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Abstract. Proxy re-encryption (PRE) allows a proxy to convert a ci-
phertext encrypted under one key into an encryption of the same mes-
sage under another key. The main idea is to place as little trust and
reveal as little information to the proxy as necessary to allow it to per-
form its translations. At the very least, the proxy should not be able to
learn the keys of the participants or the content of the messages it re-
encrypts. However, in all prior PRE schemes, it is easy for the proxy to
determine between which participants a re-encryption key can transform
ciphertexts. This can be a problem in practice. For example, in a secure
distributed file system, content owners may want to use the proxy to
help re-encrypt sensitive information without revealing to the proxy the
identity of the recipients.

In this work, we propose key-private (or anonymous) re-encryption
keys as an additional useful property of PRE schemes. We formulate
a definition of what it means for a PRE scheme to be secure and key-
private. Surprisingly, we show that this property is not captured by prior
definitions or achieved by prior schemes, including even the secure ob-
fuscation of PRE by Hohenberger et al. (TCC 2007). Finally, we propose
the first key-private PRE construction and prove its CPA-security under
a simple extension of Decisional Bilinear Diffie Hellman assumption and
its key-privacy under the Decision Linear assumption in the standard
model.

1 Introduction

In many applications, data protected under one public key pk1 needs to be
distributed to a user with a different public key pk2. It is not always practical
for the owner of sk1 to be online to decrypt these ciphertexts and then encrypt
these contents anew under pk2. For example, Alice might wish to have her mail
server forward her encrypted email to Bob while she is on vacation. However,
how can Alice do this without revealing her sk1 to either her mail server or Bob?

As a solution to this key management problem, the concept of proxy re-
encryption (PRE) was introduced [5]. Proxy re-encryption is a cryptosystem
with the special property that a proxy, given special information, can efficiently
convert a ciphertext for Alice into a ciphertext of the same message for Bob. The
proxy should not, however, learn either party’s secret key or the contents of the
messages it re-encrypts. The main idea is to place as little trust in the proxy as
possible. When PRE is used for distributed file systems [2], this absence of trust
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directly reduces the desirability for an adversary to compromise the distribution
server, without compromising functionality.

In addition to hiding the contents of files from the proxy, it is also useful in
practice to suppress as much meta-data as possible. For example, we might want
the proxy file server to re-encrypt sensitive files for certain recipients without
revealing to the proxy the recipient’s identity. For example, the server might
be told to re-encrypt all category one files with key one and category two files
with keys two and three, without the proxy being able to deduce the public keys
behind these values. This way, if the proxy is compromised, the adversary will
not be able to extract a list of “who was speaking privately with whom”. This
is highly desirable for many encrypted communication scenarios.

This level of privacy for standard encryption schemes was formalized as key-
private (or anonymous) encryption in 2001 by Bellare, Boldyreva, Desai and
Pointcheval (BBDP) [4]. Intuitively, they studied encryption schemes where it
is impossible to derive the recipient of a message from the ciphertext and the
set of public keys. Consequently, the ciphertext is anonymous; that is, it cannot
be linked to a particular public key and its owner. Fortunately, most public
key encryption schemes already satisfy this property, such as Elgamal, Cramer-
Shoup, and RSA-OAEP.

In this work, we introduce the strictly stronger notion of key-private (or anony-
mous) PRE. Intuitively, it should be impossible for the proxy and a set of collud-
ing users to derive either the sender or receiver’s identities from a re-encryption
key even when given the public keys and flexible interaction ability within the
system. As we formalize in Section 2.1, achieving key-private PRE is only pos-
sible when the underlying encryption scheme is key-private.

Unfortunately, this condition is far from sufficient. Finding a key-private PRE
was a surprisingly difficult task. Whereas most standard encryption schemes are
already key-private under the BBDP definition, none of the half-dozen existing
PRE schemes are key-private under our natural definition in Section 2. This
includes even the recent PRE construction of Hohenberger et al. [10], which was
proven secure under a very strong obfuscation definition. In the next section, we
discuss the problems with each existing scheme and the necessary conditions for
realizing key-private PRE.

The main contribution of this work, in addition to our formal definition in
Section 2, is the first realization of a key-private PRE scheme. Our construction
is efficient, reasonably simple, and secure under basic assumptions about bilinear
groups in the standard model. Formally, it is a unidirectional, single-hop, CPA-
secure PRE with key-privacy. Thus, we show, for the first time, that this natural
extension of anonymous encryption is practical and available for many existing
PRE applications, as discussed in Section 1.2.

1.1 The Notion of Key-Private PRE and Prior Constructions

In this section, we examine the half-dozen existing proxy re-encryption schemes
and discuss why they do not satisfy the notion of key-privacy. Let us first sketch
the privacy notion wanted. Intuitively, we want to capture the strong guarantee
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that even an active proxy colluding with a set of malicious users in the system
cannot learn from the re-encryption key the identity of the involved participants
nor the contents of their encrypted messages.

