyline query execution in WSNs,
whereas we focus on multiple skyline queries.

Trigoni et al. [8] studied the multi-query optimization problem of region-based
aggregation queries in WSNs and proposed an equivalence class based on a merg-
ing algorithm in [13] to merge partial aggregate values of multi-queries. Recently,
Xiang et al. [12,11] studied the multi-query optimization problem in WSNs, and
proposed a Two-Tier Multiple Query Optimization (TTMQO) scheme to enable
similar queries to share both communication and computational resources in
WSNs. However, they focus on how to optimize multiple aggregations in WSNs,
while we are more concerned about how to optimize more complex queries,
multiple skyline queries. Because dominance in the definition of skyline is a
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partial-order relationship and quite different with aggregations, all the tradi-
tional algorithms are not appropriate.

3 Preliminaries

The subspace skyline can be formally defined as following.

Definition 2. Given a set T of tuples in a |D|-dimensional space D, a subset
of dimensions U ⊆ D (U �= φ) forms a |U |-dimensional subspace of D. The
subspace skyline of U (denoted Skyline(T, U)) returns the tuples that are not
dominated by any other tuple in the subspace U . Here, tuple t dominates tuple
t′ in the subspace U (denoted t �U t′) if: 1) t[i] ≤ t′[i] (t[i] not worse than t′[i])
in each dimension i ∈ U , and 2) t[i] < t′[i] (t[i] better than t′[i]) in at least one
dimension i ∈ U .

Yuan et al. [16] has thoroughly studied the subspace skyline and pointed out the
relationships between subspace skyline and its super space skyline.

Theorem 1. [16] Given a set T of tuples in a |D|-dimensional space D, U
and V are two subspaces of D (U, V ⊆ D), where U ⊆ V . Each tuple t ∈
Skyline(T, U) is either a subspace skyline tuple in Skyline(T, V ) or shares the
same values with another tuple t′ ∈ Skyline(T, V ) in subspace U .

Corollary 1. [16] Given a set T of tuples in a |D|-dimensional space D, if
for any two tuples t and t′, t[i] �= t′[i] holds, then for two subspaces U, V of D
(U, V ⊆ D), where U ⊆ V ⇒ Skyline(T, U) ⊆ Skyline(T, V ).

Corollary 1 shows that the subspace skylines are contained in its super-space
skyline when some special case (distinct value condition) holds. Once the super
space skyline is calculated, all its subspace skylines can be answered facilely. If
the containing relationship is hold in a more common condition, the number of
subspace skylines executed in the network will be reduced remarkablely.

According to Theorem 1, besides super space skyline tuples, if all tuples having
the same value with them in some dimensionalities are found, all the subspace
skyline queries could be answered. Extended skyline [9], shown as Definition 3,
just contains the above two kinds of tuples.

Definition 3. Given a set T of tuples in a |D|-dimensional space D, a subset
of dimensions U ⊆ D (U �= φ) forms a |U |-dimensional subspace of D. The
extended subspace skyline of U returns the tuples that are not strictly dominated
by the others in subspace U , denoted as XSkyline(T, U). Here, tuple t strictly
dominates tuple t′ in subspace U , if it holds that t[i] < t′[i] (better than) for each
dimension i ∈ U , denoted as t �U t′.

The extended skyline contains not only tuples of the traditional skyline, but also
those tuples not strictly dominated by traditional skyline tuples. As shown in
Figure 1, the extended skyline in 〈en, tr〉 is {a, b, c, d, e, h, i}. It not only contains
all the skyline results of 〈en〉, 〈tr〉 and 〈en, tr〉, but also the extended skyline
results of 〈en〉 and 〈tr〉.
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Theorem 2. [9] Given a set T of tuples in a |D|-dimensional space D, U and
V are two subspaces of D (U, V ⊆ D), if U ⊆ V holds, then Skyline(T, U) ⊆
XSkyline(T, V ).

However, not all the extened skyline tuples are subspace skyline tuples, and
these tuples have no contribution for any subspace skyline. Shown in Figure 1,
e belongs to the extended skyline, {a, b, c, d, e, h, i}, of 〈en, tr〉, but it does not
belong to any subspace skyline. So it is not appropriate to send e to the base
station.

Lemma 1. Given a set T of tuples in a |D|-dimensional space D, U and V
are two subspaces of D (U, V ⊆ D), it satisfies that U ⊆ V . t and t′ are two
tuples belong to XSkyline(T, V ), they satisfy that (t′ �V t) ∧ (t′ �U t), if for
any subspace W ⊆ V , W ∩ U �= φ holds, then t /∈ Skyline(T, W ).

Proof. t′ �V t⇒ ∀i ∈ V, t′[i] ≤ t[i], W ⊆ V ⇒ ∀i ∈ W, t′[i] ≤ t[i].
t′ �U t⇒ ∀i ∈ U, t′[i] < t[i].
(W ∩ U �= φ) ∧ (∀i ∈ U, t′[i] < t[i])⇒ ∃j ∈ W, t′[j] < t[j].
Therefore, t /∈ Skyline(T, W ). ��

Lemma 1 shows that if tuple t is dominated by another tuple t′ in V , t would
not belong to skyline in any subspace having dimensionalities where the value
of t and t′ are not equal. Only in the subspace having equal value with t′ in all
its dimensionalities, t has the probability to be a skyline tuple.

Definition 4. Given a set T of tuples in a |D|-dimensional space D, U is a
subspace of D (U ⊆ D), t and t′ is two tuples in T . If ∀i ∈ U, t[i] ≤ t′[i] and
∃j ∈ U, t[i] < t′[i] hold, U is the dominated space of tuple t′ corresponding to
tuple t. If there is no such space V ⊆ D, satisfying U ⊂ V and V is the dominated
space of tuple t′, U is the maximum dominated space of tuple t′ corresponding
to tuple t, denoted as MDS(t, t′).

Definition 5. Given a set T of tuples in a |D|-dimensional space D, U and V
are two subspaces of D (U, V ⊆ D) and U ⊆ V . t and t′ are two tuples in T . If
∀i ∈ U, t[i] = t′[i] holds, U is called equivalent subspace between t and t′ in V . If
there is no such space W ⊆ D, satisfying U ⊂ W ⊂ V and W is the equivalent
subspace between t and t′, U is called the maximum equivalent subspace between
t and t′ in V , denoted as MESV (t, t′).

In Figure 1, MDS(c, e) = MDS(d, e) = 〈en, tr〉, MESen,tr(c, e) =
〈tr〉, MESen,tr(d, e) = 〈en〉. According to MDS(c, e) = 〈en, tr〉 and
MESen,tr(c, e) = 〈tr〉, it can be concluded that e can possibly be a skyline tuple
only on 〈tr〉, but according to MDS(d, e) = 〈en, tr〉 and MESen,tr(d, e) = 〈tr〉,
e can possibly be a skyline tuple only on 〈en〉. The intersection of the two sub-
space is null, so, e does not belong to the skyline of any subspace of 〈en, tr〉. On
the basis of this conclusion, Theorem 3 is obtained.

Theorem 3. Given a set T of tuples in a |D|-dimensional space D, U is
subspace of D (U ⊆ D). And t is a tuple in T , there exists a set of tuple
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{t1, t2, ..., tm} satisfing MDS(t1, t) ⊇ U ∧ MESU (t1, t) = U1, MDS(t2, t) ⊇
U1 ∧MESU1(t1, t) = U2, · · · , MDS(tm, t) ⊇ Um−1 ∧MESUm−1(t1, t) = Um, if
W ∩ (U − Um) �= ∅ holds, then t /∈ Skyline(T, W ) for any subspace W ⊆ U .

Proof. According to Definition 4, MDS(t1, t) ⊇ U ⇒ t1 �U t.
On the basis of Definition 4 and 5, MDS(t1, t) ⊇ U ∧MESU (t1, t) = U1 ⇒

t1 �U−U1 t.
Thus, according to Lemma 1, in any subspace W , if W ∩ (U − U1) �= ∅,

t /∈ Skyline(T, W );
Similarly, MDS(t2, t) ⊇ U1 ⇒ t2 �U1 t, MDS(t2, t) ⊇ U1 ∧MESU1(t2, t) =

U2 ⇒ t1 �U1−U2 t. So, in any subspace W , if W ∩ (U − U2) �= ∅, t /∈
Skyline(T, W );

Finally, in any subspace W , if W ∩ (U − Um) �= ∅, t /∈ Skyline(T, W ). ��

4 Energy-Efficient Multi-skyline Evaluation

4.1 Global Multi-skyline Optimization

According Theorem 2, a subspace skyline result is the subset of extended skyline
result in its super parent space. Once extended skyline result in a super space is
known, all the skyline queries in its subspaces will be answered without retrieving
any information from the sensor network. So the execution of several extended
skyline queries in their super parent spaces will resolve all the original skyline
queries, in the sensor network.

Can the execution of the full space extended skyline resolve all the subspace
skyline queries, in the network?The answer is yes, it does. But it is not economical.
Because the expected complexity of skyline query result is O(lnk−1 n/(k − 1)!)
[2] and the extended skyline query is only a simple extension of skyline query, the
expected complexity of the result is also O(lnk−1 n/(k − 1)!). It is concluded that
replacing skyline queries with extended skyline querieswould only slightly increase
the number of results, while the increase of dimensions would sharply increase the
number of the result. So we should merge skyline queries in subspaces into existing
extended skyline queries in its super parent space, not create an extended skyline
query in the space where no corresponding skyline query exists.

The original skyline queries, whose results are contained in the synthetic skyline
query x, can be divided into two kinds: one has the same spaces with x, the other
is in the proper subspace of x. If the original skyline query having the same spaces
does not exist, executing x query is extravagant. This kind of skyline query deter-
mines whether x should be executed, so they are called decisive query of x; But the
other kind of skyline query is answered by the results of the result of x. If the first
kind of query exists, they have no influence to the execution of x, so we call them
covered query of x. Their definition is introduced as follows.

Definition 6. For a synthetic extended skyline query x, the original skyline
query who is in the same query space with x is called decisive query of x.

Definition 7. For a synthetic extended skyline query x, the original skyline query
whose query space is the proper subset of that of x is called covered query of x.
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Fig. 2. An running example

Consider the set of 5 tuples shown in Figure 2(a). Original queries and corre-
sponding synthetic queries are shown in Figure 2(b). From the query results in
Figure 2(c), we can conclude that all the results of original queries are included
in the synthetic query results produced by GMSO. The query number decreases
from 5 to 2 and the cost of transmission decreases from 8 to 6 tuple · times.
Through transforming skyline queries in subspaces into extended skyline queries
in several super parent spaces, not only the query propagation cost is reduced,
but also parts of duplicate transmissions of tuples belonging to multiple subspace
skyline results are avoided.

Basic Data Structure. All original skyline queries that need to be responded
are stored in the set S = {s1, s2, · · · , sn} and the corresponding synthetic ex-
tended skyline queries executed in the sensor network are stored in the set
X = {x1, x2, · · · , xm}. For each original skyline query, we only need to record
the subspace it inquires and the extended skyline query which responds it. They
are stored in the form of: si = 〈sid, querySpace, xid〉. Here, sid is the unique
identifier of the skyline query; querySpace contains all the dimensions that sky-
line query s has; xid is the identifier of the synthesized extended skyline query
responding the original skyline query.

For each synthetic query x, the information of the corresponding original sky-
line queries is also needed to be recorded, beside the subspace of x. Facilitating
the insertion and termination processing of the skyline query, the relative sky-
line queries are stored into two sets, decisive query set and covered query set,
separately. xi = 〈xid, querySpace, decisiveQueries, coveredQueries〉. Here, xid
is the unique identifier of the synthetic extended skyline query; querySpace con-
tains all the dimensions that the extended skyline query x has; decisiveQueries
and coveredQueries fields contain respectively all the decisive queries and cov-
ered queries of the synthetic extended skyline query.

Data structures of si and xi are shown in Figure 2(b). For example, the
querySpace of s2 is AB and its xid is x1. The querySpace of x2 is BCD, the
decisiveQueries is {s5} and coveredQueries is {s3, s4}.
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Skyline Query Insertion. The process of skyline query insertion is shown in
Algorithm 1. When a new skyline query s arrives, scan the synthetic query list
(Line 1-16). If the querySpace of s is the subset of the querySpace of a synthetic
query x, merge s into x (Line2-9). At the same time, set the s.xid with x.xid.
In the process of merging, if the querySpace of s equals to that of x, add s into
the decisive query list of x (Line 4) and if the querySpace of s is the proper set
of that of x, add s into the covered query list of x (Line 6). Then the algorithm
is terminated (Line8-9). If the attribute list of synthetic query x is the subset
of that of s, put its decisive query list and covered query list into a temporary
covered query list and terminate x (Line11-15). At last, according to s and the
temporary covered query list, a new synthetic query is created (Line 17).

Algorithm 1. InsertSkyline
1: for each element x in X do
2: if s.querySpace ⊆ x.querySpace then
3: if s.querySpace == x.querySpace then
4: x.decisiveQueries.add(s);
5: else
6: x.coveredQueries.add(s);
7: end if
8: s.xid = x.xid;
9: return;

10: end if
11: if s.querySpace ⊃ x.querySpace then
12: tempSet.addAll(x.coveredQueries);
13: tempSet.addAll(x.decisiveQueries);
14: Terminate(x);
15: end if
16: end for
17: X.newSyntheticQuery(s.querySpace,{s}, tempSet);

Consider the example shown in Figure 2. When a query 〈s6, ABC, null〉
arrives, synthetic query x1 would be terminated and a new synthetic query
〈x3, ABC, {s6}, {s1, s2}〉 is created, simultaneity. If another query 〈s7, CD, null〉
arrives, the set of synthetic queries is not influenced, because s7 is covered by
existing synthetic query x2.

Usually, the larger the dimensionality of the space is, the greater the prob-
ability that the subspace is contained is. In order to find out the super parent
space extended skyline of a new skyline query as soon as possible, we sort syn-
thetic queries in a descending order of the dimensionality, which improves the
searching efficiency.

Because of the limitation of the number of sensors on each sensor node, the
dimensionality would not be too high, bit operations can be used to improve the
efficiency of the algorithm. Therefore, querySpace can be stored as a bit array of
32bit, in which each bit indicates one dimension. If the corresponding dimension
belongs to the query space, the bit would be set to be ‘1’, otherwise set to be
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‘0’. The space with higher dimensionality can not be included by the space with
lower dimensionality, so when judging their relationship, we first compare the
dimensionalities of two spaces s1 and s2. Let’s assume that |s1| > |s2|. And then
“or” operation is used between the bit arrays of s1 and s2. If its result equals
to the bit array of s1, it shows that s1 includes s2. It would greatly reduce
the number of comparisons of judging the relationship between sets and sharply
improve the efficiency of the algorithm.

In real applications, it is quite normal to insert a batch of subspace skyline
queries and not economic to insert them respectively. As mentioned above, if
a subspace query is inserted before its parents space query, it would lead to
repeatedly creation and termination of the synthetic query. Thus queries can be
sorted in a descending order of inclusion relation and those queries not having
inclusion relation with any other query could be sorted in a descending order
of dimensionality. Each query records all its subspace queries, and once finds
out its parent space query or creates a new synthetic query, all its subspace
queries could be directly added to the coveredQueries, which reduces the cost
of scanning synthetic queries.

Skyline Query Termination. When a user skyline query s is terminated, the
base station not only needs to delete s from S but also needs to judge whether the
corresponding synthetic query x should be modified or not. After deleting s, if
the decisive query set of x is null, it means that there is no other original skyline
query whose subspace is equivalent to x. As a result, it is not economic to keep on
executing x. Therefore, it should be terminated and the skyline queries covered
by it should be inserted again. On the other hand, if decisive query set is not
null, there still are some original skyline queries whose subspaces are equivalent
to that of x, so the execution of x is necessary and no more other operations. The
process of skyline query termination is shown in Algorithm 2. When the query
s is terminated, according to the s.xid, find out the corresponding synthetic
query x firstly (Line 1). If s is contained in the covered query list of x, delete
it from x.coveredQueries (Line 2-4), and if s is contained in the decisive query
list of x, delete it from x.decisiveQueries (Line 5-7). After the deletion, if the
decisive query list of x is null, x it should be terminated and skyline queries
in the covered query list should be inserted again as new queries. As a result,
new synthetic queries are created(Line 8-13). At last, delete s from the original
skyline list and the algorithm is terminated(Line 14).

In Figure 2, the decisive query set of the x1 is {s2} and its covered query
set is {s1}, but the decisive query set of x2 is {s5} and its covered query
set is {s3, s4}. If s2 is terminated, we must delete it from the set of decisive
queries of corresponding synthetic query x1. After that, we will find that the
decisiveQueries become ∅, so x1 should be terminated and the original query
in its coveredQueries would be inserted as a new query. The termination of s3
only need delete itself from the covered query set of synthetic query x2. Since
there is no modification for decisive query set of it, x2 could be still executed.

Similarly, original queries in x.coveredQueires are sorted in a descending or-
der of inclusion. It avoids that the subspace query is inserted before the insertion
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Algorithm 2. TerminateSkyline
1: x = X.getByID(s.xid);
2: if s ∈ x.coveredQueires then
3: x.coveredQueires.delete(s);
4: end if
5: if s ∈ x.decisiveQueires then
6: x.decisiveQueires.delete(s);
7: end if
8: if |x.decisiveQueires| == 0 then
9: X.delete(x);

10: for each element s′ in x.coveredQueries do
11: InsertSkyline(s′);
12: end for
13: end if
14: S.delete(s);

of its super parent space queries, so the number of the creation and termination
of synthetic queries is reduced.

4.2 Local Multi-skyline Optimization

Sharing Result Transmission. Through the GMSO, original skyline queries
are replaced by a group of synthetic extended skyline queries. However, there
are always intersections among the query spaces of synthetic extended skyline
queries, extended skyline results often have intersections. If each query result
is transmitted respectively, the energy of sensor nodes would be wasted. So
if transmission of the same tuple belonging to different extended skylines is
shared, the transmission cost will be reduced sharply. In order to achieve this,
we assign each tuple a signature that indicates which query the tuple belongs to.
Each bit of the signature is related to a synthetic extended skyline query. After
that, we classify the extended skyline tuples by these signatures, that is, tuples
belonging to the same queries will be inserted into the same group and assigned
the same signature. Then all the tuples would be transmitted only once and
all the redundant results will be suppressed, with a little increase of signature
transmission.

Shown in Figure 2(c), because t5 and t4 belong to x1 and x2 respectively,
signatures of them are 01 and 10. While t2 and t3 both belong to x1 and x2, so
their signature is 11. Comparing with GMSO, the cost of transmission is further
reduced to 4 tuples and 6 bits signature.

In-Network Filtering. Not all of the extended skyline tuples are subspace
skyline tuple. Theorem 3 illuminates that when extended skyline tuple t is dom-
inated by a set of tuples, its maximum dominate space will shrink. Once its
maximum dominated space becomes null, illustrating t would not be the skyline
tuple of any space, so it is unnecessary to transform it in the network. Fil-
tering these useless data, each extended skyline tuple is assigned an attribute,
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possibleSpace, to record the maximum space where the tuple would be skyline,
while in the processing of calculating the extended skyline. In order to save the
memory space, if the possibleSpace indicates the whole data space, it would be
omitted. Without loss of generality, assume that t′ dominates t in the extended
skyline space. Then possibleSpace of t, where it possibly belongs to the skyline,
is MESU (t, t′). If another tuple t′′ dominates t, the possibleSpace of t, where
it possibly belongs to the skyline, shrinks to MESpossibleSpace(t, t′′). Once the
possibleSpace of is null, delete t from the candidate results set R.

In the example shown in Figure 2, in the processing of the query x1, when
calculate the relationships between t2 and t3, we find that t2 �AB t3 and
MESAB(t2, t3) = A, so the possibleSpace is initialized to be A; while cal-
culate the relationships between t3 and t5, t5 �A t3 and MESA(t3, t5) = ∅,
then possibleSpace = ∅, meaning that t3 does not belong to the skyline of any
subspace of extended skyline query x1. For the same reason, t2 �BCD t3 and
MESBCD(t2, t3) = CD, t4 �CD t3 and MESCD(t3, t5) = ∅, indicating that t3
does not belong to the skyline of any subspace of extended skyline query x2. So
it is unnecessary to transmit t3 to its parent node. Comparing with the front
method, the total cost is further reduced to 3 tuples and 6 bits signatures.

Influenced by the hierarchical routing structure of WSNs, it can not be avoid
that transmitting the local skyline tuples, which does not belong to the global
skyline, to the ancestor node. Such condition also needs to be considered. When
there is a query insertion or termination, commands will be hierarchically trans-
mitted to all the sensor nodes. In the transmission process, if MinMax filter [3]
is sent together, some unnecessary local results transmission would be avoided
and the cost will be reduced. Let the query subspace of synthetic query xi is
|Ui|. The calculating process of MinMax filter is shown in equation 1, 2 and 3.

maxj = MAX
|Ui|
k=1tj [k](1 ≤ j ≤ |T |) (1)

minmaxi = MIN
|T |
j=1maxj (2)

MinMaxi = {minmaxi, minmaxi, · · · , minmaxi} (3)

Now we set a MinMax filter for each query. When the number of synthetic
queries is very large, they will still cost too much. Sometimes, only one byte
will lead to a new package transmission. Moreover, because each MinMax filter
only takes charge of the results of the responding skyline query, a tuple t may
be dominated by the MinMax filter of a query xi, but not dominated by the
MinMax filter of another query xj . The tuple t is still needed to transport to its
parent node. In order to reduce these useless judgments, MaxMinMax filter is
proposed.

maxminmaxi = MAX
|X|
i=1minmaxi (4)

MaxMinMaxi = {maxminmaxi, · · · , maxminmaxi} (5)

Next, the properties of MaxMinMax is discussed to show its effectiveness.
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Lemma 2. For a set M = {MinMax1, MinMax2, · · · , MinMax|X|} of Min-
Max filters and MaxMinMax is the MaxMinMax filter of them. If a tuple t is
dominated by MaxMinMax, it must dominated by any MinMaxi ∈M .

Proof. Immediate deducted from the definitions of MinMax filter and MaxMin-
Max filter. ��

Theorem 4. All tuples filtered by MaxMinMax filter would not belong to any
synthetic query result.

Proof. Due to the page limit, the proof has been omitted. ��

Therefore, it is guaranteed that each tuple has been judged only once and the
transmission cost is reduced.

5 Performance Evaluation

We have developed a simulator to evaluate the performance of our proposed
EMSE approach. The nodes are set in to Crossbow Mica2 motes model [5], the
generic MAC-layer protocol is used and only the energy consumption of wireless
communication is taken in to account. For the sake of experimental unification,
we randomly place n sensors in an area of

√
n×√n units, then each node holds

one unit space averagely, and the communication radius is set to 2
√

n units.
Meanwhile, we regulate that the maximal length of packets transmitted in the
network is limited to 48 bytes. The followings are algorithms that have been
evaluated.

-SMSE: The algorithm evaluating multiple skyline queries one by one.
-GMSO: The algorithm only using global optimization mechanism.
-EMSE: Our energy-efficient multiple skyline queries evaluation approach.

The simulated data are all generated by standard dataset generator [1], includ-
ing independent (IND) and anti-correlated (ANT). Due to the page limitation,
the results of IND is omitted, since it is similar with the performance of ANT
data. In the experiments, we mainly consider two kinds of query distributions.
One is uniform query (UQ) where users concern all the dimensions equally. The
other is skew query (SQ) where users pay more attention to some dimensions
but less attention to the others. We use uniform distribution data to simulate
uniform query and use zipf distribution data to simulate skew query, in the ex-
periments. Table 1 summarizes parameters under investigation, along with their
ranges and default values. In each experiment, we vary only one single parameter
each time, while setting the remainders to their default values. All simulations
are run on a PC with 2.8GHz CPU and 512M of memory.

First, we investigate the performances of the algorithms, when the number
of nodes changes. Figure 3 shows that the cost of all the algorithms is raised
when the number of nodes increased. It is because the increment of sensor nodes
directly results in the increment of data, which leads to the increment of the sky-
line results number. So the communication cost is also increased. It is obvious
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Table 1. Simulation parameters

Parameter Default Range
Number of nodes 800 600, 700, 800, 900, 1000
Dimensionality 8 6, 7, 8, 9, 10
Number of queries 15 5, 10, 15, 20, 25
duplicate ratio 6% 2%, 4%, 6%, 8%, 10%
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Fig. 4. Communication cost vs. Data dimensionality

that the cost of SMSE is highest, GMSO’s is lower, and the cost of EMSE is the
lowest. It indicates the effectiveness of both our global optimization and local
optimization mechanism. The cost of all the algorithms under independent dis-
tribution is lower than those under anti-correlated distribution, because skyline
results in anti-correlated distribution are much more than those in independent
distribution.

Second, we consider the influence of dimensionality to the algorithms. Fig-
ure 4 shows that the cost of all algorithms is increased when the dimensionality
is raised. It is because that the increment of dimensionality leads to decrease
of the probability of one tuple dominated by others, which makes skyline re-
sults enhanced and the cost of communication increase. The relation of per-
formances of these three algorithms is similar with those shown in Figure 3,
which further proves the utility of global optimization and local optimization
mechanism.
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Fig. 6. Communication cost vs. Data duplicate ratio

Then we consider the performances of the algorithms, when the query number
is changed. While the query number increases, the communication cost of SMSE
is also raised, shown in Figure 5. The reason is that the number of queries is
enhanced, which leads to the increase of the number of query results, that also
increases the number of data transmitted among sensor nodes. However, the
cost of GMSO is lower than that of SMSE, but fluctuates, which indicates that
GMSO is more effective, but is also affected by the diversity of queries. But
the performance of EMSE is quite good, not influenced by queries. Through the
two-step optimizations, the affection of queries is obviously decreased.

Finally, we discuss the influence of the data duplicate ratio on the algorithms.
As shown in Figure 6, while the data duplicate ratio increases, the cost of SMSE
is reduced a little. Because the increase of the ratio means the cardinality in the
data domain is reduced, the probability of tuples being dominated is also reduced
and so is the cost of the algorithm. However, the cost of EMSE and GMSO is
gradually increases due to the increase of the ratio of duplicate data results and
the increase of the number of extended skyline results. And the reason why the
cost of EMSE is lower than GMSO is that EMSE avoids most unnecessary data
transmissions. It transmits only data that belong to the extended skyline but
not to any subspace skyline.

Through the experiments above, we can conclude that no matter what kind
of distribution query obey, uniform query distribution or skew query distribu-
tion, and what kind of distribution data obey, independent distribution or anti-
correlated distribution, the performance of GMSO is improved about 50% of
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that of SMSE. It indicates the utility of global optimization using query rewrit-
ing. However the performance of EMSE is 30-50% higher than that of GMSO,
which indicates the utility of our proposed local optimization. After the two step
optimizations, the number of data transmissions is reduced, which results in the
decrease of energy consumption, so the life-span of WSNs is prolonged.

6 Conclusions

When multiple skyline queries are posed into WSNs, computing each skyline
query individually is not energy-efficient. Because it ignores the essential rela-
tions among multiple skylines. In this paper, we proposed a novel and energy-
efficient approach: the Energy-efficient Multiple Skyline Evaluation (EMSE). It
aims at reducing the energy consumption on evaluating multiple skyline queries
in wireless sensor networks. First, a global optimization mechanism which re-
duces the number of skyline queries is proposed to save the query propagation
cost and the redundant results transmission cost. Then, a local optimization
mechanism is employed to further reduce the communication cost through shar-
ing the results transmission and filtering unnecessary data transmission. The
experimental results prove that EMSE is an energy-efficient approach for calcu-
lating multiple skyline queries in wireless sensor networks.
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Abstract. By definition, objects that are skyline points cannot be compared with
each other. Yet, thanks to the probabilistic skyline model, skyline points with
repeated observations can now be compared. In this model, each object will be
assigned a value to denote for its probability of being a skyline point. When we
are using this model, some questions will naturally be asked: (1) Which of the
objects have skyline probabilities larger than a given object? (2) Which of the
objects are the K nearest neighbors to a given object according to their skyline
probabilities? (3) What is the ranking of these objects based on their skyline prob-
abilities? Up to our knowledge, no existing work answers any of these questions.
Yet, answering them is not trivial. For just a medium-size dataset, it may take
more than an hour to obtain the skyline probabilities of all the objects in there.
In this paper, we propose a tree called SPTree that answers all these queries effi-
ciently. SPTree is based on the idea of space partition. We partition the dataspace
into several subspaces so that we do not need to compute the skyline probabili-
ties of all objects. Extensive experiments are conducted. The encouraging results
show that our work is highly feasible.

1 Introduction

Given a set of objects, X , let U and V be two different objects in X . U is said to domi-
nate V if U performs better than V in at least one dimension and not worse than V in all
other dimensions. An object that cannot be dominated by any other object in X is called
a skyline point. A collection of skyline points formulates a skyline. Traditionally, sky-
line points cannot be compared with each other because each skyline point performs
superior than the other skyline points in some, but not all, dimensions, and different
dimension is incomparable.

Yet, thanks to the idea of probabilistic skyline [1], skyline points can now be com-
pared with each others if each skyline point contains repeated observations. For exam-
ple, if we want to evaluate a basketball team, we will first collect the games (obser-
vations) that this team is involved, then identify the number of games that this team
performed at skyline point, and finally obtain a probability to denote how likely this
team can be a skyline point (i.e. skyline probability). Accordingly, we can compare the
performances of all teams, as they should have different skyline probabilities.

� Wei Lu’s and Xiaoyong Du’s research is partially supported by National Natural Science Foun-
dation of China under Grant 60573092 and Grant 60873017.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 263–277, 2009.
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When we are using the probabilistic skyline model, three questions will naturally
be asked: (1) Which of the objects have skyline probabilities larger than a given object
(Extract dominant probabilistic skyline points)? (2) Which of the objects are the K
nearest neighbors to a given object according to their skyline probabilities (Identify K
nearest probabilistic skyline points)? (3) What is the ranking of these objects based on
their skyline probabilities (Rank the extracted probabilistic skyline points)? Up to our
knowledge, no existing work can effectively answer any of the above questions. Yet,
answering them is not trivial. It can take more than an hour to compute the skyline
probabilities of all the objects in a 3 dimensional dataset with just 100 objects and each
object contains 2,000 observations

In this paper, we propose a novel tree structure, called Space-Partitioning Tree (SP-
Tree), that can answer all of the above questions efficiently. Our motivations and con-
tributions are both solid. The idea of SPTree is came from space partitioning. Extensive
experiments are conducted to evaluate the efficiency of our work. The results are highly
encouraging. The rest of the paper is organized as follows – Section 2 defines our prob-
lem; Section 3 presents SPTree in details; Section 4 reports the experimental results;
Section 5 discusses some important related works; Section 6 concludes this paper.

2 Problem Definition

Table 1 shows the symbols that would be used in this paper. Let D = {d1,d2, . . . ,dN}
be a N-dimensional space, where di is a dimension. Given di, the smaller the value it is,
the more preferable it will be. Let X be a set of objects in D.

By definition, given two objects, U ∈ X and V ∈ X , and their observations, u ∈U
and v ∈ V , u is said to dominate v, u ≺ v, iff the following two conditions hold: (1)
∀di ∈ D,u.di ≤ v.di; (2) ∃di ∈ D,u.di < v.di. The skyline probability of U , P(U) is [1]:

P(U) =
1
|U | ∑u∈U

P(u), P(u) = ∏
V

(
1− ‖v ∈V |v≺ u‖

|V |

)
. (1)

In this paper, we define the following new concepts:

Definition 1. p-dominant and p-dominant object An object, V , is said to p-dominant
another object, U, iff P(V ) > p and P(U) = p. Here, V is a p-dominant object.

Table 1. Symbols and their meanings

Symbols Meanings
D,di D is an N dimensional space; di is a dimension of D, di ∈D
X A set of objects in D
U,u U is a target object, U ∈ X ; u is an observation, u ∈U
V,v V is any object other than U , V ∈ X ,V �= U ; v is an observation of V , v ∈V
P(U) (P(V )) The skyline probability of U (V )
P(u) (P(v)) The skyline probability of u (v)
Pu(U) (Pu(V )) The upper bound skyline probability of U (V )
Pl(U) (Pl(V )) The lower bound skyline probability of U (V )
S,V s S is a subspace after space partition; V s is a subset of V drops in S, V s ⊆V
V s

min (V s
max) The min (max) point of the minimum bounding rectangle of V s
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Definition 2. K-nearest p-skyline, SK Given U with P(U) = p, K-nearest p-skyline is
a set of K objects that is most nearest to U according to the skyline probabilities.

Given an object, U , we try to solve the following three problems: (1) Extract objects that
p-dominant U ; (2) Rank p-dominant objects; and (3) Identify K-nearest p-skyline with
respect to U . Note that computing P(U) is trivial if we obtained all P(u). Unfortunately,
computing P(u) is very time consuming because ∀u ∈U we have to identify how many
v ∈V cannot dominate it. This is the major bottleneck.

3 Proposed Work

We propose a novel tree, Space-Partitioning Tree (SPTree), to answer the three ques-
tions stated in the previous section. In the followings, we first present the motivation of
SPTree, then give an overview of it, and finally describe its implementation detail.

3.1 Motivation

Since computing the skyline probabilities of all the objects in a dataset is very expen-
sive, we therefore try to think whether it is possible for not to compute their exact
values, but to identify their range only, for solving our problems. Given U and P(U),
We observe that our problems have some interesting properties:

First, we only need to return the objects that satisfy the queries, but not the sky-
line probabilities. Second, let Pl(V ) and Pu(V ) be two probabilities, such that Pl(V ) ≤
P(V ) ≤ Pu(V ). If Pl(V ) ≥ P(U), then V must be a p-dominant object. Similarly, if
Pu(V ) < P(U), then V will never be a p-dominant object. Third, if we can obtain all
Pl(V ) and all Pu(V ), without computing any P(V ), then we can immediately conclude
some of their relationships with U . We only need to compute P(V ) for those V that their
relationships with U are ambiguous. Forth, let V ′ �= V be another object in X . For rank-
ing the p-dominant objects, if ∃V ′,Pl(V ) ≥ Pu(V ′), then V must be ranked higher than
V ′. Furthermore, if Pl(V )≥ Pu(V ′),∀V ′, then V must have the highest skyline probabil-
ity. Similar for the case of Pl(V ) < Pu(V ′). Fifth, let Dmin(V,U) and Dmax(V,U) be the
min difference and max difference between P(V ) and P(U), respectively. For identify-
ing K-nearest p-skyline, if there are K or more objects with max differences to P(U)
smaller than Dmin(V,U), then V can be pruned away. Similarly, ∀V ′ ∈ X ,V ′ �= V , if
Dmax(V,U)≤Dmin(V ′,U), then V must belong to the K-nearest p-skyline of U .

To conclude, we use “range values” (Pl(V ) and Pu(V )) instead of “exact value”
(P(V )) to solve our problem. Now our question is: how to compute Pl(V ) and Pu(V )?

3.2 Space Partitioning Approach

Given U , without any prior information, if we want to extract the objects which are p-
dominant to U or are K-nearest to U , the first step is certainly to compute P(U). Once
we have obtained P(U), we can utilize it to facilitate other processes. Thus, we build a
tree (SPTree) according to U to index all the other objects.

Fig. 1 respectively show a sample dataset and the corresponding SPTree. In Fig. 1,
there are three objects, A,B and U . To construct the SPTree, we first need to partition
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Fig. 1. An example dataset

the dataspace into subspaces based on the min and max values of U in each dimension.
E.g. There are 9 subspaces in Fig. 1. Let S be a subspace. In Fig. 1, S ∈ {1,2, . . . ,9}.
Only subspace 5 contains u. Observations of other objects may drop into more than
one subspaces. Let V S ⊂ V be a set of observations drops in S. E.g. A1 = {a1,a2}. We
conduct the space partition because of the following reasons:

Recall that P(u) is already computed. According to Theorem 2 in Appendix, if ∃u≺
v,∀v ∈V s, then we can identify Pu(V s) by u, where

Pu(V s)≤ p

( |V s|× (|U |− |{u∈U |u≺ v}|)
|U |× (|V s|− |{v∈V s|v≺ u}|)

)
, p = min

u∈U
{P(u) | u≺ v,∀v ∈V s} . (2)

This process is very efficient because identifying the dominant relationship is simple
[2] and we only need to consider U and a particular V . Similarly, we can obtain:

Pl(V s)≥ p

( |V s|× (|U |− |u∈U |u≺ v|)
|U |× (|Vs|− |{v∈V s|v≺ u}|)

)
, p = max

u∈U
{P(u) | v≺ u,∀v ∈V s} . (3)

Hence, partitioning the dataspace can compute Pu(V S) and Pl(V S) efficiently.
There are two cases where we cannot use the above equations to compute Pl(V s) and

Pu(V s): (1) We cannot find any pair of (u, v) that satisfies Eq. (2) or Eq. (3); and (2) We
cannot further refine Pl(V s) and Pu(V s) by recursively partitioning the subspaces. We
will explain case (2) shortly. If we cannot use Eq. (2) or Eq. (3) to compute Pl(V s) and
Pu(V s), we have to compute them with the help of other objects. Yet, we do not need
to consider all observations in the dataset but just need to consider the observations in
the subspaces that may dominate U . E.g. in Fig. 1, if we compute Pl(A8) and Pu(A8),
we only need to consider the observations of A and B in the subspaces 2, 5, 7 and 8
because objects in the subspace 1 and 4 will always dominate objects in subspace 8,
and no objects in subspaces 3, 6 and 9 can dominate objects in subspace 8.

Let V s
min and V s

max be two points represent the min point and the max point of the
minimum bounding box of V s. Let V ′s �= V s be another subspace. If either V ′smax ≺V s

min
or V ′smin ⊀V s

max, then we do not need to compare the observations in V ′s with V s. Hence,
with space partition, the number of comparisons among objects is reduced dramatically,
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Fig. 2. Nodes split in Subspace 4

whereas identifying V s
max and V s

min are trivial. Mathematically,

Pu(V s) = ∏
O∈X ,O�=V

∑∀Os′ ∈O |Os′ ,Os′
max ≺V s

min|
|O| , Pl(V s) = ∏

O∈X ,O�=V

∑∀Os′ ∈O |Os′
min ≺V s

max|
|O| . (4)

Once we obtained Pl(V s) and Pu(V s), we can update Pl(V ) and Pu(V ) incrementally:

Pl(V ) = ∑
V s∈V

Pl(V s)× |V
s|
|V | , Pu(V ) = ∑

V s∈V
Pu(V s)× |V

s|
|V | . (5)

Note that computing Pl(V s) and Pu(V s) is far more efficient than computing Pl(V ) and
Pu(V ) because the search space in a subspace is far less than the whole space.

Let us refer to Fig 1 again. Assume that P(U) = 0.4. Suppose we obtained 0.6 ≤
P(A) ≤ 0.8 and 0.45 ≤ P(B) ≤ 0.7 after the above computation. Since Pl(B) > P(U),
B p-dominant U . For A, its relationship with U is undefined as its range overlap with
P(U). We therefore need to refine Pl(A) and Pu(A). The refinement is based on re-
cursively partitioning each subspace further into two disjoint subspaces and compute
Pl(V s) and Pu(V s) for each resulting subspace until we can distinguish the relationship
between U and V . Two rules governed how we the partition the subspace. Rule 1: the
total number of observations for all objects whose relationship with U are unknown
have to be the same in both subspaces. By maintaining the subspaces with equal num-
ber of observations, we can usually converge to a solution much faster. Rule 2: partition
a subspace depends solely on one particular dimension, di, where di varies for each
iteration. Specifically, given two consecutive subspaces, S1 and S2 where S1 ∪ S2 = S
and S1∩S2 = /0, if v.di < δ,v ∈V s, then v will be classified into S1, otherwise it will be
classified into S2. Finally, let us use an example to illustrate how di is chosen. Assume
D = {d1,d2}. The first and second iteration of the recursive partition will respectively
depend on d1 and d2. The third iteration will depend back to d1 again. For identifying
δ, it is trivial once we constructed the SPTree as we will discuss it shortly. With these
two rules, we can guarantee the size of the subspaces will not easily be biased by some
dimensions, meanwhile the computational cost for each iteration will be less as we only
need to partition the data according to one dimension at a time.

Let us refer to Fig. 1 again. Suppose the relationship of both A and B with U are
ambiguous, then we need to partition the subspaces. Let us take Subspace 4 as an ex-
ample. Fig. 2 shows the SPTree after nodes split in Subspace 4. According to Rule 1,
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Fig. 3. An SPTree

we should partition Subspace 4 into two and each partition should have 4 observations.
According to Rule 2, we partition the subspace based on d1.

Let V ⊆ X be a set of objects p-dominant U . For the problem of extracting V , it
can be solved by applying the aforementioned framework. For ranking V , we can iden-
tify the relationships among all V ∈ V by applying the same framework for each V .
Finally, for identifying the K-nearest p-skyline, we can apply this framework to iden-
tify the relationship among all V ∈ X , and changing the ranking criterion from skyline
probabilities to distance between P(U) and P(V ). For implementing this framework,
unfortunately, it is not simple. Deriving an appropriate data structure for efficient pro-
cessing and identifying some special rules to further enhance the computational time are
two non-trivial problems. In this paper, a Space Partitioning Tree (SPTree) is proposed.

3.3 SPTree Construction

Fig. 3 shows the SPTree for the dataset in Figure 1. Each node in the first N levels (N
is the number of dimensions, i.e. N = 2 in this case) of a SPTree contains 2 keys and 3
pointers. Each pointer points to a node in the next level. For the nodes at the same level,
they store the same pair of keys which denote the minimum and the maximum values
of U at a particular dimension, i.e. at level i, the left key is minu∈U u.di and the right
key is maxu∈U u.di. Each node at the N + 1 level of SPTree corresponds to a subspace,
S. The number of entries in a leave node depends on the number of objects that has
observation in the corresponding S. Each entry corresponds to a V s. It contains a pair of
coordinations which denote V s

min and V s
max (i.e. the minimum bounding rectangle of V s)

and a pointer pointing to the first observation, v, in a leave node that stores all v ∈V s.
The SPTree may grow dynamically according to the case if a subspace requires re-

cursively partition. Nodes would be added between the N + 1 level of SPTree and the
leave nodes. Fig. 2 (b) shows what would happen to the SPTree if we need to partition
Subspace 4 in Fig. 1 (a). Fig. 2 (a) magnifies this subspace to include more details. In
Subspace 4, there are 8 observations: a4, a5, a6, a7, b2, b3, b4 and b5. According to Rule
1, we should partition the subspace into two such that each of them contains 4 observa-
tions. According to Rule 2, we should partition the subspace based on only one of the
dimensions. Suppose we based our decision on dimension d1. Then, a4, a5, b2 and b3

will be grouped into one partition, and a6, a7, b4 and b5 will be grouped into another one.
Hence, we will attach two nodes into the forth node (from left to right) at the 3rd level
of the SPTree in Fig. 1. The result is shown in Fig. 2 (b). For the two attached nodes, each
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Algorithm 1. createSPTree(U, X)

input : A target (U) and a set of objects (X ,U /∈ X)
output: SPTree, T
create first N level of T ; // N is the number of dimensions1

foreach V ∈ X do2

foreach v ∈V do3

S← T.root; // T.root is the root node of T . S is a node4

for i← 1 to N do5

if v.di < S.key1 then S← S.pointer1;6

else if S.key1 ≤ v.di < S.key2 then S← S.pointer2;7

else S← S.pointer3;8

end9

insert v into S group by (V,d1);10

incremental update V s
min and V s

max according to v ∈V ;11

end12

end13

return T ;14

of them contains two entries. The meanings of these entries are the same as the entries
of their immediate parent nodes. Note that the observations in the leave nodes are group
by S, such that the pointers in their parents node can point to the correct entries.

Algorithm 1 outlines how SPTree is constructed. Line 1 creates the first N levels of
the SPTree according to the minimum and the maximum values of U in each dimension.
This process is trivial, so we will not elaborate it further. Line 2 – 13 show how each
observation, v ∈ V , is being inserted into the correct leave node in the SPTree, which
is self-explained. Algorithm 2 outlines the major steps for identifying the p-dominant
objects, V . First, we compute P(U) and P(u) (line 1). All u are indexed by R-tree for
efficient computation. All Pu(V s) and Pl(V s) are initialized to 1 and 0, respectively (line
2). After some parameters initialize (line 3), the main loop begins from line 4 to 23. In
line 6 – 17, for each v ∈V s,V ∈ X , we try to update the values of Pu(V ) and Pl(V ) with
the help of Pu(V s) and Pl(V s) according to equations Eq. (2) to Eq. (5). Once we identify
the relationship between V and U , V will be removed from X (line 11 – 16). Finally, if
the size of V s is larger than 1 (i.e. the number of observations of an object that drops in
S) and the relationship between V and U is not yet identified (i.e. V ∈ X), then we will
partition S into two subspaces (line 20). Algorithm 3 outlines the partition process. It
tries to get a value, δ (line 2), that guide us how the observations in S should be assigned
to the two new nodes (line 3). δ is obtained by first sorting all the observations in S by a
given dimension, di, (line 1) and then extract the observation, v, which is at the median
position of S after sorting, and δ is simply the value of v.di (line 2). Line 4 – 7 try to
assign the observations to the correct node, which are same explained. Finally, we link
all of them together (line 8 – 10).

Up to now, although we have only shown how we can extract the p-dominant objects,
V , from X , we can still use this similar framework to rank V or to identify the K-nearest
p-skyline, which has already been discussed in the last paragraph of the last section. As
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Algorithm 2. overview(U, X)

input : A target (U) and a set of objects (X ,U /∈ X)
output: p-dominant skyline points (V )
compute P(U) and P(u),∀u ∈U ; // Base on Eq. (1)1

Pu(V S)← 1,∀V s; Pl(V S)← 0,∀V s;2

V ← /0; T ← createSPTree(U, X); i← 1;3

repeat4

foreach P ∈ T (P is a parent node of a leave node) do5

foreach S ∈ T (S is an entry) do6

foreach v ∈V S,V ∈ X do7

update Pu(V ) and Pl(V ) according to Eq. (2) and Eq. (3);8

if Pu(V ) is not changed then update Pu(V ) according to Eq. (4);9

if Pl(V ) is not changed then update Pl(V ) according to Eq. (4);10

update Pl(V ) and Pu(V ) according to Eq. (5);11

if V is a p-dominant object then12

remove V from X ;13

add V into V ;14

else if V can be pruned (see Section 3.4) then15

remove V from X ;16

end17

end18

end19

end20

foreach P ∈ T (P is a parent node of a leave node) do21

foreach S ∈ L (S is an entry) do22

if ∃V ∈ X and |V s|> 1 then partition(S,di);23

end24

end25

i← (i = N) ? 1 : i+1; // N is the number of dimensions26

until X = /0 ;27

return V ;28

the modification is rather simple, we do not attempt to further elaborate it due to the
space limitation.

3.4 Pruning Strategies

Given a SPTree, T , after we compute Pl(V s) and Pu(V s), if Pu(V s) = 0, then all the
observations in V s must be dominated by some other objects, we can then prune away
V s from T . If Pl(V s) equals to Pu(V s), then all P(v) for v ∈ V s will be the same. So
the offspring of V s do not need to compute. For the problem of ranking p-dominant
objects, if Pu(V ) < P(U), then V can be pruned away. However, the reverse is not true.
If Pu(V ) > P(U), then even V can dominate U , we cannot prune it because we have
to rank it. Finally, if Pl(V ) ≥ Pu(V ′) for all V ′ ∈ X ,V ′ �= V,V ′ �= U , then V would be
the object with the highest skyline probability. Once we have identified this object, then
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Algorithm 3. partition(S,di)
input : An entry, S, and a dimension, di
sort all v ∈V s at the leaf-node by di;1

δ← v.di where v is the observation at the median position;2

create a new node, L, with two entries, S1 and S2;3

foreach v ∈V s do4

if v.di ≤ δ then incremental update V s1
min and V s1

max by v;5

else incremental update V s2
min and V s2

max by v;6

end7

S.pointer← L;8

S1.pointer← first position of v in V s at the leaf-node;9

S2.pointer← first v with v.di = δ in V s at the leaf-node;10

we can recursively use this rule to identify the object with the second highest skyline
probability, and so on so forth.

3.5 Complexity

Let us call the nodes in the first N level of a SPTree as space nodes and all the other
nodes as data nodes. For an N dimensional space, there will be at most 3N space nodes.
Each node contains one pointer and one value. For the space complexity, the best case is
that all observations drop within one subspace. The worst case is that each subspace has
at least one observation. Hence, the space complexities for space nodes are O(1) and
O(3N) for the best case and the worse case, respectively. Since V s will be partitioned
if we cannot identify the relationship between V and U , the best case is that no object
is split and the worst case is that each object will be split until each data node has only
one observation. Let n be the total number of observations in the dataset. The space
complexities for data nodes are O(n) and O(4n− 1) for the best case and the worse
case, respectively. Combining all together, the space complexity for the average case
would be (3N + n).

4 Experimental Study

All experiments are conducted with Intel 2.20GHz dual core CPU and 1GB memory
using Java. We employed four datasets: (1) Uniformly Distributed (UD) – We gener-
ate the center of 200 objects randomly, and randomly generate 2,000 observations for
each object. None of the objects are overlapped. (2) Slightly Overlapped (SO) – We
generate this dataset in the way similar to that of UD except that the objects can be
overlapped. On average, an object will be overlapped with 9 objects. (3) Highly Over-
lapped (HO) – We generate this dataset in the way similar to that of SO except that an
object will be overlapped with 34 objects on average. (4) NBA – It is downloaded from
http://www.databasebasketball.com. It contains 339,721 records of 1,313 players
(from 1991 to 2005). Each player is treated as an object, and the records of the same
player represent his observations. Each record has three attributes: points, assistants and
rebounds.
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Fig. 4. Retrieval and ranking performances of the dominant probabilistic skylines

4.1 Dominant Skylines Identification

For each dataset, we conduct seven experiments. The first experiment takes the object
with the highest skyline probability as U , and then extract the objects, V , with P(V ) >
P(U). Since U has the highest skyline probability, no object will be extracted. The rest
of the experiments are conducted in the way similar to the first experiment, except that
we respectively take the object with the 5th, 10th, 15th, 20th, 25th and 30th highest skyline
probability as U in each different experiment.

For comparison, we implement this approach as described in [1]1. We call it as base-
line approach (BA). This approach identifies all V with P(V ) larger than a user-defined
value without computing the exact P(V ). Note that this approach cannot rank V . We
slightly modify this algorithm for comparison as follows: (1) Given U , we first compute
P(U) to denote the user-defined value; (2) Use BA to extract all V with P(V ) > P(U);
(3) We compute the exact P(V ),∀V in order to rank them.

Figure 4 (a), 4 (b), 4 (c) and 4 (d) show the performances of extracting and ranking
the dominant probabilistic skylines. In the figures, x-axes denote the ranking of U and y-
axes denote the computational time (in sec). The black charts denote the performances
of our SPTree and the shaded charts denote the baseline approach (BA).

At the first glance, SPTree excels BA for all datasets and all situations, especially for
the datasets UD and SO. SPTree takes 0 – 65 sec for UD, 1 – 110 sec for SO and 6 – 400
sec for HO. For a reference, computing the skyline probabilities of all objects requires
more than 3,600 sec. The computational time of SPTree on the synthetic datasets is
roughly: (UD > SO > HO).

For the NBA dataset, SPTree seems does not have a clear pattern, i.e. even the given
U is at a lower ranking, the computational time may not necessary be longer. For exam-
ple, the time for extracting and ranking the dominant probabilistic skylines when U is at
the 15th rank is faster than that at 10th. This is interesting because, intuitively, a higher
rank object should take less computational time, as there are fewer objects dominating
it, so that we only need to extract and rank fewer objects. But this is not the case. As
such, we analysis the time spent on the most time consuming part of the algorithm –
split and partition. As expected, more number of split and partition is needed if the com-
putational time is higher. In order to understand why we have to perform more number
of split and partition, we take a closer look at the distribution of the objects. We found
out the number of split and partition we need depends on the overlapping between U

1 In their paper, they have proposed two approaches, namely: (1) Top-Down; and (2) Bottom-Up.
We have implemented the former one, because its excels the later one in most situations.
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Fig. 5. Performances of the K nearest neighbor p-skylines

and the other objects. As such, we draw the following conclusion: (1) It is merely the
distribution of the observations that affect the algorithm performance; and (2) There is
no direct relationship between the skyline probabilities and the computational time.

4.2 K Nearest Skylines Identification

For each dataset, we first identify the objects with: (1) Highest skyline probability; (2)
Lowest skyline probability; and (3) Median skyline probability, so as to serve as our
target object, U . Then, we try to extract K objects that are nearest to each of these
three objects. Here, K = {1,5,10,15}. As a result, for each dataset, we have to conduct
3×4 = 12 experiments. Since no existing work tries to address this problem, we have
implemented the following approach: Given a set of objects, we compute all of their
skyline probabilities, and then identify the K nearest neighbor of U accoriding to the
skyline probabilities. We call it as Baseline Approach (BA).

Figure 5 (a), 5 (b), 5 (c) and 5 (d) show the retrieval performances of obtaining the
K nearest probabilistic skylines. In the figures, x-axes denote different K, and y-axes
is the computational time (in log scale) measured in seconds. The black charts de-
note our proposed work (SPTree) and the white charts denote the Baseline Approach
(BA). The first four pairs, middle fours pairs, and last fours pairs of charts repre-
sent the time required for identifying the K nearest probabilistic skylines of U , where
U is the object at the top, middle and bottom ranking according to the skyline
probability.

From the figures, it is obvious that SPTree outperforms BA significantly (note that
the y-axes are all in log scale). This is not surprise as we have several efficiency strate-
gies to improve our identification process. The computational efficiency also follows
the same conclusion as in the previous section: (UD > SO > HO). In general, the
computational time increases linearly according to the number of nearest probabilistic
skylines, K, which we have to extract. In addition, for SPTree, the middle four charts
usually perform inferior than the first four charts and the last four charts. This finding
suggests that the position of the target object, U , may affect the computational time.
The reason is that overlapping among objects with skyline probabilities dropped in the
middle range is usually highest. Moreover, the skyline probabilities of these objects
are usually very similar. This will increase the computational cost significantly. For
the NBA dataset, the best case is the last four charts, which is the objects with the
lowest skyline probabilities. This is not surprise if we understand the data distribution
in there. In NBA dataset, the lowest overlapping is the area where those players have
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Fig. 6. Effect of the dimensionality. (a)
Ranking dominant p-skyline. (b) Identify-
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Fig. 7. Relationship between no. of instances and
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the lowest skyline probabilities, whereas both the top and middle range are heavily
overlapped.

4.3 Further Discussion and Analysis

In this section, we analyze the following two issues: (1) The effect of dimensionality,
and (2) The relationship between the number of objects and the number of instances.
We conduct the following analysis: (1) Case 1 (Dimensionality) – We conduct two
set of experiments, one for ranking the dominant probabilistic skylines, and the other
one for identifying K = 10 nearest probabilistic skylines. The dataset that we use is
similar to that of SO except that the dimensionality varies from {2,4,6,8,10}. For
both experiments, U is the one with the 10th highest skyline probability. (2) Case 2
(Number of Objects and Instances) – We conduct two sets of experiments with the pa-
rameters and settings similar to Case 1, except that N = {100,150,200,250,300} and
M = {500,1000,1500,2,000,2,500}.

Figure 6 (a) and 6 (b) show the evaluation results of Case 1. The x-axes represent the
dimensions of the dataspace, and the y-axes represent the time in seconds. When the
dimensionality increases linearly, the computational time increases exponentially. This
is expected because when the number of dimension increases linearly, the number of
skyline point will be increased exponentially. As the number of skyline points increase
dramatically, the number of comparison among points must also increase dramatically.
Furthermore, if the dimensionality increases linearly, the number of subspaces will in-
crease exponentially. This further contributions to the increase of computational cost.

Figure 7 (a) and 7 (b) show the evaluation results about the relationship between
objects and observations (Case 2). In the figures, x-axes denote the total number of
instances, y-axes represent the total number of observations, and z-axes are the com-
putational time measured in second. From the figures, we have two important findings.
The first finding is: the computational cost increases slowly if the number of objects in-
creases while keeping the number of observations belong to an object is the same. Yet,
the computational cost increases quickly if the number of observations increases while
keeping the number of objects are the same. The reason is that the time required for
splitting the nodes in the SPTree will be fewer if the number of observations is fewer.
The second finding in this experiment is: the computational time required for identi-
fying the K nearest p-skyline is much more stable and much less than that of ranking
the dominant p-skyline. This is because if we rank the dominant p-skylines, we need to
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distinguish the partial relationship between every two skyline points, which is not the
case for the K nearest p-skyline identification.

5 Related Work

Skyline query has been proposed for several years. Borzsonyi et.al [3] are the first to
introduce skyline query into database community and extend the SQL statement to sup-
port the skyline query. In their work, four algorithms, BNL (Block-nested-loop) based
nested-loop, DC (divide and conquer), B-tree based and R-tree based index, are pro-
posed to compute the skyline. DC algorithm recursively partitions the data set into
several parts and identifies skyline in each part. Then the separated parts will be recur-
sively merged into one part. Sort-filter-skyline (SFS) algorithm, based on nested-loop
as well, is proposed by Chomicki et al. [4]. SFS presorts the dataset in non-decreasing
order with the key value of each point such that each point only needs to be compared
with the points ranking before itself. Tan et al. [5] propose progressive skyline compu-
tation methods based on Bitmap and B-tree index. Kossmann et al. [6] propose a new
online algorithm based on the nearest neighbor (NN) search to improve their methods.
However, the NN algorithm needs to traverse the R-tree for several times and eliminate
duplicates if dimension is larger than 2. Papadias et al. [7] propose a branch-and-bound
algorithm (BBS) based on nearest neighbor search as well and indexed by R-tree. This
algorithm is IO optimal and traverses the R-tree for only once.

Recently, researchers mainly focus on the following three aspects. Firstly, decrease
the number of skyline points [8,9] when the dimensionality is high or the dataset is anti-
correlated. Secondly, some variations of skyline query are proposed, including reverse
skyline [10], multi-source skyline query [11], subspace skyline [12,13,14,15]. Thirdly,
combine skyline query with other techniques, including continuously computing sky-
line in data streams [16,17,18], computing skyline in a distributed environment [19,20]
and computing probabilistic skyline in uncertain data [1].

Most previous work focuses on computing skyline on certain data except the proba-
bilistic skyline on uncertain data. Here, our work focuses on uncertain data as well, but
we have different motivations with probabilistic skyline as explained before. We extend
the probabilistic skyline to dominant and K nearest probabilistic skyline.

6 Conclusion and Future Work

In this paper, we proposed a novel algorithm, called SPTree, to answer the following
questions: (1) Which of the objects have the skyline probabilities that dominate (larger
than) the given object? (2) What is the skyline probability ranking of the objects that
dominate the given object? (3) Which of the objects are the K nearest neighbors to
the given object according to the skyline probabilities? Extensive experiments are con-
ducted to evaluate it. The encouraging results indicated that SPTree is highly practical.
However, SPTree is far from perfect. It may not be very efficiency if the dimensional-
ity is high meanwhile the overlapping among object is huge. So, our future work will
investigate this issue.
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Appendix

Theorem 1 ([1]). Let V = {v1, ...,vn} be the object where v1, ...,vn are the observations
of V . Then P(Vmin)≥ P(V )≥ P(Vmax).

According to Theorem 1, we can use P(Vmin) and P(Vmax) to compute Pu(V ) and Pl(V )
respectively.

However, when computing the values of P(Vmin) and P(Vmax), we still need to tra-
verse all the observations of the other objects. Practically, based on the observations of
U and any other object V ∈ X , we deduce the following two important theorems, by
which we can compute Pu(V ) and Pl(V ) only using the two objects V and U .

Theorem 2. Given v ∈V, if ∃u ∈U s.t. u≺ v, then

P(v)≤ P(u)×
(

1− |{u ∈U |u≺ v}|
|U |

)( |V |
|V |− |{v ∈V |v≺ u}|

)

Proof. ∀O∈ X(O �=V, O �=U), ∀o∈O satisfying o≺ u, then by the definition of skyline,
o≺ v. Thus, |{o ∈O|o≺ v}| ≥ |{o ∈ O|o≺ u}|. Let R = X−{U,V}, then:

P(v) = ∏
O∈R

(1− |{o ∈ O|o≺ v}|
|O| )× (1− |{u ∈U,u≺ v}|

|U | )

≤ ∏
O∈R

(1− |{o ∈ O|o≺ u}|
|O| )× (1− |{u ∈U,u≺ v}|

|U | )

= P(u)× (
|V |

|V |− |v ∈V |v≺ u| )× (1− |{u ∈U |u≺ v}|
|U | ).

The result follows. ��
When identifying the value of P(Vmin), if there exists an observation u∈U and u≺Vmin,
according to Theorem 2, only U and V will be searched.

Theorem 3. Given v ∈V, if ∃u ∈U s.t. v≺ u, then

P(v)≥ P(u)×
(

1− |u ∈U |u≺ v|
|U |

)( |V |
|V |− |v ∈V |v≺ u|

)

Proof. Trivial. Similar to the proof of Theorem 2 ��
Similarly, when identifying the value of P(Vmax), according to the Theorem 3, if there
exist an observation u ∈U and Vmax ≺ u, only U and V will be considered.
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Abstract. The existing works on skyline queries mainly assume static datasets.
However, querying skylines on a database of moving objects is of equal impor-
tance, if not more. We propose a framework for processing predictive skyline
queries for moving objects which also contain other dynamic and static attributes.
We present two schemes, namely RBBS and TPBBS, to answer predictive skyline
queries. Experimental results show that TPBBS considerably outperforms RBBS.

Keywords: spatio-temporal database, moving object, skyline.

1 Introduction

Skyline query [1] is an important operation for applications involving multi-criteria
decision making. Given a set of multi-dimensional data points, a skyline query retrieves
a set of data points that are not dominated by any other points in all dimensions. A point
dominates another if it is as good or better in all dimensions and better in at least one
dimension. The existing works on skyline queries so far mainly assume static datasets.
There are lots of algorithms for static skyline queries in the literature. For example, the
BBS (branch-and-bound skyline) algorithm [4] is a widely cited one.

Meanwhile, management of moving objects has emerged as an active topic of spatial
access methods. In moving-object-database (MOD) applications, indexing and querying
for the current and near-future locations of moving objects is one of the key challenges.
Various indexes have been proposed to index the locations of moving object, which
continuously change by time in a 2D or 3D space. The Time-Parameterized R-tree
(TPR-tree) [5] and the TPR*-tree [6] are typical examples of such indexes. There are
however few reports on skyline algorithms for moving objects.

A moving object may contain spatial attributes such as the location, the velocity,
and the distance to a specified point etc. Besides these spatial attributes, a moving
object may also be associated with non-spatial attributes which can be either time-
parameterized or static. We refer to the non-spatial time-parameterized attributes as
NSTP. Regarding data combining the above three types of attributes, namely spatial,
NSTP, and static, there are needs in querying the skyline of such data at some future
time to support decision making. For example, in a digital battle, an aid worker may
query a skyline in 5 minutes from now on for the injured soldiers, in order to choose
the ones to prepare for the rescue. Both the aid worker and the injured soldiers may be
on move. The attributes to be considered in the query may involve the distance from the

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 278–282, 2009.
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Fig. 1. Skyline for Moving Objects

injured soldiers to the aid worker (a spatial attribute), the severity of the injury which
may change by time (a NSTP attribute), and the military rank (a static attribute).

Figure 1 shows the 2D layout of two predictive skyline queries on a dataset of four
moving objects (A, B, C, and D) at two different time instances, namely t1 and t2 = t1+2.
Point Oq indicates the position of the query point, which is also a moving object. The
solid lines in both subfigures indicate the skylines, while the dashed lines indicate the
distances from the moving objects to the query points. We can see that the results of
predictive skyline queries vary at different time instances and for different query points.
The NSTP and static attributes are not visible in this figure.

In this work, we address the problem of answering predictive skyline queries for
moving objects and their associated attributes. Our proposed solution is implemented
in a prototype called PRISMO (PRedIctive Skyline queries for Moving Objects). In
PRISMO, we design two schemes, namely RBBS and TPBBS, to answer predictive
skyline queries. RBBS is a brute-force method, while TPBBS is based on an index
structure called TPRNS-tree which indexes moving objects on all three types of at-
tributes.

2 Problem Statement

Like some previous works [5] [6], PRISMO models moving objects as linear motion
functions of time. Given a specific time t, which is no earlier than the current time,
the spatial location of a moving object in a d-dimensional space is given by O(t) =
(x, v, tre f ) = x(t) = (x1(t), x2(t), ..., xd(t)), where x is the position vector of the object
at a reference time tre f , v is a velocity vector v = (v1, v2, ..., vd). Thus, we have x(t) =
x(tre f )+v(t−tre f ). Given a query point q which may also be a moving object, its location
at t is Oq(t) = (xq1(t), xq2(t), ..., xqd(t)). So the distance between the moving object and
the query point is given by

distance(O(t),Oq(t)) =
√

(x1(t) − xq1(t))2 + (x2(t) − xq2(t))2 + ... + (xd(t) − xqd(t))2.

Meanwhile, the NSTP attributes of a moving object can be represented as y1(t), y2(t),
. . . , yi(t), where i is the number of NSTP attributes. Each NSTP attribute yk (k = 1, . . . , i)
is modeled similarly as a linear function of time yk(t) = yk(tre f ) + ck ∗ (t − tre f ), where
ck is a coefficient. A moving object may also have some static attributes z1, z2, . . . ,z j,
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which do not vary by time. Therefore, given a moving object, its respective data point
in vector form is < x1, x2, ..., xd, v1, v2, ..., vd, y1, y2, ..., yi, c1, c2, ..., ci, z1, z2, ..., z j >.

Given a moving query object oq and time instance tq which does not precede the cur-
rent time, the predictive skyline query, denoted by Q(oq, tq), retrieves the set of skyline
in the target space T at time tq. The target space T contains the distance of the moving
objects to the query point, the i-dimensional NSTP attributes, and the j-dimensional
static attributes of the moving objects. Without loss of generality, we use the min con-
dition to compute the skyline, in which smaller values are preferred.

3 Algorithms for Computing Predictive Skylines

3.1 RBBS

A natural approach to answering predictive skyline is to scan and compute the dataset,
to rebuild an R-tree and then to process a standard BBS algorithm for each query. We
call this brute-force solution as RBBS (BBS with Rescanning and Repacking).

When a point query Q(oq, tq) is issued, we first obtain the position o′q of the query
point oq at query time tq, from the moving function of oq. Second, we scan the whole
dataset of moving objects. For each moving object, we compute the distance between
its position at tq and o′q, and compute the values of the NSTP attributes at tq. After scan-
ning, we rebuild an R-tree whose dimensions include the distance, the NSTP attributes
and the static attributes. Note that the R-tree is static and does not require insertion
or deletion. In order to optimize the cost of rebuilding the R-tree, we use the packing
method of STR (Sort-Tile-Recursive) [3]. After repacking an R-tree, RBBS processes
a standard BBS algorithm to obtain the skyline set.

RBBS is straightforward and simple. However it needs to scan the dataset and repack
the R-tree for each query. Although the I/O costs of repacking and BBS are both opti-
mal, RBBS is a naive algorithm.

3.2 TPBBS

We advocate an index called the TPRNS-tree (time-parameterized R-tree with Non-
Spatial dimensions) which integrates all three types of attributes of moving objects.
Based on the TPRNS-tree, we propose a predictive skyline query scheme called TPBBS
(time-parameterized BBS) which does not require dataset-scanning and index-
repacking between consecutive queries.

The TPRNS-tree has similar index structure and insertion/deletion algorithms as the
TPR-tree. However, a major difference between the two is that the TPR-tree indexes
locations only, while the TPRNS-tree captures NSTP and static dimensions as well.
The NSTP dimensions are treated similarly as the location dimensions in MBRs and
VBRs, and the static dimensions are only recorded in MBRs. Therefore, the number of
dimensions in MBRs and VBRs are different in TPRNS-tree: a MBR contains Dm =

d + i + j dimensions, while a VBR contains Dv = d + i. For a MBR, the bounds of
the first Dv = d + i dimensions move according to the corresponding VBR and are not
necessarily compact, but those of the rest j static dimensions are always compact. The
compactness of bounds has considerable impact on the update and query performance.
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Algorithm TPBBS Q(oq, tq)
Input: oq is the query point, tq is the query time, R is the tree root.
Output: S is the list of the the predictive skyline.
1. S ← ∅, H ← ∅;
2. Compute the position o′q of oq at tq;
3. For each child entry ei of R
4. Compute the position of point at tq (or expand MBR to tq);
5. Form its tepoint (or teMBR) and compute its mvpoint (or mvMBR);
6. Insert tepoint (or teMBR) into H according to its mvpoint (or mvMBR);
7. While H is not empty do;
8. Remove the top entry E from H;
9. If is a moving object
10. Get tepoint of E;
11. If tepoint is not dominated by any point in S
12. Insert tepoint into S ;
13. Else discard E;
14. Else E is an index MBR
15. Get teMBR of E;
16. If ceMBR is dominated by any point in S at tq

17. discard E;
18. Else: For each child entry ei of E
20. Compute the position of point at tq (or expand MBR to tq);
21. Form its tepoint (or teMBR) and compute its mvpoint (or mvMBR);
22. If tepoint (or teMBR)is not dominated by any point in S
23. Insert tepoint (or teMBR) into H according to its mvpoint (or mvMBR);
24. Else discard ei;
25. End while;
26. Return S;

Fig. 2. Query Algorithm

Figure 2 shows the query algorithm of TPBBS. In TPBBS, we maintain a skyline set
S , which becomes populated as the algorithm proceeds, and a sorted heap H containing
entries of unexamined moving objects (leaf entries) and index MBRs (internal entries).
Note that the entries in H and S are different from those stored in the TPRNS-tree. They
need to be transformed and are therefore called transformed entries, or te in short. A
transformed leaf entry is denoted by

tepoint(oq, tq) =< ppd(oq, tq),NS T P(tq), static >

which contains (i) the point-to-point distance (ppd in short) from its position to the
position o′q of the query point oq at time tq, (ii) the values of the NSTP attributes at time
tq and (iii) the values of the static attributes. A transformed internal entry is denoted by

teMBR(oq, tq) =< prd(oq, tq),NS T Pbottom−le f t(tq), staticbottom−le f t, pointer >

which contains (i) the minimum point-to-region distance (prd in short) between its ex-
panded MBR in location space and o′q at time tq , (ii) the values of NSTP attributes of
its expanded bottom-left corner at time tq, (iii) the static attributes of its bottom-left cor-
ner, and (iv) a pointer to its corresponding internal node in the TPRNS-tree for getting
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the detail information of its children. It is also worthwhile to mention that the entries
in H are sorted by a key called minimum value (mv in short). For a moving object (or
an expanded MBR), its mv is computed as the sum of the coordinates of the first three
members in its tepoint (or teMBR). The domination comparison between two points (or
between a point and an expanded MBR), is to compare the coordinates of the first three
members in their tepoint (or teMBR) one by one.

4 Experiments

We implement RBBS and TPBBS in C++, and conduct the experiments on a 2.6GHz
Pentium 4 PC with 1GB memory, running Windows XP Professional. The page size
and index node size are both set to 4 KB. Figure 3 shows the average page accesses and
CPU time for each query while varying the cardinality from 10K to 1M. The location
attributes of the moving objects are generated similarly to that in [2] in the space domain
of 1000 ∗ 1000, randomly choosing the moving velocity in each dimension from −3 to
3. For each NSTP dimension, the initial values range from 1 to 1000 randomly. The
coefficients of their dynamic linear functions are chosen randomly from −5 to 5. We
employ independent and anti-correlated distribution in the static dimensions, varying
the values from 1 to 10000. There are 2 location dimensions, 1 NSTP dimension and
2 static dimensions in the datasets. The query point is generated as a moving object,
and the query time ranges from 1 to 60 time units. As expected, TPBBS performs much
better than RBBS. We also study the effect of the dimensionality, the data distribution
and the moving velocity, which all lead to the same conclusion.

Fig. 3. Page Accesses & CPU time vs Cardinality
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Abstract. Keywords are suitable for query XML streams without schema in-
formation. In current forms of keywords search on XML streams, rank func-
tions do not always represent users' intentions. This paper addresses this prob-
lem in another aspect. In this paper, the skyline top-K keyword queries, a novel 
kind of keyword queries on XML streams, are presented. For such queries,  
skyline is used to choose results on XML streams without considering the com-
plicated factors influencing the relevance to queries. With skyline query proc-
essing techniques, algorithms are presented to process skyline top-K keyword 
queries on XML streams efficiently. Extensive experiments are performed to 
verify the effectiveness and efficiency of the algorithms presented.  

Keywords: XML streams, keyword search, top-K, skyline. 

1   Introduction 

In some application, XML data is accessible only in streaming form, which is termed 
XML Stream. Querying XML streams with keywords without schema information is 
in great demand. The keyword search on XML streams is that given a set of keywords 
Q, the set of all the XML fragments in the XML streams with each of them containing 
all the keywords is retrieved. We call a node in XML fragment a keyword match if its 
value contains any keyword in Q. 

Since in XML streams, infinite XML fragments will come and there are too many 
XML fragments satisfying the keyword search, to find the most relevant results and to 
limit the number of results are both required during the processing of keyword que-
ries. How to identify the most relevant results for users is still an open problem. There 
are many techniques proposed to identify and rank the relevance of query results on 
XML data[1-4]. But sometimes, results are incomparable and it is hard to find a rank 
function of relevance. In some cases even though users submit the same query, differ-
ent results may be required. In such cases, to find a definite rank function to rank the 
relevance of results is improper. Without rank functions, a problem comes how to 
identify the top-K results the most relevant to the requirements of users. 

                                                           
∗ Support by the Key Program of the National Natural Science Foundation of China under 
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Inspired by [5]�skyline query is a good tool to effectively solve this problem. For 
the applying skyline on keyword search, the distances between keyword matches are 
used as properties in the skyline. We propose a new kind of queries, loose skyline top-K 
keyword queries on XML streams. An efficient algorithm is presented to process such 
queries on XML streams. 

The rest of this paper is organized as follows. In Section 2, we present the defini-
tion and processing algorithm of loose skyline top-K keyword queries on XML 
streams. In Section 3 we evaluate the performance of these algorithms by experi-
ments. Section 4 concludes the whole paper. 

2   Loose Skyline top-K Query on XML Streams 

In this section, skyline is applied to improve the result selection for keyword queries 
on XML streams. 

In an XML tree, the distance between nodes n and e is the number of edges on the 
path of n-e, denoted as d (n, e). If d is unreachable to e, then d (n, e) = ∞. 

Definition 2.1(Keyword Match). For a keyword set W= {K1, …, KN} and a leaf 
node u in a XML segment, if the value of u contains some keyword Ki∈W, node u is 
said to match keyword Ki and u is a keyword match of Ki, denoted by Ki ⊆ u. 

Definition 2.2 (Smallest Lowest Common Ancestor (SLCA)). Given a keyword 
query Q on XML data, an XML node i in the XML data is called SLCA if it contains 
all the keywords in Q in its subtree, and none of its descendants does. 

Definition 2.3 (Query Result). Given a keyword query Q, an XML segment t on 
the XML data is called a query result if it satisfies (i) the root of t is a SLCA of Q and 
(ii) each leaf of t contains at least one keyword not contained by other leaves of t. 

For any two leaves a and b in a query result T and their minimum common ances-
tor s, a smaller sum d(a, s)+d(s, b) implies larger relevance. By the definition of dis-
tance, the smaller the distance between two leaves is, the larger the relevance between 
them is. For every keyword Ki in a keyword query W, the set Ai={a|a is a leave of a 
query result T of W and a contains Ki}. The relevance of keyword Ki and keyword Kj 

in query result T is ,

( , )m i n
i i j j

i j
a A a A

d a a
∈ ∈ , denoted by RT(i, j).  

For a keyword query Q ={K1, …, KN}, PQ={(i, j)|Ki�Q, Kj�Q and i<j }. All pairs 
in PQ are sorted in the order of two dimensions. The order of a pair (i, j) in PQ is kij. A 
result T can be considered as a vector (R1(T), …, | | ( )

QPR T ), where ( )
ijkR T = RT(i, j). 

Definition 2.4 (Keyword Dominate). For a keyword query Q ={K1, …, KN} on XML 
streams, a result T dominates T’, denoted by T �T’, if  ∀� k (1�k�|PQ|), Rk(T)�Rk(T’). 

From the definition of relevance, for two results of a keyword query Q, T1 and T2, 
T1 dominating T2 means that T1 is more relevant than T2. For all results of a keyword 
query Q, the most relevant results must be those dominated by none of other result. 
Therefore, we have the definition of skyline point of a keyword query Q.  

Definition 2.5 (Skyline Point). Given a keyword query Q= {K1, K2, …, KN} on 
XML streams, the query result T is called the skyline point of the received XML 
fragments, if T is not dominated by any other query result. 

With the consideration that more results than skyline points for a keyword query 
may be required, inspired by [7], loose skyline top-K keyword query is defined. 
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Definition 2.6 (Loose Skyline top-K Keyword Query). A loose skyline top-K 
keyword query(LSK query in brief) is a query Q= {W, K}, where W={K1,K2…, KN} is 
a keyword query, K is a constraint number. The results of Q on XML streams are a 
subset of the query results D of keyword query W, denoted as LSD satisfying i) ∀�u�
LSD is not dominated by any query result in D/ LSD ii) |LSD|=K. 

To process the LSK queries on XML streams, we propose efficient algorithms. The 
basic idea of the algorithms is that for a LSK query Q={W, K}, a set of query results 
of W containing the results of Q is maintained as intermediate results and such set is 
updated when new query results of W are generated.  

The intermediate results should contain the results of a LSK query Q={W, K} and 
be as small as possible for the convenience of processing. At first, the skyline layer as 
the unit of intermediate result is defined. 

Definition 2.7 (Skyline Layer). For a keyword query Q ={K1,K2,… ,KN} and a set 
of query results M on XML streams, a subset of M is called skyline layer i(i≥1), de-
noted as Li if it satisfies: i) ��∀a,b∈Li, a is not dominated by b, b is not dominated by a; 
ii) ��∀�a∈Li, if i≥2, � ∃b∈Li-1, b �a; if i=1, ∀��b∈ Lj (j≥1) a is not dominated by b; iii) 
���∀a∈Li, if Li+1≠∅,� ∃b∈ Li+1, a �b 

By this way, M can be divided into skyline layers from L1 to Ln(n≥1). By using this 
definition, we present the garlic rule to select the intermediate results denoted as L, of 
a LSK query Q={W, K} from the result set M of keyword query W. 

Garlic Rule: Initially, L=Ø. For the query result set M of Q, L1 is added to L at 
first. If |L| is larger than K or all query results have been processed, the selection is 
finished. Otherwise the next skyline layer L2 is chosen to be added to L. Such steps 
are processed until a layer Lt is added to L and following constraints are satisfied: 
i)|L1∪ L2∪…∪Lt| ≥K; ii)if t >1, |L1∪ L2∪…∪Lt-1| < K. 

With the intermediate result set L selected by garlic rule, the results of Q can be 
easily generated by randomly selecting some nodes from the layer Lt. That is, if t=1 
and |L1|>K, K results are selected randomly from L1; otherwise, K-|L1∪ L2∪…∪Lt-1| 
results are randomly selected from Lt as L’t and the results of Q is L1∪ L2∪…∪Lt-

1∪L’t. Such selection rule is called the lowest layer rule. Therefore, for a LSK query 
Q on XML streams, the result of Q can be easily generated from the intermediate 
results. The update algorithm for intermediate result is presented in Algorithm1. In 
this algorithm, a new result m is compared with intermediate results in L from the 
lowest layer Lt to the higher layers until an element u in some layer Li dominates m or 
none of elements in the top layer dominates m. If m is dominated by some element in 
Li, m should be in lower layer than Li. If Li is the lowest layer and |L|≥K, m is dis-
carded. Otherwise, m is inserted to Li+1 and the elements in Li+1 dominated by m are 
inserted to the lower layer Li+2. Such process is continued until element set E is to be 
inserted to the lowest layer Lt. Once E is inserted to Lt, the element set E’ with each 
element dominated by some element in E should be pushed to lower layer than Lt. If 
|L|+1-|E’|≥K, E’ is discarded; otherwise, a new layer is created as the lowest layer 
with elements in E’. If none of elements in the top layer dominates m, it means that 
none of elements in L dominates m. m should be inserted to L1 and the elements 
dominated by m are processed similarly as above steps. In order to accelerate the 
pushing elements to lower levels, for each elements e in Li⊆L, pointers to the ele-
ments in Li+1 dominated by e is maintained. 
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With intermediate result update algorithm just discussed, LSK query processing 
algorithm on XML streams is presented. To represent the structural relationship 
among nodes in XML streams, they are encoded by Dewey Code[6]. The state of each 
active node n is represented by an N-bits binary signature sN. If any descendant of n 
contains keyword Ki, the ith position of sN is set to 1; otherwise, it is set to 0.  

In our algorithm, a stack is used to store the coding and states of all active nodes in 
the incoming sequence. An array P is used to store the keyword lists of all the non-
leaf active nodes. For each non-leaf node i, the entry P[i][j] stores all the descendants 
of node i containing keyword Kj. L stores current intermediate result set and LS stores 
the current results for the query. 

The details of the algorithms are shown in Algorithm2. Node n is initialized by 
coding n with Dewey Code and pushing node n into the stack when opening tag of n 
is encountered (in Begin()). When the closing tag of an element n is received (in 
End()), the temporal results with n as root are generated by every keyword list Ki of 
node n stored in P[n][i]. The intermediate result L is updated with elements in the 
result P[n][1]×P[n][2]×…×P[n][N] and current results are generated from L with the 
lowest layer rule. The details of the algorithms are shown in Algorithm2.  

3   Experiments 

We have implemented all the algorithms we proposed with reading XML files once 
from the disk to simulate XML streams. Two datasets, XMark and DBLP, are used. 
For each dataset, we selected a set of queries in order to test the efficiencies on differ-
ent queries, we used both frequent keyword sets and rare keyword sets. 

Algorithm 1  
Input: Q={W={K1,K2,…KN},K}, intermediate 
result set L, new query result m  
Isdominated=false  
for i=t to 1 do 

for each r ∈ Li do 
if r dominates m then 

   Isdominated=true; Break; 
if Isdominated=true then 

l=i+1; Break; 
if Isdominated=false then 

l=1 
if l=t+1 then 

if |L|<K then 
add a new layer Lt+1={m} to L 

else 
add m to Ll 
E={u|u�Ll�m �u} 
while l≠t do 

Ll=Ll-E 
E={u|u�Ll+1�∃v�E,v �u } 
Lt=Lt-E 

if |L|-|E|<K then 
add a new layer Lt+1=E to L 

Algorithm 2  
Input: Q={W,K} 
Output: LS  // the results of query Q 

BEGIN(n) 
n.state=00…0 
Stk.push(n) 

endfunction 
TEXT(n) 

for each Ki∈W do 
 if K i⊆n.v then 
    n.state= n.state OR 2i 
    P[m][i].insert(n.id)  

//m is the parent of node n 
endfunction 
END(n) 
//the descendants of node n contain all keywords 

if n.state =2N-1 then  
Generate query result set M with root n 
for each result m in M do 

Update_intermediate(Q, L, m) 
Select LS from L with the lowest layer rule 

else 
Stk.top().state= Stk.top().state OR n.state 

Stk.pop() 
endfunction 
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 Fig. 1. Run time VS Doc. Size         Fig. 2. Run time VS N                 Fig. 3. Run time VS K 

Scalability Experiments. In order to test the scalability, we generate XMark files 
with different parameters from 0.1 to 1.0 and the number of result K from 6 to 18. The 
experimental results are shown in Fig.1. From the results, the execution time is nearly 
linear to the number of elements.  

Changing N. From Fig.2, it can be seen that both rare keyword sets and frequent 
keyword sets are insensitive to the value of N. That is because that in most cases the 
SLCA nodes has a small number of keyword matches.  

Changing K. From Fig.3 we observe that, neither frequent nor infrequent query set 
are sensitive to the value of K. That is because in most cases, only a small number of 
query results need to be inserted to L instead of all of them. 

4   Conclusion 

With the broader application of XML data streams, top-k keyword search has become 
an important query on XML streams. Considering the different demands under the 
same keyword set query, in this paper, we propose the loose skyline top-K keyword 
query on XML streams. And we also propose effective algorithms for such kind of 
queries. Both analysis and experiments show that the techniques in this paper can 
obtain the search results efficiently and effectively with good scalability. 
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Abstract. Identifying the rising stars is an important but difficult human re-
source exercise in all organizations. Rising stars are those who currently have 
relatively low profiles but may eventually emerge as prominent contributors to 
the organizations. In this paper, we propose a novel PubRank algorithm to iden-
tify rising stars in research communities by mining the social networks of re-
searchers in terms of their co-authorship relationships. Experimental results 
show that PubRank algorithm can be used to effectively mine the bibliography 
networks to search for rising stars in the research communities. 

Keywords: Rising Stars, Social Network Mining, Bibliography Networks. 

1   Introduction 

Many organizations are concerned with identifying “rising stars” — those who have 
relatively low profiles currently but who may subsequently emerge as prominent con-
tributors to their organizations. However, there has been little work on this important 
task. In this paper, we investigate the possibility of discovering such rising stars from 
the social networks of researchers constructed using interactions such as research  
collaborations.  

Most of the related social network mining research has focused on discovering 
groups or communities from social networks [1-2] and on the study of how these 
communities grow, overlap and change over time [3]. In this work, we consider the 
problem of detecting individual “stars” who rise above their peers over time in the 
evolving social networks that profile the underlying landscape of mutual influence. In 
universities and research institutions, it is possible to model the social network of re-
searchers by the bibliography network constructed from their publications, where the 
nodes represent individual researchers, and the links denote co-author relationships.  

From such a bibliography network, we aim to discover “rising stars”. To do so, we 
consider the following factors: 1) The mutual influence among researchers in the net-
work. For example, a junior researcher who is able to influence the work of his seniors 
and effectively collaborate with them, leveraging on their expertise, is far more likely to 
succeed in a research career. We model the degree of mutual influence using a novel 
link weighting strategy. 2) The track record of a researcher. We can measure this in 
terms of the average quality of the researcher’s current publications. A researcher who 
publishes in top-tier journals and conferences is more likely to be an influential re-
searcher as compared to another who publishes at less significant venues. This is ac-
counted for by placing different weights on different nodes in the network model. 3) The 
chronological changes in the networks. Each researcher may work with different groups 
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of people at different points in time. A researcher who can build up a strong collabora-
tive network more rapidly than others is more likely to become a rising star.  

In this work, we design a novel PubRank algorithm to mine rising stars from bibli-
ography networks which incorporates the factors described above. Our algorithm de-
rives information from the out-links of nodes, which is fundamentally different from 
many related node analysis algorithms that use information from the in-links.  

Our technique is potentially useful for academics and research institutions in their 
recruitment and grooming of junior researchers in their organizations. It may also be 
useful to fresh PhDs and postdocs for selecting promising supervisors. Finally, it can 
be useful for tracking one’s relative performance in the research community, and for 
deciding whom to collaborate (more) with.  

We have also implemented a graphical interactive system RStar for public access 
to our results on the DBLP data (http://rstar.i2r.a-star.edu.sg/). 

2   The Proposed Technique 

Constructing the bibliography network. A bibliography network is a directed, 
weighted network where the nodes represent authors and the edges denote co-author 
relationships. When two authors vi and vj co-author a publication, there is mutual in-
fluence between them as the collaboration is typically beneficial to both parties. We 
model this mutual influence using the number of publications co-authored as a proxy 
for the strength of their collaboration relationship. We set the weight of the edge (vi , 
vj) to be the fraction of author vj’s publications that were co-authored with author vi, 
and the weight of the edge (vj, vi) to be the fraction of author vi’s publications that 
were co-authored with author vj. Researchers are then modeled to influence each other 
according to the strength of this relationship. Our weighting scheme captures the in-
tuition that an expert researcher will tend to influence a junior researcher more than 
the junior influences the expert, as the expert will tend to have more publications, thus 
reducing the fraction of co-authored work with the junior researcher. 
 
Accounting for the quality of publications: assigning node weights. The reputation 
and impact of a researcher is decided by the quality of his/her work. We incorporate 
this information by assigning node weights using the quality of a researcher’s publica-
tions. While the citation count of a paper is commonly used as a measure of its qual-
ity, it is biased towards earlier publications because articles need time to accumulate 
citations. Rising stars, being junior researchers, are thus unlikely to have many highly 
cited papers. We therefore opted for an alternative measure based on the prestige of 
its publication venue. Numerous ranking schemas are available for this purpose. A 
commonly used system is as follows: rank 1 (premium), rank 2 (leading), rank 3 
(reputable) and unranked [4]. 

Given a paper, we compute a measure of its quality based on the rank of the corre-
sponding conference or journal where it was published. Then, given an author vi who 
has a publication set P, we define his/her publication quality score )( ivλ  as 
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where pubi is the i-th publication, r(pubi) is the rank of publication pubi, and � (0 < � 
< 1) is a damping factor so that lower ranked publications have lower scores. The 

larger )( ivλ  is, the higher the average quality of papers published by researcher vi. 
 

Propagating influence in the bibliography network. The benefit of having a co-
author is mutual. A young researcher will stand to gain by working with a more ex-
perienced and established collaborator, while the experienced researcher is far more 
productive by teaming up with like-minded researchers (both experts and promising 
novices) to do good work. This feedback nature has also been famously observed in 
the “social network” of co-referencing web-pages, and is exploited by Google’s Pag-
eRank algorithm [5], where the PageRank of a page is defined in terms of the PageR-
anks of pages that link to it. We adapted the PageRank algorithm to compute a similar 
score for each node based on the propagation of influence in the bibliography net-
work. We account for the mutual influence between authors and the quality of each 
author’s publications to compute a similar PubRank score for each author (node):  
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In equation 2, N is the number of authors in the network, w(pi, pj) is the weight of 
the edge (pi, pj) and λ(pi) is the publication quality score defined in equation 1. 

A key difference between the PageRank and PubRank scores is that the PageRank score 
of a node is influenced by the scores of nodes that link to it, while the PubRank score of a 
node is dependent on the nodes to which it links to. In other words, unlike the PageRank 
algorithm and other link analysis algorithms which use in-links to derive information about 
a node, our algorithm uses a node’s out-links to compute its score. This difference reflects 
the reality of the situation, as a researcher who has high quality publications and is able to 
contribute to the work of other influential researchers is likely to be a rising star. 
 

Discovering rising stars from the evolving networks. The bibliography network 
grows larger each year as more papers are published. To account for this evolution of the 
network, we compute a series of PubRank scores for each author over several years. We 
hypothesize that if a researcher demonstrates an increase in his/her annual PubRank 
scores that are significantly larger than those of an average researcher, he/she will proba-
bly do very well in the coming years. We thus use a linear regression model to compute a 
gradient for each author, regressing his/her PubRank scores during a past time period 
against time (as measured in years). We then assess the significance of the gradient by 
computing its Z-score. Assuming that the gradients of the researchers have a Gaussian 
distribution, a critical region typically covers 10% of the area in the tail of the distribution 
curve. Thus, for a researcher vi, if his/her Z-score is larger than 1.282, we regard vi as 
statistically significant � vi will be predicted as a rising star. In addition, we also require 
the researcher’s PubRank score at the start of the time period to be lower than the average 
PubRank score of all researchers. This allows us to search for the “hidden” rising stars. 

3   Experimental Evaluation  

We performed two experiments using publication data from the Digital Bibliography 
and Library Project (DBLP). Our first experiment used all the DBLP data. This large 
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data set with over one million publications tests the scalability of our algorithm. In 
our second experiment, we evaluate our algorithm on a subset of DBLP data from the 
Database domain. This is because one is often more interested in the performance of 
one’s peers in the same technical domain than the entire field of computer science. 
The Database domain was chosen due to its long pedigree and relevance to our work 
in data mining. In our experiments the damping factor � was set to 2.  

Results on the entire DBLP dataset. We used data from 1990-1995 to predict the 
rising stars, then look at their eventual PubRank scores a decade later in 2006 to ver-
ify if they have indeed realized their predicted potentials. We normalized the Pu-
bRank scores of all researchers using the Z-score measure as described in our method. 
Out of the 64,752 researchers with high PubRank scores (Z-score > 0), our method 
identified 4,459 rising stars. We compared the rising stars with researchers in general. 
On average, the rising stars continued to have significantly higher gradients in the 
period after 1995: the average gradient for the rising stars is 0.497 while the average 
gradient for all researchers is 0 (Z-score property).  The predicted stars have indeed 
increased their PubRank scores significantly faster than researchers in general. In fact, 
although the rising stars all started out as relatively unknown researchers in 1990 
(with PubRank scores lower than average), their final average Z-score in 2006 was 
2.92, which means that they score well above that of the average researchers.  

We performed a more in-depth analysis of the citation count of the top ten pre-
dicted rising stars, comparing them to the citation counts for 100 randomly selected 
non-rising star researchers. We found that the rising stars obtained significantly 
higher citation counts for their most cited papers, obtaining 440 citations on average 
as compared to 18.9 citations for randomly selected researchers.  

We also ran our PubRank algorithm to mine the rising stars using the publication 
data from 1950 (1950–1955) to 2002 (2002–2007). In order to validate our predic-
tions, we chose the h-index list (http://www.cs.ucla.edu/~palsberg/h-number.html) 
which is used to quantify the cumulative impact and relevance of an individual’s sci-
entific research output. The h-index, defined as the number of papers with citation 
count higher or equal to h, is a useful index to characterize the scientific output of a 
researcher [6]. Out of the 131 researchers with 40 or higher h-index score according 
to Google Scholar, 116 researchers (88.5%) are identified as rising stars by our algo-
rithm across different years.  

Results on the Database domain. A list of database conferences was obtained from 
schema [4] and we retrieved 19474 papers published at these venues from the DBLP 
data. Our PubRank algorithm is then used to identify the rising stars from 1990 to 
1994 (rising stars in year n are predicted using historical data from n-5 to n-1). Note 
that a researcher can be predicted as a rising star in multiple years if their scores are 
always increasing significantly. To validate the results of our algorithm, we choose 
the top 20 rising stars for each year from 1990 to 1994. Out of the 100 rising stars, 
there are 63 unique individuals. Manual evaluation of the achievements of the 63 in-
dividuals showed that 43 (68.3%) have been appointed full professors at renowned 
universities, 7 (11.1%) of them are key appointment holders at established research 
laboratories and companies, and the remaining 13 are either Associate Professors or 
hold important positions in industry.  
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Table 1. Top 10 predicted rising stars from the database domain from years 1990-1994 

Name Position and Organization Awards Top  
Citation 

Bharat K.  
Bhargava 

Professor, Purdue University
IEEE Technical Achievement Award,  
IETE Fellow 

143 

H. V. Jagadish 
Professor, University of 
Michigan, Ann Arbor 

ACM Fellow 457 

Hamid Pirahesh 
Manager, IBM Almaden 
Research Center 

IBM Fellow, IBM Master Inventor 1428 

Ming-Syan Chen Professor, Nat. Taiwan U ACM Fellow, IEEE Fellow 1260 

Philip S. Yu Professor, UIC ACM Fellow, IEEE Fellow 1260 

Rajeev Rastogi 
Director, Bell Labs Research 
Center, Bangalore 

Bell Labs Fellow 1178 

Rakesh Agrawal 
Head,  
Microsoft Search Labs 

ACM Fellow, IEEE Fellow, a Member of 
the National Academy of Engineering 

6285 

Richard R. Muntz Professor, UCLA ACM Fellow, IEEE Fellow 1191 

Shi-Kuo Chang Professor, U of Pittsburgh IEEE fellow 171 

Jiawei Han Professor, UIUC ACM fellow 6158 

 
Table 1 shows the achievements of a selection of 10 outstanding individuals from 

the 63 we earlier identified. Their most highly cited publications all have over 100 
citations (as found using Google Scholar) and 7 of them have been recognized as 
ACM and IEEE fellows (or both). The other individuals that we identified also have 
remarkable achievements such as being appointed editor-in-chief for prestigious jour-
nals or winning (10 year) best papers at major database conferences (e.g., SIGMOD, 
PODS, VLDB, ICDE, KDD etc). Such achievements clearly show that they have in-
deed become the shining stars in the database domain, as we have predicted with our 
algorithm with publication data from more than a decade ago. 
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Abstract. Chip Multi-Processor(CMP) allows multiple threads to execute si-
multaneously. Because threads share various resources of CMP, such as L2-
Cache, CMP system is inherently different from multiprocessors system and, 
CMP is also different from simultaneous multithreading (SMT). It could sup-
port more than two threads to execute simultaneously, and some executing units 
are owned by each core. We present hash join optimization based on shared 
cache CMP. Firstly, we propose multithreaded hash join execution framework 
based on Radix-Join algorithm, then we analyze the factors which affect per-
formance of multithreaded Radix-Join algorithm in CMP. Basing on this analy-
sis, we optimize the performance of various threads and their shared-cache ac-
cess performance in the framework, and then theoretic analysis of speedup in 
multithreaded cluster partition phase is presents which could give some advices 
to cluster partition thread optimization. All of our algorithms are implemented 
in EaseDB. In the experiments, we evaluate performance of the multithreaded 
hash join execution framework, and the results show that our algorithm could 
effectively resolve cache access conflict and load imbalance in multithreaded 
environment. Hash join performance is improved. 

Keywords: Radix-Join,Shared L2-Cache,Cache Conflict, Chip Multi-Processor.  

1   Introduction 

As the number of transistors in processors continues to increase, processor frequency 
has reached the limit under current technology, and also the energy consumption. 
Therefore, the development trend of processors[9] is transforming from high-speed 
single-core to Chip Multi-Processor(CMP), and from instructions parallel to thread 
level parallel. At present, two cores and four cores processor are becoming the main-
stream, and core number is increasing every year. Comparing to traditional multiproc-
essors system, off-chip communication speed is much lower than on-chip’s and, par-
allel efficiency of CMP is obvious higher than multiprocessors. For DBMS, shared 
cache could reduce data redundancy and improve cache hit ratio. However, CMP 
generally share some resources between cores, which may lead to access conflict 
when using these shared resources, such as shared L2-Cache. Therefore, CMP has 
brought the database with both opportunities and challenges[7]. Many scholars[5][6][7][14] 
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have researched database algorithm optimization based on CMP. Comparing to paral-
lel optimization between queries, parallelism of internal query requires further 
study[14]. 

Current computer structures adopt multi-level cache architecture to reduce data ac-
cess delay. More and more researches have proved that in multi-level cache architec-
ture, with the decreasing price and increasing capacity of main memory, database 
servers with large main memory is economical and desirable, and disk I/O delay is 
gradually eased[1]. However, the speed gap between memory and on-chip cache is 
increasing, and the delay which processor waits for data from main memory to on-
chip cache is becoming the main bottleneck for database[7][11][12][13][8][9]. Currently, 
database performance could be evidently improved either through cache access opti-
mization to reduce cache delays or by thread-level parallelism to hide cache delay. 
For hash join, many scholars have presented some optimization algorithms, divided 
into two categories: 

1. Cache access optimization. Such methods can be divided into prefetching[11] and 
partition[2][8].[11] utilizes software prefetching instructions to hide cache access delay 
and proposes two prefetching algorithm: group prefetching and pipeline technology; 
[2] presents Radix-Join algorithm which adopts multi-way partition in cluster parti-
tion process to reduce cache miss when cluster partition, and it can be used as basic 
hash join in many hash join optimization researches[10][12], also in our research; In 
[10], they present cache-oblivious hash join, setting optimal cache parameters in run-
time, which could get better performance than adopt inherent parameters of processor 
cache in some cases. 

2. Multithreaded parallelism optimization. [12] optimizes Radix-Join algorithm in 
MTA-2 CMP system, and the results show that speedup and throughput of hash join 
are improved with many threads execute concurrently; [13] optimize hash join in 
SMT (Simultaneous Multithreading) system which implements each operator in a 
two-threaded pattern. One thread processes even tuples on the (probe) input stream, 
and the other processes odd tuples; In [14], they divide hash join into some opera-
tions, then hash join could be executed according to pipeline composed by these op-
erations, and every operation is executed by multiple threads. 

However, these researches have not involved the performance optimization of 
shared cache which accessed by multithread in CMP system. Current CMP generally 
shares L2-Cache between cores which could effectively reduce data duplication and 
improve cache utilization, but the competition of shared resources may bring some 
negative effects on multithread execution, such as cache access conflict[4]. Cores in 
CMP could access shared cache at the same time. Core1 may replace cache lines 
which other cores will access in the future. When other cores access these cache lines, 
cache miss occurs, even resulting in cache thrashing which could bring serious per-
formance decline.  

In order to make full use of CMP, it is necessary to effectively solve performance bot-
tlenecks caused by shared cache. Therefore, in this paper, we focus on improving shared 
cache access performance of multithreaded hash join algorithm, and also fully utilizing 
parallel computing resources of CMP. The contributions of this paper are as follows: 

1. According to characteristic of shared L2-Cache CMP, we present a multi-
threaded hash join execution framework, which bases on Radix-Join algorithm, to 
execute hash join. 
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2. We analyze factors which effect multithreaded Radix-Join performance in shared 
cache CMP through two instances execution. Then on the basis of the analysis, by 
setting reasonable number of thread, thread start time and working sets of threads, we 
optimize performance of multithreaded hash join execution framework and analyze 
speedup of multithreaded cluster partition.  

3. We implement our framework in EaseDB[8]. By analyzing the experiment results, 
we can prove our algorithm to be shared-cache-friendly and fully utilize computation 
resources of CMP. The hash join execution performance is also improved. 

2   Multithreaded Hash Join Execution Framework 

This paper presents how to optimize multithread and its cache performance of hash 
join in shared cache CMP. Therefore, it is more applicable for in-memory database or 
disk database which has large main memory and could cache enough pages to greatly 
reduce disk I/O delay. As following, we will present the details of multithreaded hash 
join execution framework which bases on Radix-Join[2] algorithm. 

Radix-Join splits a table into H clusters using multiple passes. Cluster partition on 

lower D=
1

p

pD� bits of the integer hash-value of a column is done in P sequential 

passes, in which each pass clusters tuples on Dp bits, starting with the leftmost bits. 
The number of clusters created by the cluster partition is H =

1

p
pH∏ , where each 

pass subdivides each cluster into Hi= 2 pD  new ones. The clusters of two tables are 
joined by hash join(Radix-Hash-Join) or nested loop join(Radix-NL-Join), while we 
only aim at Radix-Hash-Join.  

This paper optimized Radix-Join algorithm based on shared L2-Cache CMP. 
Radix-Join algorithm is composed by two phases, cluster partition and cluster join. 
The multithreaded execution framework of Radix-Hash-Join is shown in Fig 1: 

In Fig1, the temp table adopts Parallel Buffer[5] to manage memory. Parallel 
Buffer divides a big chunk memory into small chunks. Thread reads or writes memory 
in a unit of chunk, which could greatly reduce exclusive access cost of multithread. 
There are three kinds of thread in Fig 1: 

 

Fig.1. Radix-Hash-Join multithreaded framework 
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1. Page processing thread. Read Thread(RT) reads pages and executes project op-
erator in Query Execution Plan(QEP) to convert tuples which satisfies query condi-
tions to Hash Cell, and then, puts Hash Cell into temp table. Hash Cell is composed 
as <HashValue, KeyValue, TID>. In this expression, “HashValue” stands for hash 
value, “KeyValue” for value(s) of join column, and “TID” for tuple ID.  

2. Cluster partition thread. After all pages in table have been processed, Cluster 
Thread(CT) partition temp table into small clusters. The start time of CT must be 
optimized(detailed analysis in Section 3.2.2), which is very important to performance 
of multithreaded cluster partition. Every CT will be assigned some clusters. For ex-
ample, there are Hj clusters when m CTs are started, and then the Hj clusters are 
evenly assigned to the m threads. For every cluster, CT completes remaining cluster 
partition in P-j sequential passes. The thread optimization scheduler module corre-
sponds to optimization of cluster partition thread in Section 3.2.2. 

3. Cluster Join Thread. The thread workload allocation scheduler module corre-
sponds to cluster join thread optimization in Section 3.2.3. Cluster partition generates 
two cluster tables(L and R). The key points of JT performance are workload balance 
of CMP and low cache conflict of JT. 

3   Multithreaded Hash Join Execution Framework Optimization 

In this section, we present optimization of multithreaded hash join execution  
framework according to characteristic of shared cache CMP. The two objects of opti-
mization are: (1) low shared L2-Cache conflict; (2) load balance of CMP cores when 
cluster join.  

3.1   Performance Analysis and Comparison of Multithread Radix-Join 

Through performance comparison of multithreaded Radix-Join execution, we ana-
lyzed the factors which affect performance of multithreaded Radix-Join execution in 
CMP. The analysis could provide gist for the optimization in the following sections. 
The experiments were performed on Dual-Core CMP with 1M shared L2-Cache, and   
using EaseDB as experiment platform. The experiment data are L.tuple=2.72e+106 and 
R.tuple=2.73+106, Cellsize=12B(CellSize denotes Hash Cell size). Data distribution 
among clusters is uniform. Parameter P is in {7,6,5,4}, and corresponding ClusterSize 
is in {256k, 512k, 1024k, 2048k}. 

Case 1. Execution time comparison of cluster joins which adopts different number 
of JT to execute cluster join. 

Case 2. Execution time comparison of Radix-Hash-Join which adopts different num-
ber of CT and JT to execute respective cluster partition and cluster join. 

From the multithreaded view, the CMP’s efficiency is very low when single-
threaded program runs on it. In Fig2(a), when ClusterSize equals 1024KB, the cluster 
join execution time of single thread is more expensive than the one of multithread, 
although cache conflict of single thread is greatly lower. However, only two threads 
could be executed simultaneously in Dual-Core CMP. For single database operation, 
such as cluster join, there is no proportional relationship between performance and the 
thread number. When thread number greatly exceed the number of processor core,  
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                         (a) Cluster join                         (b) Cluster partition and cluster join  

Fig. 2. Radix-Join performance comparison 

performance even have little decline caused by thread switch. Generally, thread time 
slice of modern operation system is 10-20ms, and the bandwidth between DDR2 main 
memory and L2-Cache is 25G/s. Considering delay cost of cache hit and cache miss, 
in a thread execution slice, data processed by one thread will greatly exceed L2-Cache 
capacity. Therefore, when thread number exceed processor core, there is not serious 
cache conflict which lead to biggish performance decline. In Fig2(a) and Fig2(b), 
When ThreadNum is bigger than N and odd(N denotes processor core number), per-
formance has little decline caused by load imbalance of processor cores. While 
ThreadNum increases, ClusterSize decreases, and the degree of load imbalance is 
reduced, bringing in some performance improvement. 

From the cache view to analyze, in Fig2(a), when ClusterSize equals 256KB, total 
data processed by two CTs are close to C(C denotes L2-Cache capacity), leading to 
very low cache conflict. When ClusterSize equals 512k, two JTs must access about 
2MB data, and it is bigger than C. There will have a high probability which cache 
lines belong to hash table are replaced from L2-Cache to main memory, which is so-
called cache conflict. Therefore, we could conclude that cache conflict seriously af-
fects performance of multithread in shared cache CMP. However, compared when 
ClusterSize equals 1024KB, the performance does not decline severely, although there 
may be more serious cache conflict in theory when ClusterSize equals 1024KB or 
2048KB. From this, we can conclude that there is no strict proportional relationship 
between data and performance decline when the cache capacity is much less than the 
amount of data to be processed. In Fig2(b), when ClusterSize equals 512 KB, the 
parameter P is six. Compared when ClusterSize equals 256KB, there is one less temp 
table access, but the advantage of less temp table access is counteracted by its serious 
cache conflict. 

3.2   Multithreaded Hash Join Execution Framework Optimization 

In shared L2-Cache CMP, basing on the conclusions in section 3.1, we must take two 
functions into account: (1) affection of shared L2-Cache to multithread execution; (2) 
data access characteristic of various threads. Then we decide thread execution pa-
rameters, such as thread number, thread start time and working sets allocation. In the 
multithreaded hash join execution framework, the objects of optimization are cluster 
partition and cluster join. The detail analyses are as follows. 
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3.2.1   Radix-Join Algorithm Parameter Optimization 
In [2], they present three settings of parameter D about Radix-Hash-Join, respectively 
aiming at L1-Cache, L2-Cache and TLB. Because the main concern of this paper is 
shared L2-Cache, and Radix-Hash-Join performance using the two other settings 
would not be influenced in shared cache CMP, we only concern for the settings of L2-
Cache in this paper. [2] presents that D equals log2(L.tuple*CellSize/C), and this will 
lead to biggish cluster size. Since the situation of multithreaded cluster join is not 
under consideration, cache conflict would be serious when multithreaded cluster join 
execution. But from the analysis in Section 3.1, serious cache conflict will lead to 
severe performance decline. Therefore, we should add two restrictions: cluster join 
thread number in cluster join phase and processor core number of CMP, then setting 
D=log2(2N*L.tuple* CellSize/C) to make sure the total data processed by N JTs less 
than C in cluster join phase. 

3.2.2   Cluster Partition Thread Optimization 
[2] presents that Di is generally larger than one which must use swap table to realize 
Hash Cell exchange. When there are a large number of data, this setting could reduce 
cluster partition time and improve performance of Radix-Join. But CT must access 
additional swap table, leading to more possibility of cache conflict in a pass of cluster 
partition. From the performance analysis based on Fig 2(b), serious cache conflict 
may counteract the advantage of lesser cluster partition time. Therefore, we present a 
new cluster partition strategy. Firstly, the value of DiffData is computed through this 
equitation: CPSize(Di=1)-CPSize(Di=D/P), in which CPSize(Di=1) and CPSize(Di= 
D/P) respectively present total data processed in cluster partition phase adopting Di=1 
and Di=D/P. Then according to the critical value of DiffData(presented as MaxData), 
the strategy of cluster partition to be adopted is decided. 

1. DiffData<MaxData, this denotes less cluster partition time, we could set Di=1, 
namely, every cluster partition in P cluster partition time only process one bit of the 
hash value. Thereby, cluster partition could be done without swap table;  

2. DiffData MaxData≥ , this denotes biggish cluster partition time. To reduce clus-

ter partition cost, we adopt cluster partition strategy in [2].  
How to set the value of MaxData? There is detailed analysis in Experiment 1. 

From the analysis in Section 3.1, we can deduce that if CTs are started prematurely, 
ClusterSize will be biggish, and resulting in high cache conflict in cluster partition. 
But if CTs are started late, the proportion of (serial execution time)/(total execution 
time) in whole cluster partition execution will be large, and weaken performance of 
multithreaded cluster partition. Therefore, it is important to get balance between the 
two cases.  

1. When DiffData<MaxData,
1

=
j

j i
i

H H
=

∏ denotes clusters number after jth cluster 

partition have finished. TTSize=L.tuple*CellSize is the size of temp table. In the proc-
ess of cluster partition, according to Hj (1 j P≤ ≤ ), there are three cases:  

Case 1. 
jH N≤  and TTSize C≤ . This implies that data are very little, when 1th 

cluster partition has finished, JTs could be started;  
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Case 2. 
jH N≤  and TTSize>C. We judge whether *

j

i TTSize
C

H
≤  when every cluster 

partition pass has finished. If exist i satisfying the condition, choose the maximum 
value of i(presented as Max(i)) and start Max(i) CTs. Otherwise, go to Case 3;   

Case 3. Hj>N. After every cluster partition has finished, we also judge whether 
*

j

i TTSize
C

H
≤  is satisfied ( 2 i N≤ ≤ ). If there are some values of i which satisfy the 

condition and Max(i)<N, then we have two feasible strategies to choice: (1)start 
Max(i) CTs, but this may reduce processor utilization;(2)delay CT start until 

*

j

N TTSize
C

H
≤ , then N CTs could be started, but this may reduce Speedup in Defini-

tion 1. Which one could get better performance? From the theoretic analysis in Sec-
tion 3.3 and Experiment 6, we conclude that, under low cache conflict condition, the 
sooner CT starts, the less serial data process time and better performance we could 
get. 

In Case 2 and Case 3, CT starting time(presented as j) equals to 

2
( )

log *
Max i

TTSize
C

. If j is close to P, then it is no sense to utilize multithread. For 

example, we can deduce that 
1

*

P

N TTSize
C

H −
>  is not satisfied by 2 *

2

D C
TTSize

N
=  and 

2D
PH = . It denotes that, despite N CTs could be started when P-1th cluster partition 

finished with low cache conflict, performance will not be improved caused by j equals 
P-1. Therefore, before cluster partition phase begin, we should base on 

2= log *
i

j TTSize
C

( 2 i N≤ ≤ ) to compute the values of (i, j), then use these (i, j) as 

parameters to compute speedup according to forum S(i, P, j) in Section3.3. A certain 
value of (i, j) is chosen according to maximum speedup value. If the value of j is 

bigger than MaxJ, well then it is needless to satisfy *

j

i TTSiz

H

e
C≤ , we could start N 

CTs only when 
jH N≥ . Otherwise, we could start CT according to strategies in Case 

2 and Case 3. The value of MaxJ is analyzed in Experiment 2. 
2. When DiffData MaxData≥ , P is small. We should start CTs as early as possible 

under the precondition of reducing cache conflict. Due to cluster partition needs ac-
cess temp table, if N CTs are started after P-1th cluster partition finished, the average 

data processed by every CT is 
1

2 *
*2

D

P

P

N TTSize
C

H −

= , and total data accessed by N CTs 

is TotalData= * *2
D
PN C . 1

1

4* 2*( )
D
P

P

TTSize
TotalData C NH

+

−
= =  when two CTs are 

started. 
1

2*( )
D

P
C N

+
 is general bigger than C if there are a large number of data and 

small cores number of CMP. So, before cluster partition start, we should judge 

whether 
1

2*( )
D
PC N

+
>C. According to the result, there are two choices of cluster 
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partition: (1)
1

2*( )
D

P
C CN

+

> , the result implies that only two CTs are started when P-

1th cluster partition finished, however, there also has serious cache conflict. There-
fore, Min(H1,N) CTs could be started after the 1th cluster partition pass has finished; 

(2)
1

2*( )
D
PC CN

+
≤ , after every cluster partition has finished, we judge whether 

2 *

j

i TTSize
C

H
≤  is satisfied ( 2 i N≤ ≤ ). If there are values of i which satisfy the condi-

tion, Max(i) CTs could be started. If there is not any i satisfying the condition when j 
equals / 2P� �� 	 , we should start N CTs immediately. 

3.2.3   Cluster Join Thread Optimization   
JT access cluster table(temp table) generated by cluster partition and output buffer. 
Cluster number in cluster table is bigger than core number of CMP in most cases, and 
according to the analysis in Section 3.1, when thread number is greater than N, per-
formance would not have a large improvement. Therefore, the max number of JT 
equal to N. Owing to hash table is repeatedly accessed, cluster join is easy to occur 
serious cache conflict. Data are evenly distributed between clusters in normal circum-
stances after cluster partition. But when data are serious uneven, data distribution 
between clusters would be skew. Cluster join performance may suffer for two reasons.  

1. The number of JT which should be started couldn’t be accurately controlled. In 
some conditions, this may lead to severe cache conflict. For example, there are table L 
and R, and corresponding cluster sets are ClusterSetL= (LCL1,LCL2,…,LCLA) and 
ClusterSetR= (RCL1,RCL2,…,RCLB). N JTs are started. If we just allocate clusters 
between JTs evenly, this will bring serious cache conflict possibly, caused by data 

accessed by N JTs may be bigger than C, namely
1

( )
N

i i
i

Sizeof LCL RCL C
=

+ >� . We 

couldn’t accurately adjust JT number to avoid cache conflict.  
2. Serious discrepancy of working sets size allocated to JTs would lead to load im-

balance between cores in CMP and reduce performance of cluster join.  
Therefore, to reduce cache conflict and load imbalance, we present a new multi-

threaded cluster join execution strategy basing on cluster size classification. The clus-
ter classification algorithm is as follows: 

Algorithm 1. Cluster Classification Algorithm 

Input: ClusterSetL[0..A-1], ClusterSetR[0..B-1]  

Output: WorkSet[0.. JTNum] 
Procedure: WSallocation(ClusterSetL, ClusterSetR) 

1. i = 0; j = 0;k = 0; 

2. While(i < A and j <B) 

3. { 

4.  While(ClusterSetL[i].radixvalue != ClusterSetR[j].radixvalue)  
5.     j++; 

6.   TotalClusteSize = Add(ClusterSetL[i].size, ClusterSetL[j].size); 
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7.   for(k=1; k<= JTNum-1; k++) 

8.     if(C /(k+1) <TotalClusteSize<= C /k) 

9.     { 

10.       add (i, j) to WorkSet[k]; 

11.       break; 

12.     } 

13.   if(0< TotalClusteSize<= C /JTNum) 

14.    {add (i, j) to WorkSet[JTNum];} 

15.   if(TotalClusteSize >C) 

16.    {add (i, j) to WorkSet[0];} 

17.   i++; 

18. } 

Except for WorkSet[0], when deal with WorkSet[i], there are two cases according 
to whether 2i N≤  is satisfied:  

1. If 2i N≤ , JTs are divided into i groups, and each group includes 1 N i
i

� �
� �
� 	

−+  JTs 

and joins a pair of clusters in WorkSet[i], such as (LCLi, RCLj). Hash cells in LCLj 
(probe table) are evenly allocated to JTs in the group. A certain thread is specified to 
construct hash table, and other threads in this group must wait for the thread to finish 
hash table construction. 

2. If 2i>N, only i JTs need to be started. The pair of clusters in WorkSet[i] are 
evenly allocated to i JTs as working sets. 

Firstly, WorkSet[1] is processed, then WorkSet[2], until WorkSet[JTNum]. Cluster 
pairs in WorkSet[0] are processed lastly. Although WorkSet[0] includes cluster pairs 
which are larger than C, but from performance analysis in Section 3.1, the perform-
ance of multithread is better than single thread in any cases. Therefore, N JTs are 
started. JT access output buffer once time after accessing relative large number of 
data. Therefore, output buffer access has little influence to JT, and output buffer is not 
included in above analysis.  

In above analysis, thread number is bounded by core number in CMP which is 
suited for current CMP with small quantity of cores. When processor has a large 
number of cores, for example twenty or eighty cores, there is no need to start N 
threads for cluster partition and cluster join, and we could set the upper bound of 
thread number to eight. When CMPs with more cores appear, more appropriate upper 
bound could be set. Currently, shared L2-Cache is unified, namely, used as both data 
cache and instruction cache. Because hash join is typical data intensive computation, 
we could not take instruction data into account. 

3.3   Multithreaded Cluster Partition Performance Analysis 

Definition 1 Speedup. According to Amdahl law, Speedup is defined as S(A, f)= 

1 ( 1)

A

A f+ −
. A is physical thread number of computation, f denotes the proportion of 

(serial computation time)/(total computation time). 
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In shared L2-Cache CMP, due to cache conflict, high Speedup doesn’t imply high 
performance. But it is still an important scale of performance, and we could analyze 
optimization strategy in cluster partition phase. The proposition and its proof are as 
follows. 

Proposition 1. In cluster partition phase, the speedup s=S(Ai, P, j)= i

i( 1)
PA

P j A+ −
, and 

the values of f in Definition 1 is proportional to j. Ai is thread number of cluster parti-
tion, and j denotes the jth cluster partition in P cluster partition passes. 

Proof. Suppose that data is evenly distributed between clusters and execution time of 
a cluster partition pass is t. When the jth cluster partition has finished and 
DiffData<MaxData, Ai CTs are started, and serial execution time which from cluster 
partition start to now is j*t. Hj clusters are generated. The time which a thread deals 
with one cluster is 

( )
j

t P j
H

−  
Eq(1) 

then we could deduce the residual cluster partition time is  

( )* ( )j

j i i

Ht t
P j P j

H A A
− 
 −  

Eq(2) 

so the total execution time of cluster partition which adopts multithreaded execution 
is Eq(2)+ j*t 

( ) *
i

t
P j j t

A
− +  Eq(3) 

and serial execution time is P*t. According to speedup’s basic meaning, we could 
deduce the Speedup s is P*t/ Eq(3) 

s= ( , , ) ( 1)
( ( ) )

i
i

i

i

PAPtS A P j t P j A
P j jt

A


= + −− +

 

Eq (4) 

by S(Ai,P,j)=S(Ai, f), we could do following deduce 

/
( 1) 1 ( 1)

i i

i i

PA A
f j P

P j A A f
= 
 =

+ − + −
 Eq (5) 

through f=j/P, we can conclude f is proportional to j. when DiffData MaxData≥ , the 

proof is the same with DiffData<MaxData.                                                                  � 

The following is Speedup computation and optimization analysis of CT in Section 
3.2.2. Processor is 4M shared L2-Cache Quad-Core CMP. Experiment data is 
L.tuple=670000, CellSize=12B, then D=log2(2N*L.tuple*CellSize/C)=4 and 
DiffData<MaxData. When j=2, the max values of i which satisfies 

2
*

2
i TTSize C≤  is 

two, then we could start two CTs. According to Eq(4), s=1.33. If we delay CT start to 
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j=3, and 
3

4*
2

TTSize <C is satisfied. Four CTs could be started, then s=1.23. Therefore, 

under low cache conflict, we can conclude that the sooner CT stars, the smaller value 
of f, fewer serial execution time, and better cluster partition performance we could 
get. The Experiment 6 confirms our conclusion. The formula of Speedup doesn’t 
consider cache conflict influence. Therefore, it is only suitable for low cache conflict 
case. 

4   Experimental Evaluation 

4.1   Experiment Setup 

We ran our tests on both shared L2-Cache CMP of Intel Dual-Core, as well as Quad-
Core CMP. There are two kinds of L2-Cache, 1M and 4M. Database platform is 
EaseDB[8]. Hash join in our experiments are equal join of two tables. The setting of 
experiment data is the same with [10], and data in table are generated by random 
function. 

4.2   Multithreaded Hash Join Performance Analysis 

In this section, the multithreaded hash join execution framework is implemented 
based on EaseDB. Firstly, through performance analysis and comparison, we ana-
lyzed reasonable value of MaxData, then tested the performance of framework under 
different parameters and validated effect of optimization strategies in our paper. Per-
formance comparison between our algorithm and latest hash join optimization algo-
rithms is presented. Time count begins from total data pages have already been con-
verted to temp table. 
 

Experiment 1. In this experiment, we investigated reasonable value of MaxData. 
Processor is 1M shared L2-Cache Dual-Core CMP. The L.tuple values of different 
tables are (3.5e+105,7.0e+105,1.4e+106,2.8e+106,5.57e+106,1.1185e+107), CellSize= 
12B, and the corresponding values of D are (4,5,6,7,8,9). To test execution time of 
cluster partition, we respectively adopted two cluster partition strategies to each table: 
where Di equals 1 and the other D/P. When DiffData<3TTSize, from performance 
comparison of multithreaded cluster partition execution in Fig 3(a), due to serious L2-
Cache conflict of each cluster partition pass in Di=D/P caused by swap table access, 
Di=1 has better performance than Di=D/P, despite Di=D/P has the advantage of lesser 
cluster partition time. When D=4, Di=1 only need 69% execution time of Di=D/P, and 
when D=5, Di=1 need 57%. But with D increasing, the value of DiffData is increas-
ing. When D respectively equal 4,5,6,7,8,9, the corresponding values of DiffData are 
2TTSize,TTSize,2TTSize,3TTSize,4TTSize,3TTSize. Di=1’s advantage of better cache 
access is counteracted by large cluster partition time. In Fig3(a), after D=7 and 
DiffData 3TTSize≥ , Di=D/P has better performance than Di=1. Therefore, we can 
deduce MaxData=3TTSize.   
 

Experiment 2. We studied the performance of cluster partition thread. The experiments 
were performed on 4M shared L2-Cache Quad-Core CMP and execute multithreaded 
cluster partition on table L to test performance of cluster partition thread in different 
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start time. When DiffData<MaxData, Li.tuple(i=1,2,3,4) are (6.67e+105, 1.0e+106, 
1.33e+106, 1.67e+106), and corresponding values of D are (4,5,5,6), CellSize=12B. 

The (j, Max(i)) values which satisfy condition of *

j

i TTSiz

H

e
C≤  are ((2,2),(3,2), 

(3,2),(4,3)). The Start Time in Fig 3(b) denotes CTs are started when |Start Time|th 
cluster partition finished. Start Time=0 implies CT is started when cluster partition 
phase beginning. Due to there is only one cluster, namely, the temp table, only one 
CT could be started. As shown in Fig 3(b), according to the (j, Max(i)) of L1, two 
cluster threads could be started while 2th cluster partition pass finished. Cluster parti-
tion performance has been improved, and it is the best performance in all of Start 
Time. The other tables (L2, L3, L4) also adopt (j, Max(i)) to start partition thread, but 
their serial execution time takes high proportion of total cluster partition time. Their 
performance when adopt parameter (j, Max(i)) are not the best in all of Start Time 
despite they also have low cache conflict. Therefore, we conclude that if 

2

1
log *

2

i
TTSize D

C
≤ , cluster thread could be started according to Case 2 and Case 3 in 

Section 3.2.2. Otherwise, N cluster threads could be started while
jH N≥ . 

When DiffData MaxData≥ , we ran the test on 1M shared L2-Cache Dual-Core CMP. 

R.tuple=7.744e+106, CellSize=12B, D=9, P=3. As shown in Fig 3(c), due to 
1

2*( )
D
PC N

+
>C, CTs are started when the first cluster partition finished where we 

could get the best performance. 
 

Experiment 3. The performance of JT was tested in this experiment. There are three 
execution models of cluster join: (a) Allocating working sets according to cluster 
classification; (b) Allocating working sets evenly; (c) Single thread. The experimental 
data (L.tuple,R.tuple) are A(1.0e+105,1.76e+105), B(2.5e+105, 3.666e+ 
105),C(5.2667e+105,7.0e+105),D(1.167e+106,1.4e+106),E(1.867e+106,2.8e+106),F(4.0
e+106,5.6e+106),G(7.433e+106,1.12e+107), CellSize=12B. Processor is 4M shared L2-
Cache Quad-Core CMP. As shown Fig 4, with data increasing, the advantage of 
model (a) is more obvious. When Table Size=E, because data distribution is even, 
resulting in little performance difference between the three models. Model (c) 
couldn’t fully utilize computation resources of CMP, and its performance is greatly 
lesser than the other two models. 
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         Fig. 3(a). Cluster partition performance      Fig. 3(b). Cluster partition performance  
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       Fig. 3(c). Cluster partition performance                  Fig. 4. Cluster join performance  
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     Fig. 5(a). Hash join performance                    Fig. 5(b). Hash join performance  

 
Experiment 4. To compare performance of various hash join algorithms, we tested 
some other hash join algorithms with our algorithm(COMHJ, cache optimized multi-
threaded hash join), such as simple hash join(SHJ), Radix-Join(RJ)[2], multithreaded 
Radix-Join(MRJ), Cache-Oblivious hash join(COHJ)[8][10]. The experimental data and 
processor are the same with Experiment 3. In Fig 5(a), we compared performance of 
COMHJ with MRJ. If MRJ is just only optimized by multithread, and the influence of 
shared L2-Cache is not considered. The serious cache conflict would severely reduce 
performance. In Fig 5(b), we compared performance of COMHJ with other cache-
optimized algorithm. In CMP, if hash join adopts single thread model, MRJ even has 
better performance than all of cache-optimized algorithm. Therefore, from the above 
analysis, we conclude that it is necessary to consider multithread and cache optimiza-
tion in shared L2-Cache CMP. 

Experiment 5. In this experiment, we investigated performance of our algorithm in 
Dual-Core and Quad-Core CMP. The L2-Cache capacity of Dual-Core CMP are 1M 
and 4M, and Quad-Core CMP is 4M. Firstly, we compared performance of COMHJ 
in the three kinds of CMP. Experiment data are the same with Experiment 3. Dual-
Core with bigger L2-Cache not only starts cluster partition thread earlier, but also 
leading to bigger cluster size. Therefore, cluster partition time is decreased, and per-
formance is improved as shown in Fig6. The Quad-Core CMP, comparing to 4M L2-
Cache Dual-Core CMP, thread number which could be started to execute hash join is 
increased by one or two, and our optimization strategy is to start cluster partition  
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threads as early as possible. Therefore, although the value of N is increased, but the 
cluster threads start time are not influenced basically. For example, when L.tuple= 
1200000, if processor is Dual-Core CMP, the start time(j) of cluster partition thread is 
2, and thread number is 2. When Quad-Core CMP, j is also 2, but three threads could 
be started. Its performance is better than Dual-Core CMP.  
 
Experiment 6. Following, we would validate the result of theoretical analysis in 
Section 3.3. The processor is 4M shared L2-Cache Quad-Core CMP. 
L1.tuple=670000, CellSize1=12B and L2.tuple=408000, CellSize2=12B. As shown in 
Fig 7, if table is L1, and j=2. According to the analysis in Section 3.2.2, two cluster 
partition threads could be started. If start time is delayed to j=3, and four threads 
could be started. Although j=3 could start more thread than j=2, but performance is 
reduced caused by more serial execution time. If table is L2, and j also equals 2. Three 
threads could be started. If start time is delayed, the same with L1, performance is 
decreased. Therefore, on the condition of few cache conflict, the sooner start time of 
cluster partition thread, the smaller serial execution time and better performance. 
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                Fig. 6. Hash join performance                      Fig. 7. Cluster partition performance  

5   Conclusions and Future Work 

Basing on Radix-Join algorithm, we presents multithreaded hash join execution 
framework to fully utilize CMP. According to the characters of share L2-Cache, we 
optimized various kind of threads in the framework, and the main contributions are: 
(1) presenting a new cluster partition algorithm based on multithread which could 
adopt appropriate cluster partition strategies according to data size at runtime, and 
cache access performance in cluster partition is improved; (2) basing on cluster 
classification, we present a new multithreaded cluster join execution strategy to 
achieve load balance between CMP cores and reduce cache conflict in cluster join 
execution. In the experiments, the multithreaded hash join execution framework is 
realized in EaseDB. The experiment results and analysis show that the framework 
in our paper has good performance of cache access, and it could fully utilize com-
puting resources of CMP to improve performance. Its multithread and cache access 
optimization strategies could also be used in other database join optimization, such 
as nested loop join. 
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Abstract. The search engines that index the World Wide Web today
use access methods based primarily on scanning, sorting, hashing, and
partitioning (SSHP) techniques. The MapReduce framework is a dis-
tinguished example. Unlike DBMS, this search engine infrastructure
provides few general tools for indexing user datasets. In particular, it
does not include order-preserving tree indexes, even though they might
have been built using such indexing components. Thus, data processing
on these infrastructures is linearly scalable at best, while index-based
techniques can be logarithmically scalable. DBMS have been using in-
dexes to improve performance, especially on low-selectivity queries and
joins. Therefore, it is natural to incorporate indexing into search-engine
infrastructure.

Recently, we proposed an extension of MapReduce called Map-Reduce-
Merge to efficiently join heterogeneous datasets and executes relational
algebra operations. Its vision was to extend search engine infrastructure
so as to permit generic relational operations, expanding the scope of
analysis of search engine content.

In this paper we advocate incorporating yet another database primi-
tive, indexing, into search engine data processing. We explore ways to
build tree indexes using Hadoop MapReduce. We also incorporate a new
primitive, Traverse, into the Map-Reduce-Merge framework. It can effi-
ciently traverse index files, select data partitions, and limit the number
of input partitions for a follow-up step of map, reduce, or merge.

1 Introduction

Search engines index the World Wide Web! As the WWW is still growing at
an amazing speed and already contains a significant portion of all digitized in-
formation ever published, its (partial) indexes have grown extremely large. To
build an index for the WWW, search engines usually employ clusters of thou-
sands of nodes and operate a series of massive parallel data-processing tasks.
An architecture of these search engine clusters is shown in Fig. 1. Intriguingly,
DBMS are rarely deployed in major search engine subsystems [3].

To execute data-processing tasks on these clusters, search engines utilize
generic parallel programming infrastructures such as MapReduce [5,13], a simple
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programming model that enables parallel data processing on large clusters built
with cheap commodity hardware. This programming model is easy to use, very
scalable, fault tolerant, and cost effective, so it has been proposed [13] to use it to
build parallel data warehousing systems. On the other hand, search engine data
processing can enhance its analytic power by applying database principles (such
as the relational data model) in its operations [13]. Based on these two ideas,
Map-Reduce-Merge [13] was proposed to efficiently join heterogeneous datasets
on top of MapReduce.

Joining heterogeneous datasets has become important in search engine oper-
ations, as analyzing search engine algorithms and evaluating subsystems usually
requires aggregating and comparing data from multiple sources. Fig. 1 depicts
such an analytic cluster that takes data from every possible source through ETL
(extract, transform, load) processes. Running these analytic tasks is difficult: not
only is the data volume huge, but also the fundamental access method in search
engines is based on hashing (not on hash indexing). Hashing is very effective
in maintaining balanced loads on a large cluster, and it can efficiently aggre-
gate data on unique keys. Since it disseminates data randomly over a cluster,
processing and aggregating related data can be expensive.

For example, a search log dataset can contain URLs and some metrics. In
which node a URL entry is stored in a cluster is usually determined by hashing
the URL key. Therefore, aggregating metrics of the URLs that belong to a small
host may require scanning the whole cluster! This scan, of course, can be easily

Fig. 1. A typical search engine architecture. Crawler clusters traverse the WWW and
collect web pages into crawler databases. Webgraph clusters run link analysis, compute
webpage ranks, and build webgraph databases. Indexer clusters build inverted indexes
that are deployed into front-end search clusters to serve user queries. Search clus-
ters also collect user query logs for advertisement, billing, and data mining purposes.
WWW pages, crawler, webgraph, indexer databases, and query logs can be extracted,
transformed, and loaded into analytic clusters for evaluating search engine algorithms,
implementations, configurations, etc.



