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Coulomb Scattering

This chapter deals with various types of elastic scattering interactions that
heavy and light charged particles can have with atoms of an absorber. The
interactions fall into the general category of Coulomb interactions and the
chapter starts with a discussion of the intriguing Geiger-Marsden experiment
of alpha particle scattering on thin gold foils. The experiment is of great
historical importance and its results have lead to Rutherford’s ingenious con-
clusion that most of the atom is empty space and that most of the atomic
mass is concentrated in the atomic nucleus. The kinematics of the α particle
scattering is discussed in detail and the differential and total cross section
concept for scattering is introduced for Rutherford scattering and expanded
to other types of Coulomb scattering.
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The chapter continues with a discussion of the Mott electron-nucleus scat-
tering and introduces correction factors for electron spin, nuclear recoil, and
the finite size of the nucleus to achieve better agreement with measured data.
A brief discussion of the form factor representing the Fourier transform of
the nuclear charge density follows and the chapter continues with a general
discussion of elastic scattering of charged particles. The chapter concludes
with a discussion of the characteristic scattering distance, scattering cross
section and mean square scattering angle for various scattering events occur-
ring on single scattering centers (single scattering) as well as the mean square
scattering angle and mass scattering power for multiple scattering.

2.1 General Aspects of Coulomb Scattering

Coulomb scattering is a general term used to describe elastic Coulomb interac-
tions between two charged particles: an energetic projectile and a target. Much
of the knowledge in atomic, nuclear, and particle physics has been derived from
various Coulomb scattering experiments, starting with the famous Geiger and
Marsden experiment of 1909 in which α particles were scattered on gold nuclei.
Based on the angular distribution of the scattered α particles, measured by
Geiger and Marsden, Rutherford concluded that most of the atomic mass and
the positive atomic charge are concentrated in the atomic nucleus which is at
least four orders of magnitude smaller than the size of the atom.

The Rutherford model of the atom revolutionized physics in particular
and science in general. Since then other Coulomb-type scattering experiments
were carried out, typically using energetic protons or electrons as projectiles
bombarding atomic nuclei or orbital electrons with the objective to learn more
about the atomic and nuclear structure.

It is now well understood that in order for a particle to be useful as a
nuclear probe, its de Broglie wavelength (Sect. 1.22.1) must be of the order of
the nuclear size which is currently estimated with the relationship R = R0

3
√
A

given in (1.26 ) with R the nuclear radius, A the atomic mass number and R0

the nuclear radius constant (1.25 fm). As shown in Sect. 1.22.1, the de Broglie
wavelength of a particle can be expressed as a function of the particle’s kinetic
energy EK as
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2π�c

EK

√
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⎪⎪⎪⎩
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E
for EK � E0 = m0c

2.

(2.1)

In Fig. 1.6 we show the de Broglie wavelength λ against kinetic energy
EK for electrons, protons, and α particles. Typical nuclear size is of the order
of 10 fm and the de Broglie wavelength λ of 10 fm is attained at kinetic
energies EK of 2 MeV for α particles, 10 MeV for protons, and 130 MeV
for electrons. Electrons with kinetic energies above 200 MeV can serve as an
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excellent probe for nuclear studies, not only because these electrons possess
a suitable de Broglie wavelength but also because they are point-like and
experience only Coulomb interactions with the nuclear constituents even when
they penetrate the nucleus. This is in contrast to heavy charged particles which
upon penetration of the nucleus will undergo strong interactions in addition
to Coulomb interactions, making the analysis of experimental results difficult
and cumbersome.

In the first approximation electron scattering on a nucleus can be treated
like Rutherford scattering; however, when doing so, several other interactions
are ignored, such as: spin effects in magnetic interactions; energy transfer to
the nucleus of the scatterer (target recoil); relativistic and quantum effects;
and effects of the finite size of the nucleus. Modern scattering theories now
account for these additional interactions; however, they are still based on
principles enunciated 100 years ago in Manchester by Geiger, Marsden, and
Rutherford.

Scattering of α particles on atomic nuclei is referred to as Rutherford
scattering in honor of Rutherford’s contribution to the understanding of the
scattering process as well as the structure of the atom. In addition to the
Rutherford scattering of α particles on atomic nuclei (see Sect. 2.2), the most
notable other Coulomb elastic scattering phenomena are:

• Scattering of energetic electrons on atomic nuclei referred to as Mott sca-
ttering (Sect. 2.5).

• Scattering of electrons on atomic orbital electrons referred to as
Møller scattering.

• Scattering of positrons on atomic orbital electrons referred to as Bhabha
scattering.

• Multiple scattering involving any one of the above listed scattering types
and referred to as Molière multiple scattering (Sect. 2.7).

2.2 Geiger–Marsden Experiment

In 1909 Hans Geiger and Ernest Marsden in collaboration with Ernest
Rutherford carried out an experiment studying the scattering of 5.5 MeV
α particles on a thin gold foil with a thickness of the order of 10−6 m.
They obtained the α particles from radon-222, a natural α-particle emit-
ter, collimated them into a small pencil beam, and directed the beam in
vacuum onto a thin gold foil in which scattering occurred. The scattered α
particles were detected by counting with a low-power microscope the scintil-
lations produced in a zinc sulphide (ZnS) receptor (area: 1 cm2) that could
be rotated around the foil at a given distance from the source. The alpha par-
ticle counter was invented several years before by William Crookes and called
the spinthariscope. The Geiger–Marsden experiment, shown schematically in
Fig. 2.1, seems rather mundane; however, its peculiar and unexpected results
had a profound effect on modern physics in particular and on humanity in
general.
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Fig. 2.1. Schematic diagram of the Geiger–Marsden experiment in the study of
α-particle scattering on gold nuclei in a thin gold foil. Θ is the total scattering angle
for α particles upon traversing the 1 μm thick gold foil and undergoing a large
number of scattering interations

2.2.1 Thomson Model of the Atom

In 1898 Joseph J. Thomson, who is also credited with the discovery of the
electron in 1897, proposed an atomic model in which the mass of the atom is
distributed uniformly over the volume of the atom with a radius of the order
of 1 Å and negatively charged electrons are dispersed uniformly within a con-
tinuous spherical distribution of positive charge. The electrons form rings and
each ring can accommodate a certain upper limit in the number of electrons
and then other rings begin to form. With this ring structure Thomson could
in principle account for the periodicity of chemical properties of elements. A
schematic representation of the Thomson’s atomic model, often referred to
as the “plum-pudding model”, is given in Fig. 2.2a, suggesting the following
features:

• In the ground state of the atom the electrons are fixed at their equilibrium
positions and emit no radiation.

• In an excited state of the atom the electrons oscillate about their equi-
librium positions and emit radiation through dipole oscillations by virtue
of possessing charge and being continuously accelerated or decelerated
(Larmor relationship).

According to the Thomson atomic model the angular distribution of a pen-
cil beam of α particles scattered in the gold foil in the Geiger–Marsden
experiment is Gaussian and given by the following expression (for derivation
see Sect. 2.7.5)
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Fig. 2.2. Schematic diagram of two atomic models: (a) Thomson “plum-pudding”
model of 1898 in which the electrons are uniformly distributed in a sea of positive
atomic charge and (b) Rutherford nuclear model in which the electrons revolve in
empty space around the nucleus that is positively charged and contains most of the
atomic mass. The size of the nucleus with diameter of the order of 10−14 m is at least
4 orders of magnitude smaller than the size of the Rutherford atom with diameter
of the order of 10−10 m. The size of the Thomson atom is of the order of 10−10 m,
similar to the size of Rutherford atom

N(Θ)dΘ =
2ΘN0

Θ2
e
−Θ2

Θ2 dΘ, (2.2)

where

Θ is the scattering angle of the α particle after it passes through
the gold foil (note: the α particle undergoes ∼104 interactions as
a result of a foil thickness of 10−6 m and an approximate atomic
diameter of 10−10 m.

N(Θ) dΘ is the number of α particles scattered within the angular range
of Θ to Θ+dΘ.

N0 is the number of α particles striking the gold foil.
Θ2 is the mean square net deflection experimentally determined to

be of the order of 3×10−4 rad2, i.e.,
√
Θ2 ≈ 1◦.

Geiger and Marsden found that more than 99 % of the α particles incident on
the gold foil were scattered at angles less than 3◦ and that their distribution
followed a Gaussian shape given in (2.2); however, they also found that one in
∼104 α particles was scattered with a scattering angle Θ exceeding 90◦. This
implied a measured probability of 10−4 for scattering with scattering angle
Θ > 90◦, in drastic disagreement with the probability of 10−3500 predicted by
the theory based on the Thomson atomic model, as shown in (2.3) below.
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According to the Thomson atomic model the probability for α-particle
scattering with Θ > 90◦ (i.e., with a scattering angle Θ between 1

2π and π)
is calculated by integrating (2.2) from 1

2π to π as follows

N
(
Θ >

π

2

)
N0

=

π∫
π/2

N(Θ) dΘ

N0
= −

π∫
π
2

e
−Θ2

Θ2 d
(
−Θ

2

Θ2

)
(2.3)

= − e
−Θ2

Θ2

∣∣∣∣
π

π
2

= −e−{ 180◦
1◦ }2

+ e−{ 90◦
1◦ }2

= e−902 ≈ 10−3500,

where we use the experimentally determined value of 1◦ for the root mean
square angle

√
Θ2.

2.2.2 Rutherford Model of the Atom

At the time of the Geiger–Marsden experiment, the Thomson atomic model
was the prevailing atomic model based on the assumption that the positive
charges and the negative (electron) charges of an atom were distributed uni-
formly over the atomic volume (“plum-pudding” model) to make the atom
neutral on the outside. The theoretical result of 10−3500 for the probability
of α-particle scattering with a scattering angle greater than 90◦ on a gold
foil consisting of Thomson atoms is an extremely small number in compari-
son with the result of 10−4 obtained experimentally by Geiger and Marsden.
This discrepancy between experiment and theory highlighted a serious prob-
lem with the Thomson atomic model and stimulated Ernest Rutherford to
propose a completely new atomic model that agreed better with experimen-
tal results obtained by Geiger and Marsden. The two main features of the
Rutherford model are as follows:

1. Mass and positive charge of the atom are concentrated in the nucleus the
size of which is of the order of 10−15 m = 1 fm.

2. Negatively charged electrons revolve about the nucleus in a cloud, the
radius of which is of the order of 10−10 m = 1 Å.

The two competing atomic models are depicted schematically in Fig. 2.2. Con-
trary to the Thomson “plum-pudding” atomic model, essentially all mass
of the Rutherford atom is concentrated in the atomic nucleus that is also
the seat of the positive charge of the atom and has a radius of the order of
10−15 m, as shown schematically in Fig. 2.2b. As shown in (1.27), the den-
sity of the nucleus with mass M is enormous with an order of magnitude of
1.5×1014 g · cm−3.
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As for the atomic electrons, Rutherford proposed that they are distributed
in a spherical cloud on the periphery of the atom with a radius of the order
of 10−10 m; however, he did not speculate on the rules governing the motion
of electrons in an atom. It was Niels Bohr who soon thereafter expanded the
Rutherford model by proposing four postulates, one of them dealing with
quantization of electron angular momentum, which allowed him to derive
from first principles the electron planetary motion in one-electron structures
(See Sect. 3.1). Rutherford, a superb experimental physicist, and Bohr, an
extremely gifted theoretical physicist, are credited with developing the cur-
rently accepted atomic model which in their honor is referred to as the
Rutherford–Bohr atomic model.

2.3 Rutherford Scattering

2.3.1 Kinematics of Rutherford Scattering

Based on his model and five additional assumptions, Rutherford derived the
kinematics for the scattering of α particles on gold nuclei using basic principles
of classical mechanics. The five additional assumptions are as follows:

1. Scattering of α particles on gold nuclei is elastic.
2. The mass of the gold nucleus M is much larger than the mass of the α

particle mα, i.e., M � mα.
3. Scattering of α particles on atomic electrons is negligible because mα �
me, where me is the electron mass.

4. The α particle does not penetrate the nucleus (no nuclear reactions).
5. The classical relationship for the kinetic energy EK of the α particle, i.e.,
EK = 1

2mαυ
2, is valid, where υα is the velocity of the α particle.

Rutherford used concepts of classical mechanics in his derivation of the
kinematics of α-particle scattering. To show that this was an acceptable
approach we determine the speed of 5.5 MeV α particles used in the Geiger–
Marsden experiment. The speed υα of the α particles relative to the speed
of light in vacuum α for 5.5 MeV α particles can be calculated using either
the classical relationship or the relativistic relationship of (1.58). Note that
mαc

2 = 3727 MeV:

1. The classical calculation is done using the classical expression for the
kinetic energy EK of the α particle

EK =
1
2
mαυ

2
α =

1
2
mαc

2

{
υ2

α

c2

}
. (2.4)

Solve (2.4) for υα/c to obtain

υα

c
=
√

2EK

mαc2
=

√
2 × 5.5 MeV
3727 MeV

= 0.0543. (2.5)
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2. The relativistic calculation is carried out using the relativistic expression
(1.68) for the kinetic energy EK of the α particle

EK =
mαc

2√
1 −
(υα

c

)2
−mαc

2. (2.6)

Solve (2.6) for υα/c to obtain

υα

c
=

√√√√√1 − 1(
1 +

EK

mαc2

)2 =

√√√√√1 − 1(
1 +

5.5
3727

)2 = 0.0543 (2.7)

The relativistic calculation of (2.6) and classical calculation of (2.4) give iden-
tical results since the velocity of the α particle is much smaller than c, the
speed of light in vacuum, or (υα/c) 	 1, for α particles with kinetic energy
EK of the order of a few million electron volts. Rutherford’s use of the sim-
ple classical relationship rather than the correct relativistic expression for the
kinetic energy of the naturally occurring α particles was thus justified. Note
that all naturally occurring α particles have kinetic energy of the order of a
few million electron volts, so the use of classical mechanics is appropriate for
all naturally occurring α particles.

The interaction between the α particle (charge ze) and the nucleus (charge
Ze) is a repulsive Coulomb interaction between two positive point charges,
and, as result, the α particle follows a hyperbolic trajectory, as shown schemat-
ically in Fig. 2.3. Note that θ represents the scattering angle in a single
α-particle interaction with one nucleus, whereas Θ of (2.2) represents the
scattering angle resulting from the α particle traversing the thin gold foil and
undergoing some 104 interactions while traversing the foil.

