
M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 324–341, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Using Inherent Service Redundancy and Diversity  
to Ensure Web Services Dependability 

Anatoliy Gorbenko1, Vyacheslav Kharchenko1,  
and Alexander Romanovsky2 

1 Department of Computer Systems and Networks, National Aerospace University,  
Kharkiv, Ukraine 

A.Gorbenko@csac.khai.edu, V.Kharchenko@khai.edu 
2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK 

Alexander.Romanovsky@newcastle.ac.uk 

Abstract. Achieving high dependability of Service-Oriented Architecture 
(SOA) is crucial for a number of emerging and existing critical domains, such 
as telecommunication, Grid, e-science, e-business, etc. One of the possible ways 
to improve this dependability is by employing service redundancy and diversity 
represented by a number of component web services with the identical or simi-
lar functionality at each level of the composite system hierarchy during service 
composition. Such redundancy can clearly improve web service reliability 
(trustworthiness) and availability. However to apply this approach we need to 
solve a number of problems. The paper proposes several solutions for ensuring 
dependable services composition when using the inherent service redundancy 
and diversity. We discuss several composition models reflecting different de-
pendability objectives (enhancement of service availability, responsiveness or 
trustworthiness), invocation strategies of redundant services (sequential or si-
multaneous) and procedures of responses adjudication. 

1   Introduction 

The Web Services (WS) architecture [1] based on the SOAP, WSDL and UDDI 
specifications is rapidly becoming a de facto standard technology for organization of 
global distributed computing and achieving interoperability between different soft-
ware applications running on various platforms. It is now extensively used in develop-
ing numerous business-critical applications for banking, auctions, Internet shopping, 
hotel/car/flight/train reservation and booking, e-business, e-science, Grid, etc. That is 
why analysis and dependability ensuring of this architecture are emerging areas of 
research and development [1–3]. The WS architecture is in effect a further step in the 
evolution of the well-known component-based system development with off-the-shelf 
(OTS) components. The main advances enabling this architecture have been made by 
the standardisation of the integration process, by a set of interrelated standards such as 
SOAP, WSDL, UDDI, etc.  

Web Services are autonomous systems, the ready-made OTS components belong-
ing to different organizations, without any general or centralised control, that may  



 Using Inherent Service Redundancy and Diversity 325 

change their behaviour on the fly. This architecture brings a number of benefits to the 
users but at the same time poses many challenges to researchers and developers. By 
their very nature Web Services are black boxes, as neither source code, nor specifica-
tion, nor information about deployment environment are available; the only known 
information about them is their interfaces. Moreover, their quality is not completely 
known and they may not provide sufficient quality of service; it is often safe to treat 
them as “dirty” boxes, assuming that they always have bugs, do not fit enough, have 
poor specification and documentation. WSs are heterogeneous, as they might be de-
veloped following different standards, fault assumptions, and different conventions 
and may use different technologies. Finally, their construction and composition are 
complicated by the fact that the Internet is a poor communication medium (has low 
quality, not predictable). 

The main motivation for our work is the fact that ensuring and assessing depend-
ability of complex service-oriented systems is complicated when these systems are 
dynamically built or when their components (i.e. Web Services) are dynamically 
replaced by the new ones with the same (or similar) functionality but unknown de-
pendability characteristics. The lack of evidence about the characteristics of the com-
munication medium, components used in the composition and their possible 
dependencies makes it extremely difficult to achieve and predict SOA dependability 
which can vary over a wide range in a random manner. Therefore, users cannot be 
confident in availability, trustworthiness, reasonable response time and others de-
pendability characteristics. Dealing with such uncertainty, mainly coming from the 
SOA nature, is the main challenge.  

This uncertainty should be treated as the threat (similar and in addition to the com-
monly known faults, errors and failures). The paper discusses fault-tolerance solutions 
for building dependable service-oriented systems out of undependable Web Service 
components, which have changeable functional sets and uncertain dependability charac-
teristics, making use of natural redundancy and diversity inherent to such systems. 

In the paper we analyse different dependability-oriented composition models of 
Web Services and also propose solutions guaranteeing that the overall dependability 
(availability, correctness and responsiveness) of the composite system is improving.  