310 H.-c. Yang and D.S. Parker

done in parallel with MapReduce. However, for a low selectivity task like this, the
wisdom of database research prefers an index scan, rather than a full table scan.
An index can be built using tree, hash, or array structures. In the aforementioned
example, URLs from the same host can be clustered in a totally-ordered tree
index, and then aggregated with a straightforward index scan.

Beyond providing a performance boost, index scans can reduce disk accesses,
and thus extend hard-drive lifetime. Search engines usually utilize cheap, thus
relatively unreliable, commodity components to build their clusters. At any point
in time, for a large cluster of thousands of nodes, a certain percentage of these
nodes will be down or have crashed, this being attributed mainly to disk failure.
One way to reduce this failure rate is to lessen the load on hard drives. Using
indexes can help reduce this load.

In this paper, we propose extending Map-Reduce-Merge to include some in-
dexing capabilities. This idea proposes not only an alternative access method
(besides hashing) for search engines, but also proposes the step of applying search
engine technology in building generic, parallel data warehousing systems [13].

This paper starts by reviewing various access methods in search engines and
databases in Sec. 1. In Sec. 2, we describe how to build indexes in map and
reduce functions. We also describe how Map-Reduce-Merge is further enhanced
by adding a Traverse primitive. We then use Hadoop to make the case of how
indexes can improve performance for low-selectivity ad hoc queries in Sec. 3.

1.1 Access Methods in Search Engine Clusters

The core of a keyword-based search engine is an inverted index. This inverted
index is built with data from several search engine subsystems deployed on large
clusters of thousands of nodes. For disseminating data evenly on these nodes,
hashing is a straightforward and economical approach. It is used extensively
in cluster data processing, including search engine subsystems. In crawler and
webgraph databases, a URL hash is used as key, while a keyword hash is used
to look for webpages in these inverted indexes.

Though hashing is efficient to locate a specific webpage (as well as keyword,
host, site, or domain) over thousands of nodes, it cannot help much in retrieving
URLs that satisfy a certain querying condition. For example, a webserver can
contain several webpages. To locate all the webpages belonging to a small server
may require scanning every node in a webgraph cluster, because these webpages
are placed all over the cluster by their URL hashes. This webpage aggregation
problem can be easily solved by using a straightforward MapReduce task to
scan the whole dataset. Though this scan is usually performed in parallel, true
parallelism can be achieved only if there are enough processors to handle all data
partitions; otherwise MapReduce tasks process data partitions in waves.

Hashing is sufficient to support search engine core operations – crawling, ex-
ecuting link analysis, and building inverted indexes. However, as we move to
utilize search engine clusters as data warehouses for decision-support tasks, we
hit limitations of hashing for linking related data entries. This problem applies
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to hashing-based parallel DBMS as well. One major goal of this research is to
explore alternative access methods in hashing-dominated infrastructures.

1.2 Indexing in DBMS

Access methods (i.e., indexes) are essential in any data management or pro-
cessing system, including database management systems (DBMS) and search
engines. Where a DBMS builds indexes on structured datasets, a search en-
gine builds inverted indexes over semi-structured webpages. A variety of in-
dexes have been invented over the years, including tree indexes (B-Tree [2,4],
R-Tree [8], GiST [9]), hashing, extendible hashing[6], bitmap [11], or join in-
dexes, etc. Search engines can incorporate this trove of indexing structures and
use them in analytic tasks. As we have indicated, indexing is an essential part
of DBMS, and it can be a natural part of DBMS-extended search engine infras-
tructure.

For simplicity “partition”, “part”, “chunk”, and “block” are used interchange-
ably in this paper. They were defined in different contexts; we use them to de-
scribe a block of disk space used to store a collection of records stored persistently
in DFS (distributed file system).

1.3 Scanning, Sorting, Hashing vs. Indexing

Graefe pointed out in [7] that “index navigation plans scale truly gracefully, i.e.,
perform equally well on large and on very large databases, whereas scanning,
sorting, and hashing scale at best linearly.” This statement also applies to scal-
able parallel data processing systems, such as the ones used in search engines.

MapReduce systems, like MapReduce [5] and Hadoop [1], as well as exten-
sions like Map-Reduce-Merge [13], provide a generic but fixed data-processing
framework of scanning, hashing, partitioning, shuffling, sorting, and grouping.
They have not taken advantage of the “graceful scalability” of indexing, because
most search engine core operations need only batch scanning and grouping of
webpages in order to build inverted indexes. However, decision-support opera-
tions on individual webpages, hosts, or query terms have become important in
improving system performance and search relevancy. Sustained scanning of an
entire cluster for these low-selectivity tasks is a waste of time and resources, not
to mention that it can incur unnecessary hardware attrition.

These decision-support tasks can be executed in a so-called “research” analytic
cluster.Webgraphdatabases canbeviewedas suchananalytic cluster implemented
in search engines as it is used todo linkanalysis andevaluate thequalityofwebpages
and algorithms. However, as this evaluation has become more ad hoc, we propose
adopting yet another database experience in search engines: building an online an-
alytic processing (OLAP) database, in which indexes are essential.

1.4 Search Engine Analytic Cluster

An analytic cluster is the OLAP term for a search engine. It is loaded with
data extracted and transformed from various sources (see Fig. 1). Its mission is
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typically in research and decision support. Users can execute exploratory data
analysis (EDA) tasks by running scripts in simple query languages like Pig [10]
or Sawzall [12]. These EDA operations can be complicated or ad hoc, so it is
inefficient to code them directly in MapReduce primitives. They usually require
joining datasets, while MapReduce does not directly support relational joins [13].
Some analytic processing can benefit from storing data in structures like trees or
nested tables [10], but MapReduce tasks iterate through datasets as lists. Thus,
users need to emulate these sophisticated structures in lists.

Some examples of search-engine analytic challenges that can benefit from data
structures beyond lists include:

1. Finding all the URLs that fit a certain criterion. As we have indicated,
finding all URLs belonging to a small host can incur a full scan. Problems
like this can be solved by building search trees similar to the B-Tree.

2. Finding semi-duplicated URLs. Marking duplicated webpages is an im-
portant task in search engines. Duplicated pages can take up a large chunk
of space in subsystems. Also, returning URLs with highly similar content
will not impress search engine users. Building a similarity tree can organize
URLs based on similarity distances, and thus help in selecting pages with
unique content.

3. Joining two search-engine databases on a low-selectivity condition.
Indexes can help point- or range-queries on a single data source. They can
also facilitate join operations over two data sources. For example, a Map-
Reduce-Merge sort-merge join operator can scan indexes, which are sorted
versions of the source datasets.

To build a search engine analytic system, engineers can elect to (a) install
a DBMS-based data warehouse and analytic software, or (b) improve existing
search engine infrastructures to satisfy these new requirements. Traditional ware-
housing systems are expensive and they may not be as scalable as search engine
infrastructures due to overhead (e.g., transaction management) [3].

Therefore, in this paper we focus on the second approach — building and
traversing tree structures on top of the MapReduce architecture. We use Hadoop
for implementation.

1.5 Adding Indexing to MapReduce

It is well-known that choosing access strategies between indexing or scanning
usually depends on selectivity, while there are many forms of index structures to
choose from: tree, hash, or array, etc. DBMS usually provide a gamut of these
access methods for a variety of requirements. On the other hand, search engines
rely mostly on hashing as the primary document locating mechanism, although
it can be deficient for analytic data processing tasks.

Since indexing is an important part of an analytic data processing system, in
this paper we discuss how to extend search-engine infrastructures (e.g., MapRe-
duce) to support it. There are many challenges for this transformation as many
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MapReduce assumptions do not fit well with index building: large block sizes,
read-only/append-oriented, iterative primitives, and batch processing, etc. Even
so, from our benchmarks of index building on Hadoop MapReduce clusters, we
found that indexing can still save a lot. In short, our focus is: (a) using map,
reduce, or merge primitives to build indexes, and (b) introducing a new primitive
called Traverse to facilitate a follow-up map, reduce, or merge step.

2 Traverse: Indexing in Map-Reduce-Merge

Index building is a process of organizing data into traversable structures, such
as trees. Sorting can play an important role when building indexes in a bulk
process. Since MapReduce is an effective parallel sorter [5], it is a natural tool
to build database indexes, while it was originally designed for building inverted
search-engine indexes.

2.1 Index as a Collection of Layered Distributed Files

The most popular tree index used in databases is the B-Tree and its variants.
To build a B-Tree-like search structure in MapReduce, we can follow the steps
shown in Fig. 2. Each layer of this search structure is a collection of partitions
grouped into a distributed file. Each partition works like a B-Tree node that
stores keys and pointers that point to partitions of a lower-level file.

A leaf-level index builder is simply a MapReduce sorter. It sorts a file over
a user-defined key attribute and produces partition pointers as values. These
pointers can simply be the names of the source file partitions. An internal-level
index builder is also a MapReduce job that scans a sorted leaf-level index file,
collects the boundary keys (the largest and smallest) of each leaf partition, and
binds them into a key-range record. The same step of index building can be
repeated until the root index file has only a small number of partitions. Usually
one internal layer of indexing is sufficient, because MapReduce and Hadoop
usually hold data in 64MB chunks or 128MB parts, and only around 1 million
partitions are sufficient for a hundreds-of-terabyte DFS file. A small number of
partitions can easily hold indexing information for 1 million partitions.

Like the B-Tree, the search tree we have described is one-dimensional. However
the same principle can be applied in building tree indexes like the R-Tree for
multi-dimensional datasets. In fact, besides keys and pointers, index files can
even store aggregates associated with sub-trees [14].

2.2 Primitive Signatures

Once layers of index files are created as described in Sec. 2.1, users can write
programs to traverse these layers of partitions. Since indexing is a common need,
we propose to introduce a new primitive, Traverse, that works alongside Map,
Reduce, and Merge. From [13], the signatures of map, reduce, and merge are
reproduced here:



314 H.-c. Yang and D.S. Parker

Fig. 2. Building Index Files Using MapReduce. At the bottom is an unsorted
data file with keys from 0 to 9. From this data file, the first MapReduce index builder
extracts keys and their partition information as values, sorts them, and produces a
leaf-level index file shown in the middle of the figure. Over the sorted leaf-level index
file, an index-building MapReduce job then scans over all partitions in parallel, finds
the smallest and largest keys from each partition, and builds an internal-level index
file, shown at the top of the figure. This process can be repeated until the root index
file is small enough that one MapReduce job with a small number of nodes can scan it
fully in parallel in one wave. Partitions of these internal- and leaf-level index files form
a search forest of internal and leaf nodes.

map: (k1, v1)α → [(k2, v2)]α
reduce: (k2, [v2])α → (k2, [v3])α

merge: ((k2, [v3])α, (k3, [v4])β)→ [(k4, v5)]γ

These primitives scan DFS files (i.e., they do table scans), so they are mostly
efficient for high selectivity jobs. For low selectivity tasks, using index files can
reduce disk accesses and decrease the number of waves of operations for a large
dataset stored in a small cluster. To incorporate index scans with these table-
scan-oriented primitives, each can be paired up with a new primitive called
Traverse. Below is the signature of the Traverse primitive:

traverse: (p, [ptr])→ [ptr]

In this signature, p represents predicates, and ptr represents pointers. In one-
dimensional search trees (e.g., the B-Tree) p is just the indexing key. In an R-
Tree, p is a multi-dimensional key tuple (minimum bounding rectangle – MBR)
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that is used as a predicate to determine whether a key is inside the MBR or
not. If it is, then this key might be stored in the sub-tree pointed by the pointer
associated with this MBR predicate. In some indexes, a predicate can be associ-
ated with multiple pointers, so we have designed the signature with a collection
of pointers.

The design of the Traverse signature follows the original reduce primitive
defined in [5], which is reproduced here:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [v3]

The value parameters (v2 and v3) are replaced by ptr. This design suggests that
a traverse can be implemented as a parallel MapReduce job over an index file.
Users can define traversal logic by applying a filter on keys and emitting pointers.
A follow-up Traverser job takes the pointers emitted, scans, then filters the index
partitions they point at. This traversal process ends when it finishes filtering leaf
index partitions. File information of selected data partitions is then handed over
to map, reduce, or merge tasks.

In implementing a traverse function, user-defined logic usually emits pointers
passed in as arguments. Users can be creative by emitting pointers generated
on the fly based on these arguments. However, these generated pointers can be
invalid, and the system can either ignore them or throw an exception to warn
users about a logic error.

An indexing predicate can be associated with more than one pointer for a
sequence of traverses. An index file can also contain no key but a collection of
pointers in each index entry. Some indexes can rely on external information, such
as a key density estimate (or histogram), to determine how to traverse an index
hierarchy. This kind of index can achieve maximal fan-out, because all space is
used for storing index pointers.

2.3 Parallel Layered Traversal

In databases, the B-Tree is a very popular access method. A common access
pattern is to traverse from the root down to a leaf node, and do a scan at the
leaf level for a point or range query. For database structures like the B-Tree,
complexity is measured by the number of disk blocks accessed. Thus each B-
Tree node usually takes up one disk block of space. However, as alluded to in
Sec. 2.2, in the parallel MapReduce environment, each index level can be visited
by a collection of concurrent mappers, so it makes sense to allocate several blocks
(file partitions) at the root level. Each layer of an index tree can be stored as
a DFS file. A MapReduce job can scan an index DFS file at the root level,
and collect key-pointer pairs that pass a user-defined predicate. These pointers
point to a subset of nodes in the next layer of the index tree, and collectively
these nodes can form another DFS file, which can be processed by a subsequent
MapReduce job to advance the parallel traversal procedure until reaching data
partitions.
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Fig. 3. Traversing Index Files Using MapReduce. This example is to find the
values for keys that are greater than 6.9 and less than 7.1. From the top, a traverser
function is applied to every partitions of an internal-level (root) index file. The output
has one pointer, p1, and it is passed to the next traversal iteration. The output has one
pointer (can be with offset), q2. It points to the data partition that hold the records
that satisfy the querying condition.

3 Examples of Indexing Using Hadoop MapReduce

It is never trite to emphasize the advantage of using indexes in low selectiv-
ity queries. Hadoop and MapReduce are good at batch data processing, but
their lack of infrastructural support for indexing makes them unsuitable for
low-selectivity ad hoc queries. This motivates us to build index structures in
Hadoop. In this section, we demonstrate examples of building and querying
Hadoop index files. We also demonstrate that this indexing approach can be
superior to the brute-force approach of scanning the whole dataset, in terms of
footprint and even performance. Scan is the approach of design in the Hadoop
and MapReduce infrastructures, thus traverse may not be an intuitive strategy.
We implemented these examples based on the indexing mechanism described in
Sec. 2.1 and Sec. 2.3, while we used the Hadoop system “as is” without any
modifications. The first example is a point query to

look up a URL from a datatset (1)

This example can actually be implemented using a hash-partitioning scheme
without the help of an extra indexing structure. Hash-partitioning is convenient,
because its mechanism is already present in the MapReduce architecture. How-
ever, a complete infrastructural support to implement this scheme still requires
managing hash-partitioning meta-data in order to map keys to source data lo-
cations. This meta-data is equivalent to a hash index. An alternative is to build
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a search tree index over URLs as keys. Details of implementing this point query
are described in Sec. 3.4. The second example is a range query to

locate all the URLs that belong to a small host (2)

This query can reuse the URL-based index file built for the first example, as
long as the index’s URL ordering function compares the URL’s host component
first. See Sec. 3.2 about ordering URLs. Notice that, unlike the first example,
this range query cannot be resolved by simply hashing and partitioning, as a
host’s URLs are not clustered — their locations are determined by hashing over
the whole URL as key and can be disseminated anywhere in a cluster. This
query needs a tree index in order to avoid a comprehensive scan. Details of
implementing this query are described in Sec. 3.5.

3.1 Experiment Setup

Our test dataset is a log file in which each record has a URL as key and several
log/page quality metrics as attributes. We randomly choose a URL and use
it in an equality predicate for Example 1. The host part of this URL is then
used as key for Example 2. For each example, we implement and compare the
performance of two pipelines of Hadoop MapReduce look-up processes: one takes
a comprehensive scan over the source dataset, and the other executes an index
scan. Steps of these two approaches are described below:

• Comprehensive Scan:
This is a straightforward MapReduce approach. Mappers check keys against
a querying predicate, and only emit them to a sole reducer if they pass the
predicate. The reducer aggregates intermediate records based on the URL
key. If nothing is passed from the mappers, then the querying URL does not
exist in the source dataset.
• Index Scan:

A more sophisticated scheme is to scan a pre-built index file, extract source
partitions that satisfy the querying predicate, then scan only these partitions.
Hadoop MapReduce does not have an infrastructure to directly support this
approach, so users need to build one to get it done. It involves building an
index and scanning a small number of index and data partitions:
• Sort the source dataset using a user-defined key comparator. See Sec. 3.2

for details of ordering URLs. Notice that, before sorting, we may want
to build a histogram on the source dataset in order to help the sorting
MapReduce job to balance its load among tasks. This histogram build-
ing procedure is very important for load balancing, but requires extra
MapReduce steps, and this goes beyond the scope of this paper.
• Build a small index file by picking up records with the smallest and

largest keys (the first and the last records) from each sorted data par-
tition. The filename of the data partitions are emitted as values. The
resulting index is a Hadoop DFS file with (<start-key, end-key>, file-
name) pairs as records.
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Fig. 4. Ordering URLs by Its Components. The component with the largest cov-
erage, TLD, is compared first, then domain, host, site, and protocol, etc. The numbers
in the figure indicate such a comparison sequence.

• Once an index file is built, it can be reused by many queries. Follow-up
index building processes can build higher-level and subsequently smaller
index files over an existing one. At the end, we get a series of index files
whose records form a hierarchy of search keys and filenames as pointers.
In our examples, one layer of index files is sufficient.

• A MapReduce querying task can then scan and traverse index files layer
by layer to filter the candidate index/data partitions and eventually find
in which sorted data partitions the querying key could be located. In this
querying MapReduce job, only (filenames) are passed from mappers to
reducers. Reducers group these candidate index/data partition filenames,
scan them, and check out every key predicates. This process can be
recursive if there are multiple layers of index files.

3.2 Ordering URLs

Inserting URLs into a search tree requires a comparison function. Search en-
gines usually do not need a URL comparator, because they often rely on hash-
ing to locate a URL from a data cluster. Unlike numbers that have a natu-
ral total order and strings that can be ordered lexicographically, there is no
natural order on URLs. Therefore, we need to artificially define a URL
comparator.

URLs can be considered as a compound key formed from their components
— protocol, host, port, path, file, and arguments, etc. Therefore, the prob-
lem of comparing two URLs can be decomposed into comparing their compo-
nents in a certain sequence. Fig. 4 shows one such sequence. It compares the
component with the largest coverage, TLD, first, then proceeds to ones with
smaller coverage. The benefit of this comparison sequence is that it can cluster
URLs in the same domain, host, or site together. Thus, an index for locating
a unique URL can also be used for locating URLs in the same domain, host,
etc.

People may also be interested in querying URLs based on file formats or file
extensions. To build an index for this purpose, URLs can be clustered based
on their file extensions. This requires a different URL ordering strategy. Since
most files are in html format, an index file can exclude html entries and focus
on indexing entries with non-html file extensions. For html queries, an optimizer
can apply a comprehensive scan on the source dataset. For other file extensions,
it can apply an index scan on a html-excluded index file.
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3.3 Building URL Index Files

The overall indexing scheme was described in Sec. 3.1. In our experiments, we
use a data file with 128 data partitions, of which each is about 16MB. Altogether,
there are 31 million records and the total size is about 2GB. We then build a
histogram on the source dataset, use the histogram to sort it, and create an
index file.

In this example, the leaf-level index file is small, so there is no need to create
a higher internal-level index file. The index scan process is configured with one
mapper and one reducer. Only 3 nodes (the least number of nodes that need to be
allocated for a virtual Hadoop cluster) are allocated for this index scan process.
The sole mapper scans this index file and emits the data partition filenames that
pass the querying predicate. The reducer then groups and scans these candidate
data partition files and emits qualified records.

3.4 Point Query

Example 1 is to lookupaURL froma log dataset. A comprehensive scan is executed
several times and configured with a variety of cluster sizes: 3, 4, 5, 6, 7, 8, 9, 10, 12,
14, 16, 18, 20, 25, 30, 40, 50, 60, and 70. We also ran one index scan job, but used
only the least number of nodes (3) required to start up a Hadoop job.

Fig. 5. Point Query to Look Up a URL from a Search Log. The blue line
represents the times spent by a series of comprehensive scans with an increasing number
of nodes. The red line represents the time spent by an index scan with the minimum
number nodes required (3) to allocate a cluster.
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Fig. 6. Range Query to Look up a Small Host’s URLs from a Search Log.
The blue line represents a series of comprehensive scans with an increasing number
of nodes. The red line represents an index scan with the minimum number of nodes
required (3) to allocate a cluster.

Our benchmarks ignore the initiation time for a Hadoop job to locate input
datasets and to initialize participating nodes. For a small scale test, this time is
constant. Initiation involves communication between the Hadoop job tracker and
name node, it can take longer for a comprehensive scan as it has more partitions.
The overall result is shown in Fig. 5. It is not a surprise that the index scan gains an
upper hand in terms of resource usage and time spent. The speedup of allocating
more nodes for the comprehensive scans stops at around 14 nodes. The index scan
is competitive even when compared with the best performance of the comprehen-
sive scans. For 128 partitions and 70 nodes, the comprehensive scan can take up to
two waves of scanning, while the index scan reads one index partition in the map
phase, and one data partition in the reduce phase.

The index scan also has a smaller scanning footprint. The comprehensive
process scans 128 data partitions and some number of intermediate files, while
the index scan accesses one index partition and only one data partition. For both
cases, the intermediate files passed from mappers to reducers are negligible in
size.

Notice that the index-scan task executes a sequential scan on data partitions
in the reducer. This can be further optimized, since the data partition is sorted
already. In other words, this index scan could have been more efficient if we have
had implemented an advanced search algorithm beyond linear scan. However, as
MapReduce is limited to linear iteration, infrastructure changes might be needed.
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3.5 Range Query

As aforementioned, we can also utilize the URL index file built for the point query
example to locate all the URLs that belong to a small host. The result of an index
scan and a series of comprehensive scans is shown in Fig. 6. The index scan beats
every comprehensive scan, no matter how many nodes are allocated. It takes 40
nodes for the comprehensive scan to reach the highest performance. Beyond 40,
allocating more nodes does not help in improving performance, and the overhead
of coordinating and shuffling data can cause performance to deteriorate.

4 Conclusions

Search engine data-processing infrastructures rely mainly on scanning, sorting,
hashing, and partitioning techniques to maintain load balance in large clusters.
These techniques are sufficient to support search engine core operations, such as
link analysis, crawling, or building inverted indexes. However, hashing cannot
help range-based ad hoc queries, and scanning is linearly scalable at best. Sus-
tained scanning of whole datasets can hasten disk failure as well. To avoid these
issues, we can apply yet another database primitive to search engines: indexing.
Indexing can improve performance especially on ad hoc low-selectivity queries.

In this paper, we first explore building search tree indexes in bulk MapReduce
operations, as MapReduce is a very effective sorter, and sorting is intimately
related to building search trees. We then propose improving the Map-Reduce-
Merge framework by adding a new primitive called Traverse. It can process index
file entries recursively, select data partitions based on query conditions, and feed
only selected partitions to other primitives. Users can define logic to determine
the optimal way of selecting partitions from data files, and effectively refine index
access algorithms. This new primitive adds parallel indexing to the MapReduce
repertoire in addition to scanning, sorting, hashing, and partitioning.

It is common knowledge that using indexes can boost performance for low
selectivity queries. For load balancing, search engines usually employ hashing in
their infrastructure. Indexing can help extend this infrastructure for decision-
support data warehouses, as decision-support capability has become extremely
important for optimizing search engine operations.
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Abstract. In recent years, data provenance or lineage tracing has be-
come an acute issue in the database research. Our target is the data
provenance issue in peer-to-peer (P2P) networks where duplicates and
modifications of data occur independently in autonomous peers. To en-
sure reliability among the exchanged data in P2P networks, we have pro-
posed a reliable record exchange framework with tracing facilities based
on database technologies in [5,6]. The framework is based on the “pay-as-
you-go” approach in which the system maintains the minimum amount
of information for tracing with low maintenance cost and a user pays
the cost when he or she issues a tracing query to the system. This paper
focuses on its two alternative query processing strategies and compare
their characteristics according to the performance.

1 Traceable P2P Record Exchange System

Data provenance is a facility that helps database users to interpret database
contents and enhances the reliability of data [2, 3]. We focus on the data prove-
nance issue in information exchanges in peer-to-peer (P2P) networks. Although
there exist many P2P systems and related proposals, they do not support the
notion of data provenance. Based on this background, we proposed the concept
of a traceable P2P record exchange system in [5, 6], in which tuple-structured
records are exchanged in a P2P network. The system employs “pay-as-you-go”
approach [4] for tracing. In this paper, we show two alternative query processing
strategies and compare their properties.

As an example, assume that information about novels are shared among peers
in a P2P network and that each peer maintains a Novel record set that has
two attributes title and author. Each peer maintains its own records and
keeps its historical data related to itself. To make the tracing process easy, the
system provides an abstraction layer which virtually integrates all the distributed
relations and a datalog-like query language for writing tracing queries in an
intuitive manner. For the details, please refer to [5,6]. In the following, we present
some examples of tracing queries.
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Query 1: Suppose that peer A holds a record with title t1 and author a1 and
that peer A wants to know which peer originally created this record:

BReach(P, I1) :- Data[Novel](’t1’, ’a1’, ’A’, I2),

Exchange[Novel](P, ’A’, I1, I2, )

BReach(P1, I1) :- BReach(P2, I2), Exchange[Novel](P1, P2, I1, I2, )

Origin(P) :- BReach(P, I), NOT Exchange[Novel]( , P, , I)

Query(P) :- Origin(P)

Relation Data[Novel] is used to represent the user-level record set Novel in
the underlying system level (it is called the logical layer). A Novel record is
embedded as the first two attribute values of a Data[Novel] tuple. The third
attribute of Data[Novel] contains the peer name which actually manages the
record, and the fourth attribute represents the record id, which is unique among
the P2P network. Relation Exchange[Novel] represents the record exchange his-
tory. For example, a Exchange[Novel] tuple (’B’, ’A’, ’#B001’, ’#A001’,
’3/2/08’) means that peer A copied a record from peer B, where it had the
id value #B001, and peer A assigned a new id #A001 for the record when it was
registered at peer A. The last attribute value 3/2/08 represents the timestamp
of the exchange.

Query 2: This query detects whether peer C copied the record (t1, a1) owned
by peer B or not:

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1, )

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1, )

Query(I) :- Reach(’C’, I)

Note that Queries 1 and 2 perform backward and forward traversals of prove-
nance information, respectively.

2 Query Processing

Although we have decided to take the “pay-as-you-go” approach and pay the
cost when we perform tracing queries, the efficiency of query processing is still
a quite important factor. Query 1 can be easily executed using the seminaive
strategy [5]; we omit the details here. In the following, we use Query 2 to compare
the performance of the seminaive method and the magic set method .

2.1 Query Evaluation Based on Seminaive Method

The seminaive method is based on simple iterative processing, but ensures no
redundant evaluations are performed to process a recursive datalog query [1]. A
tracing query in our P2P record exchange framework is executed by the cooper-
ation of distributed peers using query forwarding.

Consider Query 2 is issued at peer B. At first, we need to translate it into a
query in the physical layer . In the physical layer, two virtual relations Data[Novel]
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and Exchange[Novel] in the logical layer are stored as actual relations in a dis-
tributed manner. Each peer only stores its corresponding parts of the logical re-
lations. For example, Data[Novel]’B’ relation of the physical layer maintains a
subset ofData[Novel] relation in the logical layerwhich corresponds topeerB.Re-
lation Exchange[Novel] in the logical layer is represented as two physical relations
To[Novel] and From[Novel]. For example, To[Novel]@’B’ (From[Novel]@’B’)
represents the information of the records provided (copied) by peer B. In the above
query, we used the notation like To[Novel]@P, in which P is a peer variable. The
transformation result is as follows.

Reach(P, I1) :- Data[Novel]@’B’(’t1’, ’a1’, I2),

To[Novel]@’B’(I2, P, I1, )

Reach(P, I1) :- Reach(P1, I2), To[Novel]@P1(I2, P, I1, )

Query(I) :- Reach(’C’, I)

After the transformation, the query is executed using the extension of the
seminaive method. For Query 2, the seminaive method generally visits all the
peers which copied the record (t1, a1) offered by peer B. Since record provided
by a certain peer often copied by multiple peers, it should visit a number of peers.
If we assume that the target record provided by a peer is copied by n peers and
m forwarding are performed along every path started from peer B, the process
should visit nm peers in total.

2.2 Query Evaluation Based on Magic Set Method

The magic set technique is a well-known strategy for the efficient execution
of datalog programs [1]. By modifying a given program, it simulates “selection
pushdown” for the top-down evaluation approach within the bottom-up evalua-
tion approach.

First, we transform Query 2 into the following query according to the magic
set rewriting rules.

Reach(P, I1) :- magic Reach(P, I1), Data[Novel]@’B’(’t1’, ’a1’, I2),

From[Novel]@P(I1, ’B’, I2, )

Reach(P, I1) :- magic Reach(P, I1), Reach(P1, I2),

From[Novel]@P(I1, P1, I2, )

magic Reach(P1, I2) :- magic Reach(P, I1), From[Novel]@P(I1, P1, I2, )

magic Reach(’C’, I):-
Query(I) :- Reach(’C’, I)

Once a program is modified by the magic set-based rewriting, we can execute
the program using the seminaive method. The behavior of the modified program
is, however, quite different from the normal seminaive method. In this case, the
fourth rule above defines the actual start point; it first triggers the evaluation of
the third rule. The additional magic predicate magic Reach requires the follow-
ing: for each record in peer C, we should traverse the path from peer C to the
origin of the record.

We roughly estimate the cost of the query. Assume that peer C has l records.
For each record in peer C, we need to traverse its path to the source. Since
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we follow the path towards the ancestor, the path does not contain branches.
If we assume that the path length is a constant value on average, the total
fowarding cost would be O(l). This simple analysis appeals that the magic set-
based strategy would be a promising method for Query 2.

3 Experimental Results

The purpose of the experiments is to observe the behaviors of two query process-
ing strategies using a simple P2P record exchange model. The simulation model
is summarized as follows. We first create N = 100 peers and M = 500 records;
each record is randomly assigned to one of the peers. We assume that records
are consists of two classes — “hot” records (20%) and normal records (80%).
Hot records are more likely to be exchanged; when a peer wants to get a record
from other peer, a hot record is selected with the chance of 80%. We perform
random record exchanges until each peer exchanges L = 50 records on average.

Figure 1 shows the result. In this figure, we added the experimental results
for N = 500 and N = 1000. Their parameters are same except for N .

(a) Average case (b) Maximum case

Fig. 1. Query forwarding cost for Query 2

Figure 1(a) and Figure 1(b) shows the same experimental results, the magic
set has the high cost. The main reason is that the average number of branches is
not high in our simulation model. But the cost of the magic set method becomes
better for N = 1000. In this case, a hot record is copied by a large number of
peers so that the number of branches of forwarding paths become quite large.

Although the magic set has poor performance for the above experiment, it is
quite effective for some situations. See the following Query 3, which is a modified
version of Query 2.

Query 3: Is the record (t1, a1) in peer C a copy of (t1, a1) in peer B?

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1, )

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1, )

Dup(I) :- Reach(’C’, I), Data[Novel](’t1’, ’a1’, ’C’, I)

Query(I) :- Dup(I)
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Figure 2 shows the results. The cost of the seminaive method is same as Query
2. On the other hand, the cost of magic set method becomes quite low, especially
in the case of the maximal number of query forwarding. This is because, in
contrast to Query 2, the number of forwarding path is only one due to the
additional constraint of the third rule used for specifying the start record.

(a) Average case (b) Maximum case

Fig. 2. Query forwarding cost for Query 3

The experimental results indicate that we need to select an appropriate exe-
cution strategy depending on the situation.

4 Conclusions

In this paper, we compared two popular query processing methods, the seminaive
method and the magic set method for our P2P record exchange framework by ex-
periments: both methods have pros and cons; an appropriate execution strategy
depends on the given query, the P2P network organization, the record exchange
behaviors, etc. For the long version of this paper, please visit our homepage
http://www.db.itc.nagoya-u.ac.jp/.

This research was partly supported by the Grant-in-Aid for Scientific Research
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Abstract. In a P2P network, it is common that data items are replicated on mul-
tiple peers for improving data availability. In such an environment, when a data
item is updated, the update should be immediately propagated to other peers hold-
ing its replicas. In this paper, we propose two update propagation strategies con-
sidering the degree of change in data update in P2P networks.

1 Introduction

In a P2P network, it is common that data items are replicated on multiple peers for
efficient data retrieval, improving data availability, and load balancing [1,2]. In many
data sharing applications in a P2P network, a data update occurring on a particular
peer should be immediately propagated to other peers holding its replicas in order to
maintain consistency among replicas [3,4].

In [4], we proposed the UPT-FT (Update Propagation Tree with Fault Tolerance)
strategy for delay reduction and node failure tolerance. This strategy creates an n-ary
tree for each data item in a P2P network and propagates the update information ac-
cording to the tree. The root of the tree is the owner of the original data item (original
node), and the other nodes are peers holding its replicas. In this strategy, the updated
data is certainly propagated to all replica holders every time when a data update occurs.
Therefore, this strategy causes a heavy traffic for update propagation.

Here, some replica holders might need the updated data only when the degree of
change in the data update is large. In such a case, in order to reduce the network load,
it is effective to propagate the updated data only to replica holders that need.

In this paper, we propose two update propagation strategies considering the degree
of change in data update that reduce the network load of update propagation.

2 Proposed Strategies

In this paper, we assume data that can express the degree of change in data update nu-
merically. For example, numeric data (prices of some goods and stock prices) is suitable
for this assumption. In our strategies, each replica holder decides the acceptable differ-
ence between the original data and its replica, which we call update condition. Replica
holders need to receive the updated data when their update conditions are satisfied. In
the following, all data are assumed as numeric data for simplicity of explanation.
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Fig. 1. Update propagation in UPDD-S

2.1 UPDD-S

To reduce needless update propagation, we propose UPDD-S (Update Propagation
strategy considering Degree of Data update with Same-condition trees). This strat-
egy reduces the network load by suppressing the update propagation to replica holders
which do not need to receive the update. UPDD-S creates trees, each of which consists
of replica holders with same update conditions, which we call Same-Condition trees
(SC-trees). Fig. 1 shows the structure of a tree for update propagation in UPDD-S.

Update Propagation: In UPDD-S, when the original data is updated, the original node
sends the updated data to root nodes of SC-trees whose update conditions are satisfied.

For update propagation, the original node manages the remaining change-degrees of
root nodes of all SC-trees. Remaining change-degree indicates the current acceptable
difference between original data and its replica. Therefore, when the degree of change
in subsequent data update is larger than this value, the node needs to receive the updated
data. In Fig. 1, before the update occurs the difference between the original data and
replicas in tree A is 0, and peers in tree A set their update conditions as 2. Therefore,
the original node records +2 and −2 as A’s remaining change-degree.

When the original data is updated, the original node checks the remaining change-
degree of each SC-tree and directly sends the updated data only to the root nodes whose
update conditions are satisfied. At the same time, the original node updates the remain-
ing change-degrees of all SC-trees because the differences between the original data and
their replicas change. Finally, the nodes that receive the updated data from the original
node propagate it according to the SC-trees.

In this strategy, a large number of SC-trees are created when replica holders set
various kinds of update conditions. In such a case, the original node must manage a
large number of information on the SC-trees and directly send the updated data to their
root nodes. This leads to increase of the load of the original node.

2.2 UPDD-SO

To reduce the load of the original node, we propose another update propagation strat-
egy, named UPDD-SO (UPDD with Same-condition trees and Ordered-condition trees).
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Fig. 2 shows the structure of a logical tree for update propagation in UPDD-SO. UPDD-
SO creates two types of trees. One is SC-tree that is same as UPDD-S. In addition,
SC-trees are grouped into G groups so that peers in each group have similar update
conditions. Then, the root nodes of all same condition trees in each group construct a
logical tree, named Ordered-Condition tree (OC-tree), where the update condition of
each node in an OC-tree is smaller than that of its children. This is based on the fact
that the smaller the update condition is, the more frequent the peer needs to receive
the updated data. Allocating replica holders with smaller update conditions at higher
positions in the tree helps reducing unnecessary update propagations.

Update Propagation: The procedure of update propagation is as follows:

1. When the original data is updated, the original node sends the updated data to its
children that need it. Then, the original node updates the remaining change-degrees
of its descendants in the same way as in UPDD-S. In Fig. 3(a), when the original
data changes from 0 to 5, the original node sends the updated data to peer A0. At
the same time, the original node updates the remaining change-degree of tree F.

2. Each node that receives the updated data updates its own replica, and propagates
it according to the SC-tree that the node joins. Then, the node sends the updated
data to its children that need it. After that, the node updates the remaining change-
degrees of its descendants in the same way as the original node. If there is no
descendant that needs to receive the updated data, the procedure goes to step 3. In
Fig. 3(a), peer A0 sends the data to peer B0 and updates the remaining change-
degree of tree C.

3. The node that stops the propagation of the updated data checks the remaining change-
degree of its descendants. If the remaining change-degree includes a smaller abso-
lute value than its own update condition, the node informs the information on the
descendant to its parent. We call this message control message. By using the control
messages, each node can recognize the minimum remaining change-degreeof its de-
scendants. In Fig. 3(b), peer B0 stops the update propagation and informs its parent of
D’s remaining change-degree (i.e., +2 and−12) since D’s remaining change-degree
shows a smaller absolute value (i.e., 2) than B’s update condition (i.e., 4). Peer A0
records the remaining change-degree of tree D.
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Fig. 3. Update propagation in UPDD-SO

3 Simulation Experiments

3.1 Simulation Model

In the simulation experiments, there are 1,000 peers and 100 kinds of data items in the
entire system. At every peer, the query-issuing frequency at each time slot is 0.01.

Each replica holder randomly selects its update condition from D update conditions
( 100

D ∗ 1, 100
D ∗ 2, ..., 100

D ∗ D). Initially, the value of the original data is 100 and it is
updated as shown in Fig. 4. In our strategies, SC-trees and OC-trees are binary trees.
The size of updated data is 10. The sizes of a message for maintenance of tree structures
(maintenance message) and a control message described in Section 4.2 are 1.

3.2 Network Load

First, we examine the network load in UPT-FT, UPDD-S and UPDD-SO. The network
load is defined as the total amount of transmitted data including updated data, mainte-
nance messages and control messages. Here, we set D as 20.

From Fig. 5, we can see that our strategies drastically reduce the network load com-
pared with UPT-FT. Here, of our proposed strategies, UPDD-SO increases the network
load compared with UPDD-S. This is because UPDD-SO needs to exchange control
messages for update propagation. Moreover, in UPDD-SO, it can happen that the up-
dated data has to be propagated to nodes in a SC-tree along the OC-tree even when
the update conditions of any intermediate nodes along the path are not satisfied, which
results in increase of the load for the updated data.

3.3 Update Propagation Load

Next, we examine the following criteria in UPDD-S and UPDD-SO.

– Update propagation load of the original node
The total amount of data propagated by the original node.
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– Update propagation load of replica holders
The average of the amount of data propagated by each replica holder.

In the experiments, we set the update frequency as 200.
From Fig. 6, we can see that the load of the original node in UPDD-S becomes very

large. On the other hand, UPDD-SO suppresses the load of the original node while
keeping the load of replica holders low by introducing OC-trees.
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4 Conclusions

In this paper, we proposed new update propagation strategies considering the degree of
change in data update. These strategies reduce the network load for update propagation.

As part of our future work, we plan to consider a more efficient approach for main-
taining the tree structures and further reduces the network load.
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Abstract. We study the problem of answering XML queries over multiple data
sources under a schema-independent scenario where XML schemas and schema
mappings are unavailable. We develop the fragment join operator — a general op-
erator that merges two XML fragments based on their overlapping components.
We formally define the operator and propose an efficient algorithm for imple-
menting it. We define schema-independent query processing over multiple data
sources and propose a novel framework to solve this problem. We provide theo-
retical analysis and experimental results that show that our approaches are both
effective and efficient.

1 Introduction

Data integration allows global queries to be answered by data that is distributed among
multiple heterogeneous data sources [1]. Through a unified query interface, global dis-
tributed queries are processed as if they were done on a single integrated data source.
To achieve data integration, a schema mapping is often used, which consists of a set
of mapping rules that define the semantic relationship between the global schema and
the local schemas (at the data sources). In these systems, such as Clio [2], processing a
global query typically involves two steps: query rewriting, and data merging.

While much work has been done on query rewriting, very little has been done on
data merging. In most existing approaches, data merging is mostly an ad hoc compu-
tation — a special data merging routine is custom-coded for each mapping rule. This
approach leads to inflexible system design. In this paper we propose a schema indepen-
dent framework that allows data merging be processed without referring to any specific
schema mapping rules.

Let us illustrate our idea by an example. Figure 1(a) shows two XML documents
taken from UA Cinema website and IMDB website, respectively. Both UA and IMDB
contain the title and the director of each movie. In addition, UA contains venue and
price, while IMDB contains the movie’s reviews. Consider a user who wants to find out
the title, director, price, and review for each movie. This is expressed by the twig pattern
query shown in Figure 1(b). Note that neither UA nor IMDB can answer the query alone
because UA lacks reviews and IMDB lacks pricing information. The (global) query thus
has to be broken into two query fragments, one for each site. The returned results from
the two sites should then be merged based on their common components. Figure 1(c)
shows an example of the query result. Our goal is to answer such twig pattern queries
in a schema-independent fashion where mapping rules are not needed.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 334–338, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Query on sample XML documents and the results

In our approach, we join data fragments based on their overlapping content in order
to answer queries. For example, we first project the global query on the two XML doc-
uments and obtain two local queries (Figure 1(d)). Then, we retrieve XML fragments
m(t, d, p) from UA and m(t, d, r) from IMDB. Afterward, we join these fragments
based on their overlapping parts, which are title (t) and director (d) (Figure 1(e)).

2 Preliminaries

An XML document D is a rooted, node-labeled tree D = 〈N, E, r〉, wherein N is a
node set, E ⊆ N ×N is an edge set, and r ∈ N is the root node. Each node in an XML
document has a label and may contain some text. The vocabulary of an XML document
d, denoted by v(d), is the set of distinct node labels of d.

Definition 1. (XML FRAGMENT) An XML fragment f is an edge-labeled XML docu-
ment, where each edge is labeled by either “/” (parent-child edge) or “//” (ancestor-
descendant edge). An XML fragment f is a fragment of an XML document d, denoted
as f % d, if there exists an injective mapping λ : f.N → d.N , such that: (i) ∀n ∈ f.N ,
n = λ(n), and (ii) ∀e(n1, n2) ∈ f.E labeled as “/” (resp., “//”), λ(n1) is the parent
(resp., ancestor) of λ(n2).

Definition 2. (TWIG PATTERN AND MATCH) A twig pattern is an XML fragment,
where the text content of the nodes is disregarded. A fragment f is a match to a twig
pattern q, denoted as f & q , if there exists a mapping γ : q.N → f.N , such that the
node labels and edges of q are preserved in f . A fragment f1 is contained in another
fragment f2, denoted as f1 ' f2, if all the nodes and edges of f1 are contained in f2.

Definition 3. (PROJECTION) Given a fragment f and a vocabulary v(d) of a document
d, the projection of f on v(d), denoted as ρv(d)(f), is obtained by removing from f all
the nodes whose labels are not in v(d) and the corresponding connecting edges.

3 The Fragment Join Operator

Definition 4. (FRAGMENT JOIN) Given a set of of fragments f1, ..., fn (n ≥ 2), a
fragment f is a join of f1, ..., fn, denoted as (f1, ..., fn) ��→ f , if ∃f ′1 ' f, ..., f ′n ' f ,
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such that: 1) f ′i = fi, 1 ≤ i ≤ n, 2) ∀n ∈ f.N , n ∈ f ′1.N ∪ ... ∪ f ′n.N , and 3)
∀e ∈ f.E, e ∈ f ′1.E ∪ ... ∪ f ′n.E.

In addition, the join set of f1, ..., fn is a set of fragments F = {f |(f1, ..., fn) ��→ f},
denoted as (f1, ..., fn) ��⇒ F .

Definition 5. (JOINT SUB-TREE) Given two fragments f1 and f2, a subtree js is a
joint sub-tree of f1 and f2 if (1) js ' f1, js ' f2, (2) the root of js = the root of f2.

Figure 2(b) shows the five results of the fragment join between f1 and f2 shown in
Figure 2(a). Each of these results is based on a joint sub-tree, whose nodes are pointed
by double-arrowed dashed lines in the two fragments.

We propose Algorithm 1 for evaluating the fragment join of two fragments f1 and
f2. For example, consider the first join result shown in Figure 2(b). The joint-subtree
for this join result consists of a lone node a. The boundary nodes are the children of
the root node a in f2, which are labeled b and d (underlined). The subtrees of these
boundary nodes are attached to the matching node a in f1 forming the join result.

4 Schema-Independent, Query-Based Data Integration

Our research problem is formally stated as following: given XML documents d1 and d2,
and a twig pattern query q, compute F = {f |f & q; (f1, f2)

��→ f ; f1 % d1; f2 % d2}.
Our approach to solve this problem consists of the following phases.

Projection. The twig query q is rewritten into local queries q1 = ρv(d1)(q) and q2 =
ρv(d2)(q) using the project operator (Section 2). We then apply the fragment join oper-
ator on q1 and q2 to find a joint sub-tree js for which the join result is q.

Matching. Two sets of fragments F1 and F2 are returned, which contains all matches
to the local query q1 in d1 and all matches to the local query q2 in d2, respectively 1.

Join. For each pair of fragments (f1, f2) ∈ F1 × F2, we compute the fragment join of
f1 and f2 using the joint-subtree obtained in the projection phase. The join results are
returned as the query’s answer.

1 We thank the authors of [3] for providing us with the implementation of TwigList, used as a
module for evaluating twig queries in our work.
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Algorithm 1. The join evaluation algorithm
Input: XML fragments f1 and f2

Output: a set of XML fragments F , with the join sub-trees used for each f ∈ F

1: JS ← enumerateJointSubtrees(f1, f2)
2: for all js ∈ JS do
3: f ← join(f1, f2, js)
4: output (f, js)
5: end for
6: repeat 1-6 with f1 and f2 exchanged, if necessary

function join(f1, f2, js)
1: f ← copy(f1)
2: for all x ∈ js.N do
3: let x1, x2 be the corresponding nodes of x in f1 and f2, respectively
4: for all x2’s child c do
5: if c /∈ js.N then
6: sf ← constructFragment(f2, c)
7: addChild(f1, x1, sf)
8: end if
9: end for

10: end for
11: return f

Figure 3 illustrates our approach (the found joint sub-tree contains the underlined
nodes). We note that projecting a global query onto local sources so that one single local
query is applied to each source may not be sufficient to retrieve the complete set of query
results.Forexample, consider again queryq in Figure3.Weobserve that joiningq11, a sub-
twig pattern of q1 containing nodes b and c and the edge between them, with q2 also gives
us q (using the joint sub-tree b) . Therefore, in order to ensure that all valid query results are
found, we should consider all pairs of sub-twig patterns of q1 and q2 that can form q.

Definition 6. (RECOVERABILITY) Given a twig pattern q, a pair of twig patterns (qi,
qj) is recoverable for q, denoted as (qi, qj)

r
� q, if (qi, qj)

��→ q using some joint

sub-tree js; else, (qi, qj) is non-recoverable for q, denoted as (qi, qj)
r

�� q.

We add two more schema-level phases to the Projection-Matching-Join framework, in
order to ensure completeness of the query results.

Decomposition. After the projection phase in which local queries q1 and q2 are derived,
the decomposition phase returns: Q1 = {qi|qi ' q1}, and Q2 = {qj|qj ' q2}.
Recoverability checking. After the decomposition phase, this phase returns:
{(qi, qj) |(qi, qj) ∈ Q1 ×Q2 ∧ (qi, qj)

r
� q}.

5 Experimental Evaluation and Conclusion

We use DBLP and CiteSeer datasets in our experiments. The raw CiteSeer data are in
plain text BibTeX format. We converted them into an XML file having similar schema
to that of DBLP data. The size of Citeseer dataset is 15MB. We randomly sample the
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Fig. 4. Overall performance of PDRMJ for all queries and datasets

original DBLP (130MB) dataset to extract the publication records and attributes, and
obtain five DBLP datasets, whose sizes are: 1MB, 10MB, 20MB, 40MB, and 80MB,
respectively. Thus, we have five pairs of datasets used for the queries, each consisting
of the Citeseer dataset plus one of the sampled DBLP datasets.

We manually created four test twig pattern queries, named Q1-Q4, each of which
queries on a set of atrributes of papers, such as title. All these queries can only be
answered using both DBLP and Citeseer datasets (but not one of the two datasets alone)
by fragment join in our framework.

The overall performance of our complete, optimized approach (PDRMJ) is tested in
Figure 4 for all queries Q1-Q7 on all datasets. The overall response time is broken down
to two parts: (i) the time spent by all sub-twig pattern queries issued against the different
sources, and (ii) the time spent by the fragment joins. We observe that the performance
for all queries scales roughly linearly to the size of the DBLP dataset (recall that the
size of the CiteSeer dataset is fixed). In addition, nearly half of the cost is due to the
twig pattern queries against the sources.

In conclusion, we developed a fragment join operator for query-based data integra-
tion from multiple sources. We studied the problem of schema-independent data integra-
tion based on this operator. We conducted experiments to show the effectiveness of our
approaches.
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Abstract. SimRank is a well-known algorithm for similarity calculation based 
on object-to-object relationship. However, it suffers from high computation 
cost. In this paper, we find that the convergence behavior of different object 
pairs is different when we use SimRank to compute the similarity of objects. 
Many similarity scores converge fast, while others need more time before con-
vergence. Based on this observation, we propose an adaptive method called 
Adaptive-SimRank to speed up similarity calculation. Using this method, we 
don’t need to recalculate those converged pairs’ similarity. The experiments 
conducted on web datasets and synthetic dataset show that our new method can 
reduce the running time by nearly 35%.  

Keywords: Similarity Calculation, Linkage Mining. 

1   Introduction 

As a process of grouping a set of objects into classes of similar objects, clustering has 
been widely studied in many domains such as information retrieval, bioinformatics, 
market basket analysis, collaborative filtering and bioinformatics. In the information 
retrieval field, clustering document collections is based on an intuitive notion: docu-
ments are grouped by topics, and documents in the same topic tend to heavily use the 
same set of terms. In the bioinformatics field, Scientists want to cluster genes, pro-
teins, and their behaviors in order to discover their functions. For market basket 
analysis, merchants want to find customer groups who have similar purchasing behav-
iors. In the collaborative filtering field, similar users and items are clustered based on 
user or item similarities. In the bioinformaticsfield, scientists cluster the scientific 
papers in the same topic by analyzing their reference relationship. 

In these applications, the object-to-object relationship can be the most useful in-
formation for clustering. To use this kind of information, Jeh and Widom [1]  
proposed a new similarity measure called SimRank (for simplicity, we also call the 
algorithm proposed in [1] to compute this measure SimRank). Using this measure to 
compute similarity can obtain higher accuracy than using other methods [2] [3] [4]. 
But in the meantime, its computation cost is high. For a web of small size (about 4000 
web pages), it took more than 17 hours to finish the computation in our experiment. 
Thus, to speed up the computation of  SimRank is important. 
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Improving the performance of the SimRank algorithm is a difficult task. First, 
many other fast methods are not available for this task because the real world graph is 
sparse and large. Further, there are few papers to discuss how to improve the SimRank 
algorithm. Finally, the convergence of SimRank algorithm is fast for real world graph. 
In our experiments, the average number of iterations for a relationship graph (its for-
mal definition is in section 3) with about 4000 nodes is only about 50. It is difficult to 
improve this already fast convergence rate.  

After study of the structure of many real world relationship graphs, we found that the 
convergence rate of SimRank for each pair of objects during each step of iteration is not 
uniform. Some pairs’ SimRank scores become convergent quickly, but others slowly.  

In this paper, based on the above observation, we design a simple and effective algo-
rithm, called Adaptive-SimRank, to improve the performance of SimRank algorithm. In 
this algorithm, those SimRank scores which have already converged during the compu-
tation iterations will not be recomputed in the following iterations. Our experiment 
results show that this method can speed up the performance of SimRank by nearly 35%.  

The main contributions of this paper are as follows: 
• Based on the characteristics of real world object-to-object relationship graphs, we 

develop a new algorithm, Adaptive-SimRank, which improves the performance of 
SimRank by nearly 35%. This method can also be used for other algorithms [5] [6] 
to speed up the similarity calculation.  

• We also prove the convergence of Adaptive-SimRank algorithm by both theoretical 
and empirical studies.  

• We evaluate our method on real datasets to confirm its applicability in practice. 
This paper is organized as follows. We introduce the related work in section 2 and 

define the graph models in section 3. Preliminaries are presented in section 4, and the 
Adaptive-SimRank algorithm is described in section 5. Our performance study is re-
ported in section 6, and finally this study is concluded in section 7. 

2   Related Work 

We categorize existing work related to our study into two classes: clustering based on 
link analysis and Random walk on graph.  

Clustering based on link analysis: The earliest research work for similarity calcula-
tion based on link analysis focuses on the citation patterns of scientific papers. The 
most common measures are co-citation [2] and co-coupling [3]. Co-citation means if 
two documents are often cited together by other documents, they may have the same 
topic. The meaning of co-coupling for scientific papers is that if two papers cite many 
papers in common, they may focus on the same topic. In [4], Amsler proposed to fuse 
bibliographic co-citation and co-coupling measures to determine the similarity  
between documents. However, all these methods compute the similarity only by con-
sidering their immediate neighbors. SimRank [1] is proposed to consider the entire 
relationship graph to determine the similarity between two nodes. But this method has 
a high time complexity, which limits its use to large datasets. Thus, there are some 
methods proposed to improve the performance of SimRank. In the paper SimRank first 
proposed [1], authors also proposed a algorithm called Pruning-SimRank [1], which 
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computes similarities by a small scope of relationship graph around two nodes.  
However, because this method ignores much information, the accuracy of this method 
is not very good. Another method to enhance the performance of SimRank algorithm 
is Fingerprint-SimRank [5], which pre-computes several steps of random walk path 
for each object and uses these steps to calculate the similarity between objects. Al-
though Fingerprint-SimRank improves the performance, this algorithm has a high 
space complexity. In addition, Xiaoxin Yin et al [6] proposed a hierarchical structure, 
SimTree, to represent the similarity between objects and develop an effective similar-
ity calculation algorithm—LinkClus. However, in that paper, there is no sound theo-
retical proof of the convergence for that algorithm. Thus, it is difficult to decide in 
which iteration LinkClus will gain the best accuracy. Different from all these meth-
ods, our method focuses on the convergence of SimRank. All these above-mentioned 
techniques can combine with our method to improve the performance of SimRank.   

Random walks on graphs: Theoretical basis of our work is hit times for two surfers 
walking randomly on the graph. We mainly refer to some research works about ex-
pected f-meeting distance theory [1, 7]. Some other research papers also help us to 
understand our research, which is the theory of random walk with restart. PageRank 
[8-10] is a famous algorithm using this theory. 

3   Problem Definition  

The object-to-object relationship can be represented by a graph. A relationship graph 
G(V, E) is a directed graph, where each vertex in V represents an object in a particular 
domain and an edges in E describes the relationship between objects. Furthermore, we 
use I(v) to represent all the neighbors of a node v . |I(v)| is the number of neighbor nodes 
of v. For example, Fig.1 is a relationship graph that describes the web page relationship 
crawled from Cornell computer science department. In this graph, a directed edge <p, 
q> means a reference (hyperlink) from page p to page q. Our research work focuses on 
how to cluster the similar pages on the web graph. In this website relationship graph, 
these web pages have been manually classified into seven domains, course, department, 
faculty, project, staff, student, and others. Based on this classification, we will evaluate 
our method to cluster these pages automatically into seven fields.     

 

 

Pro2Pro1

Stu1

Cornell

Stu2

Faculties

 

Name URL 
Cornell http:\\www.cs.cornell.edu 

Faculties http:\\www.cs.cornell.edu\People\faculty\index.htm 

Pro1 http:\\www.cs.cornell.edu\~professor1 

Pro2 http:\\www.cs.cornell.edu\~professor2 

Stu1 http:\\www.cs.cornell.edu\~stu1 

Stu2 http:\\www.cs.cornell.edu\~stu2  
                (a)                                               (b) 

Fig. 1. An example of a web page relationship graph 
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4   Review of SimRank  

In this section, we will introduce SimRank and define the convergence of SimRank. 

4.1   Introduction of SimRank  

SimRank [1], a classical linkage-based similarity calculation algorithm, measures 
similarity of two objects based on the principle, “two objects are similar if they link 
to the similar objects” [1].  The recursive similarity computation equation is as 
follows: 
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1 1
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Where c is a decay value, which is a constant between 0 and 1. I(Va) is the set of 
neighbor nodes of a. | I(Va)| is the number of neighbors of node Va. 

At another point of view, s(Va,Vb) can be considered as how soon and how many 
times two surfers, a and b, will meet, when they walk starting from Va and Vb respec-
tively and travel randomly on the graph G. Thus, based on the expected f-meeting 
distance theory [1], Jeh and Widom gave another definition of SimRank score s(Va, 
Vb) as follows. 
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Where c is also the decay value. And t=<w1,w2,…,wk> is a travel path from Va to Vb  
and l(t) = k/2, which is the number of steps starting from Va and Vx(the hit position). 
P[t] of travel path t is 1

1

1

| ( ) |

k

i
iI w

−

=∏ , which represents the probability of a surfer travel-

ing along this path.  
In order to explain formula (2), we use the graph shown in Fig.1 to show the calcu-

lation of the similarity between Pro1’s web page and Pro2’s web page. Let two surfers 
starting from node Pro1 and node Pro2 respectively walk only one step. Then, they 
may meet at node Cornell or node Stu2. If meeting at node Cornell, the travel path is 
<Pro1, Cornell, Pro2>. The probability of a surfer starting form Pro1 to Cornell is 1/3, 
because there are three web pages connected to node Pro1. Similarly, the probability 
of a surfer starting from Pro2 to Cornell is 1/2. Thus, in this path t, P[t] = 
1/3×1/2=1/6. We set c = 0.8. The number of steps is 1. Thus, for this path, the Sim-
Rank score is 1/6×(0.8)1 = 0.133. Because there are only two paths between Pro1 and 
Pro2,  < Pro1, Cornell, Pro2> and < Pro1, Stu2, Pro2>, s(Pro1, Pro2) is equal to 0.267 
at the first step of iteration (i.e. walking one step). If walking two steps, there is only 
one path <Pro1, Stu1, Pro1, Stu2, Pro2> (i.e., Pro1�Stu1�Pro1, 
Pro2�Stu2�Pro1), the SimRank score on this path is (1/3×1×1/2×1/2) × 0.82 = 
0.0533. SimRank will search all paths and sum them. Finally, s(Pro1,Pro2) = 0.267 + 
0.0533+ …= 0.404. 
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4.2   Similarity Calculation    

Similarity calculation is an iteration process. Starting with s0(Va, Vb), we can calculate 
sk+1(Va, Vb) from sk(Va, Vb) by equation (4). 
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The major steps of SimRank algorithm are as follows: 

Algorithm 1. SimRank 
Input: Decay Factor c, Transfer Probability Matrix T (the probability of mov-

ing from state i to state j in one step), Tolerance Factor ε (under 
normal case, ε  = 0.001 )   

Output: Similarity Matrix sk
k 1; 
s0 identity matrix;
while(Max(|sk(Va,Vb) - sk-1(Va,Vb)| / |sk-1(Va,Vb)|) > ε )

k k+1; 
sk-1 sk;

  for each element sk(Va,Vb)    
    

| ( )| | ( )|

1
1 1

( , ) ( , )
a b

a i b j

I V I V

k a b V V V V k i j
i j

s V V c T T s V V−
= =

= ⋅ ⋅ ⋅ ;

end for  
end While 
return sk  

4.3   Convergence of SimRank  

In paper [1], the author proposed that the SimRank had a rapid convergence, usu-
ally in five iterations. However, in our experiments, after five iterations, some 
SimRank scores are still increasing much. We define the convergence factor d as 
follows:  

 d = max (|sk+1(Va,Vb) - sk(Va,Vb)| / |sk(Va,Vb)|)         (5) 

We say when d < 10-3, SimRank scores become convergent. We calculate the con-
vergence factor d for four web datasets as shown in table 1. As can be seen from 
table 1, these SimRank scores converge into fixed values after about 40 steps of 
iteration. 
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Table 1. Statistics about Web Dataset convergence  

iteration

Web DataSet 1 2 3 4 5 6
Final
Iteration

Wisconsin 20 114.9 207.9 59.7 33.11 4.44 40 iter.
Washington 48.9 181.6 593.6 633.8 250.9 29.7 45 iter.
Texas 47.4 313.6 352.1 49.2 4.1 1.8 39 iter.
Cornell 48.8 260.5 260.5 140.4 5.46 2.10 41 iter.  

5   Adaptive-SimRank Algorithm 

In this section, we first show our observation of SimRank calculation on real world 
datasets. Then, we describe our algorithm, Adaptive-SimRank. Finally, we analyze the 
reason of Adaptive-SimRank. The proof of its convergence is in Appendix B. 

5.1   Adaptive-SimRank Intuition 

According to the above introduction about SimRank, SimRank computation process is 
the process to search the even-step paths between two nodes. If all of the even-step 
paths between two nodes are not long, the convergence for two nodes is quickly. For 
example, in Fig.2 (a), because there are only one path between node Va and Vb and the 
path length is 2, we can obtain the final SimRank score of node Va and Vb for only one 
step of iteration. However, there are many long even-step paths between node Vc and 
Vd  such as <Vc, Ve, Vd>, <Vc, Vf, Vd>, <Vc, Ve, Vc, Vf, Vd>, <Vc, Vf, Vd, Vf, Vd> and so 
on, thus we need to iterate for about nine steps before we obtain the final similarity 
score. Based on this analysis, we discover that because of different graph structures, 
some pairs obtain the convergence values faster than other pairs.  

 
(a) 

 

(b) 

Calculation 
Nodes 

Iteration 
Times 

Similarity 
Score 

s(Va, Vb) 1 times 0.8 
s(Vc, Vd) 9 times 0.6316 

Fig. 2. Example of Iteration Calculation 

In our observation on real world graphs, large graphs in real applications are usually 
sparse graphs with fairly dense blocks. In table 2, we list the statistic data of the four web 
sets. We use α = s / (n*(n-1)/2) to describe the density of a graph, where s is the number of edges 
and n is the number of vertices in the graph. We can see that α of each graph is very low, less 
than 0.008, which indicates that all of these real world graphs are sparse graphs. Fig. 3 
illustrates that the links in Cornell data set are not homogeneous distribution. This is be-
cause in a group of websites, the links mainly distribute with the web host. In other words, 
links in each host are much more and links between hosts are less. Usually, each research 
lab will have their web host to introduce themselves and each host has their special  
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research topic. Therefore, we can discover that in the same research area, the density of 
links are much high, but the links between research areas are much less. Because of the 
property of sparsity and non-uniform distribution of links for the real world graphs, some 
node pairs in the graph will converge faster than others.  

Table 2. Statistics of Four Datasets  

Data Set Vertexes#(n) Edges#(s) α  
Wisconsin 1263 5305 0.0067 

Cornell 867 2691 0.0072 
Texas 827 2667 0.0078 

Washington 1205 3299 0.0045 
         Note: α = s / (n*(n-1)/2), describing the density of graph. 

C.1 C.2 C.3 C.4 C.5 C.6 C.7
C.1

C.2

C.3

C.4

C.5

C.6

C.7

 

Fig. 3. Cornell Dataset analysis.(The web pages in cornell dataset have been divided into seven 
classes by research areas, such as Hardware, Artificial intelligence, Database & Information 
Retrieve, Operation System & Distribute System, Software Engineering & Programming 
Language, Theory of Computing and Others, which are marked from C.1 to C.7. The function, 
R(A,B) = L(A,B) / L(A), discribe the density of links. Where, L(A,B) is the number of links from 
block A to block B and L(A) is the total number of links from A to any other blocks. If R(A,B) ≥  
0.4, the block is drawed as black and 0.4>R(A,B)>0.1, the block is gray and in other situations, 
the block is white.) 

Fig.4 shows some statistics for the Cornell Dataset. Fig.4(a) shows the newly added 
proportion of pairs whose SimRank score converge to a relative tolerance of .001 in 
each iteration. Fig. 4(b) describes the cumulative version of the same data, which 
shows the percentage of pairs that have converged through a particular iteration steps.  
We see that in 30 iteration steps, the SimRank score for over three-forth of pairs have 
already converged. In our observation, it is also possible that some pairs’ Simrank are 
not converged. For example, a pair had the same values for several iterations, and 
later on changed significantly. In Fig.4(a), the navigate values of the convergence 
property describe this situation. That is because there are some long paths between 
nodes which increases these pairs’ SimRank score. For this problem, we will discuss it  
later. Furthermore, in Fig.4(a) and 4(b), we can discover that the distribution of the 
proportion of newly added converged node pairs is approximate normal distribution. 
In Appendix A, we show that other three datasets also have this character. Thus, 
based on this skewed distribution of convergence, we propose an approximate algo-
rithm to calculate SimRank.    
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                                 (a)                                                                   (b) 

Fig. 4. Experiment results on Cornell dataset. Results on other three datasets are given in Ap-
pendix A. (a) X-axis represents the iteration steps and the height of bar means the newly added 
proportion of convergence pairs at this step of iteration. The similarity score is computed by 
SimRank. (b) Cumulative convergence proportion at each step of iteration. The x-axis means 
the iteration step k and the y-axis give the proportion of convergent pairs that have a conver-
gence steps less than or equal to k. 

5.2   Adaptive-SimRank  

Above-mentioned observation of non-uniform convergence indicates that the time of 
SimRank computation can be reduced by avoiding overlap computation. In particular, 
if a SimRank score has already converged, we don’t need to recalculate it in the fol-
lowing iterations. Based on this, we propose a new algorithm, Adaptive-SimRank, 
whose major steps are shown in algorithm 2: 

Input: Decay Factor c, Transfer Probability Matrix T, Tolerance Factor ε
Output: Similarity Matrix s

k 1; 
s0 identity matrix; 
flagmatrix 0;    // Record whether node pairs has converged :  

//0 represents not convergent. 1 convergent. 
while(Max(|sk(Va,Vb) - sk-1(Va,Vb)| / |sk-1(Va,Vb)|) > ε )

k k+1; 
sk-1 sk;

  for each element sk(Va,Vb)
   if(flagmatrix(Va,Vb)  == 0)  // not convergent 

| ( )| | ( )|

1
1 1

( , ) ( , ) 
a b

a i b j

I V I V

k a b V V V V k i j
i j

s V V c T T s V V−
= =

= ⋅ ⋅ ⋅ ;

end for  
for each element sk(Va,Vb)
    If(|sk(Va,Vb) - sk-r(Va,Vb)| / |sk-r(Va,Vb)| < ε )   

// r: an iteration number to control accuracy 
       flagmatrix(Va,Vb) = 1; 
end for 

end while 
return sk

 

The time and space complexity of Adaptive-SimRank is the same as that of Sim-
Rank. r is used to decide whether or not this SimRank score has already converged. 
Commonly, r is equal to 1. We will discuss it in the next section. 
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5.3   Analysis of Adaptive-SimRank  

As we have mentioned above, the process of node pair similarity calculation is the proc-
ess to search the even-step paths between two nodes. In the kth step of iteration, algo-
rithm SimRank searches for 2k-step paths for each pair. For example, we calculate the 
SimRank score for the graph shown in Fig.5(a) and list their SimRank value in the right 
table. We can find that in the first iteration, 2-step paths, <Va, Vc, Vb> and <Va, Vd, Vb>, 
have been searched and similarity score in this iteration is (0.5×0.5 + 0.5×0.5) × 0.81 = 
0.4. In the second iteration, 4-step paths, <Va, Vc, Va, Vd, Vb>, <Vb, Vd, Vb, Vc, Va>, <Va, 
Vd, Va, Vc, Vb>, <Va, Vd, Vb, Vc, Vb>, are discovered and added to the original similarity 
score. We can lock some node pairs’ SimRank scores, which means that we will stop 
searching the path between these pairs. For example, if we fix the s(Vc, Vd) value, 0.56, 
in the second step of iteration, we only find six paths, <Vc, Va, Vd>, <Vc, Vb, Vd>, <Va, 
Vc, Va, Vd, Vb>, <Vb, Vd, Vb, Vc, Va>, <Va, Vd, Va, Vc, Vb> and <Va, Vd, Vb, Vc, Vb>, be-
tween node Vc and Vd. Meanwhile, in the process of similarity calculation, node pairs 
reinforce each other to find paths, if we ignore some paths between node Vc and Vd, this 
will affect the final similarity score of pair (Va, Vb). In Fig.5(b), after three steps of itera-
tion, s(Va,Vb) will keep 0.62 forever. Based on the above analysis, if we lock those pairs 
which have not converged, that will affect accuracy. In Fig.4, the negative value shows 
that some pairs’ SimRank scores in the kth iteration don’t have a great change, but in 
(k+1)th iteration these pairs change again. However, in our experiments on four real 
datasets, which are shown in table 3, these pairs are less than 2 percent of total node 
pairs. Thus, it will not greatly affect accuracy. One way to increase accuracy is that we 
can increase the value of r, but that will affect the improvement of performance. In table 
3, for these four datasets, we can check that when we use this judging formula, |sk(Va,Vb) 
- sk-2(Va,Vb)| / |sk-2(Va,Vb)| < ε , to predict the convergence of pairs, those converged 
pairs don’t have a great change during following steps of iteration. In common situation, 
setting r to 1 is good for most datasets. 
 

a

b

c

d 

 

 Iter. 
Val. 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
… 

s(a,b) 0.4 0.56 0.62 0.62 0.62 0.62 0.62 
s(c,d) 0.4 0.56 0.56 0.56 0.56 0.56 0.56 

               (a)                                                    (b) 

Fig. 5. SimRank Calculation 

Table 3. Accuracy Threshold VS Convergent Pairs 

r
Dataset 1 2 3
Wisconsin 0.35% 0% 0%
Cornell 0.72% 0% 0%
Washington 0.11% 0% 0%
Texas 1.93% 0% 0%  
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6   Empirical Study 

In this section, we conduct experiments to evaluate the performance of Adaptive-
SimRank. We focus on the following questions: 

Q1: How accurate is Adaptive-SimRank? 
Q2: What is the computational cost of different algorithms? 
Q3: What is the worst situation about Adaptive-SimRank? 
After describing the experimental setting in section 6.1, we will answer the ques-

tion Q1 in section 6.2. In section 6.3, we will analyze the cost of Adaptive-SimRank 
on the website dataset. Finally, we will discuss on which dataset the performance of 
Adaptive-SimRank has the worst performance. 

6.1   Experiment Setting  

In this set of experiments, we use two different datasets, website datasets and syn-
thetic datasets. 

Website Dataset: We use the CMU four-university datasets [11]. These datasets con-
tain web pages crawled from computer departments of four universities, Cornell, Texas, 
Washington, and Wisconsin. Web pages in these datasets have been manually divided 
into seven classes, student, faculty, staff, department, course, project and others. These 
classes will be used as the standard to evaluate the accuracy of our algorithm. 

Synthetic Dataset: We use VxEy to represent the relationship graph with x nodes and 
y edges between these nodes. All of the edges have been randomly distributed be-
tween nodes. Clearly, this synthetic dataset can’t be used to test the performance. 
However, because of the uniform distribution of links, this synthetic dataset can be 
used to represent the worst situation of the performance improvement by Adaptive-
SimRank. 

When we test the accuracy of these methods, we take PAM [12], a k-medoids clus-
tering approach, to cluster objects based on similarity score calculated by these meth-
ods. We randomly select the initial centroids for 50 times when do clustering. We 
compare the clustering result with the real class and choose the most accurate results 
among the 50 results.    

All our experiments are conducted on a PC with a 1.86G Intel Core 2 Processor, 
2GB memory, under windows XP Professional environment. All of our programs are 
written in java. 

6.2   Accuracy of Adaptive-SimRank Algorithm 

To test accuracy, we compare Adaptive-SimRank with SimRank on the website data-
sets. We set r to 1. The result is shown in Fig.6. 

From Fig.6 we can see that the accuracy of Adaptive-SimRank is slightly lower 
than SimRank algorithm, especially for the Texas dataset. The reason why the Texas 
dataset has a lowest accuracy is that in table 3, 1.93 percent of node pairs are mis-
judged to be convergent, which is the highest proportion among all the datasets. How-
ever, in sum, the loss of accuracy of Adaptive-SimRank is not much. 



 An Adaptive Method for the Efficient Similarity Calculation 349 

����������	
������

�

��

��

��

��

��

��

��

������ ��	
���� ����
���
������
��
�

�
�
�
�
�
�
�
�

������� �	�
�����������  

Fig. 6. Accuracy on web site datasets  

6.3   Computation Cost of Adaptive-SimRank Algorithm 

The computation cost for all these algorithms depends on two aspects, the time for 
each step of iteration and the number of iterations. 

We test Adaptive-SimRank on the four website datasets. Fig.7 shows time cost 
at each step of iteration. We can find that from the first to the 17th step of 
iteration,  the time cost of each iteration of Ataptive-SimRank is almost the same 
as that of SimRank, but after that the time cost of our algorithm drops quickly. 
Fig.4 and figures in appendix A show that between the 16th step of iteration and 
35th step of iteration, a great number of pairs have converged. Thus, the time cost 
of our algorithm drops very quickly. Table 4 discribes the total time of these two 
methods, we can see that our method speeds up the orginal SimRank by nearly 
35%.  

 

Fig. 7.  Number of iterations VS Time(seconds) 
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Table 4. Total Time VS Algorithm 

              Data Set 
Alg. 

Texas Cornell Washington Wisconsin 

SimRank 507.139s 576.199s 1535.818s 1417.959s 
Adaptive-SimRank 328.782s 362.531s 1013.637s 897.330s 

 
 

We also test the performance of our algorithm on graphs with different number of 
nodes. In table 5, we can see that with the increase of the number of nodes, the time 
cost of SimRank and Adaptive-SimRank increase quickly, while our method always 
improve the performance of SimRank by nearly 35%. 

Table 5. Performance VS the Number of Nodes  

              Node#
Alg.

Wi.
1263

Wi.&Wa.
2468

Wi.&Wa.&T.
3295

Wi.&Wa.&T.&C.
4162

SimRank 1417.959s 12336.839s 31385.259s 70025.662s
AdatptiveSimRank 897.33s 7765.776s 18827.152s 38220.047s  

6.4   The Worst Situation of Adaptive-SimRank  

In the end, we want to discuss the worst situation of Adaptive-SimRank. In our ex-
periment, we find that the performance of Adaptive-SimRank does not keep very well 
for a graph whose links have a uniform distribution. Fig.8 shows the performance 
improvement proportion on the real datasets and uniform distribution graphs 
(V827E2667, V867E2691, V1205E3299, V1263E5305), which have the same number of nodes and 
links with the real datasets. 

In Fig.8, the performance improvement proportion for the synthetic dataset is about 
half less than the real world dataset. Fig.9 shows the reason of this phenomenon. 
Because of uniform distribution of links, a great number of pairs converge in almost 
the same step, from the 26th step to the 28th step of iterations, not like the real data-
sets, whose link distribution is close to normal distribution. Thus, Adaptive-SimRank 
doesn’t take a great advantage in this kind of graphs.   

���������	�
�������������������
������

�

�

��

��

��

��

��

��

��

��	
� ������ �
������� ��������

�
�
�
�
�
�
�
�
�
�
�
	


�
�

�
�


�
�
�

�
�

�

�
�
�

�

��������������������
�
��� ��
��������
�
���  

Fig. 8.Performance Improvement Proportion     Fig. 9. Convergence Proportion on V827E2667 
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7   Conclusion  

In this paper, we propose a new algorithm, Adaptive-SimRank, to calculate similarity 
measure SimRank based on object-to-object relationship efficiently. This work is based on 
our two observations. One is that most node pairs in the relationship graph converge to 
their final SimRank score quickly, while others need more time to converge. The other is 
that the distribution of the newly added converged node pairs in each step of iteration for 
the real graph is close to normal distribution. Algorithm Adaptive-SimRank exploits these 
observations to speed up the calculation of SimRank by avoiding unnecessary computa-
tion. The convergence of our algorithm is give in Appendix B. Empirical study demon-
strate the efficiency and accuracy of our algorithm. 
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Appendix A 

Fig. 10 illustrates the convergence situation for each step of iteration on the other 
three datasets, Washington dataset, Texas dataset and Wisconsin dataset. Based on 
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our observation, the distribution of the newly added converged node pair for the real 
world graph is close to normal distribution.  

 
    (a)                                                                           (b) 

 
(c)                                                                        (d) 

 
                  (e)                                                                        (f) 

Fig. 10. Convergence on Texas dataset, Washington dataset, and Wisconsin dataset. The mean-
ings of axes are the same as that of Fig.3. 

Appendix B 

Proof of convergence of Adaptive-SimRank 
In this appendix, we prove the convergence of Adaptive-SimRank.  

Lemma A: Let s(Va,Vb) be the similarity value calculated by SimRank, s(Va,Vb) =  
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Let sa(Va,Vb) be the similarity value calculated by Adaptive-SimRank, sa(Va,Vb) 



 An Adaptive Method for the Efficient Similarity Calculation 353 

= ( )

:( , )~ ( , )

[ ]
a b x x

l t

t V V V V

P t c
−>

∑ = 
1

1

[ ]
m

i

c P t
=

∑  + 
2

2

1

[ ]
m

i

c P t
=

∑  +
1

[ ]
km

k

i

c P t
=

∑ +…, sa(Va,Vb).  

Let uk =
1

[ ]
kn

k

i

c P t
=

∑ ,  and vk = 
1

[ ]
km

k

i

c P t
=

∑ , Then  0 ≤ vk ≤ uk. 

Proof:   There are three situations for the kth step of iteration for Adaptive-SimRank. 

Case 1: In the kth step of iteration, Adaptive SimRank locks the similarity value be-
tween Va and Vb before the kth  step of iteration. Thus, 0=vk ≤ uk. 

Case 2: In the kth step of iteration, Adaptive-SimRank searches some of the paths 
between Va and Vb, but loses some paths, because that paths is ignored by the conver-
gence of other pairs. Thus, 0 ≤  vk< uk. 

Case 3: In the kth step of iteration, Adaptive-SimRank searches all of the paths be-
tween Va and Vb. Thus, 0 ≤  vk= uk. 
In sum, 0 ≤ vk ≤ uk. .                                                                                                      ��
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Proof: According to Lemma A,  it’s easy to get  sak(Va,Vb) ≤  sk(Va,Vb).  
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Theorem: sa(Va,Vb) will converge to a fixed value. 
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Therefore, sa(Va,Vb) has a upper bound.  
In Lemma A, 0 ≤  vk, thus sa(Va,Vb)  is the positive term series.  
Thus, Adpative-SimRank will converge.                                                                       ��
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Abstract. Similarity search in time series data is used in diverse domains. The
most prominent work has focused on similarity search considering either com-
plete time series or certain subsequences of time series. Often, time series like
temperature measurements consist of periodic patterns, i.e. patterns that repeat-
edly occur in defined periods over time. For example, the behavior of the temper-
ature within one day is commonly correlated to that of the next day. Analysis of
changes within the patterns and over consecutive patterns could be very valuable
for many application domains, in particular finance, medicine, meteorology and
ecology. In this paper, we present a framework that provides similarity search in
time series databases regarding specific periodic patterns. In particular, an effi-
cient threshold-based similarity search method is applied that is invariant against
small distortions in time. Experiments on real-world data show that our novel
similarity measure is more meaningful than established measures for many appli-
cations.

1 Introduction

In a large range of application domains, e.g. environmental analysis, evolution of stock
charts, research on medical behavior of organisms, or analysis and detection of motion
activities we are faced with time series data that feature cyclic activities composed of
regularly repeating sequences of activity events. In particular for the recognition and
analysis of activities of living organisms, cyclic activities play a key role. For example,
human motions like walking, running, swimming and even working are composed of
cyclic activities that correspond to significant motion events.

In this paper, we focus on similarity search on time series with a special focus on
cyclic activities, in particular on the evolution of periodic patterns that repeatedly oc-
cur in specified periods over time. Examples of such time series are depicted in Figure
1(a). The upper time series shows the motion activity of a human, in particular the ver-
tical acceleration force that repetitively occurs during a human motion like walking or
running. Consecutive motion patterns show similar but distinct characteristics. We can
observe changes in the shape of consecutive periodic patterns that are of significant im-
portance if, for example, we want to analyze the motion behavior of any person. Many
other applications that take advantage of the ability to examine the evolution of periodic
patterns can be found in the medical or in the biological domain. For example, chronobi-
ologists are highly interested in exploring the relationship between the activity of a cell
or a complete organism and the amount as well as the duration of daylight affecting the

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 354–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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vertical acceleration force of a walking human 

vertical
acceleration
force

periodic patterns

activity plot of living organisms

(a) Evolution of periodic patterns in medical
and biological applications.

(b) Original and dual-domain repre-
sentation of a time series.

Fig. 1. Origin, application and representation of periodic patterns

cell or organism. Obviously, an important task is the identification of similar periodic
patterns in daylight cycles and biological responses like the concentration of hormones
(cf. Figure 1(a)). Another important domain where we find lots of time series containing
periodic patterns is the environmental research. Examples are time series that describe
the change of temperature values measured several times a day for each day within a
month. In this case, the periodic pattern is the temperature course of a day. In order
to be able to track the evolution of such periodic patterns, we propose to string con-
secutive patterns together to a sequence of patterns as shown in the example depicted
in Figure 1(b). A time series is then split into a sequence of subsequences, which we
call dual-domain time series. It represents the temporal behavior along a “second” time
axis, e.g. each hour of a day. The original time domain is thus made coarser, e.g. it now
represents each day of the entire time period. This way, we are able to define structures
modelling the characteristic of the evolution of periodic patterns. In our example appli-
cation, the new time series model allows us to examine the evolution of global climatic
changes by considering the summer or winter months of the last 20 years. Contrary to
[2], where the focus lies on the determination of periodicity features or the detection of
motion directly from the periodic patterns, we take our attention to methods that help
us to analyze the evolution of periodic patterns.

Given the new time series model, we are now interested in the examination of things
that happen at a certain time. Thereby, we have our focus on the relationship between
the times of both time domains at which certain events occur. Here, we take special
emphasis on events that refer to an exceeding of a given activity threshold. Similarity
search methods based on events that refer to exceeding of a given activity threshold have
been introduced in [3,4]. Given a certain threshold value τ , this approach reduces single-
domain time series to a sequence of intervals corresponding to time periods where the
amplitude value of a time series exceeds τ . Our approach represents periodic patterns as
polygons, that analogously correspond to threshold-exceeding amplitude values. This
approach is useful for a lot of application domains, where the exact value of a time
series is less important than the fact whether a certain amplitude (activity) threshold
is exceeded or not. Furthermore this approach is more robust to noise and errors in
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measurement. We are subsequently able to identify similar threshold-exceeding patterns
by comparing polygons. In order to efficiently perform similarity queries, we extract
relevant feature information from those polygons.

The main contributions of this paper are the following: We introduce a new similar-
ity measure for time series that takes two time domains into account. For the similar-
ity measures we propose feature-based representations of dual-domain time series and
show how they can be organized in an efficient way. The rest of this paper is organized
as follows: First we introduce a matrix representation of dual-domain time series. Af-
terwards we introduce the so-called intersection set, that consists of the polygons gen-
erated by a threshold plane intersecting the dual-domain time series at a given threshold
value τ . Furthermore, we present an approach to efficiently process index-supported
similarity search based on periodic patterns. For that purpose we employ different fea-
tures that are extracted from the intersection sets. Finally we evaluate the efficiency as
well as the effectiveness of our approach in a broad experimental section.

2 Related Work

There are a lot of existing approaches performing similarity search on time series.
Searching patterns can be supported by the Dynamic Time Warping approach (DTW)
that is introduced for data mining in [7] and that presents a possibility to match the
most corresponding values of different time series. Since the length of time series is
very often quite large, the DTW approach suffers from its quadratic complexity with
respect to the length of the time series. Thus a number of dimensionality reduction
techniques exist. For example the Discrete Wavelet Transform (DWT) [1], the Dis-
crete Fourier Transform (DFT) [16], the Piecewise Aggregate Approximation (PAA)
[15,23], the Singular Value Decomposition (SVD) [20], the Adaptive Piecewise Con-
stant Approximation (APCA)[14], Chebyshev Polynomials [9], or the Piecewise Linear
Approximation (PLA) [17] could be used. In [12], the authors propose the GEMINI
framework, that allows to incorporate any dimensionality reduction method into effi-
cient indexing, as long as the distance function on the reduced feature space fulfills the
lower bounding property. However, those solutions are hardly applicable for searching
similar patterns because in most cases, important temporal information is lost. In con-
trast to those solutions, in [21] the authors propose a bit sequence representation of time
series. For each amplitude value, a corresponding bit is set if this value exceeds a certain
threshold value. Similarity is finally computed based on those bits in an efficient way,
since this approach lower bounds the Euclidean Distance or DTW. However, it is not
possible to specify a certain threshold value at query time. This problem is addressed
with inverse queries in [19].

Many approaches for similarity search on time series are based on features extracted
from time series, i.e. in [18,10,13]. A similarity model for time series that considers the
characteristics of the time series was proposed in [22], where a set of global features
including periodicity, self-similarity, skewness and kurtosis among others is used to
compute the similarity between time series. The features proposed in [5] are calculated
over the whole amplitude spectrum. Thus, time-domain properties can be captured over
the whole available amplitude range.
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In this paper, we consider properties for the whole amplitude range of dual-domain
time series which is novel to the best of our knowledge.

3 Time Series Representation

3.1 Dual-Domain Time Series

Intuitively, a dual-domain time series is a sequence of sequences, i.e. we have an am-
plitude spectrum and – in contrast to traditional single-domain time series – two time
axes. More formally, a dual-domain time series is defined by

Xdual = 〈〈x1,1, . . . , x1,N−1, x1,N 〉, . . . , 〈xM,1, . . . , xM,N−1, xM,N 〉〉

where xi,j denotes the value of the time series at time slot i in the first (discrete) time
domain T = {t1, . . . , tN} and at time slot j in the second (discrete) time domain
S = {s1, . . . , sM}. In the following, we call the xi,j measurement configurations. We
assume ∀i ∈ 1, . . . , N − 1 : ti < ti+1 and ∀j ∈ 1, . . . , M − 1 : sj < sj+1.

Both axes T and S may also be any other ordered domain such as a spatial axis or
a color spectrum, so that the concepts presented in this paper can also be applied to
such types of data. The concepts can further be extended to the case of a multi-domain
representation of time series. For the sake of presentation, we focus on dual-domain
time series with two time domains, i.e. T and S are domains of discrete time slots.

3.2 Intersection Sets

As proposed in [3,4], time series considering a single time domain can be represented
as a sequence of intervals according to a certain threshold value τ . For the recognition
of relevant periodic patterns that are hidden in the matrix representation of dual-domain
time series, we extend this approach to a novel abstract meaning. Hence, we consider
an abstraction of the time series. In case of multiple domains, we speak of an n-domain
time series, where the dual-domain case corresponds to n = 2. Adding the amplitude
axis to the n-domain time series yields an (n + 1)-dimensional surface.

The dual-domain time series can be structured using an elevation grid which is cre-
ated by the grid squares of the measurement configurations xi,j where 1 ≤ i ≤ N and
1 ≤ j ≤ M (cf. Section 3.1). Each grid square of a time series Xdual (in the following

Fig. 2. Dual-domain time series with a threshold plane and the intersection polygon set
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Fig. 3. Similarity measure for a given threshold τ

denoted as X for simplicity) can be denoted by (xi,j , xi+1,j , xi+1,j+1, xi,j+1) where
1 ≤ i ≤ N − 1 and 1 ≤ j ≤M − 1. In our case, the threshold line for τ corresponds to
an n-dimensional threshold hyperplane which intersects the time series. The result of
this intersection is a set of n-dimensional polygons Pτ (X) = {p1, . . . , pK} which we
call the intersection set. The intersection set is created by intersecting the plane with the
amplitudes of each of the grid squares. An example of an intersection set is depicted in
Figure 2. The polygons of an intersection set with respect to a certain value of τ contain
those amplitude values of the time series that are above the threshold plane τ , and thus,
they deliver all the information about the periods of time during which the n-domain
values of the time series exceed τ . With this abstraction, we are able to compare two
time series with respect to coherences in time.

4 Similarity Query Processing

4.1 Similarity Measure and Feature Transformation

In order to analyze dual-domain time series based on periodic patterns with respect to
a certain threshold τ , we have to define a distance value for such time series. As de-
scribed above, the patterns of interest emerge as polygons forming intersection sets that
are created. So the distance value dτ (X, Y ) of two dual-domain time series X and Y
should reflect the dissimilarity of their corresponding intersection sets. In order to save
computational cost and to allow for the usage of index structures like the R∗-tree [6],
we derive local or global features for the polygons and compare these features instead
of the exact polygons (cf. Figure 3). In the following sections, we describe several local
and global features suitable for capturing the characteristics of the intersection sets.

4.2 Similarity Measure Based on Local Features

Local features describe a polygon p belonging to an intersection set Pτ (X) for a given
dual-domain time series X and a given threshold value τ . Let a polygon p consist of |p|
vertices v1, . . . , v|p|. Let vertex vi be defined by the tuple (xi, yi) ∈ T × S. Then the
Polygon Centroid feature (PC) describes the position of the vertices by calculating their
central point. Formally, the PC feature of a polygon p is defined as

PC(p) =
1
|p|

|p|∑
i=1

vi =

⎛
⎝ 1
|p|

|p|∑
i=1

xi,
1
|p|

|p|∑
i=1

yi

⎞
⎠ .
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The Polygon MBR feature (PM) is a conservative approximation of a polygon. It de-
scribes a polygon by means of its minimal bounding rectangle (MBR). Formally, the
4-dimensional PM feature of a polygon p is defined as

PM(p) =
(

min
i=1..|p|

(xi), min
i=1..|p|

(yi), max
i=1..|p|

(xi), max
i=1..|p|

(yi)
)

.

The number of polygons varies for different intersection sets and so does the number of
local features. In order to calculate the distance value dτ (X, Y ) based on local features
we employ the Sum of Minimal Distance (SMD) measure [11]. The SMD matches each
polygon (i.e. the corresponding local feature) of Pτ (X) to its best matching partner of
Pτ (Y ) and vice versa:

dτ (X, Y ) = 1
2
(

1
|Pτ (X)|

∑
x∈Pτ (X)

( min
y∈Pτ (Y )

d(x, y)) +
1

|Pτ (Y )|
∑

y∈Pτ (Y )

( min
x∈Pτ (X)

d(x, y)))

where x and y are the features describing the elements of the intersection set and
where d(x, y) is a distance function defined on these features. In our case, this distance
function is the Euclidean distance.

4.3 Similarity Measure Based on Global Features

Contrary to local features, global features try to capture the characteristics of an inter-
section set by a single feature value or feature vector. In this section, we present three
examples for global features.

Let Pτ (X) be an intersection set as described above. Let furthermore K be the num-
ber of polygons Pτ (X) consists of. Then the Intersection Set MBR feature (ISM) is the
global version of the local PM feature approximating the complete set of polygons by
a minimal bounding rectangle. So, ISM is defined analogously as

ISM(Pτ (X)) = ( min
i=1..|p|
k=1..K

(xk,i), min
i=1..|p|
k=1..K

(yk,i), max
i=1..|p|
k=1..K

(xk,i), max
i=1..|p|
k=1..K

(yk,i)).

The Intersection Set Centroid feature (ISC) is the global variant of the local PC feature
considering all polygon vertices of the intersection set. Let S be the overall number of
all vertices of all polygons of Pτ (X). Then ISC(Pτ (X)) analogously calculates the
central point of all vertices of the intersection set:

ISC(Pτ (X)) =
1
S

S∑
i=1

vi =

(
1
S

S∑
i=1

xi,
1
S

S∑
i=1

yi

)
.

A more sophisticated high-level feature is the Fill Quota feature (FQ). For each row
and each column of the data matrix, the percentage of polygon coverage is computed.
Hence, the horizontal and vertical values generate two single-domain time series that
describe the position as well as the size of the polygons. The computation of the polygon
coverage is processed based on the grid squares (cf. Section 3.1). Each grid square is
tested for its contribution to the area of a polygon. For a dual-domain time series X that
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consists of N rows and M columns, we denote the coverage area of a grid square at the
position (i, j) by Ai,j , i = 1..N, j = 1..M . For the i-th row and the j-th column, the
values are computed as follows:

FQ(xi) =
1
M

M∑
j=1

Ai,j and FQ(yj) =
1
N

N∑
i=1

Ai,j .

Afterwards we apply a standard technique for dimensionality reduction to the projected
time series so that we store only n feature values c1, . . . , cn (for example Fourier coef-
ficients) for each of the two projected time series FQ(x) and FQ(y). Note that n( N
and n(M . This leads to the following definition of the FQ feature:

FQ(Pτ (X)) = (c1(FQ(x)), . . . , cn(FQ(x)), c1(FQ(y)), . . . , cn(FQ(y))).

The distance value for two intersection sets based on global features can be calculated
without the SMD measure, as for each intersection set we derive the same amount
of global features. So in this case, dτ (X, Y ) is calculated as the Euclidean distance
between the associated global features.

5 Efficient Query Processing

In the previous section, we introduced similarity measures which are adequate to com-
pare evolutions of periodic patterns in time series. In this section, we show how similar-
ity queries based on the proposed similarity measures can be performed in an efficient
way. In particular, we consider the ε-range query and the k-nearest-neighbor query
which are the most prominent similarity query methods and are used as basic prepro-
cessing steps for data mining tasks [8].

The proposed methods are based on the features extracted from the original time
series as described in Section 4.1. Since, the feature extraction procedure, in particular
the computation of the intersection sets, is very time consuming, it is not feasible to do
at query time. For this reason, we propose to do the feature extraction in a preprocess-
ing step and organize the precomputed features in an efficient way. For example, the
features can be extracted during the insertion of the object into the database. Thereby
we have to solve the problem that the features extracted from the objects are associated
with certain amplitude-threshold values. For this reason, we either have to define a fixed
threshold which is used for all similarity computations or we have to precompute the
features for all possible threshold values. The former solution is too restrictive as it does
not allow the option for an adequate threshold readjustment at query time. On the other
hand there exists an unlimited number of thresholds which would have to be taken into
account leading to immense storage overhead.

5.1 Feature Segments

In the following, we propose a method for the efficient management of preextracted
features that allows for the specification of the threshold at query time. In fact, we have
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Fig. 4. Extracting feature segments from a time series

to take only a finite number of thresholds into account to derive features for all possible
thresholds. In particular, for a dual-domain time series of size n (n different amplitude
values), we need to extract only features for at most n different thresholds. The features
for the remaining threshold values can be easily computed by means of linear inter-
polation. Let us assume that we are given all amplitude values of a dual-domain time
series in ascending order of their amplitude values. The topology of the intersection
sets associated with thresholds equal to two adjacent amplitude values does not change.
Furthermore, also the change of the shape of all intersection sets associated with the
corresponding thresholds is steady and homogeneous. As a consequence, we only need
to extract the features at thresholds specified by all amplitude values occurring in a
given time series. The features between two adjacent values of these amplitude values
can be generated by linear interpolation, so we store each d-dimensional feature as a
(d + 1)-dimensional feature segment. An example is illustrated in Figure 4.

On the left hand side, there is a section of a dual-domain time series from which
we extract polygons (dotted lines) for the intersection planes at the two thresholds τ1
and τ2. The corresponding features points (vectors) v1 and v2 are sketched on the
right hand side. The features of all polygons that result from intersection planes at
thresholds between τ1 and τ2 are represented by the line between v1 and v2 called
feature segment. Consequently, we only need to extract and manage a set of feature
segments corresponding to a finite set of thresholds which are bound by the size of the
corresponding dual-domain time series. In order to calculate the features of all objects
at query time, we have to intersect the feature segments with the intersection plane
corresponding to the given query threshold τ . Obviously, at query time we only need to
take those feature segments into account that intersect the query threshold τ . The query
cost can be reduced if we use an adequate organization of the feature segments that
allows us to access only the feature segments which are relevant for a certain query.

5.2 Feature Segment Organization

After extracting the feature segments from all time series objects, they are partitioned
and stored in disc blocks of equal size. As mentioned above, for efficiency reasons it is
necessary to organize the feature segments of all objects in such a way that given a query
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threshold τ only those segments need to be accessed that intersect τ . For that purpose,
we sort the feature segments of all objects according to the lower bound of the segments
in ascending order and partition them into groups which are stored into equal-sized
disc blocks. This is done using a sweep plane as illustrated in the example depicted in
Figure 5 (step 1). During the sweep plane scan over the feature space, the feature seg-
ments which have been reached by the sweep plane are collected into a group. After a
fixed number k of segments has been collected (the number k is based on the capacity
of a disc block. In our example the disc block capacity k is set to 3), the minimal am-
plitude vale mini and the maximal amplitude value maxi over all segments collected
so far are computed (step 2). Then the algorithm proceeds with the next segments. If a
new segment lies within mini and maxi, it is added to group i using a new disc block.
This new block is concatenated to the existing blocks of group i. In case group i is not
suitable for the storage of a segment, a new group is created. The bounds of this new
group are determined as soon as the first block of the new group is filled.
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Fig. 6. Efficient organization of disc pages containing the feature segments
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The resulting disc blocks are organized group-wise within the following indexing
structure. As mentioned above, each feature segment group i consists of concatenated
disc blocks containing the feature segments and the minimum and maximum value
mini and maxi. The two values mini and maxi are used to index the feature segment
groups. The index consists of an array of triples (mini, maxi, ref) which correspond
to the feature segment group i. The triple entity ref is a pointer to the disc blocks
containing the feature segments of the corresponding group. The array entries are sorted
in ascending order of the corresponding mini value. The index structure is illustrated
in Figure 6.

5.3 Query Processing

At query time, the introduced index allows us to efficiently search for the relevant fea-
ture segment group using binary search over the triple entries mini. Here, we assume
that the array fits into main memory. Otherwise, a secondary storage structure is re-
quired to index the feature segment groups w.r.t. the mini value. Following the ref
pointer all relevant feature segments can be sequentially accessed by scanning the cor-
responding disc pages. If a new object is inserted into the database, its feature segments
are generated and sorted in ascending order w.r.t. their minimum amplitude value. The
algorithm then tries to insert the new feature segments into existing groups. A new
group is not generated until the insertion of new segment entries would require an en-
largement of the maxi value of one of the existing group i. In case of a deletion of
an object, we need a complete scan over the feature segment groups and remove the
corresponding entries. Afterwards we try to merge disc blocks of a group that are not
completely filled anymore. If a group consists of only one disc block which is less
than half full, then the group is deleted and the remaining entries of the disc block are
assigned to one of the neighboring groups.

6 Experimental Evaluation

6.1 Datasets

We evaluated the effectiveness of similarity search on dual-domain time series utiliz-
ing two real-world datasets. The TEMP dataset contains environmental time series data
created by stationary measurements of several years1. It consists of 60 temperature time
series from the year 2000 to 2004 that have been preclassified corresponding to the sea-
sons summer and winter. Each object consists of up to 31 days and each day is repre-
sented by 48 measurements that have been normalized because of matching reasons on
different ranges of the temperature measures that occur with different months. The NSP
dataset is a chronobiologic dataset describing the cell activity of Neurospora2 within
sequences of day cycles. This dataset is used to investigate endogenous rhythms. We

1 http://www.lfu.bayern.de/
2 Neurospora is the name of a fungal genus containing several distinct species. For further in-

formation see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html.
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converted single-domain time series that describe cell activities by splitting the mea-
surements according to the artificial day cycle. The NSP dataset consists of 120 objects
and has been classified into five classes according to the day cycle length (16, 18, 20,
22, and 26 hours). The efficiency evaluation was performed on an artificial dataset that
contained 10-1000 objects. We created two subsets having different resolutions: Each
time series of the dataset ART20 consisted of 20× 20 measurements. Analogously, the
dataset ART50 contained objects having a resolution of 50× 50 measurements.

6.2 Effectiveness of the Time Series Representation

Considering the single-domain representation of time series, we performed similarity
queries on the given datasets utilizing the techniques that are applicable for computing
similarity on single-domain time series, such as the Euclidean distance (in the following
denoted as EUCL), the DTW [7] and the threshold-based approach [3,4], in the follow-
ing referred to as THR. Later in this section, we outline the obtained results of our newly
introduced approach of measuring the distances for comparison. For an explanation of
the tables and the curves that appear in this section, we give a short overview of the
distance measures that have been considered for the experimental evaluation in Table 1.

Table 1. Distance measures considered for the evaluation

Abbreviation Description

EUCL Euclidean distance
DTW Dynamic Time Warping
THR Threshold Distance (single-domain approach)
ISC Intersection Set Centroid feature
ISM Intersection Set MBR feature
FQ Fill Quota feature
PC Polygon Centroid feature
PM Polygon MBR feature

Table 2 lists the average precision values for the different similarity measures uti-
lizing the single-domain representation of the datasets. In comparison to the Euclidean
distance and the DTW approach, the threshold-based similarity measure hardly leads
to higher average precision values. This can be observed for both datasets TEMP and
NSP. As we outline in the following, with our newly introduced dual-domain repre-
sentation approach in combination with a suitable threshold and the presented features,
we are able to improve these results. We also compared the effectiveness of the local
and global features that have been introduced in Section 4 using our threshold-based
approach for different values of τ .

The results vary significantly with the threshold τ and also with the datasets. De-
pending on τ and on the used feature we outperform the Euclidean distance calculated
on the time series. For the TEMP dataset and the local features (PC and PM) a thresh-
old value of τ = 0.5 yields the best results. The global features perform better for
a threshold value of τ = 0.75 (cf. Table 2(a)). The evaluation of the feature-based
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Table 2. Average precision for different measures on the single-domain and the dual-domain time
series representation for a given threshold τ

Measure EUCL DTW THR ISC ISM FQ PC PM

τ = 0.25 0.58 0.62 0.55 0.54 0.55 0.55 0.56 0.55
τ = 0.5 0.58 0.62 0.58 0.65 0.54 0.59 0.61 0.61
τ = 0.75 0.58 0.62 0.56 0.60 0.67 0.58 0.61 0.60

(a) Average precision achieved on the TEMP dataset.

Measure EUCL DTW THR ISC ISM FQ PC PM

τ = 0.25 0.56 0.52 0.56 0.73 0.99 0.74 0.41 0.53
τ = 0.5 0.56 0.52 0.60 0.80 0.93 0.63 0.55 0.59
τ = 0.75 0.56 0.52 0.47 0.51 0.67 0.46 0.52 0.52

(b) Average precision achieved on the NSP dataset.

approach using the NSP dataset leads to different results. Especially the utilization of
the ISM feature leads to a high degree of effectiveness. In general, similarity search
based on the dual-domain time series representation leads to better results with higher
average precision in comparison to the single-domain approach. Figure 7 depicts two
precision-recall plots that support this statement. In this figure we included the results
for the single-domain representation (DTW and Euclidean distance) as well as for the
dual-domain representation in combination with different features.

6.3 Efficiency of Threshold-Based Similarity Search on Dual-Domain Time
Series

In order to evaluate the efficiency of our newly introduced approach we performed
ε-range queries with a varying database size on the datasets ART20 and ART50 and
measured the query time. The query objects were selected randomly and averaged
the results. We examined the benefit of precalculating the features by storing them as
segments as described in Section 5. The corresponding results are marked with “pre-
calc”. For comparison, we calculated the intersection sets and features at query time
and labelled the results with “onl. calc”. Furthermore, we performed similarity search
using the traditional measures having a single-domain time series representation (i.e.
Euclidean distance and DTW). Figure 8(a) depicts that calculating the required infor-
mation at runtime is significantly more expensive than retrieving the information from
our precalculated segments. However, the DTW can be outperformed anyway. Utilizing
pre-calculation yields a better runtime than if the Euclidean distance is applied. Here,
the threshold-based approach benefits from its reduction of dimensionality. Obviously,
the runtime for the dataset ART50 is significantly higher than for the dataset ART20,
which is due to the complexity of the data and thus of the intersection sets. Figure 8(b)
depicts a difference in the runtime comparing local and global features, representatively
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Fig. 7. Precision-recall plots for different features and different representations
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Fig. 8. Results of the efficiency evaluation having a threshold value of τ = 0.25

performed using the PC and the ISC feature. This is due, on the one hand, to the SMD
that has to be applied with the local features but not with the global features, and on the
other hand to the number of local features that is significantly higher than that of the
global features, since each polygon has to be described separately.

7 Conclusions

In this paper, we proposed a new approach to perform similarity search on time series
having periodic patterns in an effective and efficient way. Regarding single-domain time
series having periodic patterns, the threshold-based approach can hardly improve the
results of similarity computations in comparison to traditional techniques like the Eu-
clidean distance or the DTW. Transforming the time series into the dual-domain space
and thus considering the periodicity, we can better observe how the patterns change
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in time. Furthermore, the ability to focus on relevant amplitude thresholds by utilizing
the extraction of polygons from the time series and the usage of suitable, even simple
features enables us to get better results for periodic pattern analysis. The quality of the
results when utilizing an arbitrary feature however depends on the datasets. As a con-
sequence, the effectiveness of global and local features varies with the type of data.
The results with respect to the performance show a clear tendency. Regarding the tra-
ditional techniques and further a straightforward approach of computing the polygons
and extracting the features from the time series at query time, we can reduce the run-
time of similarity queries significantly by performing the computation and extraction in
a preprocessing step. Furthermore, similarity computations using global features can be
processed more efficiently than with local features.
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5. Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similarity search in
multimedia time series data using amplitude-level features. In: Satoh, S., Nack, F., Etoh, M.
(eds.) MMM 2008. LNCS, vol. 4903, pp. 123–133. Springer, Heidelberg (2008)

6. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and ro-
bust access method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990, pp.
322–331 (1990)

7. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In:
KDD Workshop, pp. 359–370 (1994)
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Abstract. Frequent pattern mining (FPM) has become one of the most
popular data mining approaches for the analysis of purchasing patterns.
Methods such as Apriori and FP-growth have been shown to work effi-
ciently in this setting. However, these techniques are typically restricted
to a single concept level. Since typical business databases support hier-
archies that represent the relationships amongst many different concept
levels, it is important that we extend our focus to discover frequent pat-
terns in multi-level environments. Unfortunately, little attention has been
paid to this research area. In this paper, we present two novel algorithms
that efficiently discover multi-level frequent patterns. Adopting either a
top-down or bottom-up approach, our algorithms exploit existing fp-tree
structures, rather than excessively scanning the raw data set multiple
times, as might be done with a naive implementation. In addition, we
also introduce an algorithm to mine cross-level frequent patterns. Ex-
perimental results have shown that our new algorithms maintain their
performance advantage across a broad spectrum of test environments.

1 Introduction

Frequent pattern mining (FPM) is a relatively recent but important data min-
ing pursuit. Simply put, by identifying commonly occurring purchase or prod-
uct combinations, FPM assists decision makers in improving their strategies for
dealing with complex data environments. For the most part, previous research
in the area has focused on single level frequent pattern mining (SLFPM). In
practice, however, most practical business/retail databases consist of products
or elements with multiple concept or classification levels. For example, a retailer
might consider a carton of milk as (a) Sam’s club skim milk (b) skim milk (c)
milk (d) dairy product, depending upon the context of the analysis. To be useful,
therefore, frequent pattern mining should be viable within multi-level domains.

One approach to multi-level mining (MLFPM) would be to directly exploit
the standard algorithms in this area — Apriori [1] and FP-growth [6] — by
iteratively applying them in a level by level manner to each concept level. In
fact, for relatively small data sets, this approach is probably adequate. However,
I/O costs in particular tend to increase significantly with larger data sets. With
FP-growth, for example, the raw data set must be fully scanned each time a new
fp-tree is constructed. This, of course, would occur once for each hierarchy level.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 369–383, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we propose two new algorithms that deal with the I/O problem
described above. Specifically, we dramatically minimize I/O costs by using fp-
trees themselves as input to subsequent iterations of the mining process. Since
our methods extend FP-growth, we refer to them as FPM-B and FPM-T re-
spectively. Essentially, FPM-B adopts a bottom-up approach, scanning previous
fp-trees with a leaf-to-root traversal, then re-ordering and building a new tree
for the next level. FPM-T, in contrast works top-down, scanning existing trees
from root-to-leaf, building an intermediate tree at the same time and, after trim-
ming and resizing, producing a new tree for the next level of the hierarchy. Both
methods have been shown to work effectively under specific conditions. As an
extension, we also apply our techniques to cross-level mining, so as to identify
frequent patterns existing between arbitrary classification levels.

The remainder of the paper is organized as follows. Section 3 reviews related
work in multi-level frequent pattern mining. The new bottom up (FPM-B),
top down (FPM-T) and cross-level (FPM-cross) methods are then presented in
Sections 4, 5, and 6 respectively. Experimental results are discussed in Section 7,
with final conclusions offered in Section 8.

2 Related Work

In the domain of quantitative association rules, Srikant et al. first introduced
the idea of partial completeness, specifically dealing with the information lost
because of partitioning [12]. Miller et al. [8] explored distance-based quality and
rule interest measures in order to find quantitative rules, while Aumann et al.
adopted statistical theory for this same problem [2]. Moreover, Zhang et al. also
investigated statistical theory to search for quantitative patterns [14]. Specifi-
cally, they introduced a re-sampling technique as the basis of their approach.

Pan et al. proposed CARPENTER to deal with high-dimensional bio-
informatics data sets [9]. Essentially they transformed data sets into lists of
transaction IDs that could eventually be used to build fp-trees. Zhu et al. pre-
sented an algorithm called Pattern-Fusion to work with colossal patterns [15].
The basic idea here is to fuse the small core patterns of the colossal patterns
in one step. With this approach, they reduce the cost of generating mid-sized
patterns, which is the general technique adopted by Apriori and FP-growth.

Generalized Sequential Patterns (GSP), an early algorithm in mining sequen-
tial patterns, presented by Srikant et al., also uses an Apriori-like approach [13].
PrefixSpan, proposed by Pei et al., employs a divide and conquer technique,
treating each sequential pattern as a prefix and getting all patterns from the
divided partitions [11].

Grahne et al. studied the problem of mining monotonic constraint based fre-
quent itemsets [3]. Specifically, they identify all minimal answers that are valid
and all minimal valid answers. Pei et al. also proposed algorithms to discover
convertible constraint based frequent itemsets [10], in this case by exploiting the
FP-growth algorithm. Finally, Liu et al. presented a noise-tolerant threshold for
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Fig. 1. A simple concept hierarchy

mining approximate frequent itemsets [7]. They also use rules to prune itemsets
if their sub-itemsets are not frequent.

3 Multi-level Mining

3.1 Conceptual Overview

MLFPM builds upon the notion of a concept hierarchy, whereby each item in
the data set can be associated with multiple meanings. For example, given the
product hierarchy of Figure 1, “Smith” brand 4% milk bread may be viewed
from three different perspectives. At the bottom level (Level 1), it literally means
“Smith” brand 4% milk, a specific product . At Level 2, it refers to the kind of
milk, while an Level 3, it simply represents milk. In the current context, we use
the terms higher level and lower level to represent higher and lower levels of
abstraction.

Given the hierarchy in Figure 1, we can investigate shopping cart queries that
are executed against transaction databases. Individual entries in this data set
would be of the form “4% K-farm milk, 2% Smart milk, Kelly apple juice.” For
simplicity, we encode the database in a concise numeric form that identifies not
only the given product, but its classification level as well. For example, given
the hierarchy of Figure 1, we might represent Level 3 by assigning “1” to milk,
“2” to bread, “3” to jam and “4” to juice. In the sub-level for milk, Level 2,
we assign “1” to skim milk, “2” to 2% milk and “3” to 4% milk. Furthermore,
in the sub-level for 4% milk, we assign “1” to Smith, “2” to K-farm and “3”
to Smart. As a result, “132” represents K-farm 4% milk, while “411” implies
Kelly apple juice. Table 1 illustrates how a simple transaction database for the
running example might be encoded. Finally, we note that when necessary, we
can extend the encoding by adding the wildcard character “*” for lower levels.
For example, “13*” would imply all brands of 4% milk.
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Table 1. Encoded transaction table

TransactionID Items
1 111 132 212 221 311
2 111 211 212 222 412 321
3 111 132 212 221 311
4 112 131 222 312 423 322
5 111 112 131 211 222 312
6 132 211 221 311 321

3.2 A Simple MLFPM Benchmark

It is certainly possible to adapt the original Apriori method proposed by Han
et al. [5]. Briefly, the idea is to iteratively process the k levels of the hierarchy
from bottom to top by generating candidates for k-itemsets from large (k − 1)-
itemsets. The candidates are subsequently tested against the data set to deter-
mine whether or not they meet the user-defined threshold. However, the cost of
all of the candidate generation and checking quickly become prohibitive.

As such, a more appealing option is to exploit the non-candidate generation
algorithm, FP-growth. Recall that FP-growth employs a data structure called an
fp-tree to record counts of the most commonly occurring product combinations.
Simply put, the idea for the benchmark is to first scan the data set once to
generate frequent items for all levels, filtering out items whose counts are below
the threshold (i.e, a user-defined frequency ratio). After this, we iteratively scan
the database d − 1 times to generate an fp-tree for each concept level. Finally,
we mine the fp-tree at each level and discard the tree when mining is finished.
Ultimately, the fp-growth approach is considerably less I/O-intensive that the
Apriori model and will therefore serve as our baseline algorithm for comparative
purposes.

4 FPM-B: A Bottom-Up Approach

The primary motivation for the new algorithms is that the benchmark is forced
to repeatedly scan the full data set. Since an fp-tree stores complete information
for a data set, we observe that it may be faster to scan the associated fp-trees
instead of the underlying data set itself. At the same time, when scanning an
fp-tree, we can directly create a new fp-tree for the subsequent level. Moreover,
as the multi-level algorithms move from lower concept levels to higher concept
levels, the size of the fp-trees becomes significantly smaller, allowing us to exploit
this inherent form of tree compression.

In short, FPM-B starts from the leaf nodes of an existing fp-tree and traverses
each branch upwards until it reaches its root. It then employs standard FP-growth
tree-construction methods in order to create an fp-tree at the subsequent (i.e.,
higher) concept level. The process is described in Algorithm 1. In the remainder
of this section, we review the primary steps or phases of the algorithm.
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Algorithm 1. FPM-B
Input: an encoded transaction data set
Output: multi-level frequent pattern rules
1: scan the database once and build a header table for every level
2: filter out clearly infrequent items
3: build an fp-tree for the bottom level
4: mine the bottom level tree
5: for level k = 2 to level d do
6: identify the leaf nodes for the next level
7: generate the associated fp-tree
8: mine this new fp-tree and identify frequent patterns
9: end for

Step 1: Initial data set scan. Items are initially inserted into a compact,
hash-based storage structure called a header table. Every level-based fp-tree has
its own header table to store frequent items. Unlike the benchmark, FPM-B only
identifies frequent items at the highest level. For the rest of the levels, FPM-B
identifies all items at the given concept level. For example, given Table 1, and
thresholds 2, 4, and 5 at levels 1, 2, and 3 respectively, the first scan would
identify as frequent “1**”, “2**”, and “3**” at level 3. “4**” is infrequent since
its count is 2 and this is obviously below the Level 3 threshold. In addition, of
course, we get all items, frequent and infrequent, at the lower levels.

Step 2: Filtering. With FPM-B, we scan lower level fp-trees in order to create
higher level fp-trees. We have to careful, of course, not to eliminate an infrequent
node at level k − 1 that may in fact be frequent at level k. Therefore, items at
lower levels should only be filtered relative to the frequency status at the highest
level. In Figure 1, for example, since “4**” is infrequent at Level 3 (the highest
level), all its descendants (412, 423, 41*, 42*) will be filtered out. But item “321”
will not be filtered, even though item “32*” has a count of just 3, since “321”
has a corresponding ancestor “3**” that is frequent at Level 3.

Step 3: Second data set scan. We are now ready to proceed with tree-
building, following the logic of the standard fp-growth algorithm. In short, we
scan each transaction, re-ordering items according to their descending frequency
in the header table, and then inserting them into the new tree. After building
the bottom level fp-tree (BLFPT), we perform the mining process as per the
threshold. Note that although we may have slightly more items in the BLFPT
than might be the case with the benchmark, the mining process is only performed
on those items that are frequent at their level. As a concrete example, the BLFPT
for Table 1 is shown in Figure 2(a). Note that the number listed after the colon
in each label is an the occurrence count.

Step 4: Identify leaf nodes. Since the BLFPT is in fact a concise represen-
tation of the original data set, we may use it as a data set proxy to directly
generate the next level fp-tree. We begin by scanning the tree and identifying
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(a) (b)

Fig. 2. (a) Bottom level fp-tree (BLFPT) (b) Identifying leaves

(a) (b)

Fig. 3. (a) Filter duplicate items (b) Bottom-up construction of new fp-tree

its leaf nodes. A pointer to each leaf is then inserting into the Leaf Node Array.
An illustration for the running example is shown in Figure 2(b).

Step 5: Generation of a new fp-tree. We now perform a bottom up scan of
each leaf node until we reach the root. At the same time, we collect the labels
of all nodes scanned in the process. We use “*” to replace digits of the labels
in order to form new labels that, in turn, are used to create the nodes at the
next level. Because multiple nodes at the current level may generate duplicate
wildcarded labels at the next level, we adopt the idea of boolean rules described
in [5] in order to do eliminations . That is, a repeated item in one transaction
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line will be treated as though it occurred only once. So, for example, for the
third branch of the tree in Figure 2(a), we start from the leaf node “112” and
subsequently identify “131”, “312”, “211”, “222” and “111”. The corresponding
items at the next level are therefore “11*”, “13*”, “31*”, “21*”, “22*” and “11*”.
Since we now have two “11*”s in this branch, we keep just one of them, as shown
in Figure 3(a). We then use the (descending) order defined in the header table
for Level 2 to sort the names, getting “22*”, “21*”, “31*”, “13*” and “11*”.
Using this order, we insert all the new nodes into the next fp-tree. The final
result is illustrated in Figure 3(b).

Step 6: Mining. At the conclusion of the tree-construction process, we have
a new compressed fp-tree for the next level. At this point, we may initiate the
mining process in order to identify the appropriate frequent itemsets. This level-
by-level process is very similar to the mining phase for single level frequent
pattern identification (SLFPM).

5 FPM-T: A Top-Down Approach

The second approach to multi-level mining reverses the direction of the traversal
through the fp-trees of the classification hierarchy. It is described in Algorithm 2.
Though many of its steps are conceptually similar to those of the previous al-
gorithm, the alternate traversal pattern creates unique processing requirements.
We describe the main features of FPM-T below.

Algorithm 2. FPM-T
Input: an encoded transaction data set
Output: multi-level frequent pattern rules
1: scan the database build top and bottom header tables
2: filter out clearly infrequent items
3: build an fp-tree for the bottom level
4: mine the bottom level tree
5: for level k = 2 to level d do
6: create a new tree from the tree of level k - 1
7: generate the associated header table
8: re-order nodes and combine sibling branches
9: mine the current fp-tree and identify frequent patterns

10: end for

Step 1: Initial data set scan. As is the case with the benchmark and FPM-B,
FPM-T needs to scan the database to generate frequent item listings. However,
at this stage FPM-T only creates header tables for the highest and lowest levels.
In fact, as we will see below, FPM-T actually traverses existing fp-trees in order
to generate the remaining header tables.
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Step 2: Filtering. This progress is virtually identical to the filtering process
performed in FPM-B. In short, we only perform filtering on lower levels based
on the values at the highest level.

Step 3: Second data set scan. Again, this phase is analogous to the one
in FPM-B. Specifically, we perform a second scan of the data set in order to
generate an fp-tree for the bottom level (BLFPT).

Step 4: Building derivative fp-trees. We begin scanning from the root of
the current tree. As we do so, we create associated items for the next level. Fig-
ure 4(a) illustrates how the first branch might be created. If two items in the
same branch have the same item label, we again exploit boolean rules to elim-
inate one. Duplicate elimination is depicted in Figure 4(b). In order to further
compress the tree, we also combine child nodes of sibling branches if both have
the same item label. An example can be found in Figure 4(c). Here, because
the third branch of our running example contains a “211”, it is merged with the
“21*” node of the new tree, along with its relevant children.

(a) (b) (c)

Fig. 4. (a) New branch created (b) Eliminate nodes in a top-down manner. (c) Combine
nodes between siblings.

Recall that in the initial scan, we generate just the top and bottom header
tables. We now build the intermediate table(s) by scanning the current fp-tree,
which is typically very fast. As we scan the tree from the root downwards, every
new item is inserted into the header table. If the item already exists, we simply
update its count. We also use a linked-list to maintain a connection between
items that have the same item label but are located in different branches. An
example can be seen in Figure 5.

Step 5: Re-order the tree. In FP-growth, the most frequent item in the header
table is deemed to have the “lowest” order, and consequently appears closer to
the root in the associated fp-tree. Since we create nodes for the new level from
the current tree, every new node follows an order relative to the structure of
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22*:1

31*:1

13*:1

21*:1

32*:1

31*:1

22*:1

11*:1

13*:1

32*:1

31*:2

21*:2

22*:2

13*:2

22*:2

21*:2

11*:4

31*:1

13*:1

32*:1

Root

Fig. 5. Level 2 header table

(a) (b)

Fig. 6. (a) After re-ordering (b) After combining

the previous tree. However, in the new level, the order of items in the header
table may be different from that in the previous level; thus, we must ensure that
the new nodes also satisfy the appropriate descending order pattern. Figure 6(a)
illustrates how this re-ordering would proceed. Note, however, that as we re-order
the nodes, the tree may actually expand as a side effect. In order to minimize this
growth, items sharing a common parent and having the same label are combined
into a single node. A graphical example can be found in Figure 6(b).

Step 6: Mining. At this stage, we are left with a cleaned, compressed fp-tree
for the next level. We can therefore proceed directly to the mining process, which
again is very similar to that of single level frequent pattern mining (or FPM-B).

5.1 Complexity Considerations

We note that because the FPM algorithms build upon essentially linear traversals
of the fp-trees (and the mining itself is unchanged), performance characteristics
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are similar to those of the underlying fp-growth algorithm (the re-ordering in
FPM-T adds a real but modest overhead). For detailed performance analysis,
see [4]. In terms of memory, we note that while multiple fp-trees are utilized, only
two need to be used at any one time. In fact, since branches are never reprocessed,
it would be possible to dynamically reclaim the memory of the parent tree during
the generation of the child tree. As such, a judicious implementation would
require no significant increase in memory.

6 FPM-Cross: Cross Level Mining

From time to time, users or decision makers may also want to understand asso-
ciations across levels. For example, knowing that customers buy milk and cherry
jam together may be more useful in making strategic decisions if the company in
question is able to consistently obtain a discount from cherry jam wholesalers.
In this case, buying milk and jam that is at the same level in the concept hi-
erarchy becomes less important than buying milk and cherry jam that is at a
different level, or cross-level, in the concept hierarchy. Therefore, we now turn
our attention to the concept of cross-level frequent pattern mining (CLFPM).

6.1 Filtering

Due to the combinatorial explosion of item relationships in the cross-level con-
text, it is not feasible to insert items at all levels into a single fp-tree. Clearly,
some form of filtering is required. We first note that, in the addition to the d level
thresholds of MLFPM, CLFPM mining is also associated with a single global
cross-level threshold. Only items from all levels that are above this threshold
can be considered as frequent. Consequently, we can use the first threshold as a
filter to do level-by-level mining (as in MLFPM), and use both thresholds to do
cross-level mining.

Recall that when building an fp-tree from the previous level, we can not use
the first threshold to filter items in the tree except at the highest level, because
we need to generate the items of the next level from the current level. But
in cross-level, the situation changes, since we only generate a single “mixed”
cross-level tree. As a result, we can use the first threshold to filter out items
whose counts are either below the threshold for their level or the threshold for
cross-level mining.

6.2 The Supporting MLFPM Method

In terms of supporting algorithms for FPM-cross, we could conceivably build
upon either FPM-B or FPM-T. However, the new cross-level tree is deeper than
before, which means that longer branches will be grown. Because FPM-T requires
us to re-order and subsequently combine branch nodes, it is not ideally suited to
the CLFPM context. Instead we utilize FPM-B. The integrated process is shown
in Algorithm 3.
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Algorithm 3. FPM-Cross
Input: base level fp-tree
Output: cross-level frequent pattern rules
1: filter nodes as per both mining thresholds
2: identify fp-tree leaf nodes
3: for each branch of the base level fp-tree do
4: for every node of the branch do
5: generate item names for all levels
6: check each item i against the cross level header table
7: if i exists in the header table then
8: insert i into a temporary array T
9: end if

10: re-order the nodes of T
11: initialize cross level nodes
12: insert these nodes into the cross level fp-tree
13: end for
14: end for
15: do mining and generate cross-level frequent pattern rules

When applying the bottom-up method, we start from the lowest user-requested
level. For example, let us say the user asks for the cross-level relationship between
Level 2 and Level 5. In this case, we refer to Level 2 to as the base level . We begin
with the base fp-tree, scanning from leaf to root, identifying the label informa-
tion for individual branches. We then generate corresponding nodes for all levels.
When items do not meet the threshold at their concept level, or the threshold of
the unique cross-level, their labels are deleted. We then take the filtered items, as
we do in FPM-B, and insert them into the new cross-level fp-tree. This resulting
fp-tree fulfills the requirements of cross-level frequent pattern mining.

An example of the base level fp-tree is shown in Figure 7(a). Thresholds
for each level are 2, 2, and 2, while the threshold for cross-level analysis is 4.
Consider the branch containing the leaf node “752:1”. Here we get: “752”, “236”,
“456”, “235”, “45*”, “23*”, “75*”, “4**”, “7**”, and “2**”. We find “752” is
infrequent (count = 1), and further that “236” and “75*” are also infrequent
in the cross-level context. Thus, only “456”, “235”, “45*”, “23*”, “4**”, “7**”,
and “2**” are inserted, leaving the final cross-level fp-tree (CLFP) depicted in
Figure 7(b). Note that, while larger than a single FPM-B tree, CLFP is not
significantly bigger due to pruning and filtering steps.

In terms of a viable benchmark in the cross-level domain, any proposed so-
lution must be capable of adding items from the next level to each transaction
line and then building some form of cross-level tree. For example: “235”, “456”,
“786”, “457 → “235”, “456”, “786”, “457”, “23*”, “45*”, “78*”, “45*”, “2**”,
“4**”, “7**”. The advantage of our method over a “naive” implementation is
again the minimization of data set scanning. Specifically, we can do cross-level
construction after building an initial fp-tree, and then using the bottom-up tech-
nique to generate the new cross-level tree. This allows us to directly exploit the
methods developed for multi-level frequent pattern mining.
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(a) (b)

Fig. 7. (a) Base-level tree (b) Cross-level fp-tree

7 Experimental Results

We have performed extensive experimental evaluation of the new multi-level
methods under a variety of test conditions. Due to space limitations, we will
describe a sampling of the most illustrative tests in this section. In terms of the
evaluation environment itself, all tests were conducted on a Dell workstation
with a 1.8 GHz processor, 2 GB of memory, and a 250 GB SATA hard drive.
The algorithms were implemented with Java 5.0 and run on a Linux OS (Fedora
Core 5). With respect to data set generation, we employ a number of ideas taken
from [1,5]. In particular, our data generation application allows us to dynamically
tune the following parameters: T (Number of transactions), I (Average length
per transaction line), L (Number of levels in the hierarchy), and F (Fan-outs
from level to level). Thresholds are randomly set between .01% and 4% of the
full transaction count. We also utilize a zipfian skew parameter to arbitrarily
cluster data points.

In Figure 8(a), we see a comparison between FPM-T, FPM-B and the bench-
mark algorithm, using the parameters T = 250000, I = 3, L = 6, and F = 5
(data set D1). Essentially, this is a performance test for data sets with short,
simple transactions. The graph clearly demonstrates an advantage for the FPM
methods. As expected, the relative improvement increases with added dimen-
sions since the cost of processing increasingly smaller fp-trees drops almost to
zero. FPM-T, in particular, executes in just a little over half the time of the
benchmark at six dimensions. In addition to the benefit of using fp-trees as in-
put representations, FPM-T excels in short transaction environments due to the
fact that it also uses fp-trees to build the header tables, thereby further reducing
data set scan costs. This point is underscored in Figure 8(b), which demonstrates
that the total cost of header table construction for FPM-T is about half that of
the benchmark.



Multi-level Frequent Pattern Mining 381

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 8. (a) Baseline test with short transaction length (b) header table construction
costs (c) longer transaction length (d) tree building costs (e) effect of data set size (f)
number of concept levels (g) cross-level mining
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For environments associated with longer average transaction lengths (data
set D2, I = 6), the same general trend is evident; that is, performance of the
benchmark deteriorates in the presence of increased classification levels. The
results are depicted in Figure 8(c). Here, however, FPM-T is not as impressive
due to the fact that its node re-ordering costs grow with longer transaction
length. FPM-B does not require re-ordering and is able to more fully exploit
the reduced cost of constructing fp-trees from existing trees. Figure 8(d) isolates
this benefit in a direct comparison with the benchmark. Depending upon the
combination of level count and dataset, we can see that tree building for FPM-B
represents as little as one third the cost of the benchmark.

Figure 8(e) illustrates the effect of increasing the number of transactions in
the input set. In this case, we set I = 3, L = 6, and F = 5, and generate data
sets of 500000 (D4), 1 million (D5), and 1.5 million (D6) transactions. Since
the average transaction length is short in this particular case, we have selected
FPM-T for the comparison. As shown in the graph, data set size has little effect
upon relative performance, with the FPM algorithm consistently requiring just
50% of the total processing time.

The effect of increasing the level count is also an important consideration
for multi-level mining since the primary purpose of the new algorithms is to
minimize excessive I/O associated with data set scans. As level count increases,
the benefit of the new methods should be quite pronounced. Figure 8(f) shows
just that, with the incremental cost of the FPM-T method effectively dropping
to zero after four or five levels (almost no I/O or mining costs) on a data set
with one million records (data set D5). Total cost is again about half the cost of
the benchmark, which must do full I/O on every iteration.

Finally, we turn to cross-level mining. In particular, Figure 8(g) assesses the
cost of cross level mining on the six-level data set D4 as we shift the base from
level one to level five. We see that even the times for the benchmark drop con-
sistently as we move the base since, of course, we have fewer items to insert into
the cross level tree. The times for FPM-cross, however, range from 12% to 93%
less than the benchmark at comparable points.

8 Conclusions

Frequent pattern discovery is one of the fundamental mining tasks found in
contemporary decision support environments. While efficient algorithms exist
for the somewhat artificial case of non-hierarchical product data sets, we are
aware of no research that extends these methods to the much more practical
multi-level classification context. In this paper, we present a pair of MLFPM
algorithms that reduce run time to less than half that of more naive alternatives,
largely by minimizing redundant disk accesses. We also extend the core work by
incorporating one of the FPM methods into a cross-level mining framework.
Experimental evaluation demonstrates the viability of the new methods across
a variety of test scenarios.
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Abstract. The discovery of diversity patterns from binary data is an
important data mining task. This paper proposes entropy l-diversity pat-
terns based on information theory, and develops techniques for discov-
ering such diversity patterns. We study the properties of the entropy
l-diversity patterns, and propose some pruning strategies to speed our
mining algorithm. Experiments show that our mining algorithm is fast
in practice. For real datesets the running time are improved by serval
orders of magnitude over brute force method.

1 Introduction

Many real-life datasets can be modeled as binary data, in which an item may
appear or not appear in a given record. The well-known transaction presentation
of supermarket basket data in association rule mining is a good example of binary
data, in which each transaction is a record. Other examples include documents
(documents as records, and keywords as items), and different kinds of web data
(e.g. users as records, and user’s click history as items) or high-dimensional data.
Therefore, binary data analysis has attracted much attention in data mining
research community.

In this paper, we consider another kind of pattern: diversity pattern. Given
a binary dataset, where each row is a user, and each column is a sample, the
authors of [4] proposed the maximum diversity sample selection problem, based
on subset coverage. In this paper, we used entropy to measure the diversity of
itemsets, and proposed the problem of finding entropy l-diversity pattern from
binary datasets. Some work in data mining and machine learning has adopted
entropy as the diversity measure of the objects. Here we use the idea of [3] to
measure the diversity of the sensitive attribute, and discuss some properties of
the entropy l-diversity patterns. In our algorithm design, we use those properties
to prune the pattern search space, which improve the efficiency of our mining
algorithm.

The rest of this paper is organized as follows. Section 2 discusses related works.
Section 3 presents problem description and some bounds of joint entropy that
will be used to pruning the candidate patterns. Section 4 describes our mining
algorithm and Section 5 presents our experimental evaluation on real datasets.
We conclude our work in Section 6.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 384–388, 2009.
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2 Related Work

Joint entropy is proposed in [2] as a quality measure for itemsets, and serval
efficient algorithms to mine those maximally informative k-itemsets. The main
goal of their work is to select distinct items, as well as to minimize redundancy
within the resulted itemsets. Their work is orthogonal to ours, here we aim to
find those minimum patterns with entropy no less than threshold l, and we use
more bounds of joint entropy to pruning the pattern search space.

Our algorithm is mainly based on the algorithmic framework proposed in [4].
They defined subset coverage diversity, discussed the properties of this diversity
measure, and proposed an algorithm to find minimum sample set (here is item)
with coverage diversity larger than a threshold ρ. While our work used the
entropy l-diversity appeared in [3], which is a privacy preservation model there.
This model requires that the values of sensitive attribute in each equivalence
class is not too skew, i.e., the entropy of the sensitive attribute is not less than
a threshold l.