Informally, the key-privacy game works as follows. First, the adversary is given
the public keys of all honest users and the keypairs of all corrupt users. Next,
the adversary is allowed to query two oracles an arbitrary number of times. The
adversary may either request: (1) to have a chosen ciphertext under any user i
re-encrypted to any user j or (2) to obtain the re-encryption key that translates
ciphertexts from any user i to any user j. These oracles will operate regardless
of the corruption status of i or j. Finally, the adversary must output a challenge
pair of honest users (i∗, j∗), with the restriction that the adversary cannot have
asked for this key before. The challenger will then return either the re-encryption
key from i∗ to j∗ or a random key in the key space. The adversary wins if he
can distinguish these cases with non-negligible probability.

Before discussing the problems with specific PRE constructions, let’s get a
better sense of what cannot possibly work. In Section 2.1, we point out that no
deterministic re-encryption algorithm can satisfy the key-privacy definition. To
see this, consider the generic attack where an adversary asks for a re-encryption
of ciphertext C under user i to user j to obtain output C′. The adversary can
then challenge on (i, j) and apply the returned re-encryption key to C. Since the
re-encryption algorithm is deterministic, this should result in output C′ if this is
a proper key from i to j and is unlikely to do so for a random key. Unfortunately,
the first four (out of six) prior PRE schemes have deterministic re-encryption
algorithms, and thus cannot be key-private.

Similarly, in Section 2.1, we show that for a PRE scheme to be key-private
(that is, one cannot distinguish the participants from seeing the key), the un-
derlying encryption scheme must also be key-private in the sense of Bellare,
Boldyreva, Desai and Pointcheval [4] (that is, one cannot distinguish the re-
cipient from seeing the ciphertext). Some of the schemes also fail to have this
property; mainly because they are in a bilinear setting, where the map can be
used for this test.

Let us now discuss some specifics of prior schemes.

BBS PRE. Proxy re-encryption was first proposed by Blaze, Bleumer, and
Strauss (BBS) [5] in Eurocrypt 1998. Their scheme, based on Elgamal, works in
a group G of prime order p. Anyone can send a message m ∈ G to user A with
public key ga (with g ∈ G) by computing (mgk, (ga)k), for a random k ∈ Zp.
A can delegate to B (with public key gb) her decryption rights by giving the
proxy the value b/a mod p. All ciphertexts for A can be converted to ciphertexts
for B by computing (gak)b/a = gbk and then releasing the ciphertext (mgk, gbk).
Unfortunately, this scheme is trivially not key-private, because its re-encryption
algorithm is deterministic. But there is an even easier attack: the adversary
challenges on (A, B) to obtain challenge key r, this key is correct iff r = b/a.
Using the public keys (ga, gb), the adversary can test this as (ga)r = gb.

AFGH PRE. Ateniese, Fu, Green and Hohenberger [2] proposed new PRE
schemes that employ bilinear pairings. Their protocols are unidirectional
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(a re-encryption key from A to B does not imply a key from B to A), an im-
provement over BBS where the keys are bidirectional. Their schemes require a
bilinear map e : G × G → GT , where g ∈ G and Z = e(g, g) ∈ GT . In their
first scheme, public key for A is ga and similarly B’s public key is gb. The re-
encryption key rkA→B is gb/a. However, this scheme is not key-private, because
the adversary can challenge on (A, B) to obtain key r and then test if r = gb/a

as e(ga, r) = e(gb, g). A similar attack also works for their second scheme.1 But
since both schemes are deterministic, the generic attack also applies here.

CH PRE. Canetti and Hohenberger [8] proposed the first CCA-secure bidirec-
tional PRE scheme in the standard model. However, even CCA-security does not
ensure key-privacy, because the public keys (e.g., ga, gb) and re-encryption keys
(e.g., b/a) are the same as in the BBS PRE, so the proxy can attack key-privacy
here using the same algorithm from BBS. Part of the re-encryption algorithm of
this scheme is also deterministic, and therefore, the generic attack again applies.

LV PRE. Libert and Vergnaud [12] proposed the first CCA-secure unidirec-
tional PRE scheme in the standard model. To achieve CCA-security, they em-
ploy a quite interesting technique whereby the encryption of the scheme in [2]
is randomized by the proxy via a blinding factor that effectively hides the re-
encryption key within the re-encryption (which is also followed by a proof of
consistency). Interestingly, their scheme is not key-private even though the re-
encryption algorithm is probabilistic. Indeed, A and B have respectively public
keys ga and gb, and the proxy key is rkA→B = gb/a, just as in AFGH. Thus, as
in AFGH [2], the adversary can challenge on (A, B) to obtain key r and then
test if r = gb/a as e(ga, r) = e(gb, g).

HRSV PRE. Recently, Hohenberger, Rothblum, shelat, and Vaikuntanathan
[10] presented a CPA-secure unidirectional PRE in the standard model, with
probabilistic algorithms for performing encryption and generating re-encryption
keys. Moreover, HRSV satisfied a very strong security notion, treating the re-
encryption key together with the re-encryption algorithm as an obfuscated re-
encryption program. That is, a program whose code is scrambled in such a way
that: (1) it still produces the correct outputs, and yet (2) it is not possible to
“reverse engineer” the program to learn its secrets (i.e., anything that cannot be
learned from black-box access to the program.) Interestingly, even their strong
obfuscation definition does not imply key privacy and their construction does not
satisfy our definition. To see this, recall that their construction is set in a bilinear
group, where Alice’s public key is of the form (g, ga1, ga2) and Bob’s public key is
of the form (h, hb1 , hb2) for random g, h ∈ G and random exponents a1, a2, b1, b2.
Given these public keys, the adversary can ask to see the re-encryption key