2   Web Services Redundancy and Diversity 

SOA supports construction of the globally distributed massive-scale systems with 
growing number of services. This makes it unique in allowing access to a number of 
services with identical or similar functionalities, provided by different vendors and 
deployed on different platforms all over the Internet. In other words, SOA possesses 
the inherent redundancy and diversity of the existing Web Services [17]. We should 
use this fact to build dependable Service-Oriented Systems out of undependable Web 
Services. Table 1 shows several examples of the existing alternative (redundant) stock 
quotes and currency exchange Web Services  (see [18] for a more detailed discussion 
of these examples). In [12] the authors present a practical experience report on de-
pendability monitoring of three diverse Bioinformatics Web Services performing  
 



326 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

Table 1. An example of alternative (redundant) Web Services 

Alternative (redundant) Stock Quotes Web Services 
stock_wsx.GetQuote: 
   http://www.webservicex.com/stockquote.asmx?WSDL 
stock_gama.GetLatestStockDailyValue: 
   http://www.gama-system.com/webservices/stockquotes.asmx?wsdl 
stock_xmethods.getQuote: 
   http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl 
stock_sm.GetStockQuotes: 
   http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL 

Alternative (redundant) Currency Exchange Web Services 
currency_exchange.getRate: 
   http://www.xmethods.net/sd/CurrencyExchangeService.wsdl 
currency_convert.ConversionRate: 
   http://www.webservicex.com/CurrencyConvertor.asmx?wsdl 

 
similar BLAST1 function. A mediator approach (set of intermediate monitoring  
services) was used to monitor WS dependability metadata and provide it for users. 
This work was a motivation for us to show i) that there are multiple similar WSs, and 
ii) that they can be used simultaneously to achieve better dependability. 

72-87% of the faults in open-source software are independent of the operating en-
vironment (i.e. faults in application software) and are hence permanent [20]. Half of 
the remaining faults are environment depended and permanent. And only 5-14% of 
the faults are environment depended caused by transient conditions. Hence, software 
diversity can be an efficient method of fault-tolerance provisioning and decreasing 
common mode failures caused by software faults [21, 22]. SOA supports inherent 
diversity at the different level: 

1. Application diversity: i) development diversity of application software (different 
developers, languages, implementation technologies and tools, etc); ii) data diversity 
(diversity of data used and data sources); iii) Service diversity (diversity of ‘physical’ 
resources and services, for example, flights available, hotel rooms, etc). 

2. Deployment diversity. Different service providers can use diverse deployment 
environments (different hardware platform, operating systems, web and application 
servers, DBMS, etc.). 

3. Spatial (geographical) diversity. Redundant Web Services can be dispersed all 
over the Internet and different service vendors can use different Internet Service 
Providers. 

To build dependable Service-Oriented Systems, developers (systems integrators) and 
end users should be able to choose and use the most dependable components (i.e. 
Web Services) from the existing ones of similar functionality but diverse nature [23]. 
Other approach we are discussing in this paper is using all available services simulta-
neously with the purpose to improve overall system dependability.  

                                                           
1 http://www.ncbi.nlm.nih.gov/blast/html/BLASThomehelp.html 



 Using Inherent Service Redundancy and Diversity 327 

3   Web Services Dependability 

Dependability of a computing system is its ability to timely deliver service that can 
justifiably be trusted [24]. According to this definition we need to deal with the  
following dependability attributes, which are relevant to Web Services, and which can 
be easily measured during WS invocations: (i) availability; (ii) reliability; and (iii) 
response time (performance). There are several other attributes, describing Quality of 
Service (QoS), service level agreements (SLAs) and dependability, including authen-
tication, confidentiality, non-repudiation, service cost, etc. [25], but we do not deal 
with them in this paper.  

Service availability. The degree to which a service is operational and accessible when 
it is required for use determines service’s availability. Availability of a system is a 
measure of the delivery of correct service with respect to the alternation of correct and 
incorrect service [24]. It can be defined by a ratio of the system’s uptime to all execu-
tion time (including downtime). Unfortunately, such technique can be hardly applied 
for determining the availability of Web Services in a loosely coupled SOA. More 
adequate, the availability of a Web Service most likely can be defined by the ratio of 
the total number of service invocations to the number of events when the service was 
unavailable (i.e. an exception “HTTP Status-Code (404): Not Found” was caught by 
client). The easier recovery action here is simple retry. 