For a single α-particle interaction depicted in Fig. 2.3 the nucleus is in the
outer focus of the hyperbola because of the repulsive interaction between
the α particle and the nucleus. For an interaction between two charges
of opposite sign (for example, energetic electron interacting with atomic
nucleus) the Coulomb interaction is attractive and the trajectory of the pro-
jectile is also a hyperbola but the target resides in the inner focus of the
hyperbola.

Two important parameters of Coulomb scattering are the impact param-
eter b and the scattering angle θ. As shown in Fig. 2.3:

• Impact parameter b is defined as the perpendicular distance between the
initial velocity vector υi of the projectile and the center of the target it is
approaching.

• Scattering angle θ is defined as the angle between the initial momentum
vector pi and the final momentum vector pf .
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Fig. 2.3. Schematic diagram for scattering of an α particle on a nucleus: θ is the
scattering angle; b the impact parameter; Δp the change in α-particle momentum;
υi the initial velocity of the α particle; and pi the initial momentum of the α particle.
The trajectory of the α particle is a hyperbola as result of the repulsive Coulomb
interaction between the α particle and the nucleus. The nucleus is in the outer focus
of the hyperbolic trajectory of the α particle

2.3.2 Distance of Closest Approach in Head-on Collision Between
α-Particle and Nucleus

A special case of Rutherford scattering occurs when b = 0 corresponding
to the α particle being on a direct-hit trajectory. Considering the classical
conservation of energy in a direct hit α-particle elastic scattering event, the
following points can be made:

1. The total energy E(r) of the α particle–nucleus system consists of two com-
ponents: kinetic energy EK(r) of the α particle and the repulsive Coulomb
potential energy EP(r) where

EK(r) =
mαυ

2

2
, (2.8)

EP(r) =
zZe2

4πε0
1
r
. (2.9)

and r is the distance between the α particle and the nucleus.
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2. The scattering is elastic. The kinetic energy EK of the α particle does not
remain constant during the scattering process; however, the initial kinetic
energy (EK)i is equal to the final kinetic energy (EK)f since the nucleus
is assumed to remain stationary. This means that the final velocity of the
α particle υf is equal to the initial velocity of the α particle υi.

3. In general, total energy E(r) is the sum of the kinetic energy EK(r) and
potential energy EP(r)

E(r) = (EK)i = EK(r) + EP(r) = EK(r) +
zZe2

4πε0
1
r
. (2.10)

4. The total energy E(r) at any distance r > Dα–N from the nucleus equals
the initial kinetic energy (EK)i of the α particle, since EP(r = ∞) → 0. As
the α particle approaches the nucleus, its velocity υα and kinetic energy
EK(r) diminish and the repulsive potential energy EP(r) increases with
the sum of the two always equal to the initial kinetic energy (EK)i of the
α particle.

5. In its approach toward the nucleus the α particle eventually stops at a dis-
tance from the nucleus Dα–N, defined as the distance of closest approach.
At r = Dα–N the α particle kinetic energy EK(r = Dα–N) is zero, and
the total energy E(r) equals the potential energy EP(r = Dα–N) which is
expressed as

E(r = Dα–N) = (EK)i = EK(r = Dα–N) + EP(r = Dα–N)

= 0 +
zZe2

4πε0
1

Dα–N
. (2.11)

The distance of closest approach Dα–N between the α particle with (EK)i =
5.5 MeV and a gold nucleus (Z = 79) in a direct hit scattering event is
determined from (2.11) as follows

Dα–N =
zZe2

4πε0
1
EK

=
2 × 79 × e× 1.6 × 10−19 C · V · m
4π × 8.85 × 10−12 C × 5.5×106 eV

= 41.3 fm

(2.12)

or

Dα–N =
zZ�cα

EK
=

2 × 79 × 197.3 MeV · fm
137 × 5.5 MeV

≈ 41.3 fm

For naturally occurring α particles interacting with nuclei of atoms the dis-
tance of closest approach Dα–N exceeds the radius R of the nucleus. Thus,
the α particle does not penetrate the nucleus and no nuclear reaction occurs.
For example, as shown in (2.12), Dα–N for the Geiger–Marsden experiment
with 5.5 MeV α-particle scattering on gold nuclei is 41.3 fm compared to the
gold nucleus radius determined from (1.26) as
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R = R0
3
√
A = 1.25 fm 3

√
197 ≈ 7.3 fm, (2.13)

where R0 is the nuclear radius constant equal to 1.25 fm, as discussed in
Sect. 1.16.1.

2.3.3 General Relationship between Impact Parameter
and Scattering Angle

The general relationship between the impact parameter b and the scatter-
ing angle θ may be derived most elegantly by determining two independent
expressions for the change in momentum Δp of the scattered α particle. The
momentum transfer is along the symmetry line that bisects the angle π − θ,
as indicated in Fig. 2.3. The magnitude of the repulsive Coulomb force FCoul

acting on the α particle is given by

FCoul =
zZe2

4πε0
1
r2
, (2.14)

where

r is the distance between the α particle and the nucleus M ,
z is the atomic number of the α particle (for helium z = 2 and A = 4),
Z is the atomic number of the absorber (for gold Z = 79 and A = 197).

Since the component of the force Fcoul in the direction of the momentum
transfer is FΔp = FCoul cosφ, the momentum transfer (impulse of force) Δp
may be written as the time integral of the force component FΔp as follows

Δp =

∞∫
−∞

FΔp dt =

∞∫
−∞

FCoul cosφdt =
zZe2

4πεo

π−θ
2∫

− π−θ
2

cosφ
r2

dt
dφ

dφ

=
zZe2

4πεo

π−θ
2∫

− π−θ
2

cosφ
ωr2

dφ, (2.15)

where

φ is the angle between the radius vector r and the bisector, as also shown
in Fig. 2.3,

dt
dφ

is the inverse of the angular frequency ω.

The angular frequency ω = dφ/dt = υ/r can be expressed as a function of
the impact parameter b, initial α-particle velocity υi, and radius vector r
by invoking conservation of angular momentum L, where L is in general
defined as
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Fig. 2.4. Geometry for determination of the angular momentum L for two different
points on the α-particle trajectory. Point A is for the α particle located in the apex
of the hyperbola and point B is for the α particle located at a very large distance
from the nucleus

L = r × p = r ×mαυ. (2.16)

With the help of Fig. 2.4 we now express |L| = L, the magnitude of the
angular momentum L, for two different points (A and B) on the α-particle
hyperbolic trajectory. Point A is at the apex of the hyperbola and point B is
at a very large distance from the nucleus where the α-particle position defines
the impact parameter b. The angular momentum L at point B is given as

|L| = L = rmαυi sinψ = mαυib, (2.17)

while for the apex point A, where υ and r are perpendicular to each other
and υ = ωr, it is

|L| = L = |r ×mαυ| = mαrυ sin 90o = mαωr
2. (2.18)

Using the conservation of angular momentum L, we merge (2.17) and (2.18)
to get

L = mαυib = mαωr
2, (2.19)

and the following expression for the angular frequency ω

ω =
υib

r2
, (2.20)
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with υi the initial velocity of the α particle at r = ∞. Since the scattering
is elastic, the kinetic energy will be conserved in the scattering interaction,
so it follows that the final α particle velocity υf will be equal to the initial
α particle velocity (υf = υi).

After inserting (2.20) into (2.15) we get a simple integral for Δp with the
following solution

Δp =
zZe2

4πε0
1
υib

π−θ
2∫

−π−θ
2

cosφ dφ =
zZe2

4πε0
1
υ∞b

{sinφ}+ π−θ
2

−π−θ
2

= 2
zZe2

4πε0
1
υib

cos
θ

2
.

(2.21)

With the help of the momentum vector diagram, given in Figs. 2.3 and 2.4,
the momentum transfer Δp may also be written as

Δp = 2pi sin
θ

2
= 2mαυi sin

θ

2
. (2.22)

Combining (2.21) and (2.22) we obtain the following expressions for the impact
parameter b

b =
zZe2

4πε0mαυ2
i

cot
θ

2
=

1
2
zZe2

4πε0
1
EK

cot
θ

2

=
1
2
Dα–N cot

θ

2
=

1
2
Dα–N

√
1 + cos θ
1 − cos θ

, (2.23)

with the use of:

1. Classical relationship for the kinetic energy of the α particle
(
EK=1

2mαυ
2
i

)
,

since υi 	 c.
2. Definition of Dα–N as the distance of closest approach between the α parti-

cle and the nucleus in a “direct-hit” head-on collision for which the impact
parameter b = 0, the scattering angle θ = π, and Dα–N = zZe2/ (4πε0EK)
from (2.12).

2.3.4 Hyperbolic Trajectory and Distance of Closest Approach

Equations for the hyperbolic trajectory of an alpha particle interacting with
a nucleus can be derived from the diagram given in Fig. 2.3 and the simple
rule governing the hyperbola with the target in the outer focus because of
the repulsive interaction between the projectile (α particle) and the target
(nucleus)

r − r′ = 2a, (2.24)
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where

a is the distance between the apex and the vertex of the hyperbola,
r is the distance between the point of interest on the hyperbola and the

outer focus,
r′ is the distance between the point of interest on the hyperbola and the

inner focus.

The parameters of the hyperbola, such as a, r, and r′, are defined in Fig. 2.3
and the locations of the inner focus, outer focus, apex A and vertex V are
also indicated in Fig. 2.3. Solving (2.24) for r′ and squaring the result, we get
the following expression for (r′)2

(r′)2 = r2 − 4ar + 4a2. (2.25)

Using the law of cosines in conjunction with Fig. 2.3, we express (r′)2 as

(r′)2 = r2 − 4aεr cosφ+ 4a2ε2, (2.26)

where ε is the eccentricity of the hyperbola.
Subtracting (2.26) from (2.25) and solving for r(φ), we now obtain the

following general equation for the hyperbolic trajectory of the α particle

r (φ) =
a
(
ε2 − 1

)
ε cosφ− 1

. (2.27)

Three separate special conditions are of interest with regard to (2.27):

1. r = ∞ for determining the eccentricity ε.
2. φ = 0 for determining the general distance of closest approach Rα–N.
3. θ = π for determining the distance of closest approach in a direct hit that

results in the shortest distance of closest approach defined as Dα–N in
(2.12).

Eccentricity ε is determined as follows:
For r = ∞ the angle φ equals to 1

2 (π − θ) and, to get r = ∞, the denominator
in (2.27)

[
ε cos[ 12 (π − θ)] − 1

]
must equal to zero, resulting in the following

relationship for the eccentricity ε

ε cos
π − θ

2
− 1 = ε sin

θ

2
− 1 = 0 or ε =

1

sin
θ

2

. (2.28)

Distance of closest approach Rα–N between the α particle and the nucleus
in a non-direct hit collision (θ < π and φ = 0) is from (2.27) given as

Rα–N = r (φ = 0) =
a
(
ε2 − 1

)
ε− 1

= a (1 + ε) = a

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ . (2.29)
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The result Rα–N = a(1 + ε) can also be obtained directly from Fig. 2.3 by rec-
ognizing that the distance between the outer focus and apex of the hyperbola
equals to (aε+ a).

Distance of closest approach in a direct-hit collision, Dα–N (b = 0;
θ = π) can now from (2.29) with θ = π be written as

Dα–N = Rα–N (θ = π) = 2a, (2.30)

from where it follows that a, the distance between the apex A and the vertex
V of the hyperbola, (see Figs. 2.3 and 2.4) is equal to 1

2Dα–N. This allows
us to express Rα–N of (2.29) as a function of the direct-hit distance of clos-
est approach Dα–N or as a function of the impact parameter b using the
relationship (2.23) between Dα–N and b

Rα–N = a

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ =

Dα–N

2

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ = b

1 + sin
θ

2

cos
θ

2

= b
cos

θ

2

1 − sin
θ

2

.

(2.31)

2.3.5 Hyperbola in Polar Coordinates

In polar coordinates (r, ϕ) the hyperbolic α-particle trajectory may be exp-
ressed as

1
r

=
1
b

sinψ +
a

b2
(cosψ − 1) , (2.32)

with parameters a, b, and ψ defined in Fig. 2.3. Note that ψ and φ are different
angles and that the following relationship for angles ψ, φ, and θ applies

ψ + φ =
∣∣∣∣π − θ

2

∣∣∣∣ . (2.33)

It can be shown that the general expressions (2.32) and (2.27) defining the
hyperbola are equivalent.

2.4 Cross Sections for Rutherford Scattering

2.4.1 Differential Cross-Section for Rutherford Scattering:
Classical Derivation

The differential cross section dσRuth/dΩ for Rutherford scattering into a solid
angle dΩ = 2π sin θ dθ that corresponds to an angular aperture between θ and
θ+ dθ (equivalent to impact parameters between b and b− db), assuming the
azimuthal distribution to be isotropic, is the area of a ring with mean radius
b and width db
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dσRuth = 2πb db = 2π
b

sin θ
sin θ

∣∣∣∣dbdθ

∣∣∣∣dθ. (2.34)

Recognizing that
dΩ = 2π sin θ dθ, (2.35)

expressing sin θ as

sin θ = 2 sin
θ

2
cos

θ

2
, (2.36)

and, using (2.23) for the impact parameter b to determine |db/dθ| as
∣∣∣∣dbdθ

∣∣∣∣ = Dα–N

4
1

sin2 θ

2

, (2.37)

we obtain from (2.34) combined with (2.35), (2.36), and (2.37) the following
expression for dσRuth/dΩ, the differential Rutherford cross section

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

=
(
Dα–N

4

)2 1

(1 − cos θ)2
. (2.38)

Inserting the expression for Dα–N of (2.12) into (2.38) and using the defi-
nition of the fine structure constant α = e2 (4πε0�c)−1, we can express the
Rutherford differential cross section as

dσRuth

dΩ
=
(

zZ�c

4

)2(
α

EK

)2 1

sin4 θ

2

, (2.39)

allowing us to conclude that the Rutherford differential scattering cross section
|dσRuth/dΩ| is:

1. Proportional to the atomic number z of the projectile and the atomic
number Z of the target.

2. Proportional to the electromagnetic coupling (fine structure) constant α2.
Thus, the electromagnetic force is governed by photon exchange between
the α particle and the nucleus.

3. Inversely proportional to the square of the initial kinetic energy EK of the
α particle.

4. Inversely proportional to the fourth power of sin (θ/2) arising from the 1/r2

variation of the Coulomb repulsive force in effect between the α particle
and the nucleus.