1 To see why the second AFGH scheme is not key-private, consider the following attack.
The adversary can ask for the re-encryption key from (C, A) to obtain r1 = ga2c1 .
The adversary can next challenge on (C, B) to obtain r2. Then the adversary can
test if r2 = gb2c1 , making it a valid re-encryption key from C to B, via e(r1, g

b2) =
e(r2, g

a2) with public key values ga2 and gb2 . This test determines if two keys have
the same delegator, which is not possible under our key-privacy definition.
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for (A, B) which will be (y, yb1/a1 , yb2/a2), where y ∈ G is chosen randomly.
The adversary can then challenge on (B, A) to obtain a key (r, r1, r2), which if
correct, is of the form (r, ra1/b1 , ra2/b2) for a random r ∈ G. The adversary can
then test for correctness as e(y, r) = e(yb1/a1 , r1) = e(yb2/a2 , r2). Thus, even
this obfuscation is not key-private. Indeed, our notion seems difficult to satisfy
because, unlike the obfuscation definition, we will allow the adversary broad
query powers and the ability to collude with system users, whereas the current
definition of obfuscation considers the release of only one re-encryption program.

1.2 Applications

PRE has been proposed for use in email-forwarding [5], secure file systems [2],
DRM [14], and secure mailing lists [11]. All these applications can benefit from
the key-privacy property in some way. In email-forwarding, Alice may not want
the mail server to know to whom she is delegating her decryption rights. This
is similar in the real world to a P.O. Box address where mail can be sent to
a physical location but neither the sender nor the carrier may know who the
actual recipient is. Alice can hide the fact that Bob is a delegatee by instructing
the server to convert her encrypted emails via a key-private PRE scheme and to
forward the results to an anonymous (or group) email address (i.e., an address
reachable by Bob but that does not contain any identifiable information on Bob,
like a P.O. Box address indeed).

In a distributed file system, PRE schemes can be used as an access control
mechanism to specify who can access and read encrypted files [2]. Alice may
want Bob to read some of her encrypted files, thus she instructs the file system
to convert those files using a proxy re-encryption key from Alice to Bob. In a
distributed file system, anyone can access those files but only Bob can read them.
If the PRE scheme employed is key-private, nobody can even tell who can access
and read any file in the system.

In [14], Taban, Cárdenas, and Gligor describe a secure and interoperable dig-
ital rights management (DRM) system based on proxy re-encryption and proxy
re-signatures [3]. They specify, implement, and analyze a framework within which
different DRM systems can interoperate. Proxy re-encryption is used by a Do-
main Interoperability Manager (DIM) that translates DRM packaged digital
content between devices with distinct DRM systems. The DIM is a semi-trusted
entity that is susceptible to compromise, thus encryption is used to ensure pri-
vacy of the content and licenses associated with each DRM system. A key-private
PRE scheme would also hide the associations between the various devices and
their respective DRM systems in case of compromise.

In [11], Khurana, Heo, and Pant propose to use proxy re-encryption for SELS
(Secure Email List Services), a system that provides private email discussion lists
via encryption. A list is composed of several members that exchange messages
internally or with other members outside the list. To send a private message
to a list (and to its members), it is enough to encrypt the message under a
public-key associated with the list. A List Server (LS) uses a PRE scheme to
translate that encryption into encryptions under the public keys of each member



284 G. Ateniese, K. Benson, and S. Hohenberger

of the list, respectively. If the LS server is ever compromised, the secret keys of
the list and its members would remain protected as well as the content of any
messages exchanged within the list. However, the identities of the members in
a list would be exposed by just looking at the re-encryption keys. This may not
be desirable in many contexts and thus a key-private PRE scheme would be
preferable whenever the privacy of list members must be guaranteed.

In [13], Suriadi, Foo and Smith use proxy re-encryption to develop a credential
system with conditional privacy. Their system has many proxies providing keys
to parities who wish to remain anonymous. They use multiple-hops in their key
distribution to help maintain anonymity; it would be possible to instead use a
key-private PRE scheme.

2 Key-Private PRE Definitions

We build upon the re-encryption definitions of [2] and [8] to introduce the
concept of key privacy. We will only consider a definition for unidirectional,
single-hop PREs. By single-hop, we mean that only original ciphertexts (and not
re-encrypted ciphertexts) can be re-encrypted.

Definition 1. (Unidirectional, Single-Hop PRE) A unidirectional, single-
hop, proxy re-encryption scheme is a tuple of algorithms Π = (Setup, KeyGen,
ReKeyGen, Enc, ReEnc, Dec) for message space M :

– Setup(1k) → PP . On input security parameter 1k, the setup algorithm out-
puts the public parameters PP .

– KeyGen(PP ) → (pk, sk). On input public parameters, the key generation
algorithm KeyGen outputs a public key pk and a secret key sk.

– ReKeyGen(PP, ski, pkj) → rki→j . Given a secret key ski and a public key
pkj, where i �= j, this algorithm outputs a unidirectional re-encryption key
rki→j . The restriction that i �= j is provided as re-encrypting a message to
the original recipient is impractical.

– Enc(PP, pki, m) → Ci. On input a public key pki and a message m ∈ M ,
the encryption algorithm outputs an original ciphertext Ci.