Service reliability. System reliability can be measured in terms of probability of fail-
ure-free operation, mean time between failures (MTBF) or failure rate. Reliability 
assessment of Web Services is complicated, taking into account the fact that service 
invocation rate can vary in a wide range for different services and services customers. 
Another problem here is that Web Service returns errors of two main types [9]: 

1. Evident erroneous response which results in exception message. The probability of 
such errors can be measured by the proportion of the total number of service invo-
cation number of exception messages received (apart from exception “HTTP 
Status-Code (404): Not Found” that indicate about service unavailability). If such 
error occurs, user could retry the same service latter or (most likely) invoke an al-
ternative one. 

2. Non-evident erroneous response. It can be present in a form of incorrect data or 
calculation errors which do not entail immediate exception. The last type of error is 
the most dangerous and can lead to unexpected program behaviour and unpredicted 
consequences, and, as a result, service discredit. Detection of such errors is possi-
ble by comparing service response with response from another diverse service. 

Therefore, the key problem services developers and users are faced with is enhancing 
the service trustworthiness (correctness) rather then decreasing probability of excep-
tion (i.e. evident error occurrence).  

Service performance (response time). The service response time can be divided into 
(i) network delay time, (ii) connection waiting time and (iii) execution time. The 
execution time is the duration of performing service functionality, the connection 
waiting time is the time during request waits in application server’s queue, and,  



328 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

finally, network delay time is the delay of request transmissions between service 
consumer and provider.  

The network delay time can be hardly predicted due to the uncertain network fluc-
tuations whereas connection waiting time and execution time depend on service load 
and throughput. 

4   Web Services Composition 

Web service composition is currently an active area of research, with many languages 
being proposed by academic and industrial research groups. IBM Web Service Flow 
Language (WSFL) [4] and Microsoft’s XLANG [5] were two of the earliest lan-
guages to define standards for Web services composition. Both languages extended 
W3C Web Service Description Language (WSDL) [6], which is the standard lan-
guage for describing the syntactic aspects of a Web service. Business Process Execu-
tion Language for Web Services (BPEL4WS) [7] is a recently proposed specification 
that represents the merging of WSFL and XLANG. BPEL4WS combines the graph 
oriented process representation of WSFL and the structural construct based processes 
of XLANG into a unified standard for Web services composition.  

In addition to these commercial XML-based standards, there have been work on a 
unique Web service composition language called Web Ontology Language for Ser-
vices (www.daml.org/services) OWL-S (previously known as DAML-S) [8], which 
provides a richer description of Web service compositions by specifying its semantics.  

In our work we focus on the general patterns (types) of the WS composition and 
identify two typical blueprints of composing WSs: i) “vertical” composition for func-
tionality extension, and ii) “horizontal” composition for dependability improvement 
(dependability-oriented composition).  

The first type of service composition (“vertical”) is used for building the Work-
Flow (WF) of the systems and is already supported by BPEL, BPML, XPDL, JPDL 
and other WF languages. The second one (“horizontal”) deals with a set of redundant 
(and possibly diverse) Web Services with identical or similar functionality. Rather 
than investigate fixed redundancy schemes [28] (like two-out-of-three or three-out-of-
five) in this paper we discuss flexible patterns improving various dependability attrib-
utes (availability, trustworthiness or responsibility) taken separately. 

Bellow we show some illustrative examples of the two types of WSs composition 
and discuss the way in which the horizontal composition improves dependability of 
SOA. We use the web-based Travel Agency as an example of Web Services composi-
tion, this example has been extensively used by other researchers [3, 26, 27].  

4.1   Vertical Composition for Functionality Extension 

The “vertical” composition (Fig. 1-a) extends the Web Services functionality. A new 
Composite Web Service is composed out of several particular services which provide 
different functions. For example, the Travel Agency (TA) Service can be composed of 
a number of services such as Flight Service, Car Rental Service, Hotel Service, etc.  

 



 Using Inherent Service Redundancy and Diversity 329 

a) 

 

b) 

 

Fig. 1. Web Services Composition: a) “vertical”; b) “horizontal” 

The main invocation parameters for such a composite TA Service are trip endpoint 
(country and city), dates (and time) of arrival and departure, user details and prefer-
ences. The TA Service then invokes corresponding services which books 
flight/train/coach tickets, hotel room, rents a car, etc. 

The Composite Web Service can invoke a set of target (composed) services simul-
taneously to reduce the mean execution time or sequentially (if execution of one ser-
vice depends on the result of another one).  