3 Mining Minimum Entropy l-Diversity Patterns

In this section we introduce the entropy l-diversity patterns. For the content of
information theory, the reader is referred to [1].

Definition 1. Given an entropy threshold l and a binary dataset D, an itemset
X(X ⊆ I) is an entropy l-diversity pattern, if and only if H(X) ≥ l.

Mining Minimum Entropy l-Diversity Patterns: Given a binary dataset
D and a threshold l, find all minimum patterns X ⊆ I such that H(X) ≥ l.

When mining entropy l-diversity patterns, the elementary sub-procedure is
computing the entropy of any itemset. It’s time consuming to scan whole dataset
for computing entropy once. Therefore our aim is to reduce the number of compu-
tation of entropy of large itemsets. This is achieved by using serval lower bounds
and upper bounds of those entropy, which just use the entropy of 1-itemsets and
2-itemsets, and conditional entropy between item pairs. We will develop some
such bounds, which are listed as follows.

Theorem 1. For any n ≥ 3 random variables X1, X2, · · · , Xn,

H(X1, X2, · · · , Xn) ≤ H(X1, · · · , Xn−1) + H(X1, · · · , Xn−2, Xn) + H(Xn−1, Xn)
2

(1)

By the chain rule for entropy, we get: H(X1, X2, · · · , Xn) ≤ H(X1, · · · , Xn−1) +
min

1≤i≤n−1
H(Xn|Xi), H(X1, · · · , Xn−2, Xn) ≤ H(X1, · · · , Xn−1) + min

1≤i≤n−1
H(Xn|Xi),

and H(X1, · · · , Xn−2, Xn) ≥ H(X1, · · · , Xn−1) − min
(

min
1≤i≤n−2

H(Xn−1|Xi),

H(Xn−1|Xn)
)

.
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4 Our Mining Algorithm

In this section, we develop the Exhaustive Pattern Enumeration algorithm to
find entropy l-diversity patterns. The algorithm also consists of two phases. In
the first phase, we find a pattern C with H(C) ≥ l as the initialization itemset,
which used the greedy idea. Starting from empty itemset, in each step, we add
one item which maximizes the entropy gain of itemset. When the entropy of
current itemset is lager than l, we stop this searching phase. This phase is similar
to the algorithm 5 in [2], where they return the found itemset as the result. That
algorithm is an approximate algorithm.

Now in the second phase, we should search the itemsets with size less than
the size of itemset returned by the first phase, and then return the patterns
with minimum number of items. In the worst case, the running time of the
enumeration procedure in this phase is exponential. While we use those pruning
strategies described following the algorithm, the running time of our algorithm
is practicable. When searching the pattern space, in depth-first order, we visit
the nodes dynamically and calculate entropy of the itemsets.

K-l Entropy Diversity Pattern Algorithm
Input: Itemset I , Binary data set D, Threshold l, maximum size K, K = |C|.
Output: Patterns P having H(P ) ≥ l with minimum size (≤ K).
1. Initialize.

Candidate minimum itemset list, cList = φ.
2. Current itemset, cItemset = φ.
3. Remaining itemset, rItemset = I .
4. Enumerate(cItemset,rItemset).
5. P = the minimum itemsets in cList.

Subroutine: Enumerate(cItemset,rItemset)
6. if |cItemset | ≥ K return;
7. for each item Xi ∈ rItemset
8. if H(cItemset ∪ {Xi}) ≥ l
9. Insert set cItemset ∪{Xi} into cList
10. else
11. cItemset = cItemset ∪{Xi}.
12. rItemset = rItemset −{Xi}.
13. Enumerate(cItemset,rItemset).
14. rItemset = rItemset −{Xi}.

Pruning Strategy 1. Our first pruning strategy is updating the entropy up-
per bound of candidate itemsets. We can use the size K = |C| of the initial-
ization itemset returned by ForwardSearch algorithm. The first two steps in
sub-procedure Enumerate() uses this bound. It is not necessary to compute the
entropy of itemsets with size larger than K, we just prune those itemsets di-
rectly. In addition, the 9th step in Enumerate() also check whether the itemset
size is larger than k. Besides those two examinations, we can dynamically use
the smallest size of candidate itemset in cList as an upper bound. While this
size is less than K, we update K to this value.
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Pruning Strategy 2. In the enumeration procedure, we can estimate the in-
cremental entropy gain when adding one item to the current candidate itemset.
We could calculate H(Xi) for any item Xi, joint entropy H(Xi, Xj), and con-
ditional entropy H(Xi, Xj) between any item pair, before K-l-EDP algorithm.
Now before the 8th step in Enumerate(), we can estimate an upper bound of
joint entropy, which is H(cItemset∪{Xi}) ≤ H(cItemset)+ min

Xj∈cItemset
H(Xj |Xi).

If the right hand of this inequality is less than l, we know that the left hand is
also less than lthen we don’t need to compute H(cItemset ∪ {Xi}).

On the other hand, if we have computed H(cItemset ∪ {Xi}), then for Xj ∈
rItemset, we could get an upper bound and a lower bound of H(cItemset∪{Xj})
respectively as: H(cItemset ∪ {Xi}) + min

Xk∈cItemset
H(Xj|Xk) and H(cItemset ∪

{Xi})−min
(

min
Xk∈cItemset

H(Xi|Xk), H(Xi|Xj)
)

. If this upper bound is less than

l, then we know thatcItemset ∪ {Xi} is not an entropy l-diversity patter; and if
this lower bound larger than l, then we know thatcItemset ∪ {Xi} should be an
entropy l-diversity pattern.
Pruning Strategy 3. We have another upper bound of entropy of the candidate
itemset, before the 7th and 10th steps. Similarly, if the upper bounds is less than
l, we need not to compute the joint entropy, due to the fact that this itemset
should not be an entropy l-diversity pattern.

In addition, we assume that the visiting node is an itemset with p items, de-
noted as cItemset = {Xi1 , · · · , Xip}, and the smallest size of candidate itemsets
is K. Then we know that we could add at most K − p items into the itemset.

5 Experimental Evaluation

In this section, we evaluate the performance of our solution to the entropy l-
diversity pattern problem on real datasets. All experiments were run on a Win-
dows XP machine with Intel Pentium4 2.4GHz CPU and 2GB RAM. Our algo-
rithm is implemented using Java.

5.1 Scalability

First, we evaluate the performance of mining algorithm on the Mushroom dataset,
which consists of 126 items and 8124 records. The left panel of Figure 1 shows the
execution time of mining algorithm on the Mushroom dataset. As can be seen, the
running time is small when the entropy threshold l ≤ 3.5. While the execution
time increases significantly with the increase of the threshold l ≥ 4.

Next, we evaluate the performance of our mining algorithm on Chess dataset,
which consists of 73 items and 3196 records. As can be seen from the right panel
of Figure 1, the running time performance is similar to the one on Mushroom
dataset. When the threshold l ≥ 4.5, the execution time increases significantly
with the increase of the threshold. Because the number of visited nodes increase
significantly, and we find that the size of returned patterns is no less than 6.
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(1) Mushroom Dataset (2) Chess Dataset

Fig. 1. The execution time of mining algorithm on Mushroom and Chess dataset

5.2 Quality of Entropy Diversity Patterns

In this experiment, we examined the quality of entropy diversity patterns found
by our mining algorithm. Here we present two interesting entropy diversity pat-
terns found from Voting dataset, when we set the threshold l = 6: {handicapped-
infants, water-project-cost-sharing, mx-missile, superfund-right-to-sue, synfuels-
corporation-cutback, immigration, export-administration-act-south-africa}, and
{handicapped-infants, water-project-cost-sharing, synfuels-corporation-cutback,
immigration, mx-missile, crime, export-administration-act-south-africa}. As can
be seen, all patterns are 7-itemsets. We find that the mined patterns almost have
the first two bills, which maybe due to those bills are more controversial.

6 Conclusion

In this paper, we introduce the entropy l-diversity pattern mining problem. After
presenting some properties of the entropy l-diversity patterns, we propose the
mining algorithm based on depth-first search, which is powered by three prun-
ing strategies. We evaluate the performance of our mining algorithm on serval
datasets and demonstrate the quality of the mined patterns.
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Abstract. With the proliferation of XML data and applications on the Internet, 
efficiently XML query processing techniques are in great demand. Many path 
queries on XML data have complex structure with both structural and value 
constraints. Existing query processing techniques can only process some part of 
such queries efficiently. In this paper, a query optimization strategy for complex 
path queries is presented. Such strategy combines index on values, structural 
index and join on labeling scheme and generates effective query plan for com-
plex queries. Experimental results show that the optimization strategy is effi-
cient and effective; our method is suitable for various path queries with value 
constraints and our method scales up for large data size with good query  
performance. 

Keywords: XML; Path Query; Query Optimization. 

1   Introduction 

XML has become the de facto standard for information representation and exchange 
over the Internet. An XML document can be naturally modeled as a tree, where ele-
ments are modeled as nodes in the tree and direct nesting relationships between ele-
ments are modeled as edges between nodes [28]. All standard XML query languages, 
e.g., XPath and XQuery, can retrieve a subset of the XML data nodes satisfying cer-
tain path constraints. For example, XPath query  //book[author=”aaa”]//figure[id=1] 
will retrieve all figure nodes with id equaling to 1 that appear under books with a 
name of author “aaa”.  

With the proliferation of XML data and applications on the Internet, efficient XML 
query processing techniques are in great demand. In many applications, path query 
can be complex with both structural and value constraints. The processing of such 
kind of queries (CXQ for brief) brings following challenges: 
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� The selectivity of a value and structural constraint is possible to be large or small. 
When the selectivity is high, only a few nodes are useful to the query. If the query 
is processed with the method that is to process structural part at first and then the 
value constraint, many useless nodes are accessed. The efficiency is decreased. 
Currently, most techniques such as [3,4,13,30] and [2] for XML query evaluation 
focus on structural part. With processing many useless nodes, high efficiency will 
not be gained.  

� A CXQ may contain multiple value constraints with various selectivities. Addi-
tionally, different parts of the structural part of a CXQ also have various selectivi-
ties. Therefore, the order of processing different parts of the query affects the 
processing efficiency of a CXQ. Current query processing techniques for XML 
data do not consider such problem.  

� For a complex query, one kind of techniques can only process some part of it 
efficiently. Current work does not consider the problem of how to combine effi-
cient techniques to process CXQ efficiently. 

To address these problems, in this paper, with efficient storage structure, our 
method combines the advantages of tree search, join-based and index-based methods 
to process CXQ efficiently. To process CXQ with various structural and value con-
straint selectivities efficiently, we design cost-model-based query optimization strate-
gies.  

The major contributions of this paper include:  

� A form of query plan for CXQ is presented.  
� With effective support of storage structure and the query processing operators on 

it, a cost model is designed as the base of query optimization. 
� In order to choose the most efficient query plan for a CXQ, a cost-based query 

optimization strategy is presented. Such techniques can be generalized for query 
optimization for other storage structure with similar cost model. 

The rest of the paper is organized as follows: Section 2 introduces some background 
knowledge. Section 3 presents the form of query plan of CXQ. The cost model for CXQ 
is presented in Section 4. Cost-model-based query optimization strategies are presented 
in Section 5. We present our experimental results and analysis in Section 6. Related 
work is described in Section 7 and Section 8 concludes the paper. 

2   Preliminaries 

XML documents are usually modeled as labeled trees: elements and attributes are 
mapped to nodes in the trees and direct nesting relationships are mapped to edges in 
the trees. In this paper, we only focus on the element nodes; it is easy to generalize 
our methods to the other types of nodes defined in [28].  

All structural indices for XML data take a path query as input and report exactly all 
those matching nodes as output, via searching within the indices. Equivalently, those indi-
ces are said to cover those queries. Existing XML indices differ in terms of the classes of 
queries they can cover. DataGuide [7] and 1-index [21] can cover all simple 
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path queries, that is, path queries without branch. [13] showed that F&B Index is the 
minimum index that covers all branching path queries. Note that if XML data is mod-
eled as a tree, its 1-index and F&B Index will also be a tree. Each index node n can be 
associated with its extent, which is a set of data nodes in the data tree that belongs to 
the index node n. 

We show an example XML data tree, its 1-index and F&B Index in Figure 1(a), 
Figure 1(b) and Figure 1(c), respectively. In the 1-index, all the 2nd level b elements 
in the data tree are classified as the same tag b index node; this is because all those 
nodes cannot be distinguished by their incoming path, which is a/b. However, those b 
nodes are classified into three groups in the F&B Index; this is because branching 
path expressions, e.g., a/b[d] and a/b[b], can distinguish them.  

XPath [6] is a path description language presented by W3C. An XPath expres-
sion can be modeled as a tree, in which node is tag or value constraint and edge has 
two kinds of tags, “/” and “//”. We define the node with value constraint as VC-
node. For example, the query a/b[//e[f][g=’computer’]]//c can be modeled as Fig-
ure 2(a), where single line represents “/” and double line represents “//”. The part of  
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XPath matching the result to be returned is called trunk. The part in “[ ]” is called a 
branching constraint. In the example, a/b//c is the trunk; [//e[f][g=’computer’] is a 
branching constraint. g is a VC-node.  

We describe some notations used in the rest of the paper. We distinguish nodes in 
the original data tree and nodes in the 1-index (or F&B Index); the former is termed 
Dnodes and the latter is termed 1index nodes (or Inodes), respectively. Since the F&B 
Index is a refinement of the 1-index, each Inode n in the F&B Index corresponds to a 
unique 1-index node and thus is assigned the 1-index node number (denoted as 
n.1indexID). We term the child axis (i.e., /) as PC axis and term descendant-or-self 
axis (i.e., //) as AD axis.  

Disk-based F&B [30] index is to store the F&B index on disk with reasonable clus-
ter strategies. We choose the disk-based F&B index as the storage structure in this 
paper because it supports various search strategies and query operators on XML data. 
The cluster has three levels:  

1 . All Inodes with the same tag are clustered together on a logical unit called tape.  
2 . The child Inodes of an Inode is clustered as follows: the child Inodes from the 

same parent are grouped by their tag names. Each of such cluster is called a 
chunk.  

3 . Nodes with the same tag are clustered according to their 1indexID. This is be-
cause it can be shown that the answers to simple path queries are exactly those 
Inodes with the same 1indexID. Each of such clusters is called a block.  

To support query processing efficiently, there are also some additional storage 
structure. 

1� In order to support bottom-up search, with each node, a pointer to its parent is 
added. To support the query with value constraints, pointers from values to corre-
sponding nodes are added.  

2� Values of nodes with the same tag are stored together on the value tape. To sup-
port the value constraint efficiently, indices are built on the values. The start and 
end positions of all nodes are stored together on the extent tape.  

3� To obtain a whole fragment of the XML document, the document tape is used to 
store the whole document. With the start and end positions in the extent tape, the 
contents of elements can be obtained from the document tape.  

For example, the disk-based F&B index of the XML document in Figure 1(a) is 
shown in Figure 1(d). On disk-based F&B index, query operations of depth first 
search (DFS for brief), breadth first search (BFS) and bottom-up search (BUS) can be 
used to process path queries. Based on clustering by 1-index node, a path query with-
out twig constraint can be processed by scanning 1-index instead of traverse the 
whole subtree. This operator is RangeFetch. With additional tapes containing value 
information, extents and the whole document, processing path queries with disk-based 
F&B index can return values or XML segments instead of ids only. With extents, 
structural join [3] can be applied to accelerate “//” operation (such operator is called 
SegSJ). The details of these algorithms are shown in [30]. The operator for seeking 
from value to its corresponding node is call value search (VS for brief).  
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3   Query Plans for CXQs 

In this section, we present the model of the query plan for a CXQ based on the storage 
structure presented in Section 2.  
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Fig. 2. An Example for Query Plan 

As the fundamental components of query plans, we define query operators DFS, 
BFS, BUS, VS, SegSJ and RangeFetch, corresponding to the algorithm Depth-first 
Search, Breadth-first Search, Bottom-up Search, Value Search, Segment Join and 
Range Fetch, respectively. Here, VS operator is to perform the step of finding re-
quired nodes just satisfying single value constraint without considering other struc-
tural information.  

Each query operation is a binary operator to process a sub-query with form a*b 
where a and b are tags and * is “/” or “//”.Each operation is a triple (op, axis, dir), 
where op is the name of the operator; axis is whether the operation is used to evaluate 
the sub-query with “/” or “//”; dir is the operation which is used to evaluate the sub-
query in trunk (TQ for brief) or the sub-query in branching constraint (BQ for brief). 
For an operation to answer sub-query a*b, if dir=TQ, the results of this operation are 
the elements matching b; if dir=BQ, the result of this operation are the elements 
matching a.  

We also define three access operators that access tape directly. The operator for 
accessing some tape sequentially is defined as sequential access (SA for brief). When 
the next operator is to access nodes by value constraint with index, as discussed in 
Section 2, all nodes will not be accessed. Such accessing is defined as index access 
(IA for brief). The third case is that at the end of a series of RangeFetch operations, as 
discussed in [30], only a successive fragment of one tape is accessed. Accessing op-
erator in such case is defined as RangeFetch access (RA for brief).  

A CXQ can be represented as a query tree. Each edge of such a query tree can be 
processed with an operator. For example, the query a/b[//e[f][g]]//c with structure in 
Figure 2(a) can be executed by the strategy shown in Figure 2(b) with query plan in 

Figure 2(c). where each edge in Figure 2(a) corresponds to an operator. Edge a�b 
corresponds to DFSa/b,TQ.  
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A query plan P can be modeled as a DAG Gp=(VGp, EGp) with each vertex as an 

operator and each edge as the relationship between two operators. Each vertex v�VGp 

is an operator. And e�EGp: v1�v2 means that some input of v2 is the result of v1.  
For each vertex v in Gp with multiple incoming edges, there is an order attached to 

each edge representing the order of evaluation of the operators. In Figure 2(c), the 
order is the number in the edges. 

4   The Cost Model 

In this section, the cost model for query optimization is presented. We use the logical 
I/O during query processing as cost of query processing. It is reasonable because I/O 
cost dominates total cost.  

Table 1. Notations of Cost Model 

notation  semantics   
St the set of candidate node with tag t  
|S| the number of nodes in set S 
blk(S) the number of blocks of nodes in set S 
Childn(b) the set of b children of node n 
tree_size(n) the number of blocks containing the subtree with n as root  
constraint(t,C) the constraint as a node with tag t satisfying constraint C  
numberrt,st(n, C) the number of blocks should be traversed to find a node satisfy-

ing constraint C with the relationship described with rt of n. rt is 
the PC or AD, representing parent-child and ancestor-
descendant relationship, respectively. st is the traversal type 
with value DFS or BFS  

parentn(t) the set of parents of node with tag t. If t=*, it means all the par-
ent of n.  

path(n,p) the set of ancestors of node n in the path from n to its nearest 
ancestor with tag p  

ancestorn(t) the set of ancestors of n with tag t. If t=*, it means all the parent 
of n.  

sel(St, r*t) the subset of St with t nodes selected by index with an r node as 
parent if *=“/” or ancestor if *=“//”  

lind(t) the height of B+index of the ids of nodes with tag t 
interS the number of disk containing the intervals corresponding to the 

index nodes in S  
costd(S,t) the cost of seeking the left most(d=L) or right most(d=R) de-

scendant with tag t of all nodes in S 
costvalue(C,t) the cost of seeking all values satisfying constraint t in the set of 

values of t nodes  
Vt[C] the set of nodes with tag t containing value satisfying constraint 

C  



 Query Optimization for Complex Path Queries on XML Data 395 

Table 2. The Cost Model of Operators 
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SegSJ TQ  
a bS S a binter  + inter  + blk(S ) + blk(S )

 
a bS S a binter  + inter  + blk(S ) + blk(S )  

 BQ  
a bS S a binter  + inter  + blk(S ) + blk(S )

 
a bS S a binter  + inter  + blk(S ) + blk(S )  

RangeFetch 2 costL(a, b) + costR(a,b) 
VS costvalue(C, a) + blk(Va[C]) 

The framework of the estimation of the cost is to estimate the cost in each step and 
sum up all the costs in the steps. The parameters used in the description of the cost 
model are shown in Table 1. The cost of a query plan is the sum of the cost of all its 
operators. Their values can be estimated with techniques in [21-24]. 

The cost models of the operators are summarized in Table 2. The unit of the result of 
the cost model is the number of I/Os. For discussion, the operator VS is to process step 
a[C] where C is a constraint and other operators are to process step a*b where “*” 
means “/” or “//”. The explanations of the cost model are as follows.  

� Here, Sa and Sb are the sets of a nodes and b nodes obtained from previous steps, 
respectively.  

� The cost models of BFS and DFS in case of TQ are the same. When the axis is 
‘/’, BFS and DFS are to access all the b children of a nodes. When the axis is 
‘//’, BFS and DFS are to traverse all sub-trees with nodes as roots.  

� The cost models of BFS and DFS in case of BQ are different because these two 
methods may meet the nodes satisfying constraints in different position.  

� BUS operator with axis ‘/’ can obtain parents without accessing another nodes. 
Without index, BUS operator with axis ‘//’ needs to access the ancestors of each 
node in Sa. For axis ‘//’, with BUS operator for TQ and BQ, for each node in Sb, 
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the numbers of ancestors to be accessed are different. Therefore, we use different 
functions to describe them.  

� During processing the estimation of BUS, if some nodes share same parent, their 
parent is accessed only once.  

� The cost of SegSJ is the sum of number of blocks of F&B index node and the 
intervals of candidates.  

� The cost of RangeFetch is the cost of locating of the start and end position in the 
tape of b.  

� The cost of VS is the sum of the cost of its two steps, obtaining the values satisfying 
the constraint and seeking the index nodes corresponding to the values.  

The cost models of operators SA, IA and RA are presented as follows, where se-
lected(tapea) is the selected part during accessing.  

costSA(a) = size(tapea) 
costIA(a) = size(selected(tapea)) 
costRA(a) = size(selected(tapea)) 

5   The Generation of Query Plan 

For a CXQ, all possible query plans can be generated with following strategy. The 
generation of query plan is divided into steps. The number of steps equals to the num-
ber of edges in the query graph. In each step, one edge is contracted. Since there may 
be multiple edges in query graph, which edge to be contracted has multiple choices. 
Each step of contraction can be represented as an operator. In the last step, the graph 
is contracted into a point. The steps of contraction are represented as a digraph G=(V, 

E), where v�V is a status of the contraction and each e��: vi�vj is a transmission from 

status vi to vj. For e��: vi�vj, the edge in query graph 
contracted to transform v1 to v2 is called a transform 
edge of e, denoted by Te. G is called the transform graph 
of corresponding query. In G, a node without incoming 
edge is called a source and a node without outgoing edge 
is called a sink. An example of the generation of the 
candidate query plans of the query a/b[e]/c is shown in 
Figure 3.  

Each edge e�E corresponds to an operator, denoted by 
e.opt. In G, the operators in each path from source to sink 
represent a feasible query plan. For the operator of each 
edge e, there may be several choices:  

� In the case that Te is in the trunk of the query and 
none of the nodes from root to the start node of Te 
have branching constraints, if Te represents“//”, the 
choices of e.opt include DFS, BFS, SegSJ, BUS-
noindex, BUSindex or RangeFetch; otherwise Te may 
be DFS, BFS, SegSJ, BUSnoindex, or RangeFetch. 
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� If Te is in branching and represents “//”, e.opt may be DFS, BFS, SegSJ, BUSin-
dex or BUSnoindex.  

� If Te points from node to value, e.opt is VS.  
� In other cases, the choices of e.opt include DFS, BFS, SegSJ and BUSnoindex.  

The operators for the edges in the transform graph are selected individually. It is 
because evaluation of each subquery with different operator will not affect the inter-
mediate result. As the first stage of optimization, for each edge e, the operator with 
smallest cost is selected and the weight of e, denoted by e.w, is such cost. The search 
for optimal query plan is to find the path from source to sink with smallest sum of 
weights of edges.  

n is the number of nodes in the query tree. Each choice in the search space corre-
sponds to an arrangement of all the edges in the query tree. Therefore, the size of 
search space is O((n-1)!). Since the status is generated in level, this problem can be 
solved with dynamic programming. The algorithm is shown in Algorithm 1. With 

such algorithm, the number of generated statuses is O(����).  

Algorithm 1 SearchOptSolution(G) 
Input: G: The query graph; 
Output: The query plan as the query operator list 
S0 = Ø 
nS0

 .cost = 0 
nS0

.path = NULL 
nS0

 .piori = NULL 
for i = 1 to |G.E| do 

T= GenCombination(i,|G.V|) 

for each T � T do 

nT .cost = minj�T (nT/i.cost + ej.wight) 

r=arc minj�T (nT/i.cost + ej.wight) 

nT .path = nt-r.path � er 
return n|G.V|.path 

In the algorithm, the subscript is a set. The subscripts of status in the ith phase are 
represented by the combination of i elements in |G.V|. The function GenCombina-
tion(i,n) is to generate all the combinations with i from n. For each transmission from 
one status to another, one element is added to its subscript. In the algorithm, The cost 
model is applied on the estimation of the cost of each status. 

In most of cases, in the algorithm, n is small (less than 10) and the query optimiza-
tion is fast. For the cases that n gets large, in order to accelerate the query optimiza-
tion, we design some strategies to reduce the search space.  

Initialization Cost Filter. The idea is that for the query, we design a query plan p as a seed 
by heuristic method. During the searching, when the cost of current steps is larger than p, 
further searching in this branching is stopped. p is called the seed plan. The seed plan is 
chosen by following heuristic strategy without any statistic information:  
1. If a node is in trunk with all the nodes in its incoming path has no branching con-

straint, RangFetch is added to its incoming edge.  
2. For each other single slash edge, a BFS operator is added.  
3. For each other double slash edge, a SegSJ operator is added.  
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4. For a leaf f with value constraint, a VS operator is added and all the edges in the 
path from f to the node in trunk as the root of the sub-tree with f is converted into 
BUS.  

5. The order of operators associating with a node with multiple incoming or outgoing 
edges is determined by following strategy: the priority is as (1)branching with 
BUS (2)branching for constraint (3) branching with more nodes.  

Rule 1-3 of the heuristic strategy choose the fastest operator when the data is dis-
tributed uniformly. Rule 4 insures that the value query can be supported and Rule 5 is 
to process the operator that will filter more nodes.  

For a structural query, the seed plan is better than the query plan with operator 
SegSJ in each step. The reasons are as following:  

In a Dnode, the pointers to its children are stored. Processing single slash step with 
BFS accesses required children directly while SegSJ accesses extra extent tape. 
Therefore, the step of single slash, BFS is better than SegSJ. For the step of double 
slash, SegSJ is chosen in seed plan.  

Optimal Query Plan Branch Cutting. This strategy is using the optimal cost of the 
searching in former steps as the filter to cut branches. When a query plan with smaller 
cost is obtained, the filter cost is changed to this value.   

6   Experimental Results 

6.1   Experimental Setup 

All of our experiments were performed on a PC with Pentium 3GMHz, 2G memory 
and 100G IDE hard disk. The OS is Windows 2000 Server. We implemented the 
system using Microsoft Visual C++ 6.0. We also implement XSketch [22][23][24] 
by ourselves as well as query estimation on XSketch and query optimization strat-
egy based on the estimation result of XSketch. We allocate 500K main memory for 
XSketch, including the graph Sketch for structural part and histograms for value 
part. We used LRU policy for buffer replacement. For comparison, we obtained the 
source code of NoK system [1] and TJFast [19] from the original authors. NoK is 
one of a native XML storage and query processing systems. TJFast is to using 
Dewey to improve TwigStack. TJFast is the best twig join algorithm to process all 
twig queries in the absence of indexes. We modify the code of TJFast to support 
value constraints.  

In order to compare fairly with other systems, all the experiments are run in the 
warm buffer.  

The dataset we tested is the standard 100M XMark benchmark dataset [27]. It has a 
fairly complicated schema, with several deeply recursive tags. We used a relatively 
small buffer size (less than 1%) to better simulate the case when the XML data size 
grows up to Gigabytes. Some statistics of the data, its 1-index and its F&B Index are 
shown in Table 3. We use the following metrics: elapsed time (time) and the number 
of physical I/Os (PIO).  
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Table 3. Size of the ED F&B Index 

#Document Nodes #Tags  #1-index Nodes #F&B Index Nodes 
2048193  77  550  528076   

In order to better test and understand the characters of our system under different 
workload, we designed a set of queries with different characters. For a CXQ, there are 
two major dimensions: axis type, value constraint selectivity. Axis type includes 
without AD axis (i.e., PC axis only) or with AD axis. Value constraint includes high 
selectivity and low selectively. For example, query with AD axis and low selectivity is 
abbreviated as AD-low. We select two representative queries for each category and 
number those queries from Q?1 to Q?8, where if ? is ’X’, the query is for XMark; if ? 
is ’D’, the query is for DBLP. The semantics of the queries are shown in Table 4. The 
statistic information of queries for XMark is shown in Table 4.  

Table 4. The Workload of Experiments 

Queries  Type  Queries  Type   
Q?1, Q?2  PC-high Q?3, Q?4 PC-low  
Q?4, Q?5  AD-high Q?7, Q?8 AD-low 

Table 5. The Query Set 

QID Type  Result  Query   
QX1 PC-low 327 /site/open_auctions/open auction[bidder/increase = 42]/annotation  
QX2 PC-low 313 /site/people/person[address[zipcode>=8 and zipcode<= 

9]]/profile/interest 
QX3 PC-high 3966 /site/regions/Europe/item[quantity = 1]/description/text 
QX4 PC-high 10148  /site/open_auctions/open_auction[bidder/[increase>5.0 and increase< 

100]/initial 
QX5 AD-low 158 //site//closed_auction[//price> 30 and //price < 4][//annotation]//type 
QX6 AD-low 299 /site//open_auction[//annotation//happiness = 2][//privacy]//reserve 
QX7 AD-high 38634 /site/open_auctions/open_auction[//happiness][//quantity=1][//descriptio

n/text]//date 
QX8  AD-high 6770 /site//person[//age>20 and //age< 100][//emailaddress][//creditcard]

//interest 

6.2   Quality of Plans 

In this subsection, we check the quality of query plans selected by our strategy. We ran-
domly (but not exhaustively) generated ten query plans for each query of XMark. We 
executed these plans on 100M XMark document and picked up the best, the worst of these 
plans and computed average time of these query plans. Note that the worst and best plans 
in the Table 4 are not necessarily the worst and best plan for a query but only the worst 
and best plans among a randomly selected plan set. The execution time of the worst, best 
plan and average time of the query plan set on 100M XMark document are shown in 
MAX, MIN and AVG column in Table 5, respectively. The plans as seed of the search are 
shown in SED column in Table 5.  
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Table 6. Comparison of Run Time 

Query OPT(ms) SED(ms) MAX(ms) MIN(ms) AVG(ms) 
QX1  5  38  151  41  88  
QX2  8  9  12  8  9  
QX3  126  161  538  174  334  
QX4  73  73  95  73  88  
QX5  13  17  770  13  273  
QX6  30  198  995  632  851  
QX7  173  305  794  645  745  
QX8  28  145  20171  292  2852  

The plan execution time on 100M XMark document is shown in Table 4, where 
time in OPT column is the execution time for the plan as the result of our optimiza-
tion algorithm.  

From the execution results of query plan, the query plan generated by our algo-
rithm can always avoid really bad plans. The query plans of our optimizer are always 
better than the average efficiency of randomly generated query plan. 

6.3   Optimization Time 

In this subsection, we examine the time taken by optimizer. The time taken by 
optimizer is shown in Table 5.We compare the optimization time with and without 
branch-cutting, in the line of OPT and NON-OPT, respectively. We also compare 
the optimization time with execution time of query plan, which is in the line of 
TIME.  

Table 7. Optimization Time 

 QX1 QX2  QX3  QX4  QX5  QX6  QX7  QX8  
NON-OPT(ms)  0  0  0  0  0  0  16  15   
OPT(ms)  0  0  0  0  0  0  0  0   
Execution(ms)  5  8  126  73  13  30  173  28  

From the result, we can observe that when query is large, our heuristic strategy can 
improve query optimization time significantly. And comparing with execution time, 
query optimization is small. 

6.4   Scalability 

We tested our system on XMark document with different sizes, from 10M to 100M. 
The execution results of our system on Xmark documents with different sizes are 
shown in Figure 4. From the results, our system has good scalability. The physical 
I/Os and execution time of our system are about linear to document size. It shows our 
system has good scalability.  
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Fig. 4. Scalability Experimental Results 

6.5   Comparing with Other Systems 

In this subsection, we compare the performance of our system with another two sys-
tems: NoK [1] and TJFast [19]. We set buffer size 256K Bytes. Query optimization 
time and final sorting time is included in our algorithms such that the results are in the 
document order. We measured the evaluation time of all the applicable algorithms and 
compared them in Table 8.   

Table 8. Comparison with Other Systems 

 QX1  QX2  QX3  QX4  QX5  QX6  QX7  QX8   
OPT(ms) 5  8  126  73  13  30  173  28   
NoK(ms) 1572  n/a  750  n/a  n/a  n/a  n/a  n/a   
TJFast(ms) 1094  17891  437  1094  297  391  860  1282  

 QD1 QD2  QD3  QD4  QD5  QD6  QD7  QD8   
OPT(ms)  5  17  54  29  4  13  97  87  
NoK(ms)  172  n/a  17032  n/a  n/a  n/a  n/a  n/a  
TJFast(ms)  3453  765  797  265  782  454  829  297  
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NoK. Since current version NoK can process query with only single slash and equal-
ity constraint, we only compare Nok with Q?1 and Q?3, For queries on XMark and 
DBLP, our system outperforms Nok 6 to 300 times.  

TJFast. From the comparison, our system outperforms TJFast 2 to 700 times. It is 
because even though in TJFast, the value constraint can filter some leaves, nodes 
corresponding to other leaves can not be filtered. In our system, since optimizer can 
choose the plan to begin at the part with smallest selectivity and search from such part 
only requires to access a small ratio of the nodes of corresponding to other nodes in 
the query. 

7   Related Work 

There are two major methods for XML structural query processing. One is index-
based method; another is join-based method.  

There have been many previous work on structure of XML data. Most of the struc-
tural indexes are based on the idea of considering XML document as a graph and 
partitioning the nodes into equivalent classes based on certain equivalence relation-
ship. The resultant index can support (or cover) certain class of queries. A rigid dis-
cussion of the partitioning method and its supported query classes is presented in [26]. 
DataGuide [7] are based on equivalent relationship and 1-index [21] are based on the 
backward bi-similarity relationship. Both of them can answer all simple path queries. 
F&B Index [13] uses both backward and forward bisimulation and has been proved as 
the minimum index that supports all branching queries. A(k)-index [15], D(k)-
index [25], M(k)-index and M*(k)-index [10] are approximations of 1-index. All 
these indices can not be applied to support CXQ directly.  

XML queries can also be evaluated on-the-fly using the join-based approaches. 
Structural join and twig join are such operators and their efficient evaluation algo-
rithms have been extensively studied [5, 8, 11, 18, 29, 31] [4, 12]. Their basic tool is 
the coding schemes that enable efficient checking of structural relationship of any two 
nodes. TwigStack [4] is the optimal twig join algorithm to answer twig queries with 
only double slash without using additional index. TJFast [19] improves TwigStack to 
support both twig queries with single slash and double slash efficiently. Hence it is 
chosen for comparison in our experiment. However, these methods can not support 
CXQ efficiently.  

NoK [1] is a native XML data management system with CXQ supporting. It fea-
tures a succinct XML storage scheme that essentially stores a string representation of 
the XML data tree obtained from pre-order traversal. We also choose Nok for com-
parison.  

Most recently, the idea of integrating both tree traversal-based and join-based query 
processing has been proposed [9, 14]. The major difference of their systems with our 
proposal is that they either do not use a structural index [9] or they are only using the index 
as a filter to accelerate structural joins [14]. On the contrary, our focuses is more on using 
the structural index to its full power and integrate both join-based and index-based query 
processing methods to accelerate CXQ processing.  

[16] and [17] present a method by indexing values and attaching bloom filter represent-
ing incoming path to the value. The query processing is to select value with and matching 
path approximately with the bloom filter. This method is designed for single path queries 



 Query Optimization for Complex Path Queries on XML Data 403 

with value constraint at leave and not suitable for queries with complex structure and 
multiple value constraints. [20] presents a disk-based system of XML query processing 
based on concurrency control. This system supports path query with value constraints by 
adding value filter operation on the candidates of twig join or structural join. As a com-
parison with their system, our method combines the benefits of structural join operation 
and structural index and gains efficiency, especially for the data with many duplicate 
structures such as DBLP. 

8   Conclusions 

Complex path queries (CXQ for brief) are an important kind of queries for XML data. 
Existing techniques can not process CXQs efficiently. With the supporting of storage 
structure, the query optimization strategies for CXQs are presented in this paper. In 
order to choose the optimal query plan for CXQs, a cost-based query optimization 
strategy is proposed. Extensive experiments show that our method outperforms exist-
ing methods significantly and has good scalability. Our query optimization strategy is 
effective and efficient. Our future work includes investigating XQuery query evalua-
tion and optimization methods, as well as holistic methods for efficiently CXQ proc-
essing in our system. 
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Abstract. In this paper, we address the containment problem for unions
of XPath queries with and without schema. We find the problem can
be always reduced into containment problem between one single query
and a union of queries. When schema is not available, the problem can
be further reduced into checking containment between pairwise queries
(each from one union), but this only holds for some XPath subsets, such
as XP {/,//,[]}, but not for XP {/,//,[],∗}. We then show the problem is
still solvable in XP {/,//,[],∗}, though no efficient algorithm exists. When
schema is at hand, we propose a strategy to rewrite a query into a union of
simplified queries based on schema information, and then apply methods
developed when schema is not taken into account. The problem is then
reduced into checking containment between unions of queries in XP {/,[]}

without schema.

1 Introduction

Testing query containment is a key technique in many database applications. In
query optimization [1], it is a subtask to check if two formulations of a query
are equivalent, and hence to choose the formulation with less evaluation cost. In
data integration scenario, especially rewriting queries using views [2], it provides
a means to find equivalent or contained rewritings, and also to detect redundant
rewritten queries to save computation time. Query containment can also be used
to maintain integrity constraints [3] and determine when queries are independent
of updates to the database [4].

In relational context, containment has been studied for conjunctive queries1 [1]
and unions of conjunctive queries [6]. In [6], it shows, for two unions of conjunc-
tive queries P and Q, P is contained in Q if and only if any query p in P is
contained in some query q in Q. Therefore, containment for unions of conjunc-
tive queries can be reduced into containment for (a number of) pairs of queries.
While for XML queries, especially XPath [7] queries, the containment problem
is mainly studied between two single queries [8, 9, 10, 11], but not for unions of
XPath queries. Some questions still need to be answered: Can we draw a similar
conclusion for unions of XPath queries as that for unions of conjunctive queries?
If not, how can we determine containment between unions of XPath queries?
1 A typical query that is extensively studied in relational database, see [5].
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Does it make any difference whether an XML schema is available? We will look
into these questions in this paper. Before heading into the main part, we would
like to stress again the importance of determining containment between unions
of queries. One typical application is rewriting queries using views, where to de-
tect a redundant rewriting means to detect if a rewritten query is contained in
a union of other rewritten queries. This is a special case of union containment,
for one of the unions contains only one query.

In this paper, we show that the pairwise comparison property for unions of
conjunctive queries holds only for some XPath subsets, such as XP {/,//,[]} fea-
turing child, descendant, and branch axes. For a larger subset XP {/,//,[],∗}, with
wildcards added, we provide an example to show two queries can be combined
together to contain a third query, though neither of them could solely contain the
third one. Therefore we should devise some new strategy to detect containment
relationship for unions of queries in this subset. To make the work compre-
hensive, we also discuss containment under schema information. A query p not
contained in another query q in general, may be contained in q under schema
constraints, because schema imposes some constraints, confining wildcards and
descendant axes in the query being interpreted in some particular ways. In order
to tackle this problem, we propagate schema constraints into queries to elimi-
nate wildcards and descendant edges, and thus simplify the queries into queries
in subset XP {/,[]}. Then after chasing the simplified patterns in XP {/,[]}, estab-
lished methods for unions of queries without schema can be applied.

In this paper, Our contributions are highlighted as follows:

– We are the first to investigate the containment problem for unions of queries
in XML context, particularly on XPath queries. We show the problem can
be always reduced into containment problem between one single query and
a union of queries.

– When schema is not available, the problem can be further reduced into check-
ing containment between two single queries (each from one union). However,
this result only holds for some simple XPath subsets like XP {/,//,[]}, not for
XP {/,//,[],∗}. But fortunately in XP {/,//,[],∗}, the problem is still solvable.

– When schema is available, we suggest a strategy to rewrite a query into a
union of simplified queries based on schema information, and then apply
the methods developed when schema is not considered. The problem is then
reduced into checking containment between unions of queries in XP {/,[]}

without schema.

The rest of this paper is organized as follows. In Section 2, we will give some
notations and background knowledge. Then we propose two important theorems
and tackle the containment problem without schema in Section 3. Schema infor-
mation will be taken into account in Section 4 to eliminate wildcard nodes and
expand descendant edges. In Section 5, we extend the discussion from XPath
queries into general tree pattern queries. Related work is given in Section 6.
Finally, we draw a conclusion and propose some future work in Section 7.
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2 Preliminaries

In this section, we introduce some notations and background knowledge. XML
documents and XPath queries are modelled as trees and tree patterns, and eval-
uating an XPath query on an XML document is modelled as matching a tree
pattern to a tree. We also formulate the definition for containment between
unions of XPath queries at the end of this section.

2.1 XML Trees

In the literature, an XML document is modeled as an unordered tree2 with nodes
labeled from an infinite alphabet Σ (Σ is finite, if a schema is available), the
label of each node corresponds to an XML element, an attribute name or a data
value, the root node of the tree represents the root element in the document. We
slightly modify the model by adding a new root with a unique label r ∈ Σ to the
tree, serving as the document node. In this way, the root node in the previous
model becomes a (single) child of this document node, and every XML document
starts with a root node labeled r, see Definition 1. We will see the aim of this
modification in the next subsection. We denote all possible trees over Σ as TΣ .

Definition 1. An XML document is a tree t = (Vt, Et, rt, Σ), where

– Vt is the node set, and ∀v ∈ Vt, v has a label in the alphabet Σ, denoted as
label(v);

– Et is the edge set;
– rt ∈ Vt is the root node of t, and label(rt) = r;

2.2 XPath Query

XPath is the core subclass of XML query languages. We consider a subset of
XPath featuring child axes (/), descendant axes (//), branches ([ ]), and wild-
cards (*). It can be represented by the following grammar:

p→ .|l| ∗ |p/p|p//p|p[p]

where “.” denotes the current context node, “l” is a label from alphabet Σ
and “*” represents a wildcard label. We denote this subset as XP {/,//,[],∗}. The
result of evaluating an XPath expression p ∈ XP {/,//,[],∗} on a tree t ∈ TΣ ,
denoted as p(t), is a set of nodes in t. The formalized semantics are given in [12]
(omitted here), where the context node is fixed on the document node if the
context node is not explicitly specified. Like in [8], besides allowing the us-
age of “.” immediately inside a predicate [ ], we further allow “.” to appear
at the beginning of an expression to capture the XPath queries starting with /
or //. For example, queries /a/b and //a//b, which do not conform to the above

2 Order is ignored in most previous research works, and so it is in this work.
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grammar, i.e. ignored in previous works (such as [13,9,8]), can be now rewritten
into ./a/b and .//a//b, and therefore be captured. Since “.” always inspects the
document node (which we intentionally added in the former section) by default,
the rewritten expressions correctly preserve the semantics. Moreover, XPath
expressions starting with a label can be safely rewritten into some expressions
starting with “.” as well, eg, a/b equals to ./a/b. In this way, an XPath query
corresponds to a unique tree pattern query, see the following definition.

Definition 2. An XPath query q can be expressed as a tree pattern (Vq , Eq,
rq, dq, Σq), where

– Vq is the node set, and ∀v ∈ Vq, v has a label in a finite alphabet Σq ∪ {∗},
denoted as label(v);

– Eq is the edge set, and ∀e ∈ Eq, type(e) ∈ {/, //}. We use the term “pc-
edge”(“ad-edge”) to represent the type of an edge, “/”(“//”).

– rq is the root node of the query, corresponding to the leading “.” tag in q (if
the current context node is not specified, then label(rq) = r);

– dq is the answer (also called distinguished or return) node of the query,
identified with a circle;

The result of evaluating an XPath query, equals to finding embeddings from a
tree pattern query q to a tree t, which can be represented as q(t) = {f(dq)|f is
some embedding from p to t}. Embedding is defined as follows:

Definition 3. An embedding from a tree pattern q = (Vq , Eq, rq, dq, Σq) to a
tree t = (Vt, Et, rt, Σ) is a mapping f : Vq → Vt, satisfying:

– Root preserving: f(rq) = rt;
– Label preserving: ∀v ∈ Vq, label(v) = ∗ or label(v) = label(f(v));
– Structure preserving: ∀e = (v1, v2) ∈ Eq, if e is a pc-edge, f(v1) is the parent

node of f(v2); e is an ad-edge, f(v1) is an ancestor node of f(v2) including
the case f(v1) being the parent of f(v2).

In this work, all XPath queries are observed as tree patterns for ease of discussion,
and we will provide some discussions on general tree patterns (queries with more
than one distinguished nodes) in Section 5.

2.3 Containment Formulation

For any two tree pattern query p and q, p is said to be contained in q, denoted
as p ⊆ q, iff ∀t ∈ TΣ, p(t) ⊆ q(t). We now extend the definition to unions of
queries. We use a lowercase letter and an uppercase letter to reflect a single
query and a union of queries respectively. Let P = {p1, p2, · · · , pm} be a union
of queries, the result of this set of queries on a tree t, denoted as P (t), is defined
as p1(t)∪ p2(t)∪ · · · ∪ pm(t). For two unions of queries P = {p1, p2, · · · , pm} and
Q = {q1, q2, · · · qn}, P is said to be contained in Q, iff ∀t ∈ TΣ , P (t) ⊆ Q(t) (i.e.
p1(t) ∪ p2(t) ∪ · · · ∪ pm(t) ⊆ q1(t) ∪ q2(t) ∪ · · · ∪ qn(t) ).
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3 Containment without Schema

In this section, we will investigate containment problem between unions of XPath
queries without schema information. We start with reducing the problem into a
simplified form and introducing boolean tree pattern. After that, we endeavor
to solve the problem for boolean tree patterns belonging to subset P {/,//,[]}.
Finally, a larger subset with wildcards, P {/,//,[],∗}, will be discussed.

3.1 Containment Reduction

To simplify the problem, we propose a theorem to reduce the containment check-
ing between two unions of queries into containment checking between one single
query and a union of queries. The theorem also holds when a schema is at hand.

Theorem 1. For two unions of XPath queries P = {p1, p2, · · · , pm} and Q, we
have: P ⊆ Q, iff ∀pi ∈ P , pi ⊆ Q.

Proof. If: Given ∀pi ∈ P , pi ⊆ Q, we have, from definition, for any tree t ∈ TΣ ,
pi(t) ⊆ Q(t). Therefore, for any tree t ∈ TΣ, p1(t) ∪ p2(t) ∪ · · · ∪ pm(t) ⊆ Q(t),
that is P ⊆ Q;
Only if: Given P ⊆ Q, we have ∀t ∈ TΣ, P (t) ⊆ Q(t), i.e. p1(t) ∪ p2(t) ∪ · · · ∪
pm(t) ⊆ Q(t), thus ∀pi, pi(t) ⊆ p1(t) ∪ p2(t) ∪ · · · ∪ pm(t) ⊆ Q(t). ��

The idea conveyed by the above theorem is simple, but it lays a foundation to
check union containment, because we can always safely simplify the left part of
the comparison into a single query. This leads to some further explorations and
observations in Section 3.3 and 3.4.

3.2 Boolean Tree Pattern

Boolean pattern (short for boolean tree pattern) is a tree pattern query with
no distinguished node. The result of evaluating a boolean pattern p̄ on a tree t,
p̄(t), is a boolean value, either true or false. p̄(t) is true, means there exists an
embedding from p̄ to t, otherwise p̄(t) is false. For two boolean patterns, p̄ and
q̄, we say p̄ is contained in q̄, denoted as p̄ ⊆ q̄, iff ∀t ∈ TΣ , p̄(t)⇒ q̄(t).

Each XPath tree pattern corresponds to a unique boolean pattern, which can
be obtained by adding a child node with a distinct label x to the distinguished
node, and make the distinguished node not outstanding any more (shown in
Fig. 1). Let the corresponding boolean patterns of XPath patterns p and q be
p̄ and q̄ respectively. According to [14], p ⊆ q iff p̄ ⊆ q̄. Consequently, for ease
of discussion, XPath tree pattern queries are considered as boolean patterns in
the rest of the paper. Notations p and q will refer to boolean patterns from now
on, and we no longer use p̄ and q̄. And the result of a union of boolean tree
patterns Q = {q1, q2, · · · , qn} on a tree t can be then expressed in the form of
Q(t) = q1(t)∨q2(t)∨· · ·∨qn(t), for Q(t) is a boolean value. We also use P {/,//,[]}

to denote the corresponding boolean pattern subset for XPath tree patterns in
XP {/,//,[]}.
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Fig. 1. A XPath Tree Pattern p and Its Corresponding Boolean Pattern p̄

3.3 Patterns in P {/,//,[]}

As is shown in Theorem 1, checking containment between unions of queries can
always be reduced into checking containment between one single query and a
union of queries. Then one question arises: Can the problem be further reduced
into checking containment for a number of query pairs? That is, if a query is
contained in a union of queries, does it mean that the single query is contained
in some particular query from the union? The answer is yes, but the result is
restricted to a certain subset of queries. For simplicity, we illustrate this result
(expressed as Theorem 2) within a query subset P {/,//,[]}, which has branches
and descendant axes, but no wildcards. We will point out a larger query subset
where the property still holds after proving the theorem.

Theorem 2. For a boolean pattern p and a union of boolean patterns Q =
{q1, q2, · · · , qn} in P {/,//,[]}, we have: p ⊆ Q, iff ∃qi ∈ Q, such that p ⊆ qi.

Proof. The sufficient condition is obvious. Now we will prove the necessary condi-
tion by proving its contrapositive statement, i.e. to show that if p is not contained
in any qi ∈ Q, then p cannot be contained in Q. Before starting the proof, we first
introduce a technique called homomorphism providing a sufficient and necessary
condition to decide containment between two single patterns in P {/,//,[]}.

A homomorphism from one pattern p = (Vp, Ep, rp, Σp) to another q =
(Vq, Eq, rq, Σq), is a function h : Vp → Vq satisfying the definition of embedding
(given in Definition 3). The only difference is that homomorphism is a mapping
from one query pattern to another, while embedding is a mapping from a pat-
tern to a data tree. According to Theorem 3 in [8], for two boolean patterns
p and q in P {/,//,[]}, p ⊆ q iff there exists a homomorphism from Vq to Vp. In
other words, if p � q, there must exist a node vi in Vq, such that we cannot
find any homomorphism h that has a corresponding node h(vi) in Vp, satisfying
label preserving and structure preserving conditions w.r.t. nodes vi and h(vi).
We call such node vi a private node of q against p. We also name, on some path
in q (from root to leaf), the first private node as a transitional node.

To prove the contrapositive statement of the necessary condition in Theo-
rem 2, given ∀qi ∈ Q, p � qi, we could construct a tree t, such that p(t) holds
while qi(t) is false. And hence p(t) does not imply Q(t) = q1(t)∨q2(t)∨· · ·∨qn(t),
namely p is not contained in Q. The tree t can be constructed as follows: re-
place each ad-edge in p with two pc-edges and an additional distinct label z.
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For instance, a//b can be transformed into a/z/b. Here label z does not appear
in any Σqi(i.e. z ∈ Σ − ⋃n

i=1 Σqi), where Σqi is the alphabet of qi. Since Σ is
infinite (when there is no schema available) and Σqi is finite (because the number
of labels in a query is limited), this transformation is always possible. After the
transformation, it is straightforward that the result tree t conforms to pattern p,
and thus p(t) is true. However, for any qi, we can show qi(t) is false. The reason
is: since p � qi, there must be some transitional node vi in qi, such that for
the transitional node, we cannot find a corresponding node f(vi) in t defined by
any embedding f from qi to t. Otherwise, if such embedding f existed, we could
obtain a twin homomorphism h from qi to p based on f . Here the twin homo-
morphism h would have the same mapping function as embedding f , because, in
f , no nodes in qi can be mapped onto z-nodes (nodes with distinct label z) in t.
Therefore, a corresponding node h(vi) in p would exist for the homomorphism.
This result contradicts with the assumption that vi is a transitional node. Recall
that, a transitional node in qi could not map onto any node in p by any homo-
morphism, as a result, ∀qi ∈ Q, qi(t) is false, i.e. Q(t) = q1(t)∨q2(t)∨· · ·∨qn(t) is
false. In addition, p(t) is true, hence p(t) � Q(t). The contrapositive statement
of the necessary condition is proved. ��

The complexity of testing containment between one pattern p and a union of
patterns Q = {q1, q2, · · · , qn} is O(|p| ·∑n

i=1 |qi|), bounded by O(n|p||q|max),
where |q|max is max{|qi|}. This is an immediate result from that finding a ho-
momorphism from a pattern qi to p is of complexity O(|p||qi|), where |p|, |qi| are
the size (number of nodes) of p and qi respectively. However, Theorem 2 only
holds in P {/,//,[]}, or a large subset P̂ {/,//,[],∗} mentioned in [15]. P̂ {/,//,[],∗}

refers to an XPath query subset further including wildcards, but with two ad-
ditional restrictions: (i) no wildcard node is incident with ad-edges(//) and (ii)
there is no wildcard leaf node. The reason that Theorem 2 holds for a limited
query subset lies in the following aspects: (1) If there are wildcard nodes in the
patterns, homomorphism only serves as a sufficient (but not necessary) condition
to determine containment between two patterns. We will give an example and
devise a strategy in the next subsection to deal with patterns in P {/,//,[],∗}. (2)
Moreover, if there is a schema available, the theorem does not necessarily hold in
P {/,//,[]} as well, because alphabet Σ becomes finite, and there may not always
exist a distinct label z to transform an ad-edge a//b into a/z/b, and thus the
current proof is not sufficient. We will consider queries conforming to a schema
in Section 4.

3.4 Patterns in P {/,//,[],∗}

We first give a simple example to show that Theorem 2 is not true for subset
P {/,//,[],∗}. See in Fig 2, p � q1 and p � q2, but it is obvious that p is equivalent
to Q = q1 ∨ q2, because if b is a descendant of a, then either b is a direct child of
a or b is a descendant of a’s child. And p = Q implies p ⊆ Q. The example shows
that several patterns may be combined together to contain a target pattern,
though none of them could solely contain the target. This observation makes
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Fig. 2. Containment with Wildcard Node

the problem complicate in P {/,//,[],∗}, for it is difficult to know which patterns
should be combined together to contain the target.

Fortunately, taking advantage of Lemma 3 in [8], the containment problem
between one single pattern p and a union of patterns Q == {q1, q2, · · · , qn} can
be reduced to checking containment between two single patterns as well. The two
single patterns can be constructed easily, as is shown in Fig. 3, where c in both
p′ and q′ is a label in Σ, T0 ∈ TΣ is a tree such that for any qi, qi(T0) is true.
This can be achieved by fusing the roots of qi (this is possible because they share
the same root label r), and replacing all wildcards with an arbitrary label, and
all ad-edges with pc-edges. It has been proved that p ⊆ Q(Q = q1∨q2∨· · ·∨qn),
iff p′ ⊆ q′. Since p′, q′ ∈ P {/,//,[],∗} and deciding p′ ⊆ q′ is coNP-complete, the
containment problem between unions of patterns in P {/,//,[],∗} is coNP-complete.
Despite we cannot break the intrinsic complexity result for subset P {/,//,[],∗},
we manage to convert the problem into one that we have a solving strategy.

One may realize that since P {/,//,[]} is a subset of P {/,//,[],∗}, we can, without
lose of generality, use the construction method above, to check whether p′ ⊆ q′

using homomorphism technique in order to determine containment relationship
between p and Q for subset P {/,//,[]}. This introduces another strategy to solve
the problem for subset P {/,//,[]}. The observation is true, but the drawback of the
above method is that it is less efficient than the method implied by Theorem 2.
We now illustrate it by analyzing the algorithm complexity. For pattern p′, it
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Fig. 3. Constructions of Pattern p′ and q′
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contains 2(n−1) number of T0 trees, each of which has the size
∑n

i=1 |qi| (see how
to construct T0 in the previous paragraph), and thus |p′| is |p|+2(n−1)

∑n
i=1 |qi|.

The size of |q′| is easy to get as
∑n

i=1 |qi|. The algorithm complexity O(|p′||q′|)
is O((|p| + 2(n − 1)

∑n
i=1 |qi|) ·

∑n
i=1 |qi|), bounded by O(n|p||q|max + 2(n −

1)n2|q|2max), larger than O(n|p||q|max) given in the last section. To conclude, if
there is no wildcard node in the query pattern, it is better to compare p with
queries in Q one by one.

4 Containment with Schema

Given a schema G, if for any tree t conforming to G, we have p(t)⇒ q(t), then
we say p is contained in q under G, denoted as p ⊆G q. Schema provides a
means to define or constrain XML data. A pattern p not contained in pattern q
in general, may be contained in q for trees conforming to a certain schema. We
show a simple example in Fig. 4, p1 has a wildcard node, and p2 has an ad-edge,
they are not contained in Q = q1 ∨ q2 in general. But if schema G is available,
all the queries should conform to G. It is not hard to see p1 ⊆G p2 ⊆G Q, in fact
p1 =G p2 =G Q.

Schema information is usually modelled as regular expressions or a few number
of constraints. The works [10, 9] show that containment between patterns in
P {/,//,[],∗,DTD} is EXPTIME-complete, and some more theoretical results w.r.t.
various pattern subsets can be found in [11]. Since the containment problem is
already difficult for two single patterns, it is unlikely to have an efficient method
to determine containment between unions of patterns in P {/,//,[],∗,DTD}. The
aim of our work is not to break the proved EXPTIME-complete upperbound for
two queries, nor to provide any exact complexity results for unions of queries, but
to reexamine the problem from another angle and to suggest a strategy to check
containment between two single patterns or unions of patterns with schema
information. The idea is to propagate DTD constraints into queries so as to
eliminate wildcards and descendant edges. Consequently, the problem could be
converted into containment between unions of simplified queries in P {/,[]}. Then,
after chasing patterns in P {/,[]} with DTD constraints, we can apply Theorem 1
and 2 to evaluate the containment relationship.

In our paper, we model the schema as a directed graph G. (we don’t consider
disjunctions in the schema.) G is a DAG means the schema is not recursive,
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Fig. 4. Containment with Schema Information
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otherwise G will have circles. We will consider G as a DAG first in Section 4.1,
4.2 and 4.3 and will discuss recursive schema in Section 4.4.

4.1 Eliminating Wildcards

With a schema available, a wildcard node can be replaced by specific labels in
Σ, as long as the result pattern conforms to the given schema. A naive method
is to pick an arbitrary label in Σ for each wildcard node, and then to verify if the
clearly specified query complies with schema G. This method requires to verify

Algorithm 1. Algorithm for Eliminating Wildcard Nodes
1: for all node v that is not a ∗-node in pattern p do
2: L(v) ← {label(v)};
3: end for
4: for all leaf ∗-node v in p do
5: L(v) ← Σ;
6: end for
7: Mark all leaf nodes and all non ∗-nodes;
8: repeat
9: for each ∗-node x in p whose children xc1 , xc2 , · · · , xck are all marked do

10: for i = 1 to k do
11: Si ← φ;
12: for each β ∈ L(xci) do
13: if ((x, xci) is a pc-edge and there is some α ∈ L(x) such that (α, β) is

an edge in G) or ((x, xci) is an ad-edge and there is some α ∈ L(x) such
that there is a path from α to β in G) then

14: Si ← Si ∪ {α};
15: end if
16: end for
17: end for
18: L(x) ← ⋂k

i=1 Si;
19: Mark x;
20: end for
21: until all ∗-nodes in p are marked
22: Unmark root pr and all non ∗-nodes;
23: repeat
24: for each ∗-node x in p whose parent xp is unmarked do
25: for each β ∈ L(x) do
26: if ((xp, x) is a pc-edge and there is some α ∈ L(xp) such that (α, β) is an

edge in G) or ((xp, x) is an ad-edge and there is some α ∈ L(xp) such that
there is a path from α to β in G) then

27: Add (β, α) into P (x);
28: else
29: Remove β from L(x);
30: end if
31: end for
32: Unmark x;
33: end for
34: until all ∗-nodes are unmarked
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|Σ|k (where k is the number of wildcard nodes in a pattern) number of queries,
and is obviously not efficient.

We propose an improved algorithm shown in Algorithm 1. The basic idea is
to use existing structural information in the query to avoid wild guesses. It is
inspired by [16] in which a similar idea was used to test the satisfiability of a
tree pattern under schema G. Here, in our scenario, we need to record detailed
label relationships (parent-child or ancestor-descendant) for adjacent node pairs,
because these relationships could be further utilized to transform one query with
wildcards into a union of queries without wildcards.

Algorithm 1 scans the wildcard nodes in p twice: bottom-up (line 8-21) and
then top-down (line 23-34). The bottom-up phase calculates a set of possible
labels L(x) for each wildcard node x, using information about possible labels of
its children. The top-down phase further refines the set L(x) using information
about the parent label of x. The parent-child and ancestor-descendant relation-
ships are recorded as label pairs in P (x). Note that in the algorithm, we omit,
for brevity, the step to check if L(x) = φ after line 18 and 29 (L(x) = φ means
pattern p does not conform to G), since it is not difficult to implement. The
algorithm runs in O(|p||Σ|2): lines 1-7 runs in O(|p|); the bottom-up phase visits
each node in p at most twice, and within the loop, lines 12-16 can be done in
O(|Σ|2). And thus lines 8-21 run in O(|p||Σ|2). The top-down phase also runs in
O(|p||Σ|2). If there is an index on schema G, pc(α,β) or ad(α,β) can be checked
efficiently.

4.2 Eliminating Ad-Edges

Now we have obtained unions of queries without wildcards. However, Theo-
rem 2 is still not sufficient to decide containment between two sets of queries
under schema (recollect the example in Fig. 4). We need to replace all the ad-
edges with concrete paths compromising only pc-edges, because ad-edges must
be interpreted in specific ways constrained by the schema.

A naive method to expand an ad-edge (v1,v2), similar to eliminating wildcard
nodes, is to find all the paths between two labels label(v1) and label(v2) in schema
G, and replace the ad-edges with one of these concrete paths. Obviously, there
may be many ways to replace an ad-edge, and thus a pattern consisting ad-edges
will be transformed into a union of a large number of patterns in P {/,[]}. Then
with the follow-up treatment in Section 4.3, one can determine the containment
relationship for unions of queries under schema.

To avoid generating a possibly exponential number of patterns, a better
solution is to wisely replace an ad-edge (v1,v2) with a subgraph between
label(v1) and label(v2) in G, denoted as Gs(label(v1), label(v2)). To define
Gs(label(v1), label(v2)) formally, Gs(label(v1), label(v2)) = { node v|v ∈ G ∧ v
is reachable from label(v1)∧ label(v2) is reachable from v}. As long as the given
pattern conforms to G, i.e. label(v2) is reachable from label(v1) in G, subgraph
Gs(label(v1), label(v2)) will always exist, no matter G has circles or not. In
addition, to find Gs(label(v1), label(v2)) is not expensive. It includes a top-down
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traverse in G from label(v1) to label(v2), and a bottom-up traverse from label(v2)
to label(v1). The idea is similar to Algorithm 1, and hence we omit the details.

4.3 Chasing Patterns in P{/, []}
Now we have wildcards and ad-edges eliminated, and all the patterns trans-
formed into P{/, []}. To reduce the problem into one without schema, we have
the last step to chase the patterns in P{/, []} as much as possible with sibling
constraints and functional constraints [9]. When G is not recursive, the process is
not difficult, since the result patterns (after chasing) should be finite. The prob-
lem then converts into checking containment for unions of queries in P{/, []}
without schema. Thereafter, we can apply Theorem 1 and 2 to solve it. Note
that, after expanding ad-edges, a pattern may become a DAG rather than a rig-
orous tree pattern in P{/, []}. but the chase process is the same except that we
may not apply sibling constraints at some node whose child nodes are following
or-semantics, because these child nodes are expanded from an ad-edge expressed
as alternative paths (or subgraphs), making sibling constraints not satisfied on
such node. On the other hand, when homomorphism is used to detect contain-
ment between such or-semantic patterns, a final step needs to be added. For
example, when we conduct a mapping from pattern p to q, we can draw the
conclusion q ⊆ p with two further conditions holding: (1) for every subgraph
chased from Gs(label(v1), label(v2)) in p, one of its subgraph connecting v1 and
v2 must be mapped on to q; (2) for every two nodes v′1 and v′2 with an ad-edge in
q, if v′2 is mapped, then every v′2’s ancestor (on all alternative subgraphs) should
be mapped by some node in p.

4.4 Recursive Schema

One challenge arises: if the schema is recursive, a pattern can be chased continu-
ously without stop, and a /-path (path only consisting of pc-edges) may contain
a circle repeated for any times. In such cases, we allow the loop to appear once
in the chased pattern to keep track of the nodes in a circle, and we also tag
the loop start node and loop end node. Now we are able to rewrite a query in
P {/,//,[],∗,DTD} into a union of finite number of queries in P {/,[]}. Theorem 2 will
then be sufficient to decide the containment. A condition needs to be added when
to find a homomorphism from pattern q to pattern p (p, q are in P {/,[]} with
loop start node and loop end node tagged): if v1 and v2 are the loop start node
and loop end node in q, there must exist a circle in G with labels label(h(v1)),
label(h(v2)) as start and end respectively. Here, h(v1) and h(v2) may not be loop
start and end nodes in pattern p. Fig. 5 shows an example. p0 and q0 are two
queries involving ad-edges. G is a schema containing a circle. After expanding
ad-edges and chasing with schema G for p0 and q0, we get patterns p and q. In
pattern q, a//c is expanded and chased into a/b/c with node v1 labelled a, node
v2 labelled c as the loop start and loop end. Similarly, b//a is expanded and
chased into b/c/a in p. Considering the result patterns p and q, there is a homo-
morphism from q to p, and moreover, nodes h(v1) and h(v2), the corresponding
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Fig. 5. Expanding Edges under Recursive Schema

nodes in p of loop start v1 and loop end v2 in q, have labels a = label(h(v1)) and
c = label(h(v2)) that are start and end nodes of a circle in G. Therefore, pattern
p is contained in pattern q, and thus the original pattern p0 is contained in q0.
Note that the condition does not require h(v1) and h(v2) be the loop start and
loop end nodes in p.

In the above discussion, we assume that there are no intersected circles in G,
i.e. the recursive loops have no overlaps. This assumption obviously simplifies the
problem, and it is still interesting and challenging to investigate the containment
problem of unions of patterns under complex recursive schema.

5 Discussions on General Tree Pattern Queries

Different from XPath tree patterns, general tree pattern queries may contain
more than one distinguished nodes. This may add difficulty to containment
checking in some circumstance. In fact, it is due to multiple distinguished nodes
that containment between general tree patterns is not the same as contain-
ment between boolean patterns. We illustrate the observation by firstly review-
ing Proposition 1 in [8] and then show when the proposition is not correct and
why.

To restate it: let two general tree patterns be p and q, we can obtain two
boolean patterns p′ and q′ by adding distinct labels l1, · · · , lk to the k distin-
guished nodes in p and q respectively, then we have p ⊆ q iff. p′ ⊆ q′. However,
one could discover that the proposition only holds for output-order-sensitive
queries. In other words, the distinguished nodes should have a fixed order so
that we can label them in a unique way. See Fig. 6 for an example. Pattern q has
two distinguished nodes b and c. Suppose there is no predefined order for the
distinguished nodes, to transform q into a boolean pattern, we have two labelling
schemes shown as q1 and q2 respectively. Obviously, q1 and q2 are not identical.
Therefore, in such situation, a general tree pattern query should be transformed
into a unions of boolean patterns, rather than a single pattern. Hence if we have
k distinguished nodes, we will have k! ways to label them, resulting in k! boolean
patterns to represent a general tree pattern. This will significantly complicate
containment detection if the number of distinguished nodes is large. Luckily,
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for XPath queries, there is only one distinguished node, so the boolean pattern
evolved from its corresponding XPath pattern is unique. And the conclusions we
got in the above sections are still correct. In some real applications, general tree
pattern queries indeed organize the distinguished nodes in a fixed order, such as
tree pattern queries induced from XQuery queries. But we should keep in mind
that containment between general tree patterns and boolean patterns are not
always the same.

6 Related Work

Query containment was first put forward together with query equivalence in
order to optimize query evaluation in relational context [1], where containment
problem is studied for two queries containing select, project and join operators.
Later, containment of unions of queries is discussed in [6]. It provided a sufficient
and necessary condition showing that containment between unions of queries can
be reduced into containment between a number of pairwise queries. In [17], the
authors showed if relations are modelled as multisets of tuples, the previous
sufficient and necessary condition holds only for one type of label system, while
for another type of label system, the containment problem is undecidable.

Unfortunately, the established theory for relational queries cannot be applied
in XML context. The containment problem between unions of XPath queries
is still open, though fruitful results have been produced for containment be-
tween two single queries. In some pioneer works, the problem was shown in
PTIME for XPath subsets XP {/,[],∗}, XP {/,//,[]} and XP {/,//,∗}, and further-
more proved to be coNP-complete for XP {/,//,[],∗} in [8]. When a schema is
available, the problem turned out to be more difficult, because data trees are
constrained according to a particular pattern, and thus XPath queries with wild-
card nodes and ad-edges cannot be interpreted arbitrarily. Wood [9] and Neven
and Schwentick [10] independently showed the containment between two XPath
queries in XP {/,//,[],∗,DTD} is decidable, in fact is EXPTIME-complete. Neven
and Schwentick [10] also discussed disjunction and variables in XPath. More
theoretical results with respect to various XPath query subsets are summarized
in [11]. A richer XPath fragment, XPath2.0, is recently examined in [18].
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7 Conclusions and Future Work

In this paper, we have addressed the containment problem between unions of
XPath queries. We showed that the problem can be always reduced into contain-
ment between one query and a union of queries. We also proved that, for XPath
subset XP {/,//,[]}, the problem can be reduced into checking containment be-
tween two single queries, each from one union. For a larger subset XP {/,//,[],∗},
we utilize an existing technique to develop an effective strategy to solve the prob-
lem. When a schema is available, we could use the schema to eliminate wildcard
nodes and expand ad-edges in the query so that our developed theorem could be
applied thereafter to decide containment relationship between unions of queries
under schema information.

One direction for future work is to consider more complicated recursive re-
lationships in schema, eg. two circles may have intersections. This is always a
difficult problem, may result in chasing patterns in P {/,[]} rather challenging.

Acknowledgments. This work was supported by the Australian Research
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Abstract. In this paper we propose a new approach to XML bench-
marking – a flexible XML query benchmark called FlexBench. The flex-
ibility is given by two aspects. Firstly, FlexBench involves a large set
of testing data characteristics so that a user can precisely describe the
application. And, secondly, FlexBench is able to adapt the set of testing
query templates to the particular set of synthesized testing data. Hence,
contrary to the existing works, the testing is not limited by the fixed set
of queries and basic data characteristics (usually only size) to a single
(and often simple) application. We depict the advantages of the proposed
system using a set of preliminary experiments.

1 Introduction

Since XML [11] has become a de-facto standard for data representation and
manipulation, there exists a huge amount of so-called XML Management Sys-
tems (XMLMSs) that enable one to store and query XML data. Hence, being
users, we need to know which of the existing XMLMSs is the most sufficient
for our particular application. On the other hand, being vendors, we need to
test correctness and performance of our system and to compare its main advan-
tages with competing SW. And, being analysts, we are especially interested in
comparison of various aspects of existing systems from different points of view.
Consequently the area of benchmarking XMLMSs has opened as well.

In general, a benchmark or a test suite is a set of testing scenarios or test
cases, i.e. data and related operations which enable one to compare versatility,
efficiency or behavior of system(s) under test (SUT). In our case the set of data
involves XML documents, possibly with their XML schema(s), whereas the set of
operations can involve any kind of XML-related data operations. Nevertheless,
the key operations of an XMLMS are usually XML queries. Currently, there
exist several XML query benchmarks which provide a set of testing XML data
collections and respective XML operations that are publicly available and well-
described. However, although each of the existing benchmarks brings certain
interesting ideas, there are still open issues to be solved.

In this paper we focus especially on the key persisting disadvantage of all
the existing approaches – the fact that the sets of both data and queries are
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fixed or the only parameter that can be specified is the size or the number of
XML documents. We propose a new approach to XML benchmarking – a flex-
ible XML query benchmark called FlexBench. The flexibility is given by two
aspects. Firstly, FlexBench involves a large set of testing data characteristics so
that a user can precisely describe the tested application. But, to ensure user-
friendliness and simplicity (i.e. one of the key requirements for a benchmark)
we also provide a set of predefined settings which correspond to classical types
of XML documents identified in an analysis of real-world XML data. And, sec-
ondly, FlexBench is able to adapt the set of testing queries to the particular set
of synthesized testing data. Hence, contrary to the existing works, the bench-
marking is not limited by the fixed set of queries and basic data characteristics
to a single simple application. We depict the advantages of the proposed system
using a set of preliminary experiments.

The paper is structured as follows: Section 2 overviews existing XML bench-
marks, their classification and (dis)advantages. Section 3 describes FlexBench in
detail. Section 4 involves the results of preliminary tests made using FlexBench.
And, finally, Section 5 provides conclusions and outlines possible future work
and open issues.

2 Related Work

In general, there exists a large set of XML query benchmarks. The seven best
known representatives are XMark [13], XOO7 [17], XMach-1 [10], MBench [16],
XBench [24], XPathMark [18] and TPoX [21].

From the point of view of purpose we can differentiate so-called application-
level and micro benchmarks. While an application-level benchmark is created
to compare and contrast various applications, a micro-benchmark should be
used to evaluate performance of a single system in various situations. In the
former case the queries are highly different trying to cover all the key situations,
whereas in the latter case they can contain subsets of highly similar queries which
differentiate, e.g., in selectivity. Most of the seven benchmarks are application-
level; the only representative of micro-benchmarks is MBench.

Another set of benchmark characteristics involves the number of users it is in-
tended for, the number of applications it simulates and the number of documents
within its data set. Most of the benchmarks are single-user, single-application
and involve only a single document. The only exception, XBench, involves (a
fixed set of) four classes of XML applications with different requirements. On the
other hand, XMach-1 and TPoX are multi-user benchmarks and enable one to
test other XML management aspects, such as, e.g., indexing, schema validation,
concurrency control, transaction processing, network characteristics, communi-
cation costs, etc.

Another important aspect of XML benchmarks are characteristics of the data
sets. All the representatives involve a data generator, but in most cases the only
parameter that can be specified is the size of the data. Most of the benchmarks
involve own simple data generator, some of them (i.e. XBench and TPoX) exploit
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a more complex data generator, but pre-set most of its parameters. Expectably,
all the benchmarks involve also one or more schemas of the data representing
the simulated applications.

The last important set of characteristics describes the operation set of the
benchmarks. All the benchmarks involve a set of queries, some of them (i.e.
XMach-1, MBench and TPoX) also a set of update operations. The two multi-
user benchmarks also support additional, less XML-like operations with the data.
The most popular operations are XQuery [8] queries, whereas the benchmarks
try to cover various aspects of the language, such as, e.g., ordering, casting,
wildcard expressions, aggregations, references, constructors, joins, user-defined
functions, etc. However, in all the cases the sets of queries are fixed.

3 FlexBench Benchmark

As we have mentioned in the Introduction, the aim of FlexBench is to deal with
the problem of fixed parameters of the existing benchmarks. From one point of
view it is an advantage since one of the general requirements for benchmarking is
simplicity [9]. It is even proven by the analysis of existing XQuery benchmarks [5]
that the most popular benchmark is XMark – a single-application and single-
user benchmark with a fixed set of queries and a single data characteristic, i.e.
size in bytes. On the other hand, such a simple fixed benchmark enables one
to test only one specific situation, however according to statistical analysis of
real-world XML data [20] there are multiple types of XML data, i.e. multiple
applications. And, naturally, new ones occur every day.

Consequently, we state the following two aims of FlexBench:

1. We want to support as much characteristics of the tested application as
possible.

2. The benchmark system should still be simple and easy-to-use.

To fulfill the first condition the FlexBench involves three parts – a data gen-
erator, a schema generator and a query generator. In general the synthesis of a
benchmark can start with any of the three generators. An overview of possible
strategies can be seen in Table 2.

All of the existing benchmarks exploit a restricted combination of the second
and third approach, where the schema and the queries are fixed and the data
are synthesized according to the schema. In FlexBench we use the first approach
– the XML documents are synthesized first, then the schemas and, finally, the
queries on top of them. In our opinion it is the most user-friendly approach and,
in addition, it enables us to exploit XML data characteristics1 from a statistical
analysis of real-world XML data [20]. Not only do their characteristics describe
the data from various points of view and very precisely, but the strategy enables

1 Due to space limitations we will not repeat the definitions of the characteristics.
Most of them (such as depth or fan-out) are quite common, whereas the definitions
of the less known ones (such as relational or DNA patterns) can be found in [20].
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Table 1. Three possible strategies when synthesizing a benchmark

Strategy Description

data → schema & queries XML documents are synthesized/provided first. Schema
and queries are then synthesized on the top of them. It
is also possible to synthesize the queries on top of the
schema (instead of the XML documents). The schema
can be synthesized by an external tool as well, since many
suitable ones already exist.

schema → data → queries The schema is synthesized/provided first. XML docu-
ments valid against it are synthesized next (possibly by
an external tool). Queries are then synthesized on top of
the XML documents or the schema.

queries → schema → data Queries are synthesized (or provided by a user) first.
Then the respective XML documents and their schemas
are created on top of them.

us to exploit the particular results for pre-setting FlexBench (see Section 3.4).
Since most of these characteristics cover properties of XML documents, not their
schemas, mainly because not all XML documents have a schema, when deciding
whether to synthesize XML documents on top of their schemas or vice versa,
this fact convinced us to synthesize the documents first.

On the other hand, supporting a wide set of data characteristics may lead
to some conflicts. There are many dependencies between them and a user may
specify contradicting properties. For instance, the size (in bytes) of a document
and the number of its elements are correlated and particular values may be in
conflict. A related important aspect is that the generator never respects the
specified values accurately. For example, the output files usually have a little
percentage of bytes higher (or lower) than a user originally specified. However,
these deviations have a minimum impact on the quality of synthesized data and
it is a common feature of most of the existing data generators.

3.1 Data Generator

FlexBench data generator supports basic data types of its parameters, i.e. data
characteristics (e.g. strings, integers, floating point numbers, etc.) as well as
advanced ones – discrete statistical distributions. The supported data character-
istics are listed in Table 2 which involves their classification, data types and the
most important aspect – conflicting parameters.

The first set of so-called basic parameters involves the output directory and
the amount of documents to be synthesized. Naturally they have no conflict with
the other parameters and they can be specified as a constant value.

The set of structural parameters describes the structure of the document
tree. In particular its depth, fan-out (i.e. a kind of width), number of attributes
and total size in bytes. All these characteristics can be specified as a statistical
distribution. The important aspects are their conflicts with other parameters.
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Table 2. Parameters of the benchmark generator and their relations

Type Parameter name Conflicts with Type

Basic Output directory None Constant
Number of documents None Constant

Structural Size (in bytes) Number of elements,
fan-out, depth, per-
centage of text, at-
tribute values

Statistical
distribution

Fan-out Depth, size Statistical
distribution

Depth Fan-out, size Statistical
distribution

Number of attributes Size, percentage of
text

Statistical
distribution

Textual Percentage of text Size Constant
Percentage of mixed-content el-
ements

Percentage of text Constant

Depth of mixed-content Depth Statistical
distribution

Percentage of simple mixed-
content elements

Percentage of text Constant

Patterns Percentage of pure recursions Other recursions Constant
Percentage of trivial recursion Other recursions Constant
Percentage of linear recursion Other recursions Constant
Percentage of general recursion Other recursions Constant
Percentage of DNA patterns None Constant
Percentage of relational pat-
terns

None Constant

Percentage of shallow relational
patterns

None Constant

Schema Percentage of DTDs None Constant
Percentage of XSDs None Constant

Naturally, the worst situation is for the size in bytes which is correlated with
almost all other characteristics. On the other hand, it is the most common pa-
rameter in all the existing benchmarks and it is also the most natural parameter
to be specified by a user. Almost the same information would be specified by
the number of elements, however, for the previously specified reasons, we have
decided to support the total size instead. As for the fan-out and depth which
specify the “shape” of the tree, they are correlated mutually as well as with the
size. Also note that instead of depth and fan-out, we could use the distribution of
levels of the document tree. However, similarly to the previous case, our choice
seems to be more natural and user-friendly. Finally, the number of attributes
deals with the special type of nodes of the document tree which are correlated
only with size and textual parameters.

The third set of data characteristics – the textual ones – do not influence the
shape of the document tree but the particular textual values. These may occur
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in three situations: as attribute values, within textual contents of elements or
within mixed contents of elements. The most important and natural parame-
ter is undoubtedly the total percentage of text in the XML document which
is correlated with size. On the other hand, the remaining parameters specify
the number of mixed-content and simple-mixed content elements, as well as the
depth of mixed-content elements, i.e. their complexity. Naturally, they are cor-
related with respective characteristics, i.e. percentage of text or depth of the
document.

The fourth set of data characteristics involves various types of data patterns as
were defined in [20]. Since recursion is related to element names, there are almost
no conflicts with other data characteristics for all its four types; they may conflict
only mutually. Similarly, since the remaining patterns, i.e. relational patterns,
shallow relational patterns and DNA patterns, specify pre-defined subtrees of the
synthesized tree, they are not in direct conflict with any of the other parameters
as well.

The last set of characteristics involves the percentage of XML documents for
which a schema (a DTD [11] or an XSD [7,22]) should be inferred. Typically this
will be 0% or 100%, however for special applications, such as those dealing with
schema inference or schema evolution, it may be useful to infer a schema only
for a subset of the synthesized XML documents. Naturally, these parameters are
in no conflict with others.

3.2 Schema Generator

According to the statistical analysis [20], XML schemas of XML documents are
used quite often. As long as some XMLMSs use schemas as an information how
to create the internal representation of XML documents, FlexBench involves
a schema generator as well. However, for the sake of simplicity it involves a
third-party implementation, since there exists a plenty of suitable solutions [19].
Hence, since this is not the key aspect of FlexBench, we will omit further details.

3.3 Query Generator

Having synthesized a set of XML documents and having inferred their XML
schema if required, the next important component of FlexBench is a query gen-
erator. Since, in general, it can have on input any kind of XML data, it must
be able to synthesize queries over them, so that we can get reasonable results.
Hence, the question is what kind of queries it should synthesize and how.

FlexBench query generator is based on the idea of exploitation of a set of
XQuery templates with empty parts that are filled with XML document names
and respective element/attribute names according to the given XML data.

For instance, consider the following query template:

for $a in doc("input.xml")//elem

order by $a

return <result>{$a}</result>
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Its instance is created as follows: The input.xml is replaced with name of a
synthesized XML document and the element name elem with any of its elements.

The apparent problem is that we need to tight the data with the queries, i.e.
to enable a user to specify which of the elements/attributes should be used in the
templates and, hence, queried. Under a closer observation we can see that most
of them are directly represented by data generator parameters. For example, if
the user tends to synthesize many mixed-content elements, the query generator
can “guess” that (s)he wants to synthesize queries involving these elements as
well. In general, the user may specify which of the elements should be queried.
However, since this approach is useful only in case the user is acquainted with
the data in detail, the FlexBench data generator outputs elements with “inter-
esting” features (such as the most common element, the mostly used element
in recursion, the mostly used mixed-content element, the mostly used trivial
element, etc.) of which a user may choose.

The second question is how to select the query templates. As we have men-
tioned, the choice of the particular queries depends on the type of the bench-
mark. Since FlexBench is an application-level benchmark, our aim is to support
as many distinct types of queries as possible. In [5] the queries used in the ex-
isting benchmarks are divided into several categories as depicted in Table 3.

Table 3. Categories and numbers of queries in existing benchmarks

Category MBench XMark XOO7 XMach XBench

Core XPath 12 3 1 0 1
XPath 1.0 4 3 8 3 12
Navigational XPath 2.0 22 5 6 1 22
XPath 2.0 5 8 6 2 23
Sorting 1 1 1 1 9
Recursive functions 2 0 0 1 0
Intermediate results 0 0 0 0 0

In the following sections we will go through all the categories, define them
briefly and discuss the respective characteristics. As we have mentioned, the
FlexBench query synthesis is based on the idea of query templates and creating
their instances suitable for the given data. Hence, the characteristics are related
mainly to the amount of synthesized queries. For the space limitations we do not
list all the currently supported templates – the whole set can be found in [23].

Core XPath Queries. These queries test XMLMS performance when finding
an XML element specified by the navigational part of the XPath [14]. The usage
of position information, all functions and general comparisons are excluded.

FlexBench distinguishes between two special cases – the queried element at
the first level and a nested element. From the point of view of the query gener-
ator it is useful to let the user specify how deep the queried element should occur.
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Hence, FlexBench enables one to specify the number of the queries and statistical
distribution of levels of queried elements.

Text Queries. Preserving the order of a text is one of the most important
aspects of XMLMSs. The text queries test the performance of an XMLXS when
searching for a text. They also belong to the category of Core XPath. FlexBench
enables one to specify the number of these queries.

XPath 1.0 Queries. When storing a document-centric XML document, an
XMLMS must store the elements in their original order (otherwise the meaning
of the text would be lost). That is why there exist ways to query the ordered
access. In general, there are two possibilities:

– Absolute order – queries that retrieve elements according to their absolute
position in the XML tree

– Relative order – queries that return elements according to their neighboring
elements in the XML tree

FlexBench enables one to specify the number of absolute and relative order
access queries. Besides these obvious parameters, more customizable absolute
ordered queries are useful, e.g. a user can specify what index should be used.

Navigational XPath 2.0 Queries. From navigational XPath 2.0 [6] the us-
age of position information and all aggregation and arithmetic functions are
excluded. However, we include queries with some and every clauses to construct
quantified expressions as well. A user is able to specify the amount of such
queries; some and every versions of a query are synthesized randomly in rate
50:50.

XPath 2.0 Queries. An instance of this category can be queries which ap-
ply an aggregation function on the data. Examples of such functions are a
sum of some set of numbers, an average value, etc. The aggregation-function
queries suppose that there exist similar elements which can be used as a source
for the aggregation. FlexBench enables one to specify the number of particular
aggregate-function queries.

Sorting Queries. These queries use sorting of a set of the given attributes to
get an ordered list of elements/attributes. FlexBench enables users to specify
their amount.

Queries with Recursive Functions. XQuery enables a user to define own
functions, possibly recursive. Since such a function is highly related to the data,
as a template we have chosen a simple recursive function so generic that it can
be used on any XML document. It computes the depth of an XML document.
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declare function local:depth ( $root as node()? ) as xs:integer?

{

if ($root/*)

then max($root/*/local:depth(.)) + 1

else 1

};

local:depth(doc("input.xml"))

Similarly to the previous cases, FlexBench enables users to specify the number
of synthesized recursive queries.

Queries with Intermediate Results. Intermediate result queries contain let
clause of XQuery. A user can specify the amount of such queries.

Currently, FlexBench supports a set of simple query templates for each of the
previously described query class (see [23]). Naturally, there are much more com-
plex constructs and queries that can be expressed in XQuery, such as various
joins, complex user-defined functions, etc. As for the future work, we intent to
involve them in FlexBench as well and to deal with their more precise binding
with the synthesized data. Such complex queries will require looser XQuery tem-
plates and a kind of data analyzer capable of creating their correct instances.
The current implementation of FlexBench is a preliminary version that enables
one to demonstrate the basic advantages of the chosen approach. Hence, the
templates were selected so that no complex data analysis was necessary.

3.4 Pre-defined Settings of Parameters

To fulfill the second aim of FlexBench stated at the beginning of this chapter, we
provide a set of its predefined settings. Since we have created the set of supported
data parameters on the basis of characteristics analyzed in [20], we can exploit
the data categories and their real-world characteristics stated in the analysis as
well. In particular, the XML data are divided into these six classes:

– data-centric documents, i.e. documents designed for database processing
(e.g. database exports, lists of employees, lists of IMDb movies, etc.),

– document-centric documents, i.e. documents which were designed for hu-
man reading (e.g. Shakespeare’s plays, XHTML documents, novels in XML,
DocBook documents, etc.),

– documents for data exchange, e.g. medical information on patients and ill-
nesses, etc.,

– reports, i.e. overviews or summaries of data (usually of database type),
– research documents, i.e. documents which contain special (scientific or tech-

nical) structures (e.g. protein sequences, DNA/RNA structures, etc.) and
– semantic web documents, i.e. RDF documents.
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A user can use these pre-defined categories through command-line parameters.
For instance, specifying:

java -jar flexbench.jar -data-exchange

is equivalent to specifying all the parameters like:

java -jar flexbench.jar NumberOfGeneratedFiles=9

PercentageOfTextGen=uniform(31,40)

PercentageOfFilesWithDTD=100 ...

4 Preliminary Experiments

To depict advantages of the proposal we have chosen basic typical use cases of
FlexBench. We describe them and their results in this section.

4.1 Comparing XMLMSs

We start with a typical aim of XML benchmarking – to compare performance
of several XMLMSs. We use the six pre-defined sets of parameters specified in
Section 3.4 and three simple XMLMSs Qizx [3], Qexo [1] and Saxon [4].

First of all, the total execution times of all benchmark queries are depicted in
Table 4.

Table 4. Total execution time on six different types of applications

Qizx (s) Qexo (s) Saxon (s)

Data-centric 3.268 4.942 11.423
Document-centric 10.564 19.919 61.767

(but failed on
text queries)

Exchange 8.116 15.438 18.290
Reports 55.324 failed failed
Research 3.945 5.050 7.139
Semantic web 7.430 9.874 27.902

As we can see, Qizx and Qexo XMLMSs performed almost equally in data-
centric, data exchange, research and semantic web scenarios, whereas Qizx sus-
tained superior performance. Remaining two categories output more interesting
results. Both Qexo and Saxon failed in case of reports – the cause of failure
was low heap space available. (We will describe the scalability of FlexBench in
Section 4.2 to determine maximum XML document size which Qexo can work
with.) Saxon has the worst efficiency in general.

Interesting ones are also the document-centric results. It seems that Qizx is
much faster than Qexo when querying document-centric documents. Moreover,
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Table 5. Comparing XMLMSs in query categories of document-centric benchmark

Query category Number of Average time for query (ms)
of queries Saxon Qizx Qexo eXist

Core XPath (exact match) queries 137 328 25 67 405
XPath 1.0 (absolute and relative or-
der) queries

86 157 26 52 250

Navigational XPath 2.0 (quantifica-
tion) queries

9 109 64 failed 289

XPath 2.0 (aggregate function)
queries

70 55 38 75 301

Sorting queries 9 873 437 failed 274
Recursive function queries 14 failed failed failed 1549
Intermediate result queries 12 170 162 234 413

Qexo does not support text queries because of function usage which it does not
support. Note that such experiments could not be performed using any of the
existing benchmarks, because they do not support so wide characteristics of the
data to specify different applications.

To analyze the document-centric application more precisely we synthesized
55 absolute ordered queries, 70 aggregate function queries, 137 exact match
queries, 12 intermediate result queries, 9 quantification queries, 14 recursive
function queries, 31 relative order queries, 9 sorting queries and 72 text queries
for the document-centric category. As we can see in Table 5, Qexo needs twice
the time of Qizx and even fails in some of the cases. None of the categories
shows extra deviation from this pattern, so we can conclude that Qexo has
overall problems when working with the document-centric documents. On the
other hand, Saxon has problems with basic queries (especially in exact match
queries), but outperforms Qexo in more complex ones. And, finally, eXist [2] was
added to depict how complex recursive function queries are.

4.2 Scalability of Benchmark Generator

FlexBench capabilities can be also used to detect the limits of an XMLMS.
As we have seen in Table 4, Qexo has some problems with large files and its
default allocated heap space. We will keep its default setting of heap space
considering Qexo as an unconfigurable black box and we will try to determine
the approximate size of the XML file that Qexo can process successfully. Firstly,
we synthesize XML documents with various sizes ranging from 1MB to 13MB.
Then we perform the respective tests. Finally, as we have seen from a log file,
Qexo has problems with XML files bigger than 7MB.

Naturally, such testing can be done using any data generator. The advantage
of FlexBench is that we can find the limits for distinct applications, i.e. data
collections and operations.
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4.3 Modifying Parameters

In the following tests we will show the advantage of the various parameters
of FlexBench. We can use any of the parameters (or their combination) and
selected type(s) of queries to study their impact on the selected XMLMSs. For
illustration we choose influence of recursion and text queries on Saxon and Qizx.

Figure 1 shows how the percentage of recursion correlates with corresponding
total execution times for text queries. As we can see, in both the selected cases
the systems behave quite naturally – the more the percentage of recursion is,
the higher the execution times are. However, Saxon overcomes Qizx in all three
cases.

Fig. 1. Effect of percentage of recursion on text queries

4.4 Consistency of FlexBench Output

Last but not least, we will discuss the consistency of the results. One might argue
why results over data and queries that are completely synthetic should be trust-
worthy. How big is the chance that the results will not be entirely different with
the same parameters passed to FlexBench again? For the sake of result consistency,
multiple tries weremadewhen benchmarking.Each time the whole benchmarkwas
re-synthesized and applied to Qizx. The results can be seen in Table 6.

Table 6. Stability of results of a randomly synthesized benchmark

Total execution time Qizx

Document-centric benchmark #1 (s) 26.592
Document-centric benchmark #2 (s) 29.871
Document-centric benchmark #3 (s) 25.948
Document-centric benchmark #4 (s) 27.358
Document-centric benchmark #5 (s) 27.297
Semantic web benchmark #1 (s) 30.117
Semantic web benchmark #2 (s) 27.550
Semantic web benchmark #3 (s) 28.579
Semantic web benchmark #4 (s) 33.579
Semantic web benchmark #5 (s) 32.718
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Aswe can see, the average total execution time for synthesizeddocument-centric
benchmark is 27.413s and the standard deviation is 1.333s. In case of synthesized
semantic web benchmark, the average total time is 30.509s and standard deviation
is 5.190s. Considering total randomness of synthesized data and queries (even the
amount of queries is more-or-less randomized) the results are convincing.

5 Conclusion and Future Work

There are several major achievements of this paper. Firstly, the XML data gen-
erator supports numerous interesting parameters of XML documents, in fact so
many that no third-party solution was suitable to be exploited and utilized. It
is also a notable fact that the parameters were taken from available statistics
about real-world XML data sets and, hence, the realistic results could be used
for reasonable pre-setting. Secondly, the query generator can synthesize queries
so that they can be applied on the given data. Every other XML benchmark has
its query workload fixed and consequently, the respective data generators are
highly restricted. Thus, in general, the main advantage of our approach is that
we are much more flexible when synthesizing data, since we are not bound to
any pre-defined queries.

Experimental results showed us how easy is to determine interesting insights
about tested XML databases. Thanks to our different kinds of data and various
queries we were able to show different behaviors of the benchmarked XMLMSs.
This would not be possible with a fixed set of data and XQuery queries. More-
over, we have created pre-defined sets of benchmark parameters corresponding
to the real use-cases of XML data.

Authors of [9] state that every benchmark should have the following four basic
properties:

– relevance: FlexBench synthesizes XML queries that cover most constructs of
XQuery.

– portability: FlexBench is implemented in Java and outputs portable XML
format.

– scalability: FlexBench is scalable through lots of data/query parameters.
– simplicity: No parameter of FlexBench is mandatory and we provide a set

of pre-defined data sets.

Another way to evaluate the quality of an XQuery workload was stated in [12]:

1. Is there a restriction on XML document structure?
2. Is there a database size and load volume scalability?
3. Is there a query type variability?
4. Is there an ad hoc and open interface for schema input and operation input?

FlexBench’s answers are:

1. No, there are no restrictions. XML documents and their schemas are syn-
thesized and a user can specify numerous parameters of the result.
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2. Yes, there is. Moreover, every other parameter of synthesized XML docu-
ments is scalable as well (not only the size parameter).

3. Yes, there is. FlexBench supports more categories of queries than the rest of
benchmarks.

4. If we consider FlexBench parameters as a form of a schema, then yes,
FlexBench is also easily extensible by new parameters and new templates
for synthesized queries.

Naturally, there is also a plenty of possible future improvements of FlexBench.
Firstly, we intent to perform more elaborate experiments with various types of
XMLMSs from XML-enabled to native XML ones and, especially, with com-
mercial solutions. Secondly, we plan to extend the proposed idea as much as
possible. In particular we will focus on the set of XML query templates that can
be much wider and enable one to test various aspects of an XML application. As
we have mentioned, this task opens a wide research area for creating reasonable
instances of the templates. At the same time, we need to tighten the relation
between the synthesized data and the queries so that the user can specify more
precisely which items should be queried and how. Side but still important tasks
involve implementation of a user-friendly interface for specifying the character-
istics as well as a repository for their predefined settings. And, last but not least,
we want to focus on benchmarking of stream processing [15], where the various
characteristics of synthetic data can be widely exploited as well.
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Abstract. We consider the problem of using query transformation to
compute consistent answers when queries are posed to virtual XML data
integration systems, which are specified following the local-as-view ap-
proach. This is achieved in two steps. First the given query is trans-
formed to a new query with global constraints considered, then the new
query is rewritten to queries on the underlying data sources by reversing
rules in view definitions. The XPath query on the global system can be
transformed in XQuery. We implement prototypes of our method, and
evaluate our framework and algorithms in the experiment.

1 Introduction

When data sources are integrated together, inconsistencies wrt global integrity
constraints are likely to occur. The consistency of data derived from the data
integration and query answering is an important issue of the consistent query
answering(CQA) problem[5] and data quality. In this paper, we consider the
problem of using query transformation to get consistent answers from virtually
integrated XML data. The virtually integrated XML data is left as is, and queries
are transformed when they arrive, as such the transformed query on the original,
possibly inconsistent XML data will yield exactly the consistent answers.

In our discussion, the global system and each data sources use XML as their
schemas. The mappings between the global schema and the data sources are
defined in local as view(LAV) approach, and global integrity constraints are
predefined. Given a query on the global system, we first transform it into a new
query with global constraints considered for consistent answers. As the global
XML data instance is not materialized, we then transform the new query to
queries on the underlying data sources for the actual query answers. This is
achieved by reversing rules in the view definitions. For a given XPath query
on the global system, we illustrate that both transformations mentioned above
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can be implemented by XQuery. We implement prototypes of our method, and
evaluate our framework and algorithms in the experiments.
Related Work. For XML, absolute and relative keys[3], functional
dependencies[1,9] are the most commonly discussed constraints. We give a more
general constraint model in this paper, which can express functional depen-
dencies and keys. It also naturally extends the recently discussed conditional
functional dependencies[4] to XML. [8] investigates the existence of repairs with
respect to a set of integrity constraints and a DTD. It differs from our goal to
compute consistent answers from integrated XML data. In [6,7], view definition
and query rewriting are also discussed. The difference is that, we need to an-
swer queries on global system using the source instances in LAV approach. [10]
studies the problem of answering queries through a target schema, and target
constraints may be incorporated in the query rewriting. To the best of our knowl-
edge, neither of the former work considers global integrity constraint violations
with XML as global schema.

2 Constraint Model

A query(path) Q is evaluated at a context node v in an XML tree T , and its
result is the set of nodes of T reachable via Q from v, denoted by �v{Q}	. In
particular, when there is only one node in �v{Q}	, we use v{Q}to denote this
node. If v is the root node, we write �Q	 for �v{Q}	.

We give a general form of XML constraint first. The constraint σ is of the form
(Q, Q′, (Q1, . . . , Qn))(X̄1, . . . , X̄m)[xl1=xk1, . . . , xlh=xkh⇒xl(h+1)=xk(h+1)].
Here Q, Q′, Q1, . . . , Qn are all simple paths, and Q is a root path, or Q = ε.
X̄j(j ∈ [1, m]) is a list of n variables, below we use xji to denote the ith(i ∈ [1, n])
variable in X̄j . xl1,. . .,xl(h+1),xk1,. . .,xk(h+1) is either a variable or a constant;
If it is a variable, it must be in X̄j .

We say a constraint σ is satisfied by an XML tree T , denoted as T |= σ iff: For
any symbol mapping h from σ to T , ∀ v∈�Q	, if (1)∃vj∈�v{Q′}	 for j ∈ [1, m],
and (2)for j, j′ ∈ [1, m], if j �= j′, vj �= v′j , and (3)there is only one leaf node
in �vj{Qi}	 for i ∈ [1, n], and (4)val(vj{Qi}) = h(xji), and (5)if h(xl1)=h(xk1),
. . . , h(xlh)=h(xkh) all hold, h(xl(h+1)) = h(xk(h+1)).

Please note that by val(vj{Qi}) = h(xji), all the variables in xl1,. . .,xl(h+1),
xk1,. . .,xk(h+1) are bound by node values from T . We call Q context path, Q′

target path, and Q1, . . . , Qn value paths. If the context path is ε, σ holds inside
the whole document, called absolute constraint. Otherwise it holds inside every
subtree rooted at a node in �Q	, called relative constraint. Given a constraint σ
in the form (Q, Q′, (Q1, . . . , Qn)). . ., in a given XML T , we call v∈�Q	 context
nodes, v1∈�v{Q′}	 target nodes, and v1{Qi} value nodes for constraint σ.

The given constraint model can express some commonly discussed constraints,
for example, keys and functional dependencies. It also naturally extends the re-
cently discussed conditional functional dependencies(CFD)[4] to XML. The CFD
aimsat capturing the consistency of data by incorporating bindings of semantically
related values, which is more suitable for data cleaning and related works.
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3 Constraint-Based Query Rewriting for Consistent
Query Answers

Given a query Q on global system, we can rewrite Q to a new query Q′ on
global system with constraints considered. To answer Q′ on the original, possibly
inconsistent global system will generate the consistent query answers.

We use ¬ to denote negation required in the rewriting method. Given
a constraint σ of the form (Q, Q′, (Q1, . . . , Qn))(X̄1, . . . , X̄m)[xl1=xk1, . . . ,
xlh=xkh ⇒xl(h+1)=xk(h+1)], it is converted to the form ¬((Q, Q′, (Q1, . . . , Qn))
(X̄1, . . . , X̄m) [xl1=xk1,. . . ,xlh=xkh,¬(xl(h+1)=xk(h+1))]). Intuitively speaking,
we first find the violating target nodes by using negation on the conditions,
then calculate the consistent answers by excluding violating ones using another
negation.

The approach of constraint based query rewriting is summarized: 1)The nodes
{v1, ..., vk} qualified by Q are selected; 2)Constraints in Σ should be verified if
their target nodes have vi as ancestor nodes. These constraints can be determined
by considering Q, the context and target path of constraints; 3)Constraints are
verified one by one, ordered by the concatenation of their context and target
paths. Please note that vi is the domain for constraint validations. However, since
constraints may have context beyond vi, the original document may be accessed
again in constraint validations; 4)The resulting XML document is generated
top-down from vi, excluding the violating value nodes of constraints in Σ.

Algorithm 1. Constraint−Based−Rewrite(Q, T, Σ)

Input: query Q, virtual global instance T , global constraint set Σ.
1: for each σ=(P, P ′, (. . .))(. . .)[. . . ]∈Σ
2: if Q is a prefix of P/P ′ then
3: Insert σ into σ list properly: /* σ list is initially empty. */

for σ′=(S, S′, (. . .))(. . .)[. . .]∈σ list, if S/S′ is a prefix of P/P ′,
ensure that σ′ is before σ in σ list.

/* σ list will be a list of constraints, which should be validated for
query Q. */

4: Evaluate Q on T , and let the nodes qualified by Q on T be {v1, ..., vk}.
5: for each vi (i∈[1, k])
6: for each σj from σ list
7: Validate σj ; during the validation, at least one target node for σj

should be selected from Tvi .
/* We use Tvi to denote the subtree rooted at vi in T */

8: if σj does not hold then
9: Mark the violating value nodes of σj in Tvi .
10: For node u in Tvi , if all the descendant nodes of u are marked, mark u

as well.
11: Output Tvi top-down, excluding the marked nodes.
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4 Query Rewriting in LAV

With the new query Q′ produced based on target constraints in section 3, we
need to further rewrite it to queries on the underlying data sources, because the
global instance is not materialized. To define the mappings between the global
schema and the data sources, we propose a definition of XML views, which
supports edge-path mappings and data-value bindings. The given XML views
are also flexible enough to incorporate bindings of semantically related values.

We rewrite the query on global system to queries on underlying data sources
by reversing rules in the view definitions. We just illustrate some key points in
this step: 1)The value bindings need to be reversed; 2)More than one paths in
the global schema may match the given query in the reversed view definition;
3)When a node is extracted from the source instance, its child nodes must be
extracted iteratively by the succeeding rules; 4) Some necessary default elements
may be added to make the result conforming to the target schema.

5 Experimental Results

We implement a rewriting module that translates XPath queries on the global
system to XQuery queries on the underlying data sources, based on the constraint
rewriting and reversed view definitions. Then we run the generated XQuery
queries on the source XML documents using an XQuery system built on SAXON.

We perform our experiments with artificial data sets generated by the IBM
XML Generator. In the experiments, we compare the time of ordinary query
answering with the time of consistent query answering.

We run various types of XPath queries, and below we give the evaluation time
for a query with filters on data values. We consider noise of data, number of
constraints, scalability of data set, and selectivity of query in the experiments.
The noise factor has no effect on the running time of ordinary query. And for
consistent query answering, it also takes almost the same time to process consis-
tent query answering on a consistent XML document, or on a badly inconsistent
XML document. With a fixed data set, the consistent query answering time in-
creases with more constraints considered. But for two constraints, the time to
get violating nodes wrt them is the sum of the time to get their own violating
nodes. So the time growth is not explosive with increasing constraints.

In figure 1, we vary the size of source data sets. Each data source grows with
the same pace, and here the size of total data sources is given. Please note that
we use different measures for the two time. The time of ordinary answering and
consistent answering all grows with larger data sets, and consistent answering
needs more time, which implies that most of time is spent on getting violating
nodes wrt target constraints. With larger data sets, the time for constraint val-
idating is in quadratic growth, which grows faster than the time for ordinary
query answering. In figure 2, with fixed data sources, we run queries with de-
creasing selectivity by using different conditions in filters. Because we have no
index built, the time of ordinary query answering is not sensitive to the selectiv-
ity of queries. However, the set of qualified nodes is the domain for constraint
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validations. There is no need to compare target nodes if neither of them is qual-
ified by the query. So the time for consistent query answering decreases with
lower selectivity dramatically.

6 Conclusions

We use query transformation to compute consistent answers when queries are
posed to virtual XML data integration systems, based on global constraints
rewriting and rules reversing in LAV setting. To run the transformed query on
the original, possibly inconsistent global system will yield exactly the consis-
tent answers. We also implement prototypes of our method, and evaluate our
framework and algorithms in the experiment.
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Abstract. Privacy becomes a major concern for both customers and en-
terprises in today’s corporate marketing strategies, many research efforts
have been put into developing new privacy-aware technologies. Among
them, Hippocratic databases are one of the important mechanisms to
guarantee the respect of privacy principles in data management, which
adopt purpose as a central concept associated with each piece of data
stored in the databases. The proposed mechanism provides basic princi-
ples for future database systems protecting privacy of data as a founding
tenet. However, Hippocratic databases do not allow to distinguish which
particular method is used for fulfilling a purpose. Especially, the issues
like purpose hierarchies, task delegations and minimal privacy cost are
missing from the proposed mechanism.

In this paper, we extend these mechanisms in order to support
inter-organizational business processes in Hippocratic databases. A com-
prehensive approach for negotiation of personal information between
customers and enterprises based on user preferences is developed when
enterprises offer their clients a number of ways to fulfill a service. We
organize purposes into purpose directed graphs through AND/OR de-
composition, which supports task delegations and distributed authoriza-
tions. Specially, customers have controls of deciding how to get a service
fulfilled on the basis of their personal feeling of trust for any service cus-
tomization. Quantitative analysis is performed to characterize privacy
penalties dealing with privacy cost and customer’s trust. Finally, effi-
cient algorithms are given to guarantee the minimal privacy cost and
maximal customer’s trust involved in a business process.

1 Introduction

With the widespread use of information technology in all walks of life, personal
information is being collected, stored and used in various information systems.
Achieving privacy preservation has become a major concern. Issues related to
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privacy have been widely investigated and several privacy protecting techniques
have been developed. To our best knowledge, the most well known effort is
the W3C’s Platform for Privacy Preference (P3P) [10]. P3P allows websites to
express their privacy policy in a machine readable format so that using a software
agent, consumers can easily compare the published privacy policies against their
privacy preferences. While P3P provides a mechanism for ensuring that users
can be informed about privacy policies before they release personal information,
some other approaches are proposed [4,8,16,17,22], where the notion of purpose
plays an important role in order to capture the intended usage of information.

As enterprises collect and maintain increasing amounts of personal data, indi-
viduals are exposed to greater risks of privacy breaches and identity theft, many
enterprises and organizations are deeply concerned about privacy issues as well.
Many companies, such as IBM and the Royal Bank Financial Group, use privacy
as a brand differentiator [3]. By demonstrating good privacy practices, lots of
business try to build solid trust to customers, thereby attracting more customers
[20,5,6,12]. Together with the notion of purpose, current privacy legislations also
define the privacy principles that an information system has to meet in order
to guarantee customer’s privacy [11,1,2,21]. Mechanism for negotiation is pre-
sented by Tumer et al. [21]. Enterprises specify which information is mandatory
for achieving a service and which is optional, while customers specify the type
of access for each part of their personal information.

On the basis of the solution for the exchange between enterprises and cus-
tomers, Hippocratic databases enforced fine-grained disclosure policies to an ar-
chitecture at the data level [1]. In the proposed architecture, enterprises declared
the purpose for which the data are collected, who can receive them, the length
of time the data can be retained, and the authorized users who can access them.
Hippocratic databases also created a privacy authorization table shared by all
customers, but it does not allow to distinguish which particular method is used
for fulfilling a service. Moreover, enterprises are able to provide their services in
different ways, and each different method may require different data. For exam-
ple, notification can be done by email or by mobile phone or by fax. Depending
on the different kinds of methods, customers should provide different personal
information. Asking for all personal information for different service methods as
compulsory would clearly violate the principle of minimal disclosure.

On the server side, a single enterprise usually could not complete all proce-
dures of a service by itself, rather a set of collaborating organizations partici-
pating in the service. Enterprises might need to decompose a generic purpose
into more specific sub-purposes since they are not completely able to fulfill it
by themselves, and so they may delegate the fulfillment of sub-purposes to third
parties. It is up to customers to decide on a strategy of how to get a service
fulfilled on the basis of their personal feeling of trust for different service com-
ponents. A question that many customers have when interacting with a web
server, with an application, or with an information source is “Can I trust this
entity?”. Different customizations may require different data for which consid-
erations may vary; there might be different trust levels on different partners
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(sub-contractors). The choice of service customization has significant impact on
the privacy of individual customers.

In this paper, we present an approach to automatically derive the optimal way
of authorizations needed to achieve a service from enterprise privacy policies. In
particular, we organize purposes into purpose directed graphs through AND/OR
decompositions, which support the delegation of tasks and authorizations when
a host of partners participating in the business service provides different ways
to achieve the same service. Further, we allow customers to express their trust
preferences associated with each partner of the business process. Thus, a weight
combining privacy cost and customer trust is given on each arc of the graph
in the form of privacy penalties, and the process for fulfilling a purpose can
be customized at runtime and guarantees minimal privacy cost and maximal
customer trust because it was selected with criterion of the optimal privacy
penalty. Finally, an efficient algorithm is proposed to find optimal privacy-aware
path in Hippocratic databases. Our work is grounded on modeling and analysis of
purposes for Hippocratic databases and proposes enhancements to Hippocratic
database systems in order to deal with inter-organizational business processes.

The remainder of the paper is structured as follows. Section 2 introduces the
motivation of this paper based on a running example. Section 3 presents some
background information on Hippocratic database systems. We introduce purpose
directed graph with delegation in Section 4 and discuss how to characterize the
privacy penalty and efficiently find the optimal solution in Section 5. We provide
a brief survey of related work in Section 6. We conclude the paper in Section 7.

2 Motivation

We consider the following example throughout the paper.

Example: Ebay is an online seller in Australia and provides an online cat-
alogue to its customers who can search for the items they wish to buy. Once
customers have decided to buy goods, Ebay needs to obtain certain personal in-
formation from customers to perform purchase transactions. This information
includes name, shipping address, and credit card number. Ebay views purchase,
its ultimate purpose, as a three-step process: credit assessment, delivery, and no-
tification. Credit assessment relies on Credit Card Company (CCC). Delivery
can be done either by a delivery company or the post office, while notification
can be done by email or by mobile phone.

Obviously, Ebay provides many ways to achieve the purchase service and each
different method could require different data. An important principle is that
enterprises should disclose to customers which data is collected and for what
purpose. Also, enterprises should maintain minimal personal information neces-
sary to fulfill the purpose for which the information was collected.

From the customers’ point of view, they do not want to disclose more data
than needed to get the desired service; rather, they want the process that best
protects their privacy based on their preferences. Depending on the method of
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notification, Ebay needs either an email address or a mobile phone number. For
example, Jimmy, a professor plagued by spam, may treasure his email address
and give away his business mobile phone number. Bob, a doctor whose mobile
phone is always ringing, may have the opposite preference. Therefore, it is up to
customers to decide how to get a service fulfilled on the basis of their personal
feeling of any service customization.

Furthermore, if we consider the delivery service, Ebay could not fulfill the ser-
vice by itself, but rather relies on a delivery company or post office. That means
Ebay may outsource a large part of data processing to third parties participating
in a single business process. However, the more the data is used, the more likely
it might be disclosed, since the personal information is transmitted from one to
another. This requires that enterprises maintain minimal personal information
necessary to fulfill the purpose. Moreover, the partners chosen by Ebay might
also be trusted differently by its potential customers. The burden of choice is on
the human who must decide what to do on the basis of his/her personal feeling of
trust of the enterprises. For instance, Albert may prefer to delivery by a delivery
company, since it is fast; whereas, Bob may chose delivery by post office because
it is safe. Different partners (sub-contractors) chosen for the same purpose may
be with different trust levels. The choice of service customization has significant
impact on the privacy of individual customers.

If we consider these factors, both the privacy cost and customer’s trust should
be considered as important factors in privacy security system when enterprises
publish comprehensive privacy policies involving hierarchies of purposes, possibly
spanning multiple partners. Formally, it can be stated as follows:

Minimal privacy cost: Is there a way to fulfill the purpose with minimal
privacy cost?

Maximal customer’s trust: Is there a way to fulfill the purpose with maximal
trust between enterprises and customers?

Classical privacy-aware database systems such as Hippocratic databases do
not consider these issues, we are interested in solutions that support customers
and companies alike, so that companies can publish comprehensive privacy poli-
cies involving multiple service methods, possibly delegation of tasks and autho-
rizations. Moreover, the solutions will allow customers to personalize services
based on their own privacy sensitivities and their trust of partners who might
contribute to the requested service.

3 Overview of Hippocratic Databases

Hippocratic databases use purpose as a central concept [1]. A purpose describes
the reason(s) for data collection and data access, which is stored in the database
as a “special” attribute occurring in every table of the database. This attribute
specifies the purpose (reason/goal) for which a piece of information can be used.

For example, Table 1 shows the schema of two tables, customer and order, that
store the personal information including purposes. In particular, table customer
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Table 1. Database schema

table attribute

customer purpose, customer-id, name, address, email, fax-number, credit-card-info
order purpose, customer-id, transaction, book-info, status

Table 2. Privacy metadata schema

table attribute

privacy-polices purpose, table, attribute, {external-receipts}, {retention-period}
privacy-authorizations purpose, table, attribute, {authorized-users}

stores personal information about customers, and table order stores information
about the transactions between enterprises and their customers. Then, for each
purpose and data item stored in the database, we have:

External-recipients: the actors to whom the data item is disclosed ;

Retention-period: the period during which the data item should be maintained ;

Authorized-users: the users entitled to access the data item.

Purpose, external recipients, authorized users, and retention period are stored
in the database with respect to the metadata schema defined in Table 2. Specif-
ically, the above information is split into separate tables: external-recipients
and retention period are in the privacy-policies table, while authorized-users
in the privacy-authorizations table. The purpose is stored in both of them.
The privacy-policies table contains the privacy policies of the enterprise, while
privacy-authorizations table contains the access control policies that implement
the privacy policy and represents the actual disclosure of information. In par-
ticular, privacy-authorizations tables are derived from privacy-policies tables by
instantiating each external recipient with the corresponding users. Therefore,
Hippocratic database systems define one privacy-authorizations table for each
privacy-policies table, and these tables represent what information is actually
disclosed.

Hippocratic database system is an elegant and simple solution but does not
allow for dynamic situations that could arise with web services and business
process softwares. In such settings, enterprises may provide services in many
different ways and may delegate the execution of parts of the service to third
parties. This is indeed the case of a virtual organization based on business process
for web service where different partners explicitly integrate their efforts into one
process [15].

4 Purpose Directed Graph with Delegation

Agrawal et al.[1] proposed a structure to split a purpose into multiple purposes
and then stored them in the database. Karjoth et al.[16] used a directory-like
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notation to represent purpose hierarchies, which loses the logic relation between
a purpose and its sub-purposes. In particular, this notation does not distin-
guish if a sub-purpose is derived by AND or OR decomposition [19]. Assuming
a purpose p is AND-decomposed into sub-purposes p1, . . . , pn, then all of the
sub-purposes must be satisfied in order to satisfy p. For example, Ebay AND-
decomposes purchase into delivery, credit assessment, and notification, then all
of the three sub-purposes have to be fulfilled for fulfilling purchase purpose.
However, if a purpose p is OR-decomposed into sub-purposes p1, . . . , pn, then
one of the sub-purposes must be satisfied in order to satisfy p. For instance, Ebay
further OR-decomposes delivery into direct delivery relying on delivery compa-
nies and delivery by post office (shown in Fig.1). In this way, only one of them
could be necessary to fulfill the delivery purpose. In essence, AND-decomposition
is used to define the process for achieving a purpose, while OR-decomposition
defines alternatives for achieving a purpose.

Our approach is based on traditional goal analysis [18], and consists of decom-
posing purposes into sub-purposes through an AND/OR refinement. The idea is
to represent purpose hierarchies with directed graphs.

Definition 1. A purpose directed graph PDG is a pair (P, A), where P is a set
of purposes and A is the set of arcs, each arc represents a hierarchical relation
between the purposes.

A purpose directed graph (PDG) can be used to represent goal models in goal-
oriented requirements engineering approaches [7]. For our purposes, they repre-
sent the entire set of alternative ways for delivering a service required by cus-
tomers. Such representations can also be used to model the delegations of tasks
and authorizations in the security modeling methodology proposed by Giorgini
et al.[14].

An enterprise could provide different methods to achieve a service or rely on
different partners to achieve the same part of the service. In particular, Ebay
relies on a delivery company, Worldwide Express (WWEx), for shipping books.
Ebay needs to delegate customer’s information, such as name and shipping ad-
dress, to WWEx. In turn, WWEx depends on local delivery companies for door-
to-door delivery. To this end, WWEx delegates customer information to the local
delivery companies LDC1, · · ·, LDCn for door-to-door delivery. Consequently,
different processes can be used to fulfill the required service. To capture this
insight, we introduce the notion of path.

Definition 2. Let PDG = (P, A) be a purpose directed graph. A path from v0
to vm is defined as a sequence W = (v0, a1, v1, ..., am, vm), where ai is an arc
from vi−1 to vi for i = 1, ..., m.

A purpose directed graph PDG is rooted if it contains a vertex v, such that all
the vertices of PDG are reachable from v through a directed path. The vertex
v is called a root of PDG.

For example, consider the purpose directed graph depicted in Fig.1. Each
vertex is composed by two parts: a purpose identifier and an enterprise needed
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Fig. 1. Purpose directed graph

to fulfill the purpose, and each of the purposes represents the policies of a single
enterprise. The vertex ‘purchase’ is the root of the graph and purchase is the
root-level purpose. Essentially, if a path W = (v0, a1, v1, ..., am, vm) satisfies that
v0 is the root purpose and there exists no downward paths from vm, we say the
path is an essential path. An essential path represents a possible process through
which an enterprise can fulfill the root purpose.

The enterprise-wide privacy policies are derived by looking at the Hippocratic
database of each partner involved in the business process and merging them into
a single purpose. Therefore, purposes can be recognized as the outcome of a pro-
cess of refinements of goals in security requirements modeling methodologies[13].
The task delegation is indeed the case of a virtual organization based on business
process for web service where different partners explicitly integrate their efforts
into one process.

5 Finding Optimal Privacy-Aware Path

Our goal is to decide which is the essential optimal privacy-aware path to fulfill
the root purpose with respect to the customer’s preference. This can be per-
formed through the following quantitative analysis.

5.1 Objective Characterization

Since our reference business model is that of virtual organizations, we assume
that there will often be more than one way to deliver a service. Yet, they may
differ in an important aspect, notably they may require different private data
items, which incurs different privacy cost. Further, depending on each customer’s
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individual preferences, the same decomposition path might have significantly
different trust values for different customers. In order to support quantitative
analysis, we need to introduce the notion of privacy penalty.

Definition 3. The privacy penalty of an arc a is defined as a pair wa = (α, β),
where α is the privacy cost and β is the customer’s trust value on the arc a.

Choice of α, β: The privacy penalty pair (α, β) on each arc can be pre-defined by
asking the enterprises and customers to specify the level of privacy cost and trust
they feel about the sub-suppliers. Since the personal information is transmitted
from one to another, this may increase the danger of the leakage of personal
information. Therefore, we use α to depict the privacy cost. Generally, we assume
that there are different trust values based on the customer’s personal feeling of
the trust on different service custormizations. For example, Bob prefers mobile
notification more than email notification because of the personal experience, so
there is a high trust value on mobile notification.

Intuitively, the privacy penalty of a path should consist of two parts: one is
the sum of the privacy cost on each arc and the other is the minimum trust
among these arcs.

Definition 4. Let P = (v0, a1, v1, · · · , am, vm) be a path in the PDG. Then, the
privacy penalty of the path ωP = ωa1 + . . . + ωam = (

∑m
i=1(αi),minm

i=1(βi)),
where ωai = (αi, βi), i = 1, ..., m.

Essentially, a path represents a possible process through which an enterprise
can fulfill a root purpose. For our purpose, we use the sum of the private cost
of each arcs because we argue that the more a piece of data is used, the more
likely it might be misused. The smaller the sum is, the less the privacy cost
is. Therefore, sum measures are the ones that capture best one’s intuitions on
the cost of privacy. We also use the minimization function on trust values to
get the smallest trust value on this path. The larger the value is, the more the
trust is on this path. Our goal is to decide which is the process with the optimal
privacy penalty (i.e., the minimal privacy cost and maximal trust value) to fulfill
the root purpose with respect to the user’s preferences. In order to describe the
user’s preference, we next introduce a flexible objective function.

Flexible objective function: If the privacy penalty on the arc a is defined as
wa = (α, β), we introduce the following objective function to balance the privacy
cost and customer trust with a preference coefficient γ (0 ≤ γ ≤ 1).

alt(a) = γ × α + (1− γ)× β (1)

The choice of parameter γ depends on the customer’s preference. If the customer
cares whether data are disclosed at all, then γ may be set with a value in the
interval 0.5 ≤ γ ≤ 1. On the other hand, if the customer stresses more on trust,
then γ can be set with a value between 0 and 0.5.
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In addition to the objective function, we propose to decompose purposes
into sub-purposes through an AND/OR decomposition. In essence, AND-
decomposition is used to define the process for achieving a purpose, while OR-
decomposition defines alternatives for achieving a purpose. Normally, the node
purpose can be either AND-decomposed or OR-decomposed. A decomposition
arc is either an OR-arc or an AND-arc.

Definition 5. Let PDG = (P, A) be a purpose directed graph, for each vertex
v ∈ P , we denote OUT (v) = OUTor(v) ∪ OUTand(v) as the set of all succes-
sors of v, where OUTor(v) refers to all successors connecting v with OR-arcs,
and OUTand(v) stores all successors connecting v with AND-arcs. Especially, if
OUT (v) = ∅, we say the vertex v is a leaf of PDG.

For example, in Fig. 2 the root purpose r is AND-decomposed into three
sub-purposes: delivery, credit assessment and notification, then OUT (r) =
OUTand(r) = {delivery, credit assessment and notification}. Further, consid-
ering the node v with purpose ‘mobile notification’, since OUT (v) = ∅, then the
node ‘mobile notification’ is a leaf of the purpose directed graph.

5.2 The Algorithm

In this section, we present efficient algorithms to track the optimal path that the
enterprises need to fulfill a purpose. Next, we analyze two situations in finding
the optimal privacy-aware path.

Case 1: if the root purpose is OR-decomposed, the algorithm consists of follow-
ing steps:
1. To contract each vertex v with all its successors in OUTand(v) to a com-

pound vertex vc; suppose OUTand(v) = {v1, · · · , vk}, we define cost[vc] =∑k
i=1 α(v, vi), trust[vc] = mink

i=1 β(v, vi);
2. To transfer the purpose directed graph PDG into PDG with no AND-arcs

and find the optimal path p using function optimal path(PDG);
3. If the optimal path of PDG contains a compound vertex (or vertices), then

expand the compound vertex (or vertices) on p to become the optimal solu-
tion of PDG.

In Algorithm 1, α(u, v) represents the privacy cost between the two nodes u and
v, and β(u, v) refers to the trust value on the arc (u, v). For each leaf vertex,
Sum function is used to track the distance between the leaf and the root, while
predecessor[] records all predecessor vertices of the leaf, and previous[] records
the vertices on the optimal path from the leaf to the root. alt on line 10 is
the objective function with the preference coefficient γ. If γ ≥ 0.5 , it means
customers prefer more on privacy protection, then the minimal objective value
is needed depending on the minimization function; while if γ < 0.5, it means
customers prefer more on trust, then the maximal objective value is needed
depending on the maximization procedure.
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Algorithm 1. optimal path(PDG,OR r)
Input: a purpose directed graph PDG with OR-decompoded root r.
Output: The optimal path D

1. Contract each vertex v with all its successors in OUTand(v) to
the compound vertex vc

2. Transfer PDG into PDG

3. p = optimal path(PDG)
4. If p contains compound vertex(vertices),
5. expand the compound vertex(vertices) on p to p,
6. D = p
7. else
8. D = p

function: optimal path(PDG):
Input: PDG with root purpose r and leaves v1, . . . , vk, pre-defined
privacy cost and trust function α(∗, ∗), β(∗, ∗), and
preference coefficient 0 ≤ γ ≤ 1
0 for each vertex v (not a compound vertex) in PDG:
1 cost[v] := 0
2 trust[v] := ∞
3 for each leaf vi (i = 1, · · · , k)
4 Sum(vi) := 0, previous[vi] := {vi}
5 while r /∈ predecessor[vi] = {ui1 , · · · , uis}
6 {
7 for each uij (1 ≤ j ≤ s)
8 cost(uij , vi) := cost[vi] + cost[uij ] + α(uij , vi)
9 trust(uij , vi) := min{trust[vi], trust[uij ], β(uij , vi)}
10 alt(uij , vi) := γ × cost(uij , vi) + (1 − γ) × trust(uij , vi)
11 if γ ≥ 0.5 /* prefer cost */
12 let alt(uim , vi) = mins

j=1alt(uij , vi)
13 previous[vi] := previous[vi] ∪ {uim}
14 Sum(vi) := Sum(vi) + alt(uim , vi)
15 vi := uim

16 if γ < 0.5 /* prefer trust */
17 let alt(uim , vi) = maxs

j=1alt(uij , vi)
28 previous[vi] := previous[vi] ∪ {uim}
29 Sum(vi) := Sum(vi) + alt(uim , vi)
20 vi := uim

21 }
22 /*end while and all paths from the leaf to the root are found*/
23 if γ ≥ 0.5
24 assume Sum(vt) = mink

i=1Sum(vi), (1 ≤ t ≤ k)
25 output previous[vt]
26 if γ < 0.5
27 assume Sum(vt) = maxk

i=1Sum(vi), (1 ≤ t ≤ k)
28 output previous[vt]
29 end function
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Case 2: if the root purpose is AND-decomposed, in order to design efficient
algorithms to determine the process by which a service can be delivered with
optimal privacy penalties, we need the definition of sub-purpose directed graph.

Definition 6. Let PDG = (P, A) be a purpose directed graph, if the root purpose
r is AND-decomposed into several sub-purposes, then each sub-purpose with all
its descendants form a sub-purpose directed graph of PDG, and we denote it by
sub PDG. Essentially, if the root of the sub PDG is further AND-decomposed
into several sub-purposes, then each sub-purpose with all its descendants form a
sub-purpose directed graph of sub PDG, which is also a sub-sub-purpose directed
graph of PDG, and we denote it by sub (sub PDG).

For example, in Fig. 2 Ebay AND-decomposes purpose purchase into three
sub-purposes: delivery, credit assessment and notification. According to the defi-
nition of sub-purpose directed graph, the purpose delivery with all its decedents
consist of a sub-purpose directed graph. The same situation applies to the other
two sub-purposes, so there are three sub-purpose directed graphs as in Fig. 2
(circled in broken line). Since in each sub-purpose directed graph, the root is
further OR-decomposed, there is no sub-sub-purpose directed graph in Fig. 2.

For the sake of simplicity, we assume that the root of each sub (sub PDG) is
OR-decomposed. In this case, the algorithm consists of following steps:
1. To decompose the purpose directed graph PDG into several sub-purpose

directed graphs.
2. For each sub-purpose directed graph sub PDG with root purpose r,

(a) if the root purpose r is OR-decomposed, run algorithm
optimal path(sub PDG, OR r) to find the optimal path in sub PDG;
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(b) if the root purpose r is AND-decomposed, further decompose the
sub PDG into several sub-sub-purpose directed graphs, then run
algorithm optimal path
(sub (sub PDG), OR r′) to find the optimal path in each
sub (sub PDG) with root r′. Combine all the optimal paths of
each sub (sub PDG) into the optimal solution of sub PDG.

3. To combine all the optimal paths of each sub PDG into the optimal solution
of PDG.

Algorithm 2. optimal path(PDG,AND r)
Input: A purpose directed graph PDG with AND-decomposed root
Output: The optimal path D

1. decompose PDG into several sub PDG
2. for each sub PDG with root r
3. if the root r is OR-decomposed in sub PDG
4. run algorithm optimal path(sub PDG, OR r)
5. output por = optimal path(sub PDG)
6. if the root r is AND-decomposed in sub PDG
7. further decompose the sub PDG into several sub (sub PDG)s
2. for each sub (sub PDG) with root r′

8. run algorithm optimal path(sub (sub PDG), OR r′)
9. output pand = optimal path(sub PDG)
10. D = (∪por) ∪ (∪pand)

In Algorithm 2, por refers to the optimal path of sub PDG with an OR-
decomposed root, while pand refers to the optimal path of sub PDG with an
AND-decomposed root.

Until here, ether the root purpose is AND-decomposed or OR-decomposed, we
can find the optimal path under any specific value of γ through our algorithms.
If γ ≥ 0.5, it means the customer stresses more on privacy cost. The optimal
solution to satisfy the customer’s preference is the optimal path with the minimal
objective value when varying the value of γ. Our method is to search all the
possible optimal path based on the value of γ from 0.5 to 1 by the interval of
0.01. Then, the optimal path with the minimal objective value will be chosen
as the optimal solution. For the situation γ < 0.5, we search all the possible
optimal path based on the value of γ from 0 to 0.5 by the interval of 0.01. Then,
the optimal path with the maximal objective value will be chosen as the optimal
solution, since the customer prefers more on trust.

6 Related Work

Our work is related to several topics in the area of privacy and security for
data management, namely privacy policy specification, privacy-preserving data
management systems and multilevel secure database systems. We now briefly
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survey the most relevant approaches in these areas and point out the differences
of our work with respect to these approaches.

The W3Cs Platform for Privacy Preference (P3P) [23] allows web sites to
encode their privacy practice, such as what information is collected, who can
access the data for what purposes, and how long the data will be stored by the
sites, in a machine-readable format. P3P enabled browsers can read this privacy
policy automatically and compare it to the consumers set of privacy preferences
which are specified in a privacy preference language such as a P3P preference
exchange language (APPEL) [10], also designed by the W3C. Even though P3P
provides a standard means for enterprises to make privacy promises to their
users, P3P does not provide any mechanism to ensure that these promises are
consistent with the internal data processing. By contrast, the work in our paper
provides an effective strategy to maximize privacy protection. Further, we allow
customers to express their trust preferences associated with each partner of the
business process in order to achieve maximal customer trust.

Byun et al. presented a comprehensive approach for privacy preserving access
control based on the notion of purpose [9,8]. In the model, purpose informa-
tion associated with a given data element specifies the intended use of the data
element, and the model allows multiple purposes to be associated with each
data element. The granularity of data labeling is discussed in detail in [9], and
a systematic approach to implement the notion of access purposes, using roles
and role-attributes is presented in [8]. Similar to our approach, they introduce
purpose hierarchies in order to reason on access control. Their hierarchies are
based on the principles of generalization and specification and are not expres-
sive enough to support complex strategies defined by enterprises. However, we
organize purposes into purpose directed graph through AND/OR decomposi-
tion, which supports the delegation of tasks and authorizations when a host of
partners participating in the business process provides different ways to achieve
the same service. We also present an efficient method to automatically derive
the optimal way of authorizations needed to achieve a service from enterprise
privacy policies.