– ReEnc(PP, rki→j , Ci) → Cj. Given a re-encryption key from i to j and an
original ciphertext for i, the re-encryption algorithm outputs a ciphertext for
j or the error symbol ⊥.

– Dec(PP, ski, Ci) → m. Given a secret key for user i and a ciphertext for i,
the decryption algorithm Dec outputs a message m ∈M or error symbol ⊥.

A PRE scheme Π is correct with respect to domain M if:

– For all (pk, sk) ∈ KeyGen(PP ) and all m ∈M , it holds that

Dec(PP, sk, Enc(PP, pk, m)) = m.

– For all pairs (pki, ski), (pkj , skj) ∈ KeyGen(PP ) and re-encryption keys
rki→j ∈ ReKeyGen(PP, ski, pkj), and m ∈M , it holds that

Dec(PP, skj , ReEnc(PP, rki→j , Enc(PP, pki, m))) = m.
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Definition 2. (Unidirectional, Single-Hop PRE CPA-Security Game)
Let 1k be the security parameter. Let A be an oracle TM, representing the ad-
versary. The PRE-CPA game consists of an execution of A with the following
oracles. The game consists of three phases, which are executed in order. Within
each phase, each oracle can be executed in any order, poly(k) times, unless oth-
erwise specified.
Phase 1:

– Public Parameter Generation: The public parameters are generated and
given to A. This oracle is executed first and only once.

– Uncorrupted Key Generation: Obtain a new key pair (pk, sk) by running
KeyGen(PP ). A is given pk. Let ΓH be the set of honest user indices.

– Corrupted Key Generation: Obtain a new key pair (pk, sk) by running
KeyGen(PP ). A is given (pk, sk). Let ΓC be the set of corrupt user indices.

Phase 2:

– Re-encryption Key Generation Orkey: On input (i, j) by the adversary,
where the key pairs for i and j were generated in Phase 1, return the key
rki→j = ReKeyGen(PP, ski, pkj). All requests where i = j or where i ∈ ΓH

and j ∈ ΓC are ignored (an output of ⊥).
– Re-encryption Orenc: On input (i, j, Ci), where the keys for i and j were

generated in Phase 1, return Cj = ReEnc(PP, ReKeyGen(PP, ski, pkj), Ci).
For requests where i = j or where i ∈ ΓH and j ∈ ΓC , output ⊥.

– Challenge Oracle: On input (i, m0, m1), the oracle chooses a random b←
{0, 1} and returns the challenge ciphertext Ci = Enc(PP, pki, mb). This or-
acle can only be queried once, and it is required that i ∈ ΓH .

Phase 3:

– Decision: Eventually, A outputs decision b′ ∈ {0, 1}. A wins the game if
and only if b = b′.

Definition 3. (Unidirectional, Single-Hop PRE CPA Security) Given
security parameter 1k, a PRE scheme is Unidirectional PRE CPA secure for
domain M of messages if is it correct for M and ∀ p.p.t. adversaries A, ∃ a
negligible function ε such that A wins the unidirectional PRE-CPA game with
probability at most 1

2 + ε(k).

Remark 1 (Corruptions). As in many prior re-encryption papers [2,8,12], we
work in a static corruption model, where the adversary must chose to either
corrupt a party or not at the time the party’s keypair is generated. Indeed, the
problem of handling dynamic corruptions for any encryption scheme is a clas-
sically difficult problem. This rules out allowing the adversary to query Orkey

from an honest to a corrupt user, since this action would corrupt the honest
user. Moreover, we also disallow adversarial queries to Orenc from honest to
corrupt users, as in [2], since such access could simulate a decryption oracle
which we do not consider in CPA-secure constructions.
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Next, we turn to what it means for a re-encryption key to be key-private. In-
formally, we want a proxy to be unable to identify either the delegator i or the
delegatee j when given the re-encryption key rk i→j and flexible interaction with
the system (e.g., other re-encryption keys, access to re-encryption oracles, etc.)
To capture this idea, we say that the proxy is allowed to choose (i, j) and then
cannot distinguish the valid key rk i→j from a random value in the key space.

Our definition for key privacy is more challenging to realize than CPA-security,
because most of the restrictions on how the adversary can call Orkey and Orenc

are now removed. Indeed, we allow a form of dynamic corruption here. For
example, it is now legal for the adversary to ask for re-encryption keys and
re-encryptions from honest to corrupt parties, and then later to challenge on
these honest parties. In other words, key-privacy is maintained even when honest
parties unwisely delegate decryption capabilities to corrupt parties.

Definition 4. (Unidirectional, Single-Hop PRE Key-Privacy Game)
Let k be the security parameter. Let A be an oracle TM, representing the adver-
sary. The PRE Key-Privacy Game consists of an execution of A with the same
oracles as before unless specified below. There are three phases.
Phase 1:

– The adversary is given the public parameters, and then may request uncor-
rupted or corrupted key pairs to be created, as before.

Phase 2:

– Re-encryption Key Generation Orkey: On input (i, j) by the adversary,
where the key pairs for i and j were generated in Phase 1, return the key in
table T corresponding to (i, j). If there is no such entry in the table, compute
it as ReKeyGen(PP, ski, pkj), add the key to the table T in cell (i, j), and
output this key. The oracle will only produce a single re-encryption key for
(i, j). If i = j then the error symbol ⊥ is returned. Note that there is no
longer the restriction that i �∈ ΓH or j �∈ ΓC .