If some of the services fail or cannot satisfy the user’s request (for example, when 
there are no flights available for specified dates) all other services have to be rolled 
back and their results should be cancelled. 

To improve dependability of such composite system various means of fault-
tolerance and error recovery should be applied, including redundancy, exception han-
dling, forward error recovery, etc. 



330 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

4.2   Horizontal Composition for Dependability Improvement 

The “horizontal” composition (Fig. 1-b) uses several alternative (diverse) Web Services 
with the identical or similar functionality, or several operational releases of the same 
service. Such kind of redundancy based on inherent service diversity improves service 
availability and reliability (correctness and trustworthiness) of Web Service composition.  

Architecture with the “horizontal” (dependability-oriented) composition includes a 
“Mediator” component, which adjudicates the responses from all diverse Web Ser-
vices and returns an adjudicated response to the consumer. In the simplest case the 
“Mediator” is a voter (i.e. performs majority voting using the responses from redun-
dant Web Services). It can be also programmed to perform more complex operation 
like aggregation, or provide the best choice according to selection criterions specified 
by user (for example, highest possible exchange rate or minimal asked quotation).  

Papers [10-13] introduce special components (called “Service Resolver”, “Proxy”, 
“Service Container” or “Wrapper”) with the similar functionality.  

5   Middleware-Based Architecture Supporting  
Dependability-Oriented Composition  

5.1   Patterns of Dependability-Oriented Composition 

In [9] we proposed an architecture which uses a dedicated middleware for a managed 
dependable upgrade and the “horizontal” composition of Web Services. The middle-
ware runs several redundant (diverse) Web Services (Fig. 2). It intercepts the user’s 
requests coming through the WS interface, relays them to all the redundant services 
and collects the responses. It is also responsible for dependability measurement and 
publishing the confidence in dependability [9] associated with each service.  

The architecture proposed supports several composition models meeting different 
dependability objectives (such as enhancement of service availability, responsiveness 
or trustworthiness), various strategies for invoking redundant services (sequential or 
simultaneous) and procedures for response adjudication. These models form patterns 
of dependability-oriented composition. The basic ones are: 

 

Fig. 2. Architecture of dependability-oriented composition   



 Using Inherent Service Redundancy and Diversity 331 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.966 0.936 0.928 

P(ne) 0.010 0.048 0.013 

P(ex) 0.016 0.008 0.032 

P(ua) 0.008 0.008 0.027 

MRT 397.60 397.60 431.40 

 

Vot.
 

- voting; Ex.
 
- exception; Com  - comparison; Proc. - processing; - waiting time 

Fig. 3. Simulation results of the Reliable concurrent execution pattern 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.961 0.915 0.922 

P(ne) 0.003 0.017 0.005 

P(ex) 0.029 0.060 0.046 

P(ua) 0.008 0.008 0.027 

MRT 141.10 133.85 163.82 

 

 

Fig. 4. Simulation results of the Fast concurrent execution pattern 

1. Reliable concurrent execution for trustworthiness improvement (Fig. 3). All avail-
able redundant (diverse) WSs are invoked concurrently and their responses are 
used by the middleware to produce an adjudicated response to the consumer of the 
WS (i.e. voting procedure). Initial values of measures P(cr), P(ne), P(ua), P(ex) 
and mean response time (MRT) used in three different simulation cases are dis-
cussed in section 5.2.  

2. Fast concurrent execution for responsiveness improvement (Fig. 4). All available 
redundant (diverse) WSs are invoked concurrently and the fastest non-evidently in-
correct response is returned to the service consumer. 

3. Adaptive concurrent execution (Fig. 5). All (or some of) redundant (diverse) WSs 
are executed concurrently. The middleware is configured to wait for up to a certain 



332 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

number of responses to be collected from the redundant services, but no longer 
than a pre-defined timeout.  

4. Sequential execution for minimal service loading (Fig. 6). The subsequent redun-
dant WS is only invoked if the response received from the previous one is evi-
dently incorrect (i.e. exception). 