At small scattering angles θ, where sin
(

1
2θ
) ≈ 1

2θ, the differential Rutherford
cross section (2.38) can be simplified to read

dσRuth

dΩ
=
D2

α–N

θ4
. (2.40)
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Since most of the Rutherford scattering occurs for θ 	 1 rad and even at
θ = 1

2π the small angle result is within 30 % of the general Rutherford
expression, it is reasonable to use the small angle approximation of (2.40)
at all angles for which the unscreened point-Coulomb field expression is valid.
Departures from the point Coulomb field approximation appear for large and
small angles θ, corresponding to small and large impact parameters b, respec-
tively, and resulting from α-particle penetration of the nucleus and nuclear
field screening by orbital electrons, respectively.

2.4.2 Differential Cross Section for Rutherford Scattering
(Quantum-Mechanical Derivation)

The Rutherford differential cross section dσRuth/dΩ of (2.38) was derived clas-
sically; however, it can also be derived quantum-mechanically in a short and
simple manner by using the Fermi second golden rule, discussed in Sect. 1.23.5,
and the Born collision formula, discussed in Sect. 1.23.6. The Born collision
formula was introduced in a general form in (1.129) and can be written for
Rutherford scattering in terms of the spherically symmetric Coulomb nuclear
potential VN(r) playing the role of the potential operator V (r)

V (r) = VN(r) =
(
zZe2

4πε0

)
1
r
. (2.41)

For Rutherford scattering, (1.129) is expressed as follows

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2
zZe2

4πε0
sin(Kr)
K2r2

d (Kr)

∣∣∣∣∣∣
2

=
(
Dα–N

4

)2 1

sin4 θ

2

∣∣∣∣∣∣
∞∫
0

sin (Kr) d(Kr)

∣∣∣∣∣∣
2

, (2.42)

after inserting the expression for nuclear Coulomb potential VN(r) given in
(2.41), expression for K given in (1.124), and the expression for Dα–N given
in (2.12).

The value of the integral in (2.42) poses a problem at its upper limit, since
it oscillates about zero there. This problem can be obviated by accounting for
screening effects or simply by substituting into (2.42) the nuclear Coulomb
potential VN(r) of (2.41) by a Yukawa type potential VYuk(r) where

VYuk(r) = VN(r) e−ηr =
zZe2

4πε0
1
r
e−ηr, (2.43)

to get

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

∣∣∣∣K
∫ ∞

0

e−ηr sin(Kr) dr
∣∣∣∣
2

, (2.44)
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with η a positive constant which is set to zero upon solving (2.44). The integral
in (2.44) in the limit η → 0 gives

lim
η→0

∫ ∞

0

e−ηr sin(Kr) dr = lim
η→0

[
e−ηr −η sinKr −K cosKr

η2 +K2

]∞
0

= lim
η→0

K

η2 +K2
=

1
K
, (2.45)

and (2.44) then gives the standard well known result for the Rutherford
differential cross section derived classically in Sect. 2.4.1 and presented in
(2.38) as

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

. (2.46)

2.4.3 Screening of Nuclear Potential by Orbital Electrons

At large impact parameters b (i.e., at small scattering angles θ) the screening
effects of the atomic orbital electrons cause the potential felt by the α particle
to fall off more rapidly than the 1/r Coulomb point-source potential. It is
convenient to account for electron screening of the nuclear potential with
the Thomas–Fermi statistical model of the atom in which the Thomas–Fermi
atomic potential is given as

VTF(r) ≈ zZe2

4πε0
1
r
e
− r

aTF . (2.47)

In (2.47) aTF is the Thomas–Fermi atomic radius expressed as

aTF =
ξa0
3
√
Z
, (2.48)

where

ξ is the Thomas–Fermi atomic radius constant,
a0 is the Bohr atomic radius

(
a0 = 0.53 Å

)
, discussed in Sect. 3.1.1,

Z is the atomic number of the atom.

The Thomas–Fermi radius aTF represents a fixed fraction of all atomic elec-
trons or, more loosely, the radius of the atomic electron cloud that effectively
screens the nucleus. The nuclear screening implies that, with a decreasing
scattering angle θ, the scattering cross-section will flatten off at small angles
θ to a finite value at θ = 0 rather than increasing as θ−4 and exhibiting a sin-
gularity at θ = 0. The constant ξ in (2.48) calculated from the Thomas–Fermi
atomic model has a value of 0.885, while Jackson recommends a value of 1.4
as a better description of a general range of atomic and nuclear phenomena.
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For our purposes ξ ≈ 1 is a good and simple approximation to yield the
following expression for the Thomas–Fermi radius aTF

aTF ≈ a0
3
√
Z
, (2.49)

suggesting that the effective radius of the atomic electron charge cloud
decreases with an increasing atomic number Z as 1/ 3

√
Z, decreasing from

∼a0 for low Z to ∼0.2a0 for high Z elements. At first glance this result seems
surprising considering that the radius of atoms increases with Z, as shown
in (3.39). However, the radii of lower level atomic shells are inversely propor-
tional to Z and this in turn results in a decreasing effective charge radius aTF

with increasing Z.
The Fermi second golden rule (Sect. 1.23.5) can be used in conjunction with

the Born approximation (Sect. 1.23.6) to calculate dσRuth/dΩ for very small
scattering angles θ approaching 0 where (2.38) and (2.40) exhibit a singularity
and predict dσRuth/dΩ = ∞, an obviously unacceptable result. Using the
Thomas–Fermi potential of (2.47) for the potential V (r), the differential cross
section for Rutherford scattering is expressed as

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2VTF(r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0

∞∫
0

e
− r

aTF
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

.

(2.50)
In standard tables of integrals we find the following solution for the integral
in (2.50)

∞∫
0

e−ax sin(bx) dx = −
[
e−ax

a2 + b2
[a sin(bx) + b cos (bx)

]x=∞

x=0

(2.51)

and with its help we evaluate the integral in (2.50) as

∞∫
0

e
− r

aTF sin(Kr) dr =
K

1
a2
TF

+K2

=
1

K

[
1 +

1
(KaTF)2

] . (2.52)

The differential cross section for the Rutherford scattering dσRuth/dΩ is now
expressed as

dσRuth

dΩ
=

∣∣∣∣∣∣∣∣
2mα

�2

zZe2

4πε0
1
K2

1

1 +
1

(KaTF)2

∣∣∣∣∣∣∣∣

2

. (2.53)

The term [1 + (KaTF)−2]−2 may be regarded as a correction factor to the
standard differential scattering cross section (2.46) for θ → 0 where the
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Thomas–Fermi screening of the simple point-source Coulomb nuclear potential
becomes important. The product KaTF using the expression for K of (1.124)
is now given as

KaTF =
2paTF

�
sin

θ

2
(2.54)

and for a typical Rutherford scattering experiment using naturally emitted α
particles on a gold foil amounts to ∼105 sin (θ/2). Thus, unless the scatter-
ing angle is very small, the correction factor [1 + (KaTF)−2]−2 is equal to 1
and (2.53) transforms into the simple Rutherford relationship given in (2.38).
Equation (2.53) is then simplified to read

dσRuth

dΩ
=
∣∣∣∣2mα

�2

zZe2

4πε0
1
K2

∣∣∣∣
2

=
∣∣∣∣2mα

�2

zZe2

4πε0
�

2

4p2 sin2 (θ/2)

∣∣∣∣
2

=
(
Dα–N

4

)2 1

sin4 θ

2

(2.55)

and shows that the Rutherford scattering formula for a point-charge Coulomb
field approximation can also be derived through quantum mechanical rea-
soning using the Fermi second golden rule and the Born approximation but
neglecting any magnetic interaction involving spin effects.

2.4.4 Minimum Scattering Angle

We now return to (2.53) to show that for very small scattering angles θ it pro-
vides a finite result for dσRuth/dΩ in contrast to the singularity exhibited by
(2.55). The general differential cross section dσRuth/dΩ including the small-θ
correction factor [1 + (KaTF)−2]−2 is

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

1[
1 +

1
(KaTF)2

]2 ≈ D2
α–N

θ4
1[

1 +
(

�

paTFθ

)2
]2 ,

(2.56)
after introducing the expression for K given in (2.54) and using the approxi-
mation sin θ ≈ θ for small scattering angles θ.

Next we introduce the concept of θmin, the minimum cutoff scattering
angle for a given scattering experiment. Using the expressions for p and aTF

given by (1.64) and (2.49), respectively, we define θmin as

θmin =
�

paTF
=

�
3
√
Z

pa0
=

�c 3
√
Z

a0

√
EK (EK + 2E0)

, (2.57)
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where

EK is the kinetic energy of the α particle,
E0 is the rest energy of the α particle (3727.4 MeV).

Quantum-mechanically, based on Heisenberg uncertainty principle of (1.130),
we define the minimum cutoff angle θmin (also referred to as the Born screening
angle) as follows: When the classical trajectory of the incident particle is
localized within Δz ≈ aTF, the corresponding uncertainty on the transverse
momentum of the particle is Δp ≥ �/aTF, resulting in

θmin =
Δp
p

≈ �

paTF
=

λ̄

aTF
. (2.58)

For small scattering angles θ including θ = 0 the differential scattering cross
section dσRuth/dΩ given in (2.56) simplifies to

dσRuth

dΩ
=

D2
α–N

[θ2 + θ2min]
2 , (2.59)

and converges to the following finite value for θ = 0

dσRuth

dΩ
=
D2

α–N

θ4min

. (2.60)

2.4.5 Effect of the Finite Size of the Nucleus

At relatively large scattering angles θ the differential cross section dσRuth/dΩ
is smaller than that predicted by (2.38) because of the finite size of the nucleus.
Approximating the charge distribution of the atomic nucleus by a volume
distribution inside a sphere of radius R results in the following electrostatic
potentials V (r) for regions inside and outside the nucleus

V (r) =
zZe2

4πε0R

(
3
2
− 1

2
r2

R2

)
for r < R (inside the nucleus), (2.61)

V (r) =
3
8
zZe2

πε0R
for r = 0 (at the center of the nucleus), (2.62)

V (r) =
zZe2

4πε0R
for r = R (at the edge of the nucleus), (2.63)

V (r) =
zZe2

4πε0r
for r > R (outside the nucleus). (2.64)
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For use in the Fermi golden rule in conjunction with the Born approxima-
tion the four functions above can be approximated with the following single
function VFNS(r) approximating the effects of the finite nuclear size (FNS)
and covering the whole region of r from 0 to ∞

VFNS(r) =
zZe2

4πε0
1
r

(
1 − e−

2r
R

)
, (2.65)

where R is the nominal radius of the nucleus calculated from R = Ro
3
√
A,

given in (1.26).
In Fig. 2.5 the potential energy VFNS is plotted against r, the distance

from the center of the nucleus, for the gold nucleus. It converges to
(
2zZe2

)
/

(4πε0R) at r = 0 and provides a reasonable and continuous approximation
both inside the finite nucleus where r ≤ R and outside the nucleus for r > R
where the point source Coulomb approximation holds.

For comparison, also shown in Fig. 2.5 are the Coulomb point source poten-
tial (dashed curve) and the finite source potential assuming a uniform charge
distribution inside the nuclear sphere with radius R (light solid curve). At
r = 0 the Coulomb source potential exhibits a singularity and the finite
source with uniform charge density converges to

(
3zZe2

)
/ (8πε0R), as shown

in (2.62). For the gold nucleus VFNS at r = 0 converges to 64.9 MeV and the
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Fig. 2.5. Potential energy V (r) against distance r from the center of gold nucleus
with radius R = 7.3 fm. Three different potential energies are plotted: (1) Point
source nuclear potential VN(r) of (2.41) shown with dashed curve exhibiting singu-
larity at r = 0; (2) Potential for uniform charge distribution inside nuclear sphere of
(2.61) shown with light solid curve and converging to (3zZe2)/(8πεoR) = 48.7 MeV
at r = 0; and (3) Exponential function potential VFNS(r) of (2.65) approximating
potential inside and outside the finite size nucleus, shown with heavy solid curve,
and converging to (zZe2)/(2πεoR) = 64.9 MeV at r = 0
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field assuming a uniform charge distribution inside the nucleus converges to
48.7 MeV, as shown in Fig. 2.5.

Inserting (2.65) into the Born approximation of (1.129) results in the
following integral for dσRuth/dΩ

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2VFNS(r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0K

∞∫
0

(
1 − e−

2r
R

)
sin(Kr) dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0K

⎧⎨
⎩

∞∫
0

sin(Kr) dr −
∞∫
0

e−
2r
R sin(Kr) dr

⎫⎬
⎭
∣∣∣∣∣∣
2

. (2.66)

The integrals in the curly bracket of (2.66) are calculated using (2.51) to get⎧⎨
⎩

∞∫
0

sin(Kr) dr −
∞∫
0

e−
2r
R sin (Kr) dr

⎫⎬
⎭

=

⎡
⎢⎣−cos (Kr)

K
+
e−

2r
R [2R−1 sin(Kr) +K cos (Kr)]

4
R2

+K2

⎤
⎥⎦

r=∞

r=0

=
1
K

− K
4
R2

+K2

=
1

K

(
1 +

K2R2

4

) . (2.67)

2.4.6 Maximum Scattering Angle

The differential cross section dσRuth/dΩ after inserting (2.67) into (2.66) is
given as

dσRuth

dΩ
=

∣∣∣∣∣∣∣∣
2mα

�2

zZe2

4πε0
1
K2

1(
1 +

K2R2

4

)
∣∣∣∣∣∣∣∣

2

=
(
Dα–N

4

)2 1

sin4 θ

2

1⎡
⎣1 +

(
pR sin

(
1
2θ
)

�

)2
⎤
⎦

2

=
(
Dα–N

4

)2 1

sin4 θ

2

1⎡
⎣1 +

(
sin
(

1
2θ
)

θmax

)2
⎤
⎦

2 , (2.68)
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after first inserting the expression for K = 2 (p/�) sin (θ/2) of (1.124) and
then defining the maximum (cutoff) scattering angle θmax, beyond which the
scattering cross section falls significantly below the sin−4

(
1
2θ
)

expression, as

θmax =
�

pR
=

�c

R0
3
√
A
√
EK (EK + 2E0)

, (2.69)

where again

EK is the kinetic energy of the α particle,
E0 is the rest energy of the α particle (3727.4 MeV).

The maximum cutoff scattering angle θmax can be defined quantum-mechani-
cally based on the Heisenberg uncertainty principle of (1.130) as follows: When
the classical trajectory of the incident particle is localized within Δz ≈ R,
the corresponding uncertainty on the transverse momentum of the particle is
Δp ≥ �/R, leading to

θmax =
Δp
p

≈ �

pR
=
λ̄

R
=

λ

2πR
, (2.70)

where λ is the de Broglie wavelength of the incident α particle and we assume
that θmax 	 1.