The concept of Hippocratic databases, incorporating privacy protection within
relational database systems, was introduced by Agrawal et al.[1]. The proposed
architecture uses privacy metadata, which consist of privacy policies and pri-
vacy authorizations stored in two tables. LeFevre et al.[2] enhance Hippocratic
databases with mechanisms for enforcing queries to respect privacy policies
stated by an enterprise and customer preferences. In essence, they propose to
enforce the minimal disclosure principle by providing mechanisms to data own-
ers that control as who can access their personal data and for which purpose.
Although the work on the Hippocratic databases[1,2] is closely related to ours,
our approach has some notable differences. First, we introduce more sophis-
ticated concepts of purpose, i.e., purposes are organized in purpose directed
graph through AND/OR decomposition. The second difference is that Hippo-
cratic databases does not allow to distinguish which particular method is used;
whereas, we discuss the situations that could arise with web services and business
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process software. Third, we provide an efficient method to automatically derive
the optimal way of authorizations needed to achieve a service from enterprise
privacy policies.

7 Conclusions

In this paper, we analyze the purposes behind the design of Hippocratic database
systems, and organize them in hierarchal manner through AND/OR decompo-
sition. We apply the purpose directed graph to characterize the ways the en-
terprised need to achieve a service which may rely on many different partners.
Specially, the selection of the partners and the identification of a particular plan
to fulfill a purpose is driven by the customer’s preference. We use a goal-oriented
approach to analyze privacy policies of the enterprises involved in a business pro-
cess, in which one can determine the minimum disclosure of data for fulfilling
the root purpose with respect to customer’s maximum trust. On the basis of the
purpose directed graph derived through a goal refinement process, we provide
efficient algorithms to determine the optimal privacy-aware path for achieving a
service. This allows to automatically derive access control policies for an inter-
organizational business process from the collection of privacy policies associated
with different participating enterprises.
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Abstract. This paper proposes an efficient solution with high accuracy
to the problem of privacy-preserving clustering. This problem has been
studied mainly using two approaches: data perturbation and secure mul-
tiparty computation. In our research, we focus on the data perturbation
approach, and propose an algorithm of linear time complexity based on 1-
d clustering to perturb the data. Performance study on real datasets from
the UCI machine learning repository shows that our approach reaches
better accuracy and hence lowers the distortion of clustering result than
previous approaches.

1 Introduction

Nowadays, as information accumulates rapidly, data mining - the technology of
discovering knowledge out of information, becomes more and more prevalent.
Clustering analysis is a commonly used data mining tool. It is a process of
grouping a set of physical or abstract objects into classes of similar objects [5].
Given a similarity measure, it tries to maximize the intra-cluster similarity as
well as minimize the inter-cluster similarity of data. K-means clustering is one
of the most famous clustering problems. The objective of k-means clustering is
to cluster a set of n objects into k partitions such that the average (Euclidean)
distance from objects to its assigned cluster center is minimized where k is
given by the user. K-means clustering has been applied in many applications
in real life, such as customer behavior analysis, biology research and pattern
recognition, etc.. Many of these applications are done over very large datasets,
for example, millions of transaction records. Besides, k-means clustering is shown
to be an NP-hard problem [4]. So, the heuristic algorithm proposed by Lloyd
[13] is usually used in real applications. The algorithm adopts the hill climbing
technique and returns a local optimum solution to the user.

The data used in the clustering process may contain sensitive information
of an individual. For example, the financial transaction records held by a bank.
Privacy issues are concerned on how the bank uses the information collected. The
data owner (the bank) should not let others (the general public) observe the data
(the clients’ transaction records). On the other hand, there are many situations
that there are other parties involved in clustering analysis. First, consider the
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situation that a law enforcement agency needs to investigate people’s financial
transactions which are divided between different financial institutions, e.g. banks
and credit card companies. These institutions cooperate together to compute a
global k-means clustering. The database in one financial institution should not
be revealed to others. Consider another situation: as the development in cloud
computing introduces the idea of software as a service (SaaS), a data owner can
outsource the clustering task to a service provider in order to gain the benefits
such as cost relief and payment on consumed resources only. The data owner
sends his data to the service provider and executes an application at service
provider. Since the service provider is a third party, it is not trusted. Privacy of
individuals should be protected against the service provider. So, there is a need
in studying privacy-preserving clustering problem in which the clustering result
is found without accessing the original data.

Some algorithms have been proposed to address the privacy-preserving clus-
tering problem. We describe two main approaches as follows:

1. Secure multiparty computation (SMC) approach: this approach addresses
the privacy-preserving clustering problem in the multiparty case [18,8]. A
number of data owners, each of them owns a database, cooperate together
to compute global clustering result. The result is computed through certain
rounds of complex communications among the data owners.

2. Perturbation approach: the data owner generates a perturbed database from
the original database by adding noise to it [15,6,11]. The perturbed database
can be accessed by any other parties. Hence, one can collect the perturbed
databases he wants to perform clustering on and performs data mining on
his own.

Although SMC approach provides accurate result and is provably secure, it
cannot be applied to the general case of privacy- preserving clustering, for exam-
ple the outsourcing scenario. In addition, there are considerable communication

Original data Perturbed data 
(Additive perturbation) 

Perturbed data 
(Our method) 

Fig. 1. An example illustrating the distortion of clustering result. The leftmost graph
represents the clustering result on the original dataset. The clusters are represented
in different colors. The graph in the center represents the disturbed points by using
additive noise perturbation. The rightmost graph represents the disturbed points using
our method.
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overheads in the computation. So, we adopt the perturbation approach that
can be applied in general case of privacy-preserving clustering and we can use
existing algorithms for k-means clustering to compute the clusters. However,
current perturbation approaches on privacy-preserving clustering are either in-
secure against a practical attacker [10] or destructive to the clustering result.
Most of current studies focus on protecting the privacy of the data and do not
consider the distortion to the mining result in the generation of noises. Figure
1 shows the distortion introduced to the clustering result by an existing pertur-
bation method [6] and that by our method. If nosies are not added carefully,
the noises can easily disturb the clustering result. In addition, a secure addi-
tive perturbation takes O(nd2) time, where n is the number of objects in the
database, d is the number of dimensions of each object. It is a considerable high
cost especially when the number of dimensions is high.

In this paper, we study the problem of privacy-preserving clustering and give
a secure and efficient perturbation method in which the clustering result is ac-
curate.
Contributions of this paper: we study the problem of privacy-preserving
clustering using the data perturbation approach. Our contributions include: (1)
we propose a new attack model to the distance-preserving perturbation and
hence show that it is not secure even the third party obtains the distances
between points from a black box oracle; (2) we propose a novel perturbation
method using 1-d clustering to perturb the data in database which is secure,
efficient and preserves accuracy of clustering result; (3) we give a theoretical
study on the cost and security of the proposed technique; (4) we evaluate the
proposed scheme with experiments on real datasets.

The rest of this paper is organized as follows. Section 2 mentions some related
work. Section 3 defines the problem of privacy-preserving clustering and states
the requirements on the solution. Then, we propose a new attack to distance-
preserving perturbations in section 4 and hence show that distances between
points cannot be revealed to attackers although distances alone do not reveal
the location of points. Section 5 introduces our solution to this problem, and
we perform experiments in Section 6 to compare the accuracy and efficiency of
our solution with previous approaches. Section 7 concludes the paper and gives
directions for future work.

2 Related Work

[15] first addressed the problem of privacy-preserving clustering. They proposed
geometric transformations, which include shift, scaling and rotation, to disguise
the original data. The geometric transformations used in [15] except scaling can
be summarized as distance-preserving transformations. By distance-preserving
transformations, we mean that |x − y| = |T (x) − T (y)| for all x and y in the
dataset, where T denotes the transformation.

Since all the pairwise distances are preserved, this kind of transformation al-
ways preserves the accuracy of the clustering result. The privacy of
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distance-preserving transformation has been studied by [10]. In algebra [2] this
kind of transformation is called rigid motion, and can be represented by T (x) =
Mx + v, where M is an orthogonal matrix and v is a vector. The known input-
output attack assumes that some of the original data records are leaked and thus
the attacker knows them. Besides, the attacker also has the released data, and
knows the correspondence of the leaked original data and the transformed data.
So the attacker’s task is to solve M and v using some linearly independent known
input-output points to set up linear regression equations. If v = 0, knowing d
linearly independent points is enough for the attacker to solve M thus recover
the whole original dataset. If v is not equal to 0, one more point is needed. This
infers the safety bound of distance-preserving transformation against regression
attack is not high.

[15] also proposed an additive random perturbation to improve the privacy
by adding normally or uniformly distributed noise to the sensitive numerical
attributes, which can be represented as yi = xi + ri. Using this additive pertur-
bation approach can raise the difficulty for the attacker to recover the original
data. However, it can largely distort the clustering result. Besides, it is suscep-
tible to data reconstruction methods such as PCA and Bayesian estimation [6],
which can filter out much of the noise if the data is highly correlated. When the
correlation of the data is high, the information of data concentrates in several
dimensions that have higher variances than others. If the additive noise is evenly
distributed in all dimensions, it can be largely filtered out if the attacker applies
PCA to reduce dimensions that has small variances, while the information of the
data is still approximately preserved. So [6] proposed a method to add noise for
better resistance against this eigen-analysis attack, using the same covariance for
the noise as that of the original data. However, since [6] mainly focused on the
privacy problem of data publishing, its method of perturbation did not consider
the need of accuracy in clustering. In other words, the clustering result can be
largely distorted. And we have conducted experiments to show this. Besides, the
calculation of a covariance matrix of the original data requires the time com-
plexity of O(nd2), where n is the cardinality of the dataset and d is the number
of dimensions. This is a considerable cost for high dimensional data.

Another kind of perturbation is the multiplicative perturbation, which is based
on the Johnson-Lindenstrauss lemma [9]: if data points in a high dimensional
space are projected onto a space of lower dimension, the distances between the
data points can be approximately preserved. Also, after the projection, high
dimensional data can not be recovered from low dimensional data because of
the loss of information. Thus projections can be applied to distance-based op-
erations such as privacy-preserving clustering. The best (in terms of accuracy)
and most commonly used dimension reduction technique is PCA. It can be used
to select the dimensions that have greater variances than others, and then the
data can be projected onto these dimensions. Its costs which include calculating
and decomposing the covariance matrix and matrix multiplication require a time
complexity of O(nd2) + O(d3), which is not suitable for high dimensional data.
So a computationally simpler but less accurate dimension reduction method,
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the random projection, was proposed [3]. This projection can be represented as
Y = XM , where X is the n∗d original dataset, M is a d∗ e randomized matrix,
e is the dimension after reduction. The elements of M are i.i.d. samples of a cer-
tain distribution, and Y is the n ∗ e projected dataset. This projection method
reduced the time complexity to be O(nde). [11] used this random projection to
perturb the original data for distributed privacy-preserving data mining.

[18] proposed a solution to the privacy-preserving clustering problem using
a different approach. Data are partitioned according to different attributes and
distributed to several parties. These parties together find the clustering result,
but do not share their original data with each other. The privacy of this ap-
proach is preserved using Yao’s framework of secure multiparty computation
[19]. Since all the computations are done through encryption and decryption, no
distortion of data happens, so the accuracy is preserved. There has been other
work [8] which partitions the data in a different way and uses the same secure
framework with [18]. This approach assumes several non-colluding parties to do
the clustering task, which may be difficult to find in realistic situation. Besides,
the bit communication cost among different parties in each iteration of k-Means
algorithm is O(nrk), where n is the number of data points, r is the number of
parties and k is the number of clusters, which is not low.

3 Problem Definition

A data owner owns a database DB, which consists of n objects. Each object
is represented by a d-dimensional point. The distance between two points x =
(x1, x2, ... xd) and y =(y1, y2, ..., yd) is measured by Euclidean distance1,

i.e., |x − y| =
√∑d

i=1(xi − yi)2. The problem of k-means clustering is, given
k as input, to partition the n into k partitions: P1, P2, ..., Pk, such that the
intra-cluster variance is minimized. The intra-cluster variance is measured by∑k

i=1
∑

x∈Pi
(xi − μi)2, where μi is the cluster center of Pi and μi =

∑
x∈Pi

xi

|Pi| .
In privacy-preserving clustering, a third party data miner requires computing

k-means clustering on DB. Due to privacy of information, the data owner releases
a perturbed database DB′ to the data miner. DB′ is computed by perturbing
the original objects in DB. We model the perturbation as DB′ = {y | ∀x ∈
DB, y = T (x)}, where T represents the perturbation process2. Our objective in
this paper is to develop a transformation process T such that

1. T is efficient. The cost at the data owner side is low and should be lower
than the cost of performing clustering on his own. Otherwise, our technique
is not suitable in privacy preservation of outsourcing scenarios.

2. T is secure. An attacker who obtains DB′ and some background information
on DB cannot recover DB.

1 There are other distance measures used in the literature, e.g., Manhattan distance.
We focus to Euclidean distance in this paper because it is more popular in practice.

2 The perturbation function T can be irreversible and non-deterministic.
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3. T preserves the accuracy of the clustering result. The clustering result on
DB′ should be similar to that on DB.

4 Distance Based Attack

An ideal perturbation method is that we can preserve clustering results for any
datasets. The major part of clustering algorithms is to compute the distances
between points and compare the distances to partition the points. If the data
miner can compute the distances accurately, he can compute the correct mining
result. Otherwise, if the distances are disturbed by random noises, the correctness
of the mining result can not be ensured. So, it is an intuitive idea to explore the
feasibility of a perturbation scheme which the data miner can accurately compute
the distance between any two points3. However, in this section, we will show a
negative result that such perturbation scheme cannot be secure by proposing an
attack to it.

Theorem 1. A perturbation scheme T is insecure against a known input-
output attack given T allows an attacker to observe the distances between points
in the original space.

Proof. Suppose an attacker has retrieved the perturbed database DB′ and a
black box oracle G. G lets the attacker compute the distance between two points
x and y by |x − y| = G(x′, y′), where x′ (y′ resp.) is the perturbed point of x
(y resp.). In a known input-output attack, the attacker obtains a number of m
original points zi and the corresponding perturbed points z′i in the database. In
order to recover a victim point v′ in DB′ to v in DB, the attacker first computes
the distances between v and every known point zi. So, we can set up m quadratic
equations4: |v − zi| = G(v′, z′i). Each of the equation forms a d-hypersphere in
the original space and v lies on the intersection of the hyperspheres. In general,
if m ≥ d + 1, the intersection is in fact a point. So, the attacker can conclude
the original value of v. ��

We use an example to illustrate the proposed attack in 2-D space as shown in
figure 2. The attacker knows a set of three points A, B and C in the DB. He also
knows the corresponding perturbed points A′, B′, and C′ in DB′ respectively.

3 This scheme covers the distance-preserving transformation, but is not restricted to
it. For example, this perturbation scheme can also include encryption, with the help
of a trusted secure device[1]. The data owner can encrypt the data and then send it
to the miner along with the secure device, and the data miner then uses the secure
device to decrypt the data and calculate the pairwise distances in the process of
clustering.

4 Some previous work has also proposed scaling in perturbation which the distances
are not exactly preserved. In such case, we may replace G(v′, z′

i) by sG(v′, z′
i) in the

equation where s is the unknown scaling factor. In general, the attack can still recover
the points given the RHS of the equation is a polynomial of G(v′, z′

i), though the
attacker may need more known points for solving the increased number of unknowns.
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Circle with A as center, 
|AD| as radius

Fig. 2. An example illustrating the proposed attack. The attacker observes the original
value of the point D by knowing A, B, C and the distances |AD|, |BD|, |CD|.

Suppose now he is trying to infer the original point D of a perturbed point D′

in DB′. He calculates the distance of D to every known point using G. So, he
gets |AD|, |BD|, |CD|. The attacker then draws three circles with A, B, C as
the centers and |AD|, |BD|, |CD| as the radii in the 2-D space. D must be on
the perimeter of each circle. Now there is only one intersection of the circles. So,
the attacker can conclude that the intersection in the example is D. Notice that
even the attacker knows two points (say, A, B) only in the example, he can infer
that D is one of the two intersections of the two circles. So, there is 1

2 chance
that the attacker obtains D by a random guess. This infers the safety bound of
such perturbation scheme that preserves the pairwise distances is low, and leads
us to develop a heuristic perturbation scheme in which distances between points
are distorted but the clustering result is almost preserved.

5 Perturbation Based on 1-d Clustering

5.1 The Measure of Distortion

Previous perturbation methods use additive noise and multiplicative noise to
improve the privacy. However, the additive noise can largely distort the clus-
tering result, since it does not take into account the pairwise distances of the
original data. The distortion of the clustering result can be measured by the
difference between the clustering results of the original data and the perturbed
data, and there are several metrics that have been proposed, such as Variation
of Information (VI), Mirkin Metric and Van Dongen Metric. [14] studied these
metrics, and proved that VI is a sensible metric for comparing clusters. As a
metric of comparing the difference between two clustering results, VI is defined
as the formula5 below:

V I = −∑k
i=1 pi log pi −

∑k
j=1 qj log qj − 2

∑k
i=1

∑k
j=1 tij log tij

piqj

Here pi (i ∈ [1, k]) is the proportion of the cluster i in one cluster result, i.e.
pi is the number of the elements in cluster i divided by the total number of
data points. And qj (j ∈ [1, k]) is the proportion of the cluster j in the other

5 The base of the logarithm in this formula is 2.
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cluster result. tij is the proportion of the same data points shared by pi and qj .
This metric has a range [0, 2logk], and higher value means greater difference.
Besides, since the k-means problem is NP-hard [4], much of the previous work
has adopted the iterative approach proposed by Lloyd [13]. The result of this
approach heavily depends on the initial choice of means, so the comparison of
clustering results between original data and perturbed data should be restricted,
for example, they should be with the same initial means set.

5.2 Our Solution

We observe that for multidimensional data, the clustering result of the whole
dataset will not change too much if we perturb the data in such a way that the
clustering of each single dimension is preserved and the range of each dimension
is also preserved. Having this observation, we propose a randomized perturbation
algorithm that is linear in time complexity and based on 1-d clustering.6

The details of the proposed algorithm is shown in Algorithm 1. We perform
this algorithm on each dimension of the dataset, firstly calculate the 1-d cluster-
ing result and then perturb the data based on that clustering result.

The distance between two neighboring clusters C1 and C2 are calculated using
the formula in [16]: C1.count ∗ C2.count ∗ (C1.mean− C2.mean)2/(C1.count +
C2.count).

5.3 The Analysis of Time Complexity

Step 1 requires 1 scan of the data. Step 2 and step 3 require 1 scan of the data.
After step 3, we get m clusters, and m is less than or equal to θ, the input
number of initial intervals which is proportional to the cardinality of elements.

As for step 4 and step 5, we first look at the distance calculation and merging
part. Since the number of clusters diminishes by a half after each round, the
total step of these operations is the sum of a geometric progression with the
proportion 1/2. So the total step of distance calculation is less than 2m − 1,
and the total step of merging is the half of that of distance calculation. Then
we look at the finding of median of the distances. This can be done using a
divide-and-conquer approach, and has been implemented in the STL of C++
as the function nth element(), and its time complexity has been shown to be
linear [7].

Step 6 is designed to control the number of final clusters, and its time com-
plexity is O(μlogμ), where μ is the specified number of final clusters. The time
complexity of step 7 is equal to one scan of the elements.

In conclusion, the time complexity of the above algorithm is linear with respect
to the cardinality of data, i.e. O(n). When applied to the whole dataset, the time
complexity of this algorithm is O(nd), where n is the count of the data points

6 We use a heuristic to compute the clusters on one dimension but not the classic
k-means clustering because we just need a approximate partitioning result and it is
too expensive to execute classic k-means algorithms.
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Algorithm 1. Perturbation Based on 1-d Clustering
Input: the data array of each dimension, the number of initial intervals θ, the number
of final clusters μ.
Output: the perturbed data array.

PHASE 1, 1-d Clustering: partition the data on one dimension

1. Scan the data to find the maximum and minimum element of the data array.

2. Divide the range of data into θ intervals, with the length of each interval to be
(max − min)/θ, where max and min are the maximum and minimum elements of
the array, and θ is an input number given by the user. Generally, θ is proportional
to the data cardinality.

3. Project each data element to the intervals. Since elements are generally not evenly
distributed, some intervals will have elements in them and some will not. Elements
that belong to the same interval are treated as the initial clusters. The lower bound
and upper bound of each interval that contains elements are used as the lower bound
and upper bound of that cluster.

4. Calculate the distances between neighboring clusters.

5. Find the median of these distances, and merge the neighboring clusters that have
distances smaller than the median. After merging, use the lower bound of the lower
cluster as the new lower bound, and the upper bound of the upper cluster as the
new upper bound.

6. Repeat step 4 and step 5 until the number of clusters is smaller than 2μ. Then
execute step 4, sort the distances, merge the neighboring clusters that have the
smallest distance and continue merging until the number of clusters is μ.

PHASE 2, Random Perturbation: Generate a random point in the partition as the
perturbed point

7. For each cluster, calculate the distance between the lower bound and the mean
and the distance between the upper bound and the mean. Use the smaller one of
these two distances as the radius and the mean as the center to calculate a range.
For each element in that cluster, generate a uniformly distributed random number
in that range, and replace the original element with the random number.

and d is the dimension. So its scalability to large dataset with high dimension is
good, compared with other approaches that require the time complexity O(nd2),
O(nd2) + O(d3) or O(nde).

5.4 The Analysis of This Perturbation against Existing Attack
Models

[6] proposed two attack models of the additive random perturbation. The first
one is the eigen-analysis attack based on PCA, which tries to filter out the
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random noise in case that the original data is highly correlated. And the second
one is the Bayesian Attack which tries to maximize the probability P (X |Y ),
where Y is the disguised data and X is the reconstructed data.

The key point of the first attack model is that the attacker can calculate the
covariance matrix of the original data from the disguised data, which can be
represented as the formula below:

Cov(Xi + Ri, Xj + Rj) = Cov(Xi, Xj) + δ2, for i = j

Cov(Xi, Xj), for i �= j

The assumption of applying this formula is that the attacker knows the dis-
tribution of the additive noise, i.e. he knows the variance or noise δ2. However,
in our approach, the original data is not additively perturbed, and the variance
of the noise can not be separately learnt by the attacker.

The Bayesian attack is based on the assumption that both the original data
and the randomized noise are subjected to multivariate normal distributions and
the attacker knows this. This assumption is quite strong [12]. In our approach
where the noise does not have such kind of distribution, this assumption can not
be satisfied.

As for the known input-output attack and the distance based attack, since
our approach changes the pairwise distances among data points, it can not be
regarded as the orthogonal transformation, so the attacker can not use linear
regression to recover the orthogonal transformation matrix, or use the pairwise
distances to infer the original data.

In conclusion, our perturbation approach has good resistance against the
above previous attack methods and our new attack model.

6 Experiments

In this section, we evaluate our proposed perturbation scheme in three aspects:
privacy preserved, accuracy of clustering result, and execution cost. We compare
the performance of our scheme against two existing approaches that are robust
to all existing attacks: the additive random noise using the same covariance ma-
trix as the original data [6], and the multiplicative perturbation, which includes
the projection based on PCA dimension reduction and the random projection
[11]. We denote the approaches as “Additive perturbation” and “Multiplicative
perturbation” respectively.

There are different techniques in the multiplicative perturbation approach.
The dimension reduction based on PCA is the most accurate dimension reduc-
tion technique, since the principle components captures the maximum possible
variance [12]. In other words, PCA-based projection reaches the highest accu-
racy in the multiplicative perturbation approach. So we choose the PCA-based
projection as the representative multiplicative perturbation to compare the dis-
tortion of clustering result with other approaches. Besides, as we have described
in Section 2, the random projection outperforms PCA-based projection in time
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complexity. So we choose random projection to be the representative multiplica-
tive perturbation when comparing the time complexity of different approaches.

6.1 Implementation Details

For the additive perturbation approach, we first calculate the covariance matrix
of the original data, and then use the mvnrnd function of MATLAB to generate
the multivariate random noise which has the same covariance matrix as the
original data. There are no input parameters to this approach.

For the PCA-based projection for multiplicative perturbation, more noise will
be introduced if more dimensions are reduced, but it also causes a higher dis-
tortion to the clustering result. We need to give the number of dimensions to
preserve as the input to the algorithm. We pick the input such that the propor-
tion of preserved variance is higher than 0.99.

For the random projection for multiplicative perturbation, the elements of
the randomized projection matrix is chosen from a standard normal distribution
N(0, 1). We use MATLAB to generate projection matrices of different numbers
of dimensions, and then project the original dataset using these matrices. The
algorithm requires the number of dimensions to preserve as the input. We will
try different numbers of dimensions in the experiment for comparisons.

For the perturbation based on 1-d clustering, the number of initial intervals θ
and the number of final clusters μ are the input to the algorithm. The number
of final clusters is a trade off between the accuracy and privacy: the more final
clusters in each dimension, the lower distortion can be reached, and the less
noise can be introduced into the original data. Here we choose μ for different
datasets in a way to make the accuracy of clustering result comparable with
other approaches. The number of initial intervals θ is also specified by the user,
and here we set the numbers to be half of the data cardinality for all the datasets.

6.2 Experiment Settings

We have implemented the algorithms using C++ and MATLAB. The version of
C++ compiler is gcc 3.4.2. All the experiments are performed on a PC with Intel
Core 2 Duo CPU E6750 2.66G and 2G RAM. The operating system is Windows
XP Professional Version 2002 SP2.

6.3 Datasets

We use 4 real datasets from the UCI machine learning repository [17]: Wine,
Breast Cancer Wisconsin (Original), Statlog (Shuttle) and Musk (Version 2).
The details of the datasets are shown in the table.

We will evaluate the privacy preserved, and accuracy of clustering result of
all approaches on the Wine, Shuttle and BCW datasets. The Musk dataset has
a relatively high number of dimensions, so it is used to compare the execution
time in perturbing the data.
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Table 1. Datasets used in the experiment

Dataset Name Number of Records Dimensions Classes
Wine 178 13 3

Shuttle 58000 9 7
BCW 683 10 2
Musk 6598 166 2

6.4 Measurements of Performance

For each of the dataset, we perturb it using the three approaches: additive per-
turbation and multiplicative perturbation and our approach using 1-d clustering
perturbation. So, we obtain the perturbed datasets for each of the approach.
Then, we perform k-means clustering algorithm by Lloyd [13] over the original
dataset and different perturbed datasets. Since the initial cluster centers may
affect the output of k-means clustering algorithm, we use the same initial centers
for all cases. The measurement of the approaches are defined as follows:

Privacy Preserved. Privacy is measured as the amount of difference between
the original dataset and the perturbed dataset [6]. We use the mean square error
(MSE) as the measure of difference between original and perturbed dataset,
which is the same as [6]. MSE can be calculated as MSE =

∑
x∈DB |T (x)− x|2,

where T (x) represents the perturbed point of x. If an approach has a smaller
MSE, the perturbed data is very similar to the original data. So, an attacker
can approximately acquire the sensitive information. More privacy is preserved
in the scheme that has a higher MSE.

Accuracy of Clustering Result. We use Variation of Information (VI) as
described in section 5.1. A smaller VI represents less difference between the
clustering results on original dataset and that on the perturbed dataset. An
ideal situation is VI= 0 which means the clustering results are the same.

Execution Cost. We measure the total execution time of each of perturbation
approach in generating the perturbed dataset from the original dataset.

6.5 Experiment Results on Privacy Preserved and Accuracy of
Clustering Result

The experiment results on the 3 datasets: Wine, BCW, Shuttle are shown in
table 2, table 3, table 4 respectively.

In the experiments, our proposed algorithm outperforms both of the existing
approach except that MSE of additive perturbation is larger (preserves more
privacy) than our approach in BCW and Shuttle datasets. However, VI of ad-
dictive perturbation approach on these two datasets are extremely high for these
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Table 2. Experiment Results on Dataset: Wine

Parameters VI MSE
Multiplicative perturbation 1 dimension 0 14.5115

Addictive perturbation 0.0839841 16.5334
1-d Clustering Perturbation μ = 8*3, θ = 0.5*178 0 53.0283

Table 3. Experiment Results on Dataset: BCW

Parameters VI MSE
Multiplicative perturbation 1 dimension 0 7.06364

Addictive perturbation 1.708 4.00013e+010
1-d Clustering Perturbation μ = 3*2, θ = 0.5*683 0 2.06604e+009

two datasets. Note that VI represents the accuracy of clustering result and is
bounded by 2logk. In BCW dataset, VI is bounded by 2log2 = 2. So, additive
perturbation gives nearly the worst mining result of clustering (1.708). In Shuttle
dataset, VI is bounded by 2log7 = 5.61. So, addictive perturbation gives a very
bad mining result too (3.7063). Similarly, VI of addictive perturbation is poor
in the Wine dataset. So, although addictive perturbation can preserve more pri-
vacy, the noises introduced are too large that it heavily damages the clustering
result. We remark addictive perturbation is not able to preserve the clustering
result and hence is not suitable in the problem of privacy-preserving clustering.

On the other hand, multiplicative perturbation has shown a comparable (a
little bit higher in average) VI compared to our approach. It is because the
principle components with large variants are preserved in the multiplicative per-
turbation approach. However, the obtained privacy in this approach, which is
measured by MSE, is much smaller than the other approaches. If we try to raise
the privacy by reducing more dimensions, the accuracy will be affected.

6.6 Experiment Results on Execution Time

The experiment results of perturbation time complexity on the Musk dataset
is shown in table 5. It shows that our proposed approach is the fastest among
the three approaches. It is because we have the lowest time complexity which is
linear to the number of objects in the dataset and the number of dimensions. If
the number of dimension is increased, the difference in execution time will be

Table 4. Experiment Results on Dataset: Shuttle

Parameters VI MSE
Multiplicative perturbation 4 dimension 1.36994 53.8315

Addictive perturbation 3.7063 6317.08
1-d Clustering Perturbation μ = 4*7, θ = 0.5*58000 0.990317 113.62
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Table 5. Experiment Results on Dataset: Musk

Parameters Time(s)
120 dimensions 2.828
80 dimensions 2.344

Multiplicative perturbation 40 dimensions 1.875
20 dimensions 1.626
10 dimensions 1.497

Additive perturbation 5.031
1-d Clustering Perturbation μ = 3*2, θ = 0.5*6598 1.341

further widened. Multiplicative perturbation has a comparable execution time
when the number of dimensions preserved is reduced to a smaller value like 10. It
is because the time complexity of random projection technique is O(nde), where
e is the number of dimensions preserved. So, when e is 10, the performance
will be comparable to our proposed algorithm. However, as more dimensions are
reduced, more information is lost in the original dataset, which will result in
poorer clustering result. Note that the random projection itself is a less accurate
projection method than the projection based on PCA, and in the previous section
we have done experiments to show the accuracy of the PCA-based projection.

7 Conclusions and Future Work

In this paper we proposed a solution with high accuracy and low time com-
plexity to the problem of privacy-preserving clustering. Besides, we proposed a
new distance-based attack model to the distance-preserving perturbation, which
strengthened our motivation to find solutions using perturbations that do not
preserve pairwise distances. Previous approaches such as perturbation using ad-
ditive random noises can largely distort the clustering result. In order to improve
the accuracy, our approach takes into account the distribution of the original data
by doing 1-d clustering on each dimension and then perturbs it using random
noise. Another drawback of previous approaches is the high time complexity,
especially when dealing with high dimensional data. Our approach is linear with
respect to both the cardinality and dimensionality, i.e. O(nd), thus its scalabil-
ity to large and high dimensional dataset is good. The performance study on
real datasets shows our approach reaches good accuracy and causes low time
overhead compared with previous approaches.

As future work, we plan to study the applicability of our approach to general
problems of data publishing, such as range queries and aggregate queries.
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Abstract. The wide adoption of the Internet has made it a convenient
and low-cost platform for large-scale data collection. However, privacy
has been the one issue that concerns Internet users much more than re-
duced costs and ease of use. When sensitive information are involved,
respondents in online data collection are especially reluctant to provide
truthful response, and the conventional practice to employ a trusted third
party to collect the data is unacceptable in these situations. Researchers
have proposed various anonymity-preserving data collection techniques
in recent years, but the current methods are generally unable to resist
malicious attacks adequately, and they are not sufficiently scalable for
the potentially large numbers of respondents involved in online data col-
lections. In this paper, we present an efficient anonymity-preserving data
collection protocol that is suitable for mutually distrusting respondents
to submit their responses to an untrusted data collector. Our protocol
employs the onion route approach to unlink the responses from the re-
spondents to preserve anonymity. Our experimental results show that the
method is highly efficient and robust for online data collection scenarios
that involve large numbers of respondents.

1 Introduction

Decision makers today are increasingly relying on large databases to guide their
decision making. Many corporations now regularly collect large amounts of data in
the context of theirmarket research, as do government agencies for variousnational
interests. This has resulted in many commercial entities that are engaged in the
collection, packaging and merchandising of data as their principal business.

The phenomenal adoption of the Internet has made it possible for substantial
amounts of data to be collected with incredible ease via online data collection
[8,14]. However, in the light of the recent alarming rise in privacy breaches [14],
the trust between the online data collector and the individual is diminishing.
Individuals are understandably reluctant to share their data online, or when they
are compelled to do so, simply provide incorrect data [2-4], leading to inaccurate
data mining. In order to successfully exploit the internet as an effective platform
for large-scale data collection, it is therefore necessary for online data collections
to be anonymity-preserving, resistant to malicious attacks, and at the same time
scalable to handle large numbers of respondents.

In this paper, we consider a data collection scenario in which a data miner (as-
sumeuntrusted)wishes to collect potentiallyprivate and sensitive data froma large
numberofmutuallydistrusting individuals for use inadatamining experiment. For
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example, the human resource department of a large organization may wish to poll
its employees for sensitive information (e.g. how satisfied they are with respect to
their bosses’ management skills) in a corporate climate survey, or a government
agency may wish to poll the people’s opinions on a newly introduced policy. While
the individualsmaybewilling toprovide their data truthfullybecause of the poten-
tially beneficial outcomes of the data collection exercise, it is important to ascer-
tain that their responses will be used in an aggregate study and that they cannot
be linked back to them. In fact, they are understandably distrusting of the data
collector and even their fellow respondents.

The conventional approach is to employ a trusted third party to collect the
data. However, from the respondent’s perspective, the notion of someone (no
matter how trusted) who holds the links of the data back to the respondents
[1] is too risky to be acceptable. To overcome this, cryptographic and random
shuffling based techniques such as [2, 3] have previously been proposed to unlink
the data from the respondents. Unfortunately, the current techniques are limited
in their scalability for handling large-scale online data collection. For example,
in the method proposed in [2], multiple rounds of communication and sequential
processing are required: the data miner collects encrypted responses from each
respondent and then sends the set encrypted responses back to each respondent
for decryption and re-shuffling, one respondent by one respondent. Assuming a
typical 1024-bit public key and that each original response is only 1000 bits long,
it will take about 7.5 milliseconds to strip off an encryption layer [3]. This means
that a data collection exercise of 100,000 respondents using the method could
take up to 863 days, even without considering the time needed for additional
modular exponentiations for larger responses, communication time, etc.

1.1 Our Solution

Both efficiency and anonymity are two key issues that should be taken into
consideration when designing protocols for online data collection. The protocol
should work well in a setup in which the respondents are mutually untrusting
and the data collector is also untrusted. The protocol should be robust against
malicious attacks, and allow the data collector to obtain all the responses exactly
as sent by the honest respondents (ensures data accuracy) without linking them
back to the respondents.

We propose a protocol based on the Onion Route technique and incorporate
additional techniques to address the specific needs of anonymous online data
collection mentioned above. Our major contributions can be outlined as follows:

1. Collusion Resistance. Our proposed protocol preserves a respondent’s anony-
mity regardless of whether the data collector is malicious or not. Even if a
malicious data collector collaborates with a set of malicious respondents, the
actual respondent will still appear no more likely to be the originator of the
response than the remaining honest respondents.

2. Tamper Resistance. Ourproposedprotocolmaintains the integrity and secrecy
of a respondent’s response in a strong adversarial model. We incorporate an
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anonymous digital signature to make it impossible (unless her key is compro-
mised) for an adversary to change an honest respondent’s response.

3. Efficiency. Our proposed protocol requires much less computation and com-
munication than other anonymity preserving data collection protocols. The
entire data collection process takes only a fraction of the time and require
less communication cost in compare to the other state-of-the-art methods.

2 Related Works

As mentioned, the privacy of the data provider is an important issue and various
anonymity-preserving data collection models have been proposed [2-5, 8-12, 15].
We discuss some of the current techniques below.
Randomized response: The respondents are required to perturb some of their
sensitive response before submitting to the data miner. For example, for a query
expecting a binary answer (e.g. what is a respondent’s gender), the respondent
could flip a bias coin and alters her response if the coin comes up with the
head. The parameters of the perturbation process (e.g. the bias) are shared with
the data miner, so the data miner could modify his algorithms accordingly so
as to discover results comparable to that with the original (i.e. non-perturbed)
responses. Privacy is protected indirectly as the data collector can never be
certain about the truthfulness of a response [8,14]. The more perturbed the data
are, the more privacy is guaranteed. However, there is an inadvertent tradeoff
in the data mining accuracy because of the noise that had been introduced into
the data. Our technique proposed in this paper is designed to provide the data
miner with exact, unperturbed responses. This way, there is no need to modify
any data mining algorithms, and there is no sacrifice of the accuracy of the
results for preserving anonymity.
Cryptographic techniques: A typical cryptographic approach can be found
in [2]. Each respondent encrypts her response using a set of public keys before
sending it to the data collector. The data collector forwards the set of responses
back to each respondent sequentially (i.e. one by one), who will strip off a layer
of encryption from each of the responses, shuffle the responses and transmit
them back to the collector who will then send them to the next responder for
similar processing. At the end of this sequential randomization process, the data
miner sends the randomized responses (those that data miner received from
the final responder) to all responders for verification1. Such methods are not
amenable to large-scale data collection because of the shuffling of the encrypted
response set by each respondent sequentially. Moreover, despite the encryption
and shuffling, the methods are not collusion resistant. A dishonest data miner
could easily reveal the identity of an honest respondent if it collaborates with
other dishonest respondents during the course of the protocol. In this work, we
make sure that our proposed technique is efficient and at the same time collusion
resistant.
1 The protocol presented in [3] also employs similar techniques as [2] but it requires a

higher communication overhead to achieve the same level of anonymity.



474 M.Z. Ashrafi and S.K. Ng

Mix networks: Recently, mix networks such as onion route [5, 11, 26], Crowds
[13], k -anonymous message transmission [10], Hordes [11], and DC-nets [6] have
been devised for anonymous communications over public networks by hiding
the identities of the message senders. We believe that such anonymous com-
munication networking techniques can also be deployed for our data collection
scenarios, but there are additional concerns that need to be addressed. For ex-
ample, a malicious respondent may exploit the anonymity of the communication
channel to send multiple spurious responses or even replace the honest respon-
dents’ responses sent to the data miner. In this work, we employ an onion routing
approach to unlink responses from the respondents and show how to incorpo-
rate various mechanisms to address the inherent weaknesses of mix networks for
online data collection.

3 Preliminaries

Our online data collection scenario involves an untrusted data miner (i.e. data
collector) who wishes to collect private or sensitive data from N mutually dis-
trusting individuals. Each of the respondents Ri submits her private response
mi to the data miner whose purpose is to apply data mining algorithms on the
collective data submitted to find useful patterns (we will henceforth refer to the
data collector as the data miner). Our aim is to devise a setting in which to
allow the data miner to collect the respondents’ private data (m1, m2, · · · , mN)
accurately and without the risk of disclosing the link between a response mi and
the respondent Ri even in adversarial situations.

The Onion Route was an infrastructure designed to provide anonymous pri-
vate connections over a public network for applications such as anonymous web
browsing. An onion routing network consists of a set of onion routers (ORs) that
provides a way for two parties to communicate anonymously without disclosing
the address of the connection initiator. The data sent through the onion routers
are encrypted using a layered data structure known as the onion. The onion
layers are encrypted several times using a number of public keys, and only the
intended recipients are able to decrypt the outermost layer with their private
key to find the next recipient of that message. The recipient of an onion only
knows the previous and next recipients (i.e. one hop). As such, any recipient
along the path is unable to determine the originator of the onion. Each of the
intermediate recipients decrypts only a layer of an onion, the content remains
unknown until it reaches the final destination.

As the onion route is designed to enable anonymous communication between
two parties over the public network, it is conceivable that we can use it for
anonymous data collection. However, a simple protocol that directly uses the
onion route for anonymous data collection is inadequate to meet the potential
threats and challenges in online data collection scenarios. As the onion routing
technique hides the identities of the respondents of all responses, if a malicious
respondent sends multiple spurious responses, the data miner will not be able to
distinguish hers from her honest peers’ . The data miner is also vulnerable to the
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man-in-the-middle attack in which an adversary replaces an honest respondent’s
response as it is impossible for the data miner to refer the received response
back to the rightful respondent to verify the inaccurate response. An honest
respondent can also be handicapped in such a setting as it is impossible for
her to know whether dishonest respondents are colluding with each other or are
posing any passive attack which may subsequently expose her identity to the
data miner.

Furthermore, the communication pattern in the data collection scenario is
many-to-one, but the onion route is primarily designed for many-to-many anony-
mous communication scenarios. When an honest respondent sends an onion to
a network path each of the intermediate hops of that path is aware of this hon-
est respondent’s intention. It is therefore prone to an eavesdropping attack. For
example, an adversary may eavesdrop and discover the identity of an honest
respondent if it manages to take control of a portion of the network and mon-
itors the communication between the participants [10]. K -anonymous methods
have been proposed to overcome such attacks, but the communication cost of
k -anonymous message transmission is cubic to the number of respondents. This
renders it infeasible for handling large numbers of participants [3], as in the case
with our online data collection scenario.

4 Proposed Method

We propose a data collection method that can make use of the onion route
to hide the respondents’ identities effectively and efficiently. We introduce two
techniques to address the shortcomings of the simple Onion route approach dis-
cussed in the previous section. Firstly, we incorporate a digital signature scheme
to reduce the man-in-the-middle attack and to disallow spurious responses from
malicious respondents by ensuring that no respondent is able to send more than
one response. The data miner can be assured that all responses are coming from
legitimate respondents, while at the same time, an honest respondent can also
decide whether she will continue or abort the protocol before sending a response
to the data miner, based on whether she has found any discrepancies herself. Sec-
ondly, we introduce a novel method for each respondent to evaluate the honesty
of her peers before selecting a network path to send a response to the data miner.
The method involves pre-computing a reputation matrix designed to identify ad-
versarial peers (e.g. those who refuse to relay the onion) so that a respondent
can exclude them from her subsequent choice of network path to send a response
to the data miner.

4.1 Assumptions

Before we go into the details of our proposed protocol, let us outline our assump-
tions on the respondents and the data miner:

1. Prior to exchanging a response with the data collector, each of the partici-
pants (the respondents and the data miner) is aware of each other’s primary
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public keys. This is a standard assumption of any anonymity preserving data
collection protocols [2-3].

2. The respondents are able to choose network paths with at least two interme-
diate ORs. A path with less than two ORs will not be sufficient to protect
a respondent’s privacy as each participant in an onion routing network path
knows the IP addresses of its previous and next recipients.

4.2 The Techniques

As mentioned, we incorporate two techniques into our proposed protocol to
enable the onion route for anonymous data collection. The next subsection de-
scribes our incorporation of a digital signature scheme to ensure anonymous
authenticity in the responses, while the subsequent subsection will describe our
novel use of circular onion paths to compute reputation matrices, and how the
respondents can use these matrices to construct reliable linear onion paths in
the network for sending their responses to the data miner.
Anonymous Authenticity.In the direct deployment of the basic onion route
technique for anonymous data collection, the data miner is unable to recognize
whether a malicious participant had modified an honest respondent’s reply or not,
since there is no way for it to refer the messages back to the originators for verifi-
cation. We incorporate a digital signature scheme into our proposed protocol for
authentication to avoid such man-in-the-middle attacks. Each respondent gener-
ates a secondary asymmetric key pair PSecondary {xi, yi} and sends the secondary
public keyxi anonymously to the dataminer before sending any response. Thedata
miner can consider each of these public keys as a password and use it to verify a
message’s authenticity. Note that since the data miner receives all the secondary
public keys anonymously, he does not know the ownerships of the secondary pub-
lic keys. Each of the respondents generates a digital signature of its response by
using secondary private key and submits both the response and the digital signa-
ture to the data miner. The data miner will able verify the digital signature with
exactly one of the secondary public keys that she received from the respondents.
For example, a respondent Ri shall always digitally sign her message mi using her
secondary private key yi, and the recipient the data miner mi will then verify the
digital signature vi. We denote v = (m)y as a digital signature of message m using
a private key y and Vx {m, v} is a verification function of a digital signature using
a public key x associated with a private key y.

As we shall describe later (in Section 4.3), the data miner anonymously re-
ceives the secondary public key from each respondent. It is unable to know which
particular public key {xi, ei} belongs to a respondent Ri. Thus, the message
authentication process does not compromise the anonymity of an honest respon-
dent Ri as the data miner is unable to associate mi with Ri.

Reputation Profiling: A dishonest respondent in a network path may attempt
to sabotage the communication protocol by dropping or tampering with some
of the data packets of an honest respondent before it reaches the data miner.
Alternatively, a malicious peer who controls a portion of her network path may
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attempt to discover the originator of the data packets. However, if an honest
respondent is able to know about its peer respondents’ integrity, she can avoid
choosing those dishonest respondents in her network paths. We propose a novel
path selection process to assist an honest respondent for excluding such malicious
peers from the network path chosen. The process allows an honest respondent
to determine the reputation of the peers in her network path prior to relaying
her data packets through the peer respondents as an anonymising network path
to the data miner.

The path selection process works as follows: first, a respondent Ri builds a set
of circular onion paths that consists of varying numbers of intermediate hops
(i.e. intermediate hops who will relay the response along the path). To conceal
the real intention of respondent Ri, she may also include the data miner as an
intermediate hop. When Ri forwards its data packets along the circular paths,
the data packets will eventually return to Ri intact if all the intermediate hops in
the path are honest. If Ri finds that her data packets have been tampered with
or even dropped, she can infer that some of the intermediate hops along that
circular path are dishonest. Such information are stored in a reputation matrix
with which the respondent would use to choose which of her peers to avoid.
The respondent then transmits her actual response via a linear path consisting
of multiple intermediate hops having high reputation ratings in the reputation
matrix. We describe the details of circular and linear path construction below.

Circular Path: To develop its own perspective of some (or all) of its peers’
reputation, each of the N respondents constructs a reputation profile (matrix) of
her peers using circular paths. Algorithm 1 (Figure 1) shows how each respondent
constructs circular paths for reputation profiling. In Steps 1 and 2, a respondent
R0 randomly pools N ′ number of peer respondents to construct n circular paths.
To construct a circular path, R0 randomly chooses k unique respondents from
the set and then adds herself as the final hop (Steps 4 to 12). Note that the
size of each circular path is randomly chosen (k in Step 4). This ensures that
even if all the N ′ peer respondents were colluding, none of them will be able to
figure out the path construction patterns. If the value of k were fixed for R0,
the colluding parties may figure out the value of k which may then be used to
distinguish whether a current path is circular or linear later.

After constructing a set of circular paths in T, R0 then generates a set of
dummy responses Q = {qi |1 . . . n} of varying sizes to disguise R0’s real re-
sponse which it will be submitting via the linear path (we will describe the
construction of the linear path later). R0 then generates the respective onions
Q0 = {qi0 |1 . . . n} for each dummy response qi, and sends each onion qi0 along
the path ti. The successes and failures of transmitting these onions are recorded
in two N ′ ×N ′ matrices MS and MF . The matrix MS keeps track of the num-
ber of times R0 successfully sends a response qi through a circular path ti. The
matrix MF keeps track of the corresponding number of times that a response qj

has failed to return to R0 intact via a path tj . Finally, R0 then computes the
reputation of a given peer Rj ∈ Ψ using the conditional probability shown in the
Equation 1 below.
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Ω(Rj) =
∑n

i=1 MS [i, j]
(
∑n

i=1 MS[i, j] +
∑n

i=1 MF [i, j])
(1)

Linear Path: To transmit its actual response, a respondent uses a linear path
between the respondent and the data miner. Let us now discuss how each of
the respondents constructs a linear path based on the reputation (Ω values) of
N ′ of her peer respondents. Again, let us denote the original respondent (i.e.
the initiator) as R0 and let k′ be the length of the linear path chosen randomly
by R0; 2≤ k′<N ′. To construct the linear path for sending her response to the
data miner, R0 chooses the best peer respondents {R1, R2, ..., Rk′} based on
their reputation (Ω values) as follows. First, R0 starts by selecting the best peer
respondent Rj that has the maximum value in the Ω vector (Step 3). It then
finds the subsequent k′ − 1 peer respondents as follows. Let Cbest be the set of
candidates that having the next best Ω value (Step 6). As there may more than
one such candidate, we pick the best peer Rj′ in the Cbest based on the peer-
to-peer relationship found in the MS matrix (subsequently stored as Mtemp), as
shown in Step 7. We iterate this process until R0 finds k′ peer respondents for
her linear path. R0 can then create an onion using this linear path to transmit
her response to the data miner.

4.3 The Protocol

Our proposed anonymous data collection protocol consists of four main phases.
As mentioned, we assume that each respondent knows the data miner’s public
key and IP address prior to the execution of the protocol.

Phase 1 : Registration
1. Each respondent Ri generates a primary key pair {Pi, Si}. It sends Pi, its

IP address Ai, and its digital signature vi directly to the data miner for
registration,where vi = {Pi, Ai}Si

.
2. The data miner then forwards the information to all other respondents.
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Phase 2 : Secondary Key Submission
3. Each respondent Ri generates a secondary public key {xi, yi} and computes

the hash of xi as hi = h (xi).
4. Respondent Ri forms a set of ni circular paths T = {t1, t2, · · · , tni} and
∀tj ∈ T it randomly chooses kj intermediate hops as described in Algorithm
1.

5. For j = 1 · · ·ni respondent Ri encrypts a dummy data qj and forms an onion
using the primary public keys of the kj intermediate respondents of a given
network path tj ∈ T :

mi = ERi (Ai ‖ qi )
mi+1 = ER1∈tj (A1 ‖ mi )
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
mkj = ERkj

∈tj

(
Akj

∥∥ mkj−1
)

6. Ri then forwards the onion mkj to the intermediate hop Rkj ∈ tj .
7. Upon receiving the message mkj the intermediate hop Rkj uses her primary

private key Skj to strip off the kth
j layer encryption and obtains mkj−1 =

DRkj

(
mkj

)
which exposes the IP address Akj−1 of the next intermediate

hop. The intermediate hop Rkj then forwards mkj−1 to respondent Rkj−1
who is at IP address Akj−1. This process continues until the onion reaches
the originating respondent Ri.

8. Ri evaluates Ω (Rj) s.t. ∀Rj ∈ t where t is a circular path in T, using Equa-
tion 1. It then constructs a linear path t consisting of k intermediate hops
based on the reputation profiles, constructs response packet αi by concate-
nating a header ωi (i.e. the random padding bits γi and its size, first 16 bits
of ωi represent the size of γi) and her secondary public key xi, generates the
onion and finally sends that onion to the data miner via the path t′.

9. The data miner uses its private key SDM and decrypts: Ψi = DSDM [mi]. It
then uses header information ωi, unpacks the response packet αi and finds
the R′

is secondary public key xi.

Phase 3 : Verification
10. If all respondents have behaved honestly, then at the beginning of this phase,

the data miner should be holding N secondary public keys from the N re-
spondents. Otherwise the protocol aborts.

11. The data miner hashes the secondary public key set: HS [i] = h (xi) , 1 ≤
i ≤ N . The data miner then forwards HS to all respondents.

12. Each respondent Ri verifies whether its hi as computed previously in Step
3 is included in HS . If so, Ri sends an acknowledgment to the data miner.
Otherwise, the protocol aborts.

Phase 4 : Data Submission
13. Each respondent Ri constructs her response packet αi by concatenating a

header ωi, her actual response ri with the hashcode of its secondary public
key hi and a digital signature vi = {ri, hi}yi

. Ri also generates the hashcode
h (vi) and stores it for future verification (Step 18).
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14. Ri then forms a linear path and builds the onion in the same way as described
in the Secondary Key Submission Phase (Phase 2, Steps 4 to 8) and sends
the onion of her response packet αi to the data miner.

15. The data miner decrypts the message using its private key SDM , uses header
information ωi to unpacks the response packet αi and then finds the corre-
sponding secondary public key xi using hashcode hi.

16. The data miner verifies the digital signature: Vxi {αi, yi}=accept.
17. The data miner also verifies whether Ri has already submitted a valid re-

sponse or not. If αi is a valid first response, it updates xi to the database of
secondary keys received for verifying subsequent submissions.

18. Finally, the data miner broadcasts the hashed digital signature h (vi) to
all respondents to let the originator Ri know that her response has been
successfully received by the data miner.

4.4 Correctness and Integrity

Let us now show that how the data miner restricts a dishonest respondent Ri to
submit more than one valid response to it to maintain correctness and integrity
of the protocol.
Proposition: At the end of the above protocol, the data miner collects N re-
sponses correctly.
Proof: We show that the protocol allows exactly N valid secondary keys and
exactly N valid responses are transmitted and received. First, the Verification
phase (Phase 3) ensures that exactly N secondary keys are submitted and re-
ceived. It achieves this by having the data miner first making sure that exactly
N keys were received, and then forwarding HS , the set of hashcodes of the sec-
ondary keys that it has received, to each respondent in {Ri |i = 1, 2, · · · , N } to
verify her respective secondary key independently. If a respondent Ri finds that
her key is absent, the protocol is aborted. This verifies that the N secondary
keys that have been received by the data miner are valid. Next, the Data Sub-
mission phase (Phase 4) ensures that exactly N valid responses were submitted
and received. First, the data miner ensures the correctness of the responses by
accepting only a response packet αi if and only if αi has a valid digital signature
vi. This means that to submit a valid response to the data miner, a respondent
has to use one of the N secondary keys that was previously transmitted. Let
us suppose a dishonest respondent Rj tries to submit more than one response
during this phase. Since the data miner also records each response against the
secondary key xi, any respondent submitting multiple responses using the same
key would be detected. Thus, at the end of a successful protocol execution, the
data miner will only have collected N valid responses correctly.

The integrity of an honest respondent’s response may be compromised by
malicious respondents. Let us consider a scenario in which some malicious re-
spondents acting as intermediate hops attempt to modify an honest respondent’s
response. Recall that to send a response to the data miner, an honest respon-
dent Ri initiates a linear path and then forwards her response along the path.
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Suppose there exists a malicious respondent along Ri
′s chosen linear path who

wholly or partially replaces a data packet αi before it forwards it to the data
miner. In our protocol, such an attack will be detected because every data packet
αi has a digital signature vi. As each response packet αi is signed using a secret
secondary private key yi only known by Ri, a malicious respondent Rj will be
unable to generate a valid digital signature for the tampered response. The only
harm a malicious respondent Rj can do is to arbitrarily drop αi. However, doing
so does nothing to reveal the identity of Ri.

It is also possible that a malicious respondent may try to modify or even
replace the secondary public key of an honest respondent during the Secondary
Key Submission phase (Phase 2), since a respondent does not use any digital
signatures when submitting her secondary public key to the data miner. How-
ever, in the subsequent Verification phase (Phase 3), each respondent is allowed
to verify whether her secondary public key reaches to the data miner or not
(i.e. treating the key as a password for authentication). As such, a malicious
respondent forging an honest respondent’s response using a modified or replaced
secondary public key for the honest respondent would be detected.

4.5 Complexity

Let us now analyze the complexity of our proposed protocol in terms of compu-
tation and communication costs.
Computational complexity. In Phase 2, each respondent builds circular and lin-
ear paths that involve n number of peer respondents. Each respondent then
constructs the onion and encrypts it n number of times. Similarly, upon receiv-
ing the onion, each of the respondents decrypts it once. While each respondent
may be included as an intermediate hop in many network paths, on average,
each of the respondents decrypts only n (i.e. total size of the network path N ∗n
divide by the number of respondent N ) number of onions. Thus, the average
computational complexity for each of the respondent is O(n) where n < N .

In Phases 1 and 2 of our protocol, the data miner receives primary and sec-
ondary public keys from all respondents and it performs N decryptions. In Phase
3 every respondent verifies only the hashcode of her secondary primary key which
does not require any decryption. Phase 4 of our proposed protocol works in ex-
actly the same manner as Phase 2, with some extra computation that the data
miner required for verifying the digital signature of each respondent’s response.
As each of the respondents generates one digital signature, the data miner veri-
fies N digital signatures in total. Based on the above analysis, we can conclude
the computational complexity of the data miner is O(N ).
Communication cost. In Phase 1, each respondent sends its public key and re-
ceives all the other participants’ public keys and IP addresses. This requires 2
rounds of communication. Suppose each public key has k bits, each IP address
has 32 bits and each digital signature has s bits, the total communication cost
of this phase is CP1 =

(
kN2 + 32N2 + sN

)
. In Phase 2, each respondent selects

n respondents as intermediate hops and builds a set of network paths T to send



482 M.Z. Ashrafi and S.K. Ng

its secondary public key to the data miner. It sends an onion to each of the ele-
ments of path T and each onion containing the secondary public key with size
k′, header information which is ω bits long, together with the n intermediate
hop’s IP addresses each of them is 32 bits. Thus, the total communication cost
of this phase is equal to CP2 =

∑N
i=0 (k′ + ω + 32n)× n.

During the verification phase (Phase 3), the data miner sends the hashcode
of each respondent’s secondary public key to all respondents. The total number
of bits transmitted during this phase is equal to CP3 = hN2, where h is length
of the hashcode. Similarly, Phase 4 needs 1 round for data submission and 1
round for verification of successful data submission. If we assume header infor-
mation is ω bits, each respondent’s response as Y bits, the secondary hashcode
as h bits, the corresponding digital signature as s′ bits, then the total commu-
nication cost of data submission is equal to

∑N
i=0 (ω + Y + s′ + h + 32n) × n

and the cost of successful verification (i.e. hashcode of digital signature) is
equal to h(si) × N2, hence communication cost of this phase equal to CP4 =∑N

i=0 (ω + Y + s′ + h + 32n× n) + hN2. The total communication cost of our
protocol is thus the aggregate communication cost of the four phases:

Ctotal = CP1 + CP2 + CP3 + CP4 (2)

5 Performance Analysis

We perform two simulation experiments to evaluate the relative performance of our
proposed protocol. First, we evaluate the robustness of our protocol by measuring
how an honest respondent’s degree of anonymity is affected against a set of mali-
cious participants. Then, we compare the efficiency of our proposed protocol with
the current state-of-the-art anonymity preserving data collection protocol.

5.1 Anonymity

We use information entropy [16] to measure the anonymity of an honest re-
spondent (that is, how much information about an honest respondent and her
response a dishonest data miner or a dishonest respondent may be able to ob-
tain). Let N be the number respondents in the anonymity set A. To illustrate an
honest respondent’s anonymity in the worse case scenario, let us assume that for
some reason the data miner was able to exclude k of the respondents from the
initial anonymity set A such that it has a new anonymity set X where X ⊆ A
and K = (N − k) size of the set X. The entropy of the system after the data
miner has obtained this subset X is:

H (X) = log2 (K) (3)

We can now measure the degree of anonymity of an honest respondent using
the above formula. The degree of anonymity in our data collection protocol
should reflect how much information an adversary may gain with an attack for
it to link a respondent with her response. We can measure this by calculating
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the difference of entropy |HM − H (X) | before and after an adversary attack.
We use the following formula to measure the degree of anonymity of an honest
respondent on a [0-1] scale:

dA = 1− HM −H (X)
HM

=
H (X)
HM

(4)

We performed a simulation experiment to investigate how many corrupted
respondents a data miner would need in order to guess the linkage between
an honest respondent and its response with a significant probability. Figure
2(a) shows the effect on the degree of anonymity with increasing percentage of
corruption (i.e. malicious collaborators) in varying numbers of total respondents.
As shown in the figure, to reduce the degree of anonymity significantly, say to
less than 0.9, the malicious data miner would need to collaborate with more
than 45% of the total respondents when the respondent size N =1000. When
the total size of respondents increases, the malicious data miner would need a
significantly higher number of collaborators. For example, when there are 100,000
respondents, it would need at least 65% (that is, more than 65,000) malicious
respondents to decrease the anonymity by only 15%, from 1.0 to near 0.85.

5.2 Efficiency

We compare our proposed protocol with the current best-known anonymity pre-
serving data collection method, Efficient Anonymity-Preserving Data Collection
(EAPDC) [2]. Note that although the protocol outlined in [3] is also similar
to EAPDC, we do not include it in this comparison study because of the ex-
cessive communication overhead that it requires to achieve the similar level of
anonymity as EAPDC. To compare the efficiency of the methods, we calculate
the total number of bits each of those methods transmitted by varying the total
number of respondents.

In our simulation experiment, we assume for both the protocols that the primary
and secondary public keys that each respondent uses are 1024 bits, the data sub-
mitted by each respondent are 2000 bits long, and that all the respondents employ
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128 bits long MD5 hashing. Each respondent in our proposed method adds random
padding bits as header to her circular and linear path data packet. These bits are
randomly chosen. In this study we assume the respondent header size is up to 1000
bits long, which implies that all of the responses the respondents send through cir-
cular and linearnetwork paths are on average approximately 3000bits long. Forour
proposed method we also vary the respondent’s network path size (the total num-
ber of intermediate hops that each respondent uses to send her data to the data
miner). We increase the total number of intermediate hops from 500 to 1500 as the
respondents size increase from 1000 to 100000.

Figure 2(b) shows the comparison between the two methods. The results
showed that our proposed onion-route based method transmitted a significantly
lower number of bits of data(between 2 to 5.25 times less data) as compared to
the EAPDC protocol.

Let us examine how we achieve the significant communication cost savings.
For EAPDC, since each of the respondents receives all responses that they sub-
mitted to the data miner, who strips off a layer of encryption, shuffles each
of the responses randomly and then sends these random responses back to the
data miner, the respondents’ responses are sent back and forth between the data
miner and all respondents at least N times. This was not required in our pro-
posed protocol. Furthermore, in EAPDC, once all respondents have performed
their respective shuffling, the data miner broadcasts them to each of the respon-
dents to verify those random responses. The data miner then receives a digital
signature from each respondent if the verification succeeded and broadcasts those
signatures to all respondents to collect the secondary secret keys from each of
respondents. Our method requires neither digital signatures nor secret keys from
each of the respondents. Instead, the data miner simply sends the hashcode of
the responses to the respondents for verification. This significantly reduces the
communication overheads.

Finally, it is worth mentioning that the data transmission ratio between our
method and EAPDC increases as the number of respondents increases. For ex-
ample, the ratio is 2.16 with 1000 participants, and it increases up to 5.85 when
there are 100000 participants. This ascertains that our protocol is indeed much
better suited for data mining scenarios involving large numbers of respondents.

6 Conclusion

Today’s decisionmakers are increasingly turning to the internet as a convenient and
low-cost option for large-scale data collection. Unfortunately, the inherent insecu-
rity of the internet poses great privacy risks and does not encourage respondents
to respond truthfully, especially when personal and sensitive information are in-
volved. The current data collection methods are either inadequately resistant to
malicious attacks, or not sufficiently scalable for the potentially large numbers of
respondents involved in online data collections. Some of the methods even intro-
duced inaccuracies into the data as a way to protect the respondents’ anonymity.
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As the output of data mining algorithms is highly dependent on both the
quantity and quality of the input data collected, it is important to ensure that
the respondents are able submit their responses truthfully and correctly. In this
paper, we have described an onion-route based method for anonymity preserv-
ing online data collection. Our proposed protocol is able to maintain an honest
respondent’s anonymity and protect the integrity of her response robustly even
in various malicious models involving dishonest data miner as well as collud-
ing respondents. Our protocol is also highly efficient in terms of computation
and communication costs. Our empirical performance studies showed that our
method was able to reduce the message transmission requirements six-fold as
compared to the current state-of-the-art protocol, making it highly amenable to
meet the inevitable challenge of scale associated with online data collection.
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Abstract. Aiming at ensuring privacy preservation in personal data
publishing, the topic of anonymization has been intensively studied in
recent years. However, existing anonymization techniques all assume each
tuple in the microdata table contains one single sensitive attribute (the
SSA case), while none paid attention to the case of multiple sensitive
attributes in a tuple (the MSA case). In this paper, we conduct the
pioneering study on the MSA case, and propose a new framework, de-
composition, to tackle privacy preservation in the MSA case.

1 Introduction

Anonymization[1] is the most popularly adopted approach for privacy-preserving
data publishing. Anonymization techniques typically perform generalization[1,2]
on QI attributes, as depicted in Table 3. Principles such as k-anonymity[1] put con-
straints on eachQI-group. Thewidely adoptedprinciple l -diversity[3] requires each
group contains at least l “well-represented” sensitive values, and reduces the risk
of sensitive attribute disclosure to no higher than 1/l.

Current researches on anonymization all assume there is one single sensitive at-
tributes (the SSA case) in the microdata table. This assumption is arbitrary. In the
running example, two attributes, Occupation and Salary are sensitive attributes.
Consider an adversary who obtains the QI values {M, 10076, 1985/03/01}of Carl.
Given the published Table 3, s/he can locate Carl in the first QI-group. However,
since the first two tuples of Group 1 have “nurse” as the occupation value and
according to common sense, nurse is generally a female occupation, thereby the
adversary can locate Carl in the last two tuples. S/he will be able to reveal with
high confidence that Carl’s monthly salary is 8000-10000 dollars (In tables of this
paper, integer i in “salary” column means the monthly salary is between the range
of 1000i− 1000(i + 1) dollars).

This paper provides the first study towards privacy preservation in the MSA
case. We propose a new publishing methodology, decomposition, to achieve pri-
vacy preservation in the MSA case. Instead of performing generalization on QI

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 486–490, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. The Microdata Table

Tuple# Gender ZipCode Birthday Occupation Salary 1

1(Alice) F 10078 1988/04/17 nurse 1
2(Betty) F 10077 1984/03/21 nurse 4
3(Carl) M 10076 1985/03/01 police 8

4(Diana) F 10075 1983/02/14 cook 9
5(Ella) F 10085 1962/10/03 actor 2

6(Finch) M 10085 1988/11/04 actor 7
7(Gavin) M 20086 1958/06/06 clerk 8
8(Helen) F 20087 1960/07/11 clerk 2

Table 2. Part of a Vote Register List

Name Gender ZipCode Birthday

Alice F 10078 1988/04/17
Betty F 10077 1984/03/21
Carl M 10076 1985/03/01

Diana F 10075 1983/02/14
Ella F 10085 1962/10/03

Finch M 10085 1988/11/04
Gavin M 20086 1958/06/06
Helen F 20087 1960/07/11

Table 3. The Generalized Table

# Gender ZipCode Birth. Occ. Sal.

1 * 1007* 1983-88 nurse 1
2 * 1007* 1983-88 nurse 4
3 * 1007* 1983-88 police 8
4 * 1007* 1983-88 cook 9
5 * *008* 1958-88 actor 2
6 * *008* 1958-88 actor 7
7 * *008* 1958-88 clerk 8
8 * *008* 1958-88 clerk 2

attributes and forming QI-groups, our technique decomposes the table into so-
called SA-groups. To retain valuable information lost in the transformed sensitive
attributes, the original sensitive table is also published without privacy leakage.

2 General Idea of Decomposition

We term our methodology “decomposition”. Firstly, it publishes the decomposed
sensitive table. Secondly, instead generalized on QI attributes, tuples are grouped
properly. Their QI values remain unchanged while tuples within a group share
the union of their sensitive values, as shown in Table 4 and Table 5.

Definition 1. (SA-group) A SA-group G contains tuples with their original,
non-transformed QI values and for each Si, each tuple in G is associated with
the set of G.Si values.

We first assume there is one single sensitive attribute S and aim at achieving
l-diversity. We shall research, given a diversity parameter l, how to decompose
the table into SA-groups so that: (i) each group had better contains exactly
l distinct sensitive values. (ii) the number of such SA-groups should be maxi-
mized. Following Largest-l group forming Procedure is adopted: first place
tuples with identical sensitive values into a same “bucket”. Let Bi denote the ith

largest bucket and B = {B1, B2, . . . , Bm} denote the set of buckets. We have:
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Table 4. The Decomposed Table for Single
Sensitive Attribute

# Gender Zip. Birth. Occ.

F 10078 1988/04/17 police
F 10085 1962/10/03 nurse1
M 20086 1958/06/06 actor
M 10076 1985/03/01 clerk
F 10077 1984/03/21 nurse
M 10085 1988/11/04 actor2
F 10075 1983/02/14 cook
F 20087 1960/07/11 clerk

Table 5. The Decomposed Table for Two
Sensitive Attributes

# Gender Zip Birth. Occ. Sal.

F 10078 1988/04/17 police
F 10085 1962/10/03 nurse 1

1 M 20086 1958/06/06 actor 2

M 10076 1985/03/01 clerk 8

F 10077 1984/03/21 nurse 2
M 10085 1988/11/04 actor 4

2 F 10075 1983/02/14 cook 7
F 20087 1960/07/11 clerk 9

ni = |Bi|, n1 ≥ n2 ≥ · · · ≥ nm. In each iteration, one tuple is removed from each
of the l largest buckets to form a new SA-group. Similar to [5], we can prove:

Theorem 1. The Largest-l group forming procedure creates as many groups as
possible.

We shall also investigate: (i) in which case there will be not tuples left after the
procedure; and (ii) what is the property of residual tuples, if any.

Theorem 2. When the Largest-l group forming procedure terminates, there will
be no residual tuples if and only if the buckets formed after the bucketizing step
satisfy the following properties (we term it l-Property):
(i) ni

n ≤ 1
l , i = 1, 2, . . . , m (Use the same notation: ni, m, n as in Theorem 1);

(ii) n = kl for some integer k.

When the buckets formed through bucketization satisfy the first condition while
do not satisfy the second condition of l-Property, we have following conclusion:

Corollary 1. If the buckets satisfy: ni

n ≤ 1
l , then when the Largest-l group

forming terminates, each non-empty bucket contains just one tuple.

Corollary 2. The largest permissable assignment to the diversity parameter l
is lper = � n

n1
�

The extension of Decomposition to the MSA case is intuitive. First, the sensitive
table T S is published. Next, one sensitive attribute (denoted Spri), is chosen as
the “primary sensitive attribute” and largest-l procedure is exerted on Spri to
form SA-groups.

Definition 2. (Primary Sensitive Attribute) In the MSA case, the primary
sensitive attribute is the sensitive attribute chosen by the publisher, according to
which SA-groups are formed.

Third, for each SA-group and each non-primary sensitive attribute, the original
values are united up, as depicted in Table 5. Reduplicated values are counted
once because multiple counts just increase the privacy disclosure risk. We should
not assign a uniform l for all Si. Instead, each Si should have its own li.
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Table 6. The Final Publishing of Decomposition

The Sensitive The Decomposed Table
Table after Adding Noise

Occupation Salary Group# Gender ZipCode Birthday Occupation Salary
nurse 1 F 10078 1988/04/17 police 1
nurse 4 F 10085 1962/10/03 nurse 2
police 8 1 M 20086 1958/06/06 actor 4
cook 9 M 10076 1985/03/01 clerk 8
actor 2 F 10077 1984/03/21 nurse 2
actor 7 M 10085 1988/11/04 actor 4
clerk 8 2 F 10075 1983/02/14 cook 7
clerk 2 F 20087 1960/07/11 clerk 9

Definition 3. ((l1, l2, . . . , ld)-diversity) A decomposed table is said to satisfy
(l1, l2, . . . , ld)-diversity, if for each of its SA-group G and each i ∈ {1, 2, . . . , d},
G.Si contains at least li distinct sensitive values.

As for some non-primary sensitive attribute Si, there may be groups with less
than li distinct Si values, like in Group 1 of Table 5, lper(Salary) = 8

2 = 4. For
Group 1 to satisfy the privacy goal, some “noise” is added. In sum, the final
publishing of decomposition is shown in Table 6.

3 Experiments

In the experiments, we utilized the “Adult” database from the UCI Machine
Learning Repository (http://www.ics.uci.edu/mlearn/mlrepository.html) and
the KL-divergence metric to measure data quality.

First we treat Work-class as the sensitive attribute and develop 4 tables
from Adult: q-QI-Adult (5 ≤ q ≤ 8). q-QI-Adult takes the first d of other
attributes as QI. We compare decomposition against the widely-adopted multi-
dimensional generalization algorithm Mondrian[4] when achieving l-diversity.
Figure 1 through Figure 4 depicts the KL-divergence of the anonymized datasets
created by two algorithms. We also compare the execution time of both tech-
niques. For lack of space, only the result on 8-QI-Adult is in Figure 5. Decom-
position greatly outperforms generalization in both data quality and efficiency.

For the MSA case, we develop 4 tables: d-SA-Adult (1 ≤ d ≤ 4). d-SA-Adult
uses the first 5 attributes as QI attributes and the subsequent d attributes as
sensitive attributes. Work-Class is treated as primary sensitive attribute. Figure
6 depicts the KL-divergence of decompositiond d-SA-Adult tables where lpri is
set from 3 to lper(work-class) = 7. For each non-primary sensitive attribute Si,
li is set to lper(Si). In Figure 6, the experimental result is quite close to the
theoretical estimation of log (

∏
i li). Figure 7 depicts the execution time of de-

composition on d-SA-Adult tables. Again, each non-primary sensitive attribute
is set to its largest permissible diversity parameter while lpri varies from 3 to 7.

We conduct a separate experiment to measure the number of noises in the
MSA case. This experiment is on 2-SA-Adult, which takes Work-Class as the
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primary sensitive attribute and Education as the non-primary sensitive attribute.
Figure 8 depicts the number of noises as the function of lpri and lEducation.

4 Conclusions

This paper conducts the pioneering research towards privacy preservation in the
MSA case, and lays down a foundation for future works, including combining
categorical and numerical sensitive attributes, working on dynamic dataset, etc.
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Abstract. Recently, Database-As-a-Service (DAS) has attracted considerable 
attention. Users require protecting sensitive data from the DAS administrators. 
Most of previous studies, which proposed the solutions using cryptographic 
techniques, assume that a large amount of data will be inserted into the database 
and new data will be uploaded infrequently. We propose a secure query execu-
tion model for such an environment. Our approach is to represent all schemes of 
each tuple in a plaintext table as one Bloom filter index, and to replace queries 
with keyword searches of the Bloom filter index. Same values in each tuple are 
transformed into different values by two-phase encryption. DAS administrators 
cannot determine the schemes of the original table even if they look view the 
database and queries. Therefore, our approach is robust against the estimation of 
schemes in original tables.  

Keywords: Privacy Preserving, Cloud Database, Database as a Service, Data-
base Security, Encryption. 

1   Introduction 

Recently, Database-As-a-Service (DAS) has attracted considerable attention. DAS 
provides data management service in the cloud computing environment. Users may be 
concerned that DAS administrators are third parties to access their data. Traditional 
database systems function under the assumption that an administrator is trustworthy. 
Therefore, it is natural for clients to demand that their sensitive data be protected 
against the administrators.  

To resolve this issue, cryptography is commonly employed. Many researchers have 
proposed several models for performing queries on encrypted data [1] [4] [5] [6]. In 
DAS model, user’s queries are generally translated into two types of queries: a first 
query to be performed on the server and a second query to be performed on the client. 
A part of query processing, filtering, is performed directly on the encrypted data in 
the server using a first query; therefore, the computational cost to the DAS client is 
small. True results can be obtained by performing a second query on the client using 
the filtering results returned from the DAS server. 

Most existing studies assumes a “write once read many (WORM)” environment, 
such as a data warehouse, in which a data owner uploads large amount of preformat-
ted static data, and these studies extracts statistical information from the database for 
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data encryption and query translation. Another major drawback of the existing ap-
proaches is that they limit their target data types.  Also, the authors think that the 
situation, in which different encryption schemes are used for different attributes, may 
give hints to adversaries to attack the database. 

In this paper, we propose a secure query execution model on the assumption of an 
environment where multiple users frequent upload and update data. Fig.1(a) shows an 
example of translating a table using our proposed approach. A plaintext table includes 
id, date, and content as attributes. In the translated table, only two attributes, namely, 
etuple and bfindex, are stored on the server. etuple is the encrypted value of a plain-
text tuple. bfindex is a secure Bloom filter. bfindex is created by merging secure 
Bloom filters for all attributes of the original table, such as attributes {id, date, con-
tent}. It is impossible for adversaries to determine what attributes and values are 
stored in the schedules table from the qx4k3rj (encrypted value of the table name 
“schedules”) table. Fig.1(b) shows how a query is translated. A range query condition 
for the date attribute and a text retrieval condition for the content attribute in a plain-
text query are transformed to arguments of a function smatch() in a first query (trans-
lated query shown in Fig.1). The function realizes keyword searches for each bfindex. 
Adversaries will not be able to determine what attributes and values the schedules 
table has from the translated query (first query). 

   
(a)                                (b) 

Fig. 1. A translated table s_schedules (a), and query (b) by using our proposed method 

2   Query Scheme Using a Two-Phase Bloom Filter Index 

In our approach, we first make words w1,…wn for a tuple t. Let Dt = {w1,…wn} de-
note the set of words for tuple t. Fig. 2 shows the flow of building a Bloom filter 
index (bfindex) for a plaintext table schedules, as also described in section 1. When an 
attribute value has a numeric type (e.g. id, date), the numeric data are translated into a 
set of words. It is described in detail in section 3. When an attribute value has a string 
type (e.g., id, content), the string arrangement is separated by word, and the attribute 
name is attached to the word. Furthermore, the attribute values are added to Dt after 
attaching the attribute name and the word “em” (this is used for exact matching 
query). The set of words Dt in Fig.2 is for tuple t. The words “date:lt:B0” and 
“date:lt:B4” are translated words for the attribute date’s value.  
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Fig. 2. Process flow for translating a tuple t 

We apply the HMAC (Keyed-Hashing for Message Authentication) function in two 
phases. We obtain r values w’1,…,w’r using keys K={k1,..,kr} for a word w in the set 
of words Dt for a tuple t. Users share these r keys for the first query on the server. In 
the second phase, we again compute HMAC using etuple as a key for the result values 
of the first phase hashing w’1,…,w’r. By applying the secure approach, even if some 
tuples have the same values in the original table, adversaries cannot obtain any useful 
features from bfindex because the same values are translated into different values 
using different etuple values for each of them. 

Next we describe about the translation of queries. Suppose the following plaintext 
query which contains two conditions.  

  
  SELECT * 
  FROM schedules 

WHERE contains(content, ‘Yoshida’)  and  place = ‘room602’ 
 
First, we create a set of words Q={“content:Yoshida”, “place:em:room602”} ac-

cording to the query conditions. The way of creating the set of words is the same as 
that for the set of words Dt for tuple t. After creating a set of query words Q, we apply 
the HMAC function for each words using r’ pieces of keys K’={k’1,…,k’r’}, which are 
randomly selected from K={k1, …, kr}. The number of K’ and the members are differ-
ent for each word. We call these hashed values query elements. Using these hashed 
values, we translate the plaintext query. The above query is translated as follows: 

 
  SELECT etuple 
  FROM qx4k3rj 
  WHERE smatch(etuple, bfindex, aljk34,1kjakm,akj3w4j,akj23kj,14kjshk), 

 
where query elements are { aljk34,1kjakm,akj3w4j,akj23kj,14kjshk }. 
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By applying the randomly selected word set K’ for each query word, the accuracy 
of filtering (first query) may decrease. However, the security level increases. This is 
because even if the adversary analyzes the query log, a sentence of first query, and the 
results, it will be difficult for an adversary to guess the number of query conditions 
that are described in the original query.  

In the translated query, there is a function smatch() that includes some hash values 
as arguments. The translated query is sent to the DAS server.  

In the DAS server, we compute the hash values again for each of the arguments in 
a the smatch() function using each etuple as a hash key, and we check the bits at the 
positions of the hashed values.  

3   Range Query for Numerical Values Using Bucketization 

For a numeric attribute value, we select three sets of bucket numbers: (1) a bucket 
number corresponding to a value x, (2) a set of bucket numbers whose maximum is 
less than the value x, and (3) a set of bucket numbers whose minimum is more than 
the value x. We denote these sets as B=(x), B<(x), and B>(x), respectively. Next, we 
attach “atr:em” to the word in B=(x), ” atr:lt” to the words in B<(x) and “atr:mt” to the 
words in B>(x). In Fig.3, 304(= x) is translated into three sets of words; 
{“em:B5”,”lt:B1”,”lt:B2”,”lt:B3”,”lt:B4”,”mt:B6”,”mt:B7”,”mt:B8”,”mt:B9”,”mt:Ba”}. 

Range queries also replace keyword matching using bfindex. If x is less than 193, 
B<(x) contains B4. Likewise, if x is greater than 650, B>(x) contains B7.  

 

Fig. 3. Translation Numerical Data and the Range Query using Bucketization 

4   Conclusion 

In this paper, we presented a secure query execution model on the assumption of an 
environment where multiple users frequently upload and update data. The features of 
plaintext data are not revealed with frequent updates because static information about 
the uploaded data is not used when transforming the plaintext values.  
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In our approach, an original table is transformed into a table whose attributes are 
only etuple and the Bloom filter index. A plaintext query is replaced in keyword 
searches in the Bloom filter. Our approach is robust against the estimation of schemes 
in a plaintext table because all schemes in a plaintext table are replaced into the 
Bloom filter index, which only includes 1 and 0. Moreover, our approach is strong 
against the estimation of true values because the same values between each tuple in a 
plaintext table are encrypted to different values using two-phase encryption. Further-
more, it is difficult to obtain useful information even if an administrator sees t he 
query logs, a sentence of the first query and the results, because there are many query 
patterns used in our approach.  

A major problem of our approach is query performance. Our approach should ap-
ply hash functions by the number of query words for each tuple. While the approach 
is effective for protecting against administrator’s reasoning attacks, it is main reason 
why the speed of the search is not so high. In future work, we should evaluate the 
performance and we should propose the speed-up technique of our approach. 
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Abstract. XML is a de-facto standard for exchanging and presenting
information and keyword search over XML documents has become an
interesting topic. However semi-structured XML data give rise to many
challenges of conventional information retrieval technologies. In order
to return highly-related data nodes and improve the quality of keyword
search result, SLCA(Smallest Lowest Common Ancestor )-based keyword
search on XML data is recently attracting more and more attention in
the database community. In this paper, we design efficient index and pro-
pose hash-based method to answer SLCA-based keyword search queries.
Our approach outperforms Incremental Multiway-SLCA approach, which
is the most efficient algorithms in the literature. We demonstrate the ef-
fectiveness of our algorithms analytically and experimentally.

1 Introduction

Keyword search on XML data has become one of the most convenient and pop-
ular approach to search information from XML document collections. Consider
a query Q including k keywords w1, · · · , wk, conventional LCA semantics sug-
gest simply returning all nodes in the XML tree whose subtrees contain all k
keywords. However, such semantics will lead to lots of lowly-related data nodes
that are remotely connected to some nodes with keyword labels. In order to re-
turn highly-related data nodes and improve the quality of keyword search result,
a notion of Smallest Lowest Common Ancestor (SLCA) semantics is proposed
in [2].

According to the SLCA semantics, only data nodes in the XML tree satisfying
following two conditions are returned to users :(1) all the keywords appear in the
subtrees rooted at the nodes, and (2) the nodes have no descendent nodes whose
subtrees also contain all the keywords. The answer to the query ”John, XRank”
includes nodes 1.4.5, 1.4.10 and 1.20. Nodes 1 and 1.4 are discarded because
they violate the second condition of the SLCA semantics. Similar to SLCA
semantics, another semantics named Meaningful LCA (MLCA) is proposed in
[4] to enhance the effectiveness of keyword search in XML data.
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Fig. 1. Example Conference.xml(each node is associated with combined preorder id)

The most efficient algorithms for keyword search using SLCA semantics is the
Incremental Multiway-SLCA (IMS) algorithm [1], which is proven to outperform
the Scan Eager (SE) and the Indexed Lookup Eager (ILE) algorithms [2]. How-
ever, the IMS algorithm has two disadvantages. First, the IMS algorithm stores
each data node with a Dewey label so that LCA node can be gained by compar-
ing nodes with Dewey labels, which costs O(d) time, where d is the depth of the
XML tree. However, when the XML tree is deep, LCA computation would impair
the efficiency of the IMS algorithm. Second, to determine the closest node of Si

to v in the XML tree, the IMS algorithm has to conduct a binary search on Si,
which costs O(dlog(|Si|)) including the process of comparing with Dewey labels.
For that reason, the size of Si will limit the performance of the IMS algorithm.

The main contributions of our paper are as follows:

– We introduce a new notion of domination to indicate the relationship be-
tween a data node and a word and develop a hash-based index structure
to effectively store all useful domination information. By doing so, we are
able to eliminate LCA computation through simply examining domination
information in the index, which is unbounded by the depth of the XML tree.

– We propose a novel approach for keyword search in XML databases accord-
ing to SLCA semantics named Hash-Search (HS). Different from the IMS
algorithm, we initially select the smallest keyword list as the working node
list (denoted by S1). Then for each node v in S1,we find the potential SLCA
by checking the domination information between v′s ancestors and all key-
words. Such process can be done efficiently by binary search all the nodes
on the path from the XML tree root to v.

– We experimentally evaluate the Hash-Search algorithm by comparing with
the IncrementalMultiway-SLCA algorithm[1]. The experiments demonstrates
that our approach outperforms former work.

The rest of this paper is organized as follows. Preliminaries are given in Sec-
tion 2. In Section 3, we introduce our approach, including the definition of dom-
ination, Hash-Index and Hash-Search algorithm. The system architecture are
presented in Section 4. The results of experiments are shown in Section 5. Sec-
tion 6 presents related research works and it’s followed by the conclusion in
Section 7.
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2 Preliminaries

We model the XML tree T with conventional labeled ordered tree model. Each
element in the XML tree is represented by a node v whose label is L(v). The
root of the XML tree is denoted by root. Given a word w, we use w ∈ L(v) to
denote that the label of v directly contains w. Besides, each node has two unique
ids to represent it. One is the preorder id pre(v) which satisfies the condition of
preorder numbering that if and only if a node u precedes a node v in the preorder
left-to-right depth-first traversal of the tree the inequality pre(u) < pre(v) holds.
The other kind of id is the combination of all v’s ancestors’ preorder ids, called
combined preorder id ( denoted by pres(v)). The formal definition is as followed:
(1)pres(v) = pre(v) if v = root; (2)pres(v) = pres(u).pre(u) if u is the father
of v. Note that pre(v) is the last element of pres(v). Therefore, we only need to
store pres(v) for v. Combined preorder id enables us to efficiently determine the
preorder ids of v’s ancestors. Moreover, the preorder id of the LCA of two nodes
u and v can be easily computed by comparing pres(u) and pres(v).

Consider a keyword search query K with k keywords w1, . . . , wk and a XML
tree T , for each keyword wi, let Si denote the list of data nodes in T whose labels
directly contain keyword wi. We define Si to be the node list of wi. The data nodes
in Si is sorted by preorder id. Without loss of generation, we assume w1 to be the
keyword with lowest frequency in T among k keywords. In other words, |S1| =
min{|S1|, . . . , |Sk|}. S1 is considered the working node list of our approach.

A match of K is the set of data nodes S = {v1, . . . , vk} where |S| = |K| and
vi ∈ Si, i ∈ [1, k]. An answer subtree for K is a subtree of T that contain all
the keywords; i.e., there is a match S for K that each node in S belongs to the
answer subtree. The smallest answer subtree is an answer subtree that no subtree
of it is an answer subtree. The SLCA problem is to return the set of roots of all
smallest answer subtree for the query K. We use function slca(w1, . . . , wk) to
denote the results.

Given two nodes u and v, u <α v denotes that u is a proper ancestor of v
and u ≤α v denotes that u is an ancestor of v (u = v or u <α v). Given a node
v ∈ T , we can find all its ancestor node through examining its combined preorder
id with O(d) time, where d is the maximum depth of T .

Given k data nodes v1, . . . , vk, we use the function lca(v1, . . . , vk) to compute
the lowest common ancestor of them and return null if one of them doesn’t ex-
ist in the XML trees. Specifically, given two nodes u and v, lca(u, v) is the
node that whose combined preorder id is the longest common prefix of the
combined preorder ids of u and v. Given k sets of data nodes S1, . . . , Sk, a
data node v belongs to lca(S1, . . . , Sk) if there are k nodes v1, . . . , vk that
v = lca(v1, . . . , vk), where vi ∈ Si, i ∈ [1, k]. A node v belongs to slca(S1, . . . , Sk)
if v ∈ lca(S1, . . . , Sk) and no descendent of v is in lca(S1, . . . , Sk). It is obvious
that slca(w1, . . . , wk) = slca(S1, . . . , Sk). For brevity, in the rest sections, we use
lca({v}, w1, . . . , wk) to denote lca({v}, S1, . . . , Sk), and use slca({v}, w1, . . . , wk)
to represent slca({v}, S1, . . . , Sk). In addition, given a data node u, a slca node
v is said to be limited to u if u ≤α v and can be called u− limited slca node.
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The following example demonstrates the above definitions.
Example 2.1 Consider the XML tree shown in Fig. 1 and the keyword search
query is ”XRank, John”. For each node in the XML tree, the combined pre-
order id is presented under its label. S1 = {1.4.5.6.7, 1.4.10.15.16, 1.4.10.15.17,
1.20.21.22},S2 = {1.2.3, 1.4.5.8.9, 1.4.10.13.14, 1.4.18.19, 1.20.23.24}.Because
|S1| < |S2|,S1 is the working node list .Moreover, the ancestors of 1.4.18.19 are
1,1.4, 1.4.18 and 1.4.18.19 which can be obtained from its combined preorder id.
lca(”XRank”, ”John”) = {1,1.4, 1.4.5, 1.4.10, 1.20}, slca(”XRank”, ”John”)
= {1.4.5, 1.4.10, 1.20}. In addition, 1.4.5 is 1.4-limited or limited to 1.4.

3 Our Approach

As discussed above, the efficiency of the IMS algorithm is restricted by two basic
processes : LCA computation and the determination of the closest node of a set
to a node. The key motivation of our approach is to avoid these time-consuming
processes by using a designed elegant index named Hash-Index based on the
concept of domination.

In this section, we propose our algorithm named Hash-Search (HS) to process
SLCA-based keyword search queries. In Section 3.1, we introduce the notion of
domination, which is essential for the HS algorithm. We also give some impor-
tant properties. The description and construction Hash-Index are provided in
Section 3.2. Finally, Section 3.3 presents the HS algorithm.

3.1 Domination

Given a data node v in the XML tree and a word w, w is said to be dominated
by v if there is a data node p satisfying both conditions: v ≤α p and w ∈ L(p),
which is denoted by v � w. Notice that for each word w ∈ L(v), we have v � w.
Furthermore, for a data node v in the XML tree, a word w is considered to
belong to the domination set of v if v � w. We refer to Hv as the domination
set of v.

Example 3.1 Consider the word ”John”, the node v where pres(v) = 1.4.5
satisfies v � John and v � Paper. Hv = {Paper, Title, XRank, Author, John}.

We give several important properties that help us to improve the efficiency of
SLCA computation by using domination concept. Because of space limitation,
we omit the proof of these properities.

Lemma 1. Let u and v be two nodes, if u ≤α v, then pre(u) ≤ pre(v).

Lemma 2. Let u and p be two nodes such that p ≤α u. If w is a word such that
u � w, then p � w.

Lemma 3. Let u and p be two nodes such that p ≤α u. Hu ⊆ Hp.

Lemma 4. For k keywords w1, . . . , wk, lca(S1, . . . , Sk) = {u|wi ∈ Hu, i ∈
[1, k]}.
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Lemma 4 provides a useful property to determine whether a node is lca node
without knowing any specific nodes whose labels contain keywords. We call the
process of determination lca node verification.

Lemma 5. Consider k keywords w1, . . . , wk and a node u such that
u ∈ lca(S1, . . . , Sk), then for each v where v ≤α u, v ∈ lca(S1, . . . , Sk).

Lemma 6. Given a set of keywords K = {w1, . . . , wk}, for any word wm ∈ K,
slca(w1, . . . , wk) =

RemoveAncestor(
⋃

v∈S1

slca({v}, w2, . . . , wk)

Lemma 7. Given any two nodes u, v and a set S, if pre(u) < pre(v) and
pre(slca({u}, S)) ≥ pre(slca({v}, S)), then slca({v}, S) ≤α slca({u}, S).

Lemma 8. Given any two nodes u, v and a set S, if pre(u) < pre(v) and
pre(slca({u}, S)) < pre(slca({v}, S)) and slca({u}, S) is not an ancestor of
slca({v}, S), then slca({u}, S) is a slca node.

3.2 Hash-Index

In this section, we discuss the detail of the Hash Index including the structure
description and the construction of the index.

Structure of Hash-Index. Given a XML tree T , Hash-Index consists of the
following components:

– a hash table called the Frequency Table (FT) stores the frequencies of key-
words in the T . The FT is originally stored in the disk and read into memory
during the preprocessing step. When a keyword search query comes, we use
the FT to determine the keyword in the query with the smallest frequency.

– a disk-based B+ tree called the Node Library (NL) stores all the nodes in
T . The NL keys are the keywords of data nodes in T . For each key in the
NL, the data associated with it is a list of combined preorder ids of the
data nodes whose labels directly contain that key. These ids are stored in
ascending order.

– a disk-based hash table called the Domination Set Pool (DSP) stores domi-
nation sets of all nodes in T . Consider a node v whose domination set is Hv.
For each word w ∈ Hv, we generate a pair (pre(v), w) as one entry stored in
the DSP. The hash key is then determined from the pair. Using this method,
to determine whether a word w is dominated by a data node v, we can simply
check whether the pair (pre(v), w) is contained in the hash table. The reason
why we choose hash table to store domination information is that hash table
can answer point query more efficiently than other indices.

Example 3.2 For the XML file in Fig. 1, we show the corresponding Hash-
Index on T in Fig. 2 and Fig. 3. For example, in the Tree T , The frequency of
”John” is 5. Through hashing calculation, ”John” and its frequency are stored
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(a)Frequency Table (b)Domination Set Pool

Fig. 2. Frequency Table and Domination Set Pool of Example 3.2

in FT [9]. The NL given in the Fig. 3 records ”John” and combinedpreorderids
of nodes whose labels contain ”John”: 1.2.3 ,1.4.5.8.9,1.4.10.13.14, 1.4.18.19 and
1.20.23.24. Moreover, the DSP contains the pair (23,”John”) but doesn’t include
(15,”John”) , which means that the node with id 23 dominates the keyword
”John”, while the node with id 15 not.

Index Construction
An input XML document is parsed by a SAX parser to produce a stream
of events. Such events include Start-Document, End-Document, Start-Element,
End-Element, and Text. Notice that we regard other types of nodes in the XML
document, such as attributes, as special element nodes in this paper. The Hash-
Index is constructed during parsing the XML document. We initialize the envi-
ronment of Hash-Index when a Start-Document event is met and finish parsing
as well as Hash-Index construction when End-Document event occurs. Start-
Element event recognizes the beginning of an element.

The algorithm for Start-Element events is given in Algorithm 1. In the algo-
rithm, preorder counter PC and current combined preorder CCP is maintained
to compute the preorder id and combined preorder id respectively for each node
in the XML tree. Initially, PC is set to 0 and CCP is set to empty. When a start
element E is met, we create a node v to represent the corresponding node in the
XML tree. Line 1-2 updates PC and pre(v). Before line 3, CCP is equal to the
combined preorder id of v’s parent (CCP is empty if v is the root of the XML
tree). Lines 5 to 11 store the domination information between the element E
and the ancestors of v to the DSP. Let u be any ancestor of v, according to the
definition of domination, the pair (pre(u), E) should be included in the DSP.
At the same time, we can directly gain ids of ancestors of v by enumerating
each element of pres(v). According to Lemma 1, Line 5 ensures that any node
is processed before its ancestors, which is the foundation of lines 6 to 7. The
correctness of lines 6 to 7 stems from the fact that if the pair (pre(u), E) has
already been in the DSP, then for each ancestor of u (denoted by v), (pre(v), E)
must be in the DSP too, by Lemma 2. Therefore, it’s not necessary to store the
domination information between E and all ancestors of u. Line 12 inserts pres(v)
to the data list associated with key E in the NL. And line 13 updates the FT.
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Fig. 3. The Node Library of Example 3.2

Algorithm 1. StartElement()
Input: Element Name E
Output:
Data: Preorder Counter PC, Current Combined Preorder CCP, Current Node v
PC = PC + 1;1

pre(v) = PC;2

Add pre(v) to the tail of CCP;3

pres(v) = CCP;4

for each preorder id pid ∈ pres(v) in decreasing order do5

if pair (pid, E) ∈ DSP then6

break;7

else8

Add pair (pid,E) to DSP ;9

end10

end11

Add pres(v) to NL with key E;12

The frequency of E in FT is increased by 1.13

Moreover, End-Element event identifies the end of an element, when the end
of E is met, all nodes belong to the subtree of v has been processed.

For Text event, text is treated almost the same as the start element in lines 1
to 4 except that CCP is not updated by pre(v) because text has no descendent to
compute its combined preorder id through CCP . Because of the space limitation,
we omit the detailed algorithm here.

Efficiency of Index Construction Hash-Index can be efficiently generated by
scanning the XML document once. Let d be the height of the XML tree and n
is the number of words in the tree. For Algorithm 1, the update of the DSP in
lines 5 to 11 involve O(d) time because the insertion complexity of hash table is
O(1) and we need to insert at most d entries into the DSP for each element. The
cost of line 12 is O(log(n)) for the property of B+ Tree. In sum, the complexity
of Algorithm 1 is O(d + log(n)). Moreover, the cost of processing End-Element
is O(1). Algorithm dealing with Text() is same as the algorithm to process start
element in Algorithm 1,which costs O(d + log(n)). So the overall complexity of
index construction is O(nd + nlog(n)) because each word in the XML data tree
must be processed with O(d+log(n)) time whether it’s a start element or a word
in the text string.
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3.3 Hash Search

In this section, firstly, we introduce Algorithm LimitedSLCA() which uses the
Domination Set Pool (DSP) to obtain potential SLCA. Based on Algorithm
LimitedSLCA(), we present our Hash-Index-based algorithm called Hash Search
(HS), whose details are shown in Algorithm 3.

Obtaining Potential SLCA
Given a data node v, an node anc which is an ancestor of v, and k keywords
w1, . . . , wk, Algorithm 2 computes slca({v}, w1, . . . , wk) limited to anc based on
the Hash-Index. This algorithm is frequently used by Hash-Search algorithm to
determine potential slcas.

Initially line 1 organizes preorder ids of all ancestors of v into an array
IDArray in ascending order. These ids can be easily gained from pres(v). Based
on Lemma 1, pre(anc) ≤ pre(slca) ≤ pre(v) always holds. So Lines 2 to 3 de-
termine the range of the potential slca in IDArray by setting left and right to
the position of pre(anc) and pre(v) in the IDArray respectively. Lines 4 to 13
test whether IDArray[left + 1] belongs to lca({v}, w1, . . . , wk).

Lines 14 to 28 present the process of binary search to find slca. In each loop,
we examine the node MidNode whose preorder id is IDArray[mid]. If it is a lca
node, all its ancestors must be lca nodes by lemma 5. While the slca node should
satisfy MidNode ≤α slca, therefore, we only need to consider descendants of
MidNode. In the similar way, if MidNode is not a lca node, based on lemma 3,
all its descendants are not lca nodes, thus we can safely discard them. Lines 17
to 22 present the verification process using the DSP . Only when all keywords
are in the domination set of MidNode can we consider MidNode an element of
lca({v}, w1, . . . , wk).

Efficiency of Algorithm 2 The determination of slca nodes limited to one
node can be done efficiently. Let d denote the height of the XML data tree,
and assume we need to find slca({v}, w1, . . . , wk). The cost of Line 1 is O(d)
since we have to check each ancestor of v. After that, we determine the slca
node through searching IDArray with binary search technique. In each loop,
the verification step in both lines 5 to 10 and lines 17 to 22 costs O(k) because
the search complexity of the DSP is O(1) and we need to search domination
information for each keyword. Therefore, the overall complexity of Algorithm 2
is O(d + klog(d)).

Example 3.3 In Example 3.2, let K = ”John”,”References”. We denote node v
where pres(v) = 1.4.10.15.16 and anc where pres(anc) = 1. We demonstrate how
we calculate the slca({v}, w1, . . . , wk) limited to anc. We start to store pres(v)
into IDArray so that IDArray contains five elements : 1, 4, 10, 15 and 16.
After that, we have left = position = 1, right = 5. Before binary search, we
test whether the son of anc can dominate all keywords. Notice that (4,”John”)
and (4,”References”) are in the DSP . So we initiate the binary search and finally
return the node 1.4.10 because it dominates keywords.
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Algorithm 2. LimitedSLCA()
Input: Combined Preorder ID of a node v pres(v), Set of Keywords

K = {w1, . . . , wk}, an Ancestor of v anc
Output: slca({v}, w1, . . . , wk) if it’s limited to anc and NONE otherwise
Split pres(v) into preorder ids and store them in an array IDArray in ascending1

order.
left = position = the position of pre(anc) in IDArray;2

right = the position of last elements in IDArray;3

LCA = true;4

for each wi ∈ K do5

if pair(IDArray[left + 1], wi) 
∈ DSP then6

LCA = false;7

break;8

end9

end10

if LCA = false then11

return pres(anc);12

end13

while left < right do14

mid = (left + right)/2;15

LCA = true;16

for each wi ∈ K do17

if pair(IDArray[mid], wi) 
∈ DSP then18

LCA = false;19

break;20

end21

end22

if LCA = true then23

right = mid -1;24

else25

left = mid +1;26

end27

end28

if left < position then29

return NONE;30

else31

return pres(IDArray[left]);32

end33

Querying Evaluation At the beginning, the algorithm determines the work-
ing set Sm by comparing frequencies of keywords in the XML data tree. After
that, the algorithm enumerates each node in the working set and computes the
potential slca node for it using Algorithm 2. The correctness of this algorithm
is guaranteed by Lemma 6.

Initially, the FT is used in Lines 1 to 3 to determine the frequencies of key-
words in the keyword query. Line 4 finds the keyword with lowest frequency
and set it as w1. In addition, we make use of NL to get the node list of
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Algorithm 3. HashSearch()
Input: Keyword Query K = {w1, . . . , wk}
Output: Answer = slca(w1, . . . , wk)
Data: Potential slca Node v
for each keyword wi ∈ K do1

let fi = the frequency of wi in FT ;2

end3

without loss of generality, let w1 be the word with smallest frequency f1 =4

min {f1, . . . , fk};
gain S1 through the NL with key w1;5

Answer = {};6

v = 1;7

for each node u in Sm do8

x = LimitedSLCA(u, K − {w1}, root);9

if pre(v) < pre(x) then10

if v 
≤α x then11

Answer = Answer ∪ {v};12

end13

v = x;14

end15

end16

Answer = Answer ∪ {v};17

return Answer;18

w1 and work on this set in the following steps. Lines 6 to 17 compute the
slca nodes according to Lemma 6. Recall that nodes in S1 are sorted by pre-
order id. Consider two nodes u and v in S1 where pre(u) < pre(v), accord-
ing to Lemma 7, if pre(slca({u}, S2, . . . , Sk)) ≥ pre(slca({v}, S2, . . . , Sk)), then
slca({v}, S2, . . . , Sk) should be discarded since it violates the second condition of
the definition of slca. Moreover, under the condition that pre(slca({u}, S2, . . . ,
Sk)) < pre(slca({v}, S2, . . . , Sk)), if slca({u}, S2, . . . , Sk) �≤α slca({v}, S2, . . . ,
Sk), then slca({u}, S2, . . . , Sk) is a slca node (by Lemma 8), we can insert it
into the answer set . Otherwise, slca({u}, S2, . . . , Sk) should be removed and
slca({v}, S2, . . . , Sk) will become the undecided slca node. Lines 10 to 15 apply
Lemma 7 and Lemma 8 to determine the slca nodes.

Let n be the number of words in the XML data tree. Let d be the height of the
XML data tree. Let k be the number of keywords in the keyword query. And let
S1 as the working set of the HS algorithm. Lines 1 to 4 require O(k) time to get
the frequencies and compare them. It takes O(log(n)) time to gain S1 from the
NL in line 5. After that, for each node in S1, we compute the potential slca for
it using Algorithm 2, whose complexity is O(d + klog(d)) in line 9. Notice that
we can easily determine the ancestor-descendant relationship between two nodes
by comparing their combined preorder ids. So the cost of line 11 is O(d). In sum,
the overall complexity of the HS algorithm is O(k + log(n) + |S1|(d + klog(d))),
which is smaller than O(kd|S1|log(|S|)), the complexity of the IMS algorithm,
where S is the data node list with the highest frequency[4].
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Example 3.4 Consider computing SLCAs for keywords {”XRank”,”John” }
on the tree T shown in the Fig. 1.At first, through the FT , we know that f1
= 4, f2 = 5. Because f1 < f2, we let w1 = ”XRank”. Then by querying the
NL, we have the node list for w1 {1.4.5.6.7,1.4.10.15.16,1.4.10.15.17,1.20.21.22}.
With the LimitedSLCA function, we determine the potential slcas for each
node in the node list for w1. At the first iteration, x = 1.4.5. Because pre(v) =
1 < pre(x) = 5, v = 1.4.5. At the second iteration, x = 1.4.10, which satisfies
pre(v) = 5 < pre(x) = 10 and v �≤α x,1.4.5 is inserted into Answer. While at the
third iteration, since x is equal to v, v remains the same. At the last iteration,
we have x = 1.20. Then pre(v) = 10 < pre(x) = 20 and v �≤α x. So 1.4.10 is
considered as an answer and v is replaced by 1.20. Line 17 finally adds 1.20 to
Answer. Therefore, the answer to the keyword query is {1.4.5,1.4.5,1.20}.

4 System Architecture

In this section, we present the architecture of the Hash-Search implementation,
which is shown in Fig. 4. The IndexBuilder parses a XML document T with SAX
Parser and construct the Hash-Index, which includes Node Library, Frequency
Table, and Domination Set Pool.

The Hash-Index plays an important role in Search Engine. When a keyword
query is submitted, the Search Engine will use Frequency Table, which is loaded
into memory before accepting any queries, to determine the keyword with small-
est frequency. The smallest keyword list is later gained by indexing Node Library
with that keyword. After that, through examining domination information be-
tween node and keyword in Domination Set Pool, Hash-Search can efficiently
compute SLCA nodes and return them to users.

XML 
document T

IndexBuilder

Node Library

Frequency Table

Search Engine

Domination Set Pool

Keyword Query

SLCA nodes

Fig. 4. HashSearch Architecture

5 Experimental Evaluation

In this section, we evaluate the performance of our approach. The experiments
were conducted on a 2GHz dual-core laptop with 1GB of RAM. Our approach
are tested on two real datasets, DBLP [14] and INEX [15]. DBLP documents
are simple structures and the depth is about 10. INEX documents are attribute-
abundant and structure-complex.
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5.1 Experimental Setup

We have implemented in C++ the program called HS to evaluate the perfor-
mance of our proposed algorithms and two versions of algorithms in [1] denoted
by IMS and IIMS. IMS and IIMS utilize B-tree in indexed form and non-
indexed form respectively. All implementation are based on Berkeley DB [7]. The
Node Libraries(NL) in HS use B+ tree to organize data nodes in the XML tree.
Similar to the non-indexed B+ tree, the B+ tree in the NL utilizes keywords of
data nodes as keys. But data in the NL of HS is the list of combined preorder
ids of data nodes that directly contain the keyword. Moreover, the hash index
in Berkeley DB is used in the Domination Set Pools(DSP) of HS. The Berke-
ley DB database was configured using a page size of 8KB and a cache size of
1GB.

We evaluated IMS, IIMS, HS with different classes of queries. We denoted
the class of queries kN −L−H in the same way as [1], where N stands for the
number of keywords in the query, L and H(L ≤ H) are the lowest frequency and
the highest frequency of N keywords respectively. We limit the query in the form
that only one of the N keywords has the frequency L, the other N − 1 keywords
have the frequency H . We generated 10 random queries for each class of queries
and executed each query 6 times. The average time of last five executions is
reported.

The objectives of our experiments are twofold. The first is to study the per-
formance of our HS algorithm when searching different sizes of documents. The
second is to evaluate the advantage of processing queries with different keyword
numbers and frequency, and our approach is compared with IMS and IIMS
[1]. The results are presented in the next subsection.

5.2 Performance of Query Evaluation

This experiment is designed to study the performance of the query evaluation
with respect to different data sets and a variety of queries. The performance
of the query evaluation on DBLP and INEX documents are tested against a
range of significant parameters of document size, keyword number N , the lowest
frequency L and the highest frequency H .

In the first experiment, we use DBLP data and the number of node is from
1M to 10M. We test 10 randomly generated queries, and the corresponding
parameters for each query is (k2-100-1000).The results are given in Fig. 5. The
processing time is roughly linearly scalable to the size of the XML nodes in the
collection. In addition, the processing time is about 100 milliseconds, even with
10M XML nodes, about 200MB. Compared with the time needed by IMS and
IIMS, our method saves about more than half of processing time.

The second experiment is to study the impact of query parameters on both
DBLP and INEX documents. We compare the processing time of our approach
with the processing time of IMS and IIMS algorithms. Fig. 6 and Fig. 7 illus-
trate that our approach is found to be more efficient for both simple and complex
document structures.
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Fig. 7. Performance over INEX data

In Fig. 6 and 7, we use queries with 2, 3 and 4 keywords to evaluate both
DBLP and INEX documents. The frequency parameters L and H range from 10
to 10000. The efficiency of our approach is affected less by the keyword number
than Multiway− SLCA methods.

When the keyword number is fixed and keyword frequency increases, Fig. 6
and 7 show the processing time of all algorithms. When low frequency is very
small, IIMS and HS perform better than IMS. HS is relatively faster than
IIMS. When low frequency is large, IMS and HS take less time than IIMS.
Moreover, the processing time of IMS is nearly twice as that of HS. The reason
is that the performance of HS depends on the smallest frequency of keywords and
the depth of the XML tree, while the performance of IMS and IIMS algorithm
is determined by not only these two factors but also the highest frequency of
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keywords. When the highest frequency of keywords become large, efficiency of
Multiway − SLCA approaches will be limited.

6 Related Work

The computation of the LCA of two nodes on trees has been solved by some
early work [5,6]. Unfortunately, these algorithms are only intended to handle
limited data that can be totally stored in the main-memory. To integrate the
keyword search into XML query language, [8] introduces the meet operator whose
definition is a special case of LCA problem for searching XML data. Such oper-
ator can be realized efficiently by running joins on relations. XRank [9] adopts
a stack-based algorithm to answer Web-like keyword queries and ranks the re-
sults with extended Page-Rank hyperlink metric for XML. The ranking tech-
niques are orthogonal to the retrieval and can be easily incorporated into our
work.

Our work is closely related to three research work [1,2,4]. [4] enables users
to retrieve XML data without any background knowledge about the document
schema through a novel technique called Schema Free XQuery. In addition, a
stack-based search algorithm is provided by [4] to answer queries using the
Meaningful LCA (MLCA) semantics, which is similar to the SLCA semantics.
XKSearch [2] proposes two efficient algorithms : the Scan Eager (SE) algorithm
and the Index Lookup Eager (ILE) algorithm. MultiKSearch [1] proposes a more
efficient algorithm named IMS than the ILE and SE algorithms by using several
optimization strategies to reduce the number of LCA computation. Moreover,
MultiKSearch extended its algorithm to support more general search queries
involving the AND and OR semantics. In particular, the IMS algorithm is com-
pared against in this paper.

XSeek [11] is an XML keyword search engine which can generate return nodes
according to the analysis of both XML data structures and keyword match
patterns. It’s the first system that manages to automatically infer meaningful
return nodes for keyword search results provided by XKSearch [2]. [12] introduces
two intuitive and non-trivial properties for data and query : monotonicity and
consistency to reason about keyword search strategies. Moreover, it proposes a
novel semantics named MaxMatch which satisfies both porperties for identifying
relevant matches and provides an efficient algorithm to implement it. MaxMatch
is integrated into XSeek system[11].

7 Conclusions and Future Work

In this paper, we tackle the problem of how to process LCA queries efficiently
over XML documents. We presents a novel approach called Hash-Search approach
to answer SLCA-based keyword search queries on XML documents. Our ap-
proach outperforms the best-known Incremental Multiway-SLCA approach. Our
experiments using different kinds of XML datasets demonstrate the efficiency
of our approach. In the future work, we will focus on optimization technology
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for reducing the number of elements stored in the indexes without affecting the
effectiveness of the algorithm.
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Abstract. We investigate the expressiveness of existing XML keyword
search semantics and propose Meaningful Connected Network (MCN) as
a new semantics to capture meaningful relationships of the given key-
words from XML documents. Our evaluation method adopts a two-step
strategy to compute all MCNs. In the first step, we identify a set of query
patterns from a new schema summary; in the second step, all query pat-
terns are processed based on two efficient indices, partial path index and
entity path index. The experimental results show that our method is
both effective and efficient.

1 Introduction

As an effective search method to retrieve useful information, keyword search has
gotten a great success in IR field. However, the inherently hierarchical structure
of XML data makes the task of retrieving the desired information from XML
data more challenging than that from flat documents. An XML document can
be modeled as either a rooted tree or a directed graph (if IDRefs are considered).
For example, Fig. 1 shows an XML document D, where solid arrows denote the
containment edge, dashed arrows denote the reference edge, and the number
beside each node denotes the node id.

The critical issue ofXMLkeyword search is how tofindmeaningfulquery results.
In both tree model and graph model, the main idea of existing approaches is to find
a set of Connected Networks (CNs) where each CN is an acyclic subgraph T of D,
T contains all the given keywords while any proper subgraph of T does not. In par-
ticular, in tree data model, Lowest Common Ancestor (LCA) semantics [1] is first
proposed, followed by SLCA (smallest LCA) [1] and MLCA [5] which apply addi-
tional constraints on LCA. In graph data model, methods proposed in [6,7,8,9,10]
focused on finding matched CNs where IDRefs are considered.

In practice, however, most existing approaches [1,2,3,4,5,6,7,8,9,10] only take
into account the structure information among the nodes in XML data, but ne-
glect the node categories ; thus they suffer from the limited expressiveness, which
makes them fail to provide an effective mechanism to describe how each part
in the returned data fragments are connected in a meaningful way, as shown in
Example 1.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 511–526, 2009.
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Fig. 1. An example XML document D
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Fig. 2. R1 to R4 are four possible answers of existing methods for query Q={Mike,
John} against D in Fig. 1. R3, R1′ and R4′ are three meaningful answers of our method.

Example 1. Consider a keyword query Q={Mike, John} issued on D in Fig. 1.
If IDRefs in D are not considered, then R1 and R2 in Fig. 2 are two (not all)
matched results according to the LCA semantics [1] where the LCA node are
photos and site, respectively. If IDRefs in XML data are considered, we may find
more results, e.g., R1 to R4 are four matched results of existing methods. How-
ever, we cannot identify any meaningful relationship between ‘Mike’ and ‘John’
from R1, R2 and R4, because the nodes (photos, site, persons) connecting ‘Mike’
and ‘John’ do not convey any useful information to explain the relationship be-
tween ‘Mike’ and ‘John’. We observe when talking about relationships between
data elements, users just care about relationships of those representative nodes
(photo, person, item and auction in Fig. 1), which we call entities in ER model,
and most of the time their query is based on the relationships of entities, rather
than those meaningless ones (e.g., photos, site and persons), which are just used
to organize data. With this observation, R3, R1′ and R4′ in Fig. 2 should be
meaningful results. R3 means ‘Mike’ and ‘John’ watch the same auction; R1′

means both ‘Mike’ and ‘John’ provided a photo to the same item; R4′ means
‘Mike’ bought an item sold by ‘John’ in an auction. However, according to the
semantics of existing works [1,2,3,4,5,6,7,8,9,10], R1′ and R4′ will be removed as
answers because of R1 and R4, respectively.
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Motivated by the above problem, we propose a new semantics called Meaningful
Connected Network (MCN) to capture the meaningful relationships of the given
keywords from XML document graph by considering reference relationship. A
MCN is an acyclic subgraph T of the given XML document D and contains all the
keywords at least once, which is defined based on the relationships among entities
(or entity instances), rather than simply on data elements without considering
their categories. For the above query, we first check which entity instances ‘Mike’
(‘John’) belongs to, then find the meaningful relationships of the two entity
instances of ‘Mike’ and ‘John’. Finally, R3, R1′ and R4′ (not R1, R2 and R4)
as MCNs are considered as meaningful results and returned.

However, finding even the first CN is reducible to the classical group Steiner
tree problem, which is known to be NP-complete [12]. As a MCN may contain
nodes that are redundant to a CN (e.g., item in R1′ is redundant to R1), finding
all MCNs from the given XML document is more difficult than finding all CNs.
Note all MCNs can be classified into different groups according to their structure,
we call the structure of a MCN together with all query keywords a query pattern
(QP) (e.g., R3, R1′ and R4′ are three QPs after removing all node id), thus
finding all occurrences of MCNs equals to solving the following two problems.
– (P1) Efficiently identify all QPs from the underlying schema.
– (P2) Efficiently evaluate all QPs against the given XML data.
For problem P1, we propose to use entity graph as a schema summary to

capture the meaningful relationships of entity nodes from the original schema.
Entity graph is generated from the original schema by removing the noisy infor-
mation while preserving the connection relationships of entity nodes. Then we
propose an algorithm based on entity graph to efficiently compute all QPs.

For problem P2, we design two efficient indices to improve the query perfor-
mance. The first is partial path index. For each keyword k, partial path index
stores a set of paths, each of which starts with an entity instance and ends at one
of its attribute node that directly contains k. The second is entity path index.
Entity path index stores all the matching instances of entity pairs, where each
pair is joined by one edge of the entity graph.

In summary, our contributions are listed as follows:
– We propose an effective semantics, i.e., Meaningful Connected Network

(MCN), to enhance the expressiveness of keyword search query.
– We propose to use an entity graph to reduce the cost of computing QPs.
– We propose an algorithm based on partial path index and entity path in-

dex to improve the performance of query evaluation. We proved the costly
structural join operations1 can be avoided from the evaluation of all QPs.

– Extensive experiments are conducted on datasets of various characteristics,
and the results show our method is both effective and efficient.

2 Background and Related Work

Schema: We assume the schema is always available, as we can use the methods
proposed in [13,14] to infer the schema (if unavailable). We use a node labeled
1 Join operations based on ancestor-descendant or parent-child relationship.
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Fig. 3. An example schema S of XMark

directed graph to model a schema. Formally, S = (VS , ES), where VS denotes a
set of schema elements each with a distinct tag name, ES denotes a set of directed
edges between schema elements. As shown in Fig. 3, there are two kinds of edges
in S. The first is the containment edge, which is drawn as a solid arrow from an
element to its child element. The second is the reference edge, which is drawn as
a dashed arrow from the attribute of referrer element to referee element.

Node Categories: In the following discussion, whenever we mention entity and
attribute, they refer to the notions defined in ER-model, rather than that defined
in XML specification2. Generally speaking, two kinds of methods can be adopted
to specify the category of each schema element, which are (1) automatic methods
using heuristic inference rules [4,6] and (2) manual method done by users, DBA
or domain expert. The inference rules used in [4,6] are as follows:

1. A node represents an entity if it corresponds to a ∗-node in the DTD.
2. A node denotes an attribute if it does not correspond to a ∗-node, and only

has one child, which is a value.
3. A node is a connection node if it represents neither an entity nor an attribute.

A connection node can have a child that is an entity, an attribute or another
connection node.

The automatic method can avoid the cost of manual intervention, but it may
not be quite correct. E.g., for the schema in Fig. 3, person is a ∗-node, thus by rule
1, person represents entity, instead of the attribute of site. name is considered
as an attribute of person and item according to rule 2. site is not a ∗-node and
has no value child, so it is a connection node by rule 3. However, according
to the above rules, phone will be considered as entity, which is unreasonable,
since phone is usually considered as a multi-value attribute of person. By using
manual method from scratch, we can get accurate category of each schema node.
However, it may impose great burden to users, DBA or domain experts.

Therefore, to achieve as accurate as possible node categories while paying
minimum manual intervention, we first employ the above three inference rules
to get an approximately accurate categorization, followed by a minor manual

2 http://www.w3.org/TR/REC-xml/
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Table 1. Summary of notations

Notation Description Notation Description
MEW meaningful entity walk QP query pattern
(M)CN (meaningful) connected network TP tree (or twig) pattern

PPI partial path index EPI entity path index

adjustment from users, DBA or domain expert. Using this method, we can con-
sider phone, watch, buyer and seller as multi-value attributes of their entities,
respectively. We take the underlined nodes as entities in Fig. 3.

To facilitate our discussion, whenever we use entity, it refers to the entity-
type which corresponds to an entity node of a schema; the term entity instance
is used to denote the instance of entity in XML document. In this paper, we
mainly focus on how to provide effective and efficient mechanism to extract
meaningful results based on the results of existing classification methods. The
notations used in our discussion are shown in Table 1.

Discussion and Related Work : Among existing XML keyword search meth-
ods [1,2,3,4,5,6,7,8,9,10], The basic semantics [1,2,3,4,5] is based on the tree
model, thus cannot capture the meaningful relationship conveyed by IDRefs.

For graph model (IDRefs considered) based methods [6,7,8,9,10], the first
group [9,10] directly compute all CN s from the given XML document. How-
ever, finding even the minimal connected network is reducible to the classical
NP-complete group Steiner tree problem [12]. Thus these methods [9,10] apply
special constraints to CN and find only a subset of all CNs.

The second group [6,7,8] adopt a two-step strategy: (1) compute the set of
QPs that are isomorphic to the set of CNs, (2) evaluate all QPs to get the
matching results. However, when the schema graph becomes complex and when
evaluating large amount of QPs, both the two steps are no longer a trivial task.

For step 1 : the methods proposed in [6,8] focus on finding all QPs of schema
elements, text values are attached to different schema elements, thus they cannot
process queries involving text values attached to two schema elements of same
name, e.g., {person:Mike, person:John}. [7] proposed a method to compute from
the schema graph all QPs of keyword queries that allow both text values and
schema elements. The main idea is to find all QPs from a new expanded graph
G′ that is generated from G and each QP is a subgraph of G′.

For a given keyword query Q = {k1, k2, ..., km}, [7] maintains for each keyword
k an inverted list which stores the data elements directly containing k and works
through the following steps. (1) For each keyword ki ∈ Q, produce the element
set Ski which consists of all data elements containing ki. (2) Based on the m
sets Sk1 , Sk2 , ..., Skm , produce data element set SK for all subsets K of Q, where
SK = {d|d ∈ ∪k∈KSk ∧ ∀k ∈ K, d contains k ∧ ∀k ∈ Q−K, d does not contain
k} [11]. (3) For all elements of SK , find the set of corresponding schema elements
Slabel(SK) = {l|∃d ∈ SK , l = label(d)}. For each l ∈ Slabel(SK), add a node named
l to the original schema graph by attaching K to l to produce a new schema
graph G′. (4) Find from G′ all the QPs, where each QP q is a subgraph of G′,
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q contains all keywords at least once, while any proper subgraph of q does not.
Thus the performance of the first step is affected by three factors: (1) I/O cost
of accessing all data instances to construct G′ in the first two steps; (2) the
maximum size of QP, and (3) the size of the new expanded graph G′.

For step 2 : as a keyword query may correspond to multiple QPs, and each QP
consists of several tree (twig) patterns (TPs) connected together by reference
edges, which imposes great challenges for subsequent query processing. Existing
methods made improvements from the following four orthogonal aspects: (1)
designing efficient algorithms [15,16], (2) reducing the size of the given QP [17],
(3) designing efficient indices to reduce the size of input streams [15,16], and (4)
reusing the intermediate results to improve the whole performance. However, all
these methods suffer from costly structural join operation, which greatly affects
the whole performance.

3 Semantics of Keyword Search Queries

From D in Fig. 1, we know person “Mike” bought the item sold by person
“John”, which can be expressed as answer R4′ in Fig. 2. R4′ manifests the
meaningful relationship between entity instances may contain edges of different
directions (mixed directions problem) and cannot be got by simply traversing
the document. Even if we omit the direction of each edge, it is infeasible to XML
document because of its large size. An alternative way is finding such relationship
from schema graph, which has much smaller size. However, some relationships
produced in such case may be meaningless (meaningfulness problem). For exam-
ple, R′ : “item→name←person” is a possible relationship produced by traversing
undirected schema graph Su of S in Fig. 3, such relationship is meaningless since
according to S, person and item must have different child element of same el-
ement type name in XML documents, which contradicts R′. Thus, we need an
effective way to capture both “mixed directions” and “meaningfulness” so as to
avoid losing meaningful relationships (e.g., R4′) by traversing directed graph and
producing meaningless relationships (e.g., R′) by traversing undirected graph.

Definition 1 (Walk). A v0−vk walk W : v0, e1, v1, e2, v2, . . . , vk−1, ek, vk of
the undirected schema graph Su is a sequence of vertices of Su beginning with v0
and ending at vk, such that each two consecutive vertices vi−1 and vi are joined
by an edge ei of Su.

The number of edges of W is called the length of W , which is denoted as
L(W ). For any two nodes u and v of Su, if there exists at most one edge joining
u and v in Su, W can be written as W : v0, v1, . . . , vk. Any vi − vj walk W ′ :
vi, ei+1, vi+1, . . . , vj−1, ej, vj(0 ≤ i ≤ j ≤ k) extracted from W is called a sub-
walk of W , which is denoted as W ′ ⊆W .

Intuitively, a walk denotes a possible connection relationship of two schema nodes
where direction is not considered. Note Definition 1 doesn’t require the listed
vertices and edges to be distinct, there may be more than one walk between two
nodes. We define walk so as to avoid the problem of “mixed directions”, and
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Definition 2 is used to avoid the problem of “meaningfulness” and capture the
meaningful connection relationship of two entities.

Definition 2 (Meaningful Entity Walk (MEW)). Let S be a schema graph,
a v0− vk walk W of the undirected schema graph Su is a meaningful entity walk
of S if both v0 and vk are entity nodes and

– L(W ) ≤ 1, or,
– W doesn’t contain a sub-walk W ′ that has the form u→v←w in S, where

“→” denotes a solid arrow from u(w) to v in S. Moreover, if W ′ has the
form u←v→w in S, v must be an entity node.

Example 2. According to Definition 2, W1:“person” is a MEW since person is an
entity and L(W1) = 0 ≤ 1. W2:“item→name←person” is not a MEW according
to Definition 2, the reason is stated in the first paragraph of this section, where
W2 is denoted as R′. W3:“person→watches→watch→@auction���auction” is a
MEW according to Definition 2, which means a person is watching an auction.
W4:“person���@person←buyer←persons←auction→persons→seller →@person
���person” is a MEW which means a person bought an item sold by another
person. W5:“item←site→person” is not a MEW according to Definition 2 as W5
has the form “u←v→w” and site is not an entity, which means the relationship
of item and person cannot be interpreted by a non-entity node, i.e., site.

Definition 3 (Meaningful Connected Network (MCN)). Let Q = {k1, k2,
..., km} be the given keyword query. A meaningful connected network of Q on the
XML document D is a subgraph T of D, which holds all the following properties:

1. T contains ki(1 ≤ i ≤ m) at least once,
2. for any node u of T , if u is not an entity instance and joined by just one

edge with other nodes of T , u contains at least one keyword,
3. for any two nodes u and v of T , if u and v are entity instances, there exists

at least one u− v MEW instance W on T ,
4. no proper subgraph of T can hold for the above three properties.

Example 3. Consider the six subgraphs in Fig. 2, where there are four entities,
i.e., person, photo, item and auction. For R1, we cannot explain intuitively the
relationships of the two photo nodes as they are connected together through
a connection node, i.e., photos. Similarly, we cannot explain intuitively the re-
lationships of the two person nodes in R2 and R4 as they are connected to-
gether through two connection nodes, i.e., site and persons. Since the walk
“photo←photos→photo” in R1 is not a MEW (photos is not an entity node),
according to Definition 3, R1 is not a MCN. R2 and R4 are not MCNs for the
same reason. Thus they will be considered as meaningless answers. The intuitive
meanings of R3, R1′ and R4′ are explained in Example 1, where each pair entity
nodes in R3, R1′ and R4′ are connected through MEWs. According to Definition
3, R3, R1′ and R4′ are MCNs and considered as meaningful answers.
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As shown in [11], the size of the joining sequence of two data elements in a
given XML document is data bound (data bound means the size of a result may
be as large as the number of nodes in an XML document), so is the MCN. Thus
users are usually required to specify the maximum size C for all MCNs, which
equals to the number of edges. However, such method may return results of very
weak semantics or lose meaningful results. For example, each one of R3, R1′ and
R4′ contains 3 entity instances, thus the semantic strongness of the three MCNs
should be equal to each other, if all edges have the same weight. By specifying
C = 10, R3 and R4′ will not be returned as matching results. On the other hand,
a MCN may contain no connection node but an overwhelming number of entity
instances, if its size equals to C, it may convey very weak semantics. Therefore
in our method, the constraints imposed on MCN is not the maximum number
of edges, but that of entity instances. This C is a user-specified variable with a
default value of 3. As a result, a formal definition of keyword search is as below.

Definition 4 (Keyword Search Problem). For a given keyword query Q,
find all matched MCNs from the given XML document D, where each MCN
contains at most C entity instances.

4 Computation of Query Patterns

Definition 5 (Entity Path). Path p : v1, v2, ..., vk(2 ≤ k) of schema graph S
is called an entity path if only v1 and vk are entity nodes, and for any vi(2 ≤
i ≤ k − 1), vi �= vj(1 ≤ j ≤ k ∧ i �= j).

Definition 6 (Partial Path). A partial path p is a path of the given QP Q,
which starts with an entity node n that is the only entity node of p.

Intuitively, an entity path describes the direct relationship of two entities, a par-
tial path denotes containment relationship of an entity and one of its attributes.
As the definition of MCN is based on relationship of entity nodes, an impor-
tant operation is for a given keyword k, finding the set of entity nodes that
have entity instances containing k as their attribute or attribute values, which
is denoted as selfE(k). We maintain an auxiliary index H that stores the set of
partial paths (not their instances) for each keyword k, where each partial path
has database instances appearing in the given XML document D, which can be
got after parsing D. For example, H stores “photo/provider, person/name” for
‘Mike’. According to H , selfE(‘Mike’)={photo,person}.

Definition 7 (Entity Graph). Let S be a schema graph, P the set of entity
paths of S. The entity graph of S is represented as G = (V, E), which consists
of only entity nodes of S, and for each entity path p ∈ P that connect u and v
in S, there is an edge in G that joins u and v.

As shown in Fig. 4 (A), in an entity graph, two entity nodes may be joined by
two or more edges, e.g., person and auction are joined by e4, e5, e6. Each edge
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Algorithm 1. getQP(Q, G, C) /*Q = {k1, k2, ..., km}*/
Q ← ∅ /*queue of QPs*/1

if (|Q| = 1) then {SQP ← selfE(k1); return SQP }2

foreach (combination E = (E′
1, E

′
2, ..., E

′
m), E′

i ∈ selfE(ki)) do3

get the partition P = {SE1 , SE2 , ..., SEq} of E according to entity names4

get the keyword set KEi = {k|E ∈ SEi ∧ E ∈ selfE(k) ∧ k ∈ Q} of SEi5

get the entity set SKEi
= {EK

i |K ⊆ KEi} of Ei(1 ≤ i ≤ q)6

put nodes of SKEi
into SQP if they are QPs, otherwise put them into Q7

while (¬ empty(Q)) do8

J ← RemoveHead(Q)9

foreach (edge e = (E, u) in Gu that is incident with a node u of J) do10

if (E ∈ {E1, E2, ..., Eq}) then11

foreach (node E′ ∈ SKE ) do12

J ′ ← Add E′ and (E′, u) to J ;13

if (isQP(J ′)∧nEntity(J ′) ≤ C) then SQP ← SQP ∪ {J ′}14

else if (nEntity(J ′) < C) then Add J ′ to Q15

else16

J ′ ← Add E and (E, u) to J ;17

if (nEntity(J ′) < C) then Add J ′ to Q18

return SQP19

person

auctionitem

video photo
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e1

e2( )  : item videos video
e3( )  : item photos photo
e4(-->) : auction persons buyer @person--> person
e5(-->) : person watches watch @auction-->auction
e6(-->) : auction persons seller @person--> person

e1(-->)  : auction itemref @item-->item(A) (B)
person

auction
e4 e6

person

name name

“Mike” “John”

Fig. 4. The entity graph G (A) of S in Fig. 3, (B) is the QP of R4′ in Fig. 2.

of an entity graph may be a containment edge (solid arrow) or reference edge
(dashed arrow). Each containment edge of G denotes an entity path that consists
of just containment edges in S, and each reference edge denotes an entity path
that consists of at least one reference edge in S. According to Definition 7, we
have the following lemma.

Lemma 1 There exists a one-to-one mapping between the edges of an entity
graph and the entity paths of the original schema graph.

Moreover, we observe that a QP consists of two kinds of relationships, (1) the
relationship between entity nodes, i.e., entity path; (2) the relationship between
entity nodes and attribute or attribute values, i.e., partial path. For example,
after removing the node id, R4′ as a QP is shown in Fig. 4 (B), which contains two
entity paths, i.e., e4 and e6, and a partial path, i.e., “person/name”. According
to Lemma 1, for a QP, the relationships of entity nodes can be got from entity
graph, and the partial paths can be got from the auxiliary index H stated in the
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paragraph after Definition 6. For simplicity, we use the relationships of entity
nodes of a QP to denote the QP in the following.