5.2   Simulation 

Effectiveness of the different composition models depends on the probability of ser-
vice unavailability, occurrence of evident (exceptions raised) and non-evident (erro-
neous results returned) failures. The probability of service unavailability due to  
 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.966 0.936 0.928 

P(ne) 0.010 0.048 0.013 

P(ex) 0.016 0.008 0.032 

P(ua) 0.008 0.008 0.027 

MRT 289.72 289.08 330.52 

 

 

Fig. 5. Simulation results of the Adaptive concurrent execution pattern 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.961 0.915 0.922 

P(ne) 0.003 0.017 0.005 

P(ex) 0.029 0.060 0.046 

P(ua) 0.008 0.008 0.027 

MRT 283.99 266.25 387.86 

 

 

Fig. 6. Simulation results of the Sequential execution pattern 



 Using Inherent Service Redundancy and Diversity 333 

different reasons (service overload, network failures, and congestions) is several or-
ders greater than probability of failure occurrence. Moreover, different exceptions 
arise during service invocation more frequently than non-evident failures occur. 

To analyse the effectiveness of the proposed patterns we developed a simulation 
model running in the MATLAB 6.0 environment. It used the following initial values 
chosen using the real-life statistics [19]:  

 Case 1 Case 2 Case 3 
P(correct response), P(cr) 0.70 0.70 0.60 
P(non-evident error), P(ne) 0.01 0.05 0.01 
P(exception), P(ex) 0.09 0.05 0.09 
P(service unavailability), P(ua) 0.20 0.20 0.30 

 
Each redundant Web Service was modelled as a black box that is assumed to fail 
independently of all the others but with the same probability [26]. The first two 
cases (cases 1 and 2) correspond to services that have the same availability but 
different probabilities of evident and non-evident error occurrence (we assume 
more trusted services in case 1). The third one simulates trusted service with 
worse availability as compared to Case 1 (possibly, due to narrow network band-
width or frequent congestions). During simulation we also set Mean Response 
Time (MRT) which equals 200 ms and Maximum Waiting Time (time-out) which 
equals 500 ms.  

The simulation results of each proposed patterns of dependability-oriented compo-
sition are shown at the Figures 3 – 6 respectively. Figure 7 gives a summary of all 
simulation cases. 

A practical application of the horizontal composition requires developing new 
workflow patterns and languages constructs, supporting different composition models 
and procedures of multiple results resolving and voting. 

6   Implementation  

6.1   Work-Flow Patterns Supporting Web Services Composition 

The workflow patterns capture typical control flow dependencies encountered during 
workflow modelling. There are more then 20 typical patterns used for description of 
different workflow constructions of “vertical” composition [14]. The basic ones are: 
‘Sequence’, ‘Exclusive Choice’, ‘Simple Merge’, ‘Parallel Split’, ‘Synchronization’, 
‘Discriminator’, ‘Regular Cycle’, etc.  

Each WF language describes a set of elements (activities) used for implementing 
different WF patterns. For example, BPEL4WS defines both primitive (‘invoke’, 
‘receive’, ‘reply’, ‘wait’, ‘assign’, ‘throw’, ‘terminate’, ‘empty’) and structured (‘se-
quence’, ‘switch’, ‘while’, ‘flow’, ‘pick’, ‘scope’) activities.  

The first ones are used for intercommunication and invoking operations on some 
web service. Structured activities present of complex workflow structures and can be 
nested and combined in arbitrary ways. 



334 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

 

Fig. 7. Summary of simulation results (WSi – particular Web Service; Pattern 1 – the Reliable 
concurrent execution pattern; Pattern 2 – the Fast concurrent execution pattern; Pattern 3 – the 
Adaptive concurrent execution pattern; Pattern 4 – Simulation results of the Sequential execu-
tion pattern) 



 Using Inherent Service Redundancy and Diversity 335 

 

Fig. 8. Workflow pattern Discriminator 

In fact, the only one of the basic WF patterns Discriminator fits for implementing 
the Fast Concurrent Execution pattern providing maximum responsiveness. Discrimi-
nator (see Fig. 8) is a point in the workflow process that waits for one of the incoming 
branches to complete before activating the subsequent activity. The first one that 
comes up with the result should proceed the workflow. The other results will be  
ignored. 

However, only BPML <all> and BPEL <pick> activities support such WF 
pattern [15, 16] (Fig. 9). To support dependability-oriented composition the addi-
tional WF patterns need to be developed and implemented for different WF  
languages. 
The new activities allowing a business process to support redundancy and per-
form voting procedure should also be developed. This is a motivation of our fur-
ther work. 