2.4.7 General Relationships for Differential Cross Section
in Rutherford Scattering

In each Rutherford collision the angular deflections obey the Rutherford
expression with cutoff at θmin and θmax given by (2.57) and (2.69), respec-
tively. The typical value for �/p in the two expressions can be estimated for
α particles with a typical kinetic energy of 5.5 MeV as follows

�

p
=

�c√
EK (EK + 2E0)

≈ 197.3 MeV · fm√
5.5 (5.5 + 2 × 3727.4) MeV

≈ 1 fm, (2.71)

where we use the expression for p given in (1.64). Inserting the value for
�/p ≈ 1 fm into (2.58) and (2.69), respectively, for a typical α particle kinetic
energy of 5.5 MeV, combined with appropriate values for aTF = 0.123×105 fm
and R = 7.3 fm, results in the following angles θmin and θmax for the gold
atom

θmin =
�

paTF
=

�c

pc

3
√
Z

a0
≈ (1 fm)

3
√

79
0.5292×105 fm

≈ 8.1×10−5 rad (2.72)

and

θmax =
�

pR
=

�c

pc

1
R0

3
√
A

≈ (1 fm)
1

(1.25 fm) 3
√

197
≈ 0.14 rad. (2.73)
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We now see that the Rutherford scattering of α particles on nuclei is governed
by the following stipulation: θmin 	 θmax 	 1, justifying our assumptions in
(2.58) and (2.70) that both cutoff angles are much smaller than 1. We also
note that the ratio θmax/θmin is independent of α particle kinetic energy EK

but depends on the atomic number Z and mass number A of the scatterer
and is given as

θmax

θmin
=
aTF

R
≈ a0

R0
3
√
ZA

=
0.5292×105 fm

1.25 fm
1

3
√
ZA

≈ 0.423×105

3
√
ZA

. (2.74)

From (2.74) we estimate that the ratio θmax/θmin ranges from ∼ 5×104 for
low atomic number Z scatterers to ∼ 1.5×103 for high atomic number Z
scatterers, since 3

√
ZA ranges from 1 at low Z to about 30 at high Z. We may

thus conclude that θmax/θmin � 1 for all elements. For gold, the material used
in Geiger–Marsden experiment, 3

√
ZA amounts to ∼ 1.76×103.

The differential cross section dσRuth/dΩ for Rutherford scattering of
5.5 MeV α particles on gold nuclei is plotted in Fig. 2.6 in the form(
D−2

α–N

)
dσRuth/dΩ against the scattering angle θ in the range from 10−5

rad to π. As calculated in (2.72) and (2.73), θmin = 8.1×10−5 rad and
θmax = 0.14 rad, respectively. Three distinct regions can be identified on
the graph: small θ; intermediate θ; and large θ.

Fig. 2.6. Differential Rutherford scattering cross section [(1/D2
α−N)×(dσRuth/dΩ)]

plotted against the scattering angle θ for 5.5 MeVα particles interacting with gold.
The minimum and maximum scattering angles θmin = 8.1×10−5 rad and θmax =
0.14 rad, respectively, are identified. For θ → 0 the value of the ordinate approaches
(1/θ4min) ≈ 2.32×1016 (rad)−4
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1. In the intermediate region θmin 	 θ 	 θmax where θmin 	 θmax 	 1, the
simple Rutherford differential scattering expressions given by (2.38) and
(2.40) apply, resulting in a straight line [curves (1) and (2)] on the log–log
plot

1
D2

α–N

dσRuth

dΩ
=

1
16

1
sin4 (θ/2)

≈ 1
θ4
. (2.75)

2. In the small angle θ region (θ < θmin), as a result of nuclear screening
and after applying the Thomas–Fermi atomic model, the differential cross
section is given by

1
D2

α–N

dσRuth

dΩ
=

1

(θ2 + θ2min)
2 , (2.76)

resulting in curve (3) in Fig. 2.6 and converging to a finite value of θ−4
min =

2.32×1016 rad−4 for θ = 0.
3. In the large angle θ region where θ > θmax, (2.40) represented by curve (1)

is still linear, while (2.38) results in curve (2). A correction for finite nuclear
size and nuclear penetration of the scattered particle lowers the value of the
differential cross section from the value predicted by the simple Rutherford
equation and results from (2.68) in

1
D2

α–N

dσRuth

dΩ
=

1
16

1
sin4 (θ/2)

1(
1 +

sin2 (θ/2)
θ2max

)2 , (2.77)

shown as curve (4) in Fig. 2.6.

2.4.8 Total Rutherford Scattering Cross Section

The total cross section for Rutherford scattering can be approximated by
using the small angle approximation and integrating (2.59) over the complete
solid angle to obtain

σRuth =
∫

dσRuth

dΩ
dΩ = 2π

θmax∫
0

dσRuth

dΩ
sin θ dθ ≈ 2πD2

α–N

θmax∫
0

θ dθ

(θ2 + θ2min)
2

= πD2
α–N

θmax∫
0

d
(
θ2 + θ2min

)
(θ2 + θ2min)

2 = πD2
α–N

{
1

θ2min

− 1
θ2max + θ2min

}

= πD2
α–N

1
θ2min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1

1 +
(
θmax

θmin

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (2.78)
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In each Rutherford collision the angular deflections obey the Rutherford
expression with cutoffs at θmin and θmax given by (2.72) and (2.73), respec-
tively. The typical value for �/p in the expressions for θmin and θmax was
estimated in (2.71) for α particles with a typical kinetic energy of 5.5 MeV as
1 fm while θmin and θmax for gold atom were estimated in (2.72) and (2.73) as
8.1×10−5 rad and 0.14 rad, respectively. The cutoff angles θmin and θmax thus
satisfy the Rutherford condition stipulating that θmin 	 θmax 	 1 and, since
also θmax/θmin � 1, the total cross section for Rutherford scattering given in
(2.78) can be simplified, after inserting (2.12) and (2.57), to read

σRuth ≈ πD2
α–N

θ2min

= πa2
TF

(
Dα–N

(�/p)

)2

= πa2
TF

{
2zZe2

4πε0�υi

}2

. (2.79)

The parameters of (2.79) are as follows:

aTF is the Thomas–Fermi atomic radius
Z is the atomic number of the absorber foil,
z is the atomic number of the α particle,
υi is the initial velocity of the α particle, equal to the final velocity

of the α particle
Dα–N is the distance of closest approach between the α particle and nucleus

in a direct-hit head-on collision (b = 0).

For the Geiger–Marsden experiment with 5.5 MeV α particles scattered on
a 1μm thick gold foil we calculate the following total scattering cross section

σRuth =
πD2

α–N

θ2min

=
π
(
41×10−13 cm

)2
(
8.1×10−5

)2 = 8.05×109 b. (2.80)

2.4.9 Mean Square Scattering Angle
for Single Rutherford Scattering

Rutherford scattering is confined to very small angles and for energetic α
particles θmax 	 1 rad. An α particle traversing a gold foil will undergo a
large number of small angle θ scatterings and emerge from the foil with a
small cumulative angle Θ that represents a statistical superposition of a large
number of small angle deflections.

Large angle scattering events, on the other hand, are rare and a given
α particle will undergo at most only one such rare scattering event while
traversing the gold foil. As discussed in Sect. 2.2, Geiger and Marsden found
that only about 1 in 104 α particles traverses the 1 μm thick gold foil with a
scattering angle Θ exceeding 90◦. The range of Rutherford angular scattering
is thus divided into two distinct regions:

1. Single scattering events with large angle θ.
2. Multiple scattering events resulting in a small cumulative angle Θ.
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In the multiple-scatter region, the mean square angle for single scattering
θ2 is

θ2 =

∫
θ2

dσRuth

dΩ
dΩ

∫ dσRuth

dΩ
dΩ

=

∫
θ2

dσRuth

dΩ
dΩ

σRuth
. (2.81)

The denominator in (2.81) is the total Rutherford scattering cross section
σRuth, given in (2.79). It is proportional to the square of the distance of
closest approach (Dα–N)2 and inversely proportional to θ2min. The integral
in the numerator of (2.81) is in the small angle approximation (sin θ ≈ θ)
calculated as follows

∫
θ2

dσRuth

dΩ
dΩ = 2πD2

α–N

θmax∫
0

θ2 sin θ dθ

(θ2 + θ2min)
2 ≈ 2πD2

α–N

θmax∫
0

θ3dθ

(θ2 + θ2min)
2

= πD2
α–N

θmax∫
0

(
θ2 + θ2min

)
d
(
θ2 + θ2min

)
(θ2 + θ2min)

2 − πD2
α−N

θmax∫
0

θ2mind
(
θ2 + θ2min

)
(θ2 + θ2min)

2

= πD2
α–N

{
ln
(
θ2 + θ2min

)
+

θ2min

θ2 + θ2min

}θmax

0

= πD2
α–N

{
ln
(

1 +
θ2max

θ2min

)
+

θ2min

θ2max + θ2min

− 1
}
. (2.82)

The mean square angle θ2 of (2.81) for a single scattering event, after incor-
porating the Rutherford total scattering cross section given in (2.79), is then
given by the following relationship

θ2=θ2min ln
(

1+
θ2max

θ2min

)
− θ2minθ

2
max

θ2min + θ2max

=θ2min ln
(

1+
θ2max

θ2min

)
−
(

1
θ2min

+
1

θ2max

)−1

.

(2.83)
The expression in (2.83) can be simplified using Rutherford scattering condi-
tion stipulating that θmin 	 θmax 	 1 to obtain

θ2 ≈ 2 θ2min ln
θmax

θmin
. (2.84)

For the Geiger–Marsden experiment with 5.5 MeV α particles scattered on a
gold foil we calculate the following mean square angle for single Rutherford
scattering

θ2 ≈ 2θ2min ln
θmax

θmin
= 2 × (8.1×10−5 rad

)2
ln

0.14
8.1×10−5

= 9.8×10−8 (rad)2,

(2.85)
resulting in the following root mean square scattering angle√

θ2 = 3.13×10−4 rad. (2.86)
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2.4.10 Mean Square Scattering Angle
for Multiple Rutherford Scattering

Since the successive scattering collisions are independent events, the central-
limit theorem of statistics (see Sect. 2.7.1) shows that for a large number n >
20 of such collisions, the distribution in angle will be Gaussian around the
forward direction [see (2.2)] with a cumulative mean square scattering angle
Θ2 related to the mean square scattering angle θ2 for a single scattering event
given in (2.83). The cumulative mean square angle Θ2 and the mean square
angle θ2 for a single scattering event are related as follows

Θ2 = nθ2 (2.87)

where n, the number of scattering events, is

n =
Na

V
σRutht = ρ

NA

A
σRutht = πρ

NA

A

D2
α–N

θ2min

t. (2.88)

In (2.88) the parameters are as follows:

σRuth is the total Rutherford cross section given by (2.78),
Na/V is the number of atoms per volume equal to ρNA/A,

ρ is the density of the foil material,
t is the thickness of the foil,
A is the atomic mass number,

NA is the Avogadro number (NA = 6.023×1023 mol−1),
Dα–N is the distance of closest approach between the α particle and the

nucleus in a direct hit interaction where b = 0 [see (2.12)],
θmin is the cutoff angle defined in (2.57).

The mean square angle Θ2 of the Gaussian distribution after combining
(2.85), (2.87) and (2.88) is then given by

Θ2 = 2πρ
NA

A
t D2

α–N ln
θmax

θmin
, (2.89)

indicating that the mean square angle Θ2 for multiple Rutherford scatter-
ing increases linearly with the foil thickness t. Inserting the expressions for
θmin and θmax of (2.57) and (2.69), respectively, into (2.89), we now get the
following expression for the mean square angle Θ2 in Rutherford scattering

Θ2 = 2πρ
NA

A
t D2

α–N ln
1.4a0

Ro
3
√
AZ

= 2πρ
NA

A
t

{
zZe2

4πε0EK

}2

ln
1.4a0

R0
3
√
AZ

,

(2.90)
where a0 = 0.5292 Å and R0 = 1.25 fm are the Bohr radius constant of (3.4)
and the nuclear radius constant of (1.26), respectively.
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For the Geiger–Marsden experiment with 5.5 MeV α particles scattered
on a gold foil we calculate the following mean square angle for multiple
Rutherford scattering

Θ2 = 2πρ
NA

A
t D2

α–N ln
θmax

θmin

= 2π × 19.3 (g/cm3)
6.022×1023 (mol)−1

197 (g/mol)
10−4 cm (41×10−13 cm)2

× ln
0.14

8.1×10−5
= 46.4×10−4 (rad)2, (2.91)

resulting in the following root mean square scattering angle for multiple
scattering

√
Θ2 = 0.068 rad = 3.9◦. (2.92)

2.4.11 Importance of the Rutherford Scattering Experiment

Tables 2.1–2.3 summarize the parameters of the Geiger–Marsden α-particle
scattering experiment, listing the important parameters of the α particles;
the gold atom; and Rutherford scattering, respectively, based on expressions
derived in this section. All data are calculated for Rutherford scattering of
5.5 MeV α particles on gold nuclei.

The α-particle scattering experiment on a thin gold foil conducted by Hans
Geiger and Ernest Marsden under the guidance of Ernest Rutherford seems
rather mundane, yet it is one of the most important experiments in the history
of physics. Nature provided Geiger and Marsden with ideal conditions to probe
the nucleus with radon-222 α particles with kinetic energy of 5.5 MeV.