– Re-encryption Orenc: On input (i, j, Ci) where the key pairs for i and j were
generated by KeyGen, obtain the re-encryption key s corresponding to (i, j) in
table T . If no such key exists, create it as s← ReKeyGen(PP, sk i, pk j) and save
it in table T . Return either Cj = ReEnc(PP, s, Ci) or ⊥ if i = j.

– Challenge Oracle: This oracle can only be challenged once. On input (i, j),
the oracle sets s to be the key corresponding to (i, j) in table T . If no such key
exists, it creates it as s← ReKeyGen(PP, sk i, pk j). The oracle then chooses
a bit b ← {0, 1} and then returns the value s if b = 1 and a random key in
the key space otherwise. The constraints are that Orkey must not have been
queried for (i, j) before, i �= j and i, j ∈ ΓH .

Phase 3:

– Decision: Eventually, A outputs decision b′ ∈ {0, 1}. We say that A wins
the game if and only if b = b′.
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Definition 5. (Unidirectional, Single-Hop PRE Key Privacy) For secu-
rity parameter 1k, a PRE scheme is key-private if ∀ p.p.t. adversaries A, ∃ a
negligible function ε such that A wins the unidirectional PRE Key-Privacy Game
with probability at most 1

2 + ε(k).

2.1 Impossibility Results for Key-Private Re-encryption

Before seeing the construction, we lay out some necessary, but not sufficient,
conditions for satisfying the above definition in two simple lemmas.

Lemma 1. Any bidirectional or unidirectional re-encryption scheme (Setup,
KeyGen, ReKeyGen, Enc, ReEnc, Dec), where the ReEnc algorithm is determinis-
tic cannot satisfy key-privacy (Definition 5).

Proof. Suppose ReEnc is deterministic. An adversary A wins the key-privacy
game as follows:

1. Ask for a set of uncorrupted parties to be generated; obtain the public pa-
rameters and keys.

2. Choose a random m in the message space and compute c = Enc(PP, pk1, m).
3. Query the re-encryption oracle Orenc(1, 2, c) to obtain the response c′.
4. Challenge on identities (1, 2) and obtain the challenge key s. (Recall that,

by definition, the key-privacy challenger will return the same key here that
it used in the previous step.)

5. Using s, run the deterministic algorithm ReEnc(PP, s, c)→ c′′.
6. If c′ = c′′, output 1, else output 0.

It is easy to see that A succeeds with overwhelming probability.

This lemma immediately rules out almost all prior PRE constructions [5,2,8] as
candidates for key privacy. Nor is it obvious how to transform these construc-
tions into key-private schemes. The schemes by Libert and Vergnaud [12] and
Hohenberger et al. [10] employ probabilistic re-encryption algorithms, but they
still admit key-privacy attacks. Thus, a probabilistic re-encryption algorithm is
a necessary, but not sufficient condition.

Lemma 2. Any bidirectional or unidirectional re-encryption scheme (Setup,
KeyGen, ReKeyGen, Enc, ReEnc, Dec) satisfying the key-privacy (Definition 5) im-
plies that (Setup, KeyGen, Enc, Dec) admits a key-private encryption scheme ac-
cording to the standard definition [4].

In other words, it is not possible for a PRE scheme to be key-private, unless
the underlying encryption resulting from a re-encryption is key-private. The
point here is that any key-private PRE must admit some key-private encryption
scheme. Bellare, Boldyreva, Desai and Pointcheval [4] introduced key-private
encryption, where an adversary cannot distinguish the intended recipient from
the ciphertext. More formally, the adversary is given two public keys pk0, pk1,
chooses a message m, is given an encryption of m under one of the two keys
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b ∈ {0, 1} chosen at random, and finally issues a guess b′ ∈ {0, 1}. The se-
curity notion requires that all efficient adversaries cannot achieve b = b′ with
probability non-negligibly better than random guessing.

For a PRE scheme to be key-private, the proxy cannot distinguish the intended
recipient from the ciphertext even when given access to re-encryption keys and
re-encryption oracles. To see this, consider that otherwise an adversary A can
win the key-privacy game as follows:

1. Ask for n uncorrupted parties to be generated; obtain the public parameters
and keys.

2. Choose a random m in the message space and compute c = Enc(PP, pk1, m).
3. Challenge on identities (1, 2) and obtain the challenge key s.
4. Using s, run the possibly probabilistic algorithm ReEnc(PP, s, c)→ c′.
5. If c′ is a ciphertext under public key pk2, output 1, else output 0.

The BBS PRE [5] uses Elgamal (in a non-bilinear setting) as its encryption
base and thus satisfies anonymous encryption via Bellare et al. [4], although it is
not a key-private PRE. Thus, this condition is also necessary, but not sufficient.

3 A Key-Private PRE Scheme

3.1 Algebraic Setting

Bilinear Groups. We write G = 〈g〉 to denote that g generates the group G.
Let BSetup be an algorithm that, on input the security parameter 1k, outputs
the parameters for a bilinear map as (q, g, G, GT , e), where G, GT are of prime
order q ∈ Θ(2k) and 〈g〉 = G. The efficient mapping e : G × G → GT is both:
(Bilinear) for all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab; and (Non-degenerate)
if g generates G, then e(g, g) �= 1. We consider the following assumptions.