 
<process name=”PatternDiscriminator”> 
  <sequence> <context> 
      <signal name=”completed_B”/> 
      <process name=”B1”> 
         … 
        <raise signal=”completed_B”/> 
      </process> 
      <process name=”B2”> 
         … 
        <raise signal=” completed_B”/> 
      </process> 
    </context> 
    <action name=”A” …> 
      … 
    </action> 
    <all> 
      <spawn process=”B1”/> 
      <spawn process=”B2”/> 
    </all> 
    <synch signal=”completed_B”/> 
    <action name=”C” …> 
      … 
    </action> 
  </sequence> </process> 

Fig. 9. BPML implementation of the Discriminator pattern  



336 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

 
 
<if name="If1"> 
    <condition> ( not( ( $outWS1 = 'error' ) )  
     and ( $outWS1 = $outWS2 ) ) </condition> 
    <sequence name="Sequence4"> 
       <assign name="Assign2"> 
          <copy> 
             <from variable="outWS1"/> 
             <to variable="output"/> 
          </copy> 
       </assign> 
    </sequence> 
    <else> 
       <sequence name="Sequence4"> 
          <invoke name="Invoke3" partnerLink="WS3" .../> 
 ... 

Fig. 10. WS-BPEL If statement implementing responses matching (graphic and text notion) 

6.2   Testbed Workflows 

The patterns of dependability-oriented composition discussed above have been im-
plemented as a set of testbed workflows (see, for example, Fig. 11) by using a graph-
ics-based BpelModule which is a part of IDE NetBeans 6.02.  

We used WS-BPEL 2.03 specification, which introduces two constructs specifi-
cally for extensions (‘extensionActivity’ and ‘extensionAssignActivity’). It also has 
improved fault handling and process termination features.  

New fault handlers having ‘catch’, ‘catchAll’, ‘compensate’, ‘throw’ and ‘rethrow’ 
constructs as well as ‘terminationHandler’ and ‘exitOnStandardFault’ activities were 
added in WS-BPEL. 

A business logic supporting voting and comparison procedures within particular 
pattern is implementing by using if statements.  

Fig. 10 gives an example of how to compare the responses from first two services 
invoked at the first step of the Adaptive concurrent execution pattern (Fig. 5 and 11). 
If the results are equal and are not ‘exception’ (standard error) then the agreed result 
can be returned to the user, otherwise the third service should be invoked to perform 
voting procedure. 

                                                           
2 www.netbeans.org/community/releases/60/  
3 www.oasis-open.org/committees/wsbpel/  



 Using Inherent Service Redundancy and Diversity 337 

 

Fig. 11. Screen shot of WS-BPEL-workflow implementing the Adaptive concurrent execution 
pattern 

7   Conclusions and Future Researches 

We have addressed different models of a Web Services composition which extend func-
tionality (“vertical” composition) or improve dependability (“horizontal” composition). 



338 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

“Vertical” composition uses redundancy based on natural diversity of existing Web 
Services with the identical or similar functionality deployed by third parties. We dis-
cussed middleware-based architecture that provides dependability-oriented composition 
of Web Services. For the best result middleware has to implement on-line monitoring 
and dependability control.  

“Horizontal” composition, which uses redundancy in combination with diversity, is one 
of the promising means of enhancing service availability and providing fault-tolerance. 
Different patterns are applicable here. As it is shown from simulation and experimenta-
tion, all models of dependability-oriented composition significantly improve service avail-
ability (as it was expected) and probability of correct response (see Table 2).  

The Adaptive concurrent execution and Reliable concurrent execution patterns 
give maximal reliability (probability of correct response) and minimal probability of 
exception at the expense of performance deterioration. However the Adaptive concur-
rent execution pattern provides better reliability-to-response-time ratio.  

The Fast concurrent execution and Sequential execution patterns improve service 
correctness (decrease probability of non-evident error). Besides, the first one provides 
minimal response time (less than mean response time of each particular WS). An 
unexpected result was that the Sequential execution pattern improves reliability and 
correctness without performing unnecessary services invocation and, at the same 
time, provides rather good response time. 

Finally, a more complex composition model combining the “vertical” and “horizon-
tal” compositions is also possible. It supports two boundary architectures:  
1. Multilevel mediation (Fig. 12-a) with co-ordination at each level of functional 

composition. 
2. One-level mediation (Fig. 12-b) with co-ordination at only the top level. 

A number of intermediate architectures are also possible. However, questions like 
“How many horizontal composition levels will provide the maximal improvement?”, 
“When mediator (voter) should be placed?” are yet unsolved and are objectives of 
future researches.  