Table 2.1. Properties of α particles used in the Geiger–Marsden experiment

Properties of α particles

Atomic number z = 2
Rest energy E0 = mαc

2 = 3727.4 MeV
Kinetic energy EK = E − E0 = 5.5 MeV

Normalized velocity
υα

c
=

√√√√√1 − 1(
1 +

EK

mαc2

)2
= 0.054 (2.7)

Momentum p =
1

c

√
E2 − E2

0 =
1

c

√
E2

K + 2EKE0 = 202.6 MeV/c (1.64)

Reduced Planck
constant divided
by momentum

�

p
=

�c

pc
=

197.3 MeV · fm
202.6 MeV

= 0.974 fm ≈ 1 fm (2.71)
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Table 2.2. Properties of gold atom of importance in Rutherford scattering

Properties of gold atom 197
79Au

Atomic number Z = 79
Atomic mass number A = 197
Density ρ = 19.3 g/cm3

Thomas–Fermi radius aTF =
a0

3
√
Z

=
0.5292 Å

3
√

79
= 0.123 Å (2.49)

Nuclear radius R = R0
3
√
A = (1.25 fm) 3

√
197 = 7.3 fm (2.13)

Thickness of gold foil t = 10−4 cm = 1 μm

Table 2.3. Parameters of Geiger–Marsden experiment. α particles with kinetic
energy of 5.5 MeV undergo Rutherford scattering on a 1 μm thick gold foil

Parameters of Rutherford scattering

Distance of closest
approach

Dα−N =
zZe2

4πε0

1

EK
= 41 fm (2.12)

Minimum scattering angle θmin =
�

p

1

aTF
=

1 fm

0.123×105 fm

= 8.1×10−5 rad (2.72)

Maximum scattering angle θmax =
�

p

1

R
=

1 fm

7.3 fm
≈ 0.14 rad (2.73)

Ratio
θmax

θmin

θmax

θmin
=

0.14

8.1×10−5
= 1.766×103 (2.74)

Differential Rutherford
cross section at θ = 0

dσRuth

dΩ

∣∣∣∣
θ=0

=
D2

α−N

θ4min

= 3.9×1017 b/sr (2.76)

Rutherford cross section σRuth = π
D2

α−N

θ2min

= 8.05×109 b (2.79)

Mean square scattering
angle for single
scattering

θ2 ≈ 2θ2min ln
θmax

θmin
= 9.8×10−8 (rad)2 (2.80)

Root mean square angle
for single scattering

√
Θ2 = 3.13×10−4 rad (2.86)

Mean square scattering
angle for multiple
scattering

Θ2 = 2πρ
NA

A
tD2

α−N ln
θmax

θmin
= nθ2

= 46.4×10−4 (rad)2

(2.89)

Root mean square angle
for multiple scattering

√
Θ2 = 0.068 rad = 3.9◦ (2.92)

Number of scattering
events

n = πρ
NA

A

D2
α−N

θ2min

t ≈ 47500 (2.88)
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The radon-222 α particles allowed penetration of the atom but their energy
was neither too large to cause nuclear penetration and associated nuclear
reactions nor large enough to require relativistic treatment of the α-particle
velocity. Since artificial nuclear reactions and the relativistic mechanics were
not understood in 1909 when the Geiger–Marsden experiment was carried out,
Rutherford would not be able to solve with such elegance the atomic model
question, if the kinetic energy of the α particles used in the experiment was
much larger than 5.5 MeV thereby causing penetration of the gold nucleus or
much smaller than 5.5 MeV thereby preventing penetration of the atom.

Geiger–Marsden experiment provided the stimulus for development of
nuclear physics and will remain forever on the short list of milestones in
physics. It also served as the first known method for estimation of the upper
limit of nuclear size through the calculation of the distance of closest approach
Dα–N but was soon eclipsed by new and more sophisticated scattering exper-
iments that are now used for this purpose. However, the basic principles of
the original technique are still used in the so-called Rutherford backscattering
spectroscopy (RBS) which is an analytical tool used in materials science for
determining structure and composition of materials by measuring backscat-
tering of a beam of high energy ions (protons or helium ions) accelerated in a
linear accelerator.

2.5 Mott Scattering

In comparison with heavy charged particles, energetic electrons are much
better suited for studies of nuclear size and charge distribution. However,
to obtain agreement with experimental results, the theoretical treatment of
the scattering process must go beyond the rudimentary Rutherford-Coulomb
point-source scattering approach and account for various other parameters
such as:

1. Electron spin
2. Relativistic effects
3. Quantum effects
4. Recoil of the nucleus
5. Nuclear spin
6. Finite size of the nucleus

Accounting for these additional parameters refines the scattering theory
beyond the level achieved by Rutherford but also makes it significantly more
complex. For example, the finite size of the nucleus implies that the target is
not a point charge but consists of its own structure containing protons and
neutrons which, in turn, have their own constituents referred to as quarks.

At low electron energies where the electron does not penetrate the nucleus
the electron scattering by the nucleus can be described with the standard
Rutherford-type scattering formula [see (2.39)]
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dσRuth

dΩ
=
(
De–N

4

)2 1

sin4 θ

2

=
(
De–N

2

)2 1
(1 − cos θ)2

=
(
Zα�c

4EK

)2 1

sin4 θ

2

,

(2.93)

where

De–N =
Ze2

4πε0
1
2
mυ2

(2.94)

is here referred to as the effective characteristic distance for the electron–
nucleus scattering (see Sect. 2.6.2) in contrast to the distance of closest
approach Dα–N used in Rutherford scattering of α particles, as discussed
in Sect. 2.3.2. In the expression for De–N of (2.93), m is the total mass of
the incident electron in contrast to me which is the rest mass of the electron
(m = me/

√
1 − (υ/c)2), and υ is the velocity of the incident electron.

At very high electron energies (above 100 MeV) electrons are highly rela-
tivistic and two corrections to the simple Rutherford-type formula (2.93) are
required: correction for electron spin and correction for nuclear recoil.

2.5.1 Correction for Electron Spin

The effect of the electron magnetic moment introduces to the Rutherford
relationship for electron scattering given in (2.93) a spin correction factor
expressed as

fspin = 1 − β2 sin2 θ

2
, (2.95)

which, for relativistic electrons where β = υ/c→ 1, simplifies to

fspin ≈ 1 − sin2 θ

2
= cos2

θ

2
=

1 + cos θ
2

. (2.96)

For relativistic electrons (υ ≈ c) the spin correction factor fspin does not
depend on the kinetic energy EK of the incident electron but depends on
the scattering angle θ and, as shown in Fig. 2.7, ranges from fspin = 1 for
θ = 0 through fspin = 0.85 for θ = 45◦, fspin = 0.5 for θ = 90◦ and fspin =
0.146 for θ = 135◦ to fspin = 0 for θ = 180◦. Thus, at small scattering
angles θ the electron spin effects are negligible, while at large scattering angles
they significantly decrease the differential scattering cross section from that
given by the Rutherford expression of (2.93), essentially disallowing electron
backscattering at θ = 180◦.

Figure 2.8 plots, for a point-like Coulomb scattering source, the differen-
tial cross section for electron–nucleus scattering without spin correction in
curve (1) and with spin correction in curve (2). The following expressions are
plotted:
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Fig. 2.7. Spin correction factor fspin of (2.96) against scattering angle θ for electron–
nucleus (Mott) scattering

Fig. 2.8. Normalized Mott differential scattering cross section dσMott/dΩ against
scattering angle θ. Curve (1) is the Rutherford component without electron spin
correction (i.e., fspin = 1); curve (2) is for the Rutherford component corrected for
the electron spin effect given as fspin = cos2

(
1
2
θ
)

= 1
2
(1 + cos θ)
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16
D2

e–N

dσMott

dΩ
=

16
D2

e–N

dσRuth

dΩ
fspin =

1

sin4 θ

2

× 1 + cos θ
2

, (2.97)

where

curve (1) is without spin correction or fspin = 1 independent of θ
curve (2) is with spin correction given in Fig. 2.7 and (2.96) as fspin =

cos2(θ/2).

2.5.2 Correction for Recoil of the Nucleus

The nuclear recoil correction factor frecoil is given as the ratio between the
kinetic energy of the scattered (recoil) electron E′

K and the kinetic energy
of the incident electron EK. The kinetic energy of the scattered electron E′

K

is determined from considerations of conservation of energy and momentum
during the scattering process. The considerations resemble the derivation of
scattered photon energy and recoil electron kinetic energy in Compton effect
(see Sect. 7.3.3).

The schematic diagram of the scattering process is shown in Fig. 2.9 where
an incident electron with momentum p and kinetic energy EK is scattered,
essentially elastically, through a scattering angle θ to end with momentum p′

and kinetic energy E′
K. To be useful as a nuclear probe and to have a relatively

small de Broglie wavelength (of the order of 10 fm) the electron must be of
sufficiently high kinetic energy and is thus relativistic. The conservation of
energy during the scattering process is written as follows

Mc2 + EK +mec
2 = ΔEK +Mc2 + E′

K +mec
2 (2.98)

or

EK = ΔEK + E′
K, (2.99)

Fig. 2.9. Schematic representation of electron–nucleus (Mott) scattering



112 2 Coulomb Scattering

where

ΔEK is the recoil kinetic energy transferred from the incident electron to
the nucleus,

Mc2 is the rest energy of the nucleus,
mec

2 is the rest energy of the incident electron.

Using the law of cosines on the vector diagram of Fig. 2.9, the conservation
of momentum p = p′ + Δp, with an assumption that in elastic scattering
|p| ≈ |p′|, can be stated as follows

|Δp|2 = |p|2 + |p′|2 − 2 |p| |p′| cos θ ≈ 2 |p|2 (1 − cos θ), (2.100)

where Δp is the recoil momentum of the nucleus. The recoil kinetic energy
ΔEK is given as

ΔEK ≈ |Δp|2
2M

=
|p|2 (1 − cos θ)

M
=

E2
K

Mc2

(
1 +

2mec
2

EK

)
(1 − cos θ), (2.101)

using the expression for the incident electron momentum magnitude |p| = p
of (1.64) given as

p =
1
c

√
E2

K + 2EKmec2 =
EK

c

√
1 +

2mec2

EK
. (2.102)

Recognizing that in the electron scattering experiment mec
2 	 EK 	 Mc2

and E′
K = EK − ΔEK we now get the following expression for the recoil

correction frecoil

frecoil =
E′

K

EK
=

1

1 +
EK

Mc2
(1 − cos θ)

=
1

1 +
2EK

Mc2
sin2 θ

2

. (2.103)

The recoil correction factor frecoil depends on the kinetic energy EK of the
incident electron, the rest mass of the scattering nucleus Mc2, and the scat-
tering angle θ. For small scattering angles frecoil ≈ 1 irrespective of EK and
then, for a given EK/Mc2, it decreases with θ increasing from 0 to 180◦. Since
generally Mc2 � EK, unless we are dealing with very low atomic number
scatterer and very high incident electron kinetic energy, it is reasonable to
assume that frecoil ≈ 1.

Figure 2.10 plots the relationship between the kinetic energy of the scat-
tered electron E′

K and the kinetic energy of the incident electron EK for four
scattering angles (0, 1

4π,
1
2π, and π) of Mott scattering on hydrogen and

gold nuclei in the kinetic energy range from 1 MeV to 106 MeV. In the
electron kinetic energy of interest in medical physics (up to 30 MeV), the
kinetic energy of the scattered electron E′

K is equal to the kinetic energy of
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Fig. 2.10. Scattered electron kinetic energy E′
K = frecoilEK against the incident

electron kinetic energy EK for Mott scattering on hydrogen and gold nuclei for four
different scattering angles (0, 1

4
π, 1

2
π, and π). The recoil correction frecoil is given

in (2.103)

the incident electron EK for all scattering materials and all scattering angles
θ. This implies that frecoil = 1 for all situations of interest in medical physics.

From Fig. 2.10 we arrive at several other conclusions, of little interest in
medical physics but relevant to high energy physics:

1. frecoil = 1 for θ = 0 at all kinetic energies of the incident electron from 0
to ∞.

2. For backscattered electron (θ = π), its kinetic energy saturates at 1
2Mc2

whereM is the rest mass of the recoil nucleus. This results in frecoil → 0 but
happens only at very large incident electron kinetic energies, way outside
of the energy region of interest in medical physics.

3. Similarly, for side-scattered electron (θ = 1
2π), its kinetic energy saturates

at Mc2 at very high incident electron kinetic energy.
4. The findings in points (2) and (3) are similar to relationships observed in

Compton scattering (see Sect. 7.3.3) except that in Compton scattering the
recoil particle is an electron which has a significantly smaller rest energy
than a nucleus. This makes the recoil of the Compton electron of great
importance to medical physics, since a significant fraction of the incident
photon energy is transferred to the recoil electron in the photon energy
range of interest in medical physics.
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2.5.3 Differential Cross Section for Mott Scattering
of Electrons on Point-Like Atomic Nuclei

Accounting for the spin correction of (2.96) and the nuclear recoil correction
of (2.103) we now write the Mott expression for the differential cross section
in electron–nucleus scattering as

dσMott

dΩ
=

dσRuth

dΩ
fspinfrecoil =

dσRuth

dΩ

{
cos2

θ

2

}
× 1

1 +
EK

Mc2
(1 − cos θ)

,

(2.104)
where dσRuth/dΩ is the Rutherford electron–nucleus scattering formula given
in (2.93) and valid at very low electron kinetic energies. The most important
component of (2.104) is the Rutherford component; the product of the two
corrections to the Rutherford component (the electron spin quantum effect
fspin and the nuclear recoil frecoil) is of the order of unity except when the
scattering angle θ is close to 180◦ or when the kinetic energy of the incident
electron is very large.

2.5.4 Hofstadter Correction for Finite Nuclear Size
and the Form Factor

Figure 2.11 shows, for scattering of 125 MeV electrons on gold nuclei, several
differential cross sections plotted against the scattering angle θ:

Fig. 2.11. Elastic scattering of 125 MeV electrons on gold nuclei. Curve (R) is
for data calculated with Rutherford equation (2.93) without spin or nuclear recoil
correction. Curve (M) is for Rutherford equation incorporating spin correction of
(2.96) and nuclear recoil correction of (2.103). Data points are Hofstadter’s measured
data
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1. Curve (R) represents the calculated simple Rutherford differential cross
section (2.93) assuming a point-like Coulomb field and ignoring the electron
spin effects as well as nuclear recoil.

2. Curve (M) represents the Mott differential scattering cross section (2.104)
assuming a point-like Coulomb source and incorporating corrections for
electron spin (fspin) and nuclear recoil (frecoil ≈ 1).

3. Data points represent data that Robert Hofstadter measured in the early
1960s at Stanford University. While at small scattering angles Hofstadter’s
measurements agree with the Mott theory, for scattering angles θ exceeding
45◦ the measured points show significantly lower values than the theory,
and the discrepancy increases with increasing θ.