Decisional Bilinear Diffie-Hellman (DBDH) [7]:LetBSetup(1k)→ (q, g, G,
GT , e),where 〈g〉 = G. For all p.p.t. adversariesA, there exists a negligible function
ε such that the following probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1};
z′ ← A(g, ga, gb, gc, xz) : z = z′].

Extended DBDH (EDBDH) [2]: Let BSetup(1k)→ (q, g, G, GT , e), where
〈g〉 = G. For all p.p.t. adversaries A, there exists a negligible function ε such
that the following probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1};
z′ ← A(g, ga, gb, gc, e(g, g)bc2

, xz) : z = z′].

Decision Linear [6]: Let BSetup(1k)→ (q, g, G, GT , e), where 〈g〉 = G. Let h, f
be random generators in G. For all p.p.t. adversaries A, there exists a negligible
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function ε such that the following probability is less than or equal to 1/2 + ε(k):

Pr[x, y, r ← Zq; q1 ← fx+y; q0 ← f r; z ← {0, 1};
z′ ← A(g, h, f, gx, hy, qz) : z = z′].

3.2 The Construction

Scheme Π = (Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec) is described as follows:

Setup (Setup): Run BSetup(1k) → (q, g, G, GT , e), where 〈g〉 = G. Choose a
random generator h ∈ G. Compute Z = e(g, h), and set the public parame-
ters PP = (g, h, Z). In the following, we assume that all parties have PP .

Key Generation (KeyGen): Choose random values a1, a2 ∈ Zq and set the
public key as pk = (Za1 , ga2) with secret key sk = (a1, a2).

Re-Encryption Key Generation (ReKeyGen): UserAwith secret key (a1, a2)
can delegate to user B with public key (Zb1 , gb2) by selecting random values
r, w ∈ Zq and then computing rkA→B as:

((gb2)a1+r, hr, e(gb2 , h)w, e(g, h)w) = (gb2(a1+r), hr, Zb2w, Zw).

Encryption (Enc): To encrypt a message m ∈ GT under public key pkA =
(Za1 , ga2), select random value k ∈ Zq and compute the ciphertext as:

(gk, hk, m · Za1k).

We note that, as in prior schemes [2], it is possible to use this same public key
to produce a ciphertext that cannot be re-encrypted, and thus only opened
by the holder of skA by selecting a random k ∈ Zq and outputting the
Elgamal ciphertext (e(ga2 , h)k, m ·Zk) = (Za2k, m · Zk). We refer to this as
a first-level ciphertext, and re-encryptable ones as second-level ciphertexts.

Re-Encryption (ReEnc): Given a re-encryption key rkA→B = (R1, R2, R3, R4)
= (gb2(a1+r), hr, Zb2w, Zw), it is possible to convert a second-level ciphertext
CA = (α, β, γ) for A into a first-level ciphertext for B as follows:
1. Verify that the ciphertext is well-formed, by checking that it uses consis-

tent randomness in its first two parts as: e(α, h) = e(g, β). If this does
not hold, output ⊥ and abort.

2. Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk,
β = hk and γ = m ·Za1k, and thus, (α, β, γ) is a valid encryption of this
m under pkA = (Za1 , ga2).

3. Compute t1 = e(R1, β) = e(gb2(a1+r), hk) = Zb2k(a1+r).
4. Compute t2 = γ · e(α, R2) = m · Za1k · Zrk = m · Zk(a1+r).
5. Select a random w′ ∈ Zq.
6. Re-randomize t1 by setting t′1 = t1 ·Rw′

3 = Zb2(k(a1+r)+ww′).
7. Re-randomize t2 by setting t′2 = t2 ·Rw′

4 = m · Zk(a1+r)+ww′
.

8. Publish CB = (t′1, t
′
2) = (Zb2y, m · Zy), where y = k(a1 + r) + ww′.
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Decryption (Dec): Given secret key (a1, a2), to decrypt a first-level cipher-
text (α, β), compute m = β/α1/a2 ; and to decrypt a second-level ciphertext
(α, β, γ), output ⊥ if e(α, h) �= e(g, β), otherwise output m = γ/e(α, h)a1 .

Fortunately, this scheme is practical and multi-purpose. Public keys can be
used either for re-encryption purposes or for regular Elgamal encryptions. For
completeness, we show in the full version [1] that the CPA-security of the first-
level ciphertexts holds under DBDH.

3.3 Security Analysis

We first argue that the above scheme is secure and then that it is key-private.

Theorem 1 (CPA Security). Under the EDBDH assumption in G, scheme
Π is a unidirectional, single-hop, CPA-secure PRE scheme for message domain
GT according to Definition 3.

The main difficulty in the proof of Theorem 1 is ensuring that the reduction can
properly answer all the re-encryption key and re-encryption queries asked by A.
It will be easier to work with the following assumption implied by EDBDH:

Definition 6. Modified Extended Decisional Bilinear Diffie-Hellman
(mEDBDH): Let BSetup(1k) → (q, g, G, GT , e), where 〈g〉 = G. For all p.p.t.
adversaries A, there exists a negligible function ε such that the following proba-
bility is less than or equal to 1/2 + ε(k):

Pr[s, t, u, v← Zq; x1 ← e(g, g)st/u; x0 ← e(g, g)v; z ← {0, 1};
z′ ← A(g, gs, gt, gu, e(g, g)t/u, xz) : z = z′].