Another question is how to assess and take into account actual services diversity. 
Because it is obvious that different Web Services can refer to the same ‘physical’ 
services or resources like it is shown in the Fig, 12-b where two independent 
TA Services (v.1 and v.2) use the same Car Rental Service ‘Hertz’. 

Table 2. Effectiveness of different patterns of dependability-oriented composition 

№ 
Patterns of dependability-

oriented composition m
ax

.  
pr

ob
ab

il
it

y 
of

 
co

rr
ec

t r
es

po
ns

e 

m
in

. p
ro

ba
bi

li
ty

 
of

 n
on

-e
vi

de
nt

 
er

ro
r 

m
in

. p
ro

ba
bi

li
ty

 
of

 e
xc

ep
ti

on
 

m
in

. p
ro

ba
bi

li
ty

  
of

 s
er

vi
ce

 u
n-

av
ai

la
bi

li
ty

 

m
in

. r
es

po
ns

e 
ti

m
e 

1 Reliable concurrent execution ++  + + -- 
2 Fast concurrent execution + +  + + 
3 Adaptive concurrent execution + +  + - 
4 Sequential execution ++  + + - 

(‘+’ – advantage;  ‘-’ – disadvantage) 



 Using Inherent Service Redundancy and Diversity 339 

a) 

 

b) 

 

Fig. 12. Combined “vertical and horizontal” Web Service composition using multilevel (a) and 
one-level (b) mediation 

Applying in practice techniques of the “horizontal” composition and other means of 
improving SOA dependability requires developing new workflow patterns and im-
plementing them in different WF languages.  

In our future work we are going to use WS-BPEL 2.0, which is a new version of 
popular language widely-used in industry for the specification of business processes 
and business interaction protocols. Of a particular interest to us is its support for ex-
tensibility by allowing namespace-qualified attributes to appear in any standard ele-
ment and by allowing new user-specified activities to be defined by using 
‘extensionActivity’ and ‘extensionAssignActivity’ constructions. 
 



340 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

Acknowledgments. Alexander Romanovsky is partially supported by the EC ICT 
DEPLOY project.  

References 

1. W3C Working Group. Web Services Architecture (2004),  
http://www.w3.org/TR/ws-arch/ 

2. Ferguson, D.F., Storey, T., Lovering, B., Shewchuk, J.: Secure, Reliable, Transacted Web 
Services: Architecture and Composition. Microsoft and IBM Technical Report (2003), 
http://www-106.ibm.com/developerworks/webservices/library/ 
ws-securtrans 

3. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Dependability in the Web Service 
Architecture. In: Architecting Dependable Systems, pp. 89–108. Springer, Heidelberg 
(2003) 

4. Leymann, F.: Web Services Flow Language. Technical report, IBM (2001) 
5. Thatte, S.: XLANG: Web Services for Business Process Design. Technical report, Micro-

soft (2001) 
6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: WSDL: Web services de-

scription language (2001), http://www.w3.org/TR/wsdl 
7. Andrews, T., Cubera, F., Dholakia, H.: Business Process Execution Language for Web 

Services Version 1.1. OASIS (2003), http://ifr.sap.com/bpel4ws 
8. Ankolekar, et al.: Ontology Web Language for Services (OWL-S) (2002), 

http://www.daml.org/services 
9. Gorbenko, A., Kharchenko, V., Popov, P., Romanovsky, A.: Dependable composite web 

services with components upgraded online. In: de Lemos, R., Gacek, C., Romanovsky, A. 
(eds.) Architecting Dependable Systems III. LNCS, vol. 3549, pp. 92–121. Springer, Hei-
delberg (2005) 

10. Hall, S., Dobson, G., Sommerville, I.: A Container-Based Approach to Fault Tolerance in 
Service-Oriented Architectures (2005),  
http://digs.sourceforge.net/papers/2005-icse-paper.pdf 

11. Maheshwari, P., Erradi, A.: Architectural Styles for Reliable and Manageable Web Ser-
vices (2005),  
http://mercury.it.swin.edu.au/ctg/AWSA05/Papers/erradi.pdf 

12. Chen, Y., Romanovsky, A., Li, P.: Web Services Dependability and Performance Monitor-
ing. In: Proc. 21st Annual UK Performance Engineering Workshop, UKPEW 2005 (2005), 
http://www.staff.ncl.ac.uk/nigel.thomas/UKPEW2005/ukpew-
proceedings.pdf 