Hofstadter carried out extensive experimental and theoretical studies of
electron–nucleus scattering and for this work received a Nobel Prize in Physics
in 1961. He explained the discrepancy between his measured data and Mott
theory of Fig. 2.11 by expanding the Mott expression of (2.104) to account
for the finite size of the nucleus using a form factor F (K) correction. The
experimental differential cross section for elastic electron–nucleus scattering
then becomes expressed as

dσexp

dΩ
=

dσMott

dΩ
|F (K)|2 =

dσRuth

dΩ

{
cos2

θ

2

}
× 1

1 +
EK

Mc2
(1 − cos θ)

|F (K)|2 ,

(2.105)
where K is proportional to the momentum transferred from incident electron
to the nucleus, or

K = |K| =
1
�

√
|pi|2 + |pf |2 − 2 |pi| |pf | cos θ =

1
�
2p sin

θ

2
=

2
λ̄

sin
θ

2
. (2.106)

The form factor F (K) represents a Fourier transform of the nuclear charge
density distribution ρ(r) assumed to be spherically symmetric. In the Born
approximation (see Sect. 1.23.6), F (K) is expressed as

F (K) =
∫ ∫ ∫

ρ(r) eiKrdV =

∞∫
0

π∫
0

2π∫
0

ρ(r) eiKr cos θr2 dr sin θ dθ dφ

= 2π

∞∫
0

r2ρ(r)

⎧⎨
⎩

1∫
−1

eiKr cos θd(cos θ)

⎫⎬
⎭ dr

= 2π

∞∫
0

r2ρ(r)
eiKr − e−iKr

iKr
dr = 2π

∞∫
0

r2ρ(r)
sin Kr
Kr

dr, (2.107)
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with the normalization

∫
ρ(r)dV =

∞∫
0

+1∫
−1

2π∫
0

r2ρ(r)dφd(cos θ)dr = 4π

∞∫
0

ρ(r)r2dr = 1. (2.108)

The magnitude of the form factor F (K) is determined experimentally by
comparing the measured cross section to the Mott cross section for point-like
nucleus. The measurements are carried out for fixed electron beam energy at
various scattering angles θ, i.e., at various values of |K| = K. In practice, how-
ever, F (K) can be measured only over a limited range of momentum transfer
|K| /� so that a full functional dependence of F (K) cannot be determined
for use in inverse Fourier transform which would yield the nuclear charge
distribution ρ(r)

ρ(r) =
1

(2π)3

∫
F (K)e−iKrdV . (2.109)

Much effort has been spent on experimental determination of nuclear size
and charge distribution. The current consensus is that nuclei are not charged
spheres with a sharply defined surface. Rather, the nuclear charge density ρ(r)
can be described by a Fermi function with two parameters (α and β) both of
the order of 1 fm

ρ(r) =
ρ(0)

1 + e(r−α)/β
. (2.110)

As a guide to nuclear size, the nucleus is commonly approximated as a
homogeneously charged sphere with radius R given as

R = R0
3
√
A, (2.111)

where A is the atomic mass number and R0 is the nuclear radius constant
amounting to 1.25 fm, as discussed in Sect. 1.16.1.

2.6 General Aspects of Elastic Scattering
of Charged Particles

Most interactions of energetic charged particles as they traverse an absorber
can be characterized as elastic Coulomb scattering between an energetic
charged particle and the atoms of the absorber. The charged particles of inter-
est in medical physics are either light charged particles such as electrons and
positrons or heavy charged particles such as protons, α particles, and heav-
ier ions. Negative pions π− were included in the group of charged particles
as intermediate mass particles; however, interest in their use in radiotherapy
has waned during the past 20 years with the advent of proton radiotherapy
machines.
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Charged particles can have elastic scattering interactions with orbital elec-
trons as well as nuclei of the absorber atoms. The Coulomb force between the
charged particle and the orbital electron or the nucleus of the absorber gov-
erns the elastic collisions and is either attractive or repulsive depending on
the polarity of the interacting charged particles. In either case the trajectory
of the projectile is a hyperbola: for an attractive Coulomb force the target
is in the inner focus of the hyperbola; for a repulsive Coulomb force the tar-
get is in the outer focus of the hyperbola. An elastic collision between an
α particle and a nucleus of an absorber is shown schematically in Fig. 2.3
(Rutherford scattering) in Sect. 2.3.1; an elastic collision between a heavy
charged particle and an orbital electron is shown schematically in Fig. 6.3 in
Sect. 6.4.1.

Various investigators worked on theoretical aspects of elastic scattering
of charged particles, most notably: Rutherford with Geiger and Marsden on
α particle scattering; Mott on electron–nucleus scattering as well as on non-
relativistic electron–orbital electron scattering; Møller on relativistic electron–
orbital electron scattering; Bhabha on positron–orbital electron scattering;
and Molière on multiple scattering.

As shown in previous sections of this chapter, Rutherford scattering the-
ory forms the basis for all charged particle single scattering theories. However,
various corrections must be applied to Rutherford’s formalism when moving
from a discussion of classical α particle scattering on an infinite-mass gold
nucleus to a discussion of relativistic electrons scattered on finite size absorber
nuclei. To highlight the various different projectiles, scattering centers, and
corrections, in addition to Rutherford scattering, we speak of Mott scatter-
ing, Møller scattering, Bhabha scattering, Hofstadter scattering, etc in single
scattering events and of Molière scattering when we consider the composite
effect of scattering on a large number of scattering centers.

The particle interactions in absorbers are characterized by various param-
eters that describe single and multiple scattering events:

1. For single scattering we define the differential and total scattering cross
section, effective characteristic distance, and mean square scattering angle.

2. For multiple scattering we define the mean square scattering angle and the
mass scattering power.

2.6.1 Differential Scattering Cross Section
for a Single Scattering Event

The differential scattering cross section dσ/dΩ for a single scattering event
between two charged particles was discussed in relation to Rutherford scat-
tering in Sect. 2.3. In the small scattering angle θ approximation where
sin(1

2θ) ≈ 1
2θ, the differential scattering cross section based on Rutherford’s
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seminal work is in general expressed as

dσ
dΩ

=
D2

(θ2 + θ2min)2
, (2.112)

where θmin is a cutoff angle; a minimum angle below which the unscreened
point Coulomb field expression is no longer valid; D is a scattering parameter
generally referred to as the characteristic scattering distance, such as, for
example, Dα–N defined as the distance of closest approach between the α
particle and the nucleus in Rutherford scattering.

2.6.2 Characteristic Scattering Distance

Each elastic scattering event between two particles (energetic projectile and
stationary target) can be characterized by a scattering parameter referred
to as the characteristic scattering distance D. This distance depends on the
nature of the specific scattering event as well as on the physical properties
of the scattered particle and the atomic number Z of the scattering material.
The differential scattering cross section of (2.38) was derived for Rutherford
scattering of α particles on gold nuclei in Sect. 2.4.1 and is a good approxi-
mation for scattering of both heavy and light charged particles, as long as the
characteristic scattering distance D, appropriate for the particular scattering
event, is used in the calculations.

Characteristic Scattering Distance
for Rutherford Scattering

In Rutherford scattering of a α particle (projectile) on a nucleus (target) the
characteristic scattering distance D, as shown in (2.12) and (2.30), is the
distance of closest approach Dα–N between the α particle and the nucleus in
a direct-hit (head on) collision (b = 0, θ = π)

Dα–N =
zZe2

4πε0
1

(EK)i
=
zZe2

4πε0
1

mαυ
2
α

2

=
2zZe2

4πε0
1

pαυα
, (2.113)

where

z is the atomic number of the α particle,
Z is the atomic number of the absorber atom,

(EK)i is the initial kinetic energy of the α particle,
mα is the mass of the α particle,
υα is the initial and final velocity of the α particle,
pα is the momentum of the α particle
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Characteristic Scattering Distance
for Electron–Nucleus Scattering

In electron (projectile)–nucleus (target) elastic scattering the characteristic
scattering distance De–N, similarly to (2.113), is given as follows (note that
z = 1 for the electron)

De–N =
Ze2

4πε0
1

mυ2

2

=
2Ze2

4πε0
1
pυ

=
2Ze2

√
1 − β2

4πε0(mec2β2)
=

2Zre
√

1 − β2

β2
, (2.114)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υ/c.
υ is the velocity of the electron.
p is the momentum of the electron.
Z is the atomic number of the absorber.
re is the classical radius of the electron (2.82 fm).

Characteristic Scattering Distance
for Electron–Orbital Electron Scattering

In electron (projectile)–orbital electron (target) scattering the characteristic
scattering distance De–e, similarly to (2.114), is given by (note that Z = 1 for
orbital electron)

De−e =
e2

4πε0
1

mυ2

2

=
2e2

4πε0
1
pυ

=
2e2
√

1 − β2

4πε0(mec2β2)
=

2re
√

1 − β2

β2
, (2.115)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υ/c.
υ is the velocity of the electron.
p is the momentum of the electron.
re is the classical radius of the electron (2.82 fm).

Characteristic Scattering Distance
for Electron–Atom Scattering

The characteristic scattering distance De−a for electron (projectile) scattering
on absorber atoms (target) has two components: the electron–nucleus (e–N)
component of (2.114) and the electron–orbital electron (e–e) component of
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(2.115). The differential cross section for elastic electron scattering on atoms
of an absorber consists of the sum of the differential electron–nucleus cross
section and Z times the differential electron–orbital electron cross section, i.e.,

dσ
dΩ

∣∣∣∣
e−a

=
dσ
dΩ

∣∣∣∣
e−N

+ Z
dσ
dΩ

∣∣∣∣
e−e

=
D2

e−a

(θ2 + θ2min)2
, (2.116)

where De−a is the characteristic scattering distance for electron-atom elastic
scattering given as

D2
e−a = D2

e−N + ZD2
e−e. (2.117)

The characteristic scattering distance De−a is determined from (2.117) after
inserting (2.114) and (2.115) to get

De−a =
√
D2

e−N + ZD2
e−e =

e2

4πε0

√
Z(Z + 1)
mυ2

2

=
2e2

4πε0

√
Z(Z + 1)
pυ

=
2re
√
Z(Z + 1)

√
1 − β2

β2
=

2re
√
Z(Z + 1)
γβ2

, (2.118)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υe/c.
υe is the velocity of the electron.
p is the momentum of the electron.
Z is the atomic number of the absorber.
re is the classical radius of the electron (2.82 fm).

A summary of characteristic scattering distances D for four elastic Coulomb
scattering events including scattering of: (1) α particle on nucleus (Rutherford
scattering); (2) electron on nucleus (Mott scattering); (3) electron on atomic
orbital electron; and (4) electron on atom is given in Table 2.4.

2.6.3 Minimum and Maximum Scattering Angles

The minimum and maximum scattering angles θmin and θmax, respectively,
are angles where the deviation from point Coulomb nuclear field becomes
significant. These departures from the point Coulomb field approximation
appear at very small and very large scattering angles θ, corresponding to very
large and very small impact parameters b, respectively.

At very small angles θ the screening of the nuclear charge by atomic orbital
electrons decreases the differential cross section and at large angles θ the
finite nuclear size or nuclear penetration by the charged particle decreases the
differential cross section, as discussed for Rutherford scattering in Sects. 2.4.4
and 2.4.6, respectively.
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Table 2.4. Characteristic scattering distances D for four elastic Coulomb scattering
events. Note that m in De−N, De−e, and De−a stands for the total mass of the
electron and not the rest mass of the electron

Elastic Coulomb
scattering

Characteristic scattering distance D

α Particle–
nucleus
(Rutherford)

Dα−N =
zZe2

4πε0
mαυ

2
α

2

=
zZe2

4πε0(EK)i
See (2.12)
and (2.113)

Electron–nucleus
(Mott)

De−N =
Ze2

4πε0
mυ2

e

2

=
2Zre

√
1 − β2

β2
See (2.94)
and (2.114)

Electron–orbital
electron

De−e =
e2

4πε0
mυ2

e

2

=
2re
√

1 − β2

β2
See (2.115)

Electron–atom De−a =
e2
√
Z(Z + 1)

4πε0
mυ2

e

2

=
2re
√
Z(Z + 1)

√
1 − β2

β2
See (2.116)

As evident from Figs. 2.3 and 6.3, the relationship governing the change
of momentum Δp in elastic scattering is given as follows

sin
θ

2
=

Δp
pi
, (2.119)

where

θ is the scattering angle,
pi is the particle initial momentum at a large distance from the scattering

interaction.

In the small angle θ approximation, we get the following simple relationship
from (2.22) and (2.119) recognizing that sin θ ≈ θ

θ ≈ Δp
pi
. (2.120)

As shown in (2.57) and (2.69), θmin and θmax, respectively, are given by the
following quantum-mechanical expressions

θmin ≈ Δp
pi

≈ �

aTFpi
=

�

pi

3
√
Z

a0
=

�c

a0

3
√
Z√

EK(EK + 2E0)

≈ 3.723×10−3 MeV 3
√
Z√

EK(EK + 2E0)
(2.121)
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and

θmax ≈ Δp
pi

≈ �

Rpi
=

�

piR0
3
√
A

=
�c

R0

1
3
√
A
√
EK(EK + 2E0)

≈ 1.578×102 MeV
3
√
A
√
EK(EK + 2E0)

, (2.122)

where

pi is the initial momentum of the charged particle.
aTF is the Thomas–Fermi atomic radius equal to ∼ a0Z

−1/3 with a0 the
Bohr radius constant and Z the atomic number of the absorber, as
given in (2.49).

a0 is the Bohr radius constant defined in (3.4).
R is the radius of the nucleus equal to R0A

1/3 with R0 the nuclear radius
constant (R0 = 1.25 fm), as discussed in Sect. 1.16.1.

EK is the initial kinetic energy of the charged particle related to the initial
momentum of the charged particle through (1.64).

E0 is the rest energy of the charged particle.
A is the atomic mass number of the absorber.

Figure 2.12a shows the maximum scattering angle θmax against kinetic
energy EK given in (2.122) in the range from 1 keV to 1000 MeV for electron
and α particle elastic scattering in carbon, aluminum, copper, silver, and lead.
Figure 2.12b shows the minimum scattering angle θmin given in (2.121) under
same conditions as those in Fig. 2.12a. Based on (2.121) and (2.122) as well
as Fig. 2.12 we now make the following observations about the minimum and
maximum scattering angles θmin and θmax, respectively:

1. In general, θmin and θmax depend on the kinetic energy EK and rest energy
E0 of the elastically scattered projectile as well as the atomic number Z
and atomic mass number A of the target. However, the ratio θmax/θmin is
independent of the incident particle physical properties and depends solely
on the atomic number Z and the atomic mass A of the absorber target as
follows

θmax

θmin
=

a0

R0
3
√
A 3
√
Z

≈ 0.5292 Å
1.25×10−5 Å 3

√
AZ

≈ 0.423×105

(AZ)1/3
=

Const
3
√
AZ

.

(2.123)
2. For a given EK the maximum scattering angle θmax is inversely propor-

tional to Z1/3 since θmax ∝ A−1/3 and A ≈ 2Z and the minimum scattering
angle θmin is proportional to Z1/3.