Lemma 3. If the EDBDH assumption holds in G, then so does the mEDBDH
assumption. (Proof of this Lemma appears in the full version [1].)

We now proceed with the proof of Theorem 1.

Proof. Suppose A breaks the CPA-security of our PRE construction with prob-
ability 1/2 + μ, then we create an adversary B who breaks the mEDBDH as-
sumption with probability 1/2+μ/2. Recall that mEDBDH asks when given (g,
gs, gt, gu, e(g, g)t/u, Q) is Q = e(g, g)st/u. Given a mEDBDH instance Δ, B
handles oracle queries from A as:

– Public Parameter Generation B sets up the global parameters for A by
selecting a random n ∈ Zq and setting (g, h, Z) = (g, gn, e(g, g)n).

– Uncorrupted Key Generation B chooses random x, y ∈ Zq and outputs
the public key pk = ((e(g, g)t/u)nx, (gu)y), where the secret key is implicitly
defined as sk = (tx/u, uy).

– Corrupted Key Generation B choose random xi, yi ∈ Zq, and outputs
pki = (Zxi , gyi) and ski = (xi, yi).
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– Re-encryption Key Generation On input (i, j) to Orkey, do:
• If (1) i is uncorrupted and j is corrupted or (2) i = j, output ⊥.
• If i and j are corrupted, pick random r, w ∈ Zq and output (gyj(xi+r), hr,

e(gyj , h)w, Zw).
• If i and j are both uncorrupted, select a random r, w ∈ Zq and output

((gt)yjxi · (gu)yjr, hr, e((gu)yj , h)w, Zw).
• If i is corrupted and j is uncorrupted, select a random r, w ∈ Zq and

output the key ((gu)yj(xi+r), hr, e((gu)yj , h)w, Zw).
– Re-encryption On input (i, j, Ci = (α, β, γ)) to Orenc, do:
• If (1) i is uncorrupted and j is corrupted, (2) i = j or (3) e(α, h) �=

e(g, β), output ⊥.
• Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk,

β = hk and γ = m ·Ztxik/u if i is honest or γ = m ·Zkxi if i is corrupted.
• If i and j are both corrupted, recover m = γ/e(g, β)xi, then select a

random r ∈ Zq and output (Zyjr, m · Zr).
• If i and j are both uncorrupted, select random r, w ∈ Zq and output

(e(gtyjxi · guyjr, β) · e(gu, h)yjw, γ · e(α, hr) ·Zw) = (e(gtyjxi · guyjr, hk) ·
e(gu, h)yjw, m · Zkxit/u · e(gk, hr) · Zw).
• If i is corrupted and j is uncorrupted, recover m = γ/e(g, β)xi, then

select a random r ∈ Zq and output (e(gu, h)yjr, m · Zr).
– Challenge Oracle Challenges are of the form (i, m0, m1) where i is the

index of an uncorrupted user. B responds by choosing random d ∈ {0, 1}
and outputting the ciphertext: (gs, (gs)n, md ·Qnxi).

– Decision A will submit a guess of d′ ∈ {0, 1}. If d = d′ then B outputs 1 (is
a mEDBDH instance) otherwise it outputs 0 (not a mEDBDH instance).

By construction, the public parameters and all uncorrupted keys, corrupted
keys, re-encryption keys, and re-encryptions are correct and distributed prop-
erly. As to the challenge ciphertext, we have two cases. In the case that Q =
e(g, g)st/u, then the challenge ciphertext is a proper encryption of md. A will
output d′ such that d = d′ with probability 1

2 +μ. Consequently, B will determine
that Δ was a mEDBDH instance and answer 1 with the same probability. When
Q is random, independent of s, t and u then the challenge ciphertext reveals
no information about md. A will guess that d = d′ with probability of exactly
1
2 , and B will correctly output 0 (not a mEDBDH) with the same probability.
The probability that Δ is a valid mEDBDH instance is 1

2 , and B will output
the correct answer with probability: (1

2 )(1
2 + μ) + (1

2 )(1
2 ) = 1

2 + µ
2 . We apply

Lemma 3 to establish the result.

Theorem 2 (Key Privacy). Under the Decision Linear assumption in G,
scheme Π is a unidirectional, single-hop, key-private PRE scheme according
to Definition 5.

The key-privacy proof is more difficult than that of CPA security. In particular,
here we must be able to correctly re-encrypt ciphertexts for a special pair of users
(I, J) even though we may not be able to compute a valid re-encryption key from
I to J . To do this, we designed our encryption scheme in such a way that there is
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a “back door” for decryption, which in some cases, allows us to decrypt and then
encrypt (thus simulating re-encryption) even when we cannot directly compute
the re-encryption key needed to run the real re-encryption algorithm.

Proof. We show that if an adversary A can break the key-privacy game with
probability 1/2 + μ, then we can construct an adversary B who can break the
Decision Linear assumption with probability roughly 1

2 + µ
4n2 , where n is the

number of honest users. (This loose bound comes from letting the adversary
dynamically pick its pair of honest users to challenge on. In prior key-privacy
definitions [4], the adversary was restricted to a single pair.)