13. Townend, P., Groth, P., Xu, J.: A Provenance-Aware Weighted Fault Tolerance Scheme 
for Service-Based Applications. In: Proc. of the 8th IEEE International Symposium on Ob-
ject-Oriented Real-Time Distributed Computing (2005) 

14. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern-Based 
Analysis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queensland University 
of Technology, Brisbane, Australia (2002),  
http://is.tm.tue.nl/staff/wvdaalst/publications/p175.pdf 

15. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Wohed, P.: Pattern-Based 
Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, Queensland 
University of Technology, Brisbane, Australia (2002),  
http://is.tm.tue.nl/research/patterns/download/qut_bpml_rep.
pdf 



 Using Inherent Service Redundancy and Diversity 341 

16. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of web 
services composition languages: The case of BPEL4WS. In: Song, I.-Y., Liddle, S.W., 
Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer, 
Heidelberg (2003) 

17. Gorbenko, A., Kharchenko, V., Romanovsky, A.: Vertical and Horizontal Composition in 
Service-Oriented Architecture. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, 
vol. 4591, pp. 139–147. Springer, Heidelberg (2007) 

18. Ernst, M.D., Lencevicius, R., Perkins, J.H.: Detection of Web Service substitutability and 
composability. In: Proc. International Workshop on Web Services Modeling and Testing 
(WS-MaTe 2006), pp. 123–135 (2006) 

19. Chen, Y., Romanovsky, A.: Improving the Dependability of Web Services Integration. IT 
Professional: Technology Solutions for the Enterprise. IEEE Computer Society, issue, pp. 
20–26 (January/February 2008) 

20. Chandra, S., Chen, P.M.: Whither Generic Recovery From Application Faults? A Fault 
Study using Open-Source Software. In: Proc. Int. Conf. on Dependable Systems and Net-
works, pp. 97–106 (2000) 

21. Deswarte, Y., Kanoun, K., Laprie, J.-C.: Diversity against Accidental and Deliberate 
Faults Computer Security. In: Dependability and Assurance: From Needs to Solutions. 
IEEE Computer Society Press, Washington (1998) 

22. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering, 805 p. McGraw-Hill 
Company, New York (1996) 

23. Wang, Y., Vassileva, J.: Toward Trust and Reputation Based Web Service Selection: A 
Survey. In: Proc. International Transactions on Systems Science and Applications (ITSSA) 
Journal, special Issue on New tendencies on Web Services and Multi-agent Systems (WS-
MAS), vol 3(2) (2007) 

24. Avizienis, J.-C., Laprie, B., Randell, C.: Basic Concepts and Taxonomy of Dependable 
and Secure Computing. IEEE Transactions on Dependable and Secure Computing 1(1), 
11–33 (2004) 

25. Yang, S., Lan, B., Chung, J.-Y.: Analysis of QoS Aware Web Services. In: Proc. Interna-
tional Computer Symposium on Web Technologies and Information Security Workshop 
(ICS) (2006) 

26. Kaâniche, M., Kanoun, K., Martinello, M.: A User-Perceived Availability Evaluation of a 
Web Based Travel Agency. In: Proc. International Conference on Dependable Systems and 
Networks (DSN 2003), pp. 709–718 (2003) 

27. Thomas, A., Venter, L.: Propagating Trust In The Web Services Framework. In: Proc. In-
formation Security South Africa Conference (ISSA 2004),  
http://icsa.cs.up.ac.za/issa/2004/Proceedings/Full/012.pdf 

28. Pat, P.W., Chan, M., Lyu, R., Malek, M.: Making Services Fault Tolerant. In: Proc. 3rd In-
ternational Service Availability Symposium (ISAS 2006) (2006),  
http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/ISAS06.pdf 

 


	Using Inherent Service Redundancy and Diversity to Ensure Web Services Dependability
	Introduction
	Web Services Redundancy and Diversity
	Web Services Dependability
	Web Services Composition
	$Vertical$ Composition for Functionality Extension
	$Horizontal$ Composition for Dependability Improvement

	Middleware-Based Architecture Supporting Dependability-Oriented Composition
	Patterns of Dependability-Oriented Composition
	Simulation

	Implementation
	Work-Flow Patterns Supporting Web Services Composition
	Testbed Workflows

	Conclusions and Future Researches
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