3. For kinetic energies EK of the projectile much smaller than its rest energy
E0, or EK 	 E0, both θmin and θmax for a given target are proportional to
1/

√
EK, as shown in Fig. 2.12 in the whole EK energy range for α particles

and at kinetic energies EK below 100 keV for electrons.
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Fig. 2.12. Maximum scattering angle θmax in (a) and minimum scattering angle
θmin in (b) against kinetic energy EK for electrons and α particles scattered on
carbon, aluminum, copper, silver, and gold

4. For kinetic energies EK of the projectile much larger than its rest energy
E0, or EK � E0, both θmin and θmax for a given target are proportional to
1/EK, as shown in Fig. 2.12 for electrons in the energy range above 10 MeV.

5. For Rutherford scattering of 5.5 MeV α particles on gold nucleus Au-197
(Geiger–Marsden experiment) we obtain from (2.121) a minimum scat-
tering angle θmin of 8.1×10−5 rad, as given in (2.72), and from (2.122)
a maximum scattering angle of θmax of 0.14 rad, as given in (2.73), in
agreement with the general condition that θmin 	 θmax 	 1.
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6. For 10 MeV electrons scattered on gold-197, on the other hand, we find sig-
nificantly larger θmin from (2.121) and θmax from (2.122) at 1.5×10−3 rad
and 2.6 rad, respectively. However, we may still assume that θmin 	 θmax.
Note: For θmax calculated from (2.122) larger than unity, θmax is usually
set equal to 1.

7. The factor (AZ)1/3 ranges from unity for hydrogen to ∼28 for high atomic
number absorbers such as uranium with Z = 92 and A = 235.

2.6.4 Total Cross Section for a Single Scattering Event

The total cross section σ for a single scattering event, similarly to the discus-
sion of Rutherford cross section given in Sect. 2.4.8, is approximated as follows
using the small angle approximation sin θ ≈ θ:

σ =
∫

dσ
dΩ

dΩ ≈ 2πD2

θmax∫
0

θ dθ
(θ2 + θ2min)2

= πD2

θmax∫
0

d(θ2 + θ2min)
(θ2 + θ2min)2

= −πD2

[
1

θ2 + θ2min

]θmax

0

= πD2

{
1

θ2min

− 1
θ2max + θ2min

}

= πD2 1
θ2min

{
1 − 1

1 + (θmax/θmin)2

}
. (2.124)

Since θmax/θmin � 1 even for very high atomic number materials, we can
simplify the expression for total cross section σ to read

σ ≈ πD2

θ2min

, (2.125)

where

D is the effective characteristic distance discussed in Sect. 2.6.2,
θmin is the minimum scattering angle discussed in Sect. 2.6.3.

2.6.5 Mean Square Scattering Angle for a Single Scattering Event

The mean square scattering angle for a single scattering event θ2 is defined
by the following general relationship

θ2 =

θmax∫
0

θ2
dσ
dΩ

dΩ

θmax∫
0

dσ
dΩ

dΩ
=

2π
σ

θmax∫
0

θ2
dσ
dΩ

sin θ dθ, (2.126)
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where

dσ
/
dΩ is the differential cross section for the single scattering event, given

in (2.112),
σ is the total cross section for the single scattering event [see (2.124)

and (2.125)],
θ is the scattering angle for the single scattering event,

θmax is the maximum scattering angle calculated from (2.122). It is taken
as the actual calculated value when the calculated θmax is smaller
than 1 and is taken as unity when the calculated θmax exceeds 1.

The mean square angle θ2 for a single scattering event may be approxi-
mated in the small angle approximation as follows

θ2 =
2πD2

σ

θmax∫
0

θ3 dθ

(θ2 + θ2min)
2 =

πD2

σ

θmax∫
0

(θ2 + θ2min) d(θ2 + θ2min)

(θ2 + θ2min)
2

− πD2

σ

θmax∫
0

θ2min d(θ2 + θ2min)

(θ2 + θ2min)
2

=
πD2

σ

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + (θmin/θmax)2

}
(2.127)

or, after inserting the expression for σ given in (2.125)

θ2 = θ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + (θmin/θmax)2

}

= θ2min ln
(

1 +
θ2max

θ2min

)
− θ2minθ

2
max

θ2min + θ2max

. (2.128)

with θmin minimum scattering angle defined in (2.121) and θmax largest angle
to be still considered a small angle in single scattering and defined in (2.122).
At low energies θmax calculated from (2.122) may exceed 1 rad and the maxi-
mum scattering angle is then taken as θmax ≈ 1 rad.

The ratio θmax/θmin is independent of particle kinetic and total energy
and depends only on the atomic number Z and the atomic mass number A
of the absorber, as shown in (2.123). Since, in addition θmax � θmin, we can
simplify (2.128) to read

θ2 ≈ 2 θ2min ln
θmax

θmin
. (2.129)
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After inserting (2.123) into (2.129) and assuming that A ≈ 2Z we get the
following approximation for the mean square scattering angle θ2 for single
scattering

θ2 ≈ 2θ2min ln

(√
0.423×105√

3
√

2 3
√
Z

)2

= 4 θ2min ln
[
183Z−1/3

]
, (2.130)

with the minimum scattering angle θmin given in (2.121).

2.7 Molière Multiple Elastic Scattering

Multiple or compound Coulomb scattering results from a large number of
single scattering events that a charged particle will experience as it moves
through an absorber. These single scattering events are independent and
statistically random processes governed by a Rutherford-type Coulomb inter-
action and confined to a very small scattering angle θ with respect to the
direction of incidence. In honor of Molière who carried out much of the initial
theoretical work on multiple scattering, this type of scattering is often referred
to as Molière multiple scattering.

As discussed for standard Rutherford scattering in Sect. 2.3, a particle
traversing a thin metallic foil will experience a large number of Coulomb
interactions with nuclei of the absorber and these interactions will generally
produce only small angle deflections. The cumulative effect of these inde-
pendent interactions will be a superposition of a large number of random
deflections resulting in the particle emerging through the foil: (1) at a small
cumulative scattering angle Θ, and (2) at a mean scattering angle Θ with
respect to the incident direction of zero for a beam of particles striking the
foil.

The angular distribution of particles transmitted through a foil is Gaussian
in shape and centered round the direction of the incident particles, reflecting
the cumulative action of a large number of independent small-angle scatter-
ing interactions. This was shown by (2.2) for α-particle scattering on gold
nuclei.

The measured angular distributions of charged particles emerging through
a foil show excellent agreement with a Gaussian distribution at small cumu-
lative scattering angles Θ but also exhibit a higher tail than the Gaussian
distribution at large scattering angles. This discrepancy at large scattering
angles is attributed to the effect of rare large-angle single scattering events
which were first explained by Rutherford as follows: In its travel through the
foil a charged particle may experience a close encounter with a scattering
center and this hard collision will result in a large angle deflection, possi-
bly amounting to 180◦. These large-angle Coulomb scattering interactions are
extremely rare yet not negligible and occur with a typical frequency of about
one such interaction per several thousand particles transmitted through a thin
foil. The following conclusions can now be made:
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1. A charged particle traversing a foil will have numerous soft interactions
with scattering centers in the absorber that are random and independent
from one another. These interactions result in small individual deflections
from the incident direction as well as in a small cumulative scattering
angle Θ.

2. One in several 1000 particles of the particle beam traversing a foil will
have a hard interaction (close encounter) with a scattering center resulting
in a large-angle deflection. Because of the very small probability for a
hard collision, only one such large angle deflection can occur to a given
charged particle. All large-angle deflections are therefore attributed to one
single-scattering event for a given charged particle.

3. The angular distribution of charged particles traversing a foil thus has
three regions:

a. Small angle Θ region governed by a Gaussian distribution resulting
from Molière multiple scattering.

b. Large angle single-scatter region produced by a small fraction of par-
ticles striking the foil and resulting from single hard collisions between
a charged particle and a scattering center.

c. Intermediate region between the multiple scatter small-angle region
and the single-scatter large-scattering angle region referred to as the
region of plural scattering. The plural scattering distribution enables
the transition from the multiple scattering region into the single
scattering region.

The mean square angle θ2 for single scattering derived in Sect. 2.6.5 also plays
a role in determining the mean square angle Θ2 which governs the Gaussian
distribution in Molière multiple scattering distribution, as shown in Sect 2.7.1.

2.7.1 Mean Square Scattering Angle for Multiple Scattering

The thicker is the absorber and the larger is its atomic number Z, the greater
is the likelihood that the incident particle will undergo several single scatter-
ing events. For a sufficiently thick absorber the mean number of successive
encounters rises to a value that permits a statistical treatment of the pro-
cess. Generally, 20 collisions are deemed sufficient and we then speak of
multiple Coulomb scattering that is characterized by a large succession of
small angle deflections symmetrically distributed about the incident particle
direction.

The mean square angle for multiple Coulomb scattering Θ2 is calculated
from the mean square angle for single scattering θ2 (2.128) with the help of
the central limit theorem that states the following:

For a large number N of experiments that measure some stochastic
variable X, the probability distribution of the average of all measure-
ments is Gaussian and is centered at X with a standard deviation
1/

√
N times the standard deviation of the probability density of X.
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Since the successive single scattering collisions in the absorber are indepen-
dent events, the central limit theorem shows that for a large number n > 20 of
such collisions the distribution in angle will be Gaussian around the forward
direction with a mean square scattering angle Θ2 given as

Θ2 = nθ2, (2.131)

where

θ2 is the mean square scattering angle for single scattering given in (2.128),
n is the number of scattering events calculated as follows

n =
Na

V
σt = ρ

NA

A
σt ≈ πρ

NA

A

D2

θ2min

t (2.132)

where we inserted the expression of (2.125) for the cross section and

Na/V is number of atoms per volume equal to ρNA/A,
σ is the total cross section for a single scattering event given in (2.124)

and (2.125),
t is thickness of the absorber,
ρ is density of the absorber,

NA is the Avogadro number,
A is the atomic mass number of the absorber.

Incorporating the expression for the mean square angle for single scattering
θ2 from (2.128) into (2.131) and using (2.132) for the number of scattering
events, the mean square angle for multiple scattering Θ2 can be written as

Θ2 = ρ
NA

A
σtθ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + θ2min/θ
2
max

}
, (2.133)

where θmin and θmax are the minimum and maximum scattering angles, respec-
tively, defined in Sect. 2.6.3, and D is the characteristic scattering distance for
a particular scattering event, defined in Sec. 2.6.2.

Since θmax � θmin holds in general, we can simplify (2.133) for heavy
charged particle scattering on nuclei of an absorber by inserting (2.125) for
the total cross section σ with (2.113) for the characteristic scattering distance
D and (2.130) for θ2 to get

Θ2 = nθ2 = 4
(
ρ
NA

A
σt

)
θ2min ln[183Z−1/3] = 4πρ

NA

A
D2t ln[183Z−1/3]

= 4πρ
NA

A

(
2zZe2

4πε0pυ

)2

{ln[183Z−1/3]}t. (2.134)

Similarly, for electrons scattered on absorber atoms (nuclei and orbital elec-
trons) we simplify (2.133) by inserting (2.125) for the total cross section σ with
(2.118) for the characteristic scattering distance D and (2.130) for θ2 to get
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Θ2 = nθ2 =
(
ρ
NA

A
σt

)
4θ2min ln[183Z−1/3]

= 16πρ
NAr

2
eZ(Z + 1)
Aγ2β4

{ln[183Z−1/3]}t =
4πρ
αX0

t, (2.135)

where X0 is defined as the radiation length and discussed in Sect. 2.7.2.
From (2.135) we can express the change in the mean square scattering

angle Θ2 with propagation distance t in the foil as

dΘ2

dt
= 16πρ

NAr
2
eZ(Z + 1)
Aγ2β4

ln[183Z−1/3] =
4πρ
αX0

. (2.136)

As shown in (2.134) and (2.135), the mean square scattering angle Θ2 for
multiple scattering increases linearly with the foil thickness t but, as long
as the foil thickness is not excessive, the angular distribution of transmitted
particles will remain Gaussian and forward peaked.

2.7.2 Radiation Length

The expressions for the mean square scattering angle Θ2 of (2.135) and (2.136)
can be expressed in terms of a distance parameter called the radiation length
X0. This parameter serves as a unit of length, depends on the mass of the
charged particle as well as on the atomic number of the absorbing material,
and is defined as the mean distance a relativistic charged particle travels in
an absorbing medium while its energy, due to radiation loss, decreases to
1/e (∼36.8 %) of its initial value. X0 is also defined as 7/9 of the mean free
path for pair production by a high energy photon in the absorber.

The radiation length X0, which usually refers to electrons, is expressed in
square centimeters per gram as follows

1
X0

= 4α
NA

A
Z(Z + 1)r2e ln(183Z−1/3)

= 1.4×10−3 (cm2/mol)
Z(Z + 1)

A
ln(183Z−1/3), (2.137)

where

α is the fine structure constant (1/137),
NA is the Avogadro number (6.022×1023/mol),
Z is the atomic number of the absorber,
re is the classical electron radius (2.818 fm).

For electrons, values of radiation length X0 calculated from (2.137) are
24 g/cm2 (9 cm) in aluminum; 10.2 g/cm2 (1.1 cm) in copper; and 5.8 g/cm2

(0.51 cm) in lead.
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2.7.3 Mass Scattering Power

As shown in (2.133), the mean square scattering angle for multiple scattering
Θ2 increases linearly with the absorber thickness t. A mass scattering power
T/ρ can thus be defined for electrons:

1. Either as the mean square angle for multiple scattering Θ2 per mass
thickness ρt.

2. Or the increase in the mean square angle Θ2 per unit mass thickness ρt,
in analogy with the mass stopping power.

The mass scattering power (T/ρ) is thus expressed as follows

T

ρ
=
Θ2

ρt
=

dΘ2

d(ρt)
=
NA

A
σθ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + θ2min/θ
2
max

}
(2.138)

and this result, after inserting (2.125) for the total cross section σ, is usually
given as follows (ICRU #35)

T

ρ
= π

NA

A
D2

{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
, (2.139)

with D, the effective characteristic scattering distance, discussed in Sect. 2.6.2
for various scattering interactions.

2.7.4 Mass Scattering Power for Electrons

The mass scattering power T/ρ for electrons is determined from the general
relationship of (2.139) by inserting (2.118) for the characteristic distance D
in electron scattering with nuclei and orbital electrons of the absorber foil to
get

T

ρ
= 2πr2e

NAZ(Z + 1)
A

√
1 − β2

β2

{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
.