Algorithm 1 shows how to compute all QPs, which has three parameters, a
keyword query Q, an entity graph G and the maximum number C of entity nodes.
If Q contains only one keyword k, the set of QPs SQP equals to selfE(k) (line
2); otherwise, for each combination E=(E′

1, E
′
2, ..., E

′
m) where E′

i∈selfE(ki), it
computes the set of QPs of E (line 3-18). In particular, it first gets a partition
P={SE1, SE2 , ..., SEq} of E according to entity names, where SEi = {E|E ∈ E
∧label(E) = Ei} (line 4). Then it gets the set of keywords KEi of SEi and gets all
combinations of keywords contained by an entity node, i.e., multiple keywords
may be contained by an entity node(line 5-6). Then adds all nodes of an entity
set SKEi

to Q if they do not contain all keywords; otherwise, put them into SQP

(line 7). In line 8-18, while Q is not empty, a graph J is removed from Q in line 9
for further computing. isQP(J ′)=TRUE means that J ′ is a QP and nEntity(J ′)
denotes the number of entity nodes in J ′. Finally, SQP is returned (line 19).
Note a MCN is an instance of a QP, the checking of QP is similar to that of
MCN except that QP is defined on schema graph.

Example 4. Assume C=3, G is the entity graph in Fig.4(A). As shown in Fig.5,
according to D in Fig. 1, for Q={M, J},we have selfE(‘M’)=selfE(‘J’)={P, PH}.
There are three combinations of entities for Q, i.e., (PH, PH), (P, PH) and
(P, P ). For (PH, PH), according to line 4 of Algorithm 1, P={SPH}, where
SPH= {PH1, PH2} (PH1 and PH2 denote they are two entity nodes of same
name). In line 5, we know that a PH node may contain two keywords, i.e.,
KPH={M, J}. According to line 6, there are three possible cases where a photo
node contains these keywords, that is, SKPH={PH [M ], PH [J],PH [M,J]}. In line
7, PH [M ] and PH [J] are put into Q and PH [M,J] is put into SQP since it is
already a QP. In line 9, PH [M ] is first removed from Q, since there is only one
node, i.e., item, adjacent to photo in G and nEntity(PH [M ]←e4I)=2, it is put
into Q in line 18. There are six newly generated graph for PH [M ]←e4I, and
only PH [M ]←e4I→e4PH [J] is a QP. We omit the computation for (P, PH) and
(P, P ) and just show them in Fig. 5.

Theorem 1. (Completeness) For a given ATP query, Algorithm 1 produces
all QPs that satisfy each QP has at most C entity nodes.

The correctness of Theorem 1 is obvious according to Algorithm 1 and Example
4 and we omit the proof for limited space. Compared with the method of [7],
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Fig. 5. The set of QPs of Q={Mike, John}, partial paths are omitted, for Q1 and Q2,
the partial path is ‘photo/provider’, for Q3 to Q12, partial path is ‘person/name’
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our method made improvements from three aspects: (1) by postponing checking
the real dataset until evaluating QPs, Algorithm 1 avoids the costly I/O opera-
tion, (2) Algorithm 1 is based on entity graph, which is much smaller than the
expanded schema graph, and (3) the value of C in Algorithm 1 is much smaller
than that of [7], where C equals to the number of edges in a QP.

5 Query Processing

To accelerate the evaluation of QPs, we firstly introduce partial path index PPI.
For each keyword k, we store in PPI a list of tuples of the form < PID, Path >,
where PID is the ID of a partial path, and Path is a database instance of PID in
XML documents. All Paths are clustered together according to PID and sorted
in document order. The PPI of D in Fig. 1 is shown in Table 2, where only
partial content is presented. The second index is entity path index EPI, for each
edge e of the given entity graph, we maintain in EPI a set of database instances
of e. The EPI of D in Fig. 1 is shown in Table 3.

Theorem 2. Let Q be a given keyword query. Using PPI and EPI, the struc-
tural join operations can be avoided from the evaluation of Q.

Proof. [Sketch] According to Algorithm 1, any keyword query Q has a set of
QPs SQP . Each Q′∈SQP consists of two kinds of relationships, (1) the relation-
ship between entity nodes and (2) the relationship between entity nodes and
attribute or attribute values. The former can be computed by probing EPI and
the latter can be computed by probing PPI, the final results can be got from
the results of all selection operations on PPI and EPI.

As shown in Algorithm 2, we find the set of QPs SQP in line 1. In line 2-3, all QPs
that contain at least one selection operation that produces empty set is removed
from SQP . In line 4-12, we check for each node EK of a QP Q′, whether EK has
database instances that contain all keywords in KE (KE is the set of keywords
attached to EK). If EK does not have such database instances, REK = ∅. In line
13-17, for each QP Q′ ∈ SQP , if there is an entity node EK and REK = ∅, Q′

is removed from SQP in line 14; otherwise, Q′ is evaluated in line 16. In line 17,
the results RQ′ of Q′ are put into R. In line 18, R is returned.

Table 2. The partial path index of the XML document D in Fig. 1

Keyword Tuple sets Keyword Tuple sets
Mike < photo/provider,5/6 > John < photo/provider,7/8 >

< person/name, 13/14 > < person/name, 18/19 >

Table 3. The entity path index of the XML document D in Fig. 1

Edge Entity Paths Edge Entity Paths
e1 {23/24/25/11, 26/27/28/9} e4 {26/29/32/33/13}
e2 ∅ e5 {13/15/16/17/23, 18/20/21/22/23}
e3 {2/4/5, 2/4/7} e6 {26/29/30/31/18}
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Table 4. The selection operations of the 12 QPs of Q in Example 5

Selection Op. Result Queries Selection Op. Result Queries
photo/provider∼‘Mike′ 
= ∅ Q1, Q2 e3 
= ∅ Q2

photo/provider∼‘John′ 
= ∅ Q1, Q2 e4 
= ∅ Q4 to Q7, Q10

person/name∼‘Mike′ 
= ∅ Q3 to Q12 e5 
= ∅ Q5, Q7 to Q9, Q11

person/name∼‘John′ 
= ∅ Q3 to Q12 e6 
= ∅ Q6, Q9 to Q12
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*
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photo

provider

(E)
photo

item

provider

(F)
photo
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“Mike and John” “Mike and John”“Mike and John”
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~Mike, ~John

provider provider

~John~Mike

Fig. 6. Illustrating of redundant QP

Example 5. According to Example 4, Q={Mike, John} corresponds to 12 QPs
shown in Fig. 5, i.e., SQP ={Qi|1≤i≤12}. According to Table 3 and Table 2, we
can get Table 4, which shows all selection operations of SQP . Obviously, there are
8 selection operations involved in Q1 to Q12. According to line 4-12 and the PPI
in Table 2, we have E={PH(M, J), PH(M), PH(J), P (M, J), P (M), P (J)} for
Q1 to Q12 in Fig. 5. As RPH(M,J)=RP (M,J)=∅, we can delete Q1 and Q3 from
SQP in line 14. In line 16, we evaluate the remainder QPs, among which three
QPs havenon-empty result sets, i.e., Q2, Q6, Q8.RQ2=σphoto/provider∼‘Mike′��σe3

��σe3��σphoto/provider∼‘John′={R1′}. Similarly, RQ6={R4′}, RQ8={R3}, where
R3, R1′, R4′ are the three MCNs in Fig. 2. Other QPs in SQP have empty result
sets. Therefore the final result set RQ=RQ2∪RQ6∪RQ8={R3, R1′, R4′}.
Note Algorithm 1 may produce redundant QPs. For instance, consider the
schema graph in Fig. 6 (A), where photo and item are entities, (B) is the XML
document conforming to (A). Assume C = 3, i.e., each QP contains at most
three entity nodes, Fig. 6 (C) and (D) are two QPs according to Algorithm 1.
Obviously, Fig. 6 (E) and (F) are two matches of Fig. 6 (C) and (D), respec-
tively. In fact, the QP in Fig. 6 (D) is redundant since in Fig. 6(E), both the
two photo nodes and the two provider nodes represent same data element in Fig.
6 (B). Therefore before evaluating each QP Q′ in Q, we need to check in line
2-14 for each EK , whether there exists entity instances of label E such that each
entity instance d contains all keywords of K and no other E′

K′ exists such that
k ∈ (K ′ −K) and d contains k. Thus we have Theorem 3.

Theorem 3 (Non Redundancy). If a QP evaluated in line 16 of Algorithm
2 produces a MCN d, then no other QPs can produce d as their instance.

6 Experimental Evaluation

6.1 Experimental Setup

We used a PC with Pentium4 2.8 GHz CPU, 2G memory, 160 GB IDE hard
disk, and Windows XP professional as the operating system. We implemented IM
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Algorithm 2. indexMerge(Q, G, C)
SQP ← getQP(Q, G, C)1

foreach (edge e ∈ Q′, where Q′ ∈ SQP ) do2

if (Rσe = ∅) then SQP ← SQP − {Q′}3

foreach (node EK ∈ Q′ ∧ Q′ ∈ SQP ∧ EK 
∈ E) do4

if (EK is attached with keywords set KE) then5

REK←merge the results of selection operations of each keyword of KE6

foreach (E′
K′ ∈ E ∧ label(E) = label(E′)) do7

R = REK ∩ RE′
K′8

if (KE ⊂ K′
E′) then REK ← REK − R9

else if (KE ⊃ K′
E′) then RE′

K′ ← RE′
K′ − R10

else {REK ← REK − R; RE′
K′ ← RE′

K′ − R}11

E ← E ∪ {EK}12

foreach (Q′ ∈ SQP ) do13

if (∃EK ∈ E ∧ EK ∈ Q′ ∧ REK = ∅) then SQP ← SQP − {Q′}14

else15

RQ′ ← merge the results of all selection operations of Q′16

R ← R∪RQ′17

return R18

Table 5. Statistics of datasets, L denotes Length

Dataset Size(M)Nodes(M)Max LAvg L Index/Doc.
XMark 115 1.7 12 5.5 5.3
SIGMOD 0.5 0.01 6 5.1 4.8

(short for indexMerge) algorithm using Microsoft Visual C++ 6.0. The compared
methods include SLCA [1], XSEarch [3]. Further, we select two query engines,
X-Hive3 and MonetDB4, to compare the performance of evaluating QPs.

6.2 Datasets, Indices and Queries

We use XMark5 and SIDMOD6(short for SIGMOD Record) datasets for our
experiments. The main characteristics of the two datasets can be found from
Table 5. The last column of Table 5 is the ratio of index size to document size,
where index consists of (1) PPI, (2) EPI, and (3) assistant index used to get self
entity nodes, of which PPI has much larger size than the other two.

We select 40 keyword queries (32 from XMark and 8 from SIGMOD), which
are omitted for limited space and classified into 4 groups containing 2, 3, 4 and
5 keywords, respectively. Table 6 shows the statistics of our keyword queries.
3 http://www.x-hive.com
4 http://monetdb.cwi.nl/projects/monetdb/XQuery/index.html
5 http://monetdb.cwi.nl/xml
6 http://www.sigmod.org/record/xml/
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Table 6. Statistics of keyword queries. The 2nd column is the average number of
keywords of a keyword query, the 3rd column is the average number of QPs of a keyword
query, the 4th column is the average number of entities in a QP, the 5th column is the
average number of distinct selection operations for the set of QPs of a keyword query.

Keyword queries# of KeywordsAvg. # of QPsAvg. # of entities Avg. # of Sel. Op.
1st group 2 5.7 1.77 11.8
2nd group 3 10.3 2.13 14.1
3rd group 4 16.5 2.42 19.4
4th group 5 19 2.61 21.2

In our experiment, the node category is assigned using the method discussed
in Section 2, we assume each MCN has at most 3 entity nodes, i.e., C=3 for
Algorithm 2. Note C=3 means there may have 17 edges in a MCN, which is
large enough to find most meaningful relationships.

6.3 Evaluation Metrics

We consider the following performance metrics to compare the performance of
different methods: (1) Running time, (2) Precision and (3) Recall.

We define the Precision and Recall using the following steps: (1) users submit
their keyword queries, (2) by asking users’ search intension, we formulate the
XQuery expressions corresponding to their keyword queries, then let them select
the XQuery expressions that meet their search intension. For a given keyword
query Q, the result of the selected XQuery expressions is denoted as R. (3)
evaluate all keyword queries using different methods, the result of a specific
method on Q is denoted as RQ. Then the Precision and Recall of this method
are defined as: Precision=(RQ ∩R)/RQ, Recall=(RQ ∩R)/R.

6.4 Performance Comparison and Analysis

Figure 7 (a) to (d) compare the Precision and Recall of different methods for the
four group of keyword queries in Table 6, from which we know for XMark dataset,
the Recall of our method is 100%, this is because all results that meet users’
search intension are returned by our method. However, the Precision is a little
worse than SLCA and XSEarch, this is because our method may return results
involving IDREF. If the users’ search intension involves IDREF, obviously, our
method will be more effective; otherwise, SLCA has the highest Precision. The
average figures in Figure 7 (a) and (b) shows that for XMark dataset, though
the Precision of our method is not better than SLCA and XSEarch, it has the
highest Recall. For SIGMOD dataset, as shown in Figure 7 (c) and (d), both
Precision and Recall of our method are better than SLCA and XSEarch, since
in such a case IDREF is not considered, thus the number of QP is very small,
usually equals to 1, and our method always return results that meet the users’
search intension.
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Fig. 7. The comparison of the average Precision (a and c), Recall (b and d) and running
time (e). 2,3,4 and 5 denote the number of keywords in a query and the corresponding
four query groups in Table 6, respectively.

Figure 7 (e) shows the running time of different methods, where xHive and
MonetDB process all QPs as our method. From this figure we know existing
query engines cannot work well for these queries as they need to process large
number of complex QPs (we try to merge as many as possible query patterns
to one XQuery expression so as to make full use of their optimization methods
to achieve better performance). Further, except SLCA (which is based on tree
model and thus has lower Recall), our method achieves best query performance.

As the demo and optimization techniques of [7] are not publicly available, we
do not make comparison with it. Even though, the improvement of our method
is obvious and predictable. In our experiment, (1) C=3, (2) our method is based
on an entity graph that is much smaller than the original schema graph, (3)
our method does not need to scan real data. However, C=3 in our method
means C=12 in [7] for XMark dataset, such a value is unnegligible because [7]
is based on an expanded schema graph and the cost of computing QPs grows
exponentially, let alone scanning the real data to construct an expanded schema
graph for each query.

7 Conclusion

In this paper, Meaningful Connected Network (MCN) was proposed to enhance
the expressiveness of XML keyword search. Entity graph and two indices were
then introduced to improve the performance of query evaluation. We proved
our method is not only effective (Completeness and No Redundancy), but also
efficient (the costly structural join operations can be equivalently transformed
into just a few selection and value join operations). The experimental results
verify the effectiveness and efficiency of our method in terms of various eval-
uation metrics. We will focus on designing effective automatic node classifica-
tion method and ranking mechanism considering node categories in the future
work to provide higher reliability to the effectiveness of our keyword search
method.
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On the Discovery of Conserved XML Query
Patterns for Evolution-Conscious Caching
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Abstract. Existing xml query pattern-based caching strategies focus
on extracting the set of frequently issued query pattern trees (qpt) based
on the support of the qpts in the history. These approaches ignore the
evolutionary features of the qpts. In this paper, we propose a novel type
of query pattern called conserved query paths (cqp) for efficient caching
by integrating the support and evolutionary features together. cqps are
paths in qpts that never change or do not change significantly most of
the time (if not always) in terms of their support values during a specific
time period. We proposed a set of algorithms to extract frequent cqps
(fcqps) and infrequent cqps (icqps) and rank these query paths using
evolution-conscious ranking functions. Then, these ranked query paths
are used in evolution-conscious caching strategy for efficient xml query
processing. Finally, we report our experimental results to show that our
strategy is superior to previous qpt-based caching approaches.

1 Introduction

In a xml data repository, a collection of xml queries may be issued by different
users over a period of time. These queries can be represented as a collection of
query pattern trees (qpts) [12]. Given such a query collection, a frequent xml

query pattern refers to a rooted qpt that is a subtree of at least minsup fraction
of xml queries. Recently, several algorithms [11,12,13] have been proposed to
mine these frequent patterns from the historical query log and cache the corre-
sponding query results to reduce the response time for future queries that are
the same or similar. These techniques are primarily designed for static collection
of xml queries and cannot handle evolution of query workload efficiently. Conse-
quently, several incremental algorithms [4,6] have been proposed to address the
issue of efficiently maintaining the frequent query patterns.

Our initial investigation revealed that existing frequent query pattern-based
caching strategies are solely based on the concept of frequency without taking
into account the temporal features of the evolving query workload. Every occur-
rence of a query subtree contributes equally to the caching strategy regardless
of when the query was issued. Consequently, this may not always be an effective
approach in many real-life applications. For instance, consider the two queries,
QPT2 and QPT4, in Figure 1. Assume that QPT2 had been issued many times in
the past but rarely in recent times whereas QPT4 is only formulated frequently
in recent times. Interestingly, QPT2 may still remain as a frequent query over
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the entire query collection due to its popularity in the past. On the other hand,
in spite of its recent popularity, QPT4 may be considered as infrequent with re-
spect to the entire query collection in the history due to its lack of popularity in
the past. Note that, it is indeed possible that more queries similar to QPT4 are
expected to be issued in the near future compared to queries similar to QPT2.

In this paper, we propose a more effective and novel caching strat-
egy that incorporates the evolutionary patterns of xml queries. In our
approach, each qpt consists of a set of rooted query paths (rqps). Informally, a
rqp in a qpt is a path starting from the root. For example, /book/section/figure
is a rqp of the xml query shown in Figure 1(c). In our approach, we first dis-
cover two groups of rqps, the frequent conserved query paths (fcqp) and the
infrequent conserved query paths ( icqp), from the historical xml queries. Intu-
itively, conserved query paths (cqp) are rqps whose support values never change
or do not change significantly most of the times (if not always) during a time
period. Here support represents the fraction of qpts in the query collection that
includes a specific rqp. Hereafter, whenever we say changes to the rqps/qpts,
we refer to the changes to the support of the rqps.

The second step of our approach is to build a more efficient evolution-conscious
caching strategy using the discovered cqps (fcqps and icqps). Our strategy is
based on the following principles. For rqps that are fcqp, the corresponding
query results should have higher priority to be cached since the support values
of the rqps is not expected to change significantly in the near future and the
rqps will be issued frequently in the future as well. Similarly, for rqps that are
icqp, the corresponding query results should have lower caching priority.

We adopt a path-level caching strategy for xml queries instead of twig-level
(subtree-level) caching. However, it does not hinder us in evaluating twig queries
as such queries can be decomposed into query paths. In fact, decomposing twig
queries into constituent paths has been used by several holistic twig join algo-
rithms. Our focus in this paper is to explore how evolutionary characteristics of
xml queries can enable us to design more efficient caching strategies. Our path-
level, evolution-conscious caching approach can easily be extended to twig-level
caching and we leave this as our future work. Importantly, we shall show later
that our caching strategy can outperform a state-of-the-art twig-level, evolution-
unaware caching approach [13].

Compared to existing caching strategies for xml data [5,2,12,13], our work dif-
fers as follows. Firstly, we use frequent and infrequent conserved rqps instead of



On the Discovery of Conserved XML Query Patterns 529

frequentqpts for caching strategies. Secondly, not only the frequency of therqps is
considered,but also the evolution patterns of their support values are incorporated
to make the caching strategy evolution-conscious. In summary, the main contribu-
tions of this paper are as follows. (a) We propose a set of metrics to measure the
evolutionary features of qpts (Section 2). (b) Based on the evolution metrics, two
algorithms (D-CQP-Miner and R-CQP-Miner) are presented in Section 3 to
discover novel patterns, namely frequent and infrequent conserved query paths. (c)
A novel path-level evolution-conscious caching strategy is proposed in Section 4
that is based on the discovered cqps. (d) Extensive experiments are conducted in
Section 5 to show the efficiency and scalability of the CQP-Miner algorithms as
well as effectiveness of our caching strategy.

2 Modeling Historical XML Queries

We begin by defining some terminology that we shall use later for representing
historical xml queries. A calendar schema is a relational schema R with a con-
straint C, where R = (fn : Dn, fn−1 : Dn−1, · · · , f1 : D1), fi is the name for
a calendar unit such as year, month, and day, Di is a finite subset of positive
integers for fi, C is a Boolean-valued constraint on Dn ×Dn−1 × · · · ×D1 that
specifies which combinations of the values in Dn × Dn−1 · · ·D1 are valid. For
example, suppose we have a calendar schema (year: {2000, 2001, 2002}, month:
{1, 2, 3, · · · ,12}, day: {1, 2, 3, · · · , 31}) with the constraint that evaluate
〈y, m, d〉 to be “true” only if the combination gives a valid date. Then, it is evi-
dent that 〈2000, 2, 15〉 is valid while 〈2000, 2, 30〉 is invalid. Hereafter, we use
∗ to represent any integer value that is valid based on the constraint.

Given a calendar schema R with the constraints C, a calendar pattern, de-
noted as P, is a valid tuple on R of the form 〈dn, dn−1, · · · , d1〉 where di ∈
Di ∪ {∗}. For example, given a calendar schema 〈year, month, day〉, the calen-
dar pattern 〈∗, 1, 1 〉 refers to the time intervals “the first day of the first month
of every year”. Next we introduce the notion of temporal containment. Given
a calendar pattern 〈dn, dn−1, · · · , d1〉 denoted as Pi with the corresponding cal-
endar schema R, a timestamp tj is represented as 〈d′n, d′n−1, · · · , d′1〉 according
to R. The timestamp tj is contained in Pi, denoted as tj * Pi, if and only if ∀
1 ≤ l ≤ n, d′l ∈ dl.

2.1 Representation of an XML Query

We adopt the query pattern trees (qpts) [12,13] representation method in this
paper. A query pattern tree is a rooted tree QPT = 〈V, E〉, where V is a set
of vertex and E is the edge set. The root of the tree is denoted by root(QPT ).
Each edge e = (v1, v2) indicates node v1 is the parent of node v2. Each vertex
v’s label, denoted as v.label, is a tag value such that v.label is in {“//”, “*”}
∪ tagSet, where tagSet is the set of all element and attribute names in the
schema. Furthermore, if v ∈ V and v.label ∈ {“//”, “ ∗ ”} then there must be a
v′ ∈ V such that v′ ∈ tagSet and is a child of v if v.label = “//”.
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A qpt is a tree structure that represents the hierarchy structure of the pred-
icates, result elements, and attributes in the xml query. Based on the definition
of qpt, in existing approaches the rooted subtree of a qpt is defined to capture
the common subtrees in a collection of xml queries [11,13]. However, in this pa-
per, we are interested in rooted query paths, which can provide a finer granularity
for caching than rooted subtrees. Rooted query paths are special cases of rooted
subtrees. Given a qpt QPT = 〈V, E〉, RQP = 〈V ′, E′〉 is a rooted query path of
QPT , denoted as RQP ⊆QPT , such that (1) Root(QPT ) = Root(RQP ) and (2)
V ′ ⊆ V , E′ ⊆ E, and RQP is a path in QPT . For example, /book/section/figure
is a rqp in Figure 1(c).

2.2 Representation of XML Query History

Each qpt is represented as a pair (QPTi, ti), where ti is the timestamp recording
the time when QPTi was issued. As a result, the collection of queries (qpts) can
be represented as a sequence 〈 (QPT1, t1), (QPT2, t2), · · · , (QPTn, tn) 〉, where
t1 ≤ t2 ≤ . . . ≤ tn. Then, a Query Pattern Group (qpg) is a bag of qpts [(QPTi,
ti), (QPTi+k, ti+k), · · · , (QPTj, tj)] such that 1 ≤ (i, j) ≤ n and ∀ m (i ≤ m
≤ j), tm * Px where Px is the user-defined calendar pattern. Observe that the
qpts in a specific qpg are issued within the same calendar pattern according to
the calendar schema. Users can define their own time granularity according to
the workload and application-specific requirements.

The sequence of qpts can now be partitioned into a sequence of query pattern
groups denoted as 〈QPG1, QPG2, · · · , QPGk〉. The occurrences of all qpts in
a qpg are considered to be equally important. In our approach, we compactly
represent each qpg as a query pattern group tree (qpg-tree).

Definition 1. Query Pattern Group Tree (QPG-tree):LetQPG = [QPTi,
QPTi+1, · · · ,QPTj] be a query pattern group. A query pattern group tree is a 3-tuple
tree, denoted as TG = 〈 V, E, ℵ 〉, where V is the vertex set, E is the edge set, and ℵ
is a function that maps each vertex to the support value of the corresponding rooted
query path (rqp), such that ∀RQP ⊆QPTk, i≤ k ≤ j, there exists a rooted query
path, RQP ′ ⊆ TG, that is extended included to RQP .

Consider the three qpts in Figures 1(a), (b), and (c). The corresponding qpg-
tree is shown in Figure 1(e). The qpg-tree includes all rqps and records the
support values (the values inside the nodes of the rqps in the figure). Given a
query pattern group QPGi, the support of a rqp in QPGi is defined as Φi(RQP)
= K / L, where K denotes the number of times the rqp is extended included in
the qpts in QPGi and L denotes the number of qpts in QPGi. When the rqp

is obvious from the context, the support is denoted as Φi. Note that the tradi-
tional notion of subtree inclusion [9] is too restrictive for qpts where handling of
wildcards and relative paths are necessary. Hence, the concept of extended sub-
tree inclusion, a sound approach to testing containment of query pattern trees,
was proposed by Yang et al. [11] to count the occurrence of a tree pattern in
the database. Here, we adopt this concept in the context of rqps. Given two
rooted query paths, RQP1 and RQP2, RQP1 ≺ RQP2 denotes that RQP1 is
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extended included in RQP2. Our definition of extended inclusion is similar to
that of Yang et al. [11]. The only difference is that we assume the subtrees are
rqps. The formal definition is given in [15].

Since there can be a sequence of qpgs in the history, the mean support value of
a rqp is represented as Group Support Mean (gsm). That is, let 〈QPG1, QPG2,
· · · , QPGn〉 be a sequence of qpgs in the history. The gsm of a rooted query
path, RQP ⊆ QPGi (0 ≤ i ≤ n), denoted as Φ(RQP), is defined as 1

n

∑n
i=1 Φi.

To facilitate discovery of specific patterns from the evolution history of the
rqps in the qpg-trees, we propose to merge the sequence of qpg-trees into a
“global” tree called historical qpg-tree (hqpg-tree). It is similar to the idea
of qpg-tree except for the function ℵ. In qpg-tree, the ℵ function is used to
map each vertex to a single support value of the rooted path at that vertex. In
the definition of hqpg-tree, ℵ is replaced by Ψ function which is used to map
each vertex to a sequence of support values. For example, Figure 1(f) shows
an example hqpg-tree by partitioning the qpts in Figures 1(a), (b), (c), and
(d) into two qpgs. The first three qpts are in one group, while the last is in
another group. The sequence of values associated with each vertex in Figure 1(f)
corresponds to the support values. The formal definition is given in [15].

2.3 Evolution Metrics

Given a sequence of historical support values of a rqp, we can undertake two
approaches to measure its evolutionary characteristics. First, in the regression-
based approach, the evolution metric computes the “degree” of evolution (or
conservation) from the sequence directly. Second, in the delta-based approach,
we first compute the changes to consecutive support values in the sequence and
then quantify the evolution characteristics of the rqp using a set of delta-based
evolution metrics.
Regression-based Evolution Metric: Intuitively, the evolutionary pattern of
a rqp can be modeled using regression models [10]. We propose a metric called
query conservation rate to monitor the changes to supports of query paths using
the linear regression model:Φt(RQP ) = Φ0(RQP ) + λt, where 1 ≤ t ≤ n.
Here the idea is to find a “best-fit” straight line through a set of n data points
{(Φ1(RQP ), 1), (Φ2(RQP ), 2), · · · , (Φn(RQP ), n)}, where Φ0(RQP ) and λ
are constants called support intercept and support slope, respectively. The most
common method for fitting a regression line is the method of least-squares [10].
By applying the statistical treatment known as linear regression to the data
points, the two constants, Φ0(RQP ) and λ, can be determined. The correlation
coefficient, denoted as r, can then be used to evaluate how the regression fits the
data points actually.

Definition 2. Query Conservation Rate: Let 〈 Φ1, Φ2, · · · , Φn〉 be the
sequence of historical support values of the rooted query path rqp. The query con-
servation rate of rqp is defined as R(RQP ) = r2 − |λ| where λ =∑n

i=1 iΦi−
∑n

i=1 Φi

∑n
i=1 i

n
∑

n
i=1 i2−(

∑
n
i=1 i)2 and r = n

∑n
i=1 (Φi∗i)−(

∑n
i=1 Φi)(

∑n
i=1 i)√

[n
∑n

i=1 (Φi)2−(
∑n

i=1 Φi)2][n
∑n

i=1 i2−(
∑n

i=1 i)2]
.
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Note that the larger the absolute value of the support slope, the more signifi-
cantly the support changes over time. At the same time, the larger the value of
r2, the more accurate is the regression model. Hence, the larger the query con-
servation rate R(RQP ), the support values of the rqp change less significantly
or are more conserved. Also it can be inferred that 0 ≤ R(RQP ) ≤ 1.
Delta-based Evolution Metrics: We now define a set of evolution metrics that
are defined based on the changes to the support values of a rqp in consecutive
qpg pairs. We begin by defining the notion of support delta. Let QPGi and
QPGi+1 be any two consecutive qpgs. For any rooted query path, RQP , the
support delta of RQP from ith qpg to (i + 1)th qpg, denoted as δi(RQP ), is
defined as δi(RQP ) = |Φi+1(RQP )− Φi(RQP )|.

The support delta measures the changes to support of a rqp between any two
consecutive qpgs. Obviously, a low δi is important for a rqp to be conserved.
Hence, we define the support conservation factor metric to measure the percent-
age of qpgs where the support of a specific rqp changes significantly from the
preceding qpg.

Definition 3. Support Conservation Factor: Let 〈 QPG1, · · · , QPGn 〉 be
a sequence of qpgs . For any rooted query path, RQP , the support conserva-
tion factor in this sequence, denoted as S(α, RQP ), where α is the user-defined

threshold for support delta, is defined as S(α, RQP ) =
∑n−1

i=1 di

n−1 where (a) if
δi(RQP ) ≥ α then di = 1; (b) if δi(RQP ) < α then di = 0.

Observe that the smaller the value of S(α, RQP ) is, the less significant is the
change to the support values of the RQP . Consequently, at first glance, it may
seem that a low S(α, RQP ) implies that the RQP is conserved. However, this
may not be always true as small changes to the support values in the history
may have significant effect on the evolutionary behavior of a rqp over time. We
define the aggregated support delta metric to address this.

Definition 4. Aggregated Support Delta: Let 〈QPG1, QPG2, · · · , QPGn〉
be a sequence of qpgs in the history. The aggregated support delta of RQP ,

denoted as Δ(RQP ), is defined as: Δ(RQP ) =
√

1
n−1

∑n−1
i=1 (Φi − Φi+1)

2.

3 CQP-Miner Algorithms

We begin by formally presenting two definitions for cqps by using the regression-
based metric and delta-based metrics, respectively.

Definition 5. Conserved Query Path (CQP): A RQP is a conserved
query path in a sequence of qpgs iff any one of the following conditions is
true: (a) R(RQP ) ≤ ζ where ζ is the threshold for query conservation rate; (b)
S(α, RQP ) ≤ β and Δ(RQP ) ≤ γ where α, β, and γ are the thresholds for
support delta, support conservation factor, and aggregated support delta, respec-
tively.
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Algorithm 1: QPG-tree Construction
Input:  A bag of QPTs: 
          [QPT1, QPT2, ..., QPTn] 
Output: The QPG tree: TG

1:  Description
2:  Initialize TG as the first QPT QPT1
3:  for all 2   I   n do
4:     for all RQP   QPTi do
5:        for all RQP’   TG do
6:           if RQP’   RQP then 
                 update the support of RQP’
7:           if RQP   TG then 
                 Insert RQP to TG
8:        end for
9:     end for
10: end for
11: Return(TG)

Algorithm 2: D-CQP-Extract
Input:  An HQPQ tree: TH
        The user-defined thresholds

Output: Sets of FCQPs and ICPQs: F and I

1: Description
2: for all RQP   TH (top-down)
3:    if  <   <  then
        prune all the children of this RQP
4:    if                  
        and           then 
5:    if                 
        and �(RQP) � � then 
6: end for
7: Return (F, I )

Algorithm 3: R-CQP-Extract
Input:  An HQPQ-tree: TH
        The user-defined thresholds 

Output: Sets of FCQPs and ICPQs: F and I

1: Description
2: for all RQP   TH (top-down)
3:   if         then 
        prune all the children of this RQP
4:   if and           then

5:   if      and           then

6: end for
7: Return (F, I )

(a) QPG-tree Contruction Algorithm (b) D-CQP-Extract Algorithm (c) R-CQP-Exxtract Algorithm

Fig. 2. Algorithms for cqp mining

There are two variants of cqps, frequent conserved query paths (fcqps) and
infrequent conserved query paths(icqps), which are important for our caching
strategy. Both of them have the following characteristics: (a) the support values
of the rqps are either large enough or small enough; and (b) their support values
do not evolve significantly in the history.

Definition 6. FCQP and ICQP: Let rqp be a conserved query path. Let ξ
and ξ′ be the minimum and maximum group support mean (gsm) thresholds,
respectively. Also, ξ > ξ′. Then, (a) rqp is a Frequent Conserved Query Path
(fcqp) iff Φ(RQP ) ≥ ξ; (b) rqp is an Infrequent Conserved Query Path ( icqp)
iff Φ(RQP ) ≤ ξ′.

3.1 Mining Algorithms

Given a collection of historical xml queries, the objective of conserved query
paths mining problem is to extract the frequent and infrequent cqps. Using the
delta-based and regression-based evolution metrics, we present two algorithms
to extract the sets of fcqps and icqps. We refer to these algorithms as D-

CQP-Miner and R-CQP-Miner, respectively. Each algorithm consists of the
following two major phases.
HQPG-tree Construction Phase: Given a collection of xml queries, an
hqpg-tree is constructed in the following way. Firstly, the queries are trans-
formed into qpts. Then, the qpts are partitioned into groups based on the
timestamps and user-defined calendar pattern, where each qpg is represented as
a qpg-tree. Next, the sequence of qpg-trees are merged together into an hqpg-
tree. We elaborate on the construction of the qpg-tree and merging qpg-trees.
The algorithm of constructing the qpg-tree is shown in Figure 2(a).

The algorithm of merging the sequence of qpg-trees into the hqpg-tree is
similar to the above algorithm. The only difference is that rather than increas-
ing the support values of the corresponding rqps, a vector that represents the
historical support values is created for each rqp. If the rqp does not exist in the
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hqpg-tree, then the vector of supports for this rqp should be a vector starting
with i-1 number of 0 s, where i is the ID of the current query pattern group.
CQP Extraction Phase: Given the hqpg-tree, the fcqps and icqps are ex-
tracted based on the user-defined thresholds for the corresponding evolution
metric(s). Corresponding to the two definitions of cqps, two algorithms are pre-
sented. The first algorithm is based on the delta-based evolution metrics and the
second one is based on the regression-based evolution metric. We refer to these
two algorithms as D-CQP-Extract and R-CQP-Extract, respectively. In both
algorithms, the top-down traversal strategy is used to enumerate all candidates
of both frequent and infrequent cqps. We use the top-down traversal strategy
based on the downward closure property of the gsm values for rqps.

Lemma 1. Let RQP1 and RQP2 be two rooted query paths in an hqpg-tree.
If RQP1 is included in RQP2, then Φ(RQP1) ≥ Φ(RQP2) .

Due to space constraints, the proof is given in [15]. Based on the above lemma, we
can prune the hqpg-tree during the top-down traversal. That is, for rqps whose
Φ are smaller than ξ, no extensions of the rqps can be fcqps. Similarly, for rqps
whose Φ are smaller than ξ′, all of their extensions also satisfy this condition
to be icqps. The D-CQP-Extract algorithm is shown in Figure 2(b). We first
compare the values of Φ with the thresholds of gsm. In this case, some candidates
can be pruned. After that, the value of S(α, RQP ) is calculated and compared
with β. Note that as S(RQP ) is expensive to compute, it is only calculated for
the candidates that satisfy all other constraints. The R-CQP-Extract algorithm
(Figure 2(c)) is similar to the D-CQP-Extract, the only difference being the
usage of different metrics.

4 Evolution-Conscious Caching

We now present how to utilize the discovered cqps to build the evolution-
conscious cache strategy. There are two major phases, the cqp ranking phase
and the evolution-conscious caching (ECC) strategy phase.

4.1 The CQP Ranking Phase

In this phase, we rank the cqps discovered by the CQP-Miner algorithm using
a ranking function. The intuitive idea is to assign high rank scores to query paths
that are expected to be issued frequently. Note that there are other factors such
as the query evaluation cost and the query result size that are important for
designing effective caching strategy [11,12].

Definition 7. Ranking Functions: Let the cost of evaluating a rqp (de-
noted as Costeval(RQP )) is the time to execute this query against the xml

data source without any caching strategy, while the size of the result (denoted as
|result(RQP )|) is the actual size of the view that stores the result. Then the rank-
ing function,R, is defined as: (a) If D-CQP-Miner is used to extract icqps and
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Algorithm 4: Cache-Conscious Query Evaluation
Input:  A new XML query: qx , 
        Ranked FCQPs and ICQPs in descending 
        order: Fp and Ip

1:  Description:
2:  
3:   if 
4:     choose a sequence of ordered          based on 
           their ranking
5:     decompose
6:   end if
7:   evaluate the query by combining the results
8:   for all 
9:     update 
10:    if <      
11:      evict the cached result of RQPi from caching
12:    end if
13:   end for

Algorithm 5: Evolution-Conscious Cache Maintenance Policy
Input:  Q,    , K be the set of queries that have been 
        cached

1: Description:

2:   Compute q = 

3:   if q � �

4:     Regenerate Ip and Fp.

5:     if 

6:       evict RQP 2 M0

7:     end if

8:     while there is space left in the cache

9:       cache the RQP with maximum rank 

               but not in the cache

10:    end while

11:   end if

(a) Cache-Conscious Query Evaluation Algorithm
(b) Evolution-Conscious Cache Maintenance Policy Algorithm

Fig. 3. Algorithms for evolution-conscious caching

fcqps, then R(RQP ) = Costeval(RQP )×Φ(RQP )
S(α,RQP )×Δ(RQP )×|result(RQP )| ; (b) If R-CQP-Miner

is used to extract icqps and fcqps, then R(RQP ) = Costeval(RQP )×Φ(RQP )
R(RQP )×|result(RQP )| .

Observe that we have two variants of the ranking function as our ranking strategy
depends on the two sets of evolution metrics used in the regression-based (R-

CQP-Miner) and delta-based (D-CQP-Miner) cqps discovery approaches.
Particularly, these evolution metrics are used to estimate the expected number
of occurrences of the query paths. The remaining factors are used in the similar
way as they are used in other cache strategies [3,8,12].

4.2 The ECC Strategy Phase

The goal of this phase is to construct an evolution-conscious caching strategy
that utilizes the ranked fcqps and icqps in such a way that the query processing
cost for future incoming queries is minimized. As the cache space is limited, the
basic strategy is to cache the results for the fcqps with the largest rank scores
by replacing the cached results of the rqps with smaller rank scores.

We first introduce the notion of composing query. Suppose at time t1, the
cache contains a set of views V = {V1, V2, · · · , Vn} and the corresponding
queries are Q = {Q1, Q2, · · · , Qn}. When a new query Qn+1 comes, it inspects
each view Vi in V and determines whether it is possible to answer Qn+1 from
Vi. View Vi answers query Qn+1 if there exists another query C which, when
executed on the result of Qi, gives the result of Qn+1. It is denoted by C◦Qi =
Qn+1, where C is called the composing query (CQ). When a view answers the
new query, we have a hit, otherwise we have a miss.
Cache-conscious query evaluation: Figure 3(a) describes the query eval-
uation strategy. When a new query qx appears, it may match to more than
one of the rqps in the set of fcqps (which are denoted as M). Hence, qx can
be considered to be the join of many RQPs and the composing query q′x. For-
mally, qx = RQP1 ◦ RQP2 · · · , RQPj ◦ q′x, where RQP1, RQP2, · · · , RQPj are
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the cached rqps with the highest rank scores and are contained in qx, q′x is
the composing query that does not contain any of the rqps in the cache. The
answers are obtained by evaluating the composing query and joining the corre-
sponding results (Lines 2-7). Next, for all RQPs that are contained in M , the
corresponding ranks are updated with respect to the changes of Φ (Lines 8-9).
If the rank for any of these RQPs falls below the minimum value of these rqps
in the cache, then the corresponding query results will be evicted (Lines 10-12).
Note that we do not update the values of evolution metrics of icqps and fcqps
during the caching process. Rather, it is done off-line as discussed below.
Evolution-conscious cache maintenance policy: One can observe that un-
der heavy query workload, mining fcqps and icqps frequently during evaluation
of every new query can be impractical. Hence, rather than computing new sets
of fcqps and icqps whenever a new query appears, we recompute these cqps
only when the number of new queries that have been issued, in comparison with
the set of historical queries, is larger than some factor q. Note that this mining
process can be performed off-line.

Formally, let tp be the most recent time when we computed the sets of fcqps
and icqps in the history. Let |Q| denote the number of xml queries in the
collection at tp. Assume that we recompute the sets of fcqps and icqps at time
tn where tn > tp. Let |ΔQ| be the set of new queries that are added during tp

and tn. Then, q = |ΔQ|
|Q| .

The algorithm for query evaluation is shown in Figure 3(b). First, it computes
the q value. If q is greater than or equal to some threshold ε then the fcqps
and icqps are updated off-line. In Section 5.2, we shall empirically show that
ε = 0.5 produces good results. If the rqps that have been cached are in the
list of regenerated icqps, then the corresponding results in the cache have to be
evicted (Lines 5-7). Consequently, there may be some space in the cache available
that can be utilized. If the space is enough, then cache those rqps in Fp having
maximum rank but have not been cached yet (Lines 8-10).

5 Performance Evaluation

The mining algorithms and the caching strategy are implemented in Java. All the
experiments were conducted on a Pentium IV PC with a 1.7Ghz cpu and 512mb

ram, running MS Windows 2000. We use two set of synthetic datasets gener-
ated based on the dblp.dtd (http://dblp.uni-trier.de/xml/dblp.dtd) and SS-

Play.dtd (http://www.kelschindexing.com/shakesDTD.html). Firstly, a dtd

graph is converted into a dtd tree by introducing some “//” and “*” nodes.
Then, all possible rooted query paths are enumerated. Similar to [6,12,13], the
collection of qpts is generated based on the set of rqps using the Zipfian dis-
tribution and these qpts are randomly distributed in the temporal dimension.
Example of two sets of qpts in the dblp and SSPlay datasets is given in [15].
Each basic dataset consists of up to 3,000,000 qpts, which are divided into 1000
qpgs. The characteristics of the datasets are shown in Figure 4(a).
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Datasets DBLP SSPlay

QPT
In

DB

Avg # of 
Nodes

Max Depth

Max Fanout

12.4

10

15

9.5

9

11

(a) Characteristics of datasets

(b) D-CQP-Miner (1) (c) D-CQP-Miner (2)

(d) D-CQP-Miner (3) (e) R-CQP-Miner

Fig. 4. Datasets and performance of CQP-Miner

5.1 CQP-Miner

Algorithm Efficiency: We evaluate the efficiency by varying the average size
of qpgs and the number of qpgs (the size of the time window). Figures 4(b) and
(c) show the running time of the D-CQP-Miner when the size of the dataset
increases. In the first case, the number of qpgs is increased while the average size
of each qpg is fixed. In the second case, the average size of each qpg increases
while the number of qpgs is fixed. The dblp dataset is used and the parameters
are fixed as follows: α = 0.02, β = 0.05, γ = 0.02, and ξ = 0.25. Also, we set
ξ′ = ξ/10. It can be observed that when the size of the dataset increases, the
running time increases as well. The reason is intuitive as the size of the hqpg-
tree becomes larger, it requires more time for the tree construction and handling
large number of candidate cqps. The running time of the R-CQP-Miner shows
a similar trend. Due to space constraints, the reader may refer to [15] for details.
Effects of Thresholds: As there are four thresholds: α, β, γ, and ζ for the
D-CQP-Miner, experiments are conducted by varying one of the them and
fixing the others. For instance, in Figure 4(d), “α = 0.01 ∗ k, β=0.01, γ=0.02,
ξ=0.1” means that we fix the values of β, γ and ξ, and vary α from 0.01 to 0.05
by varying k from 1 to 5. In this experiment, the dblp dataset with 300,000
queries is used. The results in Figure 4(d) show that the running time of D-

CQP-Miner increases with the threshold values. Observed that the changes to
ξ and α have more significant effect on the running time than the changes to β
and γ. This is because ξ affect the total number of fcqps and icqps and the
values of α affect both support deltas and support conservation factors.
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Similarly, the thresholds, ζ and ξ, are varied to evaluate their effects on the
running time of the R-CQP-Miner. The results are shown in Figure 4(e). The
SSPlay dataset with 900,000 queries is used. It can be observed that the running
time increases with the thresholds. The reason is that when the values for any
of the two parameters increase, the number of cqps increases.
Comparison of Mining Results: As the two algorithms use different evolution
metrics, to compare the mining results, we define the notion of overlap metric.
Let FD and ID be the sets of fcqps and icqps, respectively, in the D-CQP-

Miner mining results. Let FR and IR be the sets of fcqps and icqps in the
R-CQP-Miner mining results. The overlap between the two sets of mining
results is defined as: Overlap = 1

2 × ( |FD∩FR|
|FD∪FR| + |ID∩IR|

|ID∪IR| ).
Basically, the overlap value is defined as the number of shared cqps divided by

the total number of unique cqps in both mining results. Based on this definition,
it is evident that the larger the overlap value, the more similar the mining
results are. In this definition all the cqps in the mining results are taken into
consideration. However, in caching, only the top-k frequent/infrequent cqps in
the results are important. Hence, we define the notion of overlap@k metric.
Let CD(k) and CR(k) be the sets of top-k conserved query paths in the D-

CQP-Miner and R-CQP-Miner results, respectively, where CD(k) ⊆ FD ∪ID

and CR(k) ⊆ FR ∪ IR. The overlap@k (denoted as o@k) is defined as: o@k =
|CD(k)∩CR(k)|
|CD(k)∪CR(k)| .
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The experimental results with the SSPlay dataset is shown in Figure 5(a). We
vary the thresholds of the evolution metrics and compute the overall and over-
all@k. Interestingly, the overlap value can be very close to 1 when the threshold
values are appropriately set. This indicates that both algorithms share a large
number of cqps even though they are based on different evolution metrics. More-
over, it can be observed that the top-10 cqps are exactly the same. Even for
the top-60 cqps, the two categories of evolution metrics can produce identical
sets of cqps under appropriate threshold values. This is indeed encouraging as it
indicates that both the regression-based and delta-based evolution metrics can
effectively identify the top-k cqps that are important for our caching strategy.
Comparison of Running Times: We now compare the running times of
the two algorithms when they produce identical top-k cqps under appropriate
thresholds. We choose the three sets of threshold values shown in Figure 5(a)
that can produce identical top-60 cqps (shaded region in the table). Figure 5(b)
shows the comparison of the running time. The dblp dataset is used and ξ is set
to 0.1. It can be observed that D-CQP-Miner is faster than R-CQP-Miner

when they produce the same top-60 cqps.

5.2 Evolution-Conscious Caching

We have implemented the caching strategy by modifying the replacement policies
of lru with the knowledge of fcqps and icqps as stated in the previous section.
From the original collections of qpts, some qpts are chosen as the basic query
paths and are extended to form the future queries. To select the basic query
paths, queries that are issued more recently have a higher possibility of being
chosen. That is, given a sequence of n qpgs, n−i

2i+1−n qpts are selected from
the ith group. Then, the set of selected queries are extended according to the
corresponding dtd. The future queries are generated by extending the previous
query paths with the randomly selected query paths. Note that for each of the
following experiments, 10 sets of queries are generated for evaluation and the
figures show the average performance. The qpts used for generating examples
of the 10 sets of queries are given in [15].

We use the same storage scheme as in [12]. That is, we use the index scheme
of [7] to populate the SQL Server 2000 database and create the corresponding
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indexes. The system accepts tree-patterns as its queries, and utilizes structural
join method [1] to produce the result. No optimization techniques are used.

Basically, six caching strategies are implemented: the D-CQP-Miner and
R-CQP-Miner-based strategies (denoted as dcqp and rcqp, respectively), D-

CQP-Miner and R-CQP-Miner-based strategies without a ranking function
(denoted as dcqp-r and rcqp-r, respectively), the original lru-based caching
strategy (denoted as lru), and the state-of-the-art frequent query pattern-based
caching strategy (2PX-Miner [13] based caching strategy denoted as qp). Note
that the fcqps and icqps used in the following experiments are discovered using
the D-CQP-Miner and R-CQP-Miner, by setting α = 0.02, β=0.02, γ=0.01,
ζ=0.01, and ξ = 0.2.
Average Response Time: The average response time is the average time taken
to answer a query. It is defined as the ratio of total response time for answering
a set of queries to the total number of queries in this set. Note that the query
response time includes the time for ranking the cqps (The cqp ranking phase).
Figure 6(a) shows the average response time of the six approaches while varying
the number of queries from 10,000 to 50,000 with the cache size fixed at 40mb.
We make the following observations. First, as the number of queries increases,
the average response time decreases. This is because when the number of queries
increases, more historical behaviors can be incorporated and the frequent query
patterns and conserved query paths can be more accurate. Second, dcqp, dcqp-

r, rcqp, and rcqp-r perform better than qp and lru. Particularly, when the
number of queries increases, the gaps between our approaches and the existing
approaches increases as well. For instance, our caching strategies can be up to
5 times faster than the qp approach and 10 times faster than the lru approach
when the number of queries is up to 50,000. Third, the rank-based evolution-
conscious caching strategies outperform the rank-unconscious caching strategies
highlighting the benefits of using the ranking functions.
Cost ratio: The cost ratio represents the query response time using different
types of caching strategies against the response time without any caching strat-
egy for all query examples. Figure 6(b) shows the performance of the six caching
strategies in terms of the cost ratio measure. The number of queries is fixed at
2000, while the cache size varies from 20mb to 100mb (for the SSPlay dataset).
It can be observed that dcqp, dcqp-r, rcqp, and rcqp-r perform better than
qp and lru. Particularly, observe that the ratio difference between state-of-the-
art qp approach and lru is between 0.09 ∼ 0.12. If we consider this as the
benchmark then observed further difference of 0.1 ∼ 0.13 between our approach
and qp is significant. In other words, the idea of including evolutionary feature
of queries for caching is an effective strategy.
Number of QPGs: Figures 7(a) and (b) show how the average response time
and cost ratio change when the number of qpgs increases. The SSPlay dataset
is used and the average size of each qpg is 300. We vary the number of qpgs
from 3,000 to 15,000. Observe that the evolution-conscious caching strategies
perform better when there are more qpgs. This is because when the number of
qpgs is large, our cqps are more accurate.
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Maintenance cost of ICQPs and FCQPs: As mention in Section 4.2, the
sets of fcqps and icqps need to be updated after certain number of queries are
issued. In this experiment, we empirically determine the threshold value ε such
that as long as q < ε we do not need to update the icqps and fcqps. We first
vary q to study its effect on the quality of our caching strategy. Note that from
the running cost point of view, the larger the value of q, the lesser is the overhead.
Figure 8(a) shows the performance of our proposed approaches compared to the
lru and qp approaches (in terms of cost ratio). We set |Q| = 45000000 (9000
qpgs) and the cache size is fixed to 50mb. It can be observed that the cost
ratio increases with the increase in q for all approaches except the lru-based
approach. For the qp approach, rather than repeatedly updating the frequent
query patterns whenever new queries are issued, the same strategy of periodically
updating the mining results is used. It can be observed that the performance of
our proposed rcqp-r and dcqp-r are better than the qp approach for any q
value. Furthermore, rcqp-r and dcqp-r are better than the lru approach in
most cases when q < 0.5.

In Figure 8(b) we vary |Q| and the cache size to study the effect of q on the
cost ratio. It can be observed that our approaches produce good performance in
most cases when q < 0.5 (ε = 0.5). That is, our approach can improve the query
performance without updating the fcqps and icqps as long as |ΔQ| < |Q|

2 .

6 Conclusions and Future Work

In this paper, we proposed a novel type of xml query pattern named conserved
query paths (cqps) for efficient caching. To the best of our knowledge, this is
the first approach that integrates evolutionary features of xml queries along
with frequency of occurrences for building an efficient caching strategy. Con-
served query paths are rooted query paths (rqps) in qpts that never change
or do not change significantly most of the time in terms of their support val-
ues during a specific time period. Based on two evolution metrics, we presented
two algorithms (D-CQP-Miner and R-CQP-Miner) that extract frequent and
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infrequent cqps from the historical collection of qpts. These cqps are ranked
according to our proposed ranking function and used to build the evolution-
conscious caching strategy. Experimental results showed that the proposed algo-
rithms can be effectively used to build more efficient caching strategies compared
to state-of-the-art caching strategies. In future, we wish to explore how calendar
pattern selection can be automated. Also, we would like to extend our framework
to provide a more sophisticated probabilistic ranking function. Finally, we plan
to investigate strategies to automate the maintenance of icqps and fcqps.

Acknowledgement. The author wishes to acknowledge and thank Dr Qiankun
Zhao for implementing the ideas discussed in this paper.
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Abstract. This paper proposes a new effective filtering mechanism for prun-
ing the uninteresting nodes implied in the SLCA-based (Smallest LCA – Lowest
Common Ancestor) fragments for XML keyword search. Its fundamental concept
is the valid contributor. Given two nodes v and u, and u is v’s parent, the child
v is a valid contributor to its parent u, if (1) v’s label is unique among all u’s
children; or (2) for the siblings with same label as v, v’s content is not covered by
any of them. The new filtering mechanism can be described as following: every
node in each retrieved fragment should be valid contributor to its parent.

1 Introduction

With the widespread use of XML, adapting keyword search to XML data has become
attractive, generalized as XML keyword search (XKS). The latest work [1] proposes
not only the axiomatic properties that an XKS technique should satisfy, but also a
concrete algorithm returning the fragments rooted at the SLCA nodes. To ensure the
meaningfulness of the fragments, [1] proposes a contributor-based filtering mechanism,
which requires that every node n in a fragment does not have any sibling n2 satisfy-
ing dMatch(n) ⊂ dMatch(n2), where the function dMatch(n) represents all the
keywords contained in the subtree rooted at the node n.

However, the above filtering mechanism has the false positive problem (discarding
interesting nodes), and the redundancy problem (keeping uninteresting nodes). Fig.1
demonstrates these two problems. Fig. 1(a) corresponds to a SLCA-based fragment for
the keyword query Q1 = “Li Zhou top-k XML query”, which is interested to check
if there is some paper on “top-k XML query” written by authors named “Li” and
“Zhou”. According to the contributor concept, the node “0.2.1.1 (title)” will be dis-
carded for dMatch(0.2.1.1) = {top-k, XML} ⊂ dMatch(0.2.1.2) = {top-k, XML,
query}. However, it should not be, as it is the title of the paper. As for Fig. 1(b), it is
a SLCA-based fragment for the keyword query Q2 = “DASFAA 2008 author name”,
whose intuition is to collect all the distinct authors who have published papers in DAS-
FAA 2008. We can see that the information in it is duplicate, but the contributor-based
filtering is unable to prune it, for the relationship of the dMatchs of the two nodes
“0.2.0.0” and “0.2.1.0” is dMatch(0.2.0.0) = dMatch(0.2.1.0) = {author, name}.

To overcome those above two problems, this paper first proposes a new filtering
mechanism in Section 2, whose kernel is the concept of valid contributor. Then, it

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 543–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. (a): False positive example for contributor-based filtering with Q1; (b): Redundancy exam-
ple for contributor-based filtering with Q2; (c): Node description used in Section 3. The integer
sequence beside each node in (a) and (b) is the Dewey code of that node.

introduces a concrete algorithm – ValidMatch in Section 3. Section 4 illustrates the
experimental result, which confirms the efficiency and effectiveness of our new filter-
ing mechanism.

2 Valid Contributor

In this section, we first propose the tree content set and tree keyword set in Definition
1. Based on it, we formalize the concept of valid contributor in Definition 2. Then it is
easy to construct the filtering mechanism as following: all the nodes in a SLCA-based
fragment should be valid contributors for their parents.

Definition 1 (Tree Content Set and Tree Keyword Set of a node). Given an XML
tree T , the content Cv of a node v in T is the word set implied in v’s label, text and
attributes. Given a keyword query Q = {w1, . . ., wk}, the node v is a keyword node if
Cv∩Q �= ∅ where ∅ is the empty set. The tree content set TCv of a node v is the content
union of all the keyword nodes rooted at the node v, that is TCv =

⋃
v′∈Tv

Cv′ , where Tv

represents the subtree rooted at the node v, and v′ ∈ Tv stands for a keyword node in
Tv. The tree keyword set of the node v is defined simply as TCv ∩Q, denoted as TKv.

Definition 2 (Valid Contributor). Given an XML tree T , and the keyword query Q =
{w1, . . ., wk}, S is a SLCA-based fragment in T . u, v are two nodes in S, and u is
the parent of v. The child v is a valid contributor of u if either of the following two
conditions holds:

1. v is the unique child of u with label λ(v);
2. v has several siblings v1, . . . , vm (m ≥ 1) with same label as λ(v), but the follow-

ing conditions hold:
(a) �vi, TKv ⊂ TKvi;
(b) ∀vi ∧ TKv = TKvi , TCv �= TCvi .

Now let’s see how our valid contributor-based mechanism overcomes the two problems
in the contributor-based mechanism. For Fig. 1(a), even though TK0.2.1.1 ⊂ TK0.2.1.2,
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we still should keep the node “0.2.1.1” in the final result, because their labels are dif-
ferent from each other (according to the rule 1 in Definition 2). As for Fig. 1(b), we
should delete one of the two nodes “0.2.0” and “0.2.1”, because their tree content sets
are same (according to the rule 2.(b) in Definition 2).

3 ValidMatch

Algorithm 1 describes the implementation of the above ideas. Since its first three stages
are similar with those in MaxMatch in [1], we pay our attention here mainly to the
fourth stage of ValidMatch. To support the basic computations, such as TKv = TKvi ,
TKv ⊂ TKvi and TCv = TCvi , we design the node data structure as shown in
Fig. 1(c).

Algorithm 1. VALIDMATCH ALGORITHM

VALIDMATCH (T , Q)
Input: The XML data T and the keyword query Q = {w1 , w2, . . ., wk}
Output: All the fragments containing only reasonable nodes
1. Di ← getKeywordNodes(T, Q); /* Collect the keyword nodes of the keyword wi (1 ≤ i ≤ k)
2. SLCAs← getSLCA(D1, . . . , Dk); /* Return all the interesting SLCA nodes, same with that in [1]
3. Matches← getMatch(SLCAs, D1, . . . , Dk); /* Collect all the related keyword nodes for every corresponding SLCA
4. For (each match S in Matches) /* For each SLCA-based fragment, prune the uninteresting
5. pruneMatch(S)

PRUNEMATCH (S)
/* CONSTRUCTING STEP */
1. i← |S.knodes| − 1;
2. start← S.a;
3. While (i ≥ 0) do
4. ni ← S.knodes’s ith keyword node
5. ni.ancestors stores its ancestors from ni to start /* sorted according to their lengths;
6. For (each ancestor x of ni on the path from ni to start)
7. Construct a node X following the node data structure described in Fig. 1(c), and fill X based on the information in x;
8. If (the tree S.r contains a node with same Dewey code as X)
9. Update the corresponding node using X;
10. Else
11. Add X into S.r;

/* The following two lines are added to guarantee that the node information of ni could be transferred to all its ancestors.
12. If (start �= S.a)
13. Update the nodes from start to S.a using the information of the node corresponding to start;
14. i ← i− 1;
15. If (i < 0) break;
16. Else start ← LCA(ni, ni+1);
/* PRUNING STEP */
17. Breadth-first traverse the tree, and For (each node n)
18. If (n.chlList is not null)
19. If (n.chlList[j].counter! = 1)
20. usedKNums ← {}, usedCIDs ← {};
21. For (each child ch in n.chlList[j].chList)
22. If (knum(ch.kList) ∈ usedKNums)
23. Keep ch when ch.cID /∈ usedCIDs;
24. Else If (no element, which is larger than knum(ch.kList) in n.chlList[j].chkList, covers knum(ch.kList))
25. Keep ch in the result, Add knum(ch.kList) into usedKNums and add ch.cID into usedCIDs;
26. Else Keep that child node in n.chlList[j] whose counter is 1.

A node comprises two parts: (1) the information of the node itself in “Self Info” frame;
and (2) the information of its children in “Children Info” frame. The former stores the
basic information of the node itself, including its Dewey code (dewey), label (label),
keyword list (kList, which corresponds to the tree keyword set of the node) and the
content ID (cID, which represents the tree content set, and only records the word pair
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(min, max) of the tree content set of the node. The min and max are the smallest
and the largest word in the tree content set according to the lexical order.). The latter
stores the information of a node’s children, maintained in a list chlList according to their
distinct labels. For each distinct label, there is an item, which stores counter (the number
of the children with that distinct label), chkList (records the sorted distinct keyword list
numbers), chcIDList (stores the cIDs of the children), and chList (records the references
to those children).

Since the kList of a node directly corresponds to its tree keyword set, it is easy to
compute TKv = TKvi and TKv ⊂ TKvi based on the kLists of v and vi. Here is
an illustration for the computation of TKv ⊂ TKvi . In Fig. 1(a), TK0.2.1.1 = {top-
k, XML} for Q1, and its kList is 0 0 1 1 0 ; while, for the node “0.2.1.2”, its

TK0.2.1.2 = {top-k, XML, query}, and its kList is 0 0 1 1 1 . Clearly, the latter
kList covers the former kList1. As for the computation of TCv = TCvi , we use
an approximate method based on (min, max). If vmin = vimin ∧ vmax = vimax, we
conceive that their tree content sets are same.

Now let us briefly introduce the pruneMatch stage, especially about its pruning step,
for it is easy to understand the constructing step following the node description2. In
pruning step, all the nodes of a SLCA-based fragment are checked, and the final result
only keeps the valid contributors. Line 26 corresponds to the rule 1 in Definition 2,
for the counter of the n’s jth label equals 1 (n.chlList[j].counter = 1) means that n
has only one child with that label. Lines 22 and 23 correspond to the rule 2.(b), while
lines 24 and 25 correspond to the rule 2.(a) with the help of usedKNums (used key
numbers) and usedCIDs (used cIDs).

4 Experiments

We implement our ValidMatch and the MaxMatch in Java, and compare them using
four XML datasets: “dblp20040213” (197.6MB) and three XMark datasets – standard
(111.1MB), data1 (334.9MB) and data2 (669.6MB). They are parsed with Xerces 2.9.0,
and the shredded tuples are stored in PostgreSQL 8.2.4 with three simple tables – “label
(label, number)”, “element (node’s label, Dewey, level, kList, cID)” and “value (node’s
label, Dewey, attribute, keyword)”. During the parsing, the stop-words [2] are filtered
with Lucence, and some words are randomly selected to compose keyword queries.

There are two parameters to evaluate the two algorithms: efficiency and effective-
ness. The efficiency is illustrated by recording the elapsed time of running a keyword
query on a dataset. As for the effectiveness, we take MaxMatch as the baseline, and
record two ratios – common fragment ratio (CFR) and average pruning ratio (APR).

The average pruning ratio is defined as APR =

∑
a∈A

|xa−va|
|xa|

|V−V ∩X| . The sets A, V and X of a

1 We can also construct the keyword number (knum) for each kList, for instance
knum( 0 0 1 1 0 ) = 0 ∗ 24+0 ∗ 23+1 ∗ 22+1 ∗ 21+0 ∗ 20 = 6. With the help of the AND
computation between two knums, we can also determine the equality and subset relationships
between two nodes (refer to [1] for more detail).

2 From the knowledge of Graph theory, the LCA operation in this step is to locate the lowest
common ancestor of the given two nodes.
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Fig. 2. Performance of ValidMatch and MaxMatch on the datasets with different keyword queries
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Fig. 3. Ratio of the retrieved results by ValidMatch and MaxMatch

query Q stand respectively for the SLCA node set, the two fragment sets computed by
our ValidMatch and MaxMatch. The va and xa represent the corresponding meaningful
fragments in V and X with the same SLCA node a, and we conceive that va and xa are
same if their node sets are same. The va − xa stands for the nodes further discarded by
our ValidMatch, and V ∩X stands for the same fragments in V and X . And the CFR

is defined as CFR = |V ∩X|
|A| . It is easy to infer that the smaller the CFR for a query is,

the more fragments our ValidMatch needs to prune in the result retrieved by MaxMatch
for that query. As for the APR, the larger the APR for a query is, the more uninteresting
nodes our ValidMatch discards from the fragments retrieved by MaxMatch.
• Performance: Figure 2 shows the performance of ValidMatch and MaxMatch.

From those figures we can see that ValidMatch has competent performance as Max-
Match. Besides, we also record the number of the fragments for each query in those
figures, shown as “SLCA fragments” lines for better understanding the CFR and APR
lines in Fig. 3. If there are 10 SLCA fragments for Q, and the CFR is 20%, we can
directly know that there are 10∗20% = 2 same fragments returned by both ValidMatch
and MaxMatch. We also can get |V −V ∩X | for the Q used in APR is 10−10∗20% = 8.
• Effectiveness: Figure 3 illustrates the effectiveness of our valid-contributor-based

ValidMatch algorithm. For DBLP data, the distribution of the CFR values seems
obeying some practical law, either 1 or 0. And it heavily depends on whether the SLCA
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node is the root (CFR=0) or not (CFR=1). This is rational, because, for the real XML
data, the SLCA-based fragments not rooted at the root node are self-complete. As for
the APR, all its values where CFR=0 are larger than 40%. As for Fig. 3(b)∼3(d), most of
their APR values are larger than 0, and their CFR values are seldom 1. This is caused,
we infer, by the synthetic property of XMark series, for the keywords are distributed
randomly in the data.

5 Conclusion

This paper proposes valid contributor-based filtering mechanism to prune the uninter-
esting nodes in the SLCA-based fragments for XML keyword search. Compared with
the contributor-based one in [1], ours is better, which overcomes both the false positive
problem and the redundancy problem.

References

1. Liu, Z., Chen, Y.: Reasoning and identifying relevant matches for xml keyword search. In:
34th International Conference on Very Large Data Bases (VLDB) (2008)

2. www.syger.com/jsc/docs/stopwords/english.htm



Efficient Data Structure for XML Keyword
Search

Ryan H. Choi1,2 and Raymond K. Wong1,2

1 The University of New South Wales, Sydney, NSW, Australia
2 National ICT Australia, Sydney, NSW, Australia

{ryanc,wong}@cse.unsw.edu.au

Abstract. In this paper, we present a compression technique for in-
verted lists that are specifically designed for XML keyword search al-
gorithms. In addition, we support all navigational operators required
by such algorithms and these operators run faster than on traditional
inverted lists. Our technique requires small memory footprint and con-
sumption, thus it is also ideal for many resource constraint applications.
Experiments show that our technique is efficient and scales well.

1 Introduction

Keyword search on XML has lately received much attention from the commu-
nity for a simple and schema free way of querying XML data. Many previous
works [1,2,3,4] focus on what nodes should be returned as answer nodes (e.g.,
SLCA), and how they can be returned efficiently. In addition to the problems
discussed by previous works, we have identified a few more problems. First, all
previous works heavily rely on inverted lists of an XML document, but the size
of these inverted lists are several times larger than the raw XML document. One
of the reasons is the large physical size of Dewey labels. Since all keyword search
algorithms rely on fast ancestor/descendant and preceding/following node com-
parators, the use of Dewey cannot be avoided. Second, many algorithms call a
number of navigational operators on inverted lists very frequently, and these op-
erators become the bottleneck, which decrease the overall performance of these
algorithms.

In this paper, we present a compression technique for inverted lists that are
specifically designed for XML keyword search algorithms. Dewey labels are diffi-
cult to compress, as the length of a label for a node is variable. There are several
numeric compression algorithms (see Zhang et al. [5]) that can compress a se-
quence of numbers, but it is not clear how they can be used, as Dewey labels
can be seen as sequences of variable sized numbers. To solve this problem, we
adopted ISX Storage Scheme [6]. Using this scheme, we use an integer value
to represent the location of a node, and we use this location as a label for a
node in an XML document. We then organize these labels in sequences of fixed
sized numbers, and compress them by using smaller number of bits. To provide
fast node navigational operators, we generate compact summaries of compressed
numbers, and build additional search indexes on top of these summaries.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 549–554, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



550 R.H. Choi and R.K. Wong

The main contributions of this paper are summarized as follows.

– To the best of our knowledge, this is the first work that addresses the problem
of compressing inverted lists specifically designed for XML keyword search.

– We present an efficient technique for compressing inverted lists while provid-
ing fast navigational operators required by XML keyword search algorithms.

– We evaluate our technique on various sizes of dataset, and run existing key-
word search algorithms to evaluate performance improvements.

Organization: Section 2 presents related work, operators in inverted lists and
ISX Storage Scheme. Section 3 describes our compression technique. Section 4
presents experiment results. Finally, Section 5 concludes the paper.

2 Background

XML keyword search algorithms: XRank [7] uses a stack to find a set of
answer nodes in an XML tree such that, either the answer node or its descendant
nodes contain at least one occurrence of all keywords. XKSearch [1] and Mul-
tiway SLCA [2] present efficient algorithms based on Smallest Lowest Common
Ancestor (SLCA) semantics. Some works [3,4] try to improve query quality.
While the above works provide solutions for returning answer nodes, none of
them addresses issues about the size and access time of inverted lists.
XML compressions and differential encoding: XPRESS [8] presents how
to process queries on compressed data. ISX Storage Scheme [6] compactly rep-
resents an XML document structure and utilizes indexes to support fast node
navigational operators. However, it is not clear how they can be used to com-
press inverted lists. Some works (e.g., Zhang et al. [5]) present efficient ways
of storing a sequence of numbers by storing the difference between a number
and its preceding number. However, they cannot be directly used to compress
inverted lists, as a sequential scan is required to access the contents of inverted
lists. Moreover, it is not clear how to store variable length values such as Dewey.
Model: We model XML data T as a rooted, labeled and ordered tree. Every
node v in T has a tag name, and every leaf node has a text node. A text node is
represented by a child of v. An internal node contains one or more text nodes.
Supporting Keyword Search Algorithms: In order to support existing
XML keyword search algorithms, we add supports for two additional functions:
lm(L, λ(v)), and rm(L, λ(v))). Given an inverted list L = [λ(v1), ..., λ(vj),
λ(vj+1), ..., λ(vn)], and λ(vj) ≤ λ(v) ≤ λ(vj+1), lm(L, λ(v)) returns λ(vj). Sim-
ilarly, rm(L, λ(v)) returns λ(vj+1). Both functions return null if such λ(v)s do
not exist. Many previous works [1,2,3,4] use these two functions extensively.
ISX Storage Scheme: We use the topology layer from ISX Storage Scheme [6]
to represent the data structure of an XML tree T . It uses a balanced parenthesis
encoding scheme [9], in which a single bit 0 or 1 is used to represent an opening
and closing tag, respectively. We define a label λ(v) for a node v in an XML tree
T to be the number of open parenthesises between the root node and v in T . We
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extend ISX Storage Scheme such that, given a label λ(v), the ith bit representing
λ(v) can be found efficiently. This additional index contains the total number of
open parenthesises between the root and an ith block in Tier 1.

3 Approach

3.1 Compressing Inverted Lists

Our system uses a hash table to store keywords and their hash values. Labels in
an inverted list L for a keyword k are treated as a sorted sequence of numbers.
This sequence of numbers is compressed by storing the sequence of differences
between a number and its preceding number. Next, we make groups of numbers
in L for k called segments, and use b bits to encode the numbers in each segment.

Compressed inverted lists are stored across a number of Base Data blocks.
Each Base Data block contains a header and a group of segments. A header
consists of four parts. The first part contains an integer, which counts the number
of segments stored in a block. We use �lg |B|

8 	 bits, where |B| is the size of a block
in bits. The second, third and fourth parts are used to represent [(Ss, |S|, b)],
where Ss and |S| is the start position and the size of a segment in a block,
respectively. Each element in the tuple uses �lg |B|

8 	, �lg s	 and �lg z	 bits, where
s is the maximum number of labels that a segment can contain; and z is the
largest label in a segment.

An inverted list L for a keyword k is compressed as follows. First, labels in L
are preprocessed such that the difference between a label and its preceding label
is calculated for ∀λ(v) ∈ L. Second, these labels are split into segments of size
s, and the biggest label z from each segment is selected. We then use b = �lg z	
bits to encode the labels that are in the same segment as z. The above process is
repeated for all segments. While performing the process, we record the absolute
values of the first and last labels in each segment, as they are used for indexes.

3.2 Main and Aux Indexes

In order to avoid linear scans of inverted lists, Main and Aux Indexes are built.
Main Index (MI) summarizes segments in Base Data. It is mandatory to

access Base Data, and is partitioned into a number of disk blocks. Each MI
block contains a header and a group of MI entries. A header contains one integer,
which counts the number of entries in a block. A MI entry is created for each
segment in Base Data, and is in form of (k, d, BId, SId), where k is the keyword
that a segment represents; d is the absolute value of the last label in the previous
segment, or the first label if the segment is the first one; BId is a block ID of
Base Data where this segment can be found; and SId is the position where this
segment is located within the block BId. We use 32 bits for each k, d and BId,
and �lg |B|

8 	 bits for SId. All entries in MI are sorted in ascending order. To do
binary search on MI efficiently, we build Aux Indexes. With Aux Indexes, we
only need 1 disk read to find a MI block, as Aux Indexes are stored in memory.
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Aux Index (AI) is an optional index, and one or more AIs are built as required.
Similar to MI, AI is partitioned into a number of disk blocks. Each AI block
contains a header and a group of AI entries. Similarly, a header contains a
counter. An AI entry is created for each MI block, and is in form of (k, d, BId),
where k and d are the first two values appeared in the first MI entry in a MI
block; and BId is the block ID of AI, where (k, d) pair is extracted. We use 32
bits for each value in the tuple. Lastly, all entries are sorted in ascending order.

3.3 Searching

With MI and AIs, we can search for a label λ(v) for a keyword k in an inverted
index I = {L1, ..., Ln} efficiently. We perform contains(I, k, λ(v)) search as
follows. First, the topmost Aux Index (AIn) is read, and the header is decoded
to get the number of AI entries stored in the block. Second, we do binary search
within a block to get ith entry in the block. Once we find two entries such that,
(k, d, BId)i ≤ (k, λ(v)) < (k, d, BId)i+1, we read (k, d, BId)i. Third, we read the
block with BId of the next Aux Index (AIn−1), and do binary search similarly. We
iteratively keep searching until we reach the first Aux Index (AI1). We now read
a block of MI, and do binary search within the MI block similarly. Fourth, when
we find the matching MI entry, we read BId and SId from the entry, and read the
block with BId of Base Data. We then decode the block to retrieve (Ss, |S|, b).
After that, we jump to the segment and do linear scan. While doing linear scan,
labels in the segment are reconstructed by iteratively adding consecutive labels.
The first absolute value in the segment can be calculated by adding d, which is
found in the MI entry. contains(I, k, λ(v)) can be easily modified to implement
get(I, k). lm(L, λ(v)) and rm(L, λ(v)) are implemented similarly, but we return
two labels, λ(vi) and λ(vi+1) , whose values are λ(vi) ≤ λ(v) ≤ λ(vi+1).

4 Experiments

The experiment settings were as follows. OS=Mac OS X, CPU=Core 2 Duo
2.4GHz, Ram=2GB, Harddisk=5400RPM, and implementation=Java 1.5.
Datasets: We used XMark to generate XML documents of size 112, 223, 447,
670, 896 and 1100MB, respectively. Then, two sets of inverted lists were gener-
ated: one with Dewey and one with our labeling scheme.
Comparison: We implemented ILE [1] and Stack [7] algorithms. Inverted lists
were implemented in Oracle Berkeley DB as described by Xu et al. [1].
Queries: The following queries, which were adopted from Liu & Chen [3],
were used. Q1: closed auction,price; Q2: closed auction,price,date,itemref, quan-
tity,type,seller,buyer ; Q3: open auction,person257 ; and Q8: seller,04/02/1999.

4.1 Results

Figure 1(a) and 1(b) show the runtime performance when various numbers of
keywords were used. In this experiment, we used one keyword at a time from
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Fig. 1. Query Performance

query Q2, and used 112MB document. In addition, cold and hot buffers were also
tested. The figures show that, as the number of keywords increases, the runtime
for both algorithms increases. This is because the number of join operations
and labels to process are increased for ILE and Stack algorithm, respectively.
The rate of increase of both algorithms when performed on our compressed
inverted lists is lower than when the same algorithms were performed on Berkeley
DB. This is because we can retrieve the right set of labels for a keyword faster
than Berkeley DB, and comparing two labels takes constant time unlike Dewey
labels.

Figure 1(c)–1(f) show the query performance when the queries Q1–Q3 and
Q8 were executed on various sizes of dataset. Due to limited space, we omit
figures for Q4–Q6 and Q7. These are similar to Figure 1(e). The runtime of both
algorithms increase as the size of dataset increases. This is because the number
of answer nodes are increased, and thus the number of join operations and labels
to process are also increased. Both algorithms ran faster on our inverted lists,
and the reasons are similar to the experiments in Figure 1(a) and 1(b).

5 Conclusion

We have presented a compression technique for inverted lists that are specifi-
cally designed for XML keyword search algorithms. Our data structure supports
all navigational operators that many keyword search algorithms require. Our
experiments show that existing keyword search algorithms run faster on our
compressed inverted lists than traditional Dewey based inverted lists.
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Abstract. Business process management is tightly coupled with service-
oriented architecture, as business processes orchestrate services for business 
collaboration at logical level. Given the complexity of business processes and 
the variety of users, it is a sought-after feature to show a business process with 
different views, so as to cater for the diverse interests, authority levels, etc., of 
users. This paper presents a framework named FlexView to support process ab-
straction and concretisation. A novel model is proposed to characterise the 
structural components of a business process and describe the relations between 
these components. Two algorithms are developed to formally illustrate the re-
alisation of process abstraction and concretisation in compliance with the de-
fined consistency rules. A prototype is also implemented with WS-BPEL to 
prove the applicability of the approach. 

1   Introduction 

In service-oriented architecture (SOA), business processes are widely applied to or-
ganise service composition and service orchestration [1-4]. As one of the leading 
SOA advocators, the Web service community formally adopted business process 
technology in 2001 by establishing the Business Process Execution Language for 
Web Services (WS-BPEL) [5]. WS-BPEL supports the specification of both composi-
tion schemas and coordination protocols to fulfil complicated B2B interactions.  

Reluctantly, most of current business process modelling languages, including WS-
BPEL, stick to a fixed description of business processes. Although WS-BPEL can be 
used to define both abstract processes and executable processes, WS-BPEL is in lack 
of mechanisms to automatically represent a business process with different views on 
demand. The concept of “process view” has emerged recently to support for flexible 
views on business process representation, and thereby separate the process representa-
tion from executable business process models. This feature has been longed for in the 
practical business process application environment, for the purpose of authority con-
trol, privacy protection, process analysis, etc. [6, 7] For instance, users may prefer to 
see part of the process details at a time, due to the complexity of the business process. 
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Users with different interests or different authority levels, may be interested to or be 
allowed to see different views of the same business process. For another instance, in a 
graphical displaying tool for business processes, the flexibility on showing a reduced 
version of business process at a time is highly expected, due to the limit of screen 
size. Similar functions can be found in other application areas. A good example is 
google maps, which allows users to zoom in or zoom out a map, while the displayed 
details on map automatically adapt to the scale level, for instance, streets and roads 
are shown on a large scale map, yet a small scale map only shows suburbs and towns.  

To realise such “smart zooming” functions towards business process representa-
tion, this paper proposes a framework named FlexView to support flexible process 
abstraction and concretisation. With FlexView, users are allowed to define and switch 
among the different views for a business process. A comprehensive model defines the 
structural constructs of a business process and the relations between them. Two algo-
rithms formally illustrate how to enforce the process abstraction and concretisation 
operations in compliance with structural consistency.  

The remainder of this paper is organised as follows: Section 2 discusses the require-
ments for supporting flexible views with a motivating example; Section 3 introduces a 
process component model with a set of rules on structural consistency, and the algo-
rithms for realising abstraction and concretisation; Section 4 addresses the incorporation 
of FlexView into WS-BPEL, and also introduces the implementation of a prototype; 
Section 5 reviews the related work and discusses the advantages of our framework; con-
cluding remarks are given in Section 6 with an indication for the future work. 

2   Motivating Example 

Figure 1 (a) shows all details of the business process for a simplified sales manage-
ment service, where the process starts from receiving purchase orders, and then han-
dles the production, cost analysis and shipping planning concurrently, and finally 
terminates by sending the invoice. Each task may interact with proper Web service(s) 
to fulfil the assigned mission. The dashed arrows represent the synchronisation de-
pendencies between tasks, for example, the arrow between “production” and “dis-
patch products” denotes that task “dispatch products” can only start after the 
completion of “production”.  

This business process mainly involves four departments, viz., sales department, 
workshop, accounting department, and distribution centre. For a user from the distri-
bution centre, the user may only care about the shipping details, and thus the user may 
choose to “zoom out” the details for production and cost handling. The user can ob-
tain the view for this business process as shown in Figure 1 (b). In this view, the de-
tails for production and cost handling are abstracted into two new tasks, i.e., “handle 
production at workshop” and “handle cost calculation at accounting department”. 
These two tasks hide the details yet preserve the existence of the production and cost 
handling procedures. In this transformation, the related links are hidden automatically, 
as well as the synchronisation link from “schedule production” to “cost analysis”. The 
synchronisation link from “production” to “dispatch products” is converted to connect 
“handle production at workshop” to “dispatch products”, as these two tasks inherit the 
synchronisation dependency of the former one.  
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Fig. 1. Motivating example business process 

Due to the screen size of the user’s computer, the user may want to check the de-
tails of a single shipping option at a time. In this case, the process should change to 
the view shown in Figure 1 (c). In this view, the shipping procedure is represented as 
an Or-split/join structure, which contains a branch with task “prepare shipping”, and 
an empty branch standing for the existence of an alternative shipping option. The user 
may later on select to “zoom in” this empty branch to see the details for the alterna-
tive option. 

The users from other departments may not be authorised to see the shipping details. 
Such users may only see the view shown in Figure 1 (d), where all the shipping de-
tails are hidden in a new task “handle shipping at distribution centre”. The synchroni-
sation link from “production” to “dispatch products” is also hidden, as the underlying 
synchronisation dependency is not effective for this view. Figure 1 (e) displays a 
further abstracted view of the business process, which only outlines the core part of 
 



558 X. Zhao et al. 

the business process with three parallel tasks. The authorised users can choose to 
concretise the interested part to see more details. In either process concretisation 
(from the right to the left in Figure 1) or abstraction (from the left to the right), the 
structure of the new views keeps consistent with the previous one. 

To support process abstraction and concretisation functions, new mechanisms are 
on demand to allow wrapping a sub process into a specific task or link, and releasing 
the sub process back from a task or link. In details, we list the following technical 
requirements: 

− Maintain the relations between the hidden sub processes and the corresponding 
tasks/links. 

− Preserve the structural information of a business process, such as split/join struc-
tures and synchronisation links, during process abstraction/concretisation.  

− Support cascading abstraction/concretisation operations. 
− Keep the structural consistency of process views during transformations.  

Towards these requirements, our FlexView framework employs a process compo-
nent model to describe the structure of process views and structural components, and 
maintain the relations between structural components. The algorithms are designed to 
enable the procedure of abstraction and concretisation. A set of defined rules regulate 
the structural consistency during the procedure. The framework is implemented with 
WS-BPEL as a proof-of-concept. 

3   Framework of FlexView 

3.1    Process Component Model 

To well describe the structure of a process view and maintain the relations between 
structural components, we define a process component model. This model provides 
the foundation for process abstraction and concretisation functions, and particularly 
takes into account the characteristics of WS-BPEL.  

Definition 1. (Gateway) Gateways are used to represent the structure of a control 
flow. Here we define five types of gateways, namely Or-Split, Or-Join, And-Split, 
And-Join, and Loop. Figure 2 shows the samples of these gateways, respectively. Or-
Split/Join and Loop gateways may attach conditions to restrict the control flow.  

Definition 2. (Synchronisation Link) In an And-Split/Join structure, synchronisation 
links are used to represent the synchronisation dependency between the tasks belong-
ing to different branches. For example, in Figure 2 (b), the synchronisation link be-
tween ti and tj, represented as a dashed arrow, denotes that tj can only start after the 
completion of ti. In WS-BPEL, such a synchronisation dependency is supported with 
a <link> element. 

Functions ind(m) and outd(m) define the number of edges which take m as the ter-
minating node and the starting node, respectively. Note ind and outd only count the 
number of edges but not synchronisation links. 
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Fig. 2. Gateway samples 

Function type: G→Type is used to specify gateway types, where Type={Loop, And-Join, 
And-Split, Or-Join, Or-Split}. According to the natural characteristics of these gateways, 
we can define the following rules in terms of the incoming and outgoing degrees: 

ind(g)=1, outd(g)=2 if g is at the starting position; 

N/A 
g is not allowed at the ending posi-
tion; 

 

if type(g) = “Loop”

 

ind(g)=2, outd(g)=2 Otherwise. 

ind(g)=0, outd(g)> 1 if g is at the starting position; 

N/A 
g is not allowed at the ending posi-
tion; 

if type(g) = “And-
Split” or “Or-Split”

 

ind(g)=1, outd(g)> 1 Otherwise. 

N/A 
g is not allowed at the starting posi-
tion; 

ind(g)>1, outd(g)=0 if g is at the ending position 
if type(g) = “And-

Join” or “Or-Join”

 

ind(g)>1, outd(g)=1 Otherwise. 

Definition 3. (Sub Process) A sub process is a structural component of a business 
process, and it also maintains the necessary information for sub process composition. 
The structure of a sub process s can be modelled as an extended directed graph in the 
form of tuple (N, G, E, L, ms, mt, L0), where 

− N={n1, n2, …, nx}, ni∈N (1�i�x) represents a task of s. 
− G={g1, g2, …, gy}, gi∈G (1�i�y) represents a gateway of s. 
− E is a set of directed edges. An edge e=(m1, m2)∈E corresponds to the control de-

pendency between m1 and m2, where m1∈N∪G, m2∈N∪G. 
− L is a set of synchronisation links. A synchronisation link l = (m1, m2)∈L corre-

sponds to the synchronisation dependency between m1 and m2, where m1∈N∪G, 
m2∈N∪G. 

− ms is the starting node of s, which satisfies that ms∈N∪G and ind(ms)=0. 
− mt is the terminating node of s, which satisfies that mt∈N∪G and outd(mt)=0. 
− ∀n∈N\{ ms, mt }, ind(n)=outd(n)=1. This property is guaranteed by the usage of 

gateways. 
− L0 is a set of hidden synchronisation links, i.e., the synchronisation links that have 

a node not included in N or G. ∀l=(m1, m2)∈L0, (m1∈N∪G)∧(m2∉N∪G) or 
(m1∉N∪G)∧(m2∈N∪G). The synchronisation links in L0 are not displayable as 
they connect to foreign nodes, but such synchronisation link information is pre-
served for sub process composition. 
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Definition 4. (Sub Process Hierarchy) A sub process hierarchy �(p) for business 
process p maintains all the related sub processes and mapping information for process 
representation. �(p) can be represented as tuple (S, �, �), where  

− S is a finite set of distinct sub processes. 
For a sub process s∈S, 

∀l=(n1, n2)∈s.L∪s.L0∪s.G  ∃s1∈S (n1∈s1.N∪s1.G )∧(n2∈s1.N∪s1.G), 
or ∃s1∈S, s2∈S, (n1∈s1.N∪s1.G)∧(n2∈s2.N∪s2.G). 

− s0∈S is the root sub process, which shows the most abstracted view of p. 
− �: E	�S	 (E	⊆ Es

Ss
.

∈
∪ and S	⊆S\{s0}) is a bijection describing the relations between 

edges and sub processes. Correspondingly, we have the inverse function �-1: 
S	�E	. 

− �: N	�S	 (N	⊆ Ns
Ss

.
∈
∪ and S	⊆S\{s0}) is a bijection describing the relations between 

nodes and sub process. Correspondingly, we have the inverse function �-1: S	�N	.  
− A sub process can only occur in one of the two inverse functions. This denotes that 

∀s∈S\{s0}, if �-1(s)�null then �-1(s)=null; if �-1(s)�null then �-1(s)=null. 

The sub processes of a sub process hierarchy can be defined in a nested way.  
Figure 3 shows a sub process hierarchy example, where subp1, …, subp5 are five sub 
processes in this hierarchy, and subp1 is the root sub process.  

In this example, tasks ti and tj of sub process subp1 can be mapped to sub processes 
subp2 and subp5 by functions �(ti) and �(tj), respectively. Further, task tk and edge em of 
subp2 can be mapped to sub processes subp3 and subp4 by functions �(tk) and �(em), 
respectively. A concretisation operation denotes the extension by replacing a task or 
edge with the mapped sub process. Therefore, root sub process subp1 can be concretised 
into combination subp1+subp2, subp1+subp5, or subp1+subp2+subp5, where tasks ti and tj 
are replaced by the corresponding sub processes. Correspondingly, the abstraction op-
eration can be realised by wrapping a sub process back into a task or edge with func-
tions �-1 and �-1. Each result combination denotes a partial view of the business process.  

subp1

subp2

subp4subp3 subp5

γ (ti)

γ (tj)

γ (tk)
δ (em)

...

... ... ... ...  

Fig. 3. Sub process hierarchy example 
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Such a sub process hierarchy is fully customisable for users, and thereby enables 
the adaptation to user-defined partitions and categorisations according to different 
levels of BPEL abstraction and concretisation.  

Definition 5. (Process View) A process view represents the viewable part for a business 
process at a time. In the sub process hierarchy, each process view corresponds to a sub 
tree including the root sub process, where the mapped tasks/edges are concretised with 
corresponding sub processes. A fully concretised view, i.e., the view containing all the 
sub processes in this hierarchy, is equivalent to the base business process, and the view 
containing only the root sub process is the most abstracted view. 

3.2   Consistency and Validity Rules 

As explained in the motivating example, some rules are defined to guarantee the 
structural consistency of process views during view abstraction and concretisation. 
This section is to discuss the rules on preserving execution orders, branch subjection, 
synchronisation dependencies, and so on.  

• Preliminary 
− A dummy branch denotes a branch in a split/join structure such that the branch 

contains nothing but only one edge. 
− A common split gateway predecessor (CSP), x, of a set of tasks, T, denotes a split 

gateway such that x is the predecessor of each task in T.  
− before(t1, t2) denotes that task t1 will be executed earlier than task t2. This means 

that there exists a path from starting t1 to t2 in the corresponding directed graph, 
while the path does not contain any go-back edge of a loop structure. Apparently, 
before is a transitive binary relation.  

− CSP(t1, t2) returns the set of common split gateway predecessors of t1 and t2, or 
returns null if the two tasks have no common split gateway predecessors. 

− branch(g, t1, t2) is a boolean function, which returns true if t1 and t2 lie in the same 
branch led from split gateway g, otherwise returns false. 

• Structural Consistency and Validity Rules 

In regard to an abstraction/concretisation operation, the original process view v1 and 
the result view v2 are required to comply with the following rules: 

Rule 1. (Order preservation) As for the tasks belonging to v1 and v2, the execution 
sequences of these tasks should be consistent, i.e.,  

If� t1, t2∈v1.N�v2.N such that before(t1, t2) exists in v1, then before(t1, t2) also exists 
in v2. 

Rule 2. (Branch preservation) As for the tasks belonging to v1 and v2, the branch 
subjection relationship of these tasks should be consistent, i.e.,  

If t1, t2∈v1.N�v2.N and g∈CSP(t1, t2) in v1, g∈CSP(t1, t2) in v2 such that X(g, t1, t2) 
in v1, then X(g, t1, t2) in v2, where X∈{branch, ¬branch}. 

Rule 3. (Synchronisation dependency preservation) If an abstraction operation 
involves any tasks with synchronisation links, the synchronisation links should be 
rearranged to preserve the synchronisation dependency. Assume that sub process s 
comprising tasks t1 and t2 is to be abstracted into a compound task tc as shown in  
Figure 4, 
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− for task tx∈s.N and tx has an outgoing synchronisation link l,  
If ∀t∈s.N, before(t, tx) then the source task of l should be changed to tc, otherwise l 

should be hidden. 

− for task tx∈s.N and tx has an incoming synchronisation link l, 
If ∀t∈s.N, ¬before(t, tx) then the target task of l should be changed to tc, otherwise l 

should be hidden. 

tc
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AND
Split

t2

t3

t4
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AND
Join

( a1 ) ( a2 ) ( a3 ) ( b1 ) ( b2 )
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Fig. 4. Synchronisation link handling 

In Figure 4, the transformation from (a1) to (a2), where t1 and t2 are hidden in task tc, 
and the transformation from (a1) to (a3), where t4 and t5 are hidden in task tc, illustrate 
the two mentioned scenarios, respectively.  

In the case that a task involving a synchronisation link is abstracted into an edge, the 
re-arrangement of synchronisation links is subject to Rule 1. For example, Figure 4 (b1) 
and (b2) illustrate the re-arrangements in cases that t2 and t4 are hidden in edges. 

Rule 4. (No empty Split/Join or Loop structures) If a loop structure contains no 
tasks, or if a split/join structure contains only dummy branches, then the loop or 
split/join structure should be hidden.  

Rule 5. (No dummy or single branch in And-Split/Join structures) If an And-
split/join structure contains both dummy and non-dummy branches, then the dummy 
branch(es) should be hidden. If the And-split/join structure contains only one non-
dummy branch, then the And-split/join structure will be degraded into a sequential 
structure.  

Rule 6. (Dummy branch in Or-Split/Join structures) If an Or-split/join structure 
contains a dummy branch, then this dummy branch should remain to indicate the 
existence of an alternative execution path. If an Or-split/join structure contains multi-
ple dummy branches, these branches should merge into one dummy branch. 

3.3   Process Abstraction and Concretisation 

To realise the view abstraction and concretisation under the restriction of structural 
consistency, two algorithms are developed to formalise the procedures of process 
view transformation.  
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Given a sub process hierarchy �(p)=(S, �, �), the following functions are to be used 
in the algorithms: addEdge(s, e) inserts edge e into set E of sub process s. addTask(s, 
t) inserts task t into set N of sub process s. addLink(s, l) inserts synchronisation link l 
to set L of sub process s. removeLink(s, l) deletes synchronisation link l from set L of 
sub process s. removeTask(s, t) deletes task t from set N of sub process s. re-
moveEdge(s, e) deletes edge e from set E of sub process s. combineSubProc(s1, s2) 
combines the constitute sets, i.e., N, G, E, L and L0, of sub process s2 into sub process 
s1. removeSubProc(s1, s2) removes the constitute sets of sub process s2 from sub proc-
ess s1. toSequence(s, g1, g2) flats a single branch split/join structure scoped by gate-
ways g1 and g2 in sub process s into a sequence structure, i.e., removes the two 
gateways and re-connects the gateways’ adjacent nodes to the single branch. 

Algorithm 1. 
taskZoomIn(s, t) transforms sub process s into a more concrete sub process s�, by 

concretising task t.   

1 s�=s; subp=�(t); 
2 if t=s	.ms then s.ms=subp.ms; 
3 if t=s	.mt then s.mt=subp.mt; 
4 do while (∃e=(mx, t)∈s	.E) 
5 removeEdge(s	, e); addEdge(s	, (mx, subp.ms)); 
6 loop 
7 do while (∃e=(t, my)∈s	.E) 
8 removeEdge(s	, e); addEdge(s	, (subp.mt, my)); 
9 loop 

10 removeTask(s	, t); combineSubProc(s	, subp);  
11 for each sync link l=(m1, m2)∈s	.L0 
12 if (m1∈s	.N)∧(m2∈s	.N) then  
13     addLink(s�, l); s�.L0=s�.L0\{l}; 
14 end if 
15 for each sync link l=(m1, m2)∈s	.L\subp.L 

16   if (m1=t) or (m2=t) then 
17 removeLink(s	, l);  
18 for each link l=(m1, m2)∈s	.L0\subp.L0 
19    if (m1=t) or (m2=t) then s	.L0=s	.L0\{l}; 
20 return s�; 

Lines 2-3 handle the connection in case that the task to concretise is the starting or 
ending node. Lines 4-9 connect edges according to Rule1 and Rule 2. Line 10 re-
places task t with sub process subp. Lines 11-14 reveal the hidden synchronisation 
links if their source and target nodes are both visible during the concretisation. Lines 
15-17 delete the synchronisation links that are involved with task t, because the newly 
revealed synchronisation links from subp will replaces these links. Lines 18-19 sort 
the hidden synchronisation links that are involved with task t. 

The procedure of zooming in an edge is similar to Algorithm 1, and we here do not 
detail it due to space limit. 
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Algorithm 2.  
zoomOut(s, x) transforms sub process s into a more abstract sub process s� by ab-

stracting the part containing task or edge x.  

1 s�=s; ∃subp∈S such that x belongs to subp. 
2 if �-1(subp)�null then 
3   addEdge(s	, �-1(subp));  
4 else if � -1(subp)�null then addTask(s	, � -1(subp)); 
5 end if 
6 for each sync link l=(m1, m2)∈s	.L   
7   if (m1∈subp.N∪subp.G) and (∀t∈subp.N, before(t, m1)) then   
8      if � -1(subp)�null then 
9        addLink(s	, (� -1(subp), m2)); removeLink(s	, l);  

10      else if �-1(subp)�null then 
11        e= �-1(subp)=(m3, m4); addLink(s	, (m3, m2)); removeLink(s	, l); 
12      end if 
13   else if (m2∈subp.N∪subp.G) and (∀t∈subp.N, ¬before(t, m2)) then   
14       if � -1(subp)�null then 
15          addLink(s	, (m1, � -1(subp))); removeLink(s	, l);  
16       else if �-1(subp)�null then 
17          e= �-1(subp)=(m3, m4); addLink(s	, (m1, m4)); removeLink(s	, l); 
18       end if 
19 end if 
20 end for 
21 s	=removeSubProc(s	, subp); 
22 do 
23   for each loop structure with loop gateway g in s	 
24     if ∃e=(g, g)∈s	.E then removeLoop(s	, g); // remove empty loop structure 
25   for each split/join structure scoped by split gateway g1 and join gateway g2, in

s	 
26   flag=0; 
27   if (outd(g1)=ind(g2)=1) and (∃e=( g1, g2)∈s	.E) then 
28     removeEdge(s	, e); toSequence(s	, g1, g2); flag=1; 
29   end if 
30     if (s	.type(g1)=And-split) AND (∃e=(g1, g2)∈s	.E) then removeEdge(s	, e);     
31     if outd(g1)=ind(g2)=1 then  
32     toSeqence(s	, g1, g2); flag=1;  
33   end if 
34   end for 
35 loop until (flag=0) 
36 return s�; 

Lines 2-5 replace the sub process to abstract with the mapped task or edge. Lines 
6-20 handle the synchronisation links according to Rule 3. If subp has an outgoing 
link and the link leaves from the last node of subp, lines 7-12 rearrange the link to 
preserve the synchronisation dependency. Similarly, lines 13-19 do the arrangement, 
if subp has an incoming link and the link joins to the first node of subp.  
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Lines 22-35 iteratively check the structural consistency according to Rules 4-6, un-
til no conflicts exist. According to Rule 4, lines 23-24 and lines 27-29 delete empty 
loop structures and empty split/join structures, respectively. According to Rules 5 and 
6, line 30 deletes dummy branches in an And-split/join structure, and lines 31-33 flat 
any split/join structures with single branches into sequential structures. Note, due to 
the set definition, the dummy branches in an Or-split/join structure are already com-
bined together.  

The result sub process from these algorithms can be easily converted to a process 
view for representation, by discarding set L0.  

4   Incorporation into WS-BPEL 

To enable abstraction and concretisation for WS-BPEL processes, we first need to 
incorporate the proposed model into WS-BPEL. As listed in Table 1, the main struc-
tural constructs of our model correspond to proper WS-BPEL elements. In WS-BPEL, 
every edge is implicitly represented, i.e., the execution sequence is determined by the 
occurrence sequence of elements nested in <sequence>, <pick>, <flow>, <while>, 
<switch> elements.  

Table 1. WS-BPEL elements and our structural constructs 

Structural construct 
WS-BPEL 
element 

Description 

Task sequence <sequence> Allow for sequential execution of tasks. 

A pair of Or-Split/Join 
gateways with conditions 

 
<pick> 

Perform the non-deterministic execution 
of one of several paths depending on an 
external event. 

A Loop gateway with 
conditions <while> 

Perform a specific iterative task repeatedly 
until the given condition becomes false. 

A pair of Or-Split/Join 
gateways with condi-
tions 

<switch> 
Perform a conditional behaviour with a set 
of branches.   

A pair of And-Split/Join 
gateways <flow> 

Perform parallel execution of a set of 
branches.  

 
A synchronisation link 

 
<link> 

Support the synchronisation between tasks 
or gateways on the branches inside a 
<flow> element. 

 
 
A sub process  

 
 

<scope> 

Originally used for defining the compensa-
tion scope for fault handling in WS-BPEL, 
yet here we use it to store the structural 
content and contextual information (such 
as variables and declarations), for sub 
processes.  

A dummy branch of a 
split/join structure <empty> 

Originally used to denote a dummy task, 
yet here we use it to stand for a dummy 
branch of a split/join structure. 
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Fig. 5. View generation system architecture 

We have developed a prototype for the proof-of-concept purpose. This prototype is 
based on SAP Research Maestro for BPEL, with extension on process views. This 
prototype is purely programmed in Java, and utilises some packages from Tensegrity 
Software [8] for user interface design. Extensible Stylesheet Language Transforma-
tion (XSLT) [9] is selected as the technical tool to enforce process abstraction and 
concretisation. The FlexView engine is responsible for handling the generation of 
process views according to the user’s requests and the pre-defined sub process hierar-
chy, while the Maestro is used as the displaying tool to represent process views 
graphically. Users send requests for “zooming in” or “zooming out” the representa-
tion of a business process through the FlexView engine, and see the result views in 
the Maestro. The user interfaces of FlexView and Meastro are given in Figure 5. 

In current version, users have to define the sub process hierarchy in advance. How-
ever, we are developing necessary mining techniques to identify typical process pat-
terns for defining sub processes. With such support, our FlexView system can 
automatically or semi-automatically create the sub process hierarchy.  

5   Related Work and Discussion 

Works on workflow/process views are related to ours. In regard to structural consis-
tency during the process transformations, Liu and Shen [10] proposed an order-
preserving approach for deriving a structurally consistent process view from a base 
process. In their approach, the generation of “virtual activities” (compound tasks) 
needs to follow their proposed membership rule, atomicity rule, and order preserva-
tion rule. Recently, Eshuis and Grefen [11] formalised the operations of task aggrega-
tion and process customisation, and they also proposed a series of construction rules 
for validating the structural consistency. Martens [12] discussed the verification on 
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the structural consistency between a locally defined executable WS-BPEL process 
and a globally specified abstract process based on Petri net semantics. Compared with 
these work, first of all, our approach focused more on realising the process transfor-
mation at technical level rather than theoretical level. Secondly, in the mentioned 
works, the customisation process actually lost some tasks. Yet, our approach pre-
served the hidden tasks and necessary mapping relations, and thus supported both 
abstraction and concretisation operations. Finally, synchronisation links were consid-
ered in our approach.   

To support process privacy and interoperability, many works targeted at applying 
workflow/process views in the inter-organisational collaboration environment. van 
der Aalst and Weske [13] proposed a “top-down” workflow modelling scheme in 
their public-to-private approach. Organisations first agree on a public workflow, and 
later each organisation refines the part it is involved in, and thereafter generates its 
private workflow. This work reflected a primitive idea of workflow view. In [14], 
Schulz and Orlowska focused on the cross-organisational interactions, and proposed 
to deploy coalition workflows to compose private workflows and workflow views 
together to enable interoperability. Issam, Dustdar et al. [15] extracted an abstract 
workflow view to describe the choreography of a collaboration scenario and compose 
individual workflows into a collaborative business process. By deploying workflow 
views in the workflow interconnection and cooperation stages, their approach allows 
partial visibility of workflows and resources. Our previous works [16, 17] also estab-
lished a relative workflow model for collaborative business process modelling. A 
relative workflow for an organisation comprises the local workflow processes of the 
organisation and the filtered workflow process views from its partner organisations. 
In this way, this approach can provide a relative collaboration context for each par-
ticipating organisation. Some follow-up work targeted at the instance correspondence 
[18] and the process evolvement [19] in collaborative business processes, as well as 
role-based process view derivation and composition [7]. In supplement to these 
works, our approach provided a practical implementation solution by incorporating 
the view concept into a popular standard business process modelling language. The 
abstraction and concretisation functions were naturally applicable to support privacy 
protection or perception control in the collaboration environment. 

Proviado project [20] adopted process views for personalised visualisation of large 
business processes, and they allowed some trade-off between the structural consis-
tency and the adequate visualisation. Our work firmly complied with the proposed 
structural consistency and validity rules, and supported bi-directional process view 
operations.  

Our work is motivated by practical requirements from areas of process visualisa-
tion, process analysis, user friendly process representation, and so on. The work 
brings the process view concept to the technical level, and incorporates it into a stan-
dard process modelling language. In summary, this work contributes to the following 
aspects: 

(1) Abstraction and concretisation functions towards process representations. With 
these two operations, users are allowed to choose and switch among different views 
of the same business process. In this way, our approach caters for the diversity of 
users’ interests, authority levels, and so on. Although this paper chooses WS-BPEL as 
the candidate model to apply abstraction and concretisation functions, the essential 
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idea of the proposed approach is applicable to most process models, like Business 
Process Modelling Notations (BPMN) [21], Petri net based workflow models, etc.  

(2) Information preservation and structural consistency during transformation. The 
proposed model and developed algorithms guarantee that our process abstraction and 
concretisation are lossless in information and consistent in structure. Consequently, 
the two operations can be performed back and forth rather than one way only. 

(3) Deployment in Web service domain using WS-BPEL language. The whole 
framework is completely incorporated into WS-BPEL via a prototype, which applies 
XSLT techniques and external repositories to realise WS-BPEL process abstraction 
and concretisation.  

6   Conclusions and Future Work 

This paper proposed a framework to support abstraction/concretisation functions 
towards flexible process view representation. A model was defined to describe the 
process components and their relations, while a set of algorithms were developed to 
enforce the abstraction/concretisation operations in compliance with the defined struc-
tural consistency rules. The whole framework was incorporated into WS-BPEL lan-
guage, and a prototype was also developed for the proof-of-concept purpose.  

Our future work is to refine the process component model, and further investigate 
the techniques to automat the generation of the sub process hierarchy. Besides, we 
plan to investigate similar use cases using BPMN as graphical representation.  
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Abstract. In Web search, it is often difficult for users to judge which
page they should choose among search results and which page provides
high quality and credible content. For example, some results may de-
scribe query topics from narrow or inclined viewpoints or they may con-
tain only shallow information. While there are many factors influencing
quality perception of search results, we propose two important aspects
that determine their usefulness, “topic coverage” and “topic detailed-
ness”. “Topic coverage” means the extent to which a page covers typical
topics related to query terms. On the other hand, “topic detailedness”
measures how many special topics are discussed in a Web page. We pro-
pose a method to discover typical topic terms and special topics terms
for a search query by using the information gained from the structural
features of Wikipedia, the free encyclopedia. Moreover, we propose an
application to calculate topic coverage and topic detailedness of Web
search results by using terms extracted from Wikipedia.

Keywords: Search results quality, Wikipedia mining, Term extraction,
Term typicality, Term speciality.

1 Introduction

Web search engines have become frequently used for acquiring information over
the Internet. Web search results given by search engines are usually composed
of a list of Web pages with some information such as titles, snippets and urls.
However, it is often difficult for users to judge which page they should choose
among search results. In many cases, users require Web pages including credible
and comprehensive information about the search query. According to the online
survey that we have recently conducted on 1000 respondents in Japan [1], users
search the Web mostly because they require basic (46%) or detailed (36.8%)
information about their search queries. Yet, conventional search engines usually
do not provide users with any detailed information about the extent to which
search results cover typical query topics. Some Web pages in search results may
be regarded as being of low quality because they contain information related to
query topics that are described from a narrow or an inclined viewpoint. In this
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sense, a page is deemed to be of high quality if it covers as many typical topics
about a query term as possible. On the other hand, if a Web page conveys only
shallow information in spite of covering many typical topics, the page will be also
regarded as low quality one. In this paper, we propose the notion of the “topic
coverage” and “topic detailedness” of Web pages for evaluating their quality.
Topic coverage of a Web page means how many typical topics about the search
query are covered by the Web page. On the other hand, topic detailedness of a
Web page intuitively means how many special topics are included in the page.
We believe that it will become easier for users to judge which page they should
choose by showing them the above two measurements.

We would like to emphasize here that the complete quality evaluation of web
pages is actually a complex, multi-dimensional issue. In order to find high quality
pages one would generally have to analyze many aspects such as information ac-
curacy and freshness, content organization, completeness, readability and so on.
In this research we focus only on two aspects of quality evaluation of Web pages,
topic coverage and topic detailedness. Both are actually query-dependent quality
measures and can thus fit well into a search scenario in which users seek high
quality pages for their queries. The proposed measures are also user-dependent
to some extent. For example, users who are experts within certain topics would
probably search for highly-specialized, detailed pages while non-experts users
should generally prefer documents covering broad and typical topics related to
their queries.

For calculating the topic coverage and topic detailedness of Web search results
it is first necessary to extract typical and special terms for a search query used
for generating these results. In this paper, we define typical and special terms
for a search query as follows:

– Typical terms of a search query are terms that frequently appear in the
domain of the search query.

– Special terms of a search query are terms that appear mostly in the domain
of the search query.

Typical terms are used for measuring topic coverage of Web pages, and special
terms are used for measuring topic detailedness.

We propose a method to discover typical topic terms and special topics terms
for a search query by using the information gained from the structural features
of Wikipedia. Wikipedia, the free online encyclopedia that anyone can edit,
provides a huge number of interlinked entries. It started in 2001 becoming a
prominent example of successful collaboration of thousands users on the Web.
According to the statistics which Wikipedia has released as of June 2008 1, the
English Wikipedia contains about 2.4 million articles, and there are about 7
million registered user accounts. According to the Nature Journal, Wikipedia
is about as accurate in covering scientific topics as the Encyclopedia Britan-
nica [2]. In this work, we focus on category and link structure of Wikipedia for
the purpose of measuring typicality and speciality of terms. In Wikipedia, each
1 http://en.wikipedia.org/wiki/Special:Statistics
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Fig. 1. Overview of our proposed system

article is assigned to one or more categories, and it links to and is linked by other
related articles. In our approach, the category structure is used for detecting the
domain of query term, and we calculate typicality and speciality of topic terms
by analyzing the link structure in Wikipedia.

We have also implemented a system that presents Web search results with the
scores of topic coverage and topic detailedness. The overview of the proposed
system is illustrated in Fig. 1. Given a query, (i) the domain of a search query is
detected, and (ii) typicality and speciality scores of terms are calculated by using
the category and link structure of Wikipedia. At the last, (iii) topic coverage
and topic detailedness of each Web page acquired from a search engine are
measured by using typical and special terms extracted from Wikipedia and pages
are annotated with these both measures.

The remainder of the paper is organized as follows: Section 2 discusses related
work. In Section 3, we propose the method of measuring typicality and speciality
of terms by using the structural features of Wikipedia. In Section 4, we present
the approach of measuring topic coverage and topic detailedness of Web search
results by using typicality and speciality of terms. Section 5 provides conclusion
and discusses our future work.

2 Related Work

2.1 Quality Evaluation of Web Pages

The quality of Web pages has been evaluated so far from various viewpoints.
Link analysis has been probably the most frequently exploited approach for
the quality evaluation in information retrieval. PageRank [3] and HITS [4] are
well-known algorithms in which the number of in-links of a Web page are used
as a rough measure for the popularity and, indirectly, the quality of the page.
Following the success of PageRank, Haveliwala [5] proposed a topic-sensitive
PageRank measure, which separately determines a set of popularity scores for
predetermined topics. Cho et al. [6] discovered that page ranking by link analy-
sis causes the “rich-get-richer” phenomenon, and they proposed the method of
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measuring quality from Web snapshots by analyzing the changes in PageRank
values over time. While link analysis considers the perspective of Web page au-
thors, the information extracted from social annotations generated by users has
recently attracted much attention for evaluating Web contents. The possibility
of evaluating the quality of Web pages by using the information extracted from
social bookmarking sites such as Del.icio.us2 is described in [7][8].

Some researchers also proposed machine learning approaches for evaluating
the quality of Web pages [9][10][11]. In these approaches, HTML structure, the
number of links and language features such as number of unique words and so
on are used as parameters for machine learning. Mandl et al. [11] implemented
AQUAINT, a quality-based search engine, using a machine learning method. Our
method is different from these works in that it uses Wikipedia, as a knowledge
base constructed by the collaborative effort of multiple users. We also propose
two query-dependent factors for page quality measurement, topic coverage and
topic detailedness by which our method analyzes Web pages.

2.2 Term Extraction

Large text corpora have been successfully used for knowledge extraction. For
example, Hearst [12] proposed a method for the automatic acquisition of the hy-
ponymy lexical relations from unrestricted text. Several researchers have begun
to seek effective ways for mining huge data collections since the detailed analysis
of large content repositories is often impossible or prohibitively costly. Bolle-
gala [13] proposed a semantic similarity measure that uses page counts and text
snippets returned by a Web search engine for computing the similarity between
terms or entities. In a similar fashion, Cilibrasi and Vitanyi [14] introduced a
semantic distance measure called Google Normalized Distance between query
terms based on the returned Web count values.

Wikipedia has recently attracted much attention as a large-scale, semi-
structured corpus for data mining; and “Wikipedia mining” has become a new
research area [15][16][17]. Strube [15] proposed a method of measuring semantic
relatedness by using category data of Wikipedia articles. In addition, several
applications based on knowledge extracted from Wikipedia have been demon-
strated [18][19]. For example, Koru [18] is a new search engine that uses knowl-
edge from Wikipedia for automatic query expansion. The Wikify! system pro-
posed by Mihalcea [19] attaches links to entry articles of terms selected in Web
pages by using the keyword extraction and word sense disambiguation based on
Wikipedia data. These systems help users with search and learning, while our
system aims at evaluating quality of Web pages by using the information gained
from the Wikipedia.

Our work is also related to detecting domain-specific knowledge. Some meth-
ods for extracting domain-specific terms from online documents have been pro-
posed in various domains, such as, the field of medical informatics [20][21].
Eibe et al. [22] described a method for finding domain-specific phrases by using

2 http://del.icio.us
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machine learning techniques. The above solutions, however, usually require a
large number of manually labeled training data. Bing et al. [23] introduced
a non-supervised method for detecting topic-specific concepts and definitions
from Web pages. Their techniques first identify sub-topics or salient concepts
of the topic, and then find and organize informative pages to be presented for
users. Our approach differs from these methods in that, first, it extracts domain-
specific terms from Wikipedia for the purpose of quality evaluation and, second,
it is based on unsupervised and domain-independent algorithm.

3 Typicality and Speciality of Terms

There are many studies about term extraction as mentioned in the above section.
Yet, typicality or speciality of extracted terms have not been referred in those
works. They are prerequisite for assessing coverage and detailedness of Web
pages returned for a query.

Our proposed method is composed of the following steps. To extract typicality
and speciality of topic terms we first detect the domain of a search query by using
the link and category structure of Wikipedia. The next step is to extract terms
from Wikipedia articles included in the detected domain. After term extraction,
we calculate typicality and speciality of terms by analyzing the distribution of
links to the article of each term.

3.1 Detecting a Domain of Search Query

First, we describe the method for detecting a domain of a search query when
there exists a Wikipedia article about the original query term. Suppose that q is
a search query and aq is a Wikipedia article about q. The first step is to acquire
the set of categories that aq belongs to. We express it as Cdirect(q). Each category
that Cdirect(q) contains is intuitively a hypernym of the query term. For example,
an article about “iPod” belongs to ten Wikipedia categories such as “Portable
Media Player”, “2001 introductions” and “Semi-protected” etc. “Portable Me-
dia Player” is regarded as an appropriate category for Cdirect(“iPod”). Although
“2001 introductions” can be regarded as a hypernym of “iPod”, we remove it
from direct categories since other articles contained in this category are hardly
related to “iPod”. “Semi-protected” is also removed from direct categories be-
cause it is a label that expresses the temporal state of articles. In the proposed
method, we do not deal with categories that are classified by time axis such as
“20xx yyyy” and with the categories which are only labels about article state
such as “Protected” and “All articles with unsourced statements” etc.

We consider that not only direct categories but also indirect categories are
required for expressing in what kind of context a search query is used. In the
example of “iPod”, categories such as “iPod software” and “iPod accessories” are
not directly combined with the article about “iPod”. However, these categories
are strongly related to “iPod”. In order to add such indirect categories to the
domain of a search query, we gather the category data of articles that are linking
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Fig. 2. Explanation of indirect category scoring where inlinks(q) is the articles linking
to the article of q

to an article about the query. A basic idea about how to find indirect categories
is described in Fig. 2. First, articles linking to an article about a search query,
expressed as inlinks(q), and categories that those articles belong to (denoted as
InlinkCategories(q)) are acquired:

InlinkCategories(q) = ∪ai∈inlinks(q)Categories(ai) (1)

Next, the categories containing many articles from inlinks(q) could be regarded
as indirect categories. However we need to consider the size of each category.
The score of each category in InlinkCategories(q) is measured by the following
equation:

Score(c) =
CF (c)
Size(c)

(2)

where CF (c) is the number of articles which are contained both in a category
c and in inlinks(q), and Size(c) means the number of articles contained in the
category c. If Score(c) is larger than a threshold α and the category contains
more than β articles, the category c can be regarded as belonging to Cindirect(q),
indirect categories of query. In this paper, α is set as 0.5 and β is set as 5. Next,
Domain(q), a domain of search query, is determined by calculating the union of
direct categories and indirect categories:

Domain(q) = Cdirect(q) ∪ Cindirect(q) (3)

In case when a Wikipedia article about the original query does not exist, the
query is divided into as long word sequences (q = {q1, q2, ..., qn}) as possible
for which Wikipedia articles exist. For example, if “iPod nano battery” is given
as a query, it can be divided into “iPod nano” and “battery”. Although the
articles of “iPod” and “nano” exist, “iPod nano” is a longer word sequence than
each of them and there is also a Wikipedia article about “iPod nano”. Note
that our proposed method cannot deal with a query for which none of the terms
exist on Wikipedia articles. However, such situation rarely happens according
to our study. For each of divided terms, direct categories can be extracted and
category scores can be calculated in the same way as the domain detection of a
single term that was described above. Direct categories for each divided terms
are just adopted to as total direct categories. In order to acquire total indirect
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Table 1. Examples of detecting a domain of a search query

Query:q Cdirect(q) Cindirect(q)
iPod iPod iPod games

Portable media players Macintosh all-in-ones
Directors of Apple Inc.

Macintosh computers by product line
iMac series

iPod accessories
iPod software

X86 Macintosh computers
parkinson’s disease Aging associated diseases Pervasive developmental disorders

Geriatrics Motor neuron disease
Parkinson’s disease Cognitive disorders

Tardive dyskinesia
Dopamine agonists

Antiparkinsonian agents
Heterocyclic compounds (4 or more rings)

iPod headphone Headgear iPod accessories
Headphones iMac series

iPod
Portable media players

categories, category scores for each divided term are linearly combined:

TotalScore(c) =
∑
qi∈q

weight(qi) · Scoreqi(c) (4)

where weight(qi) is calculated as follows:

weight(qi) =
wqi∑

qi∈q wqi

(5)

wqi =
log (1 + |outlinks(qi)|)
log (1 + |inlinks(qi)|)

(6)

Wikipedia articles for which the number of out-links is low and the number of
in-links is high tend to be abstract words with broader concepts. The above
weighting scheme assigns a relatively small weight value for such words. For
example, if a given query is “iPhone Japan”, categories of “Japan” are not
important and weight(“Japan”) has a low value. To the contrary, given “iPod
Zune” as a query, both terms are important and almost equivalent weights are
given. The rest is the same as that in the case of a single word.

Some examples of detecting a domain of a search query are described in Table 1.

3.2 Calculating Typicality and Speciality of Terms

We describe here the way for calculating typicality and speciality scores of terms
by using the link structure of Wikipedia. Intuitively, typical terms should fre-
quently occur in the domain of a search query, while special terms should occur
mostly in the domain and rarely outside of it. We explain our idea in Fig. 3.
Given q as a search query, the domain of q is detected by the method described
in Section 3.1. We regard terms linked by many articles included in the domain
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Fig. 3. Analysis of the distribution of link frequency for measuring typicality and
speciality of terms

of query as typical terms, and terms linked by mostly articles included in the
domain as special terms. Intuitively, a typical term is frequently used in the do-
main of a query, and a special term is hardly used out of the domain of query.
In Fig. 3, X and Y are typical terms and Z is not a typical term. On the other
hand, only Y is a special term, while X and Z are not special terms because the
articles of X and Z are linked by many articles not included in the domain of
the query.

Details of our proposed method are described as follows. For each category
included in Domain(q), we acquire all articles in it and express these articles
as Dq which means domain pages of a search query q. Next, we define link
frequency (LF ). LF (t, D) is the number of articles which link to the article of t
and are included in the article set D. Typicality and speciality of a given term t
when q is a search query are calculated by using LF (t, Dq). Typicality score is
calculated by dividing LF (t, Dq) by the number of articles included in Dq, and
speciality score is LF (t, Dq) divided by LF (t, DW ) where DW means all articles
of Wikipedia. Each equation is shown as follows:

Typicality(t, q) =
LF (t, Dq)
|Dq|

(7)

Speciality(t, q) =
LF (t, Dq)
LF (t, DW )

(8)

3.3 Experiments

Experimental Setting. We prepared 20 queries in total for evaluating our
proposed method of measuring typicality and speciality of terms. 10 of these
queries are common terms chosen from the most popular Wikipedia articles 3.
3 http://en.wikipedia.org/w/index.php?title=Wikipedia:Popular pages
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Table 2. Examples of typicality and speciality of terms extracted from Wikipedia

Query:q Term:t Typicality(q, t) Speciality(q, t)
Apple Inc. 0.4046 0.0367

iPod IPod shuffle 0.2948 0.3953
IPod Camera Connector 0.1445 0.4717

Carbon dioxide 0.2702 0.0848
Global warming Greenhouse gas 0.2561 0.2740

Bali roadmap 0.1293 0.8279
Machine learning 0.3755 0.3032

Support vector machine Algorithm 0.1119 0.0203
Kernel trick 0.0361 0.4545

Information retrieval 0.3947 0.2616
Query expansion Recall 0.0526 0.6667

Relevance feedback 0.0439 0.833

The other 10 queries are technical terms about data mining and information
retrieval, and so on. In this experiment, we do not deal with queries for which
a Wikipedia article does not exist such as “iPod Zune” although in Section 3.1
we described how to process such queries. Wikipedia can be downloaded 4, and
in our experiment we used the English Wikipedia database dumped in July
2008. For each query, we calculated typicality and speciality of terms by using
structural features of Wikipedia. We took top 10 typical terms together with
another 10 terms selected at random for each query and we showed these terms
to 5 evaluators who are graduate students in informatics. Evaluators rated each
term on a scale of 1 (low) to 7 (high) to reflect its typicality and speciality levels.
The purpose of this evaluation is investigating the following two points:

– Accuracy of top 10 typical terms.
– Validity of speciality of each term.

Results. First, we describe some examples of typicality and speciality of terms
extracted from Wikipedia in Table 2. In the example of “global warming”, “car-
bon dioxide” and “greenhouse gas”, which are generally considered as the cause
of global warming, had high typicality. “Carbon dioxide” which is a relatively
general term had low speciality, but “greenhouse gas” which conceptually con-
tains “carbon dioxide” showed high speciality. This is because “greenhouse gas”
is a special term only used in the domain of global warming. “Bali roadmap”, a
roadmap adopted after a climate change conference held in Bali, showed much
higher speciality.

Next, we describe the accuracy of top 10 typical terms for our queries. We
calculated an average precision for evaluating the accuracy of typicality. Here we
regarded terms of which typicality score provided by evaluators were more than
5.0 as the correct terms and those with the score lower than 5.0 as incorrect
ones. The result is shown in Table 3. If a technical term was given as a search
query, the average precision was about 70%. On the other hand, the average
precision for common term queries was only about 50%.

4 http://download.wikimedia.org



Quality Evaluation of Search Results by Typicality and Speciality of Terms 579

Table 3. Accuracy of the top 10 typical terms (left table) and validity of speciality of
each term (right table)

Query Type Avg. Precision (top 10)
Common Terms 0.49
Technical Terms 0.71

Total 0.60

Query Type Spearman’s coefficient
Common Terms 0.40
Technical Terms 0.45

Total 0.42

Last, we describe the validity of the speciality calculation of the terms. We
calculated Spearman’s rank correlation coefficient between speciality scores mea-
sured by our proposed method and average scores given by user evaluation. As
shown in Table 3, it turned out as a result that they have a positive correlation.

4 Quality Evaluation of Search Results

In this section, we propose two measurements, “topic coverage” and “topic de-
tailedness”, for facilitating the evaluation of the quality of Web pages by using
typicality and speciality scores of included terms.

4.1 Topic Coverage

Topic coverage of a Web page means how many typical topics about a search
query are covered by the Web page. We consider that a Web page containing
more typical terms has higher coverage. Topic coverage of a Web page p about
a query q is calculated by the following equation:

TopicCoverage(p, q) =
∑

t∈terms(q)

C(t, p) · Typicality(t, q) (9)

where terms(q) are extracted terms and C(t, p) is an indicator taking values 0
or 1 depending whether a Web page p contains a given term t. A Web page with
high topic coverage can be regarded as of high quality while a Web page with
low coverage may be written from a narrow viewpoint or an inclined viewpoint.
Note that we use here C(t, p) instead of the term frequency of t in a Web page
for measuring topic coverage because term frequency is not directly related to
how many topics the page includes.

4.2 Topic Detailedness

Topic detailedness of a Web page means how many special topics about a search
query are included in the Web page. We consider that a Web page containing
more special terms is more detailed. Topic detailedness of a Web page p about
a query q is calculated by the following equation:

TopicDetailedness(p, q) =
∑

t∈terms(q)

TF (t, p) · Speciality(t, q) (10)
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where terms(q) are extracted terms and TF (t, p) means term frequency of t in
the Web page p. In this case, term frequency of t should be taken into consider-
ation because Web pages with special terms that are repeatedly used are more
likely to be about detailed topics.

Even if a Web page shows a high coverage, it may contain only shallow infor-
mation. In general, we consider a Web page with low coverage and low detailed-
ness as a low quality Web page.

4.3 Application

We implemented a system that presents Web search results with the scores of
topic coverage and topic detailedness. The objective of this system is to make
it easier for users to choose the right pages when exploring search results. Fig.
4 shows a screen shot of our system. The interface for inputting queries is the
same as the one in a standard search engine. The system gives users search
results which contain the scores of topic coverage and topic detailedness of each
Web page in addition to titles, snippets and urls. We used Yahoo! Web search
API service 5 for acquiring the search results.

Currently, our system downloads each Web page for calculating topic coverage
and topic detailedness. Response speed of the system could be improved by using
only title and summary for calculating the two measurements. However, we need
to be aware of that it is difficult to evaluate the quality of a Web page by using
only titles and snippets contained in Web search results as the length of available
text is limited.

4.4 Experiments

For showing the effectiveness of our proposal, we have to clarify the following
two points:

– Accuracy of our proposed method for measuring topic coverage and topic
detailedness.

– Relation between the overall quality of Web pages, and topic coverage or
topic detailedness.

We prepared 10 search queries for clarifying the above points. For each query,
we imposed the following tasks on evaluators:

1. Read the top 10 Web pages acquired by a Web search engine.
2. Rate on a scale of 1 to 10 the topic coverage and topic detailedness of each

page.
3. Rate on a scale of 1 to 10 the overall quality of each page.

In this experiment, we regarded the average of each score given by 5 evaluators
as the answers of coverage, detailedness and overall quality for each page.

5 http://developer.yahoo.com/search/web/V1/webSearch.html
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Fig. 4. A screenshot of the proposed system which presents Web search result with
topic coverage and topic detailedness

We first discuss the effectiveness of our proposed method for measuring topic
coverage and topic detailedness of Web pages. We used the following three rank-
ings:

Original Ranking (OR) : An original ranking by Web search engine.
System Ranking (SR) : A ranking sorted by topic coverage or topic detailed-

ness which we proposed.
User Ranking (UR) : A ranking sorted by topic coverage or topic detailed-

ness scored by evaluators.

For each query, we calculated Spearman’s rank correlation coefficient between
the original ranking and user ranking, and between the system ranking and
user ranking. The result is shown in Table 4. In general, the system ranking
has more strongly positive correlation with the user ranking in comparison with
the original ranking. This indicates that the proposed method for measuring
topic coverage and topic detailedness is appropriate and these two measurements
should help users with judging which pages they choose among search results.

Next, we investigate the correlation between topic coverage / topic detailed-
ness and overall quality of Web pages that were assigned by the evaluators. As
shown in Fig. 5, we found out that topic coverage and topic detailedness of Web
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Table 4. Spearman’s rank correlation coefficient between original ranking (OR) or
system ranking (SR) and user ranking (UR)

topic coverage topic detailedness
Query OR v.s UR SR v.s. UR OR v.s. UR SR v.s. UR

support vector machine 0.6364 0.2970 0.5758 0.1758
Eric Clapton 0.2121 0.8061 -0.0061 0.6485

subprime lending 0.2121 0.4303 0.1152 0.6121
parkinson’s disease 0.3697 0.3576 0.3333 0.4909
Hurricane Katrina 0.2242 0.4303 0.3576 0.5030

global warming carbon dioxide 0.2970 0.6848 0.3576 0.8182
iPod Zune comparison 0.1030 0.5879 0.1515 0.4424
ancient Olympics event 0.1394 0.5273 0.1030 0.6727

obesity causes 0.1152 0.6121 0.2242 0.5152
PageRank search engine optimization -0.4182 -0.0424 -0.4182 0.0182

Avg. 0.1891 0.4691 0.1794 0.4897

Fig. 5. Relationships between overall quality and topic coverage, topic detailedness

pages are strongly correlated to their overall quality. This means that topic cov-
erage or topic detailedness are important factors for evaluating the quality of
Web pages.

5 Conclusion and Future Work

In this paper, we introduced the notions of topic coverage and topic detailed-
ness of Web pages which are important factors in evaluating their quality. Topic
coverage and topic detailedness are calculated by using typical terms and spe-
cial terms. We have proposed a method of measuring typicality and speciality of
terms by utilizing structural features of Wikipedia. We also implemented a sys-
tem that presents Web search results with the scores of topic coverage and topic
detailedness of pages. The experimental results suggested that our proposed
methods are effective in classifying topic terms and that automatic evaluation
of Web page quality by topic coverage and topic detailedness has a positive
correlation with a manual evaluation.

Our proposed methods using Wikipedia data still have some disadvantageous
that need to be approached. One problem is the word sense disambiguation like
in the example of “Java”. We think that this problem can be solved by applying
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disambiguation methods proposed, for example in [18][19]. Another problem is
certain, inherent limitation of Wikipedia. Although Wikipedia contains a huge
amount of content, it does not necessarily cover all the possible topics and the
quality and scope of its articles may actually differ for different topics. However,
currently Wikipedia is the largest, manually edited knowledge base available on-
line. It is also frequently and promptly updated according to real world changes.

We focused only on two aspects of quality evaluations of Web pages, topic
coverage and topic detailedness. Both are actually query-dependent and user-
dependent quality measures. In our future work, we plan to combine the proposed
methods with other query-independent quality measures such as a readability
for more precisely evaluating quality of Web pages. We also intend to propose
a system for re-ranking search results by user’s knowledge level about a search
query or its domain.
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and institutions: Grants-in-Aid for Scientific Research (Nos. 18049041 and
18049073) from MEXT of Japan, a MEXT project entitled “Software Technolo-
gies for Search and Integration across Heterogeneous- Media Archives,” a Kyoto
University GCOE Program entitled “Informatics Education and Research for
Knowledge- Circulating Society,” and the National Institute of Information and
Communications Technology.

References

1. Nakamura, S., Konishi, S., Jatowt, A., Ohshima, H., Kondo, H., Tezuka, T.,
Oyama, S., Tanaka, K.: Trustworthiness analysis of web search results. In: Kovács,
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Abstract. Recently, Social Bookmark, which allows us to register and
share our own bookmarks on the web, is attracting attention. Social
Bookmark makes it possible to retrieve structured data such as (URL,
Username, Timestamp, Set of tags). More importantly, the retrieved data
represents user interests. There are two aspects of bookmark usage: data
for reuse and data for hot issues. This paper, focusing on timestamps of
bookmarks, proposes a way to measure the freshness of a web page. It
further proposes a page evaluation method that improves S-BITS, our
previously proposed method to evaluate informativeness of web pages us-
ing social bookmarks, using the freshness evaluation. Finally, it demon-
strates the effectiveness of the proposed method through experiments.

1 Introduction

Social Bookmarks are attracting attention recently. They belong to new infor-
mation sharing services and allow individuals to bookmark and annotate web
pages. A user can manage bookmarks by annotating web pages with sets of
tags. A bookmarked page has valuable attributes for its user. A bookmarking
action from a user to a page is a vote from the user for the page. People differ
in expertise in a typical region. In a typical region, opinions from people who
have high expertise will be trustworthy. In our previous work [6], we proposed
S-BITS, which uses Social Bookmarks to evaluate and rank web pages based on
user expertise. It showed higher precision than existing web search engines and
an existing method that looks only at bookmark counts.