Given a Decision Linear input Δ′ = (g, h, f, gx, hy, Q
?= fx+y), B handles ora-

cle queries from A as follows. Let n be the bound on the number of uncorrupted
users which A will ask to be created. B randomly chooses two as special users I
and J , out of these n, and predicts that A will challenge on identities (I, J). B
will proceed to set up things, so that first two elements of the valid re-encryption
key from I to J will be (fx+y, hy). At a high-level, if A challenged on (I, J) then
his response will be used to help B, and if A challenges on anything else B will
abort. Fortunately, we will see that B does not abort with probability ≥ 1/2n2.

Assuming (I, J) are chosen, let’s see how B proceeds:

– Public Parameter Generation B sets up the parameters of A as (g, h, Z)
= (g, h, e(g, h)).

– Uncorrupted Key Generation
• If this is the key for special user I, then select random a ∈ Zq and output

(e(gx, h), ga).
• If this is the key for special user J , then select random b ∈ Zq output

(Zb, f). Denote f := gs, for some s ∈ Zq.
• Otherwise select random mi, ni ∈ Zq and output (Zmi , gni).

– Corrupted Key Generation Select random mi, ni ∈ Zq and output the
public key as (Zmi , gni), as well as the private key pair (mi, ni).

– Re-encryption Key Generation Given a request to encrypt from i to j,
B selects a random r ∈ Zq and proceeds as follows. If i is corrupted, this
computation can be done by A.
• If B produced a re-encryption key from i to j before or i = j, output ⊥.
• If i is I and j is J , then abort. (I.e., (I, J) will not be the challenge pair.)
• If i is I and j is other, then output ((gx)nj · gnjr, hr, Znjw, Zw).
• If i is J and j is I, then output (ga(b+r), hr, Zaw, Zw).
• If i is J and j is other, then output ((gnj )b+r, hr, Znjw, Zw).
• If i is other and j is I, then output (ga(mi+r), hr, Zaw, Zw).
• If i is other and j is J , then output (fmi+r, hr, e(f, h)w, Zw).
• If i is other and j is other, then output (gnj(mi+r), hr, Znjw, Zw).

– Re-encryption On input (i, j, Ci),
• Check that Ci = (α, β, γ) is properly formed by testing if e(α, h) =

e(g, β). If this check fails or i = j, output ⊥.
• If (i, j) is (I, J), then decrypt Ci using gx as m = γ/e(gx, β). Choose a

random r ∈ Zq and output (e(f, h)r , m · Zr) = (Zsr, m · Zr). This is a
key step in the proof.
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• Otherwise obtain a re-encryption key (ζ, η, θ, λ) of the same form as the
re-encryption oracle. (It will not matter here if the same key is used or
a new key generated each time, since the next step re-randomizes the
output to hide which key was used.) The ciphertext is then re-encrypted
and re-randomized by selecting a random w′ ∈ Zq and the output is
(e(ζ, β) · θw′

, γ · e(α, η) · λw′
).

– Challenge Oracle Challenges are of the form (i, j) where i and j are indices
of uncorrupted users which have not been queried before. If (i, j) is (I, J),
B outputs (Q, hy, e(f, h)w, Zw). Else, B aborts and makes a random guess.

– Decision A will submit a guess of d ∈ {0, 1}. If d = 1, then B outputs 1 (is a
Decision Linear instance), else it outputs 0 (not a Decision Linear instance).

The public parameters, key generation algorithm, and all responses of Orkey

and Orenc are correct and properly distributed. When B does not abort on
the challenge and A does not detect improper queries, we have two cases. If
Q = fx+y, then the challenge is a valid re-encryption key for (I, J) and A will
output 1 (a good re-encryption key) with probability 1

2 + μ. B will output the
correct answer (is Decision Linear instance) with the same probability. If Q is
random, then A will output the correct answer of 0 (not a valid re-encryption
key) with probability 1

2 . B outputs the same answer, so it will correctly determine
that Δ′ is not a Decision Linear instance with the same probability. Given that
each case occurs with probability 1/2 when B does not abort and B does not
abort with probability ≥ 1

2n2 , the total probability of B’s success is ≥ 1
2 + 1

2n2 · µ2 .

4 Conclusions and Open Problems

We formalized the notion of key-privacy for proxy re-encryption schemes. We
discussed why none of the six or more existing PRE schemes satisfy this sim-
ple privacy notion. We then presented the first construction. It is secure under
standard assumptions in the standard model.

Our construction realizes CPA-security. It would be interesting to realize key-
private CCA-secure PRE. However, some basic approaches, such as applying
the CPA-to-CCA transformation of Fujisaki and Okamoto [9] do not appear to
maintain the key-privacy properties. It was also surprising that the definition of
obfuscation, as in [10], does not capture key-privacy. It would be very interesting
to know if a secure obfuscation of PRE could be realized when allowing the
proxy and users to collude and allowing all the re-encryption and re-encryption
key queries admitted here, as they would be in a real system.

Finally, we suspect that simpler key-private PRE schemes can be devised,
although at the cost of stronger assumptions. The extended version of DBDH and
the Decision Linear assumptions used here are actually quite mild. Nevertheless,
finding more efficient schemes, even under stronger assumptions or in the random
oracle model, would be quite useful for several applications.
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