(2.140)
The term

(√
1 − β2

)
/β2 in (2.118) for D can be expressed in terms of the

electron kinetic energy EK and electron rest energy E0 = mec
2. We first define

the ratio EK/(mec
2) as τ and then use the standard relativistic relationship

for the total energy of the electron, i.e.,

mec
2 + EK =

mec
2√

1 − β2
(2.141)

to obtain √
1 − β2 =

1
1 + τ

(2.142)
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and

β2 =
τ(2 + τ)
(1 + τ)2

, (2.143)

resulting in the following expression for the term

√
1 − β2

β2

√
1 − β2

β2
=

1 + τ

τ(2 + τ)
. (2.144)

The mass scattering power T/ρ of (2.139) for electron may then be expressed
as follows

T

ρ
= 4π

NA

A
r2eZ(Z + 1)

[
1 + τ

τ(2 + τ)

]2{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
.

(2.145)
In (2.145), θmax is the cutoff angle resulting from the finite size of the nucleus.
In (2.122), the cutoff angle θmax was given by the ratio of the reduced de
Broglie wavelength of the electron �/pe to the nuclear radius R given in (1.26)
as R = R0

3
√
A with R0 = 1.25 fm the nuclear radius constant and A the

nucleon number or atomic mass number. The electron momentum pe using
(1.60) and (2.142) can be expressed as

pe =
1
c

√
E2 − E2

0 =
1
c

√
EK(EK + 2E0)

=
1
c
E0

√
1

1 − β2
− 1 =

E0β

c
√

1 − β2
=
E0β(1 + τ)

c
(2.146)

giving the following expression for θmax

θmax =
�

peR
=

�cA−1/3

R0

√
EK(EK + 2E0)

=
�cA−1/3

E0β(1 + τ)R0
≈ αa0A

−1/3

β(1 + τ)R0
≈ 309A−1/3

β(1 + τ)
, (2.147)

with

β electron velocity normalized to c, the speed of light in vacuum,
A atomic mass number of the absorber,
τ electron kinetic energy normalized to electron rest mass energy E0,

EK electron kinetic energy.

The screening angle θmin results from the screening of the nucleus by the
atomic orbital electrons and is expressed in (2.121) by the ratio of the reduced
de Broglie wavelength of the electron �/pe [given in (2.71)] to the Thomas–
Fermi atomic radius aTF given in (2.49) as aTF ≈ a0Z

−1/3, with a0 the
Bohr radius constant of (3.4) and Z the atomic number of the absorber.
Recognizing that �c/(E0a0) = α, the minimum scattering angle, also known
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as the screening angle, θmin can be expressed as

θmin =
�

peaTF
=

�c Z1/3

E0β(1 + τ)a0
=

αZ1/3

β(1 + τ)
=

Z1/3

137β(1 + τ)
(2.148)

with

β electron velocity normalized to speed of light in vacuum c,
Z atomic number of the absorber,
τ electron kinetic energy normalized to electron rest mass energy, i.e., τ =

EK/(mec
2), and

α fine structure constant (1/137).

Similarly to the expression in (2.74) and (2.123), the ratio θmax/θmin is now
given by a simple expression independent of electron rest energyE0 and kinetic
energy EK

θmax

θmin
=

309 × 137A−1/3

Z1/3
≈ 0.423×105

3
√
AZ

, (2.149)

and ranges from θmax/θmin ≈ 0.42×105 for hydrogen to θmax/θmin ≈ 1500 for
uranium-235.

Two features of the mass scattering power T/ρ can be identified:

1. (T/ρ) is roughly proportional to Z. This follows from the Z(Z + 1)/A
dependence recognizing that A ≈ 2Z to obtain (T/ρ) ∝ Z.

2. (T/ρ) for large electron kinetic energies EK where τ � 1 is proportional
to 1/E2

K. This follows from (1 + τ)2/ {τ(2 + τ)}2 ≈ 1/τ2 for τ � 1.

A plot of the mass scattering power (T/ρ) for electrons in various materials
of interest in medical physics in the electron kinetic energy range from 1 keV
to 1000 MeV is given in Fig. 2.13. The mass scattering power (T/ρ) consists
of two components: the electron–nucleus (e–N) scattering and the electron–
orbital electron (e–e) scattering.

2.7.5 Fermi-Eyges Pencil Beam Model for Electrons

Fermi in his study of cosmic radiation derived an analytical solution to the
transport equation for energetic charged particles traversing thin foils. He
used Molière’s small angle multiple scattering approximation and assumed
that the energetic cosmic particles lost no energy in the thin foils he used
in his experiments. Eyges extended Fermi’s work to electron pencil beams
traversing absorbing media and accounted for electron energy loss as well as
for electron transport through heterogeneous absorbers.

As shown in Fig. 2.14, electrons moving in a pencil beam along the z
axis (applicate axis) of a Cartesian coordinate system strike the absorber at
the origin (0,0,0) of the coordinate system and undergo multiple scattering
interactions as they penetrate into the absorber. After traversing a given thick-
ness of the absorber, each electron emerges in a direction defined by angles
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Fig. 2.13. Mass scattering power (T/ρ) against electron kinetic energy EK for
various materials of interest in medical physics

Θ and Φ. The projections of the polar angle Θ onto the (x,z) and (y,z) planes
are Θx and Θy, respectively.

The Fermi-Eyges solution to the transport equation gives the probability
P (x, z)dx of finding an electron at depth z in the absorber with a displacement
from the original z direction between x and x + dx on the abscissa and the
probability P (y, z)dy of finding the electron between y and y + dy on the
ordinate. The two probability density functions P (x, z)dx and P (y, z)dy are
given as follows (see Sect. 1.30)

P (x, z)dx =
1

σ(z)
√

2π
e
− x2

2[σ(z)]2 dx (2.150)

and

P (y, z)dy =
1

σ(z)
√

2π
e
− y2

2[σ(z)]2 dy, (2.151)

with σ(z) representing the standard deviation of the mean as a measure of
the width of the distribution at depth z. According to the Fermi-Eyges theory
the variance v(z) which by definition is the square of the standard deviation
σ(z) is expressed as

v(z) = [σ(z)]2 =
1
2

z∫
0

T (z′)[z − z′]2dz′, (2.152)

where T (z′) is the linear scattering power of the absorber at depth z′, eval-
uated for the mean electron energy at depth z′. The scattering power T was
discussed in Sect. 2.7.3 and shown to be proportional to the mean square
scattering angle Θ2 in (2.138).
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Fig. 2.14. Electrons in a pencil beam moving along applicate (z) axis of a Cartesian
coordinate system strike an absorber at the origin of the coordinate system and
undergo multiple scattering interactions as they penetrate into the absorber. After
traversing a given thickness of the absorber, each electron emerges in a direction
defined by angles Θ and Φ

In general, the combined probability P (x, y, z)dxdy is a product of the two
probability density functions, P (x, z)dx of (2.150) and P (y, z)dy of (2.151),
expressed as follows

P (x, y, z)dxdy = [P (x, z)dx] × [P (y, z)dy] =
1

2π[σ(z)]2
e
− x2+y2

2[σ(z)]2 dxdy.

(2.153)

From Fig. 2.14 we get the following relationships among angles Θ, Θx, Θy,
and Φ and Cartesian coordinates x, y, and z

tanΘ =
x/ cosΦ

z
=
x/ sinΦ

z
, (2.154)

tanΘx =
x

z
= tanΘ cosΦ, (2.155)

tanΘy =
y

z
= tanΘ sinΦ, (2.156)

tan2Θ = tan2Θx + tan2Θy. (2.157)
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In the small angle approximation where sinΘ ≈ Θ, cosΘ ≈ 1, and tanΘ ≈ Θ,
the relationship of (2.157) connecting Θ, Θx, and Θy simplifies to read

Θ2 = Θ2
x +Θ2

y (2.158)

and, since the scattering events are symmetrical about the initial direction z,
the following relationships also apply

Θ2
x = Θ2

x =
1
2
Θ2. (2.159)

The final polar angle Θ following multiple scattering events cannot be
determined by a simple addition of the polar angles for the individual scat-
tering events because of the Φ component which is present in each single
scattering event. The projections Θx and Θy, however, are additive and this
then allows us to apply the central limit theorem stated in Sect. 2.7.1. For the
(x,z) plane we define P (x,Θx, z)dΘx as the probability that an electron, after
traversing an absorber thickness dz, will be deflected through an angle, the
projection of which onto the (x,z) plane will be between Θx andΘx+dΘx. Sim-
ilarly, for the (y,z) plane we define P (y,Θy, z)dΘy as the probability that an
electron, after traversing an absorber thickness dz, will be deflected through
an angle, the projection of which onto the (y,z) plane will be between Θy and
Θy + dΘy.

The two probability functions P (x,Θx, z) and P (y,Θy, z) are Gaussian
functions expressed as

P (x,Θx, z) =
1√

2πΘ2
x

e
− Θ2

x
2Θ2

x =
1√
πΘ2

e
−Θ2

x
Θ2 (2.160)

and

P (y,Θy, z) =
1√

2πΘ2
y

e
− Θ2

y

2Θ2
y =

1√
πΘ2

e
−Θ2

y

Θ2 , (2.161)

where we used (2.159) to modify the two original Gaussian distributions.
Similarly to (2.153), the combined probability P (x,Θx, y, Θy, z) is given

as the product of the two probability functions P (x,Θx, z) and P (y,Θy, z) to
give

P (x,Θx, y, Θy, z) = P (x,Θx, z) × P (y,Θy, z)

=
1√
πΘ2

e
−Θ2

x
Θ2

1√
πΘ2

e
−Θ2

y

Θ2 =
1

πΘ2
e
−Θ2

Θ2 ,
(2.162)

after we use (2.158) for the sum of Θ2
x and Θ2

y.
The discussion of the Thomson model of the atom in Sect. 2.2.1 made use

of (2.162) when in (2.2) we estimated N(Θ)dΘ, the number of α particles
that are scattered on gold nuclei within the angular range Θ to Θ+ dΘ, with
N0 representing the number of α particles striking, and passing through, the
gold foil. The fractional number of α particles scattered into the angular range
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Θ to Θ + dΘ is expressed as follows

N(Θ)dΘ
N0

= P (x,Θx, y, Θy, z)dΩ = 2πP (x,Θx, y, Θy, z) sinΘdΘ

≈ 2πΘ
1

πΘ2
e
−Θ2

Θ2 dΘ =
2Θ
Θ2

e
−Θ2

Θ2 dΘ = e
−Θ2

Θ2 d
Θ2

Θ2
,

(2.163)

where we used the small angle approximation sinΘ ≈ Θ.
An integration of (2.163) overΘ from 0 to π results in 1, since Θ2, the mean

square scattering angle for multiple scattering, is very small. The Θ angular
distribution is strongly peaked in the forward (z) direction of the incident
pencil electron beam, with Θ, the mean scattering angle Θ, equal to 0 and√
Θ2, the root mean square angle for multiple scattering of the order of 1◦.

2.7.6 Dose Distribution for Pencil Electron Beam

The dose distribution for a pencil electron beam in absorbing medium is
related to the distribution function given by the Fermi-Eyges solution to the
Fermi electron transport equation that in three dimensions is expressed as
follows

∂P

∂z
= −Θx

∂P

∂Θx
−−Θx

∂P

∂Θx
+
T (x, y, z)

4

(
∂2P

∂Θ2
x

+
∂2P

∂Θ2
y

)
, (2.164)

with T (x, y, z) the linear scattering power of the absorber and the probability
function P given as a product of two Gaussian probability functions

P = P (x,Θx, y, Θy, z) = P (x,Θx, z) × P (y,Θy, z) (2.165)

The Fermi-Eyges theory predicts that the dose distribution in the absorber,
in a plane perpendicular to the incident direction of the initial pencil electron
beam, is represented by a Gaussian distribution. The theory also predicts that
the spatial spread of the electron beam in the absorber is an increasing func-
tion of depth in the absorber irrespective of the depth. However, experiments
show that the spatial spread indeed increases with depth from the absorber
surface to about a depth close to 2/3 of the practical electron range, but at
larger depths the spatial spread saturates, then decreases, and vanishes at
depths greater than the range of electrons in the absorber.

The Fermi-Eyges theory considers only the small angle multiple Coulomb
scattering and assumes that the energy of the electron, as it moves through
the phantom, is dependent only on depth and that no electrons are absorbed
in the scattering medium. This is certainly an improvement over the Fermi
assumption of no energy loss of charged particles in the absorber; however,
neglecting the electron absorption in the absorber causes significant discrep-
ancy between measurement and Fermi-Eyges theory at depths close to the
electron range.
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2.7.7 Determination of Electron beam Kinetic Energy
from Measured Mass Scattering Power

The plot of (T /ρ) against electron kinetic energy EK for kinetic energies in
the megavoltage energy range (Fig. 2.13) is essentially linear on a log-log plot
resulting in the (T /ρ) ∝ 1/E2

K dependence. The steady 1/E2
K drop of (T /ρ)

as a function of increasing EK suggests a relatively simple means for electron
kinetic energy determination from a measurement of the mass scattering power
(T /ρ) in a given medium.

The propagation of an electron pencil beam in an absorber is described
by a distribution function that is given by the Fermi-Eyges solution to the
Fermi differential transport equation. The Fermi-Eyges theory predicts that
the dose distribution in a medium on a plane perpendicular to the incident
direction of the pencil electron beam is given by a Gaussian distribution with
a spatial spread proportional to the variance of the Gaussian distribution.

Equation (2.152) shows that the variance [σ(z)]2 of the Gaussian distribu-
tion is related to the scattering power T (z) at depth z. In situations where the
scattering power T (z) of the absorber is constant in the absorber thickness z
(for example, in measurements of spatial spread in air layers z much thinner
than the range of electrons in air), (2.152) can be simplified to read

[σ(z)]2 =
1
2

z∫
0

T (z′)[z − z′]2dz′ =
1
2
T (z)

z∫
0

[z − z′]2dz′

=
1
2
T (z)

z∫
0

[z2 − 2zz′ + (z′)2]dz′ =
1
6
z3T (z). (2.166)

In deriving (2.166) the following assumptions are made:

1. Only small angle scattering events are considered.
2. The air layer z is much smaller than the electron range in air.
3. Secondary electrons, set in motion by the electron incident pencil beam,

are ignored.
4. The bremsstrahlung contamination of the electron pencil beam is ignored.

Function [σ(z)]2 given in (2.166) is a linear function of z3 with the slope
proportional to the mass scattering power (T /ρ), which in turn is a func-
tion of electron beam kinetic energy EK through function τ , as given in
(2.146). Thus, from a measurement of [σ(z)]2, the spatial spread of an elec-
tron pencil beam in air, at several distances z from the pencil beam origin,
one first determines (T /ρ) through (2.166) and then determines the electron
beam kinetic energy EK with data tabulated for air or data calculated for air
from (2.146).
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