Social Bookmarks have timestamps that indicate when a user bookmarks a
page. Some web pages are fresh only for a short time, such as news scripts; others
are fresh for a long time, such as Wikipedia scripts and manuals. The principle
difference is the spread of timestamps. Short-lived pages are bookmarked a lot
but loose their popularity in a short time. Long-life pages are bookmarked over a
protracted period of time. This paper, taking into account the lifetime of a web
page’s content based on the spread of timestamps, proposes a method named
FS-BITS to evaluate freshness of the web page. FS-BITS is an extension of our
previous method S-BITS.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 585–589, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Social Bookmark

Fig. 1. SBM

Social Bookmarks (shortly SBMs) are new information shar-
ing services that allow individuals to bookmark and annotate
web pages. A user can manage bookmarks by deciding a set of
tags. delicious1, at the top of SBM services, now has more than
a million users and continues to grow. SBM services have been
popular, and many services like Hatena Bookmark2 (Japanese
Top Service Provider) have appeared. The bookmark data,
which is structured as a tuple (url, username, timestamp, set
of tags), is available in SBM services (Fig. 1). The data shows
user interests for certain pages. A user, using personal knowl-
edge and intuition, can annotate a page with tags that show
keywords and/or categories. Timestamps indicate when users
get interested in the information.

3 Related Work

With the spread of SBM services, research into Folksonomy, including SBMs,
has increased. Bao et al. [4] demonstrated that keyword associations based on
social annotations can improve web searches. Yanbe et al. [3] proposed SBRank,
which indicates how many users bookmarked a page, and estimated effectiveness
of SBRank as an indicator of web search. They further suggested integrating
SBRank and PageRank [2] into a ranking method.

Research into temporal data is also abundant. Hotho et al. [5] presented an
approach for discovering topic-specific trends within folksonomies.

Our previous approach [6] features introduction of concepts of authorities and
hubs as in HITS [1] into the page evaluation framework using SBM. We deal with
the freshness of all pages in SBM by extending our previous work.

4 Freshness of Web Page

In SBM services, whether or not a page has attracted attention and has been
freshened is determined by whether or not the page has been recently book-
marked. Since pages have diverse contents, however, the lifetime of freshness for
each page is also diverse. For that reason, we cannot simply say that freshness
is lost even if the page has not been bookmarked for a week or a month.

Many pages go unnoticed after the initial hot peak. Typical examples are pages
that include highly-temporary topics, such as news scripts. In contrast, there are
also many pages that people have evaluated over a long period . Examples are
manuals and reference pages. Freshness of the former is lost after its hot peak and

1 http://delicious.com/
2 http://b.hatena.ne.jp/
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the latter is longer. We define the duration of freshness as lifetime. Considering
their lifetimes, the former’s is short and the latter’s is long.

The main difference between the two is the spread of bookmark timestamps.
We assume that lifetime δlife is associated with spread, which is the spread of
bookmark timestamps. Two indicators express spread: One is standard deviation
(SD); the other is interquartile range (IQR). SD has features that reflect the
shape of the population and its changes. But it is sensitive to small changes.
IQR has robust features for small changes. It is weak, however, to changed
values when the population is large. This paper, dealing with SD and IQR,
defines lifetime δlife as follows (Formula 1):

δlife = C1 SD + C2 IQR + C0 (1)

where C0, C1 and C2 are constants.
We consider the page keeps current freshness when one of the following two

conditions is met.

1. Enough time has passed since the first bookmark to the page, but it is still
getting new bookmarks and can be considered to be within its lifetime.

2. The page just starts being bookmarked recently.

For the former pages, we can observe the spread of bookmark timestamps, and
estimate lifetime δlife. If the time passed since the last bookmark time is less
than δlife, we regard the page is fresh. While for the latter pages, we cannot
estimate lifetime δlife because it is highly possible to change its population and
distribution dramatically when the new bookmarks are appeared. Therefore, we
regard that a page is fresh if less than δ0 times has passed since the occurrence
of the last bookmark. To formulate the above concepts, freshness of page p is
evaluated as follows (Formulas 2 to 4):

dt(p) = ttoday − tlast(p) (2)

freshness(p) =
{

true if dt(p) < max(δlife(p), δ0) (3)
false otherwise (4)

where tlast(p) is the latest bookmark timestamp of p. Note that δlife(p) differs
page to page, while δ0 is a common parameter for all pages. In the experiment
in section 7, we set δ0=7[days], and C1 = C2 = 0.5, C0 = 0.

5 Ranking Web Pages

We now propose FS-BITS, which is a ranking method for web search considering
user expertise and page authoritativeness and freshness.

In FS-BITS, we consider page freshness. A fresh page is informative, and it is
highly likely that non-fresh one is redundant. We therefore prune pages without
freshness. If freshness of page pi (denoted by freshness(pi)) is considered non-
fresh, it is pruned. When page pi is pruned, the bookmarks and users connected
with page pi are also pruned.
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In this way, based on the page freshness, a pruned graph is constructed. After
pruning, we can create rankings that target only fresh pages. FS-BITS operation
consists of 4 steps as follows:

1. Based on the query, select the result page set P0, relevant user set and tag
set.

2. Merge another page set P1 to P0. P1 is extracted based on co-user and co-tag
relationship.

3. Truncate the pages which are out of date (use the freshness measurement).
4. Rank the pages (just like the HITS algorithm).

Our previous ranking method S-BITS [6] consists of steps 1, 2 and 4. Since S-
BITS does not consider the freshness of web pages, it regards pages that received
good evaluations in the past as still being authoritative pages. Solving this matter
by inserting step 3 which evaluates page freshness, we improve the precision of
page evaluation.

6 Experiments

This section presents and discusses experimental results. We measure effective-
ness of the proposed method. We compared and analyzed propriety for 3 ranks:
the original Yahoo! rank, the S-BITS rank and the FS-BITS rank. We collected
SBM data in Hatena Bookmark from July to August 2008. The collected data
we used in this experiments included around 300 thousand pages and 5 million
bookmarks. The initial page set P0 for S-BITS and FS-BITS was obtained from
the Yahoo! Web Search API 3. We took the top 200 pages from that API. To
evaluate each method manually, we recruited 6 examinees. Then we evaluated
30 cases including 10 queries. We asked examinees to distinguish whether or not
the page is fresh and whether or not it is informative. We then asked them to
score satisfaction for each ranking using a five-grade evaluation. Because there
is a limit to what can be done manually, the evaluation is based on only the top
20 pages.

In precision of informativeness (Fig. 2), FS-BITS, the newly proposed method,
shows higher precision than the others. FS-BITS removes pages estimated as
non-fresh, related bookmarks and users. With this removal, FS-BITS can com-
pose a more sophisticated graph than S-BITS. In precision of freshness (Fig. 3)
as well, FS-BITS shows higher precision than the others. Because S-BITS has no
way to include freshness concept, it cannot out-perform the others. By demon-
strating higher precision in FS-BITS, we can say that the distinction of page
freshness is effective. Regarding satisfaction for each ranking (Fig. 4), examinees
expressed good satisfaction by awarding high scores. Both S-BITS and FS-BITS,
our proposed methods, received higher scores than Yahoo!.

As the above results show, by taking page freshness into account and confining
search targets to fresh pages, it is possible to improve precision and satisfaction
of retrieval.
3 http://developer.yahoo.co.jp/search/web/V1/webSearch.html
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Fig. 2. Average precision
for informativeness

Fig. 3. Average precision
for freshness

Fig. 4. Satisfaction

7 Conclusion

Focusing on timestamps, which show bookmarked times in SBM, we proposed a
way to evaluate page freshness. Additionally, combining S-BITS and the fresh-
ness evaluation, we proposed FS-BITS, which includes the time-line. Experi-
ments confirmed the effectiveness of FS-BITS to evaluate page authoritativeness
based on user expertise considering page freshness. Future work will focus on
refining the model to define freshness. Moreover, by constructing more sophisti-
cated models and discovering rules or knowledge by looking at various elements
of SBM services, we will propose interactive and effective web search models.

Acknowledgement. This research has been supported in part by the Grant-
in-Aid for Scientific Research from MEXT (#1924006).
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Abstract. Crawling important pages early is a well studied problem.
However, the availability of different types of framework for publishing
web content greatly increases the number of web pages. Therefore, the
crawler should be fast enough to prioritize and download the important
pages. As the importance of a page is not known before or during its
download, the crawler needs a great deal of time to approximate the
importance to prioritize the download of the web pages. In this research,
we propose Fractional PageRank crawlers that prioritize the downloaded
pages for the purpose of discovering important URLs early during the
crawl. Our experiments demonstrate that they improve the running time
dramatically while crawling the important pages early.

1 Introduction

The content of search engines is fed by crawlers which download web pages
recursively by following the links. However, the number of web pages is growing
at an astonishing rate and most of the time users only view the top ranked pages
in the search results. Therefore, a crawler needs to prioritize the download of
the web pages. In spite of the existence of state of the art crawling techniques,
crawling important pages early poses a great challenge, because crawlers have to
determine the importance of web pages before downloading them. The existing
strategies require a very large running time to prioritize the URLs.

In this research, we propose three algorithms to reduce the running time of the
process of prioritizing URLs for the purpose of crawling important pages early.
We model a special random surfer that visits web pages only once. The order
in which the web pages are visited depends on their Fractional PageRank. The
Fractional PageRank of a page is the summation of the probabilities of all of the
paths from the seed pages to this page during a certain phase. We assume that
pages with high Fractional PageRank values are likely to have high PageRank
values and we give high priority to their download. We compare the results of
our algorithms with that of the Windowed RankMass crawlers [2] that use the
PageRank (PR) lower bound of a page to prioritize the discovered URLs.
� This work was supported by grant No. RO1-2006-000-10510-0 from the Basic Re-

search Program of the Korea Science & Engineering Foundation.
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2 Proposed Methodology

In perspective of our proposed crawlers, we group web pages into two broad
types; Downloaded pages and Undownloaded pages. Among the undownloaded
pages whose URLs are known to or discovered by the crawlers are called Discov-
ered pages. A downloaded page is called Explored page if the URLs from that
page are discovered or downloaded by the crawlers. Otherwise the downloaded
pages is called Unexplored pages. In the random surfer model of the PageR-
ank, every edge in a webgraph has some probability that a random surfer will
traverse and the PageRank of a page is the summation of all of the paths prob-
abilities a page receives through its incoming edges [1][2]. Fractional PageRank
(FPR) of a page is the summation of the probabilities of all of the paths from
the seed pages to this page in a certain phase during crawling. Therefore, the
formulation of Fractional PageRank is almost as same as the PageRank except
it is computed considering only certain phase of crawling. Because of the space
limitation we discuss the formulation of Fractional PageRank for Fractional
PageRank Discovered Crawler only in the following.

fprv = (1− d) ∗ tv +
∑
u→v

fpru ∗ d

ou
; v ∈ V, u ∈ U (1)

fpru = 0; u /∈ U, u ∈ E (2)

When a random surfer is on a page u, with the probability d which is set to
0.85, the random surfer will click on one of the ou links on the page with equal
probability of 1

ou
. Here, tv is trusted values for the seed pages and V , U , E denote

the Discovered, Unexplored and Explored set respectively and all the sets are
disjoint. We differentiate the FPR from the PageRank by considering the path
probabilities during a certain phase. In the case of FPR Discovered crawler,
the certain phase means the FPR is computed only for the undownloaded but
discovered pages (v ∈ V ) through the incoming paths from the Unexplored Pages
(u ∈ U). When all of the outlinks from the Unexplored page are extracted the
FPR of that page will set to 0 permanently and u becomes one of the elements
of Explored set E.

Algorithm 1. Fractional PageRank Discovered Crawler
1. Foreach pi in the set of trusted seed pages do
2. fpri = (1 − d) ∗ ti;
3. While (Queue is not empty) do
4. Pick pi with largest fpri;
5. Download pi;
6. Foreach pj linked to by pi and pj is not downloaded do
7. fprj = fprj + (d ∗ fpri)/oi;
8. fpri = 0;
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Algorithm 2. Fractional PageRank Explored Crawler
1. Foreach pi in the set of trusted seed pages do
2. fpri = (1 − d) ∗ ti;
3. Download pi;
4. While (Queue is not empty) do
5. Pick pi with largest fpri;
6. Foreach pj linked to by pi and pj is not in Explored do
7. Download pj if not downloaded yet;
8. fprj = fprj + (d ∗ fpri)/oi;
9. fpri = 0;
10. mark pi as Explored;

Algorithm 3. Two Layer Fractional PageRank Crawler
1. Foreach pi in the set of trusted seed pages do
2. fpri = (1 − d) ∗ ti;
3. Download pi;
4. Assign all the seed pages in the parentQ;
5. While (parentQ is not empty) do
6. Pick pi with largest fpri from parentQ;
7. Foreach pj linked to by pi and pj is neither in Explored nor in parentQ do
8. Download pj if not downloaded yet;
9. fprj = fprj + (d ∗ fpri)/oi;// insert or update fpr of j in childQ
10. fpri = 0;
11. mark pi as Explored;
12. if parentQ is empty assign all the urls of the childQ to parentQ

We propose two other novel algorithms which directly prioritize the Unex-
plored pages. First one is the Fractional PageRank Explored Crawler; we
accumulate the FPR of Unexplored page until the page is explored. Therefore,
here prioritization is done for ordering the exploration of the Unexplored pages.
All the outlinks of the highest FPR Unexplored page will be downloaded to-
gether. As this algorithm deals with the downloaded Unexplored pages, priori-
tizing scheme runs on the small amount of pages and hence it is faster.

The last algorithmwe propose isTwoLayerFractionalPageRankCrawler.
To decrease the overhead of prioritizing the URLs further, the queue used in the
FPR Explored crawler is divided into two levels. The top level is called the parent
queue and the bottom level is called the child queue. The FPR for this crawler is
defined as the summation of the path probabilities it receives while a page stays
in the child queue. The downloaded pages are first placed into the child queue and
prioritized here according to FPR. When the parent queue becomes empty, all of
the pages from the child queue will be placed into the parent queue. In the parent
queue, the page with the highest FPR will be explored first and the URLs pointed
to by that page will be downloaded together.
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In the proposed three algorithms we define and use the Fractional PageRank
instead of the PR lower bound as computing PR lower bounds is very expensive
[2]. In the computation of PR lower bounds, if any Explored node receives a new
inlink, the PR lower bounds of all its descendent nodes will be computed repeat-
edly which costs a great deal of time and memory. Moreover, in the experiment
we found that the FPR crawlers are also able to crawl important pages early.

3 Experimental Results

We simulate our algorithms on a sub graph of theWeb consisting of 80millionpages
and about 2.4 billion links from the .uk top domain, namely the uk-2006-06 graph,
which was crawled by University of Millan [3]. For our simulation, we used only a
single Intel Core 2 Quad 2.4 Ghz CPU with 4 GB RAM in a Solaris machine. We
perform all of the processing in the main memory. In this experiment, the top 160
pages according to PageRank among the collection are selected as the seed pages
and the trusted values are distributed equally among them.

The proposed crawlers outperform the 100% Windowed RankMass crawler,
not only in terms of the running time, but also crawling important pages ear-
lier. The 100% Windowed RankMass crawler runs faster than all of the other
RankMass crawlers [2]. Besides that we also compare our algorithms with 20%
Windowed RankMass crawler (Figure 1 & 2). To visualize the effectiveness of the

Table 1. Algorithm Performance by Running Time

Name of Algorithm Hours No of pages
Two Layer Fractional PageRank crawler 40 mins 76688586
Fractional PageRank Explored crawler 54 mins 76688586
Fractional PageRank Discovered crawler 71 mins 76688586
100% Windowed RankMass crawler 4:11 hours 69000000
20% Windowed RankMass crawler 20 hours 70000000

0 1 2 3 4 5 6 7 8

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Documents

T
im

e 
in

 s
ec

on
ds

 

 
FPR Discovered Crawler
Two layer FPR Crawler
FPR Explored Crawler
20% Windowed RankMass
100% Windowed RankMass

Fig. 1. Running Time of Algorithms

10 1000 100000 5e+006 2e+007 4e+007 6e+007 7.6e+007
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Documents

R
an

kM
as

s

 

 
FPR Discovered Crwaler
Two layer FPR Crwaler
FPR Explored Crwaler
20% Windowed RankMass
100% Windowed RankMass
Optimal Crawler

Fig. 2. Effectiveness of Algorithms



594 Md.H. Alam, J. Ha, and S. Lee

proposed crawlers, we compute the PageRank values for all of the pages in the
uk-2006-06 graph and plotted the sum of the PageRank values of the downloaded
pages at different points of the crawling process. The strategy which makes the
cumulative PageRank higher downloading less documents is an effective one. The
upper bound corresponds to the value of the cumulative PageRank collected by
the optimal crawler that is assumed to know all of the URLs and the PageRank
values of the pages and to greedily download the highest PageRank page first
from the frontier.

It can be seen from Figure 2 that all of the three proposed FPR crawlers
provide better ordering than the 100% Windowed RankMass crawler. The Two
Layer FPR crawler behaves similarly to the 100% Windowed RankMass crawler.
However, the FPR Explored crawler clearly provides better ordering than the
100% Windowed RankMass crawler. The experimental results (Figure 2 & Ta-
ble 1) show that the FPR Discovered crawler produces the same ordering with
the 20% Windowed RankMass crawler within 70 minutes whereas the 20% Win-
dowed RankMass crawler takes about 20 hours.

The FPR Explored crawler performs better than the FPR Discovered crawler
in terms of the running time. However, the ordering quality is degraded because
of its mixed mode of sequential and random access according to the FPR. This
means that although it picks the web pages with the highest FPR to be explored,
it downloads all of the URLs pointed to by the explored pages together.

4 Conclusions

We propose three crawling algorithms that are scalable and able to prioritize
the web scale frontier effectively and efficiently. In the FPR Explored and Two
Layer FPR algorithms we prioritize the downloaded unexplored pages and both
of these algorithms demonstrate the effectiveness of choosing important pages
early. In the future, we will study about the combination of Fractional PageRank
and other available information in the downloaded unexplored pages to design
an effective algorithm for focused crawler.
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Abstract. In Deep Web data integration, some Web database interfaces
express exclusive predicates of the form Qe = Pi(Pi ∈ P1, P2, . . . , Pm),
which permits only one predicate to be selected at a time. Accurately and
efficiently estimating the selectivity of each Qe is of critical importance
to optimal query translation. In this paper, we mainly focus on the selec-
tivity estimation on infinite-value attribute which is more difficult than
that on key attribute and categorical attribute. Firstly, we compute the
attribute correlation and retrieve approximate random attribute-level
samples through submitting queries on the least correlative attribute
to the actual Web database. Then we estimate Zipf equation based on
the word rank of the sample and the actual selectivity of several words
from the actual Web database. Finally, the selectivity of any word on
the infinite-value attribute can be derived by the Zipf equation. An ex-
perimental evaluation of the proposed selectivity estimation method is
provided and experimental results are highly accurate.

1 Introduction

The Deep Web continues to grow rapidly [1], which makes exploiting useful
information a remarkable challenge. Metaquerier, which provides a uniform in-
tegrated interface to the users and can query multiple databases simultaneously,
is becoming the main trend for Deep Web data integration.

Query translation plays an important role in a metaquerier. However, due
to the large-scale, heterogeneity and autonomy of the Web databases, auto-
matic query translation is challenging. One of the important aspects is that
Web database interfaces may express different predicate logics. The integrated
query interface and many Web database interfaces express conjunctive predicates
of the form Qc = P1 ∧ P2 ∧ . . . ∧ Pm, where Pi is a simple predicate on single
attribute. While some Web database interfaces express exclusive predicates of
the form Qe = Pi(Pi ∈ P1, P2, . . . , Pm), which means any given query can only
include one of these predicates. Exclusive attributes are often represented on a
Web database interface as a selection list of attribute names or a group of radio
buttons each of which is an attribute. A very interesting problem is, among all
the Qes on an interface, which one has the lowest selectivity? It is of critical
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importance to optimal query translation. In this paper, we mainly focus on the
selectivity estimation of infinite-value attribute for exclusive query translation.

Before we carry out our study, we have two important observations: 1) there
exist different correlations between different attribute pairs, and 2) the word
frequency of the values on an infinite-value attribute usually has a Zipf-like dis-
tribution. Based on these observations, we propose a correlation-based sampling
approach to obtain the approximate random attribute-level sample and a Zipf-
based approach that can estimate the selectivity of any word by Zipf equation.

The rest of paper is organized as follows. Section 2 gives the overview of
query selectivity estimation. Section 3 proposes the correlation-based sampling
approach. Section 4 proposes a Zipf-based selectivity estimation approach. Sec-
tion 5 reports the results of experiments. Section 6 introduces the related work.
Section 7 concludes the paper.

2 An Overview of Query Selectivity Estimation

The overall flow chart of our approach is given in Fig.1.

Attribute correlation calculation for a domain. For any given domain
(e.g., Books), we first calculate attribute correlation for each pair of attributes
(Attribute Correlation calculation) and identify the least correlative at-
tribute Attri for each specific attribute Attru. Because attribute correlation of
each attribute pair in a domain is usually independent of the Web databases, the
attribute correlation can be used for all the Web databases in the same domain.

Selectivity estimation for a Web database. Given an infinite-value at-
tribute Attru and a specific Web database, we use a series of query probes on
Attri in the Web database interface to obtain an approximate random attribute-
level sample on Attru (Correlation-based sampling). The word rank on Attru

can be calculated from the sample, which is viewed as the actual word rank on
Attru of the Web database due to the randomness of the sample. Then several
words on Attru are used to probe the actual Web database and the frequencies

Attribute
Correlation
calculation

Word
rank

Word
frequency
probing

Selectivity
estimation

The least 
correlative
attribute

Correlation-
based

sampling

Domain
Web Database

Zifp equation
calculation

Several word 
frequency

Zifp
equation

User query

Selectivity
order of Qe

Fig. 1. The processing flow of our approach



Selectivity Estimation for Exclusive Query Translation 597

of these words are returned (Word frequency probing). Zipf equation can
be estimated using the word ranks and the actual frequencies of several words
(Zipf equation calculation). Finally, for any word on Attru, we can estimate
its frequency by the Zipf equation and its rank (Selectivity estimation).

3 Correlation-Based Sampling for Word Rank

In this paper, we use Attribute Word Distribution of different attributes to define
the concept of attribute correlation.

Definition 1 Attribute Word Distribution (AWD). Given all the words
w1, w2, . . ., wm of the values of attribute A in a database D, the Attribute Word
Distribution for A is a vector −→v (v1, v2, . . . , vm), each component of which vi is
the frequency of the word wi. Under the assumption that no word appears more
than once in an attribute value, the frequency of the word wi is the number of
tuples returned by the query σA=wiD.

Definition 2 Attribute Correlation. Attribute Correlation is the dependence
between any attribute pair(Attru, Attrv) and is measured by the difference of the
Attribute Word Distributions of the returned results on an attribute (Attru).

A measure of the distribution difference is Kullback-Leibler(KL) divergence.
If we submit different queries Q1, Q2, . . ., Qs on Attrv, we will gain the cor-
responding result sets S1, S2, . . ., Ss on Attru. Suppose that S is the union
of S1, S2, . . ., Ss and S consists of a set of words w1, w2, . . ., wk. Then the
KL-divergence of Attru from S to Sj is:

DKL(S||Sj) =
k∑

l=1

prob(Attru = wl|S)log
prob(Attru = wl|S)
prob(Attru = wl|Sj)

where prob(Attru =wl| S) refers to the probability that Attru=wl in S and
prob(Attru=wl| Sj) refers to the probability that Attru=wl in Sj .

Attribute correlation is the average of the KL divergence of Attru from S
to Sj :

Correlation(Attru, Attrv) =
1
s

s∑
j=1

DKL(S||Sj)

After discovering the least correlative attribute Attri, we submit some query
probes on Attri to the Web databases and collect the returned results on attribute
Attru as the attribute-level sample of Attru, which is the approximate random
sample. Then we order the words of the sample by their frequencies and the word
rank can be viewed as the actual one due to the randomness of the sample.

4 Zipf-Based Selectivity Estimation

It is well known that English words of a general corpus satisfy the Zipf distribu-
tion. However, it is not clear if the words of text attributes in different domains
also follow this distribution. Our experiments indicate that they do.
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Zipf distribution can be represented by N = P (r+p)−E [4], where N represents
the frequency of the word, r represents the rank of the word and P, p and
E are the positive parameters. As Fig.2 shows, we submit word i, word j to
the Web database and obtain their frequencies Fwi(i.e., Ni) and Fwj(i.e., Nj),
respectively. And we know the ranks of these two words (i.e., ri and rj) from the
sample obtained in section 3. Then, we can estimate the parameters P, p and E
as follows.
– Equation Transformation: After the logarithm transformation, the Zipf equa-

tion is changed to ln(N) = lnP − Eln(r + p). Because the parameter p
(0 < p < 1) is usually much smaller than word rank r(i.e., some applications
even assume p = 0), the parameter E is approximately viewed as the slope
of the line ln(N) = lnP − Eln(r) as shown in Fig.3.

– Parameter E: E can be calculate by the equation E ≈ ln(Ni)−ln(Nj)
ln(rj)−ln(ri)

.
– Parameter p: When E is estimated, parameter p can be derived from the

equation Ni

Nj
= P∗(ri+p)−E

P∗(rj+p)−E . So we have p ≈ rj−ri∗em

em−1 (m = 1
E *ln Ni

Nj
).

– Parameter P : Finally, the parameter P is derived. P ≈ Nj ∗ (rj + p)E .

Consequently, we can use the Zipf equation and the word ranks to compute
the selectivity of any word on the attribute.

It is worth noticing that the parameters P , p and E are not unique. We study
the relationships among the precision, word ranks and rank distances. The results
show that the precision will go down when the rank increases and to keep the
precision stable, the distance of two word ranks should be increased with the
increase of the word ranks.

5 Experiments

We evaluate our approach with the precision measure which is defined as follows.

Precision =
1
N

∑
n

∣∣∣∣Nr − Es

Nr

∣∣∣∣
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Fig. 4. The precision of selectivity estimation

where Nr is the number of results when submitting the word on the attribute to
the actual Web database, Es is the selectivity of the word on the same attribute
estimated by our approach, and n is the number of the words that we test in
the experiments.

We select the top 100 words on Title, Conference attribute of Libra, Title,
Director attribute of IMDb and submit them to actual Web databases. Mean-
while, we estimate the selectivity of these words using our approach. Overall, as
we can see from Fig.4, the precision of our approach is generally good.

However, there is still some deviation on estimation values. The reasons are
that any two attributes are somehow correlative with each other and the words
on some infinite-value attributes do not satisfy Zipf distribution perfectly.

Given that our approach can cope with selectivity estimation of all the infinite-
value attributes and it is domain independent, it is generally feasible to be ap-
plied in query translation for exclusive query interface.

6 Related Work

The problem of selectivity estimation through uniform random sampling has re-
ceived considerable attention [2,5]. [2] cannot be applied as we do not have full
access to the Web databases. [5] proposes a random walk approach to sampling
the hidden databases, which is a database-level sampling and relatively complex
compared with our attribute-level sampling. [3] focuses on the selectivity estima-
tion of the text type attribute with several constraints (e.g., any, all or exactly,
etc.) in Web database interfaces.

7 Conclusions

In this paper, we study the query translation problem of the exclusive query
interface and present a novel Zipf-based selectivity estimation approach for
infinite-value attribute. Experimental results on several large-scale Web data-
bases indicate that our approach can achieve high precision on selectivity esti-
mation of infinite-value attribute for exclusive query translation.
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Abstract. The problem of identifying deviating patterns in XML repositories
has important applications in data cleaning, fraud detection, and stock market
analysis. Current methods determine data discrepancies by assessing whether the
data conforms to the expected distribution of its immediate neighborhood. This
approach may miss interesting deviations involving aggregated information. For
example, the average number of transactions of a particular bank account may
be exceptionally high as compared to other accounts with similar profiles. Such
incongruity could only be revealed through aggregating appropriate data and ana-
lyzing the aggregated results in the associated neighborhood. This neighborhood
is implicitly encapsulated in the XML structure. In addition, the hierarchical na-
ture of the XML structure reflects the different levels of abstractions in the real
world. This work presents a framework that detects incongruities in aggregate
information. It utilizes the inherent characteristics of the XML structure to sys-
tematically aggregate leaf-level data and propagate the aggregated information
up the hierarchy. The aggregated information is analyzed using a novel method
by first clustering similar data, then, assuming a statistical distribution and identi-
fying aggregate incongruity within the clusters. Experiments results indicate that
the proposed approach is effective in detecting interesting discrepancies in a real
world bank data set.

1 Introduction

Research efforts in data cleaning have been steadily gaining momentum. Despite this,
many data quality problems have yet to be tackled. One such problem involves discrep-
ancies that can only be uncovered based on aggregated information. Consider the exam-
ple XML document of bank accounts with their transactions given in Figure 1. An initial
data exploratory analysis within the left account reveals nothing abnormal. Individually,
the customer transaction details appear normal. None of the transactions involves ex-
traordinary amounts (〈Amt〉) that will raise concerns. However, when we aggregate the
number of transactions per customer (〈Trans Count〉) and average transaction amount
(〈Avg Trans Amt〉) at the account level, an interesting discrepancy is immediately ap-
parent. By considering the values of elements 〈Trans Count〉, 〈Avg Trans Amt〉, and
〈Country〉 of an account, we can identify accounts with unusually low (or high) trans-
action averages or counts, compared to other accounts from the same country. In fact,
a transaction average of 200 Japanese Yen, the equivalence of less than USD$3, would
have been very uncommon in Japan. Highlighting such discrepancies is important for
formulating useful risk management policy. We introduce the notion of aggregate in-
congruity to capture this class of data discrepancies.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 601–615, 2009.
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38000 80

…

Transaction Transaction Transaction Transaction 

Amt Type 

150 C 

Amt Bank 

250 YZ 

Amt Type Bank 

300 C YZ 100 

Amt Type Bank 

C YZ 

Fig. 1. Example of aggregate incongruity in average transaction amount

Aggregated information plays an important role in many real world application do-
mains. For instance, the World Health Organization (WHO) constantly monitors the
reports of infectious cases all over the world. Finding large deviation in the total num-
ber of infectious cases in one region as compared to other regions will alert WHO to
the possibility of new outbreaks in that region. In the industry, many businesses use ag-
gregated information to formulate their strategies to increase competitiveness. A senior
manager would be interested to know which are the branch locations that exhibit large
deviations in their key performance indicators, as these signal the need for some change
in the business strategy for these branches. With globalization, the complexity of data
analysis has increased significantly. Finding discrepancies from the summarized data
represents a promising approach to effectively reduce this complexity.

Previous works in finding discrepancies in data have been explored for relational
data [1] and more recently, for XML [2]. These approaches use the notion of support
counting and a scoring metric based on the supports to determine the discrepancy of
data. These methods also rely on discretization of continuous data before counting sup-
ports of the discretized intervals. However, aggregated data is often continuous instead
of categorical and, the method used to discretize continuous attributes unduly influences
the detection process by distorting the distance between continuous data values. This
constitutes the motivation for developing an approach that naturally handles continuous
data in the presence of categorical data without discretization.

In this work, we propose a framework that pro-actively detects discrepancies based
on aggregated data. The framework utilizes the XML hierarchical structure to system-
atically perform aggregation on a set of identified attributes. Deviation analysis of the
aggregated information is then carried out. Three issues need to be resolved.

First, we need to select an appropriate space within which the deviation analysis of
the aggregated information is to be carried out. For example, when analyzing the av-
erage transaction amounts, the number of bank employees and opening hours of the
bank will be irrelevant, however the customer’s age and income is likely to be useful.
Determining the appropriate space for deviation analysis is an open question. We take
advantage of the inherent nesting structure of XML to derive the appropriate spaces.
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Branch_Name 

District B

Region Name 

North

Fig. 2. Example Bank XML data with aggregates inserted at different levels and some details
omitted

This makes sense as the encoding of relationships between XML elements are in the
form of a hierarchy, i.e. elements in the same sub-tree tend to be related to one another.

Second, is finding the context in which to analyze aggregate incongruities within a
given space. Figure 1 compared average transaction amount in the context of a group of
accounts in Japan. If accounts from other countries were analyzed in the same context,
the unusually low 〈Avg Trans Amt〉 may not be detected. To find these groupings, we
use clustering to partition the space such that aggregate incongruity can be discovered.

Third, is determining which set of values should be aggregated. In Figure 2, a list of
transactions is contained in an account and a branch has a list of accounts. If we consider
the average transaction amount at the account level, we may discover aggregate incon-
gruities in the average transaction amount between different accounts. At the branch
level, we may discover aggregate incongruities of average transaction amount between
different branches. Aggregation at different levels of the XML hierarchy reveals dif-
ferent incongruities. Hence, we need a mechanism that automatically propagates the
aggregated information from the leaf nodes of an XML tree up its hierarchy.

To the best of our knowledge, this is the first work that examines how we can system-
atically employ aggregation in XML to identify interesting aggregate incongruities. We
present a statistical approach to identify data discrepancies within a context. This allows
us to handle continuous data naturally. Experiments on synthetic and a real-world bank
data set show that our framework is able to reveal data discrepancies at different levels
of aggregation and performs well on continuous data.
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2 Concepts and Definitions

An XML document is modeled as a tree, T = (V, E), where V is the set of vertices
(nodes) and E is the set of edges. The leaf nodes1 of an XML document contains val-
ues as text. We denote this value of a leaf node, v, as val(v). Let label(v) denote the
unique element type label for a node v. The XML hierarchical structure organizes data
according to their relevance – the closer the nearest shared ancestor of two elements is,
the more relevant they are, where closeness is measured by the difference in ancestor-
descendant element depth.

Definition 1. (Nearest Common Ancestor) Let T = (V, E) be a XML tree, and U =
{v1, v2, · · · , vn}, U ⊂ V . Further let desc(u, v) be the predicate that is true if v is
the descendant of u and dist(u, v) is the number of edges traversed by the shortest
path from u to v. Suppose A = {u ∈ V |desc(u, v1) ∧ desc(u, v2) · · · ∧ desc(u, vn)}
is a set of nodes that are the common ancestors of all vi ∈ U . We define the nearest
common ancestor of U , denoted as NCAU = vc ∈ V if and only if vc ∈ A, and
∀vi, vj ∈ U, ∀w ∈ A− {vc}, dist(vi, vc) + dist(vc, vj) ≤ dist(vi, w) + dist(w, vj).

In Figure 2, the NCA of 〈Transaction〉 nodes within the sub-tree of an 〈Account〉 node
is the corresponding 〈Transaction List〉 node that is a child of 〈Account〉 node. For
〈Transaction〉 nodes across all accounts in the sub-tree of a 〈Branch〉 node, the NCA is
the corresponding 〈Account List〉 node that is the child of 〈Branch〉 node.

Definition 2. (Aggregate Node) Given an XML tree T = (V, E), an aggregate function
f ∈ F (the set of aggregate functions), and set of leaf nodes U ⊂ V such that ∀u, v ∈
U, label(u) = label(v), we can create an aggregate node vf,U in T such that vf,U is
a leaf node and a sibling node of NCAU . The value of vf,U is the result of applying
aggregate function f to the set of values of the nodes in U .

Figure 2 shows the aggregate nodes of average transaction amount inserted at various
levels of the XML hierarchy (denoted by dashed lines). At the lowest level, the aggre-
gate nodes 〈Avg Trans Amt/$250〉 and 〈Avg Trans Amt/$1800〉 summarize the aver-
age transaction amount for different bank accounts. At the branch level,
〈Avg Trans Amt/ $1000〉 and 〈Avg Trans Amt/$8550〉 summarize the average trans-
action amounts for each branch. Finally, 〈Avg Trans Amt/$5060〉 summarizes the av-
erage transaction amounts for different regions. Note that these aggregate nodes are
siblings of the nearest common ancestor of the nodes that have been aggregated, i.e.
〈Transaction List〉, 〈Account List〉, and 〈Branch List〉 for account, branch and region
levels respectively.

Definition 3. (Object) Given an XML tree T = (V, E), an object, denoted as Obj(v),
rooted at node v ∈ V is a non-empty set of leaf nodes that are children of v, i.e.
Obj(v) = {u ∈ V |desc(v, u) ∧ dist(u, v) = 1 ∧ val(u) �= ∅}.

The 〈Account〉 object in Figure 2 consists of nodes: 〈Avg Trans Amt〉, 〈Type〉,
〈Loan Amt〉, and 〈Loan Duration〉. We analyze if a particular aggregate value in an

1 A node refers to an element and the value of a node is the corresponding text node in XML
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Account_List Branch (+) Transaction_List Account (+) 

Type 

Transaction (+) Amt

Type 

Balance
Branch_name 

Loan_Amt 

Branch_List Region (+) Bank 

Region_Name 

Loan_Duration 

(+) denotes many, [0, n], multiplicity

Fig. 3. Example Bank XML schema without inserted aggregates

object is an aggregate incongruity w.r.t. a group of objects. This group of objects is
identified via a pivot node.

Definition 4. (Pivot Node) Given an XML tree, T = (V, E) and object Obj(v), sup-
pose u is the first occurrence of a node, on the path from node v to the root of T , whose
corresponding element in the XML schema has a multiplicity of many (i.e. [0,n]), then
the parent node of u is the pivot of Obj(v), denoted by pivotv.

Figure 3 shows the schema of the bank account data set (Figure 2). The objects repre-
sented by 〈Account〉 nodes have their respective 〈Account List〉 nodes (in bold) as their
pivot node. In this particular case, the pivot node in the XML tree (Figure 2) of each
〈Account〉 object node is their parent 〈Account List〉 node.

Definition 5. (Pivoted Space) Let v be a node in V . Given an object node Obj(v) and
its pivot node pivotv, we define a pivoted space PS(v) as the set of nodes such that:
∀vi ∈ PS(v), Obj(vi) �= ∅ ∧ label(vi) = label(v), and NCAPS(v) = pivotv.

In Figure 2, the nodes enclosed in a box denotes a pivoted space whose pivot node is
the 〈Account List〉 node indicated in bold.

3 Aggregate Incongruity Detection (AID) Framework

There are four key processes in our Aggregate Incongruity Detection (AID) framework
to identify potential aggregate incongruities:

1. Aggregate Nodes Insertion – Given an XML schema and a list of aggregate func-
tions, we automatically augment the XML tree with the appropriate aggregate nodes
at various levels of the XML hierarchy.

2. Pivoted Space Identification – Given the augmented XML document, we identify
all pivot nodes and determine all pivoted spaces.

3. Neighborhood Identification – Within each pivoted space, we identify groupings of
data that form the context for detecting incongruity.

4. Aggregate Incongruity Identification – Given the context, a statistical method is
used to identify aggregate incongruity with respect to the context.

3.1 Aggregate Nodes Insertion

We first augment the XML tree with aggregate nodes at various levels of the hierarchy.
Any aggregate function may be applied. Here, we focus on AVG (mean of a set of
continuous values), COUNT (cardinality of a set of objects) and SUM.
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Given an XML schema and a set of aggregate functions to be applied, for each leaf
node, we determine the applicability of the aggregate function with respect to the do-
main of the leaf node. For example, SUM and AVG functions require the input set of
values to be continuous while the COUNT function does not. For each applicable func-
tion on each leaf node, an aggregate node is inserted. Since aggregate nodes at different
levels of an XML tree can reveal different discrepancies, our algorithm must automati-
cally propagate these aggregates up the XML hierarchy.

Algorithm 1(a) gives the details for augmenting an XML schema tree (Figure 3)
with aggregate nodes (elements). It traverses the tree, Ts, in a breadth first manner
and looks for aggregate functions whose function domain matches the current node’s
value domain (Line 5). For example, for a node, v, if Obj(v) �= ∅, COUNT will be
applicable to the node. Similarly, if val(v) is numeric, then SUM and AVG functions
will be applicable. Next, the path to root from the current node is obtained (Line 6)
and for each node, u in that path such that pivotu exists and has a parent (Line 8),
an aggregate node, a, is created using the CREATEAGG method. This method returns
an aggregate node that will contain the aggregate value of applying aggregate function
f to all values of nodes corresponding to label(v) in the sub-tree rooted at pivotu.
Then, if a has not been previously inserted into the tree (Line 10), it will be inserted
as a sibling of pivotu. For example, using the schema in Figure 3, assuming the cur-
rent node is 〈Amt〉 and the aggregate function is AVG. The path to root is 〈Amt〉,
〈Transaction〉, 〈Transaction List〉, 〈Account〉, 〈Account List〉, ... , 〈Bank Data〉. Start-
ing from the first node in the path, 〈Amt〉 is not an object so hasP ivot(u) is false. The
next node, 〈Transaction〉, is an object, has pivot node, 〈Transaction List〉, and does not
have a sibling node of average transactions amounts. Hence 〈Avg Trans Amt〉 is added
as a sibling of 〈Transaction List〉. Continuing along the path to root, the next object is
〈Account〉 with pivot node, 〈Account List〉, therefore 〈Avg Trans Amt〉 is added as a
sibling node to it. This continues until the root node. Finally, the 〈Bank Data〉 node has
no parent so AVG aggregates for transaction amount are not propagated further. After
augmenting the XML schema with the specification of aggregate nodes using Algorithm
1(a), the aggregate values can be computed in a single parse of the XML document.

3.2 Pivoted Space Identification

The inserted aggregate nodes have to be analyzed within their pivoted spaces. Algorithm
1(b) details how objects and their respective pivoted spaces are identified. Given an
XML document tree, T and its schema tree, Ts, a depth first traversal of the XML tree
is performed. For example in Figure 2, assume the 〈Transactions〉 nodes appear from
left to right sequence in the XML tree, i.e. t1, t2, ...tn, where t1 is the leftmost node and
tn is the rightmost node. The 〈Transaction〉 nodes below the ti node will be traversed
before the 〈Transaction〉 nodes below ti+1.

Let the label of an XML tree node, label(v), be the corresponding node, vs, in the
schema tree. The hash table Hp, keyed by labels, maintains the current pivot node of
a particular pivoted space being constructed and Hs maintains the current space that
contains the identified objects. Lines 8 to 12 handles the case where the current space is
completed and a new pivoted space is to be identified – the old space is added to A and
the hash tables updated. Lines 13 to 14 adds the current object into the correct space.
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Algorithm 1. Algorithms for AID
(a) Aggregate Propagation
Input: F – set of functions, Ts = (V, E) – schema tree
Output: Ts = (V, E) – schema tree with aggregate
specification

1: Q ← root(Ts)
� queue for Breadth First Traversal

2: while Q �= ∅ do
3: v ← DEQUEUE(Q)
4: ENQUEUE(Q, children(v))

� enqueue all children of v
5: for each f ∈ F s.t. V alueDom(v) ∈ Dom(f)

do
6: P ← PATHTOROOT(v)
7: for each u ∈ P do
8: if hasPivot(u) ∧ hasParent(pivotu)

then
9: a ← CREATEAGG(label(v), f, u)
10: if ¬hasSibling(pivotu , a) then
11: ADDCHILD(parent(pivotu ), a)
12: end if
13: end if
14: end for
15: end for
16: end while
17: return Ts

(b) Pivoted Space Identification
Input: T = (V, E) – XML tree, Ts = (Vs, Es) – schema
tree
Output: A – a set of pivoted spaces

1: Hp ← Vs×{∅} � hash table to map object label to
pivot node init. to null value for each element in XML

2: Hs ← Vs×{∅} � hash table to map object label to
pivot space init. to null set for each element in XML

3: S ← {root(T )} � stack for depth first traversal
4: while S �= ∅ do
5: v ← POP(S)
6: MULTIPUSH(S, children(v))
7: if isObject(v) then
8: if pivot(v) �= GET(Hp , label(v)) then
9: A ← A ∪ {GET(Hs , label(v))}

� store prev. space
10: PUT(Hp , label(v), pivot(v))
11: PUT(Hs , label(v), ∅)
12: end if
13: P ← GET(Hs , label(v)) ∪ {v}
14: PUT(Hs , label(v), P )
15: end if
16: end while
17: � store remaining spaces
18: for each α ∈ range(Hs) s.t. α �= ∅ do
19: A ← A ∪ {α}
20: end for
21: return A

Lines 17 to 20 outputs the remaining spaces in Hs. Note that instead of storing A in
main memory, at Line 9, the completed pivot space can be output to disk if there are
space limitations.

3.3 Neighborhood Identification

After identifying the pivot spaces, we derive the local contexts in which to analyze
potential aggregate incongruities. This is achieved by enumerating each subspace of
lower dimensions from the pivoted space and clustering the subspace.

DBScan [3] is able to find arbitrary shaped clusters in data using the notions of core
point, density reachable and density connected. Given an integer for MinPts and a
radius ε, a point is said to be a core point if there are MinPts within distance ε from it.
Any point within ε distance of a core point is directly-density reachable from the core
point. Then, density reachable is a transitive asymmetric relation of directly-density
reachable. For example, suppose point a and b are core points and c is not a core point.
Further suppose that c is directly density reachable from b and b is directly density
reachable from a. Then, c is density reachable from a. Lastly, density connected is the
symmetric relation between two points, a and b such that there exists a point c where a
and b are each density reachable from c. DBScan clustering groups all objects that are
density connected as being in the same cluster. We apply DBScan on each subspace,
S(v), of the pivoted space, PS(v), with the following modifications: (1) each point
not belonging to any cluster is considered a cluster of size one, (2) the values in each
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dimension are transformed using min/max normalization to the range [0, 1], and (3) the
distance between k-dimensional data points is computed using a modification of the
Euclidean distance metric (L2-norm) that also handles categorical data,

d(x,y) =

√√√√ k∑
i=1

Δ(xi, yi)2 , Δ(xi, yi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if attribute i is categorical

and xi �= yi

1 if attribute i is categorical

and xi = yi

xi − yi otherwise

DBScan partitions S(v) into a set of clusters. Each cluster is called a neighborhood.
Incongruities in high dimensional space are inherently difficult for the user to com-

prehend. Therefore, for practical purposes, it is typically sufficient to limit the enumer-
ation of subspaces up to five dimensions. In addition, although we employ DBScan for
its simplicity and ability to find arbitrary shaped clusters, other clustering techniques
can also be used to find neighborhoods.

3.4 Aggregate Incongruity Identification

After identifying the neighborhoods, the values of each dimension are analyzed using
Chauvenet’s criterion. Chauvenet’s criterion identifies a value from the sample as a sta-
tistical outlier if the value’s deviation from the sample mean given the sample standard
deviation has a low probability of occurring. We use the significance level (denoted by
α) to determine the critical region for such statistical outliers that are termed aggregate
incongruity in the AID framework.

Definition 6. (Aggregate Incongruity) Given a set of values, X , and a significance
level, α, a value x ∈ X is an aggregate incongruity with respect to X if,

P (z ≥ |x− μX |
σX

) ≤ α

2

where μX and σX is the mean and standard deviation of the values in X respectively,
and the random variable z is assumed to be: (1) a normal distribution if |X | ≥ 30, (2)
a t-distribution with |X | − 1 degrees of freedom otherwise. The degree of incongruity
of x ∈ X is denoted by p-value = 2 · P (z ≥ |x−μX |

σX
). A smaller p-value indicates a

higher degree of incongruity.

In practice, we use an inverse cumulative distribution function D−1(a) of the distribu-
tion z (that returns b from the equation P (z ≥ b) = a) to determine the range of values
in a neighborhood dimension beyond which are potential aggregate incongruities. The
range of values is given by,[

D−1(1− α

2
) · σX + μX , D−1(

α

2
) · σX + μX

]
where X is the set of values from a dimension of a neighborhood N .
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4 Experiments

A series of experiments were conducted to investigate the performance of AID in han-
dling different scenarios created from synthetic data generation. We also compare AID
to XODDS [2] which utilizes discretization to handle continuous values. Finally, AID is
run on a real world Bank Account data set to uncover potential aggregate incongruity.
Experiments are performed on an Intel Core 2 dual 2 GHz computer. Programs are
written in Java and ran with 1GB heap size.

4.1 Synthetic Data Set

We create a synthetic XML document with a pivoted space of N objects, each with 3
elements containing continuous values in two stages: clean data generation, and noisy
data addition.

In the clean data generation stage, we choose a seed point (x, y, z) at random where
x, y, z ∈ [0, 1]. From this seed point (x, y, z), we generate a neighborhood that is nor-
mally distributed with mean (x, y, z) and standard deviation (σx, σy , σz). For easy anal-
ysis of results, we set σx = σy = σz = σ where σ is a user supplied standard deviation.
This neighborhood is obtained by taking repeated random samples that are within 1.96σ
for each x, y, z dimension, i.e. 95% confidence level. Sampling stops when the neigh-
borhood has reached a user specified size. After each desired neighborhood has been
generated the “clean” synthetic data set is output.

In the noise addition stage, we insert varying numbers of incongruous data points into
the neighborhoods until the user specified percentage of noise is reached. Noise points
are distributed proportionally among the neighborhoods. To generate noise points for a
neighborhood, the same normal distributions used to generate the clean neighborhood
with means, x, y, z, and user specified standard deviation σ are used to sample noise
points that are beyond 1.96σ of the means.

Performance is measured based on the F-measure, that is the harmonic mean between
Precision and Recall, i.e. F = 2PR

P+R , where F, P, R are the F-measure, precision and
recall respectively2. Positive instances in our experiments are equivalent to noise points.
We perform four experiments on the synthetic data set.

Effect of Varying Noise on Single Neighborhood. First, we investigate how noise
levels affect performance for different settings of ε. A clean data set of 1000 points
within a single neighborhood using σ = 0.05 is generated and various levels of noise is
added to generate the individual noisy data sets. Then, AID is run using different values
for ε on each data set with α = 0.03. Figure 4 shows the plots of F-measure versus
noise level for different settings of ε. The results show that if a suitable value of ε is
selected, the performance is marginally affected by noise level. Also, using too small a
value of ε severely impedes the performance of AID under low levels of noise (2% –
6%) but less so at higher levels (8% – 10%).

Effect Varying Neighborhood Overlap. Second, we investigate the effect of neigh-
borhood overlap on performance. Five data sets are generated with various values of

2 P = # true positive
# true positive + # false positive

and R = # true positive
# true positive + # false negative

.
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σ, each consists of three neighborhoods. Each neighborhood has 400 points. Then, 5%
noise is added to each data set. The value of σ in this process controls the degree of
neighborhood overlap. Figure 5 depicts the performance across varying values for σ for
each of the five data sets with different settings for ε. Higher levels of overlap (σ > 0.04)
degrade performance quickly regardless of ε. Conversely, if the inherent neighborhoods
were well defined, i.e. σ ≤ 0.04, performance is less affected by ε. Further analysis
indicated that recall degrades sharply at high levels of overlap but precision remains
marginally affected (Figure 6). Consequently, this experiment shows that even with
high degree of overlap, the detected aggregate incongruities will be true positives.

Effect of Varying α. Third, we investigate the effect of varying α on performance, a
clean data set of 1000 points containing a single neighborhood was generated. Then
noise was added at various levels to give five data sets. For each data set, AID was run
with various values for α and ε = 0.5. The results are shown in Figure 7. Performance
on each data set is plotted versus α. In general, low values of α (< 0.03) degrade
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performance regardless of the noise level. At higher values of α, performance degrades
with higher noise levels being less affected when compared to lower noise levels.

Comparison with XODDS. One of the motivations for developing the AID frame-
work is to naturally handle continuous values common among aggregated data, thus
reducing performance dependency on discretization algorithms. We compare AID with
the XODDS [2] framework that uses a support counting approach to identify devia-
tions in data. Equi-width binning is used to discretize continuous attributes before de-
tection. Projections are made over each pivoted space, in the process the supports for
co-occuring data is accumulated. A scoring metric is employed to score each candidate
with respect to data that co-occurs with it. One such metric used is the xQ-measure
that is the proportion of the support for a target value divided by the support of data
co-occuring with it. A lower score indicates higher degree of deviation. After scoring,
the candidates are sorted in increasing order of score. Lastly, an adaptive threshold is
determined based on the score and used to identify deviations.

We use XODDS in two variants differentiated by the number of bins used for dis-
cretization, namely, 400 and 800. The XODDS parameters were set as MinSup = 10
and SoftCut = 20%. Both variants used the xQ-measure as the scoring metric. AID
is used with the following parameter settings: ε = 0.5, and α = 0.03.

First, we compare the performance using a single neighborhood. 1000 clean points
were generated within a single neighborhood using σ = 0.05. Then varying levels of
noise is added to give five data sets. Figure 8 shows the plots of the variants of XODDS
and AID for F-measure versus noise level. For each technique, the noise level affects
performance marginally. The results show that the performance of XODDS is affected
by the number of bins used during discretization. Higher number of bins offer greater
distinction of discrepancies for XODDS. However, AID systematically performs better
than both XODDS variants across various noise levels in terms of F-measure.

Next, we compare the performance on multiple neighborhoods. Five neighborhoods
of 200 clean points each were generated using σ = 0.02. Then, varying levels of noise
is added to give five data sets. Note that the smaller value of σ compared to the first part
gives more well-defined neighborhoods. Figures 9, illustrates the performance plots of
the variants of XODDS and AID for F-measure. The results show that the performance
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of XODDS has severely decreased. This is likely to be due to equi-width binning dis-
torting the inherent neighborhoods in each of the data sets. Conversely, performance of
AID is relatively unaffected and systematically out-performs XODDS.

This experiment shows that discretization of continuous attributes can significantly
degrade the performance of detecting discrepancies in data. Hence justifying the need
to develop a framework that handles continuous attributes naturally.

4.2 Real World Data Set

We apply the AID framework to a real world data set of bank accounts from the Czech
Republic and report a few meaningful aggregate incongruities that were discovered at
different hierarchical levels. This data set was used in the Discovery Challenge, held
as a part of the 3rd European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 1999). We extract from the bank account data set 4,500
accounts, 207,989 transactional records, and 670 loan records.

We first convert the data set to a flat XML schema that contains a single list of
accounts. Under each 〈Account〉 element is a list of transactions, branch name, and
region name of account. Each 〈Transaction〉 contains 〈Amt〉 and 〈Balance〉 elements
that hold the values for transaction amount and post-transaction balance respectively.
The aggregates AVG and COUNT were propagated on transaction 〈Amt〉 and 〈Balance〉
values to the 〈Account〉 level. We investigate if aggregate incongruities can be identified
with respect to other categorical values of branch and region names. As the structure of
the XML data is flat, we expect the single pivoted space of accounts to be dense. Hence
AID was used with ε = 0.1 and α = 0.05. We ignore neighborhoods that have less than
four tuples since these neighborhoods are too small for meaningful incongruities.

Many of the aggregate incongruities detected have large neighborhoods as the XML
data consists of a single pivoted space of 4,500 accounts. We illustrate the smaller ex-
amples here. Table 1 lists three aggregate incongruities and their neighborhoods that
provide a context for them. In Table 1(a), an account with low average transaction bal-
ance is highlighted with respect to other accounts in the South Moravia region with
similar average transaction amount. Table 1(b) shows an account with high average
transaction amount with respect to the Central Bohemia region and average transaction
balance. The results shows that the AID framework is capable of identifying aggregate
incongruities with respect to other categorical values.

Next, we investigate if aggregate incongruities can be detected at higher hierarchical
levels. The bank data set is converted to a schema with two additional hierarchical
levels of branch and region, similar to Figure 3. Accounts are now placed under their
respective 〈Region〉 and 〈Branch〉 elements in which they belong to. For the aggregate
nodes insertion process we use the aggregate functions AVG and COUNT. The process
inserts aggregates of the continuous values such as transaction 〈Amt〉 and 〈Balance〉 at
the different hierarchical levels of: Account, Branch, and Region.

One aspect of this organization of data in XML is that pivoted spaces at higher lev-
els in the hierarchy are more sparse than in the lower level. For example, there may
be thousands of 〈Transaction〉 objects within a particular bank account, but there are
only eight 〈Region〉 objects within the bank. In light of this, instead of using a fixed
value for ε during the neighborhood identification process, we use a different value of
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Table 1. Various Aggregate Incongruity In Accounts

Avg Avg
transaction transaction

Region name amount balance
South Moravia 2270.75 16878.74
South Moravia 2204.24 16661.81
South Moravia 2079.93 16383.27
South Moravia 2045.21 16885.06
South Moravia 1983.33 16929.55
South Moravia 2140.96 *15838.56
South Moravia 2105.89 16475.28
South Moravia 2053.53 16717.17
South Moravia 2281.22 16758.93

(a) ∗low average transaction balance with p-value

= 0.044 < α = 0.05.

Avg Avg
transaction transaction

Region name amount balance
Central Bohemia 2231.37 17341.64
Central Bohemia 2154.57 17376.11
Central Bohemia 2076.12 17767.96
Central Bohemia 2096.63 18068.14
Central Bohemia 2332.83 17607.68
Central Bohemia *2471.29 17569.89
Central Bohemia 2243.81 16721.47
Central Bohemia 2186.86 16277.11
Central Bohemia 2130.68 17559.80
Central Bohemia 2085.77 17297.51

(b) ∗high average transaction amount with p-value

= 0.048 < α = 0.05.

Table 2. Aggregate Incongruity Among Re-
gions of the Bank

Avg Avg Avg
loan amount loan payment transaction

balance
153957.29 4338.95 38883.76
155392.27 4418.90 38444.00
156235.60 4539.18 37847.71
152549.21 4046.09 38264.74
136480.42 3785.39 38161.15

∗122731.48 3678.90 38535.49
165996.71 3916.35 38294.26
154541.13 4550.52 39179.12

∗low average loan amount in North Bohemia Region with

p-value = 0.07 < α = 0.1.

Table 3. Aggregate Incongruity Among
Branches in South Moravia region

Avg Avg loan Avg
loan amount duration loan

(Months) payment
170146.29 36.0 4098.14
168725.00 40.0 4083.63
168204.00 44.4 3725.80
168113.14 44.6 3731.00
157396.00 38.0 4401.50
177221.65 38.8 4503.12

∗198584.00 40.0 4616.17
∗high average loan amount in Hodonin branch with p-value

= 0.072 < α = 0.1.

ε for different pivoted spaces based on their depth in the XML tree with the function,
E(PS(v), ε0) = ε0

ln(depth(v)+2) , where ε0 is an initial value for ε. The function E re-
duces the value of ε for the neighborhood identification process for pivoted spaces that
are deeper in the XML tree. Using this modification, the last three processes of AID are
run with ε0 = 0.8 and α = 0.1 on the Bank data set.

Table 2 illustrates a neighborhood among 〈Region〉 objects that contains an aggregate
incongruity. Based on the neighborhood as a context, the average loan amount in the
North Bohemia Region is significantly less than the other regions of the bank. This
incongruity may be interesting to management as it highlights that with regards to the
average loan payment and transaction balance of the accounts in North Bohemia the
average amount of loans an account has is less than usual. Consequently, action may be
taken to increase the consumption of loan related products in North Bohemia.

Table 3 depicts the neighborhood within the South Moravia region where the average
loan amount for Hodonin branch is much higher compared to the average loan duration
and average loan payment. Note that although the average loan payment for Hodonin
branch may seem higher than the rest, it is not detected as an aggregate incongruity as it
is not statistically significant. This aggregate incongruity may indicate that the Hodonin
branch is issuing loans that are larger than usual.

Lastly, Table 4 shows two aggregate incongruities among bank accounts in different
neighborhoods at the Cheb Branch of West Bohemia Region. The neighborhoods can be
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Table 4. Aggregate Incongruity Among Accounts in Two Neighborhoods of Cheb Branch, West
Bohemia Region

Avg Avg Count
transaction transaction transaction

amount balance
2100.00 17496.67 30
2285.64 17661.31 59
1974.61 18150.17 132
2090.50 20040.20 159
1321.14 19163.24 153
1300.45 15124.87 195
2181.58 15483.12 148
2079.64 16908.20 67
1844.09 ∗11578.52 85
2437.25 17237.17 117
1195.48 15417.96 97
1354.27 16232.52 103

(a) ∗low average transaction balance in low transaction

count neighborhood with p-value = 0.033 < α = 0.1.

Avg Avg Count
transaction transaction transaction

amount balance
951.10 19589.26 278

2554.83 22543.31 299
2018.47 28643.10 341
2899.85 31863.26 316
2484.33 ∗38291.42 376
2415.75 22954.26 294
1061.15 21477.48 364
2696.50 17325.22 260
1339.82 17912.48 291
1028.48 16740.92 304
2174.68 24304.43 254
2988.13 29862.17 204

(b) ∗high average transaction balance in high transaction

count neighborhood with p-value = 0.05 < α = 0.1.

distinguished by the count of transactions. In Table 4(a), one account has a significantly
low average balance when compared to other accounts of similar average transaction
amount and number of transactions. In Table 4(b) another account has a significantly
high average balance instead. These may indicate unusual banking activity.

5 Related Work

Finding deviations is often viewed as outlier detection. There are two types of outliers,
the class outliers and the attribute outliers. Class outliers are multivariate data points
(tuples) which do not fit into any cluster formed by the remaining data. The major-
ity of existing works has focused on class outliers and associated outlier-ness with the
complete dimensions or attributes of the input data set [4,5,6,7]. Methods for identi-
fying class outliers can be broadly classified into distribution-based, clustering-based,
distance-based and density-based approaches.

Methods for finding class outliers cannot be applied to discover the class of data
discrepancies obtained via aggregation. Class outlier detection typically only finds rare
attribute values. However, using aggregation to find discrepancies involves finding val-
ues that seldom occur together, which is a special case of attribute outliers. Attribute
outliers are univariate points that exhibits deviating correlation behavior with respect to
other attributes [1,8,2] thus giving a context to the deviation. Attribute outlier detection
has received little attention to date. The work in [1] proposes a method to identify at-
tribute outliers in relational databases. This involves exhaustive enumeration of sets of
attribute values to find discrepancies.

With the rapid proliferation of XML repositories, research on XML data quality
is gaining momentum. The current focus is on XML duplicate detection by matching
values of the corresponding fields of two objects and the structural similarity between
the XML objects [8,9,10]. Recently, the work in [2] extended [1] to find attribute outliers
in XML. However, it does not consider the role of aggregation in detecting additional
data discrepancies and the detection method relies on discretization of continuous data
that affects detection performance.
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6 Conclusion

In conclusion, we presented a complete framework for the detection of aggregate in-
congruities in XML documents. The AID framework is able to automatically propagate
aggregates throughout the XML document with minimal user intervention. Further-
more, the XML document is split into meaningful pivoted spaces based on its structure
for incongruity identification. To provide meaningful contexts for the user to assess in-
congruities, we identify neighborhoods using subspace clustering. Then, within these
neighborhoods we apply a well-known statistical method for identifying deviating data.

Our experiments on synthetic data show how AID performs with respect to noise,
overlapping neighborhoods, and different parameter settings. Comparison with the re-
cent XODDS [2] framework that uses discretization to handle continuous data shows
that the approach used in AID to handle continuous data is better. On a real-world data
set of Bank accounts, we report aggregate incongruities that are meaningful to the user.

Although the AID framework is used to analyze aggregates, it can also be used to an-
alyze any continuous data in XML with discrete data as part of its context. Future work
includes: investigating adaptive ways to tune the detection parameters based on data,
evaluating the use of other clustering techniques, evaluating other statistical approaches
to detect deviating data, and developing suitable result visualization to aid user action.
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Abstract. Materialized views, a rdbms silver bullet, demonstrate its
efficacy in many applications, especially as a data warehousing/decison
support system tool. The pivot of playing materialized views efficiently
is view selection. Though studied for over thirty years in rdbms, the
selection is hard to make in the context of xml databases, where both
the semi-structured data and the expressiveness of xml query languages
add challenges to the view selection problem. We start our discussion
on producing minimal xml views (in terms of size) as candidates for
a given workload (a query set). To facilitate intuitionistic view selec-
tion, we present a view graph (called vcube) to structurally maintain all
generated views. By basing our selection on vcube for materialization,
we propose two view selection strategies, targeting at space-optimized
and space-time tradeoff, respectively. We built our implementation on
top of Berkeley DB XML, demonstrating that significant performance
improvement could be obtained using our proposed approaches.

1 Introduction

Materialized views, a rdbms silver bullet, increase by orders of magnitude the
speed of queries by allowing pre-computed summaries. In the context of xml

databases, both the semi-structured data and the expressiveness of xml query
languages complicate the selection of views. Answering xml queries using ma-
terialized views [4,24, 15,16,7,22] and xml view maintenance [21,20] have been
addressed recently, however, the problem of materialized view selection, which
plays an important role in profiting from the above notable achievements of an-
swering xml queries using views, is not well discussed. In this work, we describe
a framework of selecting xml views to materialize. Broadly speaking, the prob-
lem of view selection in xml databases is the following: given xml databases
X , storage space B and a set of queries Q, find a set of views V over X to
materialize, whose combined size is at most B.

The problem of view selection is well studied in on-line analytical processing
(olap) in data warehouses [9, 10, 25, 5, 13, 6], where multiple aggregated views

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 616–630, 2009.
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(part) (supplier) (customer)

(part, supplier) (part, customer) (supplier, customer)

(part, supplier, customer)

(none)

Fig. 1. Sample Data Cube

Table 1. Sample xml Queries

Q1 //conference[@booktitle = “SIGMOD”or“VLDB”]
/author[@name = “Venky Harinarayan”
or“Jeffrey D. Ullman”]

Q2 //conference[@keyword = “view”or“data cube”]
/author[@name = “Jeffrey D. Ullman”]

Q3 //conference[[@keyword = “view”or“data cube”]
and[@booktitle = “SIGMOD”or“VLDB”]]

are organized as a data cube [11,18] for pre-computed summaries. This problem
is generalized to network environments e.g. distributed databases [14] and p2p

networks [8], as both computation cost and net communication could be saved.
xml is a new standard for data exchange over the Internet, with standardized
query languages (e.g. xpath and xquery). There are similarities, and differences
(in syntactic level) for the view selection problem between xml and relational
databases: (i) there is inherent impedance mismatch between the relational (sets
of tuples) and xml (ordered tree) data model; (ii) sql is for relational data which
is flat, regular, homogeneous and unordered. xpath and xquery are for xml

data which is nested, irregular, heterogeneous and ordered. Both items add to
the complexity of the view selection problem.

We consider fundamental properties of view selection for optimizing a given
query workload, with the objective in accordance with the formal perspective
of view selection in rdbms [6]. There are two conventional solutions in rdbms:
common subexpressions exploitation and query aggregation. The main problem
of adopting common subexpressions is that the deep copied xml fragments lose
the structural information required for performing the subsequent structural
joins. While in rdbms, the relational algebra is straightforwardly operated on
intermediate tuples.

Next we discuss whether query aggregation can be applied. We review this
technique in rdbms first. Consider a TPC-D database with three tables: part,
supplier and customer. The 8 possible groupings of tables are depicted in Fig-
ure 1. Computing each of the 8 groups of tables can be derived from the cells
that are reachable to it, e.g., (part) can be derived from (part, supplier), (part,
customer) and (part, supplier, customer). There are two difficulties of applying
this technique in xml, considering the three xml queries in Table 1. (1) Enumer-
ating all views that may contribute to answering a query is expensive. Assume
that, given a query, we can find all views to answer it by relaxing queries [3]. For
example, relax query axis e.g. //conference/author to //conference//author in
Q1 and Q2; generalize label to wildcard ∗ e.g. //conference to //∗ in Q1−3, etc.
The number of queries in this problem space is prohibitively large, which makes
it infeasible. (2) Given candidate views, what relationships among them are to
be maintained and in which way to organize them such that efficient algorithms
might be devised, like data cube for rdbms. Note that query/view answerability
is closely related to query/view containment [17,16]. On the surface, it is natural
to maintain the containment relationship between views. However, checking con-
tainment of xpath queries is coNP-complete [17], with only a restricted syntax
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set (/, //, ∗ and branches [· · · ]). This indicates that it is impractical to find all
containment relationships among candidate views.
Contributions & Roadmap. We start with an introduction of xml query and
problem statement in Section 2. In Section 3, we prove the existence and unique-
ness of a minimal view to answer two given queries, followed by an algorithm to
generate such a view. We then describe, given multiple queries, how to generate
a minimal view set while ensuring optimality. This solves the first difficulty. Note
that computing the containment relationship between all candidate views (V)
requires P|V|2 (order 2 permutation of |V|) comparisons. In Section 4, we propose
to maintain the minimal view set using a directed acyclic graph, called vcube,
to solve the second difficulty. vcube maintains the answerability relationship
between views as edges, along with the process of generating views. This avoids
computing the relationship between views pairwise, which is expensive. In Sec-
tion 5, we describe two algorithms on top of vcube to select a set of views
to materialize. Moreover, extensive experiments are conducted in Section 6 to
show the efficiency of our proposed algorithms in boosting query performance.
We conclude this paper in Section 7 with outlook on future works.

2 XML View Selection

2.1 Preliminaries

xpath query. The set of xpath queries studied in this paper is given in Table 2.
It may involve the child-axis (/), descendant-axis (//), wildcards (∗) and pred-
icates. Predicates can be any of these: equalities with string, comparisons with
numeric constants, or an arbitrary xpath expression with optional operators
“and” and “or”. Sample xpath queries may reference to Table 1.

Table 2. Query Definition

Path ::= Step+

Step ::= Axis NameTest Predicates?
Axis ::= “/” | “//”

NameTest ::= elementName | “ ∗ ”
Predicates ::= “[” Expr “]”

Expr ::= Step | OrExpr
OrExpr ::= AndExpr | OrExpr “or” AndExpr

AndExpr ::= CompExpr | AndExpr “and” CompExpr | Step
CompExpr ::= “@” attributeName Comp Value

Comp ::= “ = ”|“ > ”|“ < ”|“ >= ”|“ <= ”|“!= ”
Value ::= Number | String

Query containment. The con-
tainment of xpath fragments
involving /, //, ∗ and [] is studied
in [17]. The extension of xpath

fragments containing additional
operators “and” and “or” in
predicates is studied in [4]. We
borrow the definition of con-
tainment of queries from [17].
For an xml query P , P (X ) de-
notes the boolean result of P
over database X . We say P (X ) true if there exists at least one result; it is false

otherwise. For two queries P and Q, P is contained in Q, denoted as P % Q, iff
P (X ) implies Q(X ), in every xml database X . Containment is a partial order,
i.e., V % P, P % Q ⇒ V % Q. Equivalence is a two-way containment. Two
queries P, Q are equivalent, denoted as P ≡ Q, iff P % Q and Q % P .
Example. (1) //a/b is contained in //a//b, since the //-axis is more general than
/-axis; (2) //a/b is contained in //a/∗, since the wildcard ∗ matches any label;
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(3) //a[@n < 10] is contained in //a[@n < 100]; (4) //a[@s = “x”] is contained in
//a[@s = “x” or @s = “y”].
Answering queries using views. Existing works focus on rewriting a given
query using materialized view with/without accessing the base data. We attempt
to use the materialized view only to answer a query, without accessing the base
data. V � Q denotes that a view V can be used to answer a query Q. V � Q de-
notes that a view V can be used to answer each query in Q = {Q1, Q2, · · · , Qn}.

2.2 Problem Statement

xml view selection. The problem of xml view selection is formally defined as
follows: let Q = {Q1, Q2, · · · , Qn} (each Qi is associated with a non-negative
weight wi) be a workload, X be an xml database, B be the available storage
space, and cost() be a cost estimation function for query processing. The prob-
lem is to find a set of views V whose total size is at most B that minimizes:

cost(X ,V ,Q) =
∑

Qi∈Q
cost(X ,V ,Qi)× wi (1)

here, cost(X ,V ,Qi) denotes the cost of evaluating query Qi using some view
in V , which is materialized over the xml database X . This object function is in
accordance with the formal perspective of view selection in rdbms [6].
The optimal solution. For a query Q1, the complete set of candidates C1 is
all views V that may answer Q1, i.e., C1 = {V |V � Q1}. The complete set of
candidates C for a workload Q = {Q1, Q2, · · · , Qn} is C =

⋃n
i=1 Ci. The näıve

way is to enumerate all candidate views C. Then, by exhaustively searching C to
identify the optimal solution (i.e. a view set O) that minimizes Equation 1.

There is no existing work to enumerate all complete candidate views. Assume
that for a query Q, we can define a set of rules, such as an edge relaxation
(e.g., /a to //a), a subtree promotion (e.g., //a/b[Q1]//Q2 to //a[.//Q2]/b[Q1]), a
leaf node deletion (e.g., //a/b/c to //a/b) [2], and label generation (e.g., //a to
//∗), etc. With above rules, we may (possibly) enumerate the complete candidate
views, while we still face the two difficulties addressed in Introduction. (1) The
number of candidate views is prohibitively large. The basic relaxation rules [2]
already generate an exponential amount of candidates. Taking label generation
into account, the problem space is exponentially exploded. (2) It is infeasible to
identify the relationships among all candidate views, which requires P|C|2 compar-
isons, and per containment check is NP-hard. We describe a new way to generate
a small view set V , which is a subset of the complete set (i.e., V ⊆ C) but ensures
to be a superset of the optimal solution (i.e., O ⊆ V).

3 Candidate View Generation

We first discuss the problem of answering a query using materialized views only,
i.e., without accessing the base data. We then describe how to generate a minimal
set of views as candidates for materialization.
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3.1 Query/View Answerability Criteria

// a @n < 1998 or @s = “str”

/ ∗

// b c/ ∗ //d

aQ1 lQ1
pQ1

aQ2 lQ2
pQ2

aQ3 lQ3
pQ3

sQ1

sQ2

sQ3

Fig. 2. Query Steps

Recall that in Table 2, each query
Q is represented as a sequence of
location steps Q = sQ1sQ2 · · · sQn .
Here, each step sQi has the form
aQi lQi [pQi ], where aQi ∈ {/, //} is
an Axis, lQi is an element name or
wildcard ∗ for NameTest, and pQi is
a predicate that can be any xpath

fragment or empty. Figure 2 shows
the three steps of query Q : //a[@n <
1998 or @s = “str”]/ ∗ //b[c/ ∗ //d]. For materialization, the xml fragments that
satisfy the query and rooted at the label of the last step (i.e. b) will be materi-
alized as deep copies of xml fragments.

Criteria for answerability. Given a view V and a query Q, where V :
sV1sV2 · · · sVm and Q : sQ1sQ2 · · · sQn , V answers Q, denoted as V � Q, iff
the following conditions are satisfied: (1) m ≤ n; (2) sQi ≡ sVi (equivalent) for
1 ≤ i ≤ m− 1; and (3) sQmsQm+1 · · · sQn % sVm .

Item 1 states that the number of view steps must be no more than the num-
ber of query steps. Item 2 declares that the first m − 1 query steps must be
exactly the same as corresponding view steps. Therefore, we need not access the
base data to refine the materialized view fragments. Two steps are equivalent,
denoted as sQi ≡ sVi , iff aQi = aVi (the same axis), lQi = lVi (the same la-
bel) and pQi ≡ pVi (equivalent predicates). Though being NP-hard for testing
the equivalence/containment of two predicates in theory, the predicates are typ-
ically not complicated such that it could be handled in real applications. Item
3 claims that the xpath fragment with the form sQmsQm+1 · · · sQn is contained
in the xpath fragment sVm , which guarantees that the query result can be ex-
tracted from the materialized view result. This criteria are similar to the ones
used in [16].

3.2 Constructing A Minimal Query

Given two queries Q1 and Q2, we say Q is a minimal query that answers Q1
and Q2, iff Q � Q1, Q � Q2, and there does not exist another query Q′ where
Q′ � Q1, Q

′ � Q2 and Q′ � Q. We have the following theorem.

Theorem 1. Given two queries P, Q, the minimal query that answers both P
and Q exists and is unique.

Proof. There exists a query /∗ (abbreviation of /child::∗) that answers both P
and Q. The query /∗ actually materializes the very first root element of an xml

document, which carries the entire information of an xml document (the virtual
document root is exclusive).
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aV1 lV1 [pV1 ]

aV2 lV2 [pV2 ]

aVk
lVk

[pVk
]

aP1 lP1 [pP1 ]

aP2 lP2 [pP2 ]

aP3 lP3 [pP3 ]

aPm
lPm

[pPm
]

aQ1 lQ1 [pQ1 ]

aQ2 lQ2 [pQ2 ]

aQ3 lQ3 [pQ3 ]

aQn lQn [pQn ]

V P Q

Fig. 3. Representation of Queries

Next we prove by construction that there exists a minimal query V , where
V � P , V � Q. For any query V ′, if V ′ � P and V ′ � Q, then V ′ � V . We depict
the view V and two queries P, Q in Figure 3.

Based on the criteria for query/view answerability, for any V that answers P
and Q, we have the followings:

V � P ⇒ aVi = aPi 1 ≤ i ≤ k − 1;
lVi = lPi 1 ≤ i ≤ k − 1;
pVi ≡ pPi 1 ≤ i ≤ k − 1;
aPk

lPk
[pPk

] · · · aPm lPm [pPm ] % aVk
lVk

[pVk
]

V � Q⇒ aVi = aQi 1 ≤ i ≤ k − 1;
lVi = lQi 1 ≤ i ≤ k − 1;
pVi ≡ pQi 1 ≤ i ≤ k − 1;
aQk

lQk
[pQk

] · · · aQn lQn [pPn ] % aVk
lVk

[pVk
]

With regards to the minimal query, the number of steps should be as long as
possible (e.g. a[./b/c] � a/b[./c] � a/b/c), and the predicates should be as re-
strictive as possible. Therefore, for the minimal query V that answers both P
and Q, k should be the first position where sPk

�≡ sQk
, i.e., some of the following

conditions are not satisfied: aPk
= aQk

, lPk
= lQk

or pPk
≡ pQk

.
Next step is to find a predicate that minimally contains both predicates:

aPk
lPk

[pPk
] · · · aPm lPm [pPm ] and aQk

lQk
[pQk

] · · · aQn lQn [pQn ]. Logically, the min-
imal predicate containing two predicates that are defined on the same schema is
the union of them, i.e., using “or”. Above construction is unique, and any other
query V ′ that answers both P and Q must answer V based on the query/view
answerability, which proves that V is minimal. 	
We denote by Q1◦Q2 the minimal query that may answer both Q1 and Q2. Note
that we say the minimal query is unique in terms of equivalence, e.g., a/b and
a[./b]/b are different in syntax but always produce the same result. Therefore,
Q1 ◦Q2 is a singleton (i.e. only one view instead of a set of views). Furthermore,
we have the following proposition.

Proposition 1. If a query P answers a query Q, then the minimal query that
answers P and Q is P , i.e., P ◦Q = P iff P � Q.
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1: P = sP1 sP2 · · · sPm ;
2: Q = sQ1 sQ2 · · · sQn ;
3: if sP1 �≡ sQ1 then
4: V = /∗, or P if Q % P , or Q if P % Q;
5: return V ;
6: else
7: V = sP1 ;
8: end if
9: k = min(m,n);
10: for i from 2 to k
11: if sPi ≡ sQi

12: V + = sPi
;

13: else
14: break
15: end if
16: end for
17: V + = [sPi+1 · · · sPm or sQi+1 · · · sQn ];
18: return V

Algorithm 1 MinQuery(P, Q)Computing the minimal query. We
describe an algorithm to compute the op-
eration Q1 ◦ Q2. Recall that a query Q
can be represented as a sequence of steps
as: Q = sQ1 sQ2 · · · sQn , and each step
is represented in the form: Axis NameTest

Predicates? (aQi lQi pQi). Two steps are
equivalent, if their Axis, Name and Pred-

icates? are equivalent, correspondingly. Al-
gorithm 1 shows how to compute the min-
imal query. The correctness of this algo-
rithm can be directly verified from the
proof of Theorem 1 (by construction).

Next we illustrate why the joined view
V = /∗ if sP1 �≡ sQ1 and P, Q are not
contained by each other (lines 4-5). Here,
we may safely omit some predicates. For example, given P : a[./c/d/e] and
Q : b[./c/d/e], the minimal query V = P ◦Q = /∗ while not V ′ = / ∗ [./c/d/e]
which seems more restrictive. There are only two cases for predicates: true or
false. (1) [./c/d/e] is true, to materialize V ′ is equivalent to materialize V ,
the root element. (2) [./c/d/e] is false, the result of V ′ is empty. We do not
materialize a query with empty result. Both bases are normalized to /∗.

We consider the following cases for minimizing the predicates. (1) Comparison
predicates. The minimization of comparisons with numeric constant is straight-
forward. For example, n < x and n < y can be minimized to n < x iff x ≤ y;
n > x or n > y can be minimized to n > x iff x ≥ y, etc. (2) Path minimization.
We have P or Q = Q if P % Q; P and Q = P if P % Q. Algorithms to find
the minimized query are applicable to our approach, which are omitted here due
to space constraints. [12] and [1] investigate to minimize comparison predicates
and minimize tree pattern queries, respectively.

3.3 Optimality of Candidate Views

In this section, we first describe the cost model, as a criterion for measuring
views to answer a set of queries. We then discuss how to generate a view set
as candidates, which is guaranteed to be a superset of the optimal solution and
safely avoids enumerating all potential views.

We use size(X , V ) to denote the result size of applying view V over an xml

database X . When the xml database X is clear from the context, we use size(V )
as a simplification. Without loss of generality, we assume that the materialized
views do not have index support. Evaluating a query over a materialized view
requires one scan of the materialized xml fragments. We use card(V ) to denote
the number of labels in an xml view V . We have the following general cost
estimation model of evaluating query Q based on view V materialized over an
xml database X :

cost(X ,V, Q) = α · size(X , V ) + β · size(X , V ) · card(Q) (2)
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When the view is materialized on a disk, the overhead is dominated by disk
I/O, in which case α� β. Otherwise, if the views are materialized in a semantic
cache, the overhead is dominated by the computational cost, which is determined
by the materialized view fragments and the query size, thus α( β.

Naturally, we have size(Q′) ≥ size(Q) if Q′ � Q. For two views V and V ′, we
say V is better than V ′ if V can be used to obtain a smaller value of Equation 1.
Given a single query Q and two views V and V ′, where V � Q and V ′ � Q, V
is better than V ′ in answering Q iff size(V ) < size(V ′). Furthermore, given a
query set Q and two views V and V ′, where V � Q and V ′ � Q, V is better
than V ′ in answering Q iff size(V ) < size(V ′). Recall that V � Q means that
V may answer each query Q in Q.

There are other factors that might influence the cost model, which are not
considered here. These factors may include the storage model of the materialized
xml fragments, and different indices that may be exploited, which may lead to a
more complicated model. However, we believe that our cost model, being simple
but general, enables us to investigate representative algorithms.
Finding a candidate set. Next we discuss how to generate a candidate view
set that is a superset of the optimal solution. We show some properties of the
minimal query first. The minimal query, computed over the operator “◦”, satisfies
the following identities:

(L1) P ◦Q = Q ◦ P (commutative law)
(L2) Q ◦Q = Q (idempotent law)
(L3) (P ◦Q) ◦ V = P ◦ (Q ◦ V ) (associative law)

The first two equivalences can be verified directly through Algorithm 1. We
simply illustrate L3 next. Based on Algorithm 1, assume that P, Q, V have k, m, n
steps, respectively, and the ith step is the first step that sPi , sQi and sVi are
not equivalent. Both (P ◦ Q) ◦ V and P ◦ (Q ◦ V ) are equivalent to the form:
sP1 · · · sPi−1 [sPi · · · sPk

or sQi · · · sQm or sVi · · · sVn ] such that identity L3 holds.
Thus, the computation of the minimal view of a query set is order independent.

Given a workload Q = {Q1, Q2, · · · , Qn}, we first aggregate them pairwise
to get

(
n
2

)
views, which are obtained by computing Q1 ◦ Q2, Q1 ◦ Q3, etc. We

then can aggregate Q1 ◦Q2 and Q1 ◦Q3 to get Q1 ◦Q2 ◦Q3, and so on. We get
V = {Q1, · · · , Qn, Q1 ◦Q2, Q1 ◦Q3, · · · , Qn−1 ◦Qn, · · · , Q1 ◦Q2 ◦· · ·◦Qn}. There
are O(2n) candidate views generated, which is deduced by

(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
n

)
=

2n−1. Although the worst case is still exponential, the size of candidate views is
much smaller than all potential views. Furthermore, we will introduce a simple
bound to significantly reduce the number of generated views.

Next we illustrate why we can safely ignore any view V ′ ∈ C (C is all views
that can be generated) if V ′ /∈ V , while still ensuring optimality. This question
comes from the fact that, for two queries Q1, Q2 and V = Q1 ◦ Q2, there may
exist another view V ′, where V ′ � V which is not considered for materialization.
Here, V ′ can be potentially used to answer some query Q3 but is not generated.

We prove this by showing that there exists another candidate view V ′′ ∈ V
that is better than V ′. Assume that Q′ is a subset of Q that V ′ can answer each
query in Q′, i.e., Q′ = {Q|Q ∈ V ∧ V ′ � Q}. V ′ is not in V , therefore, V ′ is not
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the minimal view to answer Q′. Suppose that the minimal view to answer Q′ is
V ′′. Naturally, we have V ′ � V ′′ and V ′′ is better than V ′ for the given workload
Q to minimize Equation 1.

4 Candidate View Organization

View organization. We organize the candidate views V as a directed acyclic
graph (named vcube), which is denoted as G(N, E). Each node u ∈ N(G) rep-
resents a view u

V
in V . Each node u has a level, denoted as level(u), which is

the number of queries in the original workload Q that are used to generate the
view u

V
. There is an edge (u, v) ∈ E(G), iff level(u) = level(v) + 1 and v

V

can be used to generate u
V
, i.e., the query set used to generate v

V
is a subset of

the query set used to generate u
V
.

Q1 Q2 Q3

Q1 ◦Q2 Q1 ◦Q3 Q2 ◦Q3

Q1 ◦Q2 ◦Q3

Fig. 4. Sample vcube

Example. Given a workloadQe = {Q1, Q2, Q3},
the level of Q1◦Q2 is 2, i.e., level(Q1◦Q2) = 2.
There is an edge from Q1 ◦Q2 ◦Q3 to Q1 ◦Q2,
since level(Q1◦Q2◦Q3) = 3, level(Q1◦Q2) =
2 and {Q1, Q2} is a subset of {Q1, Q2, Q3}. The
vcube for workload Qe is shown in Figure 4.

It deserves noting that we only maintain edges
between adjacent levels of views e.g. no edge
from Q1 ◦ Q2 ◦ Q3 to Q1, although the former
answers the latter. The nice property is that, the
answerability is traced not only by direct edges, but also by reachability relation-
ships. Based on vcube, our problem is reduced to finding a minimum weight set
of nodes that covers all leaves and minimizes Equation 1. We say vcube guar-
antees optimality since the optimal view set is subsumed in all candidates and
answerability is verifiable. Next we illustrate why we could safely avoid checking
the answerability between two unrelated views e.g. Q1 ◦Q2 and Q3.

In Figure 4, there are two edges from Q1 ◦ Q2, to Q1 and Q2, respectively.
Assume that Q1◦Q2 can also answer Q3 but there is no edge from Q1◦Q2 to Q3,
whether we would be underestimating Q1 ◦Q2, since we consider it to answer Q1
and Q2 only. According to Proposition 1, Q1 ◦Q2 ◦Q3 = Q1 ◦Q2 if Q1 ◦Q2 � Q3,
and there should have existed a path from Q1 ◦ Q2 ◦ Q3 to Q3. Therefore, the
optimal solution can always be identified. More specifically, assume that there
are two nodes u, v ∈ V (G) where uV � vV but there is no path from u to v. The
nearest common ancestor (node w) of u and v satisfies w

V
= u

V
◦ v

V
= u

V
since

u
V

� v
V
. The path from u to v could thus be omitted.

The benefits of edge construction in vcube are twofold. (1) The edges can
be directly constructed when computing the minimal views, without checking
the answerability between views, which is expensive. (2) The number of edges
maintained is much smaller than the edges computed depending on answerability.
This can reduce both the graph size (the number of edges) and the overhead of
searching optimal solution over it.
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View graph optimization. We describe to optimize the view graph by safely
omitting some views to be generated. We introduce a special view as an upper
bound. The special view is Δ : /∗, whose result is just the root element of X and
would never be materialized. For any query Q, we have Q ◦Δ = Δ. Therefore,
if some node in the bottom-up construction is Δ, we do not generate any other
nodes that may reach it, which can greatly reduce the candidates to be generated.
Recall that in Equation 1, we have a size constraint B. Therefore, if some view
V has the estimated materialized size larger than B, we do not materialized V
and can safely set V to Δ.

5 Materialized View Selection Algorithms

Finding the optimal solution for Equation 1 is NP-hard, which can be reduced to
the set cover problem1. In this section, we describe heuristic methods to identify
approximate solutions.
Estimating view size. View selection algorithms require knowledge of the size
of each view. There are many ways of estimating the sizes of views [19,23]. The
approach we adopt is sampling, i.e., running views on a representative portion
of the base data and multiplied by a scaling factor.

We have to consider space-time tradeoffs in view selection. In the space-
optimized perspective, we would like to select the views with the smallest size to
answer as many queries as possible. In the time-optimized perspective, we will
materialize the query workload only, which can answer any given query directly
but with a large size. We will first discuss an algorithm targeting space-optimized,
followed by an algorithm for space-time consideration.

5.1 Space-Optimized Algorithm

The goal of space-optimized is to material the smallest xml fragments to an-
swer a given query workload. We adopt a bottom-up, level-by-level dynamic
programming strategy over the vcube.

Given a candidate view set V generated from a workloadQ, its vcube G(N, E)
and a node u ∈ N(G), we use views(u) to represent the set of queries that gen-
erate the view u

V
e.g. views(Q1 ◦Q2) = {Q1, Q2}. Conversely, for a subset of

queries Q′, we denote by genv(Q′) the views generated by aggregating each
query in Q′ e.g. genv(Q1, Q2) = Q1 ◦Q2. Our recursive definition of the mini-
mum cost of computing size(u

V
) for each node u ∈ N(G) is as follows:

size(uV ) = min{size(genv(views(uV ) − views(vV ))) + size(vV ), size(uV )} (3)

here, node v ∈ N(G) is any graph node that is reachable from u. For instance,
when computing the size of Q1 ◦ Q2 ◦ Q3, we compare its size with the sum of
sizes of each combination in (Q1, Q2 ◦ Q3), (Q2, Q1 ◦ Q3) and (Q3, Q1 ◦ Q2),
and record the smallest one.

1 http://en.wikipedia.org/wiki/Set cover problem
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1: for i from 1 to |N(G)| do
2: estimate size(ni)
3: end for
4: for i from |Q|+ 1 to |N(G)| do
5: for j from 1 to |N(G)| do
6: if genv(views(ni) ∪ views(nj)) doesn’t exist

or
(
views(nk) = views(ni) ∪ views(nj)

and size(nk) > size(ni) + size(nj)
)

7: size(nk)← size(ni) + size(nj)
8: end if
9: end for
10: end for

Algorithm 2 SpaceOptimal(G)The intuition of Equation 3
is to compute the smallest size
for each graph node from all
the views that it might an-
swer. Algorithm 2 shows a dy-
namic programming based ap-
proach with time complexity
O(n2) where n is the num-
ber of graph nodes. Here, we
use ni to represent the i-th
node in the bottom-up, level-
by-level traversal mode. Ini-
tially, each view has an esti-
mated size (lines 1-3). In each iteration (leaf views could be skipped in line 4), we
compute the size of one view V by counting all the views that are answerable by
V , but marking the smallest size only. Note that a view might not exist in graph
originally, if its size exceeds a given upper bound, while this view will be used
(not materialized) in selecting views in our dynamic program. After computing
the last view (the graph root), we could find the smallest xml fragments to
materialize to answer the given query workload Q. We illustrate this algorithm
by an example next.

Q1 Q2 Q3

Q1 ◦Q2 Q1 ◦Q3 Q2 ◦Q3

Q1 ◦Q2 ◦Q3

15 15 20

35 25 30

35

Fig. 5. vcube with Sizes

Example. Consider the vcube in Figure 5, each
view is associated with an estimated size. As-
sume that the size constraint is B = 40. We start
with an initial view set V = {Q1, Q2, Q3}. Con-
sider Q1 ◦Q2, which is omitted since size(Q1 ◦
Q2) = 35 > size(Q1)+size(Q2) = 30. However,
Q1◦Q3 and Q2◦Q3 are considered to be materi-
alized since size(Q1◦Q3) < size(Q1)+size(Q3)
and size(Q2◦Q3) < size(Q2)+size(Q3). To an-
swer all queries Q, materializing Q1◦Q3 and Q2
requires the size 40, while for Q2 ◦ Q3 and Q1, it requires 45 > 40. Therefore,
we replace Q1, Q3 in V by Q1 ◦Q3 and V = {Q1 ◦Q3, Q2}.

Next we consider Q1◦Q2◦Q3, whose estimated size is less than the summation
of Q1 ◦Q3 and Q2, i.e., size(Q1 ◦Q2◦Q3) = 35 < size(Q1 ◦Q3)+size(Q2) = 40.
Furthermore, size(Q1◦Q2◦Q3) = 35 < B = 40, thus we have V = {Q1◦Q2◦Q3}.

5.2 Space-Time Algorithm: A Greedy Solution

In above example, the space-optimized approach only considers to use the small-
est sized views to answer the given workload. However, materializing Q1 ◦ Q3
and Q2, whose total size is 40, requires a larger size but may have a lower query
execution time.

Next we consider a space-time optimized approach. We define a utility func-
tion on the view graph, for each candidate view V and a workload Q, where
each query Qi ∈ Q is associated with a weight wi.
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util(V ) =
ΣV �Qiwi

size(V )
(4)

here, we compute the utility of a view V by considering how it can be used to
improve the query response time. The utility value is in inverse proportion to
the size of view, which means that the smaller the materialized size of a view,
the larger utility value it has. The utility value is in direct proportion to the
summated weights of queries the view may answer, which means that the more
queries the view can answer, the larger the utility value will be. The weight of
a view could be query independent as query frequency or query dependant like
full-resp-time/view-resp-time.
Algorithm description. We simply describe the algorithm of heuristically se-
lecting a set of views. (1) Compute the utility value of each view in the view
graph, and select the one with the largest utility value. (2) Remove the selected
view and all queries it may answer. Recompute the utility values of remaining
views. (3) Repeat this procedure until all queries can be answered or the total
size exceeds the size constraint B. This greedy strategy is similar to the one used
in [11] for computing data cube.

6 Performance Study

We report on empirical results in two orientations. Firstly, we measure the two
algorithms for selecting materialized views. Secondly, we study the performance
gain using materialized views, against the evaluation over the base data (bd for
short). For simplicity, we represent our space-optimized algorithm as so, and
the greedy strategy as gr.

The experiments were conducted on a PC 1.6GHz machine with 512MB of
memory, running Windows XP. The algorithms were coded in C++. We used
Berkeley DB XML2 for managing xml data with basic index support and storing
views. We used XMark as our test benchmark, with 16 queries (not listed for space
consideration). Q1−4 are in the form /site/people/person[@id=“person#”]//? where
person# represents a person id (e.g. person10) and ? a NameTest (e.g., name);
queries Q5−8 are in the form /site/regions//item[@id=”item#”]//?; queries Q9−12
are in the form /site/closed auctions/closed auction//?; and queries Q13−16 are in the
form //open auctions//open auction[Expr1][Expr2]//? where Expr1 is a path predicate.

6.1 Selecting Views in Practice

We mainly measure the effect of size parameters in two selection algorithms. The
first group of experiments is to fix the size limitation for each single view large
enough (e.g. the document size), while varying the total size upper bound (B).
Figure 6 shows the number the views selected when varying the upper bound B
for different documents. Here in x-axis, 0.25 means 0.25MB and 1 for 1MB, etc.
Both sub-figures show that, along with the enlarging size constraint, the number
2 http://www.oracle.com/database/berkeley-db/xml/index.html
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Fig. 6. Varying Size Upperbound B

of views for both algorithms increase. For example, for 4MB document, the so

selects 10 to 12 views and gr picks 13 to 15 views. When the constraint B exceeds
some threshold (e.g. 2MB for 4MB document), the size constraint cannot affect
the result of view selection. This group of experiments also tells that we could
use a relative small size constraint, e.g., half of document size for XMark, to get
the optimal solution. The benefit to select a small size bound is that, answering
queries over base data could be accelerated by underlying indices. This could be
faster than a materialized view without index support.

We also examine how the size limit of each view (parameter b) affects the size
of vcube in terms of number of graph nodes. Recall that in a vcube, if the
size of some view exceeds b, we don’t generate this graph node. Theoretically,
the vcube size of a workload of 16 queries is 216 = 65536. Take an Xmark 4MB

document and fixed B =1M. If we set b to be 4MB, there are 24 nodes in vcube.
When we change b to 1MB, there are 16 nodes generated. The cause of this
result comes from two facts: (1) the views that might answer queries in different
groups will have a large size and thus are not materialized; (2) the number of
views materialized for the same group of queries decreases when we restrict b.

Due to the small size of vcube, the costs for both selection strategies are
surprisedly small. Note that the size of each view is pre-estimated using a small
sample. In our case, we use an XMark 1MB document and estimate with a scal-
ing factor (e.g. 4 for an XMark 4MB document). Therefore, the selection is only
affected by the number of graph nodes but not the document size. It takes 10ms

for so strategy and 50ms for gr strategy, and this basically keeps the same for
different sized XMark documents.

In the worst case, the estimated view size via aggregating two queries exceeds
b. This case is reflected in above tests where no views generated for two groups
of queries. However, the query might be materialized if its size is below b.

6.2 Answering Queries Using Materialized Views

We compare the response time of so, gr and bd (without using views), on
top of Berkeley DB XML. We test XMark documents for different factors, from
1, 2 to 32. The weights of queries are all set to 1 as a normalized frequency in
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Fig. 7. Answering Queries using Views

equivalent weights. All tests give similar results, so we only report two documents
in Figure 7, where x-axis carries all test queries and y-axis its response time in
millisecond. This group of experiments verifies two important goals as expected:
(1) Answering queries using materialized views is much faster than evaluating
over the base data, even if the base data is well indexed. The reason is simple,
as the materialized views have smaller size and many structural joins of queries
have been pre-evaluated by views. (2) gr outperforms so in terms of response
time. This comes from the different aims of algorithm designs. so aims at an
optimized space consumption, while gr balances the space overhead and cost
estimation model for query processing, which is simple yet general and effective.

7 Conclusion and Future Work

We have described a framework to select xml views for materialization. For a
given workload, we present a new way to generate a small number of candidates
while ensuring optimality. Based on a well organized graph structure (vcube)
for maintaining a minimal set of candidate views, we present two heuristic algo-
rithms for view selection. We experimentally demonstrate that query response
time could be significant reduced using materialized views. Moreover, the vcube

gives full possibilities to develop other algorithms with different aims and for fur-
ther optimization.

In the future: (i) We plan to further develop algorithms over vcube, for
both better selected views and faster computation; (ii) In this paper, we store
materialized views using a disk-based database. We would like to cache views
using main-memory databases, to examine the advantage of selecting material-
ized views in different environments. (iii) We want to implement view selection
as a transparent optimization strategy, which is self-tuning and works off-line by
analyzing query logs. (iv) Incremental (or lazy) materialized view maintenance
is an interesting topic, compared with re-materialization each time for changed
base data and query logs. (v) We also plan to investigate, as a relaxed version,
the problem of view selection that allows to access the base data.
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Abstract. Fine-grained lock protocols with lock modes and lock gran-
ules adjusted to the various XML processing models, allow for highly
concurrent transaction processing on XML trees, but require locking fa-
cilities that efficiently support large and deep hierarchies with varying
fan-out characteristics. We discuss these and also further requirements
like prefix-based node labels, and present a lock management design that
fulfills all these requirements and allows us to perfectly exploit the ad-
vantages of our tailor-made lock protocols for XML trees. Our design
also supports the flexible use of heuristics for dynamic lock escalation
to enhance workload adaptivity. Benchmark runs convincingly illustrate
flexibility and performance benefits of this approach and reveal that care-
ful lock protocol optimization pays off.

1 Motivation

Native XML database systems (XDBMS) promise tailored processing of XML
documents, but most of the systems published in the DB literature are designed
for efficient document retrieval [13,19]. This “retrieval-only” focus was probably
caused by the first proposals of XQuery respectively XPath where the update
part was left out [21]. With the advent of the update extension [22] and its
support in commercial systems, however, the requirement for concurrent and
transaction-safe document modifications became widely accepted.

Currently, all vendors of XML(-enabled) database management systems sup-
port updates only at document granularity. Although this approach reduces some
of the complexity of updating XML, it is only feasible if the database consists of
collections of small documents. Efficient and effective transaction-protected col-
laboration on XML documents, however, becomes a pressing issue for medium-
to large-sized documents, especially, in the face of a growing number of use cases
for XML as the central data representation format in business environments.
Therefore, our goal is to provide a suitable solution for highly concurrent trans-
action processing on XML documents that fulfills all requirements of an XDBMS
in terms of applicability and flexibility.
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632 S. Bächle, T. Härder, and M.P. Haustein

In recent years, a great variety of XML storage models, indexing approaches
and sophisticated query processing algorithms have been proposed. Unfortu-
nately, they all make different assumptions about the availability of specific
data access operators, or even do not touch the problem of an embedding in a
real system environment at all. This diversity in conjunction with the various
language models and programming interfaces for XML is the most crucial prob-
lem in XML concurrency control. All those different ways of accessing the same
pieces of data makes it impossible to guarantee that only serializable schedules of
operations occur. Hence, we strive for a general solution that is even applicable
for a whole spectrum of XML language models (e.g., XPath, XQuery, SAX, or
DOM) in a multi-lingual XDBMS environment.

Because of the superiority of locking in other areas, we also focus on lock proto-
cols for XML. We have already developed a family consisting of four DOM-based
lock protocols called the taDOM group by adjusting the idea of multi-granularity
locking [8] to the specific needs of XML trees. Here, we discuss mechanisms how
such protocols can be efficiently implemented in a native XDBMS or any other
system that requires concurrent access to XML documents.

In Sect. 2, we emphasize the need and advantage of lock protocols tailored
to the specific characteristics of XML processing, sketching the properties of
our taDOM protocols, and discuss the role of prefix-based node labeling for
efficient lock management. Sect. 3 gives an overview of related work. In Sect.
4, we demonstrate how to embed XML lock protocols in a system environment
and describe some implementation details of a lock manager that simplifies the
use of a hierarchical lock protocol for large and deep document trees. In Sect.
5, we introduce an approach to dynamically balance benefit and lock overhead,
outline the problem of conversion deadlocks, and demonstrate the feasibility of
our approach with experimental results in Sect. 6. Finally, Sect. 7 concludes the
paper and gives an outlook on future work.

2 Preliminaries

XML lock protocols aim to enable XDBMS concurrent read and write accesses
of different transactions to the same documents, and thus increasing the overall
performance of the system. Hence, regarding the tree structure of XML, the
protocols have to synchronize read and write operations inside of a tree structure
at different levels and in different granularities.

Hierarchical lock protocols [9]—also denoted as multi-granularity locking—
were designed for hierarchies of objects like tables and tuples and are used “ev-
erywhere” in the relational world. The allow for fine-grained access by setting
R (read) or X (exclusive) locks on objects at the lower levels in the hierarchy
and coarse grained access by setting the locks at higher levels in the hierarchy,
implicitly locking the whole subtree of objects at smaller granules. To avoid lock
conflicts when objects at different levels are locked, so-called intention locks with
modes IR (intention read) or IX (intention exclusive) have to be acquired along
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the path from the root to the object to be isolated and vice versa when the locks
are released [9].

Although the MGL protocol can also be applied to XML document trees, it
is in most cases too strict, because both R and X mode on a node, would always
lock the whole subtree below, too. While this is the desired semantics for part-of
object hierarchies as in relational databases, these restrictions do not apply to
XML where transactions must not necessarily be guaranteed to have no writers
in the subtree of their current node. Hence, MGL does not provide the degrees
of concurrency, that could be achieved on XML documents.

In the following, we will give a brief introduction into our TaDOM lock pro-
tocols, which refine the ideas of the MGL approach and provide tailored lock
modes for high concurrency in XML trees.

2.1 TaDOM Protocol Family

To develop true DOM-based XML lock protocols, we introduced a far richer set
of locking concepts, beyond simple intention locks and, in our terms, subtree
locks. We differentiate read and write operations thereby renaming the well-
known (IR, R) and (IX, X) lock modes with (IR, SR) and (IX, SX) modes,
respectively. We introduced new lock modes for single nodes called NR (node
read) and NX (node exclusive), and levels of siblings called LR (level read). As in
the MGL scheme, the U mode (SU in our protocol) plays a special role, because
it permits lock conversion. The novelty of the NR and LR modes is that they
allow, in contrast to MGL, to read-lock only a node or all nodes at a level (under
the same parent), but not the corresponding subtrees.

The LR mode required further a new intention mode CX (child exclusive).
It indicates the existence of an SX or NX lock on some direct child nodes and
prohibits inconsistent locking states by preventing LR and SR locks. It does not
prohibit other CX locks on a context node c, because separate child nodes of c
may be exclusively locked by other transactions (compatibility is then decided on
the child nodes themselves). Alltogether these new lock modes enable serializable
transaction schedules with read operations on inner tree nodes, while concurrent
updates may occur in their subtrees.

For phantom protection, edge locks are used as a secondary type of locks.
They have only three different modes (read, update, and exclusive) and are re-
quested for the so-called virtual navigation edges of elements (previous/next sib-
ling, first/last child) and text nodes (previous/next sibling). Transactions have
to request shared edge locks when they navigate “over” such an edge to another
node, and exclusive edge locks when they want to insert new child/sibling nodes
in the tree. This mechanism signals readers node deletions of uncommitted trans-
actions and hinders writers from inserting nodes at positions where they would
appear as phantoms for others.1

Continuous improvement of this basic concepts lead to a whole family of lock
protocols, the taDOM family, and finally ended in a protocol called taDOM3+,
1 Although edge locks are an integral part of taDOM, they are not in the focus of this

work and will not be further regarded due to space restrictions.
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Fig. 1. Example of the taDOM3+ protocol

which consists of 20 different lock modes and allows highest degrees of paral-
lelism on XML document trees. Correctness and, especially, serializability of the
taDOM protocol family was shown in [11,20].

To illustrate the general principles of these protocols, let us assume that trans-
action T1 navigates from the context node journal in Fig. 1 to the first child
title and proceeds to the editoral sibling. This requires T1 to request NR locks
for all visited nodes and IR locks for all nodes on the ancestor path from root to
leaf. Then, T1 navigates to the first article to read all child nodes and locks the
article node and all children at once with the perfectly fitting mode LR. Then,
transaction T2 deletes a section from the editorial, and acquires an SX lock for
the corresponding node, CX for the editorial parent and IX locks for all further
ancestors. Simultaneously, transaction T3 is able to update the firstname node,
because the LR lock of T1 is compatible with the required IX intention modes.

2.2 Node Labeling

XML operations often address nodes somewhere in subtrees of a document and
these often require direct jumps “out of the blue” to a particular inner tree
node. Efficient processing of all kinds of language models [6,21] implies such
label-guided jumps, because scan-based search should be avoided for direct node
access and navigational node-oriented evaluation (e.g., getElementById() or get-
NextSibling()) as well as for set-oriented evaluation of declarative requests (e.g.,
via indexes).

Because each operation on a context node requires the appropriate isolation
of its path to the root, not only the node itself has to be locked in a sufficient
mode, but also the corresponding intention locks on all ancestor nodes have to be
acquired. Therefore, the lock manager often has to procure the labels for nodes
and their contexts (e.g., ancestor paths) requested. No matter what labeling
scheme is used, document access cannot always be avoided (e.g., getNextSib-
ling()). If label detection or identification, however, mostly need access to the
document (usually stored on disk), a dramatic cost factor may burden concur-
rency control. Therefore, the node labeling scheme used may critically influence
lock management overhead [10].
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In the literature, range-based and prefix-based node labeling [4] are considered
the prime competitive methods for implementation in XDBMSs. A comparison
and evaluation of those schemes in [10] recommends prefix-based node labeling
based on the Dewey Decimal Classification [5]. As a property of Dewey order
encoding, each label represents the path from the document’s root to the related
node and the local order w.r.t. the parent node; in addition, sparse numbering
facilitates node insertions and deletions. Refining this idea, a number of simi-
lar labeling schemes were proposed differing in some aspects such as overflow
technique for dynamically inserted nodes, attribute node labeling, or encoding
mechanism. Examples of these schemes are ORDPATHs [14], DeweyIDs [10], or
DLNs [2]. Because all of them are adequate and equivalent for our processing
tasks, we prefer to use the substitutional name stable path labeling identifiers
(SPLIDs) for them.

Here, we can only summarize the benefits of the SPLID concept; for details,
see [10,14]. Existing SPLIDs are immutable, that is, they allow the assignment of
new IDs without the need to reorganize the IDs of nodes present – an important
property for stable lock management. As opposed to competing schemes, SPLIDs
greatly support lock placement in trees, e.g., for intention locking, because they
carry the node labels of all ancestors. Hence, access to the document is not needed
to determine the path from a context node to the document root. Furthermore,
comparison of two SPLIDs allows ordering of the related nodes in document
order and computation of all XPath axes without accessing the document, i.e.,
this concept provides holistic query evaluation support which is important for
lock management, too.

3 Related Work

To the best of our knowledge, we are not aware of contributions in the open lit-
erature dealing with XML locking in the detail and completeness presented here.
So far, most publications just sketch ideas of specific problem aspects and are
less compelling and of limited expressiveness, because they are not implemented
and, hence, cannot provide empirical performance results. As our taDOM pro-
tocols, four lock protocols developed in the Natix context [12] focus on DOM
operations and acquire appropriate locks for document nodes to be visited. In
contrast to our approach, however, they lack support for direct jumps to inner
document nodes as well as effective escalation mechanisms for large documents.
Furthermore, only a few high-level simulation results are reported which indicate
that they are not competitive to the taDOM throughput performance.

DGLOCK [7], proposed by Grabs et al., is a coarse-grained lock protocol for
a subset of XPath that locks the nodes of a structural summary of the document
instead of the document nodes themselves. These “semantic locks” allow to cover
large parts of a document with relatively few locks, but require annotated content
predicates to achieve satisfying concurrency. Hence, even if only simple predicates
are used, a compatibility check of a lock request may require physical access to
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all document nodes affected by a lock, respectively by its predicate. Furthermore,
the protocol does not support the important descendant axis.

XDGL [15] works in a similar way, but provides higher concurrency due to
a richer set of lock modes, and introduces logical locks to support also the de-
scendant axis. The general problem of locks with annotated predicates, however,
remains unsolved. SXDGL [16] is snapshot-based enhancement of XDGL that
uses additional lock modes to capture also the semantics of XQuery/XUpdate.
It employs a multi-version mechanism for read-only transactions to deliver a
snapshot-consistent view of the document without requesting any locks.

OptiX and SnaX [17] are two akin approaches, which make also extensive use
of a multi-version architecture. OptiX is the only optimistic concurrency control
approach adapted to the characteristics of XML so far. SnaX is a variant of
OptiX that relaxes serializability and only guarantees snapshot consistency for
readers.

4 Infrastructure

As shown in Sect. 2 the taDOM protocols are applied only on the level of log-
ical operations on prefix-labeled trees. In a real system environment, however,
different data access methods might be used for performance reasons or because
the underlying physical representation of a document can only support a subset
of these operations.

The rationale of our approach is to map all types of data access requests—
at least logically—to one or a series of operations of a DOM-like access model.
Hence, our approach can be used in many different system environments, as long
as they natively support or at least additionally provide a prefix-based node
addressing. Note again, that this is a crucial requirement for XML lock proto-
cols, but anyway also worthwhile for many processing algorithms and indexing
methods. For the mapped operation primitives, we can apply the lock protocol
independently of the actual access model or physical data representation. So, we
can profit from both, the performance of fast, native data access operations as
well as the concurrency benefits gained from the use of the fine-grained taDOM
protocols.

Database management systems typically follow the principle of a layered ar-
chitecture to encapsulate the logic for disk and buffer management, physical
and logical data representation, query evaluation and so on. Except from cross-
cutting system services like the transaction management, monitoring or error
handling, it is relatively easy to exchange such a layer as long as it provides
the same functionality to the next higher system layer. In our approach, we use
this property to introduce a new layer in this hierarchy, which realizes the map-
ping of data access operations to logical taDOM operations and back to physical
data access operations. Fig. 2 shows the two core parts of our design—a stack
of three thin layers, placed between the physical representation and the higher
engine services, and the lock manager implementation itself.
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Fig. 2. Embedding of the lock protocols in a system infrastructure

4.1 Data Access Layer

The taDOM stack provides the query engine or the client transparently with
a transaction consistent, “single-user view” on the data. It is located on top
of the physical access layer, which provides access primitives for the underlying
storage structures. Hence, the stack replaces the classic, monolithic logical access
layer, responsible for the translation of high-level data access requests to the
corresponding data access primitives.

At the top is the so-called translation manager. It maps all different kinds
of access requests to the one or a series of calls of the node manager, which
provides a set of operations which can be easily covered by the lock modes of
the taDOM protocols. These are the navigation and modification operations as
they are known from DOM, efficient bulk operations for subtrees like scans,
insertions, and deletions, and, of course, direct jumps to nodes via their SPLID.
The latter is certainly the biggest strength of the whole protocol as we will
see later. For our explanations, we consider first the most simple case, where
the translation manager only has to provide node-wise access and manipulation
operations, because they directly correspond to DOM operations.

The node manager is responsible for the acquisition of the appropriate node
and edge locks according to the taDOM protocols. When the required locks for
an operation are granted, it simply passes the request directly to the record
manager, which provides the same set of operations as the node manager.

The record manager translates the operations finally into the actual physical
data access operations of the physical storage layer. Depending on the chosen
storage model, this can be, for example, a simple access to a main memory
representation of the document tree, or a B*-tree access. Independent of the
chosen storage model, however, the physical storage layer only has to preserve
structural consistency, e.g., if multiple threads representing different transactions
access and modify the shared data structures concurrently. The transactional
consistency will always be preserved, because the taDOM protocol applied at the
node manager level already ensures that the operations will create a serializable
schedule.

Depending on the needs of the higher system layers and the capabilities of the
underlying storage structures, it may be desirable or necessary to use efficient
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indexes, e.g., to fetch attribute nodes by their value, or to fetch all element
nodes of a certain name. Of course, these are complex operations, which can
not be easily mapped to the navigational base model. From the point of view
of the taDOM model, however, this can be also considered as “random” jumps
to specific document nodes, which, in turn, are supported very well through the
SPLID-labeling. Hence, with a small extension of the physical storage layer, our
approach can also support efficient index accesses. The diverse index structures
only have to lock every node with a node lock, before they return it as a result. In
contrast to the previous case, however, index structures have to take additional
care of phantoms themselves.2

4.2 Lock Manager

Although taDOM is based on the idea of widely used concepts of multi-granularity
locking, hierarchical locking on XML trees is fairly different from the common way.
While multi-granularity locking in relational databases usually requires only four
or less granules of locks, e.g., for single tuples and whole tables, XML trees have a
varying and dynamic depth and also varying and much smaller fanouts than a table
with millions of tuples.

So far, hardly anything was reported in the literature about the implemen-
tation of XML lock managers. Without having a reference solution, we had to
develop such a component from scratch where the generic guidelines given in [9]
were used.

The central part of the lock manager is the lock table. It coordinates all
required data structures and is also responsible for granting lock requests. For
each locked object, a lock header is created, which contains name and current
mode of the locked object together with a pointer to the lock queue where all
lock requests for the object are attached to. Each lock request carries the ID of
the respective transaction, the requested/granted mode. All lock requests of a
transaction are doubly chained to speed-up lock release at transaction end.

Further necessary data structures are transaction entries to store housekeep-
ing information for each transaction, as well as two hash tables hta and hlock

for fast lookups of lock headers and transaction entries. The hash tables, lock
headers and the transaction entries use a fast latching mechanism to minimize
synchronization points between concurrent threads.

A lock request is generally processed as follows. When a transaction T requests
lock mode m for object o, hta is used to find the transaction entry te of T. If it
does not exist, a new one is created. Then hlock is used to find the lock header h
of o. If o is not locked, a new lock header for o is registered in hlock. If T already
holds a lock for o, it tries to replace the currently granted mode with a mode
that covers both the old granted and the requested mode. If it is T ’s first lock
request for o it creates a new request r and appends it to the request queue of

2 Mechanisms for the prevention of phantoms are specific to the index structures, but,
because this is also a problem in relational indexes, similar solutions are usually
applicable.



Implementing and Optimizing Fine-Granular Lock Management 639

h. If the requested mode is compatible with all requests of other transactions,
the lock is granted. Otherwise, T must wait until either all incompatible locks
of other transactions are released, the request timed out or the transaction is
aborted by the deadlock detector due to a circular wait-for-relationship.

Because we need to synchronize objects of varying types occurring at diverse
system layers (e.g., pinning pages by the buffer manager and locking XML-
related objects such as nodes, edges, and indexes), which exhibit incomparable
lock compatibilities, very short to very long lock durations, we encapsulated
everything in so-called lock services, which provide a convenient interface to the
various system components [1].

To simplify and speed up lock management for our hierarchical lock protocols,
we made our lock implementation “tree-aware”. First, the node lock service
automatically infers from a request, e.g., mode NR for SPLID 1.25.3.7 directly
the ancestor path and the required intention locks on this path. These locks are
acquired from the lock table in a single request. The lock table itself gets the
transaction entry for the requesting transaction and starts granting the requests
along the ancestor path from root to the leaf generally in the similar manner as
sketched above.

When an intention lock on an ancestor node is granted that has been locked
by the requestor before, it checks if the granted mode on the ancestor is strong
enough to cover also the actual leaf request, e.g., when the node with SPLID
1.25 was already locked with an SR lock. If the ancestor lock is strong enough
to satisfy the actual leaf request, we can directly stop the acquisition of further
locks along the path.

5 Protocol Optimization

As it turned out by empirical experiments, lock depth is the most important and
performance-critical parameter of an XML lock protocol. Lock depth n specifies
that individual locks isolating a transaction are only acquired for nodes down
to level n. Operations accessing nodes at deeper levels are isolated by subtree
locks at level n. Note, choosing lock depth 0 corresponds to the case where only
document locks are available. In the average, the higher the lock depth parameter
is chosen, the finer are the lock granules, but the higher is the lock administration
overhead, because the number of locks to be managed increases. On the other
hand, conflicting operations often occur at levels closer to the document root
(at lower levels) such that fine-grained locks (and their increased management)
at levels deeper in the tree do not always pay off. Obviously, taDOM can easily
be adjusted to the lock-depth parameter. A general reduction of the lock depth,
however, would jeopardize the benefits of our tailored lock protocols.

5.1 Dynamic Lock Depth Adjustment

Obviously, the optimal choice of lock depth depends on document properties,
workload characteristics and other runtime parameters like the number of con-
current users etc., and cannot be decided statically. The most effective solution to
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reduce lock management overhead at runtime is lock escalation: The fine-grained
resolution of a lock protocol is—preferably in a step-wise manner—reduced by
acquiring coarser lock granules. Applied to our case, we have to dynamically
reduce lock depth and lock subtrees closer to the document root using single
subtree locks instead of separately locking each descendant node visited. We
aim at running transactions initially at a high lock depth to benefit from the
fine-grained resolution of our lock protocols in hot-spot regions, but reserve the
option to dynamically reduce the lock depth in low-traffic regions encountered
to save system resources.

We use a counter for each request object, which is incremented everytime
a node is locked intentionally as the direct parent for a lock request. If this
counter reaches a certain threshold, indicating that—depending on the level,
which we know from the tree-aware lock table—relatively much children of this
node are already locked3, it seems very likely that the transaction will access
further child nodes, and it would be beneficial to escalate the intention lock
request either with an LR lock if a simple NR lock was requested for the child,
or even with a shared or exclusive lock for the whole subtree depending on the
requested mode for the child. To avoid blocking situations, we exploit the context
knowledge from lock table about the current lock mode and the requests of all
transactions for that node again, and check whether concurrent transactions
already hold incompatible locks, before we finally decide about the subtree-local
lock escalation.

The escalation thresholds are computed from the simple formula threshold =
k ∗ 2−level, which takes into account that typically the fanout as well as the
conflict potential decreases on deep levels. The parameter k can be adjusted
according to current runtime properties.

5.2 Use of Update Locks

Update locks are special lock modes used to avoid so-called conversion deadlocks.
These deadlocks arise if two transactions read the same object and then both
attempt to upgrade the lock for modification. In relational systems, update locks
are mainly used for update cursors. They allow for a direct upgrade to exclusive
lock mode when the transaction decides to modify the current record, or for a
downgrade to a shared lock when the cursor is moved to the next record without
any changes. Transactions in XDBMS do not follow such easy access patterns.
Instead, they often perform arbitrary navigation steps in the document tree, e.g.,
to check the content child elements, before modifying a previously visited node.

Tests with our XDBMS prototype XTC revealed that many deadlocks result
from the conversion of edge locks and not from the conversion of node locks. In a
typical situation of such deadlocks, for example, two transactions try to append
a new fragment under a node when they have already acquired a shared lock
for its last-child edge while checking the value of the ID attribute of the current

3 The actual number of locked child nodes may be less if the same child node is locked
several times.
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last child. As the insertion of a new last child requires conversion to an exclusive
lock for the current last-child edge, both transactions form a deadlock. Hence,
we have to carefully enrich our access plans with hints when to use update locks
for accessing nodes, subtrees, or edges.

6 Experimental Results

We evaluated the described optimizations in our XDBMS prototype XTC with
a mix of eight transaction types, which access and modify a generated XMark
document at varying levels and in different granules. Three transaction types
are read-only and access the document in various ways. The first one simply
reconstructs the subtree of an item, the second iterates over the person siblings
and item siblings to find the seller of an item, and the third one fetches the mails
in the mailbox of an item. The update transactions examine smaller parts of the
document through navigation, before they change the structure and the content
of the document, e.g., by placing bids on items, by changing user data, or by
inserting new users, items, or mails.

In all cases, we used an additional element index to randomly select a jump-
in point for the transaction. To place a bid, for example, we first perform some
navigation in a randomly selected open auction subtree to check the current
highest bid and to determine which content nodes have to be modified, before
the new bid is actually inserted.

As we wanted to examine only the behaviour of the locking facilities in sit-
uations with a high blocking potential and not the influence of other system
parameters, we chose an initial document size of only 8 MB and used a buffer
size large enough for the document and the additional element index. In our
experiments, we only used the taDOM3+ protocol, because it outperforms all
other protocols of the taDOM family, and focused on lock-depth optimization.

In the first experiment, we evaluated the influence of the escalation heuristics
and the parameter k on the effectiveness and efficiency of the lock protocol. The
benchmark load was produced by 50 client instances, which continuously started
transactions of a randomly selected type. We weighted the transaction types to
achieve a balanced workload that evenly accesses and modifies the document at
lower and deeper levels. For each escalation heuristics, we varied the initial lock
depth from 0 to 8 and measured throughput, response time, abort rate, and the
number of locks required for each configuration in several benchmark runs of one
minute. For the escalation heuristics, we chose the parameter k equal to 2048
(called moderate) and 1536 (eager) respectively 512 (aggressive).

To document the general benefit of an XML lock protocol, we run the bench-
mark also in a “single-user mode”, which allowed scheduled transactions only
exclusive access to the documents.

The results in Fig. 3(a) reveal that the reduced lock overhead of our dynamic
escalation mechanism has a positive influence on transaction throughput. The
highest transaction rates were already achieved at lock depth 2, which seems
fitted best to our test workload. For all higher lock depths, throughput remains
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Fig. 3. Effect of lock escalation on transaction throughput and response times

relativley constant for all heuristics and also remarkably higher than in single
user mode. The comparison of the escalation heuristics proves that less lock
overhead directly leads to higher throughput.

The average response times of successful transactions (Fig. 3(b)) mirror the
results shown in Fig. 3(a) for the lock depth 2 and higher. Shortest response
times correspond to highest transaction throughput.

Fig. 3(c) shows that the lock depths 0 and 1 suffered from extremely high abort
rates, caused by a high amount of conversion deadlocks, which immediately arise
when a write transaction first uses shared subtree locks at root level or level 1,
and then tries to convert this lock into an exclusive subtree lock the perform an
update operation. Fig. 3(c) also clearly indicates that the escalation heuristics
do not lead to higher deadlock rates when the maximum lock depth is chosen
appropriately.

Fig. 3(d) demonstrates how effective simple escalation heuristics could reduce
overhead of lock management. The number of required locks grows with higher
lock depths and then saturates at a certain level. As expected, the aggressive
heuristics achieved the best results in this category and saved in the average
30%4 compared to the plain protocol variant without any escalation. Also the
eager heuristics could save a mentionable amount of locks, whereas the benefit
of the moderate heuristics was only marginal.

For our second experiment series, we took the balanced workload of the pre-
vious experiment (denoted default) and changed the weights of the transaction

4 The actual savings potential is in fact even considerably higher, because acquired
locks can be removed as soon as they become obsolete after an escalation.
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Fig. 4. Results of workload variations and adjusted escalation strategies

types to create a workload mix that mainly consists of transaction types that
access and modify the document at deeper levels (deep) and another one that
mainly operates on higher document levels (flat). We ran the benchmark with
maximum lock depth 8, which allows fine-grained locks even deep in the docu-
ment, and again in single-user mode. For these configurations, we also evaluated
variants with moderate escalation heuristics from the previous experiment, a
variant where we modified the transaction types to make careful use of update
locks (optimized) to avoid conversion-induced deadlocks, and a fourth variant
(optimized + aggressive) that combined the use of update locks with the aggres-
sive heuristics, which produced the best results in the previous experiment.

The results in Fig. 4(a) proof again that all variants of taDOM3+ achieve
higher transaction throughput than the solution with exclusive document access.
The optimized version with aggressive escalation nearly achieves a gain of 20%
in throughput as compared to the plain taDOM version. Of course, we observe
similar results for the response times in Fig. 4(b), too.

The abort rates in Fig. 4(c) show the benefit of carfully set update lock modes
during processing. The deadlock rate decreases to nearly zero, which in turn
explains the throughput gain in Fig. 4(a).

Finally, Fig. 4(d) illustrates that our optimizations complement each other.
On the one hand, correct application of update lock modes is helpful if lock
escalations are used, because this increases danger of deadlocks otherwise. On
the other hand, lock escalations help to reduce the overhead of lock management.

Altogether, the experimental results demonstrate well that a fine-grained lock-
ing approach pays off and provides higher throughput and shorter response times
than exclusive document locks. The experiments also confirmed that taDOM3+ in
combination with our adaptations is able to provide constantly high transaction
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throughput for higher lock depths, and that it can effectively and efficiently be ad-
justed to varying workloads to achieve high concurrency without a waste of system
resources.

A closer analysis of the shown results revealed that our protocols would allow
even much higher concurrency in the XML tree for lock depths higher than
2. Here, however, the data structures of the physical storage layer—which is a
B*-tree in our prototype—became the bottleneck.

7 Conclusions and Outlook

In this paper, we explained the realization of fine-grained concurrency control for
XML. We started with an introduction into the basics of our tailor-made lock
protocols, which are perfectly eligible for a fine-grained transaction isolation
on XML document trees, and emphasized the advantages of prefix-based node
labeling schemes for lock management. Thereafter, we turned on general imple-
mentation aspects, where we showed how the XML protocols can be integrated
in a layered architecture and how even different storage models and indexes
can be incorporated into our concept. We also explained how we adapted the
a widely used lock manager architecture for our needs and presented ways to
optimize the runtime behaviours of the lock protocols.

In our future work, we will focus on the integration of advanced XML indexes,
which make use of structural document summaries, in our isolation concept, and
the interplay between XML concurrency control on the one hand and efficient
query evaluation algorithms for declarative queries based on XQuery on the other
hand.
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Abstract. Having been extensively used to summarize massive data
sets, wavelet synopses can be classified into two types: space-bounded
and error-bounded synopses. Although various research efforts have been
made for the space-bounded synopses construction, the constructions of
error-bounded synopses are yet to be thoroughly studied. The state-of-
the-art approaches on error-bounded synopses mainly focus on build-
ing one-dimensional wavelet synopses, while efficient algorithms on con-
structing multidimensional error-bounded wavelet synopses still need to
be investigated. In this paper, we propose a first linear approximate al-
gorithm to construct multidimensional error-bounded L∞-synopses. Our
algorithm constructs a synopsis that has O(log n) approximation ratio to
the size of the optimal solution. Experiments on two-dimensional array
data have been conducted to support the theoretical aspects of our algo-
rithm. Our method can build two-dimensional wavelet synopses in less
than 1 second for a large data set up to 1024×1024 data array under given
error bounds. The advantages of our algorithm is further demonstrated
through other comparisons in terms of synopses construction time and
synopses sizes.

1 Introduction

Wavelet techniques have been successfully used in image and signal processing
for decades. Haar wavelet is the simplest yet powerful wavelet tool that has been
extensively investigated during recent years. Studies have demonstrated the ap-
plicability of Haar wavelet analysis on image compressing [1], approximate query
processing [2] and data streams [3]. Briefly, the idea is to apply Haar wavelet
transformation on input data to obtain a compact data synopsis, containing
only a set of selected wavelet coefficients. There has been an explosion of pub-
lications on how to choose coefficients (a.k.a coefficient thresholding) in recent
years, which forms an active research topic in the literature.

One common thresholding criterion is to minimize approximation errors un-
der a given number of coefficients. The synopses thus created are named space-
bounded synopses. Various error metrics, collectively known as Lp-norm error,
have been applied on synopses construction. Among them, L2-norm error met-
rics, i.e. root-mean-squared, are well-understood and widely adopted. However,
it is pointed out by many researchers that the choice of using L2-norm error is
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natural but yet to be sufficient [4]. A major shortcoming of L2 synopses is that
users have no way to control approximation error of individual items, which can
result in wide variance as well as severe bias in the quality of the approximation
[5]. To alleviate this, researches have made efforts on building non-L2 synopses,
such as L∞-synopses (i.e. maximum error synopses) that aim at minimizing max-
imum approximation error. Literature has shown those synopses outperform L2
in many cases [2,6]. Garofalakis et al proposed the first algorithm to build space-
bounded L∞-synopses, based on randomized rounding techniques [7]. However
its probabilistic nature makes it still possible to generate poor synopses in certain
cases. Thus Garofalakis et al proposed a deterministic algorithm, that explicitly
minimizes the maximum error and can always guarantee better synopses [8].
The main drawback of this approach is that it imposes large resources require-
ments on systems, which renders itself impractical in many real situations, such
as large or streaming data processing. Karras et al thus proposed a one-pass
greedy based algorithm to build L∞-synopses for large data sets [9]. Note that
so far all the mentioned techniques are restricted to store a subset of wavelet
coefficients and are thus classified further as restricted synopses. Guha et al
argued that from the intrinsic purpose of synopses, this restriction is neither
necessary nor guaranteeing best quality synopses. They thus proposed a greedy
algorithm and a fully polynomial-time approximation scheme (FPTAS) to build
unrestricted L∞-synopses [4,10,11]. This FPTAS, like many other algorithms in
L∞-synopses construction, features high time and space complexity. Aiming at
better unrestricted L∞-synopses construction, Karras et al seek the ’help’ from
error-bounded synopses and proposed an indirect approach. Specifically, instead
of computing space-bounded synopses, they suggest a detour through a series of
error-bounded synopses constructions [12]. They demonstrate theoretically and
practically that this detour actually improves the overall performance.

Another thresholding criterion is to minimize synopses size under a given
approximation error. These synopses are thus named error-bounded synopses.
However compared with the thriving research fruits on spaced-bounded L∞-
synopses construction, error-bounded L∞-synopses, only received few attentions
in the literature. In fact, these synopses are also commonly used in practice as
space-bounded synopses. Many data processing applications, such as time series
data analyses [13], statistical data for hypothesis testing [14], location man-
agement with spatiao-temporal data reduction [15], require compressing data
with guaranteed approximation error. Thus error-bounded synopses are favored
in these scenarios. As dualities of space-bounded L∞-synopses, error-bounded
synopses are only discussed in few recent papers. Muthukrishnan proposed the
first algorithm to construct maximum error-bounded synopses in [16]. It is a
natural extension of the optimal algorithm proposed in [8] and not surprisingly
suffers similar performance penalties. It has subquadratic time complexity and
quadratic space complexity, which is obviously impractical to large data pro-
cessing. A greedy improvement of that method was proposed in [17]. Another
investigation, as mentioned before, was proposed by Karras et al in [12]. In-
terestingly, it was a by-product of their space-bounded synopses construction
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algorithm. For a data set with n data, it takes O(( ε
δ )2n) time and O( ε

δ log n+n)
space to build a one-dimensional wavelet synopses with maximum error bounded
by ε. The performance of this method relies however heavily on the resolution
value, δ, which is a double-sided blade for the algorithm’s efficiency and effec-
tiveness. Large δ renders a large size synopses, but can be built within 1 second.
Small δ leads to a succinct or even near-optimal synopses (in terms of synopses
size), with the building time ranging from hours to days. The authors, in the
experiment section of their paper [12], also mentioned that they need to run
several trials before they can find a suitable δ value.

Despite this process, the existing two approaches for error-bounded L∞-
synopses construction are still inefficient for summarizing large data sets. One
potential problem is that they both rooted from examining possible coefficient
values in every node of the Haar wavelet error tree. Thus they need to at least
maintain such a tree structure in the system’s memory, which requires O(n)
space complexity. Also the repeatedly checking on every node makes it not easy
to be tuned as a pure linear algorithm, which is an utmost prerequisite for
large and streaming data processing. Another issue is that both two algorithms
are focusing on building one-dimensional synopses. How to efficiently construct
multidimensional error-bounded L∞-synopses is still not well-understood. Sim-
ply extend existing solutions to build multidimensional synopses will inevitably
exacerbate the performance. These motivates the work presented in [18] and
this paper. In [18], we focused on building synopses for one-dimensional data
and proposed a couple of approximate algorithms. While this paper extends and
completes that work by proposing algorithms for multidimensional synopses.
Table 1 summarizes the above reviews by enumerating various algorithms’ com-
plexity as well as their specifications. It also lists the result of this paper for
comparison purpose. n is the data size. B and ε are the space and error bound,
respectively. R is the cardinality of possible coefficient values. δ is the value of
resolution. k is the dimensionality of data.

Table 1. Summary of various wavelet synopses

Ref. Time Space Spec.

Space
Bound

[5] O(n2B log B) O(n2B) Optimal Restrict
[9] O(n log3 n) O(n log n) Greedy Restrict
[12] O(R2n(log ε∗ + log n)) O(R log n + n) Indirect Unrestrict

[10,11] O(R2n log2 B) O(R min{B2 log n
B , n log B) FPTAS Unrestrict

[4] O(n) O(B + log n) Approx. Unrestrict

Error
Bound

[16] O(n2/ log n) O(n2) Optimal Restrict
[12] O(( ε

δ )2n) O( ε
δ log n + n) Approx. Unrestrict

[18]+ This Work O(n) 2k
k log n Approx. Unrestrict

Our contributions: (1) We present an approximate algorithm on multidimen-
sional Haar wavelet error-bounded L∞-synopses construction. To the extend of
our knowledge, this is the first algorithm on multidimensional error-bounded
L∞-synopses that has ever been presented in literature. (2) Our algorithm can
build synopses satisfying both absolute and relative error requirements. It is an
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approximate algorithm that guarantees the quality of constructed synopses with
a 2k

k log n approximation ratio to the size of the optimal solution (k is the num-
ber of dimensions). (3) Our algorithm has linear time complexity and sublinear
space complexity, which make it naturally applicable for large data processing.
(4) We also experimentally show that our algorithm can be indirectly used to
construct space-bounded L∞-synopses. The performance is even better than the
greedy space-bounded L∞-synopses construction algorithm proposed in [4].

The rest of this paper are organized as follows. Section 2 presents preliminary
knowledge of Haar wavelet transformation and synopses construction. Readers
familiar with wavelet techniques can easily skip this part. Section 3 explains
details of our algorithm, theoretical analyses of the algorithm’s performance and
possible extensions. Section 4 reports experiment results and section 5 concludes
this paper.

2 Preliminary

In this section we first briefly introduce one-dimensional Haar wavelet transforma-
tion. Then we discuss two approaches on multidimensional Haar wavelet transfor-
mation, namely standard and non-standard transformation. Specifically we focus
on onemethod ofnon-standard transformation,proposedbyChakrabarti et al [19].
Finally we present formal definitions of wavelet synopses.

2.1 One-Dimensional Haar Wavelet Transformation:

The Haar wavelet transformation is a hierarchical decomposition of the original
data. In each step, it filters the input data into two parts: the approximation
part as the result of low-pass filters; and the detail part, a.k.a. coefficients, as the
result of high-pass filters. Due to the special properties of Haar wavelet mother
function, we can simplify one-dimensional transformation through a series of
summing and differentiating. Specifically, for every two adjacent data, we sum
them and then divide

√
2 to get the approximations. We compute the difference

between them and also divide
√

2 to get the coefficients. Note that by using√
2, instead of the commonly used 2, we can directly get the normalized wavelet

coefficients. This procedure is named one-step transformation. Recursively, we
apply this one-step transformation on the computed approximations till we only
have one data in the approximation part. This one approximation data plus
all the computed coefficients form the final result of wavelet transformation,
i.e. wavelet coefficients. Suppose we are given an original data set: [1, 2, 1, 2].
After applying the above techniques, we compute the one-dimensional wavelet
transformation as

[
3, 0, −1√

2
, −1√

2

]
.

2.2 Multidimensional Haar Wavelet Transformation:

There exist two methods to perform multidimensional wavelet transformation:
the standard and non-standard decomposition [1]. The standard decomposition
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Fig. 1. Two-dimensional wavelet transformation

is to apply one-dimensional wavelet transformations on every dimension of a
k-dimensional data array repeatedly. Figure 1 (a) presents an example of such
decomposition on a two-dimensional data array. As described, one-dimensional
wavelet transformations are applied firstly on rows, followed by another set of
one-dimensional transformations on columns. The non-standard decomposition
is to apply a one-step transformation alternately on each dimension. After those
one-step transformations, we get the approximation and the detail parts. Then
we apply the one-step transformations on the approximation part recursively,
until we have only one data in the approximation part. Figure 1 (b) presents an
example of such decomposition. After one-step transformation on rows, we start
one-step transformation on columns. Then we get the upper-left four data as the
approximations while others as the details. Recursively applying one-step oper-
ations on those four data, we finally reach the one data approximation, 18. This
data with other computed details form the non-standard wavelet coefficients.
Note that both methods have been extensively used in a variety of applications
and none of them show consistently superior [19].

In this paper, we construct error-bounded synopses based on non-standard
wavelet transformation. Our choice is mostly motivated by the fact that in non-
standard transformation, after every one-step transformation on all dimensions
we can directly get part of the final wavelet coefficients. This enables a similar
tree structure of wavelet transformation, as that used in one-dimensional trans-
formation. Figure 2 (a) illustrates a multidimensional transformation tree with 3
levels transformation. Figure 2 (b) presents a corresponding 3 levels Haar trans-
formation on a MRI image of human brain. All dark images represent details and
the only bright one at the upper left corner represents the overall approximation.
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Fig. 2. Hierarchical non-standard wavelet transformation

To clearly present our synopses construction algorithms, we will not use the
above method of non-standard wavelet transformation. Instead, we apply the box
operation method proposed by Chakarbarti et al: the procedure of this method
can be thought conceptually as a 2× 2 × · · · × 2(= 2k) hyper-box being shifted
across the k-dimensional data array, performing pairwise computation, distribut-
ing the results to appropriate locations [19]. We use a two-dimensional transfor-
mation to illustrate the box operation. Consider a 2 × 2 square shifted across
the data, the four data values, e, f, g, h, in a square, are transformed to an ap-
proximation t and three details p, q, r, as presented in Figure 3 (a). Note that
the equations used in pairwise computation are slightly different to that in [19].
This is again because we want to generate normalized coefficients directly. Fig-
ure 3 (b) presents an example of the non-standard transformation through box
operations on the data array used in Figure 1. Readers can refer to [19] for more
details of the box operation.

2.3 Wavelet Synopses

To construct wavelet synopses, we choose to store certain non-zero values as
wavelet coefficients. These will be used to approximate the original data. Given
a data set D = {di : 1 ≤ i ≤ n}, we define the wavelet transformation as W and
the reconstruction (i.e. inverse wavelet transformation) as W−1. The wavelet
synopsis is defined as S. Then by definition, we haveW(D) represents the set of
wavelet coefficients. And W−1(S) represents the approximation generated by S.
The difference between D and W−1(S) is measured by Lp-norm error metrics.
When p =∞, it implies the maximum error metrics. Existing wavelet synopses
can be categorized into two groups as follows:

Definition 1. Space-bounded synopses: Given a data set D, a positive inte-
ger B and Lp-norm error metrics, find a synopsis S, such that |S| = B and∥∥D −W−1(S)

∥∥
p

is minimized.
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Definition 2. Error-bounded synopses: Given a data set D and a non-negative
real number ε, find a synopsis S, such that

∥∥D −W−1(S)
∥∥

p
≤ ε and |S| is

minimized.

Furthermore, S can be broadly defined as unrestricted synopses where S is not
suggested to be a subset of W(D). In the following section, we will discuss how
to build a multidimensional error-bounded L∞-synopsis, with the synopsis’s size
is guaranteed to be a O(log n) approximation ratio to the size of the optimal
solution.

3 Building Multidimensional Error-Bounded
L∞-Synopses

In this section, we first present the sketch of our error-bounded L∞-synopses
construction algorithm. Then we explain details of synopses computation. This
is followed by theoretical analyses of our algorithm. We also discuss possible
extensions of the algorithm at the end of this section. According to Definition
2, for any approximation values generated by error-bounded L∞-synopsis S, we
have the following inequations:

di − ε ≤ W−1(S)i ≤ di + ε (1)

Thus for any synopses S, it is easy to see that as long as Equation 1 holds, S is
a L∞-synopsis bounded by ε and vice versa. This simple yet mighty observation
motivates our following synopses construction algorithm.
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3.1 Algorithm Sketch

Intuitively, our algorithm starts from the top level of the wavelet transforma-
tion tree in Figure 2 (a) (i.e. the data node). For each data di of the original
data set, we relax it to a range [di − ε, di + ε] according to Equation 1. This
range is a collection of all valid approximation values of di. Our algorithm will
then use the ranges, instead of the original data set to build S. Specifically, for
every transformation that decomposes a parent node into two child nodes, the
approximation and detail, we greedily find smallest number of non-zero values
that are necessary to make all ranges of the parent node valid. As long as we fix
all the values, we can compute the valid ranges of the approximation child node,
which will be used recursively for next level decomposition. This process will
be continued until we reach the bottom of the transformation tree. Algorithm 1
presents our synopses construction algorithm.

Input: D, k-dimensional data array[1 . . . n, . . . , 1 . . . n]; ε, error bound
Output: S, k-dimensional error-bounded L∞-synopsis
Relax each di of D to a range: [di − ε, di + ε];1

while n 
= 1 do2

Shift a 2k hyper-box in the k-dimensional array [1 . . . n, . . . , 1 . . . n];3

In each box, compute the values of the detail part according to ranges in the4

hyper-box;
Determine the range of approximation part according to computed values of5

detail;
Output values as part of S;6

n = n
2
;7

end8

Compute the last value from the range stored in cell (1, . . . , 1);9

Algorithm 1. Building error-bounded L∞-synopses

3.2 Compute Approximation Ranges and Details in a Hyper-Box

Now we present how to compute details and new approximation ranges from
ranges in a hyper-box i.e. step 4 and 5 of algorithm 1. For simplicity reasons,
we will always use two-dimensional synopses to explain our techniques hereafter.
Computation for higher dimension wavelet synopses can be easily derived based
on the ideas presented here. Consider a 2× 2 box shifting in a two-dimensional
data array. We use e, f, g, h to represent the four data values and t, p, q, r to
represent the computed approximation and details, as depicted in Figure 3 (a).
Those four data values are bound by ranges as:⎧⎪⎪⎨

⎪⎪⎩
e1 ≤ e ≤ e2
f1 ≤ f ≤ f2
g1 ≤ g ≤ g2
h1 ≤ h ≤ h2

(2)
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The box operation , as described in Figure 3 (a), can be presented as:⎡
⎢⎢⎣

.5 .5 .5 .5

.5 −.5 .5 −.5

.5 .5 −.5 −.5

.5 −.5 −.5 .5

⎤
⎥⎥⎦
⎡
⎢⎢⎣

e
f
g
h

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

t
p
q
r

⎤
⎥⎥⎦→ A

⎡
⎢⎢⎣

e
f
g
h

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

t
p
q
r

⎤
⎥⎥⎦ (3)

Note that A is the Haar wavelet transformation matrix and A = A−1. Combining
Equations 2 and 3, we have Equation 4. Based on this, we can decide values of
t, p, q, r through two following cases greedily.

A

⎡
⎢⎢⎣

e1
f1
g1
h1

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

t
p
q
r

⎤
⎥⎥⎦ ≤ A

⎡
⎢⎢⎣

e2
f2
g2
h2

⎤
⎥⎥⎦ (4)

Case 1: If there exists a common range, [c1, c2], that bounds e, f, g, h simulta-
neously in Equation 2, we can simply set the three details, p, q, r as 0. Then t
can be computed as:⎡

⎢⎢⎣
e1
f1
g1
h1

⎤
⎥⎥⎦ ≤ A

⎡
⎢⎢⎣

t
0
0
0

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

e2
f2
g2
h2

⎤
⎥⎥⎦⇒ 2c1 ≤ t ≤ 2c2

Case 2: Otherwise, we set the values of three details as the middle values of
their valid ranges. For instance, according to Equation 4, we compute p’s range
as
[

e1−f1+g1−h1
2 , e2−f2+g2−h2

2

]
. Thus we set p = e1+e2

4 − f1+f2
4 + g1+g2

4 − h1+h2
4 .

Similar computations exist for q and r. Then from Equation 4, we can compute
the range of t from the following inequations.⎡

⎢⎢⎣
e1
f1
g1
h1

⎤
⎥⎥⎦− A

⎡
⎢⎢⎣

0
p
q
r

⎤
⎥⎥⎦ ≤ A

⎡
⎢⎢⎣

t
0
0
0

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

e2
f2
g2
h2

⎤
⎥⎥⎦−A

⎡
⎢⎢⎣

0
p
q
r

⎤
⎥⎥⎦

The last value, i.e. in step 9 of Algorithm 1, can be easily set as 0, if valid, or
the middle value of its valid range.

3.3 Algorithm Analyses

In this part, we analysis the time and space complexity of our synopses construc-
tion algorithm. We also prove that our algorithm can generate quality guaranteed
synopses. That is the size of constructed synopsis is bounded in O(log n) to the
size of optimal solution.



On Multidimensional Wavelet Synopses for Maximum Error Bounds 655

Complexity Analysis: As described in Algorithm 1, we output details from the
computations on data of every 2k hyper-box directly, to build k-dimensional
wavelet synopses. The wavelet transformation matrix A is fixed for a given di-
mension number k, and can thus be pre-computed. Then the time used to com-
pute details and approximation’s range for each hyper-box is O(2k). Suppose we
have n data in a k-dimensional array, the synopses construction time T is:

T = 2k(
n

2k
+

n

22k
+ · · ·+ 1) = O(n)

Also during our synopses construction, we can directly output details and only
store the approximation’s range for each computation in a 2k hyper-box. To get
any range of an approximation node in the transformation tree, we need a 2k

hyper-box of its parent node. This requirement will be propagated to the top of
the transformation tree. Thus the running space, used on computing synopses
is:

(2k − 1) log2k n = O(
2k

k
log n)

Theorem 1. Algorithm 1 can build a k-dimensional error-bounded L∞-synopses
on n data with time complexity O(n), space complexity O(2k

k log n).

Quality Analysis: The quality of synopses, i.e. the sizes of the synopses, is closely
related to our greedy mechanisms. Before analyzing the sizes of synopses gener-
ated by Algorithm 1, we need to first understand the error tree structure used
to compute approximations from synopses. Figure 4 illustrates an error tree
for generating approximations from a two-dimensional synopsis. Leaf nodes con-
tains the computed values from the synopsis. Non-leaf nodes contains the details.
Specifically the root contains the last computed valued in step 9 of Algorithm
1. Every approximate value is computed through traversing from the root to its
parent node. The example in Figure 4 computes approximations of the data used
in Figure 3 (b), with the maximum error bounded by 1.5.
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Fig. 4. Error tree for two-dimensional nonstandard reconstruction

Our greedy method can be conceptually thought of constructing an error
tree upwardly, starting from valid ranges at the leaf nodes. Each computation
inside the hyper-box generates details stored in a non-leaf node. It also generates
approximation ranges of the node. Here we define a special subtree that only
has non-zero details at it’s root node as pivot twig. As in Figure 4, the subtree
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located inside the big rectangle is a pivot twig. The following lemma presents an
important property of a pivot twig.
Lemma 1. Given a pivot twig t of an error tree constructed by Algorithm 1,
Let α represent the number of non-zero details inside t, that would be set by the
optimal solution. Then α ≥ 1.
Proof. Let tr represent the root node of t. According to the definition of t, there
must exist no common range from all ranges of the child nodes of tr, before we
set non-zero details in tr. Also any non-zero detail outside t will not help to make
a common range for tr’s children. Thus even the optimal solution must also has
at least one non-zero detail in t. Otherwise the approximation values in the leaf
nodes of t will against the maximum error bound. This proves α ≥ 1. ��
Intuitively, Lemma 1 tells us that whenever there exists a pivot twig in our
approximate solution, there must be some non-zero coefficients, constructed by
the optimal solution, in that twig. Thus we can bound the sizes of approximate
synopses through the following theorem:

Theorem 2. Let the size of an optimal k-dimensional error-bounded L∞-synopsis
be S(o). Let the size of the greedy synopsis constructed by Algorithm 1 be S(g). Then
S(g)
S(o) ≤ 2k

k log n.
Proof. Suppose the number of pivot twigs in the error tree, constructed by Al-
gorithm 1, is npt. Since our algorithm only generates non-zero coefficients on
the root or root’s ancestors of pivot twigs. And each root of a pivot twig has at
most log2kn ancestors. Thus we have S(g) ≤ npt ∗ log2kn ∗ (2k − 1). According
to Lemma 1, we have npt ≤ S(o). This proves S(g)

S(o) ≤ 2k

k log n. ��

3.4 Discussions

Our greedy method can be applied on construction of other types of synopses,
with few, if not none, modifications. Here we briefly discuss two interesting syn-
opses: maximum relative-error-bounded synopses and space-bounded synopses.

Building maximum relative-error-bounded synopses: The relative error is ar-
guably having the best practical performance. We can apply similar methods
used for processing one-dimensional data [20]. Given a relative error bound εrel

and a sanity bound α, we compute the valid approximation range of a data di

as: [di − εrel · max{|di| , α}, di + εrel · max{|di| , α}]. Algorithm 1 can then be
applied to build a multidimensional maximum relative-error-bounded synopses
without any modification!

Building space-bounded synopses: Using indirect method, we also can com-
pute space-bounded synopses by our greedy algorithm. The idea is simple and
straightforward. Given a data set D, to compute a multidimensional space-
bounded L∞-synopses with space B, we run several trials with various guessed
error bound ε until we find a synopses whose size equals or less than B and min-
imizes ε. The lower and upper bound of ε can be simply set as 0 and max

i
{|di|}

(di ∈ D) at the very beginning of trials.
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4 Experiment

In this section, we test the performance of our greedy algorithm on multidi-
mensional error-bounded synopses construction. For simplicity reason, all our
tests are based on two-dimensional wavelet synopses construction. Three gray
scaled images downloaded from internet are tested as data sets. Specifically, a
1024 × 1024 array represents a MRI image of human brain, a 512 × 512 array
represents a fractal image, a 256× 256 array represents a hieroglyph alphabets
image. We implement our algorithms using GNU C++ 4.0. All experiments re-
ported in this section are performed on an Intel Core 2 Duo 2.8 GHz CPU with
2GB main memory, running Mac OS X.

4.1 Constructing Synopses

We test our greedy method on absolute/relative error-bounded synopses con-
struction in this part. The experimental data sets used include the MRI image
and the fractal image. These are two-dimensional arrays with 1M and 262K data
respectively. Each data represents a pixel intensity and thus ranges from 0 (total
absence, black) to 1 (total presence, white).

We build absolute error-bounded, two-dimensional synopses for the MRI image.
Figure 5 (a) presents the original data. |D| represents the data size. Two synopses,
basedon two absolute error bounds0.05 and0.2,are constructed for theMRI image.
Figure 5 (b) and (c) present the approximations generated by those two synopses.
ε represents the error bound and |S| represents the synopses size.

(b)  0.05, 96574Sε = = (c)  0.2, 10293Sε = =20(a)  1048576 (2 )D =

Fig. 5. Absolute error-bounded synopses for the MRI image

(b)  20%, 85183rel Sε = = (c)  60%, 26565rel Sε = =18(a)  262144 (2 )D =

Fig. 6. Relative error-bounded synopses for the fractal image
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We build relative error-bounded, two-dimensional synopses for the fractal im-
age. Figure 6 (a) presents the original data. Two relative error bounds, 20% and
60%, are set to build synopses. Figure 6 (b) and (c) present them separately.

Both Figure 5 and 6 demonstrate that higher error bound leads to higher
compression ratio, but with sacrifices on approximation quality.

4.2 Time Efficiency

In this part we evaluate the time used on building error-bounded synopses. Be-
sides the MRI and fractal images we build absolute and relative error-bounded
synopses for another data set, the hieroglyph alphabet image, to form a complete
test on various data sizes. Figure 7 presents the experiment result by setting ab-
solute error 0.05 and relative error 20% in the synopses construction. As claimed
in Theorem 1, the synopses construction time only relates to the original data
size. Our experiment result supports that claim. Hieroglyph alphabet image is
the smallest data set that can be summarized by error-bounded synopses in less
than 0.1 second. While the MRI image, the largest data set, takes around 1
second to be summarized.

 0.01

 0.1

 1

 10

Hieroglyph Fractal MRI

Tim
e o

f b
uil

din
g s

yn
op

se
s (

se
c)

Absolute error-bounded
Relative error-bounded

Fig. 7. Building time of error-bounded synopses

4.3 Synopses Quality Comparison

Our last experiment focuses on measuring the quality of synopses. For space-
bounded synopses, the quality is measured by the maximum approximation

(a)  MRI data set (b)  Fractal data set (c)  Hieroglyph data set

Fig. 8. Size comparison of error-bounded synopses generated by GSB and GEB
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(a)  MRI data set (b)  Fractal data set (c)  Hieroglyph data set

Fig. 9. Error comparison of spaced-bounded synopses generated by GSB and GEB

(a) original image (c) approx. by GSB(b) approx. by GEB

Fig. 10. Approx. comparison of space-bounded synopses generated by GSB and GEB

error. Similar to that, we use the size of synopses to measure the quality of
error-bounded synopses. However since our algorithm is the only known one
that can build multidimensional error-bounded L∞-synopses, we measure the
synopses quality through indirect comparisons with the quality of synopses con-
structed by an algorithm originally aiming for multidimensional space-bounded
L∞-synopses. Specifically, we use both algorithms to generate space-bounded
and error-bounded synopses and compare their qualities. Section 3.4 already
presents basic ideas of apply our algorithm on building space-bounded synopses
indirectly. Similar ideas can be easily derived for algorithms, originally aiming
for space-bounded synopses, to build error-bounded synopses.

We choose the greedy algorithm, proposed by Guha et al [4], to be the indi-
rectly compared algorithm. The reason of our choice is threefold. First it is a
state-of-the-art research result of building multidimensional space-bounded syn-
opses. Second it is an approximate algorithm with O(log n) approximation ratio.
Third it has linear time complexity which makes it highly applicable for large
data sets. Let GEB denotes our greedy algorithm for error-bounded synopses.
Let GSB denotes the greedy algorithm for space-bounded synopses [4]. Figure 8
and 9 report comparison results on building various error-bounded and space-
bounded synopses. Note that in Figure 9, |D| represents the size of original data.

When compared on building error-bounded synopses it is not surprise that
GEB achieves better quality of synopses, compared to those indirectly con-
structed by GSB. Interestingly, on building space-bounded synopses, GEB also
achieves synopses with smaller maximum approximation error, compared to
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those directly constructed by GSB. We present visual comparisons of the approx-
imations produced by same sizes space-bounded synopses, generated by GSB and
GEB, in Figure 10.

5 Conclusion

In this paper, we examined building multidimensional wavelet synopses. We
proposed an efficient and effective greedy algorithm that can construct absolute
as well as relative error-bounded L∞-synopses. Our method is a one-pass linear
algorithm with O(log n) space complexity of fixed dimension number, this makes
it naturally suitable for processing large or streaming data sets. It also has a
provable O(log n) approximation ratio to guarantee synopses quality. In addition,
as demonstrated by experiments, our greedy method can be used to indirectly
build space-bounded synopses with good quality. As our next step research, we
will investigate building multidimensional error-bounded synopses for generic Lp

error metrics.
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Abstract. Query expansion has received extensive attention in information re-
trieval community. Although semantic based query expansion appears to be
promising in improving retrieval performance, previous research has shown that
it cannot consistently improve retrieval performance. It is a tricky problem to au-
tomatically determine whether to do query expansion for a given query. In this
paper, we introduce Compact Concept Ontology (CCO) and provide users the
option of exploring different semantic levels by using different CCOs. Experi-
mental results show our approach is superior to previous work in many cases.
Additionally, we integrate the proposed methods into a text-based video search
system (iVSearcher), to improve the user’s experience and retrieval performance
significantly. To the best of our knowledge, this is the first system that integrates
semantic information into video search and explores different semantic levels.

1 Introduction

Query extension has been extensively studied in information retrieval community to
address the word mismatch or semantic gap between queries and documents. Word
mismatch is a fundamental and serious problem in information retrieval since it is com-
mon that users may use different words to retrieve document from the words used by
authors to describe the concepts in documents [7]. There are a host of work on Query
Expansion (QE), e.g., [15,8]. Existing query expansion methods usually need to extract
terms’ similarity based on distinct sources, e.g., documents and relevance feedback
made by users. What is more related to our work is ontology-based query expansion
to alleviate semantic gap. For example, user query is bunny but the desired documents
may be described by rabbit or lapin; keyword-based search will fail to find the desired
documents. On the other hand, a query expansion method can expand the user’s query
bunny to other terms related to rabbit or lapin, so that the search can capture semantic
features.

Semantic based query expansion is expected to help discover the semantic similar-
ity between query and document, and hence improve the performance of text retrieval.
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However, experiments in previous work have shown that query expansion is often not a
robust technique. Previous work showed that semantic-based query expansion can ame-
liorate some of the problems of mismatched words on small collections while degrade
performance when the query is relatively complete and long. For example, Voorhees
[15] used WordNet to expand query terms and provided a comprehensive discussion and
found that such expansions make little performance improvement for common queries,
however, significantly improves the performance on short ones [7,15]. Following the
work by Voorhees, more works focused on similar topics but unfortunately failed to
improve retrieval performance in general.

On the other hand, the existing expansion strategies for query expansion methods are
quite rigid and hardly to be tuned by users. For example, individual query performance
differs more for more aggressive expansion strategies (i.e., expanding using longer
chains of links in WordNet or weighting certain terms more heavily), while the over-
all performance of a query set may not be optimal by aggressively expanding queries
[7]. Some methods use human judgement, e.g., relevant feedback [12], to obtain use-
ful information. However, such approaches are not convenient due to the large-amount
feedback [8].

In spite of the negative news on semantic query expansion, we believe it is still a
valuable complementarity for text retrieval after carefully examining the existing query
expansion methods with different query expanding strategies. Semantic query expan-
sion can achieve better performance than methods without considering semantic if users
are involved to determine whether to do semantic expansion.

In this paper, we propose a novel query expansion method for effective text retrieval.
First, we represent each text with a weighted tree which encodes the semantic of the
whole text based on WordNet, and then calculate the similarity between two texts glob-
ally using their weighted trees. Second, to explore different semantic levels for text
search, we propose an algorithm for merging WordNet to generate Compact Concept
Ontologies (CCOs) with different scales and replace WordNet with them when calcu-
lating semantic similarity. Different semantic expanding levels on CCO can be used for
effective query/text expansion.

To evaluate the performance of our approach, we compare cosine similarity and
query expansion method on both standard dataset NPL corpus [17] and video text
dataset which was collected from YouTube. Our experimental results on NPL corpus
show that different approaches yield different performance on individual query; exper-
imental results on video text show our method outperforms existing methods. Experi-
mental results also show that semantic expansion work better on text-based online video
search area, where the text description is usually short. We also implement a demo sys-
tem of text-based video search engine based on our CCO mechanism, and the system
can improve users’ experience of video search.

The rest of this paper is organized as follow: In section 2, we introduce some re-
lated work; In section 3, we present the algorithm for calculating semantic similarity
and Compact Concept Ontology (CCO), which are the two core components of our
approach; we evaluate these algorithms in Section 4, and demonstrate our system in
Section 5; and finally we conclude our work in Section 6.
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2 Related Work

In this section, we present a brief introduction to previous work in the area of query
expansion, especially those related to our methods. The existing query expansion ap-
proaches can be divided into two classes, i.e., 1) global analysis and 2) local analysis
[9]. Global analysis seriously relies on the statistical information of corpus and is rel-
atively robust, while local analysis uses only some initially retrieved documents for
further query expansion.

There are some well-known global analysis algorithms, e.g., term clustering [10]
and Latent Semantic Indexing (LSI) [11]. A trivial global method mentioned in [21]
uses the co-occurrence relation between concepts and obtains relatively good result.
Moreover, Crouch et al. [22] clusters the document and carries out query expansion.
Although these methods can obtain good performance sometimes, they still suffers from
the problem caused by corpus-wide statistical analysis that consumes a considerable
amount of computing resources [8].

On the other hand, local expansion methods use only some initially retrieved doc-
uments for further query expansion. For example, the relevance feedback method [12]
modifies a query based on users’ relevance judgments of the retrieved documents [8]
and experimental results indicate that these kinds of methods yield satisfactory perfor-
mance when users provide adequate feedbacks. Considering the obstacle of collecting
such feedback information, some methods tend to use approximate information, e.g.,
pseudo-relevance feedback [13], which assumes that the top-ranked documents to be
relevant, however the performance is significantly affected by the quality of the initial
retrieval. It is found in [9] that local expansion methods outperform global ones in some
circumstances and there are also methods that combine them together, e.g., [14].

Last but not at least, some researchers have built semantic search engines based on
WordNet for text documents. For example, Voorhees investigated the problem of query
expansion using semantic knowledge and presented four expansion strategies [6] :

1. by synonyms only;
2. by synonyms plus all descendants in an isa hierarchy;
3. by synonyms plus parents and all descendants in an isa hierarchy;
4. by synonyms plus any synset directly related to the given synset.

Though Voorhees found that those methods does not make significant improvement
on TREC corpus, she indicated that those approaches work well on some queries, es-
pecially the short ones. This phenomenon is quite trivial because it is not difficult for
us to image that, for a long and complete query, WordNet-based expansion brings more
noise than useful information. While for short queries, WordNet-based expansion can
capture more semantic information of query and enhance the query performance.

3 Calculating Semantic Similarity

In this section, we discuss the algorithm for calculating semantic similarity and seman-
tic level determined by Compact Concept Ontology (CCO).
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Although WordNet-based query expansion discussed in Sec. 2 can utilize the seman-
tic information of the query, it may introduce undesirable expansion, especially when
expanding the query word with its descendants in an isa hierarchy because the number
of descendants is generally too large to obtain a desirable searching result [7]. For ex-
ample, we found that on the video text dataset used in our experiment if we expand the
query animal dance by their descendants using WordNet, the top 100 videos in the
result list are only related to animal but not dance since the expanded query contains
many words of animal names, but few words related to dance.

To solve this problem, one possible solution is to expand both the query and text
descriptions of videos to their parents in the WordNet to prevent the large number of
expanding. But how to determine the expanding degree – which we call semantic level
– is a nontrivial task. As the hypernym (is-a-kind-of) relationships in WordNet of differ-
ent words do not contain equal semantic information, determining a consistent semantic
level for each word is infeasible. For example, if we want to expand the word bunny to
animal, we must expand it to its 8th superconcept, while expanding the word dance
with 8th level will exceed the root node of WordNet! Therefore, we need a new strat-
egy to determine the expanding degree of each word. To this end, we will build a new
ontology in which the hypernym relationships can almost equally convey semantic in-
formation and thus we can fix on an universal expansion layer and change semantic
level by change different CCO. We also propose a new strategy for query expansion
as discussed above. Moreover, the new ontology also allows users to explore different
semantic levels easily by just selecting different CCO to use.

Note that, though it is like that we change the structure of documents, this problem
can be solved easily by some appropriate indexing methods. For example, when we
create the invert index of documents, we can index not only the words themselves, but
also their hypernyms in different ontology. Based on this reason, we still classify our
methods into the area of query expansion, despite of that it use the information of
detailed documents while searching.

3.1 Algorithm for Calculating Semantic Similarity

We first discuss the approach to compute semantic similarity between text features,
which is also a strategy of query expansion. There is a host of work on computing
semantic similarity between two words using WordNet. However, there is a gap from the
semantic similarity between words to the semantic similarity between texts. Although it
seems that a straightforward extension from word-level semantic similarity to text-level
semantic similarity, e.g. [1], will work well, it is disproved in [5]. The algorithm in [1]
treats each word pair independently, and thus cannot capture the semantic of the text
as a whole. For example, a word may have multiple senses and its context in text will
help to identify the real sense in a text. To this end, we next present a novel method of
computing semantic similarity between two texts based on WordNet.

The main idea of our approach is to first represent each text with a weighted tree
which can encode the overall semantic of the whole text based on WordNet, and then
calculate the semantic similarity between two texts using their weighted trees.

Given a text P , we build its weighted tree TP as follows. For every word wi in P ,
we find the corresponding node in WordNet for each sense of wi to get a set
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SCi = {C1, ..., Cr} of nodes, where r is the number of senses of wi. Each node Cj in
SCi and the corresponding path from Cj to the root of WordNet tree will be added to
TP (if the path is not in TP ); for each node from Cj to the root, we increase its weight
by one. In this way, we will get the complete weighted tree TP for P after we process all
words in P . The weighted tree TP represents the semantic characteristics of the whole
text P . The similarity of two texts can be calculated by comparing the similarity of their
weighted trees. The similarity between two weighted trees T1 and T2 can be defined as
the straight-forward dot product of the two trees or as follows:

Sim(T 1, T 2) = m−
∑

nodei

| W1(nodei)
W1(root)

− W2(nodei)
W2(root)

|,

where W1(.) and W2(.) are weights for nodes in tree T1 and T2 respectively, and nodei

represents every node appearing in either T1 or T2. If a certain node only appears in
one tree, its weight in the other tree is set as zero.

The above similarity definition is a natural extension of the similarity in [4] which
computes the similarity between two words using WordNet. Compared with the method
in [1], we compute similarity as a whole. Considering the time complexity, suppose the
depth of ontology tree and the number of tree nodes are constant, when generating the
weighted tree, we need to find all corresponding paths for each word, thus the time
complexity is O(c ∗ s ∗m). When comparing two weighted tree, we just need O(c ∗
s ∗ (m + n)). Thus, calculating the semantic similarity between two given texts cost
O(c ∗ s ∗ (m + n)). Consider [1], It cost O(c ∗ s ∗ m ∗ n ∗ O(WordSim)). Where
n and m are the number of words in two texts, c is the average height of WordNet, s
is the average number of senses of each word in WordNet, O(WordSim) is the time
complexity of semantic similarity methods between words. Thus, our method is more
efficient.

The algorithm discussed above calculates the semantic similarity between texts by
comparing their weighted trees. While trying to consider semantic features, it ignores
the fact that sometimes we need not expand each word to the root of WordNet. So
here we define the concept of expanding − layer (k), which will be helpful when we
discuss the semantic level later. When founding the corresponding path of each concept,
we do not use the whole path from root, but a shorter path from each concept to the kth

superconcept and later we link all these short paths to the original root. Fig. 1 shows an
example of the corresponding path of node bus#3 with expanding layer k=2.

3.2 Semantic Level and Compact Concept Ontology (CCO)

The proposed algorithm for computing semantic similarity uses WordNet as the con-
cept ontology. However, we find that WordNet does not fit very well with our algorithm
while searching. The nature of our algorithm is to expand each word to its supercon-
cepts, but in WordNet, the proper number of layers to expand is generally different for
different words. For example, when we want to expand the word bunny to animal (e.g.
the query animal dance), we find that the expanding layer for bunny is k=8, which
is too large for the word dance. Thus, when using WordNet as ontology, it is difficult
for us to create a system which has a suitable semantic level. We conjecture that we can
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motor vehicle#0

car#0

bus#3

WordNet Root

Fig. 1. Example of the path of bus#3 with expanding level k=2

solve this problem by merging different nodes of WordNet together – when we merge
those semantically similar nodes together, we can get an ontology focusing on this given
semantic level. Thus, given a searching query, we can fixate the expanding layer and
change the different ontology to use in order to achieve different semantic levels. There-
fore, we design a new ontology from WordNet, named Compact Concept Ontology
(CCO),which has the following properties:

1. CCO inherits the hierarchical relationship of WordNet structure.
2. CCO combines different senses of the same word into a single concept if they are

very similar.
3. CCO highlights semantic factors and considers combination when two concepts

have similar semantic meanings.
4. Compared with WordNet, CCO is much more compact and yields better time effi-

ciency.

Where 1) ensures the methods based on WordNet can be migrated to CCO without
modification; 2), 3) and 4) result in larger synsets of each word.
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vehicle#0 public transport#0

wheeled vehicle#0

self-propelled vehicle#0

motor vehicle#0

car#0
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bus#0... ...

conveyance#2
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wheeled vehicle#0

...

bus#0bus#3... ...

... ...

Fig. 2. Process of Union
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We next present the WordNet Union Algorithm to build CCO from WordNet by com-
bining semantically similar nodes. More specifically, we find semantically similar node
pairs (i, j) and the nearest common ancestor node a in WordNet. Then, we combine all
the nodes on the paths between a and i,j to form a new node k, which is child node of
a, and also combine i and j to form a new node, which is child node of node k. Figure
2(a) and (b) shows an example. In Figure 2(a), nodes bus#0 and bus#3 are semantically
similar nodes and the nodes between them and their common ancestor will be com-
bined into one node in Figure 2(b) and nodes bus#0 and bus#3 are also combined into
one node.
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Fig. 3. Comparison between Different CCOs

The open problem is to find the semantically similar node pairs (i, j). They need
to satisfy the following two conditions: 1) they represents two senses of the same
word, and 2) they are highly semantically similar, i.e. Sim(i, j) > threshold, where
Sim(., .) is computed using the WUP method in [3]. By determining the different
thresholds while merging, we can get CCOs with different scales, which tends to con-
vey different semantic levels. We show some CCOs in Fig. 3, where the boxed nodes
mean new nodes generated by our merging methods and the smallest CCO only has
approximately 2000 nodes which is much smaller than WordNet. Fig. 3 illustrates the
difference between CCOs, from which we can easily see that, by choosing different
CCO as ontology we can expand the word bunny to different levels of superconcepts,
while the word dance has little change. This fact somehow proves that, CCOs can pro-
vide optional semantic levels for search task.
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4 Performance Study

4.1 Overview

We conduct extensive experiments to evaluate the performance of the proposed meth-
ods in both computing semantic similarity and document/video retrieval by comparing
with other competitive techniques. All experiments were conducted on a PC running
Windows XP with 1.5 GHz CPU and 2G memory.

To evaluate the performance of the proposed retrieval approach, we compare our
method with the classic WordNet-based query expanding [15] and cosine similarity
(without considering semantics) both in text corpus and our Web-video corpus. Here
we fixate the expanding layer to two.

Data: We conduct experiments on two data sets, including a standard text retrieval set
NPL corpus [17] and a Web-video set.

NPL corpus is a widely used standard set for text retrieval, in which there are 11429
documents and each of them is annotated by the relevance to different queries. We use
all of these documents after processed by a WordNet stemmer. NPL also provides 93
queries for evaluating and we use all of them in our experiment.

Our second data set is a real Web-video data set. Text description for video and tex-
tual query from user are usually short and incomplete, therefore we expect that semantic
query expansion will be appropriate. There is no benchmark dataset available for Web-
video retrieval. Thus, we create a video set manually. We randomly collected 20,000
videos Web pages from YouTube website. The surrounding texts including description,
tags and title were extracted via parsing the Web pages. All the videos are also attached
with their original YouTube categories, including: 1) Entertainment; 2) Nonprofits; 3)
Sports; 4)How To; 5) News; 6) Pets; 7) Travel; 8) Science. A WordNet stemmer is used
to do stemming. We note that there is standard video collections, e.g., TRECVID [19],
but the TRECVID data set does not fit Web video well, as argued in [18].

Metrics: The performance of retrieval on NPL corpus is measured by the wildly used
standard 11-point Recall/Precision table [15], where precision is the number of correct
results divided by the number of all returned results and recall is the number of correct
results divided by the number of results that should have been returned. By varying
the recall values, we can obtain different precision values, and then a curve (or table)
described the relation between recall and precision can characterize the performance of
methods clearly. Detailed information can be found in Hersh’s book [16]. Moreover, we
also report the performance of Average Performance, that is, as introduced in [20], the
average of 11 precisions in the aforementioned 11-point Recall/Precision table.

It is very difficult to manually annotate the relevance of the whole Web-video set to
a given user query. Hence, we cannot use 11-point Recall/Precision as we did on NPL
corpus. Instead, we use Precision@10, one of the popular metrics used in information
retrieval area, which is used to measure the fraction of the top 10 videos retrieved that
are relevant to the user’s query.
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4.2 Performance Evaluation

Text Retrieval. We evaluate the performance of our methods on text retrieval. We use
NPL, a standard text corpus for text retrieval, to carry out our experiment and employ
standard pre-process, including elimination of stop words and stemming. We first re-
port the performance of individual methods in Fig. 4, including 1) non-semantic cosine
similarity, 2) WordNet-based query expansion [6] and 3) our methods using different
CCOs (CCO0(WordNet), CCO1, CCO2 and CCO3).
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Fig. 4. Performance of Text Retrieval on NPL corpus

It is not surprising to see that each expansion method obtains worse performance than
the non-semantic methods, because as argued in Voorhees’s work [7], such expansion
methods do not fit when query is relatively complete and long. This is understandable
because query expansion for complete and long query often brings more noise than
useful information. Although query expansion does not improve performance in gen-
eral, we notice that semantic expansion provides useful complementary information for
some queries.

If we allow users to manually choose semantic levels (each semantic level corre-
sponds to a CCO) to be expanded, the query expansion using CCOs can improve the
performance significantly as illustrated in Fig. 5. The line with label COS+QE shows
the result of the method of choosing the better one between cosine similarity and query
expansion [6]. The line with label COS+WN shows the optimal result of our method
that can be achieved if users can manually select the best semantic levels using Word-
net. The line with label COS+CCOs shows the optimal result that our approach can
achieve if users can manually select the best semantic levels using CCOs. The experi-
mental results show that, combining WordNet-based query expansion methods [6] with
cosine similarity brings little improvement, the average precision for 11-point recalls
only increases from 20.29% to 20.51%. Meanwhile, our methods using WordNet as op-
tional ontology can improve precision from 20.29% to 22.88%, and this performance
can further improve to 23.38% if we use 4 CCOs as ontology. The improvement is
quite significant. In practice, users may care more about precision. If we set recall at
10%, our approach using Wordnet can improve the precision of cosine from 42.63% to
48.75% and our approach using CCOs can further improve the performance to 50.33%,
while the approach of selecting the best of cosine and the query expansion [6] can only
slightly improve performance from 42.63% to 43.36%.
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Fig. 5. Optimal Performance on NPL Corpus

As shown in Fig. 5, our query expansion methods are complemental to the non-
semantic cosine similarity. Readers may wonder whether the WordNet-query expansion
methods [6] can also provide the useful semantic levels. We tried to adjust the semantic
levels of WordNet by increasing the expanding layers. The experimental results show
that its performance decrease sharply when the number of expanding layers increase as
shown in Fig. 6. The reason could be that there are already too much useless information
added to the query.
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Fig. 6. The Decrease Trend of the approach [6] on NPL corpus

On the other hand, our CCO-based methods can meet the need of different semantic
levels of different kinds of queries. We next show using examples in Fig. 7 that for
different queries the best performance can be obtained at different semantic levels based
on different CCOs. In this paper, we set 4 semantic levels which is easy for users to
adjust the semantic levels.

As shown in the 5 sample queries in Fig. 7, the best performance can be obtained
by selecting different ontologies, i.e. CCOs, which indicates the usefulness of semantic
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Fig. 7. Sample Query Results of CCOs-based Methods

levels of our methods. For different queries, user can adjust the ontology and thus dif-
ferent semantic level to enhance the performance of the retrieval system.

Text-Based Video Search. We next evaluate our methods on a real-world video data
set. We randomly selected 10 noun phrases appeared in our dataset as queries, and
checked whether the videos in top 10 returned results are relevant to the query. We first
report the performance of each single method, as showed in Fig. 8.

WordNet-based query expansion method [6] outperforms cosine similarity, which is
inconsistent with the results on NPL corpus. As discussed in Sec. 1, the text descrip-
tion of video is generally short and semantic expansion would be more appropriate.
Additionally, the queries that we used are quite short. The results clearly show that
query expansion based on CCOs provides superior performance on video text corpus.
Our CCO-based methods are robust when query is short, because we obtain the same
expansion pattern for the same word, in both documents and queries.
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We next report the optimal results in Table 1, i.e., for each query we choose the best
semantic level based on human judgement. The column COS represents the system
using cosine similarity without semantic expansion, COS + QE represents the system
using query expansion method in [6] and we report the better results between COS and
the method in [6], and COS + CCOs is our system based on CCOs. We can see that
COS + CCOs significantly improves the accuracy of video search.

Table 1. Result of Experiment

COS COS+QE[6] COS+CCOs
Precision@10 64% 72% 88%

5 A System Demonstration Based on Our Approach

We use our query expansion approach to create a text-based video searching system,
i.e., iVSearcher, because a high-performance query expansion technology is even more
needed in video area because of the normally short and incomplete descriptions and
queries. With the explosive growth of the Internet and hardware, techniques for mul-
timedia information retrieval are receiving increasing attention in multimedia research
community. In recent years, there is massive volume of the online video information,
empowered by the permeation of Internet into daily life. However, the technology for
video retrieval has not kept pace with the fast growth of video data. Indeed, most of
the existing video search engines, such as Google Video, apply the keyword search for
video retrieval. Given the massive online video resources, it is becoming increasingly
difficult to find an interested video, because the text description may not precisely cap-
ture the semantic information of a video.

The system has 20,000 text descriptions for online videos from YouTube. In this
system, an end-user only needs to select the wanted semantic level for his/her query
and our system can determine the query expanding automatically with these given se-
mantical level using our Compact Concept Ontologies (CCOs). All of these process
need neither statistical information of corpus nor users’ feedback of relevant, which is
distinct from most existed methods.
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Fig. 9. Example of search result of query “bunny”

Fig. 9 gives the main interface of iV Searcher system. In contrast with other video
search engines, iV Searcher integrates semantic information and allows the users to
adjust semantic levels of his/her query by dragging the star mark, which will present
different sets of search results. By setting semantic level to the lowest, our system sim-
ply works like a key-word based search engine, while a higher semantic level can return
videos with similar semantic meanings. For example in Fig. 9, although the user query
only contains bunny, all the videos described by rabbit or lapin are also returned, even
the videos containing the word waitress – an unfamiliar sense of bunny. All the re-
sults are showed with category information and the videos marked with star cannot be
returned by the classic keyword search method, which clearly shows the advantage of
our approach. Note that, the user can select whether to show results in category or not,
while we suggest to show the category information because of various semantic senses
a query word may convey.

Fig. 10 shows another example to demonstrate the effectiveness of iVSearcherby com-
paring with the traditional keyword based approach and the query expansion approach
in [6] using different queries. Our semantic-based search is very effective for the query
animal dance; all returned videos by the classic bag-of-words model are not related to
animal dance; the query expansion method [6] only returns those related to animal.

We can also see that the users can easily adjust the semantic levels to find promising
results and the semantic levels are corresponding to the CCOs we generated, e.g., the
four levels given in Fig. 3. We generate the weighted trees for each video’s descrip-
tion using different CCOs. Given a query Q, we first generate the weighted tree of the
query using the CCO determined by the semantic level given by user, then calculate
the similarity with each video’s weighted tree respectively, and finally return the most
similar results. Fig. 9 and 10 give examples of our system. In Fig. 9 we use the query
bunny with semantic level 1, which just uses WordNet (the largest CCO) as ontology. In
Fig. 10, we use the query animal dance with semantic level 4, which uses the smallest
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Fig. 10. Example of search result of query “animal dance”

CCO, which directly expands all kinds of animals to the node animal and holds the
dance almost unchanged.

6 Conclusion

In this paper, we presented our novel query expansion mechanism for effective text re-
trieval. Specially, we proposed a strategy of WordNet-based query expanding and Com-
pact Concept Ontologies (CCOs) to render different semantic levels accessible. Our ex-
perimental results show that the scheme retains a high degree of accuracy as compared
to text retrieval method without query expansion. We demonstrated that demo system
iV Searcher based on a new semantic similarity algorithm and CCOs is more effec-
tive than benchmark approaches for text/video retrieval. Moreover, with the proposed
CCO mechanism, users can easily adjust the semantic levels, which provides better user
experience.

In the future, we plan to explore the algorithm for automatically determining se-
mantic levels based on CCO. A possible method is making semantic levels of an query
expansion rely on the information provided by an expansion, which could be captured
by models in information theory. Moreover, we are trying to collect more text descrip-
tions of online videos to reflect the textual feature of current Web-video systems.
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Abstract. An important trend in web information processing is the support of con-
tent-based multimedia retrieval (CBMR). However, the most prevailing paradigm 
of CBMR, such as content-based image retrieval, content-based audio retrieval, etc, 
is rather conservative. It can only retrieve media objects of single modality. With 
the rapid development of Internet, there is a great deal of media objects of different 
modalities in the multimedia documents such as webpages, which exhibit latent 
semantic correlation. Cross-media retrieval, as a new multi- media retrieval 
method, is to retrieve all the related media objects with multi- modalities via sub-
mitting a query media object. To the best of our knowledge, this is the first study on 
how to speed up the cross-media retrieval via indexes. In this paper, based on a 
Cross-Reference-Graph(CRG)-based similarity retrieval method, we propose a 
novel unified high-dimensional indexing scheme called CIndex, which is specifi-
cally designed to effectively speedup the retrieval performance of the large cross-
media databases. In addition, we have conducted comprehensive experiments to 
testify the effectiveness and efficiency of our proposed method. 

1   Introduction 

With the rapid development of Internet and multimedia technology, content-based 
multi- media retrieval and indexing issues have been extensively studied for many 
years�� The existing approaches focus on the content-based retrieval for single-
modality-based media objects, such as content-based image retrieval [2, 3], content-
based audio retrieval [7] and content-based video retrieval [5], etc. However, as 
shown in Figure 1, for the media objects of different modalities (e.g., image, audio 
and video, etc) appeared in webpages, there exists to some extent latent semantic  
 

                                                           
∗ This work is partially supported by the Program of National Natural Science Foundation of 

China under Grant No. 60873022; The Program of Zhejiang Provincial Natural Science 
Foundation of China under Grant No. Y1080148; The Key Program of Science and Technol-
ogy of Zhejiang Province under Grant No. 2008C13082; The Open Project of Zhejiang Pro-
vincial Key Laboratory of Information Network Technology; The Key Project of Special 
Foundation for Young Scientists in Zhejiang Gongshang University under Grant No. Q09-7. 



678 Y. Zhuang, Q. Li, and L. Chen 

�

Fig. 1. The latent semantic correlation in the webpages 

correlation among them. Cross-media retrieval [11, 12] is a new multimedia retrieval 
method which has  received increasing attention due to its practical usage. It is 
perceived as a novel retrieval method which returns the media objects of multi-
modalities in response to a query media object of single modality. For example, when 
user submits a “tiger” image, the retrieval system may return some “tiger”-related 
audio clips and video clips via using the so called Cross Reference Graph, as to be 
introduced in Section 3. 

Compared with the traditional single-modality retrieval [2, 3, 4, 5], the cross-media 
retrieval, also known as multi-modality search in other work such as [10], tries to 
breakthrough the restriction of media modality in multimedia retrieval. The funda-
mental challenges of the cross- media retrieval lie in two folds: 

�  For an image and an audio clip, it is hard to measure the correlation between them 
with the same semantic information due to their heterogeneity of modalities. So how to 
model the correlation of media objects of different modalities(e.g., image, audio and 
video, etc) via mining the semantic correlation of media objects among the multimedia 
documents such as webpages? In addition, to effectively facilitate the cross-media re-
trieval with different modalities, how to generate and refine a cross reference 
graph(CRG) which is the representation of the correlation of different media objects?�

�  To efficiently facilitate the large-scale cross-media retrieval, a naïve solution is 
to create an index for each media and aggregate the results from each media indexes. 
However, this is definitely not a practical approach due to the space and I/O cost, so 
how to design a novel integrated indexing scheme to index such a large CRG is an 
important issue.�

In this paper, we address both the effective and efficient issues of cross-media re-
trieval together and mainly focus on the efficient retrieval techniques. We first briefly 
review a novel cross-media retrieval method based on CRG from our previous work [12], 
then we propose a unified indexing structure called CIndex, which is specifically de-
signed for indexing the cross- media retrieval over large multi-modality media databases. 
With the aid of the CIndex, a cross- media retrieval of query example in high-
dimensional spaces is transformed into a range query in the single dimensional space.  

The primary contributions of this paper are as follows: 
1. Based on the novel cross reference graph(CRG) [12] as a foundation of  

cross-media retrieval, we propose a  novel unified multi-feature-based  
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high-dimensional indexing structure called CIndex to facilitate the efficient 
cross-media retrieval. 

2.  We present a theoretical analysis and comparison on the search and storage 
cost of the proposed method.�

3.  We perform an extensive experimental study using some 50,000 images, 2000 
audio clips and 5000 video clips to evaluate the efficiency of our approach.�

The rest of this paper is arranged as follows. We briefly review the related work in 
Section 2. In Section 3, the preliminaries are given. In Section 4, for the purpose of self-
containment, we briefly summarize our previous work on the cross-media retrieval [12]. 
In Section 5, a unified index structure called CIndex is proposed to dramatically speed 
up the retrieval performance. In Section 6, we report the results of extensive experi-
ments which are designed to evaluate the effectiveness and efficiency of the proposed 
approach. Finally, we conclude the paper in Section 7. 

2   Background 

Our work is motivated by, and based on, previous research on multi-media retrieval, 
high- dimensional indexing and multi-feature indexing, as reviewed in this section. 

Previous work addressing the multimedia retrieval can be classified into two 
groups: single modality and multi-modality fusion. 

The retrieval approach in single modality deals with a single type of media, and most 
content-based retrieval approaches (e.g., [2, 3, 4]) fall into this group. Among them, the 
QBIC system [2], MARS project [3], VisualSEEK system [4] focus on image retrieval, 
VideoQ system [5] is for video retrieval, and WebSEEK [6] system is a Web-oriented 
search engine that can retrieve both images and video clips. These approaches differ from 
each other in either the low-level features extracted from the data, or the distance functions 
used for similarity calculation. Despite the differences, all of them are similar in the fol-
lowing fundamental aspects: (1) they all rely on low-level features; (2) they all use the 
query- by-example paradigm; (3) they are single-modality-based retrieval systems.  

Recently, with the rapid development of Internet and multimedia technology, a 
great deal of multimedia information has been produced. Especially for the large-
scale webpage repository downloaded from Internet(cf. Figure 1), there exists some 
latent semantic correlation among different media objects extracted from the  
webpages. Multi-modality retrieval has received much attention increasingly. The 
semantic-based correlation analysis of different types of media objects of different 
modalities is becoming a hot research topic. Octopus [10] is an early prototype system 
which can support multi-modality retrieval. However, no index has been considered 
in that system, so the retrieval performance of the Octopus is not satisfactory when 
the number of media objects becomes large. More recently, of the work on Cross-
media retrieval in [11, 12], as an extension to traditional multimedia retrieval, has 
been conducted which tries to fuse media objects of different modalities. 

The cross-media indexing issue belongs to high-dimensional indexing and multi-
feature indexing method. There is a long stream of research on solving the high-
dimensional indexing problems [13]. Existing techniques can be divided into three 
main categories. The first category is based on data & space partitioning, hierarchical 
tree index structures such as the R-tree [14] and its variants [13], etc. Their perform-
ance deteriorates rapidly as the dimensionality increases due to the “curse of  
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dimensionality "[13]. The second category is to represent original feature vectors using 
smaller, approximate representations, such as VA-file [15]. Although it can accelerate 
the sequential scan by using data compression, it incurs higher computational cost to 
decode the bit-string. The last category is using a distance-based indexing method such 
as iDistance [16], etc. iDistance is a distance-based scheme, in which high-dimensional 
points are mapped to a single-dimension distance values by computing their distances 
from the centroid respectively, which are then indexed by a B+-tree. The drawback of 
iDistance is that it can not significantly prune the search region and especially when 
the dimensionality becomes larger. In [8], Jagadish proposed a multi-feature indexing 
method. Meanwhile, Shen, et al [9] proposed a multi-scale indexing (MSI) structure for 
web image retrieval, which nicely combines two modality information of image, such 
as its semantic and visual features. However the usability of the MSI structure is very 
limited and it can only support two kinds of media objects (e.g., text and image), thus 
not truly supporting search of multi-modality media objects. 

3   Preliminaries 

As we know, to measure two media objects with the same modality, primitive/low-
level similarity as the metric. However, for two media objects with different modali-
ties, the correlation between such two media objects needs to be introduced.  

Definition 1� A multimedia document(MD) can be modeled as a five-tuple:  

MD := <DocID, URISet, KeywList, ElemSet, LinkSet> 

where DocID is denoted as an identifier of a document; URISet is the identifiers of 
the uniform resource location of different media objects; KeyList includes the seman-
tic information of this document; ElemSet includes the features (low-level visual or 
audio features and high-level semantic features) of the media objects, denoting the set 
of the media objects in the corresponding document; LinkSet is the set of (hyper)links 
extracted from documents(e.g., webpages).   

For media objects of the single modality, Table 1 shows the similarity metrics of each type. 
The symbols to be used in the rest of the paper are shown in Table 2. 

Table 1. Primitive features and similarity metric adopted 

Media Features Similarity Metrics 

Image 256 HSV 
32-d Tamura texture 

Euclidean Distance 

Audio 4 spectral characteris-
tics: 

(1).  Spectral Centroid;  
(2).  Rolloff;  
(3).  Spectral Flux;  
(4).  RMS 

To extract the centroid of a audio 
clip using the fuzzy clustering algo-
rithm [7], and use the cosine function 
as a similarity metric 

Video shot boundary detec-
tion, using first frame of 
each shot as key-frame 

key-frame similarity as shot simi-
larity, average pair-wise shot similar-
ity as video similarity 



 A Unified Indexing Structure for Efficient Cross-Media Retrieval 681 

Table 2. The symbols used 

Symbol Meaning 
� The media objects database, �={X1,X2,…,Xn} 
Xi The i-th media object, where the media object X can image(I), 

audio(A) and video(V), etc. 
Oj The centroid of the j-th cluster sphere 
CRj The class radius for the j-th cluster sphere 
d(Xi,Xj) The similarity distance between two media objects (Xi and Xj), 

which is defined in Table 1, where X can be I, A and V, etc. 
|�| The number of � 
n The total number of media objects and n=|�| 
MDj The j-th multimedia document 

4   CRG-Based Cross-Media Retrieval: A Review 

To support cross-media retrieval, in our previous work [12], we have studied the 
retrieval method for cross-media through mining the co-existence information of the 
heterogeneous media objects and users’ relevance feedbacks. In this section, we pro-
vide a summary review of the relevant materials which are essential for our subse-
quent discussions. 

As mentioned before, different media objects correspond to heterogeneous low 
level features (i.e., the features extracted are different and the dimensionalities of 
features are different as well), so it is hard to directly measure the similarity between 
two media objects of different modalities. For example, an image is represented with 
some visual perceptual features such as color histogram, texture and shape, etc. An 
audio clip can be represented with some intrinsic acoustic features such as timbre, 
rhythm, pitch and daubechies wavelet coefficient histograms (DWCHs), etc. There-
fore, it is not easy to establish the correlation between these different media objects by 
only using their low-level features. Instead of the low-level features, we can use the 
coexistence information such as the corresponding hyperlink information of the media 
objects in webpages to establish their relationships. This is because to some extent, 
some latent semantic correlations between different media objects may exist in a 
webpage or different webpages. Hence, in order to support the effective cross-media 
retrieval, it is critically important to evaluate the correlation among media objects of 
different modalities. In this section, we introduce a Cross Reference Graph(CRG) 
model in which the media object of different modalities are uniformly represented as 
vertices and the correlations among them are the weights of the weighted edges in it. 

Definition 2 (Cross Reference Graph).�A Cross Reference Graph(CRG) is denoted 
as�CRG=(V, E), where V is a set of media objects, E is a set of edges. Note that, for two 
media objects of the same modality, E refers to the similarity of them. However, for two 
media objects of different modalities, E refers to the correlation between them. 

Figure 2 shows an example of the Cross Reference Graph model. Note that, the solid 
line is denoted as the similarity metric and the dash line is represented as the 
correlation between two different media objects. Assume that there are three kinds of 
media objects in an MD, namely image, audio and video, and there is at least one 
media object in each MD. However, the proposed method can be easily extended to 



682 Y. Zhuang, Q. Li, and L. Chen 

more kinds of media objects. Let W be an n×n affinity matrix with Wij=d(Xi,Xj), 
representing the CRG, we construct the CRG via the flowing five steps. 

Step 1. The affinity matrix W is initialized by: 

Wij=� (0<i, j<n)                                                        (1) 

Step 2. The W is constructed by Eq.(2) defined in Table 2. The low-level feature 
distance of image, audio and video must be normalized respectively. 

, ,

, ,

, ,

f f
i j ij i j

f f
i j ij i j

f f
i j ij i j

X X I W X X

X X A W X X

X X V W X X

�∀ ∈ = −
��∀ ∈ = −�
�
∀ ∈ = −��

                                              (2) 

Step 3. Learn from the media object co-existence information. The graph is modified 
as Eq.(3) in which � is a small constant and h h

i jX X=  means that Xi and Xj are 
in the same MD, where Xi, Xj��. 

( , )h h
ij i j i jW if X X X Xε= ∈Ω ∧ =                                           (3) 

Step 4. In this step, we first model the local geometrical structure as Eq.(4) where  is 
a small constant reflecting the view of locality: 

 
( )ij ij

ij

W if W
W

otherwise

σ<�
= � ∞�

                                                      (4) 

We define the length of a path as the sum of the weights along the path. To 
model the global geometrical structure of the CRG, we reconstruct the graph 
by finding the shortest paths for all pairs of vertices in it, and then replace the 
weights Wij by the length of shortest paths between each pairs of vertices. 

Step 5. In the last step, we use a correlation matrix C to measure the correlation 
among the media objects which is shown in Eq.(5), where wij�W and 
 is a 
smoothing factor: 

2

2exp
2

0

ij

ij

w if i j
C

if i j

θ
� � �− ≠� 	 
= � ��
� =�

                                              (5) 

The proposed CRG construction approach actually nonlinearly fuses the information 
carried by media objects of different modalities according to their low-level feature and 
co-existence. In other words, the CRG is a multimedia manifold representation which can 
reflect the multimedia correlation more precisely [19]. As media objects of different mo-
dalities are represented uniformly in the CRG, hence the cross-media retrieval can be 
facilitated more easily. 

 

�

Fig. 2. An example of the Cross Reference Graph model 
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Although the CRG can model the correlations among media objects of different 
modalities to some extent, there still exist two problems. First, due to the semantic 
gap, although the proposed manifold-learning-based fusion method can reduce the 
ambiguity at a semantic level, the geodesic distance defined in the CRG is just an 
approximation of the correlations of media objects since they are estimated based on 
low-level feature distances. Second, it is difficult for the CRG to recover the multime-
dia manifold accurately if the number of media objects is not large enough. Hence, 
the user feedbacks need to be adopted to refine the CRG and make it consistent with 
the users’ perception, which is locally isometric to the multimedia semantics. To 
enhance the retrieval accuracy, a practical approach, a log-based learning of feedback 
is proposed to refine the CRG, which is described in [12] in detail. 

5   The CIndex Structure 

When the cross-media database size becomes large, its corresponding CRG will be-
come large. Retrieving related media objects in such a large graph is a CPU and I/O 
intensive operation. So it is inefficient to retrieve over large cross-media databases by 
only using linear scan. In this section, we propose a novel unified index structure, 
which is called CIndex, to facilitate the efficient cross-media retrieval. 

5.1   Pruning Heuristics 

As a preliminary step, three media objects such as image, audio and video are first 
clustered by adopting a hierarchical clustering algorithm such as BIRCH [14]. Figure 3 
illustrates the three subspaces for the three different type media objects (i.e., image, 
audio and video). 

To support the cross-media retrieval, a cross reference graph is next obtained 
through learning the co-existence of media objects in the webpages, as discussed in 
Section 4. For example, for an image, its corresponding cross reference graph can be 
modeled as an adjacency list. As shown in Figure 4, in particular, for the image whose 
ID is 21, the ID numbers of the semantically correlated audio clips are 3, 9, 18 and 26, 
and its corresponding video clips are 7 and 39, respectively. Notice that the values 
below the IDs are the correlation values of two media objects with different modality. 

  

Fig. 3. The three subspace clustering Fig. 4. The adjacency-list-based CRG 
representation 
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Fig. 5. The two corresponding ECSs in the high-dimensional feature space of images 

Definition 3 (Embedded Correlation Subspaces). For a media object Xi, the me-
dia objects whose modalities are different from Xi are in its embedded correlation 
subspaces (ECS) if their semantics are the same as Xi’s, where X can be an image(I), 
audio(A) or video(V), etc. 

Based on Definition 3, without loss of generality, we choose image as an example. In 
Figure 5, each image corresponds to two Embedded Correlation Subspaces1 which are 
organized as two adjacency lists(ref. Figure 4). That is to say, the media objects in the 
same ECS is semantically similar/identical. For example, in the image’s feature space 
of Figure 5(a), the (red) dash circle refers to the ECS for an audio whose semantics is 
identical to that of the image whose ID number is 21. Similarly, in Figure 5(b), the 
(blue) dash circle represents the ECS for a video. 

Like the iDistance [16], the basic idea of the pruning method of the CIndex is to 
transform the cross-media similarity search in high-dimensional spaces into the range 
searches in one- dimensional space. 

5.2   The Data Structure 

In order to efficiently facilitate the pruning operation, we propose the CIndex-support 
method in which some index keys are derived below. 

Specifically, for a query image Ii, to efficiently retrieve the audio clips relevant to 
Ii, the index key of Ii can be represented as follows: 

i k
i i j*

MAX
� c(I ,A )key(I )= d(I ,O ), +θ                     (6) 

where d(Ii,Oj) denotes the similarity distance between Ii and Oj, c(Ii,Ak) refers to the 
correlation between Ii and audio object Ak , as defined by Eq.(5).��,	�denotes the 
rounded � value with 
 decimal places and 
={1,2,3,…}. The symbol � is a large 
constant (e.g., 103) which makes�d(Ii,Oj),	�an integer. The value of c(Ii,Ak) 
should be normalized into [0,1] through division by a constant MAX, thus the value 
range of d(Ii,Oj) will not overlap with that of c(Ii,Ak). 

 

                                                           
1 Note that, for a media object Xi, its corresponding embedded correlation subspace is assumed 

as a virtual one in which the semantics of the correlated media objects of different modalities 
is the same to that of Xi . 
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Fig. 6. The CIndex index structures 

Since the images are grouped into T clusters, to get a uniform index key of image in 
different clusters, the index key in Eq. (6) can be rewritten by Eq. (7): 

i k
i i j* *

MAX
�� c(I ,A )key(I )= CID+ d(I ,O ), +θ                                  (7) 

where the CID is the ID number of cluster that Ii falls in, and � is a stretch constant 
which is set 5×103 empirically. 

Similarly, to facilitate retrieving videos via submitting an image Ii, the index key of 
Ii can be represented by Eq. (8): 

i w
i i j* *

MAX
�� c(I ,V )key(I )= CID+ d(I ,O ), +θ                                (8) 

where c(Ii,Vw) refers to the correlation between Ii and video object Vw. 
To further obtain a uniform index key expression, we combine Eq.(7) and Eq.(8) 

together by adding two constants (i.e., S_A=0 and S_B=5×105). Therefore, a uniform 
cross-media index key for the image Ii can be rewritten below: 

 
i k

i j

i k

i w
i j

i w

i

c(I ,A )S_A+�*CID+�* d(I ,O ), + MAX
if the correlated audio of I is A

c(I ,V )S_B+�*CID+�* d(I ,O ), + MAX
if the correlated video of I is V

key(I )=

� θ�
��
�
� θ
�
��

                          (9) 

Analogously, for the index key of an audio(Ak) and video (Vw), their corresponding 
uniform cross-media index keys can be derived as follows: 

k i
k j

k i

k w
k j

k w

k

c(A ,I )S_C+�*CID+�* d(A ,O ), + MAX
if the correlated image of A is I

c(A ,V )S_D+�*CID+�* d(A ,O ), + MAX
if the correlated video of A is V

key(A )=

� θ�
��
�
� θ
�
��

                     (10) 

w i
w j

w i

w k
w j

w k

w

c(V ,I )S_E+�*CID+�* d(V ,O ), + MAX
if the correlated image of V is I

c(V ,A )S_F+�*CID+�* d(V ,O ), + MAX
if the correlated audio of V is A

key(V )=

� θ�
��
�
� θ
�
��

                     (11) 

where S_C=106, S_D=1.5×106, S_E=2×106 and S_F=2.5× 106. 
Eqs. (9), (10) and (11) represent the cross-media index keys of image, audio and 

video respectively, which correspond to three independent indexes. In order to incor-
porate them into an integral index, we derive a new uniform index key expression as 
shown in Eq. (12). 
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=
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�

                     (12) 

where Xi denotes a media object(i.e., Xi can be an image, a audio clip or a video clip). 
The three constants SCALE_I=0, SCALE_A= 5×106 and SCALE_V=107 should be set 
large enough to stretch the value ranges of the index keys so that they do not overlap 
with each other. 

 

Algorithm 1. CIndexBuild(�, CRG) 
Input: �: media object repository, CRG: the Cross reference 

graph; 
Output: bt: the CIndex 
1.  initialize;                         
2.  while (Xi��)  /*  Xi can be an image, audio or video  */ 
3.     locate the Xi in the CRG;     
4.     get the media objects semantically related to Xi;    
5.     bt�InsertBtree(key(Xi));    /* key(Xi) is shown in Eq.(12)  */ 
6.  end while 
7.  return bt 

 

 

Fig. 7. The CIndex-based cross-media retrieval 

5.3   Query Algorithm 

To utilize the CIndex to support cross-media retrieval with different modality media 
object, the query process is composed of two stages (cf. Figure 7): the media object 
filtering and the result refinement. When user submits a query object Xq

2
 as an input,  

 

                                                           
2 In Figure 7, the query object is the image Iq. The aim of its cross- media retrieval is to return 

the related media objects of different modalities (e.g., audio and video) with respect to Iq. 
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we first get the correlated media objects of Xq via a CIndex-based searching of the 
cross reference graph(CRG). Then, a refinement process is conducted. Note that, the 
query object Xq can either be an image(Iq), audio clip(Aq) or a video clip(Vq). The 
details are given by Algorithm 2. It is worth mentioning in function Search(Xq,r,j), 
given a query (i.e., Xq and r), for its j-th affected (i.e., intersected or contained) clus-
ter, its corresponding search range [left, right] can be derived as follows: 

left = SCALE_X + S_Y + �×j + �× ,( ) ,q jd X O r θ− ��and�

right = SCALE_X + S_Y + �×j + �× ,jCR θ �

where X in Xq is the same as the X in SCALE_X, SCALE_X and S_Y are two constants 
mentioned in Section 4.1 in which X can be I, A and V, Y can be A, B, C, D, E and F. 

Algorithm 2.  CrossSearch(Xq, r) 
Input: a query media object Xq, a query radius r 
Output: the query result S 
1.  S��;                /*   initialization   */ 
2.  for each other media types except itself(Xq) do 
3.    for j:=1 to T do      /*  T is the number of clusters   */ 
4.       if �(Oj,CRj) dose not intersects �(Xq,r) then  
5.         next loop; 
6.       else 
7.         S1�Search(Xq,r, j); 
8.         S�S�S1;                 
9.         if �(Oj,CRj) contains �(Xq,r) then end loop; 
10.      end if 
11.    end for 
12.  end for 
13.  return S;          /*  return the candidate media objects   */ 
 
Search(Xq,r, j) 
14. ,_ _ ( ) ,q jleft SCALE X S Y j d X O rα β θ← + + × + × − ; 
15. _ _ ,jright SCALE X S Y j CRα β θ← + + × ×+ ;                  
16.  S�BRSearch[left, right, j];  
17.  for each media object Xi�S 

     18.     if d(Xq,Xi)>r then S�S-Xi;  /* Xi is deleted from the candidate set S  */ 
19.  end for 
20.  return S;              

5.4    Aggregating the Query Results 

In Algorithm 2 above, the query result S includes the different modality media ob-
jects which are semantically similar/identical to the query example. It is thus impera-
tive to sort the media objects in terms of the similarity or correlation values between 
the media objects in S and the query one. In this regard, we propose a fusion-based 
aggregating algorithm (Algorithm 3) for the answer set, with the following formula 
for calculating the ranking score: 

i j
q i*

MAX
� c(X ,Y )RankScore= d(X ,X ), +θ                        (13) 

where Xi and Yj are two semantically related media objects of different modality. 
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Algorithm 3.  SearchRank(S, Xq, r) 
Input: The query result S, a media object Xq, query radius r 
Output: the ranked query result 'S  
1.  S���;          /*   initializtion   */ 
2.  for Xi, Xj�S do        
3.     compute the similarities between Xi and Xq, and sorted; 
4.     compute the correlation of Xi and Yj and sorted; 

     5.     a comprehensive ranking score of Xi can be obtained based on Eq. (13); 
6.  end for 
7.  return S�;       /*  return the ranked query results   */ 

5.5   Extensibility of CIndex 

In anticipation of the continuous advancement of multimedia technology, for which 
new media types may emerge, our proposed CIndex shows a good characteristic of 
extensibility. When a new media type comes, the CIndex can be easily extended to 
support such new media type without re-organizing the original index data, due to that 
the CIndex is a distance-based indexing scheme. For the purpose of exposition, Figure 
6 which is the adopted CIndex to support cross-media retrieval over image, audio and 
video data, is transformed into the new one as shown in Figure 8 when a new type of 
media data such as Flash movies [15] need to be accommodated. Note that the 
shadow parts of the CIndex in Figure 8 represent the newly inserted ones. Conse-
quently, the new CIndex can support more powerful cross-media retrieval over not 
only image, audio and video data, but also Flash movies. 

 

Fig. 8. The extensibility of the CIndex Structure 

6   Experimental Results 

To test the effectiveness and efficiency of the proposed cross-media retrieval and 
indexing method, we have implemented a prototype system, called CMR, to facilitate 
the cross-media retrieval over image, audio and video databases. The experimental 
data includes 50000 images, 2000 audio clips and 5000 video clips, which are ran-
domly downloaded from the Internet and collected from Microsoft Encarta [20] – a 
multimedia encyclopedia. Note that, compared with our previous work in [12], the 
data size of the experiments is much larger than that of [12]. All the experiments are 
executed on a Pentium IV CPU at 2.0GHz with 256 Mbytes memory and index page 
size is fixed to 4096 Bytes.  

6.1   Effectiveness of the Retrieval Method 

In this experiment, we testify the effectiveness and efficiency of our retrieval method. 
As shown in Figure 9, when user submits an audio clip of “bird”, several candidate  
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media objects are retrieved by the system with the aid of the CRG. The number below 
the candidate images are similarity metric values.  

Denoting the set of ground-truth as rel, and the set of results returned by a k-NN 
search as ret, the recall and precision achieved by this retrieval method are defined as: 

| |
| |

rel ret
recall

ret

∩= , 
| |

| |
rel ret

precision
rel

∩=                                    (14) 

Figure 10 illustrates a recall-precision curve for the performance comparisons be-
tween the CRG method and that of Octopus [10]. In particular, it compares the aver-
age retrieval result (the average precision rate under the average recall rate) of 20 
media objects queries randomly chosen from the database. The figure shows that the 
retrieval effectiveness of our proposed method is better than that of the Octopus by a 
large margin. This is because during the training process, our algorithm not only 
learns from the low-level features of the media objects but also learns from the co-
existence. Moreover, different from the Octopus [10], such information is represented 
and reinforced by a manifold way which can make a positive impact on the improve-
ment of the retrieval accuracy. 

6.2   Efficiency of the CIndex 

In the following, we test the performance of our proposed CIndex under different 
sizes of databases and different selectivity. We also study the effect of tunable pa-
rameters T and 
. Finally, we test the performance of CIndex under the situations of 
dynamic update. 

6.2.1   Effect of Data Size  
In this experiment, we measure the performance behavior with varying number of 
media objects. The comparison of the CIndex and sequential scan is conducted in 
terms of range search with the number of media objects varying from 2000 to 10000. 
Figure 11 shows the performance of query processing (for all the three media types) 
in terms of CPU cost. It is evident that CIndex outperforms the sequential scan meth-
ods significantly. The CPU cost of CIndex increases slowly as the data size grows. 
We also notice that the gap between CIndex and the sequential scan is large since the 
sequential scan is a CPU-intensive operation.  

6.2.2   Effect of Query Radius  
In this experiment, we proceed to evaluate the effect of query radius on the perform-
ance of a similarity search using the CIndex. Figure 12 shows that when query radius 
ranges from 0.2 to 1, the CIndex is always superior to the sequential scan in terms of 
page access and the CPU cost. This is because the sequential scan is a CPU-expensive 
retrieval operation. 

6.2.3   Effect of � on Search Efficiency  
In this experiment, we study the effect of 
 – the number of decimal place – on the 
efficiency of range search with an identical search radius. Figure 13 illustrates that the 
number of candidate media objects retrieved by the CIndex is decreasing gradually as 

 increases, since the increase of 
 will result in the precision enhancement of the 
index key. It is interesting to note that the search efficiency of the CIndex can not 
improve any more when 
 exceeds a threshold, e.g., 
�3. This is because with the 
increase of 
, the distance (�d(Xi,Oj),
�) difference, alternatively the precision of 
index key, is getting smaller when comparing with d(Xi,Oj). The efficiency of the 
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CIndex does not improve anymore once 
 reaches an optimal value. Therefore, 
 is 
also a turning factor to the search optimization. Based on our experiment results, 
=3 
is an optimal value. 

6.2.4   Effect of Dynamic Insertion  
In the last experiment, we investigate the effect of dynamic insertion on our indexing 
method. We initialize the CIndex by randomly choosing the first batch of images 
which consists of about 2000 images, and then insert other batches of images, with 
each batch containing about 2000 images also. After each insertion of a batch of im-
ages, we conduct a range search to see how the insertion affects the performance. 
Figure 14 shows the changing trends of total response time between sequential scan 
and our method. We notice that the performance of our method only degrades slightly 
due to the dynamic insertions on the CIndex, which suggests that the proposed 
method can be used for online processing.     

7   Conclusions 

��� ������	�
���
��	�
�������
��	����
�������
����������
��	� ���
�����
�
�
�	��
�� �������� ��� ������ ��� ��
� �
���
�	�� �
�����	��
� ��
�� ��
� �	��
���	�
�
�������
��	��
���
�	��������
��
����������knowledge, this is the first study on the 
indexing issue of cross-media search. Based on the cross reference graph(CRG) 
model [12], three steps are designed in building the CIndex: first, all media objects of 
the same modality are grouped into some clusters. Secondly, the centroid distance of 
each media object(Xi) is computed, and the correlations between Xi and its semanti-
cally related media objects whose modalities are different from Xi are obtained by 
mining the co-existence(links) in webpages. Finally, these two are combined to get 
the index key based on a B+-tree to effectively prune the search region and dramati-
cally boost up the search performance in sequel. We have shown by experimental 
studies that our CIndex is effective in “understanding” the latent multimedia seman-
tics, and much more efficient than sequential scan. 
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Abstract. Observing that current Global Similarity Measures (GSM)
which average the effect of few significant differences on all dimensions
may cause possible performance limitation, we propose the first
Dimension-specific Similarity Measure (DSM) to take local dimension-
specific constraints into consideration. The rationale for DSM is that
significant differences on some individual dimensions may lead to dif-
ferent semantics. An efficient search algorithm is proposed to achieve
fast Dimension-specific KNN (DKNN) retrieval. Experiment results show
that our methods outperform traditional methods by large gaps.

1 Introduction

Given an image feature database, the similarity measure determines the retrieval
effectiveness. All existing similarity measures compute the global similarity which
is aggregated from all dimensions of the feature space without exploring the im-
pact of local distance along each individual dimension. We refer them as Global
Similarity Measures (GSM) [7]. Although the distances along some dimensions
are significant, such differences become non-discriminative in global similarity
computation which averages the differences to all dimensions. Intuitively, prop-
erly utilizing the distance along each individual dimension might help to improve
retrieval by filtering more irrelevant objects from top-K results.

On the other hand, high dimensionality of the feature space drives existing
indexing structures [2, 3, 5, 6] deficient due to the ‘curse of dimensionality’. One
important reason is that they maintain all dimensions as a whole for global
similarity computations and all dimensions need to be accessed during query
processing. [4] approaches high-dimensional indexing as a physical database de-
sign problem and proposes to vertically decompose the data by maintaining a
separate table for each dimension (vertical decomposition for short). Some data
points can be pruned away from full distance computations by accessing fewer
dimensions/tables based on global upper and lower bounds estimated from all
dimensions.

In this paper, we propose the first Dimension-specific. Different from con-
ventional GSM, DSM takes dimension-specific constraints into consideration,
where two feature vectors must match within a certain tolerance threshold along
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each individual dimension. In other words, DSM computes the global similarity
as in conventional GSM, subject to the maximum allowable variation in each
dimension. The rationale for DSM is that significant differences on individual
dimensions may often lead to different human perception (i.e., semantics).

Corresponding to DSM, we introduce a new type of query called Dimension-
specific KNN (DKNN) query to find KNN with dimension-specific constraints.
To achieve fast retrieval for DKNN query, we propose an search algorithm to
coordinate efficient dimension-specific pruning and global KNN pruning concur-
rently based on derived pruning rules. It accesses the data in a dimension-by-
dimension manner and the intermediate candidate set obtained on the current
dimension is propagated to the next dimension for further lookup and continu-
ous reduction. It avoids most of high-dimensional distance computations and is
robust to increasing dimensionality.

An extensive empirical performance study is conducted on the widely used
Getty image datasets. The experimental results showed that DSM generated
better MAP over GSM based on classical Euclidean distance by very large gaps.
Furthermore, our DKNN search algorithm achieves great pruning power and
outperforms traditional KNN method extended for DKNN query by an order of
magnitude.

2 Dimension-Specific KNN Search

2.1 Dimension-Specific Similarity Measure (DSM)

Definition 1 (Dimension-specific Similarity Measure). Given a query ob-
ject represented by its feature vector xq= (x1

q , x
2
q, ..., x

D
q ) and a database object

represented by its feature vector x=(x1, x2, ..., xD), their dimension-specific dis-
similarity DS(xq, x) is defined as:

DS(xq, x) =
{

d(xq , x), if ∀i ∈ {1..D}, xi
q
∼=εi xi

+∞, otherwise

where d(xq, x) is the global dissimilarity measure applied if the dimension-specific
constraints (i.e., ∀i ∈ [1..D], xi

q
∼=εi xi) are satisfied, and D is the dimensionality

of the feature space. 1

DSM is able to avoid individual significant differences being potentially neglected
in global measures. Given a query, the problem we investigate here is to find
the top-K most similar results from the image database. By applying DSM, the
similarity between two images is measured by the Euclidean distance as its global
similarity, subject to the dimension-specific conditions. We define this type of
query as Dimension-specific KNN (DKNN) query.

In DSM, ε is an important parameter which determines the qualification of a
data point to compute its global distance to a query. To assign the value of ε, one

1 xi
q
∼=εi xi if |xi

q − xi| ≤ εi.
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simple way is to analyze historical query results for a proper fixed ε value to all
dimensions. This may work for the feature space whose data along all dimension
are uniformly distritbuted in the same range. When different dimensions exhibit
significantly different distributions, adaptive ε values in DSM could be more
effective. For ith dimension, we can associate its εi with σi(standard deviation)
by setting εi=c× σi, where c is a scalar parameter.

2.2 Pruning Rules for DKNN Search

From Definition 1, we can simply set up the following conditional pruning
rule: x can be safely pruned if ∃ i ∈ {1..D} such that |xi

q − xi| > εi.
Next we derive the KNN pruning rule. As we mentioned earlier, our data is

organized based on vertical decomposition.Our DKNN search algorithm will ac-
cess the data in a dimension-by-dimension manner. During the query processing,
assume we have accessed the first t dimensions. We first derive the upper/lower
bound of the distance between two points.

Proposition 1. The upper bound of the distance between a query xq and a data
point x is defined by:

||xq, x||2 ≤
t∑

i=1

(xi
q − xi)2

︸ ︷︷ ︸
distance on t dimensions

+
D∑

i=t+1

(max(|xi
q − ri

min|, |ri
max − xi

q|))2︸ ︷︷ ︸
upper bound on remaining dimensions

where ri
min and ri

max are the minimal and maximal values on the ith dimension
in the feature space respectively.

The lower bound of the distance between a query xq and a data point x is
defined by:

||xq , x||2 ≥
t∑

i=1

(xi
q − xi)2

︸ ︷︷ ︸
distance on t dimensions

+
(

D∑
i=t+1

xi
q −

D∑
i=t+1

xi)2

D − t︸ ︷︷ ︸
Lower bound on remaining dimensions

Based on the derived upper and lower bounds, we can derive the following KNN
pruning rule: x can be safely pruned if its lower bound is greater than the
current Kth smallest upper bound.

2.3 DKNN Search Algorithm

Based on the established pruning rules, we propose a new search algorithm
(Fig 1) which can maintain a small intermediate candidate set by cooperating
conditional pruning and KNN pruning concurrently. As more dimensions have
been accessed, the candidate set size becomes smaller and smaller. Therefore,
I/O cost can be reduced significantly.
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DKNN Search Algorithm
Input: xq, Rank[ ]
Output: DKNN[ ]

1. For i=1 to D

2. DKNN[ ]←UpdateCandidateBound(xRank[i]
q , xRank[i]);

3. DKNN[ ]←SortCandidate();
4. For j=1 to DKNN.size()
5. if |DKNN[j][i]-xi

q|>εi

6. Remove DKNN[j−−];
7. else if j>K and DKNN[j].lb>DKNN[K].ub
8. Remove DKNN[j−−];
9. Return DKNN[ ];

Fig. 1. DKNN Query Processing

The order in which we access the dimensions does not change the final results.
However, accessing the dimensions with higher pruning power (PP) 2 earlier will
reduce the size of intermediate results, resulting in smaller computational cost
and I/O cost. Normally, a larger σi corresponds to a larger PP on that dimension.
So it is recommended to access the dimensions in the descending order of their
σi to improve the performance.

3 Experiments

An extensive empirical performance study is conducted on Getty Image Dataset.
The experimental results confirm the effectiveness of DSM and the efficiency of
our DKNN search algorithm.

3.1 Experiment Setup

Getty Image Dataset contains 21,820 images3, together with their annotations.
RGB feature in 216 dimensionality is generated for each image. The average
standard deviation on all dimensions is about 0.025. Precision and Mean Average
Precision (MAP) are used to measure the effectiveness of DSM. Two images are
considered as relevant if they share one or more keywords. PP is used to measure
the efficiency of our DKNN search algorithm.

3.2 Effectiveness and Efficiency

Effectiveness: Fig 2 shows the results on precision and MAP at top-K results
when we use fixed/adaptive ε for all dimensions. We can observe that DSM
outperforms baseline for different values of ε. However, a too small value of
2 PP = No. of pruned objects/No. of total objects.
3 http://creative.gettyimages.com
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Fig. 2. Effect of fixed/adaptive ε on precision/MAP at top-K results on Getty dataset
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Fig. 3. Effect of Dimension Access Order on Pruning Power with fixed ε=0.12 and
K=300

the fixed ε may return insufficient number of results, while a too large value
may lose the effect dimension-specific constraints. A suitable value will im-
prove the search quality by huge gaps. Compared with MAP result in fixed
ε shown in Fig 2(b), MAP is further improved by setting an adaptive ε, which
is less sensitive to large variances and able to achieve better results quality than
fixed ε.

Efficiency: We compare three dimension access orders (i.e.,access by the as-
cending/descending/natural (original)) of dimensions standard deviations. As
shown in Fig 3, accessing the dimensions in the descending order of dimension
standard deviations outperforms natural order greatly, which in turn outper-
forms accessing the dimensions in the ascending order of dimension standard
deviations significantly. Furthermore, DKNN algorithm outperforms DKNN out-
performs traditional KNN by an order of magnitude.

4 Conclusion

In this paper, we introduce a new type of query called Dimension-specific KNN
(DKNN) query to find KNN with dimension-specific constraints. An efficient
DKNN search algorithm is developed based on dimension-specific pruning and
global KNN pruning rules concurrently. An extensive empirical performance
study reveals that our proposals achieves significant improvements over tradi-
tional methods.
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Abstract. Authorship attribution assigns works of contentious
authorship to their rightful owners solving cases of theft, plagiarism and
authorship disputes in academia and industry. In this paper we inves-
tigate the application of information retrieval techniques to attribution
of authorship of C source code. In particular, we explore novel meth-
ods for converting C code into documents suitable for retrieval systems,
experimenting with 1,597 student programming assignments. We investi-
gate several possible program derivations, partition attribution results by
original program length to measure effectiveness of modest and lengthy
programs separately, and evaluate three different methods for interpret-
ing document rankings as authorship attribution. The best of our meth-
ods achieves an average of 76.78% classification accuracy for a one-in-ten
classification problem which is competitive against six existing baselines.
The techniques that we present can be the basis of practical software to
support source code authorship investigations.

Keywords: Adversarial information retrieval, authorship attribution,
source code.

1 Introduction

Automatically detecting the author of a document is useful in plagiarism detec-
tion, copyright infringement, computer crime and authorship disputes. To assign
authorship, a profile of each author is constructed from known sources, and then
documents of unknown or uncertain authorship can be matched against these
profiles manually, or with computer-based statistical analysis, machine learning
or similarity calculation methods [1].

Authorship attribution techniques can be used to solve real-world natural lan-
guage (plain text) problems in literature, papers, articles, essays and reports; but
it can also solve problems in the domain of structured text such as source code.
For example, will further analysis of the malicious WANK (Worms Against Nu-
clear Killers) and OILZ worms confirm that three authors were indeed involved
[2]? Moreover, what can be learned about the author of the unnamed Internet
worm of 1989 [3]? And finally, how can a lecturer know if programming as-
signments have indeed been written by the students themselves, obtained from

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 699–713, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



700 S. Burrows, A.L. Uitdenbogerd, and A. Turpin

a source code search engine such as Codase,1 or outsourced to an anonymous
programmer at Rent A Coder?2

In contrast to the large body of work on natural language authorship attribu-
tion (see for example Zhao and Zobel [4] for a comparison of many methods), we
focus on authorship attribution for structured text; specifically C source code.
Various source code authorship attribution techniques have been proposed, but
they all disagree on what should comprise an author profile; use limited collec-
tions; and lack comparison to multiple baselines. We address all of these short-
comings by thoroughly investigating a wide range of features, employing a large
data set, and comparing our work to the published baselines of six other research
groups.

We use a collection of 1,597 C programs written by the 100 most prolific
authors of C programming assignments in the School of Computer Science and
Information Technology at RMIT University over an eight year period. Anony-
mous versions are used which are then tokenised and converted to n-gram repre-
sentations which form document surrogates that are indexed and queried using
standard information retrieval techniques [5,6]. We treat our experiments as be-
ing a 10-class authorship attribution problem. That is, we index a random subset
of ten authors from the collection, and then attempt to attribute authorship for
all documents in the subset to one of the ten authors.

In Section 2 we review methods for solving authorship attribution problems,
and discuss approaches that have been applied to source code. Section 3 describes
the baseline work that forms the starting point for this paper. In Section 4
we outline our methodology and present results in Section 5. We conclude in
Section 6 and offer avenues for future work.

2 Previous Work

In this section we describe popular authorship attribution methods which fall
within four broad categories. We then summarise our previous work, and the
baselines to which we compare our new work.

2.1 Authorship Attribution Methods

Frantzeskou et al. [1] describe a taxonomy of four authorship analysis method-
ology categories: manual inspection, statistical analysis, machine learning and
similarity measurement which we discuss in turn.

Manual inspection involves analysis by an expert to draw conclusions about
coding skill or motive. Such evaluations can be used for authorship disputes
in courts of law. Authorship disputes can arise because “programmers tend
to feel a sense of ownership of their programs” [7] which can lead to code re-
production in successive organisations. This approach is not scalable for large
problems.
1 http://www.codase.com
2 http://www.rentacoder.com



Application of Information Retrieval for Program Authorship Classification 701

Statistical analysis techniques can be used to find effective feature sets for au-
thorship analysis by eliminating features that make insignificant contributions
towards identifying authorship compared to others. Discriminant analysis is one
such statistical analysis technique which Ding and Samadzadeh [8] use for au-
thorship attribution feature selection to create Java code fingerprints.

Machine learning involves finding patterns in samples of work belonging to
one or more authors, and then classifying unseen works as belonging to the
most likely author based upon the patterns in the training data. Many forms
of machine learning algorithms have been applied to authorship attribution in-
cluding support vector machines, decision trees, case-based reasoning and neural
networks [9,10].

Similarity measurement involves measuring the distance between query doc-
uments and documents belonging to candidate authors by means of a similarity
function. Nearest-neighbour methods [11] have been applied here to calculate
the distance between feature lists of documents. One implementation is the Eu-
clidean distance metric which computes the distance between two vectors in
n-dimensional space.

2.2 Authorship Attribution Implementations

This paper continues from our previous work [12] where we investigated how
n-gram representations [13] using modest numbers for n can be used to detect
small repeating patterns of source code to indicate style. Scalability considera-
tions were explored next by increasing the 10-class authorship attribution prob-
lem in increments up to 100-class to observe how severely the effectiveness of
our approach degrades for larger problems. Next we further explored scalability
considerations by reducing the number of submissions per author to simulate
a scenario of having limited training data. Finally, we compared our work to a
baseline implementation [14] and found our work to be more effective by 39%
when measured with mean reciprocal rank.

We have identified works by six other research groups for source code au-
thorship attribution which we treat as baseline implementations for our new
contributions. These are the works by Ding and Samadzadeh [8] (canonical dis-
criminant analysis), Elenbogen and Seliya [15] (C4.5 decision trees), Frantzeskou
et al. [16] (nearest neighbour measurement), Krsul and Spafford [17] (discrim-
inant analysis), Lange and Mancoridis [18] (nearest neighbour measurement)
and MacDonell et al. [10] (case-based reasoning, discriminant analysis and
neural networks). This list conveniently includes representative classification
methods from all automated authorship attribution categories as described in
Section 2.1 [1]. In addition to varying classification methods, these approaches
also vary in terms of number of authors and work samples in each experi-
ment, average program length, programming language, and level of program-
ming experience of the authors whom contributed the work samples. We reserve
a detailed comparison of the baseline systems to our own work in Section 5.3
where we explain the impact of these factors on reported classification accuracy
scores.
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3 Baseline

In this section, we describe the C program collection used as data in our exper-
iments, and summarise some of our previous work [12] which forms the baseline
for our new contributions.

3.1 Collection Creation

Our collection is comprised of 1,597 C programming assignments from the School
of Computer Science and Information Technology at RMIT University. We re-
fer to these assignments as Collection-A. These assignments represent works
from the 100 most prolific authors of C programming assignments in our school
from 1999 to 2006 with fourteen to twenty-six submissions per author. No dis-
crimination is made between undergraduate assignments, postgraduate assign-
ments and year level — there is a mixture of assignments from all levels of ability.
Collection-A contains near-empty submissions of one line up to 10,789 lines
of code, with the mean length being 830 lines of code. We note that the distri-
bution of submission lengths is skewed towards shorter submissions, as we have
a median of 650 lines of code.

When constructing Collection-A, all submissions were made anonymous to
comply with the ethical requirements of our university’s Human Research Ethics
Committee. This meant renaming files and removing all source code comments
and output strings. We additionally deleted byte-identical copies resulting from
duplicate submissions.

3.2 N-Gram Results

In our previous work, we used standard information retrieval methods to conduct
10-class authorship attribution experiments. Each C program was reduced to a
“document” that contained n-grams comprised of operators and keywords only.
In Section 4.1 we consider other types of features. We experimented with 1-gram
to 90-gram representations [13] of these features to see if small frequent patterns
are good markers of authorship.

In each 10-class experiment, documents belonging to ten random authors
comprised a “collection” (about 160 documents) and each document in the col-
lection was used as a “query” against this collection in turn. The Zettair search
engine,3 with its various ranking schemes, returned a ranked list for each query.
The reciprocal rank (RR) of the highest ranked document by the same author
as the query was used as the main outcome metric. For example, if the highest
ranked document by the query author is 3, then RR is 0.33; or if the rank is 5,
the RR is 0.2. We also used the Average Precision (AP) of the ranked list as
an outcome metric, where AP is defined as “taking the set of ranks at which
the relevant documents occur, calculating the precision at those depths in the

3 http://www.seg.rmit.edu.au/zettair
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ranking, and then averaging the set of precision values so obtained” [19]. As is
typical in information retrieval, we report the mean of these two measures over
many queries: mean reciprocal rank (MRR) and mean average precision (MAP).
The random sampling of ten authors was repeated 100 times and we tested five
different ranking schemes: Cosine [6], Pivoted Cosine [20], Dirichlet [21], Okapi
BM25 [22,23], and our own scheme called Author1 [12].

The above process allowed us to compare several n-gram sizes with each of
the five similarity measures and results are presented in Table 1. Note that the
results differ to those reported previously [12] as byte-identical duplicates have
now been removed from Collection-A. We found that the Okapi similarity
measure combined with 8-grams was most effective when measured in MRR
(76.39%) and Okapi with 6-grams was most effective when measured in MAP
(26.70%). These results are highlighted in Table 1.

We also examined the statistical significance of differences in MRR and MAP
at the 95% confidence level using a permutation test (the distribution of RR
scores is very skewed towards 1.00). We chose the null hypothesis to be “no
difference from the most effective MRR or MAP result”, and tested 2-gram up
to 14-gram results for all five similarity measures. Two MRR results were found
to be not significant from Okapi with 8-grams — Pivoted Cosine with 8-grams
(75.89%; p = 0.24) and Okapi with 6-grams (75.59%; p = 0.06). These results
are also marked on Table 1. Also, the most effective MAP result (Okapi with
6-grams) was found to be statistically significant compared to all other tested
MAP results (p < 0.05). We carried forward Okapi with 6-grams over 8-grams
for all future experiments for this reason and also because these representations
take up less space.

3.3 Scalability Considerations

The previous experiment was for a 10-class problem, so we next tested larger
problems up to the 100-class problem. With the problem size ten times bigger
than our previous experiment, we were pleased to observe that MRR using the
Okapi 6-gram system only fell from 75.59% to 64.97% (10.62%), which shows
promise for dealing with even larger problems.

We also explored reducing the number of submissions per author. Beginning
with our average of sixteen submissions per author, we randomly removed sub-
missions in fixed amounts until we had only two submissions per author. In
this case we found that MRR for the Okapi 6-gram system fell from 75.59% to
31.53% (44.06%). These results indicate that an information retrieval approach
to attributing authorship for C code may not work well when there is a limited
number of samples per author. However, we speculate that removing submis-
sions chronologically instead of randomly may have less impact on the MRR
score, as this simulates a more real-life scenario. We were not able to do this in
Collection-A as the school submission archive is messy in parts, and we don’t
have confidence in the timestamps. Experiments using reliable timestamps is an
avenue for future work.
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Table 1. Effect of varying the n-gram size and similarity measure for a 10-class au-
thorship attribution problem using sixteen work samples per author on average, with
authors randomly selected from Collection-A. Results are averaged using all docu-
ments as queries (about 160 queries) in 100 random subsets of ten authors; a total of
approximately 16,000 runs. The most effective results are highlighted — Okapi with
8-grams for MRR and Okapi with 6-grams for MAP. Two further MRR results are
highlighted that were not statistically significant from Okapi with 8-grams at the 95%
confidence level.

Grm Similarity Measure MRR% Similarity Measure MAP%
Sze Au1 Cos Dir Oka P.Co Au1 Cos Dir Oka P.Co
1 51.53 59.41 23.36 42.66 28.49 17.05 19.85 12.22 17.72 13.31
2 65.80 68.44 28.33 67.34 53.33 20.73 22.50 12.98 23.24 18.25
4 72.00 74.10 53.43 75.52 72.79 23.91 25.10 19.33 26.00 23.70
6 73.85 74.42 59.42 75.59 74.70 25.71 25.82 20.44 26.70 25.52
8 75.49 74.94 61.17 76.39 75.89 24.96 24.65 19.58 25.61 25.00
10 73.72 73.35 60.44 74.95 74.69 22.78 22.73 17.76 23.47 23.25
12 74.17 73.45 61.39 74.95 74.55 21.57 21.42 16.95 22.01 21.75
14 72.77 72.20 62.41 73.51 73.32 19.09 18.93 15.74 19.38 19.28
16 71.63 71.12 63.55 72.20 72.25 16.81 16.71 14.73 16.98 16.97
18 70.41 70.14 64.21 70.81 70.86 14.59 14.65 13.31 14.79 14.81
20 67.96 67.92 64.48 68.27 68.33 13.36 13.41 12.66 13.53 13.54

4 Methodology

In this section, we outline the methodology for the new contributions. We first
describe our approach for evaluating effective feature sets. Next we explore the ef-
fect of varying program length and the implications of particularly small queries,
where a query is a program of undetermined authorship. Following that we de-
scribe an experiment to simulate a real-life authorship classification problem.

4.1 Feature Selection

Much work is available that defines good programming style. For example, Can-
non et al. [24] define coding style guidelines such as commenting, white space,
declarations, naming conventions and file organisation. Oman and Cook [25]
collate programming style guidelines from many sources and organise them in
a taxonomy which we use as a basis for categorising style features in our work.
The taxonomy contains three main categories. Typographic style refers to all as-
pects of code that do not affect program execution such as commenting, naming
characteristics and layout (spaces, tabs and new lines); next, control structure
style refers to flow control tokens that affect algorithm implementation decisions
such as operators, keywords and standard library functions; finally, information
structure style refers to the organisation of program memory, input and output
such as data structures, and input/output functions such as printf and scanf.

Based upon the above taxonomy, we create six classes of features for ex-
perimentation. White space, operators, literals, keywords, I/O words (from the
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Table 2. Number of unique features in each feature class, and the distribution of
tokens in Collection-A

W. Space Operator Literal Keywd I/O Func Total
Features 4 39 5 32 60 185 325
Percent 1.23 12.00 1.54 9.85 18.46 56.92 100.00
Tokens 8,109,257 1,495,730 1,409,749 384,718 143,691 76,355 11,619,500
Percent 69.79 12.87 12.13 3.31 1.24 0.66 100.00

stdio.h ANSI C89 header file) and function words (all standard library words
not in stdio.h). We omit comments for de-identification reasons. We provide a
summary of the number of tokens in each class and the total volume of tokens
in Collection-A in Table 2.

We experiment with all sixty-three (26−1) possible combinations of these fea-
ture classes, with each combination forming a feature set, using our experimental
methodology from our previous work [12]. That is, we create 6-gram program
representations with each feature set in turn and query each document against
all works from different combinations of ten randomly selected authors.

4.2 Query Length Investigation

We next explore the effects of varying query length towards the effectiveness
of source code authorship attribution; recording the query length in number of
tokens against the MRR and MAP scores of each run. We still continue to run all
feature class combinations described above to observe if tokens generated from
some feature classes are more resilient to shorter queries than others.

4.3 Classification

Finally, we simulate a real-life 10-class authorship classification problem, at-
tempting to correctly classify work samples as belonging to their authors using
the best methods from previous sections. In the previous experiments we simply
used the MRR and MAP scores as indications that a system would return a
ranked list of documents with works from the correct author ranked highly in
the list. In this experiment, we test three metrics for measuring the strength of
style for all candidate authors, and we classify each work sample as belonging
to the author with the highest score.

The single best result metric attributes authorship to the author of the top
ranked document. For the average scaled score metric, we divide all scores re-
turned by the ranking algorithm by the score of the top ranked document. The
scores for each candidate author are then averaged and authorship is assigned
to the highest average score. Finally for the average precision metric, we cal-
culate the average precision for documents of each author in turn, and classify
the query program as belonging to the author with the highest average precision
score. For all metrics, we take care to omit the query document from all result
lists. To identify the most effective metric, we average the results of 100 runs.
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Table 3. Effectiveness of twelve of sixty-three tested feature sets sorted by MRR score.
The six feature classes are operators, keywords, I/O tokens, function tokens, white
space tokens and literal tokens respectively. We omit the remaining fifty-one results for
brevity. These results demonstrate that operators, keywords and white space features
together are strong markers of authorship. Note that the “feature set” column is a
numeric identifier which we refer to in the text.

F. Set Oper Keywd I/O Func W. Spc Lit MRR MAP
50 Yes Yes Yes 82.28 41.33
58 Yes Yes Yes Yes 82.20 40.36
55 Yes Yes Yes Yes Yes 81.98 39.22
51 Yes Yes Yes Yes 81.74 39.74
54 Yes Yes Yes Yes 81.68 41.13
62 Yes Yes Yes Yes Yes 81.61 39.90
.. ... ... ... ... ... ... ..... .....
32 Yes 74.78 26.19
.. ... ... ... ... ... ... ..... .....
16 Yes 69.40 20.33
.. ... ... ... ... ... ... ..... .....
01 Yes 65.73 23.10
08 Yes 62.07 16.79
04 Yes 56.98 9.91
02 Yes 43.26 22.15

5 Results and Analysis

In this section we provide results and analysis of our feature selection, query
length investigation and classification experiments. Our classification results are
then benchmarked against implementations by six other research groups.

5.1 Feature Selection Results

The top six rows of Table 3 provide a summary of the top performing feature
sets (all of which have a statistically insignificant MRR from Feature Set 50
(the top row) using a permutation test at the p < 0.05 level). The bottom six
rows show the performance of the six feature classes in isolation. As can be seen,
using feature sets that contain a single feature class leads to a poor ranking
of documents by the same author as the query, whereas selecting white space,
operator and keyword features leads to a high ranking of similarly authored
documents.

Koppel et al. [26] discuss that for text categorisation, “frequent but unstable
features are especially useful”, and so we would expect these to particularly
effective. White space features were the most prevalent as shown in Table 2
representing 69.79% of all tokens. We believe they are especially useful as white
space placement is a strong marker of programming style. For example, the
following two for-loop declarations are functionally equivalent, but the use of
white space can be helpful in distinguishing authorship:
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for(i=0; i<limit; i++); for (i = 0; i < limit; i++);

Our results showed that the most effective feature set without white space fea-
tures had a MRR score of 4.49% less than the most effective feature set. This
is a statistically significant result as shown by a permutation test at the 95%
confidence interval.

Key observations were made when inspecting the volumes of each individ-
ual token. For example, the ratio of new lines to carriage returns was found
to be 16:1.4 This suggests that at least one out of sixteen submissions was not
developed in our predominantly Unix-based environment which gives a useful
authorship marker concerning choice of operating system for programming as-
signment development. The white space and literal tokens were all found in
large quantities — the nine tokens that make up these categories were all within
the top fifteen when totalling the volume of each token. Of the remaining token
classes, the parenthesis was the most prevalent operator token, int was the most
prevalent keyword, NULL was the most prevalent I/O token, and strlen was the
most prevalent function token.

5.2 Query Length Results

In Figure 1 we summarise the results for our query length investigation. We
compare the best of our feature sets (Feature Set 50) to the average of all feature
sets. The goal is to show how the selection of one of our strongest feature sets
can increase effectiveness particularly for the smallest queries. Our results are
partitioned into program lengths of intervals of 100 tokens initially (0–99, 100–
199, 200-299, and so on). Programs are then partitioned into intervals of 1,000
tokens for programs with 1,000 tokens or more given that we have less of these.
The final partition is marked as 20,000 which represents all programs with at
least 20,000 tokens up to the maximum in our collection (95,889 tokens).

The trends in Figure 1 show that shorter queries are markedly less effective
in attributing authorship when averaged across all feature sets when compared
to Feature Set 50 alone. There is a reasonable correlation between MRR/MAP
and query length for Feature Set 50, however this trend drops off for queries less
than 5,000 tokens for all feature sets averaged.

We conducted permutation tests on both the MRR and MAP results taking
all results from Feature Set 50 and the first run for all other results. Results
were found to be statistically significant (p < 10−15). We also fitted linear mod-
els to each of the four lines and found that the gradient of the line for all
feature sets compared to Feature Set 50 was 1.89 times greater for MRR and
2.86 times greater for MAP which confirms the strength of this feature set for
smaller queries. Additionally, all our linear models were found to be statistically
significant (p < 10−13). The implication of these results is that we can largely
retain authorship attribution effectiveness for short queries provided that an
appropriate feature set is selected.

4 New lines and carriage returns were treated as separate tokens.
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Query Length Versus MRR/MAP for Feature Set 50 and All Features
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Fig. 1. Effectiveness of Feature Set 50 compared to the average of all feature sets
measured in MRR and MAP. Results are partitioned based upon thirty-one query
length intervals on the x-axis. These results show a downward trend for the lines
representing all feature sets alone for queries less than 5,000 tokens, but results are
much more consistent for Feature Set 50.

5.3 Classification Results

When using the “single best score” classification method we correctly clas-
sified work in 76.78% of cases for the 10-class problem. This is the best of
our methods compared to “average scaled score” (76.47%) and “average pre-
cision” (74.68%), but this difference was not found to be statistically significant
(p > 0.05).

In Table 4, we present our “single best score” method results for eight prob-
lem sizes ranging from 7-class to 46-class. We found that the “single best score”
method was again most effective for the harder authorship attribution prob-
lems (12-class up to 46-class), however the “average scaled score” results were
marginally higher for the 7-class and 8-class problems by 0.20% and 0.21% re-
spectfully. The “single best score” results are reported here only.

We now compare our classification results to those of six other projects
[8,10,15,16,17,18]. There are many variables that must be considered when com-
paring our results to those of other researchers. For example, choice of author-
ship markers, size of the test collection, level of ability of the authors whom
contributed the work samples, and the choice of programming language. There-
fore we don’t think it is possible to select any approach as being strictly more
effective than another. However, we now summarise each approach and discuss
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Table 4. Comparison of our work to baseline systems of six external research groups.
Codes are given in the first column indicating the first letter of the author’s sur-
name and problem size which we refer to in the text: (M07) MacDonell et al. [10]
(Case-based reasoning); (F08a/b) Frantzeskou et al. [16] (Nearest neighbour); (B10)
Burrows et al. (Okapi BM25); (E12) Elenbogen and Seliya [15] (C4.5 decision tree);
(L20) Lange and Mancoridis [18] (Nearest neighbour); (K29) Krsul and Spafford [17]
(Discriminant analysis); (F30) Frantzeskou et al. [16] (Nearest neighbour); and (D46)
Ding and Samadzadeh [8] (Canonical discriminant analysis). For each baseline the re-
maining nine columns respectively represent the problem difficulty, range and total
number of work samples, range and average lines of code of the collection, level of pro-
gramming experience of the work owners (“low” for students, “high” for professionals,
and “mixed” for a hybrid collection), programming language of the test collection, re-
ported effectiveness of the approach, and our effectiveness score for the same problem
size (using the “single best score” metric). To represent incomplete data, we marked
non-obtainable data with a dash (—) and data obtained from personal communication
with a dagger (†) or double dagger (‡) where estimates were provided.

ID No Range Total Range Avg Exper- Lang- Effect- This
Au Work Work LOC LOC ience uage iveness paper

M07 7 5–114 351 †1–1,179 †148 Mixed C++ 88.0% 78.66%
F08a 8 6–8 ‡60 36–258 129 Low Java 88.5% 78.46%
F08b 8 4–29 107 23–760 145 High Java 100.0% 78.46%
B10 10 14–26 1,597 1–10,789 830 Low C 76.8% 76.78%
E12 12 6–7 83 ‡50–400 ‡100 Low C++† 74.7% 75.25%
L20 20 3 60 †336–80,131 11,166 High Java 55.0% 72.47%
K29 29 — 88 — — Mixed C 73.0% 70.67%
F30 30 4–29 333 20–980 172 High Java 96.9% 70.48%
D46 46 4–10 225 — — Mixed Java 67.2% 68.58%

the strengths and weaknesses of the most effective baselines to account for the
differences. The major properties of each work are summarised in Table 4.

When comparing results based upon problem difficulty alone (7-class up to
46-class) using Table 4, our classification rate is well ahead of (L20) Lange and
Mancoridis [18], very close to (E12) Elenbogen and Seliya [15], (K29) Krsul and
Spafford [17] and (D46) Ding and Samadzadeh [8] (within 3%), and well behind
(M07) MacDonell et al. [10] and (F08a/F08b/F30) Frantzeskou et al. [16]. In
accounting for the strong result of (M07) MacDonell et al. [10] (9.14% higher
classification rate than ours), a large portion of the collection is industry-based
which we would expect to be easier to classify given the more mature pro-
gramming style of the authors compared to our students. Also, the number
of work samples per author varies the most compared to all other baselines. For
example, the work by one author comprises 114 samples out of the 351 pro-
gram collection (32.5%), and we would expect these samples to score highly as
classification accuracy is 32.5% by random chance alone. Conversely, another
author has only five samples which would be particularly difficult to classify cor-
rectly, but this poorer result would contribute much less to the overall reported
effectiveness.
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We summarised three baselines in Table 4 from Frantzeskou et al. [16] which
are more effective than our equivalent result by margins of 9.85% (F08a), 21.35%
(F08b) and 26.42% (F30) respectfully. The two largest margins were based on in-
dustry collections so we don’t discuss these further. However, the student collec-
tion (F08a) still remained more effective by 9.85%. We observed that the results
reporting various n-gram sizes and profile lengths do not agree with each other
between collections so we suggest that alternative similarity measures which are
less sensitive to the input parameters could be investigated as future work.

In conducting our experiments, we have witnessed varying results between
runs which highlight the impact of the collection chosen on classification effec-
tiveness. In Table 4, we reported an average result of 78.65% for our 8-class
student collection problem. The eight students were randomly selected from 100
for each of 100 runs with each run attempting to classify every piece of work from
eight authors. We could consider our work to have used 100 partly overlapping
collections. The accuracy of these 100 results had a standard deviation of 3.92%
and ranged from 64.46% up to 88.72%. This result is marginally higher than
the 8-class student collection result of (F08a) Frantzeskou et al. [16] (88.5%).
When considering that their approach performs poorly when an inappropriate
profile length parameter is chosen for the collection in question [27], we believe
our standard deviation is quite modest which suggests that our approach is more
consistent and reliable.

Our collection is likely to be more difficult for authorship attribution experi-
ments relative to the other researchers discussed above. We obtained work sam-
ples from our school’s assignment submission archive from an eight-year period
and students would often be completing their degrees in non-overlapping periods
and have very differing assessments. Moreover, we expect some submissions to
be incomplete or very small. Indeed, our smallest submission was only one line
of code, and we didn’t attempt to manually remove these difficult submissions.

A more precise comparison can only be performed if the above methodologies
are compared on the same test collections and this remains an avenue for future
work. Stein et al. [28] have cited the need to develop “publicly available large
corpora” for benchmarking proposed approaches and we agree that this is im-
portant for advancing the field. Our contribution goes part way towards solving
this problem as we have used more authors and more work samples than any of
the benchmarked projects. However there are still privacy issues to be explored
which may or may not prohibit the sharing of this student data with others.

6 Discussion and Conclusions

In this paper, we have presented a source code authorship attribution approach
based on information retrieval techniques capable of solving real-world author-
ship attribution problems such as resolving authorship disputes, facilitating eas-
ier software project maintenance when authorship data is lacking, and supporting
plagiarism detection investigations [29] where authorship evidence is needed in
addition to matching content information.
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The contributions built upon previous work that used a large collection of
university assignments written in the C programming language [12]. The first
contribution investigated effective methods for deriving surrogate documents via
combining features as 6-grams for authorship attribution tasks. Several feature
classes were investigated, and we found that white space, operator and keyword
tokens are particularly valuable.

Next we explored the effect of varying length query documents. Smaller pro-
grams were indeed more difficult to attribute correctly when averaged across
all tested feature sets, but we found that our most effective feature set con-
taining white space, operator and keyword tokens showed greatest authorship
attribution improvement for the smallest queries in particular.

Finally, using our “single best result” metric we demonstrated that we can
correctly classify 76.78% of all query documents in a 10-class authorship classi-
fication experiment. When dealing with the varying collection size, data sources,
programming language, underlying methodology and choice of authorship mark-
ers of competing approaches, we implemented authorship attribution experiments
of equivalent difficulty. We have shown that our information retrieval approach is a
competitive alternative to the six existing approaches examined [8,10,15,16,17,18]
that have employed a variety of statistical analysis, machine learning and similar-
ity measurement techniques [1].

It is hoped that our contributions will further advance the source code au-
thorship attribution field. However, this paper represents one component of a
larger research project and much remains for future work. For example, our col-
lection contains work samples from authors of varying levels of programming
ability from first year students up to final year students. We therefore antici-
pate differences in authorship classification effectiveness between these groups
and indeed other groups such as academic staff and industry professionals. We
therefore plan to explore how the evolution of programming style between these
groups affects authorship classification rates.

Finally, we note that there are an increasing number of contributions to-
wards source code authorship attribution implementations as evidenced by our
work and the contributions of the authors of our baselines. Additionally, natural
language authorship attribution is a particularly mature field [4,30]. We have
demonstrated that with suitable choice of document surrogates, information re-
trieval techniques work well, so we would expect this to carry over to other
domains. For example, we may consider one or more of mathematical proofs,
chemical formulae, Z specifications, UML definitions, SQL, XML, HTML, LATEX
or word processing markup in future experiments.
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Abstract. Mining trees is very useful in domains like bioinformatics, web min-
ing, mining semi-structured data, and so on. These efforts largely assumed that
the trees are static. However, in many real applications, tree data are evolutionary
in nature. In this paper, we focus on mining evolution patterns from historical
tree-structured data. Specifically, we propose a novel approach to discover neg-
atively correlated subtree patterns (NECTARs) from a sequence of historical ver-
sions of unordered trees.The objective is to extract subtrees that are negatively
correlated in undergoing structural changes. We propose an algorithm called
NECTAR-Miner based on a set of evolution metrics to extract NECTARs. NECTARs
can be useful in several applications such as maintaining mirrors of a website and
maintaining XML path selectivity estimation. Extensive experiments show that the
proposed algorithm has good performance and can discover NECTARs accurately.

1 Introduction

Mining tree-structured data has gained tremendous interest in recent times due to the
widespread occurrence of tree patterns in applications like bioinformatics, web mining,
semi-structured data mining, and so on. Existing work on mining tree-structured data
can be broadly classified into three categories: association rule mining [3], frequent
substructure mining [2,15], and classification/clustering [10,16]. While these tree pat-
tern mining techniques have been innovative and powerful, our initial investigation re-
vealed that majority of the existing approaches of tree mining focus only on snapshot
data, while in real life tree-structured data is dynamic in nature. Consider a sequence of
tree-structured data in Figure 1, where the black and gray circles respectively represent
the newly inserted nodes and deleted nodes. Typically, there are two types of changes
to tree-structured data: changes to data content (e.g., leaf nodes in an XML tree) and
changes to the structure of tree data (internal nodes). In this paper, we focus on the
structural evolution of tree-structured data only.

The evolutionary nature of structure of trees leads to two challenging problems in the
context of data mining. The first one is to maintain the previously discovered knowl-
edge. For instance, in frequent substructure mining, as the data source changes new
frequent structures may emerge while some existing ones may not be frequent any-
more. The second one is to discover novel knowledge by analyzing the evolutionary
characteristics of historical tree data. Such knowledge is difficult or even impossible
to be discovered from snapshot data efficiently due to the absence of evolution-related
information. In this paper, we focus on the second issue. That is, we present techniques
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Fig. 1. Sequence of historical tree versions

to discover a specific type of novel knowledge by mining the evolutionary features of
tree-structured data.

Let us elaborate informally on the types of novel knowledge one may discover by
analyzing evolutionary features of trees. Consider the different versions of a tree struc-
ture in Figure 1. We may discover the following types of novel knowledge by exploiting
the evolution-related information associated with the trees. Note that this list is by no
means exhaustive.

– Frequently Changing Structures (FCS): Different parts of a tree may evolve in dif-
ferent ways over time. Some parts of the tree may evolve more frequently than
other parts. Some parts may change more significantly in the history compared to
other parts that may only change slightly. For example, the subtree rooted at node
b changes in all the four versions. On the other hand, the subtree rooted at d never
changes. We refer to structures that change frequently and significantly in the his-
tory as frequently changing structures. Here, frequently refers to the large number
of times the corresponding parts changed, while significantly refers to the large
percentage of nodes that have changed in the corresponding subtrees.

– Associative Evolutionary Structures (AES): Similar to the transactional association
rules, different parts of the tree may be associated in terms of their evolutionary
features over time. For example, in Figure 1 one may observe that whenever sub-
trees rooted at i and � change frequently and significantly, the subtree rooted at h
does not change. Then, a negative association rule may be extracted between the
subtrees with respect to some appropriately specified thresholds. Note that a posi-
tive association rule can similarly be extracted from subtrees that change frequently
and significantly together. We refer to such structures as associative evolutionary
structures.

We have discussed frequently changing structures in [17]. In this paper, we focus on
discovering a specific type of associative evolutionary structures from historical tree-
structured data. Particularly, we propose a technique to discover subtrees that are neg-
atively correlated in undergoing structural changes. That is, when a set of subtrees
changes (significantly), another set of subtrees rarely changes (significantly). We refer
to this type of patterns as NECTARs (NEgatively Correlated subTree pAtteRn). While
this pattern can involve subtrees which may or may not be structurally related, in this
paper, we focus on discovering NECTARs from subtrees having ancestor-descendant re-
lationships. As we shall see in Section 5, NECTARs are useful in applications such as
maintaining mirrors of Web site [7] and maintaining XML path selectivity estimation.
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Given a sequence of versions of a tree structure, we propose a set of evolution
metrics, in Section 3, to quantitatively measure the frequency and correlation of sig-
nificant changes to subtrees. Based on such metrics, we propose an algorithm called
NECTAR-Miner in Section 4 to extract the NECTARs from the tree sequence. Our pro-
posed algorithm consists of two major phases: the GDT construction phase and the
NECTARs discovery phase. In the first phase, given a sequence of historical tree-
structured data, the GDT (General Delta Tree) is constructed to efficiently represent
evolutionary features of trees. In the next phase, negatively correlated subtrees are ex-
tracted by traversing the GDT. Our experimental results in Section 6 show that the
proposed algorithm can extract all NECTARs efficiently.

2 Modeling Structural Changes to Trees

We first present different types of structural changes to tree-structured data and how we
quantify the degree of change in the data. Next, we introduce the notion of structural
delta which will be used subsequently in our discussion. We use the following notations
in the sequel. Let S = 〈N, E〉 denotes a tree structure where N and E respectively
represent the set of nodes and edges of the tree, T = 〈t1, t2, . . . , tn〉 be a sequence of
time points with some particular time granularity, Sti be the version of S at time point
ti, and si be a subtree of S, denoted as si ≺ S.

2.1 Types of Structural Changes

An edit operation is an operation e that can be applied on a tree S1 = 〈N1, E1〉 to
produce another tree S2 = 〈N2, E2〉, denoted as S1

e→ S2. Given two versions of a
tree structure, different types of edit operations have been defined in traditional change
detection algorithms [5]. For instance, atomic edit operations such as insertion, dele-
tion, and update can be defined based on nodes. Furthermore, complex operations on
subtrees such as move, copy, and delete a subtree, can be defined as well. Usually, an
edit operation defined on a subtree can be decomposed into a sequence of atomic edit
operations defined on nodes.

In our study, we consider the atomic edit operations defined on leaf nodes that cause
structural changes to an unordered tree. Note that our work can easily be extended
to ordered trees as well. Hence we define only two edit operations as follows: (a)
INS(x(name), p): This operation creates a new leaf node x, with node label “name”,
as a child node of node p in a tree. (b) DEL(x): This operation is the inverse of the
insertion one. It removes leaf node x from a tree.

For example, consider the first two tree versions, St1 and St2 , in Figure 1. The ver-
sion St2 can be produced from St1 by applying the following structural edit operations:
inserting nodes labeled n and o as a child of nodes e and b, respectively, and deleting
nodes labeled c and m. Note that we do not consider the update operation because it
does not incur structural changes. Certainly, depending on application the update oper-
ation can be regarded as deleting a node and inserting a node with a new label.

Given two versions of a tree (subtree), edit distance is usually adopted in traditional
change detection algorithms to measure the distance between the two versions. Edit
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distance is defined based on edit script, which is a sequence of edit operations that
converts one tree into another. Note that, in traditional change detection algorithms there
may exist more than one valid edit script since the edit operations are decomposable.
However, since we consider atomic structural edit operations, there exists only one valid
edit script. Then, edit distance can be defined as follows. Given two versions of a trees
S at time points tj and tj+1, denoted as Stj and Stj+1 , let E(Stj → Stj+1) be a
sequence of atomic edit operations, 〈e1, e2, . . . , en〉, which converts Stj to Stj+1 , then,
the edit distance between the two versions, denoted as d(Stj , Stj+1), is the number of
edit operations in the edit script. That is, d(Stj , Stj+1) = |E|. For instance, let the
subtree a/b/e in Figure 1 be s. The following sequence of edit operations convert st1

to st2 : E(st1 → st2) = 〈DEL(m), INS(n, e)〉. Then, the edit distance between st1

and st2 , d(st1 , st2), is 2.

2.2 Degree of Changes (DoC)

Considering that an edit distance is an absolute value which measures the difference
between two tree structures, we define the Degree of Change of a tree in two versions
by normalizing the edit distance by the size of the consolidate tree of the two tree
versions. Given two tree versions Stj = 〈N tj , Etj 〉 and Stj+1 = 〈N tj+1 , Etj+1 〉, the
consolidate tree of them, denoted as Stj 0Stj+1 , is 〈N, E〉, where i) N = N tj ∪N tj+1 ,
ii) e = (x, y) ∈ E, if and only if x is the parent of y in Etj or Etj+1 . For example,
the consolidate tree of a/b/e in the first two versions in Figure 1 contains the nodes
e, i, k, �, m, and n.

Definition 1 (Degree of Change). Given two versions of a tree Stj and Stj+1 , let
d(Stj , Stj+1) be the edit distance between the two versions, then the Degree of Change

of S from tj to tj+1, denoted as DoC(S, tj , tj+1), is: DoC(S, tj , tj+1) = d(Stj ,Stj+1 )
|Stj�Stj+1 |

where |Stj 0 Stj+1 | is the size of the consolidate tree of Stj and Stj+1 . ��
The value of DoC ranges from 0 to 1. If a tree does not change in two versions, then
its DoC is zero. If a tree is totally removed or newly inserted, then the DoC of the
tree is one. The greater the value of DoC, the more significantly the tree changed. For
example, let the subtree a/b in Figure 1 be subtree s1. Then the DoC of s1 in the first
two versions is DoC(s1, t1, t2) = 4/12 = 0.33.

2.3 Structural Delta

When a tree evolves from one version to another version, some of its subtrees change
(i.e., their DoC values are greater than zero), while some of its subtrees remain un-
changed (i.e., their DoC values equal to zero). We are interested in the set of changed
subtrees. Particularly, we refer to the set of changed subtrees in two successive versions
as the structural delta.

Definition 2 (Structural Delta). Given two versions of a tree S at time tj and tj+1,
the structural delta of S from tj to tj+1, denoted as ΔS(tj , tj+1), refers to the set of
changed subtrees in the two versions and ΔS(tj , tj+1)={s|s ≺ Stj & DoC(s, tj , tj+1)
> 0} ∪ {s|s ≺ Stj+1 & DoC(s, tj , tj+1) > 0}. ��
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For example, consider the first two tree versions in Figure 1. ΔS(t1, t2) = {a/b, a/b/c,
a/b/e, a/b/e/l, a/b/e/l/m, a/b/e/n, a/b/o}. Note that the subscript S of ΔS can be
omitted if it is clear from the context.

3 Evolution Metrics

We now introduce the metrics defined to measure the change frequency and change
significance for a set of subtrees. Particularly, we use the following notations for the
subsequent definitions. Let Σ = 〈St1 , St2 , . . . , Stn〉 be a sequence of versions of tree S
on T , 〈Δ(t1, t2), . . . , Δ(tn−1, tn)〉 be the sequence of corresponding structural deltas,
Ω = Δ(t1, t2) ∪ . . . ∪Δ(tn−1, tn) be the set of all changed subtrees.

3.1 Frequency of Significant Change (FoSC)

Note that DoC of a subtree measures how significantly a subtree changed in two succes-
sive versions. In order to justify whether a set of subtrees are correlated in undergoing
significant changes, we need a metric to measure how frequently the set of subtrees
undergoes significant changes together. Hence, we introduce the metric Frequency of
Significant Change (FoSC) for a set of subtrees. Note that the metric FoSC is de-
fined with respect to a given threshold of DoC because we say a subtree undergoes
significant changes only if its DoC value is no less than the DoC threshold.

Definition 3 (Frequency of Significant Change (FoSC)). Let X = {s1, s2, . . . , sm}
be a set of changed subtrees, X ⊆ Ω, and the threshold of DoC be α. The Frequency
of Significant Change for the set X , with respect to α, denoted as FoSCα(X), is:

FoSCα(X) =
∑n−1

j=1 Dj

(n−1) where Dj =
∏m

i=1 Dji and

Dji =
{

1, if DoC(si, tj , tj+1) ≥ α
0, otherwise

1 ≤ i ≤ m ��

That is, FoSCα of a set of subtrees is the fraction of subsequent versions (after the first
version) where the set of subtrees undergoes significant changes together. The value
of FoSCα ranges in [0, 1]. If all subtrees in the set undergo significant changes to-
gether in each subsequent version, then the value of FoSCα equals to one. If subtrees
in the set never undergo significant changes together in subsequent versions, then the
value of FoSCα is zero. For example, reconsider the sequence of historical tree ver-
sions in Figure 1. Let X = {a/b, a/b/e} and the threshold of DoC α be 1/4. Then,
FoSC1/4(X) = 2/3 as both subtrees undergo significant changes in two subsequent
versions St2 and St4 . Let Y = {a/b/e, a/b/e/i}. Then FoSC1/4(Y ) = 1/3 as the
two subtrees undergo significant changes together only in the version St3 .

3.2 Correlation of Change (CoC)

We now define the metric to measure the correlation between subtrees in undergoing
significant changes. Given a DoC threshold α, in each transition between two succes-
sive versions, a set of subtrees either undergoes significant changes together or not.
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This could be considered as a binary variable. Furthermore, it is a symmetric binary
variable because we are interested in both the occurrences and the nonoccurrences of
significant changes to subtrees. Hence, correlation measures which are suitable for an-
alyzing symmetric binary variables can be used, such as φ-coefficient, odds ratio, and
the Kappa statistic etc. [11]. In our analysis, we use the φ-coefficient. Given the con-
tingency table in Figure 2(a), where X (Y ) represents that a set of subtrees X (Y )
undergoes significant changes together and ¬X (¬Y ) represents subtrees in X (Y ) do
not undergo significant changes together, the φ-coefficient between variables X and Y
can be computed by the following equation.

φ(X, Y ) =
Mf11 − f1+f+1√

f1+(M − f1+)f+1(M − f+1)
(1)

Particularly, in our mining context, the value of M in Figure 2(a) equals to n−1, which
is the total number of transitions between successive historical versions. Furthermore,
f11 refers to the number of versions where all subtrees in X and Y undergo significant
changes together. Hence, f11 equals to FoSCα(X∪Y )×(n−1). Similarly, f1+ equals
to FoSCα(X)× (n−1) and f+1 equals to FoSCα(Y )× (n−1). Thus, the Equation 1
can be transformed as the following one, which is formally defined as Correlation of
Change (CoC).

Definition 4 (Correlation of Change (CoC)). Let X and Y be two sets of subtrees,
s.t. X ⊆ Ω, Y ⊆ Ω, and X ∩ Y = ∅. Given a DoC threshold α, the Correlation of
Change of X and Y , with respect to α, denoted as CoCα(X, Y ), is:

CoCα(X, Y ) =
FoSCα(X ∪ Y )− FoSCα(X) ∗ FoSCα(Y )√

FoSCα(X)(1− FoSCα(X))FoSCα(Y )(1 − FoSCα(Y ))

��

According to the definition of φ-coefficient, if CoCα(X, Y ) is greater than zero, two
sets of subtrees X and Y are positively correlated in undergoing significant changes.
Otherwise, they are negatively correlated in undergoing significant changes. In the fol-
lowing discussion, the subscript α in both FoSCα and CoCα is omitted if α is under-
stood in the context. For example, consider the sequence of historical versions of tree
S in Figure 1 again. Let the threshold of DoC α be 1/3. Let X = {a/b, a/b/e} and
Y = {a/b/e/i}. CoC1/3(X, Y ) = 3×0−2×1√

2×(3−2)×1×(3−1)
= −1. Hence, {a/b, a/b/e}

and {a/b/e/i} are negatively correlated in undergoing significant changes.

3.3 NECTAR Mining Problem

Based on the evolution metrics introduced above, various negatively correlated subtree
patterns or NECTARs can be defined. For example, we can define the pattern as two sets
of subtrees with a negative CoC value. The subtrees may or may not be structurally
independent. Particularly, in this paper, we define NECTAR on subtrees with ancestor-
descendant relationships.
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Let si be an ancestor subtree of si+1 (conversely, si+1 be a descendant subtree of
si), denoted as si � si+1, if there is a path from the root of si to the root of si+1. Then,
NECTARs can be defined as follows.

Definition 5 (NECTARs). Given the DoC threshold α, the FoSC threshold η, and the
CoC threshold ζ (0 ≤ α, η ≤ 1, ζ ≥ 0), P = 〈X, Y 〉, where X = 〈s1, s2, . . . , sm−1〉,
Y = 〈sm〉, and si � si+1 (1 ≤ i < m), is a NECTAR if it satisfies the following
conditions: (i) FoSCα(X) ≥ η; (ii) FoSCα(P ) < η; (iii) CoCα(X, Y ) ≤ −ζ. ��

Consider the sequence of historical versions of tree S in Figure 1 again. Suppose the
threshold α = 1/3, η = 2/3, and ζ = 1/2. 〈〈a/b, a/b/e〉, 〈a/b/e/i〉〉 is a NECTAR

because FoSC({a/b, a/b/e}) = 2/3 ≥ η, while, FoSC ({a/b, a/b/e, a/b/e/i}) =
0 < η and CoC ({a/b, a/b/e}, {a/b/e/i}) = −1 < −ζ.

A NECTAR 〈〈s1, s2, . . . , sm−1〉, 〈sm〉〉 indicates that the sequence of subtrees
〈s1, s2, . . . , sm−1〉 frequently undergo significant change together. Whereas, they rarely
undergo significant changes together with a descendant subtree sm. Based on the in-
ferred knowledge, we identified two types of subsumption relationships between NEC-
TARs as follows.

Definition 6. (Tail Subsumption) Given two NECTARs P1=〈X, Y1〉 and P2 =〈X, Y2〉,
where Y1 = 〈sx〉 and Y2 = 〈sy〉, we say P1 tail-subsumes P2 (or P2 is tail-subsumed
by P1), denoted as P1 
t P2, if sx � sy . ��

Definition 7. (Head Subsumption) Given a NECTARs P1 = 〈X1, Y1〉 and a subtree
sequence X2 s.t. FoSC(X2) ≥ η, where X1 = 〈s1s2 · · · sm〉 and X2 = 〈v1v2 · · · vn〉,
we say P1 is head-subsumed by X2, denoted as P1 �h X2, if ∃i(1 < i ≤ m ≤ n) such
that s1 = v1, · · · , si−1 = vi−1, and si ≺ vi. ��

Consider example in Figure 1 again. If both 〈〈a/b〉, 〈a/b/e〉〉 and 〈〈a/b〉, 〈a/b/e/i〉〉
are NECTARs, then the former tail-subsumes the latter. If the subtree sequence S =
〈a/b, a/b/e〉 satisfies the FoSC threshold, then all NECTARs 〈〈a/b, a/b/e/i〉, Y 〉 are
head-subsumed by the sequence S, where Y can be any descendant subtree of a/b/e/i.

Often we observe that subsumed NECTARs add no further value to applications of
NECTARs [7]. Hence, we exclude the subsumed NECTARs from the task of NECTAR

mining. Thus, the problem of NECTAR mining can be formally defined as follows.

Definition 8 (NECTAR Mining). Given a sequence of historical versions of a tree
structure, the DoC threshold α, the FoSC threshold η and the CoC threshold ζ, the
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problem of NECTAR mining is to find the complete set of NECTARs where each satisfies
the specified thresholds and is neither tail-subsumed or head-subsumed.

4 NECTAR-MINER Algorithm

Given a sequence of historical versions of a tree structure and thresholds of DoC and
FoSC, the general algorithm NECTAR Miner is shown in Figure 3(a). Note that, al-
though it is optimized for nonsubsumed NECTARs, it can easily be extended to mine all
NECTARs. Also, the threshold of CoC does not need to be given manually. Cohen [9]
discussed the strength of the φ-coefficient value. It is stated that the correlation is strong
if |φ| is above 0.5, moderate if |φ| is around 0.3, and weak if |φ| is around 0.1. Based
on this argument, the CoC threshold can be set automatically and progressively. In our
algorithm, we set the initial threshold of CoC ζ as 0.5. If no NECTAR is discovered
with respect to this value and ζ is greater than 0.3, ζ is decreased successively. With
a given ζ, basically, there are two phases involved in the mining procedure: the GDT
construction phase and the NECTAR discovery phase. We elaborate on them in turn.

4.1 Phase I: GDT Construction

Given a sequence of historical versions of a tree structure, we construct a data structure,
called General Delta Tree (GDT ), that is appropriate for NECTAR mining. A GDT
not only registers change information of subtrees, such as their DoC values, but also
preserves the structural information of subtrees, such as the ancestor-descendant rela-
tionships.

Definition 9 (General Delta Tree). Given a sequence of historical tree versions Σ, a
sequence of consolidate trees of each two successive versions can be obtained, 〈S′

1 =
〈N1, E1〉, S

′
2 = 〈N2, E2〉, · · · , S

′
n−1 = 〈Nn−1, En−1〉〉, where S

′
i = Sti 0 Sti+1 .

A General Delta Tree GDT = 〈N, E〉, where N = N1 ∪ N2 ∪ · · · ∪ Nn−1 and
e = (x, y) ∈ E only if x is a parent of y in any Ei(1 ≤ i ≤ n − 1). Each node x is
associated with a vector where the ith element corresponds to DoC(sti

x , s
ti+1
x ). ��

Consider the sequence of historical tree versions in Figure 1. The constructed gen-
eral delta tree is shown in Figure 2(b). Note that for clarity, we show the vector of
DoC values for some of the nodes only. The node b is associated with a sequence
〈1/3, 2/11, 5/11〉, which indicates that the DoC value of the subtree a/b in the first
two versions is 1/3, DoC(a/b, t2, t3) = 2/11, and DoC(a/b, t3, t4) = 5/11.

The algorithm of this phase is shown in Figure 3(b). At first, we initialize the root
node of GDT . Then, for each two successive tree versions, we employ the algorithm X-
Diff [12] to detect changes to tree structures1.We adapt the algorithm slightly so that it
directly takes generic tree structures as input. Given two tree versions, X-Diff generates
a result tree which combines the nodes in both versions. For example, Figure 2(b) shows
the example result tree generated by X-Diff after detecting changes between the first
two tree versions in Figure 1. Here, we use gray nodes to represent the deleted nodes
and black nodes to represent the inserted nodes.

1 Note that our technique is not dependent on a specific tree differencing algorithm. Hence, it
can work with any tree-diff approach.
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(a) Algorithm: NECTAR_Miner (b) Algorithm: GDT_Constructor

(c) Algorithm: Total_Pattern_Miner

(e) Algorithm: Depth_Traverse

(d) Algorithm: Merge_Tree

(f) Algorithm: Part_Pattern_Miner

Input: Σ=<St1, St2, …, Stn >
Output: a general delta tree GDT
Description:
1:       initialize GDT
2:       for ( i = 0; i < n; i++ ) do
3:      result_treei = X-Diff’ (Sti, Sti+1);
4:           initialize delta_treei.root with result_treei.root
5:           for each child x of result_treei.root
6: Depth_Traverse(x, delta_treei.root )
7:           end for
8: delta_treei.root.descendants += x.descendants
9: delta_treei.root.changed_descendants += 

x.changed_descendants
10:      Merge_Tree(GDT.root, delta_treei.root, i)
11:       end for
12:       return GDT

Input: x, x’, i
Description:
1:     the ith element of x.DoCs =

x’.changed_descendants/x’.descendants
2:     for ( each child y’ of x’) do
3:         if (x has no matching child y)

then
4:             create a child y of x corresponding to y’
5:         end if
6:         Merge_Tree(y, y’, i)
7:      end for

Input: nodes x, y
Description:
1:      Create a child x’ of y corresponding to x
2:      x’.descendants = 1
3:      if(x is inserted/deleted)

then
4: x’.changed_descendants = 1
5:      end if
6:      for( each child z of x )
7: Depth_Traverse(z, x’ )
8:          x’.descendants += z.descendants
9:          x’.changed_descendants +=

z.changed_descendants
10:    end for
11: if (x’.changed_descendants == 0)

then
12:           remove x’ from delta_tree
13:    end if

Input: Σ=<St1, St2, …, Stn >, α, η
Output: a set of NECTARs Ρ
Description:
1:        ζ = 0.5
2:        GDT = GDT_Constructor(Σ)
3:        while((| Ρ | == 0)&&(ζ > 0.3))
4:             Ρ = Ρ ∪ Total_Pattern_Miner

(GDT.root, α, η, ζ)
5:            ζ --
6:      return Ρ

Input: x, α, η, ζ
Output: total set of NECTARs P
Description:

1:       if(FoSCα (sx) ≥ η)
then

2:           P = <sx>

3:           P.bitmap = Trans2Bit(x.DoCs, α) 
4:           P = P ∪ Part_Pattern_Miner

(x, P, α, η, ζ)
5:       end if
6: for(each child y of x ) do

7:           Total_Pattern_Miner(y, α, η, ζ)
8: end for
9:       return P

Input: x, P, α, η, ζ
Output: NECTARs starting from sx: Px

Description:
1:      for (each child y of x) do
2:          if(FoSCα (P∪ sy) ≥ η)
3:          then
4:               P = P∪ < sy >

5:               P.bitmap = P.bitmap ∩ Trans2Bit(y.DoCs, α)
6:               Px = Px ∪ Part_Pattern_Miner

(y, P, α, η, ζ)
7:           else

8:               if(CoCα(P, <sy>) ≤ - ζ )
then

9: Px = Px ∪ P
10:             end if
11: end if
12:     end for
13:     return Px

Fig. 3. NECTAR-miner algorithm

For each result tree generated by X-Diff, we employ the algorithm Depth Traverse
(Figure 3(e)) to generate a delta tree which contains change information of subtrees.
Basically, it traverses the result tree in the depth-first order. While reaching a node x
in the result tree, we create a corresponding node in the delta tree and maintain two
counters for the node: descendants and changed descendants. The former records the
number of descendants of x while the latter records the number of inserted/deleted
descendants of x. Then, the DoC value of the subtree rooted at x can be computed by
dividing changed descendants by descendants. If the DoC value is zero, we remove
the node from the delta tree because the subtree rooted at x is not a changed subtree.
Otherwise, we associate the DoC value with the node. For example, after performing
Depth Traverse on the result tree in Figure 2(c), the generated delta tree is shown in
Figure 2(d).
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Then, for each generated delta tree, we merge it into the GDT. The algorithm is
shown in Figure 3(d). When merging the ith delta tree (subtree) rooted at node x

′
with

the GDT (subtree) rooted at node x, we only need to set the ith element of the DoC
sequence of x with the DoC value of sx′ . Then, the algorithm iteratively merges their
children with the same label. For a child y

′
of x

′
, if x does not have any matching child,

we create a child node of x labeled as y. We associate a DoC sequence with the new
child node such that the ith element of the sequence is set as the DoC value of y

′
.

It can be shown that the complexity of the first phase is O((n−1)×(|S|2×deg(S)×
log2(deg(S)))) where |S| is the maximum size of the historical tree versions and |ΔS|
is the maximum size of the result trees. Due to space constraints, the reader me refer to
[8] for proof.

4.2 Phase II: NECTAR Discovery

The input of this phase is the GDT and the thresholds α, η and ζ of DoC, FoSC and
CoC. We aim to discover all non-subsumed NECTARs satisfying the thresholds from
the GDT .

The complete set of NECTARs P can be divided into disjoint partitions, P = P1 ∪
P2 ∪ . . . ∪ Pm, such that each partition contains NECTARs starting from the same sub-
tree. That is, ∀Px = 〈〈sxsx+1 . . . sx+m〉, 〈sx+m+1〉〉 ∈ P , Py = 〈〈sysy+1 . . . sy+n〉,
〈sy+n+1〉〉 ∈ P , if sx = sy then Px, Py ∈ Pi; otherwise, Px ∈ Pi, Py ∈ Pj

(i �= j, 1 ≤ i, j ≤ m).
Therefore, the discovery of the complete set of NECTARs can be divided into sub-

problems of mining patterns for each partition, where each pattern begins with the
same subtree. The algorithm of the second phase is shown in Figure 3(c). We mine
patterns by traversing the GDT with the depth-first order. For each node x, which rep-
resents the subtree sx, if the value of FoSC(sx) is no less than the threshold η, we
call the function Part Pattern Miner to discover NECTARs starting from sx. Note
that, the FoSC(sx) can be computed with the vector of DoC values associated with
node x. For example, consider the GDT in Figure 2(a). Let α = 0.3 and η = 0.3.
The vector of DoC values of node b is 〈2/5, 2/11, 5/11〉 ≈ 〈0.40, 0.18, 0.45〉. Then,
FoSC(a/b) = 2/3 ≈ 0.67 > η. Thus, we need to find NECTARs starting from subtree
a/b.

Before mining NECTARs starting from some subtree sx, we initialize a pattern P =
〈sx〉 and associate a bitmap with the pattern. In a bitmap, there is one bit for each
element of the DoC sequence of node x. If the ith element is greater than α, then bit
i is set to one. Otherwise, bit i is set to zero. For example, before mining NECTARs
starting from a/b in the GDT in Figure 2(a), the bitmap associated with P = 〈a/b〉 is
〈101〉 if α is set as 0.3.

The algorithm Part Pattern Miner is shown in Figure 3(f). For a particular node x in
GDT , it generates all non-subsumed NECTARs starting from sx. Note that, we directly
mine non-subsumed NECTARs instead of performing filtering process afterwards. For
this purpose, we employed the following three strategies in Part Pattern Miner. Firstly,
when mining NECTARs starting from a subtree sx, candidate patterns are generated
and examined by traversing sx with the depth-first manner. As shown in Figure 3(f),
Part Pattern Miner performs a depth-first traversal on the subtree rooted at node x.
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This strategy facilitates the performing of the following two strategies. Secondly, once
a sequence of subtrees satisfying the FoSC threshold is discovered, candidate patterns
must be extended from this sequence. For example, as shown in the Lines 4 to 6 of
Part Pattern Miner, given the subtree rooted at node x and current pattern 〈sx〉, for
each child y of x, if FoSC({sx, sy}) satisfies the threshold η, the pattern is updated
as P = 〈sx, sy〉. Simultaneously, the bitmap of P is also updated with the DoC vector
of node y. Then, Part Pattern Miner is recursively called for the updated pattern. This
strategy prevents generating NECTARs which are head-subsumed. Thirdly, once a NEC-
TAR is discovered, we stop traversing nodes deeper than the current one. For example,
as shown in Lines 8 and 9 of Part Pattern Miner, if CoC({sx}, {sy}) < −ζ, a NEC-
TAR 〈〈sx〉, 〈sy〉〉 is discovered. Part Pattern Miner is not recursively called any more.
This strategy keeps from generating NECTARs that are tail-subsumed.

For example, consider the GDT in Figure 2(a) again. Let α = 0.3, η = 0.3 and
ζ = 0.5. Part Pattern Miner mines NECTARs starting from subtree a/b as follows.
The initial pattern P = 〈a/b〉 and its bitmap is 〈101〉. For the child node e of b, since
DoC vector of e is 〈1/3, 1/3, 1/3〉 ≈ 〈0.33, 0.33, 0.33〉, then FoSC({a/b, a/b/e}) =
2/3 > η. Hence, the pattern is updated as P = 〈a/b, a/b/e〉 and its updated bitmap is
〈101〉. Then, we further find NECTARs starting from 〈a/b, a/b/e〉. For the child node i of
e, since FoSC({a/b, a/b/e, a/b/e/i}) = 0 < η and CoC0.3({a/b, a/b/e},
{a/b/e/i}) = −1 < −ζ, then 〈〈a/b, a/b/e〉, 〈a/b/e/i〉〉 is discovered as a NECTAR.
For the child node l of e, since FoSC({a/b, a/b/e, a/b/e/l}) = 1/3 > η, the pat-
tern, together with its bitmap, is updated. Then, we further search NECTARs starting from
〈a/b, a/b/e, a/b/e/l〉 and discover the NECTARs 〈〈a/b, a/b/e, a/b/e/l〉, 〈a/b/e/l/p〉〉.
The algorithm terminates when all descendants of node b are visited.

Lemma 1. No subsumed NECTAR will be discovered NECTAR Miner. ��
The proof of the above lemma is given in [8]. The complexity of the second phase is
O(|GDT | × dep(GDT )) where dep(GDT ) is the depth of GDT [8].

Theorem 1. The algorithm NECTAR Miner discovers the set of non-subsumed NEC-
TARs completely. ��
The correctness of NECTAR Miner comes from the completeness of the GDT and the
correctness of Part Pattern Miner. Since GDT not only records each changed sub-
tree and its DoC in each successive versions but also preserves the ancestor-descendant
relationship between subtrees, all information in relevance to NECTAR mining is main-
tained. The three strategies employed by Part Pattern Miner ensure that each po-
tential pattern is either examined or skipped to avoid generate subsumed NECTARs.
Hence, NECTAR Miner is complete in discovering non-subsumed NECTARs.

5 Representative Applications of NECTARs

In this section, we present some representative applications of NECTARs. The reader
may refer to [7,8] for details.

Maintaining autonomous Web mirrors. A mirror site is a replica of an original Web-
site and is often located in a different place throughout the Internet so that the
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original site can be accessed from more than one place. Web mirroring can be gen-
erally classified as internal mirroring and external mirroring. The former refers to
the situation that both the original site and mirror sites are set up and maintained
by the same organization. The latter means that the original site and mirror sites are
autonomous.

A mirror site should be updated frequently to ensure that it reflects the content of
the original site. Although for internal mirroring this process can be performed effi-
ciently by synchronizing mirror sites only if the original site evolves, for external mir-
roring the server holding the mirror site has to scan the original site frequently to detect
the changes and update its local copy. Obviously, if the size of the Web site directory
is large, such frequent scan and update may incur heavy workload. Hence, optimized
mirror maintenance strategies are needed to improve the efficiency of external mirror
maintenance.

NECTARs can be mined from historical directory hierarchies of Web sites for more
efficient mirror site maintenance [7]. When maintaining the mirror of a changed target
directory, its subdirectories, which have positive evolution association with it, should
not be skipped from mirroring since they frequently change significantly together. On
the contrary, the mirror maintenance process can be optimized by skipping the sub-
directories which have negative evolution association with it since these subdirecto-
ries rarely undergo significant changes together with the target directory. Discovered
patterns are then used to design optimal strategies for autonomous Web mirror
maintenance.

Maintaining XML path selectivity estimation.Cost-based XML query optimization
calls for accurate estimation of the selectivity of path expressions, which are commonly
used in XML query languages to locate a subset of XML data. Recently, Bloom His-
togram [13] has been proposed as a framework for XML path selectivity estimation in a
dynamic context. There are three basic components in the system: the data file, the dy-
namic summary and the estimator. The data file refers to the XML file which is usually
large. The dynamic summary keeps the necessary information of the data and the esti-
mator is responsible for efficiently estimating the selectivity of path expression queries.
The dynamic summary usually uses a path table to record the frequency of occurrences
of paths. When an XML file evolves, the system needs to rebuild the path table com-
pletely before updating the estimator. We can use NECTARs to selectively rebuild the
path table rather than building it from scratch. Specifically, some paths in the path table
do not need to be updated if their frequency of occurrences change insignificantly. For
example, we can mine NECTARs from historical XML tree versions to discover when
the support2of some paths change significantly, the support of some path rarely un-
dergoes significant changes together. Then, when updating the occurrence for a path,
e.g., //a/b, whose support changes significantly, we check whether any child of node
b forms a NECTAR with nodes on the path. Suppose a child c of b forms a NECTAR with
a and b, we do not update the path //a/b/c in the path table as the support of the path
may not change or change insignificantly.

2 The support of a path refers to the number of occurrences of the path in the document. The
definition of DoC can be adjusted easily to measure the degree of support change.
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F Fanout of the first tree version 10

D Depth of the first tree version 10

N Size of the first tree version 1K

V Number of tree versions 50

C Change percent between tree versions 3%

Data Feature Parameters

D1 V = 50, C = 3%

D2 V = 50, C = 6%

D3 V = 50, C = 12%

D4 N = 1K, C = 3%

D5 N = 1K, C = 6%

D6 N = 1K, C = 12%

D7 N = 10K, V = 200, C = 3%

D8 N = 10K, V = 200, C = 6%

D9 N = 10K, V = 200, C = 12%

Data Feature Parameters

(a) Parameter List (b) Dataset List

Fig. 4. Parameters and datasets

(a) Variation on tree size (b) Variation on version numbers
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Fig. 5. Experimental results I

6 Experimental Results

The NECTAR mining algorithm is implemented in the Java programming language. All
experiments are conducted on a Pentium IV 2.8GHz PC with 512 MB memory. The
operating system is Windows 2000 professional.

Datasets: We implemented a synthetic data generator which generates sequential
tree versions. The set of parameters used by the generator are shown in Figure 4(a). At
first, the generator constructs the first historical tree version, St1 , based on parameters
F , D and N . The first tree version is generated using the following recursive process.
At a given node in the tree St1 , we decide how many children to generate. The number
of children is sampled uniformly at random from 0 to F . Before processing children
nodes, we assign random probabilities to decide whether a child node is a leaf node, as
long as tree depth is less than the maximum depth D. If a child node is not a leaf node
and the total number of nodes is less than N , the process continues recursively.

Once the first tree version has been created, we create as many subsequent versions
as specified by the parameter V . The tree version Sti is generated based on the version
Sti−1 with parameter C. For example, if the value of C is 3% and the number of nodes
in the tree Sti is Ni, then the number of inserted and deleted nodes between trees Sti

and Sti−1 is 3%×Ni. We randomly decide the positions of inserted and deleted nodes.
Basically, there are 9 datasets used in the following experiments. The key parameter
values used in generating the datasets are shown in Figure 4(b).

Scaleup Evaluation: The two dominant factors that affect the complexity of the algo-
rithm are the average size of trees and the number of historical versions. Hence, we
evaluate the scalability of the algorithm by varying the two parameters.

We conduct the first experiment on the three data sets D1, D2 and D3. For each
data set, we vary the size of the first tree version from 1K nodes to 16K nodes. The
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Fig. 7. Experimental Results III

thresholds of DoC, FoSC and CoC are set as 0.001, 0.01, and 0.3, respectively. The
experimental results are shown in Figure 5(a). It can be observed that the scale-up
feature of the mining algorithm is basically linear to the size of trees. Furthermore, the
smaller the change percent, the faster the mining algorithm.

We conduct the second experiment on the three data sets D4, D5 and D6. For each
data set, we vary the number of versions from 50 to 800. The thresholds of DoC,
FoSC and CoC are set as 0.001, 0.01, and 0.3, respectively. The experimental results
are shown in Figure 5(b). We observed that when the number of versions increases, the
run time increases quickly because the sizes of subsequent trees increase as well.

The respective scaleup feature of the two phases of the mining algorithm was studied
as well on D4 with 50 versions. Figure 6(a) shows the results. Both phases take more
time when the tree size increases. However, the first phase dominates the efficiency of
the algorithm.

Efficiency Evaluation: We now study how the thresholds of DoC, FoC, and CoC
affect the efficiency of the algorithm. We show the run time of the second phase as
the thresholds do not interfere the performance of the first phase. Experiments are con-
ducted on the data sets D7, D8 and D9.

The results of varying the threshold of DoC are shown in Figure 6(b). The FoSC
threshold and CoC threshold are set as 0.01 and 0.3 respectively. It can be observed that
the greater the DoC threshold value, the more efficient the algorithm. This is because
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when the DoC threshold value is greater, fewer subtrees are interesting enough so that
we need to mine few negative evolution patterns. Figure 7(a) shows the results of the
experiments on varying the threshold of FoSC. The thresholds of DoC and CoC are
set as 0.001 and 0.3 respectively. We noticed that the greater the FoSC threshold, the
more efficient the algorithm. Finally, Figure 7(b) shows that the variation on the CoC
threshold has no affection on the performance of the mining algorithm, as illustrated by
the complexity analysis.

7 Related Work

Although traditional association rule mining focuses on mining positive associations
between items, it was observed that negative associations were useful as well in some
situations [14]. Several work have been conducted on mining negative association rules
[4][1][14]. They are different from each other in the employed correlation metrics. Con-
sequently, the developed data mining algorithms are different as well. To the best of
our knowledge, there exists no work on mining negative associations from changes to
tree structure. Furthermore, our rules are distinguished in the way that the trees have
ancestor-descendant relationships.

In [6], we proposed a novel approach for mining structural evolution of XML data to
discover FRACTURE patterns. A FRACTURE pattern is a set of subtrees that frequently
change together and frequently undergo significant changes together. NECTARs are dif-
ferent from FRACTUREs in at least the following two aspects. First, since the former
focus on the negative evolution associations while the latter capture the positive evolu-
tion associations, different evolution metrics are used. Second, the former are defined
on a sequence of subtrees with ancestor-descendant relationships, while the latter are
defined on subtrees which may or may not be structurally related.

8 Conclusions

This work is motivated by the fact that existing tree mining strategies focus on discover-
ing knowledge based on statistical measures obtained from the static characteristics of
tree data. They do not consider the evolutionary features of the historical tree-structured
data. In this paper, we proposed techniques to discover a novel type of pattern named
negatively correlated subtree pattern (NECTAR) by analyzing the associations between
structural evolution patterns of subtrees over time. NECTARs can be useful in several ap-
plications such as maintaining mirrors of a website and maintaining XML path selectiv-
ity estimation. Two evolution metrics, FoSC and CoC, which measure the frequency
and correlation of significant changes to historical tree-structured data, respectively,
are defined to evaluate the interestingness of NECTARs. A data mining algorithm NEC-
TAR-Miner based on divide-and-conquer strategy is proposed to discover NECTARs.
Experimental results showed that the proposed algorithm has good performance and
can accurately identify the NECTARs.
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Abstract. Suffix trees and suffix arrays are important data structures for string
processing, providing efficient solutions for many applications involving pattern
matching. Recent work by Sinha et al. (SIGMOD 2008) addressed the problem
of arranging a suffix array on disk so that querying is fast, and showed that the
combination of a small trie and a suffix array-like blocked data structure allows
queries to be answered many times faster than alternative disk-based suffix trees.
A drawback of their LOF-SA structure, and common to all current disk resident
suffix tree/array approaches, is that the space requirement of the data structure,
though on disk, is large relative to the text – for the LOF-SA, 13n bytes including
the underlying n byte text. In this paper we explore techniques for reducing the
space required by the LOF-SA. Experiments show these methods cut the data
structure to nearly half its original size, without, for large strings that necessitate
on-disk structures, any impact on search times.

1 Introduction

Suffix trees [17,23,24] and suffix arrays [15] offer elegant solutions to many important
problems requiring string processing. The simplest and perhaps most widely applicable
of these is pattern matching: given a pattern of m characters P [0 . . .m − 1] and a
text T [0 . . . n − 1], find the set of positions at which P occurs in T . After O(n) time
spent preprocessing, suffix trees (and suffix arrays when suitably augmented) allow any
pattern to be located in time O(m+occ) (independent of the size of the text), where occ
is the number of occurrences of the pattern P in T . Many more applications of these
data structures are described in the literature [1,3,12,21].

Despite these theoretical advantages, the large space requirements of suffix trees,
and their poor locality of memory reference, have resulted in them having only limited
adoption. Two broad lines of research have attempted to address these problems. The
first is the active field of compressed full-text indexes [18], where (in broad terms) the
aim is to exploit the relationship between the suffix tree/array and the Burrows-Wheeler
Transform. The constraining factor with this approach is that the index must be com-
pressed sufficiently well that it can reside entirely in RAM, as memory access patterns
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in the compressed index tend to be worse than in the raw index as a result of the need
to “decode” each position of occurrence from the index.

The second line of research involves storing and accessing the index on secondary
memory, which in most environments is vastly more abundant than RAM, but also
several orders of magnitude slower to access. The majority of the work in this direction
has been concerned with constructing suffix trees on disk [6,19,22,10], or constructing
suffix arrays on disk [7,9], rather than actually describing how best to use the index in
disk-based operations. One exception is the work of Baeza-Yates et al. [4], who describe
a structure they call the SPAT array, in which the on-disk suffix array is indexed by a
fixed-length prefix of symbols. The drawback of this arrangement is that a search may
require multiple blocks of suffix array data to be consulted, plus multiple accesses to
the underlying text string, each of which might require a disk operation.

Sinha et al. [20] contributed a structure they call the LOF-SA, in which a small in-
memory trie and a suffix array-like blocked data structure on disk combine to allow
queries to be answered many times faster than alternative disk-based suffix trees. A
drawback of the LOF-SA (and to a greater or lesser extent, of all current disk-resident
suffix tree/array approaches) is that the space requirement of the data structure, though
on disk, is large relative to the text. In the case of the LOF-SA, a total of 13n bytes of
disk storage is required, including the n bytes occupied by the underlying text string.

The key distinguishing characteristic of the LOF-SA is the storage, with each of the
suffix array pointers, of a set of fringe characters that help cut back on the number of
times the underlying text string needs to be consulted. Experiments using the LOF-SA
show that the majority of short patterns can be accessed using only the trie and the
sequentially-accessed LOF-SA blocks, and that the added cost of searching for a long
pattern is typically just one access into the underlying text. While expensive to store
compared to (say) a 5n-byte pure suffix array index for a text of n bytes, the LOF-
SA provides much faster pattern searching than the suffix array for large text strings,
when the suffix array is too large for memory; and also for short text strings, when both
structures fit in memory, but the LOF-SA has superior locality of reference.

In this paper we explore techniques for reducing the space requirements of the LOF-
SA structure. Significant savings can be achieved by reorganizing and packing each
LOF-SA item, and through the use of standard integer compression methods. Experi-
ments on different data types show that around 7n bytes suffices for the resulting com-
pressed LOF-SA structure, with, for large strings that necessitate on-disk structures,
search times that are unaffected.

In the remainder of this section we define the key concepts of this research area. Sec-
tion 2 then introduces the LOF-SA, which is our focus throughout. Section 3 examines
the redundancy present in two subcomponents of the LOF-SA, with the aim of reducing
overall space requirements. The efficiency of the smaller data structure relative to the
original LOF-SA is evaluated experimentally in Section 4. We conclude in Section 5 by
discussing future avenues for investigation.

We consider a string T [0]T [1] · · ·T [n] of n+1 symbols. The first n symbols of T are
drawn from a constant ordered alphabet Σ consisting of symbols σj , j = 0, 1, . . . , |Σ|−
1 ordered σ0 < σ1 < · · · < σ|Σ|−1. We assume each symbol requires one byte of stor-
age, so |Σ| ∈ 1 . . . 256. The final character T [n] is a special “end of string” character, $,
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T [i] g t t a t g a t a t g t t t g t $
SA 16 6 3 8 5 14 0 10 15 2 7 4 13 9 1 12 11
LCP – 0 2 3 0 1 2 3 0 1 4 1 2 3 1 2 2

Fig. 1. Example suffix array and LCP array for the string T = “gttatgatatgtttgt”

lexicographically smaller than all symbols in Σ. We also assume that n < 232, so that
integers in the range 0 . . . n can be stored in four bytes.

The suffix array of T , denoted SAT (or just SA when the context is clear), is an array
SA[0 . . . n] which contains a permutation of the integers 0 . . . n such that T [SA[0] . . . n]
< T [SA[1] . . . n] < · · · < T [SA[n] . . . n]. That is, SA[j] = i iff T [i . . . n] is the j th
suffix of T in ascending lexicographical order. A structure often used alongside SAT

is the longest common prefix or lcp array LCP = LCP[0 . . . n]: for every j ∈ 1 . . . n,
LCP[j] is the length of the longest common prefix of suffixes SA[j−1] and SA[j], with
LCP[0] undefined. The example shown in Figure 1 illustrates these data structures. For
example, in Figure 1, the longest common prefix of suffixes 0 and 10 in columns 6 and
7 is “gtt” of length 3; while that of suffixes 2 and 7 in columns 9 and 10 is “tatg” of
length 4.

The LCP array can be built in O(n) time and space provided SAT and T are avail-
able [13,16]. An important property of the SA is that all the positions where a given
pattern occurs in T appear in a contiguous portion of SAT . For example consider the
pattern “at”, which occurs in the example string at positions 3, 6 and 8. These posi-
tions appear together (though permuted) at SA[1 . . . 3]. Thus pattern matching can be
translated to the problem of finding an appropriate interval of the suffix array SA.

2 The LOF-SA Data Structure

The LOF-SA data structure consists of two parts [20]. The larger of the two components
is an augmented suffix array, organized as a set of LOF items, one per symbol in the
original string. Each LOF item contains three fields: an L value, which the length of
the longest common prefix for this suffix; an O item, which is the pointer offset in the
string corresponding to this suffix; and an F item, which is a set of fringe characters,
drawn from the string T at locations T [O + L . . .O + L + f − 1], where f is a preset
constant that indicates how many symbols will be extracted into each fringe, and O and
L are the O and L values respectively for this item. For example, if f = 2, the next two
characters past the end of the common prefix – which are, of course, the distinguishing
characters for each suffix – are stored in each LOF item, and can be used to guide
the searching process without a pointer deference (via the O component) being needed
to the underlying string. That is, by strategically duplicating parts of the string, better
locality of reference can be achieved, and some of the accesses to the underlying text
either delayed or eliminated entirely. Figure 2 shows the L, O, and F items for the string
shown in Figure 1.

The LOF items are stored sequentially in suffix order in LOF blocks of (typically)
up to 4,096 items, with the requirement being that all of the LOF items in any block
uniquely share a single common prefix. In the example string nodes 9 to 15 could be in
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T [i] g t t a t g a t a t g t t t g t $
L – 0 2 3 0 1 2 3 0 1 4 1 2 3 1 2 2
O 16 6 3 8 5 14 0 10 15 2 7 4 13 9 1 12 11
F – at ga tt ga t$ ta tg t$ at tt ga t$ tt ta gt tg

Fig. 2. Example L, O, and F items with f = 2 for the string T = “gttatgatatgtttgt” shown in
Figure 1

a single LOF block, because all of the matching strings start with “t”; and nodes 11-13
start with “tg” and could be a single LOF block. But nodes 10-12 could not form a LOF
block, because that arrangement would split both the set of suffixes starting with “ta”
(locations 9-10) and the suffixes starting with “tg” (locations 11-13); and nor does it
span all suffixes starting with just “t”, which start at offset 8 and continue through to
offset 16.

The first suffix in each LOF block is then inserted into the other component of the
LOF-SA, which is an index of the block-identifying prefix strings, one per LOF block.
Because of the way it is constructed, this index can be rapidly searched to identify
the LOF block (or blocks) that correspond to any string prefix. In our implementation
the index structure is organized as a trie, but other dictionary data structures can also
be used. Even for large underlying strings T , the LOF trie occupies a relatively small
amount of space, and, because it is accessed for every pattern search, can be assumed
to have been buffered in to main memory by the operating system once some initial
start-up period has elapsed.

To search the LOF-SA to find a pattern P , the LOF trie is used to identify the LOF
block (or blocks, if P is a range query or is short enough to be exhausted within the trie
structure) that must contain P . Note that only a single block can be required when P is
a long pattern, because of the rule that every LOF block is identified by a unique prefix.
That LOF block is then fetched into memory, and sequentially scanned. The L and F
components form a rudimentary “copy and extend by f characters” data compression
scheme (in a sense, an LZ78 mechanism with a simple phrase-book containing all pre-
fixes of the previous string); and the strings indicated by each LOF item can be partially
reconstructed from the sequence of LOF items prior to any accesses to the text being
needed. The partially reconstructed strings can then be checked against (prefixes of) the
pattern P . If any of the reconstructed strings match P , the corresponding O components
from those LOF items are used to access segments of the underlying text, and a final
determination made as to whether the pattern matches.

One slight complication arises if an L value in the pure suffix array SAT is more than
f larger than the previous L value, because it gives rise to a gap in the reconstructed
string when the LOF block is sequentially processed. For example, in Figure 2, at item
10 there is a jump in the L value by more than f = 2, and so a gap in the reconstructed
string would result if the gap was retained. To avoid the issue, the f fringe charac-
ters of each LOF triple are adjusted where necessary, to guarantee that all partially
reconstructed strings do not contain any gaps. Returning to the example, this means
that item 10 in Figure 2 would store an L of 3, and an F of “gt”, rather than the 4 and
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Reconstructed strings
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Fig. 3. Part of the LOF-SA for the string T = “gttatgatatgtttgt$” in a LOF-SA with fringe length
f = 2. Two LOF blocks are shown, presumed to be distinguished by their two-symbol common
prefixes, “ta” and “tg” respectively.

“tt” that are shown in the figure. The very first LOF triple stored in each LOF block
must also have its L value restricted, so that the first string of each block can be read-
ily constructed. By adding this simple requirement, no intervening characters are ever
unknown as the search proceeds, and accesses to the text are delayed for as long as
possible. This arrangement is referred to as a left justified fringe [20].

Part of the LOF-SA for our example string is depicted in Figure 3, with a fringe
of f = 2 characters, and an assumption that in the vicinity of the two LOF blocks
that are shown, all strings in each block share two characters of common prefix. The
reconstructed strings inferred from the L and F values in the LOF items are shown in
the shaded box on the right.

3 Reducing Space Requirements

Before turning our attention to reducing the size of the LOF-SA we describe the two
families of data used in our experiments. The DNA dataset consists of several large pre-
fixes, ranging in size from 40 million to 400 million characters (bases) taken from the
concatenated human genome downloaded from the Ensembl website (http://www.
ensembl.org). We replaced all occurrences of “n” with random choices amongst “a”,
“c”, “g” and “t”, as is common practice. The zero-order entropy of these files was uni-
formly 2.0 bits per symbol, over an alphabet of |Σ| = 4. The ENG datasets contained
English text derived from files of the Gutenberg Project (http://www.gutenberg.
org), obtained from the Pizza-Chili website (http://pizzachili.di.unipi.it/
texts.html). We further removed carriage-return, line-feed and tab symbols from
these files to obtain files that typically had around 200 distinct symbols in them, and
a zero-order self-entropy of around 4.5 bits per character.
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Fig. 4. Distribution of the L (longest common prefix) values for DNA100M and ENG100M. The
grey lines show the corresponding inferred probabilities associated with the S = 150 codes that
is the best match to the ENG100M L distribution.

Reordering Components. The most frequently accessed values during a LOF-SA search
are the L’s, since they are examined as each LOF-SA item is processed. The F values
are also consulted relatively frequently. On the other hand, the O values are required
only when the text is about to be checked, and our expectation is that this is only ap-
proximately once per pattern search [20].

Our first optimization of the LOF-SA structure is thus to partition each block of LOF
items into two parts, retaining the L and F components of each item as a coupled pair,
and putting all of their O values at the end of each block. To specify this and subsequent
node arrangements, we make use of regular expression notation: each fully interleaved
block in the original LOF-SA has the pattern (L4O4F4)∗, where the subscripts indicate
the number of bytes required by each component. Stripping out all of the O values and
storing them together at the end of the block gives the arrangement (L4F4)∗(O4)∗, and
has the advantage that the sequential part of each search iterates over 8-byte units rather
than 12-byte units. Each LOF-SA node still requires 12 bytes, but the access pattern is
tighter than when every O value must be bypassed.

Compaction. At every step of the LOF block search algorithm an L value is accessed,
but there is no requirement that this value be a fixed 4-byte quantity. The distribution of
the L values for the DNA100M and ENG100M collections is shown in Figure 4. Small
values dominate (note the logarithmic vertical scale in the graph), which suggests that
compaction of the L values may be an option – it is clearly possible for all L values
greater than 255 to be truncated to 255, and the L’s to be stored in one byte each. A
minor modification to the search algorithms is then needed so that in the (rare) cases in
which the search depth reaches 255, false matches are identified by checking the text.

With the L values fitted into one byte, the fringe values F become the focus. One
obvious way of saving space is to reduce the length of each fringe, and rather than storing
the next f = 4 characters, store the next f = 3, with those three bytes packed with the
L byte into a single word. This then gives rise to an (L1F3)∗(O4)∗ arrangement, in which
9n bytes in total are required for an n byte text. Reducing the size of each LOF-SA node
in this way means that less data is fetched from disk during each search operation.
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Adding Compression. For applications other than pattern matching (in particular, ap-
plications that perform a bottom-up traversal of the suffix tree) access to the full LCP
values is required, and so a lossless compression method must be employed to store the
L values. The fact that the majority of the L values are small integers means that a wide
variety of possible codes can be considered, including all of the standard methods such
as Golomb codes, Huffman codes, and the word-aligned codes of Anh and Moffat [2].
However, all of these make the interleaving of L and F components difficult to achieve,
both in terms of their alignment, and in terms of the fact that fast decoding using these
methods relies on a lookahead bit-buffer.

Instead, we focus our attention on byte-aligned codes, and in particular explore the
use of the (S, C)-byte code [5]. In the (S, C)-byte code each integer is represented
as a sequence of continuer bytes, followed by a single stopper byte. The two types of
byte are distinguished by their value when considered as 8-bit integers; and the decoded
value is formed as the composition of the bits that form the balance of each byte. Be-
cause the L values are mostly small, and their probability distribution is for the most
part non-increasing, there is no need to permute the L values according to frequency,
and the resultant elimination of the usual symbol translation step in the decoder means
that access to sequential L values can be fast. The fourth and fifth columns of the first
section of Table 1 give the compression performance of the (128, 128)-byte code (that
is, the standard byte code in which the top bit of each byte indicates whether it is a stop-
per or a continuer) for the two files reported, and the optimal (S, C)-byte code when
applied to the L values of each of the data sets. As points of reference, the second col-
umn in Table 1 shows the zero-order entropy of the L values across the two files, and the
third column shows the performance attained by a zero-order Huffman coder (http://
www.cs.mu.oz.au/~alistair/mr_coder).

As all suffixes in a bucket share a common prefix, the length of this common prefix
can be subtracted off prior to compression to obtain a smaller set of L values. Doing so
results in H0 dropping to 3.64 for DNA and to 6.88 for the English collection, but the
effect is almost unnoticeable when byte codes are used. Nevertheless, the implementa-
tions we experiment with later in this paper all contain this small optimization.

Table 1. Compression performance for various methods on the L and F values for two of the test
files, presented as bits per value averaged across each file. Values for the other test files were
similar to the values listed

Collection H0 shuff byte (S, C)-byte
Compressing the L4 values
DNA100M 3.76 3.79 8.04 8.02
ENG100M 7.05 7.09 9.85 9.84
Compressing the F3 values
DNA100M 5.43 5.46 8.00 8.00
ENG100M 11.28 11.32 13.70 13.22
Compressing the F4 values
DNA100M 7.34 7.37 9.00 8.00
ENG100M 13.56 13.61 15.65 15.55
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Fig. 5. Frequency sorted fringe values for DNA100M and ENG100M for a fringe length of f = 4.
The grey line shows the corresponding inferred probabilities associated with the corresponding
S = 164 codes that is the best match for the ENG100M file.

Compressing the Fringe. Each fringe consists of three or four consecutive symbols
from the source text, so if the source text is compressible, so too is the set of fringe
sequences. However, use of any kind of multi-state or conditioning encoder will add
greatly to the complexity of the searching operation. Instead, we treat each fringe string
as a single complex 24- or 32-bit symbol, and represent them in a zero-order sense.
Taking this approach has the net effect (in terms of the product of the component symbol
probabilities) of coding each fringe’s first character in a zero-order model; coding each
fringe’s second character in a first order model, conditioned by the previous character;
each fringe’s third character in a second order model; and so on.

The fact that the L and F components are stored tightly interleaved means that it is
beneficial to use the same coding method for both. However, unlike the L values, the
natural ordering of the fringes does not make a good approximation of the frequency
ordering, and if (S, C)-byte codes are to be used, the fringes need to be reordered
and a mapping stored. In the terminology of Brisaboa et al. [5] a dense code must be
generated, where each fringe is represented by its rank in the descending-frequency
sorted list of 24-bit (or 32-bit) multi-byte symbols. Figure 5 illustrates the probabilities
associated with the descending frequencies fringe sets for two of the test files, and also
plots the implied probability distribution for the (164, 92)-byte code that is the best
match to the measured probability distribution for file ENG100M.

Another useful attribute of the (S, C)-byte code is the ability to bypass codewords
without fully reconstructing the corresponding strings, by virtue of the stopper byte
always being the last one. In many situations the L value alone will be sufficient to
confirm that the current LOF item cannot match the pattern P , in which case decoding
the F value might be unnecessary, and bypassing it the preferred option.

Each access to a fringe value that is carried out requires a lookup in the decoder
mapping, likely incurring a cache miss. Tight coupling of the search algorithm and the
decoder is therefore required: rather than decompress a block in its entirety and then
hand it to the search algorithm, on-the-fly decoding of LOF-SA items from within the
search algorithm means that full decoding of fringe characters via the symbol mapping
can be deferred until necessary. Culpepper and Moffat [8] discuss the costs associated
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Table 2. Most frequent fringe strings and their probabilities

Rank
DNA100M ENG100M

f = 3 f = 4 f = 3 f = 4
1 “TAA” 0.0622 “TAAA” 0.0288 “the” 0.0232 “the ” 0.0163
2 “GAA” 0.0559 “GAAA” 0.0253 “of ” 0.0076 “and ” 0.0055
3 “CAA” 0.0471 “CAAA” 0.0220 “he ” 0.0074 “that” 0.0052
4 “TAT” 0.0345 “TAAT” 0.0138 “, a” 0.0067 “, an” 0.0049
5 “TCA” 0.0343 “GAAG” 0.0124 “. ” 0.0067 “was ” 0.0047
6 “TTT” 0.0318 “TTTT” 0.0121 “in ” 0.0062 “ing ” 0.0041
7 “TCT” 0.0318 “TATT” 0.0117 “and” 0.0060 “ the” 0.0041
8 “GAG” 0.0310 “TACA” 0.0108 “to ” 0.0060 “with” 0.0035
9 “CAG” 0.0292 “TAAG” 0.0107 “tha” 0.0060 “The ” 0.0028

10 “TAG” 0.0280 “GAGA” 0.0107 “is ” 0.0056 “had ” 0.0028

Table 3. Explanation of the methods considered

Method Description
(L4O4F4)∗ Original LOF-SA arrangement described by Sinha et al. [20].

(L4F4)∗(O4)∗ O components separated. No compression.
(L1F3)∗(O4)∗ O components separated, L component restricted to 255, and fringe of

three. No compression.

(L4cF3c)∗(O4)∗ O components separated, L component and three-byte F component
compressed using (S, C)-byte code.

(L4cF4c)∗(O4)∗ O components separated, L component and four-byte F component
compressed using (S, C)-byte code.

with large-alphabet decoder mappings, and describe a semi-dense prelude mechanism
for reducing it. We have not adopted this approach in the experiments reported below,
but plan to do so in our next round of experimentation.

Use of an (S, C)-byte code allows fringes for small alphabets like DNA to be effi-
ciently handled. The optimal choice S = 254 when the fringe length is 4 on a DNA
alphabet reduces the space used by the fringe to one byte per entry. This is close to
what can be achieved by a Huffman coder which, for 4-base DNA sequences, typically
requires 7.4 bits per symbol on average (Table 1).

Table 2 lists the ten highest frequency fringe strings that appeared in two typical data
files, for f = 3 and f = 4. In the English text, There is a strong relationship between
common short words and the fringe characters, which occurs because those short words
typically indicate the end of a phrase of longer words which occurs more than than once
in the text. In the DNA data there is no similar pattern, and the list of fringe strings is
both much shorter, and also closer to being uniform in its probability distribution.

Table 3 summarizes the various LOF-SA arrangements we have considered.

4 Performance Comparison

This section reports the results of experiments using the various LOF-SA approaches
described in the previous section. The purpose of the experiments was to compare the
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reduced-space variants of the LOF-SA to the original, and hence to the range of other
disk-oriented suffix array approaches reported by Sinha et al. [20].

Hardware. All tests were conducted on a 2.8 GHz Intel Pentium IV with 1 GB of RAM,
1 MB of cache, and 250 GB local SATA disk. Note that, while the processor is hyper-
threaded, the implementation made no use of parallelism, and each query was executed
through to completion before the next one in the sequence was commenced. The overall
elapsed time for the query sequence was measured to obtain per-query execution times,
ensuring that the machine was under light load and that no other significant I/O or CPU
tasks were running. The compiler was g++ (gcc version 4.1.2) executed with the -O3
option, under the Debian GNU/Linux (sarge) operating system. Times were recorded
with the standard Unix getrusage function.

Queries and Data. The test files have already been described. To form a set of pattern-
match test queries, a sequence of random locations in each test file was used to extract
100-character strings. These strings were then used as queries. Because the strings were
long, and because they were guaranteed to have at least one answer, they always re-
quired at least one access into the underlying text string to verify that an answer had
indeed been found. That is, each of the test queries drove the LOF-SA to its maximally
expensive searching behavior.

Methodology. In all cases the experiments were carried out using a consistent approach,
to ensure that the measured times genuinely reflected long-term steady-state process-
ing rates. A very long query stream was executed from a cold start, and throughput
measured at regular intervals (of the order of one minute apart) until several consecu-
tive intervals attained the same throughput. Only when a steady-state arrangement of
the LOF-SA across memory and disk had been achieved – as evidenced by consistent
query throughput rates – was measurement undertaken to record query times for any
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Fig. 6. Convergence of querying costs from a cold start of two different LOF-SA structures for
two different files. The values listed are per-query times in milliseconds, averaged over the whole
sequence of queries. Running times for the large data structure converge quickly; running times
for the smaller data structure only stabilize after many queries have been processed. The top line
is approximately five hours long, the lower one thirty minutes long.
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Table 4. Space requirements in megabytes of different LOF-SA structures, not including the
storage associated with the underlying string

Representation DNA40M DNA100M DNA400M ENG50M ENG100M ENG200M
(L4O4F4)∗ 457.7 1144.4 4577.7 588.4 1176.5 2353.1
(L1F3)∗(O4)∗ 305.1 762.9 3051.7 392.3 784.3 1568.7
(L4cF3c)∗(O4)∗ 229.3 573.1 2292.2 342.2 679.4 1364.6
(L4cF4c)∗(O4)∗ 229.3 573.1 2292.3 356.2 707.5 1420.7

particular configuration of LOF-SA and data set. At that time one or more further time
intervals constituted the experimental run.

Figure 6 shows the average per-query cost of processing a lengthening stream of
queries using two different LOF-SA arrangements. The (L4O4F4)∗ arrangement for the
file DNA400M represents the largest data structure of all of our experiments, total-
ing almost 5 GB including the string itself; and the (L4cF4c)∗(O4)∗ arrangement on
file ENG50M is one of the smaller structures, taking approximately 400 MB in total.
Because the operating system is unable to buffer any significant fraction of the larger
structure in memory, query response times converge quickly, and what is shown is a
long-term querying rate of around 20 milliseconds per query, including two disk ac-
cesses (one to fetch a LOF-SA block, and one to access the text to check the answer).
On the other hand, the whole of the smaller structure slowly migrates into memory un-
der operating system control as the query sequence is processed, and query times are
still improving after more than a million queries have been processed – it takes approx-
imately this many queries for all of the data structure and text to have been “touched”
at least once.

All LOF-SA block accesses were implemented as disk operations using fseek and
fread, and hence any caching of data in-memory was the result of operating system
actions rather than under control of the search program. For the data points reported
below that correspond to small test files, long query sequences were needed before
stable per-query average running times were achieved, and on the smaller test files the
query sequence used in the experiments contained 1,000,000 queries.

Caching was less of an issue for the larger files, since their data structures tended to
remain on disk, and execution times stabilized over shorter query sequences (although,
interestingly, over approximately the same periods of elapsed querying time, of the
order of 10–20 minutes of continuous execution). These required that as few as 10,000
queries be executed from a cold start with data all on disk, before accurate timing could
be started. The rate of convergence is a function of the compressed/compacted size of
the LOF-SA, and the relative size of the available main memory, rather than the length
of the base string.

Space Required. Recall that the principal objective in this paper was to reduce the
space required by the LOF-SA structure. Table 4 shows that this goal has been achieved,
and that the 12n space requirement of the original implementation can be reduced by
approximately 50% for DNA data, and by around 40% for English text. What remains
now is to document the effect this space saving has on query execution times.
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(b) English data

Fig. 7. Long-term query cost as a function of input string size, for two different types of data.
Compaction and compression provide considerable benefits in throughput for mid-sized strings,
by allowing more (or all) of the data structure to be buffered in memory. All values shown are
throughput rates in terms of queries per second, measured in each case after a (demonstrably
sufficiently) long prefix of untimed queries had been executed to ensure that query response
times were stable. The (L4F4)∗(O4)∗ arrangement gives almost identical throughput rates as the
(L4O4F4)∗. Note the one-off factor-of-100 decrease in throughput at the point at which the data
structures become too large to be buffered in main memory.

Querying Time. Having established the number of queries necessary to measure long-
term average times, Figure 7 shows, for three of the LOF-SA arrangements, the
long-term stable cost of querying them on the 1 GB experimental machine. The range
of file sizes spans the range from “small enough to become buffered in main mem-
ory” through to “too large for main memory”, and the measured execution times clearly
show this polarizing difference. When the LOF-SA structure fits in main memory, string
searching is possible in under 0.1 milliseconds. On the other hand, when access to the
data structure requires physical disk operations, each search operation requires around
20 milliseconds. Note, however, that after shifting through the transitional zone to reach
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that 50 queries per second zone, execution cost stabilizes again for fully-on-disk perfor-
mance, and does not grow further as the text string lengthens. Note also that, when the
string is beyond the transitional zone, and is sufficiently large that on-disk behavior is
inevitable, that the compressed fringe arrangement is no slower than the uncompressed
arrangement. In this case the cost of doing the necessary decompression is compensated
for by the reduced volumes of data being transferred from disk.

The benefit of the compressed approaches we have explored in this paper is that they
delay that transitional moment, and allow strings approximately twice as long as pre-
viously to be handled within a given memory limit. Figure 7 shows this effect clearly
– on the intermediate file sizes (text strings of around 100 MB), the (L1F3)∗(O4)∗ and
(L4cF3c)∗(O4)∗ execute significantly more quickly than does the original (L4O4F4)∗ ar-
rangement, with the effect more pronounced on the DNA data than on the English text,
because the fringe of the former is more compressible.

Moreover, when the text string is large and the LOF-SA operates in a disk-based
mode, each search operation takes typically just two disk accesses – one to fetch a LOF
block, and then in into the text to confirm the likely answer. If there are multiple answers
to the query, multiple consecutive LOF blocks might be required in order to retrieve the
full set of O values, but in most cases just one access to the string will be required to
identify the set of matching locations.

5 Conclusions and Future Work

The experimental results of the previous section demonstrate that the space require-
ments of the LOF-SA can be reduced by nearly half, without adversely affecting large-
string search times. To obtain these results (S, C)-byte codes were used for the L and F
components, and the O component was separated out.

Further reductions in space may still be possible. For example, the first row of Ta-
ble 1 shows that there is still around 4 bits per LOF item that can be saved off the L
components for DNA data, and it might be that a (S, C)-nibble code is able to capture
that gain, and perhaps not lose too much compression effectiveness on the F values. The
word-aligned codes of Anh and Moffat [2] are also candidates for compressing the L
values. Other possibilities for handling the L values are to store them as signed differ-
ences relative to their predecessor in the block, and exploit the long-range repetitions
that seem an inevitable consequence of the fact that the suffixes of strings that share
common prefixes are likely to be differentiated at the same points.

Another aspect for further investigation is the O values. González and Navarro [11]
consider suffix array compression, and describe a scheme in which the O values are
converted to signed differences, and then repeated patterns of differences are located
and exploited using the Re-Pair compression technique [14]. This approach is related
to the observation made in the previous paragraph about patterns in the L differences,
and it may further be possible for the L and O values to be coupled, and used to bias the
compression of each other in a mutually beneficial manner.

Finally, to speed query processing, we are exploring the addition of internal structure
to the LOF blocks, to reduce the amount of sequential processing (and decompression)
that is necessary. The ability of the (S, C)-byte code to skip past fringe values is helpful,
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but relies on careful organization of the searching logic. A small index at the front of
each block, to indicate the next level in the hierarchical partitioning after the common
prefix string, is expected to allow time savings that will further accelerate the throughput
attainable when the string is short enough that in-memory operation is the steady state.
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Abstract. The new era of business intelligence and web data warehousing has 
brought in new research and development issues, whereby it is imperative to 
have an efficient refresh process for the information in the XML warehouses. 
Existing strict real-time or static timestamp-based refresh mechanisms are not 
always efficient. In this paper, we propose to build a waiting queue to make the 
XML warehouse refresh processes discrete, based on (i) Level of Criticality 
(LoC), (ii) Impact on Reports (IoR), and (iii) Frequency of Appearance (FoA). 
Our experimental results have shown the effectiveness of our proposed method. 

1   Introduction 

Business intelligence is growingly recognized by the industry as an important tool to 
support decision making, through the use of data warehouses. The information is 
extracted from the operational databases, and then it is cleaned and transformed to be 
stored into a data warehouse. When new data is added or existing data is updated in 
the operational system, the data warehouse needs to be refreshed, so that the informa-
tion contained in the warehouse will be reasonably up-to-date to support the decision 
making process. 

In practice, it is very common that the data warehouse is refreshed on a regular ba-
sis (e.g. once every night/week/month). However, some organizations require having 
the most recent data available just in-time. Generally, there are two types of data 
warehouse refresh mechanisms:  
o Uniform Discrete Refresh: a static time-stamp is used to determine the refresh 

period (e.g. daily/weekly/yearly), and 
o Continuos Refresh: a real-time refresh mechanism is used; each update in the 

operational database is loaded into the data warehouse in real time. 
In the former approach some important updates might not be immediately re-

flected in the warehouse, while in the latter approach the data is always up-to-date but 
the solution might be highly expensive.   

In this paper, we propose a Non-Uniform Discrete Refresh mechanism (or a Right-
Time Refresh mechanism) to address the lack of precision in static uniform updates 
but at the same time to optimize the cost of continuous real-time updates. 



746 D. Maurer et al. 

2   Related Work 

A substantial amount of work has been carried out during the last few years to find 
solutions for the issues in XML warehousing.  

The work described in [5] focuses on the development a conceptual design meth-
odology for XML document warehouses based on Object-Oriented concepts. The X-
Warehousing approach proposed in [1] focuses on multidimensional approach to 
capture user requirements. The work in [6] proposes a framework for the multidimen-
sional analysis of XML documents, called XML-OLAP. These works mainly discuss 
warehousing within the static XML data scenario, and do not address the distinct 
issue of temporality or refresh time interval in the XML warehouses.  

The idea of incremental and real-time data warehousing has been around for sev-
eral years, but within the context of the traditional (non-XML) warehousing. Some 
commercial developers such as Oracle have started to incorporate the technology to 
perform data propagation and synchronization in order to support real-time data inte-
gration [12]. Other works in the area deal mainly with the execution technique of the 
update propagation [11] or the new requirements for sophisticated technologies to 
solve the real-time challenges in business intelligence [10].  

None of the work in incremental update has dealt with the new complex and hier-
archical nature of XML web data warehousing. Some work in XML warehousing for 
storing multi-versions XML data has been proposed by [4, 9]. However, these works 
do not propose a dynamic update dedicated on optimizing the interval and the re-
grouping of update queries.   

 To the best of our knowledge, existing works in XML warehousing have not dealt 
with refresh mechanisms, and this issue has been identified as critical by some of the 
works mentioned above. For example [1] claims the necessity of further research on 
the optimal update/refresh policy design, which is our main focus in this paper. 

3   Proposed Right-Time Refresh Mechanism 

Our proposed right-time refresh mechanism consists of three levels of refresh optimi-
zations: (i) Level of Criticality (LoC), (ii) Impact on Reports (IoR), and (iii) Fre-
quency of Appearance (FoA), which are used to build the waiting queue.  

In most of the commercial Data Warehousing systems, update/refresh of the ware-
house data is done at pre-defined intervals [2, 3, 4]. For small databases, it is possible 
to run updates of the system in real-time, so there is no need to determine the best 
update interval, but if there is a large amount of data, it could become very difficult to 
update regularly. This is especially true in the case of an XML data warehouse be-
cause of the specific structure of the XML documents and different types of con-
straints, which could appear during XML updates. 

Our proposed method is to optimize the update interval by considering the follow-
ing three indicators:  

o A predefined level of criticality for each XML element/attribute, 
o The impact of the update on the reports, and 
o The frequency of appearance in the reports. 
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These three indicators are used to build a waiting queue for the updates. Each up-
date is queued in the ETL (Extract - Transform - Load) phase, until a user-specified 
threshold is reached. When that happens, all the awaiting updates are pushed in the 
data warehouse. When a low priority update comes, it waits in the queue until a high 
priority update arrives, and the whole waiting queue of updates is pushed in. 

Level of Criticality (LoC) is used to pre-define how important the attributes are.  
That is, if a higher importance was given to specific elements/attributes, this means 
the user would want to update them more frequently. The work in [2] showed that it is 
possible to assign specific needs for different parts of the same business entity.  

This method also considers structural changes, because in XML not only the data 
can change, but also the structure can evolve too. We can pre-define levels of critical-
ity for structural changes, like deletion or modification of an element/attribute. 

Impact on Reports (IoR) shows the impact of a particular change to an ele-
ment/attribute on the reports run on the data warehouse. If the change has a negligible 
impact, we can assume that there is no need to push this update immediately into the 
data warehouse. However, if the user needs a report on a specific item which has 
changed, the impact of this specific update is more important.  

Typically an update impacts measurable variables; in this case, the impact on re-
ports can be averaged over a number of dimensions in the warehouse. However, it is 
possible that the update would consist in a non-numeric change, for example a ran-
dom string (a name, a description, etc), or an enumeration value (colours, Boolean 
values, etc).  

In the case of a change in the XML structure itself, the issue is wider than the prob-
lem of updating the data only. This is because a change in the XML document struc-
ture would completely change the way how the data warehouse extracts, transforms 
and load data from it.  

Frequency of Appearance (FoA) is the frequency of each XML node appearing in 
the warehousing reports. This is different from the IoR described previously, which 
does not use the user’s feedback about the data warehouse usage, and it is just about 
the data itself. FoA considers the usage of the data, not the data itself. FoA works as 
follows: The data warehouse maintains a file that stores the usage frequency of each 
node that appears in the warehousing reports. Every time a warehousing report is 
required to be built, the data warehouse updates its FoA for every node involved in 
the query.  

The waiting queue is built by combining the three abovementioned right-time re-
fresh optimization indicators. All the incoming updates are queued without changing 
the order of their appearance, and they are pushed to the data warehouse when a cer-
tain total volume of update is waiting. To calculate this volume, ETL first calculates 
for each update a numerical value, called Queue Value (QV), by combining the values 
of LoC, IoR, and FoA. When the sum of QVs for all updates reaches the threshold, 
they are pushed to the data warehouse.  

We identified two major ways of combining the values of the three indicators to 
calculate the QVs:  

(i) using a simple aggregate – in this case each indicator has the same weight, or  
(ii) using a balanced aggregate – in this case the average is calculated using a bal-

ance to attenuate the effect of very low values, and also to give a preference for a 
particular method. Table 1 shows an example of update using balanced aggregate. 
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Table 1. Example of the process to update queue using balanced average (simulated values) 

Time LoC IoR FoA Balanced Average 
(1 – 1.5 – 1.2) 

Queue (threshold = 100%) 

Update TV set price 10% 24% 30% 27 27 

Update MP3 player  name 10% 18% 15% 18 45 
Update Radio set area 24% 25% 32% 33 78 
Update DVD player range 30% 39% 30% 42 120 (>100 : Push) 
Queue pushed Data Warehouse Updated 0 
Update MP3 player price 20% 34% 14% 29 29 

4   Experiments 

To test our proposed method, we have built a prototype system, which generates a 
high amount of simulated updates and builds a queue. The prototype system uses the 
concept of consolidated delta to collect the updates. This is a storage technique for 
changes or updates in XML documents, introduced in our previous work [7,8,9]. 

4.1   Usefulness of the Method 

To prove that our method is better than not using any optimization, we have con-
ducted several experiments by simulating different update flows, with different meas-
urable variables, as follows: 
o The average gap between arrival dates without management (with a real time 

policy) and arrival dates with our method (the ‘queue push’ date); 
o The total time to calculate the QVs for 1000 and 10000 updates; 
o The time to retrieve a state of the data warehouse at time = tend/2 called Sh; 
o The average time of the push; 
o The number of nodes created in the XML consolidated delta file by 1000 and 

respectively 10000 updates; 

4.2   Analysis of the Results 

For a high flow of updates, the gap between arrival time with and without manage-
ment was negligible (0.10s and 0.12s). In this case the discrete process has negligible 
impact on the data warehouse reports results. With a low flow the gap is larger (4s 
and 3.8s). These results can be explained by the fact that when the update flow is 
slow, the threshold is only reached after a long time. Therefore, we believe our 
method is better for higher flows of update. 

The time to calculate the QVs for 1000 updates was 1.09s (10.61s for 10000 up-
dates). The time to retrieve the state Sh with no management was 0.56s and 4.89s, but 
was negligible using our method (0.012s for state 500/1000 and 0.089s for state 
5000/10000). The average time before the queue is pushed is 0.14s (respectively 
0.18s) for a high flow and 4.6s (respectively 4.4s) for a low flow. The slower the flow 
is, the longer the updates have to wait before their push. 

The amount of Tn is the number of updates when there is no management, because 
they are pushed as they come. With our method, there is as much Tn as there is 
pushed.  Our method allows the number of different Tn to be dramatically lowered (30 
versus 1000 and 320 versus 10000). 
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5   Conclusion 

The methodology proposed in this paper aimed to find a right time update policy for 
XML warehouses. This technique provides a very good basis for the update mecha-
nism in systems which need a discrete update, but with an optimized time interval 
between updates. We proposed three indicators, namely Level of Criticality, Impact 
on Reports and Frequency of Appearance which are used to build a waiting queue 
that does not change the order of updates, but allows a time interval to be created 
between the data pushes into the data warehouse. 

References 

1. Boussaid, O., Messaoud, R.B., Choquet, R., Anthoard, S.: X-warehousing: An XML-based 
approach for warehousing complex data. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. 
(eds.) ADBIS 2006. LNCS, vol. 4152, pp. 39–54. Springer, Heidelberg (2006) 

2. Italiano, I.C., Ferreira, J.E.: Synchronization Options for Data Warehouse Designs. IEEE 
Computer 39(3), 53–57 (2006) 

3. Mannino, M.V., Walter, Z.D.: A framework for data warehouse refresh policies. Decision 
Support Systems 42(1), 121–143 (2006) 

4. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-Centric Management of Ver-
sions in an XML Warehouse. In: 27th International Conference on Very Large Databases 
(VLDB), pp. 581–590 (2001) 

5. Nassis, V., Dillon, T.S., Rajagopalapillai, R., Rahayu, J.W.J.: An XML document ware-
house model. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, 
vol. 3882, pp. 513–529. Springer, Heidelberg (2006) 

6. Park, B.-K., Han, H., Song, I.-Y.: XML-OLAP: A multidimensional analysis framework 
for XML warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, 
pp. 32–42. Springer, Heidelberg (2005) 

7. Rusu, L.I., Rahayu, W., Taniar, D.: Partitioning Methods for Multi-version XML Data 
Warehouses. In: Distributed and Parallel Databases. Springer, Heidelberg (2008); accepted 
for publication July 15, 2008 (in-press) (to appear, 2009) 

8. Rusu, L.I., Rahayu, J.W.J., Taniar, D.: Storage techniques for multi-versioned XML 
documents. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, 
vol. 4947, pp. 538–545. Springer, Heidelberg (2008) 

9. Rusu, L.I., Rahayu, J.W.J., Taniar, D.: Warehousing dynamic XML documents. In: Tjoa, 
A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 175–184. Springer, Heidel-
berg (2006) 

10. Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business intel-
ligence? In: ACM International Workshop on Data Warehousing and OLAP, pp. 1–6 
(2004) 

11. Lau, E., Madden, S.: An Integrated Approach to Recovery and High Availability in an Up-
datable, Distributed Data Warehouse. In: 32nd International Conference on Very Large 
Databases (VLDB), pp. 703–714 (2006) 

12. Rittman, M.: An Introduction to Real-Time Data Integration, Oracle Technology Network 
(2008),  

  http://www.oracle.com/technology/pub/articles/ 
 rittman-odi.html 



Demonstrating Effective Ranked XML Keyword
Search with Meaningful Result Display

Zhifeng Bao1, Bo Chen1, Tok Wang Ling1, and Jiaheng Lu2

1 School of Computing, National University of Singapore
{baozhife,chenbo,lingtw}@comp.nus.edu.sg

2 School of Information and DEKE, MOE, Renmin University of China,
jiahenglu@gmail.com

Abstract. In this paper, we demonstrate an effective ranked XML key-
word search with meaningful result display. Our system, named ICRA,
recognizes a set of object classes in XML data for result display, defines
the matching semantics that meet user’s search needs more precisely,
captures the ID references in XML data to find more relevant results,
and adopts novel ranking schemes. ICRA achieves both high result qual-
ity and high query flexibility in search and browsing. An online demo for
DBLP data is available at http://xmldb.ddns.comp.nus.edu.sg/.

1 Introduction

The goal of XML keyword search is to find only the meaningful and relevant data
fragments corresponding to interested objects that users really concern on. Most
previous efforts are built on either the tree model or the digraph model. In tree
model, Smallest Lowest Common Ancestor (SLCA) [5] is an effective semantics.
However, it cannot capture the ID references in XML data which reflect the
relevance among objects, while digraph model can. In digraph model, a widely
adopted semantics is to find the reduced subtrees (i.e. the smallest subtrees in a
graph containing all keywords). However, enumerating results by increasing the
sizes of reduced subtrees is a NP-hard problem, leading to intrinsically expensive
solutions. Moreover, it neither distinguishes the containment and reference edge
in XML data, nor utilizes the database schema in defining matching semantics.

Besides, we observe that existing approaches in both models have two common
problems. First, regarding to the design of matching semantics, they fail to
effectively identify an appropriate information unit for result display to users.
Neither SLCA (and its variants) nor reduced subtree is an appropriate choice,
as neither of them is able to capture user’s search target, as shown in Example
1. Second, the existing ranking strategies in both models are built at XML node
level, which cannot meet user’s search concern more precisely at object level.

Example 1. Query 1: “Suciu” is issued on the XML data in Fig. 1, intending
to find papers written by “Suciu”. Both SLCA and reduced subtree return the
author nodes with value “Suciu”, which is not informative enough to user.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 750–754, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Example XML document (with Dewey numbers)

Query 2: “Suciu XML” is issued on Fig. 1 to find XML papers written by Suciu.
As there is no Suciu’s paper containing “XML”, the SLCA result is the whole
subtree under the root node, which contains too much irrelevant information.�

Generally speaking, the technical challenges of this demo lie in as below:
(1) The results need to be semantically meaningful to the user to precisely meet
user’s search needs, and meanwhile avoid overwhelming the user with a huge
number of trivial results. However, methods on graph model suffer from produc-
ing large number of trees containing the same pieces of information many times.
(2) How to define appropriate matching semantics to find more relevant results
by capturing ID references in XML data while optimizing the search efficiency.
(3) How to design a general-purpose and effective ranking scheme.

To address these challenges, we present an XML keyword search system ICRA
[1]. In particular, by modeling XML data as a set of interconnected object-trees,
ICRA first automatically recognizes a set of objects of interest and the connec-
tions between them. Meanwhile, object trees as query results contain enough but
non-overwhelming information to represent a real world entity, so the problem of
proper result display is solved. To capture user’s search concern on a single ob-
ject, ICA is proposed; to capture user’s search concern on multiple objects, IRA
pair (group) is proposed to find a pair (group) of object trees that are related via
direct or indirect citation/reference relationships and together contain all key-
words. i.e. IRA helps find more relevant results. For Query 1 in Example 1, ICA
returns inproceeding:2 rather than its author subelement, which is both informa-
tive and relevant. For Query 2, ICA cannot find any qualified single inproceeding,
while IRA finds a pair of inproceedings (inproceeding:2, inproceeding:3), where
inproceeding:2 written by “Suciu” is cited by inproceeding:3 containing “XML”.

Compared with prior search systems, ICRA has significant features.
(1) The interconnected object-trees model guarantees meaningful result display.
Compared to tree model, it can capture ID references to find more relevant
results; compared to digraph model, it achieves more efficient query evaluation.
(2) It takes advantage of the schema knowledge to define the matching semantics
which is of same granularity as user’s search needs, and facilitate the result
display and performance optimization in terms of result quality and efficiency.
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(3) It designs a novel relevance oriented ranking scheme at object-tree level,
which takes both the internal structure and content of the results into account.

2 Ranking Techniques

As ICA and IRA correspond to different user search needs, different ranking
schemes are designed. To rank the ICA results, traditional TF*IDF similar-
ity is extended to measure the similarity of an object tree’s content w.r.t. the
query. Besides considering the content, the structural information within the re-
sults are also considered: (1)Weight of matching elements in object tree.
(2)Pattern of keyword co-occurrence. Intuitively, an object tree o is ranked
higher if a nested element in o directly contains all query keywords, as they
co-occur closely. (3)Specificity of matching element. Intuitively, an object
tree o is ranked higher if an element nested in o exactly contains (all or some
of) the keywords in Q, as o fully specifies Q. E.g. for query “Won Kim”, Won
Kim’s publications should be ranked before Dae-Won Kim’s publications. To rank
the IRA results, we combine the self similarity of an IRA object o and the
bonus score contributed from its IRA counterparts. Please refer to [1] for more
details.

3 System Architecture

System architecture is shown in Fig. 2. During data preprocessing, the Indexing
Engine parses the XML data, identifies the object trees, and builds the keyword
inverted list storing for each keyword k a list of object trees containing k; it also
captures ID references in XML data and stores them into reference connection
table. A B+ tree is built on top of these two indices respectively. During the query
processing stage, it retrieves the object trees containing the specified keywords to
compute ICA results; then it computes IRA and Extended IRA (EIRA) results
with the help of reference connection table. Lastly, it cleans and ranks the results.

Keyword List B+ Tree

Reference B+ Tree

Reference-
connection  

Table

Construct

SAX 
Parser

INDEXING ENGINE

XML Data Users’ keyword query

Output Results

Compute ICA

QUERY PROCESSING 
ENGINE

Compute IRA

Compute EIRA

Clean and Rank 
Results

Fig. 2. System architecture
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4 Overview of Online Demo Features

ICRA provides a concise interface, user can explicitly specify their search concern
- publications (default) or authors. ICRA offers various query flexibility: users
can issue pure keyword queries that can be any combinations of words in full or
partial specification of author names, topics, conference/journal and/or year.

4.1 Search for Publications

Users can search for publicationswith various types of queries as below. Readers are
encouraged to try more query types at http://xmldb.ddns.comp.nus.edu.sg/.
Author name. - E.g. we can query “Jiawei Han” for his publications. ICRA will
rank Jiawei Han’s papers higher than papers co-authored by Jiawei and Han.
Multiple author names. - to search for co-authored papers.
Topic. - E.g. we can query “xml query processing”.
Topic by an author. - E.g. we can query “Jim Gray transaction” for his
publications related to transaction. Jim Gray’s papers containing “transaction”
are ranked before his papers citing or cited by “transaction” papers.
Topic of a year. - E.g. we can query “keyword search 2006”.
Conference and author. - E.g. we can query “VLDB Raghu Ramakrishnan”.

4.2 Search for Authors

Users can also search for authors with various types of queries as below.
Author name. - By typing an author name, ICRA returns this author followed
by a ranked list of all his/her co-authors (e.g. try “Tova Milo”).
Topic. - We can search for authors who have the most contributions to a re-
search topic (e.g. try “XML keyword search”).
Conference/Journal name. - We can find active authors in a particular con-
ference or journal (e.g. try “DASFAA”).
Author name and topic/year/conference/journal. - Besides the author
himself/herself, we can also search for his/her co-authors in a particular topic
or year or conference/journal (e.g. we can search for Ling Tok Wang and his
co-authors in DASFAA 2006 with a query “Ling Tok Wang DASFAA 2006”).

4.3 Browsing

Besides searching, ICRA also supports browsing from search results to improve
its practical usability. E.g. users can click an author (or conference/journal) name
in a result to see all publications of this author (or the proceeding/journal). Link
is provided to find the references and citations of a paper. When searching for
authors, we output both the number of publications containing all keywords and
the number of publications that may be relevant via the reference connections.
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4.4 Result Display

ICRA displays the result for ICA and IRA semantics separately in “AND” and
“OR” part. In addition, since a same paper may appear in more than one IRA
pair/group, it will annoy the user in result consumption if such paper appears
many times. Therefore, ICRA only outputs one IRA object o for each IRA
pair/group, and provides links to the objects that form IRA pair/group with o.

5 Effectiveness of ICRA

In the demo, we will compare the result quality of ICRA with typical academic
demo systems for DBLP, such as BANKS [4], ObjectRank [3] and FacetedDBLP
[2]. We will also compare ICRA with commercial systems such as Microsoft
Libra and Google Scholar†. ICRA has a good overall performance in terms of
both result quality and query response time, as evidenced by experiments in [1].

6 Feature Comparisons

A comparison of the features in existing demos is given from a user’s perspective.
BANKS produces results in form of reduced trees which is difficult for novice
users to consume. Query types supported by ObjectRank and FacetedDBLP
are not as flexible as ICRA. E.g. they cannot handle searching papers of co-
authors, or a topic by author etc. ObjectRank doesn’t support browsing. DBLP
CompleteSearch doesn’t employ any relevance oriented ranking functions.
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Abstract. We demonstrate the IPL B+-tree prototype, which has been
designed as a flash-aware index structure by adopting the in-page logging
(IPL) scheme. The IPL scheme has been proposed to improve the overall
write performance of flash memory database systems by avoiding costly
erase operations that would be caused by small random write requests
common in database workloads. The goal of this demonstration is to pro-
vide a proof-of-concept for IPL scheme as a viable and effective solution
to flash memory database systems.

1 Introduction

Since NAND flash memory was invented as a sector addressable non-volatile
storage medium about two decades ago, its density has increased approximately
twice annually and the trend is expected to continue until year 2012 [1]. Due
to its superiority such as low access latency and low energy consumption, flash-
based storage devices are now considered to have tremendous potential as an
alternative storage medium that can replace magnetic disk drives.

On the other hand, due to the erase-before-write limitation of flash memory,
updating even a single record in a page results in invalidating the current page
containing the record and writing a new version of the page into an already-
erased area in flash memory. This leads to frequent write and erase operations.
In order to avoid this, we have proposed the in-page logging (IPL) scheme that
allows the changes made to a page to be written (or logged) in the database,
instead of writing the page in its entirety [2]. Since flash memory comes with
no mechanical component, there is no compelling reason to write log records
sequentially as long as it does not cause extra erase operations. Therefore, under
the in-page logging approach, a data page and its log records are co-located in
the same physical location of flash memory, specifically, in the same erase unit.
Since we only need to access the previous data page and its log records stored in
the same erase unit, the current version of the page can be recreated efficiently
� This work was partly supported by the Korea Research Foundation Grant funded

by the Korean Government (KRF-2008-0641) and MKE, Korea under ITRC IITA-
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under this approach. Consequently, the IPL approach can improve the overall
write performance considerably. The IPL scheme uses physiological log records
primarily for improving write performance, but the log records can also be used
to realize a lean recovery mechanism [2].

The goal of this work is to demonstrate that IPL is a viable and effective
solution to flash memory database systems that enables them to deliver high
performance promised by the desired properties of flash memory. We have de-
signed a new index structure called IPL B+-tree as a variant of B+-tree for
computing platforms equipped with flash memory as stable storage. We have
implemented the IPL B+-tree on a development circuit board running Linux
2.6.8.1 kernel.

In addition to providing the proof-of-concept implementation of the IPL
scheme, this demonstration will showcase (1) the design of IPL B+-tree for flash
memory database systems, (2) the IPL B+-tree engine that implements the in-
page logging mechanism for B+-tree indexes, (3) the development platform that
allows the IPL storage manager to be in full control of address mapping for flash
memory.

2 System Description

The traditional B+-tree is designed for disk-based storage systems, and yields
poor write performance with flash-based storage systems. This section presents
the design and implementation details of the IPL B+-tree.

2.1 Design of IPL B+-tree

In an IPL B+-tree, as is illustrated in Figure 1, the in-memory copy of a tree
node can be associated with a small in-memory log sector. When an insertion
or a deletion operation is performed on a tree node, the in-memory copy of the
tree node is updated just as done by traditional B+-tree indexes. In addition,
a physiological log record is added to the in-memory log sector associated with
the tree node. An in-memory log sector is allocated on demand when a tree node
becomes dirty, and is released when the log records are written to a log sector
in flash memory.

The log records in an in-memory log sector are written to flash memory when
the in-memory log sector becomes full or when the corresponding dirty tree
node is evicted from the buffer pool. When a dirty tree node is evicted, it is
not necessary to write the content of the dirty tree node back to flash memory,
because all of its updates are saved in the form of log records in flash memory.
Thus, the previous version of the tree node remains intact in flash memory, but
is augmented with the update log records.

When an in-memory log sector is to be flushed to flash memory, its content is
written to a flash log sector in the erase unit which its corresponding tree node
belongs to. To support this operation, each erase unit (or a physical block) of
flash memory is divided into two segments – one for tree nodes and the other
for log sectors, as shown at the bottom of Figure 1.
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Fig. 2. IPL B+-tree Engine

2.2 IPL B+-tree Engine

Figure 2 shows the IPL B+-tree engine that consists of three components: (1) B+-
tree operator module, (2) page operator module, and (3) IPL manager. The B+-
tree operator module processes traditional B+-tree operations such as insertion,
deletion and search. If a single operation involves more than a tree node, this is
divided into multiple single-node requests, each of which is processed by the page
operator module. For each single-node request, the page operator module adds its
physiological log record to the corresponding in-memory log sector.

The most important component of the IPL B+-tree engine is the IPL manager
that provides the in-page logging mechanism for B+-tree indexes. The IPL man-
ager consists of four internal components: (1) IPL buffer manager, (2) IPL storage
manager, (3) Log writer, and (4) Log applier. The IPL buffer manager maintains
in-memory tree nodes and their corresponding in-memory log sectors in an LRU
buffer pool. When an in-memory log sector becomes full and needs to be flushed to
flash memory, the IPL buffer manager determines whether the log area of the cor-
responding erase unit in flash memory can accommodate the in-memory log sector.
If it does, the in-memory log sector is written to flash memory. Otherwise, a merge
request is sent to the IPL storage manager. Then, the Log applier computes the
current version of tree nodes by applying the log records to the previous version
of tree nodes. Since the entire tree nodes in the merged erase unit are relocated
to a physically different region in flash memory, the logical-to-physical mapping is
updated by the IPL storage manager, when a merge is complete.

When a tree node is to be read from flash memory, the Log applier sends a
read request to the IPL storage manager, which returns an in-flash copy of the
tree node along with its log records. Then, the Log applier creates the current
version of the tree node by applying its log records to the tree node.
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3 Demonstration Scenario

The demonstration will be set up with a host system and a target system as
shown in Figure 3. The IPL B+-tree runs on the target system that consists
of an EDB9315A processor board and a flash daughter board [3].1 The requests
for B+-tree operations are submitted from the host system, and the progress
and performance of B+-tree operations executed on the target system can be
monitored on the host system.

In order to graphically illustrate the progress and performance of the B+-tree
operations to be demonstrated, we have implemented a performance monitor
with GUI that runs on the Labview environment, as is shown in Figure 4. For
more extensive performance comparison, a standard B+-tree running on a com-
parable computing platform with a magnetic disk will also be available in the
demonstration.

Fig. 3. Demonstration System Setup Fig. 4. Index Performance Monitor
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Abstract. When creating execution-level process models from concep-
tual to-be process models, challenges are to find implementations for pro-
cess activities and to use these implementations correctly. Carrying out
these activities manually can be time consuming, since it involves search-
ing in large service repositories and cycles of testing and re-designing.
We present Maestro for BPMN, a tool that allows to annotate and auto-
matically compose activities within business processes, and to verify the
consistency of an annotated process.

1 Introduction

One of the big promises of Semantic Business Process Managament is to help
bridge the gap between the business level, where the processes are modeled,
and the IT level, where they are implemented. This is one of the key issues
addressed in the SUPER project,1 based on Service-Oriented Architectures, and
on semantic annotations. For that purpose, we have made extensions to Maestro
for BPMN, a modeling tool developed at SAP Research.

In our framework, business processes are modeled as a set of tasks together
with their control flow. In order to make a process executable, a user has to as-
sociate every task in the process with an implementation in terms of services. To
support this implementation activity, we propose a combination of the following
steps: (1) semantically annotate the individual tasks; (2) check if the annotation
and the control flow are consistent; (3) discover and compose services which
implement the functionality required for each task. In our work, we developed
techniques supporting the user in step (1) (published in [2]); we developed fully
automated techniques for step (2) (published in [5]) and step (3) (published in
[8]). The demonstration will show the Maestro tool, which implements all these
techniques in a convenient GUI. Figure 1 shows a screenshot.
1 http://www.ip-super.org
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Fig. 1. A fragment of a process model represented in Maestro for BPMN

Within SUPER, business process models are represented in terms of the
sBPMN ontology [1],2 serving as a meta model for BPMN process models. The
ontology features the concepts, relations and attributes for standard BPMN. We
extended it with the ability to define a state of the process before and after
execution of successive tasks. With these extensions we can derive semantic goal
descriptions for tasks. This is in line with most popular approaches to Semantic
Web Service description,3 where Web services can be annotated with precondi-
tions and postconditions.

As indicated, we developed support for the convenient creation of semantic
annotations. That support is based on business object life cycles. Further, we ex-
tended Maestro with automatic consistency checking – verifying the interaction
of annotations and control flow – as well as automatic discovery and composition
– finding service-based implementations for individual tasks.

We define a formal framework for service composition, following A.I. method-
ologies [9]. We consider plug-in matches, where services do not have to match
exactly, but must be able to connect in all possible situations. In particular,
we take the background ontology, i.e. the domain axioms it specifies, into ac-
count. This is in contrast to many existing works that assume exact matches
(of concept names). We explore restricted classes of axioms, to find solutions
efficiently.

The consistency checking also deals with ontological domain axiomatizations,
and it also exploits restricted classes of axioms for the sake of computational
efficiency. The check determines whether any preconditions may be violated,
and whether any parallel tasks are in a logical conflict.

Section 2 explains how we support semantic annotations. Sections 3 and 4
cover consistency checking and discovery/composition. Section 5 concludes.

2 sBPMN is written in WSML (http://www.wsmo.org/TR/d16/d16.1/v0.21/)
3 Followed for example in WSMO (http://www.wsmo.org).
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2 Process Modeling and Semantic Annotation

From the graphical point of view, Maestro for BPMN implements BPMN 1.1.
However, it makes use of the sBPMN ontology, by creating on-the-fly a set of
instances for sBPMN classes. If a new BPMN task is created on the drawing
pane, an instance of the concept Task is created in the in-memory working
ontology. This enables supportive reasoning over the working ontology.

The tool allows a user-friendly semantic annotation of process models. The
annotations link process tasks to a domain ontology. We focus on how process
activities manipulate business objects in terms of their life cycles. E.g., a task
“Send quote” sets the status of the object “Quote” to the state “sent”. For this
purpose, the domain ontology needs to specify the business objects of interest
together with their life cycles. The textual descriptions of tasks (or other ele-
ments) are matched against the entities of interest in the domain ontology using
linguistic methods for term similarity, synonyms, etc. Another way to restrict
the matches is by employing the process structure, e.g., not suggesting the same
activity twice, or comparing the process control flow to the object life cycle.

3 Consistency Checking

The consistency checking is an extended form of process verification: it deals
with inconsistencies between control flow and semantic annotations. Specifically,
we check two properties: Are the semantic preconditions guaranteed to be true
whenever a task is activated? Are there conflicting tasks that may be executed in
parallel? The basic steps taken for answering these questions are the following:
– Compute the parallelism relation. For every task, determine the set of

tasks that are potentially executed in parallel. This is done by propagating a
matrix through the process graph, where matrix entry (i, j) is true iff tasks
(Ti, Tj) may be executed in parallel.

– Detect conflicting parallel tasks. Two parallel tasks Ti and Tj are in
precondition conflict if prei (the precondition of task Ti) contradicts postj ,
and they are in effect conflict if posti contradicts postj.

– Detect non-supported preconditions. We designed a propagation algo-
rithm that associates every edge e with the intersection, I(e), of all logical
states that may arise while e is activated (carries a token). In other words,
I(e) contains exactly those literals which are always true when e is activated.
Hence, if task Ti has e as its incoming edge, then we can test Ti’s precondi-
tion for inclusion in I(e). If the precondition is not included, then we know
that there exists a process execution in which Ti is activated from a workflow
point of view, but is not executable according to its semantic annotation.

4 Task Discovery and Composition

Our first step in finding process task implementations is to discover a single se-
mantic Web service for each annotated task. For each task, we check whether the
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domain ontology concept annotating the service matches the concept annotating
the task. We follow a matching technique proposed in [7], analysing intersection
of ontological elements in service descriptions and rating two descriptions as rel-
evant whenever they overlap. For that, we use the standard reasoning task of
concept satisfiability of conjunctions of concepts.

If a Web service cannot be found for a task, composition is performed. In
the spirit of [6], we formalize the semantics of composed services based on the
notion of ”belief updates” from A.I. [9]. Composition is computationally hard
and has two main sources of complexity: (i) combinatorial explosion of possi-
ble compositions, and (ii) worst-case exponential reasoning. We tackle (i) using
heuristic search, a well known technique for dealing with combinatorial search
spaces. We adapt techniques originating in A.I. Planning [4]; ours is the first
heuristic of this kind that deals with ontological axiomatizations. We address
(ii) by trading off expressivity of the background ontology against efficiency:
we investigate tractable classes of ontologies, i.e., classes where the required
reasoning can be performed in polynomial time. We show that a combination
of binary clauses (such as subsumption relations and attribute domain/image
typing) and attribute cardinality bounds is tractable. It follows from [3] that
Horn clauses (corresponding to Logic Programming rules) are not tractable;
we design tractable approximate update-reasoning techniques that preserve ei-
ther soundness or completeness. Other features (such as QoS) are part of our
ongoing work. Our experiments show that the tool can create non-trivial com-
posed services, from repositories containing hundreds of services, within a few
seconds.

5 Conclusion

We present extensions to Maestro for BPMN. The demo shows how business an-
alysts can easily annotate process elements (in particular tasks). Maestro checks
whether the annotated process model is consistent in terms of its workflow and
the semantics of its tasks. Maestro automatically finds and composes Web ser-
vices that can realize individual tasks. Overall, this provides significant support
for the service-based implementation of process models.
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Abstract. In this work, we demonstrate an automatic video annotation system
which can provide users with the representative keywords for new videos. The
system explores the hierarchical concept model and multiple feature model to
improve the effectiveness of annotation, which consists of two components: a
SVM classifier to ascertain the category; and a multiple feature model to label
the keywords. We implement the demo system using the videos downloaded from
YouTube. The results show the superiority of our approach.

1 Introduction

The rapid growth and availability of videos have created new challenges to managing,
exploring and retrieving videos with rich query expressions, high accuracy and effi-
ciency. An important challenge for video retrieval is to support content based queries
efficiently when keywords are not available. However, content based video retrieval is
time consuming and hardly feasible currently. An alternative is to annotate the videos
with meta-data serving as index in large video databases. The target of annotation re-
search is to map the video content into high-level semantics represented by keywords.

The problem of automatic video annotation is closely related to that of content-based
video retrieval, and has attracted more and more attention recently [4,3]. A basic idea is
to independently train a concept model for each keyword, and detect the keywords for a
given video. Since the video keywords for a certain video are generally correlated, the
basic idea can be further refined with semantic fusion, such as concept ontology [3,5,1].
However, these approaches are based on the individual keyword detector, and hence the
overall performance depends on the independent detection.

In this demo, we present our novel idea to design an automatic video annotation sys-
tem. To build the system, we construct the training video set and hierarchical keyword
sets, extract content features and generate multiple feature models to connect the fea-
tures with keywords. The overall system is shown in Fig. 1. We extract multiple content
features from labelled videos to generate feature models for annotation. Additionally,
we construct a hierarchical correlative concept structure indicating the inherent corre-
lation between categories and keywords. In the training stage, we use the global feature

� This research was supported by NSFC under Grant No.60603045.
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Fig. 1. The Overview of Annotation System

and SVM classifier to train a categorization model which can detect the category of
videos; and use low-level content feature to train a multi-feature model for keyword la-
belling. When a new video comes in, we first classify the video into categories. With the
identified category information, we get the keywords using the multiple feature model.

2 Video Categorizing

As we introduced previously, the enhancement of semantic relation between keywords
can improve the effectiveness of annotation. Since one single video may contain dif-
ferent meanings at multiple semantic levels, we employ hierarchical video concept or-
ganization to represent the semantic information of keywords. A simple example is
shown in Fig. 2, where the hierarchical structure consists of two levels. The first level
is category, and under each category we have the relevant keywords. The seven cate-
gories shown in the figure are selected from YouTube category set, and the keyword
set for each category is constructed manually in accordance with their relevant cate-
gories, which is smaller and more correlated. If we can ascertain the category of video
before keyword annotation, we may reduce the search scope of keywords and improve
annotation effectiveness and efficiency. We adopt the global features to train our cat-
egorization model, because the global features can better represent videos in general
perspective. The features include Average Color Entropy, Co-occurrence Texture, Av-
erage shot length, Global Camera Motion coefficients, and Face vector, etc.

Fig. 2. Hierarchical Video Concept Organization

3 Keyword Labelling

Having gained the category information at the video level, we turn to the shot level and uti-
lize keyframe to generate keywords. Current automatic image annotation systems, such
as [2], use fixed feature set to represent concepts without considering whether individual
feature is representative. Although a concept can be described with the typical features,
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e.g. color, texture and shape, different kinds of features may play different roles. To better
represent concepts, we develop a weighted multi-feature model to accomplish the anno-
tation of keyframes. Finally, we fuse the keywords for keyframes of a video as annotation.

3.1 Concept Representation
In this section, we focus on the representation method for keywords using various fea-
tures. The local static features we use include 24-dimensional color feature, 8-
dimensional texture feature and 180-dimensional shape feature. We assign keywords
to related shots which is represented by keyframes, and the features of these keyframes
are clustered to represent the respective keyword. The characteristics of a video are the
sum of distinct features of all clusters which is relevant to the video. In the system,
we design a weight tuning mechanism to evaluate the effect of different features on the
annotation. Multi-features of video data provide the flexibility of allowing the system
to model video based on any combination of different features.

3.2 Multi-feature Model
From the previous discussion, it is easy to conclude that different keywords require
different features or their combination for better representation. We use a linear dis-
criminative function to model the feature for a keyword. Each keyword may be at-
tached to a number of keyframes, and we extract the three feature vectors from all the
keyframes. For each keyword, we conduct the density clustering within the respective
feature space. Using the feature vector space we construct the kernel representation of
each cluster fi, we calculate the weight according to the function: wi = 1

radi/θi
×

densi (i ∈ {color, texture, edge}), where radi refers to the radius of each feature clus-
ter gained with the assistance of fi; θi is the noise threshold; densi indicates the density
of clusters. The higher density the feature cluster generates, the more weight in the repre-
sentation of feature is. If the feature has higher weight, the feature is more representative
with respect to the keyword. From Fig. 3, we can see the weights for “Car”, where shape
is the most important and which is consistent with the human perception.

4 System Demo
To demonstrate the proposed video annotation system, we use the videos downloaded
from YouTube. Our data set contains 658 video clips and 15,918 shots covering various

Fig. 3. An Example of Multi-Feature Model
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categories discussed in Section 2. We use the same keyword set as [4]. In our annotation
system, users can provide the unlabelled videos by either upload or URL. Fig. 4 shows
the interface of our system, and the annotation results with a sample video.

Fig. 4. The Interface of Annotation System with Sample

To evaluate the performance, we compare our method with a traditional method that
uses SVM classifier to train the concept models. Overall, our approach can achieve
average precision 28.4% which is about 40% better than that of SVM (17.5%). Due
to the space constraint, we omit the details about comparison. Our approach has two
advantages. First, the video categorization can classify the video according to the global
feature, and reduce the keyword range. Second, the mutli-feature model with weighting
can capture the content feature of video more effectively.

5 Conclusion and Future Work
In this demonstration, we have developed a novel video annotation system by combin-
ing the hierarchical concepts and multi-feature model. The experimental results showed
that our proposed system can provide satisfactory performance. In the future, we con-
sider to enlarge the keyword set and integrate more features to construct more represen-
tative model for semantic concepts. Expanding the system with relevance feedback is
another promising topic to improve the user experience of the system.
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Abstract. With the continued advancements in location-based services
involved infrastructures, large amount of time-based location data are
quickly accumulated. Distributed processing techniques on such large
trajectory data sets are urgently needed. We propose TRUSTER: a dis-
tributed trajectory data processing system on clusters. TRUSTER em-
ploys a distributed indexing method on large scale trajectory data sets,
and it makes spatio-temporal queries execute efficiently on clusters.

1 Introduction

With the proliferation of positioning technologies and the increasing use of inex-
pensive location-aware sensors, large amount of spatio-temporal trajectory data
have been accumulated. From the outdoor location reported by GPS devices in
longitude-latitude coordinate system, to the indoor location observed by RFID
readers in symbolic coordinate system, large amount of different formats of tra-
jectory data have emerged. Facing complicated and huge amount of trajectory
data, it is thought that only distributed data processing system can conquer
this challenge. TRUSTER is a data processing system designed to manage large
amount of trajectory data in a distributed environment.

Most existing trajectory indexing methods treat the time dimension as an ad-
ditional space dimension, and use high dimensional indexing methods to index
the trajectory. Suppose an object moves in a k-dimensional space, the trajectory
of such object is essentially a k+1-dimensional space. Different R-Tree based in-
dexing methods [1] can be applied on the k+1-dimensional space. Such indexing
methods couple the spatial dimension and temporal dimension together, and it is
difficult to partition the index and improper to use in a distributed environment.

We aim to present a distributed indexing method which could process queries
over huge amount of trajectory data on clusters. TRUSTER partitions the whole
spatial space into several static partitions. Trajectories are distributed into these
partitions according to their spatial extent. For each partition, index is just built
over temporal dimension for all trajectories in the partition. Different nodes in
clusters can take charge of different spatial partitions, which makes both index
creation and queries execution much more efficiently.

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 768–771, 2009.
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2 System Design

TRUSTER is consisted of two modules: spatial partition module and query execu-
tion module. Both modules employ MapReduce [2,3] model to process trajectory
data. We describe the two modules in this chapter.

2.1 Spatial Partition Module

Given a static partition method, the spatial partition module assigns each trajec-
tory to specific partitions according to its spatial dimensions. On each partition,
1D R-Tree is created on the temporal dimension for all trajectories in the par-
tition. Fig. 1 depicts the flow of spatial partition module.

...

...

...

...

...

...Trajectories 
in partition1

Trajectories 
in partition2

Trajectories 
in partitionn

Index1 on 
partition1

Reduce Reduce
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Sub query 
on 

partitionn

Reduce Reduce Reduce

Result Trajectory Set

Query Execution ModuleSpatial Partition Module

Fig. 1. Spatial Partition Module and Query Execution Module

The most commonly used line segments model for representing trajectories
is applied in TRUSTER. Each line segment is indicated as sk(pi, pj), where
sk is segment identifier, pi and pj indicate two consecutive reported positions.
Each position is in form of (x, y, t), where x and y represent the coordinates
of the object, and t indicates the timestamp of the report of the position. For
each segment sk(pi, pj), map function transforms it into a list (partitionID,
s′k(p′i, p′j)). If a line segment is fully covered by a partition, the line segment
is assigned to the partition. For example, line segment s3(p3, p4) in Fig. 2 is
transformed into (Partition2, s3(p3, p4)). If a line segment spans more than one
partitions, such line segment is divided into several sub line segments. Each sub
line segment is fully covered by one partition, and is assigned to the partition.
The new end points of such sub line segments are the intersections with the
original line segment and the partition boundary. The corresponding time for
these end points are determined by interpolating. For example, segment s2(p2,
p3) is divided into two sub line segments and mapped to (Partition4, s21(p2,
p7)) and (Partition2, s22(p7, p3)).
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Partition1 Partition2

Partition4Partition3

p1

p7

p3

p5

p2

p6

p4

Query

Fig. 2. Example of Trajectories, Partitions and Query

Reduce function will insert the temporal extent of all line segments and sub
line segments in the same partitionID into 1D R-Tree, i.e. insert interval [p′i.t,
p′j .t] as the index entry for line segment s′k(p′i, p′j). For example, in Partition2,
[p7.t, p3.t] is inserted as index entry for s22(p7, p3), [p3.t, p4.t] is inserted as index
entry for s3(p3, p4).

2.2 Query Execution Module

Query execution module divides each spatio-temporal range query into several
temporal sub queries, and executes these sub queries on different nodes, which
is described in Fig. 1. Suppose a query is represented as Q(Es, Et), where Es is
spatial range and Et is temporal range. If Es covers a partition, line segments
which satisfy Et in the partition are definitely the result of the original query.
If Es overlaps with a partition, line segments which satisfy Et in the partition
are possibly the result, and it requires further spatial refinement on such line
segments.

Map function transforms Q(Es, Et) into a list of Q′(partitionID, Et, tag),
where tag indicates partitionID is an overlapped or covered candidate partition.
Using the corresponding temporal index according to the partitionID, all the
line segments satisfied with Et will be fetched. If tag indicates an overlapped
partition, spatial refinement is conducted. The result of map function is a list
of line segments s′k(p′i, p′j). For example, the query which is shown in Fig. 2
as a solid rectangle, is transformed into four sub queries Q1(Partition1, Et,
COV ER), Q2(Partition2, Et, OV ERLAP ), Q3(Partition3, Et, OV ERLAP )
and Q4(Partition4, Et, OV ERLAP ). At reduce phase, reduce function com-
bines the sub line segments with the same end point to one line segment.

3 Demonstration Outline

A TRUSTER system is built on Hadoop [3,4] clusters. We use GSTD [5] data
generator to generate different trajectory data sets. The demonstration includes
three parts and the GUI of TRUSTER is shown in Fig. 3:

1. System Configuration and Monitoring: User can make configurations on clus-
ters. Such configurations include the replication level of each data file, data
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Fig. 3. User Interface of TRUSTER

block size, the number of map and reduce tasks. A system monitor is devel-
oped for TRUSTER to help users to control the clusters. Workload and the
number of tasks on different nodes are monitored in real time. The monitor-
ing information can be both shown in GUI and stored as a log file.

2. Trajectory Data Generating and Indexing: Users can make different configu-
rations to generate trajectory data. The configurable parameter includes the
number of moving objects, the speed of movement and the initial positions.
Users can also configure the size of rectangular partitions. After the configu-
ration, TRUSTER generates the trajectories and indexes them according to
the given partition.

3. Query in TRUSTER. Users can search trajectories indexed in TRUSTER.
The search interface accepts the spatial extent and the temporal extent sep-
arately, and returns the result trajectories.

Acknowledgments. This paper is partially supported by National Natural
Science Foundation of China (NSFC) under Grant No. 60673134.
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Abstract. Keyword search and database query are two ways for retrieving data 
in real world settings. In this demonstration, we show SUITS, a novel search in-
terface over relational databases that smoothly integrates the flexibility of key-
word search and the precision of database queries. SUITS allows users to start 
with arbitrary keyword queries, refine them incrementally by following the sug-
gestions given by the system and finally obtain desired structured queries.  

Keywords: keyword search, query construction. 

1   Introduction 

The digital information accessible today, such as that on the Web, possesses seman-
tics in both structured and unstructured forms. Keyword search, which was originally 
developed for retrieving documents, is an intuitive and convenient interface for ac-
cessing unstructured data. However, keyword search leaves users with limited expres-
siveness in describing their information needs. As a consequence, users may fail to 
find desired information. On the contrary, database queries enable users to exploit 
available structures to achieve more precise queries and corresponding result sets. 
However, using a database system requires adequate knowledge of the database 
schema and proficiency in the query language, making data access a difficult task for 
unskilled users. In this demo, we present SUITS, a novel search interface which pro-
vides a layer of abstraction on top of relational databases to smoothly integrate the 
intuitiveness of keyword search and the expressiveness of database queries. 

As shown in Fig. 1, the SUITS interface consists of four parts: a search field for 
the user to input keyword queries, a result window to present search results (at the 
bottom), a query window to present structured queries (on the left) and a faceted 
query construction panel providing query construction options (on the right). To per-
form search, the user first issues a keyword query, for instance “Fuzz Wright London” 
intended to search for the movie called “Hot Fuzz” and directed by Edgar Wright. 
Besides returning a ranked list of results like standard keyword search [1, 2], 
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SUITS suggests to the user a list of structured queries in the query window to clarify 
her intent. The suggested queries assign different semantics to the keywords. Some 
queries search for the movies with actor “Wright”, while others search for the actors 
who acted as a character named “London”. If the user identifies the structured query 
that represents her intent, she can click on it, such that the result window will show 
the results of that particular query. Otherwise, she can go to the faceted query con-
struction panel to incrementally construct the intended query. The panel lists a num-
ber of query construction options suggested by the system. As shown in Fig. 1, the 
user specifies that “Fuzz” must appear in the movie title and “Wright” must be a di-
rector’s name. The query window changes accordingly to zoom into the queries satis-
fying the chosen options. Such interaction continues iteratively until the user obtains 
the right query and/or satisfactory search results. 

With the SUITS interface, users can start with arbitrary keywords and structure 
their queries progressively by following the system’s suggestions. Finally, they can 
either select a completely structured query from the query window or a partially struc-
tured query by specifying appropriate query construction options. It depends on the 
degree to which users want / are able to clarify their search intents.  

2   System Description 

The query processing of SUITS can be split into two phases: an offline pre-computing 
phase and an online query phase. In the first phase, SUITS creates inverted indexes for 
all text columns in the database. It also generates query templates that are potentially 
employed by users when forming structured queries. A query template is a structural 
pattern used to query a database. For example, users sometimes search for the movies 
with a certain character, and sometimes search for the actors who have played in a 
certain movie. Both are commonly used query templates. 
 

Fig. 1. The Search Interface of SUITS 
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Fig. 2. Architecture of SUITS 

The online query phase consists of three steps. In Step 1, upon receiving a user’s 
keyword query, the system checks the full-text indices for occurrences of the query 
terms. In Step 2, it combines the term occurrences and the pre-computed query tem-
plates to create meaningful structured queries and query construction options. In Step 
3, the system ranks the queries according to their likelihood of being intended by the 
user, and selects a set of query construction options that can more effectively clarify 
the user’s intent. Finally, it returns the top-k queries and a set of selected options to 
the user. If the user chooses some of the query construction options, these options are 
fed back to Step 2 in order to filter out queries and query construction options that do 
not satisfy the user’s specification. 

The success of SUITS relies on the proper ranking of structured queries, effective 
selection of the query construction options and efficient query processing. In [3], we 
presented a set of techniques to accomplish these tasks. In this paper, due to the size 
limitations, we focus only on the query construction. 

3   Query Construction 

SUITS suggests appropriate query construction options to support incrementally cre-
ating the user intended structured query from keywords. Choosing a query construc-
tion option is equivalent to specifying a part of the structured query. Thus, query 
construction options are actually partial queries. As shown in Fig. 3, the complete 
queries and partial queries constructed from a set of keywords can be organized in a 
hierarchy. At the bottom of this hierarchy are the smallest partial queries composed of 
only one keyword and one attribute. In the middle are partial queries that join two or 
more keywords together. At the top, complete structured queries involving all key-
words are located.  

During the query construction, the system first presents a small set of partial que-
ries to the user. If the user chooses any of the partial queries, she actually indicates 
that her intended complete query will contain that partial query. Therefore, the system 
can remove from the query hierarchy all the complete queries not containing that 
partial query. Later on, the system presents another set of partial queries to the user 
for selection. This process carries on until the user identifies the desired query in the 
query window. 
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Fig. 3. Hierarchy of Partial Queries 

Selecting proper partial queries is crucial in the query construction process. A good 
strategy allows a user to exclude as many complete queries as possible in each round, 
so that she can obtain the desired query quickly. In [3], we proposed a number of 
principles for selection and ranking of the query construction options. 

4   Demonstration Overview 

In this demonstration we will primarily show how SUITS works and how a user can 
employ it to efficiently identify desired information in a database without any knowl-
edge of the database schema. First, we will demonstrate the complete query process. 
This process starts from submitting a keyword query to the system, followed by a 
presentation of the top-k structured queries that give different interpretations of the 
keywords, followed by an execution of the queries to retrieve search results. Then we 
show how the query construction options suggested by SUITS can guide users to 
quickly construct desired structured queries. We also present the result navigation 
component of SUITS which enables extending a search result to explore the database 
context. Our demonstration uses a real-world dataset, a crawl of the Internet Movie 
Database (IMDB). 
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Abstract. This demo paper presents an prototype implementation of
a decentralized and distributed approach for spatial queries. The main
focus is the location-based search for all the objects or information in
the particular geographical area.

1 Introduction

Services, which provide the users with data based on their geographical loca-
tion, also known as Location-Based Services (LBS), are becoming increasingly
popular. For the content providers and companies (such as mobile carriers) LBS
is an opportunity to supply their users and/or customers with location specific
data. And for the users of location-based services this means more personal-
ized information, data relevant for the user at his current location. Nowadays,
there is a variety of examples for such services, varying from vehicle track-
ing and navigation systems, personalized weather services, nearby traffic jam
alerts, and even location-based games. The emergency telephone service, such
as 112 in Europe, dispatches the calls to the nearest emergency medical service,
police or firefighters according to the caller’s position [3]. All of these exam-
ples make use of locality and supply the user with data based on his current
position.

The present location-based services, just as most other services, require a
centralized point of maintenance and management in order to provide the in-
formation and keep it up-to-date. Such solutions are often very expensive (e.g.
Google) and sophisticated, and get even more expensive and harder to man-
age as they scale. Because of these reasons, many service providers are able
to process only a limited amount of requests or process requests with a big
delay in time, which might result in inaccurate, incomplete, or outdated re-
sponses, sent back to the requesting users. One could imagine a scenario, where
a user is trying to find out what the current menu list in a nearby restaurant
is. This involves at least two previous steps - 1. The restaurant’s management
has sent the updated menu card to the central server, and 2. The central server
has accepted and stored the information. What if the user also wants to re-
quest the daily price list, currently free tables, currently playing song? This
means, the server has to store a lot more data then just the menu list, and also

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 776–779, 2009.
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must be able to receive frequent updates. This, as already mentioned, is a prob-
lem when addressing scalability and maintenance costs. Additionally it can take
days or even weeks for the central server to process, verify, and store the new
information.

The adoption of peer-to-peer systems can reduce the cost and maintenance
complexity and overhead in many similar as the above described cases. Being
client and server in one entity, at the same time, a peer itself is responsible
for the information that it represents and thus do not need a central server
for maintenance. Publishing, updating and removing of information happens
directly on the peer. As a result, the service consumers get fresher information
since the updates are instantly visible and the service providers have more control
of their data and services, since issues, like updates and availability, are managed
directly on the peer.

2 Our Approach

In our prior work [1,2] we designed Globase.KOM, a peer-to-peer overlay for
location-based search is presented. The main goal of this overlay is to enable
fully retrievable search for peers in a specified geographical area, exact searches
and finding the closest peer. Globase.KOM is a superpeer-based overlay forming
a tree enhanced with interconnections. We use the more powerful peers with good
network connectivity, which tend to stay online for a long time as superpeers in
Globase.KOM. Superpeers are responsible for indexing all nodes/services in one
clearly defined geographical area. The normal (nonsuper) peers in the network
simply offer and consume services without having additional responsibilities.
The world projection is divided into disjoint, nonoverlapping zones. Each zone
is assigned to a superpeer located inside the zone that keeps overlay/underlay
contact addresses for all peers in that zone. Superpeers form a tree where node A
is called the parent of node B when B’s zone is inside A’s zone (see Figure 2). A
location-based search starts with contacting one superpeer, which then forwards
the query message to its parent or children. Simulation results showed its scala-
bility, efficiency in the sense of performance - costs ratio, load balance, and full
retrievability.

Fig. 1. Example of an Area Search in Globase.KOM
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Fig. 2. Screenshots of Globase.KOM prototype

3 Prototype

Here we will descibe a prototype implementation of Globase.KOM. There are
several crucial requirements that are taken into account prior implementation.
Communication is an integral part of any network and must be reliable if the
final product is to be reliable. As the performance of the prototype on a variety
of parameters, an easy configuration is desirable. Modularity and extendibility is
crucial requirement for building practical layered implementations. Every peer
should be able to contact anyone and still be able to accept connections while
doing so. Therefore, we used Java RMI (Remote Method Invocation) 1, built on
top of the TCP/IP network in a non-blocking, asynchronous manner.

1 http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
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Graphical user interface consists of five panels: configuration, search, connec-
tions, world map, and statistics panel. In configuration panel it is possible to set
all the parameters of the prototype through the given interface or loading the
appropriate xml file. The search panel provides an easy way to invoke the basic
operations specified in Globase.KOM by specifying the latitude and longitude of
a point for exact search and find closest operation and additionally the radius
of a searched area for area search. In the same panel, the overlay and underlay
address and the type of the peers from the search results are listed. The connec-
tions panel is read-only. It simply displays the whole contact information of a
peer, its routing table. World map panel displays all known contacts, zones, and
results of performed operations on a map of the world. Diverse libraries from
the OpenMap2 project were used for this purpose. In statistic panel displays
the amount of received messages per second in average and recently, separated
into user and system messages. There are two barometers indicating the current
load of the peer based on the two load criteria considered in the prototype -
amount of peers in the zone of responsibility and amount of received messages
per second. For this panel, the JFreeChart 3 libraries were used.

4 Demo Description

Demonstration of this prototype will consist of 100 instances runned on 2 or 3
machines. It will show three operations of Globase.KOM - search for the peer
on the exact geographical location, finding the geographically closest peer, and
searching for all peers in free chosed geographical area. The location of the peers
will be generated based on the bitmap presenting the world map of all Skype
users which we captured in our measurements in July 2008. Current statistics,
routing tables, and effects of different setting of parameter will be presented.
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Abstract. This tutorial provides a comprehensive and comparative overview of
general techniques to efficiently support similarity queries in spatial, temporal,
spatio-temporal, and multimedia databases. In particular, it identifies the most
generic query types and discusses general algorithmic methods to answer such
queries efficiently. In addition, the tutorial sketches important applications of
the introduced methods, and presents sample implementations of the general ap-
proaches within each of the aforementioned database types. The intended audi-
ence of this tutorial ranges from novice researchers to advanced experts as well as
practitioners from any application domain dealing with spatial, temporal, spatio-
temporal, and/or multimedia data.

1 Introduction

The management and analysis of spatial, temporal, spatio-temporal, and multimedia
data is a hot topic in database research because such data types occur in many appli-
cations. Querying databases of such a content is very important for these applications.
In recent years, a vast amount of research has been done to explore efficient solutions
for answering similarity queries on these data types. However, the existing research
mainly focuses on one data type only although many proposed approaches are concep-
tually rather similar. As a consequence, it is a complex task to keep track with current
research results not only because of the large amount of existing approaches, but also
because of very different vocabularies used to express similar concepts. This tutorial
aims at providing a cooperate and comprehensive view of the state-of-the-art research
in similarity search for spatial, temporal, spatio-temporal, and multimedia data by iden-
tifying the general algorithmic approaches common to all solutions. This will build the
bridges between the various approaches proposed for the different data types and illus-
trate relationships among them.

2 Searching in Spatial, Temporal, Spatio-temporal and
Multimedia Databases

Real-world applications dealing with spatial, temporal, spatio-temporal, and multime-
dia data require efficient methods for similarity search. Example applications are shape
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based similarity search and docking queries in Geographic and CAD databases, time-
series matching, proximity queries on moving objects and image and video retrieval
in multimedia databases. There are a bundle of problems emerging from the afore-
mentioned applications that challenge the problem of designing efficient solutions for
answering these basic query types.

In this tutorial, we provide a detailed introduction to basic algorithmic approaches to
tackle the problem of answering similarity queries efficiently. In addition, we discuss
the relationships between the approaches. Last but not least, we will present sample
implementations of these basic approaches for each of the four data types mentioned
above.

2.1 General Concepts of Query Processing in Complex Structured Data

The first part of the tutorial details the general algorithmic approaches for efficient sim-
ilarity query processing including indexing and multi-step query processing. We start
with the general concept of feature based similarity search which is commonly used to
efficiently support similarity query processing in non-standard databases [1,7,9]. This
section gives a general overview of state-of-the-art approaches for similarity query pro-
cessing using indexing methods. Thereby, diverse approaches for different similarity
query types are discussed, including distance range queries (DRQ), k-nearest neigh-
bor queries (kNNQ), and reverse k-nearest neighbor queries (RkNNQ). Furthermore,
this section addresses the concept of multi-step query processing. Here, we show the
optimal interaction between access methods and multi-step query processing methods
[18,12] and give a survey of this topic showing the relationships among diverse existing
approaches. Finally, the first part of the tutorial briefly sketches other types of queries
that are specialized for a given data type, e.g. intersection queries for spatial objects.

2.2 Querying Spatial, Temporal, Spatio-temporal and Multi-media Data

The second part of the tutorial gives an overview of the sample implementations of the
previously presented basic approaches for each of the four data types mentioned above.
It starts with sample solutions for query processing in spatial data implementing the
general algorithmic approaches presented previously. The presented methods address
queries on two- or three dimensional spatially extended objects, e.g. geographic data
[16,5], CAD data [11,4] and protein data.

Next, the tutorial addresses query processing in time series data which is the most
important data type among temporal data. Here, we sketch the general problem of in-
dexing time series known under the term ”curse of dimensionality” and discuss diverse
solutions for this problem, including dimensionality reduction and GEMINI framework
[7]. In addition to matching based similarity query methods [8] we also discuss thresh-
old based similarity search methods for time series data [3].

The sample implementations concerning spatio-temporal data mainly focuses on
proximity queries in traffic networks, i.e. queries on objects moving within a spatial
network. This section introduces techniques enabling efficient processing of proximity
queries in large network graphs. In particular, we discuss solutions that are adequate for
densely populated [17] and sparsely populated traffic networks [19,13]. The later case
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requires graph embedding techniques that allows the application of multi-step query
processing concepts.

Finally, this tutorial outlines sample solutions for query processing in multimedia
data implementing the general algorithmic approaches presented in the first part of this
tutorial, e.g. [10,2]. In addition to similarity filter techniques that are specialized to mul-
timedia data we also discuss how the multi-step query processing techniques can cope
with uncertainty in multimedia data. Here we give an overview of sample solutions, e.g.
[6,14,15].
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Abstract. In this tutorial we provide an insight into Web Mining, i.e., discover-
ing knowledge from the World Wide Web, especially with reference to the lat-
est developments in Web technology. The topics covered are: the Deep Web, 
also known as the Hidden Web or Invisible Web; the Semantic Web including 
standards such as RDFS and OWL; the eXtensible Markup Language XML, a 
widespread communication medium for the Web; and domain-specific markup 
languages defined within the context of XML We explain how each of these 
developments support knowledge discovery from data stored over the Web, 
thereby assisting several real-world applications. 

Keywords:  Information Retrieval, Standards, Web Mining.  

1   Introduction 

This tutorial focuses on knowledge discovery from the Web with particular emphasis 
on the Deep Web, Semantic Web and XML including domain-specific markup lan-
guages. The vast amount of data stored and exchanged over the World Wide Web is a 
huge source of knowledge that can be useful in various potential applications.  

Among the recent advances in Web technology, we have the Deep Web over which 
stored information is not obvious but needs to be inferred, for example from queries 
through forms. The Semantic Web encompasses standards such as RDFS and OWL 
which often serve as the basis for defining ontology with reference to context.  

XML, the eXtensible Markup Language has become a widely accepted means of 
communication with its descriptive tag sets that can be extended to add semantics to 
the data stored on the Web. This also facilitates the development of domain-specific 
markup languages that can be accepted as the lingua franca for communication in 
their respective fields.  

All these developments provide great potential for mining the Web, i.e., discover-
ing knowledge from the stored data. The data available on the Web is typically in a 
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semi-structured format which presents additional challenges in knowledge discovery 
as opposed to data stored in traditional relational databases. In this tutorial we address 
various aspects of knowledge discovery from the Web with respect to these develop-
ments. We give an overview of the Deep Web, Semantic Web, XML and domain-
specific markup languages in terms of their fundamental concepts and explain how 
each of these enable knowledge discovery. Suitable examples are provided at relevant 
points in the tutorial. Interesting real-world applications are also described. The tuto-
rial is thus divided into four parts as described in the following four sections.  

2   The Deep Web 

A large part of the information present in the World Wide Web is hidden to current-
day search engines, because it is not accessible through hyperlinks but lies in data-
bases queried through forms. This Deep Web (or Hidden Web, or Invisible Web) has 
been estimated to contain 500 times as much data as the Surface Web. If such precise 
measures are debatable, this order of magnitude has been confirmed by recent work, 
and it is unquestionable that with information of the best quality (e.g., Yellow Pages 
services, U.S. Census Bureau, library catalogs, bibliography), the hidden Web is not 
only an invaluable source of information, but is also, due to its semi-structured, tem-
plate nature, a rich source for knowledge discovery.  

Access to content of the Deep Web requires filling in and submitting (HTML) 
forms, in order to retrieve some response pages, typically structured as lists or table 
records. Two approaches coexist for benefiting of the data hidden behind forms. The 
first one, the most straightforward, which has been advocated and experimented with 
by Google is an extensional one: response pages generated by the deep Web service 
are just stored as regular Web pages, that can be queried and retrieved as usual. The 
second approach, exemplified by the METAQUERIER system, is intensional: the goal is 
not to store response pages, but to understand the structure of both forms and response 
pages, and thus to know the semantics of this service, that can then be called as 
needed, depending on a user query. In either case, some schema matching and text 
mining techniques are used to associate form fields with concepts, in order to generate 
corresponding response pages. In the intensional case, understanding the structure of a 
response page means discovering the template this page was created from, either by 
unsupervised techniques such as ROADRUNNER, or by (semi-)supervised techniques. 

This part of the tutorial presents different approaches for accessing the Deep Web, 
including but not limited to our own work, and shows how relevant data and informa-
tion can be discovered and extracted from it. 

3   The Semantic Web 

The Semantic Web project envisions that people will publish semantic information in 
a computer-processable formalism that allows the information to be globally inter-
linked. For this purpose, the World Wide Web Consortium (W3C) has developed the 
knowledge representation formalisms RDFS and OWL. These formalisms are based 
on XML, but go beyond it by specifying semantic relationships between entities and 
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even logical constraints on them. A collection of world knowledge in these formal-
isms is commonly called an ontology. 

In this section of the tutorial, we first explain the vision and the applications of the 
Semantic Web project. We then give an introduction to semantic knowledge represen-
tations and ontologies in general. We also explain the knowledge representation for-
malisms RDFS and OWL, their syntax and semantics. We show where the Semantic 
Web has already taken off: Several large-scale ontologies are available online and are 
interlinked in the spirit of the Semantic Web. We explain how this information was 
gathered from different sources and how it can be queried using the SPARQL query 
language. Furthermore, we emphasize how this enhances knowledge discovery. 

4   XML, the eXtensible Markup Language 

The eXtensible Markup Language (XML) has become a standard language for data 
representation on the Web. With the continuous growth in XML based Web data 
sources, the ability to manage collections of XML documents and discover knowl-
edge from them for decision support is increasingly important.  

Mining of XML documents significantly differs from structured data mining and 
text mining. XML allows the representation of semi-structured and hierarchal data 
containing not only the values of individual items but also the relationships between 
data items. Element tags and their nesting therein dictate the structure of an XML 
document. Due to the inherent flexibility of XML, in both structure and semantics, 
discovering knowledge from XML data is faced with new challenges as well as bene-
fits. Mining of structure along with content provides new insights and means into the 
knowledge discovery. 

Recognizing the increasing interest in XML mining, this portion of the tutorial 
aims to discuss challenges that occur while mining the XML based Web data along 
with their solutions. We also provide issues and directions for research and develop-
ment work in the future. 

5   Domain-Specific Markup Languages 

A significant expansion in the area of the Web and XML is the development of do-
main-specific markup languages.  Such languages typically encompass the syntax of 
XML and capture the semantics of the given domains. Storing and exchanging data in 
this format, i.e., using XML based markups greatly boosts knowledge discovery. In 
this section of the tutorial we provide an overview of domain-specific markup lan-
guages with some real-world examples. We consider state-of-the-art markups, e.g., 
MML, the medical markup language, MatML, the Materials Markup Language and a 
few more.  

We briefly outline the steps involved in the development of markup languages, the 
desired features of the languages, the use of XML constraints in preserving domain 
semantics and additional requirements, and the retrieval of information from the 
markups using XQuery, XPath and others in the XML family. We explain how data 
storage using such markup languages can assist data mining with classical techniques 
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such as association rules.  We also stress on the fact that in addition to a having ade-
quate schemas for the markups, relevant ontological developments using standards in 
the literature can further assist the discovery of knowledge from data in the respective 
domains. A summary of our own research as well as related work by others in the area 
is discussed.   

In conclusion, we summarize the most important points in the tutorial and briefly 
touch upon the potential for future work in the area of Web Mining.   
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Abstract. In recent years, there has been a great deal of interest in developing 
effective techniques for ad-hoc search and retrieval in relational databases, 
document and multimedia databases, scientific information systems, and so on. 
A popular paradigm for tackling this problem is top-k querying, i.e., the ranking 
of the results and returning the k results with the highest scores. Numerous vari-
ants of the top-k retrieval problem and several algorithms have been introduced 
in recent years. In this tutorial we shall discuss the top-k problem in detail, es-
pecially the fundamental algorithms such as FA and TA, important variants 
such as algorithms operating under restricted sorted/random access, determinis-
tic and probabilistic approximations, as well as distributed and streaming top-k 
computations. A significant portion of the tutorial will be focused on applica-
tions of these top-k algorithms, especially in the context of the Web services 
and online databases, multimedia, documents and relational databases.  

Keywords: relational databases, top-k algorithms, search engines, keyword 
queries. 

1   Introduction (5 minutes) 

This portion of the lecture will introduce the top-k problem, give a precise problem 
definition, then give a high-level overview of the motivation for the problem, differ-
ent problem versions, and the various important applications of top-k querying and 
retrieval. The problem will be motivated via examples of ranking/scoring functions 
for structured data, documents/IR repositories, kNN queries in Euclidean/metric space 
settings, ranking functions on the Web, and so on. 

2   Fundamental Top-k Algorithms (20 minutes) 

Basic Top-k Algorithm: This portion will be devoted to describing the simple algo-
rithm based on a linear scan of the data repository. The advantages of this algorithm 
are that it is simple to implement, requires no preprocessing, maintains a bounded 
buffer of size k, and is usually quite fast unless the repository is large.  
 
FA and TA Algorithms for Top-k Queries: This portion will introduce the concept 
of monotonic ranking functions, followed by the two fundamental top-k algorithms: 
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Fagin’s Algorithm (FA) and Threshold Algorithm (TA). The history as well as details 
of both algorithms will be discussed, followed by a theoretical analysis of the algo-
rithms (e.g., instance optimality in the case of TA). Implementation issues of TA will 
be discussed, including a discussion of its practicality. 

3   Algorithms for Important Problem Variants (30 minutes) 

This portion of the seminar will be dedicated to discussing most of the important 
variants of the top-k problem. In particular, the following variants and their algo-
rithms will be discussed 
 
Threshold Algorithm with no (or limited) Sorted/Random Access: There are sev-
eral applications (e.g., merging of information for multiple web services) where the 
standard access methods for top-k algorithms, i.e., sorted access and random access, 
are either unavailable, or are extremely expensive. Several important algorithmic 
variants have been developed for these problem variants, e.g., TA-SORTED, NRA, 
TA-ADAPT, STREAM-COMBINE and so on, and this portion of the seminar will be 
dedicated to discussing these variants. 
 
Adaptive Algorithms: Another set of algorithms that are assuming increasing impor-
tance are top-k algorithms that adapt the rate at which they consume data from each 
sorted stream. Algorithms such as QUICK COMBINE shall be discussed in this con-
text. 
 
Approximation Algorithms: An important class of top-k algorithms is approxima-
tion algorithms. Such algorithms have the ability of stopping early and producing a 
set of results that are close to true top-k results. Measures of approximation will be 
discussed, e.g., the usual IR measures of precision and recall, as well as distance 
measures between ranked lists such as Kendall Tau and Spearman’s footrule meas-
ures. Several variations of top-k algorithms that stop early yet approximate the true 
top-k results shall be discussed. 
 
Probabilistic Algorithms: Instead of deterministic approximation guarantees, an 
important class of top-k algorithms are probabilistic in nature, i.e., they stop early by 
aggressively pruning the set of top-k candidates, but in the process are able to give 
probabilistic guarantees for the objects that were rejected from consideration. We 
shall discuss the work by Theobald et al (VLDB 2004) as an example of such an 
algorithm. 

 
Algorithms using Views: Like traditional query processing, top-k query processing 
can also benefit from the existence of materialized results of previously executed top-
k queries. There have been several efforts in this context, e.g., the PREFER algorithm 
(SIGMOD01) as well as the recent LPTA algorithm (linear programming based TA, 
VLDB06), and we shall briefly discuss these systems here. 
 
Distributed Top-k Computations: Top-k querying over distributed databases is an 
important problem especially in the context of information retrieval of document 
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databases distributed over P2P networks. We shall discuss the KLEE algorithm that 
has been recently proposed to implement top-k computations “in network” efficiently. 
 
Continuous Monitoring of Top-k Queries over Data Streams: Continuous moni-
toring of top-k queries when the underlying data repository is changing is an impor-
tant practical problem, e.g., in publish/subscribe systems. We shall discuss recent 
work on this problem (SIGMOD 06). 

4   Applications (30 minutes) 

This portion of the seminar will focus on discussing practical applications of top-k 
algorithms, and the issues that arise in their efficient implementation. 
 
Multimedia Databases: The original applications for the FA and TA algorithms were 
envisioned for multimedia database retrieval. We shall discuss the efforts to develop 
practical systems for such applications, e.g., IBM’s middleware solution. 
 
Ranking in Information Retrieval/Document databases: Classical Information 
Retrieval relies on merging/intersection of inverted lists for ranking and retrieval 
of the top documents for a query. We shall discuss the parallels between such in-
verted list-based approaches and the approaches based on sorted/random access 
operations.  
 
Top-k Queries in Graph Databases: Many data repositories exist in graph form. For 
example, the web is a graph, as are XML and semi-structured databases. Even rela-
tional databases may be represented as graphs if we view foreign-key joins as connec-
tions (i.e., edges) between tuples (i.e., nodes). There has been a series of work on 
keyword querying of such graph-structured databases, and the ranking and retrieval of 
the top-k sub-trees that satisfy these keyword queries. We shall discuss several of 
these systems, including DBXPLORER, DISCOVER, and in particular focus on how 
list merging techniques are efficiently used for top-k retrieval. 
 
Top-k Algorithms in Relational Database Applications: Ranking of tuples in tradi-
tional relational databases has been assuming increasing importance. The need for 
automatic ranking and top-k retrieval arises in numerous applications, e.g., searching 
of online product catalogs such as homes, cars, etc. We shall describe implementa-
tions of several list merge-based algorithms for database ranking, e.g., the CIDR03 
(tf-idf based) and VLDB04 (Probabilistic IR-based) papers. We shall describe how 
random (resp. sorted) access are simulated via index lookup (resp. index scans) in 
database applications. 

A parallel effort focuses on how to implement ranking/top-k operators inside data-
base query processing engines. This research involves issues such as the challenges of 
implementing TA inside database engines, developing costing functions for such 
operators, and so on. We shall discuss related work done by Ihab Ilyas et al, as well as 
by Gerhard Weikum (CIDR 2005 survey). 
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5   Conclusions and Challenges (5 minutes) 

We shall conclude by emphasizing that top-k query processing is an important com-
ponent of information systems, especially in ad-hoc search and retrieval applications. 
While there has been a flurry of activity in this area in recent years, there is tremen-
dous amount of work still left to be done, and we hope that this seminar invigorates 
the enthusiasm of the audience in this direction. 

6   Description of Target Audience 

The anticipated audience will consist of database, IR, data mining, and algorithms 
researchers, web services developers, information systems designers, and database 
engine designers and developers. 
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In the Web we are drowning in data, but we are starving for useful information. 
Information services aim to deal with this problem by providing domain- and  
application-specific organization, search, and presentation of data in the web. Al-
though information services provide for the management of data, their main objec-
tives are to:  

• promote the sharing of information and related knowledge in the Web  
• provide customized/tailored information search and  delivery that addresses 

the needs of specific user communities  

There many examples of information services that are currently available in the Web. 
The panel discussed sample information services for various science-related disciplines, 
including Biochemistry (e.g., GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ Gen-
bankOverview.html; fMRIDC, http://www.fmridc.org/f/fmridc; Flytrap, http://www. 
fly-trap.org; and the Protein Data Bank,http://www.pdb.org/pdb/home/home.do), and 
Astronomy (NASA’s SkyView, http://skyview.gsfc.nasa.gov/; Astronomical Image 
Library version 2.0, http://www.astronomy.ca/images/; OMNIweb, http://omniweb.gsfc. 
nasa.gov/ow.html; EU’s ESO Science Archive Facility, http://archive.eso.org/cms/; and 
the Sloan Digital Sky Server, http://cas.sdss.org/astro/en/).  

Common aspect of such information services include: 

• Images are used  to facilitate information search  
• Queries and results often involve a mixture of data, images, and live or syn-

thesized video 
• Separate interfaces for experts and general web users are often provided 
• Data schema employs some form of semantic annotation or references to an 

external ontology 
• Emphasis on information retrieval, few use SQL  
• Interface based on web and web service standards 
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The panel discussed issues that included the following: 

• The current and future role of database management systems in the devel-
opment of information services, and in particular in the service schema and 
data semantics, query language, query interface, and internal functionality. 

• The extend service science, SOA, and web service technologies are ready to 
support information services, in areas such as service discovery, composi-
tion, service query and web service interfaces. 

• Trust and security in information services. 
• Personalization/customization of information services for diverse user com-

munities ranging from subject matter experts (e.g., astronomers, biochemists, 
etc.) to casual web users.  
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Gong, Jian 334, 384
Gu, Yu 186

Ha, JongWoo 590
Hansen, David 646
Hara, Takahiro 328
Härder, Theo 631
Haustein, Michael P. 631
He, Bingsheng 138
He, Jun 339
Hoffmann, Jörg 759
Hong, Bonghee 201
Hongsheng, Chen 293
Hsu, Wynne 51, 601
Hsueh, Yu-Ling 71
Huang, Zi 693

Iida, Takuya 323
Ishikawa, Yoshiharu 323

Jatowt, Adam 570
Jia, Xiaohua 77
Jia, Xu 339
Jiang, Fangjiao 595

Kaczmarek, Tomasz 759
Kantarcioglu, Murat 22
Kanzaki, Akimitsu 328
Kao, Ben 334
Kitagawa, Hiroyuki 585
Kong, Lingbo 543
Kovacevic, Aleksandra 776
Kowalkiewicz, Marek 555, 759
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